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Abstract

Assessment is a well understood educational topic with a really long history and
a wealth of literature. Given this level of understanding of the topic, educational
practitioners are able to differentiate, for example, between valid and invalid as-
sessments. Despite the fact that we can test for the validity of an assessment,
knowing how to systematically generate a valid assessment is still challenging and
needs to be understood. In this thesis we introduce a similarity-based method
to generate a specific type of questions, namely multiple choice questions, and
control their difficulty. This form of questions is widely used especially in con-
texts where automatic grading is a necessity. The generation of MCQs is more
challenging than generating open-ended questions due to the fact that their con-
struction includes the generation of a set of answers. These answers need to be
all plausible, otherwise the validity of the question can be questionable. Our
proposed generation method is applicable to both manual and automatic gener-
ation. We show how to implement it by utilising ontologies for which we also
develop similarity measures. Those measures are simply functions which com-
pute the similarity, i.e., degree of resemblance, between two concepts based on
how they are described in a given ontology. We show that it is possible to control
the difficulty of an MCQ by varying the degree of similarity between its answers.
The thesis and its contributions can be summarised in a few points. Firstly, we
provide literature reviews for the two main pillars of the thesis, namely question
generation and similarity measures. Secondly, we propose a method to automat-
ically generate MCQs from ontologies and control their difficulty. Thirdly, we
introduce a new family of similarity measures. Fourthly, we provide a protocol to
evaluate a set of automatically generated assessment questions. The evaluation
takes into account experts’ reviews and students’ performance. Finally, we intro-
duce an automatic approach which makes it possible to evaluate a large number

of assessment questions by simulating a student trying to answer the questions.
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Chapter 1
Introduction

“Judge a man by his questions rather than by his answers.”

- Voltaire

Asking a question could in many cases be harder than answering one. Indeed,
people do ask questions on a daily basis for different purposes. The challenge in
forming an appropriate question could be in some cases explained by knowing the
purpose of the enquiry. According to Greaser et al. [GRCO08], questions can be
asked for the following purposes: (i) the correction of knowledge deficits (e.g., to
fill a gap in knowledge), (ii) the social coordination of action (e.g., to request a
permission), (iii) the control of conversation and attention (e.g., rhetorical ques-
tions) and (iv) the monitoring of common ground (e.g., to assess what a student
knows about a topic). We focus on the last, i.e., the generation of questions
to assess students’ knowledge. Generating such questions is challenging as they
must accurately measure complex and invisible mental representations of knowl-
edge and yet are expected to provide valid and reliable information upon which
important decisions can be made (e.g., college admission).

Economically speaking, it is estimated that the cost of developing one question
for a high-stake test, e.g., a nation-wide standardised test, can range from $1,500
to $2,000 [Rud10]. It has also been reported [Ach00] that a large amount of money
is increasingly spent on large-scale testing (e.g., US spending doubled from $165
million in 1996 to $330 million in 2000). In addition to its high cost, manual
assessment generation constitutes a significant part of the workload of educators.
It is expected that the time spent on test preparation could be utilised in better
ways. For instance, Randi Weingarten, the president of the American Federation

of Teachers, pointed out that “If educators spent less time on test preparation
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and testing, we could optimise that time for more instruction or for teachers to
collaborate and plan lessons” [Weil3].

A question in which a set of plausible answers are offered to the student to
choose from is called a Multiple Choice Question (MCQ). Providing a set of
plausible answers might or might not make the question easier for the student as
we will see in detail later. However, preparing reasonably good answers definitely
requires more time and effort from the question designer. Typically, a larger
number of MCQs is used in a single test compared to other kinds of questions,
e.g., essay questions. This makes MCQ exams hard to construct, despite the fact
that they have some advantages such as objectivity and ease of marking. We
primarily focus on developing methods to automatically generate this particular
type of questions.

It is expected that developing methods for the generation of assessment items
can provide an excellent stepping stone to the more general problem of generating
instructional content. Moreover, research on the automatic generation of MCQs
provides a good baseline for the generation of other kinds of questions such as

T/F questions, match questions and fill in the blank.

1.1 Multiple Choice Question (MCQ) genera-

tion

1.1.1 The what and why

Assessment is central to (specially modern) education. It it that part of education
concerned with measuring achievements in order to help educators to continually
reflect on and adjust the teaching and learning process, hence helping to provide
better education. There are different families of assessment which can be cate-
gorised by their central purpose [WT08]. The so-called formative assessment aims
at providing feedback both to students and teachers while summative assessment
is mainly used to certify the achievements of students. FEvaluative assessment is
used to evaluate the quality of the educational institution or program.
Assessment items, i.e., questions, can be classified into two widely used types:
(i) Objective (e.g., MCQs or True/False questions) and (ii) Subjective (e.g., essays
or short answers) [Gro82]. Each family of questions has its own advantages and

disadvantages when considering the different phases of assessment, i.e., setting,
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taking and marking. On the one hand, objective tests can be used to assess a
broad range of knowledge and yet require less administration time. In addition,
they are scored easily, quickly and objectively either manually or automatically
and can be used to provide instant feedback to test takers. On the other hand,
objective questions are hard to prepare and require considerable time per each
question [SBD94]. For example, Davis [Dav01] and Lowman [Low95] pointed out
that even professional test developers cannot prepare more than 3-4 items per
day. In addition to the considerable preparation time, manual construction of
MCQs does not necessarily imply that they are usually well-constructed. See
for example the study carried out by Paxton [Pax00] who has analysed a large
number of MCQs and reported that they are often not well-constructed. For
example, she pointed out that some questions were badly worded, ambiguous or
contain (misleading) hints to a wrong answer.

An MCQ consists of a stem, a key and a set of distractors. The stem is the
main part of an MCQ which presents a question, a problem to be solved or an
incomplete statement to the students. The key is the correct (or best) answer; in
contrast to the distractors which are the wrong answers. This structured format
of MCQs lends itself to computerised generation. The core challenge in MCQ
generation is the generation of good distractors that must appear plausible to
a student who does not know the correct answer. For example, Sidick et al.
[SBD94| reported that it requires 5 minutes to prepare each distractor. Many
guidelines have been proposed to ensure the effectiveness of distractors; however,
many major issues are still debatable such as the optimal number of distractors.
According to Haladyna and Downing [HD93], the percentage of questions with
three effectively performing distractors ranged from only 1.1% to 8.4%. They
also concluded that two (functional) distractors may be just the natural limit
for human test developers. This indeed strengthen the need to develop alterna-
tive automatic test development methods. Moreover, if each distractor takes 5
minutes to prepare, as reported earlier by Sidick et al. [SBD94], then the time
needed to construct MCQs can be reduced considerably by limiting the number
of distractors. For example, preparing three distractors instead of five distractors
per item can save a total of 16 hours of work over 100 questions [SBD94]. MCQs
with fewer distractors can also reduce testing time. Alternatively, a larger num-
ber of items can be used in a single test. For example, Aamodt and McShane

[AM92] have estimated that the number of administered items in a fixed time
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can be increased from 100 to 112.4 items if we reduce the number of distractors
from 5 to 3. This in turn can provide better sampling of content. The theoretical
downside of having MCQs with fewer distractors is the increased guessability,
however it has been shown that MCQs with fewer distractors are not necessarily
less reliable nor less valid [SBD94]. Quality of MCQs is influenced by the quality,
rather than quantity, of distractors.

The automatic generation of MCQs in particular and assessment questions in
general can help to resolve many issues in students’ assessment. For example,
constructing a bank of questions of known properties can help to eliminate cheat-
ing by facilitating the preparation of different tests with similar properties (e.g.,
item difficulty, related content). Also, instead of using last years’ actual exams
as practice-exams, one can generate exams that resemble the original ones.

Developing automatic methods for question generation (QG) can indeed al-
leviate the burden of both paper-and-pencil and technology-aided assessments.
Of particular interest are large-scale tests such as state or nation-wide standard-
ised tests and tests delivered as part of Massive Open Online Courses (MOOCS).
Typically, these tests consist mainly of MCQs [SER13b]. In addition, different
modes of delivery (e.g., static, adaptive) can benefit from the automatic genera-
tion of questions. One of the promising applications is the delivery of questions
that adapt themselves to the abilities of test takers to measure their knowledge

in a shorter administration time [Urr77, HN10].

1.1.2 The how

Abstractly speaking, a QG system takes, as input, a knowledge source and some
specifications describing the questions to be generated. As output, it produces
questions which assess someone’s understanding of that knowledge and which
adhere to the given specifications. These specifications can include, for example,
the format of the questions, their cognitive complexity and difficulty.

As for the format of the question, we focus on single response (i.e., one key)
multiple choice questions with two or more distractors. This can be done in
two phases. Firstly, for each possible stem, all correct and incorrect answers are
generated. Secondly, combinations of these answers can be used to generate a set
of questions with the desired number of keys and distractors.

Generally, test designers try to generate questions that target a range of cog-

nitive processes (e.g., knowledge recall, reasoning). To achieve this, we do not
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focus in this thesis on a particular type of questions, but rather try to generate
a reasonable variety of questions (w.r.t. their cognitive level). We elaborate on
these design options in Chapters 3 and 4.

One of the necessary functionalities of automatic QG systems is the ability to
control the difficulty of the generated questions. This can help in generating tests
with properly balanced item difficulties. For example, Lowman [Low95] suggests
that only a few questions in any exam should be answered correctly by more
than 90% or less than 60% of students. In addition, automatic estimations of the
questions’ difficulty can help to advance research on adaptive assessment systems
which usually rely on training data to estimate the difficulty [HN10]. However,
generating questions of a certain difficulty is challenging. We address this chal-
lenge by developing a novel similarity-based theory of controlling MCQ difficulty.
In particular, we examine whether varying the similarity between the key and
distractors of each question can vary the difficulty of the generated questions.
We elaborate on this in the following sections and further in Chapter 3.

Two alternative sources are typically used for QG: unstructured text and on-
tologies. In addition, defective questions or old questions in question banks can
also be recycled to generate new better items. The QG workshop (2009) identified
raw text as the preferred knowledge source for the workshop participants [RG09].
However, a drawback of most existing text-based QG approaches is that they
are unable to generate good distractors from text and that they mostly generate
shallow questions about explicit information as it is difficult to infer implicit rela-
tions using current NLP techniques. Existing attempts to generate questions from
text include [Ste91, Fai99, MH03, MAHK06, BFE05, HN05a, LWGHO05, SSY05,
Heill, AM14]. Similarly, many ontology-based QG approaches have been de-
veloped [CNB03, HMMPO05, HMMP06, ZSRG08, PKKO08, CT09, CT10, ZPK11,
AY11, AY14]. These approaches take advantage of the structured representation
of knowledge and the reasoning services offered for ontologies to generate ques-
tions about implicit knowledge. However, there are still many opportunities to
take ontology-based QG approaches to the next level both theoretically and em-
pirically. In particular, we aim to develop principled methods for the generation
of valid assessment questions and control their quality and difficulty. We focus
on generating questions from ontologies and justify this design decision in the

following section with an illustrative example.
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1.2 Ontology-based MC(Q generation

1.2.1 The what and why

The term “ontology” is increasingly rising to prominence in educational research.
For example, Figure 1.1 shows the increasing number of ontology-related peer-
reviewed articles in the ERIC! database of educational publications since 1995.
Of course, ERIC’s resources capture only a small percentage of online publi-
cations and we expect that the overall number of ontology-related educational

publications to be proportional to the number of resources in ERIC database.
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Figure 1.1: Number of ontology-related peer-reviewed articles in ERIC since 1995

So what is an ontology and why can it be fruitful for mining questions? The
Web Ontology Language (OWL)? is a W3C standard since 2004 and is now part
of the Semantic Web stack which includes RDF, RDFS, SPARQL, etc. The
prior version of OWL was published in 2009. The current version, which is
referred to as OWL2, was published in 2012. An ontology is an engineering
artefact which provides formal and machine processable statements about the
basic notions of a domain of interest. In OWL ontologies, these statements are

referred to as axioms and they describe classes, properties, individuals and any

Thttp://eric.ed.gov/
Zhttp://www.w3.org/TR/owl-overview/
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interesting relations between them. OWL ontologies are based on Description
Logics [BCM™07] which are decidable fragments of first order logic. This makes
an ontology a logical theory which allows us to infer implicit knowledge from the
explicitly stated knowledge. This reasoning is a key feature of ontologies which
makes them superior to other knowledge sources such as raw text. An example
of an ontology is presented in Figure 1.2 which is a visual representation of the

axioms in Example 1.1.

Health care provider Education provider

University

Instructor

GP Clinic GP

O

* Registrar

&

. ®
e ®

Class
Mamed individual

oo

Property: worksin

---p | Property: treatedBy

— | Property: marriedlo

Figure 1.2: An example of a simple OWL ontology

Example 1.1
Hospital C HealthCareProvider, GPClinic © HealthCareProvider,
University C Education Provider, School C EducationProvider,
Registrar C JworksIn.Hospital, GP C JworksIn.GPClinic,
Teacher C JworksIn.School, Instructor C JworksIn.University,
LuckyPatient T Patient M ImarriedTo.(JworksIn.HealthCareProvider),
Patient(Mark), Teacher(Nancy),
Registrar(David), GP(Sara),
treated By(Mark, Sara), marriedTo(Mark, Sara),
treated By(Nancy, Sara), marriedTo( Nancy, David)

Ontologies are usually developed with the help of domain experts who agree on
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how to describe the main concepts of the domain. Large and rich ontologies can
be re-used in different applications or different projects. For example, the average
number of projects per ontology in the NCBO BioPortal® library of ontologies (as
in August 2014 and excluding ontologies with no recorded projects) is 3 with 52
being the maximum number of projects for a single ontology which is the Gene
Ontology.*

A considerable body of research has been devoted to different ontology-related
areas. This includes topics about the theoretical foundations of ontologies as well
as empirical studies. A growing body of research is also devoted towards ontology
applications. Research in this area can help in making ontologies more mature.
The efforts made in this field can help in realising the gaps in the current state
of ontologies and ontology services. For example, as part of this research, which
considers assessment as a potential application, we observed that there is a need
for developing similarity measures that can deal with expressive ontologies. We
provide more details on this topic in the following section.

Ontologies with potential educational value are available in different domains
such as Biology, Medicine, Geography, to name a few.® However, ontologies are
typically not designed for educational use. Thus, there is a challenge in generating
useful instructional content from them. Consider the first attempt to re-use
a knowledge base from one context into another: the GUIDON [Cla83, Cla87]
program developed at Stanford University. The basic idea of the GUIDON project
is to re-use existing knowledge sources for tutoring purposes. One lesson we can
learn from this project is that recycling existing knowledge bases is not always
straightforward.

Similarly, we explore the possibility to generate assessment items from on-
tologies. Of course, there is still a lot to be done in developing ontologies for
various domains and topics. This means that in some cases, there is a need to
first build an ontology for a specific subject before utilising it for QG. Thus, there
is a trade-off between the efforts required to build and maintain the ontology and

the overall advantage of single or multiple uses.

3http://bioportal.bioontology.org/

“http://www.geneontology.org

5For a list of ontology repositories, the reader is  referred to:
http://owl.cs.manchester.ac.uk/tools/repositories/
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1.2.2 The how

A reasonable number of questions can be generated from the ontology in Exam-
ple 1.1. The generation can involve two steps: (1) generating question candidates
and (2) transforming the candidate questions to grammatically well-formed ques-
tions. The second step is out of the scope of this research. However, for read-
ability, we present below some stems that can be generated from the ontology in

Example 1.1 after making any necessary grammatical transformations.

1. Give an example for a health care provider.

2. What is a GP clinic?

3. Where does an instructor work?

4. To whom is Mark married?

5. Which one of the following definitions describe a lucky patient?
6. Nancy to David is as ........ to ...l ?

7. Instructor to University is as ........ to ... ?

8. Name one of the lucky patients.

The above questions range from simple recall questions (e.g., 1-5) to questions
that require some sort of reasoning (e.g., 6-8). For each of the above stems, it
remains to specify a key and some suitable distractors. The challenge is to pick
distractors that look like plausible answers to those students who do not know
the actual answer. For example, for Question 4, the answers are expected to
be names of persons. Including distractors of the wrong sort such as names of
institutions, would make the correct answer stand out even for a low mastery
student. So we need a mechanism to filter out obviously wrong answers.

After seeing an example to generate questions from a toy ontology, we want
to know what is the case in real ontologies which are usually big and rich. For
example, the average number of axioms per ontology in BioPortal is 20,532 with a
standard deviation of 115,163 and maximum number of 1,484,923 [HPS11]. This
suggests that a considerably large number of questions can be generated from
a single ontology. We investigate this by generating some questions from a few

selected ontologies from BioPortal. The ontologies were selected according to the
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following criteria: (i) has a fair number of classes (i.e., 500-3000), (ii) recently
updated and (iii) actively used by 2 or more projects. This has led us to the fol-
lowing five ontologies: Units of measurement (2507 classes), Sequence types and
features (2032 classes), Plant Ontology (1553 classes), Amphibian gross anatomy
(700 classes) and Spider Ontology (577 classes). These ontologies were retrieved
from BioPortal in late 2011. From each ontology, we generated some MCQs us-
ing three approaches. The first approach, which will be referred to as the naive
approach, was proposed by Zitko et al. [ZSRGO08| and is based on generating the
distractors randomly without filtering them. The second approach, which will be
referred to as the customised approach, was proposed by Papasalouros [PKKO08],
and it utilises custom strategies to generate good (but limited) distractors. The
third approach, which will be referred to as the similarity approach, is based on
generating distractors according to a simple notion of similarity (e.g., sharing
common subsumers). Of course, due to the diversity of assessment questions,
we cannot aim to generate all possible questions. Rather, for our preliminary

investigation, we have generated only two forms of MCQs:

(i) Stem: What is X7, Key: a superclass of X, Distractors: 3 non-superclasses
of X.

(ii) Stem: Which of the following is X?, Key: a subclass of X, Distractors: 3

non-subclasses of X.

Table 1.1 shows how many questions were generated from each ontology using
the three approaches. Note that these questions may have redundant stems but
each question-stem pair has a different set of answers. The table also shows how
many questions could not be generated due to lack of a minimum of 3 distractors.

Clearly, a massive number of questions was generated from each ontology.®
The question that arises here is: are these questions all good? For example, we
expect the questions generated using the naive approach to be highly guessable
and thus of low pedagogical value. There is a trade-off between generating all
the good questions (and possibly some bad questions) and generating only good
questions (and possibly decreasing coverage rate). For example, Figure 1.3 shows

the number of questions generated from the above ontologies using the similarity

6To calculate the number of unique stems generated from each ontology, multiply the number
of classes in that ontology by 2 then subtract the number of questions failed to be generated
from the ontology using the naive approach (column F-N in Table 1.1)
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Ontology G-N G-S G-C F-N | F-S | F-C
Units of mea- | 3.44005E+13 | 104,100,285,2| 228,937,71| 887 | 890 | 137,1
surement
Sequence types | 2.32499E+13 | 503,531,581 | 287,034,5 | 204 | 210 | 771
and features
Plant Ontology | 7.07411E+12 | 472,131,950 | 896,546,1 | 134 | 140 | 701

Amphibian 37,045,208,361| 531,51 137,48 519 | 563 | 585
gross anatomy

Spider  Ontol- | 330,712,156,64| 102,847 164,99 261 | 325 | 376
ogy

Table 1.1: The number of questions generated (G) and number of questions failed
(F) to generate from 5 BioPortal ontologies using the three approaches naive (N),
Similarity (S) and Customised (C)

and customised approaches. As the Figure shows, the mechanism used for filtering
the distractors makes a big difference. Questions arising here are: how good are
these approaches in filtering out bad questions and can these approaches be used

to control difficulty? We elaborate on these issues in the next section.

1.3 Similarity-based MCQ generation

1.3.1 The what and why

To generate pedagogically sound questions, i.e., of controlled difficulty, we need
a pedagogically plausible theory for selecting good distractors. Ideally, we want
students’ performance to correlate with their knowledge mastery (i.e., amount
and quality of knowledge). This means that difficult questions are expected to
be answered correctly by high mastery students only while easy questions are
expected to be answered by both low and high mastery students.

One of the possible ways to control MCQs difficulty is to use some notion of
similarity for selecting distractors. The basic intuition is that offering a set of
very similar answers makes it difficult to distinguish the correct answer; hence, in-
creases the need to know more about the topic of the question. Also, it decreases
the possibility to identify the correct answer by ruling out obviously wrong an-
swers. Thus, to generate a difficult question, we pick distractors with high simi-

larity to the key. And, to generate an easy question, we pick distractors with low
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Figure 1.3: Number of questions generated using the two approaches similarity
(S) and customised (C)

similarity to the key. In addition, similarity between the key and stem can play a
role in controlling the difficulty of MCQs, given reasonable measures of similarity
between the key and stem.

As an example, we would expect the difficulty of Question 4 above to increase
by providing a list of GP names as distractors since the correct answer “Sara”
is also a GP. So, someone who knows that Mark is married to a GP would still
need to know the exact name of that GP. This means that a student who knows

more about the subject of the question, performs better.

1.3.2 The how

The question that remains to be answered is how can we measure the similarity
between the key and distractors? One would expect that there is an impact for
using a particular (precise or imprecise) similarity measurement method on the
overall quality of the QG method. This is why it is very important to use a
“precise” similarity measure that takes into account all the knowledge we know
about the compared objects. However, designing a precise similarity measure
for ontologies is a big challenge. Looking at existing similarity measures (e.g.,
[RMBB89, Res95, Lin98, JC97, WP94, ODI07, Jan06, dSF08, dFE05, dFE06,
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LT12]), we found that no off-the-shelf existing method satisfies our requirements.
For example, some measures which we refer to as taxonomy-based measures
[RMBB89, WP94, Res95, Lin98, JCI7| are imprecise by definition as they only
consider atomic subsumptions and ignore any complex subsumptions which can
affect similarity computation. Other measures impose some requirements on the
ontology that can be used for similarity computation (e.g., low expressivity, no
cycles, availability of an ABox or external corpus of annotated text).

This has motivated us to develop a new family of similarity measures which
can be used with any ontology. The basic rationale of the new measures is
that similar concepts have more common and fewer distinguishing features. We
introduce our novel similarity measures in Chapter 5 and report on our findings

from using the new measures with over 300 ontologies in Chapter 6.

1.4 Topics and contributions of this thesis

The topic of this thesis is interdisciplinary in the sense that it is built upon
different areas such as pedagogy, psychology, Al, reasoning and Description Logics
ontologies. To increase the readability of the thesis, we choose to localise the
background and related work of each topic in the relevant chapters. The thesis

is structured around three main topics introduced in the following sub sections.

1.4.1 Foundations and methods of QG

The broad aim of this thesis is to advance the state-of-the-art in ontology-based
MCQs generation. Prior to the work presented here, most of the work on this
topic was unprincipled and lacked theory backing. This is why we devote Chap-
ter 3 for establishing the foundations of QG in general and in the context of
ontologies in particular. In the following chapter (i.e., Chapter 4) we describe
the landscape of ontology-based question generation and lay out some possible
design options. The chapter also justifies the decisions we made as part of this
research to design particular methods and algorithms to generate specific types

of assessment questions from ontologies.



1.5 Published work 30

1.4.2 Measuring similarity in Ontologies

QG methods presented in this thesis depend on measuring the similarity between
various ontology concepts. However, we found no precise and widely applicable
off-the-shelf similarity measure. There was also a need for characterising exist-
ing similarity measures and understanding the possible problems associated with
them. Chapter 5 therefore focuses on formulating the problem of measuring sim-
ilarity in Description Logics Ontologies and presents a new family of similarity
measures that overcome the problems of previous measures. In Chapter 6 we
empirically examine the new measures with a large number of real ontologies and
compare them to existing measures. We introduce the notions of “expensive” and
“cheap” similarity measures and examine the new measures to find a cheap but

good measure.

1.4.3 Applicability of the developed QG and similarity
methods

The aim of the last part of this thesis is to investigate the applicability of the
methods presented in former parts of the thesis. The main context for the appli-
cability investigation is, of course, student assessment. We evaluate QG methods
in real class settings taking into account data gathered from both experienced
test developers and students. We also show that it is possible to automatically
evaluate the difficulty of the generated questions.

In addition, we investigate the applicability of the developed QG methods and
similarity measures for different ontology-related areas such as ontology compre-

hension, ontology development and ontology validation.

1.5 Published work

Some of the work presented in thesis has already been published in peer-reviewed

workshops, conferences and journals. Below is a list of these publications.

1. [APS12¢] T. Alsubait, B. Parsia, and U. Sattler. Mining ontologies for
analogy questions: A similarity-based approach. In Proceedings of the 9th
OWL: Experiences and Directions Workshop (OWLED2012), 2012.
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Chapter 2
Preliminaries

This chapter lays out the basic terminology used throughout the thesis and briefly
introduces the core background notions. The chapter is structured around two
main topics: (i) ontologies and the logic formalisms that underpin them and (ii)

assessment questions and related pedagogical notions.

2.1 Description Logics and Ontologies

The terms below are ordered such that later terms build on top of or use earlier
terms. In what follows, we shed a light on some terms used to refer to the basic
components of an ontology and some other related notions. We fix both the terms
that are usually used in a DL context and the corresponding terms used in an
OWL context.

2.1.1 Nomenclature

As a starting point, let us introduce some terms which are commonly used in-
terchangeably although they each have unique meanings (at least in this thesis).
The goal is to arrive at an understanding of what is and is not an ontology. The
following terms all refer to knowledge representation (KR) approaches aimed at
defining a set of shared terms of interest in some domain. The approaches vary in
how formal and how expressive they are (with ontologies being the most formal
and most expressive).

A controlled vocabulary is a collection of terms, possibly with their unam-

biguous but informal definitions [Gar04, Pid14]. The collection is controlled by
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a registration authority which keeps it redundancy-free. No relations are defined
between the terms of a controlled vocabulary.

A taxonomy is a controlled vocabulary that is enriched with generalisa-
tion/specialisation relations or the so-called is_a relations [Gar04, Pid14]. A tax-
onomy can be said to have a hierarchical structure.

A classification system is a taxonomy with the principles that underlie the
classification of concepts.

A thesaurus is a taxonomy that is enriched with more labels, in particular
with different kinds of relations (e.g., is_a, associated_with) [Gar04, Pid14]. In
this sense, thesauri have network structures.

A terminology is a thesaurus that is enriched with a glossary and further
explanations regarding concepts’ meanings. Those meanings can be defined in
different contexts which can help in promoting the consistent usage of terms.

An ontology contains concept definitions and general axioms which constrain
the possible interpretations of the defined concepts [Gru93]. In addition to con-
cept definitions and general axioms, an ontology can have knowledge about the
current state of the world [End01].

In general, a knowledge base, regardless of the formalism underlying it,
can refer to any of the above terms, e.g., it can be a taxonomy, a thesaurus, an
ontology or any other structured representation of knowledge.

Description Logics (DLs) are a family of KR formalisms that are equipped
with precisely defined semantics (usually model-theoretic semantics) [BCM™07].
In contrast, historical predecessors of DL knowledge bases (e.g., semantic net-
works and frames) have no precisely defined semantics [BCMT07]. In this sense,
a DL knowledge base is a logical theory which means that implicit knowledge can
be inferred from the explicitly stated knowledge. A DL knowledge base (KB),
which can also be called an ontology, is defined below.

Many DLs are decidable fragments of first order logic (FOL) [Bor96]. One of
the differences between DLs and FOL is the variable free syntax of DLs. Moreover,
practical decision procedures for key inference problems have been developed even
for expressive DLs.

The Web Ontology Language (OWL) is the World Wide Web Consortium
(W3C) standard ontology language for the web which was standardised in 2004
[GHM™08]. This standard ontology language exploits DLs. This exploitation

is influenced by the need to provide ontologies with semantics and hence helps
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to make the Semantic Web vision a reality. In this sense, an OWL ontology
is a machine processable artefact. An OWL ontology can be mapped to a DL
knowledge base. However it must be noted that an OWL ontology can have more
components than a DL knowledge base (e.g., annotations, imports).

Different syntaxes [Hor10] have been developed for OWL such as the Manch-
ester Syntax which aims at providing a human-readable syntax [HGR06]. For ex-
ample, a DL statement describing the concept of a lucky patient (LuckyPatient C

Patient 1 ImarriedT o.Doctor) can be written in Manchester syntax as follows:

Class: LuckyPatient

SubClassOf: Patient and marriedTo some Doctor

In 2009, a second version of OWL (referred to as OWL2) was published
[GHM™08] and later updated in 2012. OWL 2 has different profiles (i.e., lan-
guage variants) with different expressivities, referred to as OWL 2 DL and OWL
2 Full. The DL which underpins OWL 2 DL is SROZQ(D) which has a worst
case complexity of N2ExpTime [MCGH™12] for core reasoning services. In order
to provide more practical reasoning services, subsets of OWL 2 DL were defined,
namely OWL 2 DL profiles MCGH™12]. Each profile allows a restricted set of
constructors, hence compromises expressivity, to provide more efficient reasoning.
Three main profiles are defined: OWL 2 EL (Existential Language), OWL 2 QL
(Query Language) and OWL 2 RL (Rule Language). The OWL 2 EL profile is
based on the £L family of DLs [BBLO05] which benefits from tractable decision
procedures (PTime) for key reasoning problems [MCGH"12]. The OWL 2 QL
profile is based on the DL-Lite family of DLs [ACKZ09] and aims at providing
practical query answering (LOGSPACE w.r.t. data size) [MCGH*12]. The OWL
2 RL profile allows to implement scalable reasoning systems using rule-based rea-
soning engines [MCGH™12]. In this thesis, we refer to OWL 2 ontologies whenever
we use the term ontology, unless explicitly stated otherwise.

The growth in popularity of OWL motivated the development of a number of
optimised reasoners [GBJR*13] such as FacT++ [THO06], Pellet [SPCGT07], Her-
miT [SMHO08], JFact,! ELK [KKS11], MORe [RGH12], jCEL [Men12], Chainsaw

"http://jfact.sourceforge.net/
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[TP12], Konclude,? Mastro [SLL*10], ELepHant [Ser13a], Ontop [Kon14], RAC-
ERPro [Haal2] to name a few.? Different ontology editing and processing tools
and libraries have been developed as well such as Protégé,* Swoop [KPS*05]
and the OWL API [BVLO03]. Influenced by what can be referred to as maturity
of ontology tools, the interest in ontologies has spread from academia to indus-
try. Many ontology-based projects have been observed both in industry and in
non-profit national and international bodies. Examples include NASA’s SWEET
project (i.e., Semantic Web for Earth and Environmental Terminology),> The
US National Cancer Institute thesaurus (NCIt),% The General Motors variation-
reduction adviser [MCG™'05] and NCBO BioPortal library of biomedical ontolo-
gies [NSWT09].

Atomic concepts, or FOL unary predicates, stand for sets of objects, e.g.,
Animals, Flowers and Courses. In the OWL context, a DL concept is called
a class. We use Ng to denote the set of atomic concepts. This set usually
includes the Top concept T (OWL:Thing) and maybe the Bottom concept L
(OWL:Nothing). Specifying the exact items of this set should be made clear
whenever it is referred to. Throughout this thesis, capital letters A and B (possi-
bly with subscripts) are used to refer to atomic concept names and, for concrete
examples, we write concept names in camel case with the initial letter capitalised.

Individuals, or FOL constants, stand for instances of classes, e.g., Tom and
Javal0l. We use N; to denote the set of individual names. Throughout this
thesis, lowercase letters a and b are used to refer to individual names and, for
concrete examples, we write individual names with the initial letter capitalised.

Roles, or FOL binary predicates, stand for relationships between objects,
e.g., worksIn, marriedl o and treatedBy. A DL role is called a property in
OWL. For practical reasons, properties are separated into two types: namely
object properties and datatype properties. Object properties are merely used to
describe relationships between objects while datatype properties relate objects to
instances of built-in datatypes such integers and dates. We use Ny to denote the
set of role names. Throughout this thesis, the letters » and s are used to refer to

role names and, for concrete examples, we write role names in camel case with

http:/ /www.konclude.com

3for a list of DL reasoners: http://owl.cs.manchester.ac.uk/tools/list-of-reasoners/
4http:/ /protege.stanford.edu

Shttp:/ /sweet.jpl.nasa.gov/ontology

Shttp://ncicb.nci.nih.gov/NCICB/core/EVS
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an initial lowercase letter.

Complex concepts or concept expressions can be composed from atomic
concepts (and possibly roles) with the help of constructors (e.g., conjunctions I,
disjunctions LI, negations —, existential restrictions 3, universal restrictions V).
For example, to describe the class of doctors who are also married to doctors we
write: Doctor M dmarriedTo.Doctor. Each constructor can be used to convey
a specific meaning. Conjunctions (M) which are interpreted as set intersection
are used to describe objects that belong to two or more concepts simultaneously.
For example, the expression Doctor M Male refers to the objects who are both
doctors and males. Disjunctions (LI) which are interpreted as set union are used
to refer to objects that belong to one concept or another (or both). For exam-
ple, Doctor LI Nurse describes the class of objects who are either doctors, nurses
or both. Negations or complements (=) can be used to describe objects of the
complement of a concept. For example, =Male describes objects that are not
instances of Male. The concept expression (JworksIn.Hospital) can be used to
describe objects that have at least one worksIn relationship to some instance
of the concept Hospital (i.e., the filler or role successor). Similarly, the concept
expression (VtreatedBy.Doctor) can be used to describe objects that only have
treated By relationships to doctors (including those who have no treated By rela-
tionships at all). Note that concepts can be defined using different combinations of
the above constructors to describe complex concepts (refer to Section 2.1.2 to see
a list of constructors supported by each DL). Note also that two concepts might
be logically equivalent although they are syntactically different. For example, the
concept ~JworksIn.—Hospital is equivalent to the concept YworksIn.Hospital.
Throughout this thesis, uppercase letters C' and D (possibly with subscripts) are
used to refer to (possibly) complex concepts.

Axioms are the basic elements of a DL ontology, i.e., an ontology is a (fi-
nite) set of axioms. They are statements that describe the relationships between
the different concepts, individuals and roles of an ontology. There are different
types of axioms which can occur in different “boxes” as we will see in detail
below. General Concept Inclusions (GCIs) are concept inclusions (i.e., impli-
cations) that allow complex concepts on both sides while definitions allow only
atomic concepts on the left-hand side. For example, Hospital LI GPClinic C
HealthCareProvider is considered a GCI in contrast to the axiom Hospital =
HealthCareProvider which can be specifically said to be a definition. GCls
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can also be referred to as subsumption axioms (or subclass axioms in an OWL
context). Role Inclusions (RIs) are statements that specify relationships between
roles (e.g., hasBrother C hasSibling). Equivalence axioms are reducible to inclu-
sion (e.g., Sibling = Brother Sister is equivalent to Sibling C BrotherlSister
and Brother U Sister C Sibling). Equivalences can happen between concepts
and /or role names, however, role equivalences are not allowed in OWL. Two spe-
cial axiom patterns are I3r. T C C' and T C Vr.C' which specify the domain and
range of a role r respectively.

If C' is the domain of r, D is the range of r, and an individual a is related by
the r relationship to an individual b, then a and b are inferred to be instances of
C and D respectively. Moreover, an axiom is called a tautology if it is entailed
from any ontology, even an empty one (e.g., A C A).

A TBox contains all the axioms which describe relationships between con-
cepts. TBox axioms are said to be terminological, hence the name TBox. For
instance, the axiom Hospital C HealthCareProvider states that every instance
of the concept Hospital is also an instance of the concept HealthCareProvider.
Some definitions are said to be cyclic (i.e., contains cycles). For example, one can
define Humans as Human C VYhasChild.Human. Cycles can also be indirect,
e.g., C C dr.D,D C C. If the TBox contains no cyclic definitions, it is referred
to as an acyclic TBox. A definitorial TBox is one which is acyclic, contains only
definitions (i.e., no GCIs) and have unique left hand sides of axioms (i.e., each
concept is defined only once).

An ABox contains all the axioms which describe relationships between indi-
viduals and concepts or between individuals and roles. ABox axioms are said to
be assertional, hence the name ABox. As an example, the axiom Doctor(David)
states that the individual Dawvid is an instance of the concept Doctor and the ax-
iom treated By(Mark, David) states that the individual Mark is in a treated By
relationship with the individual David.

An RBox contains axioms that describe relationships between roles. For
example, the axiom hasSister T hasSibling states that any instances that are
in a hasSister relationship are also in a hasSibling relationship.

A DL knowledge base K is a tuple: K = (T UR, A) where T is a TBox, R
is an RBox and A is an ABox. It must be noted that the separation of KBs into
TBoxes, RBoxes and ABoxes has no logical consequence. Rather, it is meant to

make it easier to understand or re-use the KB. Note also that the axioms of a
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DL KB are said to be asserted axioms, compared to axioms that can be inferred
from the asserted axioms. For example, if the following axioms were asserted in
a KB (AC B,BLC (), then it is possible to infer that (A C C).

Subconcepts are all the concepts that syntactically occur in a (possibly com-
plex) concept. For example, the concept Male M ImarriedTo.(Doctor U Nurse)
contains the following subconcepts (in addition to the concept itself): Male,
ImarriedTo.(Doctor U Nurse), Doctor Ul Nurse, Doctor and Nurse. Subcon-
cepts can also be defined for an ontology O as all the concepts that syntactically
occur in any axiom of O.

The signature of a concept, axiom or set of axioms is the set of terms (i.e.,
concept, individual and role names) which occur in the concept, axiom or set
of axioms, respectively. The signature of an ontology is the union of the sets
N¢, Nr and Nyp, i.e., the sets of concept, role and individual names that are
used in O. The symbol (X) is usually used to refer to a signature. A sig-
nature of an ontology O, axiom «, concept C' can be denoted as (5, a and
5, respectively. As an example, consider the small ontology O = {Doctor C
JworksIn.Hospital, Patient T JtreatedBy.Doctor}. The signature O in this
case is { Doctor, worksIn, Hospital, Patient, treatedBy}.

In OWL, a declaration is a statement that specifies that a specific term is
a class, object/data property or individual name; just as a programmer would
declare a variable in a program. Annotation properties are statements that
contain information about a resource (e.g., an ontology, concept or individ-
ual). For instance, the following annotation properties are predefined by OWL:
owl:versionlnfo, rdfs:label, rdfs:comment, rdfs:seeAlso, rdfs:isDefinedBy. Indeed,
ontology engineers can define new annotation properties in their ontology as de-
sired. Imports are one type of annotation properties which are usually specified
in the header of an ontology. They allow us to include other ontologies as part
of the current ontology [HPSMWO7]. This allows us to effectively manage sepa-
rate fragments of one ontology or make use of previously coded knowledge. The
statement <owl:imports rdf:resource=ImportedOntologyURI> is used to import
the ontology which is specified by the URI in the rdf:resource parameter. The
imports closure of an OWL Ontology is T UR U A.
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2.1.2 Basic Description Logics

As highlighted above, DLs are a family of logic-based formalisms. A specific
DL language is characterised by the set of permitted constructors and axiom
types. Accordingly, DLs can be classified into lightweight DLs (e.g., ££), highly
expressive DLs (e.g., SROZQ) and some DLs in between. There is sometimes
a tradeoff between expressivity and tractability of reasoning [LB07]. On the one
hand, lightweight DLs have limited expressive power but they have polynomial
time worst case complexity for core reasoning services [BBL05]. On the other

hand, some DLs with high expressive power are intractable [BBLO05].

