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Abstract

This paper provides a rigorous asymptotic treatment of new and existing asymptotically valid
Conditional Moment testing procedures of the Constant Conditional Correlation assumption in a
multivariate GARCH model. Full and partial Quasi Maximum Likelihood Estimation frameworks
are considered, as is the robustness of these tests to non-normality. In particular, the asymptotic
validity of the LM procedure proposed by Tse (2000) is analyzed and new asymptotically robust
versions of this test are proposed for both estimation frameworks. A Monte Carlo study suggests
that a robust Tse test procedure exhibits good size and power properties, unlike the original variant
which exhibits size distortion under non-normality.
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1 Introduction

Within a Multivariate GARCH (MGARCH) model, the conditional correlation approach has proved
popular amongst applied workers when modelling volatility. Initially, the Constant Conditional Corre-
lation (CCC) model was employed (see for example, Bollerslev (1990), Kroner and Claessens (1991),
Kroner and Sultan (1991, 1993), Park and Switzer (1995) and Lien and Tse (1998)), whilst recently
the Dynamic Conditional Correlation (DCC) model (Engle, 2002) has become more prevalent. Due to
the simplicity and computational advantages of the CCC model, on the one hand, but the increased
generality of the DCC approach, on the other, testing the adequacy of the CCC assumption within a
MGARCH model remains important from both a practical and, therefore, theoretical point of view.
Indeed, the most widely used test of the CCC assumption, among applied workers, is Tse’s (2000) LM
test (see, for example, Lien, Tse and Tsui (2002), Andreou and Ghysels (2003), Lee (2006), Aslanidis,

Osborn and Sensier (2008), among others) in preference to a number of other proposals in the literature
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(e.g., Bollerslev (1990), Longin and Solnik (1995) and Bera and Kim (2002))E| Tse’s (2000) procedure,
unlike the information matrix test approach of Bera and Kim (2002), can be applied to high-dimensional
data but it is predicated on a Full Quasi Maximum Likelihood Estimation (FQMLE) approach, together
with an explicit assumption of normality when constructing the test statistic.

This paper addresses four inferential issues that emerge from Tse (2000): (i) Tse’s Outer Product
of the Gradient (OPG) version of the LM test is only guaranteed to be asymptotically valid under an
explicit normality assumption. (ii) Even under normality the OPG variant of a LM test may demonstrate
relatively poor finite sample performance; see, for example, Davidson and MacKinnon (1983), Bera and
McKenzie (1986), Orme (1990), Chesher and Spady (1991). (iii) Tse’s test procedure may not be robust
to misspecification of the individual volatility (GARCH) equations. (iv) It is still common practice,
when estimating a MGARCH model, to employ a two-stage or Partial Quasi Maximum Likelihood
Estimation (PQMLE) approach, where the volatility parameters in each equation are first estimated
using a univariate GARCH specification and, second, the correlation parameters are then estimated
using these first-stage volatility parameter estimates (see Engle and Sheppard (2008), Hafner, Dijk
and Franses (2005), Billio, Caporin and Gobbo (2006), among others); however, within this PQMLE
framework, there appears to be no available test of the CCC assumption.

Thus, we propose, and provide a rigorous analysis of, asymptotically valid and non-normality robust
tests of the CCC assumption, based on a Conditional Moment (CM) approach. These tests will be
robust in the sense that their asymptotic validity does not depend on normality (unlike Tse (2002));
but they do require moment conditions which ensure standard asymptotic inferences can be applied.
Such tests can be employed following either FQMLE or PQMLE and robust versions of Tse’s test are
given particular attention. The required derivations require some straightforward, yet tedious, algebraic
results but lead to robust tests that are easy to implement. In our Monte Carlo study, with a moderate
number of assets/time-series (N = 5), these tests demonstrate satisfactory size properties in most
cases. Furthermore, whilst not addressed analytically, the Monte Carlo study also sheds some light
on the robustness of the various test statistics to GARCH misspecifications in the individual volatility
(GARCH) equations. From the panoply of procedures we consider, a robust version of Tse’s LM test
exhibits very good size and power properties under a variety of Data Generation Processes (DGPs).

The rest of this paper is organized as follows. The model, FQMLE, PQMLE and Tse’s original
LM test are reviewed in Section [2] In Section [3] a class of CM parametric tests is described, for both
estimation frameworks, and robust variants proposed. This is extended in Section [4] to provide robust
versions of Tse’s LM test that can be employed following either FQMLE or PQMLE. Section [5] reports
the findings of a Monte Carlo study and Section [6] concludes. The analysis follows standard first order

asymptotic theory, but to avoid obfuscating the main issues, technical (but fairly standard) assumptions

INakatani and Teriisvirta (2009) proposed another LM test for volatility interaction where the null model is CCC
GARCH model against the alternative of Extended CCC (ECCC) GARCH model.



and proofs of the main results are relegated to an Appendix; with more detailed and exhaustive proofs
provided in an accompanying freely available on-line paper, Shadat and Orme (2015), which also contains
additional information concerning the Monte Carlo experiments undertaken.

The following notation is employed: the vec(.) operator stacks the N columns of a (M x N) ma-
trix as a (MN x 1) vector; vech (.) stacks the lower triangular portion of a (N X N) matrix as a
(3N (N 41) x 1) vector; and, vecl(.) stacks the strictly lower triangular portion of a (N x N) ma-
trix as a (%N(Nf 1) x 1) vector. Correspondingly, s% = {(i,7) : i = j,..., N, j = 1,..,N, and i
changing more quickly than j} defines the ordering of the elements of a (N x N) matrix A = {a;;} into
vech (A) and s§ = {(4,j) i =j+1,...,N, 5 =1,..,N — 1, and i changing more quickly than j} the

corresponding ordering for the vecl (.) operator.

2 The CCC Model and Tse’s LM Test

We consider the following standard CCC-GARCH linear regression specification
Yit = Wi, + €, i=1,..., N t=1,...,T, (1)

to model the (N x 1) time-series vector y; = {y;+}, with T large and N fixed/small, where w;; =
(y;)t_l, d,)" is the (K x 1) vector of regressor variables, containing current and lagged exogenous vari-
ables (d;;), and lagged dependent variables (y;;—1) and ¢; C R¥ is an unknown vector of regression
parameters. The volatility in the (N x 1) error vector €; = {g;:} has a GARCH(p, q) specification of
hio = aio + >4y aike?,tfk + Z§=1 Bijhii—j with n; = (o, i1, o, Qig, Bigs s Bip) C RE” being an

unknown vector of volatility parameters. The CCC model is described by
1/2
&t = Ht €0t’ and Ht = DtFDt, (2)

where the £, are independently and identically distributed (4id) random vectors, with E [{,,] = 0 and
E [50t€6t] =1Iyn, Dy = diag(hzt/Q) a (N x N) diagonal matrix and I = {pij} ,a (N x N) time invariant
symmetric positive definite matrix with p;; = 1, ¢ = 1,..., N. Thus, the conditional covariance matrix,

Hy, has elements h;;; = h;t/2h]1-t/2pij,

,j=1,...,N.

To be more precise about the parameterization employed, define 6; = ((p’i,ng)' C REHE" and w =
(0,p)) € © C RN, where N* = N (K + K*) + 1N(N — 1) with 8 = (6},...,0)" c RNE+E) and
p = VGCl(F)H Then, e = yu — whp; = u(p;) with hy = hy(6;), Dy = Dy(0), and H, = Hy(w).

Letting wo = (967%)/ denote the true parameter vector, with p, = vecl(I'g), we have €o; = €+(60),

2For example, for a AR(1) CCC specification with N = 5 and individual GARCH (1,1) errors, we have K = 2, K* =3
and N* = 35.



Dot = Dy(6y), and Hyy = Hy(wo) = Dol'oDor so that E [eoi|Fi—1] = 0, and E [eoie(,| Fi—1] = Hot,
where F;_1 = 0(€0,t-1,€0,t—2, )E|

Following Berkes, Horviath and Kokoszka (2003) and Ling and McAleer (2003), and given Assumption
A3(i)(ii), the process for h;; has the representation hgy = Z;’io ;04 t—1, where, for all 4, a;; = auo +
oy ikl and Py = S0 Biab,; with ¢y, = 0,5 < 0, ¢y = 1, ¥y > 0,1 >0, and 0 <
Yoot = (1 — ?:1 Bij)_l < 0. The coeflicients, 1,;, decay exponentially fast, and there exist
constants K > 0 and 0 < 7 < 1, independent of w, such that ¢, < K7, for all . Then, Assumption
A in the Appendix, ensures the identifiability, stationarity and ergodicity of the process {yi.€oit, hoit} »
where hoit = h$f (0i0) ; see Ling and McAleer (2003).

In the subsequent analyses, three alternative “transformed” error vectors are employed: volatility
adjusted errors (¢;), “fully” standardized errors (§;) and (Tse’s) transformed standardized errors (g).

These are, respectively,

¢, = Ct(e) = Dt_lgt = {Czt(ez)} (3)
& = &w)=H Ve = {€4(w)} (4)
e = ef(w) =T, =T"'D; e, = {e}(w)} (5)

with o, = (;(60), €or = &¢(wo), €fy = € (wo), and satisfying: (i) E [Cor|Fe—1] = 0, E [C4Coe|Fe-1] = To
(in the case of a CCC specification); (i) E [{o,] = 0, E [£0,£0¢] = In, from (2); and, (iii) E [ef,|F,—1] = 0,
E[eheii| Fio1] = Ty''. For some estimator & = (9,, p') of w, the estimated counterparts of — will
be denoted ¢, = ¢,(0), £, = £,(©), & = &:(&) and similarly (,;, &;; and &},. Finally, where there is
no ambiguity, this form of notation will be adopted for general functions of parameters m;(w); so that

my = my(w), mor = my(wo) and my = my(©), ete.

