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Abstract

Thesis submitted by Jinrui Pan for the Degree of Doctor of Philosophy in the
University of Manchester, and entitled, “Time and Risk Preferences: Theoret-
ical Models and Applications.” Date of submission 2014.

This thesis makes contributions to two important areas of behavioural eco-
nomics, namely individual decision making over time and under risk.

Following the Introduction, Chapter 2 presents a new discounting function
for analysing intertemporal choice. Liminal discounting, the model developed
here, generalises exponential discounting in a parsimonious way. It allows for
well-known departures, whilst maintaining its elegance and tractability. It also
can be seen as an extension of quasi-hyperbolic discounting to continuous time.
A liminal discounter has a constant rate of time preference before and after
some threshold time; the liminal point. A preference foundation is provided,
showing that the liminal point is derived endogenously from behaviour.

Chapter 3 proposes an axiomatic model featuring a differential treatment of
attitudes towards risk and time. Such distinction has been strongly suggested
by experimental research when studying intertemporal choice, since the future
is inherently risky. In the proposed model, non-linear probability distortions are
incorporated into a dynamic model with discounted utility. Time is captured
by a general discounting function independent of probabilities and outcomes.
Utility of outcomes is captured by standard vNM utility independent of time.
A two-parameter probability weighting function captures intertemporal prob-
abilistic risk attitudes, with one parameter being constant over time, the other
being time-dependent. An index of optimism is derived that depends on both
parameters, which allows to model the observed high risk tolerance for delayed
lotteries. Further, a preference foundation is provided. Interestingly, the model
allows behaviour to be consistent with discounted expected utility, when risk
is sufficiently distant from the present.
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Chapter 1

Introduction

Behavioural economics is a fascinating and rapidly growing field that has drawn

attention predominantly as a discipline that catalogues anomalies and explores

alternative ways to model real life choices. It is recognised as an umbrella of

approaches that seek to extend the standard economics framework to account

for relevant features that are absent in the standard economics framework (Di-

amond and Vartiainen, 2007).

To understand and model deviations from the standard economic model,

the fundamental insight that needs to be addressed is individual choice. Re-

searchers explore additional psychological and sociological factors that shape

individual decision making, examine decision processes and focuses directly on

the question of how decisions are made. Alternative behavioural models of

individual choice that are built upon information extracted from the process,

can help us to understand the functioning of economic institutions, hence to

design better institutions.

Risk and time are two essential elements to many individual decisions. They
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are present when future consequences depend on today’s decisions and are not

entirely certain. Such decision making requires evaluating consequences that

are distributed over time. For instance, consumers decide how much money

to put aside for saving; graduates choose to find a job or pursue a higher

qualification; governments take actions to reduce the future effects of global

warming; people adopt healthy lifestyles to improve their future health. In

order to make the best decision at present a precise analysis of what may

happen in the future, or at least what the individual thinks it may happen in

the future, is needed.

This thesis contributes to developments of theoretical modelling on individ-

ual decision making over time, from two distinctive perspectives. The classical

approach to evaluate one’s time preferences is Samuelson’s (1937) discounted

utility theory. It views decision makers as maximising a weighted sum of utility

with the weights representing exponentially declining discount weights. Such a

model implies constant rate of time preferences.

Numerous empirical studies (see Frederick, Loewenstein and O’Donoghue,

2002 for a comprehensive review of experimental literature) have challenged

the validity of discounted utility theory as descriptive models of intertemporal

choice. In particular, models allowing decreasing discount rates instead of

constant ones become more appealing, which has been known as hyperbolic

discounting (Ainslie, 1975).

Chapter 2 follows the above approaches concerning discount weights, and

presents a model that generalises exponential discounting in a parsimonious

way. It also can be seen as an extension of Phelps and Pollak’s (1968) quasi-

hyperbolic discounting model, which was developed in discrete time, to con-
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tinuous time. The discrete-time quasi-hyperbolic discount function is used to

model that discount rates are much greater in the short-run than in the long-run

(Ainslie, 1992; Loewenstein and Thaler, 1989), which has been applied exten-

sively in economic theory (Luttmer and Mariotti, 2003; O’Donoghue and Rabin,

2001; Barro, 1999; Asheim, 1997; Laibson, 1997). Extending quasi-hyperbolic

discounting to continuous time is desired for economic application.

Another strand of the literature investigates people’s intertemporal choices

from the perspective of risk preference. When time preferences are modelled

from discount weights as described above, it is commonly assumed that the

promised outcomes will be delivered without risk. This assumption is flawed as

the future is naturally bonded with uncertainty and risk. Consequently, one’s

risk preference must have an influence on the rate of time preference. Evalu-

ating future prospects is directly related to the evaluation of the likelihoods of

their outcomes at the point when the prospect is realised.

For decision under risk the classical approach is expected utility theory

(Von Neumann and Morgenstern, 1944). Similarly with discounted utility the-

ory, decision makers are to maximise a weighted sum of utilities with the weights

represent probabilities. Violations of expected utility theory have also been ob-

served from experiments. Evidence shows that individuals tend to underweight

and/or overweight probabilities. In other word, the probabilities or the like-

lihoods are normally perceived non-linearly. Rank-dependent utility (Quiggin,

1981) was developed to incorporate a probability transformation function as-

sociates decision weights to such outcome, therefore, to capture the subjective

perception of objective probabilities.

In economics, risk preferences are conventionally assumed to be unaffected
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by the passage of time and time preferences to be unaffected by the presence of

risk, even though some authors have pointed out parallels between the two do-

mains (Quiggin and Horowitz, 1995; Prelec and Loewenstein, 1991) In contrast

to this view, there is mounting evidence of complex interactions between be-

haviour under risk and behaviour over time that challenges the standard models

of risk taking and time discounting (Anderson and Stafford, 2009; Ahlbrecht

and Weber, 1997; Keren and Roelofsma, 1995).

Chapter 3 adopts rank-dependent utility to model individuals’ perception

on the risk future prospects may bear. It focuses on interaction between time

and risk, and develops a model that captures the effect of time on decision

weights associated with future prospects.

Both chapters are written in article form and therefore self-containing, thus

some notation and definitions are repeated. Proofs are placed in the respective

appendix of the chapter.
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Chapter 2

Liminal Discounting Model

2.1 Introduction

The theory of discounted utility is the most widely used framework for analysing

intertemporal choice. Descriptive discounting models capture the property that

most economic agents place less weight on the future than on the present, i.e.,

they act as though they discount future payoffs. The underlying psychological

reason of such behaviour is that people are impatient. Samuelson (1937) pro-

posed the Exponential Discounting model, in which the notion of impatience

is quantified by a single discount rate. The exponential discounting model im-

plies dynamically consistent behaviour due to a constant level of impatience,

i.e. time preferences held at one point in time do not change with the passage

of time.

The purpose of this chapter is to integrate the concept of liminality1 into

1 The concept “liminality” is adopted from the psychology literature, where it means a
subjective state that is a threshold between psychologically distinctive domains. It is also
used in social anthropology, where it indicates a transition point between historical periods.
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intertemporal choice. A model of liminal discounting2 is developed. As with

exponential and many other non-exponential discounting models (Abdellaoui,

Attema and Bleichrodt, 2010), liminal discounting retains a stationary instan-

taneous utility for outcomes. This utility is discounted by a constant rate of

time preference up to a threshold time; the liminal point. After this point, the

discount rate may change, but then remains constant afterwards. Violations of

constant discounting occur only when comparing the near and distant future.

Jamison and Jamison (2011) first presented the parametric discount function

considered here, calling it split rate quasi-hyperbolic discounting. A preference

foundation for liminal discounting over timed outcomes is also provided in this

chapter.

Despite its many appealing properties, the exponential discounting model

fails to match several empirical regularities (see Manzini and Mariotti, 2008;

Frederick, Loewenstein and O’Donoghue, 2002, for a review). One of these

well-known experimental findings is that discounting is not constant (Read

and Read, 2004; Bleichrodt and Johannesson, 2001; Van Der Pol and Cairns,

2000; Laibson, 1997; Kirby and Maraković, 1995; Loewenstein and Prelec, 1992;

Benzion, Rapoport and Yagil, 1989; Mazur, 1987; Thaler, 1981). If an early

reward and another, later and larger reward are perceived as being equivalent,

then delaying both rewards equally will result in a strict preference for the later

and larger rewards, revealing decreasing impatience.

As a direct consequence of decreasing impatience, individuals’ preferences

can be dynamically inconsistent. In other words, the passage of time may

2 The model developed here is called “Two-Stage Exponential Discounting” in Pan, Webb
and Zank (2015).
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change one’s time preferences. Consider the classic example of Thaler (1981),

in which a person who prefers to receive one apple today rather than two apples

tomorrow, will often prefer to receive two apples in one year plus one day rather

than one apple in one year. If such person is dynamically consistent, i.e. her

preferences between ‘today’ and ‘tomorrow’ remain the same for one year, and

she resets the clock at zero3 whenever she makes a decision, then in one year

from now she will prefer to receive one apple on that day rather than two

apples one day later. Thus, between the point when she is making plans for

one year later, and the point when one year has passed, her preferences must

have changed. She is dynamically inconsistent with herself one year ago.

Since the initial discussion of dynamically inconsistent preferences in Strotz

(1955), many economic models are adapted to incorporate decreasing impa-

tience, or hyperbolic discounting (Asheim, 1997; Kirby and Maraković, 1995;

Benzion, Rapoport and Yagil, 1989; Thaler, 1981; Phelps and Pollak, 1968;

Pollak, 1968). Yet, more recent evidence finds support for both exponential

discounting and hyperbolic discounting model (Andersen, Harrison, Lau and

Rutstroem, 2011; Abdellaoui, Attema and Bleichrodt, 2010). It suggests that

modest, tractable deviation from exponential discounting is desired. One such

model, quasi-hyperbolic discounting (Olea and Strzalecki, 2014; Attema, Ble-

ichrodt, Rohde and Wakker, 2010; Hayashi, 2003; Laibson, 1997; Phelps and

Pollak, 1968) has been applied extensively in economic theory (Luttmer and

Mariotti, 2003; O’Donoghue and Rabin, 2001; Barro, 1999; Asheim, 1997; Laib-

son, 1997).

