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 - j
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af  : anti-resonant frequency (Hz) 

rf  : resonant frequency (Hz) 

1f , 2f  : half-power point frequencies (Hz) 

F : force (N) 

Fb : actuator blocking force (N) 

FM : Figure of Merit 

G : gear/transmission ratio 

GN : Glide Number 

h  : thickness (m) 

I  : area moment of inertia of the composite cross section (m
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2
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q : beta function parameter 

Q
 

: electric charge (C) 
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ox̂  : non-dimensional position of the wing pitching spanwise axis 
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Y  : Young's modulus (Pa) 
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  : angle of attack (deg.) 

e  : effective angle of attack (deg.) 
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D  : Dirac delta function 

T

33  : permittivity at constant stress (F.m
-1

) 

  : flapping angle amplitude (deg.) 

  : peak to peak flapping stroke angle (deg.) 

  : angular position in circle plane of Joukowski transformation (deg.) 

  : non-dimensional spanwise circulation  

  : spanwise circulation (m
2
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-1
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free  : circulation of the free vortex (m
2
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-1
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other  : mass fraction of the systems components other than batteries and 
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-3
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Ω : angular velocity (rad.sec
-1
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  : mode shape coefficient 

  : frequency (Hz) 
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  : damping ratio 

   

Subscripts 

   

1 : denotes length direction for piezoelectric actuator 
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ef : effective 
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th

 mode shape 

rot : rotational aerodynamic component 
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EMCF : Electromechanical Coupling Factor 
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Li-Po : Lithium Polymer 

LLT : Lifting Line Theory 

LLThw : Lifting Line Theory for hovering wings 

MAV : Micro Air Vehicle 
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PZT : Lead Zirconate Titanate (stands for piezoelectric) 

Re : Reynolds number 

RPM : Revolutions Per Minute 

TDC : Top Dead Centre 
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This thesis contributes to the state of the art in integrated design of insect-scale 

piezoelectric actuated flapping wing vehicles through the development of novel 

theoretical models for flapping wing aerodynamics and piezoelectric actuator dynamics, 

and integration of these models into a closed form design process. 

A comprehensive literature review of available engineered designs of miniature 

rotary and flapping wing vehicles is provided. A novel taxonomy based on wing and 

actuator kinematics is proposed as an effective means of classifying the large variation 

of vehicle configurations currently under development. The most successful insect-scale 

vehicles developed to date have used piezoelectric actuation, system resonance for 

motion amplification, and passive wing pitching.  

A novel analytical treatment is proposed to quantify induced power losses in 

normal hover that accounts for the effects of non uniform downwash, wake periodicity 

and effective flapping disc area. Two different quasi-steady aerodynamic modelling 

approaches are undertaken, one based on blade element analysis and one based on 

lifting line theory. Both approaches are explicitly linked to the underlying flow physics 

and, unlike a number of competing approaches, do not require empirical data. Models 

have been successfully validated against experimental and numerical data from the 

literature. These models have allowed improved insight into the role of the wing 

leading-edge vortex in lift augmentation and quantification of the comparative 

contributions of induced and profile drag for insect-like wings in hover. 

Theoretical aerodynamic analysis has been used to identify a theoretical solution 

for the optimum planform for a flapping wing in terms of chord and twist as a function 

of span. It is shown that an untwisted elliptical planform minimises profile power, 

whereas a more highly tapered design such as that found on a hummingbird minimises 

induced power. Aero-optimum wing kinematics for hovering are also assessed. It is 

shown that for efficient flight the flapping velocity should be constant whereas for 

maximum effectiveness the flapping velocity should be sinusoidal. For both cases, the 

wing pitching at stroke reversal should be as rapid as possible. 

A dynamic electromechanical model of piezoelectric bending actuators has been 

developed and validated against data obtained from experiments undertaken as part of 

this thesis. An expression for the electromechanical coupling factor (EMCF) is extracted 

from the analytical model and is used to understand the influence of actuator design 

variables on actuator performance. It is found that the variation in EMCF with design 

variables is similar for both static and dynamic operation, however for light damping the 

dynamic EMCF will typically be an order of magnitude greater than for static operation. 

Theoretical contributions to aerodynamic and electromechanical modelling are 

integrated into a low order design method for propulsion system sizing. The method is 

unique in that aside from mass fraction estimation, the underlying models are fully 

physics based. The transparency of the design method provides the designer with clear 

insight into effects of changing core design variables such as the maximum flapping 

amplitude, wing mass, transmission ratio, piezoelectric characteristics on the overall 

design solution. Whilst the wing mass is only around 10% of the actuator mass, the 

effective wing mass is 16 times the effective actuator mass for a typical transmission 

ratio of 10 and hence the wing mass dominates the inertial contribution to the system 

dynamics. For optimum aerodynamic effectiveness and efficiency it is important to 

achieve high flapping amplitudes, however this is typically limited by the maximum 

allowable field strength of the piezoelectric material used in the actuator. 
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 1 

 Introduction  

 

This chapter defines aim, objectives and outline of this thesis.   
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1.1  Background  

In aeronautical engineering, scale and scientific passion are inversely proportional. This 

is demonstrated by the development of unmanned air vehicles (UAVs) in the last two 

decades, where the miniaturisation challenge has gone from ‘mini’ to ‘micro’ then to 

‘nano’ and now to ‘pico’. Whilst there is no clear definition of the boundaries between 

these classes, the naming progress is obviously encouraging smaller and smaller 

platforms. This passion towards smaller air vehicles is not only because of being a new 

frontier to human scientific knowledge but also because of our rapidly progressing life 

demands that involve missions in geometrically constrained areas. The first concept that 

will approach one's mind when considering tiny sized air vehicles is ‘insects’. This does 

not necessitate that they are the best solution, but they are definitely a proven solution 

that is copious in nature. Indeed Insect-like flapping flight is nowadays a very 

interesting research topic lying at the interface between biology and engineering. Whilst 

biologists are probably more concerned with understanding the principles of insects 

flying behaviour, engineers are trying to cast this understanding into design models that 

would develop this class of bio-inspired vehicles. However, unlike fixed and rotary 

wing vehicles, insect-like vehicles are still in their infancy with little known, not just 

about the higher level understanding of the optimality of their designs, but even about 

the basic fundamental requirements for a successful operation.  

Many insect-like hover-capable designs employing different concepts have been 

introduced within the last fifteen years, each achieving success to a certain limit. 

However, the last four years, in particular, witnessed the presentation of breathtaking 

designs that can be considered important milestones within the development history of 

these vehicles, Figure 1.1. In 2011, the ‘Nano-Hummingbird’ was introduced, 

representing a successful palm-size flapping wing vehicle capable of controlled 

hovering flight. In 2013, the pneumatic and electric automation company Festo 

presented its ‘Bionic-Insect’. Whilst having a relatively large size (wing span of 63 cm), 

the dragonfly-like vehicle was able to demonstrate full active control of wing pitch, 

flapping amplitude and frequency. The year 2013 also witnessed the first controlled 

liftoff for the Harvard ‘Microrobotic-Fly’ which is a tether powered piezoelectric 

actuated insect-scale flapping wing vehicle design. The present work will consider 
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vehicles similar to this latter design and will contribute to their development through the 

presentation of generic toolsets for their preliminary design.  

 

 
 

Figure 1.1 Examples of the latest successful demonstrators of insect-like flapping wing air 

vehicles along with their biological counterparts. From left to right are the Festo ‘Bionic-Insect’, 

the AeroVironment ‘Nano-Hummingbird’ and the Harvard ‘Microrobotic-Fly’. These vehicles, 

in the shown order, represent increasing degrees of miniaturisation; however, they also 

demonstrate decreasing levels of control authority. More details of these designs will be 

provided in Chapter 2; engineered insect images taken from [42], [40] and [99] respectively. 

 

1.2  Aim  

The overall aim of this thesis is defined as 

To contribute to the state of the art in integrated design of insect-scale piezoelectric 

actuated flapping wing vehicles through the development of theoretical models for 

flapping wing aerodynamics and piezoelectric actuator dynamics, and integration of 

these models into a closed form design process.  

1.3 Objectives and Thesis Outline  

 Provide a thorough review of the available design concepts, system components 

and development challenges facing insect-like flapping wing vehicles (Chapter 2). 
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 Develop theoretical models to evaluate the efficiency of lift production of insect-

like flapping flight based on the induced power factor and the figure of merit 

measures (Chapter 3). 

 Introduce a generic, transparent and compact model for evaluation of the 

aerodynamics of insect-like flapping wings in hovering flight (Chapter 4). 

 Provide a theoretical argument for attributing the observed lift enhancement in 

revolving/flapping wings, particularly the role of the leading-edge vortex in lift 

production (Chapter 4). 

 Develop a quasi-steady lifting line theory and evaluate the drag breakdown for 

insect-like hovering flight (Chapter 5). 

 Identify the optimum hovering wing planform and investigate the aerodynamic 

performance of other hovering wing planforms driven by broader multidisciplinary 

engineering or evolutionary constraints (Chapter 6). 

 Identify optimum flapping wing kinematics against aerodynamic criteria of 

effectiveness measured in terms of maximum lift, and efficiency measured in terms 

of minimum power for a given amount of lift (Chapter 7). 

 Provide explicit and compact analytical expressions for lift and power of a hovering 

wing that enable exploration of a rich kinematic design space (Chapter 7). 

 Develop a comprehensive analytical model of the electromechanical behaviour of 

piezoelectric bending actuators in dynamic operations (Chapter 8). 

 Analyse the electromechanical coupling performance of piezoelectric actuators and 

identify their optimum configurations and best material properties (Chapter 8). 

 Develop a multi-physics design process capturing the electrical, mechanical and 

aerodynamic domains of the system for physical sizing of piezoelectric bending 

actuators for insect-scale flapping wing vehicles (Chapter 9). 

 Assess the feasible design space for insect-scale flapping wing vehicles in terms of 

identifying the most influential design variables, and understanding the best 

feasible design space for the piezoelectric type of propulsion (Chapter 9).  

 Summarise the main research outputs and their implications to the fields of insect 

flight aerodynamics, piezoelectric actuation dynamics and design of insect-scale 

flapping wing vehicles (Chapter 10). 

 Recommend routes for further research within the different disciplines involved 

(Chapter 10). 
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 2 

 Towards an Insect-Scale Air Vehicle: 

A Review of Design Concepts, System 

Components and Development 

Challenges  

 

This chapter provides a detailed assessment of existing hover capable micro air vehicle 

(MAV) and nano air vehicle (NAV) designs. The aim is to provide a thorough review of 

the available design concepts and to identify areas in which further effort is needed to 

advance the state of the art. The core of this chapter consists of four main sections 

discussing the different available design concepts. The first section discusses rotary 

wing MAVs. The second section discusses flapping wing vehicles driven by rotary 

actuators. The third section discusses flapping wing vehicles driven by reciprocating 

actuators. The fourth section provides a detailed assessment of the main subsystems 

constituting flapping wing vehicles driven by reciprocating piezoelectric actuators.  

Because of the breadth of each of the four sections, a summary is provided at the end of 

each section highlighting the strengths and weaknesses of the presented concepts. 
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2.1  Introduction  

In 1997, the Defence Advanced Research Projects Agency (DARPA) launched a pilot 

study for the design of micro air vehicles with a maximum dimension of no more than 

15 cm, take-off weight of less than 200 g, a range of 10 km, maximum velocities over 

13 m/s, and can operate for more than 20 minutes [1,2,3]. In 2005, DARPA once again 

pushed the limits by announcing the program for nano air vehicles or NAVs. The 

requirement this time was an air vehicle with a maximum dimension of no more than 10 

cm, take-off weight of less than 10 g, able to fly 1 km or more besides its capability for 

VTOL (Vertical Take Off and Landing) [3,4]. Whilst the previous MAV and NAV 

design specifications are not based on specific physical reasons, they provide a useful 

reference to define the engineering challenge. Birds and insects offer proven platforms 

satisfying these specifications; thus, it was not surprising to see the huge interest 

directed towards flapping flight to inspire a solution for this new challenge. Indeed, this 

opened a new frontier for aeronautical engineering and many design concepts has been 

presented within the last 15 years to achieve such purpose. It is thus necessary to review 

what has been proposed, define strengths and weaknesses, extract ideas for development 

and identify potential directions for future designs.  

Driven by civilian and military objectives, the main mission usually assigned to 

MAVs and NAVs is to perform surveillance and monitoring missions in geometrically 

constrained areas such as building, caves and tunnels. This requires a small size vehicle, 

capable of hovering and low speed flight, highly manoeuvrable, amongst other things 

[1]. Fixed wing air vehicles are not agile enough for indoor missions and are unable of 

sustained hovering [5,6]. Thus, rotary and flapping wing air vehicles are considered 

more able to satisfy the target specifications.  

This chapter is concerned with reviewing designs for insect-scale flapping wing air 

vehicles capable of hovering flight. This means that developments in fixed wing MAVs 

and larger scale flapping wing vehicles of bird size [7] are not considered. The chapter 

will provide a quick review on rotary wings MAVs; however, the main focus will be 

towards recent developments of flapping MAVs. Whilst there are a few assessments for 

some specific flapping wing designs [3,8-12], a detailed, coherent and consistent work 

that attempts to review the state of the art for hover capable MAV and NAV designs is 

still missing. Thus, the objectives of this chapter are: (1) provide taxonomy for 
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categorising existing relevant designs. (2) Discuss exiting designs in terms of 

configuration layout and achieved flight performance. (3) Provide comprehensive 

discussion on the primary systems of insect-scale vehicles including aspects of their 

prototyping and implementation. (4) Summarise the current state of the art of these 

vehicles, identifying current challenges, and directions for development.  

 

 
 

Figure 2.1 Taxonomy of hover capable micro air vehicles based on lifting surface and actuator 

kinematics.   

 

In order to provide a coherent framework for discussing the different approaches to 

achieving hovering flight with a small scale vehicle, a simple taxonomy is defined based 

on the kinematics of the surfaces producing lift and the actuator providing the motive 

power, Figure 2.1. The principle division is between rotary wings and reciprocating 

(flapping) wings. However, there are two important technological distinctives between 

reciprocating wings driven by a rotary actuator and reciprocating wings driven by a 

reciprocating actuator. Firstly, for rotary actuation some form of gear and crank 

transmission system is required, whereas for reciprocating actuation some form of 

multi-bar linkage is required. This has impact on manufacturing requirements for the 

given scale and frequency required. Secondly, there is a natural technology choice for 

rotary actuation in the form of an electric motor, whereas for reciprocating actuation the 

choice is not clear cut. For high force, low amplitude, high frequency applications 

piezoelectric actuators are a natural choice, whereas for higher amplitude lower 

frequency applications, electromagnetic actuators are well suited. As a higher level 

distinction between rotary and reciprocating kinematics, reciprocating systems can 

utilise system resonance to amplify the displacement output of the actuator whereas 
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rotary systems cannot. This is particularly important for piezoelectric actuators where 

the maximum actuator displacement is typically very small compared to the required 

wing displacement. Note that whilst exploitation of resonance provides significant 

performance benefits, it introduces significant design complexity in that the design of 

actuator is highly coupled to the design of the vehicle wing and transmission as will be 

addressed in Chapter 9 of this thesis. 

Section 2.2 will review the current state of the art in rotary wing MAVs. This will 

be followed in Section 2.3 by a review of palm-size flapping wing MAVs actuated by 

rotary motors. Section 2.4 will then present a detailed review of insect-scale flapping 

wing NAVs exploiting resonance for flapping motion amplification. These designs are 

discussed in light of their actuator configuration which can be a solenoid, a rotary motor 

or a piezoelectric bending actuator. Because this thesis is concerned with resonant 

piezoelectric actuated vehicles, Section 2.5 of this chapter will put more light on the 

main subsystems constituting these vehicles including energy sources, power electronics 

board, piezoelectric actuators, mechanical transmission and wings.  

2.2 Rotary Wing MAV Designs 

2.2.1 Motor actuated designs  

2.2.1.1 Coaxial configurations 

Whilst there are some concerns on the aerodynamic efficiency due to rotors wake 

interaction, most of the presented rotary wing designs at the MAV scale are of the 

coaxial configuration. This configuration allows reduction in rotors net size, ease of 

handling, structure simplicity and the exclusion of the tail rotor allows all the power to 

be devoted for providing useful lift [13].  

