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Abstract

This paper provides additional Monte Carlo information and detailed proofs of the results pre-
sented in Shadat and Orme (2015), “Robust Parametric Tests of Constant Conditional Correlation
in a MGARCH model.”

Introduction

In this paper, to accompany Shadat and Orme (2015), we provide (i) all the tables referred to in the
Monte Carlo section of the main text; (ii) the main results and Propositions; and, (iii) detailed proofs
of all results- which are dealt with only briefly in the main paper. All definitions are provided in Shadat
and Orme (2015) are not reproduced here, except when done so within the context of stating or proving
a Proposition.

Monte Carlo Results

Empirical Significance Levels
We employ AR(1)-CCC-GARCH (1,1) DGP for N =5 as our null model; viz.,

Yie = Yo +@i1yi,t—1+€it7 1= 17 a5
Var (e)|Fi-1) = Hy= E[e}|F1] = hi, & = Htl/2 (w) & & ~ N(0,1),
hit = i+ 04i1€?,t_1 + Birhijg—1, my = (o, i1, By1)
H, = D,I'D,, D, :diag( hit) and
I = {py},ij=1 5 with p; = 1. (1)

Three experiments are considered E1, E2 and E3 and the true parameter vectors employed are given in
Table [AT]

Table [A2) reports the rejection frequencies when the null of the CCC is true under both Gaussian
and non-Gaussian errors. Apart from investigating the robustness of these tests under non-normality,
where the elements of £, are independently and identically distributed as ¢(6) offers some evidence on
the robustness of the procedure to violations of the underlying moment assumptions, since for the choice

of test variables
Eit—1&4,t—1

A/ oY S

8" order moments are required. The results are reported for a nominal significance level of 5%.
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Robustness to Misspecified Univariate Volatility

We consider 12 experiments (Mla-Mlc, M2a-M2c¢, M3a-M3c and M4a-M4c), each within the regression
context to investigate, via Monte Carlo simulation, the impact of violations in the univariate GARCH
specification, but when the true correlation structure for (), is constant with Gaussian error. The condi-
tional mean parameters and the correlation structures remain the same as those previously employed, as
detailed in Table For M1, M2 and M3 the univariate volatility specifications of all five variables are
governed by the GJR, higher order GARCH (i.e., GARCH(2,2)) and the EGARCH models, respectively
whereas for M4 all 5 variables are subject to volatility spillover via an ECCC model. The suffix a, b or
¢ associated with these experiments indicate low, mixed and high correlation structure, respectively, for
r.

Table and Table report the rejection frequencies based on both the 5% empirical and nominal
critical values (with the latter in the parenthesis) and with 2000 replications where the data are generated
with normal errors; i.e., in the former case, and for each test procedure, “size-adjusted” rejection
frequencies are reported, calculated using the empirical critical value that delivers a 5% significance
level for the simulations reported in Table Only Table is reported in the main paper.



Table A2: CCC Models: Empirical Significance Levels against 5% nominal level
AR(1)-CCC-GARCH(1,1) DGP
E1 E2 E3
T=500 T=1000 T=500 T=1000 T=500 T=1000
Gaussian errors

o 1298 852 1607  10.18 1565  10.31
o 408 479 5.02 507 478 5.32
oy 743 654  3.17 416 3.71 4.62
iy 403 461 456 476 3.99 4,52
S 1533 1001 1675 1161  17.81 1177
S:C) 439 470 511 587 4.82 5.65
59 11.84 871  6.57 682  6.81 7.08
SEU 437 461 5.02 561  5.09 5.76
S 9474 1504 2493 1610 2615 16.77
S 640 6.10  7.15 706  6.26 7.03
SH9 1692 1204 9.78 9.40  10.54 9.99
S 5T 595  4.82 509 437 5.16
t(6) errors

0 2090 1180 2725 1940  27.95  20.10
o 310 400  4.80 690  5.75 5.75
iry 1025 770 295 475 345 3.40
o 3.15 430 4.80 6.30  4.70 4.40
5 2630 1685 3210 2470  30.80  23.10
S 400 495 575 730 5.40 6.60
59 1550 1080  8.90 945  7.70 8.40
SEU as 465  4.80 6.15  4.95 5.55
Sx70) 4615 3245 4650  34.65 4655  33.70
S 75 795 715 9.80  17.60 8.80
S 3185 2260 1610 1710 1525  14.95
S 580 745  3.90 7.00  3.95 455

Notes:

1. Parameter values as detailed in Table 2.

2. The first block reports results for Tse’s LM test, the second and third blocks those for CCM and FCM tests,
respectively. Within each block the order is: OPG-FQMLE, ROBUST-FQMLE, OPG-PQMLE, ROBUST-PQMLE.
3. T is the sample size and results are based on 10,000 simulations for Gaussian errors and 2,000 for t(6) errors.
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Power Results

To examine power, we consider three types of MGARCH models with time varying correlations. The
AR(1) conditional mean specification, and parameters, remain as in but now we examine three
alternative specifications for the conditional variance matrix Hy = Var (e¢|F;—1). The first is the DCC-
GARCH(1,1) model where the dynamic correlation matrix, I';, is given as

rr = (Io ‘I’t)_l/2 Uy (I ® ‘I’t)_l/z = diag(V,) "2V, diag(P;) /2,
U, = (1-a-pBT+ad, ¢ +BYa, (2)

where & and B are nonnegative scalar parameters and a + 3 < 1 and I is constant (time invariant)
5 x 5 symmetric positive definite matrix, with ones on the diagonal. Secondly, we consider the following
Varying Correlation (VC) model of Tse and Tsui (2002)

Ft = (1 —a—b)f‘—&-al"t,l—i—b\llt,l, (3)

where a and b are nonnegative scalar parameters, satisfying a +b < 1, and ¥;_; is the 5 x 5 sample
correlation matrix of {Ct_l, e ,Ct_5} and its (i,j)th element is given by:

21:1 Cit—mCit—m |
(an:1 Cit,m>1/2 (anﬂ C?,t—m>1/2

Finally we consider the BEKK model,

wij,t—l =

H, =Cpg+ A;; (8,5715;71) Ap + B%HtleB. (4)

In the following experiments the diagonal BEKK (DBEKK) model is employed where the parameter
matrices Ag and B are 5 X 5 diagonal matrices.