Under quasi-hyperbolic discounting, decision makers exhibit decreasing im-

3 Such “resetting the clock” behaviour is called time invariance in Halevy (2011).
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patience only at time point 0, i.e., at present, and constant impatience there-

after. Quasi-hyperbolic discounting was developed in discrete time. Liminal

discounting extends quasi-hyperbolic discounting to continuous time. Such ex-

tension is absent from the literature and is important for economic applications.

The outline of this chapter is as follows: Section 2.2 contains the notation

and definitions. Section 2.3 reviews the most relevant known discount func-

tions. Section 2.4 presents liminal discounting model and Section 2.5 provides

preference foundation for such model. Section 2.6 concludes and discusses the

possible applications.

2.2 Preliminaries

Let [0, X], with X > 0, represent the set of outcomes, and [0, T ], with T > 0

be the set of time points at which an outcome can occur. A timed outcome

(t : x) is interpreted as a promise to receive of an outcome x ∈ [0, X] at time

point t ∈ [0, T ], with no risk attached. Such timed outcomes are the objects of

choice.

A preference relation < is defined over the set of timed outcomes [0, T ] ×

[0, X]. As usual, the symbol � denotes strict preference while ∼ denotes indif-

ference (4 and ≺ denote reversed weak and strict preferences, respectively).

A preference relation < is complete if for all (t : x), (t′ : x′) ∈ [0, T ]× [0, X],

either (t : x) < (t′ : x′) or (t′ : x′) < (t : x) holds. It is transitive if for all

(t : x), (t′ : x′), (t′′ : x′′) ∈ [0, T ] × [0, X], (t : x) < (t′ : x′) and (t′ : x′) <

(t′′ : x′′) jointly imply (t : x) < (t′′ : x′′). It is a weak order if it is complete

and transitive. It is monotonic if, for all (t : x), (t : x′) ∈ [0, T ] × [0, X],
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(t : x) < (t : x′) if and only if x > x′. It is impatient if, for all (t : x), (t′ :

x) ∈ [0, T ] × [0, X], (t : x) < (t′ : x) if and only if t′ > t. We will always

assume that (t : 0) ∼ (t′ : 0), for all t, t′ ∈ [0, T ], and include this condition

in the definition of impatience. A preference relation < is continuous if, for

all (t : x) ∈ [0, T ] × [0, X], the sets {(t′ : x′) : (t : x) < (t′ : x′)} and

{(t′ : x′) : (t : x) 4 (t′ : x′)} are closed subsets of [0, T ]× [0, X].

Weak order is a rationality property deeply rooted in the economic theory of

choice. Monotonicity and impatience are also universally assumed in economic

models, which are populated by agents for whom more of a good thing is better,

and especially for whom a good thing is better if it comes sooner.

A preference relation < is represented by a function V if V assigns to each

timed outcome a real value, such that for all (t : x), (t′ : x′) ∈ [0, T ] × [0, X],

the following holds:

(t : x) < (t′ : x′) ⇔ V (t : x) > V (t′ : x′).

A necessary condition for < to admit such a representation is that < is a

weak order. It has been showed that weak ordering and continuity of < are

sufficient for the existence of a continuous utility representation (Debreu, 1964,

Proposition 4). Monotonicity and impatience ensure that such a representation

is non-decreasing in x and non-increasing in t.

In order to obtain representations for < which separate the effect of time

preference from outcomes preference, the following assumption4 must hold.

4 Such condition has been used previously by Debreu (1960) and others for additive
measurement representations.
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Axiom 2.2.1 (Thomsen Separability). For all x, x′, x′′ ∈ [0, X] and all t, t′, t′′ ∈

[0, T ], if

(t : x) ∼ (t′ : x′) & (t′′ : x′) ∼ (t : x′′)

⇒

(t′′ : x) ∼ (t′ : x′′)

Figure 2.1: Thomsen Separability

Figure 2.1 illustrates Axiom 2.2.1 for positive outcomes. It can also be

exemplified by a simple example as follows. Suppose that a decision maker is

indifferent between receiving £20 today and receiving £35 tomorrow, and he is

also indifferent between getting £10 today and getting £35 the day after tomor-

row, Axiom 2.2.1 then states that he should be indifferent between receiving

£10 tomorrow and receiving £20 the day after tomorrow. Thomsen Separabil-

ity isolates the effect of time preference from outcome preference. This means

18



that there exists some kind of independence between the attributes of time and

outcomes, and such independence makes the elicitation of utility simpler and

more transparent.

Structural Theorem (Fishburn and Rubinstein, 1982). The following state-

ments are equivalent:

(i). The preference relation < over [0, T ]× [0, X] is represented by a function

such that,

V (t : x) = D(t)u(x), (2.1)

where there are continuous real-valued functions u on [0, X] and D on

[0, T ]. In addition, u(0) = 0 and u is strictly increasing while D is strictly

decreasing and positive.

D and u are unique up to separate positive factors and a joint positive

power, i.e., D and u are jointly cardinal.

(ii). The preference relation < over [0, T ]× [0, X] is a continuous, monotonic,

impatient weak order that satisfies thomsen separability.

In this representation, V is the total utility of a future prospect (t : x)

evaluated as time t = 0; u(x) is the utility function on outcomes; D(t) is the

discount function. Since people put less weight to the future, i.e., they are

impatient, the discount function declines as the delay t increases. Given the

standard normalization D(0) = 1 and assuming impatience, the following is

implied,

1 = D(0) > D(t) > D(t′) > 0,

where 0 6 t 6 t′.
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Equation 2.1 represents an axiomatisation of generalised discounting utility

models. These models combine an instantaneous utility function that reflects

attitudes towards outcomes with a discount function that captures the effect of

the passage of time. In the following section, several models that differ in the

assumptions they impose on the discount functions, but not in the underlying

utility structure, are discussed.

2.3 Discounting

This section reviews the essential discount functions, as applied to choice over

timed outcomes.

2.3.1 Constant Discounting

Shortly after Fisher’s (1930) graphical indifference curve analysis, which was

difficult to extend to more than two time periods, Samuelson (1937) introduced

a generalised model of intertemporal choice that is able to be extended to

multiple time periods - exponential discounting model, in which it features the

exponential discount function:

D(t) = δt

with δ being a constant discount factor and 0 < δ < 1.

In Samuelson’s simplified model, all the psychological reasons for discount-

ing the future were compressed into a single parameter, the discount rate.

The key property of exponential discounting, that distinguishes it from
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other models, is stationarity :

Definition 2.3.1 (Stationarity). A preference relation < satisfies stationarity

if for all (t : x), (s : y), (t + τ : x), (s + τ : y) ∈ [0, T ] × [0, X] the following

holds:

(t : x) ∼ (s : y) ⇔ (t+ τ : x) ∼ (s+ τ : y).

This formulation of stationarity is due to Fishburn and Rubinstein (1982).

Koopmans (1960) and Bleichrodt, Rohde and Wakker (2008) formulate such

condition for sequences of outcomes.

Stationarity asserts that a decision maker’s preferences between two timed

outcomes depends only on the absolute time interval between delivery of the

outcomes. In other words, if the two time points are accelerated or delayed by

the same amount, then preferences will be preserved. The assumption of sta-

tionarity permits an individual’s time preference to be summarised as a single

discount rate, hence characterises exponential discounting model as constant

discounting model.

It appears that, stationarity does not have a very strong justification, either

from the normative or from the positive perspective. Indeed Fishburn and Ru-

binstein themselves explicitly state that ‘we know of no persuasive argument

for stationarity as a psychologically viable assumption’ (Fishburn and Rubin-

stein, 1982, p. 681). Both intuition, and experimental evidence (Thaler, 1981;

Benzion, Rapoport and Yagil, 1989) indicate the impact of a constant time

difference between two outcomes becomes less significant as both outcomes are

made more remote, namely, the common difference effect.

Definition 2.3.2 (Common Difference Effect). A preference relation < exhibits
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common difference effect if for all (t : x), (s : y), (t + τ : x), (s + τ : y) ∈

[0, T ]× [0, X], and y > x, τ > 0 the following holds:

(t : x) ∼ (s : y) ⇒ (t+ τ : x) 4 (s+ τ : y).

The above formally defines the famous example in Thaler (1981). An indi-

vidual who is indifferent, say, between one apple today and two apples tomorrow

will most likely prefer two apples in one year plus one day to one apple in one

year. Empirical studies on time preference have confirmed such observations,

implying that people are more patient to wait for the larger reward when the

receipt of rewards are equally delayed, hence behaviour that exhibits decreas-

ing impatience (Frederick, Loewenstein and O’Donoghue, 2002; Read, 2004).

More evidence see for example Thaler (1981), Benzion, Rapoport and Yagil

(1989), Shelley (1993) and Kirby and Maraković (1995) for money rewards,

and Chapman (1996), Lazaro, Barberan and Rubio (2001), van der Pol and

Cairns (2002) for health outcomes.

Recent empirical studies also observed increasing instead of decreasing im-

patience (Chesson and Viscusi, 2003; Gigliotti and Sopher, 2003; Read, Airoldi

and Loewenstein, 2005; Sayman and Öncüler, 2008). Nonetheless, these studies

observed the discount rates are not constant, which have led to the development

of alternative discounting models, discussed in the following subsection.
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2.3.2 Non-constant Discounting

Hyperbolic Discounting

Decreasing Impatience has led psychologists (Ainslie, 1992; Loewenstein and

Prelec, 1992) to adopt discount functions in the family of generalized hyperbo-

las:

D(t) = (1 + βt)−α/β (2.2)

with α > 0, β > 0.

The parameter α determines how much the function departs from constant

discounting. As α tends to zero, the limiting case yields the exponential dis-

count function, D(t) = e−βt.

Hyperbolic discount functions imply that discount rates decrease over time.

So people are assumed to be more impatient for trade-offs between money and

delay near the present than for the same trade-offs pushed further away in time.

It can account for common difference effect.

Particular attention has been paid to the case in which α = β, implying

that

D(t) = (1 + βt)−1

which is proposed by Harvey (1986) and Mazur (1987), often called proportional

discounting.

Quasi-hyperbolic Discounting

There is some controversy in the literature as to whether decreasing impatience

holds in general or whether violations of constant discounting occur only in the
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first time interval. The latter hypothesis is referred to as the immediacy effect.