2.1.2.1 Syntax and semantics

The DL language ALC (attributive language with complement) [SS91] is the
smallest DL which is propositionally closed (i.e., can express all boolean set oper-
ations such as intersection, union and complement). We describe the syntax and
semantics of the DL ALC as an example and introduce other DLs in the following
section. The following concepts are well-formed ALC-concepts:

T|L|A|CND|CUD|-=C|3rC|VrC
where A € Ng, C and D are ALC-concepts and r € Np.

The semantics of ALC-concepts can be defined using interpretations. An
interpretation Z is a pair Z = (A%, -Z) where A7 is the interpretation domain and
L is the interpretation function. The interpretation domain AZ is a non-empty set
of interpretation elements (i.e., instances or objects). The interpretation function
L maps each concept name A to an extension A7 C AT, maps each role name r to
a binary relation on A7 and maps each individual name to an element a” € AZ.
Then - is extended to complex concepts according to Table 2.1.

An interpretation Z satisfies an axiom o = C' T D if C* C D*. In this case,
we say that Z is a model of «, denoted Z |= . An interpretation Z is said to be
a model of O if it satisfies all the axioms of O, denoted Z = O. We say that an
axiom « is entailed by an ontology O, denoted O = « if 7 |= « for every model
T of O.

The name and syntax of each ALC constructor along with the corresponding
model-theoretic interpretations are provided in Table 2.1.

Structural equivalence is a notion in OWL which captures that the order of
operands used to define a concept is not important, hence would have no logical

consequence. For example, the concept Doctor M Male and the concept Male I
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Constructor Syntax Semantics
Top concept T A
Bottom concept 1 0
Concept negation -C AT\ C*
Concept intersection (conjunction) | C'T1 D ctnD*
Concept union (disjunction) cub ctu Dt
Existential restriction Ir.C | {z | y(z,y) € rf Ay € CF}
Universal restriction vr.C | {z | Vy{x,y) € rt — y € C*}

Table 2.1: The syntax and semantics of ALC constructors

Doctor are said to be structurally equivalent (denoted Doctor M Male =; MaleTl
Doctor). Similarly, the concept ImarriedT’o.Doctor U 3marriedTo.Nurse and
the concept dmarriedTo. Nurse U dmarriedTo. Doctor are equivalent and would
be considered repetitions. Also, we say that two ontologies Oy, Oy are structurally
equivalent if they contain only structurally equivalent axioms (denoted O; =
0s).

Logical equivalence refers to the property which states that two sets of
axioms have the same models. For example, the single axiom A C B M C is
logically equivalent to the two axioms A C B, A C (. To denote two logically

equivalent ontologies O; and Oy, we write O; = Os.

2.1.2.2 Naming conventions

The DL AL is a restricted version of ALC which disallows full complements (i.e.,
it allows complements of atomic concepts only) and full existential restrictions
(i.e., it allows limited existential restrictions which only allow T as a filler, e.g.,
Ir.T) [BCMT07, GPFLCO04].

For historical reasons, early DLs such as the frame-based FL family of lan-
guages regard universal restrictions as an important part of the language as it cor-
responds to the slots of the old style frame structure. For instance, the DL FL™
can be constructed from AL by disallowing limited complements [BL04, LBO7].
And the DL FL, further disallows limited existential restrictions [GPFLCO04].
However, both DLs allow universal restrictions; just as the DL AL does. Later,
it has been observed that many well-situated medical ontologies (e.g., Gene Ontol-
ogy (GO) [ABB*00], SNOMED [SC97] and GALEN [RNG93]) do not use univer-

sal restrictions but rather use existential restrictions. It has been also noted that
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these ontologies do not use disjunctions (which imply non-determinism). There-
fore, the £L family of languages [Bra04] has been introduced. This lightweight
family of DLs disallow the use of universal restrictions and disjunctions (and thus
negation); while allowing conjunctions and existential restrictions only. This fam-
ily of DLs, including ££* [BLS06], are characterised by the polynomial complex-
ity of standard reasoning problems.

Each DL language is named such that the name itself roughly describes the
capacity of the language (i.e., permitted constructors and axiom types). The use

of one or more of the following letters indicates this:

e S: is an abbreviation for the DL language ALC" [Sat96, HST00a] (i.e.,
ALC extended with transitive roles; see below for an example of transitive

roles).
e U: indicates that concept unions (i.e., disjunctions) are allowed in a DL.

e &: indicates that full existential restrictions (i.e., existential restrictions,
such as 3r.C', with fillers C' other than T) are allowed in a DL.

e C: indicates that full complements (i.e., complex concept negations) are
allowed. Note that a DL which allows concept complements and intersec-
tions is semantically equivalent to a DL that allows concept unions (e.g.,
—(=CM-D) =CUD, by De Morgan’s Law). Similarly, a DL which allows
concept complements and universal restrictions is semantically equivalent
to a DL that allows existential restrictions (e.g., "VR.~C = 3R.C'). For
this reason, the DL which allows full complements, disjunctions, conjunc-
tions, universal restrictions and full existential restrictions is named as ALC
rather than ALUE.

e N: indicates the availability of number restrictions (i.e., at least and at
most constructors). For example, the concept > 5hasFriend describes
the class of individuals who have at least 5 friends. Similarly, the concept
< 2hasF'riend describes those individuals who have at most 2 friends. Note

that nothing is being said about the properties of those friends.

e Q: indicates that qualified number restrictions are allowed. These restric-
tions are an extended version of number restrictions which further allow us

to specify the type of the role filler. For example, < 2hasF'riend.Doctor
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specifies those individuals that have at most 2 friends who are also doctors.
Note that the concept > 1hasF'riend.Doctor is semantically equivalent to

the concept JhasFriend.Doctor.

e 7{: indicates that role hierarchies are allowed. These are referred to as sub-
properties in the context of OWL (denoted rdfs:subPropertyOf). For ex-
ample, hasHusband C hasSpouse indicates that the property hasHusband
is a subproperty of hasSpouse. A logical consequence of this can be ex-
plained as follows: if hasHusband(Eve, Adam) has been asserted, then

hasSpouse(Eve, Adam) can also be inferred.

e 7: indicates that inverse roles (e.g., hasHusband~ = hasWife) are al-
lowed. This allows us to use one role in both directions. For example,
JhasHusband. Doctor refers to individuals who have doctor husbands, while
JdhasHusband™.Doctor refers to those individuals who are husbands of doc-

tors.

e R: indicates the availability of limited complex role inclusion axioms, reflex-
ive and irreflexive roles, and role disjointness (e.g., as in the DL SROZQ
[HKS06]). For example, the following role inclusion axiom hasParent o
hasRelative T hasRelative indicates that a relative of a parent is also a
relative. Reflexive roles allow us to specify that a role must relate an in-
dividual to itself (e.g., similarTo as an individual is similar to itself but
it can also be similar to other individuals). On the contrary, an irreflexive
role must not relate an individual to itself (e.g., hasSibling as one cannot
be a sibling of oneself). Examples of disjoint roles include hasHusband and
hasWife as one cannot be a husband and a wife of another individual at

the same time. Examples of the uses of such constructors in the context of

OWL can be found in [Horl1b].

e F: indicates that functional roles are allowed. For example, to indicate
that a role (e.g., hasHusband) is functional, we can use the following ax-
iom: T C< lhasHusband which means that an individual can be in a
hasHusband relation to one individual only. If an ABox contains the two as-
sertions has Husband(Nancy, David) and has Husband(Nancy, John), then

it can be inferred that David and John are the same individual.
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e O: indicates the availability of nominals which allow us to construct con-
cepts out of individuals. For example, {Saint MarysHospital} is a concept

which has only one instance, namely SaintMarysHospital.

e (D): indicates that datatypes are allowed (e.g., boolean, integer, float, date,

time).

e +: indicates the availability of transitive roles [Baa91] (e.g., hasFriend o
hasFriend T hasFriend which means that a friend of a friend is also a
friend).

For example, the DL STN [HST98] extends ALCT with inverse roles and num-
ber restrictions. The DL SHZF [HST00a, Tob01, HPS03] extends ALCT with
role hierarchies, inverse roles and functional roles. The DL SHZQ [HSTO0O0D,
HS04] extends ALCY with role hierarchies, inverse roles and qualified number
restrictions. The DL SHOZN (which underpins OWL) [HST99] extends ALC*
with role hierarchies, nominals, inverse roles and number restrictions. The DL
SROZQ (which underpins OWL2) [HKS06] extends ALCT with limited com-
plex role inclusions, reflexive and irreflexive roles, role disjointness, antisymmet-
ric roles, negated role assertions, nominals, inverse roles and qualified number

restrictions.

2.1.3 Reasoning problems
2.1.3.1 Standard reasoning problems

A reasoner is a piece of software which, given a set of asserted axioms, is able
to provide a yes or no answer to the following questions, which are considered

standard reasoning problems:

e Entailment: Is an axiom « entailed by an ontology O, denoted O = a? By
definition, the answer is no if there exists a model Z of O where Z }= « (this
case is referred to as a non-entailment). Given a DL £, the deductive
closure, denoted OF, is the set of all axioms in £ that are entailed by an

ontology O.

e Subsumption: Is a concept C' subsumed by a concept D with respect
to an ontology O, denoted O = C T D? Note that this is a special
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case of entailment checking. It should be noted also that the number of
subsumers D of a concept C' where O = C' C D is infinite, as is the
deductive closure (i.e., infinite). In some cases it is desired to get a finite
set of subsumers for a concept C'. In such cases we set a language £ such
that the set L-subsumers of C' is finite. Testing for equivalence (e.g.,
O E C = D?) is similar to performing two subsumption tests O = C C D
and O | D C C. Classification refers to the process of computing all
subsumption relationships between all atomic concepts in the signature of

0.

e Disjointness: Is a concept C' disjoint with a concept D with respect to
an ontology O, denoted O = C T D C 1?7 Again, this is a special case of

entailment checking.

e Satisfiability: Is a concept C satisfiable, denoted O = C T L 7 For
example, a concept C' can be unsatisfiable if it was entailed to be subsumed
by two disjoint concepts D and =D, denoted O = C' C DM —D. Note that
subsumption checking can be reduced to satisfiability checking in DLs that
allow concept intersections and negations (e.g., C' = D iff C' M =D is un-
satisfiable). Similarly, disjointness checking can be reduced to satisfiability
checking by checking if C'M D is unsatisfiable.

e Instantiation: Is an individual a an instance of a concept C' in an ontology
O, denoted O = C(a)? Realisation refers to the process of computing
all instantiation relations for all individuals and atomic concepts in the

signature of O.

e Coherence: Is an ontology O coherent? The answer is yes if there are no
unsatisfiable concept names in O and no (i.e., incoherent) if there is some

unsatisfiable concept name C' in O.

e Consistency: Is an ontology O consistent? The answer is yes if there
exists a model Z of O. The answer is no (i.e., inconsistent) if there is no
model of O, denoted O = T C L. It should be noted that an inconsistent
ontology entails everything. Note also that satisfiability, subsumption and
instantiation can be reduced to consistency checking for DLs which allow
concept intersection and negation. A concept C'is unsatisfiable with respect
to O iff OU{C (i)} is inconsistent for i ¢ O. A concept C is subsumed by a
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concept D with respect to O iff @ U{C M —D(i)} is inconsistent for i ¢ O.
Finally, an individual a € O is an instance of a concept C' iff O U {~C/(a)}

1s 1nconsistent.

A reasoning problem is said to be decidable for a DL if there exists a decision
procedure that returns a yes or no answer after a finite amount of time.

Historically, early DL reasoners, implementing the so-called structural sub-
sumption algorithms [BS01], were efficient (i.e., polynomial) and sound but in-
complete. That is, they cannot detect all existing subsumption relations in ex-
pressive DLs. The basic idea of such algorithms is to normalise the concept
descriptions and then structurally compare the normalised concept descriptions
[Neb90, BBLO05, Sunll]. Later, Tableaux algorithms [BSO1] (along with practi-
cally efficient optimisation techniques) for key reasoning services were developed.
The first tableaux algorithm was proposed for the DL ALC [HNS90, SS91] and
later generalised for other DLs [DGL96, Hor97, HST00a]. Such algorithms try
to construct a model of a concept C' for which satisfiability checking is required.
The concept is first transformed into its negation normal form (NNF). The con-
structed model is represented as a tree in which nodes represent individuals and
edges represent role successorships. A node Node, for individual x is labeled with
the concepts that must be satisfied by the individual x. The algorithm recursively
applies the so-called expansion rules and terminates when it finds either a model
of C' (i.e., no more rules can be applied) or a clash (i.e., C' cannot be satisfiable).
The expansion rules try to decompose the concepts in the node labels and expand
the tree accordingly. The number of rules depends on the number of constructors
allowed by a particular DL (i.e., each rule is usually associated with one con-
structor). A clash is found when the algorithm adds two contradictory concepts
to the labels of a node (e.g., both D and —=D). Other Tableaux algorithms also
exist and the ones that have been developed are sound, complete and terminating
[HST00a].

2.1.3.2 Non-standard reasoning services

In addition to the above reasoning services which are usually referred to as “stan-
dard”, the related literature also introduces some non-standard reasoning services
[BKM99, BTKO03, SC03]. We explore some of these services which have been re-

ferred to in this thesis.
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e The Least Common Subsumer (LCS) of some concepts Ci, ... , C,
w.r.t. an ontology O is the “least” concept description D expressible in
a considered DL that subsumes the concepts C4, ... , C,. D must be
a subsumer of those concepts (i.e., O = C; T D for i = 1,...,n). And
to ensure that D is the “least” subsumer, another condition is added as
follows: if there exists a concept description E that is expressible in the
considered DL s.t. O = C; C E for i = 1,...,n then E must be a subsumer
of D (i.e., D C FE). Finding the least common subsumer is considered a
well understood problem for which various algorithms have been proposed;
see for example [BK98, BKM99, Baa03, BST04, TZ13, ZT13].

e The Most Specific Concept (MSC) of some individual a w.r.t. an on-
tology O is the “least” concept description C' expressible in a considered
DL that has this individual as an instance (i.e., O = C(a) and if there
exists a concept description D that is expressible in the considered DL s.t.
O |= D(a) then C C D) [BK98, Baa03|. Finding the most specific concept
along with the least common subsumer is said to be useful in bottom-up
development of ontologies. For example, before adding a new concept, an
ontology developer can start by suggesting example individuals for that
concept. To help the developer to find a suitable position for the new con-
cept, the most specific concepts for each individual are first computed for
the developer. Then, the least common subsumer of all the most specific

concepts is also computed [Baa03].

e Justifications are associated with entailments. In particular, a set of ax-
ioms J is said to be a justification for an entailment O | « if J C O,
J E a and J is minimal (i.e., there is no J" C J st. J E «)
[SC03, BPS07, Horlla, Bail3]. Justifications can help us in understanding
why a particular entailment holds and are considered when an unwanted
entailment needs to be repaired. However, it must be noted that more than

one justification can be extracted for each entailment.

2.1.4 Ontology modularisation

A module M for an ontology O is a subset M C O which contains a set of axioms
“relevant” to a particular signature ¥ C O. For example, given an ontology O

and a seed signature ¥ = {A, B}, one might be interested in extracting a module,



2.1 Description Logics and Ontologies 47

say Osx C O, which preserves all (and only) entailments relevant to concepts A
and B (i.e., all axioms whose signatures contain A, B). In this case, Oy is
expected to be much smaller, hence easier to process, than 0. There are many
promising applications for ontology modularisation. For instance, let us assume
that we have a rather large and general ontology Oy, from which we would like
to extract a relatively small part to be imported in another ontology O,. The
goal in this case is to import only the part of Oy, say O}, which is relevant to
O, aiming at getting a self-contained, yet compact, ontology O] U Oz. Another
interesting application is to use modularisation techniques to decompose large
ontologies (e.g., for collaborative development, ease of human comprehension,
efficient reasoning ... etc.). The rationale behind ontology decomposition is that
consuming an ontology in parts is much easier than consuming it at once; both
for humans and reasoners. The growing concern about the complexity of some
ontologies is a typical motivation for such applications.

Ontology modularisation is an area that is well-understood and many existing
modularisation techniques have already been developed [CGPSK06, CGHKS07,
CGHKS08, SSZ09, KLWW13, GKW13].

2.1.4.1 Notions and properties of modules

In general, modularisation techniques are either syntactic or semantic. Syntax-
based modularisation techniques are considered cheap approximations of semantics-
based techniques.

A family of (syntax and semantics)-based approaches are the so-called locality-
based modules [CGHKSO08]. The core properties of locality-based modules are as

follows:
e They preserve all entailments relevant to a particular signature.

e They can be efficiently extracted (especially syntax-locality-based modules

for acyclic terminologies).

e They are not necessarily minimal (i.e., may contain some irrelevant axioms

as well, e.g., tautologies).

e For a given signature, it is guaranteed that a unique and minimal module

exists.
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2.1.4.2 Modularisation for QG and similarity methods

With all the above being said about ontology modularisation, one can think of
many advantages that can be gained from using modularisation techniques for
QG purposes. For instance, rather than generating questions arbitrarily from
an ontology O, one can attempt to decompose it into different “topics” and
then generate questions that are nicely categorised according to existing topics.
This can be done by extracting questions from the decomposed ontology rather
than the whole ontology. This can allow, for example, for an easier navigation
through the generated questions. In a different scenario, we might be interested
in generating questions from a specific part of O, especially if O is large, and
probably not all of its parts are relevant to a particular course. This can be done,
safely, by generating questions from the relevant module [DVPS12]. Or let us
assume that we are interested in generating questions about the core or most
important concepts of an ontology. One possible option is to utilise the Atomic
Decomposition (AD) [DVPSS11] which is a dependency graph representing the
modular structure of an ontology. To illustrate the idea of utilising the AD
to extract the core concepts of an ontology, we re-use an example presented
in [DVGK"11]. The example ontology is shown in Figure 2.1 and its atomic
decomposition is shown in Figure 2.2. From Figure 2.2, we can infer that the
concept Animal is a core concept in this ontology as all the other concepts in
this ontology depend on it. In the same sense, Person is the second important

concept in this ontology.

(a1) Animal C (= lhasGender.T),

(az) Animal C (> lhasHabitat.T),

(az) Person C Animal,

(as) Vegan = Person N Yeats.(Vegetable U Mushroom),
(a5) TeaTotaller = Person M Vdrinks.NonAlcoholicThing,
(ag) Student C Person N JhasHabitat.University,

(a7) GraduateStudent = Student N ShasDegree.{BA, BS}

Figure 2.1: An example to show how to compute the AD of an ontology
[DVGK™11]

In terms of similarity measurement, modularisation techniques can also play

an interesting role. For instance, to measure the similarity of two concepts C,
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Figure 2.2: The AD of the ontology presented in Figure 2.1 [DVGK™'11]

D in an ontology O, it is sufficient to look only at the module O¢ p € O which
is relevant to those two concepts instead of taking the whole ontology O into
account. The goal in this case is to improve performance, assuming that the
extracted module O¢ p is much smaller than O. As we will see in Chapter 5, in
this thesis we present a new family of similarity measures in which, to measure
the similarity of two concepts C, D, the new measures compute two sets S(C),
S(D) which contain the subsumers of C'; D, respectively. We know that locality-
based 1-modules preserve the subsumers of the concepts in the seed signature
[CGHKSO08]. So if O = C C E, where FE is a concept expressible in a considered
DL, then extracting a module O¢ with a seed signature ¥ = {C'} also guarantees
that O¢ = C C E. Therefore, computing the subsumers sets S(C), S(D) using
a L-module O¢ p with a seed signature ¥ = {C, D} rather than using O is, first,
sufficient (i.e., results in equivalent subsumers sets) and, second, expected to be

much more computationally efficient.

2.2 Questions and students’ assessment

In the following sections we introduce the core educational terms and techniques

used throughout this thesis.
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2.2.1 Basic concepts

In this thesis, the term assessment refers to educational assessment; in partic-
ular, assessing students’ learning achievements. Generally speaking, educational
assessment is about measuring knowledge, skills and attitudes [VH10]. It can
be conducted on different levels of granularity, e.g., for individual learners, for a
group of learners or for an educational institution/system. We focus on measur-
ing learners’ knowledge. With the increasing desire to achieve high standards in
education, greater focus is put on educational assessment which is seen as a way
to achieve better education [Bro94, WCGO01, VH10].

Given the different purposes of assessment, we categorise assessment activities

as follows:

e Diagnostic assessment or initial or preformative assessment aims at mea-
suring learners’ knowledge prior to teaching in order to tailor teaching ac-

tivities according to learners’ needs [Scr91].

e Formative assessment is ideally conducted throughout the teaching to
provide feedback on how students are progressing in learning but it is not
necessarily used to rank students. This can be done through the so-called
self-assessment, peer-assessment or by teachers [Scr91]. Formative as-

sessment is also referred to as assessment for learning [Ear03].

e Summative assessment is carried out to quantify students’ achievements
and translate that to pass or fail marks [Scr91]. Summative assessment is

also referred to as assessment of learning [Ear03].

In this thesis, we use the terms assessments, tests and exams interchangeably.
We consider written, rather than oral, forms of tests. This distinction is important
because similarity, or the ability to distinguish between different concepts, is one
of the main pillars upon which this thesis is built. This ability to distinguish
between concepts can be affected by how these concepts are communicated to
the examinee, whether in written or spoken form. Consider for example words of
similar sounds such as mat and cat which might have low semantic similarities.
In contrast, cat and dinosaur have more common features although they sound
differently.

Standardised tests are usually used to provide consistent and fair results

among students in large cohorts. Examples of standardised tests include, in the
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Table 2.2: A sample multiple-choice analogy question [GRE]

Stem: Cat: Mouse
Options:

) Lion: Tiger

) Food: Warmth
) Bird: Worm
)
)

(A
(
(
(
(

Key: C) Bird: Worm

UK, the General Certificate of Secondary Education (GCSE), and in the US, the
Graduate Record Examination (GRE) and the Graduate Management Admission
Test (GMAT), to name only a few.

A test is made up of one or more test items or questions. These items can be
categorised as objective or subjective. Objective questions can take different
forms, for example, True/False or Multiple Choice Questions. An example of a
subjective question is an essay. Objective questions, by their nature, are less
biased than subjective questions because there is less variation in their marking.
There is a pre-defined correct answer in objective questions while the correct
answer in subjective questions can be expressed in different ways. In other terms,
there is usually only one way to mark objective questions which means that no
matter who is the marker, students should get the same result, excluding errors.
However, it is also important to note that the quality of objective questions is
influenced by the quality of their pre-defined answers.

A Multiple Choice Question (MCQ) is a tuple MCQ = (S, K, D) where
S is a stem, K is a key and D is a set of distractors.

A stem is the part of a Multiple Choice Question which refers to the statement
that introduces a problem to a student. A key refers to the correct answer(s).
Distractors refer to a set of incorrect, yet plausible, answers.

An analogy question is a specific form of MCQs in which the stem and
answers take the form X is to Y where X and Y are two concepts. The student
is asked to locate the answer in which the underlying relation between the pair
of concepts is similar to the underlying relation between the concepts in the
stem. The difficulty of answering such questions can be affected by the degree
of similarity between the correct answer and the stem as well as the degree of
similarity between the correct answer and the distractors. An example of an

analogy question is presented in Table 2.2.
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2.2.2 Classification of assessment questions

To build a QG tool, we need some sort of a classification system to describe
the desired questions. We summarise the classification of questions presented as
part of the Question Generation campaign (2008) [GRCO08]. This classification
integrates some of the proposed schemes in artificial intelligence, computational

linguistics, education, and cognitive science.

2.2.2.1 Purpose

Graesser et al. [GRCO8] list the purposes of questioning as follows: (i) the correc-
tion of knowledge deficits (e.g., to fill a gap in knowledge such as asking “Where
is the library?”), (ii) the social coordination of action (e.g., to request a permis-
sion by asking “Can I borrow your pen?”), (iii) the control of conversation and
attention (e.g., rhetorical questions such as asking “Are you OK today?”) and
(iv) the monitoring of common ground (e.g., to assess a student by asking “Were
dinosaurs carnivores?”). In this thesis, we focus on the last, i.e., the generation

of questions to assess students’ knowledge.

2.2.2.2 Type of information

Following on what was proposed by Lehnert [Leh77] and by Graesser & Person
[GP94], Graesser et al. [GRCO8] categorise questions to 16 categories that range
from simple to complex questions. These categories are grounded in empirical
studies carried out by Graesser & Person [GP94]. The categories are presented
in Figure 2.3

In this thesis, we do not necessarily cover all the proposed categories but
try to focus on some basic categories that can be easily extended to cover more
categories. Details of the questions that will be focused on in this thesis will be

presented in Chapter 4.

2.2.2.3 Source of answer

Does the student need to refer to a source of knowledge such as a text or a
teacher to know the answer or does it come from world knowledge or common
sense? In this thesis, we focus on generating questions for which the answer is in

the ontology used for question generation.
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[—y

. Verification: invites a yes or no answer.

2. Disjunctive: 1s X, Y, or Z the case?

3. Concept completion: Who? What? When?
Where?

4. Example: What is an example of X?

. Feature specification: What are the proper-
ties of X?

. Quantification: How much? How many?

. Definition: What does X mean?

. Comparison: How is X similar to Y?

. Interpretation: What does X mean?

10. Causal antecedent: Why/how did X occur?

11. Causal consequence: What next? What if?

12: Goal orientation: Why did an agent do X?

13: Instrumental/procedural: How did an agent

do X?

14: Enablement: What enabled X to occur?

15: Expectation: Why didn’t X occur?

16: Judgmental: What do you think of X7

Ln

OO0~ O

Figure 2.3: Classification of questions [GRCOS§]

2.2.2.4 Length of answer

Questions differ in terms of the expected length of answer. For example, the
answer can be lengthy as in essays or it can be short as in “fill in the gap”
questions. In this thesis, we focus on multiple choice questions in which the
answer is provided as part of the question. Mostly, the answer is limited to

concept names or short concept expressions.

2.2.2.5 Cognitive process

Bloom’s taxonomy of educational objectives [BK56] is commonly used to classify
questions according to the cognitive process involved in answering the question.
Aiken [Aik82] argues that, although it is certainly easier to write MCQs for knowl-
edge recall, it is also possible to build MCQs that target higher order educational
objectives. In this thesis, we mainly focus on knowledge recall questions but also
show that it is possible to use the developed methods to generate more complex

questions.
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2.2.3 Evaluation of assessment questions

To evaluate assessment questions, we first need to know “what makes an exam
or a question good?”. In other terms, we need to know the quality metrics for
evaluating assessment questions. Then we need to know the statistical methods

which can be used to measure these quality metrics.

2.2.3.1 Quality metrics

Turnbull et al. [TGM98| summarise the desirable attributes for an ideal assess-
ment tool as the following: (i) Validity, (ii) Reliability, (iii) Accountability, (iv)
Flexibility, (v) Comprehensiveness, (vi) Feasibility, (vii) Timeliness and (viii) Rel-
evance. Consistent with that, the Joint Committee on Standards for Educational
Evaluation [0SfEE03] describes a good assessment as: proper, useful, feasible,
and accurate. The last-mentioned includes validity and reliability.

Reliability refers to the reproducibility of test results. A common cause of
low reliability of tests is the subjectivity of questions which in turn makes it
possible for a given test to yield different results based on who marks the test.
Reliability is usually measured in a scale from 0 to 1. A test of low reliability
means that the test is totally independent of examinees’ performance.

Validity refers to the ability of a test to measure what it is intended to
measure. A common cause of low validity of tests is the unbalanced coverage of
the topics to be assessed. Reliability is a necessary but not sufficient condition
for validity. For example, a test of language proficiency is said to be reliable
if it yields consistent results if administered multiple times over a short period
to the same cohort of examinees; assuming that language proficiency does not
change massively in short periods of time. If this test does not yield consistent
results each time, then we cannot say that it is valid; simply because it does not
measure what it is supposed to measure, i.e., language proficiency. An example of
a reliable but not valid test for language proficiency is using examinees’ heights to
estimate their language proficiency. It yields consistent results over short periods
of time, yet it does not estimate their language proficiency.

Accountability refers to the ability of a test to provide logical explanations
for its results to all the stakeholders involved such as students, parents and edu-
cators [VH10].

Flexibility refers to how versatile a test is. A flexible test is suitable to be

administered multiple times and in multiple settings.
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Feasibility of a test is a fundamental feature of an assessment to facilitate
its implementation. It describes how practical and cost-effective a test is.

Comprehensiveness refers to the scope of assessment. Consistent with what
we have described as a main cause of invalidity of tests, this feature highlights
the importance of properly covering what is meant to be assessed.

Timeliness relates to the time of delivering or administering the assessment.
Ideally, there should be no delays in assessments and students should be assessed
close to the time when they are expected to have achieved the learning goals
[VH10]. Similarly, feedback should be given to students promptly so that they
can make the most of it.

Relevance refers to the significance of a test and how important it is in
achieving the objectives of the different stakeholders.

In addition to the above attributes for evaluating the quality of tests, there
are some attributes for evaluating individual items in tests. These attributes
include: item difficulty, item discrimination, guessability and effective-
ness. Details of these attributes will be presented in the next section because

their definitions depend on the specific statistical method used to derive them.

2.2.3.2 Statistical methods for the evaluation of assessments

Psychometric theory provides two alternative approaches to statistically analyse
test data, namely: Classical test theory (CTT) [LN68, Gro82] and modern
test theory or Item response theory (IRT) [Lor80, Bak01l]. In this thesis,
we are concerned only in the use of such approaches to perform item analysis
in order to evaluate the quality of a group of multiple-choice items. Multiple-
choice items are considered dichotomous items, which means that a student’s
answer to them is marked either as correct or incorrect. In contrast, polytomous
items can have multiple responses with each response accounting for a different
score (e.g., Likert-type items). Both theories have different models that can be
used to analyse test data. A theory is a general specification of the approach.
A model is a detailed specification of how to actually perform the analysis and
compute values of the parameters under consideration [RR93]. A specific model
is chosen based on how well it can fit the considered data. For example, some
models are more suitable for dichotomous items while others are more suitable

for polytomous items.
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Classical test theory (CTT), sometimes referred to as True Score Theory,
is a test-oriented theory which states that observed test scores (X) are equal
to true scores (7T') plus some measurement error (e). A person’s true score in
a test cannot be observed and is rarely equivalent to the observed score due to
measurement errors. This is to say that measurement instruments are usually
considered imperfect and not always reliable, i.e., e is seen as a random variable
[Mag09].

One of the main applications of CTT is the evaluation of tests and test items.

The main properties to be evaluated are [Gro82, Mag09]:
(i) Reliability of tests (denoted «),
(i) Ttem difficulty (denoted p),
(iii) Item discrimination (denoted r), and
(iv) Effectiveness of distractors.

In CTT, the reliability of a test is defined as the ratio of true score variance
to the observed score variance. This is equivalent to the ratio of true score
variance to the sum of true score variance and error variance. The intuition
here is that reliability becomes higher as error variance in test scores becomes
lower. This definition of reliability cannot be used to estimate the reliability
of a test in practice because true scores are unknown. Instead, Cronbach’s «
[Crob1] is usually used to estimate a lower bound of reliability. It is a measure of
the internal consistency of a test and is calculated from the pairwise correlations
between items of the test. For dichotomous items such as MCQs, Cronbach’s «
is mathematically equivalent to KR-20 [KR37] which can be calculated using the

following formula:

o =

K (1 _ >t piQi) (2.1)

K -1 %
where K is the number of items in the test, p; is the proportion of correct responses
to test item i, ¢; is the proportion of incorrect responses to test item ¢ and o% is
the variance of the observed total test scores (X).

Item difficulty (p) is indicated by frequency of correct responses, i.e., ratio of
students answering the question correctly to the total number of students. By

this definition, the more difficult the question ¢ is, the lower the value of p;. Some
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psychometricians prefer to use the ratio of students who got the question wrong
to the total number of students, sometimes denoted ¢, i.e., ¢ = 1 — p. It is also
useful to identify the number of students who did not provide any answer to a
certain question, sometimes referred to as error count.

Item discrimination (r) can be calculated using different methods, for example,
by calculating item-total correlation. In CTT, usually the point biserial corre-
lation coefficient is used for dichotomous items. The point biserial correlation
coefficient is mathematically equivalent to Pearson’s correlation coefficient. In
this thesis, we use Pearson’s coefficient for calculating item discrimination which

is given by the following formula:

= (D) 22

3 Sx Sy

1=

which gives the correlation coefficient for a sample of paired data (X;,Y;) for
i =1,...,n where n is the sample size, X is the sample mean for X values, Y is
the sample mean for Y values, sx is the sample standard deviation for X values
and sy is the sample standard deviation for Y values.

Another commonly used method to calculate item discrimination is to first
order students according to their test scores starting from the highest score. Then,
the third of the students with the highest test scores is selected and referred to as
the upper group. Similarly, the third with the lowest scores is selected and referred
to as the lower group. Then, item discrimination is calculated as the difference
between the proportion of the upper group who answered an item correctly and
the proportion of the lower group who answered the item correctly.

The effectiveness of distractors is indicated by the frequency of responses for
each answer. More students from the upper group are expected to pick the correct
answer compared to students from the lower group. Otherwise, the item should
be reviewed. Similarly, distractors that are picked by more students in the upper
group than students from the lower group are confusing distractors and should
be reviewed. A distractor that is picked by only a few or none of the students is
not effective as well and should be removed.

One of the main shortcomings of CTT, as with other statistical approaches, is
that its results are sample-dependent. This means that item difficulty and item
discrimination can differ from sample to sample for the same test. To overcome

this limitation, larger sample sizes are recommended. For example, Hambleton
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& Jones [RR93] suggests to use samples of sizes between 200 and 500. They also
point out that the results obtained from CTT are more useful when the sample
is similar to the population for which the test is developed [RR93]. The sample-
dependence of CTT can be resolved with the careful design of experiments which
must be backed up with high awareness to draw plausible conclusions. The use
of two or more samples and the use of redundant subsets of questions, sometimes
called anchor items, over the different samples can help to resolve the problem.
This has been suggested by Hambleton & Jones [RR93] and Magno [Mag09]; and
empirically undertaken by some researchers such as Mitkov et al. [MAHKO6].

Item response theory (IRT) [Lor80], also previously referred to as latent
trait theory, strong true score theory, or modern mental test theory, is an item-
oriented theory which specifies the relation between examinees’ performance on
test items and the ability which is measured by those items. IRT is claimed to be
an improvement over CTT, but IRT models are technically more complex than
CTT models and they are not always available in common statistical softwares.
There are many models under the general IRT framework. Each model is suitable
for certain data. We consider only those models that are unidimensional (i.e.,
require a single trait or ability) and that are suitable for dichotomous items.
The most well-known models of IRT are: one-, two- and three-parameter logistic
models. The three parameters considered in three-parameter logistic (3PL) model
are listed below. This model takes into account the possibility of getting an item
right without actually knowing the answer (i.e., guessing). For example, for 4-
option MCQ items, the probability of guessing is 0.25, given that all distractors
are effective. The guessability parameter is omitted in the two-parameter model.
This model is suitable when there is no chance of guessing, e.g., when the item
requires a free response rather than picking an option out of pre-defined options.
Alternatively, guessing is assumed to add randomly distributed noise to the data.
The one-parameter model further omits the item discrimination parameter and
assumes that all items are equivalent in terms of discrimination.

Three-parameter IRT models consists of the following parameters:
(i) Item difficulty (denoted b)
(ii) Item discrimination (denoted a)

(iii) Guessability or pseudo-guessing (denoted c)
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The central concept in IRT is the Item Response Function (IRF) which spec-
ifies the probability of getting the item right by a student of certain ability 6, as
specified in the following formula [RR93].

]_—Ci

Pl(e) =G + 1 _'_ e—fli(@—bi)

(2.3)

The three parameters a, b, and ¢ are estimated by first assuming that abilities
are modelled as a sample from a normal distribution. IRFs are graphically repre-
sented by Item Characteristic Curves (ICC) as shown in Figure 2.4, for example.
As the figure shows, ¢ is the height of the lower asymptotic for the curve which
corresponds to the probability of a correct response by the lowest ability students.
Based on observed test scores of the sample, IRT models estimate the probability
of guessing ¢; for an item 7. If ¢ is a 4-option multiple-choice question and the
estimated ¢; is higher than 0.25 then some of the options are most probably not
functioning well. Parameter b corresponds to the point on the ability axis where
the probability of a correct answer equals (1 + ¢)/2 and also where the slope is
maximised. Parameter a is proportional to the slope of the curve at the point b

on the ability axis.

Probability of correct response

b

Ability

Figure 2.4: 3PL Item Characteristic Curve

Item information functions (IIF) and Test information functions (TIF) are
alternative ways to assess the reliability of a test, i.e., the frequency of errors in
measurement. Plots of IIFs are bell-shaped and are centered around their b value

on the ability axis. IIFs shows how much information an item contributes to the
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assessment of ability [RR93]. Items with high discrimination power tend to have
tall and narrow IIFs which indicates that their best contribution is over a narrow
range of abilities. In contrast, items with low discrimination power contribute
less information but over a wider range. For example, Figure 2.5 shows that item
1 is less difficult than item 2 and that items 3 and 4 are less discriminating than

items 1 and 2.

[
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Figure 2.5: Item information functions for four test items

For a particular item 4, the IIF of an item 7 at a specific ability #, denoted

I;(0), can be given by the following equation [dA09]:

2 (Pi(0) — ci)?qi(0)
LI;(0) = a; 0= c2n0) (2.4)
where a; is the estimated item discrimination for item ¢, ¢; is the estimated
guessability for item 4, p;(#) is the probability of getting item ¢ right at ability 0
and ¢;(#) is the probability of getting item i wrong at ability 6.

TIF is the sum of IIF's of all items in a test and it indicates the frequency of
errors associated with the assessment of ability. The more information provided
by TIF, the lower the frequency of errors at a particular ability level. This can be
shown by the following formula which calculates the standard error of estimation,
denoted SE(0), at a particular ability 0 from a test information function, denoted

1(0):
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1
E(0) = ; (2.5)
[£(0)]=
Theoretically, IRT models are sample-independent as opposed to the sample-
dependent CTT models. However, Hambleton & Jones [RR93] point out that

IRT parameters are considered sample-independent only if the model fits the test

data and point out that large samples are usually required, e.g., over 500. The
fit of the data for the model can be assessed using Chi-square statistic.