2.1 FQMLE and PQMLE Framework

Given and , the quasi-conditional log-likelihood per observation, ¢, is given by
N
F(w)=—3m[[] = ) Inhy — 5GT7'¢,.
i=1

Assuming L4 (w) =T1 Ethl I} (w) is twice continuously differentiable, and g4 (w) = T—* 23:1 g5 (w),
where gf (w) = 0l (w)/0w, then the FQML estimator, @ = argmax, £} (w), satisfies g} (&) = 0.
However, the observed [f(w) is constructed conditional on available pre-sample values, because h;;

. . . /
needs to be constructed recursively given initial values, 5;6 = (5120, ...,5%71_(1, hioy -y hi,l,p) . In order

3Given the context, there should be no confusion between the random vector eg¢, which has elements gz, and the
elements of g, denoted ¢4, ¢ =1,...,N,t=1,....,T.



to simplify the algebra and asymptotic theory, it is assumed (in addition) that the required pre-sample
observations on w;; are also available and that h;; = 0 for all 4 and ¢ < 0. The simplifications derive
from the fact that h;; can then be expressed as hj; = f;é Vyai—1, t =1,...,T, but the processes h;;
and [ (w) will not be stationary ergodic sequencesﬂ

Replacing h;; by hSy in [} (w), throughout, provides an unobserved but stationary and ergodic log-

likelihood sequence

N
% (w) = =3[0 = 3 Inhy — 3T,
1=1

where (° = {Sit/\/h;’f}. Then, with N finite and letting T — oo, and under Assumptions A
and B1, B2 described in the Appendix, & —— wo and VT (6 — wy) 4N (O,Jg_lﬁngg_l), where
Ji = —E0g7" (w)/0w']

wew, and X7 = E[g7°"(wo)gf°" (wo)'] are both finite and positive definite and

o0 *

97" (w) = 0l§°* (w)/Ow. That is to say, employing the recursively constructed h;; (rather than the “true”
but unobserved h$Y) makes no difference asymptotically.

Adopting a PQMLE approach, and following Engle (2002), we can write £i(w) = L7(0) + LS (w)
where L(0) = 21 SN 11(6:), with Li(6;) = =3 {Inhy + h;'e?} and LE(w) = £ 31 19(w),
with 1€(w) = =L In |0 = 3¢071¢, + 3¢/¢,. Here, & 07 1i1(6;) is the average log-likelihood for the it
univariate GARCH regression model and (¢ (w) models the CCC structure. This affords a two-stage
PQMLE procedure where at stage one we obtain él = arg maxy, % Zthl 1;+(0;), the consistent univariate
GARCH QML estimators. Equivalently, 6 = arg maxg £1(0), which satisfies gr(f) = 0, where g7 () =
T ZtT:1 9+(0) and g4(0) = ZZ\; 0l;+(0;)/00, which is, of course, g:(0) = (9l1:(01)907, ..., Oln:(On) /00y ) .
For the second stage, we employ all the first stage PQML estimator 8 to obtain p = arg max, LS (é, 0),
which satisfies Zthl (&5 — p7) =0, j < i, where I'"! = {p¥}. The resulting PQML estimator,
W = (él,ﬁ’ )’, is consistent, but asymptotically inefficient relative to FQMLE If we adopt Boller-
slev’s (1990) alternative parameterization of 1;;(6;), it transpires that the ensuing p has a closed form
expression satisfying Zle (&itéjt — i)ij) = 0, j < ¢. Even without this alternative parameteriza-
tion, it is still the case that the simple estimator p,; = %2;1 éitijt, j < 1 will be consistent
for the true correlation parameter value, and this will be the estimator, together with éi, that we
shall employ in the PQMLE framework. Moreover, it turns out that the limit distributions of the
various test indicators that we shall consider, obtained from PQMLE, are not influenced by this
choice of p and this leads to the construction of relatively simple asymptotically valid test statis-
tics. Thus, we just need the separate limit distributions of /T (éZ — 92-0) and Assumptions A and
B1, B2, in the Appendix, imply \/T(é —0p) 4, N(0, J(;lEggJal) where the (block diagonal) matrix

4Note, that this is not the same start-up scheme employed by either Ling and McAleer (2003), who choose E;.B =0,
Berkes et al (2003), or Francq and Zakoian (2004). In practice, and for all inferential procedures described in this paper,
any constant value can be chosen for E;B, in order to generate h;t, t =1,...,T.

SHafner and Herwartz (2008) provided an analytical expression for the asymptotic variance of the PQML estimator,

for both the CCC and DCC models.



Jo = —E [0g§°(60)/00'] = diag (—F [0%157 (0:0)/00;00;]) and Sy = E [95°(00)g°(00)'] are both finite
and positive definite, and ¢¢°(0) = va:l Ol (0;)/00 with I59(0;) = —2 {Inhgy + &2, /hS7}; see, e.g.,

Halunga and Orme (2009, Theorem 1).

2.2 Tse’s LM Test of the CCC Assumption

For the purposes of constructing Tse’s test, a dynamic correlation structure of the form p,;;, = p;; +
YijCit—1Cj,¢—1 1s assumed, where v;; = 0, 7;; = 7;;, even though p,;, is not a well-defined alternative
to the CCC since I'y = {pijt} is not necessarily a positive definite matrix for all ¢. There are w
additional parameters in DCC “alternative” model with the null hypothesis of CCC being Hy : 7;; = 0,
for all distinct 4, j, and ¢ > j. Tse (2000) employed the Lagrange Multiplier (LM) principle and proposed

~ Al
an OPG variant of the LM test statistic which, in this case with test variables ¢, _;(;_q, isﬂ
— - aAa N1
LMy = /5" (E’E) By, (6)

where Z* is a (T x N* + N(NT_D> matrix, with rows equal to (g, vecl((&;&} —=I"1) © 6t_1d_1)’), ®
denotes the Hadamard product, and v is the (T" x 1) column vector of onesm Under the usual regularity
conditions LM ; is asymptotically distributed as X2N(N771)'
3

The notation LM ; is used to emphasize that (EI) is constructed from @ and cannot be implemented
directly using @. Furthermore, the OPG construction advocated by Tse (2000) may be sensitive to
non-normality, and some evidence for this is provided by Tse (2000, Section 5). In the next section we
develop a Conditional Moment (CM) testing framework of the CCC assumption which accommodates
Tse’s Test. This framework provides, in Section[d non-normality robust Tse test procedures for both the
FQMLE and PQMLE cases. However, for this particular choice of test variables, (; ,_1(;,_1, a stronger
moment condition of F |50¢t|8 < oo for all 4, ¢, is then required in order to justify the asymptotic validity

of these robust tests.

3 A Class of Asymptotically Valid CM Test Procedures

If the CCC specification is correct, then E [(y,((, — T'o[Fi—1] = 0 in which hoy = kS (650). The diag-
onal elements of (gtgg — I‘) correspond to the individual GARCH (or volatility) specifications, whereas
the off-diagonal elements correspond to the CCC assumption. Also due to the symmetry there are
1N (N + 1) independent (distinct) restrictions in this moment condition; i.e., E [v{,|F;—1] = 0, where

vy, = vech (§0tC6t — Fo) , the superscript J indicating joint testing of both the CCC and of the individual

6Here, cross-products of lagged standardised “residuals”, are employed as “test variables” which is feasible using the
LM principle and, since this “alternative” is an artificial device simply employed to construct a test statistic, Silvennoinen
and Terdsvirta (2009) interpreted this as a general misspecification test.

"Details of gP°*(w), and hence g; (w), are given in the Appendix, Proposition @



volatility specifications. The typical element of this moment condition can be written as

E [CO,itCO,jt - pO,ij‘ft—l] =0,i>j, i=2,..,N. (7)

When the underlying moment restriction is (7)), the ensuing test will be referred as the Full CM (FCM)
test and can be treated as a joint misspecification test of the complete MGARCH error specification.
If we are only interested in testing the CCC assumption, the moment condition is F [UOC;|.7-",5_1] =0,

where v, = vecl ({o,Co¢ — o) and the superscript C' denotes testing only the CCC assumption; i.e.,

E [Co.iCojt — Po.ijlFi—1] =0, i>j, i=2,.,N. (8)

The ensuing test based on will be referred to as the CCC CM (CCM) test.
The implication of @ is that misspecification tests of the CCC model can be constructed as tests

of the following moment conditions

E [(Co,itCO,jt - pO,ij) Tij,t(WO)] =0, 9)

where the (g;; X 1) vector r;;+(wo) is a F;—1 measurable function, possibly depending upon the processes
hoi+ and hojtﬁA CM test indicator vector can then be constructed, up to a knowledge of w, as mr(w) =

* Zle m¢(w) with the vector m;(w) constructed from the “stacked” sub-vectors
mij (W) = (CuCje = Pij)Tijt = VigeTije,  (Gij X 1) (10)

where vi; ¢ = (¢;;(jr — pi;), a scalar, and ri;; = rij(w). Note that the m;;(w) are arranged in my(w),
ordered by (i, j), according to either s%; (as in the vech(.) operator) or s% (as in the vecl(.) operator).
In the former case, this will be denoted m#(w) = & 32/, m{(w), ¢’ x 1, where ¢/ = > s, Gij» Whilst
in the latter case it will be m(w) = % 7 m& (w), ¢© x 1, where ¢© = >is; 45 = 47 — 2 qii- Then,
mi(w) will be referred to as the FCM test indicator, m$ (w) the CCM test indicator and both can be
constructed employing either the FQMLE, @, or the PQMLE, @.

The following specials cases emerge:

1. If r; is a common vector of test variables employed for all i, j, then m.(w) = % Zthl v} @7y and

m (w) = + Zthl vf ® 1y, where vf = vech (¢,(; —T') and v = vecl ((,¢; —T) .

2. If 75, is a scalar, with Ty = {r;;;}, (N x N), then mi(w) = + Zthl v/ ©rf and Mm% (w) =

LSl v€ o rf, where 1] = vech(T,), r€ = vecl(Ty).