Definition 2.3.3. The preference relation < exhibits immediacy bias if there

are x, y ∈ [0, X], t ∈ [0, T ] and τ > 0 such that

(0 : x) < (τ : y)

(t : x) 4 (t+ τ : y)

Immediacy effect is the special case of the common difference effect. It

means that, the delay τ , for outcome y over x, becomes acceptable when the

timed outcomes are translated t units into the future. Such preferences are

incompatible with exponential discounting.

For the underlying reason, Phelps and Pollak (1968) introduced quasi-

hyperbolic discounting. Laibson (1997) demonstrated the usefulness of quasi-

hyperbolic discounting for economics applications. The quasi-hyperbolic dis-

count function is given by

D(t) =


1 if t = 0

αβt if t > 0

for some α ∈ (0, 1], and some β > 0.

Quasi-hyperbolic discounting model deviates from exponential discounting

in a simple, yet profound way. A penalty, beyond the discount factor, is applied

to any outcome that is not received immediately. When comparing two non-

immediate timed outcomes, the penalties cancel out and the decision maker acts

in accordance with exponential discounting. When one of the timed outcomes

is paid immediately, only the delayed outcome is penalised, biasing the decision
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maker towards immediate payments.

Quasi-hyperbolic discounting is equivalent to constant discounting for all

the future except the present. Some studies found support for the imme-

diacy effect (Bleichrodt and Johannesson, 2001; Frederick, Loewenstein and

O’Donoghue, 2002); others also found violations of constant discounting for

later time intervals (Kirby and Herrnstein, 1995; Kirby, 1997; Lazaro, Bar-

beran and Rubio, 2001).

Split Function Quasi-hyperbolic Discounting

As an extension of quasi-hyperbolic discounting, split function has the form:

D(t) =


βt if t 6 λ

γβt if t > λ

with λ ∈ [0, T ], γ ∈ (0, 1].

Under such form, outcomes occurring in the future, after λ, are penalised by

a fixed factor γ. If λ = 0, then the model coincides with quasi-hyperbolic dis-

counting, therefore allows for immediacy bias. Split Function quasi-hyperbolic

discounting allows the “present”, the time interval up to λ, to be subjective.

Thaler’s (1981) example, however, forces either λ ∈ [now, tomorrow], or

λ ∈ [1 year, 1 year and 1 day] to hold. These are restrictive requirements. As

such, split function quasi-hyperbolic discounting cannot simultaneously explain

minor adaptation of immediacy bias. If λ ∈ [now, tomorrow], then immediacy

bias with a front-end delay of anything larger than one day cannot be explained.

If λ ∈ [1 year, 1 year and 1 day], then immediacy bias with translation t less
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than 364 days, or greater than 366 days cannot be explained (assuming it is

not a leap year).

2.4 Liminal Discounting

In this section we present the liminal discount function. The term ‘liminal’

is derived from the Latin limen, meaning a ‘threshold’. The term is used in

various fields (anthropology, sociology, medicine to name a few) to refer to being

in states of transition. We use the term to mean the following: the decision

maker’s discount rate will change at some known point. Their discount rate

will change, they know when, but it remains the same for the present.

The liminal discount function has the following form:

D(t) =


αt if t 6 λ

(α/β)λβt if t > λ

with λ ∈ T , α, β ∈ (0, 1).

Here λ is called the liminal point. It is a threshold, that separates periods

before and after a change in time preference. When evaluating timed-outcomes

that occur before λ, the decision maker makes the evaluation by using an expo-

nential discount function with discount factor α. For timed-outcomes occurring

after λ, the decision maker still makes the evaluation by using an exponential

discount function, but with discount factor β. The weight (α/β)λ ensures that

the discount function is continuous everywhere.

Liminal discount function, with λ ∈ [0, T ] exhibits decreasing impatience
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if α 6 β, and increasing impatience if α > β. Notice that, since the utility

function does not change after λ, we can make meaningful comparisons of the

liminal discounter’s discount factors.

It should be remarked that the psychological and philosophical interpreta-

tions of λ could be interesting. If we expand the theoretical environment to

the whole society instead of just among a group of individuals, one may find

that the value of λ can switch among various aspects of society dramatically.

For instance, corporations, who are effectively immortal, could have λ of 200

years; while for individuals, who will die long before 200 years, it seems less

plausible.

2.5 Preference Foundation

This section provides a preference foundation for the liminal discounting model.

The result is presented in the framework of choice over timed-outcomes. The

approach allows the liminal point to be detected from observed behaviour.

First, two concepts are introduced: stationarity-after-t and stationarity-before-

t.

Definition 2.5.1 (Stationarity-after-t). A preference relation < satisfies stationarity-

after-t if for all (t : x), (t+ τ : y), (s : x), (s+ τ : y) ∈ [0, T ]× [0, X] with τ > 0

and s > t, the following holds:

(t : x) < (t+ τ : y) ⇒ (s : x) < (s+ τ : y).

Stationarity-after-t demands that, when comparing two timed-outcomes
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with the soonest outcome occurring at time t, preferences are preserved when

delaying each outcome by the same amount. Note that it is a one way implica-

tion; the preference regarding the earlier timed-outcome implying the prefer-

ence regarding the later timed-outcome. One can verify, by assuming structural

theorem, liminal discounting preferences satisfy stationary-after-t when t > λ.

Suppose that a violation of stationarity-after-t is observed. For liminal

discounters, this can only happen due to their liminal point λ is later than

t. Consequently, such an observation tells us, when the experiments are con-

ducted to identify subjects’ liminal points λ, there is no need to look before t if

violations of stationarity-after-t are observed. Similarly, a violation of the fol-

lowing condition, stationarity-before-t, will rule out the possibilities of subjects’

liminal points being any time after that particular t.

Definition 2.5.2 (Stationarity-before-t). A preference relation < satisfies stationarity-

before-t if for all (t : x), (t − τ : y), (s : x), (s − τ : y) ∈ [0, T ] × [0, X] with

0 < τ < s < t, the following holds:

(t : x) < (t− τ : y) ⇒ (s : x) < (s− τ : y).

Stationarity-before-t states that, when comparing two timed-outcomes with

the latest outcome occurring at time t, preferences are preserved when bringing

each outcome forward in time by the same amount. Again, this is a one-way

implication. One may also verify, by substitution of the preference functional,

that liminal discounting preferences satisfy stationarity-before-t when t 6 λ.

The essential axiom, liminal stationarity, is presented as following:

28



Axiom 2.5.1 (Liminal Stationarity). For all time points t ∈ [0, T ], preferences

< are stationary-before-t, or stationary-after-t, or both.

To explain the necessity of Axiom 2.5.1, one can consider an arbitrary time

t ∈ [0, T ], and a observed violation of stationarity-before-t. Then, since pref-

erences are assumed to be liminal discounting preferences, it must be that the

liminal point λ being in the interval [0, t) is the cause of such violation. Then

consider the interval after t, since λ cannot belong to this interval, stationarity-

after-t must hold for this t under consideration. Hence, for all t ∈ [0, T ], the

contradiction of one condition (stationarity-before/after-t), combined with the

assumption that liminal discounting holds, always implies the other condition.

Liminal stationarity does not exclude violations of stationarity that occur

when comparing the near and distant future. For example, take some t and

suppose preferences are stationary-before-t. Then, it may well be the case that

preference reversals occur when timed-outcomes before t are delayed to after

t. Stationarity if not implied by the simultaneous satisfaction of stationarity-

before-t and stationarity-after-t for one t ∈ [0, T ]. Full stationarity requires the

simultaneous satisfaction of stationarity-before-t and stationarity-after-t for all

t ∈ [0, T ].

The following theorem provides the preference foundation for the liminal

discounting model:

Theorem 2.5.1. The following statements are equivalent:

(i). The preference relation < over [0, T ]× [0, X] is represented by a function
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such that,

V (t : x) =


αtu(x) if t 6 λ

(α/β)λβtu(x) if t > λ

for some α, β ∈ (0, 1), λ ∈ [0, T ] and a continuous, strictly increasing

u : [0, X]→ R.

(ii). The preference relation < over [0, T ]× [0, X] is a continuous, monotonic,

impatient and thomsen separable weak order that satisfies liminal station-

arity .

The following Proposition outlines the uniqueness results pertaining to The-

orem 2.5.1. A liminal point λ is meaningful if it is in (0, T ) and α 6= β.

Proposition 2.5.1 (Uniqueness Results). Let the representation obtained in

Theorem 2.5.1 hold for some α, β ∈ (0, 1), λ ∈ [0, T ] and u : [0, X] → R. If a

liminal point is not meaningful, then λ ∈ {0, T} or α = β, so liminal discount-

ing collapses to exponential discounting and the uniqueness results expressed

in Fishburn and Rubinstein (1982) hold. Now consider a meaningful liminal

point. In this case, the liminal point is uniquely determined. Then, α, β and

u are unique up to a joint power σ > 0 and factor τ > 0 for u.

The proof of Theorem 2.5.1 and Proposition 2.5.1 are provided in Appendix.

2.6 Discussion and Concluding Remarks

The aim of this chapter is to present liminal discounting, with an axiomatic

foundation provided. The characterisation provides simple, testable condition
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(liminal stationarity) that merit empirical study. In Pan, Webb and Zank

(2015), liminal discounting was also extended to dynamic choice by developing

time consistent and time invariant (Halevy, 2011) version of the model. It

turns out that whether the model captures time consistent or time invariant

behaviour depends only on the interpretation of one parameter, the liminal

point. If the liminal point is expressed in calendar time, say 24th December,

then the model is time consistent. If it is expressed in waiting time, say one

year from now, then the model is time invariant.

Furthermore, Pan, Webb and Zank (2015) gave these models a common,

game theoretic application to the infinite-horizon, alternating-offers bargaining

model of Rubinstein (1982). Rubinstein’s model5 provides clear predictions

under exponential discounting, showing that there is a unique subgame perfect

equilibrium that prescribes an immediate agreement. Pan, Webb and Zank

(2015) investigated the cases where one of the players has liminal discounting

preferences. Under such assumption, the subgame perfect equilibrium is differ-

ent as there are incentives to delay agreement. The change in discount rate that

occurs after the player’s liminal point affects the subgame perfect equilibrium

payoffs in a predictable way. The fact that the player’s preferences will change

at some point must be integrated into the determination of the equilibrium

payoffs, whenever the agreement may be reached.