Seven experiments are considered: P1, P2 and P3 follow the DCC DGP , P4 and P5 follow VC
DGP and remaining two, P6 and P7, follow the DBEKK DGP (4)). In all cases, the individual
volatility specification for all variables is retained from earlier size experiment, whilst for the DCC and
VC DGPs the constant I' matrix is set to the previously defined mixed correlation structure (see Table
. The remaining true parameter vectors are given in Table

Table and Table present the size-adjusted power (and nominal) results with 2000 replications
for the above seven experiments, based on a 5% empirical (respectively nominal) significance level and
the data are generated assuming normality. Only Table[A6]is reported in the main paper. As a measure of
the variability of the conditional correlation coefficients, we calculate the range (mazimum - minimum)
of the conditional correlation coefficients in each replicated sample of T' = 1000 observations. In Table
we report, here, the average, mazimum and minimum ranges of the true conditional correlation
coeflicients across the 2000 Monte Carlo samples.
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Table A6: DCC Models I: Empirical Rejection Rates against 5% empirical (nominal) critical value
AR(1)-DCC-GARCH(1,1) DGP

P1 P2 P3

T=500 T—=1000 T=500 T—=1000 T=500 T—=1000
o 1445 2995 60.60  91.45 93.10  99.95
(34.85)  (42.75) (79.30)  (95.00) (97.35)  (99.95)
o’ 1495 27.60 51.00  88.00 85.45  99.70
(15.00)  (27.90) (51.00)  (88.10) (85.50)  (99.70)
il 1390 2485 4400 85.60 7480 9875
(9.80)  (27.60) (37.55)  (83.50) (69.20)  (98.30)
Iy 1365 2770 5040  88.15 84.60  99.60
(12.85)  (26.60) (49.10)  (87.60) (83.45)  (99.60)
SO 1480 24.00 65.60  91.50 9520  99.90
(34.00)  (38.90) (82.45)  (96.40) (98.60)  (100.00)
9 1285 2155 57.15  88.65 91.55  99.70
(13.10)  (24.00) (57.50)  (90.20) (91.60)  (99.75)

S9N 1470 27.50 58.80  92.05 91.10  99.70
(18.45)  (33.10) (63.65)  (94.10) (92.45)  (99.80)

SEU) 1340 23.75 56.65  89.80 9225  99.80
(13.45)  (25.15) (56.65)  (90.55) (92.30)  (99.80)
ST 1745 2915 7345  96.25 98.15  100.00
(50.95)  (52.45) (92.00)  (98.90) (99.85)  (100.00)
S 1565 27.10 63.80  94.75 95.40  100.00
(19.25)  (34.00) (69.80)  (96.05) (96.15)  (100.00)

S 1725 32.30 65.35  95.55 94.70  100.00
(27.50)  (43.90) (76.45)  (97.45) (97.30)  (100.00)

S 1505 25.70 6155  94.05 94.45  100.00

(14.70)  (26.10) (60.95)  (94.05) (94.15)  (100.00)

Notes:

1. Parameter values as detailed in Table 5.

2. T is the sample size and results are based on 2,000 simulations.

3.For each test the first (second) row report rejection rates using empirical (nominal) critical value; i.e., figures in the
first row for ecah test statistic report size-adjusted rejection rates



Table A7: DCC Models II: Empirical Rejection Rates against 5% nominal (empirical) critical value

AR(1)-VC-GARCH(1,1) DGP

DBEKK DGP

P4 P5 P6 P7

T=500 T—1000 T=500 T—=1000 T—=500 T—1000 T=500 T=1000
" 1780 3035 8525  99.05 7420  79.00  89.50  99.90
(38.85)  (43.30) (93.40) (99.55) (81.70) (87.10)  (97.05)  (99.90)
i 1380 2585 7280  97.80 6175 7605  85.10  99.85
(13.80)  (25.95) (72.85) (97.85) (62.15) (76.25) (85.15)  (99.85)
LY 1355 2540 6220 9400  66.10 8550 9400  99.85
(10.20)  (22.55)  (55.10)  (92.90) (64.70) (83.75) (91.25)  (99.90)
LMY 1460 27.00 7220 9745 6620  78.05  86.05  99.85
(13.55)  (26.10)  (70.75) (97.25) (65.50) (77.25) (84.85)  (99.85)
¢ 4395 2190  90.80  99.30 4250 4270  53.95  88.15
(35.05) (37.20) (97.15)  (99.70) (61.00) (61.25) (79.80)  (94.85)
S 1210 19.95 8485 98.70 2435 2720 3670  81.80
(12.25)  (22.05) (85.10)  (99.00) (26.90) (30.25) (37.20) (83.95)

S9© 1590 2640  96.65 9920  55.00 5890 7275  97.50
(19.20)  (31.80) (88.80)  (99.40) (59.25) (64.40) (77.25)  (97.90)

S 1215 2170 8570 98.95 3260 3525  46.60  89.90
(12.15)  (23.25) (85.75) (99.15) (34.50) (37.30) (46.65)  (90.55)
S/ 9115 3125 97.95 10000  56.95  56.80 7245  97.50
(53.75)  (55.45)  (99.65) (100.00) (78.50) (78.80)  (94.15)  (99.50)
S0 1755 2035 9470 99.95 4255 44.40  55.60  95.55
(22.00)  (35.30) (95.85) (100.00) (50.30) (52.50) (61.50)  (97.25)

S 1875 3285 8850  99.70 4530  47.65  69.15  96.50
(30.35)  (43.90) (93.50) (99.85) (55.85) (58.80) (79.40)  (98.25)

S 1610 27.95 8830 99.85 2910  30.70 4170  88.35
(15.90) (28.25) (88.10) (99.85) (29.50) (31.10) (40.40)  (88.50)

Notes:

1. Parameter values as detailed in Table 5.
2. T is the sample size and results are based on 2,000 simulations.

3.For each test the first (second) row report rejection rates using empirical (nominal) critical values; i.e., figures in the

first row for ecah test statistic report size-adjusted rejection rates

10
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Main Results

Tests based on FQMLE

Proposition 1 Suppose Assumptions A and B hold. Then, ¥* = E [uf**(wo)ug* (wo)’] is finite, where
uf* (w) = (M (w)', g5°* (w)’) . Furthermore:

(i) % Zthl u$* (wo) <, N(0,X%), where ¥* = E [uf®* (wo)ui* (wo)'] is finite; and,
(i1) 3 Yoy ui (@)u; (@) = =% = 0,(1), for any & — wo = 0,(1), where uj (w)' = (my(w)', g7 (w)").
Proposition 2 Under the assumptions of Proposition [,
VTinp(&) -5 N (0,V*),
where V* = ASS*AY, and Ay = [I,: —BgJ; '], with Jg = —E [%} , positive definite, By =

-F {W} , and I, is the (g x q) identity matrix.

Proposition 3 Under the Assumptions of Proposition|[6, in the Appendiz
(1) Jx(@0) — J§ = op(1), where

J*( )_i Z/(FA@)IT)Z Z/(ENPLN(EQLT) +l F’ (F_l(X)IT)F 0 (5)
TW =T | (IWPEy®4)Z 2Ly (T '@T YLy | T 7T 0 0

and positive definite.

(i) Bi(@) — Bg = 0,(1), where, in the case of M (&), Bi(w) can be expressed in (vertically-stacked)
“block-row” form, as follows

/

By (w) = [Biir W), B31r(w)', Bior (@)’ Biir @)y s By n—17()'s Bynr(@)'] (6)
and the Bj;r(w) are ordered by (i,j) according to s% with

N 1|1
BijT(w) = T i,oin,/L'j(S; ® Zj + 6;- & Zz'), R;](egj X LT) . (7)

Tests based on PQMLE

Proposition 4 Suppose Assumptions A and B, with B1 and B2, appropriately strengthened for the par-
ticular choice of ri; ¢, hold. Then, ¥ = E [ug®(wo)ug®(wo)'] is finite, where ug®(w)" = (m°(w)’, g7°(0)) .
Furthermore:

(i) VTuF (w) 4, N(0,X), where X = F [uf®(wo)uf®(wo)'] is finite; and,
(it) + Zthl w(@)ue(0) — X = 0p(1), for any & — wo = 0p(1), where uy(w) = (Mmy(w)’, g:(6)) .
Proposition 5 Under the assumptions of Proposition[f), and provided X is positive definite,

VTimr(@) -5 N (0,V)

where V = AgSAY, Ao = [T, ~BoJg '], with Jo = —B |2500] | By = —B [ 2500 | and 1, is the

(g % q) identity matriz.