To sum up, both classical and modern item analysis methods give some indica-
tions for the quality of an item. They should be used as an exploratory approach
to identify possible defects in measurements. But they should be carefully used
to provide generalisable information about the characteristics of test items, i.e.,
as a confirmatory approach.

In this thesis, due to experimental design limitations, we adopt CTT methods
to calculate item difficulty (i.e., frequency of correct responses), item discrimina-
tion (i.e., Pearson’s correlation coefficient) and effectiveness of distractors (i.e.,

frequency of responses for each answer).



Chapter 3
Foundations of MCQ) generation

This chapter sets the theoretical foundations upon which question generation
methods developed in this thesis are built. Previous attempts to develop methods
for generating questions from ontologies [CNB03, HMMP05, HMMP06, ZSRGOS,
PKKO08, CT09, CT10, ZPK11, AY11, AY14] or other sources [Ste91, Fai99, MHO03,
BFE05, HNO5a, LWGHO05, SSY05, MAHKO06, Heill, CCSO14] have not focussed
on addressing the problem of controlling the difficulty of the generated questions.!
As we have seen in the previous chapter, difficulty is indeed a core property of
assessment questions. It is central for the wvalidity of an assessment, which refers
to how successful an assessment tool is in measuring what it intends to measure.
Typically, in normal class settings, test developers aim at measuring mastery
levels of students in a certain domain. A valid assessment tool must be able to
measure the mastery level of all students, i.e., both high and low mastery students.
If the assessment tool is too difficult, then it is not suitable for measuring mastery
levels of the lower group. Similarly, if it is too easy, both high and low mastery
students will get high grades and therefore we cannot distinguish between them.
In other assessment settings, test developers are interested in those students who
can pass the test at a certain level, e.g., 60%. In such a case, the test must be
designed at a difficulty level suitable for the required level. Again, to construct
a test that is wvalid for this purpose, a mechanism to control the difficulty of test
items, and hence the overall test, is required (though, of course, is not sufficient).

Our main criticism for existing QG methods is that they are mainly technical
and lack theoretical backing. This has resulted in developing ad-hoc generation

methods with limited control over the quality and difficulty of the generated

lalthough some have tackled the problem as we will see in detail in Chapter 4.
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questions. This chapter aims at presenting theoretical foundations of QG. In
particular, the chapter examines the plausibility of the conjecture that controlling
the difficulty of multiple choice questions can be done using a similarity-based
approach. We explain the impact of controlling the difficulty of a question on its
overall quality and describe the role of similarity in the difficulty control process.
We explore psychological theories and empirical evaluations that support this
conjecture.

The main purpose of this thesis is to prove the possibility of generating useful
questions from ontologies. Generating a reasonable number of questions (rather
than all possible questions) is sufficient for this purpose. Usefulness is defined
in this thesis within two contexts: (i) useful for assessing students’ performance
and (ii) useful for ontology development/comprehension. The first context is
the main focus of the thesis and the experiments involved whereas the second
context serves the purpose of showing that the methods can be applied within
other contexts.

Some existing works [MH03, MAHKO06] on question generation describe a
successful generation method as a method in which (i) the overall time spent on
generation is reasonable (e.g., less than or equal to the time spent on generating
the questions manually) and (ii) questions have functional distractors and good
item discrimination. In this thesis, we extend (ii) and consider a broader descrip-
tion for a successful generation method in which the method is able to control the
difficulty of the question as well. This will indeed affect the generation methods

we develop and the experiments we carry out to evaluate them.

3.1 Desired properties of assessment questions

Students’ assessment is concerned with measuring students’ mastery, usually in
terms of amount of knowledge and skills they have. We focus on knowledge as-
sessment. Merrill [Mer94]| classifies knowledge in four categories: facts, concepts,
principles and procedures. We focus on assessing facts and concepts as they are
more suitable to be modelled in an OWL ontology. Assessment of knowledge
can be carried out along different cognitive complexity levels. Bloom’s taxonomy
[BK56] is a categorisation of the cognitive domain which is widely accepted and

used by educational researchers and practitioners [Sed78]. The main categories of
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this taxonomy are (bottom-up): (1) Knowledge, (2) Comprehension, (3) Applica-
tion, (4) Analysis, (5) Synthesis and (6) Evaluation. The lowest category refers to
demonstrating a student’s ability to recall knowledge. Higher categories require
demonstrating higher abilities such as applying knowledge to new problems. A
revised version of the taxonomy which was proposed in 2000 by Anderson et al.
[AKO0] is presented in Figure 3.1. Depending on the purpose of the assessment,

it might be necessary to target both the lower and higher levels of the taxonomy.

Analyze Evaluate Create

Apply

Understand

Remember

Figure 3.1: Categories of the revised Bloom’s taxonomy, taken from [AKO00]

Measuring students’ knowledge is not straightforward as measuring their height
or weight; knowledge models constructed in a student’s mind are complex and
not visible. In addition to the amount of knowledge, a distinction is usually made
(in terms of quality of knowledge) between knowledge of high and low mastery
students [WCGO1]|. Knowledge of high mastery students is well-organised which
enables them to notice patterns of information that might be neglected by low
mastery students [CGR82, CK83].

A good assessment question (backed with good interpretation of its results) is
supposed to make explicit those implicit knowledge schemas in a student’s mind.
A desired property of an assessment (i.e., a collection of questions) is its ability
to distinguish between high and low mastery students. In particular, there must
be a strong correlation between students’ mastery and the amount and quality of

their knowledge. This property cannot be achieved using a single multiple-choice
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question. Instead, we need a collection of questions that work well individually
and that (together) discriminate well among different levels of understanding
[WCGO1]. As we explain in the previous chapters, a key aspect of constructing
a good multiple-choice question is the use of good distractors that 1) appear as
plausible answers to a student who does not know the correct answer and 2) are
clearly recognisable as wrong by a student who knows the correct answer.

To illustrate the desired properties of distractors (which make their generation

challenging), we present the following example.

3.1.1 Distractor selection example

Consider the ontology in Figure 3.2 which describes some diseases and associated

body parts.

B s A | each instance of A s also an instance of B

B«- R_. A\ each instance of A is in a relation R owith an instance of B

Figure 3.2: Example ontology

Given the example ontology, one can construct the multiple-choice question in
Table 3.1. Note that, in this example, some distractors could have been replaced
by better ones. For example, Disease, which can be easily eliminated even by a
low mastery student by knowing that disease is not a body part and therefore is
not an appropriate answer. This naive elimination process increases the chance
of guessing the correct answer without actually having the required knowledge
that is being assessed. Glossitis can be considered a better distractor compared
to Disease because it requires deeper knowledge to recognise that Glossitis is a

disease which is again a reason for elimination.
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Table 3.1: Example question

Stem: Pyorrhoea occurs in ...:

Options: ) the tongue

(A

(B) glossitis

(C) the gums

(D) a disease
Key: (C)
Distractors: (A), (B), (D)

As explained earlier, difficulty is a core property that must be carefully con-
trolled during assessment design. It is suggested that only a few questions on
any exam should be answered correctly by more than 90% or less than 60% of
students [Low95]. This notion of difficulty is referred to as statistical difficulty.
However, beyond knowing that 80% of students were unable to solve a question,
we would like to know why this is the case. Several studies have explored sources
of difficulty in questions [FHH96, FHHB94]. A distinction must be made between
valid and invalid sources of difficulty. Examples of invalid sources of high diffi-
culty include providing extra information. Similarly, examples of invalid sources
of low difficulty include triviality, providing clues. Providing clues might lead
to guessing the correct answer while providing extra information not needed for
solving the question might mislead a high mastery student and hence lead to poor
discrimination. Thus, avoiding invalid sources of difficulty allows us to eliminate
guessability and get better discrimination. This is to say, controlling difficulty
(in a valid way) leads to controlling the other two properties: guessability and
discrimination. In addition, an assessment designer must be able to set the diffi-
culty of each individual question. Therefore, we focus on the difficulty property
in particular when we explore plausible question generation methods. One state-
ment that can summarise the importance of the difficulty property is: “If you
do not know why this question is harder than that one, then you do not know
what you are measuring” [FHH96]. This statement refers to the impact of valid
difficulty on the validity of the test.

We present a similarity-based theory that can be used to inform the generation
of questions and control their difficulty. We validate it by showing its consistency

with and accountability for both the psychological and educational theories.
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3.2 A similarity-based theory of controlling dif-
ficulty of MCQs

Bearing in mind that our goal is to be able to control the difficulty of the generated
questions, a key assessment design requirement is to understand what makes a
question difficult for a group of students. We conjecture that similarity between
parts of a question influences difficulty. In particular, the distinction between high
and low mastery students can be mapped to their ability to distinguish between
similar answers and identify any commonalities and differences between them.
This conjecture is supported by existing studies on expertise and theories about
knowledge retrieval from long-term memory as we will see in the next section.
The conjecture seems to be plausible because of its consistency with the fact that
the more knowledge students have about a topic, the more ability they have to
answer questions about that topic. This relation between the amount and depth
of knowledge and question answering ability can be explained in terms of the
ability to account for similarity when answering certain kinds of questions.

As an example, refer back to the question in Table 3.1: “Pyorrhoea occurs
in ...7” where Gums is the correct answer. Now let us consider the different
possible distractors that can be used with this question. If the student only
remembers that Pyorrhoea occurs in the mouth, then we can notice that Tongue
would be more difficult for the student to eliminate compared to Lungs; both
Gums (the key) and Tongue (the distractor) are in the mouth and hence share
more commonalities (i.e., they are more similar to each other than to Lungs). To
be able to answer the question correctly, the student must have knowledge about
the particular parts of the mouth and the name of the disease that occurs in each
of these parts; that is the particular difference between the key and distractor.
Similarly, Lungs is more difficult to eliminate compared to Glossitis; both Gums
and Lungs are body parts and hence are more similar to each other than to
Glossitis.

As illustrated by the example, to compute the similarity between two concepts,
we account for both the common and distinguishing features. Based on this notion
of similarity, we will later define similarity functions such as sim : C'x C' — [0, 1]
where C' is the set of concepts to be compared and sim(X,Y) > sim(Y, Z) if the

two concepts X, Y are more similar than the concepts Y, Z.
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As explained above, one would expect that students would succeed in answer-
ing a question if they know the similarities and differences between the answers
provided with the question. Similarly, they would fail if they do not know the
similarities or differences. Based on this observation, we present the following
hypothesis for controlling the difficulty of MCQs. The presented hypothesis is
not suitable for controlling the difficulty of all classes of MCQs. It is suitable
for controlling the difficulty of MCQs with parts (e.g., key, distractors) of simi-
lar kinds which require particular knowledge to distinguish them. Examples of
questions belonging to this class of MCQs include: “What is X?”, “Which of the
following is X7”, “Which of the following is the odd one out?”. The hypothesis
might need to be slightly altered to suit other types of MCQs (e.g.,“A is to B as
. is to ..7”) where a condition can be added to control the similarity between
the stem and the key. Variations of questions and similarity patterns that can be
suitable for them are presented in Table 3.2 below. Examples of MCQs that are

not suitable for our similarity theory are presented in Section 3.4.

Hypothesis 1

The difficulty of (some classes of) MCQs consisting of a stem S, a key K and
distractors D = {D,..., D, } is (with other things being equal) proportional to
the degree of similarity between K and D; where i =1,...,n.

Given that an MCQ @ can have more than one distractor (i.e., n > 1), each
distractor D; € D can have a different similarity sim(K, D;) to the key K. Let

us define the following two parameters (A, As):
1. Ay i=min{sim(D;, K) |1 <i<n},0<A; <1
2. Ay i=max{sim(D;, K) |1 <i<n},0< Ay <1

To construct a good MCQ, A; must be sufficiently greater than 0 (and less
than 1). Decreasing A; increases the likelihood of having non-functional dis-
tractors or distractors that can negatively affect discrimination between good
and poor students. Increasing A; increases the difficulty of Q, in general, and
increasing it to reach a value close to Ay decreases the likelihood of having non-

functional distractors. Similarly, increasing A, increases the difficulty of Q.
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3.3 Supporting the similarity theory

The plausibility of the above similarity-based theory for controlling difficulty
must be assessed according to both psychological and educational considerations.
In general, sources of difficulty are explained in terms of two aspects:?> (i) the
underlying knowledge and (ii) the cognitive ability required to solve the question
[WCGO1].

3.3.1 Psychological theories

In the following subsections, we examine two categories of psychological theories:
(a) theories of semantic memory and (b) theories of expertise. These theories
explain how knowledge is learned, i.e., stored in memory, and how knowledge is
used, i.e., retrieved from memory. In general, knowledge is retrieved from, rather
than stored in, memory during an assessment. In contrast, knowledge is expected
to be learned before (and after) an assessment.

To fully understand the influence of these theories on controlling the difficulty
of assessments, we structure our discussion of each theory around the following
questions: (i) what are the main properties of the theory?, (ii) what are the
main controversies around the theory? and (iii) how does the theory support
our similarity conjecture and/or (iv) does the theory hint at factors, other than

similarity, that can affect the difficulty of assessments?

3.3.1.1 Theories of semantic memory

Semantic memory [SCO02] refers to the part of the brain that is responsible for
the acquisition, representation, and processing of shared conceptual knowledge
(e.g., concepts, objects, states and events). It is often contrasted with episodic
memory [Tul02] which enables human beings to store and recall unique personal
experiences (e.g., losing someone you care about). This distinction between the
two forms of memory was first established by Endel Tulving [Klel3]. Various
models of semantic memory have been proposed. Tartter [Tar98] lists some of the
most influential models of semantic memory such as network models, prototype

models and features models. We briefly present these models below.

2In addition to knowledge and cognitive abilities, a skill might be required to answer a ques-
tion. We assume that the students are equally equipped with the required skills for simplicity.
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Network models are historically one of the early models of semantic mem-
ory which have had and still wield considerable influence [Tar98]. They describe
semantic memory in terms of a rich organisation where all concepts are related
through an associative net. The nodes of a semantic network can be either con-
cepts (e.g., “birds”) or properties (e.g., “can fly”) and both kinds of nodes are
treated equally and can be accessed in a similar way. The links between nodes
represent different relations between them. For example, a link between the nodes
“birds” and “animals” captures the fact that birds are kinds of animals. Simi-
larly, a link between “birds” and “has wings” associates wings to the class birds.
Moreover, those links can vary in their strength; the higher the weight of the
link between two nodes, the stronger the relation between them. This enables
the model to account for the familiarity effect (i.e., more familiar concepts can
be accessed faster). Within network models, some theories [RM04, SFO08] as-
sume that knowledge upon which people make inferences is associative. Others
[HR94, KT09] assume that knowledge is structured. In contrast, others [BF14]
have reported that both associative and structured knowledge have an impact on
the inferences we make and suggested that the different kinds of knowledge apply
best under different processing conditions (e.g., required response time).

Spreading activation theory is an attempt to explain how knowledge is
processed within a semantic network. It was originally developed by Collins &
Quillian [CQ69] and later improved by Collins & Loftus [CL75]. The theory views
memory search as activation spreading from concept nodes in a semantic network
which stops when an intersection is found. Given a certain concept, the theory
explains what will be the next concept that a person will automatically think of.
This unconscious process is referred to as “associative priming” in the original
theory [And95]. A core notion of this theory is that knowledge is organised in
memory along the lines of semantic similarity. The more links there are between
two concepts (i.e., the more commonalities they have), the more closely related
the concepts are. This means that people are more likely to retrieve information
from memory if related information has been presented to them first [And95].
Moreover, the stronger the relation between the two pieces of information, the
more likely the chance to access one through the other. The theory can be used
to explain a person’s behaviour when confronted with a question like “Is bird an
animal?”. To answer with either “True” or “False”, the person tries to access one

node through the other. If a link is found, the returned answer will be “True”.
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There have been a number of experiments investigating spreading activation
theory [And83b, Bal83, BL86, Lof74, SS97]. For example, Sharifian & Samani
[SS97] carried out an experiment to compare subjects’ response times when asked
to verify the relation between different word pairs. The results show that there
is a significant difference between the time required to verify direct and indirect
relations. For instance, the response time required to verify the relation “rose is
a plant” is significantly greater than the response time to verify either “flower
is a plant” or “rose is a flower”. A study conducted by Balota & Lorch [BL86]
supported the fact that memory activation can spread between directly and in-
directly related concepts. For example, the word “lion” can activate the word
“stripes” although the two words are related only through a mediating concept
“tiger”. Other studies have shown empirical evidence that the spread of activation
is done automatically as opposed to being under control [Bal83].

One of the controversies around semantic network models is the notion of
cognitive economy. It refers to the assumption that information about a certain
concept is stored only once in the appropriate level. For example, the fact that
birds have skin is not stored at the bird level, rather, it is stored at the animal
level. Some experiments carried out by Collins and Quillian [CQ69] support the
cognitive economy property of semantic networks. For example, they report that
subjects’ response time to a question such as “does a bird have feathers?” is less
than the response time to a question such as “does a bird have skin?”; where
feathers is stored at the bird level and skin at the animal level. The controversy
here is that cognitive economy can be confound with frequency of co-occurrence.
For example, let us compare the property of having skin for both birds and snakes.
Although it might not be frequent to talk about birds’ skin, it is more frequent
to talk about snakes’ skin. This implies that there is no direct storage of skin for
birds and, in contrast, there is a direct storage of skin for snakes (ignoring the
cognitive economy property of the network).

Network models in general and spreading activation in particular can provide
a logical explanation of why our similarity conjecture can be psychologically plau-
sible. The theory explains that once a concept has been activated in memory,
the most similar concepts to that concept would be activated immediately. This
means that those similar concepts can act as distracting factors, i.e., functional
distractors in MCQ terminology. This can explain why it is harder to verify the

key answer when the distractors are very similar to the key. In addition to the
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distractors-key relation, the theory also explains why it is easier to verify the key
answer when it is closer to the stem; a very plausible factor that we did not men-
tion in Hypothesis 1. We have chosen not to consider this as a primary factor of
our difficulty-control theory to keep it easier to understand and verify, and more
importantly, applicable to a wider range of questions. However, we examine the
impact of varying the similarity between the stem and the key in our evaluation
experiments presented in Chapter 7 (see the automated evaluation experiment).

Prototype models introduced the notion of a “basic level” which is the most
prototypical category among a hierarchically ordered set of categories. The basic
level is said to be more accessible and more likely to be learned first. Prototype
models were first introduced by Eleanor Rosch [Ros73, Ros75]. Rosch and others
have studied different hierarchies in an attempt to define the prototypical category
in each hierarchy. As an example, let us consider the categories animal, dog and
poodle. Notice first that these categories are hierarchically arranged, i.e., poodles
are kinds of dogs which are kinds of animals. Notice also that each of the three
categories can have different subcategories, e.g., animals can be dogs, cats, reptiles
and others. In her empirical studies, Rosch [Ros75] reports that most subjects
have found it easier to imagine, e.g., recall the features of, a prototypical dog than
to imagine a prototypical poodle or animal. Poodles are too specific while animals
are too general. Also, when the subjects were asked to give an example of an
animal, it was more likely to respond “dogs” rather than responding “poodles”.
Similarly, it was more likely that a subject who was asked to provide an example
of a furniture will respond “chair” rather than responding “stool”.

Prototype models provide a minimal representation of semantic memory; com-
pare it for example to the more rich representation provided by network models.
This does not necessarily reflect a disagreement between the two models. Loftus
[Lof75] provides a spreading activation-based explanation of the plausibility of
Rosch’s results. However, it must be noted that prototype models have serious
shortcomings. The main criticism is that the model does not provide a precise
definition of the prototypical category. For example, if we assume that we are
interested in the hierarchy (animal, mammal and dog), would dog be still the
prototypical category? Another shortcoming of the theory is that it fails to ex-
plain why the same concept can be more prototypical for a given category and
less prototypical for another category (e.g., car is more prototypical as a vehicle
than as a toy) [Lof75].
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Prototype models explain why it is easier to identify the key answer when it is
more commonly associated with the stem; i.e., when the key is prototypical. So it
is easier to verify that a chair is a furniture compared to verifying that a stool is
a furniture. The theory can be used to control the difficulty of MCQs by varying
the key-stem relation, provided a good (i.e., shared and explicit) understanding
of prototypicality is available. Due to the unavailability of this understanding at
the moment, we do not account for prototypicality in our difficulty control theory.

Feature models have not been as influential in cognitive psychology as net-
work and prototype models. Nevertheless, we will briefly present the model to
give greater insight in cognitive process models of semantic memory. In feature
models, concepts are described in terms of their features, with a distinction be-
tween characteristic and defining features [SSR74]. Characteristic features are
found in most instances of a category, i.e., they are typical features (e.g., a typ-
ical bird can fly). Defining features are those features that are necessary for
membership and shared by all instances of a category (e.g., all birds lay eggs and
have feathers). Feature models have two main properties: (a) feature lists are not
structured and (b) features are stored locally (i.e., cognitive economy is not con-
sidered). To verify whether a canary is a bird, the feature overlap is considered.
If the overlap is large (the model does not specify how large), then the sentence is
verified. Otherwise, the answer is “no”. Smith, Shoben and Ribs [SSR74] explain
that sentence verification can take one or two steps, with the second step being
much slower than the first. When a subject is asked to verify a sentence such as
A is a subcategory of B, the number of steps is determined based on the amount
of feature overlap between A and B. If a large number of features is recognised,
a fast “yes” answer is provided. If only a few number of features overlap, then a
fast “no” is provided. However, if the amount of overlap is intermediate then a
second step is required. In step 2, the defining features of A and B are compared
to verify the sentence. For example, verifying that canary is a bird can be faster
than verifying that canary is an animal because feature overlap between canaries
and birds is greater than feature overlap between canaries and animals.

As with the other models, there is a debate around feature models, especially
around defining features. For example consider a plucked chicken and a feather
pillow. The former does not have feathers but it still is a bird and the latter does
have feathers while it is not a bird. This questions the fact that “feathers” are

considered a defining feature of birds. Moreover, feature models do not explain
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how the semantic memory is organised, i.e., how concepts are related [Tar98§].

As with semantic models, feature models can explain why it is easier to verify
the key answer when it is similar to the stem. Distractors that are similar to the
key share a large number of features with the key. Hence, the comparison stage,
i.e., step 2 above, would be harder or at least slower.

In addition to the above three models of semantic memory, we mention a
very related theory of cognition which also models semantic memory, or more
generally, the mind. The theory is referred to as Adaptive Control of Thought
(ACT) [And83a] and was later extended to Adaptive Control of Thought-Rational
(ACT-R) [And93, And07]. The theory does not only provide a model of the
mind, but it also models and predicts human cognitive behaviour. It represents
the memory as units, referred to as “chunks”, interconnected by links representing
the relations between those chunks (as in network models). Each chunk has a
label and a set of properties specific to that chunk. The current state of the
memory is held in what is referred to as a “buffer” which contains the currently
activated chunks. As in network models, activation spreads to similar chunks. In
addition, activation of a chunk speeds up with frequent retrievals of that chunk.

One of the most important notions studied under the ACT-R framework is
what is referred to as the “fan effect”. It points out to the observation that the
time taken to recognise an item becomes longer as its fan increases. The fan
is defined as the number of associations that an item has with other items in
memory [And74, SA12]. ACT-R in general and the fan effect in particular can
be used to support our similarity conjecture. It can explain why it gets harder to
recognise the correct answer when the distractors share a lot of associations with
the key. Of course one can argue that the time spent by a student to answer a
question does not sufficiently indicate whether the student will get the question
right or wrong. Some students will quickly recognise the correct answer, and yet,
some students will recognise the correct answer after given sufficient time. This
of course excludes time-limited tests in which students are encouraged to answer

as fast as they can and their speed will affect their total grades.

3.3.1.2 Theories of expertise

Another challenging area of cognitive science aims at explaining the superior per-

formance of experts in various domains. Stability is an important characteristic
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of their superior performance which eliminates the influence of luck or unique en-
vironmental circumstances [ES91]. Here, experts refers to those individuals who
can be labeled as outstanding in a certain field [ES91]. In the context of learning
and assessment, we choose to refer to those individuals as high mastery students.
Existing studies of expertise have investigated the way knowledge is structured
and used by experts and compared that to novices” knowledge. Various studies
have explored the relation between expertise and performance in different do-
mains such as playing chess [CST73], computer programming [MRRC81], music
[Slo76], basketball [AB85], to name a few. Notice that these studies explore ex-
perts’ behaviour in situations that require the application of skills. Instead, we
focus below on studies that explore experts’ behaviour when recalling knowledge.

Experts’ knowledge is usually described as more cohesive and integrated com-
pared to novice knowledge [GC86, CGR82, CK83]. This cohesiveness of knowl-
edge was operationally defined by Chi and Koeske [CK83] in terms of the pattern
of interrelations between concepts either through direct or indirect links. For ex-
ample, a semantic network derived from a child who is learning about dinosaurs
would have more links between dinosaurs which are more familiar to the child
compared to links between less familiar dinosaurs. Moreover, dinosaurs belong-
ing to the same family would share more common links compared to dinosaurs
belonging to a different family. This pattern of interrelations was found only in
parts of the semantic network corresponding to familiar knowledge.

Chi and Koeske [CK83] also investigated the impact of the degree of cohe-
siveness on a child’s ability to perform subsequent memory tasks. The results
show that a child has more information about the more familiar dinosaurs. This
supports the fact that the degree of cohesiveness of knowledge can predict per-
formance on memory tasks [CK83]. Gobbo and Chi [GC86] further investigated
the impact of expertise on the success of performing other complicated tasks such
as making semantic comparisons, inferring new knowledge and reasoning about
new information as it is related to existing knowledge. In their study, Gobbo and
Chi support the view that success in reasoning is based largely on knowledge as
opposed to the other view that reasoning is a skill that children acquire as they
mature. The results of their investigations show that expert children can infer
more implicit facts about dinosaurs compared to novice children. Another inter-
esting result is that expert children could infer implicit knowledge about both

known and unknown dinosaurs. This means that the inferred knowledge is not
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always retrieved from memory but can also be generated by an expert child based
on their sophisticated knowledge.

Theories of expertise can explain why difficult MCQs, as defined in Hypoth-
esis 1, can only be answered correctly by high mastery students (experts), a
necessary property to govern the reliability and validity of an assessment. High
mastery students have the ability to account for larger, and better structured,
amounts of knowledge which gives them a better ability to distinguish the correct
answer from other distracting answers in a fast and reliable mechanism.

To sum up, the psychological theories presented above, together with a general
theory of cognitive load, can provide a psychological support for our similarity-
based theory of controlling MCQs difficulty. The increased level of similarity
between the answers of an MCQ increases the likelihood that the students will
be distracted by the wrong answers which increases the cognitive load. This in
turn can have a negative impact on their academic success. Among the presented
theories, network models together with theories of expertise are more applicable
to the context of this thesis.

3.4 Applicability of the similarity conjecture to
different classes of MCQs

It is very important to examine whether the similarity conjecture is applicable
to different classes of questions. Although assessment questions may be speci-
fied in an almost unlimited number of ways, the student behaviours involved in
these assessments can be described by a relatively small number of categories,
see for example [BK56]. We are interested in investigating whether the similarity
conjecture is suitable for different classes of assessment questions as classified by
Bloom’s taxonomy [BK56].

The different categories are arranged in a hierarchical order according to the
complexity of the involved cognitive process. In addition, a student performing
at a specific level is assumed to make use of and built on the behaviours re-
quired to perform at the preceding level [BK56, Sed78, Smi70]. It is important
to distinguish between the notion of item complexity and item difficulty. Item
complexity is based upon the quantity and quality of effort required to answer the
item whereas item difficulty is based upon the quantity and quality of knowledge.

For example, one can say that subtraction is more complex than addition, but



3.5 Summary and directions 7

a question involving subtraction is not necessarily more difficult than a question
involving addition. Guttman [Gut53] and others [Cra68| demonstrated that it
is still possible for more complex tasks to be either more or less difficult than
less complex tasks. It is also important to note that, depending on the nature of
the prior learning experiences, different students can solve the same question in
different ways and that one test item can actually be placed in different categories
[BK56, GH13|. This suggests that, in general, item difficulty can be controlled
along the different levels of Bloom’s taxonomy.

It remains now to examine whether our similarity conjecture is suitable for
controlling the difficulty of questions along the different levels of Bloom’s taxon-
omy. There is, in fact, a debate around the suitability of MCQs to assess higher
levels of Bloom’s taxonomy [Aik82]. Although we acknowledge that MCQs can
be used to construct questions on both lower and higher levels of Bloom’s taxon-
omy (see for example [Aik82]), but we also acknowledge that not all MCQs are
suitable for our similarity theory. For example, consider questions that require
the student to do some calculations and pick the correct numerical value (e.g.,
long division questions). By picking the correct answer, the student demonstrates
the correct usage of a specific mathematical method or procedure. Similarly, by
picking a distractor, the student demonstrates the wrong usage of the required
procedure. Each distractor should correspond to making a mistake in a specific
step of the procedure but similarity might not be directly applicable for selecting
the resulting numerical distractors. Other counter examples include evaluation
questions in which the answers should correspond to all possible opinions (e.g.,
excellent, good, bad); again, it makes no sense to vary the similarity between
such answers. However, there are plenty of examples for MCQs on different
Bloom’s levels that are suitable for our similarity theory, i.e., the similarity be-
tween the different parts of the MCQ (stem, key and distractors) can be varied
in order to vary the difficulty. We provide an example for each Bloom level in
Table 3.2. Rather than constructing new examples, the presented questions are

mostly adopted from existing educational sources [CDM96, GRE].

3.5 Summary and directions

In this chapter, we have discussed numerous psychological models to demonstrate

the psychological plausibility of the similarity-based theory for controlling the
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Table 3.2: Example questions on each Bloom’s levels

Knowledge:

Who is the author of “Das Kapital”?

Key: (B)

(A) Mannheim
(B) Marx
(C) Engels

Similarity pattern:

key-distractors (German authors)

Comprehension: Which one of the following describes the
PREPARATION stage of the creative process?
Key: (A) (A) The problem is explored and defined

(B) An attempt is made to see if the proposed

solution to the problem is acceptable

(C) The person goes through some experience leading to
a general idea of how the problem can be solved

Similarity pattern:

key-distractors (stage descriptions)

Application: Which one of the following memory systems
does a piano-tuner use?
Key: (A) (A) Echoic memory

(B) Long-term memory
(C) Mono-auditory memory

Similarity pattern:

key-distractors (memory systems)

Analysis:

Cat: Mouse AS

Key: (B)

(A) Lion: Tiger
(B) Bird: Worm
(C) Dog: Tail

Similarity pattern:

stem-key, key-distractors (relation between two concepts)

Synthesis: Predict a new conclusion: IF flying is a necessary
and sufficient condition to be a Bird THEN
Key: (C) (A) Bats can fly

(B) Bats are Birds
(C) Bats are Birds and Mammals

Similarity pattern:

stem-key, key-distractors (relation between two concepts)

Evaluation: Judge the following statement: “Bats can fly
BECAUSE Birds can fly”
Key: (B) (A) The assertion and the reason are both correct,

and the reason is valid.

(B) The assertion and the reason are both correct,

but the reason is invalid.

(C) The assertion is correct but the reason is incorrect.

Similarity pattern:

stem parts (the so-called assertion & reason)
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difficulty of some classes of MCQs. Other theories need to be explored to develop
principled methods for controlling the difficulty of other classes of MCQs (e.g.,
calculation and evaluation questions).

One of the possible steps that needs to be taken in order to expand the
difficulty-control theory to other classes of MCQs is to build and analyse a large
corpus of real-world MCQs; trying to find different sources of difficulty. In addi-
tion, a general model of students can be incorporated to address possible differ-

ences between different cohorts.



Chapter 4

Generating MCQs from
Ontologies

This chapter presents an overview of the landscape of ontology-based question
generation. The landscape is wide and has multiple dimensions and its under-
standing is relevant to understand the decisions regarding which questions and
generation methods will be considered in later chapters. This will also help to
identify the specific contributions of this thesis in comparison with existing work
on automatic question generation.

Every assessment has three foundational elements [WCGO1]: (i) a represen-
tation of students’ knowledge of a particular subject, (ii) a task that shows how
do students perform on this subject and (iii) an interpretation method to rea-
son about students’ knowledge mastery from the evidence obtained (i.e., their
performance). An example of element (ii) is a question in an exam. Students’
performance on an exam is taken as an evidence of what they know or are able
to do. Indeed, both the quality and the quantity of tasks (e.g., exam questions)
has an impact on the validity of the assessment process. In general, MCQs can
be of 1) good or bad quality, 2) high or low difficulty, and 3) high or low cost
(for setting and marking). Similarly, a set of questions (i.e., an exam) can be
of good or bad quality which depends on the quality of the individual questions
and quantity and choice of questions (of certain levels of difficulty, covering the
different areas of the domain). Ideally, we want a large number of good MCQs
of different difficulty levels for the lowest possible cost (i.e., with as little human

intervention as possible).
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To lower the cost, various attempts have been made to automate the gener-
ation of assessments. We study how these attempts have evolved over time by
researchers in different communities. We do not only present attempts made by
the ontology community but rather give a wider picture by including some at-
tempts made outside the ontology community. The reason is that studying the
growing body of literature on ontology-based MCQ generation cannot be carried

out in isolation of related literature in other communities, e.g., Natural Language
Processing (NLP).

4.1 Systematic review of existing QG approaches

A large body of research exists on automatic QG approaches from different types
of knowledge sources. To gain a deeper understanding of the field and to avoid
overlooking specific subfields, we carried out a systematic review of the field. Sys-
tematic reviews are a standard research methodology that aims to minimise bias
in selecting what to be reviewed and it can help to conduct reviews that can be
replicable by following a well-defined procedure. The procedure we followed to
conduct our systematic review is outlined in Figure 4.1. Five academic databases
were used to find relevant peer-reviewed articles on automatic QG approaches
published between 1969 and 2015. The search was restricted to the first 50 re-
sults sorted by relevance to the search term “question generation”. Although we
were interested in QG approaches that are (i) automatic and (ii) based on some
knowledge source, it was tricky to capture these two criteria in the search term.
On the one hand, it is tricky to capture the first criterion because various terms
have been used in the literature to describe automatic approaches, e.g., auto-
matic, computer-aided, technology-aided, to name a few. On the other hand, it
was tricky to capture the second criterion because various types of knowledge
sources have been used for QG purposes. However, we filter out irrelevant papers
in a later step as we will see below. The search was conducted on the follow-
ing databases: INSPEC, ACM Digital Library, IEEE Xplore, ScienceDirect and
ERIC, in a decreasing order of their contribution to the initial phase of gather-
ing related articles (using the specified search/inclusion criteria). In this initial
phase, the exclusion criteria were based on reading the title and abstract of the
paper to judge its relevance. Irrelevant topics include self-generation of questions

as a learning strategy to improve reading comprehension. In addition, 16 papers
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were excluded after reading their full texts. The exclusion criteria at this phase
include: (1) the paper presents a work on progress only (i.e., position paper)
and the description of the QG approach is not sufficient to understand how the
questions are generated, (2) the paper presents a computer-aided mechanism to
deliver assessments, rather than generating assessments, (3) the paper focuses on
question answering rather than question generation, (4) the paper is presented in
a language other than English, e.g. Japanese or (5) the presented QG generation
approach is mainly based on a template and different questions are generated
by substituting some place holders by random numerical numbers. We decided
to include the last criterion because it violates our definition of QG, as defined
in Chapter 1, which states that a QG system should take as input a knowledge
source (e.g., text or ontology). We include in our review template-based QG ap-
proaches that populate some templates using domain-specific concepts extracted

from a domain knowledge source.

Articles identified through
database search (n=250)

Articles excluded after review of
title/abstract (n=185)

v

> Mo. of duplicates (n=8)

W
Full-text articles assessed for
eligibility (n=55) Articles excluded after review of
full text {n=16)
- Foreign language (n=1)
- Under development (n = 2)
- Noton QG (n=11)
NA - No knowledge source (n = 2)

v

Articles included in
Articles identified = review (n=39)
through other sources
[n=42)

Unigue articles included in
review (n=81)

Figure 4.1: Procedure followed to systematically review existing QG approaches

As shown in Figure 4.1, the total number of reviewed papers up until this

phase was 39. We have also manually selected additional papers appearing in
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bibliographies of the papers gathered in the previous phase. Moreover, we gath-
ered additional papers from different sources such as: (i) forwarded by peers,
(ii) identified through reading related textbooks or attending related conferences
and/or (iii) identified through manual search in Google or other search engines
at different times using different search terms.! This has resulted in a total num-
ber of 81 papers included in our review. We have focused on selecting papers
which can contribute better to our understanding of the QG field in general. For
instance, we have selected earlier or later papers by authors of papers in our cor-
pus, papers that have been cited frequently in our corpus and/or papers published
before 2000 or after 2013 (i.e., very old or very recent publications).

After a quick investigation of these papers, we structured our observations
based on the following coding scheme: who (i.e., contributors), when (i.e., the
specific year the contribution started), why (i.e., what was the purpose of the
contribution and which discipline/domain was it applied to), how (i.e., required
input, QG method and distractor generation method if applicable), what (i.e.,
question format, answer format, feedback format if available and whether or
not the method controls difficulty of questions) and finally how the method was
evaluated. A detailed table showing all the reviewed approaches can be found in
Appendix A.

Yao et al. [YBZ12] have classified QG approaches as follows: (i) syntax-based,
(ii) template-based and (iii) semantics-based. We have extended this classification
in order to accommodate some QG approaches which do not fit in these categories.
In particular, we have added two additional categories, namely (iv) rule-based and
(v) schema-based. Syntax-based QG methods mainly (syntacticly) manipulate
unstructured knowledge sources (i.e., text) while semantics-based methods make
use of structured knowledge sources. Structured sources of knowledge can take
different formats. As defined in Chapter 2, we use the term knowledge base
to refer to different formats of structured knowledge sources (e.g., lightweight
ontologies/taxonomies, rich ontologies, or other knowledge bases such as semantic
networks, concept maps, linked data). Template-based methods use structured
or unstructured knowledge sources in addition to domain-dependent templates.
Note that the QG space is multidimensional and hence a QG approach can fit in

various categories.

” «

!Some of the search terms used included: “ontology-based question generation”, “automatic

question generation”, “computer-aided question generation”, in addition to changing the term
“question generation” for the term “item generation”.
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4.2 Past, present and future of automatic MCQs

generation

We illustrate the relatively short history of MCQ generation in Figure 4.2. The
automatic generation of assessment questions started with generating free-response
(i.e., open-ended) questions and, later, approaches for generating MCQs were in-
troduced. Although we focus on generating MCQs, we review approaches to
generate both kinds of questions. Exploring the literature of free-response QG
approaches is relevant to understand why and when MCQ generation approaches
have emerged. In addition, free-response QG approaches can be extended to
generate MCQs by adding a mechanism to generate suitable distractors. Syntax-
based QG methods were the first to be developed. The shift from syntax-based
QG methods to semantics-based methods was triggered by the need to minimise
the generation of questions which do not make sense (e.g., “Who was the invest-
ment?” [HS09]) and/or to generate good distractors. We elaborate on these issues

below.