5The basic framework in Rubinstein’s bargaining game is as follows. There are two players,
1 and 2, and a normalised surplus of size 1. The players have exponential discounting
preferences with linear utility. The players alternate in proposing and considering offers
regarding how the surplus should be divided. Player 1 proposes first at t = 0 and player 2
may accept or reject the proposal. If player 2 accepts the proposal, the game ends at that
point and the payoffs are those specified in player 1’s offer. If player 2 rejects the proposal,
the game continues, and the players’ previous roles are exchanged. Indefinite disagreement
yields zero payoffs for both players.
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2.7 Appendix

2.7.1 Proof of Theorem 2.5.1

First suppose that the preference relation over timed-outcomes is represented as

in statement (i) of the theorem. That this implies statement (ii) is straightfor-

ward. Weak ordering and continuity follow immediately. Monotonicity follows

as u is strictly increasing and α, β > 0, and impatience follows as α, β ∈ (0, 1).

Thomsen Separability follows from substitution of the representing functional

stated in Structural Theorem Equation 2.1. The first two indifferences in

Thomsen Separability imply

D(t)u(x) = D(t′)u(x′)

D(t′′)u(x′) = D(t)u(x′′).

These two equalities jointly imply,

D(t′)

D(t′′)
=

u(x)

u(x′′)
.

The equality D(t′′)u(x) = D(t′)u(x′′) follows immediately, as does the equiva-

lent required by the final indifference (t′′ : x) ∼ (t′ : x′′).

The necessity of liminal stationarity, given statement (i) is explained next.

Recall λ ∈ [0, T ], the following cases need to be considered:

Case I: If λ = 0, then both conditions of liminal stationarity hold.

Case II: If λ = T , then both conditions of liminal stationarity hold.

Case III: Suppose λ ∈ (0, T ). Taking any time t ∈ [0, T ], stationarity-
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before-t holds whenever t 6 λ.

Proof. The first preference relation in Definition 2.5.2, (t : x) < (t − τ : y),

represented by the liminal discount functional form when t 6 λ in statement

(i), yields

αtu(x) > αt−τu(y).

Multiplying

(
αs

αt

)
on both sides of the above inequity gives

αsu(x) > αs−τu(y)

as
αs

αt
> 0. This directly implies the second preference relation in Defini-

tion 2.5.2, (s : x) < (s− τ : y).

Case IV: Suppose λ ∈ (0, T ). Taking any time t ∈ [0, T ], stationarity-

after-t holds whenever t > λ.

Proof. The first preference relation in Definition 2.5.1, (t : x) < (t + τ : y),

represented by the liminal discount functional form when t > λ in statement

(i), yields (
α

β

)λ
βtu(x) >

(
α

β

)λ
βt+τu(y).

Cancelling the common term, and multiplying

(
βs

βt

)
on both sides of the above

inequity gives

βsu(x) > βs+τu(y)

as
βs

βt
> 0. This directly implies the second preference relation in Defini-

tion 2.5.1, (s : x) < (s+ τ : y).
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These cover all cases, so liminal stationarity is established.

Next, the sufficiency of statement (ii) for deriving statement (i) is proved,

i.e., assuming the preference conditions, the representation in statement (i) is

derived. The process is constructed through the following lemmas:

Lemma 2.7.1. For all t, t′ ∈ [0, T ], with t′ < t, if stationarity-before-t and

stationarity-after-t′ hold simultaneously, then stationarity holds everywhere.

Proof. Under weak ordering, and using Definition 2.5.1 and Definition 2.5.2

behind liminal stationarity, it is straightforward to establish that for any t < t′,

if < satisfies stationarity-after-t then it satisfies stationarity-after-t′. Similarly,

for any t′ < t, if < satisfies stationarity-before-t then it satisfies stationarity-

before-t′.

Suppose that the conditions of the claim, stationarity-before-t and stationarity-

after-t′, are true. The restriction of preferences to [0, t]× [0, X] satisfies all the

conditions to admit an exponential discounting representation (Fishburn and

Rubinstein, 1982). The same holds for preferences restricted to [t′, T ]× [0, X].

By the uniqueness results attached to Fishburn and Rubinstein’s theorem, one

can choose the same discount factor δ for each case. Then, there will be a u

such that (t : x) mapped to δtu(x) represents preferences on [0, t]× [0, X], and

a ũ such that (t : x) mapped to δtũ(x) represents preferences on [t′, T ]× [0, X].

By assumption, there is a set [t′, t] × [0, X] where both functions must repre-

sent preferences, so they can be chosen to be equal. Then preferences over the

whole set of timed-outcomes admit one exponential discounting representation,

so stationarity must necessarily hold everywhere.

Lemma 2.7.2. Suppose the conditions in statement (ii) of Theorem 2.5.1 hold,
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there exists an unique liminal point λ.

Proof. Firstly, if the preference relation < is stationary, then one may choose

either λ = 0 or λ = T .

Now, suppose that the conditions of statement (ii) hold, but stationarity

does not hold. The following terms are defined:

t∗ = sup{t ∈ [0, T ] :< satisfies stationarity-before-t}

t∗ = inf{t ∈ [0, T ] :< satisfies stationarity-after-t}.

Hence, t∗ represents the largest t satisfying stationarity-before-t, and t∗ repre-

sents the smallest t satisfying stationarity-after-t. Liminal stationarity demands

that [0, T ] = [0, t∗] ∪ [t∗, T ]. By connectedness, if the union of [0, t∗] and [t∗, T ]

cover [0, T ], they must have a non-empty intersection. The situation where

t∗ > t∗ has been ruled out, as otherwise stationarity would hold everywhere as

Lemma 2.7.1 argued. Therefore, there is a unique point in this intersection,

t∗ = t∗ := λ, as required.

Now the following lemmas determines the structure of D : [0, T ] → R,

considering it’s behaviour on [0, λ] and [λ, T ] separately.

Lemma 2.7.3. Suppose the conditions in statement (ii) of Theorem 2.5.1 hold,

D(t) satisfies D(t+ s) = D(t)D(s) for all t, s, t+ s 6 λ.

Proof. For t, s, t + s 6 λ, and x, x′ ∈ [0, X], preferences satisfy stationarity-

before-λ, then the following equivalence holds:

(0 : x) ∼ (t : x′) ⇒ (s : x) ∼ (t+ s : x′).
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The existence of suitable x and x′ is straightforward. Substituting the separable

representation in Equation 2.1,

D(0)u(x) = D(t)u(x′)

⇒

D(s)u(x) = D(t+ s)u(x′).

Together with D(0) = 1, D satisfies the following local functional equation:

D(t+ s) = D(t)D(s)

for all t, s, t+ s ∈ [0, λ].

The above lemma is the second of Cauchy’s functional equations, restricted

to a connected subset of the reals. The classic approach to solve this applies to

the case where the equation holds on all of R. Aczél and Luce (2007) has shown

that there is an extension of D that preserves the functional equation. Their

results apply here as D is strictly positive. The general, continuous solution

gives D(t) = παt for all t 6 λ for non-zero α and π. The initial condition,

D(0) = 1, gives π = 1.

The following lemma is presented to derive a local functional equation on

[λ, T ].

Lemma 2.7.4. Suppose the conditions in statement (ii) of Theorem 2.5.1 hold,

D(t) satisfies D(t+ s) = D(t)D(s) for all t, s, t+ s > λ.
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Proof. Stationarity-after-λ guarantees that, for t, s, t+s > λ, and x, x′ ∈ [0, X],

(λ : x) ∼ (t : x′) ⇒ (λ+ s : x) ∼ (t+ s : x′).

Substituting the separable representation in Equation 2.1,

D(λ)u(x) = D(t)u(x′)

⇒

D(λ+ s)u(x) = D(t+ s)u(x′),

which together give,

D(λ)

D(λ+ s)
=

D(t)

D(t+ s)
.

There is no t ∈ [λ, T ] with D(t) = 1. Define D̃(t) =
D(t)

D(λ)
for all t ∈ [λ, T ]. No-

tice that D̃(·)u(·) still represents preferences and that D̃(λ) = 1. Substituting

the above rescaled representation gives,

D̃(t+ s) = D̃(t)D̃(s)

for all t, s, t+ s ∈ [λ, T ].

The general, continuous solution is of the form D̃(t) = π̃βt for all t ∈ [λ, T ],

for non-zero π̃ and β. The initial condition gives, D̃(t) = π̃βt. Recall that

D = D(λ)D̃ when t ∈ [λ, T ].
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Summing up all the above lemmas, it has been shown that:

V (t : x) = D(t)u(x) =


αtu(x) if t 6 λ

(α/β)λβtu(x) if t > λ

as required.

2.7.2 Proof of Proposition 2.5.1

Assume preferences admit a liminal discounting representation V : [0, T ] ×

[0, X] → R for some parameters α, β ∈ (0, 1), λ ∈ [0, T ] and utility function

u : [0, X] → R. The uniqueness of λ, when λ /∈ {0, T}, has been explained

in the proof of Theorem 2.5.1 in last subsection. Either λ is unique, or else

stationarity must hold everywhere.

Since V represents preferences, it can be replaced by f ◦ V whenever f

is strictly increasing. In general, such transformations need not retain the

separable form. Suppose α is replaced with any α̃ ∈ (0, 1) and utility u re-

placed with ũ = uk with k = ln(α̃)/ ln(α). One can verify that ln(αtu(x)) =

(1/k) ln(α̃tũ(x)) for all (x, t) ∈ [0, λ]× [0, X], and because ln is strictly increas-

ing and k > 0, it must be that preferences over [0, λ] × [0, X] are represented

by α̃tũ(x).

Similarly, one may verify that ln(βtu(x)) = (1/k) ln(βktũ(x)) for all (x, t) ∈

[λ, T ]× [0, X], hence preferences over [λ, T ]× [0, X] are represented by β̃tũ(x)

with β̃ = βk. By the same reasoning, one may choose any β̃ ∈ (0, 1), and

proceed as above replacing u and α appropriately.

Once α and β are chosen, utility must be a ratio scale. This follows from
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well-known results on separable representations, given that the location of util-

ity is fixed. To see this, recall that we included the condition (t : 0) ∼ (t′ : 0),

for any t, t′ ∈ [0, T ], in the definition of impatience. Then u(0) = 0 holds, or

else the representation would not exhibit impatience.