An early attempt in this class was the ‘MICOR’ (Micro Coaxial Rotorcraft), Figure 

2.2a, developed at the University of Maryland in 2003 [13]. The design had a mass of 

approximately 100 g. The used rotors had a solidity ratio of 0.119, a chord of 1 cm and 

a length of 7 cm. Power was provided from 17 g 6-V WES-Technik coreless DC motor 

with a maximum power output of 8.52 W. Lateral control was not implemented, 

however each rotor was driven by a separate motor to allow different rotational speeds 

for yaw control. The vehicle flew using onboard installed power along with open loop 

differential yaw control and using a nylon string for guidance. Although designed for 17 
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minutes of endurance, only 3 minutes were achieved which was reported to be due to a 

higher than expected current draw from the three 430 mAh, 3-V LiMnO2 batteries. 

Reported motor efficiency was 60% and the best measured rotor figure of merit (FM) 

for a single rotor was 0.42.  

Another design in this category is the ‘μFR’ (Micro Flying Robot) developed by 

Seiko Epson Corporation in 2003 [14]. The ‘µFR’ was powered by ultrasonic motors 

and was balanced in air by means of a stabilizing mechanism that uses a linear actuator 

[15]. The ‘µFR’ rotor diameter was 13 cm and had a mass of 8.9 g [14]. Though the 

‘µFR’ was radio-controlled, it relied on power from an external battery via a power 

tether (i.e. umbilical power). In 2004, the company released the ‘µFR-II’ with on-board 

lithium-polymer (Li-Po) battery, Figure 2.2b. A new gyro-sensor
 
that is one-fifth the 

weight of its predecessor was included, and lift was increased by 30% through the 

introduction of more powerful ultra-thin ultrasonic motors as well as newly designed 

rotors [14,15]. The ‘µFR-II’ had a rotor diameter of 13.6 cm and a mass of 12.3 g. It 

was able to show flight endurance of 3 minutes. 

 

 
 

Figure 2.2 Coaxial rotary MAV designs. (a) The University of Maryland ‘MICOR’; image 

taken from [13]. (b) Seiko Epson ‘µFR-II’; image taken from [14]. (c) ETH Zurich ‘Coax’; 

image taken from [16]. 

 

The last design to be discussed in this category is the ‘CoaX’, Figure 2.2c, 

developed at ETH Zurich in 2006 [16]. The design objective was to achieve up to 40% 

thrust margin and nearly 20 minutes flight while respecting the initial design 

requirements constrained by a maximum mass of 200 g and 30 cm diameter. Centre of 

gravity (CoG) shifting was used to control the lateral motion, and a separate motor was 

used for each rotor to achieve yaw control. Brushless sensorless motors with a mass of 

12 g using a dedicated speed controller along with a 4:1 reduction gear were used. A 70 

http://en.wikipedia.org/wiki/Ultrasonic_motor
http://en.wikipedia.org/wiki/Linear_actuator
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g, 900 mAh Li-Po battery powered the system. ‘CoaX’ was reported to hover without 

any external control for short moments. 

2.2.1.2 Quad-rotor configurations 

Quad-rotors or rotorcraft with four lifting rotors have recently attracted special attention 

within the UAV community particularly from a control and stability perspective. 

Control is achieved by varying the RPM and/or collective pitch angle of the different 

rotors allowing variation of the magnitude and direction of the vehicle thrust vector. 

Many successful designs have been introduced within the 0.5 to 1 metre-scale; however, 

fewer designs have been demonstrated within the NAV scale. Here, only NAV-scale 

quad-rotors will be discussed. In 2013, hobby companies started to present some small-

scale designs such as the ‘Hubsan Q4’ [17], Figure 2.3. This design measures 

approximately 5 cm x 5 cm, has a mass of around 11.5 g and can fly for about 5 

minutes. 

 

 
 

Figure 2.3 The ‘Hubsan Q4’ nano quad-copter; image taken from [17]. 

 

From academia, the only NAV-scale quad-rotor design presented was the 

‘Mesicopter’, Figure 2.4, developed at Stanford University around the year 2000 [18-

20]. It is a battery powered system that was only able to demonstrate thrust production 

but not free flights. Two prototypes were developed, an initial prototype of a maximum 

take-off weight of about 3 g operated through an external power supply and a second 

battery powered prototype with a maximum take-off weight of 10 to 15 g. The 

prototypes used 325 mg DC motors from RMB Switzerland of efficiencies up to 67%. 

Motor control electronics have been replicated using small components to achieve a 

board weight of much less than 1 g.  
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Figure 2.4 ‘Mesicopter’ quad-copter rotary NAV design developed at Stanford University. (a) 

and (b) Initial prototypes. (c) Four rotor lift test. All images taken from [19]. 

  

A set of analysis, design, and fabrication methods were applied to investigate the 

feasibility of the very small rotorcraft. The aerodynamic design of the rotor system was 

presented in details based on 2D Navier-Stokes analysis of the rotor sections combined 

with blade element analysis for 3D nonlinear optimisation of the rotors. Two rotor 

geometries were examined, the first was a 1.5 cm diameter rotor whereas the second 

was 2.2 cm diameter rotor designed for four times the thrust. However, the 

manufactured rotor section shapes did not well approximate the initially designed 

sections mainly due to less precise manufacturing at this scale. Stability, control and 

power systems aspects of the design were considered in a general discussion fashion 

without demonstrating their implementation. The ‘Mesicopter’ did not demonstrate free 

flight; however, single rotor and four rotors tests on a pivoted arm constraining the 

motion to a single degree of freedom were conducted, Figure 2.4c. Thrust 

measurements of the rotors showed maximum thrusts of about 80% of the predicted 

values which according to the developers opinion indicates that, apart from the 

manufacturing differences between the built rotors and the intended design, the 

aerodynamic design approach was appropriate at this scale. 

2.2.1.3 Single main rotor/tail rotor configurations 

Although large scale rotorcraft are usually designed in a conventional main rotor/tail 

rotor configuration and despite that some hobby rotary MAVs including the 6.9 g 

‘Pixelito’ are provided in this configuration, almost no notable MAV designs in this 

configuration have been presented from academia. This is usually attributed to the 

additional mechanical complexity from the tail rotor drive system [13]; however, this 

configuration provides good aerodynamic efficiency as well as good controllability and 
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manoeuvrability characteristics. A successful MAV example in this category is the ‘PD-

100 Black Hornet’, Figure 2.5. The ‘Black Hornet’ development started in April 2008 

and several prototypes and technology demonstrators were produced; however, serial 

production was established in early 2012 [21]. The system is considered the world’s 

first operational complete nano-system and is currently in service with international 

units [22]. The ‘Black Hornet’ has a rotor span of 12 cm, a mass of 16 g including a 

steerable EO camera (pan/tilt). It can achieve maximum speeds of 10 m/s, and has 

endurance up to 25 minutes. It has a digital data link, range 1000 m Line-of-Sight, GPS 

navigation or visual navigation through video. 

  

 
 

Figure 2.5 The ‘PD-100 Black Hornet’ conventional rotorcraft MAV design; images taken from 

[21]. 

 

2.2.1.4 Winged seed configurations 

Robotic samara, or winged seed resembles one of nature’s fliers, the seed of the Maple 

tree [23], Figure 2.6a. These vehicles achieve continuous rotation making use of the 

available thrust force from a propeller attached to their bodies (see Figures 2.6b and 

2.6c), and in the event of motor failure the vehicles should gently auto-rotate back to the 

ground. Advantages over traditional micro-scaled VTOL configurations include 

efficient autorotation and mechanical simplicity; however, there is a clear disadvantage 

in that fuselage and attached sensors are constrained to rotate with the main rotor.  

 A group from the University of Maryland considered this configuration in depth 

and developed three robotic samaras [24-27]; Samara I and II are shown in Figure 2.6b 

and Samara III is shown in Figure 2.6c. These robotic Samaras were developed based 

on an iterative design process which produced an order of 100 vehicles. The maximum 

dimension of Samara I was 27 cm, and had a total mass of 75 g. Its flight duration was 

about 20 minutes with a 25 g, 480 mAh 7.4V two-cell Li-Po battery. Samara II was a 

smaller version designed and constructed in a similar fashion to Samara I. The total 
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mass was 38 g, the maximum dimension was 18 cm and could fly for around 10 

minutes. The smallest of the robotic samaras was the Samara III which had a maximum 

dimension of 75 mm and a total mass of 9.5 g. It was powered by a 60 mAh 3.4 V 

single-cell Li-Po battery and had a maximum flight time of around 2 minutes. Due to 

compactness issues, the Samara III had only a passive flap hinge and did not have servo 

control collective pitch, which reduced control only to the vertical axis.  

 

 
 

Figure 2.6 (a) The flight path of a maple seed visualized in a composite multiflash photograph; 

cover photo of Science, June 2009. Winged seed rotating MAV designs: (b) The University of 

Maryland Samara I and II; image taken from [26]. (c) The University of Maryland Samara III; 

image taken from [25]. 

 

2.2.1.5 Other configurations 

In this sub-section other possible rotary configurations are highlighted. The first 

configuration is from the Konkuk University and was developed in 2004 [28], Figure 

2.7a. The system was composed of an electronic motor, a rotor with two blades, two 

passive anti-torque vanes, two active anti-torque vanes, and a directional control 

surface. The reported total mass was less than 130 g and the motor used produced 

sufficient thrust at 1900 rpm with a total current of 1.67 A. The battery capacity was 

340 mAh. The anti-torque control surfaces were designed to produce a torque of 270 

g.cm in hover conditions; these surfaces were 8 cm long, and attached at 3.2 cm below 
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the rotor blade. The vehicle was designed for a flight time of 8.4 minutes, and maximum 

reported duration was 5 minutes.  

 

 
 

Figure 2.7 Other rotary wing MAV designs. (a) Konkuk University design; image taken from 

[28]. (b) Arizona/ISAE design; image taken from [29]. (c) The University of Maryland 

cyclorotor; image taken from [30]. 

 

In 2008 a team from the University of Arizona and the ISAE of France presented a 

tilt-body, tail-sitter VTOL MAV concept [29], Figure 2.7b. The design is based on a 

contra-rotating propeller-motor electric propulsion system where detailed 

design/analysis was conducted regarding the aerodynamic and propulsion 

characteristics. The takeoff weight was 180 g. Each propeller was powered by a 

separate motor. This system was assembled by using off-the-shelf brushless outrunners 

MPJetAC22/4-60D with Phoenix-25 electric speed controllers. Propellers used were 

APC with a 14 cm diameter and 11.4 cm pitch. The distance between propellers was 1.7 

cm. The airframe had a Zimmerman wing planform with 30 cm wingspan and wing area 

of 488 cm
2
. Power required was 80 W, and the used battery was a 3-cell Li-Po battery 

with 740 mAh capacity. Two fins with rudders provided roll and yaw stabilisation, 

whereas two elevons provided pitch and yaw control. Demonstrations of hover, 

sustained vertical climbs, and transition to and from a level flight were conducted using 

manual control from a pilot. 

The Cycloidal-rotor or cyclorotor is another possible rotary wing MAV concept, 

e.g. that developed by the University of Maryland [30-32], Figure 2.7c.  Here, the blade 

span is parallel to the rotation axis and the pitch angle of each blade is varied cyclically 

such that the blade is at a positive incidence at top and bottom halves of the azimuth 

cycle [30]. The amplitude and phase variations of the cyclic blade pitch is employed to 

change the magnitude and direction of the net thrust vector for control purposes. The 
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design shown in Figure 2.7c is a twin cyclocopter capable of stable hovering and has a 

mass of 215 g and a blade span of 15.24 cm. Several study aspects were conducted on 

this concept including aerodynamic and PIV measurements as well as investigations to 

improve the performance through studying the effects of the geometric and kinematics 

design variables. These parametric investigations showed possible significant 

improvement in the cyclorotor performance and the final efficiency was found to be 

comparable to that of a conventional micro rotor at the same scale: The power loading 

of the optimised cyclorotor was higher than that of a conventional micro-scale rotor 

when compared at the same disk loading [30] and the FM was 0.4 [32].  

2.2.2 Piezoelectric actuated rotary wing design 

There has been an attempt to replace the rotary wing motor with a reciprocating 

piezoelectric actuator in a concept referred to as ‘Flapping Wing Rotor’ from the 

University of Cranfield in 2011 [33]. Theoretical study, numerical modelling, and 

experiments were undertaken. It is essentially a ‘piezofan’ design (see section 2.4.2.1) 

but with the wings attached in a rotor fashion. Excitation of the piezoelectric actuator at 

resonance in the flapping axis leads to a thrust force that rotates the two wings. A 

prototype was manufactured and tested, Figure 2.8. This prototype was made of a 

piezoelectric actuator, a shaft, and a pair of flapping wings connected at the two ends of 

the actuator in axial symmetry about the shaft. The piezoelectric actuator used in the test 

model was the commercially available THUNDER TH-8R of dimension 13.7 × 6.3 cm. 

The wing was made of four beams supporting a polymer thin foil skin with a length of 9 

cm and a maximum chord of 3 cm.  

 

 
 

Figure 2.8 Cranfield University flapping wing rotor actuated with a piezoelectric actuator; 

image taken from [33]. 
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The dynamic behaviour of the model was analysed using FEM. The aerodynamic 

forces were modelled based on Theodorsen theory as well as using CFD numerical 

simulations. To validate their theoretical and numerical analysis, an experiment of the 

test model was carried out through which the total force produced by the flapping wing 

rotor including the aerodynamic and inertia forces has been measured. The comparison 

showed a good agreement between the experimental and analytical results. Flight tests 

were not reported.  

2.2.3  Summary of rotary wing MAV designs 

This sub-section provides a summary of the presented rotary wing MAVs. Design data 

are presented in Table 2.1.  

Table 2.1 Comparison of the main characteristics of rotary wing MAVs. Designs are presented 

in a chronological order. 

Design Year1 Source Configuration 
Mass 

(g) 

Rotor 

diameter 

 (cm) 

Endurance 

(min) 

Power 

Source 
Features 

Mesicopter 2000 Academia Planar- 

Multirotor 

3 1.5 NA Tether power No free flight 

MICOR 2003 Academia Coaxial 103 15.24 3 Three 430 

mAh LiMnO2  

Open loop differential 

yaw  

μFR II 2004 Industry Coaxial 12.3 13.6 3 LiPo  Gyro sensor / linear 

actuator for stability / 

32-bit RISC 

microcontroller 

Konkok 2004- 

2006 

Academia Hybrid 130 NA 5 340 mAh 

LiPo  

Gyro for anti-torque 

stability / Yaw 

directional control 

surface 

CoaX 2006 Academia Coaxial 200 30 Short 

moments 

900 mAh 

LiPo  

Lateral control using 

CoG shifting / 

differential yaw 

Arizona 

/ISAE 

2008 Academia Hybrid 180 14 NA 740 mAh 

LiPo  

Fins with rudders for 

roll & yaw stability / 

Elevons for pitch & 

yaw stability 

Samara I ~2009 Academia Samara 75 27* 20 480 mAh 

LiPo  

Servo control of 

collective pitch / 

Propeller control of 

rotation rate / Indoor 

close loop control  

Samara III ~2010 Academia Samara 9.5 7.5* 2 60 mAh LiPo  No servo control of 

collective pitch / 

Passive flap hinge 

Black 

Hornet 

2008- 

2012 

Industry Conventional 16 12 25 NA GPS and Visual 

navigations / Digital 

data link 

Hubsan Q4 2013 Industry Planar- 

Multirotor 

11.5 3 5 100 mAh 

LiPo  

6 axis flight control 

system with adjustable 

gyro sensitivity 
1
 based on most significant publication, * based on maximum dimension 

In summary, the development of rotary wing vehicles at the micro scale started only 

a decade ago and it seems that achieving relatively long endurance remains the main 
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challenge. However, despite some concerns regarding the achieved flight performance, 

most micro rotary wing vehicles succeeded in demonstrating free flight. 

Most of the vehicles presented did not achieve the flight endurance they were 

designed for. It is common to find groups reporting this issue and usually reasoning it to 

low aerodynamic efficiency at this scale as well as failure to accurately predict 

performance of batteries. Reported FM values are around 0.4 and can reach 0.6 in best 

cases; this is mainly attributed to profile drag which is higher at low Reynolds number 

(more discussions on the FM will be presented in Section 3.4.2). This motivates further 

research to enhance the aerodynamic efficiency as well as improve power sources 

characteristics. However, electric power source development is driven mainly by 

electronic consumers and is not considered in this thesis.  