Generation of
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Figure 4.2: Evolution of automatic QG methods

An important deal of research effort has been devoted to generate questions
for language learning and testing. We elaborate on various examples of QG sys-
tems that are mainly targeted at language learning/testing. Historically speaking,
research on automatic QG techniques can be traced back to the 70’s when Bor-
muth (1970) [Bor70] introduced the prose-based item generation theory for the
automatic generation of questions from prose passages. Bormuth proposed to

use existing learning materials (e.g., reading passages) to generate questions with
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the least possible human interference. The basic motivation behind Bormuth’s
theory is that manual assessment generation is subjective and inefficient. Early
research on automatic QG, including Bormuth’s work, involved syntactic trans-
formations of sentences to construct WH-questions, i.e., who, what, where and
when. For example, a sentence such as “The boy rode the horse”, would be trans-
formed to “Who rode the horse?”. In a study carried out by Roid and Haladyna
[RH76], the authors acknowledge that one of the problems of subjective-item
writing is that it generates questions of varying quality (e.g., different writers
generate questions of different difficulties), but the authors also report that Bor-
muth’s item-generation rules did not eliminate “subjectivity” of item writing.
They suggested that further investigation of automatic QG techniques is needed.
However, Bormuth’s theory has been abandoned later and no further investiga-
tions or improvements of the theory have been presented. Wolfe’s AUTOQUEST
system (1975) [Wol75, Wol76] is another well-known early work which also gen-
erates WH-questions by syntactic transformations of individual sentences using
a pattern-matching approach.

In another early project on QG, Stevens (1991) [Ste91] suggested to utilise
concordance tools to derive language learning exercises from general corpora. He
described how to use concordance tools to generate a set of truncated sentences;
each of these is displayed to the student on a separate line, with a centred blank
in each sentence. The student is given a set of words to choose from, and only one
choice (i.e., the key) will make the lines meaningful and grammatically correct.
The distractors are morphological variants of the key. The motivation behind
introducing this kind of concordance-based exercises, as reported by Stevens, is
that student performance on traditional gap-filling exercises, which were open-
ended, can be unexpectedly poor, especially for beginner language learners. In
particular, Stevens suggested that adding distractors to gap-filling exercises can
help in making these exercises more accessible, and therefore more useful, to such
students. This shows that the interest in generating MCQs has emerged to solve
previously observed problems with free-response questions.

It should be noted that MCQs were already popular in the assessment do-
main before the introduction of automatic methods to generate them (and be-
fore any form of technology-aided assessment). However, with the rapid rise
of technology-aided education, assessment has been forced to pick up the pace.

Large, and sometimes massive, number of students can enrol in online courses.
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Making the easy-to-mark MCQs more popular than the hard-to-mark open ended
questions. This is equally true for traditional large-scale assessments such as stan-
dardised college admission tests (e.g., SAT) which have also become popular in
the US and in other countries around the world. All of these reasons have con-
tributed to the interest in automatic MCQ generation methods. However, none of
them were the main motivation behind early MCQ generation approaches such as
Stevens’ concordance-based system [Ste91]. Consistent with this, Moscow et al.
(2004) [MBB'04] generated multiple-choice cloze questions® and reported that
free-response cloze questions were too difficult to answer and mark because many
correct answers were possible. The shift to generate MCQs in Moscow’s case was
to reduce the costs associated with free-response questions (cost of answering and
marking).

In addition to the above systems, another early QG generation system that
was targeted at the language learning domain was introduced by Conaim (1997)
[Con97]. He suggested three different ways to generate multiple-choice cloze ques-
tions. The blank position is determined either mechanically by deleting every
n®-word or selectively by either selecting words with certain frequencies or a
certain word class (e.g., verb, noun or adjective). Conaim initially points out
that a target of 50% acceptable test items is reasonable (compared to acceptable-
item rate of 66% for an experienced human setter), but he later reports that
acceptable-item rate for questions generated by removing the nth word was much
less than his initial target. He also reports that questions generated using the
selective strategies were of better quality in terms of item difficulty and item
discrimination. Later, Fairon (1999) [Fai99] developed a dynamic item banking
system (EVALING) that utilises linguistic tools for facilitating the creation and
management of French language tests. Manual creation of exercises is avoided in
the EVALING system by designing search tools that apply manually compiled
linguistic patterns to large corpora to retrieve sentences that can be used in the
exercises. Although the system generates free-response exercises, Fairon reports
that these exercises can be transformed to multiple choice format (by adding
distractors), but does not explain how can this be accomplished. A number of
other NLP-based QG techniques have also targeted the language learning domain
[HNO5a, SSY05, MC09, HS09, Heill, GK10, MN14]. This might be due to the

2(Cloze questions are usually used to assess vocabulary and reading comprehension. A portion
of text (with certain words removed from the text) is presented to the student to fill in the
blanks with suitable words that “close” the text.
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fact that generating distractors for language testing is sometimes easier than gen-
erating distractors for other domains. For example, in grammar tests, different
tenses of the same word can be good (and easily generated) distractors. Another
explanation of why this line of QG approaches was, and is still, attractable is that
you can simply take any book, story, newspaper article and use it to generate
questions.

A number of QG approaches have been devoted to improve the distractor
generation mechanism. Early MCQ generation approaches generate distractors
based on syntactic or lexical features (e.g., same part of speech, same frequency,
derivative words of the same prefix or suffix). Later, an interest in semantics-
based distractor generation mechanisms has developed. The approach introduced
by Mitkov et al. (2003) [MH03, MAHKO06] marks the beginning of interest in
semantics-based QG methods in which the distractors are generated according
to their similarity, in terms of their meaning, to the key. The distractors in
the system of Mitkov et al. are extracted from a lexicon (e.g., WordNet). The
study shows that computer-aided MCQ generation performs better than manual
construction of test items in terms of time without compromising quality. In two
in-class experiments, the generated questions discriminate well between students
and high percentage of distractors were functional. Although Mitkov et al. report
that their approach is applicable to various domains, they have only evaluated
their system in the linguistics domain. Later, Karamanis et al. (2006) [KLMOG6]
have conducted a pilot study to use the system of Mitkov et al. in a medical
domain and have reported that some questions were simply too vague or too
basic, indicating that using a lexicon might not be suitable for all domains.

Ontology-based QG techniques have only evolved around 2006, see for ex-
ample [HMMPO06, ZSRGO08, PKKO08]. In general, ontology-based methods are
domain-independent which means that they do not target a specific domain.
Existing attempts involve generating questions for various domains such as re-
lational databases [HMMPO06|, computer hardware [ZSRGOS], science [AP11],
maths [Willl] and history [AY14], to name a few. Ontology-based QG meth-
ods, along with other methods that utilise structured knowledge sources, are
usually classified as semantics-based methods. The main reasons for using on-
tologies as a knowledge source are: (i) their ability to generate good distractors
and (ii) their ability to generate deep questions about the domain of interest. An

example of a deep question is a questions that asks about relations between the
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different notions of the domain. A classical motivation behind ontology-based
QG methods, and semantics-based methods in general, is the availability of high
quality knowledge sources that can be (cheaply) reused (e.g., Guidon [Cla83]).
In short, research on automatic QG has been growing since the 70’s of the
last century with contributions from the education community and the NLP and
KR communities. This has resulted in many books (e.g., Item Generation for
Test Development [IK02], Automatic Item Generation [GH13|) and workshops
(e.g., the series of international workshops on QG from 2008 to 2012 [RGO9,
BP10]). Looking at the (short) history of automatic QG, we notice the diversity
of contributions and the lack of cohesion among contributors [GH13]. In addition,
there is a lack of a unifying theme. So on the one hand, some contributions have
targeted the theoretical foundations of QG. And on the other hand, other (non-
theoretical) contributions have targeted the practical needs of QG by providing a
technology that can alleviate the burden of manual QG. The future of automatic
QG would benefit from a marriage between theorists and technologists which can

be achieved by promoting multidisciplinary collaborations.

4.3 Dimensions of MCQs automatic generation

Taking into account the diversity of existing contributions on QG, we structure
our discussion on available design options around the following topics: (i) why do
people generate questions automatically?, (ii) what is required as input?, (iii) how
to generate?, (iv) what will be generated (as output)? and (v) how to evaluate

the generated questions? These design options are illustrated in Figure 4.3.

4.3.1 Purpose of questions

As we have already discussed in previous chapters, our main purpose of generat-
ing questions is to use them as assessment items. Consistent with our intentions,
educational assessment has been the main purpose driving many other QG ap-
proaches, see for example [MH03, HNO5a, HMMPO06, PKKO08, AY14]. These ap-
proaches generate questions that are suitable for both formative and summative
assessment purposes. Other approaches have focused on generating formative
assessment questions, e.g., to support self-studying [AP11, CCSO14].

Within the assessment domain, some of the existing QG approaches are suit-

able for generating questions for specific domains/disciplines. Examples of such
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Figure 4.3: Design space of MC(Qs automatic generation

domain-dependent approaches include approaches for the generation of math
word problems?® [SB02, DS03, NB11, Will1] or approaches for the generation of
language assessments (including reading comprehension, vocabulary and gram-
mar assessments) [LWGHO05, CLC06, LSC07, GK10]. In contrast, other ap-
proaches [MAHKO06, ZSRG08, PKK08, CCSO14] are domain-independent and
are suitable for generating questions for various domains.

It is important to mention that educational assessment is not the only useful
application for automatic QG approaches. Such approaches have been shown to
be useful for other purposes such as validation and comprehension. For example,
Bertolino et al. [BDDS11] have suggested to automate the validation of domain

models by generating questions from these models. The generated questionnaires

3A math word problem is a mathematical exercise in which the background information
on the problem is presented as text, i.e., in words rather than in mathematical notation. For
example, a mathematical problem written in mathematical notation as “What is the result of 3
+ 27” might be presented in a word problem as “John has three apples and two oranges. How
many fruits does John have in total?”.
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can help in identifying the parts in the model which require further considera-
tion and can guide the dialogues between domain experts and modelling experts.
The results of evaluating their approach, although not statistically significant, are
promising in that they have successfully identified some faults in domain models.
Their results also show that the generated questionnaires have helped domain
experts in gaining better understanding of the model which was built according
to the views of multiple domain experts from multiple domains. Along similar
lines, Liu et al. [LCR12, LCAP12, LC12, LCR14] have introduced various meth-
ods to assist students in validating their self-generated academic content (e.g.,
literature reviews). Their approach is capable of generating questions along the
different levels of Bloom’s taxonomy [BK56] such as: verification, comparison,
procedural, casual and judgemental questions. Their evaluation shows that their
approach generates questions that can be as useful as questions generated by
human supervisors (after filtering out questions with grammatical and semantic

erTors).

4.3.2 Domain knowledge source

After defining the purpose of generation, a suitable knowledge source must be
selected. We focus on generating questions from structured sources, in particular,
OWL ontologies, although other alternative knowledge sources can be utilised
such as unstructured text [Heill, BBV12] or other structured sources (e.g., linked
data [dM11, LL14, JS14|, databases [SH14], knowledge bases [CCSO14]). In
addition, some existing QG systems use multiple sources (e.g., text and ontologies
[MAHKO6]). We briefly review the most influential approaches below, starting

with unstructured sources for historical reasons.

4.3.2.1 Unstructured sources

In one of the influential* attempts to generate MCQs, Mitkov et al. (2003)
[IMAHKO06, MHO03] introduced an NLP methodology for generating multiple-choice
test items from electronic texts and utilised a lexicon (e.g., WordNet) for gener-
ating appropriate distractors. The procedure involves three main tasks: (i) term

extraction, (ii) stem generation and (iii) distractor selection. Following similar
lines, Heilman and Smith (2009) [HS09, HS10a, HS10b, Heill] described a system

4in terms of number of citations, compared to other QG related publications.
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that can automatically generate factual questions. They also discussed some of
the computational and linguistic challenges related to extracting questions from
text such as the limited ability of NLP-techniques to generate deep questions and
difficulty in extracting relations between concepts (and hence generating good dis-
tractors). Following on, Liu et al. [LCR12] have overcome these challenges and
reported that they have generated deep questions from texts using NLP-based
approaches. In addition, Huang et al. (2014) [HTSC14] extended Hielman and
Smith’s approach to generate plausible distractors by replacing the head word of
the answer phrase with similar words from those that appear in the given content
(similarity here refers to same part of speech). Moreover, some recent NLP-based
approaches [AMF11, AM14, MN14] have successfully extracted relations from
unstructured texts to support the automatic generation of MCQs.
Grammaticality of questions is an issue that has been considered in many
NLP-based QG approaches [BBV12|, especially in those approaches that are
based on syntactical transformations of individual sentences [YZ10]. For exam-
ple, Heilman and Smith [HS09] report that 36.7% of their generated questions
were rated as ungrammatical by reviewers. In addition, 39.5% of the questions
were rated as not making sense which is a category that was suggested to be
merged with the grammaticality category after analysing reviewers’ responses
and their agreements/disagreements. Later, Mazidi and Nielsen [MN14] report a
61% reduction in grammatical errors compared to Heilman and Smith’s results.
As pointed out by Vanderwende [Van08], one of the important characteristics
of QG systems is to be able to generate the important questions about the domain
of interest. To achieve this, NLP-based QG methods first (automatically) identify
the central concepts and sentences in the source text [OGP12]. Then, questions
around these central notions are constructed. This step is part of many existing
NLP-based QG approaches, including Mitkov et al. [ MAHKO06] and Becker et al.
[BBV12]. In addition, general purpose NLP-based methods for text summari-
sation are also available [Lin04]. In contrast, Olney et al. [OGP12]| point out
that this step is less relevant in a pedagogical context and suggested that the key

terms are usually already identified in textbook indices or glossaries.

4.3.2.2 Structured sources

A number of ontology-based QG approaches have been proposed [HMMPO5,
HMMP06, PKK08, CT09, CT10, ZPK11, AY14]. For example, Zitko et al. (2008)
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[ZSRGO8] proposed templates and algorithms for the automatic generation of ob-
jective questions from ontologies. The focus in their work was to extend the func-
tionality of a previously implemented tutoring system (Tex-Sys) by concentrating
on the assessment component. The main difference between this approach and
our approach is in the distractor selection mechanism. The mechanism adopted
by Zitko et al. is to generate a set of random distractors for each MCQ without
an attempt to filter them according to their pedagogical appropriateness.

The distractor selection mechanism was enhanced by Papasalouros et al.
(2008) [PKKO8] who presented various ontology-based strategies for the auto-
matic generation of MCQs. These strategies are used for selecting keys and
distractors. The evaluation of the produced questions by domain experts shows
that the questions are satisfactory for assessment but not all of them are syntac-
tically correct. The major problem related to this approach is the use of highly
constrained rules with no theory backing that would motivate the selection of
these rules. For example, the distractors in each MCQ are mainly picked from
the set of siblings of the correct answer while there might be other plausible dis-
tractors. Later, Cubric and Tosic (2009) [CT09] reported on their experience in
implementing a Protégé plugin for question generation based on the strategies
proposed by Papasalouros et al. [PKKO08]. More recently, Cubric and Tosic (2010)
[CT10] extended their previous work by considering new ontology elements, e.g.,
annotations. In addition, they suggested employing question templates to avoid
syntactical problems in the generated questions. They have also illustrated, by
some examples, that their method is suitable for generating questions of both
lower and higher levels of Bloom’s taxonomy [BK56].

In addition to the distractor selection mechanism, it is important to consider
some presentation issues that might affect the quality of the generated questions,
e.g., naturalness and fluency of the language. Consistent with this, Williams
[Will1] extends the use of SWAT® natural language tools to verbalise ontology
terms which are used in the generated questions. For example, “has a height of”
can be derived from the data property “has_height”. Presentation issues, which
are generally out of the scope of this thesis, can be left as a post-generation
step. A human editor can easily modify presentation errors later during the
reviewing process which must be carried out anyway, and the cost of editing is

expected to be marginal. However, the thesis addresses presentation issues that

Shttp://swat.open.ac.uk/tools/
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can have an impact on the difficulty of the generated questions. For example, we
aim to remove clues that can reveal the correct answer even for those students
who do not have sufficient knowledge about the topic since this can destroy the
validity of assessment items. Examples of clues caused by presentation issues are
grammatical inconsistencies between the stem and distractors or word repetitions
between the stem and key.

In order to make ontology-based QG accessible to test developers with no
prior experience in building ontologies, we need to provide them with strategies
that can help them to build or extend ontologies in systematic ways. For ex-
ample, Gavrilova et al. [GFBO05] present a 5-step strategy aimed at developing
teaching ontologies. The stages are: (1) Glossary development, (2) Laddering, (3)
Disintegration, (4) Categorisation and (5) Refinement. Sosnovsky et al. [SG06]
present a case study for utilising the above 5-step strategy to develop an ontology
for the domain of C programming. Another related topic that we like to men-
tion here is the availability of (semi)-automatic approaches for building ontologies
from textual materials (e.g., wikipedia pages). This is still an open research topic
attracting considerable attention. An interested reader is referred to [BCMO05] for
a general overview and to [ZNO8] for a discussion about the automatic building
of ontologies for educational purposes. In case an existing ontology is used as
a source for QG, it might be necessary to select parts of the ontology for QG,
rather than using the ontology as a whole. As we discussed in Chapter 2, on-
tology modularisation [SPS09, SSZ09] techniques can play an important role in

extracting parts of an ontology in a logically-safe manner.

4.3.3 Additional input

Looking at existing QG approaches, we notice that various types of support-
ing inputs are utilised by the different approaches. For example, some ap-
proaches, mainly template-based approaches, use domain-dependent templates
[MC09, Willl] to support the generation of questions for a particular domain.
The drawback of such approaches is that they require a huge manual effort to
develop these templates, and yet, they are not applicable for other domains.
Other approaches [ZSRGO08, CT10, CCSO14] benefit from domain-independent
templates to enhance the readability and naturalness of the generated questions.
Although these templates require manual effort as well, they are suitable for

generating questions for various domains.
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Some QG systems take as input a user query [ZSCZ11, CCSO14] and gen-
erate a natural language question that can be answered by the knowledge base
available in the system. Such systems can support learners in their knowledge
acquisition process. Other systems require, as input, a set of syntactic-patterns
[Wol76, Fai99, CLCO06] or semantic-patterns [AMF11, AM14, MN14] to extract
suitable parts from the knowledge source which can be used to construct a ques-
tion. In some systems [CLCOG6|, the search for phrases satisfying the required
patterns is performed over an external corpus which can be different from the
main source of domain knowledge. Other systems use corpora for other reasons
such as performing statistical analysis [Con97, LWGHO05, AMF11, AM14] or ma-
chine learning techniques [HN05a, HN05b, CBEM12].

Many existing QG approaches utilise lexicons or thesauri to generate plausi-
ble distractors, for example [SSY05, MAHKO06, LSC07, GK10, YBZ12, MGL12,
MN14, HTSC14]. Other approaches require as input a set of annotations either
to train classifiers to find sentences that are optimal for QG [BK12a, BK12b] or
to support the generation of questions with images [PKK11].

4.3.4 Generation method
4.3.4.1 General method

As discussed earlier, QG systems can be generally classified as: (i) syntax-based,
(ii) semantics-based, (iii) template-based, (iv) schema-based or (v) rule-based.
Syntax-based systems, for example [Bor70, MBB*04, HS09], apply syntactic
transformations on suitable sentences in order to generate factual questions. Such
systems use readily available (textual) learning materials or informational sources.
The main limitation of syntax-based systems is that they cannot infer the rela-
tions between the different parts of the (unstructured) knowledge source. This
can result in the generation of vague questions, questions that do not make sense
or questions whose answer is not available in the source text [HS09]. Semantics-
based systems, for example [ZSRGO08, PKKO08, AY14], try to overcome these
limitations by utilising structured sources that are ideally rich in terms of defined
relations between the main concepts of the domain. Some QG approaches trans-
form the source text into some sort of structured representation and then apply
semantics-based QG method in order to generate deep questions about the main
concepts in the text and their relations [YZ10, OGP12]. Template-based systems,
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for example [TG05, MC09], rely on domain-dependant templates and fill these
templates by extracting relevant parts from structured or unstructured knowledge
sources. Schemas are similar to templates in that they are domain-dependant but
schemas are more abstract than templates. In other words, different wordings of
templates have to be enumerated exhaustively. However, schemas can provide a
higher level of abstraction for a group of templates that represent variants of the
same problem. The so-called schema theory has been applied to the automatic
generation and variation of mathematical problems [SB02, DS03]. Each schema
defines the underlying problem structure by identifying the equations that re-
late the entities of the problem to one another. Finally, rule-based systems, for
example [SH14], utilise rule-based knowledge sources to generate questions that
can assess students in terms of their understanding of the important rules of the

domain.

4.3.4.2 Distractors generation method

Generating distractors was identified by Haladyna [Hal94] as the most difficult
part of MCQs generation. While some QG approaches select distractors at ran-
dom [HNO5a, HNO5b, ZSRGO8], others try to filter distractors according to their
appropriateness. Filtering can be achieved in various ways. For example, Lin
et al. [LSCO7] consult Google’s search engine to filter out obviously wrong dis-
tractors. Some of the disadvantages of utilising the web to get distractors is
that it goes outside textbook knowledge and may produce unsuitable distractors
(e.g., correct but synonymous). Alternatively, others [Con97, MBB*04, BFE05]
choose distractors based on lexical features (e.g., same part of speech (POS) or
similar frequency to the correct answer). In some template-based approaches,
each template has a different mechanism for selecting distractors, e.g., changing
part of speech or changing the verb into different form [CLCO06]. Others [TGO05]
generate distractors manually based on student misconceptions as identified by
experienced domain instructors or related literature.

We choose to filter distractors according to their semantic similarity to the
key. Consistent with our approach, existing approaches have already attempted
to utilise the notion of semantic similarity to generate MCQs, for example [MHO03,
MAHKO06]. Mitkove et al. [MHVR09], have carried out an investigation to find a
similarity measure that is suitable for question generation. The reported results

show that, among the evaluated measures, Lin’s measure [Lin98] was the most
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effective measure in generating questions with quality distractors.® The quality
of distractors was evaluated using classical item analysis methods [Keh95], see
Chapter 2 for more details. Although this investigation was not carried out in
a statistically significant fashion, the preliminary results are promising and show
that computable similarity measures exist that can be used to generate questions
of good quality. An important observation in this study is that the average item
difficulty was high (i.e., greater than 0.5). These results can be explained by the
similarity-based theory presented in this thesis, see Hypothesis 1. Given that the
distractors were always chosen to be highly similar to the key, it is not surpris-
ing to get questions with high average difficulty. Following Mitkov’s findings, a
number of automatic QG methods utilised similarity measures to generate dis-
tractors that are semantically similar to the key, see for example [MGL12, AY14].
Rather than automatically measuring similarity, Al-Yahya [AY14] gathers simi-
larity judgments from human experts during the ontological engineering process,

limiting the applicability of the method to other existing ontologies.

4.3.5 Output
4.3.5.1 Question and answer format

Questions can be classified according to the format of the question and the format
of the answer. Question formats include WH-questions, fill in the blank, T/F
questions and many others. The answers to these questions can take different
formats such as: (i) free-response, (ii) multiple-response MCQs or (iii) single-
response MCQs. Of course, some question formats are single-response MCQs in
nature. For example, T /F questions have two fixed choices to pick from, i.e., True
or False. Other questions can be presented to the students either as free-response
or fixed-response questions (e.g., WH-questions, fill in the blank).

Some of the approaches presented earlier in this chapter have focused on
generating MCQs [MAHKO06, CT10, AY14]. Other approaches have chosen to
generate free-response questions [DS03, WHLO08, SSIS08, Kim08]. We choose to
generate MCQs to address the challenge in generating good distractors which

SHowever, as we will see in detail in Chapter 5, Lin’s similarity measure requires an annotated
corpus (in addition to an ontology) to measure the similarity between the concepts in the
ontology. This limits the applicability of this similarity measure to ontologies that do not have
such an accompanying corpus. We explore alternative similarity measures in Chapter 5.
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can be varied, in terms of similarity to the key, to generate questions of dif-
ferent difficulties. In terms of question formats, some systems have developed
approaches to generate fill-in-the-blank [BFE05, HN05a, BBV12| while others
generate True/False statements [PKKO08, ZSRG08, BDDS11] or WH-questions
[SSIS08, Kim08, MSK09, MC09, HS09].

4.3.5.2 Feedback

The ability to provide instant feedback to many students is one of the advantages
that comes with MCQs. Some existing QG systems have highlighted the impor-
tance of providing feedback to students after providing their answers. Ideally,
feedback should be tailored according to students’ needs based on their provided
answer. Ahmed and Parsons [AP13] automatically generate hints and sugges-
tions to guide students in learning science through a series of MCQs. Liu and Lin
[LL14] provide, as feedback, links for extra learning materials related to the cur-
rent question. The feedback in this case is independent of the particular answer
selected by the student. Mostow and Chen [MC09] provide students with hints
to assist them through some reading comprehension exercises. Most existing QG
systems ignore the importance of generating informative feedback or assume that

revealing the correct answer is sufficient as a feedback.

4.3.6 Evaluation

When it comes to evaluating the generated questions, the purpose for which the
questions have been generated plays an important role. For example, if the ques-
tions were generated for educational assessments purposes, then evaluating these
questions has to involve administrating them to students. Some of the existing
QG systems that have reported the results of evaluating their generated ques-
tions in studies involving students include [Con97, MBB*04, BMB04, BFE05,
KWDH14]. Such student-centred studies involve analysing the results of stu-
dents answering these questions in order to evaluate questions’ difficulty, item
discrimination and usefulness of distractors (if they are available). Alternatively,
or additionally, evaluations may include assessing the effectiveness of using the
generated questions to enhance students’ learning. For example, Chaudhri et al.
[CCSO14] compared a group of students who have access to the QG system with

a control group and reported that students who have used their system scored
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significantly better on a subsequent quiz. Similarly, Kuyten et al. [KBS*12] as-
sessed learners’ enhanced comprehension of domain knowledge after reading ques-
tion/answer pairs generated by the system. Moreover, students’ performance on
the generated questions can be compared to their performance on standardised
tests in the domain of interest, see for example [MBB*04, SSY05, BFE05].

Student-centred studies are not always possible due to various reasons (e.g.,
the system is in early stages). A more common method to evaluate automatically
generated questions is through expert-based studies, see for example [CLC06,
LSC07, PKKO08, MC09, HS09, YZ10, PKK11, dM11, BDDS11, AY14]. In addi-
tion, expert-based evaluations have been combined with student-based evalua-
tions in some studies, see for example [MAHKO06]. Expert-based evaluations can
be as simple as asking the expert whether a generated question is acceptable or
unacceptable [MEAF12, BBV12] or they can be more systematic in identifying
the aspects to be evaluated. Various aspects have been the focus of expert-based
evaluations. For example, Yao et al. [YZ10] have focused on the following aspects:
(i) relevance, (ii) syntactic correctness and fluency, (iii) ambiguity and (iv) vari-
ety. In contrast, Agarwal et al. [AM11] have focused on the quality of distractors
in terms of readability and semantic meaning. The main drawback of expert-
based evaluations is that they are time-consuming and labor intensive which can
limit the number of experts willing to participate in them (including those experts
who are friends of the investigator). Alternatively, Heilman and Smith [HS10b]
have used Amazon Mechanical Turk to recruit raters of their generated ques-
tions. They report that each question has costed 27.5 cents for 5 raters. Another
possible method to evaluate the automatically generated questions is through
comparing them to questions generated by experts [LWGHO05, LCR12, HTSC14].

The above evaluation methods are usually not part of the QG workflow, but
rather a post-generation step to assess the efficiency of the QG approach. In
contrast to this, Heilman [Heill] proposed an overgenerate and rank method
in which evaluating the generated questions is part of the QG workflow. The
purpose of the ranking phase is to select higher quality questions out of a collection
of automatically generated questions possibly containing a large number of low
quality questions. In his PhD thesis, Heilman [Heill] reports that the ranker
roughly doubles the acceptability rate of top-ranked questions.

One observation that is specifically related to ontology-based QG approaches

is that most existing approaches have used handcrafted ontologies for evaluating
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their QG approach, see for example [CNB03, HMMP06, ZSRG08, PKKO08, AY14].
It is very important to evaluate these approaches by evaluating their utility over
existing real ontologies. Obviously, using existing ontologies, rather than building
new ones, for QG purposes lowers the cost of generation. Evaluating the use of
existing ontologies for QG is important for understating the issues that may arise
when using existing (probably big) ontologies and how to deal with these issues

to enhance the quality (e.g., relevance, coverage) of the generated questions.

4.4 Proposed method to generate MCQs

Before discussing what methods will be adopted in this thesis to generate MCQs,
we provide a general overview of the methods presented in the previous section.
The goal is to emphasise the gaps in existing methods that will be addressed
in this thesis. As can be observed from our discussion in the previous section,
attempts to automate the generation of assessment questions have started in the
70’s with the emphasise in the beginning being on free-response questions. This
might be explained by the difficulty of generating proper distractors. Methods to
generate MCQs were focused in the beginning on the generation of assessments
for the language learning domain for which it seemed easy to generate distrac-
tors. Mechanisms to generate distractors for this domain included the generation
of distractors based on their lexical features, e.g., mutating a verb to different
forms such as: play, playing, played, to play. Clearly, this mechanism cannot be
applied in other domains. Some existing ontology-based MCQ generation meth-
ods basically select distractors randomly. Obviously, this can affect the quality
of the generated questions by generating distractors that are not functional. We
aim to propose more principled mechanisms to generate distractors.

A general observation regarding existing QG approaches presented in this
chapter is the lack of control over the difficulty of the generated questions. In
contrast, controlling difficulty is one of the main contributions of this thesis.
Current attempts to control the difficulty of automatically generated questions
include [Willl, KS13]. However, the proposed models to control difficulty in
these systems have not been validated by any empirical studies. Williams [Wil11]
discussed a few factors to control the difficulty of (free-response) mathematical
word problems such as order of presentation and providing extraneous informa-

tion. Kovacs et al. [KS13] have presented an approach to control the difficulty
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of MCQs that is similar to our approach in that it is based on the notion of sim-
ilarity. However, their approach is different from our approach in that they vary
the similarity between the stem and distractors, rather than between the key and
distractors. Moreover, the single example presented in their paper shows that the
utilised distance measure is not precise (not sensible to all similarities/differences
between the compared concepts). Again, their approach has not been validated
by presenting the generated questions to students in order to assess their diffi-
culty. Newstead et al. [NBH"02, NBH"06] have presented different difficulty
models to predict the difficulty of analytical reasoning questions. The main fac-
tors which can affect the difficulty of such questions, according to Newstead et al.,
are complexity of the rules needed to solve the questions, the number of mental
models required to represent the problem, and question type. The limitation of
Newstead’s approach is that different difficulty models are needed for the different
question types and that the models are applicable to specific question types (i.e.,
analytical reasoning questions). We present a more general approach to control
the difficulty of MCQs and evaluate our approach in a series of empirical studies
(showing promising results).

Our difficulty-control mechanism is based on the use of similarity measures.
In Chapter 5, we present a new family of similarity measures for general OWL
ontologies. Existing off-the-shelf similarity measures could not be utilised due
to their limitations. For example, some of them are suitable for taxonomies
rather than rich ontologies whereas some of the measures which were designed
for DL ontologies are suitable for a limited range of ontologies (e.g., inexpressive
ontologies, ontologies with acyclic TBoxes or ontologies with ABoxes). We have
addressed these limitations by presenting similarity measures that are applicable
to a wider range of ontologies.

So far, throughout this chapter and previous chapters, we have hinted at (in
different places) the design options which have been adopted by our QG approach.
Educational assessment is the main purpose for which we generate questions but
also show, in Chapter 8, that the generated questions can be useful for ontology
validation purposes. We focus on developing QG methods that can be suitable for
various domains (i.e., domain-independent methods). We also focus on generating
questions to assess knowledge rather than skills or attitudes. All of this has been
discussed in both the theoretical foundations established in Chapter 3 and the

empirical evaluations presented later in Chapter 7. We have chosen to evaluate
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our QG approach in a series of student-based and expert-based studies in order
to gain a better understanding of the benefits and limitations of the proposed
approach.

We have also chosen to utilise structured knowledge bases, namely OWL on-
tologies, as the main input to our QG system. Domain-independent templates
are also required as an additional input. The motivation of using such templates
is twofold: first it allows the generation of different kinds of questions and second
it allows end-users to extend the system by adding additional templates to suit
their needs. In Table 4.1, we present a few possible templates which have been
generally proposed by existing QG approaches, for example [ZSRG08, CT10].
These templates naturally fit with the source, i.e., ontologies. The last template,
i.e., analogy template, has not been proposed by other QG systems. It addresses
higher levels of Bloom’s taxonomy. Other templates can be easily added to our
system. The templates shown in Table 4.1 are the ones used in the empirical eval-
uation studies presented in later chapters. We have focused on templates that
can generate basic, but important, questions about the domain of interest. The
questions, including distractors, are generated in a semantics-based manner by
accessing the ontology via a reasoner. This means that the (correct and wrong)
answers are selected according to their implicit and explicit relation to the stem
and to each other.

In Chapter 7, we present details on implementing a prototype ontology-based
QG system. The prototype system also includes a module to measure the pairwise

similarity of some of the (possibly complex) concepts in the ontology.
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Table 4.1: Basic questions templates

Definition: What is the following definition describing?
[Annotation N]

Key: concept name distractors: concept names

annotated with N not annotated with N

Recognition: Which is the odd one out?

Key: concept name not  distractors: concept names subsumed by S1,

subsumed by S1 S1 is a concept name

Generalisation: What is [Concept name A]?

Key: concept name that distractors: concept names that are non

is a subsumer of A subsumers of A, excluding subsumers of the key

Generalisation 2: What is [Concept name A]?

Key: concept expression distractors: concept expressions that are non
that is a subsumer of A subsumers of A, excluding subsumers of the key

Specification: Which of these is [Concept name A]?

Key: concept name that distractors: concept names that are non
is a subsumee of A subsumees of A, excluding subsumers
and siblings of the stem

Specification 2: Which of these is [Concept expression X]|?

Key: concept name that distractors: concept names that are non

is a subsumee of A subsumees of A, excluding subsumers of the stem
Analogy: [Concept name A] is to [Concept name B| as:

Key: a pair of concept distractors: pairs of concept names that
names that have the have a relation other than the relation
same relation as A, B between A, B




Chapter 5
Similarity measures

In earlier chapters, we have shown that similarity measures can be used for gen-
erating educationally useful assessment questions and conjectured a similarity-
based theory of controlling MCQs difficulty. In this chapter we elaborate on
the topic of measuring similarity in general and focus on similarity measures for
concepts.

We define similarity measurement as the process of assigning a numerical value
reflecting the degree of resemblance between two objects (e.g., concepts) w.r.t. a
specific ontology O. There are many forms of similarity (e.g., semantic, syntactic
or lexical). Although different forms of similarity might be valuable for different
purposes, we focus on semantic similarity between ontology concepts and refer to
this as conceptual similarity.

Similarity is at the core of numerous ontology-related applications such as
ontology alignment [ES07], ontology learning [CW10], ontology clustering and
comprehension [MISR11], to name a few. Consider for example the Gene Ontol-
ogy [Con00]: measuring genes’ similarity [BSTP*10, BAB05, SDRL06, WDP*(7]
would allow scientists to infer novel potential (undiscovered) gene functions. The
diversity of similarity-based applications and the centrality of similarity for con-
trolling the difficulty of a range of assessment questions have motivated us to
explore similarity measures in detail.

Several attempts have been made to develop methods for measuring concep-
tual similarity in knowledge bases (e.g., taxonomies, rich ontologies) [RMBBS89,
Res95, Lin98, JC97, WP94, ODI07, Jan06, dSF08, LT12]. In addition, the prob-
lem of measuring similarity is well-founded in psychology and a number of simi-
larity models have already been developed [Est55, Wag08, Blo01, She87, Nos92,
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GS04, Tve77, Gen83, Lev66, HCR03, Jam50|. Rather than adopting a psycho-
logical model for similarity as a foundation, we will see that existing similarity
measures for ontologies are either ad-hoc and unprincipled or not computation-
ally possible. Accordingly, no off-the-shelf similarity measure was suitable for our
question generation purposes.

This chapter reviews some fundamental psychological theories which can be
considered as a foundational stone for similarity measures. We also analyse some
existing similarity measures before presenting a new family of similarity measures
that addresses some of the problems that are present in existing measures. In
addition, we discuss the desired properties of similarity measures and examine
whether they hold for the new proposed measures. An empirical evaluation of the
new family of similarity measures is presented in Chapter 6 which shows (among
other things) that the new measures are best correlated with human similarity

judgement which is very important when using these measures for QG purposes.

5.1 Background on similarity

A number of theories of similarity have been proposed by psychologists during
the last few decades. From the point of view of a psychologist, the ability to
assess similarity is the backbone of humans’ thinking [Jam50]. Hence, theories of
similarity are closely related to theories of cognition. For example, our success in
solving a new problem depends on finding a similar problem that we previously
solved [GS04]. Other cognitive processes are also founded on this sameness notion,
such as categorisation, generalisation and recognition, to name a few. The need to
understand these cognitive processes has motivated psychologists to build general
theoretical models for similarity. In what follows, we shed a light on some of these

models.

5.1.1 Psychological models of similarity

Note that this section is not aimed at providing a comprehensive survey of the
whole (broad) research area, but rather provides some answers for the following
questions: (i) Which representation systems can be used to represent the concepts
to be compared? and (ii) How can we compare these representations in order to

compute the similarity of two concepts?
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5.1.1.1 Common elements model

In this model, the compared objects are represented as collections or sets of undif-
ferentiated elements. The similarity between two objects is calculated by counting
the number of common elements and/or summing up their values. For example,
Figure 5.1 shows two objects within which individual elements are represented
as Xs. The proportion of shared elements (red Xs) represents the similarity be-
tween the two objects. This model is useful in comparing simple objects that can
be defined using what can be called the elemental approach [Est55, Wag08]. It
might be certainly useful in revealing certain aspects of the compared objects,
e.g., their discrimination [Blo0O1]. However, it is not applicable to measuring sim-
ilarity between more complex objects that have more properties other than their

membership in a collection/set of objects.

common elements

Figure 5.1: Common elements model, taken from [Blo01]

5.1.1.2 Geometric model

A geometric map represents a set of objects in an N-dimensional space where each
object is represented as a point in the space [She87, Nos92]. Figure 5.2 shows an
example of a geometric model with two dimensions (size and colour).

The similarity of two objects (a,b) is inversely related to their distance d,

which can be calculated by the following formula:

N
dop = (Z |Zar — 2or") V"
1

where . is the value of object a in dimension k, xy; is the value of object b in
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Figure 5.2: Geometric model, taken from [BloO1]

dimension k and r is a spatial metric which can be set to different values (e.g.,
Euclidean metric (r=2) or City-block metric (r=1)) [GS04]. While Euclidean
metric yields constant distance values regardless of how coordinates are rotated
w.r.t. objects in the space, city-block distances are sensitive to rotations. The
value of each object in a certain dimension can be measured in different ways,
e.g., using subjective human judgements.

