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Abstract

Assessment is a well understood educational topic with a really long history and

a wealth of literature. Given this level of understanding of the topic, educational

practitioners are able to di↵erentiate, for example, between valid and invalid as-

sessments. Despite the fact that we can test for the validity of an assessment,

knowing how to systematically generate a valid assessment is still challenging and

needs to be understood. In this thesis we introduce a similarity-based method

to generate a specific type of questions, namely multiple choice questions, and

control their di�culty. This form of questions is widely used especially in con-

texts where automatic grading is a necessity. The generation of MCQs is more

challenging than generating open-ended questions due to the fact that their con-

struction includes the generation of a set of answers. These answers need to be

all plausible, otherwise the validity of the question can be questionable. Our

proposed generation method is applicable to both manual and automatic gener-

ation. We show how to implement it by utilising ontologies for which we also

develop similarity measures. Those measures are simply functions which com-

pute the similarity, i.e., degree of resemblance, between two concepts based on

how they are described in a given ontology. We show that it is possible to control

the di�culty of an MCQ by varying the degree of similarity between its answers.

The thesis and its contributions can be summarised in a few points. Firstly, we

provide literature reviews for the two main pillars of the thesis, namely question

generation and similarity measures. Secondly, we propose a method to automat-

ically generate MCQs from ontologies and control their di�culty. Thirdly, we

introduce a new family of similarity measures. Fourthly, we provide a protocol to

evaluate a set of automatically generated assessment questions. The evaluation

takes into account experts’ reviews and students’ performance. Finally, we intro-

duce an automatic approach which makes it possible to evaluate a large number

of assessment questions by simulating a student trying to answer the questions.
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Chapter 1

Introduction

“Judge a man by his questions rather than by his answers.”

- Voltaire

Asking a question could in many cases be harder than answering one. Indeed,

people do ask questions on a daily basis for di↵erent purposes. The challenge in

forming an appropriate question could be in some cases explained by knowing the

purpose of the enquiry. According to Greaser et al. [GRC08], questions can be

asked for the following purposes: (i) the correction of knowledge deficits (e.g., to

fill a gap in knowledge), (ii) the social coordination of action (e.g., to request a

permission), (iii) the control of conversation and attention (e.g., rhetorical ques-

tions) and (iv) the monitoring of common ground (e.g., to assess what a student

knows about a topic). We focus on the last, i.e., the generation of questions

to assess students’ knowledge. Generating such questions is challenging as they

must accurately measure complex and invisible mental representations of knowl-

edge and yet are expected to provide valid and reliable information upon which

important decisions can be made (e.g., college admission).

Economically speaking, it is estimated that the cost of developing one question

for a high-stake test, e.g., a nation-wide standardised test, can range from $1,500
to $2,000 [Rud10]. It has also been reported [Ach00] that a large amount of money

is increasingly spent on large-scale testing (e.g., US spending doubled from $165
million in 1996 to $330 million in 2000). In addition to its high cost, manual

assessment generation constitutes a significant part of the workload of educators.

It is expected that the time spent on test preparation could be utilised in better

ways. For instance, Randi Weingarten, the president of the American Federation

of Teachers, pointed out that “If educators spent less time on test preparation
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and testing, we could optimise that time for more instruction or for teachers to

collaborate and plan lessons” [Wei13].

A question in which a set of plausible answers are o↵ered to the student to

choose from is called a Multiple Choice Question (MCQ). Providing a set of

plausible answers might or might not make the question easier for the student as

we will see in detail later. However, preparing reasonably good answers definitely

requires more time and e↵ort from the question designer. Typically, a larger

number of MCQs is used in a single test compared to other kinds of questions,

e.g., essay questions. This makes MCQ exams hard to construct, despite the fact

that they have some advantages such as objectivity and ease of marking. We

primarily focus on developing methods to automatically generate this particular

type of questions.

It is expected that developing methods for the generation of assessment items

can provide an excellent stepping stone to the more general problem of generating

instructional content. Moreover, research on the automatic generation of MCQs

provides a good baseline for the generation of other kinds of questions such as

T/F questions, match questions and fill in the blank.

1.1 Multiple Choice Question (MCQ) genera-

tion

1.1.1 The what and why

Assessment is central to (specially modern) education. It it that part of education

concerned with measuring achievements in order to help educators to continually

reflect on and adjust the teaching and learning process, hence helping to provide

better education. There are di↵erent families of assessment which can be cate-

gorised by their central purpose [WT08]. The so-called formative assessment aims

at providing feedback both to students and teachers while summative assessment

is mainly used to certify the achievements of students. Evaluative assessment is

used to evaluate the quality of the educational institution or program.

Assessment items, i.e., questions, can be classified into two widely used types:

(i) Objective (e.g., MCQs or True/False questions) and (ii) Subjective (e.g., essays

or short answers) [Gro82]. Each family of questions has its own advantages and

disadvantages when considering the di↵erent phases of assessment, i.e., setting,
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taking and marking. On the one hand, objective tests can be used to assess a

broad range of knowledge and yet require less administration time. In addition,

they are scored easily, quickly and objectively either manually or automatically

and can be used to provide instant feedback to test takers. On the other hand,

objective questions are hard to prepare and require considerable time per each

question [SBD94]. For example, Davis [Dav01] and Lowman [Low95] pointed out

that even professional test developers cannot prepare more than 3-4 items per

day. In addition to the considerable preparation time, manual construction of

MCQs does not necessarily imply that they are usually well-constructed. See

for example the study carried out by Paxton [Pax00] who has analysed a large

number of MCQs and reported that they are often not well-constructed. For

example, she pointed out that some questions were badly worded, ambiguous or

contain (misleading) hints to a wrong answer.

An MCQ consists of a stem, a key and a set of distractors. The stem is the

main part of an MCQ which presents a question, a problem to be solved or an

incomplete statement to the students. The key is the correct (or best) answer; in

contrast to the distractors which are the wrong answers. This structured format

of MCQs lends itself to computerised generation. The core challenge in MCQ

generation is the generation of good distractors that must appear plausible to

a student who does not know the correct answer. For example, Sidick et al.

[SBD94] reported that it requires 5 minutes to prepare each distractor. Many

guidelines have been proposed to ensure the e↵ectiveness of distractors; however,

many major issues are still debatable such as the optimal number of distractors.

According to Haladyna and Downing [HD93], the percentage of questions with

three e↵ectively performing distractors ranged from only 1.1% to 8.4%. They

also concluded that two (functional) distractors may be just the natural limit

for human test developers. This indeed strengthen the need to develop alterna-

tive automatic test development methods. Moreover, if each distractor takes 5

minutes to prepare, as reported earlier by Sidick et al. [SBD94], then the time

needed to construct MCQs can be reduced considerably by limiting the number

of distractors. For example, preparing three distractors instead of five distractors

per item can save a total of 16 hours of work over 100 questions [SBD94]. MCQs

with fewer distractors can also reduce testing time. Alternatively, a larger num-

ber of items can be used in a single test. For example, Aamodt and McShane

[AM92] have estimated that the number of administered items in a fixed time
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can be increased from 100 to 112.4 items if we reduce the number of distractors

from 5 to 3. This in turn can provide better sampling of content. The theoretical

downside of having MCQs with fewer distractors is the increased guessability,

however it has been shown that MCQs with fewer distractors are not necessarily

less reliable nor less valid [SBD94]. Quality of MCQs is influenced by the quality,

rather than quantity, of distractors.

The automatic generation of MCQs in particular and assessment questions in

general can help to resolve many issues in students’ assessment. For example,

constructing a bank of questions of known properties can help to eliminate cheat-

ing by facilitating the preparation of di↵erent tests with similar properties (e.g.,

item di�culty, related content). Also, instead of using last years’ actual exams

as practice-exams, one can generate exams that resemble the original ones.

Developing automatic methods for question generation (QG) can indeed al-

leviate the burden of both paper-and-pencil and technology-aided assessments.

Of particular interest are large-scale tests such as state or nation-wide standard-

ised tests and tests delivered as part of Massive Open Online Courses (MOOCS).

Typically, these tests consist mainly of MCQs [SER13b]. In addition, di↵erent

modes of delivery (e.g., static, adaptive) can benefit from the automatic genera-

tion of questions. One of the promising applications is the delivery of questions

that adapt themselves to the abilities of test takers to measure their knowledge

in a shorter administration time [Urr77, HN10].

1.1.2 The how

Abstractly speaking, a QG system takes, as input, a knowledge source and some

specifications describing the questions to be generated. As output, it produces

questions which assess someone’s understanding of that knowledge and which

adhere to the given specifications. These specifications can include, for example,

the format of the questions, their cognitive complexity and di�culty.

As for the format of the question, we focus on single response (i.e., one key)

multiple choice questions with two or more distractors. This can be done in

two phases. Firstly, for each possible stem, all correct and incorrect answers are

generated. Secondly, combinations of these answers can be used to generate a set

of questions with the desired number of keys and distractors.

Generally, test designers try to generate questions that target a range of cog-

nitive processes (e.g., knowledge recall, reasoning). To achieve this, we do not
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focus in this thesis on a particular type of questions, but rather try to generate

a reasonable variety of questions (w.r.t. their cognitive level). We elaborate on

these design options in Chapters 3 and 4.

One of the necessary functionalities of automatic QG systems is the ability to

control the di�culty of the generated questions. This can help in generating tests

with properly balanced item di�culties. For example, Lowman [Low95] suggests

that only a few questions in any exam should be answered correctly by more

than 90% or less than 60% of students. In addition, automatic estimations of the

questions’ di�culty can help to advance research on adaptive assessment systems

which usually rely on training data to estimate the di�culty [HN10]. However,

generating questions of a certain di�culty is challenging. We address this chal-

lenge by developing a novel similarity-based theory of controlling MCQ di�culty.

In particular, we examine whether varying the similarity between the key and

distractors of each question can vary the di�culty of the generated questions.

We elaborate on this in the following sections and further in Chapter 3.

Two alternative sources are typically used for QG: unstructured text and on-

tologies. In addition, defective questions or old questions in question banks can

also be recycled to generate new better items. The QG workshop (2009) identified

raw text as the preferred knowledge source for the workshop participants [RG09].

However, a drawback of most existing text-based QG approaches is that they

are unable to generate good distractors from text and that they mostly generate

shallow questions about explicit information as it is di�cult to infer implicit rela-

tions using current NLP techniques. Existing attempts to generate questions from

text include [Ste91, Fai99, MH03, MAHK06, BFE05, HN05a, LWGH05, SSY05,

Hei11, AM14]. Similarly, many ontology-based QG approaches have been de-

veloped [CNB03, HMMP05, HMMP06, ZSRG08, PKK08, CT09, CT10, ZPK11,

AY11, AY14]. These approaches take advantage of the structured representation

of knowledge and the reasoning services o↵ered for ontologies to generate ques-

tions about implicit knowledge. However, there are still many opportunities to

take ontology-based QG approaches to the next level both theoretically and em-

pirically. In particular, we aim to develop principled methods for the generation

of valid assessment questions and control their quality and di�culty. We focus

on generating questions from ontologies and justify this design decision in the

following section with an illustrative example.
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1.2 Ontology-based MCQ generation

1.2.1 The what and why

The term “ontology” is increasingly rising to prominence in educational research.

For example, Figure 1.1 shows the increasing number of ontology-related peer-

reviewed articles in the ERIC1 database of educational publications since 1995.

Of course, ERIC’s resources capture only a small percentage of online publi-

cations and we expect that the overall number of ontology-related educational

publications to be proportional to the number of resources in ERIC database.

Figure 1.1: Number of ontology-related peer-reviewed articles in ERIC since 1995

So what is an ontology and why can it be fruitful for mining questions? The

Web Ontology Language (OWL)2 is a W3C standard since 2004 and is now part

of the Semantic Web stack which includes RDF, RDFS, SPARQL, etc. The

prior version of OWL was published in 2009. The current version, which is

referred to as OWL2, was published in 2012. An ontology is an engineering

artefact which provides formal and machine processable statements about the

basic notions of a domain of interest. In OWL ontologies, these statements are

referred to as axioms and they describe classes, properties, individuals and any

1http://eric.ed.gov/
2http://www.w3.org/TR/owl-overview/
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interesting relations between them. OWL ontologies are based on Description

Logics [BCM+07] which are decidable fragments of first order logic. This makes

an ontology a logical theory which allows us to infer implicit knowledge from the

explicitly stated knowledge. This reasoning is a key feature of ontologies which

makes them superior to other knowledge sources such as raw text. An example

of an ontology is presented in Figure 1.2 which is a visual representation of the

axioms in Example 1.1.

Figure 1.2: An example of a simple OWL ontology

Example 1.1
Hospital v HealthCareProvider, GPClinic v HealthCareProvider,

University v EducationProvider, School v EducationProvider,

Registrar v 9worksIn.Hospital, GP v 9worksIn.GPClinic,

T eacher v 9worksIn.School, Instructor v 9worksIn.University,

LuckyPatient v Patient u 9marriedTo.(9worksIn.HealthCareProvider),

Patient(Mark), T eacher(Nancy),

Registrar(David), GP (Sara),

treatedBy(Mark, Sara), marriedTo(Mark, Sara),

treatedBy(Nancy, Sara), marriedTo(Nancy,David)

Ontologies are usually developed with the help of domain experts who agree on
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how to describe the main concepts of the domain. Large and rich ontologies can

be re-used in di↵erent applications or di↵erent projects. For example, the average

number of projects per ontology in the NCBO BioPortal3 library of ontologies (as

in August 2014 and excluding ontologies with no recorded projects) is 3 with 52

being the maximum number of projects for a single ontology which is the Gene

Ontology.4

A considerable body of research has been devoted to di↵erent ontology-related

areas. This includes topics about the theoretical foundations of ontologies as well

as empirical studies. A growing body of research is also devoted towards ontology

applications. Research in this area can help in making ontologies more mature.

The e↵orts made in this field can help in realising the gaps in the current state

of ontologies and ontology services. For example, as part of this research, which

considers assessment as a potential application, we observed that there is a need

for developing similarity measures that can deal with expressive ontologies. We

provide more details on this topic in the following section.

Ontologies with potential educational value are available in di↵erent domains

such as Biology, Medicine, Geography, to name a few.5 However, ontologies are

typically not designed for educational use. Thus, there is a challenge in generating

useful instructional content from them. Consider the first attempt to re-use

a knowledge base from one context into another: the GUIDON [Cla83, Cla87]

program developed at Stanford University. The basic idea of the GUIDON project

is to re-use existing knowledge sources for tutoring purposes. One lesson we can

learn from this project is that recycling existing knowledge bases is not always

straightforward.

Similarly, we explore the possibility to generate assessment items from on-

tologies. Of course, there is still a lot to be done in developing ontologies for

various domains and topics. This means that in some cases, there is a need to

first build an ontology for a specific subject before utilising it for QG. Thus, there

is a trade-o↵ between the e↵orts required to build and maintain the ontology and

the overall advantage of single or multiple uses.

3http://bioportal.bioontology.org/
4http://www.geneontology.org
5For a list of ontology repositories, the reader is referred to:

http://owl.cs.manchester.ac.uk/tools/repositories/
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1.2.2 The how

A reasonable number of questions can be generated from the ontology in Exam-

ple 1.1. The generation can involve two steps: (1) generating question candidates

and (2) transforming the candidate questions to grammatically well-formed ques-

tions. The second step is out of the scope of this research. However, for read-

ability, we present below some stems that can be generated from the ontology in

Example 1.1 after making any necessary grammatical transformations.

1. Give an example for a health care provider.

2. What is a GP clinic?

3. Where does an instructor work?

4. To whom is Mark married?

5. Which one of the following definitions describe a lucky patient?

6. Nancy to David is as ........ to ........?

7. Instructor to University is as ........ to ........?

8. Name one of the lucky patients.

The above questions range from simple recall questions (e.g., 1-5) to questions

that require some sort of reasoning (e.g., 6-8). For each of the above stems, it

remains to specify a key and some suitable distractors. The challenge is to pick

distractors that look like plausible answers to those students who do not know

the actual answer. For example, for Question 4, the answers are expected to

be names of persons. Including distractors of the wrong sort such as names of

institutions, would make the correct answer stand out even for a low mastery

student. So we need a mechanism to filter out obviously wrong answers.

After seeing an example to generate questions from a toy ontology, we want

to know what is the case in real ontologies which are usually big and rich. For

example, the average number of axioms per ontology in BioPortal is 20,532 with a

standard deviation of 115,163 and maximum number of 1,484,923 [HPS11]. This

suggests that a considerably large number of questions can be generated from

a single ontology. We investigate this by generating some questions from a few

selected ontologies from BioPortal. The ontologies were selected according to the
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following criteria: (i) has a fair number of classes (i.e., 500-3000), (ii) recently

updated and (iii) actively used by 2 or more projects. This has led us to the fol-

lowing five ontologies: Units of measurement (2507 classes), Sequence types and

features (2032 classes), Plant Ontology (1553 classes), Amphibian gross anatomy

(700 classes) and Spider Ontology (577 classes). These ontologies were retrieved

from BioPortal in late 2011. From each ontology, we generated some MCQs us-

ing three approaches. The first approach, which will be referred to as the naive

approach, was proposed by Zitko et al. [ZSRG08] and is based on generating the

distractors randomly without filtering them. The second approach, which will be

referred to as the customised approach, was proposed by Papasalouros [PKK08],

and it utilises custom strategies to generate good (but limited) distractors. The

third approach, which will be referred to as the similarity approach, is based on

generating distractors according to a simple notion of similarity (e.g., sharing

common subsumers). Of course, due to the diversity of assessment questions,

we cannot aim to generate all possible questions. Rather, for our preliminary

investigation, we have generated only two forms of MCQs:

(i) Stem: What is X?, Key: a superclass of X, Distractors: 3 non-superclasses

of X.

(ii) Stem: Which of the following is X?, Key: a subclass of X, Distractors: 3

non-subclasses of X.

Table 1.1 shows how many questions were generated from each ontology using

the three approaches. Note that these questions may have redundant stems but

each question-stem pair has a di↵erent set of answers. The table also shows how

many questions could not be generated due to lack of a minimum of 3 distractors.

Clearly, a massive number of questions was generated from each ontology.6

The question that arises here is: are these questions all good? For example, we

expect the questions generated using the naive approach to be highly guessable

and thus of low pedagogical value. There is a trade-o↵ between generating all

the good questions (and possibly some bad questions) and generating only good

questions (and possibly decreasing coverage rate). For example, Figure 1.3 shows

the number of questions generated from the above ontologies using the similarity

6To calculate the number of unique stems generated from each ontology, multiply the number
of classes in that ontology by 2 then subtract the number of questions failed to be generated
from the ontology using the naive approach (column F-N in Table 1.1)
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Ontology G-N G-S G-C F-N F-S F-C
Units of mea-
surement

3.44005E+13 104,100,285,2 228,937,71 887 890 137,1

Sequence types
and features

2.32499E+13 503,531,581 287,034,5 204 210 771

Plant Ontology 7.07411E+12 472,131,950 896,546,1 134 140 701
Amphibian
gross anatomy

37,045,208,361 531,51 137,48 519 563 585

Spider Ontol-
ogy

330,712,156,64 102,847 164,99 261 325 376

Table 1.1: The number of questions generated (G) and number of questions failed
(F) to generate from 5 BioPortal ontologies using the three approaches naive (N),
Similarity (S) and Customised (C)

and customised approaches. As the Figure shows, the mechanism used for filtering

the distractors makes a big di↵erence. Questions arising here are: how good are

these approaches in filtering out bad questions and can these approaches be used

to control di�culty? We elaborate on these issues in the next section.

1.3 Similarity-based MCQ generation

1.3.1 The what and why

To generate pedagogically sound questions, i.e., of controlled di�culty, we need

a pedagogically plausible theory for selecting good distractors. Ideally, we want

students’ performance to correlate with their knowledge mastery (i.e., amount

and quality of knowledge). This means that di�cult questions are expected to

be answered correctly by high mastery students only while easy questions are

expected to be answered by both low and high mastery students.

One of the possible ways to control MCQs di�culty is to use some notion of

similarity for selecting distractors. The basic intuition is that o↵ering a set of

very similar answers makes it di�cult to distinguish the correct answer; hence, in-

creases the need to know more about the topic of the question. Also, it decreases

the possibility to identify the correct answer by ruling out obviously wrong an-

swers. Thus, to generate a di�cult question, we pick distractors with high simi-

larity to the key. And, to generate an easy question, we pick distractors with low
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Figure 1.3: Number of questions generated using the two approaches similarity
(S) and customised (C)

similarity to the key. In addition, similarity between the key and stem can play a

role in controlling the di�culty of MCQs, given reasonable measures of similarity

between the key and stem.

As an example, we would expect the di�culty of Question 4 above to increase

by providing a list of GP names as distractors since the correct answer “Sara”

is also a GP. So, someone who knows that Mark is married to a GP would still

need to know the exact name of that GP. This means that a student who knows

more about the subject of the question, performs better.

1.3.2 The how

The question that remains to be answered is how can we measure the similarity

between the key and distractors? One would expect that there is an impact for

using a particular (precise or imprecise) similarity measurement method on the

overall quality of the QG method. This is why it is very important to use a

“precise” similarity measure that takes into account all the knowledge we know

about the compared objects. However, designing a precise similarity measure

for ontologies is a big challenge. Looking at existing similarity measures (e.g.,

[RMBB89, Res95, Lin98, JC97, WP94, ODI07, Jan06, dSF08, dFE05, dFE06,
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LT12]), we found that no o↵-the-shelf existing method satisfies our requirements.

For example, some measures which we refer to as taxonomy-based measures

[RMBB89, WP94, Res95, Lin98, JC97] are imprecise by definition as they only

consider atomic subsumptions and ignore any complex subsumptions which can

a↵ect similarity computation. Other measures impose some requirements on the

ontology that can be used for similarity computation (e.g., low expressivity, no

cycles, availability of an ABox or external corpus of annotated text).

This has motivated us to develop a new family of similarity measures which

can be used with any ontology. The basic rationale of the new measures is

that similar concepts have more common and fewer distinguishing features. We

introduce our novel similarity measures in Chapter 5 and report on our findings

from using the new measures with over 300 ontologies in Chapter 6.

1.4 Topics and contributions of this thesis

The topic of this thesis is interdisciplinary in the sense that it is built upon

di↵erent areas such as pedagogy, psychology, AI, reasoning and Description Logics

ontologies. To increase the readability of the thesis, we choose to localise the

background and related work of each topic in the relevant chapters. The thesis

is structured around three main topics introduced in the following sub sections.

1.4.1 Foundations and methods of QG

The broad aim of this thesis is to advance the state-of-the-art in ontology-based

MCQs generation. Prior to the work presented here, most of the work on this

topic was unprincipled and lacked theory backing. This is why we devote Chap-

ter 3 for establishing the foundations of QG in general and in the context of

ontologies in particular. In the following chapter (i.e., Chapter 4) we describe

the landscape of ontology-based question generation and lay out some possible

design options. The chapter also justifies the decisions we made as part of this

research to design particular methods and algorithms to generate specific types

of assessment questions from ontologies.
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1.4.2 Measuring similarity in Ontologies

QG methods presented in this thesis depend on measuring the similarity between

various ontology concepts. However, we found no precise and widely applicable

o↵-the-shelf similarity measure. There was also a need for characterising exist-

ing similarity measures and understanding the possible problems associated with

them. Chapter 5 therefore focuses on formulating the problem of measuring sim-

ilarity in Description Logics Ontologies and presents a new family of similarity

measures that overcome the problems of previous measures. In Chapter 6 we

empirically examine the new measures with a large number of real ontologies and

compare them to existing measures. We introduce the notions of “expensive” and

“cheap” similarity measures and examine the new measures to find a cheap but

good measure.

1.4.3 Applicability of the developed QG and similarity

methods

The aim of the last part of this thesis is to investigate the applicability of the

methods presented in former parts of the thesis. The main context for the appli-

cability investigation is, of course, student assessment. We evaluate QG methods

in real class settings taking into account data gathered from both experienced

test developers and students. We also show that it is possible to automatically

evaluate the di�culty of the generated questions.

In addition, we investigate the applicability of the developed QG methods and

similarity measures for di↵erent ontology-related areas such as ontology compre-

hension, ontology development and ontology validation.
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Chapter 2

Preliminaries

This chapter lays out the basic terminology used throughout the thesis and briefly

introduces the core background notions. The chapter is structured around two

main topics: (i) ontologies and the logic formalisms that underpin them and (ii)

assessment questions and related pedagogical notions.

2.1 Description Logics and Ontologies

The terms below are ordered such that later terms build on top of or use earlier

terms. In what follows, we shed a light on some terms used to refer to the basic

components of an ontology and some other related notions. We fix both the terms

that are usually used in a DL context and the corresponding terms used in an

OWL context.

2.1.1 Nomenclature

As a starting point, let us introduce some terms which are commonly used in-

terchangeably although they each have unique meanings (at least in this thesis).

The goal is to arrive at an understanding of what is and is not an ontology. The

following terms all refer to knowledge representation (KR) approaches aimed at

defining a set of shared terms of interest in some domain. The approaches vary in

how formal and how expressive they are (with ontologies being the most formal

and most expressive).

A controlled vocabulary is a collection of terms, possibly with their unam-

biguous but informal definitions [Gar04, Pid14]. The collection is controlled by
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a registration authority which keeps it redundancy-free. No relations are defined

between the terms of a controlled vocabulary.

A taxonomy is a controlled vocabulary that is enriched with generalisa-

tion/specialisation relations or the so-called is a relations [Gar04, Pid14]. A tax-

onomy can be said to have a hierarchical structure.

A classification system is a taxonomy with the principles that underlie the

classification of concepts.

A thesaurus is a taxonomy that is enriched with more labels, in particular

with di↵erent kinds of relations (e.g., is a, associated with) [Gar04, Pid14]. In

this sense, thesauri have network structures.

A terminology is a thesaurus that is enriched with a glossary and further

explanations regarding concepts’ meanings. Those meanings can be defined in

di↵erent contexts which can help in promoting the consistent usage of terms.

An ontology contains concept definitions and general axioms which constrain

the possible interpretations of the defined concepts [Gru93]. In addition to con-

cept definitions and general axioms, an ontology can have knowledge about the

current state of the world [End01].

In general, a knowledge base, regardless of the formalism underlying it,

can refer to any of the above terms, e.g., it can be a taxonomy, a thesaurus, an

ontology or any other structured representation of knowledge.

Description Logics (DLs) are a family of KR formalisms that are equipped

with precisely defined semantics (usually model-theoretic semantics) [BCM+07].

In contrast, historical predecessors of DL knowledge bases (e.g., semantic net-

works and frames) have no precisely defined semantics [BCM+07]. In this sense,

a DL knowledge base is a logical theory which means that implicit knowledge can

be inferred from the explicitly stated knowledge. A DL knowledge base (KB),

which can also be called an ontology, is defined below.

Many DLs are decidable fragments of first order logic (FOL) [Bor96]. One of

the di↵erences between DLs and FOL is the variable free syntax of DLs. Moreover,

practical decision procedures for key inference problems have been developed even

for expressive DLs.

TheWeb Ontology Language (OWL) is the World Wide Web Consortium

(W3C) standard ontology language for the web which was standardised in 2004

[GHM+08]. This standard ontology language exploits DLs. This exploitation

is influenced by the need to provide ontologies with semantics and hence helps
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to make the Semantic Web vision a reality. In this sense, an OWL ontology

is a machine processable artefact. An OWL ontology can be mapped to a DL

knowledge base. However it must be noted that an OWL ontology can have more

components than a DL knowledge base (e.g., annotations, imports).

Di↵erent syntaxes [Hor10] have been developed for OWL such as the Manch-

ester Syntax which aims at providing a human-readable syntax [HGR+06]. For ex-

ample, a DL statement describing the concept of a lucky patient (LuckyPatient v
Patientu9marriedTo.Doctor) can be written in Manchester syntax as follows:

Class : LuckyPatient

SubClassOf : Patient and marriedTo some Doctor

In 2009, a second version of OWL (referred to as OWL2) was published

[GHM+08] and later updated in 2012. OWL 2 has di↵erent profiles (i.e., lan-

guage variants) with di↵erent expressivities, referred to as OWL 2 DL and OWL

2 Full. The DL which underpins OWL 2 DL is SROIQ(D) which has a worst

case complexity of N2ExpTime [MCGH+12] for core reasoning services. In order

to provide more practical reasoning services, subsets of OWL 2 DL were defined,

namely OWL 2 DL profiles [MCGH+12]. Each profile allows a restricted set of

constructors, hence compromises expressivity, to provide more e�cient reasoning.

Three main profiles are defined: OWL 2 EL (Existential Language), OWL 2 QL

(Query Language) and OWL 2 RL (Rule Language). The OWL 2 EL profile is

based on the EL family of DLs [BBL05] which benefits from tractable decision

procedures (PTime) for key reasoning problems [MCGH+12]. The OWL 2 QL

profile is based on the DL-Lite family of DLs [ACKZ09] and aims at providing

practical query answering (LOGSPACE w.r.t. data size) [MCGH+12]. The OWL

2 RL profile allows to implement scalable reasoning systems using rule-based rea-

soning engines [MCGH+12]. In this thesis, we refer to OWL 2 ontologies whenever

we use the term ontology, unless explicitly stated otherwise.

The growth in popularity of OWL motivated the development of a number of

optimised reasoners [GBJR+13] such as FacT++ [TH06], Pellet [SPCG+07], Her-

miT [SMH08], JFact,1 ELK [KKS11], MORe [RGH12], jCEL [Men12], Chainsaw

1http://jfact.sourceforge.net/
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[TP12], Konclude,2 Mastro [SLL+10], ELepHant [Ser13a], Ontop [Kon14], RAC-

ERPro [Haa12] to name a few.3 Di↵erent ontology editing and processing tools

and libraries have been developed as well such as Protégé,4 Swoop [KPS+05]

and the OWL API [BVL03]. Influenced by what can be referred to as maturity

of ontology tools, the interest in ontologies has spread from academia to indus-

try. Many ontology-based projects have been observed both in industry and in

non-profit national and international bodies. Examples include NASA’s SWEET

project (i.e., Semantic Web for Earth and Environmental Terminology),5 The

US National Cancer Institute thesaurus (NCIt),6 The General Motors variation-

reduction adviser [MCG+05] and NCBO BioPortal library of biomedical ontolo-

gies [NSW+09].

Atomic concepts, or FOL unary predicates, stand for sets of objects, e.g.,

Animals, Flowers and Courses. In the OWL context, a DL concept is called

a class. We use NC to denote the set of atomic concepts. This set usually

includes the Top concept > (OWL:Thing) and maybe the Bottom concept ?
(OWL:Nothing). Specifying the exact items of this set should be made clear

whenever it is referred to. Throughout this thesis, capital letters A and B (possi-

bly with subscripts) are used to refer to atomic concept names and, for concrete

examples, we write concept names in camel case with the initial letter capitalised.

Individuals, or FOL constants, stand for instances of classes, e.g., Tom and

Java101. We use NI to denote the set of individual names. Throughout this

thesis, lowercase letters a and b are used to refer to individual names and, for

concrete examples, we write individual names with the initial letter capitalised.

Roles, or FOL binary predicates, stand for relationships between objects,

e.g., worksIn, marriedTo and treatedBy. A DL role is called a property in

OWL. For practical reasons, properties are separated into two types: namely

object properties and datatype properties. Object properties are merely used to

describe relationships between objects while datatype properties relate objects to

instances of built-in datatypes such integers and dates. We use NR to denote the

set of role names. Throughout this thesis, the letters r and s are used to refer to

role names and, for concrete examples, we write role names in camel case with

2http://www.konclude.com
3for a list of DL reasoners: http://owl.cs.manchester.ac.uk/tools/list-of-reasoners/
4http://protege.stanford.edu
5http://sweet.jpl.nasa.gov/ontology
6http://ncicb.nci.nih.gov/NCICB/core/EVS
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an initial lowercase letter.

Complex concepts or concept expressions can be composed from atomic

concepts (and possibly roles) with the help of constructors (e.g., conjunctions u,
disjunctions t, negations ¬, existential restrictions 9, universal restrictions 8).
For example, to describe the class of doctors who are also married to doctors we

write: Doctor u 9marriedTo.Doctor. Each constructor can be used to convey

a specific meaning. Conjunctions (u) which are interpreted as set intersection

are used to describe objects that belong to two or more concepts simultaneously.

For example, the expression Doctor u Male refers to the objects who are both

doctors and males. Disjunctions (t) which are interpreted as set union are used

to refer to objects that belong to one concept or another (or both). For exam-

ple, Doctor tNurse describes the class of objects who are either doctors, nurses

or both. Negations or complements (¬) can be used to describe objects of the

complement of a concept. For example, ¬Male describes objects that are not

instances of Male. The concept expression (9worksIn.Hospital) can be used to

describe objects that have at least one worksIn relationship to some instance

of the concept Hospital (i.e., the filler or role successor). Similarly, the concept

expression (8treatedBy.Doctor) can be used to describe objects that only have

treatedBy relationships to doctors (including those who have no treatedBy rela-

tionships at all). Note that concepts can be defined using di↵erent combinations of

the above constructors to describe complex concepts (refer to Section 2.1.2 to see

a list of constructors supported by each DL). Note also that two concepts might

be logically equivalent although they are syntactically di↵erent. For example, the

concept ¬9worksIn.¬Hospital is equivalent to the concept 8worksIn.Hospital.

Throughout this thesis, uppercase letters C and D (possibly with subscripts) are

used to refer to (possibly) complex concepts.

Axioms are the basic elements of a DL ontology, i.e., an ontology is a (fi-

nite) set of axioms. They are statements that describe the relationships between

the di↵erent concepts, individuals and roles of an ontology. There are di↵erent

types of axioms which can occur in di↵erent “boxes” as we will see in detail

below. General Concept Inclusions (GCIs) are concept inclusions (i.e., impli-

cations) that allow complex concepts on both sides while definitions allow only

atomic concepts on the left-hand side. For example, Hospital t GPClinic v
HealthCareProvider is considered a GCI in contrast to the axiom Hospital ⌘
HealthCareProvider which can be specifically said to be a definition. GCIs
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can also be referred to as subsumption axioms (or subclass axioms in an OWL

context). Role Inclusions (RIs) are statements that specify relationships between

roles (e.g., hasBrother v hasSibling). Equivalence axioms are reducible to inclu-

sion (e.g., Sibling ⌘ BrothertSister is equivalent to Sibling v BrothertSister
and Brother t Sister v Sibling). Equivalences can happen between concepts

and/or role names, however, role equivalences are not allowed in OWL. Two spe-

cial axiom patterns are 9r.> v C and > v 8r.C which specify the domain and

range of a role r respectively.

If C is the domain of r, D is the range of r, and an individual a is related by

the r relationship to an individual b, then a and b are inferred to be instances of

C and D respectively. Moreover, an axiom is called a tautology if it is entailed

from any ontology, even an empty one (e.g., A v A).

A TBox contains all the axioms which describe relationships between con-

cepts. TBox axioms are said to be terminological, hence the name TBox. For

instance, the axiom Hospital v HealthCareProvider states that every instance

of the concept Hospital is also an instance of the concept HealthCareProvider.

Some definitions are said to be cyclic (i.e., contains cycles). For example, one can

define Humans as Human v 8hasChild.Human. Cycles can also be indirect,

e.g., C v 9r.D,D v C. If the TBox contains no cyclic definitions, it is referred

to as an acyclic TBox. A definitorial TBox is one which is acyclic, contains only

definitions (i.e., no GCIs) and have unique left hand sides of axioms (i.e., each

concept is defined only once).

An ABox contains all the axioms which describe relationships between indi-

viduals and concepts or between individuals and roles. ABox axioms are said to

be assertional, hence the name ABox. As an example, the axiom Doctor(David)

states that the individual David is an instance of the concept Doctor and the ax-

iom treatedBy(Mark,David) states that the individual Mark is in a treatedBy

relationship with the individual David.

An RBox contains axioms that describe relationships between roles. For

example, the axiom hasSister v hasSibling states that any instances that are

in a hasSister relationship are also in a hasSibling relationship.

A DL knowledge base K is a tuple: K = hT [R,Ai where T is a TBox, R
is an RBox and A is an ABox. It must be noted that the separation of KBs into

TBoxes, RBoxes and ABoxes has no logical consequence. Rather, it is meant to

make it easier to understand or re-use the KB. Note also that the axioms of a
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DL KB are said to be asserted axioms, compared to axioms that can be inferred

from the asserted axioms. For example, if the following axioms were asserted in

a KB (A v B,B v C), then it is possible to infer that (A v C).

Subconcepts are all the concepts that syntactically occur in a (possibly com-

plex) concept. For example, the concept Male u 9marriedTo.(Doctor tNurse)

contains the following subconcepts (in addition to the concept itself): Male,

9marriedTo.(Doctor t Nurse), Doctor t Nurse, Doctor and Nurse. Subcon-

cepts can also be defined for an ontology O as all the concepts that syntactically

occur in any axiom of O.

The signature of a concept, axiom or set of axioms is the set of terms (i.e.,

concept, individual and role names) which occur in the concept, axiom or set

of axioms, respectively. The signature of an ontology is the union of the sets

NC , NR and NI , i.e., the sets of concept, role and individual names that are

used in O. The symbol (⌃) is usually used to refer to a signature. A sig-

nature of an ontology O, axiom ↵, concept C can be denoted as eO, e↵ and
eC, respectively. As an example, consider the small ontology O = {Doctor v
9worksIn.Hospital, Patient v 9treatedBy.Doctor}. The signature eO in this

case is {Doctor, worksIn,Hospital, Patient, treatedBy}.
In OWL, a declaration is a statement that specifies that a specific term is

a class, object/data property or individual name; just as a programmer would

declare a variable in a program. Annotation properties are statements that

contain information about a resource (e.g., an ontology, concept or individ-

ual). For instance, the following annotation properties are predefined by OWL:

owl:versionInfo, rdfs:label, rdfs:comment, rdfs:seeAlso, rdfs:isDefinedBy. Indeed,

ontology engineers can define new annotation properties in their ontology as de-

sired. Imports are one type of annotation properties which are usually specified

in the header of an ontology. They allow us to include other ontologies as part

of the current ontology [HPSMW07]. This allows us to e↵ectively manage sepa-

rate fragments of one ontology or make use of previously coded knowledge. The

statement <owl:imports rdf:resource=ImportedOntologyURI> is used to import

the ontology which is specified by the URI in the rdf:resource parameter. The

imports closure of an OWL Ontology is T [R [A.
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2.1.2 Basic Description Logics

As highlighted above, DLs are a family of logic-based formalisms. A specific

DL language is characterised by the set of permitted constructors and axiom

types. Accordingly, DLs can be classified into lightweight DLs (e.g., EL), highly
expressive DLs (e.g., SROIQ) and some DLs in between. There is sometimes

a tradeo↵ between expressivity and tractability of reasoning [LB07]. On the one

hand, lightweight DLs have limited expressive power but they have polynomial

time worst case complexity for core reasoning services [BBL05]. On the other

hand, some DLs with high expressive power are intractable [BBL05].