Designs presented from industry were generally more successful compared to those 

from academia. A very impressive design is the Black Hornet that is now the world first 

operational MAV in service; its considerably improved endurance given the small size 

and weight as well as its control and guidance systems represent an important milestone 

in the development timeline of MAVs.  

Many of the possible rotary configurations were demonstrated successfully 

including coaxial, main rotor/tail rotor, quad rotor, rotary seed and hybrid designs. No 

significant contributions at the micro scale were presented in the tandem or ducted 

coaxial configurations. Most probably compactness issues limit the former while 

complexity issues limit the latter. 

The ‘Mesicopter’ and the ‘Hubsan Q4’ designs were the only presented 

demonstrators at the insect-scale. Both are in the quad-rotor configuration. Whilst the 

‘Mesicopter’ did not achieve free flight, the ‘Hubsan Q4’ is now attracting much 

attention from the hobby community.   

2.3  Flapping Wing MAV Designs with Rotary Actuation 

2.3.1 Two wing designs 

This sub-section will discuss designs having a single pair of flapping wings as the lift 

generating surfaces. For completeness, a number of traditional ornithopter designs with 

a horizontal tail surface which are primary designed for forward flight are included. 

These vehicles are unable to achieve sustained controlled hover, however since in 

principle they can meet the thrust ≥ weight requirement they are considered as in scope. 
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Whilst elastic powered model ornithopters have been in existence for many years, the 

first electrically powered ornithopter to fly was the ‘Microbat’ developed by Caltech 

and Aerovironment in 1998 [34,35], Figure 2.9a and 2.9b. Four transmission designs 

were considered, Figure 2.9c, from which configuration C was built, Figure 2.9d. 

  

 
 

Figure 2.9 The two ‘Microbat’ versions: (a) super capacitor-powered, (b) battery-powered. (c) 

Various transmission designs for the ‘Microbat’ MAV developed at Caltech. (d) The fabricated 

transmission system. All images are taken from [34]. 

 

Motive power was provided by a 1.5 W DC motor via a gear box with transmission 

ratio of 22:1. With no wings attached a flapping frequency of 42 Hz was achieved. The 

operational frequency with wings on was 30 Hz. Two variants of the vehicle were 

developed, one powered by a super capacitor and one by a battery. The super capacitor 

variant, Figure 2.9a, had two 1 F super capacitors, an overall weight of 6.5 g and flew 

for 9 seconds. The battery powered variant used a 3.5 g Sanyo 50 mAh NiCd N-50 

battery, which was the lightest battery commercially available at the time. A DC to DC 

converter weighing 1.9 g was used to step up the nominal battery voltage of 1 V to the 

4-6 V required by the motor. The battery variant, Figure 2.9b, had an overall weight of 

10.5 g and flew for 18 seconds. 

A design similar to the ‘Microbat’ was presented by a group from the Tamkang 

University in Taiwan around 2006 [36], Figure 2.10a. The wing skin was made from 

PVDF (polyvinylidene fluoride), with the objective of using the skin to sense 



2. State of the Art 

 

63 
 

aerodynamic forces as part of a control system. The transmission system used a four bar 

linkage system that allowed variable phase lag between each wing. The wing span was 

28 cm and the all up weight was 11 g. Motive power has been provided by a DC motor 

via a 27:1 reduction gear box. Flight control was via 2 channel radio control (tail angle, 

motor rpm). A flight duration of 10 seconds over a distance of 40 m was reported. In a 

later attempt [37], a second prototype produced with improved manufacturing methods 

and a reduced wing span of 22 cm reduced the vehicle mass to 6 g and increased the 

flight endurance to last over 6 minutes. 

 

 
 

Figure 2.10 (a) MAV with PVDF sensors from the Tamkang University; image taken from 

[36]. (b) MAV from Chung Hua University; image taken from [38]. 

 

Tsai and Fu from Chung Hua University in Taiwan presented a further Microbat-

like design in 2007 [38], Figure 2.10b. The vehicle weighed 8 g, had a wing span of 15 

cm and an aspect ratio of 3. The aerodynamic surfaces were sized and arranged based 

on statistical data from previous designs. Power was provided by a 2 g DC motor with 

an output speed of 28,000 rpm. The battery used was a single cell Li-H battery weighing 

1.5 g. The transmission system used a 18:1 reduction gear followed by a four bar crank. 

Flapping frequency was around 26 Hz and the total flapping angle was 73 degrees. A 

flight distance of 8 m was reported.   

The ‘Proxdynamics’ ornithopter introduced in 2007 [39], Figure 2.11a, is similar in 

configuration to the preliminary described ‘Microbat’ configuration but at a 

significantly reduced all up weight of 1.1 g. The vehicle had a span of 10 cm, and a 

length of 8.5 cm. It used a 3.2 mm diameter coreless DC motor and an 8 mAh Li-Po 

battery. The ornithopter was set to fly in circles with the speed and height being 

controlled, and flight time was around 1 minute. 

 



Design of Insect-Scale Flapping Wing Vehicles 

 

64 
 

 
 

Figure 2.11 (a) The Proxdynamics ornithopter; image taken from [39]. (b) AeroVironment 

‘Nano-Hummingbird’; image taken from [40]. 

 

A significant technological leap was provided by the AeroVironment ‘Nano-

Hummingbird’ introduced in 2009 [40], Figure 2.11b. The full technical details of this 

vehicle are not published, however it can be surmised that each wing was independently 

actuated in flapping and twist axes in order to provide 6 degree of freedom control of 

the vehicle in hover. The wing span was 16 cm and the all up weight was 19 g. A hover 

endurance of 8 minutes is quoted. Controlled transition from hover to forward flight at 5 

m/s and back to hover was demonstrated. 

2.3.2 Four wing designs 

 
 

Figure 2.12 (a) The Cornell University four wing ornithopter, and (b) the ornithopter detailed 

mechanism; image taken from [41]. 

 

Few designs have been presented recently in a four wing configuration similar to a 

dragon fly, and can be considered as analogous to quad rotor designs. A first example is 

the design presented by Ritcher and Lipson from Cornell University in 2010 [41], 

Figure 2.12a. The vehicle had a mass of 3.89 g, and demonstrated an 85 seconds 

untethered hovering flight. Experimentation with several wing designs were carried, and 

the finally chosen wings were 8 cm long with a maximum chord length of 3 cm. The 

wings alone were flapped at approximately 30 Hz through an angle of 110 degrees using 
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a GM15 motor available from Solarbotics with 25:1 gear reduction. A fuselage was 

designed to carry the motor, crank, and wing hinge, Figure 2.12b. The vehicle was first 

tested using a tether power source and was able to lift up to 1.5 g of payload, which is 

roughly equivalent to the mass of the two 10 mAh Li-Po batteries required for flight.  

 

 
 

Figure 2.13 The ‘Bionic-Insect’ from Festo; image taken from [42]. 

 

Festo in 2013 presented a dragonfly-like vehicle named the ‘Bionic-Insect’ [42], 

Figure 2.13. The vehicle had a relatively large wingspan of 63 cm; however, it is a 

successful demonstrator inspired from insects that deserves reporting. The body length 

was 44 cm and the vehicle had a mass of 175 g. Each of the four wings can achieve 

control of the flapping frequency, flapping amplitude, and wing pitching motion 

allowing superior control of the magnitude and direction of thrust force of each wing. 

The flapping frequency was adjustable between 15 and 20 Hz. Wings can be turned 

from horizontal to vertical using servo motors that can pitch the wing by up to 90 

degrees, see Figure 2.13. Four servo motors at the wing junctions controlled the 

flapping amplitudes through a linear movement at the wing root allowing the integrated 

crank mechanism to change the angle between approximately 80 and 130 degrees. 

Additional degrees of freedom were added in the head and tail through four flexible 

muscles made of nitinol. By allowing an electric current through this shape memory 

alloys, they act as ultra-light actuators able to move the head horizontally and the tail 
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vertically. The vehicle used one brushless motor powered by two 7.6 V Li-Po batteries, 

and was able to demonstrate free flight.  

2.3.3 Clap and fling wing designs 

This sub-section will discuss designs with wings employing the clap and fling 

mechanism as described by Weis-Fogh [43]. Note that inclusion of clap and fling as a 

specific category of vehicles is because there are a number of designs that can be 

conveniently grouped under this heading. Clap and fling of itself does not provide 

significant novelty over other ornithopter designs described previously. An earlier 

design relying on this mechanism is the ‘Mentor’ MAV developed by Advanced 

Subsonics Inc., the University of Toronto and SRI International in 2002 [44]. Two 

flying prototypes were built, Figures 2.14a and b, one with an internal combustion 

engine and another with an electric motor. Both had a drive train to reduce the high rpm 

rotary shaft motion to lower-frequency flapping oscillation as well as a programmable 

logic board for stabilisation.  

The internal combustion engine prototype had a mass of 580 g and wings of 35.5 

cm span actuated at a nominal frequency of 30 Hz. The MAV was controlled with four 

independently actuated fins of approximately the same size as the flapping wings. 

Although designed to achieve up to 6 minutes of hovering flight, an endurance of 

around 1 minute was only achieved. The electric-powered version had a mass of 440 g 

and the wings were identical to those used for the engine prototype, except that the 

stiffness was reduced and this was argued to be for greater aerodynamic efficiency. The 

flapping frequency was approximately 30 Hz and power was delivered from a brushless 

electric motor driving a gearbox connected to a rotary to oscillatory transmission. A 

battery pack of eight 600 mAh Ni-Cd cells was used allowing hovering flights of around 

20 seconds.  

Another design in this category is the ‘Delfly-Micro’ from the Delft University of 

Technology [45] introduced in the year 2008, Figure 2.14c. The ‘Delfly-Micro’ is the 

result of two miniaturisation steps of a single design based on two successful previous 

versions, namely the Delfly I and Delfly II [9,45]. Here only the ‘Delfly-Micro’ is 

discussed because it represents the lower bound of the miniaturisation process 

implemented on this concept. It had a 10 cm wingspan, a mass of 3.07 g and flapped its 

wings at 30 Hz. It carried a video camera fully controllable by radio. Control was 

achieved by the tail section. A DC electric motor drove the four wings through a gear 
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reduction and a linkage system. Wing pitching was obtained by tailored stiffness of spar 

reinforced membrane wings. The ‘Delfly-Micro’ demonstrated slow moving and near 

hovering flight up to 3 minutes using a 30 mAh Li-Po battery. 

 

 
 

Figure 2.14 Clap and fling designs. (a) and (b) The ‘Mentor’ MAV with internal combustion 

and electric propulsions respectively; images taken from [44]. (c) The ‘Delfly-Micro’; image 

taken from [45]. (d) The Fukuoka Institute of Technology MAV; image taken from [46]. (e) The 

Cornell University MAV; image taken from [47]. 

 

A design developed by Kawamura Laboratory, Fukuoka Institute of Technology 

was proposed in 2008 [46], Figure 2.14d. The vehicle had a 10 cm wingspan, a mass of 

2.3 g, and the hovering flapping frequency was 35 Hz. A DC motor connected to a 

reduction gearbox was used, and a linkage based four-bar mechanism was designed so 

that the two pair of wings claps at the peak and bottom of the stroke. The prototype was 

reported to be capable of free flight using a tail with control surfaces.  

The last design presented within this group is the unique MAV shown in Figure 

2.14e developed at Cornell University in 2010 [47]. The design is a combination of the 

‘four wing’ and ‘clap and fling’ configurations. The vehicle had an all up mass of 24 g. 

Four pairs of wings were used and each wing pair was actuated by a separate 1.2 g 

geared (25:1) DC pager motor. The motor was connected to a crankshaft, which was 

connected to the wings with connecting rods and ball joints. Motors were powered in 

parallel using two 3.1 g, 3.7 V, 90 mAh Li-Po batteries. Top and bottom sails to provide 

stability were used. Flight testing operating conditions were measured to be 6.5 V at 

1.07 A to generate a total lift of 25 g for 33 seconds of flight.  
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2.3.4 Non-Conventional designs 

The designs presented in this sub-section are unique in either their configuration and/or 

their thrust generation concept. The first design is from the Naval Postgraduate School 

(NPS) that used flapping wings for propulsion whilst generating lift by a stationary non-

flapping wing [12]. A clapping flapping style was demonstrated through flapping with 

constant spanwise amplitude rather than flapping as insects or birds around the wing 

root. Because the flapping wings draw air in with a suction effect, it was argued that 

delay of flow separation is evident and the vehicle can recover from stall and gain 

control back quickly [48,12]. Several wind tunnel test models were prototyped to test 

the concept leading to a few generations of radio controlled MAVs. The third generation 

model is shown in Figure 2.15a. It had a 25 cm span and a mass of 13 g. The flight 

speed ranged between 2 and 5 m/s, where the maximum flight speed was clearly limited 

by the maximum achievable frequency of 40 Hz. The speed was controlled by trimming 

the pitch of the flapping wings pre-flight, and the altitude was controlled by varying the 

flapping rate [7]. The MAV demonstrated extended controlled forward flight for 15 min 

on a rechargeable battery [12]; however, the concept is not well suited to steady 

hovering. 

 

 
 

Figure 2.15 Non conventional designs. (a) Naval Postgraduate school concept third generation 

model; image taken from [48]. (b) Butterfly-type ornithopter (BTO) prototype developed at the 

University of Tokyo; image taken from [49]. (c) Jellyfish like MAV; image taken from [50]. 

 

The second design presented here has neither a tail nor flight control devices. This 

concept was studied at the University of Tokyo to mimic butterfly flight in 2005[49], 

Figure 2.15b. The rubber band actuated vehicle was referred to as Butterfly-type 

ornithopter ‘BTO’; it had a 14 cm wing span and a mass of 400 mg. The flapping 

frequency was adjusted by the rubber band thickness and length. The wings were 

flapped at 10 Hz by a steel wire crank and linkages with a stroke angle that varies from 
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‒24 to 50 degrees. Because it has no continuous power source; the BTO demonstrated 

flight for about 3 seconds.  

The last concept discussed here was presented in early 2014. The unique concept 

employed an electric motor for actuation but flapped its wings in a jellyfish like motion 

[50], Figure 2.15c. The total vehicle mass was 2.1 g and the wings were 8 cm in length. 

It used a 1.1 g GM15 Solarbotic motor powered through a tether. The motor was 

positioned at the bottom of the vehicle driving a crankshaft that is connected to the 

wings through low friction Teflon junctions. The employed kinematics were such that 

each pair of wings leads the other by a quarter period. A voltage of 5.5 V to the motor 

allowed a 19 Hz flapping frequency sufficient to support the vehicle weight. The model 

was used to study stability in hovering without the need for additional aerodynamic 

surfaces or feedback control; it was also used to demonstrate the enhancement of 

aerodynamic force generation due to wing bending. 

2.3.5   Summary of flapping wing MAV designs with rotary actuation 

Here, a summary of the presented rotary actuated flapping wing MAVs is provided, and 

these MAV data are presented in Table 2.2. In summary, having achieved sufficient 

thrust, improving flight endurance seems to be the biggest next challenge. Reducing 

weight, improving aerodynamic design and enhancing power systems performance are 

the major drivers. Academia has presented more designs than industry; however, the 

designs presented from industry were generally more successful including 

Aeronvironment ‘Nano-Hummingbird’ and Festo ‘Bionic-Insect’. Similar to rotary 

wing concepts, the designs within this group that employ a four wing configuration use 

these wings for lift generation as well as for stability and control whilst the designs 

employing two wings, apart from the BTO, have a tail for stabilisation and possible 

control. 

Almost all of the developed designs within this category employ the same 

transmission mechanism concept; i.e. a motor is connected to a reduction gear box 

which in turn drives a four bar linkage mechanism for flapping motion generation. All 

these designs relied on conventional mechanical elements, such as gears and sliders, 

which are known to have unfavourable scaling of surface effects as the size is reduced. 

Therefore, the employed mechanisms are suitable for the palm sized vehicles but are not 

suitable for application to an insect-scale flapping wing NAV design. Flapping 

frequency varied between 20 to 40 Hz. With the exception of the two designs presented 
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from industry, all the designs within this category employed passive pitching of the 

wing.  

 

Table 2.2 Comparison of the main characteristics of flapping wing MAVs with rotary actuation. 

Designs are presented in a chronological order. 