12



Appendix: Assumptions and Proofs

Write wl,; = @i (L)yir + diype and hyy = ayo + Aj(L)e?, + Bi(L)hiyy = ay + Bi(L)hiy, where a;; =
o+ Ai(L)e, = aio+ > 14 Oéikfitfh As employed, for example, in Ling and McAleer (2003), Berkes,
Horvéth and Kokoszka (2003) and Halunga and Orme (2009), the following assumptions ensure the
identifiability, stationarity and ergodicity of the above process. A3(i) is a stationarity assumption
imposed over the whole parameter space. Notice that, with A3(ii), this implies that roots of 1—B; (z) =0
lie outside the unit circle. Thus, in addition to A3(ii) which restricts the parameter space so that zero
values in 7, are ruled out, Z?Zl B;; < 1. These restrictions are also imposed on © by Berkes, Horvadth and
Kokoszka (2003) and are employed here because they afford uniform convergence of second derivatives
of the log-likelihood over O, removing the need for third derivatives, thus greatly simplifying the algebra
required to justify the substantive contribution.

Assumptions A

A1l The parameter space, O, is compact and wq lies in the interior of ©.

A2 The elements of d’, are strictly stationary and ergodic and 1 — ¢, (L) = 1 — ;1L — ¢;15 L% — ... —
Gi1,LP = 0, ¢;1, # 0, has all roots lying outside the unit circle, for all i, with p, the lag length,

known.

A3 (i) All the roots of 1 — A;(z) — B; (z) = 0 lie outside the unit circle.
(ii) The parameter space is constrained such that 0 < A < min;; {n;} < max;;{n;} < A,
l=1,...,p+qg+ 1, where XA and A are independent of w.
(iii) The polynomials A;(z) and 1 — B;(z) are coprimes.

Unless stated otherwise, all definitions are as in the main text; K will denote a generic positive
finite constant, independent of w, which is employed to bound certain expressions but whose value
might change from line to line in the proofs as required; and, throughout, a superscript of co signifies
that h;; has been replaced by h{Y where necessary. The Euclidean norm of a matrix A is denoted
Al = tr(A'A).

The derivations below will exploit the properties of h;; and hSy, as discussed in Halunga and Orme
(2009, Appendix), and it will be useful to note here that:

Summary 1 1. by = Z?Zo Yyaiz—1 > A > 0 and hy > oyo + Yyaie— for all 1 > 1;hy =
o gaii > X >0 and hiy > a4+ Pyaieg for alll=1,...t —1.

hoe hit| = oo < K o ] d h;)to - hit _ 0o ’(/)ilai,tfl < R o ]
2. B — hil = 222 Yot < K32, Taiy an TRy | Zl:tm SKY T
for some s € (0,1), using x/ (1 +x) < x° for some s € (0,1) and all x > 0.
VR — /Ry hey — hy .
3.0 < hzt/h'?to < \/hit/h?to < 17 and 0 < ltT’ot < Ah;}to = ”T.On < 1. Szmzlm’ly,
it it
‘/hffhﬁ—\/h“hjt h?fhﬁ*hithjt
0< NG < T <1

4. Since h?to = hztﬂ-(hfto—hlt), h?toh?? = hzth]t+(h?§ —hlt)(h%—hﬁ)—f—h”(hﬁ—hjt)—‘rh]t(hlof _hit)a
so that
hiy h3y — hithje

(ool Ne o)
hg; hjt

hit
hgy

h;
AR + h—iﬁAhfg < AR + ARSY + ARSP
gt

= ARG AR +

13
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and thus

VIR hi h3y
< 2|Ah§}°\+|Ahj§
< 2{|ARF|+ |AR|}.

Assumptions B

Bl E \€0it|6 < oo for all 4,t.

B2 E [Hdit\ﬂ < o0, for all 4.

B3 Zle E sup,, |5itsjt|l Hrfjot — rij’tH = O(1), at most, for all ,j,¢t and [ =0, 1.

B4 Esup,, |eiejel [|rs5e]|” < oo for all 4,j,t, and I = 0,1,2.

o 0o
Orije
ow

!
B5 Esup,, |eiteje H

< 00, at most, for all 7,j,¢t and [ = 0, 1.

Remark 1 (i) A1, A2, Bl and B2 imply that Esup,, |€it|6 < oo uniformly in i,t, where €;; = €git —
w!, (0; — ¢40) » and also that E |y|° < oo for alli,t, so that E {Hditnﬂ < 00, for alli,t. (ii) Extensions
of Halunga and Orme (2009, Proposition 4) imply that B3-B5 also hold with z replacing 7. (i)
Assumptions A, B1 and B2 are sufficient to establish the consistency and asymptotic normality of both
the FQMLE and PQMLE, and the consistency of variance estimators based on an OPG formulation.
() Depending on the choice of rij:, B1 and B2 may need strengthening, in view of the demands of
B/, in order to establish both the asymptotic normality of our test indicators and the consistency of the

various asymptotic variance estimators employed in constructing the x? test statistics.

Case 1 Forrij; = %, B8-B5 hold provided B1 and B2 are replaced by
it—1 Git—1

B1* E |eou|® < oo for all i,t.

B2* E [Hdit\ﬂ < oo for alli,t.

Proof. Firstly, for B3, with r;; ; = ——t=L501=1__ 5 gcalar, we have
Y y i, /ri_1 /7h_j,t—1’ 3
T T
o0
E Esup |eqej + 1 |Tij,t - Tz'j,t| = E Esup leireje + 1] i t—16j4-1]
t=1 ¢ =1 Y

X

1 1
VEZi-ivhGi Vhie-iv/hie

T
= Z Esup lejeje + 1] |ei,i—165,0-1]
t=1 w

1
Vhii-1v/hji-1
Vi~ R

T

oAt ZEsgp leiteje + 1| |eip—1€5,0—1] ||Ah§"’;71| + ’AhﬁﬂH .

t=1

X

IN
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Now |AhSS | < K'Y 72, lai, ,_;, for any s € (0,1), so that

T

ZEsup|snsﬁ+1||e” 1€5-1] |ARSS_ |
t=1

IN

T
Z sup|57t6]f+1\|6u 185,61 Z Tag, 1
1=t—1

oY =0()

M’ﬂ Il

K

IA
i

because by Holder’s Inequality and, then, Cauchy-Schwartz (twice),

IN

2s
Esup Eit€jtEit—1E5,t—1€5 11 |
w

IN

2(1+ 2(1+
K\/Esup|€itajt| ( S)Esup|6i7t_16j,t_1| (1+s) < 0
w w

since Esup,, e:|** ™ < oo, for any s € (0,1), and this is satisfied by Assumptions B1 and B2. For
B4, first, it is clear that Esup,, }7‘

Second,

o t’ < A 2Esup, |eis1654-1]° < oo by Cauchy-Schwartz and B1.