2.1.2.1 Syntax and semantics

The DL language ALC (attributive language with complement) [SS91] is the

smallest DL which is propositionally closed (i.e., can express all boolean set oper-

ations such as intersection, union and complement). We describe the syntax and

semantics of the DL ALC as an example and introduce other DLs in the following

section. The following concepts are well-formed ALC-concepts:
> | ? | A | C uD | C tD | ¬C | 9r.C | 8r.C

where A 2 NC , C and D are ALC-concepts and r 2 NR.

The semantics of ALC-concepts can be defined using interpretations. An

interpretation I is a pair I = h�I , ·Ii where �I is the interpretation domain and

·I is the interpretation function. The interpretation domain�I is a non-empty set

of interpretation elements (i.e., instances or objects). The interpretation function

·I maps each concept name A to an extension AI ✓ �I , maps each role name r to

a binary relation on �I and maps each individual name to an element aI 2 �I .

Then ·I is extended to complex concepts according to Table 2.1.

An interpretation I satisfies an axiom ↵ = C v D if CI ✓ DI . In this case,

we say that I is a model of ↵, denoted I |= ↵. An interpretation I is said to be

a model of O if it satisfies all the axioms of O, denoted I |= O. We say that an

axiom ↵ is entailed by an ontology O, denoted O |= ↵ if I |= ↵ for every model

I of O.

The name and syntax of each ALC constructor along with the corresponding

model-theoretic interpretations are provided in Table 2.1.

Structural equivalence is a notion in OWL which captures that the order of

operands used to define a concept is not important, hence would have no logical

consequence. For example, the concept Doctor uMale and the concept Male u
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Constructor Syntax Semantics
Top concept > �I

Bottom concept ? ;
Concept negation ¬C �I \ CI

Concept intersection (conjunction) C uD CI \DI

Concept union (disjunction) C tD CI [DI

Existential restriction 9r.C {x | 9y.hx, yi 2 rI ^ y 2 CI}
Universal restriction 8r.C {x | 8y.hx, yi 2 rI ! y 2 CI}

Table 2.1: The syntax and semantics of ALC constructors

Doctor are said to be structurally equivalent (denoted DoctoruMale ⌘s Maleu
Doctor). Similarly, the concept 9marriedTo.Doctor t 9marriedTo.Nurse and

the concept 9marriedTo.Nurset 9marriedTo.Doctor are equivalent and would

be considered repetitions. Also, we say that two ontologiesO1, O2 are structurally

equivalent if they contain only structurally equivalent axioms (denoted O1 ⌘s

O2).

Logical equivalence refers to the property which states that two sets of

axioms have the same models. For example, the single axiom A v B u C is

logically equivalent to the two axioms A v B,A v C. To denote two logically

equivalent ontologies O1 and O2, we write O1 ⌘ O2.

2.1.2.2 Naming conventions

The DL AL is a restricted version of ALC which disallows full complements (i.e.,

it allows complements of atomic concepts only) and full existential restrictions

(i.e., it allows limited existential restrictions which only allow > as a filler, e.g.,

9r.>) [BCM+07, GPFLC04].

For historical reasons, early DLs such as the frame-based FL family of lan-

guages regard universal restrictions as an important part of the language as it cor-

responds to the slots of the old style frame structure. For instance, the DL FL�

can be constructed from AL by disallowing limited complements [BL04, LB07].

And the DL FL0 further disallows limited existential restrictions [GPFLC04].

However, both DLs allow universal restrictions; just as the DL AL does. Later,

it has been observed that many well-situated medical ontologies (e.g., Gene Ontol-

ogy (GO) [ABB+00], SNOMED [SC97] and GALEN [RNG93]) do not use univer-

sal restrictions but rather use existential restrictions. It has been also noted that
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these ontologies do not use disjunctions (which imply non-determinism). There-

fore, the EL family of languages [Bra04] has been introduced. This lightweight

family of DLs disallow the use of universal restrictions and disjunctions (and thus

negation); while allowing conjunctions and existential restrictions only. This fam-

ily of DLs, including EL+ [BLS06], are characterised by the polynomial complex-

ity of standard reasoning problems.

Each DL language is named such that the name itself roughly describes the

capacity of the language (i.e., permitted constructors and axiom types). The use

of one or more of the following letters indicates this:

• S: is an abbreviation for the DL language ALC+ [Sat96, HST00a] (i.e.,

ALC extended with transitive roles; see below for an example of transitive

roles).

• U : indicates that concept unions (i.e., disjunctions) are allowed in a DL.

• E : indicates that full existential restrictions (i.e., existential restrictions,

such as 9r.C, with fillers C other than >) are allowed in a DL.

• C: indicates that full complements (i.e., complex concept negations) are

allowed. Note that a DL which allows concept complements and intersec-

tions is semantically equivalent to a DL that allows concept unions (e.g.,

¬(¬C u¬D) ⌘ C tD, by De Morgan’s Law). Similarly, a DL which allows

concept complements and universal restrictions is semantically equivalent

to a DL that allows existential restrictions (e.g., ¬8R.¬C ⌘ 9R.C). For

this reason, the DL which allows full complements, disjunctions, conjunc-

tions, universal restrictions and full existential restrictions is named as ALC
rather than ALUE .

• N : indicates the availability of number restrictions (i.e., at least and at

most constructors). For example, the concept � 5hasFriend describes

the class of individuals who have at least 5 friends. Similarly, the concept

 2hasFriend describes those individuals who have at most 2 friends. Note

that nothing is being said about the properties of those friends.

• Q: indicates that qualified number restrictions are allowed. These restric-

tions are an extended version of number restrictions which further allow us

to specify the type of the role filler. For example,  2hasFriend.Doctor



2.1 Description Logics and Ontologies 42

specifies those individuals that have at most 2 friends who are also doctors.

Note that the concept � 1hasFriend.Doctor is semantically equivalent to

the concept 9hasFriend.Doctor.

• H: indicates that role hierarchies are allowed. These are referred to as sub-

properties in the context of OWL (denoted rdfs:subPropertyOf). For ex-

ample, hasHusband v hasSpouse indicates that the property hasHusband

is a subproperty of hasSpouse. A logical consequence of this can be ex-

plained as follows: if hasHusband(Eve,Adam) has been asserted, then

hasSpouse(Eve,Adam) can also be inferred.

• I: indicates that inverse roles (e.g., hasHusband� ⌘ hasWife) are al-

lowed. This allows us to use one role in both directions. For example,

9hasHusband.Doctor refers to individuals who have doctor husbands, while

9hasHusband�.Doctor refers to those individuals who are husbands of doc-

tors.

• R: indicates the availability of limited complex role inclusion axioms, reflex-

ive and irreflexive roles, and role disjointness (e.g., as in the DL SROIQ
[HKS06]). For example, the following role inclusion axiom hasParent �
hasRelative v hasRelative indicates that a relative of a parent is also a

relative. Reflexive roles allow us to specify that a role must relate an in-

dividual to itself (e.g., similarTo as an individual is similar to itself but

it can also be similar to other individuals). On the contrary, an irreflexive

role must not relate an individual to itself (e.g., hasSibling as one cannot

be a sibling of oneself). Examples of disjoint roles include hasHusband and

hasWife as one cannot be a husband and a wife of another individual at

the same time. Examples of the uses of such constructors in the context of

OWL can be found in [Hor11b].

• F : indicates that functional roles are allowed. For example, to indicate

that a role (e.g., hasHusband) is functional, we can use the following ax-

iom: > v 1hasHusband which means that an individual can be in a

hasHusband relation to one individual only. If an ABox contains the two as-

sertions hasHusband(Nancy,David) and hasHusband(Nancy, John), then

it can be inferred that David and John are the same individual.
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• O: indicates the availability of nominals which allow us to construct con-

cepts out of individuals. For example, {SaintMarysHospital} is a concept

which has only one instance, namely SaintMarysHospital.

• (D): indicates that datatypes are allowed (e.g., boolean, integer, float, date,

time).

• +: indicates the availability of transitive roles [Baa91] (e.g., hasFriend �
hasFriend v hasFriend which means that a friend of a friend is also a

friend).

For example, the DL SIN [HST98] extendsALC+ with inverse roles and num-

ber restrictions. The DL SHIF [HST00a, Tob01, HPS03] extends ALC+ with

role hierarchies, inverse roles and functional roles. The DL SHIQ [HST00b,

HS04] extends ALC+ with role hierarchies, inverse roles and qualified number

restrictions. The DL SHOIN (which underpins OWL) [HST99] extends ALC+

with role hierarchies, nominals, inverse roles and number restrictions. The DL

SROIQ (which underpins OWL2) [HKS06] extends ALC+ with limited com-

plex role inclusions, reflexive and irreflexive roles, role disjointness, antisymmet-

ric roles, negated role assertions, nominals, inverse roles and qualified number

restrictions.

2.1.3 Reasoning problems

2.1.3.1 Standard reasoning problems

A reasoner is a piece of software which, given a set of asserted axioms, is able

to provide a yes or no answer to the following questions, which are considered

standard reasoning problems:

• Entailment: Is an axiom ↵ entailed by an ontologyO, denotedO |= ↵? By

definition, the answer is no if there exists a model I of O where I 6|= ↵ (this

case is referred to as a non-entailment). Given a DL L, the deductive

closure, denoted O⇤
L, is the set of all axioms in L that are entailed by an

ontology O.

• Subsumption: Is a concept C subsumed by a concept D with respect

to an ontology O, denoted O |= C v D? Note that this is a special
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case of entailment checking. It should be noted also that the number of

subsumers D of a concept C where O |= C v D is infinite, as is the

deductive closure (i.e., infinite). In some cases it is desired to get a finite

set of subsumers for a concept C. In such cases we set a language L such

that the set L-subsumers of C is finite. Testing for equivalence (e.g.,

O |= C ⌘ D?) is similar to performing two subsumption tests O |= C v D

and O |= D v C. Classification refers to the process of computing all

subsumption relationships between all atomic concepts in the signature of

O.

• Disjointness: Is a concept C disjoint with a concept D with respect to

an ontology O, denoted O |= C uD v ?? Again, this is a special case of

entailment checking.

• Satisfiability: Is a concept C satisfiable, denoted O 6|= C v ? ? For

example, a concept C can be unsatisfiable if it was entailed to be subsumed

by two disjoint concepts D and ¬D, denoted O |= C v D u¬D. Note that

subsumption checking can be reduced to satisfiability checking in DLs that

allow concept intersections and negations (e.g., C v D i↵ C u ¬D is un-

satisfiable). Similarly, disjointness checking can be reduced to satisfiability

checking by checking if C uD is unsatisfiable.

• Instantiation: Is an individual a an instance of a concept C in an ontology

O, denoted O |= C(a)? Realisation refers to the process of computing

all instantiation relations for all individuals and atomic concepts in the

signature of O.

• Coherence: Is an ontology O coherent? The answer is yes if there are no

unsatisfiable concept names in O and no (i.e., incoherent) if there is some

unsatisfiable concept name C in O.

• Consistency: Is an ontology O consistent? The answer is yes if there

exists a model I of O. The answer is no (i.e., inconsistent) if there is no

model of O, denoted O |= > v ?. It should be noted that an inconsistent

ontology entails everything. Note also that satisfiability, subsumption and

instantiation can be reduced to consistency checking for DLs which allow

concept intersection and negation. A concept C is unsatisfiable with respect

to O i↵ O[{C(i)} is inconsistent for i /2 eO. A concept C is subsumed by a
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concept D with respect to O i↵ O [ {C u ¬D(i)} is inconsistent for i /2 eO.

Finally, an individual a 2 eO is an instance of a concept C i↵ O [ {¬C(a)}
is inconsistent.

A reasoning problem is said to be decidable for a DL if there exists a decision

procedure that returns a yes or no answer after a finite amount of time.

Historically, early DL reasoners, implementing the so-called structural sub-

sumption algorithms [BS01], were e�cient (i.e., polynomial) and sound but in-

complete. That is, they cannot detect all existing subsumption relations in ex-

pressive DLs. The basic idea of such algorithms is to normalise the concept

descriptions and then structurally compare the normalised concept descriptions

[Neb90, BBL05, Sun11]. Later, Tableaux algorithms [BS01] (along with practi-

cally e�cient optimisation techniques) for key reasoning services were developed.

The first tableaux algorithm was proposed for the DL ALC [HNS90, SS91] and

later generalised for other DLs [DGL96, Hor97, HST00a]. Such algorithms try

to construct a model of a concept C for which satisfiability checking is required.

The concept is first transformed into its negation normal form (NNF). The con-

structed model is represented as a tree in which nodes represent individuals and

edges represent role successorships. A node Nodex for individual x is labeled with

the concepts that must be satisfied by the individual x. The algorithm recursively

applies the so-called expansion rules and terminates when it finds either a model

of C (i.e., no more rules can be applied) or a clash (i.e., C cannot be satisfiable).

The expansion rules try to decompose the concepts in the node labels and expand

the tree accordingly. The number of rules depends on the number of constructors

allowed by a particular DL (i.e., each rule is usually associated with one con-

structor). A clash is found when the algorithm adds two contradictory concepts

to the labels of a node (e.g., both D and ¬D). Other Tableaux algorithms also

exist and the ones that have been developed are sound, complete and terminating

[HST00a].

2.1.3.2 Non-standard reasoning services

In addition to the above reasoning services which are usually referred to as “stan-

dard”, the related literature also introduces some non-standard reasoning services

[BKM99, BTK03, SC03]. We explore some of these services which have been re-

ferred to in this thesis.
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• The Least Common Subsumer (LCS) of some concepts C1, ... , Cn

w.r.t. an ontology O is the “least” concept description D expressible in

a considered DL that subsumes the concepts C1, ... , Cn. D must be

a subsumer of those concepts (i.e., O |= Ci v D for i = 1, ..., n). And

to ensure that D is the “least” subsumer, another condition is added as

follows: if there exists a concept description E that is expressible in the

considered DL s.t. O |= Ci v E for i = 1, ..., n then E must be a subsumer

of D (i.e., D v E). Finding the least common subsumer is considered a

well understood problem for which various algorithms have been proposed;

see for example [BK98, BKM99, Baa03, BST04, TZ13, ZT13].

• The Most Specific Concept (MSC) of some individual a w.r.t. an on-

tology O is the “least” concept description C expressible in a considered

DL that has this individual as an instance (i.e., O |= C(a) and if there

exists a concept description D that is expressible in the considered DL s.t.

O |= D(a) then C v D) [BK98, Baa03]. Finding the most specific concept

along with the least common subsumer is said to be useful in bottom-up

development of ontologies. For example, before adding a new concept, an

ontology developer can start by suggesting example individuals for that

concept. To help the developer to find a suitable position for the new con-

cept, the most specific concepts for each individual are first computed for

the developer. Then, the least common subsumer of all the most specific

concepts is also computed [Baa03].

• Justifications are associated with entailments. In particular, a set of ax-

ioms J is said to be a justification for an entailment O |= ↵ if J ✓ O,

J |= ↵ and J is minimal (i.e., there is no J 0 ⇢ J s.t. J 0 |= ↵)

[SC03, BPS07, Hor11a, Bai13]. Justifications can help us in understanding

why a particular entailment holds and are considered when an unwanted

entailment needs to be repaired. However, it must be noted that more than

one justification can be extracted for each entailment.

2.1.4 Ontology modularisation

A module M for an ontology O is a subset M ✓ O which contains a set of axioms

“relevant” to a particular signature ⌃ ✓ eO. For example, given an ontology O
and a seed signature ⌃ = {A,B}, one might be interested in extracting a module,
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say O⌃ ✓ O, which preserves all (and only) entailments relevant to concepts A

and B (i.e., all axioms whose signatures contain A, B). In this case, O⌃ is

expected to be much smaller, hence easier to process, than O. There are many

promising applications for ontology modularisation. For instance, let us assume

that we have a rather large and general ontology O1, from which we would like

to extract a relatively small part to be imported in another ontology O2. The

goal in this case is to import only the part of O1, say O0
1, which is relevant to

O2 aiming at getting a self-contained, yet compact, ontology O0
1 [ O2. Another

interesting application is to use modularisation techniques to decompose large

ontologies (e.g., for collaborative development, ease of human comprehension,

e�cient reasoning ... etc.). The rationale behind ontology decomposition is that

consuming an ontology in parts is much easier than consuming it at once; both

for humans and reasoners. The growing concern about the complexity of some

ontologies is a typical motivation for such applications.

Ontology modularisation is an area that is well-understood and many existing

modularisation techniques have already been developed [CGPSK06, CGHKS07,

CGHKS08, SSZ09, KLWW13, GKW13].

2.1.4.1 Notions and properties of modules

In general, modularisation techniques are either syntactic or semantic. Syntax-

based modularisation techniques are considered cheap approximations of semantics-

based techniques.

A family of (syntax and semantics)-based approaches are the so-called locality-

based modules [CGHKS08]. The core properties of locality-based modules are as

follows:

• They preserve all entailments relevant to a particular signature.

• They can be e�ciently extracted (especially syntax-locality-based modules

for acyclic terminologies).

• They are not necessarily minimal (i.e., may contain some irrelevant axioms

as well, e.g., tautologies).

• For a given signature, it is guaranteed that a unique and minimal module

exists.
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2.1.4.2 Modularisation for QG and similarity methods

With all the above being said about ontology modularisation, one can think of

many advantages that can be gained from using modularisation techniques for

QG purposes. For instance, rather than generating questions arbitrarily from

an ontology O, one can attempt to decompose it into di↵erent “topics” and

then generate questions that are nicely categorised according to existing topics.

This can be done by extracting questions from the decomposed ontology rather

than the whole ontology. This can allow, for example, for an easier navigation

through the generated questions. In a di↵erent scenario, we might be interested

in generating questions from a specific part of O, especially if O is large, and

probably not all of its parts are relevant to a particular course. This can be done,

safely, by generating questions from the relevant module [DVPS12]. Or let us

assume that we are interested in generating questions about the core or most

important concepts of an ontology. One possible option is to utilise the Atomic

Decomposition (AD) [DVPSS11] which is a dependency graph representing the

modular structure of an ontology. To illustrate the idea of utilising the AD

to extract the core concepts of an ontology, we re-use an example presented

in [DVGK+11]. The example ontology is shown in Figure 2.1 and its atomic

decomposition is shown in Figure 2.2. From Figure 2.2, we can infer that the

concept Animal is a core concept in this ontology as all the other concepts in

this ontology depend on it. In the same sense, Person is the second important

concept in this ontology.

Figure 2.1: An example to show how to compute the AD of an ontology
[DVGK+11]

In terms of similarity measurement, modularisation techniques can also play

an interesting role. For instance, to measure the similarity of two concepts C,
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Figure 2.2: The AD of the ontology presented in Figure 2.1 [DVGK+11]

D in an ontology O, it is su�cient to look only at the module OC,D ✓ O which

is relevant to those two concepts instead of taking the whole ontology O into

account. The goal in this case is to improve performance, assuming that the

extracted module OC,D is much smaller than O. As we will see in Chapter 5, in

this thesis we present a new family of similarity measures in which, to measure

the similarity of two concepts C, D, the new measures compute two sets S(C),

S(D) which contain the subsumers of C, D, respectively. We know that locality-

based ?-modules preserve the subsumers of the concepts in the seed signature

[CGHKS08]. So if O |= C v E, where E is a concept expressible in a considered

DL, then extracting a module OC with a seed signature ⌃ = {C} also guarantees

that OC |= C v E. Therefore, computing the subsumers sets S(C), S(D) using

a ?-module OC,D with a seed signature ⌃ = {C,D} rather than using O is, first,

su�cient (i.e., results in equivalent subsumers sets) and, second, expected to be

much more computationally e�cient.

2.2 Questions and students’ assessment

In the following sections we introduce the core educational terms and techniques

used throughout this thesis.



2.2 Questions and students’ assessment 50

2.2.1 Basic concepts

In this thesis, the term assessment refers to educational assessment; in partic-

ular, assessing students’ learning achievements. Generally speaking, educational

assessment is about measuring knowledge, skills and attitudes [VH10]. It can

be conducted on di↵erent levels of granularity, e.g., for individual learners, for a

group of learners or for an educational institution/system. We focus on measur-

ing learners’ knowledge. With the increasing desire to achieve high standards in

education, greater focus is put on educational assessment which is seen as a way

to achieve better education [Bro94, WCG01, VH10].

Given the di↵erent purposes of assessment, we categorise assessment activities

as follows:

• Diagnostic assessment or initial or preformative assessment aims at mea-

suring learners’ knowledge prior to teaching in order to tailor teaching ac-

tivities according to learners’ needs [Scr91].

• Formative assessment is ideally conducted throughout the teaching to

provide feedback on how students are progressing in learning but it is not

necessarily used to rank students. This can be done through the so-called

self-assessment, peer-assessment or by teachers [Scr91]. Formative as-

sessment is also referred to as assessment for learning [Ear03].

• Summative assessment is carried out to quantify students’ achievements

and translate that to pass or fail marks [Scr91]. Summative assessment is

also referred to as assessment of learning [Ear03].

In this thesis, we use the terms assessments, tests and exams interchangeably.

We consider written, rather than oral, forms of tests. This distinction is important

because similarity, or the ability to distinguish between di↵erent concepts, is one

of the main pillars upon which this thesis is built. This ability to distinguish

between concepts can be a↵ected by how these concepts are communicated to

the examinee, whether in written or spoken form. Consider for example words of

similar sounds such as mat and cat which might have low semantic similarities.

In contrast, cat and dinosaur have more common features although they sound

di↵erently.

Standardised tests are usually used to provide consistent and fair results

among students in large cohorts. Examples of standardised tests include, in the
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Table 2.2: A sample multiple-choice analogy question [GRE]

Stem: Cat: Mouse

Options: (A) Lion: Tiger
(B) Food: Warmth
(C) Bird: Worm
(D) Dog: Tail

Key: (C) Bird: Worm

UK, the General Certificate of Secondary Education (GCSE), and in the US, the

Graduate Record Examination (GRE) and the Graduate Management Admission

Test (GMAT), to name only a few.

A test is made up of one or more test items or questions. These items can be

categorised as objective or subjective. Objective questions can take di↵erent

forms, for example, True/False or Multiple Choice Questions. An example of a

subjective question is an essay. Objective questions, by their nature, are less

biased than subjective questions because there is less variation in their marking.

There is a pre-defined correct answer in objective questions while the correct

answer in subjective questions can be expressed in di↵erent ways. In other terms,

there is usually only one way to mark objective questions which means that no

matter who is the marker, students should get the same result, excluding errors.

However, it is also important to note that the quality of objective questions is

influenced by the quality of their pre-defined answers.

A Multiple Choice Question (MCQ) is a tuple MCQ = hS,K,Di where
S is a stem, K is a key and D is a set of distractors.

A stem is the part of a Multiple Choice Question which refers to the statement

that introduces a problem to a student. A key refers to the correct answer(s).

Distractors refer to a set of incorrect, yet plausible, answers.

An analogy question is a specific form of MCQs in which the stem and

answers take the form X is to Y where X and Y are two concepts. The student

is asked to locate the answer in which the underlying relation between the pair

of concepts is similar to the underlying relation between the concepts in the

stem. The di�culty of answering such questions can be a↵ected by the degree

of similarity between the correct answer and the stem as well as the degree of

similarity between the correct answer and the distractors. An example of an

analogy question is presented in Table 2.2.
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2.2.2 Classification of assessment questions

To build a QG tool, we need some sort of a classification system to describe

the desired questions. We summarise the classification of questions presented as

part of the Question Generation campaign (2008) [GRC08]. This classification

integrates some of the proposed schemes in artificial intelligence, computational

linguistics, education, and cognitive science.

2.2.2.1 Purpose

Graesser et al. [GRC08] list the purposes of questioning as follows: (i) the correc-

tion of knowledge deficits (e.g., to fill a gap in knowledge such as asking “Where

is the library?”), (ii) the social coordination of action (e.g., to request a permis-

sion by asking “Can I borrow your pen?”), (iii) the control of conversation and

attention (e.g., rhetorical questions such as asking “Are you OK today?”) and

(iv) the monitoring of common ground (e.g., to assess a student by asking “Were

dinosaurs carnivores?”). In this thesis, we focus on the last, i.e., the generation

of questions to assess students’ knowledge.

2.2.2.2 Type of information

Following on what was proposed by Lehnert [Leh77] and by Graesser & Person

[GP94], Graesser et al. [GRC08] categorise questions to 16 categories that range

from simple to complex questions. These categories are grounded in empirical

studies carried out by Graesser & Person [GP94]. The categories are presented

in Figure 2.3

In this thesis, we do not necessarily cover all the proposed categories but

try to focus on some basic categories that can be easily extended to cover more

categories. Details of the questions that will be focused on in this thesis will be

presented in Chapter 4.

2.2.2.3 Source of answer

Does the student need to refer to a source of knowledge such as a text or a

teacher to know the answer or does it come from world knowledge or common

sense? In this thesis, we focus on generating questions for which the answer is in

the ontology used for question generation.
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Figure 2.3: Classification of questions [GRC08]

2.2.2.4 Length of answer

Questions di↵er in terms of the expected length of answer. For example, the

answer can be lengthy as in essays or it can be short as in “fill in the gap”

questions. In this thesis, we focus on multiple choice questions in which the

answer is provided as part of the question. Mostly, the answer is limited to

concept names or short concept expressions.

2.2.2.5 Cognitive process

Bloom’s taxonomy of educational objectives [BK56] is commonly used to classify

questions according to the cognitive process involved in answering the question.

Aiken [Aik82] argues that, although it is certainly easier to write MCQs for knowl-

edge recall, it is also possible to build MCQs that target higher order educational

objectives. In this thesis, we mainly focus on knowledge recall questions but also

show that it is possible to use the developed methods to generate more complex

questions.
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2.2.3 Evaluation of assessment questions

To evaluate assessment questions, we first need to know “what makes an exam

or a question good?”. In other terms, we need to know the quality metrics for

evaluating assessment questions. Then we need to know the statistical methods

which can be used to measure these quality metrics.

2.2.3.1 Quality metrics

Turnbull et al. [TGM98] summarise the desirable attributes for an ideal assess-

ment tool as the following: (i) Validity, (ii) Reliability, (iii) Accountability, (iv)

Flexibility, (v) Comprehensiveness, (vi) Feasibility, (vii) Timeliness and (viii) Rel-

evance. Consistent with that, the Joint Committee on Standards for Educational

Evaluation [oSfEE03] describes a good assessment as: proper, useful, feasible,

and accurate. The last-mentioned includes validity and reliability.

Reliability refers to the reproducibility of test results. A common cause of

low reliability of tests is the subjectivity of questions which in turn makes it

possible for a given test to yield di↵erent results based on who marks the test.

Reliability is usually measured in a scale from 0 to 1. A test of low reliability

means that the test is totally independent of examinees’ performance.

Validity refers to the ability of a test to measure what it is intended to

measure. A common cause of low validity of tests is the unbalanced coverage of

the topics to be assessed. Reliability is a necessary but not su�cient condition

for validity. For example, a test of language proficiency is said to be reliable

if it yields consistent results if administered multiple times over a short period

to the same cohort of examinees; assuming that language proficiency does not

change massively in short periods of time. If this test does not yield consistent

results each time, then we cannot say that it is valid; simply because it does not

measure what it is supposed to measure, i.e., language proficiency. An example of

a reliable but not valid test for language proficiency is using examinees’ heights to

estimate their language proficiency. It yields consistent results over short periods

of time, yet it does not estimate their language proficiency.

Accountability refers to the ability of a test to provide logical explanations

for its results to all the stakeholders involved such as students, parents and edu-

cators [VH10].

Flexibility refers to how versatile a test is. A flexible test is suitable to be

administered multiple times and in multiple settings.
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Feasibility of a test is a fundamental feature of an assessment to facilitate

its implementation. It describes how practical and cost-e↵ective a test is.

Comprehensiveness refers to the scope of assessment. Consistent with what

we have described as a main cause of invalidity of tests, this feature highlights

the importance of properly covering what is meant to be assessed.

Timeliness relates to the time of delivering or administering the assessment.

Ideally, there should be no delays in assessments and students should be assessed

close to the time when they are expected to have achieved the learning goals

[VH10]. Similarly, feedback should be given to students promptly so that they

can make the most of it.

Relevance refers to the significance of a test and how important it is in

achieving the objectives of the di↵erent stakeholders.

In addition to the above attributes for evaluating the quality of tests, there

are some attributes for evaluating individual items in tests. These attributes

include: item di�culty, item discrimination, guessability and e↵ective-

ness. Details of these attributes will be presented in the next section because

their definitions depend on the specific statistical method used to derive them.

2.2.3.2 Statistical methods for the evaluation of assessments

Psychometric theory provides two alternative approaches to statistically analyse

test data, namely: Classical test theory (CTT) [LN68, Gro82] and modern

test theory or Item response theory (IRT) [Lor80, Bak01]. In this thesis,

we are concerned only in the use of such approaches to perform item analysis

in order to evaluate the quality of a group of multiple-choice items. Multiple-

choice items are considered dichotomous items, which means that a student’s

answer to them is marked either as correct or incorrect. In contrast, polytomous

items can have multiple responses with each response accounting for a di↵erent

score (e.g., Likert-type items). Both theories have di↵erent models that can be

used to analyse test data. A theory is a general specification of the approach.

A model is a detailed specification of how to actually perform the analysis and

compute values of the parameters under consideration [RR93]. A specific model

is chosen based on how well it can fit the considered data. For example, some

models are more suitable for dichotomous items while others are more suitable

for polytomous items.
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Classical test theory (CTT), sometimes referred to as True Score Theory,

is a test-oriented theory which states that observed test scores (X) are equal

to true scores (T ) plus some measurement error (e). A person’s true score in

a test cannot be observed and is rarely equivalent to the observed score due to

measurement errors. This is to say that measurement instruments are usually

considered imperfect and not always reliable, i.e., e is seen as a random variable

[Mag09].

One of the main applications of CTT is the evaluation of tests and test items.

The main properties to be evaluated are [Gro82, Mag09]:

(i) Reliability of tests (denoted ↵),

(ii) Item di�culty (denoted p),

(iii) Item discrimination (denoted r), and

(iv) E↵ectiveness of distractors.

In CTT, the reliability of a test is defined as the ratio of true score variance

to the observed score variance. This is equivalent to the ratio of true score

variance to the sum of true score variance and error variance. The intuition

here is that reliability becomes higher as error variance in test scores becomes

lower. This definition of reliability cannot be used to estimate the reliability

of a test in practice because true scores are unknown. Instead, Cronbach’s ↵

[Cro51] is usually used to estimate a lower bound of reliability. It is a measure of

the internal consistency of a test and is calculated from the pairwise correlations

between items of the test. For dichotomous items such as MCQs, Cronbach’s ↵

is mathematically equivalent to KR-20 [KR37] which can be calculated using the

following formula:

↵ =
K

K � 1

⇣
1�

PK
i=1 piqi
�2
X

⌘
(2.1)

whereK is the number of items in the test, pi is the proportion of correct responses

to test item i, qi is the proportion of incorrect responses to test item i and �2
X is

the variance of the observed total test scores (X).

Item di�culty (p) is indicated by frequency of correct responses, i.e., ratio of

students answering the question correctly to the total number of students. By

this definition, the more di�cult the question i is, the lower the value of pi. Some
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psychometricians prefer to use the ratio of students who got the question wrong

to the total number of students, sometimes denoted q, i.e., q = 1 � p. It is also

useful to identify the number of students who did not provide any answer to a

certain question, sometimes referred to as error count.

Item discrimination (r) can be calculated using di↵erent methods, for example,

by calculating item-total correlation. In CTT, usually the point biserial corre-

lation coe�cient is used for dichotomous items. The point biserial correlation

coe�cient is mathematically equivalent to Pearson’s correlation coe�cient. In

this thesis, we use Pearson’s coe�cient for calculating item discrimination which

is given by the following formula:

r =
1

n� 1

nX

i=1

⇣Xi � X̄

sX

⌘⇣Yi � Ȳ

sY

⌘
(2.2)

which gives the correlation coe�cient for a sample of paired data (Xi, Yi) for

i = 1, ..., n where n is the sample size, X̄ is the sample mean for X values, Ȳ is

the sample mean for Y values, sX is the sample standard deviation for X values

and sY is the sample standard deviation for Y values.

Another commonly used method to calculate item discrimination is to first

order students according to their test scores starting from the highest score. Then,

the third of the students with the highest test scores is selected and referred to as

the upper group. Similarly, the third with the lowest scores is selected and referred

to as the lower group. Then, item discrimination is calculated as the di↵erence

between the proportion of the upper group who answered an item correctly and

the proportion of the lower group who answered the item correctly.

The e↵ectiveness of distractors is indicated by the frequency of responses for

each answer. More students from the upper group are expected to pick the correct

answer compared to students from the lower group. Otherwise, the item should

be reviewed. Similarly, distractors that are picked by more students in the upper

group than students from the lower group are confusing distractors and should

be reviewed. A distractor that is picked by only a few or none of the students is

not e↵ective as well and should be removed.

One of the main shortcomings of CTT, as with other statistical approaches, is

that its results are sample-dependent. This means that item di�culty and item

discrimination can di↵er from sample to sample for the same test. To overcome

this limitation, larger sample sizes are recommended. For example, Hambleton
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& Jones [RR93] suggests to use samples of sizes between 200 and 500. They also

point out that the results obtained from CTT are more useful when the sample

is similar to the population for which the test is developed [RR93]. The sample-

dependence of CTT can be resolved with the careful design of experiments which

must be backed up with high awareness to draw plausible conclusions. The use

of two or more samples and the use of redundant subsets of questions, sometimes

called anchor items, over the di↵erent samples can help to resolve the problem.

This has been suggested by Hambleton & Jones [RR93] and Magno [Mag09]; and

empirically undertaken by some researchers such as Mitkov et al. [MAHK06].

Item response theory (IRT) [Lor80], also previously referred to as latent

trait theory, strong true score theory, or modern mental test theory, is an item-

oriented theory which specifies the relation between examinees’ performance on

test items and the ability which is measured by those items. IRT is claimed to be

an improvement over CTT, but IRT models are technically more complex than

CTT models and they are not always available in common statistical softwares.

There are many models under the general IRT framework. Each model is suitable

for certain data. We consider only those models that are unidimensional (i.e.,

require a single trait or ability) and that are suitable for dichotomous items.

The most well-known models of IRT are: one-, two- and three-parameter logistic

models. The three parameters considered in three-parameter logistic (3PL) model

are listed below. This model takes into account the possibility of getting an item

right without actually knowing the answer (i.e., guessing). For example, for 4-

option MCQ items, the probability of guessing is 0.25, given that all distractors

are e↵ective. The guessability parameter is omitted in the two-parameter model.

This model is suitable when there is no chance of guessing, e.g., when the item

requires a free response rather than picking an option out of pre-defined options.

Alternatively, guessing is assumed to add randomly distributed noise to the data.

The one-parameter model further omits the item discrimination parameter and

assumes that all items are equivalent in terms of discrimination.

Three-parameter IRT models consists of the following parameters:

(i) Item di�culty (denoted b)

(ii) Item discrimination (denoted a)

(iii) Guessability or pseudo-guessing (denoted c)
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The central concept in IRT is the Item Response Function (IRF) which spec-

ifies the probability of getting the item right by a student of certain ability ✓, as

specified in the following formula [RR93].

Pi(✓) = ci +
1� ci

1 + e�ai(✓�bi)
(2.3)

The three parameters a, b, and c are estimated by first assuming that abilities

are modelled as a sample from a normal distribution. IRFs are graphically repre-

sented by Item Characteristic Curves (ICC) as shown in Figure 2.4, for example.

As the figure shows, c is the height of the lower asymptotic for the curve which

corresponds to the probability of a correct response by the lowest ability students.

Based on observed test scores of the sample, IRT models estimate the probability

of guessing ci for an item i. If i is a 4-option multiple-choice question and the

estimated ci is higher than 0.25 then some of the options are most probably not

functioning well. Parameter b corresponds to the point on the ability axis where

the probability of a correct answer equals (1 + c)/2 and also where the slope is

maximised. Parameter a is proportional to the slope of the curve at the point b

on the ability axis.

Figure 2.4: 3PL Item Characteristic Curve

Item information functions (IIF) and Test information functions (TIF) are

alternative ways to assess the reliability of a test, i.e., the frequency of errors in

measurement. Plots of IIFs are bell-shaped and are centered around their b value

on the ability axis. IIFs shows how much information an item contributes to the
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assessment of ability [RR93]. Items with high discrimination power tend to have

tall and narrow IIFs which indicates that their best contribution is over a narrow

range of abilities. In contrast, items with low discrimination power contribute

less information but over a wider range. For example, Figure 2.5 shows that item

1 is less di�cult than item 2 and that items 3 and 4 are less discriminating than

items 1 and 2.

Figure 2.5: Item information functions for four test items

For a particular item i, the IIF of an item i at a specific ability ✓, denoted

Ii(✓), can be given by the following equation [dA09]:

Ii(✓) = a2i
(pi(✓)� ci)2qi(✓)

(1� ci)2pi(✓)
(2.4)

where ai is the estimated item discrimination for item i, ci is the estimated

guessability for item i, pi(✓) is the probability of getting item i right at ability ✓

and qi(✓) is the probability of getting item i wrong at ability ✓.

TIF is the sum of IIFs of all items in a test and it indicates the frequency of

errors associated with the assessment of ability. The more information provided

by TIF, the lower the frequency of errors at a particular ability level. This can be

shown by the following formula which calculates the standard error of estimation,

denoted SE(✓), at a particular ability ✓ from a test information function, denoted

I(✓):
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SE(✓) =
1

[I(✓)]
1
2

(2.5)

Theoretically, IRT models are sample-independent as opposed to the sample-

dependent CTT models. However, Hambleton & Jones [RR93] point out that

IRT parameters are considered sample-independent only if the model fits the test

data and point out that large samples are usually required, e.g., over 500. The

fit of the data for the model can be assessed using Chi-square statistic.