Geometric models might be useful in comparing objects that can be repre-
sented in a few continuous dimensions. However, in cases where objects are
characterised by non-continuous (e.g., qualitative) features, things get tricky as
geometric models cannot be used to represent such features. Moreover, geometric
models are founded on the use of metric distances. Hence, it was assumed that
they fulfil the three metric properties: (i) minimality, (ii) symmetry and (iii) the
triangle inequality. However, Tversky [Tve77] provided some counter examples in
which geometric models fail to fulfil the aforementioned properties. Later, Tver-

sky [Tve77] introduced the features model which is explained in Section 5.1.1.5.

5.1.1.3 Alignment-based model

In alignment-based models, objects are represented propositionally and/or hierar-
chically (Directed Acyclic Graph (DAG) representing partonomic relations). The
advantage of representing objects in such relational structures is that in many ap-
plications (e.g., analogy detection) the interest is in comparing objects based on
their underlying relations. Similarity is based on the degree of “correspondence”
between the two structures. As an example, Figure 5.3 illustrates the similarity
between an atom and the solar system as presented in the structure mapping

theory developed by Gentner [Gen83].
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Figure 5.3: Alignment-based model, taken from [Gen83|

5.1.1.4 Transformational model

Transformational models are founded on the premise that similarity between two
objects is relative to the number of operations required to transform one object
into the other. For example, Levenshtein’s distance corresponds to counting the
number of necessary changes (e.g., insert, remove, replace) to transform a string
into another string [Lev66]. Along similar lines, Hahn et al. [HCRO03] define
the similarity of two objects as a function of the complexity of transforming one
into the other. Similarly, Distel et al. [DAB14] proposed a dissimilarity mea-
sure that is based on description trees for the lightweight description logic £L.
The difficulty in applying such models is in specifying the possible transforma-
tional operations. This difficulty limits the applicability of this model to complex

representations.

5.1.1.5 Features model

To overcome the limitations of geometric models, Tversky [Tve77] proposed to
use contrast models. In Tversky’s contrast model, an object is represented as a
set of features. The degree of similarity S,, between objects (a,b) corresponds
to features common to a and b, unique features of a and unique features of

b. Figure 5.4 better illustrates this model. Similarity can be computed by the
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following formula:

Sw=zf(anb) —yfla—0b)—zf(b—a)

where f(a N b) is the number of shared features between a and b, f(a — b) is the
number of features in a but not in b, f(b—a) is the number of features in b but not
in a, and (z,y, z) are weights used to change the focus of comparison. According
to this model, similarity of object a to object b is different from similarity of b to

a (i.e., symmetry is not assumed).
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Figure 5.4: Features model, taken from [BloO1]

5.2 Measuring similarity in ontologies: existing

approaches and challenges

All the previous models assume things that we do not necessarily have in ontolo-
gies, at least directly. For instance, it is tricky to define what we mean by features
of a concept in an ontology. Due to richness of ontologies, many things may be
associated with a given concept (e.g., atomic subsumers/subsumees, complex
subsumers/subsumees, instances, referencing axioms, role successors). Looking
at existing approaches for measuring similarity in DL ontologies, one can notice,
on the one hand, that approaches which aim at providing a numerical value as a
result of the similarity measurement process are mainly founded on feature-based
models [Tve77], although they might disagree on which features to consider. On
the other hand, approaches aiming at providing a descriptive result are mainly
founded on transformational models [Lev66, HCRO03] and are usually charac-
terised as distances or dissimilarity measures rather than similarity measures.

Instance-based measures of similarity are similar to the common elements model
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where instances represent the elements of the model. But they can also be seen as
simple feature-based models where only a single feature is considered (i.e., mem-
bership feature). Other measures compute similarity by measuring distances in
some graph of the ontology. We will see in Section 5.2.3.1 that these measures
can also be seen as feature-based models where only distinguishing features of
the compared objects, rather than common features, are considered.

In what follows, we concentrate on feature-based notions of similarity where
the degree of similarity Scp between concepts (C, D) depends on features com-
mon to C and D, unique features of C and unique features of D. Considering
both common and distinguishing features is a vital property of the feature-based
model. Tversky [Tve77] exemplified this notion of similarity by exploring the
similarity between English Letters. For instance, if we try to compare the letters
E, F and I, we can say that E is more similar to F than to I because they share
more common features. And I is more similar to F than to E because they have
fewer distinguishing features.

Looking at existing approaches for measuring similarity in ontologies, we
find that some of these approaches consider either common or unique features
(rather than both) and that some approaches consider features that some in-
stances (rather than all) of the compared concepts have. Indeed, this has an
impact on the similarity measurement result. Of course, a good similarity mea-
sure should be sensitive to both the explicit and implicit parts of the underlying
ontology (i.e., considering entailments). Thus, to account for all the features of
a concept, we could consider all (possibly complex) entailed subsumers of that
concept. Again, this is not always the case in some existing similarity measures.
Detailed inspection of the problems of some existing measures is presented in
Section 5.2.2.

5.2.1 Desired properties of similarity measures

To understand some of the important properties which need to be considered

when measuring similarity in ontologies, we present the following example:

Example 5.1 Consider the ontology Oorganisms:
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Animal C© Organism M Jeats. T, Plant T Organism,
Carnivore C Animal MVeats.Animal, Herbivore C Animal M Yeats.Plant,

Omnivore T Animal M Jeats. Animal M Jeats. Plant

Please note that our “Carnivore” is also known as obligate carnivore. A good
similarity function Sim(-) is expected to derive that Sim(Carnivore, Omnivore)
> Sim(Carnivore, Herbivore) because the first pair share more common sub-
sumers and have fewer distinguishing subsumers than the second one. On the
one hand Carnivore, Herbivore and Omnivore are all subsumed by the following
common subsumers (abbreviated for readability): {T,Org, A,3e.T}. In addi-
tion to those subsumers, Carnivore and Omnivore have the following common
subsumer: {Je.A}. On the other hand, they have the following distinguishing
subsumers: {Je.P} while Carnivore and Herbivore have the following distin-
guishing subsumers: {Je.P,Ve.P,3e.A,Ve.A}. Here, we have made a choice to
ignore (infinitely) many subsumers and only consider a select few (by limiting
the considered language). Clearly, this choice has an impact on Sim(-). Details
on such design choices are discussed later.

We refer to the property of accounting for both common and distinguishing

features as rationality which is defined in Definition 1.

Definition 1. A rational similarity function Sim(-) satisfies the following con-

ditions:

o If the number of common subsumers increases and the number of distin-
guishing subsumers remains constant then the similarity should also in-

crease.

e [f the number of distinguishing subsumers decreases and the number of com-

mon subsumers remains constant then the similarity should decrease.

In addition, the related literature refers to some other properties for evaluating
similarity measures. In the following definition, we briefly present some of these

properties. For a detailed overview, the reader is referred to [dSF08, LT12].

Definition 2. Let O be an ontology. Let L be a concept language and C, D, E,
L, U be concepts in L. A similarity measure Sim : L x L — [0, 1] is

1. Equivalence closed if Sim(C,D)=1< O = C = D.
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2. Equivalence invariance if O = C' = D = Sim(C, E) = Sim(D, E).

3. Symmetric if Sim(C, D) = Sim(D,C).
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4. Fulfilling the triangle inequality property if 1+ Sim(D, E) > Sim(D,C) +

Sim(C, E).

5. Subsumption preserving if O = C C D C E = Sim(C,D) > Sim(C, E).

6. Reverse subsumption preserving if O = C C D C E — Sim(D,E) >

Sim(C, E).

7. Monotonic if O FCC LNU,DC LNU,ECUFEZ L AH € L s.t. CC
HAECHADZH = Sim(C,D) > Sim(C, E).

The quality of the similarity function/measure depends on the above mea-

sures. Typically, a similarity coefficient (e.g., Jaccard [Jac01], Tversky [Tve77],

Dice [Dic45]) is used to compute similarity. The definitions of these coefficients

are provided in Table 5.1.

Similarity coefficient Definition
_ [(ANB)|
Tversky T(A, B) = {ampyral A5 A5=A]
Dice D(A, B) = 2ihs)
Jaccard J(A,B) = Igiaggl

Table 5.1: Some standard similarity coefficients for sets of “features” A,B

Note that Dice’s coefficient is more sensitive to shared features than to dis-

tinguishing features. Tversky’s coefficient may be asymmetric. However, it has

been shown [Jac0l] that Jaccard’s distance (obtained by subtracting the Jac-

card’s coefficient from 1) is a proper metric, i.e., it satisfies Properties 1-3 in

Definition 2.

5.2.2 Overview of existing approaches

For clarity, we classify existing similarity measures according to two dimensions.

In the first dimension, we classify similarity measures to (i) taxonomy-based

measures and (ii) ontology-based measures. In the second dimension, similarity

measures are classified into (i) intentional measures and (ii) extensional measures.
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5.2.2.1 Taxonomy vs. ontology based measures

Taxonomy-based measures [RMBB89, WP94, Res95, Lin98, JCI7] only consider
a taxonomy, i.e., a (possibly acyclic) directed graph or (possibly) a tree. For
DLs, we could use the inferred class hierarchy (i.e., the Hasse diagram of the
partial order on concept names in @ induced by the entailment relation O |
A C B) as this graph and would thus only consider atomic subsumptions (e.g.,
Carnivore © Animal). In fact, this can be considered an approximated solution
to the problem which might be sufficient in some cases. However, the user must
be aware of the limitations of such approaches. For example, direct siblings are
always considered equi-similar although some siblings might share more features
or subsumers than others.

Ontology-based measures [dSF08, Jan06, LT12] take into account more of the
knowledge in the underlying ontology (e.g., Carnivore C Veats.Animal). These
measures can be further classified into (a) structural measures (b) interpretation-
based measures or (c¢) hybrid measures. Structural measures [Jan06, LT12] first
transform the compared concepts into a normal form (e.g., ££ normal form [LT12]
or ALCN disjunctive normal form [Jan06]) and then compare the syntax of their
descriptions. To avoid being purely syntactic, they first unfold the concepts
w.r.t. the T Box which limits the applicability of such measures [Jan06] to cyclic
terminologies. Moreover, some structural measures [LT12] are applicable only
to inexpressive DLs (e.g., ££) and it is unclear how they can be extended to
more expressive DLs. Interpretation-based measures mainly depend on the notion
of canonical models (e.g., in [dSF08, dFE05] the canonical model based on the
ABoz is utilised) which do not always exist (e.g., consider DLs with disjunctions).
Hybrid measures are those structural measures that use canonical interpretations
(e.g., [dFE06, Fd06, EPT15]).

5.2.2.2 Intensional vs. extensional measures

Intensional measures [RMBB89, WP94, Jan06, LT12] exploit the terminologi-
cal part of the ontology while extensional measures [Res95, Lin98, JC97, dSFO08,
dFE05, dFE06] utilise the set of individual names in an ABoz or instances in
an external corpus. Extensional measures are very sensitive to the content under
consideration; thus, adding/removing an individual name would change similarity
measurements. These measures might be suitable for specific content-based ap-

plications but might lead to unintuitive results in other applications because they
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do not take concept definitions into account. Moreover, extensional measures can-
not be used with pure terminological ontologies and always require representative
data.

5.2.3 Detailed inspection of some existing approaches

After presenting a general overview of existing measures, we examine in detail
some measures that can be considered “cheap” options for measuring similarity
and explore their properties. For what follows, we use Satomic(C, O) to denote the
set of atomic subsumers of C (i.e., Satomic(C,0) = {D € No | O = C C D}).!
We also use Compgomic(C, D, O), Diff Atomic(C, D, O) to denote the sets of common

and distinguishing atomic subsumers, respectively, i.e.:

ComAtomic(Ca Da O) = SAtomic(Ca O) N SAtomic<D7 O)
DiﬁAtomic(Ca Da O) = SAtomic(Ca O) A SAtomic(D7 O)

5.2.3.1 Rada et al.

This measure utilises the length of the shortest path [RMBB89] between the com-
pared concepts in a taxonomy (e.g., one could use the inferred class hierarchy).
To measure the distance between Carnivores and Herbivores of Example 5.1, we
count the number of links in their shortest path. The corresponding class hierar-
chy is shown in Figure 5.5. The length in this case is 2. Similarly, if we count the
number of links between Carnivores and Omnivores we get the same numerical
value. However, we explained earlier that Carnivores and Omnivores are more
similar than Carnivores and Herbivores. Therefore, this (dis)similarity measure
is (too) coarse-grained since it does not always differentiate between specific cases
(where it could do so if it had considered the information in the ontology). More-
over, if we count the number of links between Animals and Plants we also get
the same numerical value, although Carnivores and Omnivores are more specific
concepts than Animals and Plants and therefore could be more similar. Also,
for all C'; the similarity of C' and its direct subsumers is always the same as its
similarity to any of its subsumees since the number of edges is always 1.

Since this measure is based on counting the number of edges in the shortest

path connecting two concepts, C' and D, we can formulate the measure as:

I N¢ is the set of atomic concepts
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Figure 5.5: Inferred class hierarchy of the ontology in Example 5.1

dRada<C7 D7 O) - |DiﬂAtomic(Ca Da O)|

To understand the sources of the above problems, we examine the subsumers
that are considered by the measure. As can be clearly seen in the above formula,
this measure only considers (atomic) distinguishing subsumers of C' and D. The
set of atomic subsumers of Carnivore is Saiomic(Carnivore) = {T,C, A, Org}.
Satomic(Herbivore) = {T, H, A,Org} and Satomic(Omnivore) = {T,0, A, Org}.

2 we take the cardi-

To measure the dis-similarity dgraq.(Carnivore, Omnivore),
nality of the set of distinguishing subsumers Diffa¢omic(Carnivore, Omnivore)
which equals to 2 as provided by the original measure (i.e., length of the short-
est path). Obviously, the essential problem here is that the measure takes only

distinguishing features into account and ignores any possible common features.

5.2.3.2 Wu and Palmer

To account for both common and distinguishing features, Wu & Palmer [WP94]
presented a different formula for measuring similarity in taxonomies (e.g., tree-

shaped inferred class hierarchies). Their similarity is originally formulated as:

2. N3
Sw & pamer (D) = 15 T

where F is the least common atomic subsumer of C' and D (i.e., the most specific
concept name that subsumes both C' and D), N1 is the number of nodes on the
path from C to F, N2 is the number of nodes on the path from D to £ and N3

2To compute similarity, we can either take the multiplicative inverse of dissimilarity or
subtract the dissimilarity value from 1 and then normalise it by dividing over the maximum
similarity value.
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is the number of nodes on the path from E to the root. The above formula is

equivalent to:

2- ‘ComAtomic<Cv Da O)‘

S u almer C7D7O = i
Wu & Patmer( ) 2 - |Comsomic(C, D, O)] + |Diffasomic(C, D, O)]

Although this measure accounts for both common and distinguishing features,
it only considers atomic concepts and it is clearly more sensitive to common

features than to distinguishing features.

5.2.3.3 Resnik and other IC measures

In information theoretic notions [Res95, Lin98, JCI97| of similarity, the informa-

tion content ICe of a concept C' is computed according to the following formula:

ICC = —lOgPC

where the probability (Pg) of a concept C is the probability of encountering
an instance of it. For example, Pr = 1 and ICt = 0. We say that T is not
informative. Accordingly, Resnik [Res95] defines the similarity Sgresnix(C, D) as
follows:

SRresnik(C, D) = ICrcs

where LCS is the least common atomic subsumer of C' and D. As discussed earlier,
this measure, along with any extensional measure, assumes that the instances set
is present and that it is of good quality which may be difficult to achieve. Another
problem is that those measures take into account features that some instances of
C' and/or D have, which are not necessarily neither common nor distinguishing
features of all instances of C' and D. In addition, Resnik’s measure in particular
does not take into account how far the compared concepts are from their least
common subsumer. To overcome the last problem, two [Lin98, JC97] other IC-

measures have been proposed:

- 2 - [CLCS
Siin(C, D) = ICo + ICh

SJiang&Conrath(07 D) =1- ICC + ICD -2 ICLCS
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5.3 A new family of similarity measures for on-

tologies

Following our exploration of existing measures and their associated problems,
we present a new family of similarity measures that addresses these problems.
To understand the limitations of existing measures in fulfiling the needs of real
world ontologies, we briefly present some statistics gathered from the NCBO
BioPortal corpus of ontologies [MP15]. Firstly, let us recall that extensional
measures require the availability of a set of instances or individuals with the
ontology. We want to know the percentage of ontologies that have such a set in the
corpus. In fact, only 32% of ontologies in the corpus have at least one individual.
The number of individuals is not normally distributed (i.e., massive deviation)
across the corpus. This means that extensional measures cannot be used with
at least 68% of ontologies in the corpus. Secondly, let us recall that structural
measures require acyclic terminologies. However, cycles have been detected in
at least 45.8% of the ontologies. Finally, 22.2% of ontologies have cycles and no
individuals, which means neither extensional measures nor structural measures
can be used for these ontologies. This clearly shows the need for new measures
that can cope with all ontologies.

The new measures use Jaccard’s coefficient and adopt the features model as
the psychological foundation. The features under consideration are the subsumers
of the concepts being compared. Note that we aim at similarity measures for
general OWL ontologies and thus a naive implementation of this approach would
be trivialised because a concept has infinitely many subsumers. To overcome this

issue, we present two possible refinements for the similarity function.

5.3.1 A first refinement to the similarity function

As a first refinement to the similarity function, we do not simply count all sub-
sumers but consider subsumers from a set of (possibly complex) concepts of a

concept language £. Let C' and D be concepts, let O be an ontology and let
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L(@) be a concept language defined over the signature of 0. We set:

S(C,0,L)={DeL(O)|0ECLC D}
Com(C,D,0,L) =S(C,0,L)NnS(D,0O, L)
Union(C, D, 0, L) = S(C,0,L)US(D,0, L)
Diff(C, D,0,L) = S(C,0,L) AS(D,0, L)

|Com(C, D,0, L)|
|Union(C, D, O, L)

Sim(C,D,0,L) =

where, as before, |M| denotes the cardinality of a set M, Com(C, D, O, L) is the
set of common subsumers of concepts C and D, Union(C, D, O, L) is the set of all
subsumers of C or D and Diff(C, D, O, L) is the set of distinguishing subsumers of
C and D. Note that Com(C, D, O, £) and Diff(C, D, O, L) are disjoint, but there
can be concepts in £(O) that are in neither of them. In what follows, we omit O
and/or L from S(-), Com(-), Union(-), Diff(-) and Sim(-) whenever it is clear from
the context.

To design a new similarity measure, it remains to specify the set E(@) As
a first example for a simple similarity measure which captures taxonomy-based

measures (i.e., it considers atomic concepts only), we present:
AtomicSim(C, D) = Sim(C, D, O, Latomic(O)), and Lawomic(O) = O N Ne.
Another measure to be presented here is:
SubSim(C, D) = Sim(C, D, O, Lsu(0)), and Lgu,(O) = Sub(O).

where Sub(Q) is the set of (possibly complex) concept expressions in O.

The rationale of SubSim(-) is that it provides similarity measurements that are
sensitive to the modeller’s focus which is captured in the subconcepts of the
ontology. In addition, it provides a cheap (yet principled) way for measuring
similarity in expressive DLs since the number of candidates is only linear in the

size of the ontology. To capture more possible subsumers, we present:

GrammarSim(C, D) = Sim(C, D, 0, Ls(O)), and
Lo(O)={E | E € Sub(O) or E = 3r.F, for some 7 € O N Ny and F € Sub(O)}.
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where Npg is the set of role names. To understand some of the cases in which
SubSim(-) fails to capture some relevant subsumers, we take a look at the fol-

lowing example:

Example 5.2 Consider the following ontology O :
TBor ={AC 3r.B}

RBox = {r C s}

Sub(O) ={T, A, B,3r.B}

In the above example, 3s.B ¢ Sub(O) but it is considered as a candidate sub-
sumer for GrammarSim(-). Of course, other examples can be easily constructed.
In the empirical evaluations in Chapter 6, we have chosen to include only gram-
mar concepts which are subconcepts or which take the form Jr.F to make the

experiments more manageable. However, the grammar can be extended easily.

5.3.2 Properties of the new measures

The new similarity measures presented above were designed to address certain
problems in existing similarity measures. In particular, there was a need for a
similarity measure that can be suitable for use with any arbitrary OWL ontol-
ogy. For instance, the new measures are suitable to be used with ontologies of
high expressivity. Of course, the “semantic sensitivity” ranges from “low” in
AtomicSim(-) to a “higher” sensitivity in GrammarSim(-). The new measures
are also safe to be used with ontologies with cyclic definitions and GCIs. In
addition, since the new measures are intensional (i.e., rely on the T'Box rather
than the Abox), they do not require a representative set of instances which can
be difficult to establish.

In addition to the ontology-related properties discussed above, in what follows
we examine whether the new measures satisfy the properties presented in Section
5.2.1. Theorem 1 states the properties of the new measures. See Definition 1
for a description of the rationality property and Definition 2 for all the other

properties.

Theorem 1. Let O be an ontology, L be a concept language, Sim(C, D, O, L) =

% be the similarity of concepts C, D such that the set of subsumers

S(C,0, L) is finite for any concept C' € L, then Sim(-) is:
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11.

.

1.

V1.

VL.

. Rational,

FEquivalence closed,

Equivalence invariance,
Symmetric,

Satisfying triangle inequality,
Subsumption preserving,
Reverse subsumption preserving,

Not monotonic.

Proof.

1.

11.

1il.

1v.

To prove the rationality property, we need to show that for all C, D, E € L,
the following properties hold:

(a) |Com(C, D, 0, L)| > |Com(C, E, O, L)| A|Diff(C, D, 0, £)| =
IDIfi(C, E, O, £)| = Sim(C, D, 0, L) > Sim(C, E, O, L)

(b) [Diff(C, D, 0, £)| < |Difi(C, E, O, £)| A |Com(C, D, O, £)| =
|Com(C, E, 0, £)| = Sim(C, D, 0, L) < Sim(C,E, 0, L)

By its definition, Sim(-) is rational.

By definition of Sim(-) and Definition 2, it is obvious that Sim(-) is equiva-
lence closed because the sets of (entailed) subsumers for any two equivalent

concepts are always the same.

By definition of Sim(-) and Definition 2, it is obvious that Sim(-) is equiv-
alence invariance because, again, the sets of (entailed) subsumers for any

two equivalent concepts are always the same.

By definition of Sim(-) and Definition 2, it is obvious that Sim(-) is sym-

metric.

. By definition of Sim(-) which is based on the Jaccard’s coefficient, Sim(-)

satisfies the triangle inequality property just as the Jaccard’s coefficient. For
a proof of triangle inequality property for Jaccard’s coefficient, the reader
is referred to [Lip99].
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V1.

vii.

Viii.

To prove the subsumption preservation property, we need to show that for
all C, D, E € L, the following property holds:

if O =CLC DC FE then Sim(C,D,0, L) > Sim(C,E,O, L).
Since O = C C D C E then:

(a) [Com(C,D,0,L)| = |S(D,0, L)
(b) |Com(C, E, 0, L) = |S(E,0,L)]
() |Union(C, D,0,L)| = |S(C,0,L)]
(d) |Union(C, E, 0, L) = |S(C, 0, L)]
(e) [S(D,0,L)| = |S(E,0,L)]

By definition of Sim(:), we have: Sim(C, D, O, L) > Sim(C, E, O, L)
Therefore, Sim(-) is subsumption preserving.

To prove the reverse subsumption preservation property, we need to show
that for all C, D, E € L, the following property holds:

if O =CLC DC FE then: Sim(D,E,O,L) > Sim(C,E,O,L).

Since O = C C D C E then:

(a) |Com(D,E,O,L)| =|S(E,O,L)|
(b) |Com(C,E,O,L)| =|S(FE,0,L)]
(¢) |Union(D,E,O,L)| =|S(D,0,L)|
(d) |Union(C, E,O,L)| =|5(C, 0, L)]
(e) |S(D,0,L)| <|5(C,0,L)]

By definition of Sim(-), we have: Sim(D, E,O,L) > Sim(C,E, O, L)
Therefore, Sim(-) is reverse subsumption preserving.

To prove the monotonicity property, we need to show that for all C, D, E,
L, U, H € L, the following property holds:

fOECCLNUDCLNUECUEWYZL,AH € L s.t.
CCHANELCHADIZH then:

Sim(C, D, 0, £) > Sim(C, E, O, L)
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But there are many cases that demonstrate that this is not always the case.

Consider the counter example for AtomicSim(-):

Let HC, Hdl; Hdg, Hdg, Hd4,Hd5de6 € L such that:
OFECLCH.,DC Hy MHypMNHgs M Hgy M Hgs N Hyg

OEDUYZH.,.CYZ Hy,CUZ Hyp,C L Hy3,C L Hyu,C L Hys,C L Hys

and C, D, E have no other subsumers, then:

AtomicSim(C, D, O, L) := %

and

AtomicSim(C, E, 0, L) := %

then
AtomicSim(C, D, O, L) # AtomicSim(C, E, O, L)

Therefore, the counter example shows that AtomicSim(-) is not monotonic.

It makes sense that the new measures do not satisfy the monotonicity prop-
erty because its definition (see Definition 2) depends on the notion of common
subsumers only and ignores any possible distinguishing subsumers which is a core
property of the new measures. Some existing similarity measures have already
been evaluated according to the properties presented in Definition 2. The inter-
ested reader is referred to [LT12, TS14, dSF08] for more details.

It remains to specify the computational complexity of the new measures pre-
sented above. The lower bound of complexity is the complexity of reasoning in
the DL under consideration. The upper bound depends on the number of can-
didate subsumers considered by each measure. For AtomicSim(-), the number
of candidate subsumers is the number of atomic concepts. For SubSim(-), the
number of candidate subsumers is the number of subconcepts in O or 2% where x
is the size of the longest axiom in O. Finally, for GrammarSim(-), this number is

further multiplied by the number of subconcepts times the number of role names

in O.
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5.3.3 A second refinement to the similarity function

As another possible refinement to the similarity function we define similarity as
a weighted function W Sim(-). The definition of the function is flexible in that
it has two changeable components: a concept language £ and a weight function
W (-). Changing one of the components or both allows us to design different

similarity measures as we will see in the examples thereafter.

Definition 3. Given an ontology O and two concepts C, D, the weighted simi-
larity W.Sim(C, D, O) for C and D is defined as follows:

W (Com(C, D, Q))
W (Union(C, D, O))

W Sim(C, D, 0) =

where W : o(L(O)) — R is a weight function on sets of concepts such that for
any set of concepts M, W satisfies the following properties:

1.
0 if M = O

> 0 otherwise.

W(M) = {

2. MCM = W(M)<W(M)

3. W(M) is defined and is a real number for all M C L(O)

In what follows, we omit O from WSim(-) whenever it is clear from the
context.
A first candidate for a suitable weight function that can be used with different
sets £(O) is the following:
W(M) = Scey g
Size(C)
where the motivation behind using it is that names and concepts close to names
weigh more. We can think we could consider £ such that S(C, O, £) is infinite and
still base our similarity measurement on it. That is, we can think that the above
candidate W (M) is defined and is a real number for all M C £(O). However,
this function is a harmonic divergent infinite series for infinite sets M. Another
example to be presented here simply overcomes this by using a bound K on the

length of concepts considered:
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W<M) = ECeMwK(C)

wie(C) = m if Size(C) < K
0 otherwise.

This last weight seems attractive since it is sensitive to the vocabulary intro-
duced in the ontology in that it prefers concept names and, depending on the DL
L, polynomially reducible to standard reasoning problems in L.

As a refinement for the measure SubSim(.) introduced earlier, we introduce

SubW Sim(.) which uses a weight function wgy(.):

L i O € Lo (O):;
weup(C) = { Size(C) sub(O)

0 otherwise.

A weighted grammar-based measure GrammarW Sim(-) can be defined using

the following weight function:

0 otherwise.

L ifC e Lo(O):
wG(C):{ Size(C) ! a(0);

Other interesting weight functions can be designed. For example, a user might
be interested in measuring the similarity with respect to a specific context or
domain. To design such a weight function, it is possible to extract a module
[CGHKSO08] which captures the desired context and assign higher weight values

to concepts in the signature of that module.

5.4 Approximations of similarity measures

Some of the presented examples for similarity measures might be practically in-
feasible due to the large number of candidate subsumers. For this reason, it
would be nice if we can explore and understand whether a “cheap” measure (e.g.,
AtomicSim(.)) can be a good approximation for a more expensive one (e.g.,
GrammarSim(.)). We start by characterising the properties of an approximation

in the following definition.

Definition 4. Given two similarity functions Sim(-), Sim/(-), and an ontology

O, we say that:
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e Sim/(-) preserves the order of Sim(-) if YC,D,E,F € O: Sim(C,D) <
Sim(E, F) = Sim/(C,D) < Sim/(E, F).

e Sim/(-) approximates Sim(-) from above if YC,D € O: Sim(C,D) <
Sim/(C, D).

e Sim/(-) approximates Sim(-) from below if YC,D € O: Sim(C,D) >
Sim/(C, D).

e if Sim/() preserves the order of Sim(-) or approximates it from above or

below, we say that Sim/(-) is an approximation of Sim(-).

We start by examining whether, or not, AtomicSim(-) is an approximation of
SubSim(-). The first thing to notice is that the set of candidate subsumers for the
first measure is actually a subset of the set of candidate subsumers for the second
measure (O N Ne € Sub(O)). However, we need to notice also that the number
of entailed subsumers in the two cases does not need to be proportionally related.
For example, if the number of atomic candidate subsumers is n and two compared
concepts share 5 common subsumers. We cannot conclude that they will also
share half of the subconcept subsumers. They can actually share all or none of
the complex subsumers. Therefore, the order-preserving property is not always
satisfied. As a concrete example, let the number of common and distinguishing
atomic subsumers for C' and D be 2 and 4, respectively (out of 8 atomic concepts)
and let the number of their common and distinguishing subconcept subsumers
be 4 and 6, respectively (out of 20 subconcepts). Let the number of common and
distinguishing atomic subsumers for C' and E be 4 and 4, respectively and let
the number of their common and distinguishing subconcept subsumers be 4 and
8, respectively. In this case, AtomicSim(C,D) = % = 0.33, SubSim(C, D) =
75 = 0.4, AtomicSim(C, E) = 5 = 0.5, SubSim(C, E) = 75 = 0.33. Notice that
AtomicSim(C, D) < AtomicSim(C, E) while SubSim(C, D) > SubSim(C, E).
Here, AtomicSim(-) is not preserving the order of SubSim(-) and AtomicSim(-)
underestimates the similarity of C',D and overestimates the similarity of C'\E
compared to SubSim(-).

A similar argument can be made to show that entailed subconcept subsumers
are not necessarily proportionally related to the number of entailed grammar-

based subsumers. In Chapter 6, we investigate the relation between these mea-

sures in practice.
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Proposition 1. Although the set of candidate subsumers for AtomicSim(-) is a
subset of the set of candidate subsumers for SubSim(-) which is a subset of the set
of candidate subsumers for GrammarSim(-), AtomicSim(-) is not an approxima-

tion of SubSim(-) and SubSim(-) is not an approximation of GrammarSim(-).

5.5 Relatedness and relational similarity

After introducing some approaches for measuring conceptual similarity, here we
briefly discuss other forms of similarity that can also be relevant for QG. We
also explore the notion of relatedness which is more general than similarity. We
present some methods for measuring the degree of relatedness between concepts.
The main idea is to generalise the principles introduced above for measuring the
conceptual similarity to other forms of similarity, e.g., relational similarity, and

relatedness.

5.5.1 Overview of relatedness

Similarity is a specific form of the general notion of relatedness. For example, we
say that cars and fuel are closely related compared to cars and bicycles which
are closely similar.

In earlier chapters, we have shown that similarity can play an important role
in distractor generation. It seems reasonable to generalise this idea to, e.g., re-
latedness. To do this, we need to develop methods for measuring the degree of
relatedness between different ontology components (e.g., between concepts). Un-
fortunately, there are no many known relatedness measures for ontologies com-
pared to the relatively high number of existing similarity measures [MS08]. In
what follows we explore some of the existing relatedness measures before present-

ing two new measures that are intended to be useful for QG purposes.

5.5.2 Existing relatedness measures

One of the first attempts was made by Hirst & St-Onge [HSO95] who developed a
relatedness measure based on WordNet [MIL95]. The relatedness measure devel-
oped by Hirst & St-Onge focuses on the notion of a semantically correct relation
between two words and defines it as a path that corresponds to one of the al-

lowable patterns shown in Figure 5.6. Consistent with this, Mazuel & Sabouret
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[MS08] also adopt the semantically correct relation patterns introduced earlier
by Hirst & St-Onge. Three kinds of links appear in these patterns: Upward,
Downward and Horizontal. An upward link corresponds to a generalisation (e.g.,
hypernymy and meronymy relations). A downward link corresponds to a special-
isation (e.g., hyponymy and holonymy relations). A horizontal link corresponds
to other relations which can help in specifying the meaning of a word (e.g., syn-
onymy and antonymy relations). The rationale behind these patterns is that,
firstly, generalising the context is not allowed after specifying it by following a
downward or horizontal link. Secondly, at most one change of direction is allowed
to avoid large changes in meaning with the exception that using a horizontal link

is permitted to make a transition from an upward to a downward link.

Figure 5.6: Relatedness patterns allowed by Hirst & St-Onge, taken from [HSO95]

Multiple paths can exist between any two words. To compute the weight of

each path, Hirst & St-Onge suggested to use the following formula:

Relatednesspgso(C,D) = J — LSP(C,D) — K x CDP(C, D)

where J and K are constants defined empirically, LSP(C, D) is the length of the
shortest path between C, D and C DP(C, D) is the number of changes of direction
in this path.

While the measure developed by Hirst & St-Onge [HSO95] is based on the
notion of the shortest path (e.g., similar to Rada et al. dissimilarity measure
[RMBBB89]), the relatedness measure developed by Mazuel & Sabouret [MSO0§]
combines the shortest path notion with information theoretic notions (e.g., similar
to Jiang & Conrath similarity measure [JC97]). So, Mazuel & Sabouret assume
that the different links in the path connecting the two concepts may not have
the same information content, and hence should have different weights. Also,
Mazuel & Sabouret treat hierarchical relations (i.e., is_a and includes) differently

from non-hierarchical ones. Hence, the weight of a hierarchical link is computed
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using a formula different from the formula used to compute the weight of a non-
hierarchical link. In cases where different paths exist between two concepts,
Mazuel & Sabouret suggest to compute the relatedness of those two concepts
based on the path which has the minimum weight.

Mazuel & Sabouret [MS08] acknowledge the difficulty of classifying a relation
as either an upward, downward or horizontal relation, thus limiting the general-

isability of this approach to ontologies other than WordNet.

5.5.3 New relatedness measures

We choose to distinguish between hierarchical and non-hierarchical relations, just
as the method proposed by Mazuel & Sabouret [MS08]. Thus, we present two
separate relatedness measures for each kind of relations. Both measures are suit-
able for general OWL ontologies. The first measure was developed to support a
QG tool that is designed to generate a specific kind of questions, namely analogy
questions, which rely on relatedness notions. Details of designing and evaluating
this QG tool are presented in Chapter 7. This measure is a path-based measure
which is suitable only for hierarchal relations. The second relatedness measure
presented below is suitable for non-hierarchical relations and it was designed to
complement the first measure.

Both measures extend our new family of similarity measures to measure new
kinds of similarities, namely relational similarity. For each relatedness measure,
we present a relational similarity measure. The relational similarity [TL05, Tur05]
corresponds to similarities between pairs of concepts in their underlying relations.
For example, we say that the relation between Lion and Mammal is similar to
the relation between Frog and Amphibian. Similarly, we say that the relation
between food and body is similar to the relation between fuel and car. When
two pairs of concepts have a strong relational similarity, we say that they are
analogous. Measuring relational similarity of two pairs of concepts depends on
how you measure relatedness of the two concepts of each pair. For instance, in
the above two examples, the relation between Lion and Mammal is hierarchical
whereas the relation between Food and body is non-hierarchical. Therefore, we
use the path-based relatedness measure for generating questions about the first
kind of relations and we use the set-based relatedness measure for generating

questions about the second kind of relations. Both measures are presented below.
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5.5.3.1 A new path-based relatedness measure

Consistent with the existing relatedness measures discussed above, our new path-
based measure identifies a set of semantically correct relation patterns. We con-
sider a pair of atomic concepts to be sufficiently related (i.e., have a semantically
correct relation) if they have one of the hierarchal structures in Figure 5.7. Note
that these structures are based on subsumption relationships only. These struc-
tures are sub-graphs of the inferred class hierarchy of an ontology O. The adopted
structures have at most one change in direction in the path connecting the two
concepts and at most two steps in each direction. Other structures that have
more steps and/or changes in direction were discarded to avoid generating ques-
tions with difficult-to-track relations, assuming that students’ working memory

has a limited capacity.

///\/\

B (2d) (Zuld) {1u2d)

Figure 5.7: Valid relations structures (labels represent no. of steps and direction
(up or down) in the path that connects concepts A & B in the inferred class
hierarchy, starting from A)

Definition 5. Let O be an ontology. Let A, B be concept names in O. Let
7(C, D) be the set of acyclic paths from A to B in the inferred class hierarchy of
O, 11 be the set of valid paths according to Figure 5.7, then we define the path-
based relatedness Relatednesspatn—pased(A, B) between two concept names A and
B as follows:

1 if there is a path p € 7(A, B) N1I;

0 otherwise.

Relatednesspath—pased(A, B) = {
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It remains to define a relational similarity measure for the path-based relat-
edness measure. Here, there are two sets of features that we are interested in
comparing. On the one hand, given the paths (in the inferred class hierarchy)
connecting two pairs of concepts, we want to know how many shared /unique steps
the two pairs have. On the other hand, we want to know how many shared /unique
directions the two pairs have in their paths. Similar to the way we defined con-
ceptual similarity (i.e., based on the features-model), the path-based relational

similarity can be defined as follows:

Definition 6. Let Cy, Cy, Dy, Dy be concepts in a concept language L such
that Relatednesspath—based(C1, D1) = 1 and Relatednesspath—pasea(Ca, D2) = 1,
we define the path-based relational similarity RelSimpath-pased : £ X L — [0, 1] as:

SS(Py, Ps) " SD(Py, P,)
TS(P,P) TD(P,P)

RelSimpath—based(Cla Dla 027 DQ) -

where SS(Py, Py) is the number of shared steps between the structures of the two
pairs Py = (C1, D) and Py = (Cy, D), TS(P1, Py) is the number of total steps
in the structures of the two pairs, SD(Py, Py) is the number of shared directions
between the structures of the two pairs and TD(Py, Py) is the number of total

directions in the structures of the two pairs.