Design Year1 Source Configuration 
Mass 

(g) 

Span 

(cm) 

Endu-

rance 

(sec.) 

Frequency 

(Hz) 

Hover 

capable 
Features 

Microbat 

I 

1998-

2000 

Academia 

+ Industry 

2 wings 6.5 15.24 9 30 NA Powered by super 

capacitor  

Microbat 

II 

1998-

2000 

Academia 

+ Industry 

2 wings 10.5 15.24 18 30 NA Battery powered  

Mentor 

I 

2002 Academia Clap& Fling 580 35.5 > 60 30 Yes  IC Engine 

Mentor 

II 

2002 Academia Clap& Fling 440 35.5 > 20 30 Yes  Electric motor 

NPS  2005 Academia Non-

Conventional 

13 25 900 40 No  Flapping biplane for 

propulsion / Fixed 

wing for lift / Flow 

separation control 

BTO 2005 Academia Non-

Conventional 

0.4 14 3 10 No  Rubber band / No 

flight control 

Tamkang  ~2006 Academia 2 wings 10.7 28 10 NA NA  PVDF sensors / Wet 

etching for 

construction  

Chang 

Hua  

~2007 Academia 2 wings 8 15 NA 25.58 NA  Achieved 8 m range 

Prox- 

dynamics 

2007 Industry 2 wings 1.1 10 < 60 NA NA 1 Channel radio 

control for motor 

Fukuaka  

 

2008 Academia Clap& Fling 2.3 10 NA 35 NA - 

Delfly 

Micro 

2008 Academia Clap& Fling 3.07 10 Up to 

180 

30 Near 

hover 

Camera payload / 

RC 

Cornell I 

(van 

Breugel) 

2007-

2010 

Academia Clap& Fling + 4 

wings 

24 45 33 NA Yes - 

Nano 

Humming

bird 

2009-

2011 

Industry 2 wings 19 16 > 480 NA Precision 

hovering 

Active wing 

pitching 

Cornell II 

(Ritcher) 

2010 Academia 4 wings 3.89 ~16 85 30 Yes 3D printing 

demonstrator 

Festo  2013 Industry 4 wings 175 63 NA 15-20 NA  Active control of 

wing pitch, flapping 

frequency and 

amplitude 
1
 based on most significant publication 

2.4 Flapping Wing MAV Designs with Reciprocating Actuation  

2.4.1 Solenoid and motor actuated designs 

2.4.1.1 The University of Tokyo Micro-robot 

Following the initial vision of Flynn [51], work in micro-robotic flight was started in 

1993 by a group in the University of Tokyo based on the concept of a vehicle with an 

external skeleton similar to that of an insect [52]. A large scale model consisting of 

plastic plates, springs and solenoids was used to demonstrate the concept, as well as 

several micro-sized models with micro-fabricated wing structures. The wings were 
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actuated via a solenoid excited at the system natural frequency. Conventional methods 

were used for calculating aerodynamic forces generated on the wings, based on 

aerodynamics of high Reynolds number flows [53]. Experiments in what they argued 

low Reynolds number flows (Re  ~ 386,000) were conducted, and it was found that the 

aerodynamic forces were underestimated when using conventional aerodynamics. This 

result was thus used to explain that the actual vertical component of the aerodynamic 

force generated from the wings would be larger than the weight of the flying micro-

robot.  

Although, the work developed at the University of Tokyo may seem basic, it can be 

considered of importance at its time. It revealed a lot of preliminary facts about micro-

robotic flappers that represented a starting point for further developments. Their major 

two finding were: (1) the ability to use the system resonance to generate the required 

large amplitude flapping motion. (2) Aerodynamic forces calculation at this scale should 

be revisited.  

2.4.1.2 The Delft University ring-type resonator 

Bolsman et al. from TU Delft investigated the application of ring type structures as the 

basis for flapping MAVs [54-56]. The inertia, stiffness and dimensions of the ring can 

be changed to tune the resonant frequency of the coupled system to a specific frequency 

value. Freedom in wing coupling options, absence of the need for a support structure, 

and space in the centre of the ring to place the actuator were all reported benefits of the 

proposed setting.  

 

 
 

Figure 2.16 The four designs of the ring-type resonator from TU Delft; images taken from [54]. 
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Four structures were initially proposed to study the concept of ring type resonators. 

These structures were dynamically analysed using both multi-body as well as FEMs, 

and then built and tested [54], Figure 2.16. The first design had wings crudely 

manufactured from a bending beam, and rigidly coupled to the ring centre and thus the 

main mode of amplitude amplification was the wings bending. The structure was driven 

by a solenoid actuator within the ring, with the direction of actuation set perpendicular 

to the wingspan. The second design had the actuator connected in the same manner but 

used struts to connect the opposite side of the ring to the wings; thus, the connection 

served as flexures for the main mode of amplification. The third design is an extension 

of the second but the number of wings was doubled to four. The main benefit of this 

setup was the positioning of the wings along a horizontal stroke plane more suitable for 

hovering flight. The struts of this design interfered with each other; thus a fourth design 

was presented where two struts were removed. Large amplitude deflections were 

obtained from designs 3 and 4 at resonant frequencies of 28 and 24 Hz respectively. 

However due to differences in strut topology, the wings in design 4 moved half that of 

those in design 3 with same ring motion. Thus, design 3 was chosen as the preferred 

concept. 

 

 
 

Figure 2.17 The implemented ring-type resonator design from TU Delft. (a) Schematic of the 

amplification mechanism. (b) Schematic of the wing design. (c) The final prototype including 

rings, actuator, amplification mechanism and wings. All images are taken from [55]. 

 

In a later demonstration [55,56], design 3 was employed but with two parallel 

carbon fibre ring strips connected with a crossbar, Figure 2.17. The actuator had a 

maximum stroke of 6 mm, the ring diameter was 30 mm, and the transmission ratio was 
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7.85 based on appropriate choice of the L1 and L2 dimensions in Figure 2.17a. The 

wings were analysed using a quasi-steady model, then realised with the construction 

shown in Figure 2.17b. A flexible section made of spring steel was used as a hinge to 

allow passive wing pitching. The wing planform was based on the shape of the 

hummingbird wing with a length of 50 mm and a mean chord of 16.75 mm. The whole 

structure with the two rings, the amplification mechanism, the actuator and the wings is 

shown in Figure 2.17c. The maximum flapping amplitude at resonance was found to be 

34 degrees. The structure was driven at its resonant state close to 27 Hz with a 12 V 

sinusoidal signal applied to the solenoid. A thrust of 0.9 g was achieved which is more 

than the weight of the system without actuator by a factor of 1.28. Thus, further 

amendments on the design are necessary to achieve the required force production.  

2.4.1.3 The Carnegie Mellon University Flapper 

A group at the Carnegie Mellon University presented a simple motor-driven design 

capable of producing thrust greater than weight, and torques suitable for flight control in 

2013-2014 [57-60]. The design used an elastic element (helical spring) placed in 

parallel with the motor output shaft. The system resonance frequency can be set by 

varying the elastic element spring constant. This is different to the majority of 

piezoelectric actuated designs (Section 2.4.2) where the system stiffness is set by the 

actuator stiffness.   

 

 
 

Figure 2.18 The Carnegie Mellon University resonant motor driven flapping wing MAV. (a) 

The prototype; image taken from [57]. (b) Liftoff the MAV; image taken from [60]. 
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The design as shown in Figure 2.18 is composed of the driving motors, elastic 

elements, and wings. Two brushed GM15 Solarbotics DC motors driving a 25:1 

planetary gearbox were used. The motors were operated with a reciprocating motion 

rather than continuous rotation like most other rotary motor designs. The flapping 

motion was driven by a sinusoidal input voltage defined by a frequency, amplitude and 

bias. Roll authority is obtained by difference in voltage amplitude between motors 

whilst pitch authority is achieved through the bias voltage. This control philosophy is 

similar to that used by the Harvard group for the Split Actuator Microrobotic Bee as 

will be discussed in Section 2.4.2.5. The wing length was 7 cm and the maximum chord 

was 2.6 cm. Wing pitching was passively achieved through a rotational flexure. The 

vehicle mass was 2.7 g without a battery, sensors, and additional electronics.  

The effect of varying wing offset and elastic element stiffness was examined 

experimentally with a series of prototypes. A dynamic model was developed, and 

compared to the experimental results. A desired operating frequency of 10 Hz was 

defined based on the maximum lift measured experimentally; note that this frequency 

was slightly beyond the flapping resonance of 7 Hz. The highest lift for the least input 

power was produced from an elastic element of stiffness of 2.8e3 mN.mm/rad and a 

wing offset of 38 mm. The system was able to achieve a lift-to-weight ratio of 1.4, and a 

tethered prototype showed successful liftoff, Figure 2.18b.  

2.4.2 Piezoelectric actuated designs 

2.4.2.1 Piezofan configuration designs 

Recently, some proposals for a so-called ‘piezofan’ configuration for the aerodynamic 

force generation within flapping wing NAVs have been presented. Whilst these designs 

lack mechanical maturity compared to other efforts, the work has prompted some useful 

analytical contributions for actuator dynamics of NAVs. A piezofan configuration 

couples a piezoelectric bending actuator directly attached to a flexible wing as shown in 

Figure 2.19. Flexibility of the wing allows relatively large wing flapping motions to be 

obtained from small piezoelectric actuator displacements without use of a dedicated 

transmission mechanism. 
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Figure 2.19 Piezofan flapping-wing configuration. 

 

Chung et al. [61] used two piezofans in parallel, driven by two sinusoidal voltages 

with dissimilar phase to control the flapping and pitching motions of the wing. A 

flexible wing formed by a pair of carbon fibre wing spars and polymer skin attached to 

two piezoelectric actuators as shown in Figure 2.20 has been demonstrated. High speed 

digital cameras were used to characterise the motion of the wing and FEA. The system 

was able to generate a range of wing flap and twist behaviour by adjustment of the 

actuators drive signals.  

 

 
 

Figure 2.20 Coupled piezoelectric fans with the attached wing arrangement by Chung et al. 

[61]. The phase delay between the driving voltages applied to the coupled piezoelectric fans 

plays an important role in the control of the flapping and pitching motions of the wing. Image 

taken from [61]. 
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Later in another study, Chung et al. [62] studied only the actuation element of 

piezofan configurations. The fundamental resonant frequencies of the unimorphs were 

calculated by a linear analytical method as well as a FEA and these compared 

favourably with experimental measurements. The free tip deflection at quasi-static 

operation and the vibration amplitude at dynamic operation of the unimorphs were 

experimentally measured. The main output was a proposed form of design optimisation 

using the Strouhal number to select the best unimorph configuration for flapping wing 

MAV applications (this point will be reconsidered in Chapter 8).  

Mukherjee and Ganguli [63] used an energy method by Mahmoodi and Jalili [64] to 

describe the actuator non-linear equations of motion of a flapping wing which is 

actuated from the root by a unimorph in the piezofan configuration similar to the one 

shown in Figure 2.19. An aerodynamic model based on modified strip theory developed 

by DeLaurier [65] was used to obtain the aerodynamic forces. The main outcome of the 

work was the integration of two existing models describing the actuator and 

aerodynamic behaviours of the system. In later studies, they considered the beam 

twisting motion [66] and compared the performance of unimorphs using different 

materials of PZT-5H and PZN-7%PT [67]. 

2.4.2.2 Vanderbilt University designs 

Early attempts to realise centimetre-scale flapping wing MAVs based on resonant 

piezoelectric actuators were presented by a group at Vanderbilt University [68,69] 

around the year 2002. The idea of designing the right and left wings with slightly 

different resonant frequency to have differential control of wing amplitude for rolling 

has been also proposed. Three piezoelectric actuated flexure-based mechanisms that 

convert the linear output of unimorph piezoelectric actuators into single degree of 

freedom (DOF) flapping movement were developed. These designs are shown in Figure 

2.21. 

 The first prototype was a four-bar design with the fuselage and wings made from 

carbon fibre, Figure 2.21a. The total mass was 5.5 g and the resonant frequency was 20 

Hz. Angular output was about 30 degrees generated using a sinusoidal input of 180 V. 

The second prototype was a four-bar design with a clamshell configuration instead of 

the fuselage, Figure 2.21b. In this design, the output linkage was attached to a second 

unimorph to increase angular output. The wing was made from a carbon fibre spar and a 

thin polymer membrane. The design total mass was 22.8 g and resonated at 18 Hz. 
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Angular output was about 50 degrees generated using a sinusoidal input of 180 V. The 

third prototype was a five-bar linkage design integrating three orthogonal unimorphs 

actuators, two moving laterally and one moving vertically, Figure 2.21c. This design 

had a wing span of 15 cm and a total mass of 7 g; it resonated at 20.5 Hz to produce a 

30 degrees wing root motion. More details on the transmission mechanisms will be 

presented in Section 2.5.5. 

 

 
 

Figure 2.21 Three different bench-top design concepts of resonant piezoelectric actuated 

flapping MAVs proposed by the group in Vanderbilt University. (a) Four-bar design, (b) four-

bar design with a clamshell, and (c) five-bar design. All images are taken from [69]. 

 

The work can be judged as a very good attempt at its time (1998-2002) to 

demonstrate the concept of resonant piezoelectric actuated flapping wing operation 

using bench-top designs. However, these designs were relatively big, did not show to 

work independently in any free flight testing and no further work was published later. 

2.4.2.3 The U.C. Berkeley Micromechanical Flying Insect (MFI) 

A group at U.C. Berkeley made significant efforts between the years 2000 and 2007 to 

develop a robotic insect with independent control on flapping and pitching motions 

[10,70-76]. They developed the so-called ‘Micromechanical Flying Insect’ (MFI) which 

is a 25 mm wing span resonating piezoelectric actuated flapping wing NAV. A first 

generation of bench-top models was developed that showed a lift per wing of 506 μN at 

160 Hz. However, this lift was marginal given a target weight of 100 mg. Thus, a 

second generation with refinements to the MFI design increased the wing beat 

frequency to 275 Hz and lift per wing to 1400 μN. This was achieved by operating with 

pitching angle amplitude of 45 degrees and flapping angle amplitude of 40 degrees 

using pure sinusoidal drive. The resonant frequency was increased by reducing the wing 

inertia using carbon fibre spar wings instead of polyimide tubing. The piezoelectric 

actuator stiffness was also doubled. An image as well as a schematic of the refined 

design is shown in Figure 2.22. 
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The MFI design was actuated by two piezoelectric bending actuators providing an 

unloaded displacement amplitude of 250 μm and blocking force amplitude of 60 mN 

[10,77]. Two stages of mechanical amplification followed by a differential element 

were used to convert the actuator motion into wing flapping and pitching. The first stage 

was a slider crank to convert the actuator linear displacement into an angular input to 

the second stage of amplification. This second stage was a four bar mechanism designed 

for a nominal amplification of 6:1, providing a 60 degrees output motion from a 

maximum input of 10 degrees. The actual achieved maximum output motion was 40 

degrees. The two planar four bars were then coupled into a spherical five-bar 

differential element to produce the insect wing hinge effect. The differential element 

role was to convert the angle difference between the four bars into wing pitching, such 

that an input 22 degree angle difference allows a 45 degrees wing pitching [10].  

 

 
 

Figure 2.22 The second version of the MFI, (a) the prototype and (b) a schematic of the system 

components; images taken from [10] and [76]. 

 

A very simple blade element model for wing aerodynamic characteristics was used. 

Predicted results were found to be less than the measured [76]. It was shown that a 

sinusoidal waveform produces close to maximal lift, however significantly improved 

wing performance could be achieved using non-sinusoidal actuator drives. In practice 

the non-sinusoidal motions were unobtainable due to actuator limitations. This group 

has also done extensive work in the fabrication, testing and analysis of piezoelectric 

actuators [77-82].  

The transmission mechanisms developed for the MFI can be judged as complicated 

and have not been proven in flight demonstration. Also the size of the mechanism is 

large with respect to the wing size. However, the mechanism is relatively of light weight 
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and a vehicle thrust to weight ratio more than 2 was obtained (note that the weight does 

not include the power system). It was reported that: ‘wing inertial and aerodynamic 

coupling effects dominated the available actuator control effort, making independent 

control difficult to achieve’ [10, p. 221].  