To sum up, both classical and modern item analysis methods give some indica-

tions for the quality of an item. They should be used as an exploratory approach

to identify possible defects in measurements. But they should be carefully used

to provide generalisable information about the characteristics of test items, i.e.,

as a confirmatory approach.

In this thesis, due to experimental design limitations, we adopt CTT methods

to calculate item di�culty (i.e., frequency of correct responses), item discrimina-

tion (i.e., Pearson’s correlation coe�cient) and e↵ectiveness of distractors (i.e.,

frequency of responses for each answer).



Chapter 3

Foundations of MCQ generation

This chapter sets the theoretical foundations upon which question generation

methods developed in this thesis are built. Previous attempts to develop methods

for generating questions from ontologies [CNB03, HMMP05, HMMP06, ZSRG08,

PKK08, CT09, CT10, ZPK11, AY11, AY14] or other sources [Ste91, Fai99, MH03,

BFE05, HN05a, LWGH05, SSY05, MAHK06, Hei11, CCSO14] have not focussed

on addressing the problem of controlling the di�culty of the generated questions.1

As we have seen in the previous chapter, di�culty is indeed a core property of

assessment questions. It is central for the validity of an assessment, which refers

to how successful an assessment tool is in measuring what it intends to measure.

Typically, in normal class settings, test developers aim at measuring mastery

levels of students in a certain domain. A valid assessment tool must be able to

measure the mastery level of all students, i.e., both high and low mastery students.

If the assessment tool is too di�cult, then it is not suitable for measuring mastery

levels of the lower group. Similarly, if it is too easy, both high and low mastery

students will get high grades and therefore we cannot distinguish between them.

In other assessment settings, test developers are interested in those students who

can pass the test at a certain level, e.g., 60%. In such a case, the test must be

designed at a di�culty level suitable for the required level. Again, to construct

a test that is valid for this purpose, a mechanism to control the di�culty of test

items, and hence the overall test, is required (though, of course, is not su�cient).

Our main criticism for existing QG methods is that they are mainly technical

and lack theoretical backing. This has resulted in developing ad-hoc generation

methods with limited control over the quality and di�culty of the generated

1although some have tackled the problem as we will see in detail in Chapter 4.
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questions. This chapter aims at presenting theoretical foundations of QG. In

particular, the chapter examines the plausibility of the conjecture that controlling

the di�culty of multiple choice questions can be done using a similarity-based

approach. We explain the impact of controlling the di�culty of a question on its

overall quality and describe the role of similarity in the di�culty control process.

We explore psychological theories and empirical evaluations that support this

conjecture.

The main purpose of this thesis is to prove the possibility of generating useful

questions from ontologies. Generating a reasonable number of questions (rather

than all possible questions) is su�cient for this purpose. Usefulness is defined

in this thesis within two contexts: (i) useful for assessing students’ performance

and (ii) useful for ontology development/comprehension. The first context is

the main focus of the thesis and the experiments involved whereas the second

context serves the purpose of showing that the methods can be applied within

other contexts.

Some existing works [MH03, MAHK06] on question generation describe a

successful generation method as a method in which (i) the overall time spent on

generation is reasonable (e.g., less than or equal to the time spent on generating

the questions manually) and (ii) questions have functional distractors and good

item discrimination. In this thesis, we extend (ii) and consider a broader descrip-

tion for a successful generation method in which the method is able to control the

di�culty of the question as well. This will indeed a↵ect the generation methods

we develop and the experiments we carry out to evaluate them.

3.1 Desired properties of assessment questions

Students’ assessment is concerned with measuring students’ mastery, usually in

terms of amount of knowledge and skills they have. We focus on knowledge as-

sessment. Merrill [Mer94] classifies knowledge in four categories: facts, concepts,

principles and procedures. We focus on assessing facts and concepts as they are

more suitable to be modelled in an OWL ontology. Assessment of knowledge

can be carried out along di↵erent cognitive complexity levels. Bloom’s taxonomy

[BK56] is a categorisation of the cognitive domain which is widely accepted and

used by educational researchers and practitioners [Sed78]. The main categories of
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this taxonomy are (bottom-up): (1) Knowledge, (2) Comprehension, (3) Applica-

tion, (4) Analysis, (5) Synthesis and (6) Evaluation. The lowest category refers to

demonstrating a student’s ability to recall knowledge. Higher categories require

demonstrating higher abilities such as applying knowledge to new problems. A

revised version of the taxonomy which was proposed in 2000 by Anderson et al.

[AK00] is presented in Figure 3.1. Depending on the purpose of the assessment,

it might be necessary to target both the lower and higher levels of the taxonomy.

Figure 3.1: Categories of the revised Bloom’s taxonomy, taken from [AK00]

Measuring students’ knowledge is not straightforward as measuring their height

or weight; knowledge models constructed in a student’s mind are complex and

not visible. In addition to the amount of knowledge, a distinction is usually made

(in terms of quality of knowledge) between knowledge of high and low mastery

students [WCG01]. Knowledge of high mastery students is well-organised which

enables them to notice patterns of information that might be neglected by low

mastery students [CGR82, CK83].

A good assessment question (backed with good interpretation of its results) is

supposed to make explicit those implicit knowledge schemas in a student’s mind.

A desired property of an assessment (i.e., a collection of questions) is its ability

to distinguish between high and low mastery students. In particular, there must

be a strong correlation between students’ mastery and the amount and quality of

their knowledge. This property cannot be achieved using a single multiple-choice
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question. Instead, we need a collection of questions that work well individually

and that (together) discriminate well among di↵erent levels of understanding

[WCG01]. As we explain in the previous chapters, a key aspect of constructing

a good multiple-choice question is the use of good distractors that 1) appear as

plausible answers to a student who does not know the correct answer and 2) are

clearly recognisable as wrong by a student who knows the correct answer.

To illustrate the desired properties of distractors (which make their generation

challenging), we present the following example.

3.1.1 Distractor selection example

Consider the ontology in Figure 3.2 which describes some diseases and associated

body parts.

Figure 3.2: Example ontology

Given the example ontology, one can construct the multiple-choice question in

Table 3.1. Note that, in this example, some distractors could have been replaced

by better ones. For example, Disease, which can be easily eliminated even by a

low mastery student by knowing that disease is not a body part and therefore is

not an appropriate answer. This naive elimination process increases the chance

of guessing the correct answer without actually having the required knowledge

that is being assessed. Glossitis can be considered a better distractor compared

to Disease because it requires deeper knowledge to recognise that Glossitis is a

disease which is again a reason for elimination.
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Table 3.1: Example question

Stem: Pyorrhoea occurs in ...:

Options: (A) the tongue
(B) glossitis
(C) the gums
(D) a disease

Key: (C)

Distractors: (A), (B), (D)

As explained earlier, di�culty is a core property that must be carefully con-

trolled during assessment design. It is suggested that only a few questions on

any exam should be answered correctly by more than 90% or less than 60% of

students [Low95]. This notion of di�culty is referred to as statistical di�culty.

However, beyond knowing that 80% of students were unable to solve a question,

we would like to know why this is the case. Several studies have explored sources

of di�culty in questions [FHH96, FHHB94]. A distinction must be made between

valid and invalid sources of di�culty. Examples of invalid sources of high di�-

culty include providing extra information. Similarly, examples of invalid sources

of low di�culty include triviality, providing clues. Providing clues might lead

to guessing the correct answer while providing extra information not needed for

solving the question might mislead a high mastery student and hence lead to poor

discrimination. Thus, avoiding invalid sources of di�culty allows us to eliminate

guessability and get better discrimination. This is to say, controlling di�culty

(in a valid way) leads to controlling the other two properties: guessability and

discrimination. In addition, an assessment designer must be able to set the di�-

culty of each individual question. Therefore, we focus on the di�culty property

in particular when we explore plausible question generation methods. One state-

ment that can summarise the importance of the di�culty property is: “If you

do not know why this question is harder than that one, then you do not know

what you are measuring” [FHH96]. This statement refers to the impact of valid

di�culty on the validity of the test.

We present a similarity-based theory that can be used to inform the generation

of questions and control their di�culty. We validate it by showing its consistency

with and accountability for both the psychological and educational theories.
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3.2 A similarity-based theory of controlling dif-

ficulty of MCQs

Bearing in mind that our goal is to be able to control the di�culty of the generated

questions, a key assessment design requirement is to understand what makes a

question di�cult for a group of students. We conjecture that similarity between

parts of a question influences di�culty. In particular, the distinction between high

and low mastery students can be mapped to their ability to distinguish between

similar answers and identify any commonalities and di↵erences between them.

This conjecture is supported by existing studies on expertise and theories about

knowledge retrieval from long-term memory as we will see in the next section.

The conjecture seems to be plausible because of its consistency with the fact that

the more knowledge students have about a topic, the more ability they have to

answer questions about that topic. This relation between the amount and depth

of knowledge and question answering ability can be explained in terms of the

ability to account for similarity when answering certain kinds of questions.

As an example, refer back to the question in Table 3.1: “Pyorrhoea occurs

in ...?” where Gums is the correct answer. Now let us consider the di↵erent

possible distractors that can be used with this question. If the student only

remembers that Pyorrhoea occurs in the mouth, then we can notice that Tongue

would be more di�cult for the student to eliminate compared to Lungs; both

Gums (the key) and Tongue (the distractor) are in the mouth and hence share

more commonalities (i.e., they are more similar to each other than to Lungs). To

be able to answer the question correctly, the student must have knowledge about

the particular parts of the mouth and the name of the disease that occurs in each

of these parts; that is the particular di↵erence between the key and distractor.

Similarly, Lungs is more di�cult to eliminate compared to Glossitis; both Gums

and Lungs are body parts and hence are more similar to each other than to

Glossitis.

As illustrated by the example, to compute the similarity between two concepts,

we account for both the common and distinguishing features. Based on this notion

of similarity, we will later define similarity functions such as sim : C⇥C ! [0, 1]

where C is the set of concepts to be compared and sim(X, Y ) > sim(Y, Z) if the

two concepts X, Y are more similar than the concepts Y , Z.
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As explained above, one would expect that students would succeed in answer-

ing a question if they know the similarities and di↵erences between the answers

provided with the question. Similarly, they would fail if they do not know the

similarities or di↵erences. Based on this observation, we present the following

hypothesis for controlling the di�culty of MCQs. The presented hypothesis is

not suitable for controlling the di�culty of all classes of MCQs. It is suitable

for controlling the di�culty of MCQs with parts (e.g., key, distractors) of simi-

lar kinds which require particular knowledge to distinguish them. Examples of

questions belonging to this class of MCQs include: “What is X?”, “Which of the

following is X?”, “Which of the following is the odd one out?”. The hypothesis

might need to be slightly altered to suit other types of MCQs (e.g.,“A is to B as

.. is to ..?”) where a condition can be added to control the similarity between

the stem and the key. Variations of questions and similarity patterns that can be

suitable for them are presented in Table 3.2 below. Examples of MCQs that are

not suitable for our similarity theory are presented in Section 3.4.

Hypothesis 1

The di�culty of (some classes of) MCQs consisting of a stem S, a key K and

distractors D = {D1, . . . , Dn} is (with other things being equal) proportional to

the degree of similarity between K and Di where i = 1, . . . , n.

Given that an MCQ Q can have more than one distractor (i.e., n � 1), each

distractor Di 2 D can have a di↵erent similarity sim(K,Di) to the key K. Let

us define the following two parameters (�1, �2):

1. �1 B min{sim(Di, K) | 1  i  n}, 0 < �1 < 1

2. �2 B max{sim(Di, K) | 1  i  n}, 0 < �2 < 1

To construct a good MCQ, �1 must be su�ciently greater than 0 (and less

than 1). Decreasing �1 increases the likelihood of having non-functional dis-

tractors or distractors that can negatively a↵ect discrimination between good

and poor students. Increasing �1 increases the di�culty of Q, in general, and

increasing it to reach a value close to �2 decreases the likelihood of having non-

functional distractors. Similarly, increasing �2 increases the di�culty of Q.
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3.3 Supporting the similarity theory

The plausibility of the above similarity-based theory for controlling di�culty

must be assessed according to both psychological and educational considerations.

In general, sources of di�culty are explained in terms of two aspects:2 (i) the

underlying knowledge and (ii) the cognitive ability required to solve the question

[WCG01].

3.3.1 Psychological theories

In the following subsections, we examine two categories of psychological theories:

(a) theories of semantic memory and (b) theories of expertise. These theories

explain how knowledge is learned, i.e., stored in memory, and how knowledge is

used, i.e., retrieved from memory. In general, knowledge is retrieved from, rather

than stored in, memory during an assessment. In contrast, knowledge is expected

to be learned before (and after) an assessment.

To fully understand the influence of these theories on controlling the di�culty

of assessments, we structure our discussion of each theory around the following

questions: (i) what are the main properties of the theory?, (ii) what are the

main controversies around the theory? and (iii) how does the theory support

our similarity conjecture and/or (iv) does the theory hint at factors, other than

similarity, that can a↵ect the di�culty of assessments?

3.3.1.1 Theories of semantic memory

Semantic memory [SC02] refers to the part of the brain that is responsible for

the acquisition, representation, and processing of shared conceptual knowledge

(e.g., concepts, objects, states and events). It is often contrasted with episodic

memory [Tul02] which enables human beings to store and recall unique personal

experiences (e.g., losing someone you care about). This distinction between the

two forms of memory was first established by Endel Tulving [Kle13]. Various

models of semantic memory have been proposed. Tartter [Tar98] lists some of the

most influential models of semantic memory such as network models, prototype

models and features models. We briefly present these models below.

2In addition to knowledge and cognitive abilities, a skill might be required to answer a ques-
tion. We assume that the students are equally equipped with the required skills for simplicity.
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Network models are historically one of the early models of semantic mem-

ory which have had and still wield considerable influence [Tar98]. They describe

semantic memory in terms of a rich organisation where all concepts are related

through an associative net. The nodes of a semantic network can be either con-

cepts (e.g., “birds”) or properties (e.g., “can fly”) and both kinds of nodes are

treated equally and can be accessed in a similar way. The links between nodes

represent di↵erent relations between them. For example, a link between the nodes

“birds” and “animals” captures the fact that birds are kinds of animals. Simi-

larly, a link between “birds” and “has wings” associates wings to the class birds.

Moreover, those links can vary in their strength; the higher the weight of the

link between two nodes, the stronger the relation between them. This enables

the model to account for the familiarity e↵ect (i.e., more familiar concepts can

be accessed faster). Within network models, some theories [RM04, SF08] as-

sume that knowledge upon which people make inferences is associative. Others

[HR94, KT09] assume that knowledge is structured. In contrast, others [BF14]

have reported that both associative and structured knowledge have an impact on

the inferences we make and suggested that the di↵erent kinds of knowledge apply

best under di↵erent processing conditions (e.g., required response time).

Spreading activation theory is an attempt to explain how knowledge is

processed within a semantic network. It was originally developed by Collins &

Quillian [CQ69] and later improved by Collins & Loftus [CL75]. The theory views

memory search as activation spreading from concept nodes in a semantic network

which stops when an intersection is found. Given a certain concept, the theory

explains what will be the next concept that a person will automatically think of.

This unconscious process is referred to as “associative priming” in the original

theory [And95]. A core notion of this theory is that knowledge is organised in

memory along the lines of semantic similarity. The more links there are between

two concepts (i.e., the more commonalities they have), the more closely related

the concepts are. This means that people are more likely to retrieve information

from memory if related information has been presented to them first [And95].

Moreover, the stronger the relation between the two pieces of information, the

more likely the chance to access one through the other. The theory can be used

to explain a person’s behaviour when confronted with a question like “Is bird an

animal?”. To answer with either “True” or “False”, the person tries to access one

node through the other. If a link is found, the returned answer will be “True”.
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There have been a number of experiments investigating spreading activation

theory [And83b, Bal83, BL86, Lof74, SS97]. For example, Sharifian & Samani

[SS97] carried out an experiment to compare subjects’ response times when asked

to verify the relation between di↵erent word pairs. The results show that there

is a significant di↵erence between the time required to verify direct and indirect

relations. For instance, the response time required to verify the relation “rose is

a plant” is significantly greater than the response time to verify either “flower

is a plant” or “rose is a flower”. A study conducted by Balota & Lorch [BL86]

supported the fact that memory activation can spread between directly and in-

directly related concepts. For example, the word “lion” can activate the word

“stripes” although the two words are related only through a mediating concept

“tiger”. Other studies have shown empirical evidence that the spread of activation

is done automatically as opposed to being under control [Bal83].

One of the controversies around semantic network models is the notion of

cognitive economy. It refers to the assumption that information about a certain

concept is stored only once in the appropriate level. For example, the fact that

birds have skin is not stored at the bird level, rather, it is stored at the animal

level. Some experiments carried out by Collins and Quillian [CQ69] support the

cognitive economy property of semantic networks. For example, they report that

subjects’ response time to a question such as “does a bird have feathers?” is less

than the response time to a question such as “does a bird have skin?”; where

feathers is stored at the bird level and skin at the animal level. The controversy

here is that cognitive economy can be confound with frequency of co-occurrence.

For example, let us compare the property of having skin for both birds and snakes.

Although it might not be frequent to talk about birds’ skin, it is more frequent

to talk about snakes’ skin. This implies that there is no direct storage of skin for

birds and, in contrast, there is a direct storage of skin for snakes (ignoring the

cognitive economy property of the network).

Network models in general and spreading activation in particular can provide

a logical explanation of why our similarity conjecture can be psychologically plau-

sible. The theory explains that once a concept has been activated in memory,

the most similar concepts to that concept would be activated immediately. This

means that those similar concepts can act as distracting factors, i.e., functional

distractors in MCQ terminology. This can explain why it is harder to verify the

key answer when the distractors are very similar to the key. In addition to the
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distractors-key relation, the theory also explains why it is easier to verify the key

answer when it is closer to the stem; a very plausible factor that we did not men-

tion in Hypothesis 1. We have chosen not to consider this as a primary factor of

our di�culty-control theory to keep it easier to understand and verify, and more

importantly, applicable to a wider range of questions. However, we examine the

impact of varying the similarity between the stem and the key in our evaluation

experiments presented in Chapter 7 (see the automated evaluation experiment).

Prototype models introduced the notion of a “basic level” which is the most

prototypical category among a hierarchically ordered set of categories. The basic

level is said to be more accessible and more likely to be learned first. Prototype

models were first introduced by Eleanor Rosch [Ros73, Ros75]. Rosch and others

have studied di↵erent hierarchies in an attempt to define the prototypical category

in each hierarchy. As an example, let us consider the categories animal, dog and

poodle. Notice first that these categories are hierarchically arranged, i.e., poodles

are kinds of dogs which are kinds of animals. Notice also that each of the three

categories can have di↵erent subcategories, e.g., animals can be dogs, cats, reptiles

and others. In her empirical studies, Rosch [Ros75] reports that most subjects

have found it easier to imagine, e.g., recall the features of, a prototypical dog than

to imagine a prototypical poodle or animal. Poodles are too specific while animals

are too general. Also, when the subjects were asked to give an example of an

animal, it was more likely to respond “dogs” rather than responding “poodles”.

Similarly, it was more likely that a subject who was asked to provide an example

of a furniture will respond “chair” rather than responding “stool”.

Prototype models provide a minimal representation of semantic memory; com-

pare it for example to the more rich representation provided by network models.

This does not necessarily reflect a disagreement between the two models. Loftus

[Lof75] provides a spreading activation-based explanation of the plausibility of

Rosch’s results. However, it must be noted that prototype models have serious

shortcomings. The main criticism is that the model does not provide a precise

definition of the prototypical category. For example, if we assume that we are

interested in the hierarchy (animal, mammal and dog), would dog be still the

prototypical category? Another shortcoming of the theory is that it fails to ex-

plain why the same concept can be more prototypical for a given category and

less prototypical for another category (e.g., car is more prototypical as a vehicle

than as a toy) [Lof75].
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Prototype models explain why it is easier to identify the key answer when it is

more commonly associated with the stem; i.e., when the key is prototypical. So it

is easier to verify that a chair is a furniture compared to verifying that a stool is

a furniture. The theory can be used to control the di�culty of MCQs by varying

the key-stem relation, provided a good (i.e., shared and explicit) understanding

of prototypicality is available. Due to the unavailability of this understanding at

the moment, we do not account for prototypicality in our di�culty control theory.

Feature models have not been as influential in cognitive psychology as net-

work and prototype models. Nevertheless, we will briefly present the model to

give greater insight in cognitive process models of semantic memory. In feature

models, concepts are described in terms of their features, with a distinction be-

tween characteristic and defining features [SSR74]. Characteristic features are

found in most instances of a category, i.e., they are typical features (e.g., a typ-

ical bird can fly). Defining features are those features that are necessary for

membership and shared by all instances of a category (e.g., all birds lay eggs and

have feathers). Feature models have two main properties: (a) feature lists are not

structured and (b) features are stored locally (i.e., cognitive economy is not con-

sidered). To verify whether a canary is a bird, the feature overlap is considered.

If the overlap is large (the model does not specify how large), then the sentence is

verified. Otherwise, the answer is “no”. Smith, Shoben and Ribs [SSR74] explain

that sentence verification can take one or two steps, with the second step being

much slower than the first. When a subject is asked to verify a sentence such as

A is a subcategory of B, the number of steps is determined based on the amount

of feature overlap between A and B. If a large number of features is recognised,

a fast “yes” answer is provided. If only a few number of features overlap, then a

fast “no” is provided. However, if the amount of overlap is intermediate then a

second step is required. In step 2, the defining features of A and B are compared

to verify the sentence. For example, verifying that canary is a bird can be faster

than verifying that canary is an animal because feature overlap between canaries

and birds is greater than feature overlap between canaries and animals.

As with the other models, there is a debate around feature models, especially

around defining features. For example consider a plucked chicken and a feather

pillow. The former does not have feathers but it still is a bird and the latter does

have feathers while it is not a bird. This questions the fact that “feathers” are

considered a defining feature of birds. Moreover, feature models do not explain
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how the semantic memory is organised, i.e., how concepts are related [Tar98].

As with semantic models, feature models can explain why it is easier to verify

the key answer when it is similar to the stem. Distractors that are similar to the

key share a large number of features with the key. Hence, the comparison stage,

i.e., step 2 above, would be harder or at least slower.

In addition to the above three models of semantic memory, we mention a

very related theory of cognition which also models semantic memory, or more

generally, the mind. The theory is referred to as Adaptive Control of Thought

(ACT) [And83a] and was later extended to Adaptive Control of Thought-Rational

(ACT-R) [And93, And07]. The theory does not only provide a model of the

mind, but it also models and predicts human cognitive behaviour. It represents

the memory as units, referred to as “chunks”, interconnected by links representing

the relations between those chunks (as in network models). Each chunk has a

label and a set of properties specific to that chunk. The current state of the

memory is held in what is referred to as a “bu↵er” which contains the currently

activated chunks. As in network models, activation spreads to similar chunks. In

addition, activation of a chunk speeds up with frequent retrievals of that chunk.

One of the most important notions studied under the ACT-R framework is

what is referred to as the “fan e↵ect”. It points out to the observation that the

time taken to recognise an item becomes longer as its fan increases. The fan

is defined as the number of associations that an item has with other items in

memory [And74, SA12]. ACT-R in general and the fan e↵ect in particular can

be used to support our similarity conjecture. It can explain why it gets harder to

recognise the correct answer when the distractors share a lot of associations with

the key. Of course one can argue that the time spent by a student to answer a

question does not su�ciently indicate whether the student will get the question

right or wrong. Some students will quickly recognise the correct answer, and yet,

some students will recognise the correct answer after given su�cient time. This

of course excludes time-limited tests in which students are encouraged to answer

as fast as they can and their speed will a↵ect their total grades.

3.3.1.2 Theories of expertise

Another challenging area of cognitive science aims at explaining the superior per-

formance of experts in various domains. Stability is an important characteristic
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of their superior performance which eliminates the influence of luck or unique en-

vironmental circumstances [ES91]. Here, experts refers to those individuals who

can be labeled as outstanding in a certain field [ES91]. In the context of learning

and assessment, we choose to refer to those individuals as high mastery students.

Existing studies of expertise have investigated the way knowledge is structured

and used by experts and compared that to novices’ knowledge. Various studies

have explored the relation between expertise and performance in di↵erent do-

mains such as playing chess [CS73], computer programming [MRRC81], music

[Slo76], basketball [AB85], to name a few. Notice that these studies explore ex-

perts’ behaviour in situations that require the application of skills. Instead, we

focus below on studies that explore experts’ behaviour when recalling knowledge.

Experts’ knowledge is usually described as more cohesive and integrated com-

pared to novice knowledge [GC86, CGR82, CK83]. This cohesiveness of knowl-

edge was operationally defined by Chi and Koeske [CK83] in terms of the pattern

of interrelations between concepts either through direct or indirect links. For ex-

ample, a semantic network derived from a child who is learning about dinosaurs

would have more links between dinosaurs which are more familiar to the child

compared to links between less familiar dinosaurs. Moreover, dinosaurs belong-

ing to the same family would share more common links compared to dinosaurs

belonging to a di↵erent family. This pattern of interrelations was found only in

parts of the semantic network corresponding to familiar knowledge.

Chi and Koeske [CK83] also investigated the impact of the degree of cohe-

siveness on a child’s ability to perform subsequent memory tasks. The results

show that a child has more information about the more familiar dinosaurs. This

supports the fact that the degree of cohesiveness of knowledge can predict per-

formance on memory tasks [CK83]. Gobbo and Chi [GC86] further investigated

the impact of expertise on the success of performing other complicated tasks such

as making semantic comparisons, inferring new knowledge and reasoning about

new information as it is related to existing knowledge. In their study, Gobbo and

Chi support the view that success in reasoning is based largely on knowledge as

opposed to the other view that reasoning is a skill that children acquire as they

mature. The results of their investigations show that expert children can infer

more implicit facts about dinosaurs compared to novice children. Another inter-

esting result is that expert children could infer implicit knowledge about both

known and unknown dinosaurs. This means that the inferred knowledge is not
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always retrieved from memory but can also be generated by an expert child based

on their sophisticated knowledge.

Theories of expertise can explain why di�cult MCQs, as defined in Hypoth-

esis 1, can only be answered correctly by high mastery students (experts), a

necessary property to govern the reliability and validity of an assessment. High

mastery students have the ability to account for larger, and better structured,

amounts of knowledge which gives them a better ability to distinguish the correct

answer from other distracting answers in a fast and reliable mechanism.

To sum up, the psychological theories presented above, together with a general

theory of cognitive load, can provide a psychological support for our similarity-

based theory of controlling MCQs di�culty. The increased level of similarity

between the answers of an MCQ increases the likelihood that the students will

be distracted by the wrong answers which increases the cognitive load. This in

turn can have a negative impact on their academic success. Among the presented

theories, network models together with theories of expertise are more applicable

to the context of this thesis.

3.4 Applicability of the similarity conjecture to

di↵erent classes of MCQs

It is very important to examine whether the similarity conjecture is applicable

to di↵erent classes of questions. Although assessment questions may be speci-

fied in an almost unlimited number of ways, the student behaviours involved in

these assessments can be described by a relatively small number of categories,

see for example [BK56]. We are interested in investigating whether the similarity

conjecture is suitable for di↵erent classes of assessment questions as classified by

Bloom’s taxonomy [BK56].

The di↵erent categories are arranged in a hierarchical order according to the

complexity of the involved cognitive process. In addition, a student performing

at a specific level is assumed to make use of and built on the behaviours re-

quired to perform at the preceding level [BK56, Sed78, Smi70]. It is important

to distinguish between the notion of item complexity and item di�culty. Item

complexity is based upon the quantity and quality of e↵ort required to answer the

item whereas item di�culty is based upon the quantity and quality of knowledge.

For example, one can say that subtraction is more complex than addition, but
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a question involving subtraction is not necessarily more di�cult than a question

involving addition. Guttman [Gut53] and others [Cra68] demonstrated that it

is still possible for more complex tasks to be either more or less di�cult than

less complex tasks. It is also important to note that, depending on the nature of

the prior learning experiences, di↵erent students can solve the same question in

di↵erent ways and that one test item can actually be placed in di↵erent categories

[BK56, GH13]. This suggests that, in general, item di�culty can be controlled

along the di↵erent levels of Bloom’s taxonomy.

It remains now to examine whether our similarity conjecture is suitable for

controlling the di�culty of questions along the di↵erent levels of Bloom’s taxon-

omy. There is, in fact, a debate around the suitability of MCQs to assess higher

levels of Bloom’s taxonomy [Aik82]. Although we acknowledge that MCQs can

be used to construct questions on both lower and higher levels of Bloom’s taxon-

omy (see for example [Aik82]), but we also acknowledge that not all MCQs are

suitable for our similarity theory. For example, consider questions that require

the student to do some calculations and pick the correct numerical value (e.g.,

long division questions). By picking the correct answer, the student demonstrates

the correct usage of a specific mathematical method or procedure. Similarly, by

picking a distractor, the student demonstrates the wrong usage of the required

procedure. Each distractor should correspond to making a mistake in a specific

step of the procedure but similarity might not be directly applicable for selecting

the resulting numerical distractors. Other counter examples include evaluation

questions in which the answers should correspond to all possible opinions (e.g.,

excellent, good, bad); again, it makes no sense to vary the similarity between

such answers. However, there are plenty of examples for MCQs on di↵erent

Bloom’s levels that are suitable for our similarity theory, i.e., the similarity be-

tween the di↵erent parts of the MCQ (stem, key and distractors) can be varied

in order to vary the di�culty. We provide an example for each Bloom level in

Table 3.2. Rather than constructing new examples, the presented questions are

mostly adopted from existing educational sources [CDM96, GRE].

3.5 Summary and directions

In this chapter, we have discussed numerous psychological models to demonstrate

the psychological plausibility of the similarity-based theory for controlling the
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Table 3.2: Example questions on each Bloom’s levels

Knowledge: Who is the author of “Das Kapital”?

Key: (B) (A) Mannheim
(B) Marx
(C) Engels

Similarity pattern: key-distractors (German authors)

Comprehension: Which one of the following describes the

PREPARATION stage of the creative process?

Key: (A) (A) The problem is explored and defined
(B) An attempt is made to see if the proposed
solution to the problem is acceptable
(C) The person goes through some experience leading to
a general idea of how the problem can be solved

Similarity pattern: key-distractors (stage descriptions)

Application: Which one of the following memory systems

does a piano-tuner use?

Key: (A) (A) Echoic memory
(B) Long-term memory
(C) Mono-auditory memory

Similarity pattern: key-distractors (memory systems)

Analysis: Cat: Mouse AS

Key: (B) (A) Lion: Tiger
(B) Bird: Worm
(C) Dog: Tail

Similarity pattern: stem-key, key-distractors (relation between two concepts)

Synthesis: Predict a new conclusion: IF flying is a necessary

and su�cient condition to be a Bird THEN

Key: (C) (A) Bats can fly
(B) Bats are Birds
(C) Bats are Birds and Mammals

Similarity pattern: stem-key, key-distractors (relation between two concepts)

Evaluation: Judge the following statement: “Bats can fly

BECAUSE Birds can fly”

Key: (B) (A) The assertion and the reason are both correct,
and the reason is valid.
(B) The assertion and the reason are both correct,
but the reason is invalid.
(C) The assertion is correct but the reason is incorrect.

Similarity pattern: stem parts (the so-called assertion & reason)
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di�culty of some classes of MCQs. Other theories need to be explored to develop

principled methods for controlling the di�culty of other classes of MCQs (e.g.,

calculation and evaluation questions).

One of the possible steps that needs to be taken in order to expand the

di�culty-control theory to other classes of MCQs is to build and analyse a large

corpus of real-world MCQs; trying to find di↵erent sources of di�culty. In addi-

tion, a general model of students can be incorporated to address possible di↵er-

ences between di↵erent cohorts.



Chapter 4

Generating MCQs from

Ontologies

This chapter presents an overview of the landscape of ontology-based question

generation. The landscape is wide and has multiple dimensions and its under-

standing is relevant to understand the decisions regarding which questions and

generation methods will be considered in later chapters. This will also help to

identify the specific contributions of this thesis in comparison with existing work

on automatic question generation.

Every assessment has three foundational elements [WCG01]: (i) a represen-

tation of students’ knowledge of a particular subject, (ii) a task that shows how

do students perform on this subject and (iii) an interpretation method to rea-

son about students’ knowledge mastery from the evidence obtained (i.e., their

performance). An example of element (ii) is a question in an exam. Students’

performance on an exam is taken as an evidence of what they know or are able

to do. Indeed, both the quality and the quantity of tasks (e.g., exam questions)

has an impact on the validity of the assessment process. In general, MCQs can

be of 1) good or bad quality, 2) high or low di�culty, and 3) high or low cost

(for setting and marking). Similarly, a set of questions (i.e., an exam) can be

of good or bad quality which depends on the quality of the individual questions

and quantity and choice of questions (of certain levels of di�culty, covering the

di↵erent areas of the domain). Ideally, we want a large number of good MCQs

of di↵erent di�culty levels for the lowest possible cost (i.e., with as little human

intervention as possible).
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To lower the cost, various attempts have been made to automate the gener-

ation of assessments. We study how these attempts have evolved over time by

researchers in di↵erent communities. We do not only present attempts made by

the ontology community but rather give a wider picture by including some at-

tempts made outside the ontology community. The reason is that studying the

growing body of literature on ontology-based MCQ generation cannot be carried

out in isolation of related literature in other communities, e.g., Natural Language

Processing (NLP).

4.1 Systematic review of existing QG approaches

A large body of research exists on automatic QG approaches from di↵erent types

of knowledge sources. To gain a deeper understanding of the field and to avoid

overlooking specific subfields, we carried out a systematic review of the field. Sys-

tematic reviews are a standard research methodology that aims to minimise bias

in selecting what to be reviewed and it can help to conduct reviews that can be

replicable by following a well-defined procedure. The procedure we followed to

conduct our systematic review is outlined in Figure 4.1. Five academic databases

were used to find relevant peer-reviewed articles on automatic QG approaches

published between 1969 and 2015. The search was restricted to the first 50 re-

sults sorted by relevance to the search term “question generation”. Although we

were interested in QG approaches that are (i) automatic and (ii) based on some

knowledge source, it was tricky to capture these two criteria in the search term.

On the one hand, it is tricky to capture the first criterion because various terms

have been used in the literature to describe automatic approaches, e.g., auto-

matic, computer-aided, technology-aided, to name a few. On the other hand, it

was tricky to capture the second criterion because various types of knowledge

sources have been used for QG purposes. However, we filter out irrelevant papers

in a later step as we will see below. The search was conducted on the follow-

ing databases: INSPEC, ACM Digital Library, IEEE Xplore, ScienceDirect and

ERIC, in a decreasing order of their contribution to the initial phase of gather-

ing related articles (using the specified search/inclusion criteria). In this initial

phase, the exclusion criteria were based on reading the title and abstract of the

paper to judge its relevance. Irrelevant topics include self-generation of questions

as a learning strategy to improve reading comprehension. In addition, 16 papers
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were excluded after reading their full texts. The exclusion criteria at this phase

include: (1) the paper presents a work on progress only (i.e., position paper)

and the description of the QG approach is not su�cient to understand how the

questions are generated, (2) the paper presents a computer-aided mechanism to

deliver assessments, rather than generating assessments, (3) the paper focuses on

question answering rather than question generation, (4) the paper is presented in

a language other than English, e.g. Japanese or (5) the presented QG generation

approach is mainly based on a template and di↵erent questions are generated

by substituting some place holders by random numerical numbers. We decided

to include the last criterion because it violates our definition of QG, as defined

in Chapter 1, which states that a QG system should take as input a knowledge

source (e.g., text or ontology). We include in our review template-based QG ap-

proaches that populate some templates using domain-specific concepts extracted

from a domain knowledge source.

Figure 4.1: Procedure followed to systematically review existing QG approaches

As shown in Figure 4.1, the total number of reviewed papers up until this

phase was 39. We have also manually selected additional papers appearing in
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bibliographies of the papers gathered in the previous phase. Moreover, we gath-

ered additional papers from di↵erent sources such as: (i) forwarded by peers,

(ii) identified through reading related textbooks or attending related conferences

and/or (iii) identified through manual search in Google or other search engines

at di↵erent times using di↵erent search terms.1 This has resulted in a total num-

ber of 81 papers included in our review. We have focused on selecting papers

which can contribute better to our understanding of the QG field in general. For

instance, we have selected earlier or later papers by authors of papers in our cor-

pus, papers that have been cited frequently in our corpus and/or papers published

before 2000 or after 2013 (i.e., very old or very recent publications).

After a quick investigation of these papers, we structured our observations

based on the following coding scheme: who (i.e., contributors), when (i.e., the

specific year the contribution started), why (i.e., what was the purpose of the

contribution and which discipline/domain was it applied to), how (i.e., required

input, QG method and distractor generation method if applicable), what (i.e.,

question format, answer format, feedback format if available and whether or

not the method controls di�culty of questions) and finally how the method was

evaluated. A detailed table showing all the reviewed approaches can be found in

Appendix A.

Yao et al. [YBZ12] have classified QG approaches as follows: (i) syntax-based,

(ii) template-based and (iii) semantics-based. We have extended this classification

in order to accommodate some QG approaches which do not fit in these categories.

In particular, we have added two additional categories, namely (iv) rule-based and

(v) schema-based. Syntax-based QG methods mainly (syntacticly) manipulate

unstructured knowledge sources (i.e., text) while semantics-based methods make

use of structured knowledge sources. Structured sources of knowledge can take

di↵erent formats. As defined in Chapter 2, we use the term knowledge base

to refer to di↵erent formats of structured knowledge sources (e.g., lightweight

ontologies/taxonomies, rich ontologies, or other knowledge bases such as semantic

networks, concept maps, linked data). Template-based methods use structured

or unstructured knowledge sources in addition to domain-dependent templates.

Note that the QG space is multidimensional and hence a QG approach can fit in

various categories.