5.5.3.2 A new set-based relatedness measure

The above path-based measure was a good start to generate relatedness-based
questions that take into account hierarchal relations only. To generalise the ap-
proach, we need a relatedness measure that takes into account domain-specific
relations (i.e., relations between some instances of a concept and some instances
of the same or another concept). First, we represent, as a set, the relation
Rel(C, D, ) between two concepts C, D w.r.t. domain-specific relations, as fol-

lows:

Rel(C,D,0)={re Ng | O =CLC 3r.D}

To quantify the relatedness of two concepts C' and D, we take the cardinality

of their set-based relation such that:

Relatednessge—pasea(C, D, O) = |Rel(C, D, O)|
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To define a relational similarity measure based on the set-based relatedness
measure, we want to know how many shared /unique domain-specific relations the
two pairs of concepts have. Based on the features-model, the set-based relational

similarity can be defined as follows:

Definition 7. Let O be an ontology, Cy, Cy, Dy, Dy be concepts in a concept
language L such that |Rel(C, D, O)| is defined and is a real number for all C, D €

L, we set:

1. the set of common relations between two pairs of concepts (Cy, D) and
(CQ, D2>
RBZCOTTL(Cl, Dl, 027 Dg, O) = Rel(Cl, Dl, O) N REZ(CQ, DQ, O)

2. the set of all relations between a pair of concepts (C7, D) or another pair
of concepts (Cq, Ds):
RelUnion(Cy, Dy, Cy, Dy, O) = Rel(Ch, D1, O) U Rel(Csy, Do, O)

3. the set-based relational similarity between two pairs of concepts (Cy, D)
and (Cay, Dy):

_ _ |RelCom(C1,D1,C2,D2,0)|
Relszmset—based(cla Dla 027 D27 O) " |RelUnion(C1,D1,C2,D2,0)]

5.6 Summary and directions

In this chapter, we have introduced a new family of similarity measures with a
different computational cost for each individual measure. The intuition behind
the new measures SubSim(-) and GrammarSim(-) is that considering more of the
knowledge in the ontology (e.g., in our case more complex subsumers) enables us
to calculate the similarity in a more precise way. However, it must be noted that
this might lead to double counting some subsumers in some cases. For example,
the measures count both an existential restriction and a number restriction that
yields the same meaning (e.g., at least one). Other cases for double counted
subsumers may exist. Thus, the newly introduced similarity measures must be
refined in order to avoid such problems. An empirical investigation to test the
new measures and examine whether such problems have a negative impact on
similarity measurement is presented in the following chapter.

It is also interesting to develop and evaluate the weighted measures in or-

der to examine their utility for applications that require measuring similarity
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w.r.t. contexts. There are many possible applications for context-based similar-
ity measures, especially for large and heterogeneous ontologies. For example,
given a heterogeneous ontology, a user might choose to give more weight to con-
cepts belonging to a specific context and choose to (totally or partially) ignore

concepts belonging to other contexts by giving them less weight.



Chapter 6
Evaluating similarity measures

Following on from our conceptual discussion on similarity measures in the pre-
vious chapter, this chapter studies the behaviour of some similarity measures in
practice. Given a range of similarity measures with different costs, we want to
know, on the one hand, how good an expensive measure is, its cost and the cases
in which we are required to pay that cost to get a precise similarity measurement.
On the other hand, we want to know how bad a cheap measure is and the specific
problems associated with it. We also want to know how likely it is for a cheap
measure to be a good approximation for more expensive measures. Although we
have just seen (in Chapter 5) some cases where cheap measures are not (theoret-
ically) approximations for expensive measures, we want to know how likely it is
for such measures to be (close) approximations in practice. In addition, finding a
cheap approximation for an expensive measure is interesting only if the expensive
measure is shown to be good enough (and the approximation is close enough).
We compare the new measures to human-based similarity judgements to confirm
that the expensive measures can be more precise than the cheap ones.

In Chapter 5, we have reviewed some cheap existing measures that suffer
from some problems. Such problems can negatively affect the application in
which these measures are used. The degree of the negative impact depends on
two aspects: (1) how rich the underlying ontology is and (2) the task/scenario in
which the similarity measure is used. In some cases, depending on how simple the
ontology /task is, using a computationally expensive “good” similarity measure
is no better than using a cheap “bad” measure. Thus, we need to understand
the computational cost of a given similarity measure and its strengths and weak-

nesses in different scenarios. Unfortunately, to date, there has been no thorough
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investigation of ontology-based similarity measures with respect to these issues.

For the purpose of studying the impact of the underlying ontology on the
behaviour of the utilised similarity measures, we need an independently motivated
corpus of ontologies which are actually used in practise. We make use of the
NCBO BioPortal' corpus which contains over 300 ontologies that are used by
the biomedical community which is a community that has a high interest in
the similarity measurement problem [BSTP*10, BAB05, SDRL06, WDP*07].
However, note that it is difficult to classify ontologies according to how rich they
are given that many factors contribute to the richness of an ontology.

To understand the major differences between similarity measures w.r.t. the
task in which they are involved in, consider, for example, the following three
tasks:

Given a concept C' and some threshold A:

e Task 1: retrieve all atomic concepts D s.t. Similarity(C, D) > 0.
e Task 2: retrieve the N most similar atomic concepts to C.

e Task 3: retrieve all atomic concepts D s.t. Similarity(C, D) > A.

We expect most similarity measures to behave similarly in Task 1 because we
are not interested in the particular similarity values nor any particular ordering
among the similar concepts. However, Task 2 gets harder as N gets smaller. In
this case, a similarity measure that underestimates the similarity of some very
similar concepts and overestimates the similarity of others can fail the task. In
Task 3, the actual similarity values matter. Hence, using the most accurate
similarity measure is essential.

The empirical evaluation of the new measures consists of two parts. In Exper-
iment 1, we carry out a comparison between the new measures GrammarSim(-),
SubSim(-) and AtomicSim(-) against (human) experts-based similarity judg-
ments. In [PPPC07], IC-measures along with Rada et al. measure [RMBB89]
have been compared against human judgements using the same data set which
is used in the current study. Pedersen et al. [PPPCO07] point out that the re-
sults of IC-measures highly depend on the external corpus they use and report
that their results need to be confirmed through further studies involving the use

of representative data. We excluded from the study any instance-based measure

Thttp://bioportal.bioontology.org/
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since they require such a representative data. We also include another path-based
measure which is Wu & Palmer measure [WP94]. In Experiment 2, we study in
detail the behaviour of our new family of measures in practice. GrammarSim(-),
with limited nesting, is considered as the expensive and most precise measure in
this study. We use AtomicSim(-) as the cheap measure as it only considers
atomic concepts as candidate subsumers. Studying this measure can allow us
to understand the problems associated with taxonomy-based measures as they
all consider atomic subsumers only. Recall that taxonomy-based measures suffer
from other problems that were presented in Section 5.2.3. AtomicSim(-) can be
considered the best candidate in its class since it does not suffer from these prob-
lems. We also consider SubSim(-) as a cheaper measure than GrammarSim(-)
and more precise than AtomicSim(-) and we expect it to be a better “approxi-
mation” for GrammarSim(-), compared to AtomicSim(-). We also study the
impact of adding a weight function to the similarity measure by examining
SubW Sim(-), GrammarW Sim(-) which were introduced in Chapter 5.

6.1 Experimental set-up

6.1.1 Infrastructure

With respect to hardware, the following machine has been used to carry out the
experiments presented in this chapter:

Intel Quad-core i7 2.4GHz processor, 4 GB 1333 MHz DDR3 RAM, running
Mac OS X 10.7.5 (Mac Pro late-2011 model).

As for the software, firstly, Oracle Java Runtime Environment (JRE) v1.6
is installed as the default JRE. Secondly, the OWL API v3.4.4 [HB09] is used.
Thirdly, a range of freely available reasoners were utilised: FaCT++ [THO6],
HermiT [SMHO08], JFact 2, and Pellet [SPCGT07]. The need for more than one
reasoner is justified by the fact that no available reasoner to date is capable of
handling all existing ontologies. Therefore, to avoid runtime errors caused by

reasoners, we used a stack of reasoners (used in the above order of appearance).

Zhttp:/ /jfact.sourceforge.net /
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6.1.2 Test data
6.1.2.1 Experiment 1

In 1999, SNOMED-CT was jointly developed by the College of American Pathol-
ogists (CAP) and the National Health Service (NHS) in the UK. For the purposes
of our comparison study, we use the 2010 version of SNOMED CT (Systematised

Nomenclature of Medicine, Clinical Terms).?

This ontology has been described
as the most complete reference terminology in existence for the clinical environ-
ment [CCST97]. It provides comprehensive coverage of diseases, clinical findings,
therapies, body structures and procedures. In February 2014, the ontology has
397,924 classes. These are organised into 13 hierarchies. The ontology has the
highest views amongst all BioPortal ontologies with over 13,600 views.

The reason for choosing this particular ontology is the availability of test data
that shows the degree of similarity between some concepts from that ontology as
rated by medical experts. Pedersen et al. [PPPCO07] have introduced a publicly
available test set for evaluating similarity measures in the biomedical domain.
The test bed consists of 30 pairs of clinical terms. The similarity between each
pair is rated by two groups of medical experts: physicians and coders. For details
regarding the construction of this dataset, the reader is referred to [PPPCO07]. We
consider the average of physicians and coders similarity values in the comparison.
We include in our study 19 pairs out of the 30 pairs after excluding pairs that
have at least one concept that has been described as an ambiguous concept in
the ontology (i.e., is assigned as a subclass of the concept ambiguous_concept) or

not found in the ontology.

6.1.2.2 Experiment 2

The NCBO BioPortal library of biomedical ontologies has been used as a corpus
for evaluating different ontology-related tools such as reasoners [KLK12], module
extractors [DVKPT12], justification extractors [HPS12], to name a few. The cor-
pus contains 438 user contributed OWL and OBO ontologies (as in April 2015)
with varying characteristics such as axiom count, class count and expressivity.
For example, the expressivity ranges from the inexpressive AL DL to the very
expressive SROZQ DL. OBO ontologies were translated into OWL 2 and in-

cluded in our study. The corpus is publicly available for download and targets

3http://www.ihtsdo.org/snomed-ct



6.1 Experimental set-up 136

the biomedical domain which has a noticeable interest in similarity measurement.
The ontologies in the corpus are actively used in various applications. The corpus
provides a history for each ontology showing all prior versions of the ontology.
While some ontologies have many prior versions, some have only the original up-
loaded version. Some basic statistics about the ontologies included in our study

are presented in Table 6.1.

Class count | TBox size | RBox size
Mean 2,916 5,919 40

Median 507 924 4
Sum 565,661 1,148,241 7,717

Table 6.1: Some statistics about ontologies in our corpus

As for expressivity, Table 6.2 shows OWL 2 profiles across the corpus. Note

that an ontology can belong to more than one category.

Profile | percentage of ontologies
DL 83%
EL 51%
QL 34%
RL 25%

Table 6.2: OWL 2 profiles across the corpus

A snapshot of the BioPortal corpus from November 2012 was used. It contains
a total of 293 ontologies. For the purpose of our study, we excluded 86 ontologies
which have only atomic subsumptions (including but not limited to RDF'S files).
The reason for this exclusion is that the behaviour of the considered similarity
measures will be identical, i.e., we already know that AtomicSim(-) is good and
cheap. We also excluded 5 more ontologies that have no classes and 33 ontologies
that could not be processed by any reasoner due to run time errors. This has left
us with a total of 169 ontologies.

Due to the large number of classes (565,661) and difficulty of spotting interest-
ing patterns by eye, we calculated the pairwise similarity for a sample of classes
from the corpus. The size of the sample is 1,843 classes with 99% confidence level.

To ensure that the sample encompasses classes with different characteristics, we
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picked 14 classes from each ontology. The selection was not purely random. In-
stead, we picked 2 random classes and for each random class we picked some
neighbour classes (i.e., 3 random siblings, a superclass, a subclass, a sibling of a
direct superclass). This choice was made to allow us to examine the behaviour
of the considered similarity measures even with special cases such as measuring

similarity among direct siblings.

6.2 Experiment workflow

The general steps involved in the experiments presented in this chapter are sum-
marised in Figure 6.1. In what follows, we describe the steps involved in more
detail.

Select BioPortal as a corpus
{over 300 ontologies)

l l

Select an ontology for Download ontologies for
Experiment 2 Experiment 1
{SNOMED CT:387, classes) (293 ontologies)

| |

Exclude empty, atomic or
unprocessable ontologies
(162 ontologies remaining)

| |

Calculate similarity of the
considered pairs Select a sample of

(19 pairs, & similarity measures) (14 classes per ontology)

|

Calculate pairwise similarity
{196 pairs per ontology, 3
similarity measures)

Select a sample of
{38 classes)

Figure 6.1: Steps involved in the evaluation experiments

6.2.1 Experiment 1

The similarity of 19 SNOMED CT concept pairs was calculated using the three
measures along with Rada et al. [RMBB89] and Wu & Palmer [WP94] measures.

We compare these similarities to human judgements taken from the Pedersen et
al. [PPPCO7] test set.
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6.2.2 Experiment 2

Experiment 2 goes in steps as follows:

6.2.2.1 Consistency checking and classification

The first stage in the processing of each ontology is consistency checking and
classification. We use the method precomputelnferences(InferenceType.CLASS
HIERARCHY) provided by the OWL API to classify the ontology. This is a nec-
essary step before selecting a sample of 14 classes with certain relations between

them (e.g., superclasses, subclasses).

6.2.2.2 Sample selection

The second stage is to select two random classes from each ontology. For each
random class, 6 “neighbour” classes are also selected as described above. If the
total number of neighbour classes is less than 6, non-neighbour random classes
are selected instead to keep the total number of selected classes to 14 classes for

each ontology.

6.2.2.3 Module extraction

For optimisation, rather than working on the whole ontology, the next steps
are performed on a L-module [CGHKSO08] with the set of 14 classes as a seed
signature. One of the important properties of 1-modules is that they preserve
almost all the seed signature’s subsumers. There are 3 cases in which a |-
module would miss some subsumers. The first case occurs when O = C' C Vs. X
and O = C C Vs.L . The second case occurs when O | C C V¥s.X and
O |=Vs.X = T. The third case occurs when O = C C Vs.X and O = C C 3s.X.
Since in all three cases Vs.X is a vacuous subsumer of C', we chose to ignore these,

i.e., use 1-modules without taking special measures to account for them.

6.2.2.4 Atomic concepts extraction

In this stage, all the atomic concepts in the 1-module are extracted. These con-
cepts will be considered as candidate subsumers for the three similarity measures
AtomicSim(-), SubSim(-) and GrammarSim(-).
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6.2.2.5 Subconcepts extraction

We recursively use the method getNestedClassExpressions() provided by the
OWL API to extract all subconcepts from all axioms in the -module. These
concepts will be considered as candidate subsumers for the measures SubSim(-)

and GrammarSim(-) only.

6.2.2.6 Grammar-concepts extraction

The subconcepts extracted in the previous step are used to generate grammar-
based concepts. For practical reasons, we only generate concepts taking the form
Ir.D s.t. D € Sub(O) and r a role name in the signature of the extracted L-
module. Focusing on existential restrictions is justifiable by the fact that they
are dominant in our corpus (77.89% of subconcepts) compared to other complex
expression types (e.g., universal restrictions: 2.57%, complements: 0.14%, inter-
sections: 13.89, unions: 2.05%). These concepts are used as candidate subsumers

for GrammarSim(-) only.

6.2.2.7 Testing for subsumption entailments

For each class C; in our sample and each candidate subsumer S;, we test whether
the ontology entails that C; T S;. If the entailment holds, the candidate subsumer
S; is added to the set of C;’s subsumers. Note that S; is already tagged as atomic,

subconcept or grammar-based concept.

6.2.2.8 Calculating pairwise similarities

The similarity of each distinct pair in our sample (33,124 total pairs) is calculated

using the three measures: AtomicSim(-), SubSim(-) and GrammarSim(-).

6.2.2.9 Gathering stats along the way

For each ontology, the time required to process the ontology and calculate its
pairwise similarities is recorded. In addition, we gather general properties of
the ontology such as: OWL profile, DL expressivity, number of logical axioms,
number of classes, number of object properties, number of individuals, length of
the longest axiom, number of subconcepts.

We have shown in Chapter 5 that the above three measures are not approxi-

mations of each other. However, this might not be the case in practice as we will
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explore in the this experiment. To study the relation between the different mea-
sures in practice, we compute the following five properties: (1) order-preservation,
(2) approximation from above (3) approximation from below, (4) correlation and
(5) closeness. The time required to compute these properties is not included in
the ontology processing time. Properties 1-3 are defined in Definition 4. For
correlations, we calculate Pearson’s coefficient for the relation between each pair

of measures. Finally, two measures are considered close if the following property
holds: |Sim,(C, D) — Simy(C, D)| < A where A = 0.1 in this experiment.

6.3 Results and discussion

6.3.1 Experiment 1
6.3.1.1 How good are the new measures?

Not surprisingly, GrammarSim and SubSim had the highest correlation val-
ues with experts’ similarity judgements (Pearson’s correlation coefficient for both
r = 0.87,p < 0.001). Secondly comes AtomicSim with (r = 0.86,p < 0.001).
Finally comes Wu & Palmer measure then Rada et al. measure with (r =
0.81,p < 0.001) and (r = 0.64,p < 0.005), respectively. Table 6.3 shows sim-
ilarity values for the considered clinical terms using the different similarity mea-
sures. Note that all columns are normalised between, and including, 0 and 1
to allow for comparisons. The values in the expert’s similarity column repre-
sent the average of physicians and coders similarity values taken from Peder-
sen et al. [PPPCO07] data set and then normalised. As Table 6.3 shows, val-
ues in the columns representing GrammarSim and SubSim are very close (i.e.,
|GrammarSim(z,y) — SubSim(z,y)| < 0.2) and sometimes identical. This ex-
plains the fact that they have the same r values.

We also compare our calculated correlation values to the correlation values
reported by Pedersen et al. [PPPCO07]. They report that the best correlation
value was 0.76 for a vector-based similarity measure that is ontology-independent
(i.e., based on external data). Yet, this value is less than the correlation value
calculated for the new measures. They also report that the ontology-dependent
measure that was nearly as good as the vector-based measure was Lin’s measure
[Lin98] with correlation value of 0.69. We also compare our calculated correlation

values for the path-based measure Rada et al. (0.64) with the correlation values
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reported for the same measure by Pedersen et al. (0.48). This difference is
explained by the fact that we only consider 19 pairs out of the 30 pairs considered
in the other study, for the reasons explained above. Note that Pedersen et al.
[PPPCO07] do not report the actual similarity values for each measure in their

study; rather, they only report correlation values.

Term1 Term?2 Exp.| Rad.| Wu.| Ato.| Sub | Gr.
Renal failure Kidney failure 1.00| 1.00| 1.00 | 1.00| 1.00| 1.00
Heart Myocardium 0.791 0.93] 0.93| 0.88| 0.87| 0.87
Abortion Miscarriage 0.7910.99]0.95] 0.90| 0.91| 0.91
Delusion Schizophrenia 0.65| 0.80] 0.30| 0.18| 0.14| 0.13

Congestive  heart | Pulmonary edema | 0.55| 0.71| 0.58 | 0.41| 0.39| 0.40
failure

Diarrhea Stomach cramps 0.45] 0.81] 0.38] 0.24| 0.17| 0.18
Mitral stenosis Atrial fibrillation 0.45] 0.72] 0.68] 0.51] 0.51] 0.51
Diabetes mellitus Hypertension 0.38] 0.64] 0.36| 0.22] 0.16| 0.17
Acne Syringe 0.381 0.77] 0.20| 0.11| 0.06 | 0.06
Antibiotic Allergy 0.36 | 0.88] 0.33| 0.20| 0.20| 0.20
Cortisone Total knee replace- | 0.34| 0.17| 0.07| 0.03| 0.02] 0.02
ment
Cholangiocarcinoma| Colonoscopy 0.291 0.32] 0.08| 0.04| 0.02| 0.02

Lymphoid hyper- | Laryngeal cancer 0.29] 0.48] 0.28] 0.16| 0.12] 0.13
plasia

Multiple sclerosis Psychosis 0.25] 0.86| 0.44| 0.29| 0.14]| 0.13

Appendicitis Osteoporosis 0.25] 0.46| 0.27| 0.16| 0.11| 0.12

Rectal polyp Aorta 0.25| 0.00| 0.05| 0.03| 0.01] 0.01

Xerostomia Alcoholic cirrhosis | 0.25] 0.52| 0.40| 0.25| 0.22] 0.22

Peptic ulcer disease | Myopia 0.25| 0.77] 0.471 0.30| 0.25] 0.27

Varicose vein Entire knee menis- | 0.25] 0.32| 0.08 | 0.04 | 0.03 | 0.02
cus

Table 6.3: Similarity between some clinical terms from SNOMED-CT

Clearly, the new expensive measures are more correlated with human judge-
ments which is expected as they consider more of the information in the ontology.
The differences in correlation values might seem to be small but this is expected
as SNOMED is an £L ontology and we expect the differences to grow as the
expressivity increases. Figure 6.2 shows the similarity curves for the 6 measures
used in this comparison. Note that only circled points in these curves represent

similarity values. But we have chosen to use continuous curves in order to make
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it easier to compare the curves w.r.t. over- and under-estimations. As we can see
in the figure, the new measures along with Wu & Palmer measure mostly under-
estimate human similarity whereas the Rada et al. measure mostly overestimates

human similarity.

1.00
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4 Experts # Rada Wu &P @ Atomic Sub Grammar

Figure 6.2: Curves of similarity between 19 clinical terms from SNOMED-CT
using 6 similarity measures

6.3.2 Experiment 2
6.3.2.1 Cost of the expensive measure

One of the main issues we want to explore in this study is the cost (in terms of
time) for similarity measurement in general and the cost of the most expensive
similarity measure in particular. Note that the cost presented here is only for
a small sample of 14 classes per ontology. Note also that the grammar used
for the expensive measure was limited to existential restrictions only for practical
reasons. Indeed, the cost of the expensive measure would be much higher without
these limitations.

The average time per ontology taken to calculate grammar-based pairwise sim-
ilarities was 2.3 minutes (standard deviation o = 10.6 minutes, median m = 0.9
seconds) and the maximum time was 93 minutes for the Neglected Tropical Dis-
ease Ontology which is a SRZQ ontology with 1237 logical axioms, 252 classes
and 99 object properties. For this ontology, the cost of AtomicSim(-) was only
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15.545 seconds and 15.549 seconds for SubSim(-). 9 out of 196 ontologies took
over 1 hour to compute GrammarSim(-). One thing to note about these ontolo-
gies is the high number of logical axioms and object properties. However, these
are not necessary conditions for long processing times. For example, the Family
Health History Ontology has 431 object properties and 1103 logical axioms and
took less than 13 seconds to be processed. The average time per ontology taken
to calculate AtomicSim(-) and SubSim(-) was 11.77 seconds and 11.79 seconds
respectively. Although the average time required by GrammarSim(-) seems to
be very high compared to the other two measures, in 89 ontologies out of 196
(45.41%) GrammarSim(-) was computed in less than 1 second.

Clearly, GrammarSim(-) can be far more costly than the other two measures.

This is why we want to know how good/bad a cheaper measure can be.

6.3.2.2 Approximations and correlations

To study the five properties (order-preservation, approximation from above/be-
low, correlation, closeness), we need to compare two measures at a time. We
study the relation between AtomicSim(-) and SubSim(-) and refer to this as
AS, the relation between AtomicSim(-) and GrammarSim(-) and refer to this
as AG, the relation between SubSim(-) and GrammarSim(-) and refer to this
as SG.

We want to find out how frequently can a cheap measure be a good approxi-
mation for (or have a strong correlation with) a more expensive measure. Recall
that we have excluded all ontologies with only atomic subsumptions from the
study. However, in 21 ontologies (12%), the three measures were perfectly cor-
related (Pearson’s correlation coefficient » = 1,p < 0.001) mostly due to having
only atomic subsumptions in the extracted module (except for three ontologies
which have more than atomic subsumptions). In addition to these perfect cor-
relations for all the three measures, in 11 more ontologies the relation SG was
a perfect correlation (Pearson’s correlation coefficient » = 1,p < 0.001) and the
relations AS and AG were very high correlations (Pearson’s correlation coefficient
r >0.99,p < 0.001). These perfect correlations indicate that, in some cases, the
benefit of using an expensive measure is totally neglectable. Figure 6.3 shows
the similarity curves for a perfect correlation case. Note that for presentation

purposes, only part of the curve is shown. Note also that perfect correlations also



6.3 Results and discussion 144

means perfect order-preservations (100%), perfect approximations from above/-
below (100%) and perfect closeness (100%).

| T
0.75

0.5

0.25

Pairwise similarty values

Concept pairs (hidden for presentation purposes)
< AtomicSim % SubSim GrammarSim

Figure 6.3: Three similarity curves coincide for perfect correlation in BioHealth
ontological knowledge base

In about a fifth of the ontologies (21%), the relation SG shows a very high
correlation (1 > r > 0.99,p < 0.001). Among these, 5 ontologies were 100%
order-preserving and approximating from below. In this category, in 22 ontologies
the relation SG was 100% close. As for the relation AG, in only 14 ontologies
(8%) the correlation was very high.

In nearly half of the ontologies (49%), the correlation for SG' was considered
medium (0.99 > r > 0.90,p < 0.001). And in 19 ontologies (11%), the correlation
for SG was considered low (r < 0.90,p < 0.001) with (r = 0.63) as the lowest
correlation value. In comparison, the correlation for AG was considered medium
in 64 ontologies (38%) and low in 55 ontologies (32.5%).

As for the properties (order-preservation, approximations from above/below
and closeness) for the relations AG and SG, we summarise our findings in Ta-
ble 6.4. Not surprisingly, SubSim(-) is more frequently a better approximation
to GrammarSim(-), compared to AtomicSim(-).

Although one would expect that the properties of an ontology have an impact
on the relation between the different measures used to compute the ontology’s
pairwise similarities, we found no indicators. With regard to this, we categorised
the ontologies according to the degree of correlation (i.e., perfect, high, medium
and low correlations) for the SG relation. For each category, we studied the
following properties of the ontologies in that category: expressivity, number of

logical axioms, number of classes, number of object properties, length of the
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AG | SG
Order-preservation 32 | 44
Approximations from below | 32 | 49

Approximations from above | 37 | 42
Closeness 28 | 56

Table 6.4: Ontologies satisfying properties of approximation

longest axiom, number of subconcepts. For ontologies in the perfect correlation
category, the important factor was having a low number of subconcepts (< 1
except for 2 ontologies which had a count of 4 and 56 subconcepts). In this cat-
egory, the length of the longest axiom was also low (< 11, compared to 53 which
is the maximum length of the longest axiom in all the extracted modules from
all ontologies). In addition, the expressivity of most ontologies in this category
was AL. Apart from this category, there were no obvious factors related to the

other categories.

6.3.2.3 Are the weighted measures any better?

Given the weighted similarity measures SubW . Sim(-) and GrammarW Sim(-),
we want to know whether they are any better than the non-weighted measures.
SubW Sim(-) and GrammarW Sim(-) preserved the order of GrammarSim(-)
in 33 and 39 ontologies (out of 196), respectively, compared to 44 ontologies
using SubSim(-). Also, SubW Sim(-) and GrammarW Sim(-) were close to
GrammarSim(-) in 25% and 57% of the ontologies, respectively, compared to
33% of the ontologies using SubSim(-).

We also compared the weighted measures with human judgements of similarity
and both weighted measures had a correlation value similar to their non-weighted
version (i.e., Pearson’s correlation coefficient r» = 0.87,p < 0.001). These results
indicate that the weighted measures are not necessarily better than the non-

weighted measures.

6.3.2.4 How bad is a cheap measure?

To explore how likely it is for a cheap measure to encounter problems (e.g., fail
Tasks 1-3 presented earlier in this chapter), we examine the cases in which a cheap

measure was not an approximation for the expensive measure. AG and SG were
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not order-preserving in 80% and 73% of the ontologies respectively. Also, they
were not approximations from above nor from below in 72% and 64% of the
ontologies and were not close in 83% and 66% of the ontologies, respectively.

If we take a closer look at the African Traditional Medicine ontology for which
the similarity curves are presented in Figure 6.4, we find that the SG is 100%
order-preserving while AG is only 99% order-preserving. Both relations were
100% approximations from below. As for closeness, SG was 100% close while
AG was only 12% close. In order to determine how bad are AtomicSim(-) and
SubSim(-) as cheap approximations for GrammarSim(-), we study the behaviour
of these measures w.r.t. Tasks 1-3.

Both cheap measures would succeed in performing Task 1 on the African
Traditional Medicine ontology. However, only SubSim(-) can succeed in Task 2
(with 1% failure chance for AtomicSim(-)). For Task 3, there is a higher failure

chance for AtomicSim(-) since closeness is very low (12%).

1
0.73

0.5

Pairwise similanty values

0.23

Concept pairs (hidden for presentation purposes)
= AtomicSim  # SubSim GrammarSim

Figure 6.4: African Traditional Medicine ontology

As another example, we examine the Platynereis Stage Ontology for which
the similarity curves are presented in Figure 6.5. In this ontology, both AG and
SG are 75% order-preserving. However, AG was 100% approximating from above
while SG was 85% approximating from below (note the highlighted red spots).
In this case, both AtomicSim(-) and SubSim(-) can succeed in Task 1 but not
always in Tasks 2 & 3 with SubSim(-) being worse as it can be overestimating in
some cases and underestimating in other cases.

In general, both AtomicSim(-) and SubSim(-) are good cheap alternatives

w.r.t. Task 1. However, AtomicSim(-) would fail more often than SubSim(-)
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Figure 6.5: Platynereis Stage Ontology

when performing Tasks 2 or 3.

6.4 Threats to validity

6.4.1 Threats to internal validity

For practical reasons and due to the high runtime of the similarity measurement
process, we had to restrict our analysis to a relatively small sample of classes
per ontology in Experiment 2. Although the sample is statistically significant in
terms of size, it could not be selected in a pure random mechanism. Rather than
selecting 14 random classes, we selected 2 random classes and 6 neighbour classes
for each random class. This design option was necessary for understanding the
behaviour of similarity measures. Note that non-neighbour classes tend to have
low similarity values. Including a lot of the non-neighbour classes in our sample
could, for example, cause unwanted high percentages for order-preservation.

In addition, relying on only one ontology (i.e., SNOMED-CT) for comparing
the new measures and some existing measures against human judgements might
limit the generalisability of the results of Experiment 1. Rather than dealing with

these results as confirmatory, they should be treated as preliminary indicators.

6.4.2 Threats to external validity

Although ontologies in the BioPortal corpus may not be representative for all

available ontologies, it does contain a wide range of ontologies with different
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properties (e.g., size and expressivity). Moreover, it is built and maintained by a
community that has a noticeable interest in the similarity measurement problem.
Therefore, it is reasonable to adopt this corpus for testing services that would be

provided for its community.

6.5 Summary and conclusions

To sum up, no obvious indicators were found to inform the decision of choosing
between a cheap or expensive measure based on the properties of an ontology.
However, the task under consideration and the error rate allowed in the intended
application can help. In general, we find the similarity measure SubSim(-) to be
a good candidate for QG purpose. It is a cheap measure, i.e., can be computed
much faster than GrammarSim(-)), and it performed equally well as we have

seen in Experiment 1.



Chapter 7

Evaluating Ontology-based MCQ

generation

So far, we have presented a similarity-based approach to generate MCQs of varied
difficulties from ontologies. We have also presented a new family of similarity
measures to support the generation of such questions. It remains to evaluate the
presented QG approach in terms of: (1) how useful the generated MCQs are?, (2)
how successful is the approach in controlling the difficulty of the generated MCQs?
and (3) how easy/hard is it to adopt the approach by a test developer with no
prior experience in ontologies? To answer these questions, we have conducted
three studies.

The first study consists of two parts: (1) an expert-centred study to evaluate
the appropriateness and usefulness of the generated questions and (2) a student-
centred study to analyse the different properties of the questions, including their
difficulty and quality of distractors. In the first study, we explore the case of
generating MCQs from handcrafted ontologies. This can give us a greater insight
into how the QG approach performs. As the utilised ontologies were developed
in house, this allows us, for example, to tell, given two distractors, which one
is more similar to the key. Hence, we would easily tell whether one distractor
is more suitable than the other to generate an easy/difficult question. Using a
handcrafted ontology also makes it easier to find teacher/student participants
because you can tailor the handcrafted ontology to their needs. Otherwise, i.e., if
an existing ontology is used, you would need to find a suitable group of students
who are enrolled in a course for which there is an ontology that models the course

content or at least covers part of it.
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The second study is an expert-centred study which has been conducted with
two goals in mind: (1) assessing an improved protocol to evaluate the appropri-
ateness and usefulness of the generated questions and (2) assessing the challenges
that might be faced by a test developer with no prior experience in ontologies
when adopting an ontology-based QG tool. In this study, we report on the ex-
perience of an interested test developer to develop an ontology for QG purposes.
After building the ontology and generating questions from it, we ask the inter-
ested test developer along with two more experts to evaluate the appropriateness,
usefulness and difficulty of the generated questions.

We structure the description of the first and second studies around the fol-

lowing phases:

1. The ontology development phase
2. The question generation phase.

3. The question evaluation phase.

The number of questions that can be evaluated by human participants (whether
experts or students) is limited. To evaluate questions without human partici-
pants, we show in the third study that it is possible to utilise an automated
solver which plays the role of one student attempting to answer a set of MCQs
of varying difficulties. Given a large pool of questions, it is expected that a stu-
dent would answer a higher number of easy questions compared to the number of
difficult questions that this student can get right. Three existing ontologies have
been used in this study. The results of this study show that, first, the general
performance of the automated solver when answering questions about different
subjects correlates with its (estimated) knowledge about those subjects. Second,
the difficulty of the generated questions correlates with the degree of similarity
between the key and distractors. The lesson to be learned from this study is
that automatic mechanisms to evaluate a large number of questions can alleviate
the burden of manual evaluation. Especially given that some existing ontologies
can contain a large number of terms; hence a large number of questions can be

generated from them, far more than what can be evaluated by a human expert.
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7.1 Implementation

To evaluate the proposed QG approach, we have implemented a prototype QG
application that allows to: (1) compute the pairwise similarity of (possibly com-
plex) concepts from an ontology and (2) use these similarity values to generate
MCQs of varied difficulties. The prototype which comes in two versions (a local
version and a web-based version') was developed using Java Runtime Environ-
ment JRE v1.6, the OWL API v3.4.4 [HB09] and FaCT++ reasoner [THO6]. The
web-based application is shown in Figure 7.1 and it is hosted on a server running
Linux v2.6.18, Apache Tomcat v6.0.36, JRE v1.6.0 and MySQL v5.5.42. The
web-based application has limited memory resources (96MB JVM Heap Size)
compared to the local version (3GB JVM Heap Size) of the application which
has been used in the experiments presented in this chapter. Due to the very
high memory requirements that are usually needed to process large ontologies by
existing reasoners, only small and easy to process ontologies can be used with the

web-based version.

edutechdeveloper.com/MCOG

MCQGen: Generate Multiple Choice Questions (MCQs) from OWL Ontologies

Cenerate MCQs

Figure 7.1: The web-based QG application

To generate MCQs from a given ontology, the following steps are followed:

1Tt can be accessed at http://edutechdeveloper.com/MCQGen/
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1. Selecting the source ontology by either selecting a local file or providing a
URL, see Figure 7.1.

2. Selecting the similarity measure(s) that will be used to calculate the pairwise
similarity of all concept names and possibly sub-concept expressions in the
selected ontology, see Figure 7.2. The more similarity measures selected,
the more time will be required to process the ontology. After calculating
the pairwise similarity, the average similarity between all siblings? in the

selected ontology is calculated for all selected similarity measures.

3. Selecting question template(s) that will be used to generate the questions.
In Table 4.1, we have presented a few templates for generating basic ques-
tions about the domain of interest. We have chosen to focus on such ques-

tions due to their natural fit to the source (i.e., ontologies).

4. Generating all possible easy and difficult questions for each selected tem-
plate. The generated questions have one stem, one key, a difficulty level
and at least one distractor that is suitable for this difficulty level. Out of
these questions, many sub questions of varied number of distractors can be
constructed. In the following experiments, we randomly choose 3 distrac-
tors for each question. We report on the number of generated questions
before and after selecting 3 distractors. These numbers are not necessarily
the same due to the possibility of generating questions with less than 3
distractors. Questions with less (or more) than 3 distractors are used in the

experiments presented in Chapter 8.

5. Specifying the difficulty of questions according to Hypothesis 1 presented
in Chapter 3 by using the selected similarity measure(s). Any similarity
measure can be used to generate questions of the required difficulty, however
GrammarSim(-) (see Chapter 5) is used to generate questions which use
concept expressions as answers, e.g., questions for the “Generalisation 2”
category in Table 4.1. This is motivated by the fact that, when the answers
are expressed in detail (e.g., concept expressions rather than simply concept
names), the similarity measurement should be more precise. It remains to
specify the upper (Ajy) and lower (A;) bounds of similarity values which

are used to generate appropriate distractors for the required difficulty level.

2Siblings are concept names that have the same most specific atomic subsumer.
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Rather than specifying a random number, we choose to use the average
similarity value between all siblings in the ontology. This average similarity
value is then used as a lower bound for generating a difficult distractor,
where 1 is the upper bound. Distractors that are equivalent to the key are
excluded. Hence, the upper bound is actually just less than 1. The lower
bound to generate an easy distractor is set to be two thirds of the lower
bound of difficult distractors. And, the upper bound to generate an easy

distractor is, and excluding, the lower bound for difficult questions.

MCQGen: Generate Multiple Choice Questions (MCQs) from OWL Ontologies

Ontology: KA .ow
Current DB:1
STEP 1: Generate similarity table ...
Mechanism for computing similarity?
AtomicSim(.) & SubSim{.) @ @ GrammarSim(.) & Rada(.) & WuéPalmer(.) &

Concept names & Sub-concept expressions o Pairs of concept names &

Compute similarity

Figure 7.2: Similarity measures available in the QG application

In addition to the prototype QG application, we have also implemented 2 ver-
sions of a web-based application that allows a group of domain experts to review
a set of questions. The first version has been used in the first evaluation study
presented below and the second version has been used in the second evaluation
study. A screenshot of the first version is presented in Figure 7.3.

To accommodate the feedback gathered from the reviewers who participated
in the first evaluation study, an improved version of the reviewing application has
been built. In the first version of the application, the reviewers are asked to edit
the question under review, in case they think it needs to, and then provide a free-
response comment to justify their suggested modification. In the second version,
for a deeper engagement, we also ask the reviewers to check/uncheck a list of
5 options. Each option presents a rule for constructing a good MC(Q and asks
the reviewer to indicate whether the question under review adheres to this rule.