Esup |eieejersy

2 2
ij, t| <A TEsuplepgjigii—1€j,0—1|0 < 00
w

ore? 1
by Cauchy-Schwartz, B1* and B2*. For B5, note that, —2% = (i1 (fif‘j_l + 2(?312;’3_1) , 1 5

or 0 o
oo >
whilst 85;: =0, for k #1, k # j and ang/,t = (/. Thus, for example,
T _
Esup |ejie i ‘ 819]»7 <K {ESUP leitejeeje—1wi—1|| + E'sup |’5it5jt5j,t15i,tlzgot1H} <00
w 2 w w

since both Esup,, ||eie i€ i—1wi—1|| < oo and Esup, H&itaﬁai,t,laj,t,lzﬁ_lH < o0, by Cauchy-
Schwartz, B1 and B2, and Remark ii). For example, note that

E sup ||5it5jt5i,t—l5j,t—1zg<z_1H < \/E sup |5it5jt|2 E'sup ||€i,t—1€j,t—12ﬁ_1 ||2
w w w

and Fsup, |5itajt|2 < o0 by Cauchy-Schwartz and Bl and B2. Also, Esup,, Hfi,t—lfj,t—lzﬁi_J‘Z < 00
since the following moments are bounded by Cauchy-Schwartz and Assumptions B1, B2 (noting the

expressions for ||z57] and ||c5?|| given by Halanga and Orme (2008, A5 and A8, respectively):

2
2 2
& 4= 151 Jt— kH Esupw H J,t— 151 Jt— l‘ andEsupw ‘

2 2s
() ESpr‘ zt 1€]t 1€zt k‘gzt IH<\/Esupw’

1/(1+s) s/(1+4s)
(E sup,, |€i,t71|4(1+s)) (E sup,, ||5i)t,k\|4(1+s)) < 00, by Holder’s inequality.

. 1/(1+s) o1 s/(1+s)
<E sup |€it5jt€i,t—1€j,t—1\ +s> (E sup ‘5i,t—1—l| ( +s))
w w

2 2s 2
Eit— 15” kH

NN 2
(ii) Similarly, Esup,, ‘ 5?7t_15?7t_1wi,t,1,kwgyt_l_lH < \/E sup,, Hef’tﬂwm,l,kﬂ Esup, sz?.’ B

) 9 6\ 2/3 6\ 1/3 7
and E'sup, ||6i7t71wi7t,1,k|| < (Esupw l€it—1] ) (Esupw llws,e—1—xll ) < o0, by Holder’s
inequality.

We first establish some preliminary results that will be of use later.

Lemma 1 Let {mt}thl be a sample of stationary ergodic random variables, such that the random vector
functions wi(w) = w(zy;w) and z(w) = z(x;w), t = 1,...,T, satisfy ﬁ Zthl sup,, |lwi(w) — z(w)|| =
op(1).

15
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(i) Then

bup

Zwt TZzt(w)

T
Sup || 7 Zwt(w)wt(w)' - % Z ze(w)ze(w)'|| = 0p(1).
Proof. (i) First,
sup L XT: wi(w) — L XT: ze(w)|| = sup L XT: (wi(w) — z¢(w))
w | VT t=1 Ti= @ TS
T
< 7;Sgp\\wt( ) =z (W)l
= op(1)
(ii) Second, and similarly,
1 & N i ) e
Sgp T Zwt(w)wt(w) -7 Z z(w)zi(w) = sgp T Z (wi(w)wy(w)" — z¢(w) 2 (w) )H
t=1 t=1 t=1
< %Z sup [Jwe (w)wg(w)" — z¢(w)ze (W),
t=1 ¢

then it is sufficient to show that & Zt 1 sup,, [lwi(w)wi(w) — 2z (w)ze(w)'|| = 0p(1), as follows.
Because ﬁ thl sup,, |lw(w) — zt( )| = 0p(1), it follows that Zf 1 sup,, |Jwe(w) — (W) = op(1),

since

T T 2
1
T3 lne) — (el <ﬁ;sgp||wt<w> - zt<w>||>
= op(1).
Finally, since |wz’'|| = ||zw'|| = ||w|| ||z|| and
lww' — 2| = |l(w—2)w’ +w(w = 2)" = (w = 2)(w - 2)'|

2
2w = 2| [Jwl| + fw — 2],

IN

we can write, by the preceding result, that

% > sup [lwi(w)wy (@) = ze(w)ze(w)'[| < 2% Zsup [wi(w) = ze(W)] Jwe (W)
= w

IN
’ﬂ\*‘
z
ol
g
&
|
x
=
c
ol
&
+
S
=
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Then by Cauchy-Schwartz

’ﬂ

T T T
1 1
= Z sup [|wy(w) — ze(w) [ sup [lw (W)l < | = D " sup |lwi(w) — z(w)| T > " sup [Jwy(w)
=1 ¥ w =1 ¥ t=1 ¢
= op(1).

since - Zthl sup,, ||lwe(w) — z(W)|* = op(1) and + Zthl sup,, [Jwy (w)]|* = O,(1), by Markov’s Inequal-
ity since E sup,, |w(w)]® < co. m

Remark 2 Under the conditions of Lemma |1, Esup,, |w(z;w)||> < oo so that E [wy(we)ws(wo)'] is
ﬁnite Then, by a Uniform Law of Large Numbers and the triangle inequality, for any & — wo = 0p(1),
T Zt 12 (@)z (W) — E[wt(wo)wt(wo)’] = 0,(1). In fact, the method proof also reveals that for any
W — wo = 0p(1), and provided both f Zt 1w (@) — z(@)|| = 0p(1) and E sup,, |w(z;w)||* < oo, then

+ Y 2(@)2(@) — E fwi(wo)wi(wo)'] = 0p(1).
Proposition 6 Under Assumptions A and B1, B2:
(i) Esup, [lg7~ (w)]|* < oo;
s 1 T 00* *
(i) 77 D=1 Sup, |97 (W) — g7 (W) = 0p(1).
In addition, and adding B3 and Bj:
(iii) Esup,, [mg®(w)]* < oo;
. 1 T oo
(iv) 77 > i1 Sup,, [mic (w) — my(w)|| = 0p(1).