2.4.2.4 The Konkuk University flapping device 

A group from Konkuk University in Korea introduced an insect-inspired piezoelectric 

actuated flapping device around the year 2005 [83-85], Figure 2.23. The flapper 

employed the clap and fling mechanism for aerodynamic force generation. The motion 

amplification mechanism was a 4-bar linkage system, and the device used a simply 

supported unimorph piezoelectric composite actuator.  

 

 
 

Figure 2.23 The Konkuk University flapping device, (a) real prototype, (b) concept schematic. 

Note that the actuator is in a simply supported configuration; images taken from [83] and [85]. 

 

The developed flapper had a device length of 10 cm, width of 12.5 cm, height of 

6.5 cm, wing length of 5.7 cm and an all up mass of 10.38 g. Materials such as balsa 

wood, acrylic sheet, kapton film, carbon rod and carbon/epoxy composites were used to 

fabricate the components of the flapper including four-bar linkage systems, hinges, 

wings, stoppers and supporting frame. The wing shape and vein pattern were mimicked 

from wings of horse botfly. Passive wing pitching was employed whilst the pitching 

angle was limited by the shape of an adjustable stopper installed at the rotational axis of 

the wing. The actuator performance was improved by applying pre-compression of 

around 10 N (using rubber band), Figure 2.23a. The flapping angle amplitude was 55 

degrees with actuator pre-compressing compared to 45 degrees without. This increase in 

flapping angle corresponded to a 19% increase in the measured aerodynamic force.  
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Tests to identify the aerodynamic flapping performance of the flapper were 

conducted both in the air and in a vacuum chamber to measure total vertical force and 

vertical inertia force. Wing kinematics were examined using high-speed video. The 

operating point was at a resonance flapping frequency of 9 Hz and an actuator peak to 

peak voltage of 300 V.  

2.4.2.5 The Harvard Microrobotic Fly (HMF) 

The ‘Harvard Microrobotic Fly’ (HMF) has been under development by a group in 

Harvard University since 2007 [3,8,10,11,86-89]. This group built on earlier experience 

developed at U.C. Berkeley. The group has made a major contribution to development 

of manufacturing techniques for insect-scale flapping wing vehicles.  A 60 mg, 15 mm 

wing length propulsion system (actuator + transmission mechanism + wings, Figures 

2.24a and 2.24b) externally powered through a tether was developed and was able to 

produce thrust to weight ratios greater than one, Figure 2.24c.  

 

 
 

Figure 2.24 The Harvard Microrobotic Fly (HMF). The figures in (a) and (b) show the first 

prototype of the 60 mg HMF and all its system elements. The figure in (c) shows the HMF first 

successful vertical tethered flight but in the presence of rail guides. All images are taken from 

[10] and [88]. 

 

The design relied on a central power actuator for generating the flapping motion 

whilst pitching was achieved passively. The wings were rigid with a flexure hinge at the 

base of the wing at the interface between the wing and the transmission. Joint stops 

were used to limit pitch amplitude.  

The design was evaluated through a series of sequential tests. To start with, the 

wings were driven in an open loop fashion at the flapping resonant frequency (110 Hz) 
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and the wing motion was observed with a high-speed camera. Secondly, thrust was 

measured using a custom single-axis force transducer. The average thrust-to-weight was 

approximately 2:1. Finally, a demonstration of constrained takeoff was performed 

through use of guide wires, as shown in Figure 2.24c. None of these demonstrations 

included onboard power, sensors, or used any form of automatic control.  A later 

demonstrator with a reduced mass of 56 mg achieved thrust-to-weight ratio up to 3.6:1 

[90,91], and one degree of freedom altitude control was investigated. 

A second configuration referred to as ‘RoboBee’ was derived from the original 

HMF, Figure 2.25a. The new design included two additional smaller control actuators at 

the base of each wing [92]. The design demonstrated the ability to generate yaw torque 

through introduction of lateral asymmetry in stroke amplitude. This model was also 

used to perform experiments with stroke plane deviation as an alternative method for 

torque generation [93]. The extra actuators increased the mass of the original vehicle to 

130 mg. Refinements in construction lead to a lighter prototype of 83 mg, Figure 2.25b, 

that was capable of liftoff with tether power and was able to demonstrate open loop 

control [94]. 

 

 
 

Figure 2.25 (a) The second iteration of the HMF named RoboBee. Two main modifications 

were incorporated: two control actuators were added as well as a new wing design with bio-

inspired venation pattern; image taken from [92]. (b) A lighter version of the Robobee used for 

free flight experiments, including retroreflective markers for motion tracking; image taken from 

[94]. (c) Another iteration on the Robobee design implementing a hybrid actuator for power and 

control; image taken from [95]. 

 

A further iteration of the previous concept merged the power and control actuators 

to create a hybrid power-control actuator [95,96]. The hybrid 2 DOF actuator consisted 

of one large actuator to supply flapping power and a smaller actuator to serve as a 

control input, Figure 2.25c. Note that the control actuator vibrates in an orthogonal 

plane to that of the primary power actuator. This design removed the redundancy of the 

previous design, and right and left wings stroke amplitude cannot be modified 
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independently as the stroke amplitude of one wing cannot be reduced without 

simultaneously increasing the amplitude of the second wing [96].  

 

 
 

Figure 2.26 (a) The Split Actuator Microrobotic Bee from the Harvard group. (b) A schematic 

of the Split Actuator Microrobotic Bee thorax design; images taken from [97]. (c) The Split 

Actuator Microrobotic Bee in tethered controlled flight; image taken from [99]. 

 

The most recent iteration presented in 2012-2013 from the Harvard group is called 

the ‘Split Actuator Microrobotic Bee’ (SAMB), Figure 2.26. The SAMB design can be 

considered a substantial milestone in the development time line of insect-scale NAVs as 

it provides the first demonstration of free controlled flight but still using tether power 

[97-99]. Position and attitude measurements were obtained via optical tracking of 

markers on the vehicle. Thrust modulation was achieved by changing the flapping 

amplitude rather than changing the frequency which is constrained to the system 

resonance value. The vehicle was able to demonstrate motion modulation of both wings 

and produced roll, pitch and yaw torques. Wing dynamics were typically about an order 

of magnitude faster than body dynamics; thus, variations in average parameters over the 

entire stroke were sufficient to generate mean body torques [98]. Thus: (a) rotation of 

mean flapping stroke angle for both wings produces a pitch torque. This was achieved 

practically by applying an offset (bias) voltage to the input signal to actuators. (b) 

Differential stroke amplitude for each wing produces a roll torque, and was achieved by 

applying a differential voltage to the actuators. (c) Difference in the drag force on the 

wing during up and down strokes due to different wing velocities in the two half strokes 

produces a yaw torque. This was achieved by varying the cycle period that is occupied 

by the up stroke. 

These control actions were achieved mainly because the main power actuator was 

split into two separate actuators able to independently drive each wing. The shape of 

each split actuator was such the base is half of the original HMF actuator: 1.75 mm 
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versus 3.5 mm; nevertheless, each actuator had sufficient power density to drive the 

load on a single wing. The overall mass of the two actuators was 22% more than the 

single original HMF actuator [97]. This lead to an 80 mg vehicle capable of producing 

1.36 mN which is almost a 2:1 thrust to weight ratio [98]. The vehicle had a wing span 

of 3 cm and the wing planform was based on the aspect ratio and area distribution of 

hoverfly. Excitation was sinusoidal at a frequency near the resonance frequency of the 

coupled actuator-transmission-wing system of 120 Hz [98]. The measured power 

consumption was 19 mW. The peak to peak flapping amplitude was 110 degrees.  

In parallel with the vehicle development work, the Harvard group has also made 

several contributions to supporting techniques including blade element theory for the 

aerodynamic characterisation [100], power electronics board design [101-103], 

piezoelectric actuators [77, 104], flexure joints design [105], and vision sensors for free 

flight control [106].  

2.4.3 Summary of flapping wing MAV designs with reciprocating actuation 

This sub-section will provide a summary of the presented flapping wing MAVs 

employing reciprocating actuation elements. These MAVs data are presented in Table 

2.3, and Figure 2.27a provides a wing span versus mass plot. It should be remembered 

that all the designs presented in this category include only the propulsion system 

(actuator(s) + transmission mechanism + wings) without any energy source (battery) or 

power electronics boards. In Table 2.3, the flapping frequency and amplitude are 

provided; to gather these two characteristics in a more meaningful parameter, the mean 

wing tip velocity is calculated and plotted in Figure 2.27b. This velocity is based on the 

approximate formula Vtip= 2×ϕ×f×span, where ϕ is the flapping amplitude, f is the 

frequency.  

 

 
 

Figure 2.27 Semi-log plots of the main characteristics of flapping wing MAVs with 

reciprocating actuation. (a) Wing span versus mass. (b) Mean wing tip velocity versus mass. 
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Table 2.3 Comparison of the main characteristics of flapping wing MAVs with reciprocating 

actuation. Designs are arranged according to being a bench-top demonstrator. 

Design Year 
Actuator 

type 

Bench-

top 

Wing 

Pitch 

Mass 

(g) 

Span1 

(cm) 

Flap 

angle2 

(deg) 

Freq. 

(Hz) 
T/W 

Tether 

Flight 
Features 

Vanderbilt 

I 

1999

-

2002 

piezo Yes passive 5.5 NA 15 20 NA No Four bar design 

Vanderbilt 

II 

1999

-

2002 

piezo Yes passive 22.8 NA 25 18 NA No Four bar with 

calm shell /  

second unimorph 

to increase 

flapping angle 

Vanderbilt 

III 

1999

-

2002 

piezo Yes passive 7 15 15 20.5 NA No Five bar linkage / 

three orthogonal 

unimorphs: 2 

lateral and 1 

vertical 

MFI 2000

-

2007 

piezo Yes active 0.1 2.5 40 275 2.8 No Complex design 

for flapping & 

pitch control: Two 

stage 

amplification 

followed by 

differential 

element 

Konkuk  2005 piezo Yes passive 10.3

8 

12.5 55 9 <<1 No Simply supported 

actuator / Four bar 

linkage 

mechanism / Clap 

and fling 

Delft ring 

resonator 

2008

-

2009 

 solenoid Yes passive NA 

(goal  

4 g) 

~10 34 27 <1 No Four wings / ring 

structure 

HMF 2007

-

2011 

piezo No passive 0.06 3 >50 110 ~2 Yes 

(guide 

rails) 

An improved 

design iteration 

achieved L/W of 

3.6 for a mass of 

0.056 g 

RoboBee 2009

-

2012 

piezo No passive 0.08

3 

4 NA NA >1 Yes 

(guide 

rails) 

One power 

actuator / 

Additional control 

actuator per wing 

SAMB 2012

-

2013 

piezo No passive 0.08 3 55 120 ~2 Yes One actuator per 

wing / amplitude 

modulation for 

control / first 

controlled liftoff 

Carnegie 

Mellon 

2013 motor No passive 2.7 22 Up to 

90 

10 1.2 

(up 

to 

1.4) 

Yes One motor per 

wing / Most 

simple 

amplification 

mechanism 
1 Span is based on wing tip to tip distance. 2Flapping angle represents half the peak to peak flapping stroke angle. 

Figure 2.28 shows the characteristic length versus mass of the sub 30 cm 

characteristic length MAVs discussed in this chapter. Several simple points are clear 

from the figure: (1) rotary MAVs are the heaviest followed by flapping MAVs with a 

rotary actuation. (2) Bench-top flapping demonstrators with reciprocating actuation are 

clustered within the same zone as flapping vehicles with rotary actuation. (3) The MFI, 

HMF and SAMB (i.e. non bench-top designs) are within a different lower mass and 

shorter characteristic length zone; nevertheless, no on board power was integrated on 

these designs. (4) Most designs from rotary wing and flapping wing with rotary 
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actuation categories are clustered around mass values of 10 g and characteristic length 

of 15 cm. 

 

 
 

Figure 2.28 Semi-log plot of characteristic length versus mass of the sub 30 cm characteristic 

length MAVs discussed in Chapter 2. 

 

In summary of the presented literature for flapping wing MAVs with reciprocating 

actuation: 

1. Despite the success achieved within the years 2013 and 2014 that witnessed the 

first liftoff for both piezoelectric and motor actuated resonant flapping vehicles, 

extensive further research not just in secondary disciplines but rather in 

fundamental topics is required to achieve configurations with acceptable flight 

performance. Most of the wing planforms used were based on mimicking insect 

species wings. Actuators and motors were usually chosen based on market 

availability or were manufactured based on available facilities. Advances in both 

systems modelling and manufacturing should relieve these constraints to some 

extent in the future. 

2. Unlike rotary wing and rotary actuated flapping wing MAVs, All MAVs in this 

category were presented from academia without any significant contribution from 

industry. 

3. The current piezoelectric actuated vehicles do not yet show integrated sensing and 

control, or onboard power and electronics. The development of these elements 

(which some efforts have started recently) represents a future challenge to have a 

fully functioning air vehicle. 

4. All designs in this category do not include a tail; thus, the wings must produce 3 

DOF of control torques as well as thrust for weight support. The use of four wings 

instead of two simplifies the control strategy in that differential thrust can be used 
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to provide pitch and roll authority (like a quad-rotor). The Delft bench-top model 

was the only design presented in a four wing configuration. 

5. All piezoelectric actuated designs employed the actuator in a cantilever mode 

except the Konkuk University design which employed a simply supported 

configuration. 

6. All designs within this category were operated at the frequency of the first bending 

mode to achieve the maximum possible amplification at resonance.  

7. Reliance on passive wing pitching is sufficient to achieve successful flapping flight. 

This reduces mechanical complexity of the system and minimises actuation 

requirements. However, the wing pitch dynamics should be considered through 

proper sizing of the wing hinge flexures and end stops as well as careful attention to 

the wing stiffness distribution. 

8. Minimal actuation is a key element for a successful design; aiming to achieve 

active control on both flapping and pitching wing motions is not necessary. On the 

other hand, reliance on only one power actuator for flapping motion generation of 

both wings as demonstrated by the initial HMF was not enough to achieve a 

sustained controlled flight. The latest successful demonstrators capable of 

controlled tethered flight including the Harvard SAMB and the Carnegie Mellon 

University flapper implemented two actuators (one per wing). 

9. Rigid wings without many of the aeroelastic features of insect wings appear to be 

sufficient for successful flapping wing vehicles as demonstrated by the Harvard 

SAMB and the Carnegie Mellon University flapper. The degree to which use of 

non-rigid elastic wings within engineering designs would improve the system 

performance is still an open question.  

10. The system frequency increases with decreasing the size as witnessed in insects. 

Also, the wing tip velocity significantly increases with decrease in mass and size. 

11. Despite significant recent advances in motor development, piezoelectric actuators 

are the most suitable solution for insect-scale vehicles at the moment. However, it 

is worth noting that all piezoelectric actuators require relatively high voltages 

around 300 to 400 peak to peak voltages (as in the Vanderbilt and Konkuk designs) 

whereas motor designs require modest voltages (judged from the Delft and 

Carnegie Mellon designs). This high voltage put a tough requirement on the power 

electronic circuit board for piezoelectric actuated vehicles.  
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12. Unlike piezoelectric actuated systems, the resonant frequency for motor actuated 

reciprocating systems can be chosen as desired because the system elastic element 

is not a property of the actuator itself; this allows more flexibility in the design. 

13. Exploitation of resonance to achieve increased flapping amplitudes and improve the 

electromechanical coupling of the actuation (as will be detailed in Chapter 8) are 

substantial benefits of the designs presented in this section. However, this 

constrains the operation frequency to a single value (the resonance value), which 

means frequency cannot be used as a control variable. This leaves amplitude 

modulation as the only remaining control option.  

2.5  Propulsion Sub-Systems of Piezoelectric Actuated Flapping 

Wing NAVs 

2.5.1 Overview 

 
 

Figure 2.29 Piezoelectric actuated flapping wing NAV propulsion subsystems. 

 

This section provides a detailed description of the subsystems involved to create a 

propulsion system for a piezoelectric actuated insect-scale NAV. Following the 

component description presented in [89], there are five primary subsystems involved, 

Figure 2.29. The first is the electrical energy source (which is typically a battery or 

possibly a super capacitor). The second is the power electronics board which regulates 

the flow of electrical power from source to actuator. Piezoelectric actuators pose two 

challenges for power electronics board: (1) conversion of low voltage DC to high 

voltage AC, and (2) recovery of substantial unused energy at the end of the cycle due to 

the actuator's low electromechanical coupling factor. The third subsystem is the 

piezoelectric actuator element which is responsible for conversion of the input electric 

power to output mechanical power. The fourth subsystem is the transmission, which 

serves as a mechanical transformer in the drive train between actuator and the 
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aerodynamic effectors (wings), and is responsible for conversion of relatively small 

actuator linear motion into large flapping angles. The final subsystem of the vehicle 

includes the wings which are responsible for the generation of the required aerodynamic 

forces and moments for successful operation.  