These rules were gathered from the qualitative analysis of reviewer comments
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Home Knowledge Acquisition Item 49 of 50 Progress: 18.0%

Which of the following produces a Protocol? .
Difficulty @

(O Attribute Laddering Technigue.

(O Process Laddering Technigue. () Too Easy

(O Timeline Technique. () Reasonably Easy

(O structured Interview. ® Reasonably Difficult
| Check your answer | () Too Difficult
Improved question Usefulness @

Which of the following produces a Protocol? O Not useful

(U Useful as a seed for another question

() Useful but requires major improvments

(K) | structured Interview L @ Useful but requires minor improvments
(D1} |Process Laddering Technigue L ) Useful as it is
= Save & Continue
(D2) | Attribute Laddering Technique -
Jump to a question

(D3} Timeline Technigue L )

49 + Co
Comments

e.g., Justify any improvements

Figure 7.3: The first version of the reviewing web-interface

in the first evaluation study. A screenshot of the second version is presented in
Figure 7.4. Details on the steps involved in using the reviewing application are
presented in Section 7.2.2.4 , for the first version, and in Section 7.3.2.4, for the

second version.

7.2 First evaluation study: generating questions

from handcrafted ontologies

The importance of this study is that it helps to understand the overall effort
required to build an ontology for a given course, if a relevant ontology is not
available. To approach the problem of finding a suitable group of students willing
to participate in the study, we have chosen to target a group of students and
handcraft an ontology for the course they are enrolled in. The two versions are

hosted in the same web server described above.

7.2.1 Goals

The main goal of this study is to answer the following questions:
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Home Java Item 3 of 685

"Real machine code" has fundamental feature .....:
(OFast program execution.

(O Portability

(O Platform independence.

() Write onee run anywhere.

| Check your answer |

Review the question and UNCHECK appropriately
The question:

@ is relevant to the course conent '\;)

™ has exactly one key.'\;)

[Q] contains no clues to the key ‘\;)

@ requires more than common knowledge to be answered cc"ectly!\;}
@ is grammatically ::r'-ec(“\;‘

Comments

e.g., Justify any improvements

Difficulty @
Q Too Easy
() Reasonably Easy
() Reasonably Difficult
_) Too Difficult
Usefulness @
) Useful as it is
) Useful but requires minor improvments
) Useful but requires major improvments
) Useful as a seed for another question
: ) Not useful
| Save & Continue |
Jump to a question

L3 #|| Go |

Figure 7.4: The second version of the reviewing web-interface

1. Can we control the difficulty of MCQs by varying the similarity between

the key and distractors?

2. Can we generate a reasonable number of educationally useful questions?

3. How costly is ontology-based question generation, including the cost of de-

veloping/enhancing an ontology, computation cost and post-editing cost?

7.2.2 Materials and methods

7.2.2.1 Equipment description

The reader is referred to Section 6.1.1 for a description of hardware and software

used in this experiment.

7.2.2.2 Building the ontology

The Knowledge Representation and Reasoning course (COMP34512) is a third

year course unit offered by The School of Computer Science at The University of

Manchester. It covers various Knowledge Representation (KR) topics including

Knowledge Acquisition (KKA) techniques and KR formalisms. For the purposes of

the study described in this section, a Knowledge Acquisition (KA) ontology
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(which models the KA part of the course) was developed from scratch.> This
particular part of the course unit was chosen as it contains mainly declarative
knowledge. Other parts of the course can be described as procedural knowledge
and skills which are not suitable to be modelled in an OWL ontology. Assessing
student’s understanding of declarative knowledge is an essential part of various

tests. Figure 7.5 shows a mind map for the overall course content and the area
covered in the KA ontology (the shaded part).
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Figure 7.5: Mind map for the Knowledge Representation and Reasoning course

A total of 9 hours were spent by the ontology developer? to build the first
version of the ontology, excluding the time required to skim through the contents
of the course materials since the ontology was not developed by the instructor

who is in charge of the course unit. The Protégé 4 ontology editor was used for
building the ontology.

31t can be accessed at: http://edutechdeveloper.com/MCQGen/examples/KA.owl
4The author of this thesis
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Several refinements were applied to the ontology after presenting the ontology

to an experienced knowledge modeller® and getting useful feedback from her. The

feedback session took around 2 hours and refinements took around 3 hours to be

applied. The main refinements are described in the following points along with

real examples from the KA ontology. These points are presented here as they can

be generally useful when building ontologies.

1. The following points can help to enrich an ontology under development:

(a)

Model the positives as well as (the known) negatives. For example, if
it is known that some properties hold for a certain KA technique and
that some properties do not hold, then the ontology developer should
add to the ontology both the properties and the non-properties of this

technique and use negations when necessary.

Model both tacit knowledge and explicit knowledge. 1t is indeed harder
to elicit tacit, i.e., implicit, knowledge from domain experts but once
elicited, it should be fairly easy to model declarative tacit knowledge.
For example, the concept of KnowledgeElicitation should be explic-
itly stated to involve the participation of a KnowledgeExpert and a
KnowledgeModeller. This may be obvious to an expert in knowledge

elicitation but may be less obvious to others.
Specify disjoint classes when possible (e.g., TacitKnowledge and Ex-
plicitKnowledge).

If applicable, state that a property is transitive (e.g., involves) and
declare any necessary property chains (e.g., involves o produces =

produces).

2. The following points can help in making the ontology more complete and

specific:

(a)

It is strongly advised to close properties. For example, if it is known
that Techniquex is good at, and only at, Flexibility (i.e., it is not
good at other quality aspects), then the ontology should state that
Techniquex C JisGoodAt.Flexibility M VisGood At.Flexibility. This

can help in getting more precise entailments from the ontology.

50ne of the supervisors of this thesis
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(b) As OWL does not allow us to say that a property is the complement of
another property, it is advised to declare properties in a positive form
(e.g., isGood At rather than isNotGoodAt) and use negation on class
level (e.g., T'echniquey T —JisGoodAt.Flexibility).

(c) Bespecific, e.g., introduce sub properties such as produces of is AssociatedW ith.
3. The following points can help in making the ontology more organised:

(a) Stick to a naming scheme. For example, use either Camel Case or
underscores to denote individual words in the name of a class/property.
Also use either singular form (e.g., uses) or plural form (e.g., use) but
avoid mixing the two forms in one ontology. This can help in rendering

the generated questions.

(b) Regardless of the similarity measure used, it is advised to use complex
subsumptions involving conjunctions rather than separate atomic sub-
sumptions (e.g., a definition like Hammer T ToolM3isU sed For. T hing
is better for QG than Hammer C Tool, Hammer C JisUsedFor.Thing
because in the first case the full definition of Hammer is provided in

one subconcept expression which can be used as a candidate stem/an-

swer for QG).

4. The following point can help to debug an ontology and ensure that it is free

of obvious errors:

(a) Always use a reasoner to classify the ontology and look at the inferred
class hierarchy to trace any logical errors. For example, if we add the
following two axioms to an ontology: JisGoodAt.Tacit Knowledge T
Requirement and Interviews T JisGoodAt. Tacit Knowledge, then,
the ontology will entail that: Interviews T Requirement which is
clearly wrong but can be easily diagnosed by looking at the inferred

class hierarchy.

The important advantage of considering the above points is that they can
highly improve similarity measurement between the different concepts of the on-
tology and help to generate better questions. The resulting ontology, after ap-
plying these refinements, is an SZ ontology consisting of 504 axioms. Among
these are 254 logical axioms. Class and object property counts are 151 and 7,

respectively, with one inverse and one transitive object property.
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7.2.2.3 Generating questions

A variety of memory-recall questions (i.e., lowest Bloom level) have been gener-
ated which we describe below. Questions that require higher cognitive skills (e.g.,
reasoning) will be examined later in Section 7.4.

A total of 913 questions have been generated from the KA ontology described
above. Among these questions are 633 easy questions and 280 difficult questions.
These questions consist of one stem, one key and all possible distractors. A
large number of questions can be generated out of the 913 questions by selecting
different combinations of distractors. We choose to construct one question only
for each generated stem. Only 535 questions out of the 913 questions have at
least 3 distractors (with 474 easy questions and 82 difficult questions). Out of
these, we randomly selected 50 questions for further evaluation by 3 reviewers.
Those 50 questions are presented in Table B.1 in Appendix B. The 50 questions
contain 5 easy and 5 difficult questions from the 6 different question categories
which are described in Table 4.1. The number of optimal distractors for MCQs
remains debatable [HD93|. We choose to randomly select 3 distractors for each
question. The number of questions generated for each category is presented in
Table 7.1. Refer to Table 4.1 for a detailed description of these question categories.
SubSim(-) (see Chapter 5) has been used to generate all the questions described
in this table with the exception of using GrammarSim(-) to generate questions
in the “Generalisation 2” category (which is the only category that uses concept

expressions as answers).

Category Total | Total- | Total- | 3+dist | 34dist- | 3+dist-
easy difficult easy difficult
Definition 27 17 10 21 16 5
Recognition 94 94 0 5 75 0
Generalisation 133 7 56 101 71 30
Generalisation 2 | 259 162 97 133 106 27
Specification 55 54 1 41 41 0
Specification 2 345 229 116 185 165 20

Table 7.1: The number of generated questions from KA ontology according to 6
different categories

As Table 7.1 shows, in all categories, the number of easy questions is higher

than the number of difficult questions. This is explained by the fact that fewer
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distractors fit the criteria required to generate difficult questions compared to
easy questions. It is generally harder to find distractors that are very similar to

the key compared to finding distractors that are less similar.

7.2.2.4 Reviewing questions

Three reviewers involved in leading the course have been asked to evaluate the 50
randomly selected questions using the web interface presented in Figure 7.3. For
each question, the reviewer first attempts to solve the questions and then specifies
whether they think that the question is (0) not useful at all, (1) useful as a seed
for another question, (2) useful but requires major improvements, (3) useful but
requires minor improvements or (4) useful as it is. Then, the reviewer predicts the
difficulty of the question. To distinguish between acceptable and extreme levels
of difficulty, we ask the reviewers to choose one of the following options for each
question: (1) too easy, (2) reasonably easy, (3) reasonably difficult and (4) too
difficult. In what follows, we refer to the reviewers by their job completion time.
Hence, “first reviewer” refers to the reviewer who first finished the reviewing

process.

7.2.2.5 Administering questions

Two samples of the questions which have been rated by the reviewers as useful (or
useful with minor improvements) by at least 2 reviewers have been administered
to third year students® who are enrolled in the course unit for the academic year
2013/14 and who were about to sit the final exam. The two sets of questions have
been administered in two different rounds to increase participation rate and allow
for comparisons between the two rounds which have been set up differently (e.g.,
the first is a closed-book test while the second is open-book). In the first round,
a total of 6 questions (3 easy, 3 difficult) have been administered to 19 students
using paper-and-pencils during a revision session at the end of the course. Refer
to Table B.1 for a list of these 6 questions (Question IDs: 4, 7, 18, 23, 36 and 38).
The students had 10 minutes to answer the 6 questions. In the second round,
another set of 6 questions (3 easy, 3 difficult) have been administered to students
via the university’s eLearning environment, BlackBoard, one week before the final

exam and the students were allowed to answer the questions at any time during

5This study has been approved by the ethics committee in the School of Computer Science,
The University of Manchester (approval number: CS125).
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this week. These questions are presented in Table B.1 with IDs: 1, 3, 16 , 20, 39
and 50. Only 7 students have participated in the second round.

7.2.3 Results and discussion

Overall cost. As mentioned earlier, the cost of QG might, in some cases, include
any costs of developing a new ontology or reviewing/editing an existing one. For
the current experiment, we experienced the extreme case of having to build an
ontology from scratch for the purpose of QG. A total of 14 hours (spread over
multiple days) were spent to develop the ontology described above. For com-
putation time, we need to consider both the time required to compute pairwise
similarity for the underlying ontology and the time required to compute the ques-
tions. Computing pairwise similarity for all sub-concept expressions (including
concept names) in the KA ontology took 22 minutes. This includes the time
required to compute similarities using both SubSim(-) and GrammarSim(-) for
a total of 296 sub-concept expressions. Computing a total of 913 questions took
around 21 minutes. Computing “which is the odd one out?” questions took 17
minutes out of the 21 minutes while computing all other questions took less than
4 minutes. So in total, around 1 hour was needed for computation.

Finally, we also have to consider any time required to review the questions
(possibly including post-editing time). As the reviewers were allowed to review
each item in an unrestricted manner, it is difficult to determine the exact time
that each reviewer has spent on each item. For example, for a set of questions,
a reviewer might start looking at a question on a given day and then submit
the review on the next day after getting interrupted for any reason. We exclude
questions for which the recorded time was more than 60 minutes as this clearly
shows that the reviewer was interrupted in the middle of the reviewing process.
The first reviewer spent between 13 and 837 seconds to review each of the 50
questions, including time for providing suggestions to improve the questions. The
second reviewer spent between 12 and 367 seconds. And the third reviewer spent
between 17 and 917 seconds. Note that these times include the time required to
attempt to answer the question by the reviewer.

Usefulness of questions. A question is considered “useful” if it is rated as
either “useful as it is” or “useful but requires minor improvements” by a reviewer.
46 out of 50 questions were considered useful by at least one reviewer. 17 out of the

46 questions were considered useful by at least 2 reviewers. This is illustrated in
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Figure 7.6. The first reviewer rated 37 questions as being useful while the second
and third reviewer rated 8 and 33 questions as useful, respectively. Note that the
third reviewer is the main instructor of the course unit during the academic year
in which the experiment has been conducted while the second reviewer taught
the course unit in the previous year. The first reviewer has not taught this course

unit before, but has general knowledge of the content.
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Figure 7.6: Usefulness of questions

Usefulness of distractors. A given distractor is considered “useful” if it
has been functional (i.e., picked by at least one student). For the six questions
which were administered on paper, at least two out of three distractors were
useful. In five out of the six questions, the key answer was picked more frequently
than the distractors. Exceptionally, in one question, a particular linguistically
unique’ distractor was picked more frequently than the key. The course instructor
explained this by pointing out that this question was not covered explicitly in
class. For the six questions which have been administered via BlackBoard, at
least one distractor was useful except for one question which has been answered
correctly by all the seven students.®

Item discrimination. We used Pearson’s coefficient to compute item dis-
crimination to show the correlation between students’ performance on a given
question and the overall performance of each student on all questions. The range

of item discrimination is [-1,+1]. A good discrimination value is greater than

“This distractor was a verb phrase while the other answers, including the key, were nouns.
See question number 36 in Table B.1.
8See question number 3 in Table B.1.
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0.4 [Ebe54]. For the six questions administered on paper and four out of the
six questions administered via BlackBoard, item discrimination was greater than
0.4. For one question administered via BlackBoard, item discrimination could
not be calculated as 100% of students answered that question correctly. Finally,
item discrimination was poor for only one question. The third reviewer pointed
out that this question is highly guessable because of the conceptual similarities
between the stem and the key.® These results are illustrated in Figure 7.7 and
Figure 7.8.

Number of questions
L] w =

good discrimination poar discrimination undefined
Item descrimination

Figure 7.7: Item discrimination for questions administered in class

Number of questions
W

good discrimination poor discrimination undefined

Item descrimination

Figure 7.8: Item discrimination for questions administered online

Item difficulty. One of the core goals of the presented QG approach is to
be able to control item difficulty. To evaluate this functionality, we examine tool-
reviewers agreement and tool-students agreement. As described above, the tool

generates questions and labels them as either easy or difficult. Each reviewer

9See question number 16 in Table B.1.
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can estimate the difficulty of a question by choosing one of the following options:
(1) too easy, (2) reasonably easy, (3) reasonably difficult and (4) too difficult. A
question is too difficult for a particular group of students if it is answered correctly
by less than 30% of the students and is too easy if answered by more than 90%
of the students [Dav01]. In both cases, the question needs to be reviewed and
improved. Accordingly, we consider a question to be difficult if answered correctly
by 30-60% and easy if it is answered correctly by 60-90% of the students.
Before discussing tool-reviewers agreement, it is worth to note agreements
among reviewers. We distinguish between loose agreements and strict agree-
ments. A loose agreement occurs when two reviewers agree that a question is
easy /difficult but disagree whether it is too easy/difficult or reasonably easy/dif-

ficult. Table 7.2 summarises agreements among reviewers. Each reviewer agrees

with the tool on 31 (not necessarily the same) questions, see Figure 7.9.

50
45
40
as
30
25

20

Number of questions

Reviwer 3

Reviewer 1 Reviewer 2

MNumber of questions for which there was an agreement bet and the tool

1 a given revi

Figure 7.9: Tool-reviewers agreement on item difficulty

Ist & | 1st & | 2nd &

2nd 3rd 3rd
Loose agreements 31 26 33
Strict agreements 19 15 15

Table 7.2: Loose and strict agreements between the three reviewers
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With regard to the six questions delivered on paper, two questions (no. 7 and
18 in Table B.1) were reasonably difficult and two (no. 7 and 38 in Table B.1)
were reasonably easy for the students. These four questions were in line with
difficulty estimations by the QG tool. One (no. 36 in Table B.1) out of the
six questions was too difficult for the students. Most of the students picked a
linguistically unique distractor rather than the key. Remarkably, the tool and
the three reviewers have rated this item as easy. Finally, one question (no. 23
in Table B.1) was too easy for the students, however it was rated as difficult by
the tool. This is due to having a clue in the stem. Similarly, for BlackBoard
questions, one question (no. 50 in Table B.1) was reasonably difficult and one
question (no. 1 in Table B.1) was reasonably easy for the students; just in line
with tool estimations. One (no. 20 in Table B.1) out of the six questions was too
easy for the students (100% correct answers). This question was rated as easy
by the tool. Again, one question (no. 3 in Table B.1) was rated as difficult by
the tool but was easy for the students due to having a clue in the stem. Two
questions (no. 16 and 39 in Table B.1) were not in line with tool estimations but
were in line with estimations of at least two reviewers. Results of item difficulty
predictions are illustrated in Figure 7.10 for questions administered on paper and

in Figure 7.11 for questions administered online.
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Figure 7.10: Item difficulty predictions-In class
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Figure 7.11: Item difficulty predictions-Online

7.2.4 Threats to validity

Due to time and resource limitations, the number of ontologies, generated ques-
tions, evaluated questions, student participants in this study were limited. Al-
though the results are promising, they are far away from statistically significant.
Moreover, the utilised ontology was handcrafted, limiting our ability to under-
stand possible issues that may rise when generating questions from existing on-
tologies. We address both issues in the third evaluation study by looking at larger

numbers of questions that are generated from existing ontologies.

7.3 Second evaluation study: using the QG ap-

proach by novice ontology developers

Introduction to Software Development in Java is a self-study course run by the
School of Computer Science at the University of Manchester. It aims to ensure
that students enrolled in the Masters programs in the school have a thorough
grasp of fundamental programming concepts in Java. Topics covered in this
course include: object-oriented basics, imperative programming, classes, inheri-
tance, exception handling, collections, stream and file I/O. The course material is
delivered online via Moodle. As with any self-study course, students enrolled in
this course need a series of self-assessments to guide them through their learning

journey.
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7.3.1 Goals

This section presents another case study for generating MCQs from ontologies
which have been handcrafted for the explicit purpose of generating questions
(and evaluating them). Moreover, in the current case study, we examine the
possibility of adapting our automatic approach to generate MCQs by instructors

with no prior experience in building ontologies.

7.3.2 Materials and methods
7.3.2.1 Equipment description

See Section 6.1.1 for a description of hardware and software used in this experi-

ment.

7.3.2.2 Building the ontology

An ontology that covers the contents of the course has been built by an instructor
who has an experience in Java but with no huge familiarity with materials of
this course. Also, the instructor had no prior experience in building ontologies.
The online course material covers both fundamental concepts (i.e., terminological
knowledge) and practical Java examples (i.e., procedural knowledge). Only the
terminological part was modelled in the ontology. This type of knowledge is
typically a vital part of education in general and of assessment in particular. The

development of the ontology has gone through the following steps:

e The instructor has been introduced to the basics of ontology development
in an initial meeting which lasts for 2 hours.'® This included a brief hands-
on tutorial on using Protégé 4 ontology editor. Further online materials
[Hor11b] were forwarded to the instructor to familiarise herself on building

and dealing with ontologies.

e The instructor built an initial version of the ontology. She went through
the first 6 modules of the course, extracted and added to the ontology
any encountered concepts and finally established links between the added
concepts. This took a total of 10 hours and 15 minutes spread over 6 days.
This has resulted in a total of 91 classes, 44 object properties and 315

axioms.

0with the author of this thesis.



7.3 Second evaluation study: using the QG approach by novice ontology developers168

e A two-hours feedback session took place to highlight weak points in this
version of the ontology. The instructor reported that, as the number of
classes and relations increased, it got very hard to maintain the same level

of understanding of the current state of the ontology.

e Before attempting to build a new version of the ontology, an attempt has
been made to generate some questions from the first version of the ontology.
A quick look at the questions has revealed some bugs in the ontology. The
main feedback given to the ontology builder was to make sure that every
“property” added to any class, via assigning a complex superclass, should
also be applicable to its subclasses. For example, one of the classes in the
first version was API and the ontology builder has asserted the following
axiom API SubClassOf: standsFor some ApplicationProgramlInter-
face to describe the abbreviation. As a consequence, for any subclass X of
the class API, the following entailment holds: X SubClassOf: standsFor
some ApplicationProgramlInterface. One of the possible ways to over-
come such a problem is to make use of annotation properties which do not

have logical consequences.

e The second version of the ontology took 5.5 hours to build. The resulting
ontology has a total of 91 classes, 38 object properties and 331 axioms.
The main task was to restructure the ontology according to the received
feedback. The decrease in the number of object properties is due to merg-
ing those object properties which had very similar meaning but different
names. The increase in the number of axioms can be partially explained
by the fact that the instructor was advised to assert negative facts in the
ontology whenever and wherever possible. In addition, some concepts were

re-categorised (e.g., declared as a subclass of another exiting class).

e To ensure that the ontology covers the main concepts of the domain, the
instructor was advised to consult a glossary of Java-related terms which is
part of the online course material. Adding new terms from the glossary
in suitable positions in the ontology took a total of 10 hours over 4 days.
The resulting ontology has a total of 319 classes, 107 object properties, 213
annotation assertion axioms and 513 logical axioms. The DL expressivity
of the resulting ontology is ALCHQ which allows conjunctions, disjunc-

tions, complements, universal restrictions, existential restrictions, qualified
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number restrictions and role hierarchies.

7.3.2.3 Generating questions

We have generated questions using the same templates used in the previous study
and described in Table 4.1. Prior to generating questions, we computed the
pairwise similarity for all the subconcept expressions in the ontology. A total of
428 questions have been generated from the Java ontology. Then, questions with
less than 3 distractors have been excluded (resulting in 344 questions). Questions
in which there is an overlap between the stem and the key have been filtered out
(resulting in 264 questions). This step was necessary to ensure that there are
no word clues in the stem that could make the correct answer too obvious. The
previous evaluation study (QG from the KA ontology) have identified this as a
possible problem (see Section 7.2.3 and question no. 23 in Table B.1). In this
study, we filter out questions in which there is a shared word of more than three
characters between the stem and key. This does not apply to questions in which
the shared word is also present in the distractors. Finally, questions which can
be described as redundant and that are not expected/recommended to appear
in a single exam were manually excluded (e.g., two questions which have slightly
different stems but the the same set of answers or vice versa). This step was
carried out only to get a reasonable number of questions that can be reviewed in
a limited time. The resulting 65 questions are presented in Table B.2. Among

these are 25 easy questions and 40 difficult questions.

7.3.2.4 Reviewing questions

Again, three reviewers have been asked to evaluate the 65 questions using the
web interface shown in Figure 7.4. All the reviewers have experience in both
the subject matter (i.e., programming in Java) and assessment construction. The
reviewers have been randomly numbered as Reviewer 1, Reviewer 2 and Reviewer
3 with Reviewer 2 being the ontology developer. For each question, the reviewer
is asked to first attempt to answer the question. Next, the reviewer is asked to
rate the difficulty of the question by choosing one of the options: 1) Too easy, 2)
Reasonably easy, 3) Reasonably difficult and 4) Too difficult. Then each reviewer
is asked to rate the usefulness of the question by choosing one of the options:
(0) not useful at all, (1) useful as a seed for another question, (2) useful but

requires major improvements, (3) useful but requires minor improvements or (4)
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useful as it is. The above three steps, i.e., attempting to answer the question,
rate difficulty and rate usefulness, are exactly the same steps carried out in the
reviewing phase in the first evaluation study. In addition to these steps, in this
evaluation study, each reviewer is asked to check whether the question adheres to
5 rules for constructing good MCQs. The rules are: (R1) The question is relevant
to the course content, (R2) The question has exactly one key, (R3) The question
contains no clues to the key, (R4) The question requires more than common
knowledge to be answered correctly, and (R5) The question is grammatically

correct.

7.3.3 Results and discussion

Total cost We report on the cost, in terms of time, of the three phases: 1)
ontology building, 2) question generation and 3) question review. The ontology
took around 25 hours to be built by an instructor who has no prior experience
on ontology building and no huge familiarity with the course material used in
this study. This cost could have been reduced with an appropriate experience in
building ontologies and /or higher familiarity with course content. The generation
of a total of 428 questions using the machine described above took around 8 hours
including the time required to compute pairwise similarities. Finally, Reviewers
1, 2 and 3 spent around 43 minutes, 141 minutes, and 56 minutes, respectively to
review the selected 65 questions. We exclude any question for which more than 15
minutes were spent. This indicates that the reviewer was interrupted during the
review of that question. In addition, Reviewer 2 reported that she was taking side
notes while reviewing each question. For this reason and for other reasons that
could interrupt the reviewer, the cost of the reviewing phase should be regarded
as a general indicator only.

In terms of cost, it is interesting to compare between two possible scenar-
ios to generate MCQs. The first scenario is where the questions are manually
constructed and the second scenario is where ontology-based question generation
strategies are utilised. The cost of manual generation is expected to be lower than
the cost of developing a new ontology added to the cost of question generation
and review. However, a few points should be taken into account here. First,
in the second scenario, the ontology is expected to be re-used multiple times to
generate different sets of questions. Second, the aim is to generate questions with

highly accurate predictions about their pedagogical characteristics which has been
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Table 7.3: A sample question generated from the Java Ontology

Stem: ... refers to “A non-static member variable of a class.”:

Options:

Key:

shown to be possible in the second scenario (for example, see the study presented
in Section 7.2). Third, no particular skills/creativity for MCQ construction are
required when utilising ontology-based question generation strategies.
Usefulness of questions Figure 7.12 shows the number of questions rated by
each reviewer as: not useful at all, useful as a seed for another question, useful but
requires major improvements, useful but requires minor improvements, or useful
as it is. As the figure indicates, a reasonable number of questions have been rated
as useful by at least one reviewer. More precisely, 63 out of the 65 questions have
been rated as either useful as it is or useful with minor improvements by at least
one reviewer. And 50 questions have been rated as either useful as it is or useful
with minor improvements by at least two reviewers. Finally, 24 questions have
been rated as either useful as it is or useful with minor improvements by all three
reviewers. As a concrete example of a question that was rated useful by all 3
reviewers, we present the question in Table 7.3.
65
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Figure 7.12: Usefulness of questions according to reviewers evaluations
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Quality of questions The quality of questions is evaluated by adherence
to 5 rules. Figure 7.13 shows the number of questions adhering to each rule as
evaluated by each reviewer. In general, a large number of questions have been
found to adhere to Rules R1, R2 and R4. It can be noticed that only a few
questions violate Rule R4 (i.e., no clues rule). Recall that a lexical filter has been
applied to the generated questions to filter out questions with obvious word clues.
This has resulted in filtering out 80 questions. This means that the lexical filter
is needed to enhance the quality of the generated questions. The grammatical
correctness rule (R5) was the only rule which got low ratings. According to
reviewers’ comments, this is mainly due to the lack of appropriate articles (i.e.,
the, a, an). Dealing with this issue and other presentation/verbalisation issues is
part of future work.
65
B0
55
50
45
40
35
30
25
20
15

10
5

Mumber of guestions

Redevant  One key Mo Clue Mot obvious Gr. corract

Qiuality metrics
B Feviewer 1 B Reviewer2 L Reviewer 3

Figure 7.13: Quality of questions according to reviewers’ evaluations

Difficulty of questions according to reviewers’ ratings Part of the ob-
jectives of this study is to evaluate the accuracy of predictions made by the ques-
tions generation tool about the difficulty of each generated question. To do this,
we compare difficulty estimations by each reviewer with tool’s predictions. Re-
call that each reviewer was asked to select from four options of different difficulty
levels (too easy, reasonably easy, too difficult, reasonably difficult). This is to dis-
tinguish between acceptable and extreme levels of difficulty/easiness. However,
tool’s predictions can take only two values (easy or difficult). To study tool-to-
reviewers agreements, we only consider the two general categories of difficulty.
That is, the four categories of difficulty estimations by reviewers are collapsed

into two categories only (easy and difficult). Figure 7.14 shows the number of
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questions for which there is an agreement between the tool and at least one, two
or three reviewers. As the Figure shows, for a large number of questions (51 out
of 65 questions) there has been an agreement between the tool and at least one
reviewer. To understand the causes of disagreements, we further categorise the
agreements according to the difficulty of questions. Table 7.4 indicates that the
degree of agreement is much higher with easy questions reaching 100% agreements
with at least one reviewer. This could mean that the generated distractors for
difficult questions were not plausible enough. This has been discussed with the
ontology developer because we believe that better distractors could be generated
by enriching the ontology. In particular, the ontology developer has indicated
that many classes in the ontology have been assigned to a single (named) su-
perclass while they could possibly be assigned to multiple (possibly complex)
superclasses. Restructuring and enriching the ontology is expected to increase
the ability of the tool to generate questions at certain levels of difficulty.
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Figure 7.14: Difficulty of questions according to reviewers’ evaluations

Table 7.4: Accuracy of difficulty predictions for easy and difficult questions

> 1 reviewer | > 2 reviewers | > 3 reviewers
Easy questions 100% 88% 52%
Difficult questions 65% 35% 2.5%
All questions 78.5% 55.4% 21.6%

Difficulty of questions according to reviewers’ performance Each re-

viewer has attempted to solve each question as part of the reviewing process.
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Interestingly, none of the reviewers has answered all the questions correctly, in-
cluding the ontology builder who answered 60 questions correctly. The first and
third reviewers have correctly answered 55 and 59 questions, respectively. This
can have different possible explanations. For example, it could be possible that
the reviewer has picked a wrong answer by mistake while trying to pick the key.
This has actually happened with the first reviewer who has reported this by leav-
ing a comment on one question. Note also that the third reviewer has reported
that in exactly one question there was more than one possible correct answer, see
Figure 7.13. This means that if a reviewer picks an answer other than the one
identified by the tool as the correct answer then their answer will not be recog-
nised as correct. Figure 7.15 shows the number of questions answered correctly

by at least one, two and three reviewers.
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Figure 7.15: Difficulty of questions according to reviewers performance

In exactly one question (no. 28 in Table B.2), none of the reviewers answered
the question correctly, raising a question about the validity of this question as
an assessment tool. The stem part of this question was “Which is the odd one
out?”. The required task to answer the question is to distinguish between the
answers which have a common link (the distractors) and the answer which cannot
be linked to the other answers (the key). Although all the reviewers have rated
this particular question as “useful”, we believe that it is too difficult and, hence,

not necessarily very useful as an assessment item.
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7.3.4 Threats to validity

As discussed earlier in the evaluation of questions generated from the KA on-
tology, the Java ontology used in the second evaluation study is a handcrafted
ontology which has been build for question generation purposes. This limits
our understanding of any issues that may arise when generating questions from

existing ontologies that were built for other (non-educational) purposes.

7.4 Third evaluation study: automated evalua-

tion of questions

To examine, in a statistically significant manner, the practicality of using simi-
larity to generate questions of certain levels of difficulty, we need a large number
of questions. However, it is practically impossible to administer a large number
of questions to real students, for different reasons such as: (i) ethical reasons and
(ii) to avoid any possible bias caused by administering similar questions (with dif-
ferent distractors) to the same student. Rather than administering the questions
to real students, we can alternatively utilise an automatic corpus-based solver.
This also enables us to measure (although not precisely) the amount of knowledge
that the solver has about a specific subject (e.g., number of resources related to
this subject in the corpus).

Existing methods have already been developed to automatically solve MCQs
using corpus-based solvers. In this experiment we follow the method described
by Turney and Littman [TLO05] who developed a method to automatically solve a
specific kind of multiple-choice questions. In particular, the method was designed
to solve multiple-choice analogy questions which were described in Chapter 2;
see Table 2.2 for an example. The results show that their method can solve
about 47% of multiple-choice analogy questions (compared to an average of 57%
correct answers solved by high school students). The method takes a pair of
words representing the stem (e.g., “A : B ::”) and 5 other pairs representing the
answers presented to students (e.g., “C; : D;”) and returns the answer with the
highest analogy degree to the stem. The method is based on the Vector Space
Model (VSM) of information retrieval. To calculate the analogy degree between
the stem and a given answer, the solver creates two vectors, (R1) representing

the stem and (R2) representing the given answer. Each vector consists of 128
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elements that represent the frequency of encountering a certain phrase with a
certain joining term in a large corpus. Each phrase is constructed by joining the
two words (e.g., A & B) using one of 64 proposed joining terms in two ways (e.g.,
“Ais B” and “Bis A”). Each phrase is sent as a query to a search engine and the
logarithm of the returned number of hits is saved in the corresponding element
in the vector.

Due to the availability of methods to automatically solve analogy questions, we
focus on generating this type of questions for the purposes of this experiment. One
useful implication of generating one type of questions is that the cognitive ability
required to solve the questions is guaranteed to be the same for all the questions,
eliminating any external factors that could affect the difficulty of questions. In

this case, the required cognitive ability is referred to as analogical reasoning.

7.4.1 Goals

The experiment is designed to answer two main questions: (i) Does the general
performance of the solver correlate with the solver’s amount of knowledge? and
(ii) Does the performance of the solver on a particular question correlate with

the estimated difficulty of that question?

7.4.2 Materials and methods
7.4.2.1 Equipment description

Due to the high computational demands of this experiment, two machines were
used in parallel to solve the generated questions automatically. The first machine
is the one described in Section 6.1.1. The second machine is an Intel Core i3
2.27GHz processor, 2 GB 1333 MHz SODIMM DDR3 RAM, running Windows 7
Home Premium (Dell Inspiron N3010 Mid 2010 model). Only the first machine

was used to generate the questions.

7.4.2.2 Generating questions

To generate multiple-choice analogy questions, we extend the rules presented in
Hypothesis 1 in Chapter 3 such that we can control difficulty of MCQs by vary-
ing: (1) similarity between the stem and the key, and additionally (2) similarity
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between the stem and distractors. The extended rules, which make use of the re-

lational similarity measure RelSim(-) defined in Chapter 5, are presented below.

Proposition 2. Let Q) be a multiple-choice analogy question, let S be the stem
part of Q) consisting of two concepts Sy, Sy, let K be the key part of Q) consisting
of two concepts K., K,, let D be a set of distractors in ) such that a distractor
D; € D consists of two concepts Dy;, Dy and 1 < i < n where n is the number of
distractors in Q. Let K be significantly more similar to S compared to any distrac-
tor D; € D, i.e., RelSim(S,, Sy, K, K,) = RelSim(Sy, Sy, Dyi, Dyi) + Ay and
Ay > 0. Let K be sufficiently similar to S such that RelSim(Sy, Sy, K, K,)) = Ay
and Ay > 0. For all distractors D; € D, let D; be similar, to an extent, to S such
that RelSim(Sy, Sy, Dyi, Dyi) = Az where Ag is assumed to be mazimal. Then
the following properties hold:

1. Increasing Ay decreases the difficulty of Q.
2. Increasing Ao decreases the difficulty of Q).

3. Decreasing As for a distractor D; € D decreases the difficulty of Q.

Three ontologies were used to generate multiple-choice analogy questions using
the above rules. One of the ontologies, which is the Gene Ontology, is considered
to be a sophisticated ontology of specialised terms, though it is not very rich. The
other two ontologies (Pizza Ontology and People & Pets Ontology) are ontologies
that are usually used in ontology development tutorials; hence contain common
knowledge. The decision to choose those ontologies was made to assess whether or
not the difficulty of the domain influences the difficulty of the generated questions.
More familiar domains to the solver are expected to be easier. Figure 7.16 presents
a rough estimation of knowledge about each domain in the corpus as indicated
by the number of related resources, i.e., when performing a search using the
search engine provided by the corpus and using each subject as a search term.
These simple statistics will be used to answer the first question of the experiment:
“Does the general performance of the solver correlate with the solver’s amount of
knowledge?”. Table 7.5 presents the number of classes in each ontology and the
total number of generated questions from each ontology. These questions are of
different levels of difficulty: easy, moderate and difficult. The parameters used to

control difficulty of the generated questions are presented in Table 7.6 and were
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determined empirically (see Proposition 2 for details of these parameters). So,
for @) to be easy, for example, A; has to be = 0.5, A, has to be = 1 and Ag has
to be = 0.

Genes

Pizza

subject

People & Pels

0 50 100 150 200

Number of related resource in the corpus (in millions)

Figure 7.16: Rough estimation of knowledge in the corpus

Table 7.5: Number of classes and number of generated questions per each ontology

No. of Classes | No. of questions

Gene Ontology 36146 187,924 Septillion
Pizza Ontology 97 18,933 Trillion
People & Pets Ontology 58 12,372 Billion

Table 7.6: Parameters used to generate analogy questions of different difficulties

Difficulty Level | A4 Ay As
BEasy 0.5 1 0
Moderate 0.5 | 0.5625 | 0.0625
Difficult 0.5 0.5 0.1

To generate an analogy question from an ontology we need to, first, generate
pairs of concepts that are sufficiently related in the ontology. Second, we need to
compute the similarity degree between the generated pairs of concepts based on
the underlying relation of each pair (i.e., their relational similarity). To generate
a sufficiently related pair of concepts C, D, we use Relatednesspath—pased() pre-
sented in Chapter 5 such that Relatedness,ath—pased(C, D) = 1. After generating

pairs of related concepts, we need to compute the similarity degree between the
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Table 7.7: A sample question generated from the People & Pets Ontology

Stem: Haulage Truck Driver : Driver

A) Quality Broadsheet : Newspaper
) Giraffe : Sheep

) Bus : Vehicle

) Giraffe : Cat Liker

)

Options:

Key: C) Bus : Vehicle

(
(
(
(
(

generated pairs. To do so, we use RelSimpath-based(-) Presented in Chapter 5.
The final step in generation is iterating through all sufficiently related pairs of
concepts in the present ontology, consider the current pair as a stem and follow
rules of Proposition 2 to select keys and distractors targeting different levels of
difficulty. We generate all possible analogy questions from a given ontology by
exhausting all combinations of (sufficiently related) pairs which can appear either
in the stem, key or distractors. We generate 3 distractors for each question.