Proof.
(i) We can write the likelihood function, I$°*(w) as:

N
1% (w)z—ilnm—ngnh;’— Zgﬂ 5%,
j=1

where 5% = Z;qul pme, i = 1,...,N with p"™ = p™i Then, exploiting 8;910? = —fF - %thosz,
Sagoéi;:: Pl %CE, gpp,:; = —pkpim — pim pik and g :: = —pkeoor — pime* we have the following
To) = e+ 5 (G — DA, 0
i )

and it is sufficient to show that the result holds for each of the above.
Firstly, and since h3® > X > 0 we have [e5°%] < A\™* 22:1 p'™eme, and since |pim| < 00, we also have

by Minkowski’s Inequality for any s > 0,

N 1/s7°
Esup e < K lz {Esup|5mt|5} 1 < 00,

m=1

17



so that by Assumptions B1 and B2, Esup,, [7* b < .
2

8ZOO*
For Esup,, %T(M) < 00, we need both Esup,, ||f2e52*||> < 0o and Esup,, [|(¢0e50* — 1) 252 |° <
o0o. For the former
Esup||fFe || \/E sup ||wzt|| Esup leso* 2 < 00,

by Cauchy-Schwartz and Assumptions B1 and B2. For the latter, Esup,, ||25°]|> < oo, as shown by
Halunga and Orme (2009, Proposition 4a), and from Remark I(u

N
Esup [[(Fe 21" < Ky Esuplesem |25 < oo,
w m=1 w

since the following moments are bounded by Cauchy-Schwartz and Assumptions B1, B2 (similar to (i)
and (ii) in the proof of Case [1)):

1/(1+s) s/(1+4s)
2(1+ 2(1+
22t ety < (Bsupy leuen®0) Y (Bsup, fepemienm )T <
|4(1+s)

(a) Esup, |e

00, by Holder’s Inequahty, since E'sup,, |

< oo, for any s € (0,1);

(b) Esup, |

2 2 2
Ezzt&:?ntwiyt*kwg,tle < \/Esupw lefwse—r|” Esup,, [led,wie—il"s Esup, [lefwie—r||” <

6\ 2/3 6\ 1/3
(E sup,, |€it] ) (Esupw lws i—k]l ) < 00.

Finally, and trivially, Esup, ’Ett €5y —p”| < 00, since E'sup, |5¢t €5y 7 < 0o, by Cauchy-

Schwartz. Thus, Esup,, [|¢f°*(w)|* < oc.
(ii) From (@),

L

T
1 * *
ﬁ E sup || firen™ — fieh|l
_ w

azoo* (W) 9w
z 801

stupu Cres — 1) 2% — (Cucly — 1) zu
= R1T+R2Ta

and, by Markov’s Inequality, it is sufficient to show that E [R;r] = o(1), j = 1, 2. Note that

N N
Wit oox _ Wit «» _ Wit Zpim Emt Wi Zpim Emt
[e.e] it . it - oo o] .
\ hit hit hit m=1 hmt hit m=1 Vhme
N N
=y MmN i Wt
o o0 .
m=1 hit h‘mt m=1 Bt/
N
> 1 1
= P WitEmt - )
= sy A/ hosy hit v/ hong

so that, and since h;; > A > 0, and ’pim‘ < 00,

_ M-
HMH liMZ

E[Rir] < K Esup ||p" wireme {|ARE] + AR 1Y]

IN

HMZ 3=

{Esup s S+ B sup e 135 .

Now, because we can write AhSY < K> 2, 7! a;,_y, for some s € (0,1), and 0 < 7 < 1, independent of

18



w, we have (for example)

WitEmt E 7_ (1

T
\/T ZEsup lwireme ARSY || < K ZEsup
t=1

But, by Cauchy-Schwartz, Esup, HwitEmtszz,Stka < \/E sup,, Hwitgmt||2Esupw |5i,t7k|45 < oo, since
Esup, ||w¢t5mt||2 < 00, by another application of Cauchy-Schwartz and B1, B2. Therefore,

. <K1Tool T
Elrir) <K 2 Y3 - R 300

t=1 =t

3\

Turning to Ror, now, we have

(Cred™ =Dz = (Cuei =Dz = (Gre™ —1) (2 —2i) = (e — Cuein) (27 — cir)

+(Ciren™ — Cucin) 25t s

so that

N
00 _00* oo * im Eit Emt o)
[(Caex™ =12y — (Cuely — Dzl < H (Z p — 1| (27 — zit)

m=1
N
Vhiic Bmi — /B3 /%,
+ P EitEmt ! m (Z,L 72,“5)
mz—l { ey /e Rig VRt !
Vhit

Taking each of the above in turn, Zf\]n N S ZN P S fmt. 5 ), and
= Vi m=1 mi )

im it mt I [ — -1
P <\/@th p,m)’ < K |egemt + 1|, K =max (1,A7"), so that

N
<K Y lewsme + 1] 127 — zull = O(1),
m=1

Eit Emt 1 00 ]
hoe /he, (25 — zit)
m= 1 Vit V i'm

as noted in Remark ii), above. The same is true of the second term since

{Fﬁ W@}(

For the third term, we can write

€€ {\ﬁm_\/@vh?ﬁt}
itemt \/@ ﬁmt\/im

— zi) || < K |eiemel |27 — 2t -

< K ‘gztgmt (|Ah ‘ + |Ah’ )‘ HZ ||

By Cauchy-Schwartz, Esup,, |eiiemiARST| |25 \/E sup,, |ARS > Esup,, [eqem]” [123°]|* and, from

2
the part (i), Esup,, |eieme|” [|25°]|* < oco. Also, since |ALP|* < K ST af’tfl , it also follows that
Esup, |A[* = O(7%). Thus, E[Ror] < K= Y1, 308, 72 = K= 30, O(7) = o(1),

19



Finally, from @ ,

T T
AN (w) Ol (w) 1 o oor e
g w Opi; 5/’@7’ ‘ - 7thzlsgp|€” it T St
T
= == D sup [y, veeh (G - G|
t=1 *

and we consider, simply,

1 & 1 &
—= D sup ¢ — Culye| = —= ) sup
\/T; o t Sgt tS5t \/T; o

i — R,
itemt ’
VR A PV R ot

which is 0,(1), by previous arguments.
(i) Esup,, [|[ms(w)||* < oo provided Esup, |}(§f§<§f - pij)rfﬁt}ﬁ < o0, for 4,7, which it is by B4.
1
(iv) First define Amg¥,(w) = mgs (w) — mij(w). We show that i Zt | Esup, ||Am” (W) = o(1),
and the result follows by Markov’s inequality. Now,

Amfﬁt(w) = (Cftoc(;? - pij)ré?;,t - (Citht - Pz‘j)rij,t
(G C5T = pig) (15 — i) — (S S5 = CarCie) (755 — mige) + (S C5e — CarCe) 7554

= (& Cjt — pij) (T'ij,t - Tij,t) — Eit&jt <\/h§’t"h§§ - \/hithjt> (Tij,t - Tij,t)

1 1
+€it€jt — = — Tists
! (\/hn h; \/hithjt> »t

so that
HAm” t )H < K |€Zt€jt + 1‘ ||T’Lj t rith + |5it€jt| ||r7(;>joat - Tij,t”
+2eiesil {|ARE |+ |ARZ|} ||ro5l
< K {leagje + 1 ||ris, — rijel| + lewese] {IART |+ | AR |} |7 ]|} -
By B3, Y°F_, Esup, |exnej + 1 |r55¢ = 7ij,¢|| = O(1). For the second term involving |e;eej¢| |ARSY] |75

and since |ARSY| < KZfotTlaft_l, for some s € (0,1), with a;;—; = aio + Ai(L)e},_;, we need to con-

sider terms like ‘ Elteﬁ{:‘z el for any s € (0,1) . In particular, by Cauchy-Schwartz,