The following sub-sections will discuss in more details the progress achieved by all 

the previously mentioned research groups within the development of the pointed 

subsystems. Greatest attention will be directed towards the actuator, mechanical 

transmission and wing subsystems as they represent the technologically imperative 

aspect of the design in the sense that a tethered version can be demonstrated with these 

three subsystems only.  

2.5.2 Energy source 

Provision of a suitable electric energy source for NAVs is a significant challenge 

because the NAV application is outside current commercial boundaries; hence batteries 

of the required voltage and capacity are not available. Note that although fuel cells are 

anticipated to have higher energy densities compared to batteries, they can be 

discounted on the basis that the technology does not scale well to small capacity units. 

At the present moment, it is apparent that Li-Po batteries are the only well developed 

commercially available technology that can be used for NAV energy source. There are 

commercially available sub-gram Li-Po batteries of approximately 0.35 g [107]; 

however, the energy densities of these batteries are low compared to larger batteries 

currently produced in larger quantities. Toy, robotic and communication industries 

continue to push the lower bounds of battery technology in terms of high energy density 

at small scale, and improved manufacturing as well as use of new materials may allow 

smaller batteries with better energy densities to become feasible in the near future.  

Since air vehicles are relatively power intense applications, both battery specific 

power and specific energy need to be considered as part of the battery selection process. 

However, the properties of battery capacity de-rating depend heavily on the battery 

design and manufacturing parameters. As a result, it is difficult to estimate battery 

performance without a specific battery in mind. Stux and Swider-Lyons provided a 

survey of commercial small lithium polymer batteries of masses between 0.8 to 5 g 

[108]. Figure 2.30 shows a Ragone plot made from the Li-Po battery discharge data they 

investigated. The Ragone plot shows how battery specific energy trades with specific 

power at different discharge rates. The underlying trend is an inverse relationship: as 
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energy density is increased, specific power decreases. The study was carried out in 

2007; however, it seems that no significant advances in batteries have happened and 

hence their result remains relevant.  

 

 
 

Figure 2.30 Ragone plot for the Li-Po batteries according to the batteries discharge data at 

different c-rates. AW stands for Atomic Workshop. Figure redrawn from [108]. 

 

Fearing and Wood [10] defined the requirements for a power source for a vehicle 

weighing around 100 mg to be a mass of 50 mg and power density of 600 W/kg. Li-Po 

batteries achieve the power density requirement; however, the 50 mg size is still about 

an order of magnitude smaller than what is commercially available.  

2.5.3 Power electronics board 

The power electronics function is to convert the constant, low input voltage from the 

battery (usually around 3.7 V) into a time-varying, high-voltage signal (amplitude 

around 200 V) to power the piezoelectric actuator. The output signal may also need to 

be unipolar (i.e. only positive or only negative) in order to avoid depolarisation of the 

piezoelectric layers [78,89]. Furthermore because of the low electromechanical coupling 

efficiency of piezoelectric actuators, a requirement for the power electronics board is to 

recover the actuator unused energy for use in following cycles [89].  

Steltz et al. [81] explored three different high voltage generation methods including 

boost converter, transformer method and hybrid converter with the latter being realised. 

They demonstrated a miniature voltage converter and a drive stage with no energy 
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recovery which had a length of 25 mm, width of 14 mm and weighed approximately 

427 mg.  

 

 
 

Figure 2.31 Example of dual stage (left) and single stage (right) circuit topologies suitable for 

driving piezoelectric actuators developed by the Harvard group. The dual stage topology has a 

tapped inductor boost as the conversion stage (for voltage step up), and a switching amplifier as 

the drive stage (for alternating waveform generation). CaH and CaL represent piezoelectric layers 

of a triple layer actuator. The single stage topology has a bidirectional flyback converter to 

simultaneously step up the voltage and generate an alternating signal. Ca represents a unimorph 

or a single layer of a triple layer actuator. In both cases, an A/D converter monitors the actuator 

voltage to be adjusted by modulating the semiconductor switches. Figure and description are 

taken from [102]. 

  

A significant contribution in this field was presented recently by the Harvard group 

which provided theoretical and practical solutions for high-voltage drive circuits [101-

103], Figure 2.31. Circuit implementation was investigated using either a dual-stage 

design or a single stage design. A dual-stage design includes a conversion stage to step 

up the low input voltage and a drive stage to use the conversion stage output for 

generating a time-varying drive signal. This design has more components and higher 

weight, but allows the high-voltage to be shared by the different actuators. On the other 

hand, a single-stage design simultaneously steps up the voltage and generates the time-

varying drive signal. This design has a lighter weight but output cannot be shared. Thus, 

the number and type of actuators within the flapper will influence the selection of the 

drive method.  

Several attempts were undertaken by the Harvard group to realise these circuit 

topologies. Their first implementation used conventionally packaged discrete 

components and custom-wound bobbin cores on a flex substrate [101], Figure 2.32a. 

The result was a dual-stage design weighing 90 mg (40 mg conversion stage and 50 mg 

drive stage) whereas the single-stage circuit weighed 60 mg without any control 

functionality. Later, a further weight reduction in these circuits was achieved making 

use of laser micro-machined magnetic components along with chip-scale high-voltage 
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components. Several demonstrations for the inductor boost converter configuration 

(conversion stage) were presented, the lightest of which weighed only 20 mg, Figure 

2.32b. However, it should be noted that for all the presented designs, control 

functionality for increasing circuit efficiency remained external; thus an increase in the 

weight of the final board is anticipated. Additional details on the components of the 

implemented designs as well as the experimental results for power electronic circuits 

can be found in references [102] and [103].  

 

 
 

Figure 2.32 The Harvard group power electronic circuits for micro-robotic applications. (a) 

First implementation of the piezoelectric drive circuits; image taken from [101]. (b) The front 

and back views of the 20 mg tapped inductor boost converter that can allow a further reduction 

of the circuit weight; image taken from [103]. 

 

2.5.4 Piezoelectric actuators 

Piezoelectric bending actuators are a class of actuators designed to utilise the inverse 

piezoelectric effect to convert input electric energy to output mechanical energy [109-

111], and are attractive for insect-scale flapping vehicles application for several reasons: 

(1) they have high power density at small scales. (2) They have simple geometries and 

their materials are commercially available. (3) They offer robust mechanical 

performance. (4) From a scaling perspective, the resonant frequency will increase as 

size is reduced in a similar manner to what is observed in real insects. On the other 

hand, piezoelectric actuators have drawbacks including: (1) low fracture toughness. (2) 

Low electromechanical coupling factor which increases the energy recovery demand on 

the power electronic circuit board. (3) They require high operating voltages which 

require voltage conversion circuits with high step up ratios.  

There are other possible actuator technologies that might be suitable for wing 

flapping motion actuation at this scale subject to further research. Karpelson et al. [109] 

provided a review of the actuation options for flapping wing vehicles. An analysis was 
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conducted based on simple assumptions to allow a system-level optimisation for 

comparing the different actuator possibilities. They considered electrostatic, thermal, 

piezoelectric cantilever, shape memory alloy (SMA) and dielectric elastomers actuator 

categories. Their results showed that electrostatic actuators are of low output energy, but 

have high operating frequencies. To the contrary, thermal and SMA actuators achieved 

the requirements for force and displacement; however, they have low operating 

frequencies owing to the heating and cooling of the active material. Piezoelectric and 

dielectric elastomer actuator categories were found to achieve the actuation 

requirements for the insect-scale flapping wing vehicle application. 

In a similar attempt, Petricca et al. [110] provided a useful quality comparison for 

both linear and rotational actuators. Linear actuators included piezoelectric ceramics, 

shape memory alloys (SMA), magnetostrictor, solenoid and dielectric elastomers. 

Piezoelectric ceramics and magnetostrictor were described as having excellent 

performance except for the high operation voltages required for operation. SMAs were 

described as having excellent performance except for their frequency range and poor 

fatigue life (the previous points are in accordance with Karpelson et al. analysis [109]). 

Solenoids have high strain but low energy density (this was demonstrated by the Delft 

ring resonator design). Dielectric elastomers are very good candidates with respect to 

both force and displacement output; however, they are a new technology that is not 

widely available. On the other hand, rotary actuators as electric motors are efficient, 

reliable and versatile but there are significant issues in scaling the technology to insect 

scale application. Nevertheless, future developments may bring suitable candidates; the 

Carnegie Mellon University flapper was a promising step towards this goal. 

Now considering piezoelectric actuator configurations and manufacturing. The 

group at Vanderbilt University (Section 2.4.2.2) used piezoelectric unimorph actuators 

(unimorph has one passive elastic layer and one active piezoelectric layer). The Konkuk 

university flapper (Section 2.4.2.4) used a unimorph actuator immersed in Glass/Epoxy 

layups, Figure 2.33a. This actuator was designed based on a laminate plate theory model 

for stacked actuators [112]. The choice of unimorph is not surprising given its simple 

structure, ease of manufacture and improved reliability compared to other piezoelectric 

bending actuator [78]. The U.C. Berkeley group started working with unimorphs [78]; 

then, they developed a composite triple layer piezoelectric actuator with S-glass 

extension based on a laminate plate theory model [77]. This actuator configuration was 

used in the second version of the Microrobotic Flying Insect (Section 2.4.2.3) and was 
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also used (with different dimensions) within the various designs of the Harvard group, 

Figure 2.33b.  

 

 
 

Figure 2.33 The different piezoelectric actuators employed for insect-scale NAV designs. (a) 

The LIPCA unimorph used by the Konkuk University group; image taken from [85]. (b) 

Composite piezoelectric actuator cross section as well as example actuators at multiple scales 

developed for the U.C. Berkley and Harvard group designs; image taken from [10]. 

 

 
 

Figure 2.34 Piezoelectric actuator fabrication process employed in the SAMB design 

prototyping. Heat and pressure are used to laminate the parts together with the adhesive being 

the epoxy resin in the carbon fibre middle layer; laser cutting is then used to release the 

actuator; image and description are taken from [97]. 

 

In terms of prototyping, the Harvard group employed several techniques for their 

actuator manufacturing. Their first attempts to manufacture the actuators were based on 

stacking the actuator layers manually and using an opaque vacuum-bagged setup; thus 

perfect alignment of the layers was not guaranteed [77,97]. However, their latest 

process used within the development of the SAMB achieved more convenient results 

using the heated weight press and pin alignment process [97]. In this process, all layers 

of the actuator had alignment pin holes for alignment assurance during the heat press 
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and cure process for bonding the layers together. The actuator was then laser cut and 

released. This fabrication technique is illustrated in Figure 2.34. 

2.5.5 Mechanical transmission 

The transmission mechanism is the intermediate linkage between the actuator and the 

wing which in some studies is called the ‘thorax’ as similar to that of insects [86-88]. 

This mechanical amplification system matches the actuator to the wing and converts the 

small actuator motions to large angular wing motions. The amplification is usually 

called the transmission ratio and is directly analogous to a gear ratio for an equivalent 

rotary system connected via a gear box. Here, the role of the transmission mechanism is 

only towards the generation of the flapping motion with a large wing stroke, and it is 

assumed that there is an independent wing hinge to allow the passive pitching motion. 

Several considerations should be accounted when designing or choosing the 

transmission mechanism configuration. These considerations include: (1) the geometry 

and weight constraints on the insect-scale vehicle. (2) Durability and fatigue resistance 

given the high flapping rates. (3) The required amount of force and displacement to be 

transmitted and thus the required transmission ratio. (4) Easiness in manufacturing. 

Note that conventional mechanical elements such as gears, links and sliders have 

unfavourable scaling characteristics as the size is reduced; thus, alternative solutions are 

required. 

 

 
 

Figure 2.35 The three different transmission mechanisms proposed by the group in Vanderbilt 

University. (a) The four bar design. Excitation of the unimorph at resonance produces high 

flapping rotational output. (b) The four-bar design with a clamshell. Its operation is similar to 

the first concept, however the output link is connected to a second unimorph to increase angular 

output. (c) The five-bar design with orthogonal unimorphs moving laterally and vertically for 

flapping rotational output to the flexures. All images are taken from [69]. 
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Figure 2.36 (a) Four-bar design proposal for the initial design of the U.C. Berkeley ‘MFI’; 

image taken from [71]. The Konkuk university 4-bar linkage system working principle; image 

taken from [85]. 

 

 
 

Figure 2.37 The HMF transmission mechanism. (a) Flexure-based transmission; image taken 

from [88]. (b) Motion generation concept relying on the ratio between the lengths of the 

different arm parts to amplify the input actuator linear displacements, δ, to large angular 

flapping motions; image taken from [87]. (c) Fabricated transmission mechanism; image taken 

from [86]. 

 

Several solutions have been presented by the different groups for the transmission 

mechanisms. Three different transmission mechanisms were used by the Vanderbilt 

University group to generate the required flapping motion and are shown in Figure 2.35. 

Note that the actual systems were previously shown in Figure 2.21. Figure 2.36a shows 

a diagram illustrating the four bar mechanism representing the main flapping motion 

generator in the initial MFI mechanism. Figure 2.36b shows the Kunkok University 

flapper four bar linkage system working principle. The flexure based transmission 
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mechanism developed by the Harvard group for the HMF is shown in Figure 2.37. It 

relies on choosing the optimal arm lengths with respect to the wing hinge (Figure 2.37b) 

to produce large wing flapping motions.   

Considering manufacturing, the U.C. Berkley and the Harvard groups have 

attempted several attractive prototyping solutions. The first solution was so-called 

‘smart composite microstructures’, and relied on laser micromachining and lamination 

process [113]. Another solution was so-called ‘pop-up book MEMS’, the concept is 

similar to an unopened pop-up book where mechanism links reside on multiple 

interconnected layers to reduce interference and to allow folding of three dimensional 

assemblies [114]. In a later contribution, the technique was extended to include other 

features such as pick-and-place components, scaffold-assisted assembly, increased 

material variety and integrated actuation [115]. The fabrication of the transmission 

mechanism of the SAMB vehicle [97] partially benefited from the previous method 

through using the assembly scaffold concept to assist in folding up the transmission 

mechanism; however, the other assembly steps were done by free hand, Figure 2.38. 

 

 
 

Figure 2.38 Transmission mechanism fabrication process employed in the SAMB design 

prototyping. Transmission fabrication includes an auxiliary structure for precision folding; 

image taken from [97]. 

 

2.5.6 Wings 

Wings are responsible for generating the required aerodynamic forces and moments for 

flight. Figure 2.39 shows the wings prototyped by the different groups. The first set of 

wings in Figure 2.39 is the one used by the Vanderbilt University group. These wings 

were unique in that the pitching motion was generated using wing flexibility and not a 

flexural hinge [69]. The main target was to develop wings with passive dynamic 

properties that provide maximum lift and/or efficiency. This was allowed by tuning the 
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ratio of the frequencies of the first mode of wing bending to the first mode of wing 

twisting. They called the ratio of the first mode of bending to torsion the ‘wing 

frequency ratio’. In doing so, it was assumed that the two modes are reasonably 

decoupled. A wing-testing rig was built to measure the generated lift by each wing and 

the corresponding expended mechanical power. Different wings were examined with 

wing frequency ratios ranging from 0.5 to 2.5. It was found that a wing frequency ratio 

of one produces the maximum lift, while, the wing frequency ratio of two produces 

higher lift to power ratio (which was used as a measure of efficiency). 

 

 
 

Figure 2.39 The different wings used within the different NAVs. (a) Vanderbilt University 

wings, image taken from [69]. The MFI wings; left: initial wing, right: improved wing; image 

taken from [76]. The Konkuk University wings; image taken from [85]. The HMF wing with the 

wing pitching hinge; image taken from [10]. 