Having chosen either of α or β, however, the other is uniquely determined.

To see this, one may take any x < y and find a unique t such that (0 : x) ∼

(t : y). Choose x and y such that t > λ. Substituting the representation and

rearranging gives:

β =

[
u(x)

αλu(y)

] 1
t−λ

.

Given that u is a ratio scale, the right hand side of the above equation is

dimensionless. Therefore β, for given α (or vice versa), is uniquely determined.
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Chapter 3

Separating Risk and Time

Preferences: Discounted Utility

with Increasing Optimism

3.1 Introduction

Most decisions we make today inevitably involve risky options that are to be

resolved at some point in the future. Fisher (1930) identified uncertainty as

an essential aspect in intertemporal decision-making. The other aspect that

influences how future outcomes are perceived today is time (Samuelson, 1937).

Traditionally, the interaction between time and uncertainty in intertemporal

choice has been modelled by Discounted Expected Utility (DEU). In this model,

Expected Utility (EU) has been used to account for uncertainty via subjective

probabilities, and exponential discounting has been used to account for time

via constant discount factor.
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The EU model has been challenged by the works of Allais (1953) and Ells-

berg (1961). Numerous alternatives to EU have been developed in static set-

tings, which incorporate a non-linear treatment of probabilities (Quiggin, 1981,

1982; Yaari, 1987; Luce, 1991; Tversky and Kahneman, 1992). In dynamic set-

tings, this raises the questions of how such distortions of probabilities develop

over time.

The model proposed in this paper incorporates non-linear probability distor-

tions into a dynamic model with discounted utility. The objects of choices are

timed lotteries (simple probability distributions over outcomes). Time is cap-

tured by a general discounting function independent of probabilities and out-

comes. Utility of outcomes is captured by standard von Neumann-Morgenstern

utility, which doesn’t change over time.

The novel aspect of the model is that probability treatment is modelled by

a probability weighting function as in rank-dependent utility (Quiggin, 1981,

1982) and prospect theory (Kahneman and Tversky, 1979; Tversky and Kah-

neman, 1992) that depends on time. Specifically, the weighting functions are

parametric with one constant parameter across time while the second is time-

dependent. As the latter parameter measures optimism, which in our model

may increase over time, we call the model Discounted Utility with increasing

Optimism (DUO). Since in our model increased optimism is equivalent to de-

creased pessimism, DUO reflects these two probabilistic risk attitudes jointly.

Empirical evidence shows that probability attitudes and time are inter-

dependent (Keren and Roelofsma, 1995; Ahlbrecht and Weber, 1997; Weber and

Chapman, 2005; Noussair and Wu, 2006; Anderson and Stafford, 2009; Baucells

and Heukamp, 2010; Coble and Lusk, 2010; Abdellaoui, Diecidue and Öncüler,
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2011). These results confirmed that subjects’ probabilistic risk attitudes are

significantly influenced by time. In particular, experiments have revealed that

people tend to be more optimistic if the risk is delayed into the future. Baucells

and Heukamp (2010) presented an experiment in which they add a common

delay in a choice between two risky lotteries. Their results showed that the

common delay implies a reduced preference for sure outcomes. In other words,

subjects become more risk tolerant for delayed lotteries. Abdellaoui, Diecidue

and Öncüler (2011) also found evidence of increasing risk tolerance for lotteries

with delayed resolution. They showed that the impact of time is completely

absorbed by the probability weighting function, and that such delay does not

affect the utility. Higher risk tolerance can be explained by increased optimism.

For this reason, DUO can capture increased optimism over time through a

parametric weighting function.

Two of the most common empirical findings on decision-making under

risk are that of optimism/pessimism about obtaining outcomes (overweight-

ing small, respectively, underweighting large probabilities) and the diminishing

effect of optimism/pessimism for intermediate probabilities. This has been

modelled through probability weighting functions that have an inverse-S shape

(Tversky and Kahneman, 1992; Prelec, 1998; Wakker, 2010). Gonzalez and Wu

(1999) suggested that curvature and elevation are two independent psycholog-

ical components underlying this inverse-S shape. They interpret curvature as

reflecting the ability of an individual to discriminate between probabilities. El-

evation reflects the propensity of an individual to accept a lottery, with higher

elevation indicating a higher propensity to accept. Gonzalez and Wu provided

empirical evidence in support of two-parameter probability weighting functions
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,where one parameter measures elevation and the other measures curvature.

Abdellaoui, L’Haridon and Zank (2010) provided theoretical foundations for

such two-parameter weighting functions accomplishing a complete separation

of curvature and elevation. In their model, the elevation parameter controls the

proportion of increased optimism to decreased pessimism, while the curvature

parameter reflects diminishing effect of optimism and pessimism for interme-

diate probabilities. Also, their empirical evidence indicate that the elevation

parameter is approximately 1/3. Several other studies suggest that the inverse-

S shaped weighting function has a fixed point1 at 0.32 (Tversky and Kahneman,

1992; Prelec, 1998; Bleichrodt and Pinto, 2000; Bleichrodt, Pinto and Wakker,

2001). In DUO, a dynamic version of Abdellaoui, L’Haridon and Zank’s model

with time-independent elevation parameter and time-dependent curvature pa-

rameter is presented. We define a measure of optimism that depends on both

the curvature and the elevation parameters, which is time dependent. Further,

preference foundations are proposed.

The chapter is organised as follows. First, basic notation of decision under

risk and rank-dependent utility theory are set out in Section 3.2. Section 3.3

reviews the features of probability weighting functions. Then the proposed

static index of relative optimism is developed in Section 3.4. Section 3.5 extends

this index for the intertemporal context. Section 3.6 provides a preference

foundation for the proposed representation. Concluding remarks are discussed

in the end, followed by the Appendix with proofs.

1 Note that such observations for the value of the elevation parameter are obtained under
static settings, there’s yet any evidence to suggest whether the elevation parameter would
stay constant over time.
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3.2 Preliminaries

The outcome set is R, with real numbers designating money. A prospect is a

finitely supported probability distribution2 over R. The generic notation for a

prospect is P = (p1 : x1, . . . , pm : xm), yielding outcomes xj with probability

pj for each j. Here m is a natural number that can be different for different

prospects. It is implicitly understood that probabilities pj are non-negative

and sum to one, i.e., pj > 0 and
∑m

j=1 pj = 1. As a notational convention,

outcomes are always assumed rank-ordered. The rank is assumed to agree

with the natural ordering on the real-valued outcomes, i.e., for the notation of

a prospect P , it is implicitly understood that x1 > · · · > xm. The set of all

prospects is denoted by L.

In its general form, rank-dependent utility theory requires a utility function

to evaluate outcomes, and a probability weighting function that evaluates the

probabilities associated with ranked outcomes, respectively. Rank-dependent

Utility (RDU) holds if any prospect P is evaluated by

RDU(P ) =
m∑
i=1

[
w

(
i∑

j=1

pj

)
− w

(
i−1∑
j=1

pj

)]
u(xi), (3.1)

the RDU of the prospect3. Formally, the utility function assigns a real value

to each outcome, and is strictly increasing and continuous. It is also unique

up to scale and location, that is, u can be replaced by any v = au + b for

a > 0 and real value b, i.e., u is cardinal. The probability weighting function

2 Extensions to prospects that are continuous distributions with infinite support, are pos-
sible for future research, using techniques developed in Kothiyal, Spinu and Wakker (2011).

3 Note that p1 + · · ·+ pi−1 = 0 for i = 1, irrespective of the numbers p1, p2, . . . . This also
applies for any i that satisfies i− 1 < 1.
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is an strictly increasing continuous mapping w : [0, 1] → [0, 1], with w(0) = 0

and w(1) = 1. In Equation 3.1, the weighting functions apply to cumulative

probabilities. The differences in these distorted probabilities (i.e., the term

w(
∑i

j=1 pj) − w(
∑i−1

j=1 pj) in the notation above) are referred to as decision

weights of the corresponding outcomes xi, i = 1, . . . ,m. Under RDU, the

weighting functions are uniquely determined. Note that RDU reduces to EU

is the weighting functions are identity functions.

We assume that the prospects can be resolved and paid out within a finite

and discrete period of time T such that T = {0, . . . , n} for n > 2. A prospect P

that is resolved and paid out at time period t ∈ T is called a temporal prospect,

denoted by Pt = (p1,t : x1,t, . . . , pmt,t : xmt,t). Since m indicates the number of

outcomes in a temporal prospect, it may vary over time. Let L = Ln+1 denote

the set of all temporal prospects.

A preference relation < is assumed over L, and its restriction to subsets of

L (e.g., all degenerate temporal lotteries, L) is also denoted by <. As usual,

the symbol � denotes strict preference while ∼ denotes indifference (4 and ≺

denote reversed weak and strict preferences, respectively).

Under Discounted Expected Utility (DEU), the representing functional for

< evaluates any P ∈ L by

DEU(P) =
n∑
t=0

D(t)EU(Pt). (3.2)

Here D(t) = σt is normally assumed to be exponential discounting function,

with σ being constant “pure” time preference. A temporal prospect Pt is eval-
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uated by expected utility

EU(Pt) =
mt∑
i=1

pi,tu(xi,t), (3.3)

with utility function u : R→ R is continuous, strictly increasing and cardinal.

The focus of this chapter is on a more general representation. Under Dis-

counted Rank-dependent Utility (DRU), the representing functional for < eval-

uates any P ∈ L by

DRU(P) =
n∑
t=0

D(t)RDUt(Pt). (3.4)

That is, a temporal prospect Pt is represented by rank-dependent utility

RDUt(Pt) =
mt∑
i=1

[
wt(

i∑
j=1

pj,t)− wt(
i−1∑
j=1

pj,t)

]
u(xi,t). (3.5)

Like under EU, the utility function u : R→ R for RDU is continuous, strictly

increasing and cardinal, and is independent of time. The probability weighting

function, which transforms the objective probabilities into subjective measure-

ments, is time-dependent. It captures intertemporal probabilistic risk attitude

(Wakker, 1994, 2010).