©j,t

2 4s

E sup Hsitsjtsfj,lrfﬁtﬂ < \/Esup n%t% t— l’ Esup Hr%ot‘ﬁ < 00,
w w w

because Bsup. ||Tfft||2 < 00, by B4, and by Holder’s Inequality and then Cauchy-Schwartz
2(1 1/(1+s) Lis s/(1+s)

By B1 and B2, Esup,, |5it|4(1+5) < oo for any s > 0 and all 4,¢, so that Fsup,
implies that

2 2 _4s i
sitajt5i7t_l‘ < oo. This

ZEsup leiteje| |ARGY | ||7"lj tH < KZO =0(1),

t=1
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since 0 < 7 < 1. Thus, \th 1Esupw||Am”t w)|| =o(1). m

Proof of Proposition (1] .: 3* is finite by Proposition |§|(1) and (iii). As in Ling and McAleer (2003,
Lemma 5.2), (i) follows from a Martingale Central Limit Theorem. Part (ii), follows from Proposition
and Remark 21l

Proof of Propositionlzl: The test indicator under consideration is mp (©) = T—1 Zle my (@) . Firstly,
by Proposition VTimg (@) = VT (&) +0,(1), so we work with v/Tm$® (&) whose limit distribution
can be established more easily. Following Ling and McAleer (2003), as adapted by Halunga and Orme
(2009), it is straightforward to show that firstly, & —wo = 0,(1) and, secondly, that E sup,, H ) <

loc*

c%.) Bw

0. Thus a Uniform of Large Numbers yields 771 37 P @ Jg = 0p(1), for all @ — wy = 0,(1),

t=1 Owdw’

o 1
and J; = —E {a% (w)} is finite. Therefore, by PropositionH Nia Zthl 7% (@) = o0p(1), which
w=wq

Oww’

yields by a mean value expansion,

T
1 § o0k 1 E _ _
VT Py 9 o)+ 17 3w8w (w wo) = op(1),

921" (w
Bwaw’

where & = wg + 0,(1) signifies the “usual” mean value. Because E sup,, ‘

H < 00, a the Uniform

Law of Large Numbers on 7! ZT aalwau(f) yields VT (&—wg) = J(T_lﬁ Zt:l 97°* (wo)~0p (1), which

is O,(1). Note that Jg is shown to be positive definite in the proof of Proposition |3| below and, since we

1
exploit T ZtT—1 goo*(d)) = 0,(1) here, rather than 7T Zthl g7 () = 0, we do not explicitly require

T 321" ( -1
Z dwdw’ - Zt 1 dew

Theorem 5.1) or Halunga and Orme (2009, Proposition 7b, Theorem 1). Next, if E'sup,

(1); cf., Ling and McAleer (2003, Lemma 5.4b,

sup,,

8mt (w)

H<oo

omg my° (w .
then w LN —-B;=FE {3 5w(, 0)} , for any sequence wy = wg + 0,(1). Thus taking a mean value
w’

expansion of M (@) about wy, and ignoring asymptotically negligible terms, yields

VTG (@) = \Fm%o(wo)—BS\/T(dz—wo)—i—op(l)

Ap— Zu (wo) + 0p(1),

and, from Proposition VTing (@) % N(0,V*). Tt just remains to show that E sup,, H angz)(w) H < 00,
for which it is sufficient to consider Esup, H% , k=1,..,N, and Esup, ‘ MH Since
en o Lo o O — piy) o Lo o) o
pi; = 1 and 80: =—fr - igffzit, 5—9j =—(Hlfe+ igffzit , © # j. Furthermore,

002 - O(CSCC — p.
W—-QCZ"( T n>an o QST Zpia) _ g mits 2GS ) g gy

00, 8le 00,
8(<it Cjt - pij)

k #1, k # j, and = 0, for any other (k,m) # (i,7) . Hence (for general choice of r{?,),

8/ka
we obtain
61797; = _CJIL 7’ij,ték'i ( + Clt Zit /) - Cit T'ijﬂf(skj ( _|_ Cjt o /)
ors?,
+ (¢ Gt — Py L (10)
( t St j) 89;6
omss,(w) . . e,
8]7;’ = eyt (¢ Cjt — Pij) 8;) . (1n)
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Thus

H 579; < {Ejtwltll HTZJ t” + |5jt€zt + 1| (”T'LJ tH (szt || + HZ H) H )} ’
omss,(w) _ o O
5] < efimonern (9D}

The result follows from previous results and B4 and B5. For example, E sup,, ||€j;wi| Hr;’]"t || is bounded
by Cauchy-Schwartz and B1, B2 and B4; FE sup, \57t61t| lzs2 ] HT , 1 =0,1, is bounded by Cauchy-
Schwartz, B4 and Remark |1} I(u .

Proof of Proposition

(i) Define z° = diag(z5’), the (N x N (K + K*)) block diagonal matrix with 25, (1 x K + K*),
forming the diagonal blocks, and f° = diag (f'), (N x N (K + K*)), constructed in the same way.
Note that if X = diag(z;), (N x N), is a diagonal matrix with = {x;}, (N x 1), then vec(X) = Enx
and EnX = (X ®Iy)En = (IN ® X) En, whilst VIV = dvec(I')/0p’ = Ly. From the definitions
of Ex and Ly it is easily verified that further general properties of Ey and Ly are: ENEn = In,
LyLy = QI%N(Nfl) and EfyLy = 0, so that (En,Ly) has full rank of %N(N + 1).Furthermore,
EN(A®B)Ey = EN (B A)Ey = A® B, and Ey\ (A® B) Ly = E) (B® A) Ly for any (N x N)
matrices A and B, whilst Fjy (a®b) = Ef (b®a) = a ® b, for any (N x 1) vectors a and b, and
(¢/ ®IN)ENx = (IN ®d’) Ey. Using these results, J§ = —FE {E [% .7-}_1]} can also obtained

by direct differentiation of the scores and @ which can themselves can be expressed as

1‘/879() = §Zt/(€t O =)+ e
1 o0 — o0
= ) zg° (( 1Cf GCf) LN)JFft T ICt
1
= (BN e Iy + In @ TH)(GF @ () = 2uv) + fE7 T
1
= LBPGE 0 CF) - 2uw) + FITTICE
and
taT = VeCl( Ey /—F 1)
1
= §L§Vvec (e77%er* —T71)
1
= §L§V (TP @I vec (¢°¢ - T).
Now,
dvec (Co¢ A @ ¢ oo ooy 9CE°
(Mit) = %ﬂct ® In +In ® ) i
o¢ye 1 0t dvec D1
= DT Iy) 2
o0 t ae' eIy =g
- e eI Baer
exploiting (;° = D 'e; = vec (D 'e) = (e} ® Iy)vec D', But, ‘9"“67?,7071 = (D'
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D?oq)avecD?“ — _%(Dgofl ® In)ENz. Thus, since E [In ® (;°|Fi—1] =0,

wW=wo

O vec (Cfo fOI)