1Some of the search terms used included: “ontology-based question generation”, “automatic
question generation”, “computer-aided question generation”, in addition to changing the term
“question generation” for the term “item generation”.
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4.2 Past, present and future of automatic MCQs

generation

We illustrate the relatively short history of MCQ generation in Figure 4.2. The

automatic generation of assessment questions started with generating free-response

(i.e., open-ended) questions and, later, approaches for generating MCQs were in-

troduced. Although we focus on generating MCQs, we review approaches to

generate both kinds of questions. Exploring the literature of free-response QG

approaches is relevant to understand why and when MCQ generation approaches

have emerged. In addition, free-response QG approaches can be extended to

generate MCQs by adding a mechanism to generate suitable distractors. Syntax-

based QG methods were the first to be developed. The shift from syntax-based

QG methods to semantics-based methods was triggered by the need to minimise

the generation of questions which do not make sense (e.g., “Who was the invest-

ment?” [HS09]) and/or to generate good distractors. We elaborate on these issues

below.

Figure 4.2: Evolution of automatic QG methods

An important deal of research e↵ort has been devoted to generate questions

for language learning and testing. We elaborate on various examples of QG sys-

tems that are mainly targeted at language learning/testing. Historically speaking,

research on automatic QG techniques can be traced back to the 70’s when Bor-

muth (1970) [Bor70] introduced the prose-based item generation theory for the

automatic generation of questions from prose passages. Bormuth proposed to

use existing learning materials (e.g., reading passages) to generate questions with
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the least possible human interference. The basic motivation behind Bormuth’s

theory is that manual assessment generation is subjective and ine�cient. Early

research on automatic QG, including Bormuth’s work, involved syntactic trans-

formations of sentences to construct WH-questions, i.e., who, what, where and

when. For example, a sentence such as “The boy rode the horse”, would be trans-

formed to “Who rode the horse?”. In a study carried out by Roid and Haladyna

[RH76], the authors acknowledge that one of the problems of subjective-item

writing is that it generates questions of varying quality (e.g., di↵erent writers

generate questions of di↵erent di�culties), but the authors also report that Bor-

muth’s item-generation rules did not eliminate “subjectivity” of item writing.

They suggested that further investigation of automatic QG techniques is needed.

However, Bormuth’s theory has been abandoned later and no further investiga-

tions or improvements of the theory have been presented. Wolfe’s AUTOQUEST

system (1975) [Wol75, Wol76] is another well-known early work which also gen-

erates WH-questions by syntactic transformations of individual sentences using

a pattern-matching approach.

In another early project on QG, Stevens (1991) [Ste91] suggested to utilise

concordance tools to derive language learning exercises from general corpora. He

described how to use concordance tools to generate a set of truncated sentences;

each of these is displayed to the student on a separate line, with a centred blank

in each sentence. The student is given a set of words to choose from, and only one

choice (i.e., the key) will make the lines meaningful and grammatically correct.

The distractors are morphological variants of the key. The motivation behind

introducing this kind of concordance-based exercises, as reported by Stevens, is

that student performance on traditional gap-filling exercises, which were open-

ended, can be unexpectedly poor, especially for beginner language learners. In

particular, Stevens suggested that adding distractors to gap-filling exercises can

help in making these exercises more accessible, and therefore more useful, to such

students. This shows that the interest in generating MCQs has emerged to solve

previously observed problems with free-response questions.

It should be noted that MCQs were already popular in the assessment do-

main before the introduction of automatic methods to generate them (and be-

fore any form of technology-aided assessment). However, with the rapid rise

of technology-aided education, assessment has been forced to pick up the pace.

Large, and sometimes massive, number of students can enrol in online courses.
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Making the easy-to-mark MCQs more popular than the hard-to-mark open ended

questions. This is equally true for traditional large-scale assessments such as stan-

dardised college admission tests (e.g., SAT) which have also become popular in

the US and in other countries around the world. All of these reasons have con-

tributed to the interest in automatic MCQ generation methods. However, none of

them were the main motivation behind early MCQ generation approaches such as

Stevens’ concordance-based system [Ste91]. Consistent with this, Moscow et al.

(2004) [MBB+04] generated multiple-choice cloze questions2 and reported that

free-response cloze questions were too di�cult to answer and mark because many

correct answers were possible. The shift to generate MCQs in Moscow’s case was

to reduce the costs associated with free-response questions (cost of answering and

marking).

In addition to the above systems, another early QG generation system that

was targeted at the language learning domain was introduced by Conaim (1997)

[Con97]. He suggested three di↵erent ways to generate multiple-choice cloze ques-

tions. The blank position is determined either mechanically by deleting every

nth-word or selectively by either selecting words with certain frequencies or a

certain word class (e.g., verb, noun or adjective). Conaim initially points out

that a target of 50% acceptable test items is reasonable (compared to acceptable-

item rate of 66% for an experienced human setter), but he later reports that

acceptable-item rate for questions generated by removing the nth word was much

less than his initial target. He also reports that questions generated using the

selective strategies were of better quality in terms of item di�culty and item

discrimination. Later, Fairon (1999) [Fai99] developed a dynamic item banking

system (EVALING) that utilises linguistic tools for facilitating the creation and

management of French language tests. Manual creation of exercises is avoided in

the EVALING system by designing search tools that apply manually compiled

linguistic patterns to large corpora to retrieve sentences that can be used in the

exercises. Although the system generates free-response exercises, Fairon reports

that these exercises can be transformed to multiple choice format (by adding

distractors), but does not explain how can this be accomplished. A number of

other NLP-based QG techniques have also targeted the language learning domain

[HN05a, SSY05, MC09, HS09, Hei11, GK10, MN14]. This might be due to the

2Cloze questions are usually used to assess vocabulary and reading comprehension. A portion
of text (with certain words removed from the text) is presented to the student to fill in the
blanks with suitable words that “close” the text.
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fact that generating distractors for language testing is sometimes easier than gen-

erating distractors for other domains. For example, in grammar tests, di↵erent

tenses of the same word can be good (and easily generated) distractors. Another

explanation of why this line of QG approaches was, and is still, attractable is that

you can simply take any book, story, newspaper article and use it to generate

questions.

A number of QG approaches have been devoted to improve the distractor

generation mechanism. Early MCQ generation approaches generate distractors

based on syntactic or lexical features (e.g., same part of speech, same frequency,

derivative words of the same prefix or su�x). Later, an interest in semantics-

based distractor generation mechanisms has developed. The approach introduced

by Mitkov et al. (2003) [MH03, MAHK06] marks the beginning of interest in

semantics-based QG methods in which the distractors are generated according

to their similarity, in terms of their meaning, to the key. The distractors in

the system of Mitkov et al. are extracted from a lexicon (e.g., WordNet). The

study shows that computer-aided MCQ generation performs better than manual

construction of test items in terms of time without compromising quality. In two

in-class experiments, the generated questions discriminate well between students

and high percentage of distractors were functional. Although Mitkov et al. report

that their approach is applicable to various domains, they have only evaluated

their system in the linguistics domain. Later, Karamanis et al. (2006) [KLM06]

have conducted a pilot study to use the system of Mitkov et al. in a medical

domain and have reported that some questions were simply too vague or too

basic, indicating that using a lexicon might not be suitable for all domains.

Ontology-based QG techniques have only evolved around 2006, see for ex-

ample [HMMP06, ZSRG08, PKK08]. In general, ontology-based methods are

domain-independent which means that they do not target a specific domain.

Existing attempts involve generating questions for various domains such as re-

lational databases [HMMP06], computer hardware [ZSRG08], science [AP11],

maths [Wil11] and history [AY14], to name a few. Ontology-based QG meth-

ods, along with other methods that utilise structured knowledge sources, are

usually classified as semantics-based methods. The main reasons for using on-

tologies as a knowledge source are: (i) their ability to generate good distractors

and (ii) their ability to generate deep questions about the domain of interest. An

example of a deep question is a questions that asks about relations between the
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di↵erent notions of the domain. A classical motivation behind ontology-based

QG methods, and semantics-based methods in general, is the availability of high

quality knowledge sources that can be (cheaply) reused (e.g., Guidon [Cla83]).

In short, research on automatic QG has been growing since the 70’s of the

last century with contributions from the education community and the NLP and

KR communities. This has resulted in many books (e.g., Item Generation for

Test Development [IK02], Automatic Item Generation [GH13]) and workshops

(e.g., the series of international workshops on QG from 2008 to 2012 [RG09,

BP10]). Looking at the (short) history of automatic QG, we notice the diversity

of contributions and the lack of cohesion among contributors [GH13]. In addition,

there is a lack of a unifying theme. So on the one hand, some contributions have

targeted the theoretical foundations of QG. And on the other hand, other (non-

theoretical) contributions have targeted the practical needs of QG by providing a

technology that can alleviate the burden of manual QG. The future of automatic

QG would benefit from a marriage between theorists and technologists which can

be achieved by promoting multidisciplinary collaborations.

4.3 Dimensions of MCQs automatic generation

Taking into account the diversity of existing contributions on QG, we structure

our discussion on available design options around the following topics: (i) why do

people generate questions automatically?, (ii) what is required as input?, (iii) how

to generate?, (iv) what will be generated (as output)? and (v) how to evaluate

the generated questions? These design options are illustrated in Figure 4.3.

4.3.1 Purpose of questions

As we have already discussed in previous chapters, our main purpose of generat-

ing questions is to use them as assessment items. Consistent with our intentions,

educational assessment has been the main purpose driving many other QG ap-

proaches, see for example [MH03, HN05a, HMMP06, PKK08, AY14]. These ap-

proaches generate questions that are suitable for both formative and summative

assessment purposes. Other approaches have focused on generating formative

assessment questions, e.g., to support self-studying [AP11, CCSO14].

Within the assessment domain, some of the existing QG approaches are suit-

able for generating questions for specific domains/disciplines. Examples of such
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Figure 4.3: Design space of MCQs automatic generation

domain-dependent approaches include approaches for the generation of math

word problems3 [SB02, DS03, NB11, Wil11] or approaches for the generation of

language assessments (including reading comprehension, vocabulary and gram-

mar assessments) [LWGH05, CLC06, LSC07, GK10]. In contrast, other ap-

proaches [MAHK06, ZSRG08, PKK08, CCSO14] are domain-independent and

are suitable for generating questions for various domains.

It is important to mention that educational assessment is not the only useful

application for automatic QG approaches. Such approaches have been shown to

be useful for other purposes such as validation and comprehension. For example,

Bertolino et al. [BDDS11] have suggested to automate the validation of domain

models by generating questions from these models. The generated questionnaires

3A math word problem is a mathematical exercise in which the background information
on the problem is presented as text, i.e., in words rather than in mathematical notation. For
example, a mathematical problem written in mathematical notation as “What is the result of 3
+ 2?” might be presented in a word problem as “John has three apples and two oranges. How
many fruits does John have in total?”.
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can help in identifying the parts in the model which require further considera-

tion and can guide the dialogues between domain experts and modelling experts.

The results of evaluating their approach, although not statistically significant, are

promising in that they have successfully identified some faults in domain models.

Their results also show that the generated questionnaires have helped domain

experts in gaining better understanding of the model which was built according

to the views of multiple domain experts from multiple domains. Along similar

lines, Liu et al. [LCR12, LCAP12, LC12, LCR14] have introduced various meth-

ods to assist students in validating their self-generated academic content (e.g.,

literature reviews). Their approach is capable of generating questions along the

di↵erent levels of Bloom’s taxonomy [BK56] such as: verification, comparison,

procedural, casual and judgemental questions. Their evaluation shows that their

approach generates questions that can be as useful as questions generated by

human supervisors (after filtering out questions with grammatical and semantic

errors).

4.3.2 Domain knowledge source

After defining the purpose of generation, a suitable knowledge source must be

selected. We focus on generating questions from structured sources, in particular,

OWL ontologies, although other alternative knowledge sources can be utilised

such as unstructured text [Hei11, BBV12] or other structured sources (e.g., linked

data [dM11, LL14, JS14], databases [SH14], knowledge bases [CCSO14]). In

addition, some existing QG systems use multiple sources (e.g., text and ontologies

[MAHK06]). We briefly review the most influential approaches below, starting

with unstructured sources for historical reasons.

4.3.2.1 Unstructured sources

In one of the influential4 attempts to generate MCQs, Mitkov et al. (2003)

[MAHK06, MH03] introduced an NLPmethodology for generating multiple-choice

test items from electronic texts and utilised a lexicon (e.g., WordNet) for gener-

ating appropriate distractors. The procedure involves three main tasks: (i) term

extraction, (ii) stem generation and (iii) distractor selection. Following similar

lines, Heilman and Smith (2009) [HS09, HS10a, HS10b, Hei11] described a system

4in terms of number of citations, compared to other QG related publications.
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that can automatically generate factual questions. They also discussed some of

the computational and linguistic challenges related to extracting questions from

text such as the limited ability of NLP-techniques to generate deep questions and

di�culty in extracting relations between concepts (and hence generating good dis-

tractors). Following on, Liu et al. [LCR12] have overcome these challenges and

reported that they have generated deep questions from texts using NLP-based

approaches. In addition, Huang et al. (2014) [HTSC14] extended Hielman and

Smith’s approach to generate plausible distractors by replacing the head word of

the answer phrase with similar words from those that appear in the given content

(similarity here refers to same part of speech). Moreover, some recent NLP-based

approaches [AMF11, AM14, MN14] have successfully extracted relations from

unstructured texts to support the automatic generation of MCQs.

Grammaticality of questions is an issue that has been considered in many

NLP-based QG approaches [BBV12], especially in those approaches that are

based on syntactical transformations of individual sentences [YZ10]. For exam-

ple, Heilman and Smith [HS09] report that 36.7% of their generated questions

were rated as ungrammatical by reviewers. In addition, 39.5% of the questions

were rated as not making sense which is a category that was suggested to be

merged with the grammaticality category after analysing reviewers’ responses

and their agreements/disagreements. Later, Mazidi and Nielsen [MN14] report a

61% reduction in grammatical errors compared to Heilman and Smith’s results.

As pointed out by Vanderwende [Van08], one of the important characteristics

of QG systems is to be able to generate the important questions about the domain

of interest. To achieve this, NLP-based QG methods first (automatically) identify

the central concepts and sentences in the source text [OGP12]. Then, questions

around these central notions are constructed. This step is part of many existing

NLP-based QG approaches, including Mitkov et al.[MAHK06] and Becker et al.

[BBV12]. In addition, general purpose NLP-based methods for text summari-

sation are also available [Lin04]. In contrast, Olney et al. [OGP12] point out

that this step is less relevant in a pedagogical context and suggested that the key

terms are usually already identified in textbook indices or glossaries.

4.3.2.2 Structured sources

A number of ontology-based QG approaches have been proposed [HMMP05,

HMMP06, PKK08, CT09, CT10, ZPK11, AY14]. For example, Zitko et al. (2008)
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[ZSRG08] proposed templates and algorithms for the automatic generation of ob-

jective questions from ontologies. The focus in their work was to extend the func-

tionality of a previously implemented tutoring system (Tex-Sys) by concentrating

on the assessment component. The main di↵erence between this approach and

our approach is in the distractor selection mechanism. The mechanism adopted

by Zitko et al. is to generate a set of random distractors for each MCQ without

an attempt to filter them according to their pedagogical appropriateness.

The distractor selection mechanism was enhanced by Papasalouros et al.

(2008) [PKK08] who presented various ontology-based strategies for the auto-

matic generation of MCQs. These strategies are used for selecting keys and

distractors. The evaluation of the produced questions by domain experts shows

that the questions are satisfactory for assessment but not all of them are syntac-

tically correct. The major problem related to this approach is the use of highly

constrained rules with no theory backing that would motivate the selection of

these rules. For example, the distractors in each MCQ are mainly picked from

the set of siblings of the correct answer while there might be other plausible dis-

tractors. Later, Cubric and Tosic (2009) [CT09] reported on their experience in

implementing a Protégé plugin for question generation based on the strategies

proposed by Papasalouros et al. [PKK08]. More recently, Cubric and Tosic (2010)

[CT10] extended their previous work by considering new ontology elements, e.g.,

annotations. In addition, they suggested employing question templates to avoid

syntactical problems in the generated questions. They have also illustrated, by

some examples, that their method is suitable for generating questions of both

lower and higher levels of Bloom’s taxonomy [BK56].

In addition to the distractor selection mechanism, it is important to consider

some presentation issues that might a↵ect the quality of the generated questions,

e.g., naturalness and fluency of the language. Consistent with this, Williams

[Wil11] extends the use of SWAT5 natural language tools to verbalise ontology

terms which are used in the generated questions. For example, “has a height of”

can be derived from the data property “has height”. Presentation issues, which

are generally out of the scope of this thesis, can be left as a post-generation

step. A human editor can easily modify presentation errors later during the

reviewing process which must be carried out anyway, and the cost of editing is

expected to be marginal. However, the thesis addresses presentation issues that

5http://swat.open.ac.uk/tools/



4.3 Dimensions of MCQs automatic generation 93

can have an impact on the di�culty of the generated questions. For example, we

aim to remove clues that can reveal the correct answer even for those students

who do not have su�cient knowledge about the topic since this can destroy the

validity of assessment items. Examples of clues caused by presentation issues are

grammatical inconsistencies between the stem and distractors or word repetitions

between the stem and key.

In order to make ontology-based QG accessible to test developers with no

prior experience in building ontologies, we need to provide them with strategies

that can help them to build or extend ontologies in systematic ways. For ex-

ample, Gavrilova et al. [GFB05] present a 5-step strategy aimed at developing

teaching ontologies. The stages are: (1) Glossary development, (2) Laddering, (3)

Disintegration, (4) Categorisation and (5) Refinement. Sosnovsky et al. [SG06]

present a case study for utilising the above 5-step strategy to develop an ontology

for the domain of C programming. Another related topic that we like to men-

tion here is the availability of (semi)-automatic approaches for building ontologies

from textual materials (e.g., wikipedia pages). This is still an open research topic

attracting considerable attention. An interested reader is referred to [BCM05] for

a general overview and to [ZN08] for a discussion about the automatic building

of ontologies for educational purposes. In case an existing ontology is used as

a source for QG, it might be necessary to select parts of the ontology for QG,

rather than using the ontology as a whole. As we discussed in Chapter 2, on-

tology modularisation [SPS09, SSZ09] techniques can play an important role in

extracting parts of an ontology in a logically-safe manner.

4.3.3 Additional input

Looking at existing QG approaches, we notice that various types of support-

ing inputs are utilised by the di↵erent approaches. For example, some ap-

proaches, mainly template-based approaches, use domain-dependent templates

[MC09, Wil11] to support the generation of questions for a particular domain.

The drawback of such approaches is that they require a huge manual e↵ort to

develop these templates, and yet, they are not applicable for other domains.

Other approaches [ZSRG08, CT10, CCSO14] benefit from domain-independent

templates to enhance the readability and naturalness of the generated questions.

Although these templates require manual e↵ort as well, they are suitable for

generating questions for various domains.
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Some QG systems take as input a user query [ZSCZ11, CCSO14] and gen-

erate a natural language question that can be answered by the knowledge base

available in the system. Such systems can support learners in their knowledge

acquisition process. Other systems require, as input, a set of syntactic-patterns

[Wol76, Fai99, CLC06] or semantic-patterns [AMF11, AM14, MN14] to extract

suitable parts from the knowledge source which can be used to construct a ques-

tion. In some systems [CLC06], the search for phrases satisfying the required

patterns is performed over an external corpus which can be di↵erent from the

main source of domain knowledge. Other systems use corpora for other reasons

such as performing statistical analysis [Con97, LWGH05, AMF11, AM14] or ma-

chine learning techniques [HN05a, HN05b, CBEM12].

Many existing QG approaches utilise lexicons or thesauri to generate plausi-

ble distractors, for example [SSY05, MAHK06, LSC07, GK10, YBZ12, MGL12,

MN14, HTSC14]. Other approaches require as input a set of annotations either

to train classifiers to find sentences that are optimal for QG [BK12a, BK12b] or

to support the generation of questions with images [PKK11].

4.3.4 Generation method

4.3.4.1 General method

As discussed earlier, QG systems can be generally classified as: (i) syntax-based,

(ii) semantics-based, (iii) template-based, (iv) schema-based or (v) rule-based.

Syntax-based systems, for example [Bor70, MBB+04, HS09], apply syntactic

transformations on suitable sentences in order to generate factual questions. Such

systems use readily available (textual) learning materials or informational sources.

The main limitation of syntax-based systems is that they cannot infer the rela-

tions between the di↵erent parts of the (unstructured) knowledge source. This

can result in the generation of vague questions, questions that do not make sense

or questions whose answer is not available in the source text [HS09]. Semantics-

based systems, for example [ZSRG08, PKK08, AY14], try to overcome these

limitations by utilising structured sources that are ideally rich in terms of defined

relations between the main concepts of the domain. Some QG approaches trans-

form the source text into some sort of structured representation and then apply

semantics-based QG method in order to generate deep questions about the main

concepts in the text and their relations [YZ10, OGP12]. Template-based systems,
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for example [TG05, MC09], rely on domain-dependant templates and fill these

templates by extracting relevant parts from structured or unstructured knowledge

sources. Schemas are similar to templates in that they are domain-dependant but

schemas are more abstract than templates. In other words, di↵erent wordings of

templates have to be enumerated exhaustively. However, schemas can provide a

higher level of abstraction for a group of templates that represent variants of the

same problem. The so-called schema theory has been applied to the automatic

generation and variation of mathematical problems [SB02, DS03]. Each schema

defines the underlying problem structure by identifying the equations that re-

late the entities of the problem to one another. Finally, rule-based systems, for

example [SH14], utilise rule-based knowledge sources to generate questions that

can assess students in terms of their understanding of the important rules of the

domain.

4.3.4.2 Distractors generation method

Generating distractors was identified by Haladyna [Hal94] as the most di�cult

part of MCQs generation. While some QG approaches select distractors at ran-

dom [HN05a, HN05b, ZSRG08], others try to filter distractors according to their

appropriateness. Filtering can be achieved in various ways. For example, Lin

et al. [LSC07] consult Google’s search engine to filter out obviously wrong dis-

tractors. Some of the disadvantages of utilising the web to get distractors is

that it goes outside textbook knowledge and may produce unsuitable distractors

(e.g., correct but synonymous). Alternatively, others [Con97, MBB+04, BFE05]

choose distractors based on lexical features (e.g., same part of speech (POS) or

similar frequency to the correct answer). In some template-based approaches,

each template has a di↵erent mechanism for selecting distractors, e.g., changing

part of speech or changing the verb into di↵erent form [CLC06]. Others [TG05]

generate distractors manually based on student misconceptions as identified by

experienced domain instructors or related literature.

We choose to filter distractors according to their semantic similarity to the

key. Consistent with our approach, existing approaches have already attempted

to utilise the notion of semantic similarity to generate MCQs, for example [MH03,

MAHK06]. Mitkove et al. [MHVR09], have carried out an investigation to find a

similarity measure that is suitable for question generation. The reported results

show that, among the evaluated measures, Lin’s measure [Lin98] was the most
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e↵ective measure in generating questions with quality distractors.6 The quality

of distractors was evaluated using classical item analysis methods [Keh95], see

Chapter 2 for more details. Although this investigation was not carried out in

a statistically significant fashion, the preliminary results are promising and show

that computable similarity measures exist that can be used to generate questions

of good quality. An important observation in this study is that the average item

di�culty was high (i.e., greater than 0.5). These results can be explained by the

similarity-based theory presented in this thesis, see Hypothesis 1. Given that the

distractors were always chosen to be highly similar to the key, it is not surpris-

ing to get questions with high average di�culty. Following Mitkov’s findings, a

number of automatic QG methods utilised similarity measures to generate dis-

tractors that are semantically similar to the key, see for example [MGL12, AY14].

Rather than automatically measuring similarity, Al-Yahya [AY14] gathers simi-

larity judgments from human experts during the ontological engineering process,

limiting the applicability of the method to other existing ontologies.

4.3.5 Output

4.3.5.1 Question and answer format

Questions can be classified according to the format of the question and the format

of the answer. Question formats include WH-questions, fill in the blank, T/F

questions and many others. The answers to these questions can take di↵erent

formats such as: (i) free-response, (ii) multiple-response MCQs or (iii) single-

response MCQs. Of course, some question formats are single-response MCQs in

nature. For example, T/F questions have two fixed choices to pick from, i.e., True

or False. Other questions can be presented to the students either as free-response

or fixed-response questions (e.g., WH-questions, fill in the blank).

Some of the approaches presented earlier in this chapter have focused on

generating MCQs [MAHK06, CT10, AY14]. Other approaches have chosen to

generate free-response questions [DS03, WHL08, SSIS08, Kim08]. We choose to

generate MCQs to address the challenge in generating good distractors which

6However, as we will see in detail in Chapter 5, Lin’s similarity measure requires an annotated
corpus (in addition to an ontology) to measure the similarity between the concepts in the
ontology. This limits the applicability of this similarity measure to ontologies that do not have
such an accompanying corpus. We explore alternative similarity measures in Chapter 5.
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can be varied, in terms of similarity to the key, to generate questions of dif-

ferent di�culties. In terms of question formats, some systems have developed

approaches to generate fill-in-the-blank [BFE05, HN05a, BBV12] while others

generate True/False statements [PKK08, ZSRG08, BDDS11] or WH-questions

[SSIS08, Kim08, MSK09, MC09, HS09].

4.3.5.2 Feedback

The ability to provide instant feedback to many students is one of the advantages

that comes with MCQs. Some existing QG systems have highlighted the impor-

tance of providing feedback to students after providing their answers. Ideally,

feedback should be tailored according to students’ needs based on their provided

answer. Ahmed and Parsons [AP13] automatically generate hints and sugges-

tions to guide students in learning science through a series of MCQs. Liu and Lin

[LL14] provide, as feedback, links for extra learning materials related to the cur-

rent question. The feedback in this case is independent of the particular answer

selected by the student. Mostow and Chen [MC09] provide students with hints

to assist them through some reading comprehension exercises. Most existing QG

systems ignore the importance of generating informative feedback or assume that

revealing the correct answer is su�cient as a feedback.

4.3.6 Evaluation

When it comes to evaluating the generated questions, the purpose for which the

questions have been generated plays an important role. For example, if the ques-

tions were generated for educational assessments purposes, then evaluating these

questions has to involve administrating them to students. Some of the existing

QG systems that have reported the results of evaluating their generated ques-

tions in studies involving students include [Con97, MBB+04, BMB04, BFE05,

KWDH14]. Such student-centred studies involve analysing the results of stu-

dents answering these questions in order to evaluate questions’ di�culty, item

discrimination and usefulness of distractors (if they are available). Alternatively,

or additionally, evaluations may include assessing the e↵ectiveness of using the

generated questions to enhance students’ learning. For example, Chaudhri et al.

[CCSO14] compared a group of students who have access to the QG system with

a control group and reported that students who have used their system scored
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significantly better on a subsequent quiz. Similarly, Kuyten et al. [KBS+12] as-

sessed learners’ enhanced comprehension of domain knowledge after reading ques-

tion/answer pairs generated by the system. Moreover, students’ performance on

the generated questions can be compared to their performance on standardised

tests in the domain of interest, see for example [MBB+04, SSY05, BFE05].

Student-centred studies are not always possible due to various reasons (e.g.,

the system is in early stages). A more common method to evaluate automatically

generated questions is through expert-based studies, see for example [CLC06,

LSC07, PKK08, MC09, HS09, YZ10, PKK11, dM11, BDDS11, AY14]. In addi-

tion, expert-based evaluations have been combined with student-based evalua-

tions in some studies, see for example [MAHK06]. Expert-based evaluations can

be as simple as asking the expert whether a generated question is acceptable or

unacceptable [MEAF12, BBV12] or they can be more systematic in identifying

the aspects to be evaluated. Various aspects have been the focus of expert-based

evaluations. For example, Yao et al. [YZ10] have focused on the following aspects:

(i) relevance, (ii) syntactic correctness and fluency, (iii) ambiguity and (iv) vari-

ety. In contrast, Agarwal et al. [AM11] have focused on the quality of distractors

in terms of readability and semantic meaning. The main drawback of expert-

based evaluations is that they are time-consuming and labor intensive which can

limit the number of experts willing to participate in them (including those experts

who are friends of the investigator). Alternatively, Heilman and Smith [HS10b]

have used Amazon Mechanical Turk to recruit raters of their generated ques-

tions. They report that each question has costed 27.5 cents for 5 raters. Another

possible method to evaluate the automatically generated questions is through

comparing them to questions generated by experts [LWGH05, LCR12, HTSC14].

The above evaluation methods are usually not part of the QG workflow, but

rather a post-generation step to assess the e�ciency of the QG approach. In

contrast to this, Heilman [Hei11] proposed an overgenerate and rank method

in which evaluating the generated questions is part of the QG workflow. The

purpose of the ranking phase is to select higher quality questions out of a collection

of automatically generated questions possibly containing a large number of low

quality questions. In his PhD thesis, Heilman [Hei11] reports that the ranker

roughly doubles the acceptability rate of top-ranked questions.

One observation that is specifically related to ontology-based QG approaches

is that most existing approaches have used handcrafted ontologies for evaluating
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their QG approach, see for example [CNB03, HMMP06, ZSRG08, PKK08, AY14].

It is very important to evaluate these approaches by evaluating their utility over

existing real ontologies. Obviously, using existing ontologies, rather than building

new ones, for QG purposes lowers the cost of generation. Evaluating the use of

existing ontologies for QG is important for understating the issues that may arise

when using existing (probably big) ontologies and how to deal with these issues

to enhance the quality (e.g., relevance, coverage) of the generated questions.

4.4 Proposed method to generate MCQs

Before discussing what methods will be adopted in this thesis to generate MCQs,

we provide a general overview of the methods presented in the previous section.

The goal is to emphasise the gaps in existing methods that will be addressed

in this thesis. As can be observed from our discussion in the previous section,

attempts to automate the generation of assessment questions have started in the

70’s with the emphasise in the beginning being on free-response questions. This

might be explained by the di�culty of generating proper distractors. Methods to

generate MCQs were focused in the beginning on the generation of assessments

for the language learning domain for which it seemed easy to generate distrac-

tors. Mechanisms to generate distractors for this domain included the generation

of distractors based on their lexical features, e.g., mutating a verb to di↵erent

forms such as: play, playing, played, to play. Clearly, this mechanism cannot be

applied in other domains. Some existing ontology-based MCQ generation meth-

ods basically select distractors randomly. Obviously, this can a↵ect the quality

of the generated questions by generating distractors that are not functional. We

aim to propose more principled mechanisms to generate distractors.

A general observation regarding existing QG approaches presented in this

chapter is the lack of control over the di�culty of the generated questions. In

contrast, controlling di�culty is one of the main contributions of this thesis.

Current attempts to control the di�culty of automatically generated questions

include [Wil11, KS13]. However, the proposed models to control di�culty in

these systems have not been validated by any empirical studies. Williams [Wil11]

discussed a few factors to control the di�culty of (free-response) mathematical

word problems such as order of presentation and providing extraneous informa-

tion. Kovacs et al. [KS13] have presented an approach to control the di�culty
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of MCQs that is similar to our approach in that it is based on the notion of sim-

ilarity. However, their approach is di↵erent from our approach in that they vary

the similarity between the stem and distractors, rather than between the key and

distractors. Moreover, the single example presented in their paper shows that the

utilised distance measure is not precise (not sensible to all similarities/di↵erences

between the compared concepts). Again, their approach has not been validated

by presenting the generated questions to students in order to assess their di�-

culty. Newstead et al. [NBH+02, NBH+06] have presented di↵erent di�culty

models to predict the di�culty of analytical reasoning questions. The main fac-

tors which can a↵ect the di�culty of such questions, according to Newstead et al.,

are complexity of the rules needed to solve the questions, the number of mental

models required to represent the problem, and question type. The limitation of

Newstead’s approach is that di↵erent di�culty models are needed for the di↵erent

question types and that the models are applicable to specific question types (i.e.,

analytical reasoning questions). We present a more general approach to control

the di�culty of MCQs and evaluate our approach in a series of empirical studies

(showing promising results).

Our di�culty-control mechanism is based on the use of similarity measures.

In Chapter 5, we present a new family of similarity measures for general OWL

ontologies. Existing o↵-the-shelf similarity measures could not be utilised due

to their limitations. For example, some of them are suitable for taxonomies

rather than rich ontologies whereas some of the measures which were designed

for DL ontologies are suitable for a limited range of ontologies (e.g., inexpressive

ontologies, ontologies with acyclic TBoxes or ontologies with ABoxes). We have

addressed these limitations by presenting similarity measures that are applicable

to a wider range of ontologies.

So far, throughout this chapter and previous chapters, we have hinted at (in

di↵erent places) the design options which have been adopted by our QG approach.

Educational assessment is the main purpose for which we generate questions but

also show, in Chapter 8, that the generated questions can be useful for ontology

validation purposes. We focus on developing QG methods that can be suitable for

various domains (i.e., domain-independent methods). We also focus on generating

questions to assess knowledge rather than skills or attitudes. All of this has been

discussed in both the theoretical foundations established in Chapter 3 and the

empirical evaluations presented later in Chapter 7. We have chosen to evaluate
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our QG approach in a series of student-based and expert-based studies in order

to gain a better understanding of the benefits and limitations of the proposed

approach.

We have also chosen to utilise structured knowledge bases, namely OWL on-

tologies, as the main input to our QG system. Domain-independent templates

are also required as an additional input. The motivation of using such templates

is twofold: first it allows the generation of di↵erent kinds of questions and second

it allows end-users to extend the system by adding additional templates to suit

their needs. In Table 4.1, we present a few possible templates which have been

generally proposed by existing QG approaches, for example [ZSRG08, CT10].

These templates naturally fit with the source, i.e., ontologies. The last template,

i.e., analogy template, has not been proposed by other QG systems. It addresses

higher levels of Bloom’s taxonomy. Other templates can be easily added to our

system. The templates shown in Table 4.1 are the ones used in the empirical eval-

uation studies presented in later chapters. We have focused on templates that

can generate basic, but important, questions about the domain of interest. The

questions, including distractors, are generated in a semantics-based manner by

accessing the ontology via a reasoner. This means that the (correct and wrong)

answers are selected according to their implicit and explicit relation to the stem

and to each other.

In Chapter 7, we present details on implementing a prototype ontology-based

QG system. The prototype system also includes a module to measure the pairwise

similarity of some of the (possibly complex) concepts in the ontology.
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Table 4.1: Basic questions templates

Definition: What is the following definition describing?

[Annotation N]

Key: concept name distractors: concept names
annotated with N not annotated with N

Recognition: Which is the odd one out?

Key: concept name not distractors: concept names subsumed by S1,
subsumed by S1 S1 is a concept name

Generalisation: What is [Concept name A]?

Key: concept name that distractors: concept names that are non
is a subsumer of A subsumers of A, excluding subsumers of the key

Generalisation 2: What is [Concept name A]?

Key: concept expression distractors: concept expressions that are non
that is a subsumer of A subsumers of A, excluding subsumers of the key

Specification: Which of these is [Concept name A]?

Key: concept name that distractors: concept names that are non
is a subsumee of A subsumees of A, excluding subsumers

and siblings of the stem

Specification 2: Which of these is [Concept expression X]?

Key: concept name that distractors: concept names that are non
is a subsumee of A subsumees of A, excluding subsumers of the stem

Analogy: [Concept name A] is to [Concept name B] as:

Key: a pair of concept distractors: pairs of concept names that
names that have the have a relation other than the relation
same relation as A, B between A, B



Chapter 5

Similarity measures

In earlier chapters, we have shown that similarity measures can be used for gen-

erating educationally useful assessment questions and conjectured a similarity-

based theory of controlling MCQs di�culty. In this chapter we elaborate on

the topic of measuring similarity in general and focus on similarity measures for

concepts.

We define similarity measurement as the process of assigning a numerical value

reflecting the degree of resemblance between two objects (e.g., concepts) w.r.t. a

specific ontology O. There are many forms of similarity (e.g., semantic, syntactic

or lexical). Although di↵erent forms of similarity might be valuable for di↵erent

purposes, we focus on semantic similarity between ontology concepts and refer to

this as conceptual similarity.

Similarity is at the core of numerous ontology-related applications such as

ontology alignment [ES07], ontology learning [CW10], ontology clustering and

comprehension [MISR11], to name a few. Consider for example the Gene Ontol-

ogy [Con00]: measuring genes’ similarity [BSTP+10, BAB05, SDRL06, WDP+07]

would allow scientists to infer novel potential (undiscovered) gene functions. The

diversity of similarity-based applications and the centrality of similarity for con-

trolling the di�culty of a range of assessment questions have motivated us to

explore similarity measures in detail.

Several attempts have been made to develop methods for measuring concep-

tual similarity in knowledge bases (e.g., taxonomies, rich ontologies) [RMBB89,

Res95, Lin98, JC97, WP94, ODI07, Jan06, dSF08, LT12]. In addition, the prob-

lem of measuring similarity is well-founded in psychology and a number of simi-

larity models have already been developed [Est55, Wag08, Blo01, She87, Nos92,
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GS04, Tve77, Gen83, Lev66, HCR03, Jam50]. Rather than adopting a psycho-

logical model for similarity as a foundation, we will see that existing similarity

measures for ontologies are either ad-hoc and unprincipled or not computation-

ally possible. Accordingly, no o↵-the-shelf similarity measure was suitable for our

question generation purposes.

This chapter reviews some fundamental psychological theories which can be

considered as a foundational stone for similarity measures. We also analyse some

existing similarity measures before presenting a new family of similarity measures

that addresses some of the problems that are present in existing measures. In

addition, we discuss the desired properties of similarity measures and examine

whether they hold for the new proposed measures. An empirical evaluation of the

new family of similarity measures is presented in Chapter 6 which shows (among

other things) that the new measures are best correlated with human similarity

judgement which is very important when using these measures for QG purposes.

5.1 Background on similarity

A number of theories of similarity have been proposed by psychologists during

the last few decades. From the point of view of a psychologist, the ability to

assess similarity is the backbone of humans’ thinking [Jam50]. Hence, theories of

similarity are closely related to theories of cognition. For example, our success in

solving a new problem depends on finding a similar problem that we previously

solved [GS04]. Other cognitive processes are also founded on this sameness notion,

such as categorisation, generalisation and recognition, to name a few. The need to

understand these cognitive processes has motivated psychologists to build general

theoretical models for similarity. In what follows, we shed a light on some of these

models.