3.3 Probability Weighting Functions

Probability weighting functions, as argued before, play an important role in the

proposed model. It is also key to understand RDU theory as a deviation from

EU theory. This section reviews some essential properties of probability weight-
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ing functions under static settings. More specially, it discusses and highlights

the role of probability weighting functions in capturing the effect of probabil-

ity weighting on risk behaviour, which is normally referred as probabilistic risk

attitude.

The inputs of probability weighting functions w are cumulative probabili-

ties, hence, depending on ranking of outcomes. Recall that the outcomes are

ordered from best to worst. Naturally, as shown in Figure 3.1, the part of

domain of w that is close to 0, is for small cumulative probabilities p and is

relevant for the best outcomes. The part of domain of w that is close to 1, is

for large cumulative probabilities p and is relevant for the worst outcomes.

(a) Concave w, optimism (b) Convex w, pessimism

Figure 3.1: Probability weighting functions and Probabilistic risk attitude

The decision weight π of an outcome xi, is formally defined as πi = w(
∑i

j=1 pj)−

w(
∑i−1

j=1 pj), j = 1, . . . ,m. From the definition and illustration in Figure 3.1,

one can see that the decision weight of an outcome will be affected by the steep-

ness of w around cumulative probability associated with the outcome rather

than by the absolute level of w. In the case of EU, the decision weights are the
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probabilities of obtaining the respective outcome, i.e., πj = pj, j = 1, . . . ,m.

Consider a simple prospect P = (p1 : x1, p2 : x2, p3 : x3). A weighting func-

tion, w, is concave if for all probabilities p1, p2, p3 such that p1 + p2 + p3 6 1,

w(p1+p2)−w(p1) > w(p1+p2+p3)−w(p1+p2), i.e., π2 > π3 is satisfied. From

Figure 3.1a, one can also observe this property, as w is steep towards small cu-

mulative probabilities, with large differences of w and hence, large decision

weights are obtained for higher ranked, more favourable outcomes. Meanwhile,

w is shallow/flat towards large probabilities, yielding small decision weights

for lower ranked, less favourable outcomes. Such weighting functions exhibit

strong sensitivity towards changed in probabilities away from 0 but relatively

little sensitivity towards changes in probabilities away from 1. Moreover, a con-

cave weighting function characterizes probabilistic risk proneness, also known

as optimism. It is demonstrated in the Figure 3.1a as w overweights cumulative

probabilities, i.e., w(p) > p for all p ∈ (0, 1).

Similarly, A weighting function, w, is convex if for all probabilities p1, p2, p3

such that p1 + p2 + p3 6 1, w(p1 + p2)−w(p1) 6 w(p1 + p2 + p3)−w(p1 + p2),

i.e., π2 6 π3 is satisfied. It implies large decision weights are obtained for lower

ranked, less favourable outcomes, and small decision weights for higher ranked

more favourable outcomes (Figure 3.1b). Such weighting functions exhibit little

sensitivity towards changes in probabilities away from 0 but extreme sensitiv-

ity towards changes in probability away from 1. Probabilistic risk aversion,

or pessimism is captured by w underweighting cumulative probabilities, i.e.,

w(p) < p for all p ∈ (0, 1). Naturally, a linear weighting function characterizes

probabilistic risk neutrality, which is the case of EU (w(p) = p for all p ∈ [0, 1]).

Nonetheless, optimistic and pessimistic attitudes of paying special atten-

48



tion towards favourable and unfavourable outcomes respectively, a commonly

found derivation from EU, is frequently reported in the studies (van Osch and

Stiggelbout, 2008; Sherrick, Sonka, Lamb and Mazzocco, 2000; Showers, 1992).

Considerably more than 50 percent of all car drivers assume that they belong

to the best 50 percent of car drivers (Guppy, 1993). Such phenomenon is of-

ten called unrealistic optimism or overconfidence (Hoelzl and Rustichini, 2005;

van den Steen, 2004; Wenglert and Rosén, 2000). It can be accommodated by

probability weighting and rank dependence whereas it was not possible under

EU. Recall that the outcomes are ranked from best to worst. The above obser-

vations indicate a weighting function that overweights small probabilities and

underweights large probabilities.

Another common empirical finding is that of large decision weights for un-

likely extreme outcomes (best and worst) (MacCrimmon and Larsson, 1979;

Kahneman and Tversky, 1979; Allais, 1953). Such decision weights indicate

that individuals are extremely sensitive to changes in cumulative probabilities

close to 0 and 1, i.e., they exhibit diminishing sensitivity for probabilities.

As a result, the family of inverse-S shaped weighting functions seem to be

more plausible to capture above findings, which is also confirmed by many em-

pirically estimated weighting functions (Baucells and Heukamp, 2010; Abdel-

laoui, Vossmann and Weber, 2005; Abdellaoui, 2000; Gonzalez and Wu, 1999;

Wu and Gonzalez, 1996; Tversky and Kahneman, 1992; Camerer and Weber,

1992; Kahneman and Tversky, 1979; Karmarkar, 1979, 1978).

Relative to EU, the weighting function is shallower in the middle region,

and steeper near both end points (Figure 3.2). Formally, that is, for some σ,

w(σ) = σ; for p ∈ (0, σ), w(p) > p and is concave; for p ∈ (σ, 1), w(p) < p

49



Figure 3.2: Inverse-S shaped probability weighting function

and is convex. Empirical studies, also suggest that the point that intersects

the diagonal σ approximately equals to 1/3 (Prelec, 1998; Abdellaoui, 2000;

Bleichrodt and Pinto, 2000; Bleichrodt, Pinto and Wakker, 2001; Abdellaoui,

Barrios and Wakker, 2007).

While RDU being a more descriptive model than EU, it has a disadvan-

tage of having more parameters than EU. Consequently, it is more difficult

to estimate those parameters from data. The following section will discuss

more on the psychological meaning of the parameters, and propose an index of

measurement for individual’s probabilistic risk attitudes.

3.4 An Index of Relative Optimism

Under EU, risk attitudes are modelled through utility, more specifically, curva-

ture of utility. Classical economics identifies risk aversion with concave utility,

and the Arrow-Pratt utility index is used as a measure of risk aversion (Arrow,
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1965; Pratt, 1964).

Utility has been a controversial concept throughout the history of eco-

nomics, with various interpretation over time. The nature of utility has been

debated extensively in the literature (see Abdellaoui, Barrios and Wakker, 2007

for a comprehensive review of the historic development of the concept). The

classical decision-theoretic studies invariably assumed EU for analysing risky

decisions. Under such assumption, a difference between marginal utility and

risk attitude necessarily implies that there must be a non-linear relation be-

tween risky and riskless utility. Under RDU, however, aspects of risk attitude

not captured by marginal utility can be explained by probability weighting,

so that the main reason for classical decision-theoretic studies to distinguish

between risky and riskless utility disappears.

In the RDU models, the utility function u(x), captures sensitivity towards

outcomes, while the probability weighting function w(p), capturing sensitivity

towards probabilities. RDU generalises EU as it reduces to EU when w is the

identity, i.e., w(p) = p. A probability weighting function permits objective

probabilities to be weighted non-linearly. As mentioned before, the term prob-

abilistic risk attitude is used to refer to the effect of probability weighting on

risk attitudes, i.e. optimism and pessimism (Wakker, 1994, 2001; Abdellaoui,

2002; Wakker, 2010). A concave weighting function features overweighting,

and enhances optimism and risk seeking. A convex weighting function fea-

tures underweighting and enhances pessimism and risk aversion. Under RDU,

risk averse behaviour depends on both utility and probability weighting. For

instance, a risk averse person can have strictly convex utility if probability

weighting generates sufficient risk aversion (or pessimism) (Chateauneuf and
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Cohen, 1994, Corollary 2).

Gonzalez and Wu (1999) provided psychological arguments for the curva-

ture and elevation of weighting functions. They interpreted the curvature of

the weighting function as reflecting the ability of an individual to discrimi-

nate between probabilities. For instance, an individual who put more decision

weight on a 1% probability if added to a 99% probability of a good outcomes

than if added to a 10% probability of the same outcome, shows less ability to

discriminate (diminishing sensitivity). The interpretation given to elevation is

that it reflects how confident/prone an individual is to the domain of prospects

(optimism and pessimism).

They further argued that curvature and elevation are logically independent

aspects and that this should be reflected in two separate parameters within the

weighting function, like the ones proposed by Goldstein and Einhorn (1987);

Lattimore, Baker and Witte (1992); Prelec (1998). Such weighting functions

with two parameters, which influence curvature and elevation, respectively,

provide a plausible account for discriminablity of probabilities and attraction

to prospects, and hence, for observed probabilistic risk attitude in general.

Abdellaoui, L’Haridon and Zank (2010) proposed a class of parametric

weighting functions (see also Diecidue, Schmidt and Zank, 2009) that achieve a

natural separation between a parameter controlling for curvature and a param-

eter controlling for elevation. The constant relative sensitivity (CRS) weighting

functions have the form:

w(p) =


σ1−γpγ if 0 6 p 6 σ

1− (1− σ)1−γ(1− p)γ if σ < p 6 1
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with 0 6 σ 6 1 and γ > 0.

It is easy to observe that the CRS weighting functions are power functions

(concave) on the interval [0, σ], which enhances optimism and risk seeking, and

dual power functions (convex) on the interval [σ, 1], which enhances pessimism

and risk aversion. Evidence shows the intersection point between the weighting

functions and the diagonal σ is approximately 0.33 (Prelec, 1998; Abdellaoui,

2000; Bleichrodt and Pinto, 2000; Bleichrodt, Pinto and Wakker, 2001; Abdel-

laoui, Barrios and Wakker, 2007).

One can easily validate that for such weighting function, the best-ranked

outcomes receive large decision weights and the worst-ranked outcomes receive

even larger decision weights. Through such decision weights, the effect of opti-

mism and pessimism can be modelled.

Figure 3.3: Illustration of Relative Optimism Index

For simplicity, a binary prospect is denoted by (p : x, 1− p : y) and x > y.

Here p is the probability of obtaining better outcome x, 1−p is the probability
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of obtaining worse outcome y. We define the proportion of the decision weights

generated by changes away from σ influenced by optimism (i.e., changed for

probabilities in [0, σ]) and the decision weights generated by corresponding

dual changes away from σ by pessimism as the index of relative optimism θ,

see Figure 3.3 for simple illustration.