E .7: —
901 | t 1]
w=wqo

E[(F@IN+1In () (¢ @ In) EnzC|Fi]

w=wqo

E[(¢P¢ @I+ In ® () Enz®|Fio]

w=wqo

[(F@IN“FIN@F)ENZ?O}

NN~ N

w=wq

Exploiting this and since E [(7°|F-1],_,, =0, E [T ©¢°) — Llet_l}w:wg = 0 we have

[3212’0*(000)

1 (o] oo o0 — o0
aeael 7§ [Zt /EEVP(F®IN+IN ®F)ENZt ]UJ:WD - [ft /F 1ft }UJ:UJO

|-7:t—1:|

1
-3 [ By ' @In+In@T YT Iy+In® F)ENz,?O]w:wO — [T ]

w=wqo

1

= - [ (ENEn + Ejy (T7'®T) I | et £ e
1 1 poo

= = Tz, — [T ),

where the last line follows because E\Ey + Ejy (T 7' @T) Ex =T 4.

co*
Similarly, differentiating altT(OJ)
0

9219 () 1 B _ dvec (¢;° !
1
= —;[Iv(ver ' 4T o Iv) Bnzyl),
1
= —1[ ?VPENZ?O]UJ:UJD7

and trivially, since VIV = dvec(T")/0p’ = Ly,

9?1 1
[ ] =t e

Substituting into the above expression for Jj yields,

J = 1E{l 2 0 ENEy+Ey (T7'@T) Ey E\PLy 1 l 230 0 ]}
4 O I%N(N—l) L/NPEN 2L3V (Fil ® Fil) LN O I%N(N—l) wewo
| T 0

0 0
w=wqo
1 25! 0 . ra . ra 280 0
= 4E{ B I [(EN7LN)/(EN’LN)} l 6 I ]}
IN(N-1) IN(N-1) w=wo
+E too/rflftoo 0
0 0 ’
w=wqo

where B = %(Fl/z®F—1/2+F—1/2®F1/2)EN, Ly = V2(I7Y2@T71/2)Ly. Tt follows that (E%, Ly)
has full rank. To see this, consider the solution to (E%, L)z = 0, for any (3N(N + 1) x 1) vector z.
This can be expressed as Exz1 + Lize = 0, if and only if %(FUQ ® TV/2)EX 21 + Lyas = 0, which
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implies that %E}V(lﬂ/2 @ TV EYx; =0, since Ef Ly = 0. But

%E}V(Flﬂ @ TYHEL = %E}V T®In+Iy®T)Ey =T oIy = Iy,

which implies 1 = 0. But if 21 = 0, then z3 = 0, since Ly has full rank (recall L'y Ly = 211y (y_1))-
Therefore (E%, L% ) has full rank, [(E]*V,Ljv)/ (E}‘V,Ljv)] is positive definite and, thus, Jj is positive
definite (without requiring the condition imposed by Ling and McAleer (2003) that I' 4 — I is positive
semi—deﬁniteﬂ) .

Note that, since By (I7'® Iy) Ly = By (In ®T7') Ly and ENEy + Efy ([7'®@T) Exy = T, we

can also write

E;VEN+E;V (F71®F) En E;VPLN
Ly PEy 2Ly (T @) Ly

. T'a 2E§V (F71®IN) Ly
| 2Ly (IneT Y Ey 2Ly (D'@D )Ly |’

From J§ we obtain J3(w) with h; replacing hY, w replacing wo and %Zle replacing “expecta-
tion”, throughout, and noting that Ly PEx Y|,z = LNPEyx(INn®i})Z = (INyPEN ® U})Z,
S 2 Taz = Z (Ca®Ir) Z and Y, i~ f, = F' (7' ® I) F. Alternatively, note that J3(w)

can also be expressed as

11 & o0/ 0 o 0
Jr(w) = 4T;{[ZB Iy [(EE,LE)%E}Q,LE)][ZS I;N(N1)]}
L~ | ot o
+T; ; Oft 0]
- pw@iQyemw £ | T B0
Z 0

where Q% = (EX,Ly) and W = . This follows from the general result that if

0 Iinnw-1)®@tr
wy = diag(wl;), (N x Nq), with w;; being (¢ x 1), whilst W = diag(W;) where W;, (T x ¢), has rows
w},, then Zthl w Awy = W (A® Ir) W, for any (N x N) matrix A. Then Ji(w) is positive definite
provided Z has full rank of N(K + K*).

The above results concur with the calculations given by Nakatani and Teréisvirta (2009, p.151), but

allowing for regression parameters, ¢,. These imply that, with VD;° = avf;@??o,
VD (2 (D @ DY) VD ((T1D ! @ Iy)
wo- gt (H*7'@T) + (Do H '))VD + (In @ 71D 1)) VIV
N(T'Dr eI
VI @ilN) VI (' @D~ 1) VI
i + (In @ T71D 1)) VD _
Lp| T
0 0
L w=wq
By the properties of Ey
oo/ 1 oo 00 1 oo oo 1 o0 (o)
VDt :iENDt 2y :i(Dt ®IN)ENZt ZE(IN(X)Dt )ENZt R

IThe redundancy of this condition on I' 4 — Iy may arise from an error in the expression for the expected hessian gven
by Ling and McAleer (2003, p.289). Specifically, the error arsises from writing (9 vec(I')/8p") (71 @ I'~1) 9 vec(I') /0p'as
P'P where, here, P = (In ® T~1)dvec(T")/0p".
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so that

VDE (2(DF @ DFY) + (HF o) + (Do HX™)) VDR
1

= 34 X' EN (D @ In) (D' @ D7) (Iy ® Di®) Enz®
i 2 Ey (D @ Iy) (H ' @) (Dy* @ Iy) Enz®
—&-iz;’O’Eﬁv (In® D°°) (T®H>X ") (Iy ® D{°) Enz®
- %zt 'ENEnz + EN (T o) By + Y et By
= %zt "{ENEn +EyN (D' @T) Ex}a®
= %zt Taz®,
and
VI ((C'DFE ' @ In) + (In@T7'DE 1)) VD = %LQ\, (T'DP ' @ In) (D° @ In) Enz®
5y (I @ T DY) (Iy © D°) By
= %L;VPENz,?O,

and, clearly, V[ (I7' @ ') VI" = Ly (I7' @' ') Ly.
To establish consistency, consider the following partitions of J%(w). Firstly, from 1 1 T tT 12’ Taz +

% Zthl fIT~1f, we have the following sub-partitions

T T
, 1 1
JeiejT( w) = (523 +pt sz TZZitZ§t+PJTZfith{t-
t=1 t=1

,p\»—

Similarly
* 1 ik ik 1 a /
inj,akT(w) = 5 (5Jkp + 5"kp] ) T szt'
t=1
Clearly, by consistency of p, Ly (I™' ® F_l) Ly — LYy (f‘_l ® f‘l) Ly = op(1). For the remaining
partitions of J7(w), define ¢f5, = (1, £, J@}f',zgf’,z;?f’)l, for any pair ¢ > j, and correspondingly
Qijt = (1,fi’t,fj’-t, Loy jt) . Then it is immediate from the results of, e.g., Halunga and Orme (2009,

Proposition 4a and c¢) that (i) E sup,, quj"tH2 < oo; and, (ii) ﬁ Zle sup,, qu]"t — Gijue|| = 0p(1). The

first result ensures that
1z
Z (@500570) gy — B [0544504] —, = 0 (1)-
t:l

Combined with (ii), and Proposition [I} we get

= o0,(1).