5.1.1 Psychological models of similarity

Note that this section is not aimed at providing a comprehensive survey of the

whole (broad) research area, but rather provides some answers for the following

questions: (i) Which representation systems can be used to represent the concepts

to be compared? and (ii) How can we compare these representations in order to

compute the similarity of two concepts?



5.1 Background on similarity 105

5.1.1.1 Common elements model

In this model, the compared objects are represented as collections or sets of undif-

ferentiated elements. The similarity between two objects is calculated by counting

the number of common elements and/or summing up their values. For example,

Figure 5.1 shows two objects within which individual elements are represented

as Xs. The proportion of shared elements (red Xs) represents the similarity be-

tween the two objects. This model is useful in comparing simple objects that can

be defined using what can be called the elemental approach [Est55, Wag08]. It

might be certainly useful in revealing certain aspects of the compared objects,

e.g., their discrimination [Blo01]. However, it is not applicable to measuring sim-

ilarity between more complex objects that have more properties other than their

membership in a collection/set of objects.

Figure 5.1: Common elements model, taken from [Blo01]

5.1.1.2 Geometric model

A geometric map represents a set of objects in an N-dimensional space where each

object is represented as a point in the space [She87, Nos92]. Figure 5.2 shows an

example of a geometric model with two dimensions (size and colour).

The similarity of two objects (a, b) is inversely related to their distance dab

which can be calculated by the following formula:

dab = (
NX

k=1

|xak � xbk|r)1/r

where xak is the value of object a in dimension k, xbk is the value of object b in
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Figure 5.2: Geometric model, taken from [Blo01]

dimension k and r is a spatial metric which can be set to di↵erent values (e.g.,

Euclidean metric (r=2) or City-block metric (r=1)) [GS04]. While Euclidean

metric yields constant distance values regardless of how coordinates are rotated

w.r.t. objects in the space, city-block distances are sensitive to rotations. The

value of each object in a certain dimension can be measured in di↵erent ways,

e.g., using subjective human judgements.

Geometric models might be useful in comparing objects that can be repre-

sented in a few continuous dimensions. However, in cases where objects are

characterised by non-continuous (e.g., qualitative) features, things get tricky as

geometric models cannot be used to represent such features. Moreover, geometric

models are founded on the use of metric distances. Hence, it was assumed that

they fulfil the three metric properties: (i) minimality, (ii) symmetry and (iii) the

triangle inequality. However, Tversky [Tve77] provided some counter examples in

which geometric models fail to fulfil the aforementioned properties. Later, Tver-

sky [Tve77] introduced the features model which is explained in Section 5.1.1.5.

5.1.1.3 Alignment-based model

In alignment-based models, objects are represented propositionally and/or hierar-

chically (Directed Acyclic Graph (DAG) representing partonomic relations). The

advantage of representing objects in such relational structures is that in many ap-

plications (e.g., analogy detection) the interest is in comparing objects based on

their underlying relations. Similarity is based on the degree of “correspondence”

between the two structures. As an example, Figure 5.3 illustrates the similarity

between an atom and the solar system as presented in the structure mapping

theory developed by Gentner [Gen83].



5.1 Background on similarity 107

Figure 5.3: Alignment-based model, taken from [Gen83]

5.1.1.4 Transformational model

Transformational models are founded on the premise that similarity between two

objects is relative to the number of operations required to transform one object

into the other. For example, Levenshtein’s distance corresponds to counting the

number of necessary changes (e.g., insert, remove, replace) to transform a string

into another string [Lev66]. Along similar lines, Hahn et al. [HCR03] define

the similarity of two objects as a function of the complexity of transforming one

into the other. Similarly, Distel et al. [DAB14] proposed a dissimilarity mea-

sure that is based on description trees for the lightweight description logic EL.
The di�culty in applying such models is in specifying the possible transforma-

tional operations. This di�culty limits the applicability of this model to complex

representations.

5.1.1.5 Features model

To overcome the limitations of geometric models, Tversky [Tve77] proposed to

use contrast models. In Tversky’s contrast model, an object is represented as a

set of features. The degree of similarity Sab between objects (a, b) corresponds

to features common to a and b, unique features of a and unique features of

b. Figure 5.4 better illustrates this model. Similarity can be computed by the
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following formula:

Sab = xf(a \ b)� yf(a� b)� zf(b� a)

where f(a \ b) is the number of shared features between a and b, f(a� b) is the

number of features in a but not in b, f(b�a) is the number of features in b but not

in a, and (x, y, z) are weights used to change the focus of comparison. According

to this model, similarity of object a to object b is di↵erent from similarity of b to

a (i.e., symmetry is not assumed).

Figure 5.4: Features model, taken from [Blo01]

5.2 Measuring similarity in ontologies: existing

approaches and challenges

All the previous models assume things that we do not necessarily have in ontolo-

gies, at least directly. For instance, it is tricky to define what we mean by features

of a concept in an ontology. Due to richness of ontologies, many things may be

associated with a given concept (e.g., atomic subsumers/subsumees, complex

subsumers/subsumees, instances, referencing axioms, role successors). Looking

at existing approaches for measuring similarity in DL ontologies, one can notice,

on the one hand, that approaches which aim at providing a numerical value as a

result of the similarity measurement process are mainly founded on feature-based

models [Tve77], although they might disagree on which features to consider. On

the other hand, approaches aiming at providing a descriptive result are mainly

founded on transformational models [Lev66, HCR03] and are usually charac-

terised as distances or dissimilarity measures rather than similarity measures.

Instance-based measures of similarity are similar to the common elements model
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where instances represent the elements of the model. But they can also be seen as

simple feature-based models where only a single feature is considered (i.e., mem-

bership feature). Other measures compute similarity by measuring distances in

some graph of the ontology. We will see in Section 5.2.3.1 that these measures

can also be seen as feature-based models where only distinguishing features of

the compared objects, rather than common features, are considered.

In what follows, we concentrate on feature-based notions of similarity where

the degree of similarity SCD between concepts (C,D) depends on features com-

mon to C and D, unique features of C and unique features of D. Considering

both common and distinguishing features is a vital property of the feature-based

model. Tversky [Tve77] exemplified this notion of similarity by exploring the

similarity between English Letters. For instance, if we try to compare the letters

E, F and I, we can say that E is more similar to F than to I because they share

more common features. And I is more similar to F than to E because they have

fewer distinguishing features.

Looking at existing approaches for measuring similarity in ontologies, we

find that some of these approaches consider either common or unique features

(rather than both) and that some approaches consider features that some in-

stances (rather than all) of the compared concepts have. Indeed, this has an

impact on the similarity measurement result. Of course, a good similarity mea-

sure should be sensitive to both the explicit and implicit parts of the underlying

ontology (i.e., considering entailments). Thus, to account for all the features of

a concept, we could consider all (possibly complex) entailed subsumers of that

concept. Again, this is not always the case in some existing similarity measures.

Detailed inspection of the problems of some existing measures is presented in

Section 5.2.2.

5.2.1 Desired properties of similarity measures

To understand some of the important properties which need to be considered

when measuring similarity in ontologies, we present the following example:

Example 5.1 Consider the ontology OOrganisms:
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Animal v Organism u 9eats.>, P lant v Organism,

Carnivore v Animal u 8eats.Animal, Herbivore v Animal u 8eats.P lant,

Omnivore v Animal u 9eats.Animal u 9eats.P lant

Please note that our “Carnivore” is also known as obligate carnivore. A good

similarity function Sim(·) is expected to derive that Sim(Carnivore, Omnivore)

> Sim(Carnivore, Herbivore) because the first pair share more common sub-

sumers and have fewer distinguishing subsumers than the second one. On the

one hand Carnivore, Herbivore and Omnivore are all subsumed by the following

common subsumers (abbreviated for readability): {>, Org, A, 9e.>}. In addi-

tion to those subsumers, Carnivore and Omnivore have the following common

subsumer: {9e.A}. On the other hand, they have the following distinguishing

subsumers: {9e.P} while Carnivore and Herbivore have the following distin-

guishing subsumers: {9e.P, 8e.P, 9e.A, 8e.A}. Here, we have made a choice to

ignore (infinitely) many subsumers and only consider a select few (by limiting

the considered language). Clearly, this choice has an impact on Sim(·). Details

on such design choices are discussed later.

We refer to the property of accounting for both common and distinguishing

features as rationality which is defined in Definition 1.

Definition 1. A rational similarity function Sim(·) satisfies the following con-

ditions:

• If the number of common subsumers increases and the number of distin-

guishing subsumers remains constant then the similarity should also in-

crease.

• If the number of distinguishing subsumers decreases and the number of com-

mon subsumers remains constant then the similarity should decrease.

In addition, the related literature refers to some other properties for evaluating

similarity measures. In the following definition, we briefly present some of these

properties. For a detailed overview, the reader is referred to [dSF08, LT12].

Definition 2. Let O be an ontology. Let L be a concept language and C, D, E,

L, U be concepts in L. A similarity measure Sim : L⇥ L ! [0, 1] is

1. Equivalence closed if Sim(C,D) = 1 , O |= C ⌘ D.
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2. Equivalence invariance if O |= C ⌘ D ) Sim(C,E) = Sim(D,E).

3. Symmetric if Sim(C,D) = Sim(D,C).

4. Fulfilling the triangle inequality property if 1+Sim(D,E) � Sim(D,C)+

Sim(C,E).

5. Subsumption preserving if O |= C v D v E =) Sim(C,D) � Sim(C,E).

6. Reverse subsumption preserving if O |= C v D v E =) Sim(D,E) �
Sim(C,E).

7. Monotonic if O |= C v LuU,D v LuU,E v U,E 6v L, 6 9H 2 L s.t. C v
H ^ E v H ^D 6v H =) Sim(C,D) � Sim(C,E).

The quality of the similarity function/measure depends on the above mea-

sures. Typically, a similarity coe�cient (e.g., Jaccard [Jac01], Tversky [Tve77],

Dice [Dic45]) is used to compute similarity. The definitions of these coe�cients

are provided in Table 5.1.

Similarity coe�cient Definition

Tversky T (A,B) = |(A\B)|
|(A\B)|+↵|A�B|+�|B�A|

Dice D(A,B) = 2·|(A\B)|
|A|+|B|

Jaccard J(A,B) = |(A\B)|
|(A[B)|

Table 5.1: Some standard similarity coe�cients for sets of “features” A,B

Note that Dice’s coe�cient is more sensitive to shared features than to dis-

tinguishing features. Tversky’s coe�cient may be asymmetric. However, it has

been shown [Jac01] that Jaccard’s distance (obtained by subtracting the Jac-

card’s coe�cient from 1) is a proper metric, i.e., it satisfies Properties 1-3 in

Definition 2.

5.2.2 Overview of existing approaches

For clarity, we classify existing similarity measures according to two dimensions.

In the first dimension, we classify similarity measures to (i) taxonomy-based

measures and (ii) ontology-based measures. In the second dimension, similarity

measures are classified into (i) intentional measures and (ii) extensional measures.
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5.2.2.1 Taxonomy vs. ontology based measures

Taxonomy-based measures [RMBB89, WP94, Res95, Lin98, JC97] only consider

a taxonomy, i.e., a (possibly acyclic) directed graph or (possibly) a tree. For

DLs, we could use the inferred class hierarchy (i.e., the Hasse diagram of the

partial order on concept names in O induced by the entailment relation O |=
A v B) as this graph and would thus only consider atomic subsumptions (e.g.,

Carnivore v Animal). In fact, this can be considered an approximated solution

to the problem which might be su�cient in some cases. However, the user must

be aware of the limitations of such approaches. For example, direct siblings are

always considered equi-similar although some siblings might share more features

or subsumers than others.

Ontology-based measures [dSF08, Jan06, LT12] take into account more of the

knowledge in the underlying ontology (e.g., Carnivore v 8eats.Animal). These

measures can be further classified into (a) structural measures (b) interpretation-

based measures or (c) hybrid measures. Structural measures [Jan06, LT12] first

transform the compared concepts into a normal form (e.g., EL normal form [LT12]

or ALCN disjunctive normal form [Jan06]) and then compare the syntax of their

descriptions. To avoid being purely syntactic, they first unfold the concepts

w.r.t. the TBox which limits the applicability of such measures [Jan06] to cyclic

terminologies. Moreover, some structural measures [LT12] are applicable only

to inexpressive DLs (e.g., EL) and it is unclear how they can be extended to

more expressive DLs. Interpretation-based measures mainly depend on the notion

of canonical models (e.g., in [dSF08, dFE05] the canonical model based on the

ABox is utilised) which do not always exist (e.g., consider DLs with disjunctions).

Hybrid measures are those structural measures that use canonical interpretations

(e.g., [dFE06, Fd06, EPT15]).

5.2.2.2 Intensional vs. extensional measures

Intensional measures [RMBB89, WP94, Jan06, LT12] exploit the terminologi-

cal part of the ontology while extensional measures [Res95, Lin98, JC97, dSF08,

dFE05, dFE06] utilise the set of individual names in an ABox or instances in

an external corpus. Extensional measures are very sensitive to the content under

consideration; thus, adding/removing an individual name would change similarity

measurements. These measures might be suitable for specific content-based ap-

plications but might lead to unintuitive results in other applications because they
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do not take concept definitions into account. Moreover, extensional measures can-

not be used with pure terminological ontologies and always require representative

data.

5.2.3 Detailed inspection of some existing approaches

After presenting a general overview of existing measures, we examine in detail

some measures that can be considered “cheap” options for measuring similarity

and explore their properties. For what follows, we use SAtomic(C,O) to denote the

set of atomic subsumers of C (i.e., SAtomic(C,O) = {D 2 NC | O |= C v D}).1

We also use ComAtomic(C,D,O),Di↵Atomic(C,D,O) to denote the sets of common

and distinguishing atomic subsumers, respectively, i.e.:

ComAtomic(C,D,O) = SAtomic(C,O) \ SAtomic(D,O)

Di↵Atomic(C,D,O) = SAtomic(C,O)4 SAtomic(D,O)

5.2.3.1 Rada et al.

This measure utilises the length of the shortest path [RMBB89] between the com-

pared concepts in a taxonomy (e.g., one could use the inferred class hierarchy).

To measure the distance between Carnivores and Herbivores of Example 5.1, we

count the number of links in their shortest path. The corresponding class hierar-

chy is shown in Figure 5.5. The length in this case is 2. Similarly, if we count the

number of links between Carnivores and Omnivores we get the same numerical

value. However, we explained earlier that Carnivores and Omnivores are more

similar than Carnivores and Herbivores. Therefore, this (dis)similarity measure

is (too) coarse-grained since it does not always di↵erentiate between specific cases

(where it could do so if it had considered the information in the ontology). More-

over, if we count the number of links between Animals and Plants we also get

the same numerical value, although Carnivores and Omnivores are more specific

concepts than Animals and Plants and therefore could be more similar. Also,

for all C, the similarity of C and its direct subsumers is always the same as its

similarity to any of its subsumees since the number of edges is always 1.

Since this measure is based on counting the number of edges in the shortest

path connecting two concepts, C and D, we can formulate the measure as:

1NC is the set of atomic concepts
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Figure 5.5: Inferred class hierarchy of the ontology in Example 5.1

dRada(C,D,O) = |Di↵Atomic(C,D,O)|

To understand the sources of the above problems, we examine the subsumers

that are considered by the measure. As can be clearly seen in the above formula,

this measure only considers (atomic) distinguishing subsumers of C and D. The

set of atomic subsumers of Carnivore is SAtomic(Carnivore) = {>, C, A,Org}.
SAtomic(Herbivore) = {>, H,A,Org} and SAtomic(Omnivore) = {>, O,A,Org}.
To measure the dis-similarity dRada(Carnivore, Omnivore),2 we take the cardi-

nality of the set of distinguishing subsumers Di↵Atomic(Carnivore, Omnivore)

which equals to 2 as provided by the original measure (i.e., length of the short-

est path). Obviously, the essential problem here is that the measure takes only

distinguishing features into account and ignores any possible common features.

5.2.3.2 Wu and Palmer

To account for both common and distinguishing features, Wu & Palmer [WP94]

presented a di↵erent formula for measuring similarity in taxonomies (e.g., tree-

shaped inferred class hierarchies). Their similarity is originally formulated as:

SWu & Palmer(C,D) =
2 ·N3

N1 +N2 + 2 ·N3

where E is the least common atomic subsumer of C and D (i.e., the most specific

concept name that subsumes both C and D), N1 is the number of nodes on the

path from C to E, N2 is the number of nodes on the path from D to E and N3

2To compute similarity, we can either take the multiplicative inverse of dissimilarity or
subtract the dissimilarity value from 1 and then normalise it by dividing over the maximum
similarity value.
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is the number of nodes on the path from E to the root. The above formula is

equivalent to:

SWu & Palmer(C,D,O) =
2 · |ComAtomic(C,D,O)|

2 · |ComAtomic(C,D,O)|+ |Di↵Atomic(C,D,O)|

Although this measure accounts for both common and distinguishing features,

it only considers atomic concepts and it is clearly more sensitive to common

features than to distinguishing features.

5.2.3.3 Resnik and other IC measures

In information theoretic notions [Res95, Lin98, JC97] of similarity, the informa-

tion content ICC of a concept C is computed according to the following formula:

ICC = �logPC

where the probability (PC) of a concept C is the probability of encountering

an instance of it. For example, P> = 1 and IC> = 0. We say that > is not

informative. Accordingly, Resnik [Res95] defines the similarity SResnik(C,D) as

follows:

SResnik(C,D) = ICLCS

where LCS is the least common atomic subsumer of C andD. As discussed earlier,

this measure, along with any extensional measure, assumes that the instances set

is present and that it is of good quality which may be di�cult to achieve. Another

problem is that those measures take into account features that some instances of

C and/or D have, which are not necessarily neither common nor distinguishing

features of all instances of C and D. In addition, Resnik’s measure in particular

does not take into account how far the compared concepts are from their least

common subsumer. To overcome the last problem, two [Lin98, JC97] other IC-

measures have been proposed:

SLin(C,D) =
2 · ICLCS

ICC + ICD

SJiang&Conrath(C,D) = 1� ICC + ICD � 2 · ICLCS
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5.3 A new family of similarity measures for on-

tologies

Following our exploration of existing measures and their associated problems,

we present a new family of similarity measures that addresses these problems.

To understand the limitations of existing measures in fulfiling the needs of real

world ontologies, we briefly present some statistics gathered from the NCBO

BioPortal corpus of ontologies [MP15]. Firstly, let us recall that extensional

measures require the availability of a set of instances or individuals with the

ontology. We want to know the percentage of ontologies that have such a set in the

corpus. In fact, only 32% of ontologies in the corpus have at least one individual.

The number of individuals is not normally distributed (i.e., massive deviation)

across the corpus. This means that extensional measures cannot be used with

at least 68% of ontologies in the corpus. Secondly, let us recall that structural

measures require acyclic terminologies. However, cycles have been detected in

at least 45.8% of the ontologies. Finally, 22.2% of ontologies have cycles and no

individuals, which means neither extensional measures nor structural measures

can be used for these ontologies. This clearly shows the need for new measures

that can cope with all ontologies.

The new measures use Jaccard’s coe�cient and adopt the features model as

the psychological foundation. The features under consideration are the subsumers

of the concepts being compared. Note that we aim at similarity measures for

general OWL ontologies and thus a naive implementation of this approach would

be trivialised because a concept has infinitely many subsumers. To overcome this

issue, we present two possible refinements for the similarity function.

5.3.1 A first refinement to the similarity function

As a first refinement to the similarity function, we do not simply count all sub-

sumers but consider subsumers from a set of (possibly complex) concepts of a

concept language L. Let C and D be concepts, let O be an ontology and let
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L( eO) be a concept language defined over the signature of O. We set:

S(C,O,L) = {D 2 L( eO) | O |= C v D}
Com(C,D,O,L) = S(C,O,L) \ S(D,O,L)

Union(C,D,O,L) = S(C,O,L) [ S(D,O,L)
Di↵(C,D,O,L) = S(C,O,L)4 S(D,O,L)

Sim(C,D,O,L) = |Com(C,D,O,L)|
|Union(C,D,O,L)|

where, as before, |M | denotes the cardinality of a set M , Com(C,D,O,L) is the
set of common subsumers of concepts C and D, Union(C,D,O,L) is the set of all
subsumers of C or D and Di↵(C,D,O,L) is the set of distinguishing subsumers of

C and D. Note that Com(C,D,O,L) and Di↵(C,D,O,L) are disjoint, but there
can be concepts in L( eO) that are in neither of them. In what follows, we omit O
and/or L from S(·),Com(·),Union(·),Di↵(·) and Sim(·) whenever it is clear from
the context.

To design a new similarity measure, it remains to specify the set L( eO). As

a first example for a simple similarity measure which captures taxonomy-based

measures (i.e., it considers atomic concepts only), we present:

AtomicSim(C,D) = Sim(C,D,O,LAtomic( eO)), and LAtomic( eO) = eO \NC .

Another measure to be presented here is:

SubSim(C,D) = Sim(C,D,O,LSub( eO)), and LSub( eO) = Sub(O).

where Sub(O) is the set of (possibly complex) concept expressions in O.

The rationale of SubSim(·) is that it provides similarity measurements that are

sensitive to the modeller’s focus which is captured in the subconcepts of the

ontology. In addition, it provides a cheap (yet principled) way for measuring

similarity in expressive DLs since the number of candidates is only linear in the

size of the ontology. To capture more possible subsumers, we present:

GrammarSim(C,D) = Sim(C,D,O,LG( eO)), and

LG( eO) = {E | E 2 Sub(O) or E = 9r.F, for some r 2 eO \NR and F 2 Sub(O)}.
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where NR is the set of role names. To understand some of the cases in which

SubSim(·) fails to capture some relevant subsumers, we take a look at the fol-

lowing example:

Example 5.2 Consider the following ontology O :

TBox = {A v 9r.B}
RBox = {r v s}
Sub(O) = {>, A,B, 9r.B}

In the above example, 9s.B 62 Sub(O) but it is considered as a candidate sub-

sumer for GrammarSim(·). Of course, other examples can be easily constructed.

In the empirical evaluations in Chapter 6, we have chosen to include only gram-

mar concepts which are subconcepts or which take the form 9r.F to make the

experiments more manageable. However, the grammar can be extended easily.

5.3.2 Properties of the new measures

The new similarity measures presented above were designed to address certain

problems in existing similarity measures. In particular, there was a need for a

similarity measure that can be suitable for use with any arbitrary OWL ontol-

ogy. For instance, the new measures are suitable to be used with ontologies of

high expressivity. Of course, the “semantic sensitivity” ranges from “low” in

AtomicSim(·) to a “higher” sensitivity in GrammarSim(·). The new measures

are also safe to be used with ontologies with cyclic definitions and GCIs. In

addition, since the new measures are intensional (i.e., rely on the TBox rather

than the Abox), they do not require a representative set of instances which can

be di�cult to establish.

In addition to the ontology-related properties discussed above, in what follows

we examine whether the new measures satisfy the properties presented in Section

5.2.1. Theorem 1 states the properties of the new measures. See Definition 1

for a description of the rationality property and Definition 2 for all the other

properties.

Theorem 1. Let O be an ontology, L be a concept language, Sim(C,D,O,L) =
|Com(C,D,O,L)|
|Union(C,D,O,L)| be the similarity of concepts C, D such that the set of subsumers

S(C,O,L) is finite for any concept C 2 L, then Sim(·) is:
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i. Rational,

ii. Equivalence closed,

iii. Equivalence invariance,

iv. Symmetric,

v. Satisfying triangle inequality,

vi. Subsumption preserving,

vii. Reverse subsumption preserving,

viii. Not monotonic.

Proof.

i. To prove the rationality property, we need to show that for all C,D,E 2 L,
the following properties hold:

(a) |Com(C,D,O,L)| > |Com(C,E,O,L)| ^ |Di↵(C,D,O,L)| =
|Di↵(C,E,O,L)| =) Sim(C,D,O,L) > Sim(C,E,O,L)

(b) |Di↵(C,D,O,L)| < |Di↵(C,E,O,L)| ^ |Com(C,D,O,L)| =
|Com(C,E,O,L)| =) Sim(C,D,O,L) < Sim(C,E,O,L)

By its definition, Sim(·) is rational.

ii. By definition of Sim(·) and Definition 2, it is obvious that Sim(·) is equiva-
lence closed because the sets of (entailed) subsumers for any two equivalent

concepts are always the same.

iii. By definition of Sim(·) and Definition 2, it is obvious that Sim(·) is equiv-
alence invariance because, again, the sets of (entailed) subsumers for any

two equivalent concepts are always the same.

iv. By definition of Sim(·) and Definition 2, it is obvious that Sim(·) is sym-

metric.

v. By definition of Sim(·) which is based on the Jaccard’s coe�cient, Sim(·)
satisfies the triangle inequality property just as the Jaccard’s coe�cient. For

a proof of triangle inequality property for Jaccard’s coe�cient, the reader

is referred to [Lip99].
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vi. To prove the subsumption preservation property, we need to show that for

all C,D,E 2 L, the following property holds:

if O |= C v D v E then Sim(C,D,O,L) � Sim(C,E,O,L).

Since O |= C v D v E then:

(a) |Com(C,D,O,L)| = |S(D,O,L)|

(b) |Com(C,E,O,L)| = |S(E,O,L)|

(c) |Union(C,D,O,L)| = |S(C,O,L)|

(d) |Union(C,E,O,L)| = |S(C,O,L)|

(e) |S(D,O,L)| � |S(E,O,L)|

By definition of Sim(·), we have: Sim(C,D,O,L) � Sim(C,E,O,L)

Therefore, Sim(·) is subsumption preserving.

vii. To prove the reverse subsumption preservation property, we need to show

that for all C,D,E 2 L, the following property holds:

if O |= C v D v E then: Sim(D,E,O,L) � Sim(C,E,O,L).

Since O |= C v D v E then:

(a) |Com(D,E,O,L)| = |S(E,O,L)|

(b) |Com(C,E,O,L)| = |S(E,O,L)|

(c) |Union(D,E,O,L)| = |S(D,O,L)|

(d) |Union(C,E,O,L)| = |S(C,O,L)|

(e) |S(D,O,L)|  |S(C,O,L)|

By definition of Sim(·), we have: Sim(D,E,O,L) � Sim(C,E,O,L)

Therefore, Sim(·) is reverse subsumption preserving.

viii. To prove the monotonicity property, we need to show that for all C, D, E,

L, U , H 2 L, the following property holds:

if O |= C v L u U,D v L u U,E v U,E 6v L, 6 9H 2 L s.t.

C v H ^ E v H ^D 6v H then:

Sim(C,D,O,L) � Sim(C,E,O,L)
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But there are many cases that demonstrate that this is not always the case.

Consider the counter example for AtomicSim(·):

Let Hc, Hd1, Hd2, Hd3, Hd4, Hd5, Hd6 2 L such that:

O |= C v Hc, D v Hd1 uHd2 uHd3 uHd4 uHd5 uHd6

O |= D 6v Hc, C 6v Hd1, C 6v Hd2, C 6v Hd3, C 6v Hd4, C 6v Hd5, C 6v Hd6

and C,D,E have no other subsumers, then:

AtomicSim(C,D,O,L) := 2

11

and

AtomicSim(C,E,O,L) := 1

5

then

AtomicSim(C,D,O,L) ⇤ AtomicSim(C,E,O,L)

Therefore, the counter example shows that AtomicSim(·) is not monotonic.

It makes sense that the new measures do not satisfy the monotonicity prop-

erty because its definition (see Definition 2) depends on the notion of common

subsumers only and ignores any possible distinguishing subsumers which is a core

property of the new measures. Some existing similarity measures have already

been evaluated according to the properties presented in Definition 2. The inter-

ested reader is referred to [LT12, TS14, dSF08] for more details.

It remains to specify the computational complexity of the new measures pre-

sented above. The lower bound of complexity is the complexity of reasoning in

the DL under consideration. The upper bound depends on the number of can-

didate subsumers considered by each measure. For AtomicSim(·), the number

of candidate subsumers is the number of atomic concepts. For SubSim(·), the
number of candidate subsumers is the number of subconcepts in O or 2x where x

is the size of the longest axiom in O. Finally, for GrammarSim(·), this number is

further multiplied by the number of subconcepts times the number of role names

in O.
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5.3.3 A second refinement to the similarity function

As another possible refinement to the similarity function we define similarity as

a weighted function WSim(·). The definition of the function is flexible in that

it has two changeable components: a concept language L and a weight function

W (·). Changing one of the components or both allows us to design di↵erent

similarity measures as we will see in the examples thereafter.

Definition 3. Given an ontology O and two concepts C,D, the weighted simi-

larity WSim(C,D,O) for C and D is defined as follows:

WSim(C,D,O) =
W (Com(C,D,O))

W (Union(C,D,O))

where W : }(L( eO)) ! R+ is a weight function on sets of concepts such that for

any set of concepts M, W satisfies the following properties:

1.

W (M) =

(
0 if M = Ø;

> 0 otherwise.

2. M ✓ M 0 =) W (M)  W (M 0)

3. W (M) is defined and is a real number for all M ✓ L( eO)

In what follows, we omit O from WSim(·) whenever it is clear from the

context.

A first candidate for a suitable weight function that can be used with di↵erent

sets L( eO) is the following:

W (M) = ⌃C2M
1

Size(C)

where the motivation behind using it is that names and concepts close to names

weigh more. We can think we could consider L such that S(C,O,L) is infinite and
still base our similarity measurement on it. That is, we can think that the above

candidate W (M) is defined and is a real number for all M ✓ L( eO). However,

this function is a harmonic divergent infinite series for infinite sets M . Another

example to be presented here simply overcomes this by using a bound K on the

length of concepts considered:
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W (M) = ⌃C2MwK(C)

wK(C) =

(
1

Size(C)
if Size(C)  K;

0 otherwise.

This last weight seems attractive since it is sensitive to the vocabulary intro-

duced in the ontology in that it prefers concept names and, depending on the DL

L, polynomially reducible to standard reasoning problems in L.
As a refinement for the measure SubSim(.) introduced earlier, we introduce

SubWSim(.) which uses a weight function wSub(.):

wSub(C) =

(
1

Size(C)
if C 2 LSub( eO);

0 otherwise.

A weighted grammar-based measure GrammarWSim(·) can be defined using

the following weight function:

wG(C) =

(
1

Size(C)
if C 2 LG( eO);

0 otherwise.

Other interesting weight functions can be designed. For example, a user might

be interested in measuring the similarity with respect to a specific context or

domain. To design such a weight function, it is possible to extract a module

[CGHKS08] which captures the desired context and assign higher weight values

to concepts in the signature of that module.

5.4 Approximations of similarity measures

Some of the presented examples for similarity measures might be practically in-

feasible due to the large number of candidate subsumers. For this reason, it

would be nice if we can explore and understand whether a “cheap” measure (e.g.,

AtomicSim(.)) can be a good approximation for a more expensive one (e.g.,

GrammarSim(.)). We start by characterising the properties of an approximation

in the following definition.

Definition 4. Given two similarity functions Sim(·), Sim0(·), and an ontology

O, we say that:
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• Sim0(·) preserves the order of Sim(·) if 8C,D,E, F 2 eO: Sim(C,D) 
Sim(E,F ) =) Sim0(C,D)  Sim0(E,F ).

• Sim0(·) approximates Sim(·) from above if 8C,D 2 eO: Sim(C,D) 
Sim0(C,D).

• Sim0(·) approximates Sim(·) from below if 8C,D 2 eO: Sim(C,D) �
Sim0(C,D).

• if Sim0(·) preserves the order of Sim(·) or approximates it from above or

below, we say that Sim0(·) is an approximation of Sim(·).

We start by examining whether, or not, AtomicSim(·) is an approximation of

SubSim(·). The first thing to notice is that the set of candidate subsumers for the

first measure is actually a subset of the set of candidate subsumers for the second

measure ( eO \NC ✓ Sub(O)). However, we need to notice also that the number

of entailed subsumers in the two cases does not need to be proportionally related.

For example, if the number of atomic candidate subsumers is n and two compared

concepts share n
2
common subsumers. We cannot conclude that they will also

share half of the subconcept subsumers. They can actually share all or none of

the complex subsumers. Therefore, the order-preserving property is not always

satisfied. As a concrete example, let the number of common and distinguishing

atomic subsumers for C and D be 2 and 4, respectively (out of 8 atomic concepts)

and let the number of their common and distinguishing subconcept subsumers

be 4 and 6, respectively (out of 20 subconcepts). Let the number of common and

distinguishing atomic subsumers for C and E be 4 and 4, respectively and let

the number of their common and distinguishing subconcept subsumers be 4 and

8, respectively. In this case, AtomicSim(C,D) = 2
6
= 0.33, SubSim(C,D) =

4
10

= 0.4, AtomicSim(C,E) = 4
8
= 0.5, SubSim(C,E) = 4

12
= 0.33. Notice that

AtomicSim(C,D) < AtomicSim(C,E) while SubSim(C,D) > SubSim(C,E).

Here, AtomicSim(·) is not preserving the order of SubSim(·) andAtomicSim(·)
underestimates the similarity of C,D and overestimates the similarity of C,E

compared to SubSim(·).
A similar argument can be made to show that entailed subconcept subsumers

are not necessarily proportionally related to the number of entailed grammar-

based subsumers. In Chapter 6, we investigate the relation between these mea-

sures in practice.
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Proposition 1. Although the set of candidate subsumers for AtomicSim(·) is a

subset of the set of candidate subsumers for SubSim(·) which is a subset of the set

of candidate subsumers for GrammarSim(·), AtomicSim(·) is not an approxima-

tion of SubSim(·) and SubSim(·) is not an approximation of GrammarSim(·).

5.5 Relatedness and relational similarity

After introducing some approaches for measuring conceptual similarity, here we

briefly discuss other forms of similarity that can also be relevant for QG. We

also explore the notion of relatedness which is more general than similarity. We

present some methods for measuring the degree of relatedness between concepts.

The main idea is to generalise the principles introduced above for measuring the

conceptual similarity to other forms of similarity, e.g., relational similarity, and

relatedness.

5.5.1 Overview of relatedness

Similarity is a specific form of the general notion of relatedness. For example, we

say that cars and fuel are closely related compared to cars and bicycles which

are closely similar.

In earlier chapters, we have shown that similarity can play an important role

in distractor generation. It seems reasonable to generalise this idea to, e.g., re-

latedness. To do this, we need to develop methods for measuring the degree of

relatedness between di↵erent ontology components (e.g., between concepts). Un-

fortunately, there are no many known relatedness measures for ontologies com-

pared to the relatively high number of existing similarity measures [MS08]. In

what follows we explore some of the existing relatedness measures before present-

ing two new measures that are intended to be useful for QG purposes.

5.5.2 Existing relatedness measures

One of the first attempts was made by Hirst & St-Onge [HSO95] who developed a

relatedness measure based on WordNet [MIL95]. The relatedness measure devel-

oped by Hirst & St-Onge focuses on the notion of a semantically correct relation

between two words and defines it as a path that corresponds to one of the al-

lowable patterns shown in Figure 5.6. Consistent with this, Mazuel & Sabouret
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[MS08] also adopt the semantically correct relation patterns introduced earlier

by Hirst & St-Onge. Three kinds of links appear in these patterns: Upward,

Downward and Horizontal. An upward link corresponds to a generalisation (e.g.,

hypernymy and meronymy relations). A downward link corresponds to a special-

isation (e.g., hyponymy and holonymy relations). A horizontal link corresponds

to other relations which can help in specifying the meaning of a word (e.g., syn-

onymy and antonymy relations). The rationale behind these patterns is that,

firstly, generalising the context is not allowed after specifying it by following a

downward or horizontal link. Secondly, at most one change of direction is allowed

to avoid large changes in meaning with the exception that using a horizontal link

is permitted to make a transition from an upward to a downward link.

Figure 5.6: Relatedness patterns allowed by Hirst & St-Onge, taken from [HSO95]

Multiple paths can exist between any two words. To compute the weight of

each path, Hirst & St-Onge suggested to use the following formula:

RelatednessH&SO(C,D) = J � LSP (C,D)�K ⇥ CDP (C,D)

where J and K are constants defined empirically, LSP (C,D) is the length of the

shortest path between C,D and CDP (C,D) is the number of changes of direction

in this path.

While the measure developed by Hirst & St-Onge [HSO95] is based on the

notion of the shortest path (e.g., similar to Rada et al. dissimilarity measure

[RMBB89]), the relatedness measure developed by Mazuel & Sabouret [MS08]

combines the shortest path notion with information theoretic notions (e.g., similar

to Jiang & Conrath similarity measure [JC97]). So, Mazuel & Sabouret assume

that the di↵erent links in the path connecting the two concepts may not have

the same information content, and hence should have di↵erent weights. Also,

Mazuel & Sabouret treat hierarchical relations (i.e., is a and includes) di↵erently

from non-hierarchical ones. Hence, the weight of a hierarchical link is computed
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using a formula di↵erent from the formula used to compute the weight of a non-

hierarchical link. In cases where di↵erent paths exist between two concepts,

Mazuel & Sabouret suggest to compute the relatedness of those two concepts

based on the path which has the minimum weight.

Mazuel & Sabouret [MS08] acknowledge the di�culty of classifying a relation

as either an upward, downward or horizontal relation, thus limiting the general-

isability of this approach to ontologies other than WordNet.

5.5.3 New relatedness measures

We choose to distinguish between hierarchical and non-hierarchical relations, just

as the method proposed by Mazuel & Sabouret [MS08]. Thus, we present two

separate relatedness measures for each kind of relations. Both measures are suit-

able for general OWL ontologies. The first measure was developed to support a

QG tool that is designed to generate a specific kind of questions, namely analogy

questions, which rely on relatedness notions. Details of designing and evaluating

this QG tool are presented in Chapter 7. This measure is a path-based measure

which is suitable only for hierarchal relations. The second relatedness measure

presented below is suitable for non-hierarchical relations and it was designed to

complement the first measure.

Both measures extend our new family of similarity measures to measure new

kinds of similarities, namely relational similarity. For each relatedness measure,

we present a relational similarity measure. The relational similarity [TL05, Tur05]

corresponds to similarities between pairs of concepts in their underlying relations.