Formally, the index of relative optimism is defined as,

θ =


w(p)

1− w(1− p)
if p 6 σ

w(1− p)
1− w(p)

if p > σ.

By substituting the CRS parametric form, the relative optimism index under

both above circumstances4 is given by θ =

(
σ

1− σ

)1−γ

, which depends only on

parameters that represent curvature and elevation of the probability weighting

function, respectively.

The CRS weighting functions allow for a comparative analysis based on the

index of relative optimism, θ. With extensive empirical evidence indicating σ

is around 1/3 as mentioned before, it is plausible to keep σ constant for such

a comparative analysis. The other parameter γ reflects degree of curvature of

the weighting function (Abdellaoui, L’Haridon and Zank, 2010). As a result,

4 Recall CRS functional form, hence, when p 6 σ,

θ =
w(p)

1− w(1− p)
=

σ1−γpγ

1− [1− (1− σ)1−γpγ ]
=

(
σ

1− σ

)1−γ

;

when p > σ

θ =
w(1− p)
1− w(p)

=
σ1−γ(1− p)γ

1− [1− (1− σ)1−γ(1− p)γ ]
=

(
σ

1− σ

)1−γ

.
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the graph of the weighting function is rotated around (σ, σ). An individual

with more rotated around (σ, σ) weighting functions is more optimistic and also

more pessimistic, and more sensitive towards probabilities of extreme outcomes.

More precisely, such individual’s behaviour suggests more deviation from EU.

Mathematically, since σ <
1

2
(hence

σ

1− σ
< 1) and 0 < γ < 1, the closer

γ is to 1, the higher is the value of θ, keeping σ constant. Hence the weighting

function capturing more (relative) optimistic risk attitude is closer to linearity.

3.5 Intertemporal Relative Optimism

This section proceeds further with a discussion of the relative optimism index

in the intertemporal context. The time-dependent CRS weighting functions

have the form

wt(pi,t) =


σ1−γtpγti,t if 0 6 pi,t 6 σ

1− (1− σ)1−γt(1− pi,t)γt if σ < pi,t 6 1

with 0 6 σ 6 1 and γt > 0.

A temporal binary prospect, denoted by (p : x, 1− p : y)t for x > y, is used

for simplicity of exposition. The probability of getting the better outcome x in

period t is denoted by p, and the probability of getting the worse outcome y in

period t is denoted by 1− p. A decision maker with CRS probability weighting

function has relative optimism at time period t as θt =

(
σ

1− σ

)1−γt
.

55



Baucells and Heukamp (2010) tested the following preference reversal:

(1 : 300)now � (0.8 : 400, 0.2 : 0)now

(1 : 300)6 months ≺ (0.8 : 400, 0.2 : 0)6 months

It shows that the more risky prospect with larger reward would be preferred

after the prospects are delayed by 6 months, while now the safer prospect is

chosen.

Recall that an individual’s preference < is defined over the set of temporal

lotteries L. Assume such preferences at period t and s, can each be modelled by

RDUt, RDUs, underlying basic utility function u, time-dependent probability

weighting functions wt, ws, respectively.

Definition 3.5.1. Increasing relative optimism holds if for all p, q, x, y, t, s,

with x < y, x, y ∈ R, t < s, t, s ∈ T and σ < q < p 6 1:

(p : x, 1− p : 0)t � (q : y, 1− q : 0)t

⇒

(p : x, 1− p : 0)s ≺ (q : y, 1− q : 0)s

Substituting Equation 3.4 and Equation 3.5, the two resulting inequalities

together give:

wt(p)

wt(q)
>
wt+1(p)

wt+1(q)
.

Note p, q ∈ (σ, 1], it is more convenient to use the notation of the dual weighting

function, i.e.,

1− wt(1− p)
1− wt(1− q)

<
1− ws(1− p)
1− ws(1− q)

.
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Such weighting function is dual to the (regular) weighting function that cor-

responds to cumulative distribution of the prospects, which assign to the out-

come the probability of that outcome or better (see Zank, 2010; Abdellaoui,

L’Haridon and Zank, 2010; Abdellaoui, 2002, for formal definitions of both no-

tations). It corresponds to the decumulative distribution of the prospects, and

graphically is represented by the (regular) weighting function flipped horizon-

tally.

Adopting the parametric form of time-dependent CRS probability weighting

function , the above inequality results in

(
p

q

)γt
<

(
p

q

)γs
,

which implies γt < γs since p > q.

Therefore, by the definition of the decision maker’s relative optimism index

presented in previous section, the following proposition holds.

Proposition 3.5.1. The DUO decision maker exhibits increasing relative op-

timism if: θt < θs for every t < s, t, s ∈ T .

From the discussion above, one can clearly see that the parameter control-

ling for curvature of the weighting functions decreases5 over time. It indicates

that the deviation from EU diminishes over time (see Figure 3.4).

In other words, people tend to be more optimistic when risk is delayed.

This suggests a possible hypothesis that, if the prospect is sufficiently far away

5 In CRS weighting functions, 1 − γ reflects the curvature of the weighting functions
(Abdellaoui, L’Haridon and Zank, 2010). Also we have 1 − γt > 1 − γs as γt < γs for all
t < s.
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Figure 3.4: Dynamic Inverse-S Probability Weighting Function with t < s,
t, s ∈ T

from the present, the decision maker exhibits less probability distortion, i.e.,

they behave as expected utility maximisers.

3.6 A Preference Foundation

Preference foundations give necessary and sufficient conditions for a decision

model, stated directly in terms of the empirical primitive: the preference rela-

tion. Since preferences are directly observable, preference foundations identify

the empirical meaning of a model.

This section presents such an axiomatic preference foundation for the DUO

model with a two-parameter weighting function, i.e., CRS, that incorporate

increasing (relative) optimism over time. The result is presented in the frame-

work of choices over temporal prospects.

We are interested in conditions for a preference relation < on the set of
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all temporal prospects L, in order to represent the preference relation by a

function V . That is, the representation or representing function V : L → R,

assigns to each temporal prospect a real number, such that for all P ,Q ∈ L,

P < Q ⇔ V (P) > V (Q).

If such a representing function exists then < must be a weak order, i.e. <

is complete (P < Q or P 4 Q for all P ,Q ∈ L) and transitive (P < Q and

Q < R implies P < R for all P ,Q,R ∈ L). Weak ordering entails a ranking

of prospects with ties permitted.

In general being a weak order alone is not sufficient for < to admit such

representation. Further conditions are required to guarantee the existence of

a representing function. In the following content, by Rmt
↓ we denote the set of

rank-ordered mt-tuples from R for t ∈ T , i.e.,

Rmt
↓ = {(x1,t, . . . , xmt,t) ∈ Rmt : x1,t > · · · > xmt,t}.

The preference relation < satisfies continuous if for all t ∈ T , and pj,t ∈ [0, 1]

for j = 1, . . . ,mt, the sets

{(x1,t, . . . , xmt,t) : (p1,t : x1,t, . . . , pmt,t : xmt,t) < (p1,t : y1,t, . . . , pmt,t : ymt,t)}

and

{(x1,t, . . . , xmt,t) : (p1,t : x1,t, . . . , pmt,t : xmt,t) 4 (p1,t : y1,t, . . . , pmt,t : ymt,t)}
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are closed sets in the Euclidean space Rm0
↓ × · · · × Rmn

↓ . Closed refers to the

“product topology”, i.e., it generates the natural continuity in
∏n

t=0R
mt
↓ .

Monotonicity is defined with respect to the preference order over outcomes

at all time periods. That is, < satisfies monotonicity if for all (x1,t, . . . , xmt,t),

(y1,t, . . . , ymt,t) ∈
∏n

t=0R
mt
↓ , xj,t > yj,t for all j implies (p1,t : x1,t, . . . , pmt,t :

xmt,t) < (p1,t : y1,t, . . . , pmt,t : ymt,t), with a strict preference if xj,t > yj,t

for at least one j with pj,t > 0. It states that, assuming temporal prospects

are resolved and paid out at the same time t ∈ T , monotonicity holds if the

preference relation over temporal prospects agrees with the natural ordering of

the outcomes. In other words, the more money the better.

With weak ordering, continuity and monotonicity defined above, for each

temporal prospect that is resolved and paid at time period t, a unique certainty

equivalent CEt exists (Wakker, 1989).

Now, we focus on the additive separability across and within time dimen-

sions for the representing function V . In order to formally define the condition,

some useful notation needs to be introduced.

Definition 3.6.1. For a subset S ⊆ T , and P ,R ∈ L, define

RSP =


Rt if t ∈ S

Pt if t /∈ S.

Note that RSP is the set of temporal lotteries that is identical to P except

that, all lotteries that are resolved and paid within the period of time S have

been replaced by R.

The following independence condition for time is required.
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Axiom 3.6.1 (Time Independence). The preference relation < satisfies time

independence on L if for any RSP ,RSQ,R′SP ,R′SQ ∈ L, it holds that

RSP < RSQ

⇔

R′SP < R′SQ

for S ⊆ T .

The time independence requires that preferences between temporal prospects

be independent of the time periods, in which common prospects are resolved

and paid. It ensures the representative functional across time periods is addi-

tive separable, and further enforces that within the time periods, the functional

is additive separable, i.e. Lemma 1 in Abdellaoui, L’Haridon and Zank (2010)

is true.

Assumption 3.6.1. For each time period of a temporal lottery P, the axioms

in Theorem 2 of Abdellaoui, L’Haridon and Zank (2010) are satisfied.

Theorem 2 of Abdellaoui, L’Haridon and Zank (2010) characterises the

class of RDU preferences with weighting functions which are CRS weighting

functions. Together with time independence, the preference relation < on L is

represented by

V (P) =
n∑
t=0

Φt[RDUt(Pt)], (3.6)

where Φt : R → R are continuous and jointly cardinal, with uniquely defined

61



weighting function

wt(pi,t) =


σ1−γt
t pγti,t if 0 6 pi,t 6 σt

1− (1− σt)1−γt(1− pi,t)γt if σt < pi,t 6 1.

Now we introduce an additional condition that forces, for each period, the

preference relation can be represented by a linear transformation of RDU rep-

resentation. It is similar with the idea of derived trade-offs for outcomes used

in Wakker (1994) and for probabilities used in Köbberling and Wakker (2003)

and Abdellaoui (2002).