8 Although F;_1 measurable, we write rij¢ in defining ;5 ¢(wo) rather than, say, r;;,;—1. This is consistent with the
usual notation hg;:, which is also F;—1 measurable.



Tse’s LM test can be interpreted as a test of the moment condition E [vecl (ef,e5) — r;! |Fi-1)] =0,
where ¢} is given in . Since eje;’ — =1 = T=1(¢, ¢} — D)L, the (k, 1) element of this (N x N)
matrix is p*’ (CtC; — F) pl = vec (pkpl’)/DN vech (CtC; — I‘), where pF is the k" column of T~' and
Dy is the (N2 X %N(N + 1)) duplication matrixﬂ Exploiting the properties of Dy, we can write
eren, — P = wvi, where T = vech (p*p" + pFp! — dg(p*p")) , (AN(N + 1) x 1). For example, for
N =2 we have p;5 = py; = p, say, and 7h; =7’ = m[ —p 14p2 —pl

Since 7},v{ is a scalar, the (k,1)" element of a Tse (LM test) indicator employing arbitrary test

variables, ¢y, 4, (qx1 % 1), with indices (k, ) ordered according to 5§, can be expressed as

T

_ 1 _

mﬁ% (w) = T Z {WZZ’UZ]} Prie = (Tt ® Ig,) m{kl)T(w)v (qr x 1) (11)
t=1

where m‘(lkl)T(w) =1 Z?:l 0] @ ¢y (BN(N +1) x 1), is a joint FCM test indicator vector, of the
form my.(w), but constructed with a common (g x 1) vector of test variables, ¢y, ;, for all elements
of v Therefore Tse’s test indicator is accommodated in this CM framework since its (k,1)"" element
is simply the linear combination (through 7}, ® I,,,) of ALL the FCM test indicators. Recall that in
Tse’s original test, Section Grit = Cri—1C1—1, and gr = 1.

To construct asymptotically valid CM tests of the CCC hypothesis we need to establish the limit
distributions of the test indicator vectors. This is done in the following two sections for both the
FQMLE and PQMLE cases, for which we need to introduce some more notation. Let \/TT_/LT(M) =
ﬁ 23:1 m¢(w) denote either vT'm(w) or VTS (w), according to the test under consideration, where
my = my(w), (¢ x 1) denotes either mj (w) or m{(w) as defined above (with ¢ = ¢”, or ¢ = ¢, re-
spectively) and the vector vo; = v¢(wp) will denote either vy, or v§;. In particular, mg; = my(wo) is
constructed from the stacked (g;; x 1) sub-vectors, m;; (wo). We shall also employ the following at var-
2 and fl, = (wh/Ver, ),

where Og~ is the (K* x 1) vector of zeroes. Finally, and similarly to [9°*(w) and gf°*(w), a superscript

1 Bhit _ (4 / /1 Ohy
hi; 00, — (Ciys @74), Where ¢f, = 7 0!

ious times: z}, = and xf,

of oo signifies that h;; (and/or hj;) has been replaced by Ay (and/or hjy) where necessary.
3.1 Tests based on FQMLE
An asymptotically valid x? test statistic, and test procedure, is justified by the following results:

Proposition 1 Suppose Assumptions A and B, as described in the Appendiz, hold. Then, ¥* =

E [u$* (wo)ui™* (wo)'] is finite, where ui®* (w) = (Mg (w)’, g2°* (w)’) . Furthermore:

(i) % Zle uf* (wo) <, N(0,X%), where ¥* = E [uf®* (wo)uf* (wo)'] is finite; and,

9For A = A’, Dy vech(A) = vec(A) whilst for any A, D'\ vec(A) = vech(A + A’ — dg(A)), where dg(A) forms the
diagonal matrix from the diagonal elements of the square matrix A; see Magnus and Neudecker (1986).



(ii) 3 oy ui (@)ui (@) = =% = 0p(1), for any & — wo = 0p(1), where uj(w)' = (my(w)', g} (W)) -

Eit—1€5,t—1

Remark 1 The choice of test variables ri;; = W requires a strengthening of B1, in the

Appendiz, to E |eoir|® < 0. In the case of mh(wo), for example, Spm = E [mg® (wo)ms® (wo)'] is block

partitioned with (g;j X qu) blocks E vfftvz?trfﬁtrg?’t} , with both (i,7) and (k,l) ordered according
w=wo

to s%;. The modification is obvious for mg(wo) which simply removes all entries v32rS° T i=1.,N,

i,t " 14,

from Xpm. The following specials cases emerge:

1. If vy is the same vector of test variables employed for all i, j, then Xy, = E[vRvde @ rogrse’] .

2. Ifrijq is a scalar, with ry being either v orr{, as appropriate. Then, Spmm = E [rgerey’ © visvgy] .

Proposition 2 Under the assumptions ofProposition VTingp(@) 4N (0, V*) ,where V* = AFE*AY,
and Aj = |1, —BOJ*fl] , with J§ = —E [8%8700(%)} positive definite, By = —E [%} , and I, is

the (q x q) identity matriz.

In the case of m: (&), for example, By is block partitioned as By = [B(’iij] , with blocks By ;. stacked
(vertically) ordered by (i, ), according to s%;, and given by
o oo 8((??(;? - pij)

By, =—F e WA -
noting that dmss, /0w’ = 1, (w)0vss, /0w’ + v55,0rd (w) /8w, and E [v5F (wo)|Fi-1] = 0, so that
E 055,013 (w) /0w | Fy - 1] _., = 0. The modification is obvious for m$ (@) and simply removes all B}
blocks, and in the special case that r; is the same vector of test variables employed for all 7,7, then
B} = —F [0v°(wg) /0w @ r&e].

From Proposition [2| and provided V* is positive definite, the general form of the test statistic is

Si = Tmr(@) {7} me@). (12)
which has a limit XZ distribution, under the null, where V:,i‘ is any consistent estimator for V*.

To construct asymptotically valid test statistics we need consistent estimators for V*. In doing so, we
consider the cases of Gaussian and non-Gaussian distributions, respectively, for the fully standardized
error process, £y,. The first case provides the well-known OPG covariance matrix estimator, denoted
V;(O). For the more general case, we develop a non-normality robust procedure, in the similar spirit
of Wooldridge (1990 built on a robust variance-covariance matrix estimator denoted V;(T). This
estimator will be robust in the sense that its consistency asymptotic does not depend on normality, but

it does require moment conditions which ensure standard asymptotic inferences can be applied.

10Similar approach was employed by Halunga and Orme (2009).



3.1.1 The OPG-FQMLE Test

Define the (T x ¢) matrix M = M(w) to have rows m;(w)’ and G* = G*(w) is a (T x N*) matrix

with rows g; (w)' = Bgu(f), with the understanding that M = M (&) and G = G(&). By Proposition

|§|(ii) and (iv), Lemmaimplies that a consistent estimator for X* is T-1U*U* = * Z?:l uf (D)ug (@),
where U* = (M, G*) has rows u}'(w) = (m}(w), g (w)). However, under the additional assumption
of normality, £y, ~ N (0,Ix), the generalized IM inequality holds (Newey, 1985) so that consistent
estimators of Jj and Bj will be T-1G*G* and T*IG'*’M, respectively. In this case, a consistent

estimator for V* can be obtained as
Ve = -1 (MM - M'é*(é*’é*)*lé*m) . (13)
This provides the well-known OPG form formulation of as
859 = 0 (0707) 0o, (14)

2

2 where R2 is the (uncentred) R? coefficient following a regression of

which is simply of the form T x R

v on U™,

3.1.2 The Robust-FQMLE Test

Here we construct a (non-normality) robust estimator for V* = A§EX*Ay, noting from above that

T-U¥U* —5* = op(1), but without necessarily assuming normality. A robust estimator for Aj requires

215" (wo)

robust estimators of Jj = —E [8 F TR ] and B = —F {%} . The strategy for construction

of such estimators follows, e.g., Nakatani and Terdsvirta (2009): define the matrix J7(w), which is

D15°* (wo)

1 T
constructed as —=z >, F [ AT

ft,l} but, once conditional expectations have been taken, w

replaces wy and h;; replaces hgy. Similarly, Bj.(w) is constructed from — Zthl E {%

}"t_l} in

the same way. We introduce the following additional notation: (i) Z; is a (T' x K 4+ K*) matrix having

rows zj, = hlu %}gf,: = (cy,xl,); (ii) F; is the (T x K + K*) matrix with rows f/, = (w},/Vhit, 0%.);
(iii) Ryj is the (T'x g;;) matrix having rows r};,,t = 1,...,T; (iv) Z = diag(Z;) and F = diag (F7)
are (TN x N(K + K*)) block-diagonal matrices; (v) e; is the i'" column of the Iy, the (N x N)
identity matrix, and e;; = vecl((1 — d;;) e;e}), so that e;; is a vector of zeros, for all i = 1,..., N; Ey
is the (N? x N) matrix, with columns e; ® ¢; and Ly is the (N? x 2N (N — 1)) matrix with columns
(e; ® €;) + (e; ® €;), ordered by (4, j) according to s§; (vi) Ta = Iy + (T7'®T) =T", (N x N); and,
(vii) P=Iy @T~14+T-1® Iy = P', (N? x N?).

Then we have the following result:
Proposition 3 Under the Assumptions of Proposition|[6, in the Appendiz
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(1) J5(@w) — J§ = op(1), where

1 Z'Ta®lIr)Z  Z'(ENPLy®0 1| FFO'®Ir)F 0
Ji () = 17 ( ™) (Ex oo - ( ) (15)
(LyPEN ®Up)Z 2L (T7'®@I7Y) Ly 0 0

and both J§ and J}(w) are positive definite.