For example, we say that the relation between Lion and Mammal is similar to

the relation between Frog and Amphibian. Similarly, we say that the relation

between food and body is similar to the relation between fuel and car. When

two pairs of concepts have a strong relational similarity, we say that they are

analogous. Measuring relational similarity of two pairs of concepts depends on

how you measure relatedness of the two concepts of each pair. For instance, in

the above two examples, the relation between Lion and Mammal is hierarchical

whereas the relation between Food and body is non-hierarchical. Therefore, we

use the path-based relatedness measure for generating questions about the first

kind of relations and we use the set-based relatedness measure for generating

questions about the second kind of relations. Both measures are presented below.
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5.5.3.1 A new path-based relatedness measure

Consistent with the existing relatedness measures discussed above, our new path-

based measure identifies a set of semantically correct relation patterns. We con-

sider a pair of atomic concepts to be su�ciently related (i.e., have a semantically

correct relation) if they have one of the hierarchal structures in Figure 5.7. Note

that these structures are based on subsumption relationships only. These struc-

tures are sub-graphs of the inferred class hierarchy of an ontology O. The adopted

structures have at most one change in direction in the path connecting the two

concepts and at most two steps in each direction. Other structures that have

more steps and/or changes in direction were discarded to avoid generating ques-

tions with di�cult-to-track relations, assuming that students’ working memory

has a limited capacity.

Figure 5.7: Valid relations structures (labels represent no. of steps and direction
(up or down) in the path that connects concepts A & B in the inferred class
hierarchy, starting from A)

Definition 5. Let O be an ontology. Let A,B be concept names in eO. Let

⇡(C,D) be the set of acyclic paths from A to B in the inferred class hierarchy of

O, ⇧ be the set of valid paths according to Figure 5.7, then we define the path-

based relatedness Relatednesspath�based(A,B) between two concept names A and

B as follows:

Relatednesspath�based(A,B) =

(
1 if there is a path p 2 ⇡(A,B) \ ⇧;

0 otherwise.
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It remains to define a relational similarity measure for the path-based relat-

edness measure. Here, there are two sets of features that we are interested in

comparing. On the one hand, given the paths (in the inferred class hierarchy)

connecting two pairs of concepts, we want to know how many shared/unique steps

the two pairs have. On the other hand, we want to know how many shared/unique

directions the two pairs have in their paths. Similar to the way we defined con-

ceptual similarity (i.e., based on the features-model), the path-based relational

similarity can be defined as follows:

Definition 6. Let C1, C2, D1, D2 be concepts in a concept language L such

that Relatednesspath�based(C1, D1) = 1 and Relatednesspath�based(C2, D2) = 1,

we define the path-based relational similarity RelSim
path-based

: L⇥L ! [0, 1] as:

RelSimpath�based(C1, D1, C2, D2) =
SS(P1, P2)

TS(P1, P2)
⇥ SD(P1, P2)

TD(P1, P2)

where SS(P1, P2) is the number of shared steps between the structures of the two

pairs P1 = (C1, D1) and P2 = (C2, D2), TS(P1, P2) is the number of total steps

in the structures of the two pairs, SD(P1, P2) is the number of shared directions

between the structures of the two pairs and TD(P1, P2) is the number of total

directions in the structures of the two pairs.

5.5.3.2 A new set-based relatedness measure

The above path-based measure was a good start to generate relatedness-based

questions that take into account hierarchal relations only. To generalise the ap-

proach, we need a relatedness measure that takes into account domain-specific

relations (i.e., relations between some instances of a concept and some instances

of the same or another concept). First, we represent, as a set, the relation

Rel(C,D,O) between two concepts C,D w.r.t. domain-specific relations, as fol-

lows:

Rel(C,D,O) = {r 2 NR | O |= C v 9r.D}

To quantify the relatedness of two concepts C and D, we take the cardinality

of their set-based relation such that:

Relatednessset�based(C,D,O) = |Rel(C,D,O)|
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To define a relational similarity measure based on the set-based relatedness

measure, we want to know how many shared/unique domain-specific relations the

two pairs of concepts have. Based on the features-model, the set-based relational

similarity can be defined as follows:

Definition 7. Let O be an ontology, C1, C2, D1, D2 be concepts in a concept

language L such that |Rel(C,D,O)| is defined and is a real number for all C,D 2
L, we set:

1. the set of common relations between two pairs of concepts (C1, D1) and

(C2, D2):

RelCom(C1, D1, C2, D2,O) = Rel(C1, D1,O) \Rel(C2, D2,O)

2. the set of all relations between a pair of concepts (C1, D1) or another pair

of concepts (C2, D2):

RelUnion(C1, D1, C2, D2,O) = Rel(C1, D1,O) [Rel(C2, D2,O)

3. the set-based relational similarity between two pairs of concepts (C1, D1)

and (C2, D2):

RelSimset�based(C1, D1, C2, D2,O) = |RelCom(C1,D1,C2,D2,O)|
|RelUnion(C1,D1,C2,D2,O)|

5.6 Summary and directions

In this chapter, we have introduced a new family of similarity measures with a

di↵erent computational cost for each individual measure. The intuition behind

the new measures SubSim(·) andGrammarSim(·) is that considering more of the

knowledge in the ontology (e.g., in our case more complex subsumers) enables us

to calculate the similarity in a more precise way. However, it must be noted that

this might lead to double counting some subsumers in some cases. For example,

the measures count both an existential restriction and a number restriction that

yields the same meaning (e.g., at least one). Other cases for double counted

subsumers may exist. Thus, the newly introduced similarity measures must be

refined in order to avoid such problems. An empirical investigation to test the

new measures and examine whether such problems have a negative impact on

similarity measurement is presented in the following chapter.

It is also interesting to develop and evaluate the weighted measures in or-

der to examine their utility for applications that require measuring similarity
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w.r.t. contexts. There are many possible applications for context-based similar-

ity measures, especially for large and heterogeneous ontologies. For example,

given a heterogeneous ontology, a user might choose to give more weight to con-

cepts belonging to a specific context and choose to (totally or partially) ignore

concepts belonging to other contexts by giving them less weight.



Chapter 6

Evaluating similarity measures

Following on from our conceptual discussion on similarity measures in the pre-

vious chapter, this chapter studies the behaviour of some similarity measures in

practice. Given a range of similarity measures with di↵erent costs, we want to

know, on the one hand, how good an expensive measure is, its cost and the cases

in which we are required to pay that cost to get a precise similarity measurement.

On the other hand, we want to know how bad a cheap measure is and the specific

problems associated with it. We also want to know how likely it is for a cheap

measure to be a good approximation for more expensive measures. Although we

have just seen (in Chapter 5) some cases where cheap measures are not (theoret-

ically) approximations for expensive measures, we want to know how likely it is

for such measures to be (close) approximations in practice. In addition, finding a

cheap approximation for an expensive measure is interesting only if the expensive

measure is shown to be good enough (and the approximation is close enough).

We compare the new measures to human-based similarity judgements to confirm

that the expensive measures can be more precise than the cheap ones.

In Chapter 5, we have reviewed some cheap existing measures that su↵er

from some problems. Such problems can negatively a↵ect the application in

which these measures are used. The degree of the negative impact depends on

two aspects: (1) how rich the underlying ontology is and (2) the task/scenario in

which the similarity measure is used. In some cases, depending on how simple the

ontology/task is, using a computationally expensive “good” similarity measure

is no better than using a cheap “bad” measure. Thus, we need to understand

the computational cost of a given similarity measure and its strengths and weak-

nesses in di↵erent scenarios. Unfortunately, to date, there has been no thorough
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investigation of ontology-based similarity measures with respect to these issues.

For the purpose of studying the impact of the underlying ontology on the

behaviour of the utilised similarity measures, we need an independently motivated

corpus of ontologies which are actually used in practise. We make use of the

NCBO BioPortal1 corpus which contains over 300 ontologies that are used by

the biomedical community which is a community that has a high interest in

the similarity measurement problem [BSTP+10, BAB05, SDRL06, WDP+07].

However, note that it is di�cult to classify ontologies according to how rich they

are given that many factors contribute to the richness of an ontology.

To understand the major di↵erences between similarity measures w.r.t. the

task in which they are involved in, consider, for example, the following three

tasks:

Given a concept C and some threshold �:

• Task 1: retrieve all atomic concepts D s.t. Similarity(C,D) > 0.

• Task 2: retrieve the N most similar atomic concepts to C.

• Task 3: retrieve all atomic concepts D s.t. Similarity(C,D) > �.

We expect most similarity measures to behave similarly in Task 1 because we

are not interested in the particular similarity values nor any particular ordering

among the similar concepts. However, Task 2 gets harder as N gets smaller. In

this case, a similarity measure that underestimates the similarity of some very

similar concepts and overestimates the similarity of others can fail the task. In

Task 3, the actual similarity values matter. Hence, using the most accurate

similarity measure is essential.

The empirical evaluation of the new measures consists of two parts. In Exper-

iment 1, we carry out a comparison between the new measures GrammarSim(·),
SubSim(·) and AtomicSim(·) against (human) experts-based similarity judg-

ments. In [PPPC07], IC-measures along with Rada et al. measure [RMBB89]

have been compared against human judgements using the same data set which

is used in the current study. Pedersen et al. [PPPC07] point out that the re-

sults of IC-measures highly depend on the external corpus they use and report

that their results need to be confirmed through further studies involving the use

of representative data. We excluded from the study any instance-based measure

1http://bioportal.bioontology.org/
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since they require such a representative data. We also include another path-based

measure which is Wu & Palmer measure [WP94]. In Experiment 2, we study in

detail the behaviour of our new family of measures in practice. GrammarSim(·),
with limited nesting, is considered as the expensive and most precise measure in

this study. We use AtomicSim(·) as the cheap measure as it only considers

atomic concepts as candidate subsumers. Studying this measure can allow us

to understand the problems associated with taxonomy-based measures as they

all consider atomic subsumers only. Recall that taxonomy-based measures su↵er

from other problems that were presented in Section 5.2.3. AtomicSim(·) can be

considered the best candidate in its class since it does not su↵er from these prob-

lems. We also consider SubSim(·) as a cheaper measure than GrammarSim(·)
and more precise than AtomicSim(·) and we expect it to be a better “approxi-

mation” for GrammarSim(·), compared to AtomicSim(·). We also study the

impact of adding a weight function to the similarity measure by examining

SubWSim(·), GrammarWSim(·) which were introduced in Chapter 5.

6.1 Experimental set-up

6.1.1 Infrastructure

With respect to hardware, the following machine has been used to carry out the

experiments presented in this chapter:

Intel Quad-core i7 2.4GHz processor, 4 GB 1333 MHz DDR3 RAM, running

Mac OS X 10.7.5 (Mac Pro late-2011 model).

As for the software, firstly, Oracle Java Runtime Environment (JRE) v1.6

is installed as the default JRE. Secondly, the OWL API v3.4.4 [HB09] is used.

Thirdly, a range of freely available reasoners were utilised: FaCT++ [TH06],

HermiT [SMH08], JFact 2, and Pellet [SPCG+07]. The need for more than one

reasoner is justified by the fact that no available reasoner to date is capable of

handling all existing ontologies. Therefore, to avoid runtime errors caused by

reasoners, we used a stack of reasoners (used in the above order of appearance).

2http://jfact.sourceforge.net/
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6.1.2 Test data

6.1.2.1 Experiment 1

In 1999, SNOMED-CT was jointly developed by the College of American Pathol-

ogists (CAP) and the National Health Service (NHS) in the UK. For the purposes

of our comparison study, we use the 2010 version of SNOMED CT (Systematised

Nomenclature of Medicine, Clinical Terms).3 This ontology has been described

as the most complete reference terminology in existence for the clinical environ-

ment [CCS+97]. It provides comprehensive coverage of diseases, clinical findings,

therapies, body structures and procedures. In February 2014, the ontology has

397,924 classes. These are organised into 13 hierarchies. The ontology has the

highest views amongst all BioPortal ontologies with over 13,600 views.

The reason for choosing this particular ontology is the availability of test data

that shows the degree of similarity between some concepts from that ontology as

rated by medical experts. Pedersen et al. [PPPC07] have introduced a publicly

available test set for evaluating similarity measures in the biomedical domain.

The test bed consists of 30 pairs of clinical terms. The similarity between each

pair is rated by two groups of medical experts: physicians and coders. For details

regarding the construction of this dataset, the reader is referred to [PPPC07]. We

consider the average of physicians and coders similarity values in the comparison.

We include in our study 19 pairs out of the 30 pairs after excluding pairs that

have at least one concept that has been described as an ambiguous concept in

the ontology (i.e., is assigned as a subclass of the concept ambiguous concept) or

not found in the ontology.

6.1.2.2 Experiment 2

The NCBO BioPortal library of biomedical ontologies has been used as a corpus

for evaluating di↵erent ontology-related tools such as reasoners [KLK12], module

extractors [DVKP+12], justification extractors [HPS12], to name a few. The cor-

pus contains 438 user contributed OWL and OBO ontologies (as in April 2015)

with varying characteristics such as axiom count, class count and expressivity.

For example, the expressivity ranges from the inexpressive AL DL to the very

expressive SROIQ DL. OBO ontologies were translated into OWL 2 and in-

cluded in our study. The corpus is publicly available for download and targets

3http://www.ihtsdo.org/snomed-ct
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the biomedical domain which has a noticeable interest in similarity measurement.

The ontologies in the corpus are actively used in various applications. The corpus

provides a history for each ontology showing all prior versions of the ontology.

While some ontologies have many prior versions, some have only the original up-

loaded version. Some basic statistics about the ontologies included in our study

are presented in Table 6.1.

Class count TBox size RBox size
Mean 2,916 5,919 40
Median 507 924 4
Sum 565,661 1,148,241 7,717

Table 6.1: Some statistics about ontologies in our corpus

As for expressivity, Table 6.2 shows OWL 2 profiles across the corpus. Note

that an ontology can belong to more than one category.

Profile percentage of ontologies
DL 83%
EL 51%
QL 34%
RL 25%

Table 6.2: OWL 2 profiles across the corpus

A snapshot of the BioPortal corpus from November 2012 was used. It contains

a total of 293 ontologies. For the purpose of our study, we excluded 86 ontologies

which have only atomic subsumptions (including but not limited to RDFS files).

The reason for this exclusion is that the behaviour of the considered similarity

measures will be identical, i.e., we already know that AtomicSim(·) is good and

cheap. We also excluded 5 more ontologies that have no classes and 33 ontologies

that could not be processed by any reasoner due to run time errors. This has left

us with a total of 169 ontologies.

Due to the large number of classes (565,661) and di�culty of spotting interest-

ing patterns by eye, we calculated the pairwise similarity for a sample of classes

from the corpus. The size of the sample is 1,843 classes with 99% confidence level.

To ensure that the sample encompasses classes with di↵erent characteristics, we
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picked 14 classes from each ontology. The selection was not purely random. In-

stead, we picked 2 random classes and for each random class we picked some

neighbour classes (i.e., 3 random siblings, a superclass, a subclass, a sibling of a

direct superclass). This choice was made to allow us to examine the behaviour

of the considered similarity measures even with special cases such as measuring

similarity among direct siblings.

6.2 Experiment workflow

The general steps involved in the experiments presented in this chapter are sum-

marised in Figure 6.1. In what follows, we describe the steps involved in more

detail.

Figure 6.1: Steps involved in the evaluation experiments

6.2.1 Experiment 1

The similarity of 19 SNOMED CT concept pairs was calculated using the three

measures along with Rada et al. [RMBB89] and Wu & Palmer [WP94] measures.

We compare these similarities to human judgements taken from the Pedersen et

al. [PPPC07] test set.



6.2 Experiment workflow 138

6.2.2 Experiment 2

Experiment 2 goes in steps as follows:

6.2.2.1 Consistency checking and classification

The first stage in the processing of each ontology is consistency checking and

classification. We use the method precomputeInferences(InferenceType.CLASS

HIERARCHY) provided by the OWL API to classify the ontology. This is a nec-

essary step before selecting a sample of 14 classes with certain relations between

them (e.g., superclasses, subclasses).

6.2.2.2 Sample selection

The second stage is to select two random classes from each ontology. For each

random class, 6 “neighbour” classes are also selected as described above. If the

total number of neighbour classes is less than 6, non-neighbour random classes

are selected instead to keep the total number of selected classes to 14 classes for

each ontology.

6.2.2.3 Module extraction

For optimisation, rather than working on the whole ontology, the next steps

are performed on a ?-module [CGHKS08] with the set of 14 classes as a seed

signature. One of the important properties of ?-modules is that they preserve

almost all the seed signature’s subsumers. There are 3 cases in which a ?-

module would miss some subsumers. The first case occurs when O |= C v 8s.X
and O |= C v 8s.? . The second case occurs when O |= C v 8s.X and

O |= 8s.X ⌘ >. The third case occurs when O |= C v 8s.X and O 6|= C v 9s.X.

Since in all three cases 8s.X is a vacuous subsumer of C, we chose to ignore these,

i.e., use ?-modules without taking special measures to account for them.

6.2.2.4 Atomic concepts extraction

In this stage, all the atomic concepts in the ?-module are extracted. These con-

cepts will be considered as candidate subsumers for the three similarity measures

AtomicSim(·), SubSim(·) and GrammarSim(·).
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6.2.2.5 Subconcepts extraction

We recursively use the method getNestedClassExpressions() provided by the

OWL API to extract all subconcepts from all axioms in the ?-module. These

concepts will be considered as candidate subsumers for the measures SubSim(·)
and GrammarSim(·) only.

6.2.2.6 Grammar-concepts extraction

The subconcepts extracted in the previous step are used to generate grammar-

based concepts. For practical reasons, we only generate concepts taking the form

9r.D s.t. D 2 Sub(O) and r a role name in the signature of the extracted ?-

module. Focusing on existential restrictions is justifiable by the fact that they

are dominant in our corpus (77.89% of subconcepts) compared to other complex

expression types (e.g., universal restrictions: 2.57%, complements: 0.14%, inter-

sections: 13.89, unions: 2.05%). These concepts are used as candidate subsumers

for GrammarSim(·) only.

6.2.2.7 Testing for subsumption entailments

For each class Ci in our sample and each candidate subsumer Sj, we test whether

the ontology entails that Ci v Sj. If the entailment holds, the candidate subsumer

Sj is added to the set of Ci’s subsumers. Note that Sj is already tagged as atomic,

subconcept or grammar-based concept.

6.2.2.8 Calculating pairwise similarities

The similarity of each distinct pair in our sample (33,124 total pairs) is calculated

using the three measures: AtomicSim(·), SubSim(·) and GrammarSim(·).

6.2.2.9 Gathering stats along the way

For each ontology, the time required to process the ontology and calculate its

pairwise similarities is recorded. In addition, we gather general properties of

the ontology such as: OWL profile, DL expressivity, number of logical axioms,

number of classes, number of object properties, number of individuals, length of

the longest axiom, number of subconcepts.

We have shown in Chapter 5 that the above three measures are not approxi-

mations of each other. However, this might not be the case in practice as we will
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explore in the this experiment. To study the relation between the di↵erent mea-

sures in practice, we compute the following five properties: (1) order-preservation,

(2) approximation from above (3) approximation from below, (4) correlation and

(5) closeness. The time required to compute these properties is not included in

the ontology processing time. Properties 1-3 are defined in Definition 4. For

correlations, we calculate Pearson’s coe�cient for the relation between each pair

of measures. Finally, two measures are considered close if the following property

holds: |Sim1(C,D)� Sim2(C,D)|  � where � = 0.1 in this experiment.

6.3 Results and discussion

6.3.1 Experiment 1

6.3.1.1 How good are the new measures?

Not surprisingly, GrammarSim and SubSim had the highest correlation val-

ues with experts’ similarity judgements (Pearson’s correlation coe�cient for both

r = 0.87, p < 0.001). Secondly comes AtomicSim with (r = 0.86, p < 0.001).

Finally comes Wu & Palmer measure then Rada et al. measure with (r =

0.81, p < 0.001) and (r = 0.64, p < 0.005), respectively. Table 6.3 shows sim-

ilarity values for the considered clinical terms using the di↵erent similarity mea-

sures. Note that all columns are normalised between, and including, 0 and 1

to allow for comparisons. The values in the expert’s similarity column repre-

sent the average of physicians and coders similarity values taken from Peder-

sen et al. [PPPC07] data set and then normalised. As Table 6.3 shows, val-

ues in the columns representing GrammarSim and SubSim are very close (i.e.,

|GrammarSim(x, y) � SubSim(x, y)|  0.2) and sometimes identical. This ex-

plains the fact that they have the same r values.

We also compare our calculated correlation values to the correlation values

reported by Pedersen et al. [PPPC07]. They report that the best correlation

value was 0.76 for a vector-based similarity measure that is ontology-independent

(i.e., based on external data). Yet, this value is less than the correlation value

calculated for the new measures. They also report that the ontology-dependent

measure that was nearly as good as the vector-based measure was Lin’s measure

[Lin98] with correlation value of 0.69. We also compare our calculated correlation

values for the path-based measure Rada et al. (0.64) with the correlation values
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reported for the same measure by Pedersen et al. (0.48). This di↵erence is

explained by the fact that we only consider 19 pairs out of the 30 pairs considered

in the other study, for the reasons explained above. Note that Pedersen et al.

[PPPC07] do not report the actual similarity values for each measure in their

study; rather, they only report correlation values.

Term1 Term2 Exp. Rad. Wu. Ato. Sub Gr.
Renal failure Kidney failure 1.00 1.00 1.00 1.00 1.00 1.00
Heart Myocardium 0.79 0.93 0.93 0.88 0.87 0.87
Abortion Miscarriage 0.79 0.99 0.95 0.90 0.91 0.91
Delusion Schizophrenia 0.65 0.80 0.30 0.18 0.14 0.13
Congestive heart
failure

Pulmonary edema 0.55 0.71 0.58 0.41 0.39 0.40

Diarrhea Stomach cramps 0.45 0.81 0.38 0.24 0.17 0.18
Mitral stenosis Atrial fibrillation 0.45 0.72 0.68 0.51 0.51 0.51
Diabetes mellitus Hypertension 0.38 0.64 0.36 0.22 0.16 0.17
Acne Syringe 0.38 0.77 0.20 0.11 0.06 0.06
Antibiotic Allergy 0.36 0.88 0.33 0.20 0.20 0.20
Cortisone Total knee replace-

ment
0.34 0.17 0.07 0.03 0.02 0.02

Cholangiocarcinoma Colonoscopy 0.29 0.32 0.08 0.04 0.02 0.02
Lymphoid hyper-
plasia

Laryngeal cancer 0.29 0.48 0.28 0.16 0.12 0.13

Multiple sclerosis Psychosis 0.25 0.86 0.44 0.29 0.14 0.13
Appendicitis Osteoporosis 0.25 0.46 0.27 0.16 0.11 0.12
Rectal polyp Aorta 0.25 0.00 0.05 0.03 0.01 0.01
Xerostomia Alcoholic cirrhosis 0.25 0.52 0.40 0.25 0.22 0.22
Peptic ulcer disease Myopia 0.25 0.77 0.47 0.30 0.25 0.27
Varicose vein Entire knee menis-

cus
0.25 0.32 0.08 0.04 0.03 0.02

Table 6.3: Similarity between some clinical terms from SNOMED-CT

Clearly, the new expensive measures are more correlated with human judge-

ments which is expected as they consider more of the information in the ontology.

The di↵erences in correlation values might seem to be small but this is expected

as SNOMED is an EL ontology and we expect the di↵erences to grow as the

expressivity increases. Figure 6.2 shows the similarity curves for the 6 measures

used in this comparison. Note that only circled points in these curves represent

similarity values. But we have chosen to use continuous curves in order to make
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it easier to compare the curves w.r.t. over- and under-estimations. As we can see

in the figure, the new measures along with Wu & Palmer measure mostly under-

estimate human similarity whereas the Rada et al. measure mostly overestimates

human similarity.

Figure 6.2: Curves of similarity between 19 clinical terms from SNOMED-CT
using 6 similarity measures

6.3.2 Experiment 2

6.3.2.1 Cost of the expensive measure

One of the main issues we want to explore in this study is the cost (in terms of

time) for similarity measurement in general and the cost of the most expensive

similarity measure in particular. Note that the cost presented here is only for

a small sample of 14 classes per ontology. Note also that the grammar used

for the expensive measure was limited to existential restrictions only for practical

reasons. Indeed, the cost of the expensive measure would be much higher without

these limitations.

The average time per ontology taken to calculate grammar-based pairwise sim-

ilarities was 2.3 minutes (standard deviation � = 10.6 minutes, median m = 0.9

seconds) and the maximum time was 93 minutes for the Neglected Tropical Dis-

ease Ontology which is a SRIQ ontology with 1237 logical axioms, 252 classes

and 99 object properties. For this ontology, the cost of AtomicSim(·) was only
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15.545 seconds and 15.549 seconds for SubSim(·). 9 out of 196 ontologies took

over 1 hour to compute GrammarSim(·). One thing to note about these ontolo-

gies is the high number of logical axioms and object properties. However, these

are not necessary conditions for long processing times. For example, the Family

Health History Ontology has 431 object properties and 1103 logical axioms and

took less than 13 seconds to be processed. The average time per ontology taken

to calculate AtomicSim(·) and SubSim(·) was 11.77 seconds and 11.79 seconds

respectively. Although the average time required by GrammarSim(·) seems to

be very high compared to the other two measures, in 89 ontologies out of 196

(45.41%) GrammarSim(·) was computed in less than 1 second.

Clearly, GrammarSim(·) can be far more costly than the other two measures.

This is why we want to know how good/bad a cheaper measure can be.

6.3.2.2 Approximations and correlations

To study the five properties (order-preservation, approximation from above/be-

low, correlation, closeness), we need to compare two measures at a time. We

study the relation between AtomicSim(·) and SubSim(·) and refer to this as

AS, the relation between AtomicSim(·) and GrammarSim(·) and refer to this

as AG, the relation between SubSim(·) and GrammarSim(·) and refer to this

as SG.

We want to find out how frequently can a cheap measure be a good approxi-

mation for (or have a strong correlation with) a more expensive measure. Recall

that we have excluded all ontologies with only atomic subsumptions from the

study. However, in 21 ontologies (12%), the three measures were perfectly cor-

related (Pearson’s correlation coe�cient r = 1, p < 0.001) mostly due to having

only atomic subsumptions in the extracted module (except for three ontologies

which have more than atomic subsumptions). In addition to these perfect cor-

relations for all the three measures, in 11 more ontologies the relation SG was

a perfect correlation (Pearson’s correlation coe�cient r = 1, p < 0.001) and the

relations AS and AG were very high correlations (Pearson’s correlation coe�cient

r � 0.99, p < 0.001). These perfect correlations indicate that, in some cases, the

benefit of using an expensive measure is totally neglectable. Figure 6.3 shows

the similarity curves for a perfect correlation case. Note that for presentation

purposes, only part of the curve is shown. Note also that perfect correlations also
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means perfect order-preservations (100%), perfect approximations from above/-

below (100%) and perfect closeness (100%).

Figure 6.3: Three similarity curves coincide for perfect correlation in BioHealth
ontological knowledge base

In about a fifth of the ontologies (21%), the relation SG shows a very high

correlation (1 > r � 0.99, p < 0.001). Among these, 5 ontologies were 100%

order-preserving and approximating from below. In this category, in 22 ontologies

the relation SG was 100% close. As for the relation AG, in only 14 ontologies

(8%) the correlation was very high.

In nearly half of the ontologies (49%), the correlation for SG was considered

medium (0.99 > r � 0.90, p < 0.001). And in 19 ontologies (11%), the correlation

for SG was considered low (r < 0.90, p < 0.001) with (r = 0.63) as the lowest

correlation value. In comparison, the correlation for AG was considered medium

in 64 ontologies (38%) and low in 55 ontologies (32.5%).

As for the properties (order-preservation, approximations from above/below

and closeness) for the relations AG and SG, we summarise our findings in Ta-

ble 6.4. Not surprisingly, SubSim(·) is more frequently a better approximation

to GrammarSim(·), compared to AtomicSim(·).
Although one would expect that the properties of an ontology have an impact

on the relation between the di↵erent measures used to compute the ontology’s

pairwise similarities, we found no indicators. With regard to this, we categorised

the ontologies according to the degree of correlation (i.e., perfect, high, medium

and low correlations) for the SG relation. For each category, we studied the

following properties of the ontologies in that category: expressivity, number of

logical axioms, number of classes, number of object properties, length of the
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AG SG
Order-preservation 32 44

Approximations from below 32 49
Approximations from above 37 42

Closeness 28 56

Table 6.4: Ontologies satisfying properties of approximation

longest axiom, number of subconcepts. For ontologies in the perfect correlation

category, the important factor was having a low number of subconcepts ( 1

except for 2 ontologies which had a count of 4 and 56 subconcepts). In this cat-

egory, the length of the longest axiom was also low ( 11, compared to 53 which

is the maximum length of the longest axiom in all the extracted modules from

all ontologies). In addition, the expressivity of most ontologies in this category

was AL. Apart from this category, there were no obvious factors related to the

other categories.

6.3.2.3 Are the weighted measures any better?

Given the weighted similarity measures SubWSim(·) and GrammarWSim(·),
we want to know whether they are any better than the non-weighted measures.

SubWSim(·) and GrammarWSim(·) preserved the order of GrammarSim(·)
in 33 and 39 ontologies (out of 196), respectively, compared to 44 ontologies

using SubSim(·). Also, SubWSim(·) and GrammarWSim(·) were close to

GrammarSim(·) in 25% and 57% of the ontologies, respectively, compared to

33% of the ontologies using SubSim(·).
We also compared the weighted measures with human judgements of similarity

and both weighted measures had a correlation value similar to their non-weighted

version (i.e., Pearson’s correlation coe�cient r = 0.87, p < 0.001). These results

indicate that the weighted measures are not necessarily better than the non-

weighted measures.

6.3.2.4 How bad is a cheap measure?

To explore how likely it is for a cheap measure to encounter problems (e.g., fail

Tasks 1-3 presented earlier in this chapter), we examine the cases in which a cheap

measure was not an approximation for the expensive measure. AG and SG were
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not order-preserving in 80% and 73% of the ontologies respectively. Also, they

were not approximations from above nor from below in 72% and 64% of the

ontologies and were not close in 83% and 66% of the ontologies, respectively.

If we take a closer look at the African Traditional Medicine ontology for which

the similarity curves are presented in Figure 6.4, we find that the SG is 100%

order-preserving while AG is only 99% order-preserving. Both relations were

100% approximations from below. As for closeness, SG was 100% close while

AG was only 12% close. In order to determine how bad are AtomicSim(·) and
SubSim(·) as cheap approximations for GrammarSim(·), we study the behaviour

of these measures w.r.t. Tasks 1-3.

Both cheap measures would succeed in performing Task 1 on the African

Traditional Medicine ontology. However, only SubSim(·) can succeed in Task 2

(with 1% failure chance for AtomicSim(·)). For Task 3, there is a higher failure

chance for AtomicSim(·) since closeness is very low (12%).

Figure 6.4: African Traditional Medicine ontology

As another example, we examine the Platynereis Stage Ontology for which

the similarity curves are presented in Figure 6.5. In this ontology, both AG and

SG are 75% order-preserving. However, AG was 100% approximating from above

while SG was 85% approximating from below (note the highlighted red spots).

In this case, both AtomicSim(·) and SubSim(·) can succeed in Task 1 but not

always in Tasks 2 & 3 with SubSim(·) being worse as it can be overestimating in

some cases and underestimating in other cases.

In general, both AtomicSim(·) and SubSim(·) are good cheap alternatives

w.r.t. Task 1. However, AtomicSim(·) would fail more often than SubSim(·)
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Figure 6.5: Platynereis Stage Ontology

when performing Tasks 2 or 3.

6.4 Threats to validity

6.4.1 Threats to internal validity

For practical reasons and due to the high runtime of the similarity measurement

process, we had to restrict our analysis to a relatively small sample of classes

per ontology in Experiment 2. Although the sample is statistically significant in

terms of size, it could not be selected in a pure random mechanism. Rather than

selecting 14 random classes, we selected 2 random classes and 6 neighbour classes

for each random class. This design option was necessary for understanding the

behaviour of similarity measures. Note that non-neighbour classes tend to have

low similarity values. Including a lot of the non-neighbour classes in our sample

could, for example, cause unwanted high percentages for order-preservation.

In addition, relying on only one ontology (i.e., SNOMED-CT) for comparing

the new measures and some existing measures against human judgements might

limit the generalisability of the results of Experiment 1. Rather than dealing with

these results as confirmatory, they should be treated as preliminary indicators.

6.4.2 Threats to external validity

Although ontologies in the BioPortal corpus may not be representative for all

available ontologies, it does contain a wide range of ontologies with di↵erent
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properties (e.g., size and expressivity). Moreover, it is built and maintained by a

community that has a noticeable interest in the similarity measurement problem.

Therefore, it is reasonable to adopt this corpus for testing services that would be

provided for its community.

6.5 Summary and conclusions

To sum up, no obvious indicators were found to inform the decision of choosing

between a cheap or expensive measure based on the properties of an ontology.

However, the task under consideration and the error rate allowed in the intended

application can help. In general, we find the similarity measure SubSim(·) to be

a good candidate for QG purpose. It is a cheap measure, i.e., can be computed

much faster than GrammarSim(·)), and it performed equally well as we have

seen in Experiment 1.



Chapter 7

Evaluating Ontology-based MCQ

generation

So far, we have presented a similarity-based approach to generate MCQs of varied

di�culties from ontologies. We have also presented a new family of similarity

measures to support the generation of such questions. It remains to evaluate the

presented QG approach in terms of: (1) how useful the generated MCQs are?, (2)

how successful is the approach in controlling the di�culty of the generated MCQs?

and (3) how easy/hard is it to adopt the approach by a test developer with no

prior experience in ontologies? To answer these questions, we have conducted

three studies.

The first study consists of two parts: (1) an expert-centred study to evaluate

the appropriateness and usefulness of the generated questions and (2) a student-

centred study to analyse the di↵erent properties of the questions, including their

di�culty and quality of distractors. In the first study, we explore the case of

generating MCQs from handcrafted ontologies. This can give us a greater insight

into how the QG approach performs. As the utilised ontologies were developed

in house, this allows us, for example, to tell, given two distractors, which one

is more similar to the key. Hence, we would easily tell whether one distractor

is more suitable than the other to generate an easy/di�cult question. Using a

handcrafted ontology also makes it easier to find teacher/student participants

because you can tailor the handcrafted ontology to their needs. Otherwise, i.e., if

an existing ontology is used, you would need to find a suitable group of students

who are enrolled in a course for which there is an ontology that models the course

content or at least covers part of it.
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The second study is an expert-centred study which has been conducted with

two goals in mind: (1) assessing an improved protocol to evaluate the appropri-

ateness and usefulness of the generated questions and (2) assessing the challenges

that might be faced by a test developer with no prior experience in ontologies

when adopting an ontology-based QG tool. In this study, we report on the ex-

perience of an interested test developer to develop an ontology for QG purposes.

After building the ontology and generating questions from it, we ask the inter-

ested test developer along with two more experts to evaluate the appropriateness,

usefulness and di�culty of the generated questions.

We structure the description of the first and second studies around the fol-

lowing phases:

1. The ontology development phase

2. The question generation phase.

3. The question evaluation phase.

The number of questions that can be evaluated by human participants (whether

experts or students) is limited. To evaluate questions without human partici-

pants, we show in the third study that it is possible to utilise an automated

solver which plays the role of one student attempting to answer a set of MCQs

of varying di�culties. Given a large pool of questions, it is expected that a stu-

dent would answer a higher number of easy questions compared to the number of

di�cult questions that this student can get right. Three existing ontologies have

been used in this study. The results of this study show that, first, the general

performance of the automated solver when answering questions about di↵erent

subjects correlates with its (estimated) knowledge about those subjects. Second,

the di�culty of the generated questions correlates with the degree of similarity

between the key and distractors. The lesson to be learned from this study is

that automatic mechanisms to evaluate a large number of questions can alleviate

the burden of manual evaluation. Especially given that some existing ontologies

can contain a large number of terms; hence a large number of questions can be

generated from them, far more than what can be evaluated by a human expert.
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7.1 Implementation

To evaluate the proposed QG approach, we have implemented a prototype QG

application that allows to: (1) compute the pairwise similarity of (possibly com-

plex) concepts from an ontology and (2) use these similarity values to generate

MCQs of varied di�culties. The prototype which comes in two versions (a local

version and a web-based version1) was developed using Java Runtime Environ-

ment JRE v1.6, the OWL API v3.4.4 [HB09] and FaCT++ reasoner [TH06]. The

web-based application is shown in Figure 7.1 and it is hosted on a server running

Linux v2.6.18, Apache Tomcat v6.0.36, JRE v1.6.0 and MySQL v5.5.42. The

web-based application has limited memory resources (96MB JVM Heap Size)

compared to the local version (3GB JVM Heap Size) of the application which

has been used in the experiments presented in this chapter. Due to the very

high memory requirements that are usually needed to process large ontologies by

existing reasoners, only small and easy to process ontologies can be used with the

web-based version.

Figure 7.1: The web-based QG application

To generate MCQs from a given ontology, the following steps are followed:

1It can be accessed at http://edutechdeveloper.com/MCQGen/
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1. Selecting the source ontology by either selecting a local file or providing a

URL, see Figure 7.1.

2. Selecting the similarity measure(s) that will be used to calculate the pairwise

similarity of all concept names and possibly sub-concept expressions in the

selected ontology, see Figure 7.2. The more similarity measures selected,

the more time will be required to process the ontology. After calculating

the pairwise similarity, the average similarity between all siblings2 in the

selected ontology is calculated for all selected similarity measures.

3. Selecting question template(s) that will be used to generate the questions.

In Table 4.1, we have presented a few templates for generating basic ques-

tions about the domain of interest. We have chosen to focus on such ques-

tions due to their natural fit to the source (i.e., ontologies).

4. Generating all possible easy and di�cult questions for each selected tem-

plate. The generated questions have one stem, one key, a di�culty level

and at least one distractor that is suitable for this di�culty level. Out of

these questions, many sub questions of varied number of distractors can be

constructed. In the following experiments, we randomly choose 3 distrac-

tors for each question. We report on the number of generated questions

before and after selecting 3 distractors. These numbers are not necessarily

the same due to the possibility of generating questions with less than 3

distractors. Questions with less (or more) than 3 distractors are used in the

experiments presented in Chapter 8.