 

Figures 2.39b, 2.39c and 2.39d show the wings used for the U.C. Berkeley MFI, the 

Konkuk University flapper, and the HMF respectively. The wings of the MFI and HMF 

were made from thin film membrane and acquired their rigidity over the expected range 

of flight forces due to the carbon veins. The wing pitching motion of the Konkuk 

University flapper and the HMF was achieved passively through flexural hinges and 

joint stops to ensure that the pitching rotation does not exceed the required angle. 
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Various methods exist for the manufacture of flapping NAV wings. The most 

common method of constructing these wings is spanning a membrane by a rod type 

structure. The membrane is usually a stretched high strength mylar film. The stiffening 

structure is usually made of unidirectional carbon rods of various cross sections. Wings 

constructed in this way are usually reported to have excellent strength-to-weight ratio. 

This method has been applied to the MFI, HMF and SAMB wings. 

The method implemented by the Konkuk university group to fabricate their wings 

used carbon/epoxy fibres and kapton film 30 μm in thickness [85]. The carbon/epoxy 

fibres were arranged on the kapton film to mimic the wing vein structure. The whole 

structure was then vacuum bagged and cured in an autoclave at high temperature (177 

o
C) to melt the epoxy resin serving as the glue between carbon fibres and kapton film. 

After cooling the artificial wings were slightly deformed due to thermal effect.  

 

 
 

Figure 2.40 Wing fabrication process, using photolithography [116]. (1) A wing transparency is 

put on a Silicon wafer spin-coated with photoresist, and then exposed to UV light. (2) The 

unexposed photoresist is cleared with a solvent, and the wafer is silanized. (3) 

Polydimethylsiloxane is then poured. (4) The mold is removed from the wafer and silanized. (5) 

Carbon fibre veins are arranged within the mold channels. (6) A membrane is put on top, and 

the assembly is cured. (7) and (8) The wing is released, and tidied up. Image and description are 

taken from [116]. 

 

Figure 2.40 shows another method for constructing wings using a membrane and a 

vein like stiffening structure proposed by the Harvard group [116]. Here, the advantage 

is to produce planar insect-like wings with non-straight spars, and achieve more 

controllability on the wing stiffness. In a later contribution, Tanaka and Wood 

fabricated polymer corrugated wing mimicking the morphological features of a hoverfly 

wing [11, 117], Figure 2.41. Here, veins and membranes are simultaneously prototyped 
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within a single process using a bottom rigid (Silicon) mold and a top compliant (PDMS: 

Polydimethylsiloxane) mold. The molds were produced using a custom high resolution 

laser machining system (more details of the mold production process can be found in 

[117]). The molds were then used to form a thermosetting resign from which the wing is 

produced.  

 

 
 

Figure 2.41 Wing fabrication process of a polymer corrugated wing; image taken from [11]. 

 

It should be mentioned that it is currently unknown how exactly morphological 

features such as veins and corrugation affect flight. Whether these features of insect 

wings are due to bio-material limitations or are an indicator of beneficial performance is 

yet unknown for sure. However, Luo and Sun [118] conducted a CFD analysis on 

different insect wings and showed that the aerodynamic forces generated from 

corrugated and flat plat candidates are approximately the same because the corrugation 

scale is much smaller than the separated flow region or the leading-edge vortex (LEV) 

size. Moreover, it evident that a rigid flat plate wing, as that used on the HMF or 

SAMB, is sufficient to guarantee successful flight.  

Considering the flexure-based wing hinge responsible for generating the wing 

pitching motion, Tanaka et al. [11] from the Harvard group showed the fabrication 

process of a wing hinge made from carbon fibre plates and a polyimide hinge, Figure 

2.42. Composite sheets were laser cut from carbon fibre reinforced prepregs and then 

laminated with a thin sheet of polyimide. The resulting composite was then laser cut and 

laminated to a second carbon fibre sheet.  
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Figure 2.42 Wing hinge made of carbon fibre rigid plates and polyimide layer; image taken 

from [11]. 

 

2.5.7 Summary of propulsion sub-systems of piezoelectric actuated flapping wing 

vehicles 

Section 2.5 discussed the five main sub-systems of piezoelectric actuated flapping wing 

vehicles. In summary: 

1. The biggest barrier facing insect-scale vehicles is availability of electrical power 

sources with high power and energy density.  

2. Several attempts have been presented to produce miniature power electronics board 

for insect-scale flapping wing vehicles. A board mass of 60 mg was achieved but 

without including any control or charge recovery functionalities. 

3. Actuation options have been assessed by different groups; whilst electric motors are 

more efficient at larger scales, the piezoelectric option was usually recommended 

for flapping wing vehicles at the very tiny scale of insects. Unimorphs and triple 

layer actuator configurations were the most implemented actuators within the 

proposed designs mainly for their relatively simple structure, ease of manufacturing 

and robust mechanical performance. 

4. Conventional mechanical elements, such as gears and sliders suffer from 

unfavourable scaling characteristics due to surface effects as the size is 

miniaturised. Therefore, these elements probably do not offer a scalable technology 

path to the insect-scale flapping wing vehicle design. 

5. The complexity of the mechanisms used for the transmission systems of the 

piezoelectric actuated NAVs is different from one design to another. However, 

most of them can be described as relatively complex and present a significant 

fraction of the vehicle weight. Main constraints on the design of these mechanisms 
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include weight, fatigue resistance, simplicity of fabrication and achieving 

maximum stroke amplitudes.  

6. Various methods for wing manufacturing have been presented. The most common 

implemented method is that of reinforcing a membrane by stiff rod type structures. 

Recently, some efforts have been directed towards developing fabrication methods 

for creating wings that can exactly mimic insect wings. This can allow the control 

of mechanical and stiffness characteristics of the wings; however, these wings do 

not seem to provide superior aerodynamic characteristics that can be beneficial for 

flight performance. 

7. Considering all subsystems, it is apparent that low aerodynamic efficiency, low 

electromechanical coupling factors of piezoelectric bending actuators, and 

relatively inefficient systems for storing and releasing energy are the most 

significant factors hindering the development of efficient miniature robotic flying 

machines.  

8. If the historical research development towards the creation of an insect-scale 

flapping wing NAV is traced, it can be easily observed that the experience gained 

over the years converged to designs that rely on: (1) piezoelectric actuation. (2) 

Resonant mechanisms for flapping motion amplification. (3) Simple mechanical 

transmission designs to avoid excess weight and complexity. (4) Passive wing 

pitching for less mechanical complexity and reduced system mass.  

9. Further scientific progress is required in the following areas: (1) low-Reynolds-

number aerodynamics modelling; (2) lightweight and biologically inspired 

multifunctional materials and structures; (3) improved understanding of actuation 

performance; (4) miniaturised power sources of high energy density; (5) suitable 

flight navigation and control algorithms; (6) miniaturised power, navigation and 

control electronic boards; and (7) system engineering tools for easy, fast and 

inexpensive prototyping. 
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 3 

 Efficiency of Lift Production in 

Hovering Flapping Flight
1
  

 

Any arbitrary shaped flat surface placed at an angle to the stream of air will produce a 

lift force. The goal of good aerodynamic design is to identify wing shapes that create a 

given amount of lift with the minimum amount of power expenditure, that is, the wing is 

aerodynamically efficient. This chapter is concerned with minimising induced power, 

which is the power directly attributed to lift production. The actuator disc theory 

provides a simple momentum based model for the interaction of a revolving (rotary) or 

flapping wing with a surrounding fluid based on the assumption that the wing induces a 

uniform downwash velocity over the area swept by the wing. This assumption is 

consistent with minimisation of the induced power, however in reality, the downwash is 

not uniform and the induced drag and hence induced power is increased. The ratio of 

actual induced power to minimum ideal induced power for a given thrust is known as 

the induced power factor, k.  This chapter provides a first principles approach to 

determining k to provide improved understanding of the aerodynamic performance of a 

range of different insects, and to provide support for the development of engineering 

tools for optimisation of the wing planforms and kinematics of insect scale flapping 

wing vehicles. Whilst the chapter is focussed on a so-called correction to the ideal 

induced power, this correction may be as high as a factor of two and hence forms a 

fundamental part of the aerodynamic treatment to follow in subsequent chapters. 

                                                 
1 This chapter is based on the publication: Nabawy MRA, Crowther WJ. 2014 On the quasi-steady 

aerodynamics of normal hovering flight part I: the induced power factor. J. R. Soc. Interface 11: 

20131196 (doi 10.1098/rsif.2013.1196) 
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3.1  Introduction  

Within the actuator disk theory, the induced power factor, k, is a measure used to 

estimate the efficiency of an oscillatory or rotary wing through comparing the actual 

induced power required to produce a given lift (usually called thrust for rotors) with the 

minimum possible induced power required to produce that lift [119-121]. Thus, a unity 

k value represents the ideal minimum condition. An analytical approach to determining 

the induced power factor for hovering flight was provided by Ellington [122], who used 

a combined modified actuator disc and vortex theory to give so-called temporal and 

spatial corrections for the induced power. He showed that each correction is around 

10% giving an overall k value between 1.15 and 1.2. The temporal correction is related 

to tip losses, while the spatial correction accounts for non-uniformities over the ideal 

actuator disk. Later, Sunada and Ellington [123] proposed a more sophisticated method 

for the evaluation of k in which they modelled flapping forces with the added masses of 

vortex wake sheets. This analysis gave normal hovering k values between 1.2 and 1.4 

for the different species investigated.  

More recently, a significant amount of work on flapping animals has been 

undertaken with the aim of identifying wing inviscid span efficiency (inverse of induced 

power factor [120,121]) in forward flight through experiments [119,124-129]. The 

downwash velocity distribution was measured using Digital Particle Image Velocimetry 

(DPIV) techniques. These measurements were then used within the actuator disk theory 

framework to define the real lift and induced power values. Comparison with ideal 

conditions then allowed the evaluation of the induced power factor and hence flapping 

wing inviscid span efficiency. Henningsson and Bomphrey [124] obtained a maximum 

span efficiency within the flapping cycle of forward flying locusts of 0.79 and an 

average span efficiency value of 0.53, implying k values of 1.27 and 1.89 respectively. 

Also, Henningsson and Bomphrey [125] assessed the span efficiency of six hawkmoth 

species flying tethered in a wind tunnel. The obtained average span efficiencies for the 

moths ranged from 0.31 to 0.6; equivalent to k values ranging from 1.67 to 3.23. Most 

recently, Henningsson et al. [126] found the average span efficiencies of swifts over the 

measured speed range to be 0.62 and 0.41 for flapping and gliding flights respectively.  

Muijres et al. [127,128] performed similar measurements on bats and pied 

flycatchers; however, they used a hovering induced power factor expression to evaluate 
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the k values at different speeds. For bats, they obtained an average k value throughout 

the measured speed range of 1.25. Average k values between 1.1 and 1.25 were obtained 

for pied flycatchers. Also, Johansson et al. [129] followed the same methodology in 

[127] and [128] and obtained an average k value of 1.61 for flying beetles. All the 

previous measurements show that: (1) the early k estimate of 1.2 that was usually used 

for animal wings needs revision [125]; (2) the value of the induced power factor in 

flapping flight is generally high, thus is significant for accurate evaluation of the 

aerodynamics. 

The aim of this chapter is to provide a transparent analytical treatment to capture 

the different aerodynamic effects influencing a real flapping wing in normal hovering 

flight using the single parameter, k. It builds upon previous analytical treatments 

through accounting for contributions to k due to both wing shape and flapping 

kinematics. The following section develops a model for the induced power losses in 

normal hovering due to non uniform downwash velocity distribution, wake periodicity 

and finite flapping amplitude. Section 3.3 demonstrates the validity of the approach by 

providing a comparison of model results with experiments in the literature; an 

evaluation of the induced power factor in normal hover for eight insects is then 

provided. In Section 3.4, the developed model is used to understand the effect of 

Reynolds number on induced power factor, and then the figure of merit is 

comprehensively analysed for insect-like hovering flight. Section 3.5 provides the main 

conclusions from this chapter. 

3.2  Contributions to the Induced Power Factor 

3.2.1 Analytical model for induced power losses  

The method for modelling normal hovering flapping flight proposed here is based on 

the method of Stepniewski and Keys [130] for evaluation of the induced power factor of 

hovering rotors, with appropriate modifications applied to represent flapping flight. The 

flapping wing system is approximated by an actuator disk of area Sd. The mass flow 

rate, m , of air through the disk is 

   

 

dS

dwdSm  , (3.1) 
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where ρ is the air density and w is the downwash velocity. For normal hovering flapping 

flight, the effective disk area is the area of sectors swept out by both flapping wings and 

is given by [122,131] 

   

 2RSd  , (3.2) 

   

where   is the flapping stroke angle and R is the wing length. Equation 3.2 may appear 

inconsistent with the use of a circular actuator area for non flapping wings. However, it 

can be argued that the flapping case is sufficiently different to other modes of flight that 

a different definition of the actuator disc area must be used. In particular, the wake 

dimensions for flapping flight must be influenced by the stroke angle,  , and vorticity 

is known to be created only at the interface between the wing and the fluid. Thus, it is 

more appropriate to define Sd as the area over which the wings actually impart 

downward momentum to the air [122]. Following Equation 3.2, an elementary disk area 

will be 

   

 rdrdSd  2 , (3.3) 

   

and substitution into (3.1) gives 

   

 

 

efR

rdrrwm
0

2)( , (3.4) 

   

Note that the upper bound of the above integration is changed to the effective radius, 

Ref, to account for the aerodynamic phenomena occurring at the outer rim of the disk 

reducing its lift generating effectiveness in that region generating so called tip losses 

due to the wake discreteness and periodicity. The generated lift force, L, (usually called 

thrust for rotors) from the actuator disk is equal to the rate of change of downward 

momentum, which is obtained by multiplying the mass flow rate by the eventual 

downward velocity, which is equal to twice the induced velocity at the disk 

   

 

  rdrrwL

efR


0

2
)(4  . (3.5) 

   

The above expression can be written as 
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  rdrrwRL

B

ˆˆ)ˆ(4
0

22

  ,  (3.6) 

   

where Rrr /ˆ  and B is the non-dimensional effective radius (Ref /R).The corresponding 

induced power will be 

   

 
  rdrrwRP

B

ind
ˆˆ)ˆ(4

0

32

  . (3.7) 

   

On the other hand, if a constant downwash velocity distribution is achieved, there are no 

tip losses, and the wings sweep the maximum possible disk area (i.e. Sd = πR
2
), the ideal 

lift produced is 

   

 222 wRLideal  , (3.8) 

   

and 

   

 322 wRPideal  . (3.9) 

   

The induced power factor, k, is obtained as the quotient Pind/Pideal, where the uniform 

ideal downwash velocity required within the ideal power expression (Equation 3.9) is 

obtained by equating Equations 3.6 and 3.8. This leads to an induced power factor of 

   

 
flapperind
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ind kkk
P

P
k  , (3.10) 

   

where  
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
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
flapk . (3.13) 

   

The first contributor to the overall induced power factor expression, kind, considers 

the effect of non-uniform downwash distribution. A discussion is provided on the effect 
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of chord distribution, advance ratio and root offset on this term in the following section. 

The second contributor to the overall k considers wake periodicity losses and is referred 

to as kper. It will be discussed in the context of its derivation from the ‘finite number of 

blades’ concept from rotary wing aerodynamics as well as its derivation from 

Ellington's temporal correction. Finally, the term kflap is based on simple geometric 

considerations and will be discussed briefly at the end. The three sources of inefficiency 

are schematically represented in Figure 3.1. 

 

 
 
Figure 3.1 A schematic of the three sources of inefficiency within flapping normal hovering 

flight. (a) The non-uniform downwash effect. For illustration, an untwisted optimal wing 

planform (which will be later discussed in Chapter 6) whose downwash distribution is almost 

constant in typical hovering is shown; also shown is an untwisted wing planform whose chord 

varies as a half-ellipse along the wing length giving a linear downwash distribution in typical 

hovering. The method to obtain the downwash distribution is discussed in Section 3.2.2. (b) 

Both the effective flapping disk area and wake periodicity effects for a single wing. 
 

3.2.2 Non-uniform downwash velocity effect 

In this section, the effect of non-uniform downwash velocity is discussed. Equation 3.11 

can be used to evaluate kind if the induced downwash velocity distribution over the wing 

is known. Here, an analytical method based on lifting line blade models is proposed. 

Sane [132] presented a lifting line blade model for hovering flapping wings, however, 

the model relied on empirical experimental data; hence, measurements are still required 

for the calculation. Leishman provided a generic formulation of the lifting line problem 

[133, Ch. 14]. Also, Ansari et al. [1] discussed lifting line models in the context of 
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insect-like flapping wings. However, in the latter two references, generic formulas were 

provided without complete details of the method (Note that more discussions on these 

contributions to the lifting line theory will be provided in Chapter 5). Here, a more 

general formulation of the lifting line problem will be presented.  