(i) Bi(@) — Bg = o,(1), where, in the case of mi (&), Bi(w) can be expressed in (vertically-stacked)

“block-row” form, as follows

/

B (w) = [BTIT (w)/aB;lT(w)/7B;2T(W)/aB;lT(w)/7 --~,BE,N—1T(W)/aB?VNT(W)/] (16)
and the By (w) are ordered by (i, j) according to s% with
* ]' ]' / !/ !/ / /!
ijT( w) = T PzgR (ej ® Zj +€; ® Zi), Rij(eij ®ur)| - (17)

We express B.(w) in this way since it then become transparent how it is modified if, for a particular

(4,7), mijr(w) is removed from m(w). For example, the modification for Mm% (&) simply removes all

B,(@) blocks from Bi(w). Using these expressions, and since T-1U*U* — £* = 0,(1), we obtain the

following consistent robust estimator
V;(T) _ Tflfi*(r)U*/ﬁ*A*(r)/’ (18)

where A*(") = [Ty, — By(@)J5 Y )] - Tests based on will be referred as the robust FQMLE tests
and denoted as ST m, Defining W) = U*A*(’”)’, and noting that Wy =T mr (o),

~ o o o -1
S;(T) _ L/TW*(T) (W*(T)IW*(T)> W*(T)/LT. (19)

3.2 Tests based on PQMLE

As discussed in section the PQML estimators of the 6; are 0; = arg maxg, % 23:1 1i+(0;), ie.,
the consistent univariate GARCH QML estimators, and the constant correlations are estimated as
pij =T Zt 1 Cth jt» & function of 0, with p,; = 1. Therefore, the CCM test indicator m$ (w), evaluated

at O = (9 ,7')', is constructed from (g;; x 1) sub-vectors, with (i, j) ordered according to s%,

~

1
Z ’LtC]t ng rljt

t:l

(zitéjt - Ibij) (fij,t - FijT(‘:J))

Nl
[M]=

~
Il
-

(CauCie = Po.ij) (Fije — Tijr(@))

I
Nl =
[M]=

~
Il
-



where 7;j7() = Zthl 7.t Note that we retain the notation 77 (w) and m% (w), for example, since it
is consistent with the FQMLE case; however both 7;;7(@) and m$ (@) are strictly speaking a function of
0. This formulation considerably simplifies the derivation of the limit distribution of /T (@). In view
of this, and also to maintain simplicity in the construction of the various test statistics, we also employ
“de-meaned” test variables, ;¢ — 7;;7(@), for the FCM test indicator, m#(@). Thus, the (PQMLE)
FCM and CCM test indicators, respectively, are constructed from the following (g;; x 1) sub-vectors,

with (i, j) ordered according to s%; and s§;, respectively,

1A - -

T Z(Citht = Pij) (Fije — Tijr (@), iz, (20)
t=1

1A - -

T > (Culyi = bij) Fiju — Tigr(@)), i > . (21)

~
Il
-

However, note that & Zt 1( i—1) #0, so that £ Zthl(E?t—l) (Fiip — Tir (D)) # + Zf 1( it )fmt.
Thus, in general, we consider the test indicator mT((D) =5 Zt 1 m(@) where my(@), (g x 1), i
constructed either from the (g;; x 1) sub-vectors , for the FCM test indicator m(&), or . for
the CCM test indicator % (©). In order to treat either test indicator, let 3 (w) = % thl n(w)

constructed in the same way from the (g;; x 1) sub-vectors

=

1
nisr(w) = T Z(Czt 5% — Poiz) (s — mij(wo))
et

1
= TZ zj,t(wo)’
t=1

~

where f1;;(wo) = E [Tfﬁt]w:wo and |1, (wo)|| < o0, by Assumption B4 in the Appendix.

The following justifies an asymptotically valid x? test statistic, and procedure, based on v Ty (@) :

Proposition 4 Suppose, as described in the Appendiz, Assumptions A and B, with B1 and B2, appro-
priately strengthened for the particular choice of rij4, hold. Then, ¥ = E [u®(wo)ug®(wo)'] is finite,

where u® (w) = (M@ (w)', gi°(0)") . Furthermore:
(i) VTus(w) <, N(0,%), where ¥ = F [u$®(wo)uf®(wo)'] is finite; and,

(1) % Zle u (D) ug(@) — X = 0,(1), for any @ — wo = op(1), where ug(w)’ = (my(w)’, g:(0)') .

Ei,t—1E5,t—1

Remark 2 Again, for the choice of test variables r;j,; = Travh we will require E |60it\8 < 00.
In the case of i (wo), for example, Sy = E 05 (wo)n$®(wo)'] is block partitioned in a similar way to
Ymm, gIVEN in Remarkl but with 757, — p;; (wo) replacing s, throughout. The modification is obvious
for m$(wo) which simply removes all i = j entries from .

Some specials cases emerge, however, for either mi-(wo) or m$ (wo) :

12



1. If ry is the same vector of test variables employed for all i,j, so thal p;; = p, then X, =

E [vorvy, @ Ary(wo)Ary(wo)'], where Ary(wo) = 1¢(wo) — pu(wo).

2. If rij1 is a scalar, let Ty = {ry(wo) — pij(wo)}, (N x N) and define Ar(wo) to be either
vech(Y), in the case of mi(wg), or vecl(Yy), in the case of m$ (wy).

Then Ypn = E[Ari(wo)Are(wo)’ © vorvg,] -

Proposition 5 Under the assumptions of Pmposz’tion and provided ¥ is positive definite, v/ Trmp (@) 4,

N(0,V), where V = AgSAl, Ay = [I,,—BoJy ], with Jo = —E [%] . Bo=—E [%} , and

I, is the (¢ x q) identity matriz.

In the case of M (@), for example, By is block partitioned as By = [By ;5] , with blocks By ;;, stacked

(vertically) for ¢ > j, 4 changing faster than j, and given by

ftl] } - [ (r3Fe = pij(wo)) blaci)

8nfj‘it(w0) .
06’ w=wo

o0

Boij = —E{E[

The modification is obvious for m$ (@) and simply removes all By ;; blocks from By.

From Proposition |5 and provided V is positive definite, the general form of the test statistic is

. N1
Sp =T mp(@) {VT} mr (@), (22)

which has a x2 limiting distribution, under the null, where Vi =V +o0,(1).
Note that to obtain the right expression for the asymptotic variance estimator of the test indicator
one has to use vech(&td —T)or vecl(ztd —T)), rather than Vech(zté;) or Vecl(ztd), in the construction
of m# (@) or Mm% (@) as given in and , respectively. As earlier, f/}o) and VFF) will denote OPG

and robust variance-covariance matrix estimators, respectively, that we might use for V.

3.2.1 The OPG-PQMLE Test

Define the (T x ¢) matrix M = M (w) to have rows m/(w) with the understanding that M = M ().
Also, let G = (Gh,---,Gn) and G} = (Gf, - ,G%), where the G; = G(0;) and G = G} (w) are

(T x K + K*) matrices, ¢ = 1,--- , N, with rows 8%;;,&) and 8%6(;5)’ respectively Then, G and G}
are (T' x N (K 4+ K*)) matrices with rows g;(0) = (allt(?l),..., 8th(,0N)) and o ((;u), respectively.
00, 00y 00

Firstly, and in general, T~'U'U — ¥ = 0,(1) by Proposition ii)7 where U = []\Zl, CNT'} . Secondly, with
the additional normality assumption of &,, ~ N (0,Ix), the specification of the log-likelihood for the

FQML estimation of parameters is correct. Thus, since E[g:(60)] = 0, the generalized IM equality

I That is, G; is the matrix having rows univariate GARCH scores, and is a function of 6;, while the rows of G contains
the FQMLE scores, corresponding to the conditional mean and volatility parameters, 6;, only, but is a function of w.

13



implies that

) 82122 (6, . Ol (0:0) O1°* (wo)
o= o ([ 5E]) =t ([P0 ).

whilst the blocks of By are

BO,ij =-F |: (r%),t _ Nz‘j(WO)) B(Caltelcjt) :|w_w =F {n?t(wo)ay)] .

It then follows that, from Lemma [T} [f] and [7} in the Appendix, consistent estimators Jy and By can
be obtained as diag (Tﬁlé;é:‘) and T~1M' ~;, respectively. Therefore, under normality, a consistent

estimator for V = AYX A’ can be obtained as
Vi) = AT A, (23)

where the matrix A(®) = [Iq, — M’é; x diag (é;@j)] Again, exploiting the fact that G'vr = 0 so
that AU v.p = Mup =T mr(©), the test statistic can be expressed in a T' x R2 form, but this time

following a regression of v on W) = UAC) .

~ ~ ~ -1
Sj(wo) — L/TW(O) (W(O)/W(O)) W(O)/LT. (24)

3.2.2 The Robust-PQMLE Test

To construct a robust (to non-normality) test of (22), first note that By (&) (the robust estimator for By)
can be obtained using the results of Proposition [3| but replacing #;;+ by 7i;+ — 7i;7(@), the demeaned
test variables. Thus, if ﬁij is the (T x g;;) matrix having rows (7;;,; — 7i;7(@))", t = 1, ..., T, then Br (&)
can be expressed in “block form”, but with a typical block now being

1 ~

Bijr (@) = ﬁbéjRu(eé ® Zj+ €, ® Zy), (25)

ordered by (i,7) according to s%, or s%, for mi (@), or m% (@), respectively. In addition, and as a

92%15¢ (00)

special case of Proposition i) with N =1, p,;, =1, —F { 890"

} can be consistently estimated by

Jir(0;) = %Z{ZZ + %F{Fi, which is positive definite, so that J(8) = %Z’Z—l— %F’F; see, for example,
Halunga and Orme (2009, Lemma 1).
Combining the above two results, we obtain the following expression for the robust consistent variance

estimator

O = P AN A, (26)

where A" = |I,, —Br(@)Jy 1(@)] Tests based on this estimator will be referred as the robust PQMLE
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test and will be denoted as Sg) and can be constructed as

S — i) (me(r))‘ Wy, (27)
where W) = UAM

3.3 Summary

For each of the FCM and CCM test statistics, and depending on the estimation framework and con-

struction of the variance-covariance matrix, we have a total of eight test statistics, namely,

Table 1: FCM and CCM Test Statistics
OPG-FQMLE CCM test:  $:°©) = T mg (&) {VT*C(")}_I nC(@), see eqn (14
Robust-FQMLE CCM test: 9.0 = 7' & (@) { A;C(”}fl mS(@), see eqn (19
OPG-PQMLE CCM test: S’g(o) =T m%(@ , see eqn (24
, see eqn (|27

C
y {v; g
GC(r) iy e T -
Robust-PQMLE CCM test: S;' =T m3(©) { T } Z (@
OPG-FQMLE FCM test: ;' = Tmf (@) {

(W), seeeqn (14

Robust-FQMLE FCM test: S}J(r) =T my. (W), seeeqn (19

OPG-PQMLE FCM test: S = T md(&) {VTJ <°>}_ mh(@),  see eqn (24
J

Robust-PQMLE FCM test: g;(r) =T my @), see eqn (27

where the hat and tilde represent FQMLE and PQMLE, respectively, the superscript J and C' denote

FCM and CCM test, respectively, and the superscript o and r signify OPG and robust variance estimator.