1 T T
LIRS WIS
t=1 t:l

sup
w

This, together with the triangle inequality is sufficient to ensure that J3 () — J§ = o0,(1).

.. % Omg® (wo) . . . . 8m?f,t(w0)
(i) By = —F {E {T ]-"t_l} } , is obtained by stacking the matrices E'< E T'ft_l .
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First, f5°, 257, ri5y and 3§J/t and 2 ’;t are all 7;_; measurable. Second, F [Co;t \Fi1] =1, E [C5fonlFia] =

E[C55 /651 Fi—1] = 0, and E [¢55,¢05:1 Fi—1] = poij- Then, from the derivatives ( . ., we obtain
am1 ( 0) 1 [e'e] o0 Y
E {E {(Z);’V:tl} } = —§E [pij’rij,t (ej ® 25 + € ® 2 ) ] ,

oms?, (wo) 0
L T

Based on these expressions, the partitions of B.(w) which correspond to the above partitions of B are

* 1
Bjir(w) = 7 Z {2pijrij7t (e; ® z;»t +e® z;t) , rij,te;]}
=1
1
= [ pijRi; (€ © Zj + e; @ Z;), Rij(e; ® LT):| .

Finally, to establish consistency of B} (w), define ¢¥, = (1,230’,7“%0;) for any pair ¢ > j, and corre-
spondingly q;; ¢+ = (1, 2l i, t) Then it is immediate from B4 and Remarku that:(i) E sup,, Hqu t||

oo; and, (ii) ﬁ thl sup,, Hqij)t q”,tH = 0p(1). The result then follows by Lemmal

Remark 3 For the Robust FQMLE Tse’s test we can also obtain DX(w), the consistent estimator
of —E {E [7‘9"”?’ (o)
Specifically, we can write m¥M = 1 Zt mEM (w) = %Zle ¢} vecl (5?52" —T7Y), (¢° x 1), where
o, = diag(gzﬁ;d’t), (AN(N —1) x ¢“), with indices (k,1) ordered according to s§ and ¢© =3, ., qu with
br1 ¢ being a (qr % 1) vector of test variables. Given previous calculations for Ol (w)/0p', this can be
expressed as mEM = %% ZtT:1 o Ly (F_l ® F_l) vec (Cfo oo — F) and it follows immediately that, for
the joint Tse test of all %N(N — 1) constant conditional correlations,

}},1}} directly from the derivations for the estimated hessian, J3(w), above.

Dr(w) =

[M]=

[ LN PENZ, 2Ly (071 @T7") Ly]

\*
Il
-

—

' (LyPEN ® Ir)Z, 20'(Lly (T7' @ T™) Ly @ 7))

V(LB @ Ir)Z, & (LY Ly @ Ir)(Iyn(v-1) © o7)|

B —

"(LNQx @ IT)W,

N N e L N
e T e T

where ® = diag(Py), (%N(N — 1) x q%) with @y, (T X qi) having rows Gpigr t=1,...,T.
For the PQMLE case, it is clear that Dy (w) = 1 L&' (LyE} ® Ir)Z.

Proposition 7 Define mp(w) =T~ 1 Z;l my(w) constructed from the (¢;; x 1) sub-vectors m;jr(w) =
%ZtT:l((jitht — pu) (rU, — 7ir(w)) and A (w) = T-1 Zthl ng®(w) constructed from the (g;; x 1)
— 00 T 00 00 0o
sub-vectors nij,T( w) = T Zt:l(Cit Gt — pO,ij) (Tij,t _:U’ij(wo))v where ﬂij(wo) = E[ U,t}w:w and
||,uij(w)|| < 00, by B4. Under Assumptions A and B1, B2:
(i) Esupg [lg7°(0)]* < oo;
1 o
(ii) Wi >_i—15upg [lg7° (0) — g¢(0)[| = op(1).
In addition, and adding B3 and B4:

(iii) Esup,, [Inf°(w)[|* < oo;
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1
(iv) 77 Z;l [Inge (@) — my (@) || = 0p(1), where @ is the PQML estimator.

Proof. It is readily shown that (i) and (it) hold, and (iii) follows from Proposition [¢|(iii). For
(iv), let Amiof,t(w) = (C?Cﬁ - pO,ij)rioﬁt - (Citht - Po,ij)rij,t and write \/T(ﬁfjoT((’D) - mij,T(‘I’)) =

1
= 23‘21 a;j,t(@), where

VT

aiji(w) = (C?Cﬁ - pO,ij) (Tfﬁt — M (wo)) - (Cit(jt - pO,ij) (rije — Tijr (W)
= Am,(w) + (Culjt — Po.ij) (Fijr(w) — Hij (wo)) — (C?C(ﬁ - Citht) tij(Wo)-

Gwen B1 and B2, and the similar derivations to these employed in the Proof of Proposition [3, it is
readily shown that T—'/2 23:1 zitht — po.ij = Op(1), and by B3 and BY, and the triangle inequality,

Slip HfijT(w) - Mz’j(WO)H < Sgp H’F?JOT(W) - :U’ij(WO)H + Sgp HfffT(w) - fijT(W)H = 0p(1),
s0 that 747 (@) — p;;(wo) = op(1). Therefore,

~ 00 7 OO

Cit Cjt - git&jt‘} ||Mij(WO)H + Op(1)~

1 I L1 T o LT
ﬁ tz:; llaije(@)] = ﬁ tz:; HAmij,t(w))H + {\/T ;

1
VT
reasoning) T > i1 SUp,, ‘Cit Cit — githt‘ = 0,(1), so that Wi dim1

By Proposition H(iv), B3 and the triangle inequality, Zthl ||Am§’]°t(£1)H = 0p(1), and (by similar

ZZOZ?? - Qtfﬁ

= 0,(1). Thus

since |55 (wo) || < oo, % Y1 llaig @)l = 0p(1), so that VT |25 (@) — mr(@)|| = op(1). m

Proof of Proposition [4 X is finite by Proposition Proposition [7](i) and (iii). As in Ling and McAleer
(2003, Lemma 5.2), (i) follows from a Martingale Central Limit Theorem. Part (ii), follows from
Proposition [7] and Remark 2}l

Proof of Proposition |5¢ Firstly, by Proposition VTing (@) = VT (@) +0,(1), and we work with
VT75e (@). Second, from the consistency and asymptotic normality of 8, VT (6 —6o) = Jy VT g5 (6o) +
0,(1), where VT35 (0) = V/Tgr(0) + 0,(1), by Proposition [7} Similar to proof of Proposition [2} it is

%H < 00 so that %Taig’ﬂﬂ

wr = wp + 0,(1). Thus taking a mean value expansion of \/Tﬁ%o (@) about wp, and ignoring asymptoti-
cally negligible terms, yields vTn (©) = AgVTuse (wo) +0,(1), and the result follows from Proposition
4 m

readily shown that Fsup, ‘ L _By=E [%} , for any sequence
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