To make the question solving phase more manageable and since we want to
use the automated solver on a very high number of questions, we can only con-
sider subsumption-based relations. To do this, we utilise Relatednesspat—pased(*)-
The more relations the automatic solver takes into account, the (far) more time
it spends on each question. Note also that we have analysed a number of
analogy questions (1,082 questions) available on the web and found out that
a considerable proportion of them concentrate on the relations considered by
Relatednesspat—pasea(-). These analogy questions have been gathered using two
search engines, Google and Yahoo!, using three search terms, “analogy exam-
ples”, “analogy questions”, “analogy test”, considering only the two first pages of
results. We have included in our corpus only textual questions written in English.
In particular, 96 out of the 1,082 questions (8.9%) focus on is_a relations, 122
questions (11.3%) focus on sibling relations. Examples of other relations found
in our corpus of analogy questions which are not considered in the current ex-
periment include: object-characteristic (9.9%), part-whole relations (8.9%) and
object-function (8.9%) relations.

Examples of the questions that were generated from the People & Pets ontol-

ogy and Pizza ontology are presented in Table 7.7 and Table 7.8, respectively.
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Table 7.8: A sample question generated from the Pizza Ontology

Stem: Sloppy Giuseppe : Pizza De Carne

Options: (A) Cogumelo : Pizza Vegetariana
(B) Pizza : Food
(C) Cogumelo : Napoletana
(D) Cogumelo : Sorvete

Key: (B) Pizza : Food

7.4.2.3 Building the automated solver

As explained earlier, we implemented a procedure similar to the one described
by Turney and Littman [TLO05] to automatically solve the generated analogy
questions. First, we have constructed a table of joining terms relevant to the
relations considered in the generation phase (e.g., “is a”, “type”, “and”, “or”).
Using these joining terms, we generate a set of phrases for each pair of concepts.
Then we create vectors of 10 features for the stem, the key and each distractor.
The constructed phrases are sent as a query to a search engine (Yahoo!) and the
logarithm of the hits count is stored in the corresponding element in the vector.

The hits count is always incremented by one to avoid getting undefined values.

7.4.2.4 Solving questions

Evaluating all the generated questions using the current automated solver was
not possible due to the limited number of queries per user allowed by the utilised
search engine (and the extremely high number of questions). Therefore, we only
consider a representative sample of the questions (about 1800 questions per on-
tology). Three stratified samples of (easy, moderate and difficult) questions were
selected randomly from the questions generated from the three ontologies (i.e., a
sample for each ontology). The overall time required to solve all the questions in
the considered sample (95% confidence interval with a margin of error of +3%)
took over 120 hours using the two machines described in Section 7.4.2.1 working

in parallel.

7.4.3 Results and discussion

Among the easy questions generated from the Gene ontology, the solver has cor-

rectly answered 16% of the questions. Similarly, for the People & Pets and Pizza
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Table 7.9: Percentage of analogy-questions (per ontology) solved correctly by the
automatic solver

%Correct
Gene Ontology 16%
Pizza Ontology 49%
People & Pets Ontology 32%

ontology, the solver has correctly solved 32% and 49% of the easy questions, re-
spectively. Those percentages are shown in Table 7.9. To answer the question
of whether the performance of the solver correlate with the solver’s amount of
knowledge, we compare the solver’s performance on the different sets of questions
with its knowledge about each subject. As Table 7.9 and Figure 7.16 show, the
more knowledge the automated solver has about a domain, the more ability it
has to solve questions about that domain.

To evaluate the accuracy of the QG tool in terms of difficulty predictions, we
compare the number of questions solved correctly by the solver in the different
categories of questions (i.e., easy, moderate and difficult). Due to the solver’s low
performance on questions generated from the Gene ontology (see Table 7.9), we
have only considered the two tutorial ontologies in this comparison. Figure 7.17
and Figure 7.18 show that, for each ontology, more easy questions were correctly
solved by the automatic solver than moderate and difficult questions. This in-
dicates that the similarity-based QG method was successful in controlling the
difficulty of the generated MCQs.
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Figure 7.17: Percentages of questions of varied difficulties that were correctly
answered by an automatic solver (Pizza ontology)
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Figure 7.18: Percentages of questions of varied difficulties that were correctly
answered by an automatic solver (People & Pets ontology)

7.4.4 Threats to validity

In the above experiment, an automated solver has been utilised to simulate a
student attempting to answer a set of questions. A clear limitation of this ap-
proach is that the automated solver simulates a single student with a fixed ability
(given that the questions solving phase took place in a relatively short period to
time, hence corpus’ resources are assumed to be relatively fixed). In real class
situations, students have different abilities. A better simulation of such students
would be to use different solvers with varied abilities (e.g., by varying the number
of resources or number of joining terms). However, due to time limitations, we
have focused on a single solver with fixed ability. Another threat to validity is the
(relatively) low number of ontologies and the ad-hoc selection criteria of which

ontologies to be considered.

7.5 Summary and directions

We have presented a series of studies to evaluate the usefulness and difficulty of
MCQs generated using our similarity-based QG tool. We have focused on eval-
uating the usefulness and appropriateness of questions for educational purposes,
in particular, assessments. It is also interesting to evaluate the usefulness of
questions generated using the similarity-based QG tool for other purposes (e.g.,

validating an ontology). We briefly elaborate on this topic in the next chapter.



Chapter 8

Applications of QG methods

Although previous chapters have focused on generating questions for assessment
purposes, this is not necessarily the only possible target application for QG meth-
ods. In this chapter, we explore the applicability of QG methods for ontology
validation purposes. The chapter builds on the ideas presented in previous chap-
ters by utilising the proposed similarity-based approach for generating questions
from ontologies.

In Section 7.3, we have witnessed the usefulness of looking at MCQs generated
from ontologies that are under development. Some important “errors” in the
Java ontology were easily identified by looking at the MCQs generated from that
ontology, in particular, MCQs with errors. Some errors were syntactic (e.g.,
typing mistakes) while others were logical (e.g., a wrong entailment identified by
looking at an invalid key or a missing entailment identified by looking at an invalid
distractor). Logical errors are generally harder to spot and considered more
interesting when debugging an ontology. We will briefly present some specific
examples from the Java ontology in Section 8.2.

In this chapter, we present a case study to further explore the applicability
of QG methods for ontology validation purposes. Rather than validating an
ontology under development (as we did in Section 7.3), we study the case of
validating a previously built ontology in an attempt to suggest ways to improve
it. We present some specific examples for possible errors in the SNOMED CT
ontology as identified by some domain experts. In addition, QG methods can
support ontology comprehension purposes which can be a goal in itself or it can
be done prior to validating an ontology that has been built by a different ontology
developer. We briefly tackle this in the study presented in this chapter.
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8.1 Designing a QG-based protocol for ontology

validation

Ontologies can grow large in terms of size and complexity, making them difficult
to debug. The most hard-to-spot errors in ontologies are the ones that do not
make the ontology inconsistent or incoherent, though cause either undesirable or
missing entailments. This is similar to the so-called “logical errors” in program-
ming languages which cause the program to produce undesired output but do not
cause compilation errors or abnormal termination. In Table 8.1 and Table 8.2 we
present two examples of MCQs that have been generated from the Java ontology
presented in Chapter 7. Clearly, some logical errors in the Java ontology have
resulted in producing the errors that appear in these MCQs. Identifying the er-
rors in these MCQs by a Java expert has helped in finding and correcting some
omissions in the Java ontology. These examples show that looking at questions

generated from an ontology can be fruitful for identifying some omissions in the

ontology.
Table 8.1: Missing entailment example
Stem: A feature of Virtual Machine Code is:
Key: (A) Portability

Distractors: ~ (B) Write once Run Anywhere
(C) Platform Independence
(D) Reusability

Explanation the distractors are correct answers

of error: (i.e., all the answers are features of
Virtual Machine Code)
Reasons for ~ Those features have been asserted (in the ontology) to
the (missing) be features of Java Programming but not features of
entailment: Virtual Machine Code. However, due to the similarity
between the features (answers A, B, C, and D)
they have all appeared in the answer list of this MCQ.

Indeed, there are many possible ways to find errors in ontologies. Direct on-
tology inspection can be effective but has the obvious disadvantage of being time
consuming. In addition, direct inspection might be more effective for finding

soundness problems (i.e., invalid entailments) rather than completeness problems
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Table 8.2: Undesired entailment example

Stem: Swing stands for:
Key: (A) Application Programming Interface
Distractors: (B) Abstract Windowing Toolkit

(C) Java Foundation Classes
Explanation the key is not a correct answer (i.e., Swing does not
of error: stand for Application Programming Interface)
Reasons for Swing C API

the (undesired) API C 3 standsFor.ApplicationProgrammingInterface
entailment: Therefore, the ontology entails that:
Swing C 3 standsFor.ApplicationProgramminglnterface

(i.e., missing entailments). Other approaches have been proposed to address com-
pleteness problems. For example, Formal Concept Analysis (FCA) has been used
for such a purpose [BGSS07]. Another example is the approach presented by
Dragisic et al. [DLWK14] that takes already found missing entailments as input
and suggest logical solutions to repair the ontology by possibly adding missing
axioms. We are not comparing our QG-based method to any other debugging
method, rather, we are suggesting that using MCQs with high similarity between
the key and distractors, can be useful in restricting the search space (in a princi-
pled way) when attempting to detect a specific class of omissions. These omissions
include both missing atomic subsumptions and missing complex subsumptions.
We expect that our method can detect more missing complex subsumptions com-
pared to missing atomic subsumptions. Using similarity to elicit knowledge from
domain experts has already been used in well known elicitation techniques. For
example, the triadic elicitation technique involves presenting 3 concepts to do-
main experts who are asked to identify the two similar concepts and explain why
the third is considered different.

We conjecture that asking a domain expert to look at a set of MCQs gener-
ated from an ontology can help in identifying some of the invalid and/or missing
entailments based on the expert’s knowledge. The questions should be presented
to the expert in the form of a multiple-response question where the expert is
asked to select all (and only) the correct answers. We use the QG application
described in earlier chapters to generate questions that has exactly one answer
entailed by the ontology to be correct. For the purpose of using these questions

to validate the ontology, we select (for each question) a varied number, ranging
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for example from 1 to 10, of answers that are entailed to be wrong answers. The
similarity between the key and distractors is set to be above a threshold. To
examine whether using a threshold of a high value has an impact on the number
and type of the identified errors, we experiment with two different thresholds as
we will describe in detail in Section 8.3. In general, since the wrong answers are
selected to be similar to the correct answer, we question whether the ontology
should entail that they are correct answers as well (i.e., a missing entailment such

as the one presented in Table 8.1).

8.2 Implementing a prototype QG-based appli-

cation for ontology validation

To evaluate the usefulness of the similarity-based QG approach presented in this
thesis for ontology validation purposes, we have implemented a prototype web-
based application that (1) presents a selected set of multiple-response questions
generated from an ontology to a domain expert (see Figure 8.1) and (2) based
on the expert’s answers, the application suggests some possible wrong and/or
missing entailments in the ontology (see Figure 8.2). As we describe in Section 8.1,
the questions in fact are generated such that they have only one answer which
is entailed by the ontology to be correct. However, experts answering these
questions are asked to pick all the answers they believe to be correct. Experts
are also asked to indicate whether they are confident about their answers, per
question. They can also leave a comment for a detailed explanation.

When the answers provided by an expert are different from the ones entailed
by the ontology, the expert is asked to confirm his/her answers, as shown in Fig-

ure 8.3. The aim of this extra verification step is to encourage deeper engagement.

8.3 A case study

8.3.1 Goals

The main goal of this case study is to evaluate the applicability of QG-methods
for ontology validation purposes. To address this goal, we try to answer the fol-
lowing question: Can a domain expert identify some omissions in an ontology

by looking at MCQs generated from that ontology? We focus on a specific class
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Ontology to Questions Logged in as: Tahani Alsubait Logout

Home Phenotypes Item 3 of 20 Progress: 70.0%

"Blood group A2 (finding)" is:
a Quick navigation
7] "Ainding of Rh blood group (finding)".

7] "Blood group phenotype (finding)”". Jurnp toa quesn-o"
(] "Finding of common composite blood group (finding)". S—B Go

(] "Duffy blood group (finding)™.

[ "Finding of minor blood group (finding)”.

Answer the question and UNCHECK appropriately:

I am confident about my answers to this question.@

Comments (e.g., explain your answer)

Save & Continue

Figure 8.1: QG-based support for ontology validation

Ontology to Questions Logged in as: Tahani Alsubait Logout

Home Phenotypes Item 20 of 20 Progress: 100.0%

Thanks for providing your review! Please see summary of results below.

Summary:

Wrong (correct s that should not be considered correct):

Refer to question 8
Refer to question 11
Refer to question 18

Refer to guestion 19

g ts (wrong s that not be ed wrong):

Refer to question 1

Figure 8.2: Summary of suggestions to improve the ontology
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Do you mean the ontology should not entail that:Blood group A2 (finding) subsumed by Blood group phenotype (finding)?
Please leave a comment explaining your answer.

o ]

Figure 8.3: Extra verification step

of MCQs in which each wrong answer is similar to the correct answer (but en-
tailed by the ontology to be a wrong answer). We expect that looking at such
questions can reveal some omissions or missing statements (in the ontology) that
might be difficult to spot without looking at the questions. This is because these
wrong answers are similar to the correct answer and therefore raise the question
of whether they have been considered as wrong answers due to having any miss-
ing statements in the ontology or due to actual constraints in the domain. The
missing statements that are intended to be detected can be either atomic or com-
plex subsumptions. Missing or invalid atomic subsumptions highlight problems
in the inferred class hierarchy of the ontology. Since this hierarchy is frequently
looked at by ontology developers, we expect, in general, that there are more miss-
ing/invalid complex subsumptions rather than atomic subsumptions in a given
ontology. We examine this hypothesis in the current study by looking at two sets

of questions, Set Al and Set A2. The questions in the two sets are constructed:

1. in Set Al: based on atomic subsumptions.

2. in Set A2: based on complex subsumptions.

Another goal of this study is to explore the impact of varying the similarity
degree between the key and distractors on the overall usefulness of the generated
questions for validation purposes. To examine this factor, we generate and com-
pare two sets of MCQs, Set B1 and Set B2 which are described below. We try to
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answer the following question: Is looking at MCQs from Set B1 more useful for
ontology validation purposes than looking at MCQs from Set B27? The MCQs in
the two sets are generated such that the similarity between the wrong answers

and the correct answer is:

1. in Set B1: above a threshold A,,4z.

2. in Set B2: below a threshold A,,.. but above a second threshold A,,;,.

The two sets A1 and A2 are not disjoint from sets B1 and B2. To examine all

possibilities, we generate four disjoint sets of questions such that the questions:
1. in Set 1: are selected from Set Al and Set Bl1.
2. in Set 2: are selected from Set A1l and Set B2.
3. in Set 3: are selected from Set A2 and Set B1.

4. in Set 4: are selected from Set A2 and Set B2.

8.3.2 Materials and methods
8.3.2.1 Equipment description

The following machine has been used to carry out the experiment presented in
this chapter:

Intel Core i5 1.4GHz processor, 4 GB 1600 MHz DDR3 RAM, running Mac
OS X 10.10.2 (MacBook Air Early-2014 model). Details of the software used to

carry out the experiment have been presented in Section 6.1.1.

8.3.2.2 Ontology selection

The current study requires the availability of a domain expert to answer a set of
MCQs generated from a domain ontology. Due to the availability of an expert
in Biolnformatics, we have asked that expert to select some parts of an ontology
which he thinks might be suitable for the purpose of this study. Due to the
expert’s interest in SNOMED CT in general and genetic findings in particular
and his assumptions that the ontology is not detailed enough in this part, we have
selected a (small) part of genetic findings that covers phenotypes (e.g., Blood
groups). All the subclasses (197 classes) of the class Phenotype have been used
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as a seed signature to extract a l-module. In addition, the object property
RoleGroup has been added to the seed signature. This property is used to group
certain properties together [SDMWO02] and is necessary for extracting the module.

The resulting module has a total of 246 classes and 6 object properties.

8.3.2.3 Generating questions

Two sets of questions have been generated from the extracted module using the
prototype QG application described in Section 7.1. This prototype generates
two different sets of questions, namely difficult and easy questions. The difficult
questions are generated such that the similarity between the key and distractors
is above the average similarity between all siblings in the ontology (or in the cur-
rent study, the extracted module). The easy questions are generated such that
the similarity between the key and distractors is above two thirds of the average
similarity between all siblings in the module (but less than the average similarity
between all siblings). For the current study, we consider difficult questions to be
questions of Set B1 and easy questions to be questions of Set B2. After comput-
ing the average similarity between all siblings in the module, the thresholds A, .
and A,,;, have been set to 0.88 and 0.587, respectively. The generated ques-
tions take the form “What is X?” where X is a class name and the answers are
either class names or class expressions. This kind of questions is suitable for find-
ing missing/invalid entailments that we are interested in. Among the generated
questions, 223 questions have class-name-based answers, referred to as Set Al
questions, and 24 questions have class-expression-based answers, referred to as
Set A2 questions. Among the class-expression-based questions, only 5 questions
are suitable for Set B1 (i.e., the similarity between the key and distractors is
above the threshold A,,,.). These 5 questions are referred to as Set 3 as defined
in Section 8.3.1. Each question has exactly one key but the number of distractors
was variable. If the number of generated distractors for a given question is more
than 10, we randomly select 10 distractors out of the available ones. We have
not restricted the questions set to questions with exactly three distractors (as in
the experiments presented in Chapter 7) because questions with lower or higher
number of distractors might be equally interesting for validation purposes as the
omissions can be in any part of the ontology. However, we restricted the number
of distractors to be below or equal to 10 to make the question answering phase

manageable.
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8.3.2.4 Answering questions

Two domain experts have been asked to answer a total of 20 questions (5 questions
from each of the four sets Set 1, Set 2, Set 3 and Set 4). The first expert is a
bioinformatician and the second expert is a physician. The 20 questions were
selected randomly from the set of generated questions in the previous step and are
presented in Table B.3. The questions were presented to the domain experts via
the web-interface described in Section 8.1, see Figure 8.1. The first 10 questions
are from Set A1 and the second 10 questions are from Set A2. We chose to present
questions from Set A1l first, for deeper engagement, because they are expected to
take less time to answer compared to questions from Set A2. Within Sets A1 and
A2, questions from Sets B1 and B2 are randomly ordered. Also, a think-aloud
technique was used to get a deeper insight into the advantages and limitations of
the approach. The experts were allowed to use any external source to help them
in answering the questions. After answering all the questions, the experts were
asked to answer three last questions about their overall experience in answering

the questions. These questions, which are shown in Figure 8.4, are:

1. Did any question help you to find any bugs in the ontology? Please explain.

2. Did any question help you to think about aspects of the ontology you had

not considered before? Please explain.

3. Please provide any comments that could help us to improve this tool. Pro-

vide examples if possible.

8.3.3 Results and discussion

For 9 out of the 10 questions in Set B1, the first expert’s answers were correct,
i.e., equivalent to what is entailed by the ontology. The only question for which
this expert’s answers were different from the ones entailed by the ontology is
question no. 15 in Table B.3. This question is the only question which contains
an answer that contains an existential restriction; all the other answers contain
either class names or conjunctions of class names. The expert has identified both a
missing entailment (invalid wrong answer) and a wrong entailment (invalid correct
answer). In particular, the expert indicated that the ontology should entail that

a finding of common composite blood group is subsumed by a finding of blood
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Ontology to Questions Logged in as: Tahani Alsubait Logout

Home Phenotypes Item 20 of 20 Progress: 100.0%
Thanks for providing your review! Please see summary of results below.

Would you mind to answer the following questions as well?

Did any question help you to find any bugs in the ontology? Please explain.

Did any question help you to think about aspects of the ontology you had not considered before? Please explain.

Please provide any comments that could help us to improve this tool. Provide examples if possible

Submit & Return to this page

Figure 8.4: Using QG-methods to validate ontologies

group and phenotype finding. He also indicated that the ontology should not
entail that a finding of common composite blood group is subsumed by a finding
of blood group and interprets (attribute) ABO and Rho(D) typing (procedure).
The expert indicated that he was not confident about his answers to this question
and explained that by reporting that he was not familiar with the terminology
used by the ontology to describe the concepts presented in this question, e.g.,
interprets (attribute). In consistent with the first expert’s answers, the second
expert answered all the questions in Set B1 correctly; hence she did not identify
any possible omissions in this part of the ontology.

For 8 out of the 10 questions in Set B2, the first and second experts’ answers
were correct. The two questions for which the two experts’ answers were different
from the ones entailed by the ontology are questions no. 17 and 20 in Table B.3.
In both questions, the answers are conjunctions of class names. Again, in both
questions, the experts have identified a missing entailment (by selecting one of
the distractors) and a wrong entailment (by not selecting the expected key). Both
experts have agreed on the wrong answer that they chose to select as an answer.
The two experts have indicated that they are not confident about their answers
to these two questions. The first expert explained why he was not confident
about his answers to question no.17 by pointing out that one of the terms used in
the question, i.e., inherited, seems irrelevant since all blood groups are inherited.
For question no. 17 the experts indicated that the ontology should entail that
inherited weak D phenotype is subsumed by blood group phenotype and finding
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of minor blood group. Similarly, for question no. 20, the experts indicated that
the ontology should entail that trans weak D phenotype is subsumed by blood
group phenotype and finding of minor blood group.

In total, the first expert indicated that he was confident when answering
only 7 questions out of the 20 questions. The second expert was confident when
answering 13 questions out of the 20 questions. The first expert explained that
by pointing out that although the terminology used in the ontology might seem
to be natural to an ontology developer, it does not seem to be natural for a
subject matter expert. Consistent with this, the second expert reported that the
language of questions made it difficult to interpret what the question was asking.
The first expert also reported that the questions seem to be of varying difficulty.
For example, he pointed out that answering questions no. 1, 2, 3, 4, 5, 6, 8 and
10 (from Set A1) was straightforward. These questions use only class names as
answers. In contrast, he reported that questions no. 7 and 9, which also use only
class names as answers, were harder to answer. He explained that by pointing
out that the answers were very similar and hence he found it difficult to decide
which answer is the correct answer. The answers to these questions were: Blood
laboratory and Blood bank which are indeed similar. The first expert further
explains that he selected what he thought was the best answer, rather than the
only correct answer. Consistent with this, the second expert reported that, for
questions no. 7 and 9, she picked what she thought was the best answer. The
experts did not identify any missing entailments in questions no. 7 and 9, i.e.,
they did not indicate that a wrong answer should be a correct answer. However,
their explanation supports the hypothesis we are testing in this study, i.e., looking
at MCQs with distractors that are similar to the key can be helpful in identifying
missing entailments.

As described earlier, the similarity between the key and distractors in ques-
tions from Set Bl is higher than the similarity between the key and distractors
in questions from Set B2. Although one would expect that questions in Set Bl
would reveal more omissions in the ontology compared to questions in Set B2
(because the wrong answers are more similar to the correct answers), this was
not the case. Questions in Set Bl have identified 2 (possible) omissions while
questions in Set B2 have identified 4 (possible) omissions. This can be explained
by the fact that errors can occur in different parts of the ontology. For example,

questions in Set B1 would identify missing subsumees that are very close to their
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(potential) subsumer, e.g., in the inferred class hierarchy. In contrast, questions
in Set B2 would identify missing subsumees that are not very close to their po-
tential subsumer. In general, looking at this (rather small) set of questions was
helpful in spotting some omissions in the ontology and suggesting improvements.
Consistent with our expectations, the results also show that the method may be
generally more helpful in identifying invalid /missing entailments involving com-
plex subsumptions, i.e., Set A2, rather than atomic subsumptions, i.e., Set Al.
The aim of the second and third question presented to the experts after an-
swering the questions was to evaluate the usefulness of the presented MCQs to
support ontology comprehension purposes. According to the answers provided
by the experts, the questions were not very helpful in identifying new aspects of
the ontology they had not considered before. The first expert pointed out that
this is due to having (1) questions that seem to be unnatural to a subject matter
expert (due to describing concepts in an uncommon way) and (2) changes in the
difficulty level of the questions (partly due to the first point). He further explains
by pointing out that these two points might limit the usefulness of this form of
MCQs for supporting students who want to learn about the subject. The sec-
ond expert, who is a physician, did not respond to this question as she was not

familiar with the ontology.

8.3.4 Analogus experiments

Bertolino et al. [BDDS11] have investigated the use of QG-based methods for
validation purposes. Their method aims at validating models in general and can
be applied to ontologies as well. A set of True/False questions generated from an
(altered) model are presented to a group of domain experts. The responses gath-
ered from domain experts are used to validate the model. The method proposed
by Bertolino et al. is different from our method in that they suggest to alter the
model by deliberately introducing some errors in it before the QG step. Their
method is also suitable for finding invalid entailments but not missing entail-
ments. Although they have reported that their method have helped the recruited
experts to think about new aspects of the domain which they have not consid-
ered before, the method does not guarantee that this applies to the unaltered

(error-free) parts of the domain only.
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8.4 Summary and conclusions

We have presented a case study for evaluating the applicability of similarity-based
QG methods for ontology validation purposes. Although the results seem to be
promising, they are far from significant. Further efforts are needed to improve
and evaluate the presented strategy. In particular, more user studies are needed.
In addition, it might be useful to further consider the experts’ comments gathered
from the case study presented in this chapter regarding what can make a question
difficult for a group of students. It would be useful to incorporate these comments

into the QG approach and evaluate it by future studies.



Chapter 9
Conclusion and future work

In this chapter, we tie together the various issues covered in this thesis in order
to discuss the overall contributions, the limitations of each contribution and the

possible paths forward.

9.1 Thesis overview

The thesis presents a similarity-based approach to generate MCQs from ontolo-
gies. The main hypothesis of this thesis is that we can control difficulty of the
generated MCQs by varying similarity between the correct and wrong answers.
In Chapter 3, we have provided a psychological justification of why we think
that this hypothesis is (1) important and (2) valid. The main evaluation studies
presented in this thesis were set out to validate this hypothesis and explore the
usefulness of the generated questions for assessing students’ knowledge about a
domain of interest. We have also investigated whether generating questions from
domain ontologies can be useful, not only for assessing students’ domain knowl-
edge, but also for validating the ontology they are generated from. The thesis also
presented a new family of similarity measures for ontologies. Similarity measures
are an essential component of the presented MCQ generation approach and are

essential to many other ontology-based applications.
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9.2 Contributions, limitations and future direc-

tions

The major contributions of this thesis are summarised by topic in the following
subsections. This thesis has covered a wide range of topics and there are still
some open issues that need to be addressed. For each contribution, we discuss
the limitations of the contribution and suggest some directions to extend the work

presented in this thesis.

9.2.1 Establishing a theory of controlling MCQs difficulty

The key contribution of this thesis is establishing a theory for QG which takes
into account the importance of controlling the difficulty of the generated ques-
tions. This theory is applicable both to automatic QG, e.g., ontology-based QG,
and manual QG. Prior to this thesis, existing automatic QG methods have ei-
ther ignored (or failed to recognise) the importance of controlling difficulty or
proposed methods that have not been validated. Establishing theories/mech-
anisms to control the difficulty of assessment questions is clearly a big gap in
existing QG literature. The thesis has advanced our knowledge on the psycholog-
ical aspects of the problem and proposed strategies that exploit ontologies and
similarity measures in order to provide better QG methods that can address this
gap. Empirically, we have found that a solver’s general performance (on solving
questions of varied difficulty) correlates with the solver’s amount of knowledge.
This property is a very basic requirement to construct valid assessment ques-
tions. We have shown, although not in a statistically significant manner, that
the proposed similarity-based QG approach generates questions that fulfil this
requirement. Further studies are required to evaluate this aspect of the presented
QG approach. We have, also, shown that students’ performance correlates with
the estimated difficulty level of the generated questions. This is a very important
finding as existing attempts to control difficulty were, primarily, theoretical and
unbacked with any empirical evidence (e.g., [Willl, KS13]).

Broadly speaking, it is likely that the proposed QG method, including its abil-
ity to control difficulty, will prove to be useful for test developers. However, while
we have provided a general model to control the difficulty of MCQs, the suggested
similarity-based model is indeed not applicable to all classes of MCQs. Also, the

empirical studies conducted to evaluate the MCQ generation method are limited
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in that they only consider a few classes of MCQs due to their natural fit with
the source and due to time and resource limitations. Focusing on these classes,
which are used in some existing QG methods, allows potential comparisons be-
tween the presented method and other already existing ones. However, there is
still a need to extend these empirical studies and more importantly extend the
presented MCQ generation method by studying other factors that can affect the
difficulty of assessment questions and that may be applicable to other classes of
MCQs. We are currently investigating such factors with some research partners
in order to extend the model presented in this thesis.! For example, combining
pedagogic content knowledge (PCK) [Shu86] with subject matter knowledge may
help in controlling difficulty by taking into account teachers’ knowledge of, e.g.,
what makes concepts difficult, regularly encountered students’ misconceptions or
misapplications of prior knowledge.

We have focused on developing methods to generate and control the difficulty
of MCQs which seem to be more time consuming to generate (manually) com-
pared to other forms of questions such as essay questions. The presented QG
method is limited in that it is not, at least directly, applicable to other kinds of
questions such as free response questions. Extending the method to include other
kinds of questions is one of the interesting future paths.

Finally, the presented model of difficulty provides a relative, rather than ab-
solute, notion of difficulty. Given two MCQs, the model can predict which one
is more difficult than the other. Providing absolute difficulty values remains an

open issue.

9.2.2 Reducing test developers’ efforts

Consistent with the study presented by Mitkov et al. [MAHKO6], this thesis
shows that the manual effort to construct MCQs can be reduced by utilising
automatic QG tools; especially if the ontology does not have to be built from
scratch. We have not presented comparison studies to explicitly show the reduced
effort; however, the thesis shows that a large number of (reasonably good) MCQs
can be generated from a given (reasonably good) ontology. On the one hand, it is
likely that the effort required to build a new ontology will be less than the effort
required to manually construct the large number of MCQs (with suitable number

of distractors) that can be automatically generated from that ontology. On the

'For an Elsevier research project.
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other hand, we have shown that the automatically generated MCQs come with
good predictions of their difficulty which can hardly be accomplished otherwise. It
remains to evaluate the cost of adopting the proposed QG method in comparison
with manual generation methods.

One of the issues that may affect such comparison and which has not been
comprehensively covered in this thesis is the rendering of the generated questions.
Indeed, the accuracy of language is an important aspect of questions that needs
to be taken into account when generating questions automatically. In addition,
the more accurate the generated questions, the less time required to post-edit
them.

Another open issue that would help to reduce test developers’ effort is to sup-
port the generation of complete exams rather than unrelated individual questions.
Although the thesis has not covered this issue, we believe that by utilising both
the presented model to control difficulty and the knowledge in the ontology, we
can generate well balanced exams in terms of difficulty and topics covered. More-
over, different exams with similar properties (i.e., difficulty or related content)
can be generated. In addition, extending the method to generate questions from
a mix of sources might prove to be useful, especially considering that ontologies
are not necessarily suitable for modelling all kinds of knowledge.

Also, reducing test developers’ effort when generating questions is not interest-
ing unless the generated questions are useful. Although we have shown, through
the expert-centred evaluations, that the generated questions are educationally
useful, the notion of usefulness was not precisely defined. Indeed, usefulness con-
sists of multiple dimensions or perspectives and we have not (comprehensively)
covered all of them. For example, we have not shown that they can improve
students’ understanding of the subject matter. In addition, there is a need to
explore which questions templates are considered more useful by real test de-
velopers. One of the possible future paths is to conduct surveys to see which

templates would be more interesting for a wide range of test developers.

9.2.3 Giving dimensions to automatic question generation

Several approaches have been proposed to automatically generate questions from
electronic knowledge sources. In order to compare these approaches and under-

stand the contributions and limitations of each approach, we need to understand
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the dimensions of the QG problem. In Chapter 4, we have conducted a system-
atic review of the QG literature in order to provide a better understanding of the
problem and its dimensions. Our analysis of existing automatic QG methods has
revealed that the main dimensions of QG are: (1) purpose (e.g., assessment, vali-
dation), (2) knowledge source (e.g., text or knowledge bases), (3) additional input
(e.g., templates, patterns), (4) general generation methods (e.g., syntax-based,
semantics-based), (5) distractor generation method (e.g., similarity, random), (6)
output format (e.g., questions format, answer format), (7) feedback support (e.g.,
answer dependent/independent) and (8) evaluation method (e.g., student centred,
expert-centred). We have explored the different design options for the automatic
generation of questions and compared them whenever possible. We have also
provided a historical analysis of the evolution of QG methods over the last five
decades and provided an outlook on its future.

Although we have compared existing QG methods, on a conceptual level,
with respect to each dimension, there is still a need for comparing QG methods
in practice. The presented dimensions can be the basis for developing a shared
evaluation challenge for QG. A similar evaluation challenge has existed in the past
[RG09] but is no longer continued. Such an evaluation challenge can prove to be
useful in knowing, e.g., which distractor generation methods are more effective or

which knowledge source is better for generating questions for a specific purpose.

9.2.4 Developing a protocol to evaluate QG methods

This thesis contributes to the QG literature by presenting a series of evaluation
studies that vary in their nature; while some require some sort of participants
(e.g., students, domain/testing experts), others require no participants by utilis-
ing automated mechanisms to evaluate the questions. The evaluation studies vary
in their goals as well; while some were set up to validate the proposed theory to
control MCQs difficulty, others sought to explore the usefulness of the generated
questions for different purposes. The use of automated evaluation methods have
shown that it is possible to evaluate large numbers of questions, although they
cannot evaluate all aspects of the generated questions. In summary, the thesis
presents a protocol to evaluate automatically generated questions through user
and/or automated studies to asses the difficulty and usefulness of questions.
There is plenty of room to advance the user studies presented in this thesis

to cover different important aspects (e.g., different perspectives of usefulness). In
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addition, the studies can be extended/validated by recruiting larger number of
participants and by utilising more ontologies, especially existing ones.
Developing automated question solving tools is an interesting research area in
its own. We have seen that it can be used to facilitate the evaluation of a certain
class of automatically generated MCQs. This part of the thesis can be extended
by developing automated tools to solve other kinds of questions. This can allow
to include such an automatic evaluation tool in the workflow of QG generation
in order to, e.g., automatically rank the generated questions prior to presenting

them to a human expert.

9.2.5 Developing a new family of similarity measures for

ontologies

One of the key contributions of this thesis is a new family of similarity measures
for ontologies. In Chapter 5, we have presented a review of the psychological
foundations of similarity measures and highlighted the importance of taking these
foundations into account when developing similarity measures for ontologies. We
have discussed and provided examples for the desired properties of similarity
measures and justified the need for a new similarity measure for general OWL
ontologies. Prior to this thesis, existing similarity measures were applicable to
only limited classes of ontologies for different reasons. For example, some mea-
sures are applicable only to inexpressive or acyclic ontologies while others require
ontologies with ABoxes or additional corpora. Hence, those measures cannot be
used for all ontologies.

The experiments presented in Chapter 6 shows that the new similarity mea-
sures, in particular AtomicSim(-), SubSim(-) and GrammarSim(-), correlate
better with human similarity judgements, compared to some other existing mea-
sures. However, we have compared the proposed similarity measures to existing
similarity measures in a rather small experiment (in terms of number of ontolo-
gies, similarity measures and size of the dataset). The comparison study can be
conducted on a larger scale by considering more ontologies and more similarity
measures. Indeed, suitable datasets are required to conduct such studies which,
to the best of our knowledge, were not available at the time of writing this thesis.
In addition, it remains to compare the performance of the different measures for

QG purposes.
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The members of the new family of similarity measures vary in terms of their
computation cost and accuracy. This is why it seemed important to explore dif-
ferent notions of approximations in order to examine whether a cheap measure
can be a good approximation for a more expensive one. We have developed a
protocol to compare similarity measures of different computational costs based on
comparing those measures in terms of the following notions: (1) order preserva-
tion, (2) approximation from above, (3) approximation from below, (4) closeness
and (5) correlation. Given that the similarity measure GrammarSim(-) is the
most expensive measure among the new measures, we have shown that the mea-
sure SubSim(-) is better than the measure AtomicSim(-) when considering them
as (cheap) “approximations” to GrammarSim(-). Moreover, we have suggested
three general scenarios that can be applicable to wide range of applications and
have shown, empirically, that some measures can be more suitable than others
for accomplishing certain tasks.

To design similarity measures of different computational costs, we had to make
decisions to limit the infinite set of subsumers of a DL concept. We have dis-
cussed the theoretical and practical implications of restricting the (infinite) set of
subsumers to (finite) sets of different sizes. We have presented three examples of
(finite) sets of subsumers for the three new measures AtomicSim(-), SubSim(-)
and GrammarSim(-), in increasing order of cost. We also presented some ex-
amples of weighted similarity measures as an alternative or additional method to
limiting the infinite set of subsumers. A possible future path is to explore how
to use these weighted measures to measure similarity with respect to a certain
context.

We have shown, empirically, that some of the proposed similarity measures
are computationally expensive, especially when dealing with large ontologies.
However, they can perfectly be used in applications that do not require on-the-
fly computation of similarity. In addition, one of the possible future paths is to
further optimise the new similarity in order to reduce their cost. Indeed, it would
be very important to optimise the proposed similarity measures in order to use
them in applications that require on-the-fly similarity computation.

Our large-scale BioPortal experiment has also shown that it is likely (for over
12% of the ontologies) that using an expensive measure would be of no benefit
over using a cheap measure as they will yield exactly the same results. These

ontologies were too inexpressive. Hence, expressivity can be used to guide us in
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deciding when an expensive measure would make no difference. However, after
analysing the results of using the different measures over the whole BioPortal
corpus, we have reported that we have found no general indicators that can guide
us in choosing which similarity measure to use for a given ontology. Further
investigations are required to address this issue.

The proposed similarity measures can be also improved by extending their
utility to measuring similarity over multiple ontologies. For example, it remains
necessary to show how to extend the new measures to measure similarity of
two ontologies or two concepts in two different ontologies. Such an extension of
the new measures can be combined with lexical similarity measures to support

ontology alignment applications.

9.2.6 Developing a protocol to validate ontologies using
QG methods

In Chapter 8, we have evaluated the applicability and usefulness of QG methods,
not only to assessment applications, but for other applications as well. We have
shown, through a case study, that the generated questions can be useful for pur-
poses other than students’ assessment, e.g., ontology comprehension, validation
and development.

The presented case study is rather small and can be extended in different ways.
For example, more experts can be recruited which can allow to review a larger
number of questions. Ideally, the extended studies should involve comparisons
to a baseline to determine the percentage of errors that can be detected using
the suggested (QG-based method. In addition, we can measure the usefulness of
looking at the generated questions for ontology comprehension purposes by using

an independent testing procedure before and after looking at the questions.
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