4 OPG and Robust Tse LM Tests

From , it was noted that mﬁ% (W) = (1), ® Ig,,) m{kl)T(wL (qr1 x 1), where T‘n‘(’kl)T(w) =1 Zthl v ®
Prrer (BEN(N + 1) x 1), is a joint FCM test indicator vector. Whilst test variables ¢y, (qr % 1),
are used for the FQMLE case, for the PQMLE case the strategy of using de-meaned test variables,
it — (Ekl,t’ is maintained in order to construct a “modified” Tse test.

As a consequence of Proposition [2]it is clear that an asymptotically valid x? Tse statistic designed

to test only the (k,1)*" equations for constant correlation, using a vector or test variables g?) can be

ij,t)
constructed as )

((ﬁ-;cl ® Iq”) m(Jkl)T (‘D))
(ke ® Igy;) ‘7(*,;‘{) (Tht ® quz)7

LMuyr=T
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where either f/(:l])(o) or V(kl)(r) can be employed, with the latter providing robustness to non-normality.
Similar manipulations can be used to construct joint Tse test statistics, but the following (equivalent)
procedures see more straightforward.

Obtain the (T x ¢©) matrix M = M (w), to have rows m{ (w)’, where here ¢ = Y, _, qu. That is,
miM (w) is formed by stacking the (g x 1) sub-vectors (e},e7, — p*) dpy, = () ® I,,) (V] @y ), for
the FQMLE case, or (¢f&f; — ") (Pr1e — b)) = (Why @ Igy) (v] @ (dprs — bpa, 1)), for the PQMLE
case, with (k,1) ordered according to s§. Then, with this definition of M and m&M = % Zthl miM(w),

the desired test statistic can be constructed as follows (with the first being just Tse’s original statistic):

1. The OPG-FQMLE Tse test statistic, LMT(O).

Construct V; M(e) using and S;(O) as in giving an equivalent expression to @ as
—x(o N -1
I = 7 M (y {VT*LM(O)} kM (). (28)

2. The Robust-FQMLE Tse test statistic, m;(r).
Obtain AL(X/[) = [I;, — D3(@)J5 ()], where the matrix Di.(@) is constructed by vertically
stacking the matrices Dy, (@) = (7 ® Ig) Byr(@), and By, (@) is defined in Proposmon

but where Rij is replaced R(km (T X qx1) , having rows ¢kl’t. Then construct VT* M) using
and S*LM(T) as in giving

*(r ~ -1
o = 7 kM @y (VMO ki o), (29)

3. The OPG-PQMLE Tse test statistic, E\J/[(;)
Construct f/ﬁ M(e) using and S’(TO) as in 1) giving

Lty = 7wV @)y {TEMO) T mk (@) (30)

4. The Robust-FQMLE Tse test statistic, I’J\J/[(TT)
Obtain A(LTJ)W = [Iq, — Dp(@)Jr 1(@)] where the matrix Dp(®) is constructed by vertically stack-
ing the matrices Dy 7(©) = (7} ® Iy,,) Baayr(©), and By (@) is defined by (25)), but where

R;; is replaced by ﬁ(kl), (T X qx1) , having rows (&Skl’t - zkl’T). Then construct VTLM(T) using

and S’;LM("') as in giving

T ~ -1
LNty =T mi @) (7O} b @) (31)
The above derivations also make it transparent how to construct a joint Tse test of a subset of the
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constant conditional correlations, rather than for all N (N — 1). However, if all N(N — 1) constant
conditional correlations are to be tested, the derivations in the proof of Proposition 3| (see Shadat and

Orme, 2015) imply that DX (w) and Dy(w) can expressed as

1

Di(w) = E[cp’( NPEN ®I7)Z, 20/ (L)y (T @I ') Ly ® 7)),
1 ._

DT(UJ) = E[(I)/( 3VPEN®IT)Z],

where ® = diag(®p), (NN —1) x ¢°) with @y, (T x qi) having rows ¢, t = 1,...,T, whilst
¢ = diag(®y), (%N(N —1) x qc) with @4, (T x qx;) having rows Prit — a)kl,tv t=1,..,T.

5 Monte Carlo Evidence

In this section, we present Monte Carlo evidence on the finite sample behaviour of the 12, for both
FQMLE and PQMLE procedures, for N = 5 equations: the 8 CM tests described in Table [I] and
the 4 Tse “LM” tests described in —. The parameter values for the null and alternative Data
Generating Processes (DGPs), where possible, are taken from the existing literature (e.g., Engle and Ng
(1993), Tse (2000), Lundbergh and Terésvirta (2002), Halunga and Orme (2009)). For each experiment,
two series of 1200 and 700 data realizations were generated with the first 200 observations being discarded
to avoid initialization effects, yielding sample sizes of T = 1000 and 500, respectively. Each model is
replicated and estimated, 10,000 times (to obtain empirical significance levels) and 2000 times (for
robustness to non-normality and power experiments).

In practice, however, there is likely to be considerable uncertainty about the precise form of mis-
specification in the MGARCH CCC structure and so that any “selected” alternative may often be
misspecified, leading to an “incorrect” set of test variables. Thus, the primary purpose of the Monte
Carlo study, here, is to compare the finite sample performance (empirical significance levels, robustness
and power) of the various tests, each constructed with a common set of test variables, in order to see if
a ranking emerges. Following Tse (2000), the common scalar test variable employed for this purpose for
is 745,4(w) = ¢; 4—1(;+—1, although in a demeaned form following PQMLEE All simulation experiments

are conducted in GAUSS programming language.

12 Although not reported here, simulations were also carried out using Gi,t—2G;,+—2 as test variables yielding qualitatively
similar results. These are available from the authors upon request.
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5.1 Empirical Significance Levels

We employ AR(1)-CCC-GARCH (1,1) DGP for N =5 as our null model; viz.,

Yie = Pio+PiYit—1T€i, t=1,---,5
Var (ei|Fio1) = Hy= E[e3Fio1] = hur, &0 = H? (0) &, & ~ N(0,1),
hig = oy +ai15?,t71 + Biihii—1,
H, = DJID,, D, :diag( hit) and
I = {p;},ij=1,---,5 with p;; = 1. (32)

Three experiments are considered E1, E2 and E3 (and the true parameter vectors employed are
given in Table Al of Shadat and Orme (2015)). These provide models with relatively low (ranging
between 0.20 and 0.37), mixed (ranging between 0.30 and 0.80) and high (ranging between 0.62 and
0.80) correlation structure, respectively, for I'. For all three DGPs the same true parameter values for
¢} and n; = (@40, 41, 5;1) are used. Note that the experiments considered various degrees of volatility
persistence; however, to save space, we report the results only for a; + ; = 0.85 since the results
are qualitatively similar in other cases. Tse (2000) also reports “correlations seem to play a role in
determining the rate of convergence to the nominal size. Models with low correlations are less subject to
over-rejection in small samples....the persistence of the conditional variance does not have much effect”
(p. 115).

Table [2| reports the rejection frequencies when the null of the CCC is true under both Gaussian and
non-Gaussian errors. Apart from investigating the robustness of these tests under non-normality, where
the elements of &,, are iid as (6), this also offers some evidence on the robustness of the procedure
to violations of the underlying moment assumptions, since for this choice of test variables 8" order
moments are required. The results are reported for a nominal significance level of 5%.

First, under Gaussian errors the original Tse test and other OPG-FQMLE type tests (m ;«( 0), S’;C(o)

and S;J(O)) tend to over-reject, for all DGPs, even with T' = 1000 (particularly S;J(O)). The robust

versions (I//J\\J;«(r), S';C(T) and S’;J(T)) are much superior. Interestingly, the OPG-PQMLE tests (I/j\//[;o),
5’?(0) and 5’7{(0)) perform better than the corresponding OPG-FQMLE tests, although, S’g(o) and 5’;(0)
are still oversized. However, the empirical significance levels of their robust counterparts, both FQMLE
and PQMLE and including LM *T(r) and LM ;I-)7 are reasonably close to the nominal size of 5%, even when
T = 500. Second, in the case of experiments with mixed and high correlation structure (E2 and E3), the
size distortions of OPG-FQMLE tests are relatively higher compared to the low correlation structure
whilst the robust version of these statistics appears to correct this size distortion. On the other hand,

the rejection rates for OPG-PQMLE tests under low correlation structure (E1), in particular for S’g(o)
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and 5’;(0), are higher than for E2 and E3, although their robust version again corrects this deformity.
The finding from these experiments that size performance depends on correlation is in line with that of
Tse (2000) where the Monte Carlo experiments were performed for N = 2. Third, with &;, ~ t(6) all
OPG-FQMLE tests (E\\I *T(O), g;c(o) and 5';‘](0)) over-reject under all correlation structures, but this
distortion is more severe in high and mixed correlation models. In particular, Tse’s original LM test
(f]\\éf *T(O)) is very sensitive to departures from normality. The robust-FQMLE version of all tests reduces
the over-rejection rate substantially. The empirical significance levels of the robust versions of Tse’s test

(particularly ﬁ\?ﬁ as for the case with normal errors) and the robust CCM tests (S;C(T) and gg(r)),
in general, are close to nominal level of 5% while the robust FCM tests (S’;‘](r) and 5’;(”) can over or
under-reject.