Definition 3.6.2. For a temporal lottery PsR ∈ L, s ∈ T , define (p : x, 1− p :

z)sR as a written for PsR with Ps replaced by a binary lottery that getting x

with probability p, and z otherwise, x > z.

Axiom 3.6.2 (Intertemporal Trade-off Consistency). The preference relation

< satisfies intertemporal trade-off consistency if for some probability p:

(p : x, 1− p : z)sP ∼ (p : y, 1− p : z′)sQ

(p : x′, 1− p : z)sP ∼ (p : y′, 1− p : z′)sQ

(p : x, 1− p : z̃)s′R ∼ (p : y, 1− p : z̃′)s′S

⇔

(p : x′, 1− p : z̃)s′R ∼ (p : y′, 1− p : z̃′)s′S

Lemma 3.6.1. Assuming Equation 3.6 holds, Φt : R → R are linear and

positive if the preference relation < is a continuous monotonic weak order that

satisfies intertemporal trade-off consistency.
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With Lemma 3.6.1 true, we separate the discount factor from RDUt for

each time period t, t ∈ T . An additional condition is needed to have the same

probabilistic risk attitude across time, but different relative sensitivity over

time.

Axiom 3.6.3 (Constant Elevation). The preference relation < satisfies con-

stant elevation if

(σs : x, 1− σs : z)sP ∼ (σs : y, 1− σs : z′)sP

⇔

(σs′ : x, 1− σs′ : z)s′Q ∼ (σs′ : y, 1− σs′ : z′)s′Q

Lemma 3.6.2. The RDU representation with time-dependent CRS weighting

function has one parameter σ that is independent of time, iff the preference

relation < satisfies constant elevation.

The following theorem provides the preference foundation for DRU with

time-dependent CRS weighting functions. In addition, the elevation parameter

σ is constant overtime while the curvature parameter γ is time-dependent.

Theorem 3.6.1. The following two statements are equivalent for a preference

relation < on L:

(i). The preference relation < on L is represented by DRU, i.e., Equation 3.4

and Equation 3.5, with time-dependent CRS weighting functions and time-

independent σ in each time period, i.e.,

wt(pi,t) =


σ1−γtpγti,t if 0 6 pi,t 6 σ

1− (1− σ)1−γt(1− pi,t)γt if σ < pi,t 6 1
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with 0 6 σ 6 1 and γt > 0.

(ii). The preference relation < satisfies weak order, monotonicity, continuity,

time independence and further, within each time period Assumption 3.6.1

holds and across time the preference relation < satisfies intertemporal

trade-off consistency and constant elevation.

The parameters γt and σ are uniquely determined, the utility function u

is cardinal and the discounting function D is linear and positive.

The proof of Theorem 3.6.1 naturally follows by proofing Lemma 3.6.1 and

Lemma 3.6.2 jointly, which are provided in the Appendix.

3.7 Conclusion

The main objective in this chapter was to separate the risk and time preferences

in intertemporal risky decision-making.

With additive separability, lotteries that are realised in different time peri-

ods can be modelled by the summary of linear transformations of RDU repre-

sentations. Within each distinct time period, the highlight of this chapter is to

provide theoretical and axiomatic analysis for a parametric weighting functions

suggested by Abdellaoui, L’Haridon and Zank (2010), called constant relative

sensitivity function in dynamic framework. This function contains two param-

eters indicating probabilistic risk attitudes which provides a better explanatory

power.

One of the parameters represents the relative strength of optimism vs. pes-

simism, which is constant over time in the dynamic framework, while the other
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parameter measures the diminishing effect of optimism and pessimism when

moving away from extreme probabilities 0 and 1. which changes over time.

Risk and time preferences are disentangled in the way the effect of time on

risk preferences is captured by the time-dependent probability weighting func-

tion, generating probabilistic optimism resulting in a higher risk tolerance for

delayed lotteries.

3.8 Appendix

3.8.1 Proof of Lemma 3.6.1

The following cases need to be considered:

Case I: When p = 0 or p = 1, one gets x, y, x′, y′ or z, z′, z̃, z̃′for certain.

Assuming p = 1, recall Axiom 3.6.2, the first two conditions jointly give the

following:

Φs[us(x)]− Φs[us(x
′)] = Φs[us(y)]− Φs[us(y

′)].

Also the last two conditions jointly give the following:

Φs′ [us′(x)]− Φs′ [us′(x
′)] = Φs′ [us′(y)]− Φs′ [us′(y

′)].

The above two equations indicate that, Φs◦us is proportional of Φs′ ◦us′ , hence

Φs ◦ us is a linear increasing transformation of Φs′ ◦ us′ .

Case II: When p ∈ (0, 1), the first two conditions in Axiom 3.6.2 jointly
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implies,

Φs[ws(p)us(x) + [1− ws(p)]us(z)]− Φs[ws(p)us(x
′) + [1− ws(p)]us(z)]

=Φs[ws(p)us(y) + [1− ws(p)]us(z′)]− Φs[ws(p)us(y
′) + [1− ws(p)]us(z′)]

Therefore,

[ws(p)us(x) + [1− ws(p)]us(z)]− [ws(p)us(x
′) + [1− ws(p)]us(z)]

=[ws(p)us(y) + [1− ws(p)]us(z′)]− [ws(p)us(y
′) + [1− ws(p)]us(z′)],

i.e.,

us(x)− us(x′) = us(y)− us(y′).

Similarly, by using the last two conditions in Axiom 3.6.2 jointly, it implies

us′(x)− us′(x′) = us′(y)− us′(y′)

Therefore, us is proportional of us′ . Together with the previous case, we have Φs

is proportional of Φs′ , i.e., Φs is linear. This implies that there exists constant

Dt such that preferences are represented by DRU (i.e.,Equation 3.4).
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3.8.2 Proof of Lemma 3.6.2

From the two preference relations in Axiom 3.6.3, which are represented by

DRU, we have:

ws(σs)us(x) + [1− ws(σs)]us(z) = ws(σs)us(y) + [1− ws(σs)]us(z′) (3.7)

ws′(σs′)us′(x) + [1− ws′(σs′)]us′(z) = ws′(σs′)us′(y) + [1− ws′(σs′)]us′(z′),

(3.8)

respectively.

From Equation 3.7:

ws(σs)[us(x)− us(y)] = [1− ws(σs)][us(z′)− us(z)]

ws(σs)

1− ws(σs)
=

us(z
′)− us(z)

us(x)− us(y)
. (3.9)

From Equation 3.8:

ws′(σs′)[us′(x)− us′(y)] = [1− ws′(σs′)][us′(z′)− us′(z)]

ws′(σs′)

1− ws′(σs′)
=

us′(z
′)− us′(z)

us′(x)− us′(y)
. (3.10)

Combine Equation 3.9 and Equation 3.10,

ws(σs)

1− ws(σs)
=

ws′(σs′)

1− ws′(σs′)

Therefore,

ws(σs) = ws′(σs′) (3.11)
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Since wt is monotonic increasing, we have σs = σs′ = σ.
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Chapter 4

Discussion and Conclusion

All in all, my thesis consists of chapters that present theoretical models of

individual choice. Such models can help us to understand the functioning of

economic institutions, and design better institutions. One cannot evaluate the

soundness of a theoretical models without seeing how useful the model is in

structuring out thinking of general economics. Applicability requires that the

models and stylized facts compound to an integrated theory that is flexible, ad-

equately parsimonious, and permits us to construct testable hypotheses. This

suggests enhancing communication between applications and the underlying

theory. To develop the theory further it helps to have feedback from areas

where the theory could be applied.

Both main chapters in this thesis have potential opportunities for applica-

tions of behavioural economics. Chapter 2 presented an alternative discounting

function for measuring intertemporal choice, liminal discounting, which gener-

alises exponential discounting, as well as quasi-hyperbolic discounting. Pan,

Webb and Zank (2015) gives interesting application of liminal discounting to
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bargaining games of Rubinstein (1982) under the assumption that the players

have liminal discounting preferences, rather than exponential discounting.

Furthermore, liminal discounting model is also more flexible when applying

to typical dynamic behaviour such as self-control problems. Lack of self-control

refers to the tendency of economic agents to make decisions that are in conflict

with their long-term interest, which lead to addictive behaviour, undersaving,

or procrastination. For instance, when it comes to the matter of exercise taxes,

one of the most criticism is their regressivity, with lower income groups spending

a much larger share of their income on goods such as cigarettes than do higher

income groups (Gruber and Kőszegi, 2004). Yet alternative conclusion could be

made if we review the model with two distinctive liminal points capturing time-

inconsistent behaviour for lower and higher income groups, respectively. By

applying liminal discounting, it may shred new light on models of consumption

of ‘sin’ goods.

In Chapter 3 we added the element of risk into the process of analysing

intertemporal choice, due to the very nature of future prospects. We adopted

one of the most profound non-expected utility theories, rank-dependent util-

ity, to model individuals’ risk attitudes towards future prospects, capturing

interactions between time and risk preferences. These interactions need to be

accounted for both in theoretical and empirical models, particularly because

many important policy questions involve tradeoffs over time and in the pres-

ence of risk. More specifically, we presented a time-dependent two-parameter

probability weighting function to capture the effect of time on probabilistic risk

attitudes. In Chapter 3, the elevation parameter is constant across time while

the curvature parameter is time-dependent. Alternative models can be derived
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if we keep curvature parameter constant over time instead. Such models can

account for important empirical findings on different fields. For instance, Gro-

neck, Ludwig and Zimper (2013) looked into household saving behaviour by

treating probabilities as ambiguous survival beliefs (unknown probabilities).

They also indicate that the curvature parameter can be explained as the level

of ambiguity. DUO model can be extended to investigate behaviour under

uncertainty as one of my future research agenda.

Preference foundations also play an essential role in this thesis. A list of

conditions are given, such as liminal stationarity in Chapter 2 and Trade-off

consistency in Chapter 3, in terms of observable preferences, that hold if and

only of the decision model holds. These preference foundations show how to

verify or falsify decision models descriptively, and provide the terms to justify

or criticize models normatively. These observable behavioural conditions will

contribute on further test of the intrinsic soundness of the decision models

presented in the thesis through future experiments.
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