5. Specifying the di�culty of questions according to Hypothesis 1 presented

in Chapter 3 by using the selected similarity measure(s). Any similarity

measure can be used to generate questions of the required di�culty, however

GrammarSim(·) (see Chapter 5) is used to generate questions which use

concept expressions as answers, e.g., questions for the “Generalisation 2”

category in Table 4.1. This is motivated by the fact that, when the answers

are expressed in detail (e.g., concept expressions rather than simply concept

names), the similarity measurement should be more precise. It remains to

specify the upper (�2) and lower (�1) bounds of similarity values which

are used to generate appropriate distractors for the required di�culty level.

2Siblings are concept names that have the same most specific atomic subsumer.
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Rather than specifying a random number, we choose to use the average

similarity value between all siblings in the ontology. This average similarity

value is then used as a lower bound for generating a di�cult distractor,

where 1 is the upper bound. Distractors that are equivalent to the key are

excluded. Hence, the upper bound is actually just less than 1. The lower

bound to generate an easy distractor is set to be two thirds of the lower

bound of di�cult distractors. And, the upper bound to generate an easy

distractor is, and excluding, the lower bound for di�cult questions.

Figure 7.2: Similarity measures available in the QG application

In addition to the prototype QG application, we have also implemented 2 ver-

sions of a web-based application that allows a group of domain experts to review

a set of questions. The first version has been used in the first evaluation study

presented below and the second version has been used in the second evaluation

study. A screenshot of the first version is presented in Figure 7.3.

To accommodate the feedback gathered from the reviewers who participated

in the first evaluation study, an improved version of the reviewing application has

been built. In the first version of the application, the reviewers are asked to edit

the question under review, in case they think it needs to, and then provide a free-

response comment to justify their suggested modification. In the second version,

for a deeper engagement, we also ask the reviewers to check/uncheck a list of

5 options. Each option presents a rule for constructing a good MCQ and asks

the reviewer to indicate whether the question under review adheres to this rule.

These rules were gathered from the qualitative analysis of reviewer comments
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Figure 7.3: The first version of the reviewing web-interface

in the first evaluation study. A screenshot of the second version is presented in

Figure 7.4. Details on the steps involved in using the reviewing application are

presented in Section 7.2.2.4 , for the first version, and in Section 7.3.2.4, for the

second version.

7.2 First evaluation study: generating questions

from handcrafted ontologies

The importance of this study is that it helps to understand the overall e↵ort

required to build an ontology for a given course, if a relevant ontology is not

available. To approach the problem of finding a suitable group of students willing

to participate in the study, we have chosen to target a group of students and

handcraft an ontology for the course they are enrolled in. The two versions are

hosted in the same web server described above.

7.2.1 Goals

The main goal of this study is to answer the following questions:
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Figure 7.4: The second version of the reviewing web-interface

1. Can we control the di�culty of MCQs by varying the similarity between

the key and distractors?

2. Can we generate a reasonable number of educationally useful questions?

3. How costly is ontology-based question generation, including the cost of de-

veloping/enhancing an ontology, computation cost and post-editing cost?

7.2.2 Materials and methods

7.2.2.1 Equipment description

The reader is referred to Section 6.1.1 for a description of hardware and software

used in this experiment.

7.2.2.2 Building the ontology

The Knowledge Representation and Reasoning course (COMP34512) is a third

year course unit o↵ered by The School of Computer Science at The University of

Manchester. It covers various Knowledge Representation (KR) topics including

Knowledge Acquisition (KA) techniques and KR formalisms. For the purposes of

the study described in this section, a Knowledge Acquisition (KA) ontology
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(which models the KA part of the course) was developed from scratch.3 This

particular part of the course unit was chosen as it contains mainly declarative

knowledge. Other parts of the course can be described as procedural knowledge

and skills which are not suitable to be modelled in an OWL ontology. Assessing

student’s understanding of declarative knowledge is an essential part of various

tests. Figure 7.5 shows a mind map for the overall course content and the area

covered in the KA ontology (the shaded part).

Figure 7.5: Mind map for the Knowledge Representation and Reasoning course

A total of 9 hours were spent by the ontology developer4 to build the first

version of the ontology, excluding the time required to skim through the contents

of the course materials since the ontology was not developed by the instructor

who is in charge of the course unit. The Protégé 4 ontology editor was used for

building the ontology.

3It can be accessed at: http://edutechdeveloper.com/MCQGen/examples/KA.owl
4The author of this thesis
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Several refinements were applied to the ontology after presenting the ontology

to an experienced knowledge modeller5 and getting useful feedback from her. The

feedback session took around 2 hours and refinements took around 3 hours to be

applied. The main refinements are described in the following points along with

real examples from the KA ontology. These points are presented here as they can

be generally useful when building ontologies.

1. The following points can help to enrich an ontology under development:

(a) Model the positives as well as (the known) negatives. For example, if

it is known that some properties hold for a certain KA technique and

that some properties do not hold, then the ontology developer should

add to the ontology both the properties and the non-properties of this

technique and use negations when necessary.

(b) Model both tacit knowledge and explicit knowledge. It is indeed harder

to elicit tacit, i.e., implicit, knowledge from domain experts but once

elicited, it should be fairly easy to model declarative tacit knowledge.

For example, the concept of KnowledgeElicitation should be explic-

itly stated to involve the participation of a KnowledgeExpert and a

KnowledgeModeller. This may be obvious to an expert in knowledge

elicitation but may be less obvious to others.

(c) Specify disjoint classes when possible (e.g., TacitKnowledge and Ex-

plicitKnowledge).

(d) If applicable, state that a property is transitive (e.g., involves) and

declare any necessary property chains (e.g., involves o produces =

produces).

2. The following points can help in making the ontology more complete and

specific:

(a) It is strongly advised to close properties. For example, if it is known

that TechniqueX is good at, and only at, Flexibility (i.e., it is not

good at other quality aspects), then the ontology should state that

TechniqueX v 9isGoodAt.F lexibility u 8isGoodAt.F lexibility. This

can help in getting more precise entailments from the ontology.

5One of the supervisors of this thesis
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(b) As OWL does not allow us to say that a property is the complement of

another property, it is advised to declare properties in a positive form

(e.g., isGoodAt rather than isNotGoodAt) and use negation on class

level (e.g., TechniqueY v ¬9isGoodAt.F lexibility).

(c) Be specific, e.g., introduce sub properties such as produces of isAssociatedWith.

3. The following points can help in making the ontology more organised :

(a) Stick to a naming scheme. For example, use either Camel Case or

underscores to denote individual words in the name of a class/property.

Also use either singular form (e.g., uses) or plural form (e.g., use) but

avoid mixing the two forms in one ontology. This can help in rendering

the generated questions.

(b) Regardless of the similarity measure used, it is advised to use complex

subsumptions involving conjunctions rather than separate atomic sub-

sumptions (e.g., a definition likeHammer v Toolu9isUsedFor.Thing

is better for QG thanHammer v Tool,Hammer v 9isUsedFor.Thing

because in the first case the full definition of Hammer is provided in

one subconcept expression which can be used as a candidate stem/an-

swer for QG).

4. The following point can help to debug an ontology and ensure that it is free

of obvious errors :

(a) Always use a reasoner to classify the ontology and look at the inferred

class hierarchy to trace any logical errors. For example, if we add the

following two axioms to an ontology: 9isGoodAt.TacitKnowledge v
Requirement and Interviews v 9isGoodAt.TacitKnowledge, then,

the ontology will entail that: Interviews v Requirement which is

clearly wrong but can be easily diagnosed by looking at the inferred

class hierarchy.

The important advantage of considering the above points is that they can

highly improve similarity measurement between the di↵erent concepts of the on-

tology and help to generate better questions. The resulting ontology, after ap-

plying these refinements, is an SI ontology consisting of 504 axioms. Among

these are 254 logical axioms. Class and object property counts are 151 and 7,

respectively, with one inverse and one transitive object property.
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7.2.2.3 Generating questions

A variety of memory-recall questions (i.e., lowest Bloom level) have been gener-

ated which we describe below. Questions that require higher cognitive skills (e.g.,

reasoning) will be examined later in Section 7.4.

A total of 913 questions have been generated from the KA ontology described

above. Among these questions are 633 easy questions and 280 di�cult questions.

These questions consist of one stem, one key and all possible distractors. A

large number of questions can be generated out of the 913 questions by selecting

di↵erent combinations of distractors. We choose to construct one question only

for each generated stem. Only 535 questions out of the 913 questions have at

least 3 distractors (with 474 easy questions and 82 di�cult questions). Out of

these, we randomly selected 50 questions for further evaluation by 3 reviewers.

Those 50 questions are presented in Table B.1 in Appendix B. The 50 questions

contain 5 easy and 5 di�cult questions from the 6 di↵erent question categories

which are described in Table 4.1. The number of optimal distractors for MCQs

remains debatable [HD93]. We choose to randomly select 3 distractors for each

question. The number of questions generated for each category is presented in

Table 7.1. Refer to Table 4.1 for a detailed description of these question categories.

SubSim(·) (see Chapter 5) has been used to generate all the questions described

in this table with the exception of using GrammarSim(·) to generate questions

in the “Generalisation 2” category (which is the only category that uses concept

expressions as answers).

Category Total Total-
easy

Total-
di�cult

3+dist 3+dist-
easy

3+dist-
di�cult

Definition 27 17 10 21 16 5
Recognition 94 94 0 75 75 0
Generalisation 133 77 56 101 71 30
Generalisation 2 259 162 97 133 106 27
Specification 55 54 1 41 41 0
Specification 2 345 229 116 185 165 20

Table 7.1: The number of generated questions from KA ontology according to 6
di↵erent categories

As Table 7.1 shows, in all categories, the number of easy questions is higher

than the number of di�cult questions. This is explained by the fact that fewer
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distractors fit the criteria required to generate di�cult questions compared to

easy questions. It is generally harder to find distractors that are very similar to

the key compared to finding distractors that are less similar.

7.2.2.4 Reviewing questions

Three reviewers involved in leading the course have been asked to evaluate the 50

randomly selected questions using the web interface presented in Figure 7.3. For

each question, the reviewer first attempts to solve the questions and then specifies

whether they think that the question is (0) not useful at all, (1) useful as a seed

for another question, (2) useful but requires major improvements, (3) useful but

requires minor improvements or (4) useful as it is. Then, the reviewer predicts the

di�culty of the question. To distinguish between acceptable and extreme levels

of di�culty, we ask the reviewers to choose one of the following options for each

question: (1) too easy, (2) reasonably easy, (3) reasonably di�cult and (4) too

di�cult. In what follows, we refer to the reviewers by their job completion time.

Hence, “first reviewer” refers to the reviewer who first finished the reviewing

process.

7.2.2.5 Administering questions

Two samples of the questions which have been rated by the reviewers as useful (or

useful with minor improvements) by at least 2 reviewers have been administered

to third year students6 who are enrolled in the course unit for the academic year

2013/14 and who were about to sit the final exam. The two sets of questions have

been administered in two di↵erent rounds to increase participation rate and allow

for comparisons between the two rounds which have been set up di↵erently (e.g.,

the first is a closed-book test while the second is open-book). In the first round,

a total of 6 questions (3 easy, 3 di�cult) have been administered to 19 students

using paper-and-pencils during a revision session at the end of the course. Refer

to Table B.1 for a list of these 6 questions (Question IDs: 4, 7, 18, 23, 36 and 38).

The students had 10 minutes to answer the 6 questions. In the second round,

another set of 6 questions (3 easy, 3 di�cult) have been administered to students

via the university’s eLearning environment, BlackBoard, one week before the final

exam and the students were allowed to answer the questions at any time during

6This study has been approved by the ethics committee in the School of Computer Science,
The University of Manchester (approval number: CS125).



7.2 First evaluation study: generating questions from handcrafted ontologies 161

this week. These questions are presented in Table B.1 with IDs: 1 , 3, 16 , 20, 39

and 50. Only 7 students have participated in the second round.

7.2.3 Results and discussion

Overall cost. As mentioned earlier, the cost of QG might, in some cases, include

any costs of developing a new ontology or reviewing/editing an existing one. For

the current experiment, we experienced the extreme case of having to build an

ontology from scratch for the purpose of QG. A total of 14 hours (spread over

multiple days) were spent to develop the ontology described above. For com-

putation time, we need to consider both the time required to compute pairwise

similarity for the underlying ontology and the time required to compute the ques-

tions. Computing pairwise similarity for all sub-concept expressions (including

concept names) in the KA ontology took 22 minutes. This includes the time

required to compute similarities using both SubSim(·) and GrammarSim(·) for
a total of 296 sub-concept expressions. Computing a total of 913 questions took

around 21 minutes. Computing “which is the odd one out?” questions took 17

minutes out of the 21 minutes while computing all other questions took less than

4 minutes. So in total, around 1 hour was needed for computation.

Finally, we also have to consider any time required to review the questions

(possibly including post-editing time). As the reviewers were allowed to review

each item in an unrestricted manner, it is di�cult to determine the exact time

that each reviewer has spent on each item. For example, for a set of questions,

a reviewer might start looking at a question on a given day and then submit

the review on the next day after getting interrupted for any reason. We exclude

questions for which the recorded time was more than 60 minutes as this clearly

shows that the reviewer was interrupted in the middle of the reviewing process.

The first reviewer spent between 13 and 837 seconds to review each of the 50

questions, including time for providing suggestions to improve the questions. The

second reviewer spent between 12 and 367 seconds. And the third reviewer spent

between 17 and 917 seconds. Note that these times include the time required to

attempt to answer the question by the reviewer.

Usefulness of questions. A question is considered “useful” if it is rated as

either “useful as it is” or “useful but requires minor improvements” by a reviewer.

46 out of 50 questions were considered useful by at least one reviewer. 17 out of the

46 questions were considered useful by at least 2 reviewers. This is illustrated in
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Figure 7.6. The first reviewer rated 37 questions as being useful while the second

and third reviewer rated 8 and 33 questions as useful, respectively. Note that the

third reviewer is the main instructor of the course unit during the academic year

in which the experiment has been conducted while the second reviewer taught

the course unit in the previous year. The first reviewer has not taught this course

unit before, but has general knowledge of the content.

Figure 7.6: Usefulness of questions

Usefulness of distractors. A given distractor is considered “useful” if it

has been functional (i.e., picked by at least one student). For the six questions

which were administered on paper, at least two out of three distractors were

useful. In five out of the six questions, the key answer was picked more frequently

than the distractors. Exceptionally, in one question, a particular linguistically

unique7 distractor was picked more frequently than the key. The course instructor

explained this by pointing out that this question was not covered explicitly in

class. For the six questions which have been administered via BlackBoard, at

least one distractor was useful except for one question which has been answered

correctly by all the seven students.8

Item discrimination. We used Pearson’s coe�cient to compute item dis-

crimination to show the correlation between students’ performance on a given

question and the overall performance of each student on all questions. The range

of item discrimination is [-1,+1]. A good discrimination value is greater than

7This distractor was a verb phrase while the other answers, including the key, were nouns.
See question number 36 in Table B.1.

8See question number 3 in Table B.1.



7.2 First evaluation study: generating questions from handcrafted ontologies 163

0.4 [Ebe54]. For the six questions administered on paper and four out of the

six questions administered via BlackBoard, item discrimination was greater than

0.4. For one question administered via BlackBoard, item discrimination could

not be calculated as 100% of students answered that question correctly. Finally,

item discrimination was poor for only one question. The third reviewer pointed

out that this question is highly guessable because of the conceptual similarities

between the stem and the key.9 These results are illustrated in Figure 7.7 and

Figure 7.8.

Figure 7.7: Item discrimination for questions administered in class

Figure 7.8: Item discrimination for questions administered online

Item di�culty. One of the core goals of the presented QG approach is to

be able to control item di�culty. To evaluate this functionality, we examine tool-

reviewers agreement and tool-students agreement. As described above, the tool

generates questions and labels them as either easy or di�cult. Each reviewer

9See question number 16 in Table B.1.
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can estimate the di�culty of a question by choosing one of the following options:

(1) too easy, (2) reasonably easy, (3) reasonably di�cult and (4) too di�cult. A

question is too di�cult for a particular group of students if it is answered correctly

by less than 30% of the students and is too easy if answered by more than 90%

of the students [Dav01]. In both cases, the question needs to be reviewed and

improved. Accordingly, we consider a question to be di�cult if answered correctly

by 30-60% and easy if it is answered correctly by 60-90% of the students.

Before discussing tool-reviewers agreement, it is worth to note agreements

among reviewers. We distinguish between loose agreements and strict agree-

ments. A loose agreement occurs when two reviewers agree that a question is

easy/di�cult but disagree whether it is too easy/di�cult or reasonably easy/dif-

ficult. Table 7.2 summarises agreements among reviewers. Each reviewer agrees

with the tool on 31 (not necessarily the same) questions, see Figure 7.9.

Figure 7.9: Tool-reviewers agreement on item di�culty

1st &
2nd

1st &
3rd

2nd &
3rd

Loose agreements 31 26 33
Strict agreements 19 15 15

Table 7.2: Loose and strict agreements between the three reviewers
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With regard to the six questions delivered on paper, two questions (no. 7 and

18 in Table B.1) were reasonably di�cult and two (no. 7 and 38 in Table B.1)

were reasonably easy for the students. These four questions were in line with

di�culty estimations by the QG tool. One (no. 36 in Table B.1) out of the

six questions was too di�cult for the students. Most of the students picked a

linguistically unique distractor rather than the key. Remarkably, the tool and

the three reviewers have rated this item as easy. Finally, one question (no. 23

in Table B.1) was too easy for the students, however it was rated as di�cult by

the tool. This is due to having a clue in the stem. Similarly, for BlackBoard

questions, one question (no. 50 in Table B.1) was reasonably di�cult and one

question (no. 1 in Table B.1) was reasonably easy for the students; just in line

with tool estimations. One (no. 20 in Table B.1) out of the six questions was too

easy for the students (100% correct answers). This question was rated as easy

by the tool. Again, one question (no. 3 in Table B.1) was rated as di�cult by

the tool but was easy for the students due to having a clue in the stem. Two

questions (no. 16 and 39 in Table B.1) were not in line with tool estimations but

were in line with estimations of at least two reviewers. Results of item di�culty

predictions are illustrated in Figure 7.10 for questions administered on paper and

in Figure 7.11 for questions administered online.

Figure 7.10: Item di�culty predictions-In class



7.3 Second evaluation study: using the QG approach by novice ontology developers166

Figure 7.11: Item di�culty predictions-Online

7.2.4 Threats to validity

Due to time and resource limitations, the number of ontologies, generated ques-

tions, evaluated questions, student participants in this study were limited. Al-

though the results are promising, they are far away from statistically significant.

Moreover, the utilised ontology was handcrafted, limiting our ability to under-

stand possible issues that may rise when generating questions from existing on-

tologies. We address both issues in the third evaluation study by looking at larger

numbers of questions that are generated from existing ontologies.

7.3 Second evaluation study: using the QG ap-

proach by novice ontology developers

Introduction to Software Development in Java is a self-study course run by the

School of Computer Science at the University of Manchester. It aims to ensure

that students enrolled in the Masters programs in the school have a thorough

grasp of fundamental programming concepts in Java. Topics covered in this

course include: object-oriented basics, imperative programming, classes, inheri-

tance, exception handling, collections, stream and file I/O. The course material is

delivered online via Moodle. As with any self-study course, students enrolled in

this course need a series of self-assessments to guide them through their learning

journey.
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7.3.1 Goals

This section presents another case study for generating MCQs from ontologies

which have been handcrafted for the explicit purpose of generating questions

(and evaluating them). Moreover, in the current case study, we examine the

possibility of adapting our automatic approach to generate MCQs by instructors

with no prior experience in building ontologies.

7.3.2 Materials and methods

7.3.2.1 Equipment description

See Section 6.1.1 for a description of hardware and software used in this experi-

ment.

7.3.2.2 Building the ontology

An ontology that covers the contents of the course has been built by an instructor

who has an experience in Java but with no huge familiarity with materials of

this course. Also, the instructor had no prior experience in building ontologies.

The online course material covers both fundamental concepts (i.e., terminological

knowledge) and practical Java examples (i.e., procedural knowledge). Only the

terminological part was modelled in the ontology. This type of knowledge is

typically a vital part of education in general and of assessment in particular. The

development of the ontology has gone through the following steps:

• The instructor has been introduced to the basics of ontology development

in an initial meeting which lasts for 2 hours.10 This included a brief hands-

on tutorial on using Protégé 4 ontology editor. Further online materials

[Hor11b] were forwarded to the instructor to familiarise herself on building

and dealing with ontologies.

• The instructor built an initial version of the ontology. She went through

the first 6 modules of the course, extracted and added to the ontology

any encountered concepts and finally established links between the added

concepts. This took a total of 10 hours and 15 minutes spread over 6 days.

This has resulted in a total of 91 classes, 44 object properties and 315

axioms.
10with the author of this thesis.
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• A two-hours feedback session took place to highlight weak points in this

version of the ontology. The instructor reported that, as the number of

classes and relations increased, it got very hard to maintain the same level

of understanding of the current state of the ontology.

• Before attempting to build a new version of the ontology, an attempt has

been made to generate some questions from the first version of the ontology.

A quick look at the questions has revealed some bugs in the ontology. The

main feedback given to the ontology builder was to make sure that every

“property” added to any class, via assigning a complex superclass, should

also be applicable to its subclasses. For example, one of the classes in the

first version was API and the ontology builder has asserted the following

axiom API SubClassOf : standsFor some ApplicationProgramInter-

face to describe the abbreviation. As a consequence, for any subclass X of

the class API, the following entailment holds: X SubClassOf : standsFor

some ApplicationProgramInterface. One of the possible ways to over-

come such a problem is to make use of annotation properties which do not

have logical consequences.

• The second version of the ontology took 5.5 hours to build. The resulting

ontology has a total of 91 classes, 38 object properties and 331 axioms.

The main task was to restructure the ontology according to the received

feedback. The decrease in the number of object properties is due to merg-

ing those object properties which had very similar meaning but di↵erent

names. The increase in the number of axioms can be partially explained

by the fact that the instructor was advised to assert negative facts in the

ontology whenever and wherever possible. In addition, some concepts were

re-categorised (e.g., declared as a subclass of another exiting class).

• To ensure that the ontology covers the main concepts of the domain, the

instructor was advised to consult a glossary of Java-related terms which is

part of the online course material. Adding new terms from the glossary

in suitable positions in the ontology took a total of 10 hours over 4 days.

The resulting ontology has a total of 319 classes, 107 object properties, 213

annotation assertion axioms and 513 logical axioms. The DL expressivity

of the resulting ontology is ALCHQ which allows conjunctions, disjunc-

tions, complements, universal restrictions, existential restrictions, qualified
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number restrictions and role hierarchies.

7.3.2.3 Generating questions

We have generated questions using the same templates used in the previous study

and described in Table 4.1. Prior to generating questions, we computed the

pairwise similarity for all the subconcept expressions in the ontology. A total of

428 questions have been generated from the Java ontology. Then, questions with

less than 3 distractors have been excluded (resulting in 344 questions). Questions

in which there is an overlap between the stem and the key have been filtered out

(resulting in 264 questions). This step was necessary to ensure that there are

no word clues in the stem that could make the correct answer too obvious. The

previous evaluation study (QG from the KA ontology) have identified this as a

possible problem (see Section 7.2.3 and question no. 23 in Table B.1). In this

study, we filter out questions in which there is a shared word of more than three

characters between the stem and key. This does not apply to questions in which

the shared word is also present in the distractors. Finally, questions which can

be described as redundant and that are not expected/recommended to appear

in a single exam were manually excluded (e.g., two questions which have slightly

di↵erent stems but the the same set of answers or vice versa). This step was

carried out only to get a reasonable number of questions that can be reviewed in

a limited time. The resulting 65 questions are presented in Table B.2. Among

these are 25 easy questions and 40 di�cult questions.

7.3.2.4 Reviewing questions

Again, three reviewers have been asked to evaluate the 65 questions using the

web interface shown in Figure 7.4. All the reviewers have experience in both

the subject matter (i.e., programming in Java) and assessment construction. The

reviewers have been randomly numbered as Reviewer 1, Reviewer 2 and Reviewer

3 with Reviewer 2 being the ontology developer. For each question, the reviewer

is asked to first attempt to answer the question. Next, the reviewer is asked to

rate the di�culty of the question by choosing one of the options: 1) Too easy, 2)

Reasonably easy, 3) Reasonably di�cult and 4) Too di�cult. Then each reviewer

is asked to rate the usefulness of the question by choosing one of the options:

(0) not useful at all, (1) useful as a seed for another question, (2) useful but

requires major improvements, (3) useful but requires minor improvements or (4)
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useful as it is. The above three steps, i.e., attempting to answer the question,

rate di�culty and rate usefulness, are exactly the same steps carried out in the

reviewing phase in the first evaluation study. In addition to these steps, in this

evaluation study, each reviewer is asked to check whether the question adheres to

5 rules for constructing good MCQs. The rules are: (R1) The question is relevant

to the course content, (R2) The question has exactly one key, (R3) The question

contains no clues to the key, (R4) The question requires more than common

knowledge to be answered correctly, and (R5) The question is grammatically

correct.

7.3.3 Results and discussion

Total cost We report on the cost, in terms of time, of the three phases: 1)

ontology building, 2) question generation and 3) question review. The ontology

took around 25 hours to be built by an instructor who has no prior experience

on ontology building and no huge familiarity with the course material used in

this study. This cost could have been reduced with an appropriate experience in

building ontologies and/or higher familiarity with course content. The generation

of a total of 428 questions using the machine described above took around 8 hours

including the time required to compute pairwise similarities. Finally, Reviewers

1, 2 and 3 spent around 43 minutes, 141 minutes, and 56 minutes, respectively to

review the selected 65 questions. We exclude any question for which more than 15

minutes were spent. This indicates that the reviewer was interrupted during the

review of that question. In addition, Reviewer 2 reported that she was taking side

notes while reviewing each question. For this reason and for other reasons that

could interrupt the reviewer, the cost of the reviewing phase should be regarded

as a general indicator only.

In terms of cost, it is interesting to compare between two possible scenar-

ios to generate MCQs. The first scenario is where the questions are manually

constructed and the second scenario is where ontology-based question generation

strategies are utilised. The cost of manual generation is expected to be lower than

the cost of developing a new ontology added to the cost of question generation

and review. However, a few points should be taken into account here. First,

in the second scenario, the ontology is expected to be re-used multiple times to

generate di↵erent sets of questions. Second, the aim is to generate questions with

highly accurate predictions about their pedagogical characteristics which has been
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Table 7.3: A sample question generated from the Java Ontology

Stem: ..... refers to “A non-static member variable of a class.”:

Options: (A) Loop variable
(B) Instance variable
(C) Reference variable
(D) Primitive variable

Key: (B)

shown to be possible in the second scenario (for example, see the study presented

in Section 7.2). Third, no particular skills/creativity for MCQ construction are

required when utilising ontology-based question generation strategies.

Usefulness of questions Figure 7.12 shows the number of questions rated by

each reviewer as: not useful at all, useful as a seed for another question, useful but

requires major improvements, useful but requires minor improvements, or useful

as it is. As the figure indicates, a reasonable number of questions have been rated

as useful by at least one reviewer. More precisely, 63 out of the 65 questions have

been rated as either useful as it is or useful with minor improvements by at least

one reviewer. And 50 questions have been rated as either useful as it is or useful

with minor improvements by at least two reviewers. Finally, 24 questions have

been rated as either useful as it is or useful with minor improvements by all three

reviewers. As a concrete example of a question that was rated useful by all 3

reviewers, we present the question in Table 7.3.

Figure 7.12: Usefulness of questions according to reviewers evaluations
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Quality of questions The quality of questions is evaluated by adherence

to 5 rules. Figure 7.13 shows the number of questions adhering to each rule as

evaluated by each reviewer. In general, a large number of questions have been

found to adhere to Rules R1, R2 and R4. It can be noticed that only a few

questions violate Rule R4 (i.e., no clues rule). Recall that a lexical filter has been

applied to the generated questions to filter out questions with obvious word clues.

This has resulted in filtering out 80 questions. This means that the lexical filter

is needed to enhance the quality of the generated questions. The grammatical

correctness rule (R5) was the only rule which got low ratings. According to

reviewers’ comments, this is mainly due to the lack of appropriate articles (i.e.,

the, a, an). Dealing with this issue and other presentation/verbalisation issues is

part of future work.

Figure 7.13: Quality of questions according to reviewers’ evaluations

Di�culty of questions according to reviewers’ ratings Part of the ob-

jectives of this study is to evaluate the accuracy of predictions made by the ques-

tions generation tool about the di�culty of each generated question. To do this,

we compare di�culty estimations by each reviewer with tool’s predictions. Re-

call that each reviewer was asked to select from four options of di↵erent di�culty

levels (too easy, reasonably easy, too di�cult, reasonably di�cult). This is to dis-

tinguish between acceptable and extreme levels of di�culty/easiness. However,

tool’s predictions can take only two values (easy or di�cult). To study tool-to-

reviewers agreements, we only consider the two general categories of di�culty.

That is, the four categories of di�culty estimations by reviewers are collapsed

into two categories only (easy and di�cult). Figure 7.14 shows the number of
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questions for which there is an agreement between the tool and at least one, two

or three reviewers. As the Figure shows, for a large number of questions (51 out

of 65 questions) there has been an agreement between the tool and at least one

reviewer. To understand the causes of disagreements, we further categorise the

agreements according to the di�culty of questions. Table 7.4 indicates that the

degree of agreement is much higher with easy questions reaching 100% agreements

with at least one reviewer. This could mean that the generated distractors for

di�cult questions were not plausible enough. This has been discussed with the

ontology developer because we believe that better distractors could be generated

by enriching the ontology. In particular, the ontology developer has indicated

that many classes in the ontology have been assigned to a single (named) su-

perclass while they could possibly be assigned to multiple (possibly complex)

superclasses. Restructuring and enriching the ontology is expected to increase

the ability of the tool to generate questions at certain levels of di�culty.

Figure 7.14: Di�culty of questions according to reviewers’ evaluations

Table 7.4: Accuracy of di�culty predictions for easy and di�cult questions

� 1 reviewer � 2 reviewers � 3 reviewers
Easy questions 100% 88% 52%

Di�cult questions 65% 35% 2.5%
All questions 78.5% 55.4% 21.6%

Di�culty of questions according to reviewers’ performance Each re-

viewer has attempted to solve each question as part of the reviewing process.
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Interestingly, none of the reviewers has answered all the questions correctly, in-

cluding the ontology builder who answered 60 questions correctly. The first and

third reviewers have correctly answered 55 and 59 questions, respectively. This

can have di↵erent possible explanations. For example, it could be possible that

the reviewer has picked a wrong answer by mistake while trying to pick the key.

This has actually happened with the first reviewer who has reported this by leav-

ing a comment on one question. Note also that the third reviewer has reported

that in exactly one question there was more than one possible correct answer, see

Figure 7.13. This means that if a reviewer picks an answer other than the one

identified by the tool as the correct answer then their answer will not be recog-

nised as correct. Figure 7.15 shows the number of questions answered correctly

by at least one, two and three reviewers.

Figure 7.15: Di�culty of questions according to reviewers performance

In exactly one question (no. 28 in Table B.2), none of the reviewers answered

the question correctly, raising a question about the validity of this question as

an assessment tool. The stem part of this question was “Which is the odd one

out?”. The required task to answer the question is to distinguish between the

answers which have a common link (the distractors) and the answer which cannot

be linked to the other answers (the key). Although all the reviewers have rated

this particular question as “useful”, we believe that it is too di�cult and, hence,

not necessarily very useful as an assessment item.
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7.3.4 Threats to validity

As discussed earlier in the evaluation of questions generated from the KA on-

tology, the Java ontology used in the second evaluation study is a handcrafted

ontology which has been build for question generation purposes. This limits

our understanding of any issues that may arise when generating questions from

existing ontologies that were built for other (non-educational) purposes.

7.4 Third evaluation study: automated evalua-

tion of questions

To examine, in a statistically significant manner, the practicality of using simi-

larity to generate questions of certain levels of di�culty, we need a large number

of questions. However, it is practically impossible to administer a large number

of questions to real students, for di↵erent reasons such as: (i) ethical reasons and

(ii) to avoid any possible bias caused by administering similar questions (with dif-

ferent distractors) to the same student. Rather than administering the questions

to real students, we can alternatively utilise an automatic corpus-based solver.

This also enables us to measure (although not precisely) the amount of knowledge

that the solver has about a specific subject (e.g., number of resources related to

this subject in the corpus).

Existing methods have already been developed to automatically solve MCQs

using corpus-based solvers. In this experiment we follow the method described

by Turney and Littman [TL05] who developed a method to automatically solve a

specific kind of multiple-choice questions. In particular, the method was designed

to solve multiple-choice analogy questions which were described in Chapter 2;

see Table 2.2 for an example. The results show that their method can solve

about 47% of multiple-choice analogy questions (compared to an average of 57%

correct answers solved by high school students). The method takes a pair of

words representing the stem (e.g., “A : B ::”) and 5 other pairs representing the

answers presented to students (e.g., “Ci : Di”) and returns the answer with the

highest analogy degree to the stem. The method is based on the Vector Space

Model (VSM) of information retrieval. To calculate the analogy degree between

the stem and a given answer, the solver creates two vectors, (R1) representing

the stem and (R2) representing the given answer. Each vector consists of 128
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elements that represent the frequency of encountering a certain phrase with a

certain joining term in a large corpus. Each phrase is constructed by joining the

two words (e.g., A & B) using one of 64 proposed joining terms in two ways (e.g.,

“A is B” and “B is A”). Each phrase is sent as a query to a search engine and the

logarithm of the returned number of hits is saved in the corresponding element

in the vector.

Due to the availability of methods to automatically solve analogy questions, we

focus on generating this type of questions for the purposes of this experiment. One

useful implication of generating one type of questions is that the cognitive ability

required to solve the questions is guaranteed to be the same for all the questions,

eliminating any external factors that could a↵ect the di�culty of questions. In

this case, the required cognitive ability is referred to as analogical reasoning.

7.4.1 Goals

The experiment is designed to answer two main questions: (i) Does the general

performance of the solver correlate with the solver’s amount of knowledge? and

(ii) Does the performance of the solver on a particular question correlate with

the estimated di�culty of that question?

7.4.2 Materials and methods

7.4.2.1 Equipment description

Due to the high computational demands of this experiment, two machines were

used in parallel to solve the generated questions automatically. The first machine

is the one described in Section 6.1.1. The second machine is an Intel Core i3

2.27GHz processor, 2 GB 1333 MHz SODIMM DDR3 RAM, running Windows 7

Home Premium (Dell Inspiron N3010 Mid 2010 model). Only the first machine

was used to generate the questions.

7.4.2.2 Generating questions

To generate multiple-choice analogy questions, we extend the rules presented in

Hypothesis 1 in Chapter 3 such that we can control di�culty of MCQs by vary-

ing: (1) similarity between the stem and the key, and additionally (2) similarity
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between the stem and distractors. The extended rules, which make use of the re-

lational similarity measure RelSim(·) defined in Chapter 5, are presented below.

Proposition 2. Let Q be a multiple-choice analogy question, let S be the stem

part of Q consisting of two concepts Sx, Sy, let K be the key part of Q consisting

of two concepts Kx, Ky, let D be a set of distractors in Q such that a distractor

Di 2 D consists of two concepts Dxi, Dyi and 1 < i  n where n is the number of

distractors in Q. Let K be significantly more similar to S compared to any distrac-

tor Di 2 D, i.e., RelSim(Sx, Sy, Kx, Ky) = RelSim(Sx, Sy, Dxi, Dyi) + �1 and

�1 > 0. Let K be su�ciently similar to S such that RelSim(Sx, Sy, Kx, Ky) = �2

and �2 > 0. For all distractors Di 2 D, let Di be similar, to an extent, to S such

that RelSim(Sx, Sy, Dxi, Dyi) = �3 where �3 is assumed to be maximal. Then

the following properties hold:

1. Increasing �1 decreases the di�culty of Q.

2. Increasing �2 decreases the di�culty of Q.

3. Decreasing �3 for a distractor Di 2 D decreases the di�culty of Q.

Three ontologies were used to generate multiple-choice analogy questions using

the above rules. One of the ontologies, which is the Gene Ontology, is considered

to be a sophisticated ontology of specialised terms, though it is not very rich. The

other two ontologies (Pizza Ontology and People & Pets Ontology) are ontologies

that are usually used in ontology development tutorials; hence contain common

knowledge. The decision to choose those ontologies was made to assess whether or

not the di�culty of the domain influences the di�culty of the generated questions.

More familiar domains to the solver are expected to be easier. Figure 7.16 presents

a rough estimation of knowledge about each domain in the corpus as indicated

by the number of related resources, i.e., when performing a search using the

search engine provided by the corpus and using each subject as a search term.

These simple statistics will be used to answer the first question of the experiment:

“Does the general performance of the solver correlate with the solver’s amount of

knowledge?”. Table 7.5 presents the number of classes in each ontology and the

total number of generated questions from each ontology. These questions are of

di↵erent levels of di�culty: easy, moderate and di�cult. The parameters used to

control di�culty of the generated questions are presented in Table 7.6 and were
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determined empirically (see Proposition 2 for details of these parameters). So,

for Q to be easy, for example, �1 has to be = 0.5, �2 has to be = 1 and �3 has

to be = 0.

Figure 7.16: Rough estimation of knowledge in the corpus

Table 7.5: Number of classes and number of generated questions per each ontology

No. of Classes No. of questions
Gene Ontology 36146 187,924 Septillion
Pizza Ontology 97 18,933 Trillion

People & Pets Ontology 58 12,372 Billion

Table 7.6: Parameters used to generate analogy questions of di↵erent di�culties

Di�culty Level �1 �2 �3

Easy 0.5 1 0
Moderate 0.5 0.5625 0.0625
Di�cult 0.5 0.5 0.1

To generate an analogy question from an ontology we need to, first, generate

pairs of concepts that are su�ciently related in the ontology. Second, we need to

compute the similarity degree between the generated pairs of concepts based on

the underlying relation of each pair (i.e., their relational similarity). To generate

a su�ciently related pair of concepts C,D, we use Relatednesspath�based(·) pre-

sented in Chapter 5 such that Relatednesspath�based(C,D) = 1. After generating

pairs of related concepts, we need to compute the similarity degree between the
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Table 7.7: A sample question generated from the People & Pets Ontology

Stem: Haulage Truck Driver : Driver

Options: (A) Quality Broadsheet : Newspaper
(B) Gira↵e : Sheep
(C) Bus : Vehicle
(D) Gira↵e : Cat Liker

Key: (C) Bus : Vehicle

generated pairs. To do so, we use RelSimpath-based(·) presented in Chapter 5.