In summary: the OPG-FCM tests over-reject; all test statistics perform better in low correlation ex-
periments; in general, the robust versions of tests perform better than the OPG; and, in particular,Tse’s

modified robust PQMLE test and the robust CCM PQMLE tests (i.e., ﬁ\//[;«r) and S*qu) provide quite

reliable significance levels. All robust tests provide significant size correction under non-normal errors.

5.2 Robustness to Misspecified Univariate Volatility

In total,we consider 12 experiments (Mla-Mle, M2a-M2c, M3a-M3c and M4a-M4c), each within the
regression context to investigate, via Monte Carlo simulation, the impact of violations in the univariate
GARCH specification, but when the true correlation structure for (,, is constant with Gaussian error.
The conditional mean parameters and the correlation structures remain the same as those previously em-
ployed, as detailed in Table A1 of Shadat and Orme (2015). For M1, M2 and M3 the univariate volatility
specifications of all five variables are governed by the GJR, higher order GARCH (i.e., GARCH(2,2))
and the EGARCH models, respectively whereas for M4 all 5 variables are subject to volatility spillover
via an ECCC model. The suffix a, b or ¢ associated with these experiments indicate low, mixed and high

correlation structure, respectively, for I'. Specifically, we employ the following DGPs, for ¢t =1,...,5:

1. M1 (GJR): hit = aio + bir[leie—1] — bizgir—1]? + bishir—1,
with parameter vectors, for each 4, (0.005,0.23,0.23,0.70), (0.005,0.30,0.17,0.70) ,
(0.005,0.25,0.20,0.70) , (0.005,0.28,0.15,0.70) , and (0.005,0.20,0.23,0.70) .

2. M2 (GARCH(2,2)): hiys = aijo + aﬂef’t,l + ai2€?7t,2 + binhit—1 4 bighi t—2,
with parameter vectors (0.01,0.15,0.05, 0.60,0.15) , (0.02,0.25,0.05,0.50,0.15) ,
(0.15,0.10,0.05,0.70,0.10) , (0.05,0.10,0.01,0.70,0.14) , and (0.05, 0.20,0.05, 0.65, 0.05) .

3. M3 (EGARCH): log (hi,¢) = ajo + bi1 log (hi,tfl) + b2 HCitfl‘ - biBCitfl] )
with parameter vectors, for each 4, (—0.23,0.90,0.25,0.30), (—0.20,0.70,0.25,0.20) ,
(0.23,0.60,0.25,0.20) , (0.20,0.80,0.28,0.15) , and (—0.30,0.90,0.40, 0.15).
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4. M4 (ECCC): his = a0 + Omﬁzz,t—1 + Biihit—1 + Zj;éi Bijhii-1,
with spillover parameter vectors, for each 7, (0.01,0.02,0.015,0.03), (0.02,0.06,0.03,0.04),
(0.03,0.01,0.025,0.015) , (0.05,0.03,0.02,0.01) , and (0.002,0.035,0.04,0.02) .
The GARCH parameters for the ECCC model remain the same as AR(1)-CCC-GARCH (1,1) null

model.

Although EGARCH and ECCC models are not formally within GARCH family of alternatives, as
the other DGPs considered here, they represent alternative misspecifications of volatility not captured
by GJR and GARCH(2,2). In order to conserve space, we report in Table [3| only the results for
experiments M1 (GJR) and M3 (EGARCH), since the results for M2 (GARCH(2,2)) and M4 (ECCC)
are qualitatively similar to M1 (GJR), but summarise the main findings for all experiments. Full results
are provided in Shadat and Orme (2015). Rejection frequencies are based on both the 5% empirical
and nominal critical values (with the latter in the parenthesis) and with 2000 replications where the
data are generated with normal errors; i.e., in the former case, and for each test procedure, “size-
adjusted” rejection frequencies are reported, calculated using the empirical critical value that delivers
a 5% significance level for the simulations reported in Section All robust tests and PQMLE-OPG
tests are relatively insensitive to GJR, GARCH(2,2) and ECCC volatility spillover DGPs and for all
correlation structures; except joint tests S’;‘](T) and 5’;‘](0) under the GARCH(2,2) DGP. On the other
hand, the FQMLE-OPG versions, particularly S}J(O), over-reject the null of CCC and the over-rejection
is substantially higher when we use the nominal significance level. Since the FCM test indicator entails
the volatility moment condition, these tests display some power when this moment condition is violated.

) and ﬁ\//[;f), are

In case of the EGARCH alternative, all tests, although to a much lesser extent LM ;( "
quite sensitive to the volatility misspecfications embodied in M3b and M3c (i.e., with mixed and high
correlation). In these cases, all tests over-reject significantly the null of CCC and the rejection rates are

similar for both empirical and nominal significance level. However, for M3a (low correlation), all the

robust tests are less sensitive to univariate conditional variance misspecification.

5.3 Power Results

To examine power, we consider three types of MGARCH models with time varying correlations. The
AR(1) conditional mean specification, and parameters, remain as in but now we examine three
alternative specifications for the conditional variance matrix H; = Var (e¢|F;—1). The first is Engle’s

(2002) DCC-GARCH(1,1) model where the dynamic correlation matrix, I';, is given as

I, = (I0W) Y20, (6Ww,) "= dag(¥,) /U, diag(V,) /2,

U, = (1-a- BT +aC 1y + BT, (33)
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where & and B are nonnegative scalar parameters and a + 3 < 1 and I is constant (time invariant)
5 x 5 symmetric positive definite matrix, with ones on the diagonal. Secondly, we consider the following

Varying Correlation (VC) model of Tse and Tsui (2002)

Iy=(1—-a—-b)T+aly_y +b¥; 4, (34)

where a and b are nonnegative scalar parameters, satisfying a +b < 1, and ¥;_; is the 5 x 5 sample

correlation matrix of {Ct_l, e ,Ct_5} and its (i,j)th element is given by:

an:l Ci,tfij,tfm,
1/2 1/2°
(an:l C?,tfm) / (an:l C?,tfm) /

wij,tfl =

Finally we consider the BEKK model of Engle and Kroner (1995),

Ht = CB + A/B (€t_187/5_1) AB + B/BHt—lBB- (35)

In the following experiments the diagonal BEKK (DBEKK) model is employed where the parameter
matrices Ag and Bg are 5 X 5 diagonal matrices.

Seven experiments are considered: P1, P2 and P3 follow the DCC DGP , P4 and P5 follow VC
DGP and remaining two, P6 and P7, follow the DBEKK DGP (35)). In all cases, the individual
volatility specification for all variables is retained from earlier size experiment, whilst for the DCC and
VC DGPs the constant I' matrix is set to the previously defined mixed correlation structure (see Section
. The remaining true parameter vectors are given in Shadat and Orme (2015).

Again, to conserve space, we only report detailed results for the DCC DGP, P1-P3, but summarise
the main findings for all experiments. Full results are provided in Shadat and Orme (2015). Table
presents the size-adjusted power (and nominal) results with 2000 replications, based on a 5% empirical
(respectively nominal) critical values and the data are generated assuming normality. As a measure
of the variability of the conditional correlation coefficients, in experiments P1 to P7, we also report in
Shadat and Orme (2015) the average, mazimum and minimum values of the true conditional correlation
coefficients across the 2000 Monte Carlo replications of each T' = 1000 sample.

When the true DGP is the DCC, P3 has the largest variability in correlations followed by P2 and
P1; i.e., variability increases as & increases and E decreases. In general, the FCM tests are found to
have higher power in all three DCC experiments. However, as the variability in correlation decreases
power decreases. The Tse and CCM tests also exhibit good power properties: even with 7" = 500, and
all tests have high power especially for the P2 and P3 DGPs. In case of the VC and BEKK DGPs
the conclusions are quite similar. P5 and P7 have larger variability in correlations than P4 and P6,

respectively, and the performance of all the tests reflect that.
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Although the OPG-FQMLE tests exhibit higher nominal power, in terms of the size-adjusted power
the robust-FQMLE and robust-PQMLE versions of these do not cost much in this respect, especially in

view of the lack of robustness to non-normality of the former.

6 Concluding Remarks

In this paper, we have considered a set of asymptotically valid Conditional Moment (CM) tests designed
to assess a constant correlation assumption and/or the individual GARCH specifications in a MGARCH
model. In particular, we consider both the FQMLE and PQMLE framework for the CCC model, noting
that there is very little in the existing literature for the latter case. These tests are very easy to
implement and include OPG versions - a popular variant in the applied literature but whose asymptotic
validity is based on an assumption of normality - and non-normality robust versions. In so doing, we
also provide a simple expression for a consistent estimator for the hessian in the FQMLE framework.
Our approach accommodates Tse’s (2000) LM test, originally proposed as a OPG-FQMLE type test,
so that we are able to provide the PQMLE and robust version of this popular test, as well.