The final step in generation is iterating through all su�ciently related pairs of

concepts in the present ontology, consider the current pair as a stem and follow

rules of Proposition 2 to select keys and distractors targeting di↵erent levels of

di�culty. We generate all possible analogy questions from a given ontology by

exhausting all combinations of (su�ciently related) pairs which can appear either

in the stem, key or distractors. We generate 3 distractors for each question.

To make the question solving phase more manageable and since we want to

use the automated solver on a very high number of questions, we can only con-

sider subsumption-based relations. To do this, we utilise Relatednesspat�based(·).
The more relations the automatic solver takes into account, the (far) more time

it spends on each question. Note also that we have analysed a number of

analogy questions (1,082 questions) available on the web and found out that

a considerable proportion of them concentrate on the relations considered by

Relatednesspat�based(·). These analogy questions have been gathered using two

search engines, Google and Yahoo!, using three search terms, “analogy exam-

ples”, “analogy questions”, “analogy test”, considering only the two first pages of

results. We have included in our corpus only textual questions written in English.

In particular, 96 out of the 1,082 questions (8.9%) focus on is a relations, 122

questions (11.3%) focus on sibling relations. Examples of other relations found

in our corpus of analogy questions which are not considered in the current ex-

periment include: object-characteristic (9.9%), part-whole relations (8.9%) and

object-function (8.9%) relations.

Examples of the questions that were generated from the People & Pets ontol-

ogy and Pizza ontology are presented in Table 7.7 and Table 7.8, respectively.
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Table 7.8: A sample question generated from the Pizza Ontology

Stem: Sloppy Giuseppe : Pizza De Carne

Options: (A) Cogumelo : Pizza Vegetariana
(B) Pizza : Food
(C) Cogumelo : Napoletana
(D) Cogumelo : Sorvete

Key: (B) Pizza : Food

7.4.2.3 Building the automated solver

As explained earlier, we implemented a procedure similar to the one described

by Turney and Littman [TL05] to automatically solve the generated analogy

questions. First, we have constructed a table of joining terms relevant to the

relations considered in the generation phase (e.g., “is a”, “type”, “and”, “or”).

Using these joining terms, we generate a set of phrases for each pair of concepts.

Then we create vectors of 10 features for the stem, the key and each distractor.

The constructed phrases are sent as a query to a search engine (Yahoo!) and the

logarithm of the hits count is stored in the corresponding element in the vector.

The hits count is always incremented by one to avoid getting undefined values.

7.4.2.4 Solving questions

Evaluating all the generated questions using the current automated solver was

not possible due to the limited number of queries per user allowed by the utilised

search engine (and the extremely high number of questions). Therefore, we only

consider a representative sample of the questions (about 1800 questions per on-

tology). Three stratified samples of (easy, moderate and di�cult) questions were

selected randomly from the questions generated from the three ontologies (i.e., a

sample for each ontology). The overall time required to solve all the questions in

the considered sample (95% confidence interval with a margin of error of ±3%)

took over 120 hours using the two machines described in Section 7.4.2.1 working

in parallel.

7.4.3 Results and discussion

Among the easy questions generated from the Gene ontology, the solver has cor-

rectly answered 16% of the questions. Similarly, for the People & Pets and Pizza
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Table 7.9: Percentage of analogy-questions (per ontology) solved correctly by the
automatic solver

%Correct
Gene Ontology 16%
Pizza Ontology 49%

People & Pets Ontology 32%

ontology, the solver has correctly solved 32% and 49% of the easy questions, re-

spectively. Those percentages are shown in Table 7.9. To answer the question

of whether the performance of the solver correlate with the solver’s amount of

knowledge, we compare the solver’s performance on the di↵erent sets of questions

with its knowledge about each subject. As Table 7.9 and Figure 7.16 show, the

more knowledge the automated solver has about a domain, the more ability it

has to solve questions about that domain.

To evaluate the accuracy of the QG tool in terms of di�culty predictions, we

compare the number of questions solved correctly by the solver in the di↵erent

categories of questions (i.e., easy, moderate and di�cult). Due to the solver’s low

performance on questions generated from the Gene ontology (see Table 7.9), we

have only considered the two tutorial ontologies in this comparison. Figure 7.17

and Figure 7.18 show that, for each ontology, more easy questions were correctly

solved by the automatic solver than moderate and di�cult questions. This in-

dicates that the similarity-based QG method was successful in controlling the

di�culty of the generated MCQs.

Figure 7.17: Percentages of questions of varied di�culties that were correctly
answered by an automatic solver (Pizza ontology)
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Figure 7.18: Percentages of questions of varied di�culties that were correctly
answered by an automatic solver (People & Pets ontology)

7.4.4 Threats to validity

In the above experiment, an automated solver has been utilised to simulate a

student attempting to answer a set of questions. A clear limitation of this ap-

proach is that the automated solver simulates a single student with a fixed ability

(given that the questions solving phase took place in a relatively short period to

time, hence corpus’ resources are assumed to be relatively fixed). In real class

situations, students have di↵erent abilities. A better simulation of such students

would be to use di↵erent solvers with varied abilities (e.g., by varying the number

of resources or number of joining terms). However, due to time limitations, we

have focused on a single solver with fixed ability. Another threat to validity is the

(relatively) low number of ontologies and the ad-hoc selection criteria of which

ontologies to be considered.

7.5 Summary and directions

We have presented a series of studies to evaluate the usefulness and di�culty of

MCQs generated using our similarity-based QG tool. We have focused on eval-

uating the usefulness and appropriateness of questions for educational purposes,

in particular, assessments. It is also interesting to evaluate the usefulness of

questions generated using the similarity-based QG tool for other purposes (e.g.,

validating an ontology). We briefly elaborate on this topic in the next chapter.



Chapter 8

Applications of QG methods

Although previous chapters have focused on generating questions for assessment

purposes, this is not necessarily the only possible target application for QG meth-

ods. In this chapter, we explore the applicability of QG methods for ontology

validation purposes. The chapter builds on the ideas presented in previous chap-

ters by utilising the proposed similarity-based approach for generating questions

from ontologies.

In Section 7.3, we have witnessed the usefulness of looking at MCQs generated

from ontologies that are under development. Some important “errors” in the

Java ontology were easily identified by looking at the MCQs generated from that

ontology, in particular, MCQs with errors. Some errors were syntactic (e.g.,

typing mistakes) while others were logical (e.g., a wrong entailment identified by

looking at an invalid key or a missing entailment identified by looking at an invalid

distractor). Logical errors are generally harder to spot and considered more

interesting when debugging an ontology. We will briefly present some specific

examples from the Java ontology in Section 8.2.

In this chapter, we present a case study to further explore the applicability

of QG methods for ontology validation purposes. Rather than validating an

ontology under development (as we did in Section 7.3), we study the case of

validating a previously built ontology in an attempt to suggest ways to improve

it. We present some specific examples for possible errors in the SNOMED CT

ontology as identified by some domain experts. In addition, QG methods can

support ontology comprehension purposes which can be a goal in itself or it can

be done prior to validating an ontology that has been built by a di↵erent ontology

developer. We briefly tackle this in the study presented in this chapter.
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8.1 Designing a QG-based protocol for ontology

validation

Ontologies can grow large in terms of size and complexity, making them di�cult

to debug. The most hard-to-spot errors in ontologies are the ones that do not

make the ontology inconsistent or incoherent, though cause either undesirable or

missing entailments. This is similar to the so-called “logical errors” in program-

ming languages which cause the program to produce undesired output but do not

cause compilation errors or abnormal termination. In Table 8.1 and Table 8.2 we

present two examples of MCQs that have been generated from the Java ontology

presented in Chapter 7. Clearly, some logical errors in the Java ontology have

resulted in producing the errors that appear in these MCQs. Identifying the er-

rors in these MCQs by a Java expert has helped in finding and correcting some

omissions in the Java ontology. These examples show that looking at questions

generated from an ontology can be fruitful for identifying some omissions in the

ontology.

Table 8.1: Missing entailment example

Stem: A feature of Virtual Machine Code is:

Key: (A) Portability
Distractors: (B) Write once Run Anywhere

(C) Platform Independence
(D) Reusability

Explanation the distractors are correct answers

of error: (i.e., all the answers are features of

Virtual Machine Code)

Reasons for Those features have been asserted (in the ontology) to

the (missing) be features of Java Programming but not features of

entailment: Virtual Machine Code. However, due to the similarity

between the features (answers A, B, C, and D)

they have all appeared in the answer list of this MCQ.

Indeed, there are many possible ways to find errors in ontologies. Direct on-

tology inspection can be e↵ective but has the obvious disadvantage of being time

consuming. In addition, direct inspection might be more e↵ective for finding

soundness problems (i.e., invalid entailments) rather than completeness problems
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Table 8.2: Undesired entailment example

Stem: Swing stands for:

Key: (A) Application Programming Interface
Distractors: (B) Abstract Windowing Toolkit

(C) Java Foundation Classes

Explanation the key is not a correct answer (i.e., Swing does not

of error: stand for Application Programming Interface)

Reasons for Swing v API

the (undesired) API v 9 standsFor.ApplicationProgrammingInterface

entailment: Therefore, the ontology entails that:

Swing v 9 standsFor.ApplicationProgrammingInterface

(i.e., missing entailments). Other approaches have been proposed to address com-

pleteness problems. For example, Formal Concept Analysis (FCA) has been used

for such a purpose [BGSS07]. Another example is the approach presented by

Dragisic et al. [DLWK14] that takes already found missing entailments as input

and suggest logical solutions to repair the ontology by possibly adding missing

axioms. We are not comparing our QG-based method to any other debugging

method, rather, we are suggesting that using MCQs with high similarity between

the key and distractors, can be useful in restricting the search space (in a princi-

pled way) when attempting to detect a specific class of omissions. These omissions

include both missing atomic subsumptions and missing complex subsumptions.

We expect that our method can detect more missing complex subsumptions com-

pared to missing atomic subsumptions. Using similarity to elicit knowledge from

domain experts has already been used in well known elicitation techniques. For

example, the triadic elicitation technique involves presenting 3 concepts to do-

main experts who are asked to identify the two similar concepts and explain why

the third is considered di↵erent.

We conjecture that asking a domain expert to look at a set of MCQs gener-

ated from an ontology can help in identifying some of the invalid and/or missing

entailments based on the expert’s knowledge. The questions should be presented

to the expert in the form of a multiple-response question where the expert is

asked to select all (and only) the correct answers. We use the QG application

described in earlier chapters to generate questions that has exactly one answer

entailed by the ontology to be correct. For the purpose of using these questions

to validate the ontology, we select (for each question) a varied number, ranging
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for example from 1 to 10, of answers that are entailed to be wrong answers. The

similarity between the key and distractors is set to be above a threshold. To

examine whether using a threshold of a high value has an impact on the number

and type of the identified errors, we experiment with two di↵erent thresholds as

we will describe in detail in Section 8.3. In general, since the wrong answers are

selected to be similar to the correct answer, we question whether the ontology

should entail that they are correct answers as well (i.e., a missing entailment such

as the one presented in Table 8.1).

8.2 Implementing a prototype QG-based appli-

cation for ontology validation

To evaluate the usefulness of the similarity-based QG approach presented in this

thesis for ontology validation purposes, we have implemented a prototype web-

based application that (1) presents a selected set of multiple-response questions

generated from an ontology to a domain expert (see Figure 8.1) and (2) based

on the expert’s answers, the application suggests some possible wrong and/or

missing entailments in the ontology (see Figure 8.2). As we describe in Section 8.1,

the questions in fact are generated such that they have only one answer which

is entailed by the ontology to be correct. However, experts answering these

questions are asked to pick all the answers they believe to be correct. Experts

are also asked to indicate whether they are confident about their answers, per

question. They can also leave a comment for a detailed explanation.

When the answers provided by an expert are di↵erent from the ones entailed

by the ontology, the expert is asked to confirm his/her answers, as shown in Fig-

ure 8.3. The aim of this extra verification step is to encourage deeper engagement.

8.3 A case study

8.3.1 Goals

The main goal of this case study is to evaluate the applicability of QG-methods

for ontology validation purposes. To address this goal, we try to answer the fol-

lowing question: Can a domain expert identify some omissions in an ontology

by looking at MCQs generated from that ontology? We focus on a specific class
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Figure 8.1: QG-based support for ontology validation

Figure 8.2: Summary of suggestions to improve the ontology
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Figure 8.3: Extra verification step

of MCQs in which each wrong answer is similar to the correct answer (but en-

tailed by the ontology to be a wrong answer). We expect that looking at such

questions can reveal some omissions or missing statements (in the ontology) that

might be di�cult to spot without looking at the questions. This is because these

wrong answers are similar to the correct answer and therefore raise the question

of whether they have been considered as wrong answers due to having any miss-

ing statements in the ontology or due to actual constraints in the domain. The

missing statements that are intended to be detected can be either atomic or com-

plex subsumptions. Missing or invalid atomic subsumptions highlight problems

in the inferred class hierarchy of the ontology. Since this hierarchy is frequently

looked at by ontology developers, we expect, in general, that there are more miss-

ing/invalid complex subsumptions rather than atomic subsumptions in a given

ontology. We examine this hypothesis in the current study by looking at two sets

of questions, Set A1 and Set A2. The questions in the two sets are constructed:

1. in Set A1: based on atomic subsumptions.

2. in Set A2: based on complex subsumptions.

Another goal of this study is to explore the impact of varying the similarity

degree between the key and distractors on the overall usefulness of the generated

questions for validation purposes. To examine this factor, we generate and com-

pare two sets of MCQs, Set B1 and Set B2 which are described below. We try to
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answer the following question: Is looking at MCQs from Set B1 more useful for

ontology validation purposes than looking at MCQs from Set B2? The MCQs in

the two sets are generated such that the similarity between the wrong answers

and the correct answer is:

1. in Set B1: above a threshold �max.

2. in Set B2: below a threshold �max but above a second threshold �min.

The two sets A1 and A2 are not disjoint from sets B1 and B2. To examine all

possibilities, we generate four disjoint sets of questions such that the questions:

1. in Set 1: are selected from Set A1 and Set B1.

2. in Set 2: are selected from Set A1 and Set B2.

3. in Set 3: are selected from Set A2 and Set B1.

4. in Set 4: are selected from Set A2 and Set B2.

8.3.2 Materials and methods

8.3.2.1 Equipment description

The following machine has been used to carry out the experiment presented in

this chapter:

Intel Core i5 1.4GHz processor, 4 GB 1600 MHz DDR3 RAM, running Mac

OS X 10.10.2 (MacBook Air Early-2014 model). Details of the software used to

carry out the experiment have been presented in Section 6.1.1.

8.3.2.2 Ontology selection

The current study requires the availability of a domain expert to answer a set of

MCQs generated from a domain ontology. Due to the availability of an expert

in BioInformatics, we have asked that expert to select some parts of an ontology

which he thinks might be suitable for the purpose of this study. Due to the

expert’s interest in SNOMED CT in general and genetic findings in particular

and his assumptions that the ontology is not detailed enough in this part, we have

selected a (small) part of genetic findings that covers phenotypes (e.g., Blood

groups). All the subclasses (197 classes) of the class Phenotype have been used



8.3 A case study 190

as a seed signature to extract a ?-module. In addition, the object property

RoleGroup has been added to the seed signature. This property is used to group

certain properties together [SDMW02] and is necessary for extracting the module.

The resulting module has a total of 246 classes and 6 object properties.

8.3.2.3 Generating questions

Two sets of questions have been generated from the extracted module using the

prototype QG application described in Section 7.1. This prototype generates

two di↵erent sets of questions, namely di�cult and easy questions. The di�cult

questions are generated such that the similarity between the key and distractors

is above the average similarity between all siblings in the ontology (or in the cur-

rent study, the extracted module). The easy questions are generated such that

the similarity between the key and distractors is above two thirds of the average

similarity between all siblings in the module (but less than the average similarity

between all siblings). For the current study, we consider di�cult questions to be

questions of Set B1 and easy questions to be questions of Set B2. After comput-

ing the average similarity between all siblings in the module, the thresholds �max

and �min have been set to 0.88 and 0.587, respectively. The generated ques-

tions take the form “What is X?” where X is a class name and the answers are

either class names or class expressions. This kind of questions is suitable for find-

ing missing/invalid entailments that we are interested in. Among the generated

questions, 223 questions have class-name-based answers, referred to as Set A1

questions, and 24 questions have class-expression-based answers, referred to as

Set A2 questions. Among the class-expression-based questions, only 5 questions

are suitable for Set B1 (i.e., the similarity between the key and distractors is

above the threshold �max). These 5 questions are referred to as Set 3 as defined

in Section 8.3.1. Each question has exactly one key but the number of distractors

was variable. If the number of generated distractors for a given question is more

than 10, we randomly select 10 distractors out of the available ones. We have

not restricted the questions set to questions with exactly three distractors (as in

the experiments presented in Chapter 7) because questions with lower or higher

number of distractors might be equally interesting for validation purposes as the

omissions can be in any part of the ontology. However, we restricted the number

of distractors to be below or equal to 10 to make the question answering phase

manageable.
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8.3.2.4 Answering questions

Two domain experts have been asked to answer a total of 20 questions (5 questions

from each of the four sets Set 1, Set 2, Set 3 and Set 4). The first expert is a

bioinformatician and the second expert is a physician. The 20 questions were

selected randomly from the set of generated questions in the previous step and are

presented in Table B.3. The questions were presented to the domain experts via

the web-interface described in Section 8.1, see Figure 8.1. The first 10 questions

are from Set A1 and the second 10 questions are from Set A2. We chose to present

questions from Set A1 first, for deeper engagement, because they are expected to

take less time to answer compared to questions from Set A2. Within Sets A1 and

A2, questions from Sets B1 and B2 are randomly ordered. Also, a think-aloud

technique was used to get a deeper insight into the advantages and limitations of

the approach. The experts were allowed to use any external source to help them

in answering the questions. After answering all the questions, the experts were

asked to answer three last questions about their overall experience in answering

the questions. These questions, which are shown in Figure 8.4, are:

1. Did any question help you to find any bugs in the ontology? Please explain.

2. Did any question help you to think about aspects of the ontology you had

not considered before? Please explain.

3. Please provide any comments that could help us to improve this tool. Pro-

vide examples if possible.

8.3.3 Results and discussion

For 9 out of the 10 questions in Set B1, the first expert’s answers were correct,

i.e., equivalent to what is entailed by the ontology. The only question for which

this expert’s answers were di↵erent from the ones entailed by the ontology is

question no. 15 in Table B.3. This question is the only question which contains

an answer that contains an existential restriction; all the other answers contain

either class names or conjunctions of class names. The expert has identified both a

missing entailment (invalid wrong answer) and a wrong entailment (invalid correct

answer). In particular, the expert indicated that the ontology should entail that

a finding of common composite blood group is subsumed by a finding of blood
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Figure 8.4: Using QG-methods to validate ontologies

group and phenotype finding. He also indicated that the ontology should not

entail that a finding of common composite blood group is subsumed by a finding

of blood group and interprets (attribute) ABO and Rho(D) typing (procedure).

The expert indicated that he was not confident about his answers to this question

and explained that by reporting that he was not familiar with the terminology

used by the ontology to describe the concepts presented in this question, e.g.,

interprets (attribute). In consistent with the first expert’s answers, the second

expert answered all the questions in Set B1 correctly; hence she did not identify

any possible omissions in this part of the ontology.

For 8 out of the 10 questions in Set B2, the first and second experts’ answers

were correct. The two questions for which the two experts’ answers were di↵erent

from the ones entailed by the ontology are questions no. 17 and 20 in Table B.3.

In both questions, the answers are conjunctions of class names. Again, in both

questions, the experts have identified a missing entailment (by selecting one of

the distractors) and a wrong entailment (by not selecting the expected key). Both

experts have agreed on the wrong answer that they chose to select as an answer.

The two experts have indicated that they are not confident about their answers

to these two questions. The first expert explained why he was not confident

about his answers to question no.17 by pointing out that one of the terms used in

the question, i.e., inherited, seems irrelevant since all blood groups are inherited.

For question no. 17 the experts indicated that the ontology should entail that

inherited weak D phenotype is subsumed by blood group phenotype and finding
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of minor blood group. Similarly, for question no. 20, the experts indicated that

the ontology should entail that trans weak D phenotype is subsumed by blood

group phenotype and finding of minor blood group.

In total, the first expert indicated that he was confident when answering

only 7 questions out of the 20 questions. The second expert was confident when

answering 13 questions out of the 20 questions. The first expert explained that

by pointing out that although the terminology used in the ontology might seem

to be natural to an ontology developer, it does not seem to be natural for a

subject matter expert. Consistent with this, the second expert reported that the

language of questions made it di�cult to interpret what the question was asking.

The first expert also reported that the questions seem to be of varying di�culty.

For example, he pointed out that answering questions no. 1, 2, 3, 4, 5, 6, 8 and

10 (from Set A1) was straightforward. These questions use only class names as

answers. In contrast, he reported that questions no. 7 and 9, which also use only

class names as answers, were harder to answer. He explained that by pointing

out that the answers were very similar and hence he found it di�cult to decide

which answer is the correct answer. The answers to these questions were: Blood

laboratory and Blood bank which are indeed similar. The first expert further

explains that he selected what he thought was the best answer, rather than the

only correct answer. Consistent with this, the second expert reported that, for

questions no. 7 and 9, she picked what she thought was the best answer. The

experts did not identify any missing entailments in questions no. 7 and 9, i.e.,

they did not indicate that a wrong answer should be a correct answer. However,

their explanation supports the hypothesis we are testing in this study, i.e., looking

at MCQs with distractors that are similar to the key can be helpful in identifying

missing entailments.

As described earlier, the similarity between the key and distractors in ques-

tions from Set B1 is higher than the similarity between the key and distractors

in questions from Set B2. Although one would expect that questions in Set B1

would reveal more omissions in the ontology compared to questions in Set B2

(because the wrong answers are more similar to the correct answers), this was

not the case. Questions in Set B1 have identified 2 (possible) omissions while

questions in Set B2 have identified 4 (possible) omissions. This can be explained

by the fact that errors can occur in di↵erent parts of the ontology. For example,

questions in Set B1 would identify missing subsumees that are very close to their
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(potential) subsumer, e.g., in the inferred class hierarchy. In contrast, questions

in Set B2 would identify missing subsumees that are not very close to their po-

tential subsumer. In general, looking at this (rather small) set of questions was

helpful in spotting some omissions in the ontology and suggesting improvements.

Consistent with our expectations, the results also show that the method may be

generally more helpful in identifying invalid/missing entailments involving com-

plex subsumptions, i.e., Set A2, rather than atomic subsumptions, i.e., Set A1.

The aim of the second and third question presented to the experts after an-

swering the questions was to evaluate the usefulness of the presented MCQs to

support ontology comprehension purposes. According to the answers provided

by the experts, the questions were not very helpful in identifying new aspects of

the ontology they had not considered before. The first expert pointed out that

this is due to having (1) questions that seem to be unnatural to a subject matter

expert (due to describing concepts in an uncommon way) and (2) changes in the

di�culty level of the questions (partly due to the first point). He further explains

by pointing out that these two points might limit the usefulness of this form of

MCQs for supporting students who want to learn about the subject. The sec-

ond expert, who is a physician, did not respond to this question as she was not

familiar with the ontology.

8.3.4 Analogus experiments

Bertolino et al. [BDDS11] have investigated the use of QG-based methods for

validation purposes. Their method aims at validating models in general and can

be applied to ontologies as well. A set of True/False questions generated from an

(altered) model are presented to a group of domain experts. The responses gath-

ered from domain experts are used to validate the model. The method proposed

by Bertolino et al. is di↵erent from our method in that they suggest to alter the

model by deliberately introducing some errors in it before the QG step. Their

method is also suitable for finding invalid entailments but not missing entail-

ments. Although they have reported that their method have helped the recruited

experts to think about new aspects of the domain which they have not consid-

ered before, the method does not guarantee that this applies to the unaltered

(error-free) parts of the domain only.
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8.4 Summary and conclusions

We have presented a case study for evaluating the applicability of similarity-based

QG methods for ontology validation purposes. Although the results seem to be

promising, they are far from significant. Further e↵orts are needed to improve

and evaluate the presented strategy. In particular, more user studies are needed.

In addition, it might be useful to further consider the experts’ comments gathered

from the case study presented in this chapter regarding what can make a question

di�cult for a group of students. It would be useful to incorporate these comments

into the QG approach and evaluate it by future studies.



Chapter 9

Conclusion and future work

In this chapter, we tie together the various issues covered in this thesis in order

to discuss the overall contributions, the limitations of each contribution and the

possible paths forward.

9.1 Thesis overview

The thesis presents a similarity-based approach to generate MCQs from ontolo-

gies. The main hypothesis of this thesis is that we can control di�culty of the

generated MCQs by varying similarity between the correct and wrong answers.

In Chapter 3, we have provided a psychological justification of why we think

that this hypothesis is (1) important and (2) valid. The main evaluation studies

presented in this thesis were set out to validate this hypothesis and explore the

usefulness of the generated questions for assessing students’ knowledge about a

domain of interest. We have also investigated whether generating questions from

domain ontologies can be useful, not only for assessing students’ domain knowl-

edge, but also for validating the ontology they are generated from. The thesis also

presented a new family of similarity measures for ontologies. Similarity measures

are an essential component of the presented MCQ generation approach and are

essential to many other ontology-based applications.
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9.2 Contributions, limitations and future direc-

tions

The major contributions of this thesis are summarised by topic in the following

subsections. This thesis has covered a wide range of topics and there are still

some open issues that need to be addressed. For each contribution, we discuss

the limitations of the contribution and suggest some directions to extend the work

presented in this thesis.

9.2.1 Establishing a theory of controlling MCQs di�culty

The key contribution of this thesis is establishing a theory for QG which takes

into account the importance of controlling the di�culty of the generated ques-

tions. This theory is applicable both to automatic QG, e.g., ontology-based QG,

and manual QG. Prior to this thesis, existing automatic QG methods have ei-

ther ignored (or failed to recognise) the importance of controlling di�culty or

proposed methods that have not been validated. Establishing theories/mech-

anisms to control the di�culty of assessment questions is clearly a big gap in

existing QG literature. The thesis has advanced our knowledge on the psycholog-

ical aspects of the problem and proposed strategies that exploit ontologies and

similarity measures in order to provide better QG methods that can address this

gap. Empirically, we have found that a solver’s general performance (on solving

questions of varied di�culty) correlates with the solver’s amount of knowledge.

This property is a very basic requirement to construct valid assessment ques-

tions. We have shown, although not in a statistically significant manner, that

the proposed similarity-based QG approach generates questions that fulfil this

requirement. Further studies are required to evaluate this aspect of the presented

QG approach. We have, also, shown that students’ performance correlates with

the estimated di�culty level of the generated questions. This is a very important

finding as existing attempts to control di�culty were, primarily, theoretical and

unbacked with any empirical evidence (e.g., [Wil11, KS13]).

Broadly speaking, it is likely that the proposed QG method, including its abil-

ity to control di�culty, will prove to be useful for test developers. However, while

we have provided a general model to control the di�culty of MCQs, the suggested

similarity-based model is indeed not applicable to all classes of MCQs. Also, the

empirical studies conducted to evaluate the MCQ generation method are limited
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in that they only consider a few classes of MCQs due to their natural fit with

the source and due to time and resource limitations. Focusing on these classes,

which are used in some existing QG methods, allows potential comparisons be-

tween the presented method and other already existing ones. However, there is

still a need to extend these empirical studies and more importantly extend the

presented MCQ generation method by studying other factors that can a↵ect the

di�culty of assessment questions and that may be applicable to other classes of

MCQs. We are currently investigating such factors with some research partners

in order to extend the model presented in this thesis.1 For example, combining

pedagogic content knowledge (PCK) [Shu86] with subject matter knowledge may

help in controlling di�culty by taking into account teachers’ knowledge of, e.g.,

what makes concepts di�cult, regularly encountered students’ misconceptions or

misapplications of prior knowledge.

We have focused on developing methods to generate and control the di�culty

of MCQs which seem to be more time consuming to generate (manually) com-

pared to other forms of questions such as essay questions. The presented QG

method is limited in that it is not, at least directly, applicable to other kinds of

questions such as free response questions. Extending the method to include other

kinds of questions is one of the interesting future paths.

Finally, the presented model of di�culty provides a relative, rather than ab-

solute, notion of di�culty. Given two MCQs, the model can predict which one

is more di�cult than the other. Providing absolute di�culty values remains an

open issue.

9.2.2 Reducing test developers’ e↵orts

Consistent with the study presented by Mitkov et al. [MAHK06], this thesis

shows that the manual e↵ort to construct MCQs can be reduced by utilising

automatic QG tools; especially if the ontology does not have to be built from

scratch. We have not presented comparison studies to explicitly show the reduced

e↵ort; however, the thesis shows that a large number of (reasonably good) MCQs

can be generated from a given (reasonably good) ontology. On the one hand, it is

likely that the e↵ort required to build a new ontology will be less than the e↵ort

required to manually construct the large number of MCQs (with suitable number

of distractors) that can be automatically generated from that ontology. On the

1For an Elsevier research project.
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other hand, we have shown that the automatically generated MCQs come with

good predictions of their di�culty which can hardly be accomplished otherwise. It

remains to evaluate the cost of adopting the proposed QG method in comparison

with manual generation methods.

One of the issues that may a↵ect such comparison and which has not been

comprehensively covered in this thesis is the rendering of the generated questions.

Indeed, the accuracy of language is an important aspect of questions that needs

to be taken into account when generating questions automatically. In addition,

the more accurate the generated questions, the less time required to post-edit

them.

Another open issue that would help to reduce test developers’ e↵ort is to sup-

port the generation of complete exams rather than unrelated individual questions.

Although the thesis has not covered this issue, we believe that by utilising both

the presented model to control di�culty and the knowledge in the ontology, we

can generate well balanced exams in terms of di�culty and topics covered. More-

over, di↵erent exams with similar properties (i.e., di�culty or related content)

can be generated. In addition, extending the method to generate questions from

a mix of sources might prove to be useful, especially considering that ontologies

are not necessarily suitable for modelling all kinds of knowledge.

Also, reducing test developers’ e↵ort when generating questions is not interest-

ing unless the generated questions are useful. Although we have shown, through

the expert-centred evaluations, that the generated questions are educationally

useful, the notion of usefulness was not precisely defined. Indeed, usefulness con-

sists of multiple dimensions or perspectives and we have not (comprehensively)

covered all of them. For example, we have not shown that they can improve

students’ understanding of the subject matter. In addition, there is a need to

explore which questions templates are considered more useful by real test de-

velopers. One of the possible future paths is to conduct surveys to see which

templates would be more interesting for a wide range of test developers.

9.2.3 Giving dimensions to automatic question generation

Several approaches have been proposed to automatically generate questions from

electronic knowledge sources. In order to compare these approaches and under-

stand the contributions and limitations of each approach, we need to understand
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the dimensions of the QG problem. In Chapter 4, we have conducted a system-

atic review of the QG literature in order to provide a better understanding of the

problem and its dimensions. Our analysis of existing automatic QG methods has

revealed that the main dimensions of QG are: (1) purpose (e.g., assessment, vali-

dation), (2) knowledge source (e.g., text or knowledge bases), (3) additional input

(e.g., templates, patterns), (4) general generation methods (e.g., syntax-based,

semantics-based), (5) distractor generation method (e.g., similarity, random), (6)

output format (e.g., questions format, answer format), (7) feedback support (e.g.,

answer dependent/independent) and (8) evaluation method (e.g., student centred,

expert-centred). We have explored the di↵erent design options for the automatic

generation of questions and compared them whenever possible. We have also

provided a historical analysis of the evolution of QG methods over the last five

decades and provided an outlook on its future.

Although we have compared existing QG methods, on a conceptual level,

with respect to each dimension, there is still a need for comparing QG methods

in practice. The presented dimensions can be the basis for developing a shared

evaluation challenge for QG. A similar evaluation challenge has existed in the past

[RG09] but is no longer continued. Such an evaluation challenge can prove to be

useful in knowing, e.g., which distractor generation methods are more e↵ective or

which knowledge source is better for generating questions for a specific purpose.

9.2.4 Developing a protocol to evaluate QG methods

This thesis contributes to the QG literature by presenting a series of evaluation

studies that vary in their nature; while some require some sort of participants

(e.g., students, domain/testing experts), others require no participants by utilis-

ing automated mechanisms to evaluate the questions. The evaluation studies vary

in their goals as well; while some were set up to validate the proposed theory to

control MCQs di�culty, others sought to explore the usefulness of the generated

questions for di↵erent purposes. The use of automated evaluation methods have

shown that it is possible to evaluate large numbers of questions, although they

cannot evaluate all aspects of the generated questions. In summary, the thesis

presents a protocol to evaluate automatically generated questions through user

and/or automated studies to asses the di�culty and usefulness of questions.

There is plenty of room to advance the user studies presented in this thesis

to cover di↵erent important aspects (e.g., di↵erent perspectives of usefulness). In
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addition, the studies can be extended/validated by recruiting larger number of

participants and by utilising more ontologies, especially existing ones.

Developing automated question solving tools is an interesting research area in

its own. We have seen that it can be used to facilitate the evaluation of a certain

class of automatically generated MCQs. This part of the thesis can be extended

by developing automated tools to solve other kinds of questions. This can allow

to include such an automatic evaluation tool in the workflow of QG generation

in order to, e.g., automatically rank the generated questions prior to presenting

them to a human expert.

9.2.5 Developing a new family of similarity measures for

ontologies

One of the key contributions of this thesis is a new family of similarity measures

for ontologies. In Chapter 5, we have presented a review of the psychological

foundations of similarity measures and highlighted the importance of taking these

foundations into account when developing similarity measures for ontologies. We

have discussed and provided examples for the desired properties of similarity

measures and justified the need for a new similarity measure for general OWL

ontologies. Prior to this thesis, existing similarity measures were applicable to

only limited classes of ontologies for di↵erent reasons. For example, some mea-

sures are applicable only to inexpressive or acyclic ontologies while others require

ontologies with ABoxes or additional corpora. Hence, those measures cannot be

used for all ontologies.

The experiments presented in Chapter 6 shows that the new similarity mea-

sures, in particular AtomicSim(·), SubSim(·) and GrammarSim(·), correlate
better with human similarity judgements, compared to some other existing mea-

sures. However, we have compared the proposed similarity measures to existing

similarity measures in a rather small experiment (in terms of number of ontolo-

gies, similarity measures and size of the dataset). The comparison study can be

conducted on a larger scale by considering more ontologies and more similarity

measures. Indeed, suitable datasets are required to conduct such studies which,

to the best of our knowledge, were not available at the time of writing this thesis.

In addition, it remains to compare the performance of the di↵erent measures for

QG purposes.



9.2 Contributions, limitations and future directions 202

The members of the new family of similarity measures vary in terms of their

computation cost and accuracy. This is why it seemed important to explore dif-

ferent notions of approximations in order to examine whether a cheap measure

can be a good approximation for a more expensive one. We have developed a

protocol to compare similarity measures of di↵erent computational costs based on

comparing those measures in terms of the following notions: (1) order preserva-

tion, (2) approximation from above, (3) approximation from below, (4) closeness

and (5) correlation. Given that the similarity measure GrammarSim(·) is the

most expensive measure among the new measures, we have shown that the mea-

sure SubSim(·) is better than the measure AtomicSim(·) when considering them

as (cheap) “approximations” to GrammarSim(·). Moreover, we have suggested

three general scenarios that can be applicable to wide range of applications and

have shown, empirically, that some measures can be more suitable than others

for accomplishing certain tasks.

To design similarity measures of di↵erent computational costs, we had to make

decisions to limit the infinite set of subsumers of a DL concept. We have dis-

cussed the theoretical and practical implications of restricting the (infinite) set of

subsumers to (finite) sets of di↵erent sizes. We have presented three examples of

(finite) sets of subsumers for the three new measures AtomicSim(·), SubSim(·)
and GrammarSim(·), in increasing order of cost. We also presented some ex-

amples of weighted similarity measures as an alternative or additional method to

limiting the infinite set of subsumers. A possible future path is to explore how

to use these weighted measures to measure similarity with respect to a certain

context.

We have shown, empirically, that some of the proposed similarity measures

are computationally expensive, especially when dealing with large ontologies.

However, they can perfectly be used in applications that do not require on-the-

fly computation of similarity. In addition, one of the possible future paths is to

further optimise the new similarity in order to reduce their cost. Indeed, it would

be very important to optimise the proposed similarity measures in order to use

them in applications that require on-the-fly similarity computation.

Our large-scale BioPortal experiment has also shown that it is likely (for over

12% of the ontologies) that using an expensive measure would be of no benefit

over using a cheap measure as they will yield exactly the same results. These

ontologies were too inexpressive. Hence, expressivity can be used to guide us in
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deciding when an expensive measure would make no di↵erence. However, after

analysing the results of using the di↵erent measures over the whole BioPortal

corpus, we have reported that we have found no general indicators that can guide

us in choosing which similarity measure to use for a given ontology. Further

investigations are required to address this issue.

The proposed similarity measures can be also improved by extending their

utility to measuring similarity over multiple ontologies. For example, it remains

necessary to show how to extend the new measures to measure similarity of

two ontologies or two concepts in two di↵erent ontologies. Such an extension of

the new measures can be combined with lexical similarity measures to support

ontology alignment applications.

9.2.6 Developing a protocol to validate ontologies using

QG methods

In Chapter 8, we have evaluated the applicability and usefulness of QG methods,

not only to assessment applications, but for other applications as well. We have

shown, through a case study, that the generated questions can be useful for pur-

poses other than students’ assessment, e.g., ontology comprehension, validation

and development.

The presented case study is rather small and can be extended in di↵erent ways.

For example, more experts can be recruited which can allow to review a larger

number of questions. Ideally, the extended studies should involve comparisons

to a baseline to determine the percentage of errors that can be detected using

the suggested QG-based method. In addition, we can measure the usefulness of

looking at the generated questions for ontology comprehension purposes by using

an independent testing procedure before and after looking at the questions.
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