We examine the finite sample performance of these asymptotically valid tests via a small Monte Carlo
study, with N = 5 time series rather than the usual bivariate model, which indicates that, in general, all
tests have empirical significance levels that are reasonably close to the nominal value of 5% but that the
robust versions are slightly preferred, even under normality. It also appears that, under the null, whilst
the degree of univariate volatility persistence has little detrimental effect, low correlation is associated
with better empirical significance levels. As anticipated, though, under non-normality (but otherwise
correct model specification), the robust version of any particular test exhibits far superior finite sample
behaviour relative to its OPG variant with all OPG-FQMLE tests over-rejecting. Interestingly, the
OPG-PQMLE based tests exhibit more robustness than the corresponding OPG-FQMLE tests. When
the GARCH error assumption of the null model is violated by introducing a volatility spillover effect
the Monte Carlo evidence suggests that there is little impact on empirical significance levels. When
there is no volatility spillover but simply one GARCH equation misspecified, and a high correlation
structure, all tests experience increased empirical rejection rates. This is especially true in the case of
the EGARCH alternative with the FCM tests (which test jointly the individual volatility specifications
and the CCC assumption) being most sensitive, as one might expect. However, an important result that
emerges for applied workers is that although Tse’s original FQMLE test is also affected, as it employs
all the indicators of the FCM tests, the modified and robust PQMLE version developed in this paper
appears to be much less sensitive to univariate volatility misspecification.

Turning to power, which depends on the variability of the true correlation parameter, it is found that

Tse’s test and FCM tests have good power, with the former being slightly more powerful, even in models
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with less dispersed correlations. Furthermore, for both the Tse and FCM tests, there is comparability
across both FQMLE and PQMLE frameworks. Disappointingly, the CCM tests (designed only to assess
the CCC assumption) show comparatively lower power - particularly in models with less dispersed
correlations.

In conclusion, when testing the assumption CCC there appears to be little difference between the
FQMLE and PQMLE approach and, in both cases, non-normality robust versions of the tests exhibit
reasonable finite sample behaviour under the null. However, within the panoply of procedures considered
and with a common choice of test variable, the robust version of the Tse’s test, both for the FQMLE
and PQMLE, has very good empirical significance level and power properties and would appear to

recommend itself, although it is not entirely robust, in general, to misspecified volatility.

Appendix: Assumptions and Proofs

Unless stated otherwise all definitions are as in the main text, the Euclidean norm of a matrix A is
denoted || A|| = /tr(A’A), and the properties of h;; and h$Y, as discussed in Halunga and Orme (2009,
Appendix), are exploited. Whilst only briefly discussed in this Appendix, exhaustive proofs of all results
are provided (freely on-line) in Shadat and Orme (2015).

Write wl,0; = 0;1(L)yie + dypin and hy = aio + Ai(L)e% + Bi(L)hiyy = ay + B;(L)hi;, where
air = a0 + Ai(L)e?, = aio + ). aik5?7t_k. As employed, for example, in Ling and McAleer (2003),
Berkes, Horvath and Kokoszka (2003) and Halunga and Orme (2009), the following assumptions ensure
the identifiability, stationarity and ergodicity of the above processE

Assumptions A
A1l The parameter space, ©, is compact and wy lies in the interior of ©.

A2 The elements of d}, are strictly stationary and ergodic and all roots of 1 — ;1 (L) =1 — ¢;1;L —
biol? — ... — ¢y, LP =0, ¢;, # 0, p known, lie outside the unit circle, for all i.

A3 (i) All the roots of 1 — A;(2) — B; (z) = 0 lie outside the unit circle.
(ii) The parameter space is constrained such that 0 < A < min,; {n;} < max;;{n;} < A,
l=1,...,p+q+ 1, where XA and A are independent of w.
(iii) The polynomials A;(z) and 1 — B;(z) are coprimes.

Ling and McAleer (2003), for example, required that F (58t) < 00 to ensure asymptotic normality
of the QML estimator in the ARMA-GARCH model. This is also sufficient here, but with additional

moment restrictions on d;; and the test variables r;;+, as follows:

Assumptions B
Bl E \EOit|6 < oo for all 4,¢.
B2 E [||ditH6} < o0, for all i, t.
B3 Zthl Esup, |5itsjt|l Hrfjot — rij4]| = O(1), at most, for all i,,¢ and [ =0, 1.

B4 Esup,, |euejel ||rs5e]|” < oo for all 4,j,¢, and I = 0,1,2.

13 As discussed by Nelson and Cao (1992), although sufficient, A3(ii) is not necessary to ensure non-negative conditional
variances.
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oo
arij.’t

ow

B5 Esup, |€it€jt|l H

< 00, at most, for all 4, j,¢t and [ =0, 1.

Remark 3 (i) A1, A2, Bl and B2 imply that Esup,, |(€Z-t|6 < oo uniformly in i,t, where ;4 = €t —
why (0; — @i0) » and also that E lyie|® < oo for alli,t, so that E {Hwit”ﬂ < o0, foralli,t. (it) Extensions
of Halunga and Orme (2009, Proposition 4) imply that B3-B5 also hold with z; replacing 7. ()
Assumptions A, B1 and B2 are sufficient to establish the consistency and asymptotic normality of both
the FQMLE and PQMLE, and the consistency of variance estimators based on an OPG formulation.
(iv) Depending on the choice of rij+, Bl and B2 may need strengthening, in view of the demands of
By, in order to establish both the asymptotic normality of our test indicators and the consistency of the

various asymptotic variance estimators employed in constructing the x? test statistics.

Case 1 Forrij; = %, B3-B5 hold provided B1 and B2 are replaced by
it—1 Gt—1

B1* E|egu|® < 0o for all i, t.

B2* E [||ditH8} < oo for alli,t.

Proof. This follows from similar arguments to those employed by Halunga and Orme (2009). =

We first establish some preliminary results that will be of use later.

Lemma 1 Let {:Et}thl be a sample of stationary ergodic random variables, such that the random vector
functions wi(w) = w(zy;w) and z(w) = z(a;w), t = 1,..., T, satisfy ﬁ Zthl sup,, ||Jwi(w) — ze(w)|| =
op(1).

(i) Then

(i) If Esup,, |w(z;w)|]* < oo, where w € Q a compact set, then (in addition)

sup = 0,(1).

1 & 1
7 2 w@wn(@) = 5> m(w)a(w)

t=1

Proof. Follows from the properties of sup, the triangle inequality and Cauchy-Schwartz. m

Remark 4 Under the conditions of Lemma Esup,, ||w(z;w)||* < oo so that E [wy(wo)w(wp)'] is

finite. Then, by a Uniform Law of Large Numbers and the triangle inequality, for any @ — wo = o0,(1),

LS 2(@)2(&) — E [wi(wo)we(wo)'] = 0p(1).
Proposition 6 Under Assumptions A and B1, B2:
(i) Esup,, [|g7°* (w)[|* < oo;
(i1) = 31y sup,, |97 (w) — g5 ()| = o, (1).
In addition, and adding B3 and Bj:
(iii) Esup,, ||ms®(w)||” < oo;

) L T > —my(w)|| =o
(iv) ﬁZt:lsnpmet (w) = me(W)| = op(1).
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Proof.

(i) The scores are

0o 00 _00* 1 00 _00%* )
o (w)/00; = fien™ + 5 (Ciren™ —1) 2, (36)
O w)/Opy = T - g, i) (37)

The result follows from the arguments employed by Halunga and Orme (2009).

(ii) From (36),

H =
HMH

alge” aly *
pH (w) (w)H < \/»ZSBPH oo oo fztszt”

OOOO*

11 *
o G ~ )5 (i~ Dl

= Ri7+ Rar.

Employing similar analysis to that of Halunga and Orme (2009), it can be shown that E [R;r] = o(1), j
A" (w) Ol (w)
891']' 6/’@]

1,2, and the result follows by Markov’s Inequality. The result that ﬁ Zle sup,,
op(1) follows in a similar fashion.

(iii) Esup,, [m$°(w)||”> < oo provided Esup,, (¢oress — pij)rfﬁtHQ < o0, for 4,7, which it is by B4.

1
7= i
inequality. m

Proof of Proposition >* is finite by Proposition @(1) and (iii). As in Ling and McAleer (2003,
Lemma 5.2), (i) follows from a Martingale Central Limit Theorem. Part (ii), follows from Proposition
and Remark [ W

(iv) Similar to (ii), Esup,, ||m°(w) — mi(w]] = o(1), and the result follows by Markov’s

Proof of Proposition By Proposition |I| vTmr (@) = VT (&) + 0,(1), so we work with
VT My (W) whose limit distribution can be established more easily. Following Ling and McAleer (2003),
as adapted by Halunga and Orme (2009), it is straightforward to show that firstly, & — wg = op( ) and,

secondly, that E sup,, H 50 / H < 00. Thus a Uniform of Large Numbers yields 77! ZT aalwalg, ©) 4

Jg = op(1), for all © —wo = 0p(1), and J5 = —F [M] is finite and positive definite by
w=wqo

dww’

2% (@) = op(1), so that a first order

1 7
\/T Zt:l gt

Proposition below. Furthermore, by PropositionH>
1
asymptotic expansion of this quantity about wq yields vVT(& — wg) = Ja‘fl— Z;";l 97 (wo) + 0p(1),

which is O,(1). Next, it can be shown that Esup,, given

MH < oo, for general choice of ot

Assumptions B, so that M 2, -Bi=E {amgl(/w)] , for any sequence wr = wp+0p(1); see Shadat
and Orme (2015). Thus a ﬁrst order asymptotic expansion of m3® (&) about wq yields

VTS (&) = fm;O(wo)—Bgﬁ(a—wo)mpu)
= O\FZU (wo) + 0p(1),

and, from Proposition |1} v T (&) <, N(O,V*). R

Proof of Proposition
(i) Define z° = diag(25’), the (N x N (K + K*)) block diagonal matrix with z3’, (1 x K + K*),
forming the diagonal blocks, and f° = diag (), (N x N (K + K*)), constructed in the same way.
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Exploiting the properties of Eny and Ly, J§ can be obtained by direct differentiation of the scores (36))
and which can themselves can be expressed as

oI (w)/00 = 327 (ExP(G @ () — 2un) + f T,
ANF*(w)/op = FLy (D@ ) vee ((°¢ - T).

Now,

AT ® () 00 dvec (C3°¢7) /00" = (¢ @ Iy + In ® () 0¢ /06,
)00 = —f2 —3(¢ ®IN) Enz®,

and, since E [(;°[F;-1],_,, =0, E[IN ® ({°|Fi-1]
and ENEn + Ely (F_l ®F) En =T 4, we obtain

=0, BE[ENP(CT ® () — 2un|Fi-a] =0,

w=wqo wW=wqo

E [0%13°" (w0) /0000 | Fy1] = =L [0 Tazf) _,. — [T ]

w=wqg

Similarly,

E [0°17°% (w0)/0p00' | Fo1] = =3 [LNPENZS] _yy

E [0°1°" (w0) /0p0p| Fia] = —3Liy (D' @T ") Lu,
since dvec(I")/dp’ = Ly. These then yield,

Jy=31E { } +E
w=wo

which is positive definite; see Shadat and Orme (2015)@ This expression for J§ concurs with Nakatani

28T g 25° 2 EyPLy
LNPENz® 2Ly (T'@I!) Ly

[T 0
0 0
w=wqo

and Terésvirta (2009, p.151), but allowing for regression parameters, ¢,.

From J§ we obtain Jj(w) by: hi replacing hSY, w replacing wo and %23:1 replacing “expecta-
tion”, throughout; and, noting that L\ PEN Zthl 2 = LyPEN(IN® ) Z = (LyPEN @ Up)Z,
S %' Taz = Z'(Ta@Ip) Z and Y, fiT™'f; = F' (T7' @ Ir) F. Thus J3(&) is positive defi-
nite provided Z has full rank of N(K + K*). Consistency of J3(w) follows from, e.g., Ling and McAleer
(2003) and is verified in Orme and Shadat (2015).

(ii) B§ = —E[0m{°(wo)/0w'], is obtained as follows. First, f5°, 257, rf5, and ngzt and agjt are
all F;_; measurable. Second, E[ngﬂft,l] = 1, E[(85:f65lFe-1] = EICGfenlFi—1] = 0, and

E [¢35:C05¢/Ft—1] = poi;- Then, from previous derivations we obtain

1
E [0m, (w0) [00') = ~ 5 E (i (65 @ 257 + e 27| o

B [0m35(w0)/9p] =~ [ri5, <]

w=wp

1Ling and McAleer (2003) require that 'y — Iy is positive semi-definite. But this seems to arise from an error in
their expression for the expected hessian (Ling and McAleer 2003, p.289). Specifically, the error arsises from writing
(8vec(I')/0p")' (T~ @ T~1) Ovec(I')/9p’as P'P where, here, P = (In ® T~1)0vec(I')/8p'.

26



The corresponding partitions of B}.(w) are thus

1

T
1
Binw) = 130 |pours (68 du o el), rieel]
t=1

=l

—

3P R (€ ® Z; + €, ® Z;), Rij(ei; @ ur)].

To establish consistency of B.(@), define Gt = (1, 25, ,r.%o;)/ , for any pair ¢ > j, and correspondingly
Qijit = (1, 2l T;,‘j,t)/ . Then it is immediate from B4 and Remark ii) that: (1) Esup, qu]otH2 < 003 and,

(ii) % 23:1 sup,, quﬁt — Qij,tH = 0p(1). The result then follows by Lemma l

Proposition 7 Define mr(w) = T~1 Z;‘ll my(w) constructed from the (g;; x 1) sub-vectors m;jr(w) =
% Z?:l(Citht - pij) (riji — Tigr(W)) and nF(w) = T Zf:l ng®(w) constructed from the (qi; x 1)
sub-vectors ﬁ%’?’T(w) = %23;1((%0(;? — pO,ij) (Tfﬁt —,uij(wo)), where uij(wo) = F [rfﬁt}w:wo and
|15 (W) || < o0, by B4. Under Assumptions A and B1, B2:
(i) Esupg [lg7°(0)]* < oo;
IR p— .
(ii) 77 > i1 5upg [197°(0) — g:(0)]| = 0p(1).
In addition, and adding B3 and B4:
(iii) Esup,, ||nz®(w)||* < oo;

1
(iv) 77 Zthl [Ing® (@) — my(@)|| = op(1), where @ is the PQML estimator described in Section .

Proof. It is readily shown that (i) and (i) hold, and (iii) follows from Proposition [f(iii). For
(), let Amgs (W) = (5 — Po,ij)Tise — (Cilje = Poij)Tize and write \/T(ﬁf]oT(d’) — mij (@) =

1 T ~
ﬁ Et:1 Qjjt (w)7 where

aij,t(w) = Amfﬁt(w) + (Citht - pO,ij) (fijT(W) — Mg (WO)) - (C?toC?? - Citht) Hij (wo)-

1
Similar to previous arguments, it can be shown that IT ZtT:I @i e (@) = 0p(1), so that VT |2 (&) — mp (@) =
op(1). m

Proof of Proposition [4; X is finite by Proposition Proposition i) and (iii). As in Ling and McAleer
(2003, Lemma 5.2), (i) follows from a Martingale Central Limit Theorem. Part (ii), follows from
Proposition [7] and Remark [l

Proof of Proposition By Proposition (7 vTinr (@) = VTR (&) + 0,(1), and we work with
VTa$ (©). From the consistency and asymptotic normality of 0, \/T(é —b) = Jg%/ng? (6o) + 0, (1),
where VT g (0) = VTgr(0) + op(1), by Proposition |ﬂ Similar to proof of Proposition [2 it is readily

% H < 00. Thus, a Uniform Law of Large numbers and first order asymptotic

shown that E sup, ’
expansion of VTa$ (@) about wy, yields VTa (@) = AgVTus (wo) + 0p(1), and the result follows
from Proposition [4 W
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Table 2: CCC Models: Empirical Significance Levels against 5% nominal level
AR(1)-CCC-GARCH(1,1) DGP
E1 E2 E3
T=500 T=1000 T=500 T=1000 T=500 T=1000
Gaussian errors

o 1298 852 1607 1018 1565  10.31
o 408 479 5.02 507  AT8 5.32
oy 743 654  3.17 416 3.71 4,62
il 403 461 4.56 476 3.99 4.52
$C 1533 1001 1675 1161 17.81 1177
50 432 470 5.1 587  4.82 5.65
59 1184 871  6.57 6.82 681 7.08
SEU 437 461 5.02 561 5.09 5.76
S0 o474 1504 2493 1610 2615  16.77
Sx/ 640 6.10 7.5 706 6.26 7.03
S 1692 1204 9.78 9.40  10.54 9.99
A 595  4.82 509  4.37 5.16
t(6) errors

0" 2090 1180 2725 1940  27.95  20.10
o’ 310 400  4.80 690 575 5.75
iy 1025 770 2.95 475 345 3.40
il 315 430  4.80 6.30  4.70 4.40
S 9630 1685 3210 2470  30.80  23.10
S 490 495  5.75 730 5.40 6.60
S¢@ 1550  10.80  8.90 9.45  7.70 8.40
SEUas 465  4.80 6.15  4.95 5.55
S0 4615 3245 4650 3465 4655  33.70
SE 75 795 715 980  7.60 8.80
S 3185 2260 1610  17.10 1525  14.95
S 580 745  3.90 700  3.95 455

Notes:

1. The first block reports results for Tse’s LM test, the second and third blocks those for CCM and FCM tests,
respectively. Within each block the order is: OPG-FQMLE, ROBUST-FQMLE, OPG-PQMLE, ROBUST-PQMLE.
2. T is the sample size and results are based on 10,000 simulations for Gaussian errors and 2,000 for t(6) errors.
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Table 4: DCC Models I: Empirical Rejection Rates against 5% empirical (nominal) critical value
AR(1)-DCC-GARCH(1,1) DGP

P1 P2 P3
T=500 T=1000 T=500 T=1000 T=500 T=1000
I, 1445 29.95 60.60  91.45 93.10  99.95
(34.85)  (42.75) (79.30)  (95.00) (97.35)  (99.95)
o 1495 27.60 51.00  88.00 85.45  99.70
(15.00)  (27.90) (51.00)  (88.10) (85.50)  (99.70)
il 1390 2485 44.00  85.60 7480  98.75
(9.80)  (27.60) (37.55)  (83.50) (69.20)  (98.30)
il 1365 2170 5040  88.15 84.60  99.60
(12.85)  (26.60) (49.10)  (87.60) (83.45)  (99.60)
S 1480 24.00 65.60  91.50 9520  99.90
(34.00)  (38.90) (82.45)  (96.40) (98.60)  (100.00)
SO 1285 2155 5715  88.65 91.55  99.70
(13.10)  (24.00) (57.50)  (90.20) (91.60)  (99.75)
S9N 1470 27.50 58.80  92.05 91.10  99.70
(18.45)  (33.10) (63.65)  (94.10) (92.45)  (99.80)
S9U) 1340 23.75 56.65  89.80 9225  99.80
(13.45)  (25.15) (56.65)  (90.55) (92.30)  (99.80)
S 1745 2015 7345  96.25 98.15  100.00
(50.95)  (52.45) (92.00)  (98.90) (99.85)  (100.00)
S/ 1565 27.10 63.80  94.75 95.40  100.00
(19.25)  (34.00) (69.80)  (96.05) (96.15)  (100.00)
S 1725 32.30 65.35  95.55 94.70  100.00
(27.50)  (43.90) (76.45)  (97.45) (97.30)  (100.00)
S 1505 25.70 61.55  94.05 94.45  100.00

(14.70)  (26.10) (60.95)  (94.05) (94.15)  (100.00)

Notes:

1. T is the sample size and results are based on 2,000 simulations.

2.For each test the first (second) row report rejection rates using empirical (nominal) critical values; i.e., figures in the
first row for ecah test statistic report size-adjusted rejection rates
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