 

 
 
Figure 3.2 Sectional flow velocities of a flapping wing with an additional translational constant 

velocity component.  
 

As a starting point, the velocity distribution, U(r), on the wing must be defined. The 

more general case of a wing moving with an angular velocity,  , and additionally 

experiencing a constant free stream velocity component, Uf , parallel to the flapping 

plane is shown in Figure 3.2. For this case, the sectional flow velocity at a station r from 

the centre of rotation is given by [134] 

   

  cos)( fUrrU   , (3.14) 

   

where   is flapping angle amplitude. The wing tip angular flapping velocity will be 

given the name, Utip 

   

 RU tip  . (3.15) 

   

J1 is defined as the ratio of the chord wise components of the wing tip flow velocity due 

to translation and revolution [134] 
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Therefore, over one flapping cycle, J1 will vary between - J and J [134], where J is the 

advance ratio given by 

   

 

tip
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U
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Figure 3.3 A schematic of a flapping wing offset.  

 

Practically, the definition of the advance ratio is useful for studying the wing root 

offset effect on the aerodynamic characteristics of normal hovering wings (See Figure 

3.3). The main effect of the wing offset is to change the wing velocity to  

   

   ii RrRrrU   )( , (3.18) 

   

where Ri is the inner wing (root) radial distance. Comparing Equations 3.14 and 3.18, it 

can be concluded that the wing offset leads to a constant velocity contribution added to 

the linear varying velocity; hence, in effect it can be treated in same manner as advance 

ratio, where J1 is defined here as 
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The wing offset will have an additional effect on the induced power factor as a root cut 

out that reduces the effective disk area; however, to maintain simplicity this effect will 

not be considered here. 

Now, the wing can be modelled as a vortex of strength Г(r) bound to the 

aerodynamic centre and the lift per unit span can be obtained using the Kutta-Joukowski 

theorem as [133] 

   

 
  )()()(

2

1
)()()( 2,

2

igdldrCrcrUdrrrUrdL    , (3.20) 



3. Efficiency of Lift Production in Hovering Flapping Flight 

 

111 
 

   

where c is the chord, Clα,2d is the 2d-aerofoil lift curve slope, αg is the geometric angle of 

attack and αi is the induced angle of attack. Hence, Г(r), is obtained as 

   

  )()()(
2

1
)( 2, rwrUCrcr gdl   . (3.21) 

   

The distribution of the induced downwash velocity along the wing length, w(r), can be 

obtained by applying the Biot-Savart law to the vortex wake produced by the wing 

[135-137] 
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where r


 is the selected wing location at which the downwash velocity is required, and r 

is the location of vortices causing the downwash [136]. In the above relations, a wing 

location can be substituted with [135,136] 

   

 cosRr  , (3.23) 

   

where   is now used to define position along the wing. Also, the vortex strength, Г(r), 

is written in a non-dimensional form as [135-137] 
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hence, 
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Substituting the velocity distribution of Equation 3.14 (making use of Equations 3.16 

and 3.23) into the equation for circulation (3.25) leads to 
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Substituting Equation 3.26 into Equation 3.22 and performing integration making use of 

the available Glauert integrals [138] leads to the following expression for the downwash 
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The am coefficients can be obtained using the well-known lifting line technique by 

equating Equations 3.21 and 3.26 making use of Equations 3.14 and 3.27, leading to 
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where μ= c(r)Clα,2d /8R. For the 2d lift curve slope, Clα,2d, either the experimental (0.09 

deg
-1

) or the theoretical value (2π rad
-1

 = 0.11 deg
-1

) for a flat plate can be used. 

Calculated values of kind are relatively insensitive to lift curve slope value and it is usual 

practice to use the experimental value. In this study, a value of 0.09 deg
-1

 will be used 

which is based on the experimental work at typical insects Reynolds numbers of 

Okamoto et al. [139]. Owing to the symmetry of load distribution, only the odd terms of 

m are considered. Following the conventional lifting line solution procedure, the series 

is truncated at a convenient number of terms and the above equation is satisfied at a 

number of wing stations resulting in a set of simultaneous linear equations. This set is 

solved for the am coefficients and hence the downwash distribution is obtained.  In the 

limit when J1 approaches infinity, the well known monoplane fixed wing equations are 

obtained, whilst if J1 is zero, the typical normal hovering case is simulated. Therefore, 

the above equations represent a more general formulation of the lifting line problem. It 

should be noted that the kind value is sensitive to the chord distribution and advance 

ratio. Therefore, kind depends on the wing morphology (through chord distribution) and 

kinematics (through advance ratio). Further discussion of these effects will be provided 

in the following sections of this chapter. 

3.2.3 Tip loss effect due to wake periodicity 

It is well known that lifting line blade models are unable to fully capture the flow 

structure at the blade/wing tip (a discussion on this point is provided by Johnson in [Ch. 

10, 140] and by Sane in [132]). There are a number of options for correction for 

corrected tip effects ranging from simple tip loss factors to a complete lifting surface 
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theory analysis of the aerodynamics. For the present work, a tip loss factor approach 

that models the loss as an effective reduction in wing span is adopted. 

Prandtl provided a solution for a tip loss correction for a rotor with finite number of 

blades. He showed that when accounting for tip loss due to wake periodicity, the 

effective blade radius, Ref, is given by [133,140] 

   

 




























21

2ln2
1





b

ef

NR

R
B , (3.29) 

   

where Nb is the number of blades and λ is the inflow ratio. Although this formula was 

originally developed for rotors with finite number of blades, Sane [132] showed that it 

can be used within the context of flapping flight, suggesting a value of 2 for Nb to 

simulate a complete wing cycle and a value of 1 for a single up or down stroke. For a 

hovering case, λ is the ratio of the induced downwash velocity to the wing tip velocity 

and can be evaluated using the simple model [130,133] 
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where CTh is the thrust coefficient defined as 
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where DL is disk loading obtained as the quotient of the thrust (≡weight) to the effective 

disk area, and the tip velocity can be evaluated from the mean value expression 

   

 fRRU tip  2 . (3.32) 

   

A different tip loss model is provided by Ellington, where a temporal correction is 

applied to the Rankine-Froude theory to account for wake periodicity [122]. Ellington 

stated that his model compares well with hovering helicopters. It will be shown in the 

results section that the two methods are in very good numerical agreement. 

Nevertheless, Ellington also added that his method provides a more satisfying physical 

and conceptual description of the flapping problem; hence, it will be presented here in 

some detail. The expression for the temporal correction is given as [122] 
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 2

, 079.01 sk Ellingtonper  , (3.33) 

   

where s is the so-called ‘spacing parameter’, which for a normal hovering case with a 

horizontal stroke plane is given by [122] 
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where W is the insect weight, f is the wing beat frequency and n is the frequency of lift 

impulses per wing beat frequency. It takes a value of 2 in normal hovering as the two 

wing strokes provide weight support and takes a value of 1 if only one wing stroke 

provides weight support. Therefore, the number of lift impulses per wing beat frequency 

of Ellington's model is analogous to the number of blades of the rotor model.  

3.2.4 Finite flapping amplitude effect 

The last contributor to the overall induced power factor expression, kflap, considers 

losses associated with the reduction of effective disk area for flapping stroke angles less 

than 180
 
degrees. Hence, this reduction in the effective disk area will cause further 

increase in the disk loading and higher induced velocity compared to that given by the 

simple momentum theory leading to a third contributor to the overall induced power 

factor. It is named kflap as it is an induced power loss specific to flapping wings only.  

3.3  Results 

3.3.1 Comparison with experiments  

In this section, the model for induced power factor proposed above is tested against 

available experimental measurements from the literature. First, the model is compared 

to the experimental study of Dickson and Dickinson [134] in which they have 

investigated the effect of advance ratio on the aerodynamics of revolving wings. A wing 

with R=0.25m, AR=4.2 and a non-dimensional radius of the first moment of wing area 

of 0.59 was used. Experimental measurements of lift and drag coefficients were 

provided for a range of kinematics corresponding to J1 ranging from -0.5 to 0.5. One of 

the main conclusions was that the lift coefficient decreases with the increase in J1. Here, 

the same experimental conditions are used within the proposed model for calculating the 

downwash velocity distribution, which was then used within Eqn. 3.11 to evaluate kind, 
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and this was repeated for the different J1 values of the experiment. The wing chord 

distribution was defined based on the beta function proposed by Ellington [141] (this 

function will be presented in the next section).  

Results for the variation of kind over the J1 range of the experiment (-0.5 < J1 <0.5) 

are shown in Figure 3.4. On the basis that by definition the lift coefficient decreases 

with the increase of the k-factor, the obtained results provide qualitative agreement with 

the experimental observations of Dickson and Dickinson. 

 

 
 
Figure 3.4 The variation of kind with J1 for a wing shape and kinematics similar to that 

experimentally measured by Dickson and Dickinson [134].  
 

Second, the induced power factor variation shown in Figure 3.4 is compared to 

results from the low Rossby number hypothesis of Lentink and Dickinson [142]. The 

Rossby number is a non-dimensional number that is used to quantify the centripetal and 

Coriolis accelerations, and for a revolving wing is the ratio of the wing radius of 

gyration to the chord. Lentink and Dickinson measured the force coefficients for a fruit 

fly like wing model at different values of the Rossby number, and concluded that the lift 

coefficient decreases with increasing the Rossby number (see Figure 6 of [142]). The 

way they increased the Rossby number was by elongating the robot arm (wing root 

offset). As discussed in Section 3.2.2, this way can be seen as increasing the wing tip 

velocity ratio J1 as described in Equations 3.18 and 3.19 (In line with this is the later 

explanation given by Harbig et al. [143] where they showed that the Rossby number can 

be written in terms of 1+J). Thus in conclusion of Lentink and Dickinson 

measurements, increasing the wing tip velocity ratio will increase the Rossby number 

which in turn leads to lower lift coefficient values. Therefore again the results shown in 

Figure 3.4 provides qualitative agreement with these findings.  
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Figure 3.5 Circulation around the revolving fruit fly wing model in a typical hovering condition 

(J1 = 0). The circles are the experimental results digitised from Figure 2 of [144]; a best fit line 

is drawn for the experimental data to which the lifting line model is compared. The semi-

empirical treatment by Sane as presented in Figure 3b of [132] is also included for comparison. 
 

Finally, the lifting line model is compared with results from Birch et al. [144] who 

used DPIV to measure the circulation around a revolving model fruit fly wing with a 

mean chord of 7 cm [132] in a typical hovering condition (J1 = 0). Since the wing has a 

planform shape of a fruit fly wing, the real fruit fly AR of 3.015 and non-dimensional 

radius of the first moment of wing area of 0.55 (Table 3.1) are used to define the chord 

distribution based on the beta function. The measurements were performed with the 

wing set at a 45 degrees geometric angle of attack and revolved with a wing tip velocity 

of 0.26 m/sec. The circulation distribution at the same experimental conditions is 

calculated using the lifting line model and the result is compared with the experiment, 

Figure 3.5. On the same figure, the semi-empirical treatment of Sane [132] for the same 

experiment is included for comparison. The important aspect with regards to the 

induced power factor evaluation method presented here is to compare the shape of 

variation of circulation. Excellent agreement between the analytical model and the 

experiment for the shape of variation is evident from the rate of decay of circulation 

towards zero. Note that the lifting line model assumes a totally homogeneous system 

and does not include a tip loss effect as a result of wake periodicity; hence, prediction of 

the effective wing tip location is not an explicit output of the model. As will be shown 

in the next section, for a revolving fruit fly wing, a value of B (inverse of kper) of 0.87 is 

obtained which is in a very good agreement with the experimental results. 

3.3.2 Induced power factor values 

In this section, the value of the different contributors to the induced power factor for 

eight insects in normal hovering with J1 = 0 will be presented. Table 1 shows weight, 

morphological and kinematic data of the eight insects taken from Sun and Du [145]. 
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Note that these data were collected by Sun and Du from the most relevant study for each 

insect. 

 

Table 3.1 Weight, morphological and kinematic parameters of hovering insects [145]. 

 

Insect 
mass 

(mg) 

R 

(mm) 

c  
(mm) 1̂r  

f 

(Hz) 


 
(deg.) 

Fruit fly (FF) 0.72 2.02 0.67 0.55 254 150 

Bumble bee (BB) 175 13.2 4.02 0.49 155 116 

Hawkmoth (HM) 1648 51.9 18.26 0.46 26.3 121 

Honey bee (HB) 101.9 9.8 3.08 0.5 197 131 

Cranefly (CF) 11.4 12.7 2.38 0.56 45.5 123 

Hoverfly (HF) 27.3 9.3 2.2 0.52 160 90 

Dronefly (DF) 68.4 11.4 3.19 0.48 157 109 

Ladybird (LB) 34.4 11.2 3.23 0.47 54 177 

 

In this evaluation, the chord distribution for the different insects was defined based 

on the method proposed by Ellington [141]. For many insect wings, Ellington found that 

the chord distribution is accurately described to within 5% of the measured values using 

a beta function as [141] 
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where 
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with the beta function parameters chosen as 
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where 1̂r and 2̂r are the non-dimensional radii of first and second moments of wing area 

respectively. For insect wings, Ellington found a strong correlation between the second 

and first radii of moments of wing area as [141] 
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Table 3.2 Calculated contributions to the induced power factor, k. 

 

Insect kind 
kper (Eqn. 3.12 

& 3.29 with 

Sd = πR2) 
kflap kind kper kflap 

kper,Ellington 

(Eqn. 3.33) 

Fruit fly 1.21 1.14 1.10 1.51 1.11 

Bumble bee 1.17 1.10 1.25 1.61 1.07 

Hawkmoth 1.14 1.12 1.22 1.55 1.09 

Honey bee 1.18 1.10 1.17 1.52 1.07 

Cranefly 1.24 1.09 1.21 1.63 1.06 

Hoverfly 1.20 1.10 1.41 1.88 1.07 

Dronefly 1.16 1.09 1.29 1.63 1.06 

Ladybird 1.15 1.12 1.01 1.30 1.09 

mean ± s.d. 1.18 ± 0.034 1.1 ± 0.02 1.21 ± 0.12 1.58 ± 0.16 1.07 ± 0.02 

 

Table 3.2 shows the hovering values of kind, kper and kflap calculated using the 

procedure presented in Section 3.2 for the eight insect species based on their data 

provided in Table 3.1. Also the variation of kind, kper and kflap with the relevant variables 

is shown in Figure 3.6. The mean value of kind for the eight insects is 1.18. Values of kper 

associated with wake periodicity are presented for normal hovering with two active 

wing strokes. The first calculation is based on the rotor expression (Equation 3.12 and 

3.29) using an effective disk area of Sd = πR
2 

to calculate the disk loading. This method 

is more appropriate for revolving wings that is usually employed for experimental 

measurements of insect wings [142,146,147] where the wing sweeps the actuator disk 

area in a propeller fashion. The second calculation of kper is based on Ellington's 

expression (Equation 2.33). It has slightly lower values than that obtained using the 

rotor expression, however, the two calculation results are in obvious agreement and 

their values are usually around 1.1. The ladybird has a value of kflap almost equal to 

unity, the hoverfly has a kflap value of 1.41 whereas other insects kflap values are 

clustered around 1.2. Generally, values of kflap represent the major contributor to the 

total k for most insects. The large variation in kflap might be expected on the basis that it 

is driven primarily by the maximum wing flapping amplitude, which will vary between 

different insect body arrangements. Finally, Table 3.2 shows values of the overall k that 

accounts for all three effects. These k values range between 1.5 and 1.6 except for the 

hoverfly that has the largest k with a value close to 1.9 and the ladybird that has the 

smallest k of a value of 1.3. The difference in the hoverfly and ladybird k values is 

mainly due to differences in kflap.  
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Figure 3.6 (a) Variation of the induced power factor due to non-uniform downwash effect with 

wing morphology. (b) Variation of the induced power factor due to wake periodicity with the 

thrust coefficient. (c) Variation of the induced power factor due to effective flapping disk area 

with the peak to peak flapping stroke angle. 

3.4  Applications and Discussion  

3.4.1 Reynolds number effect on the induced power factor  

There is currently some evidence that suggests that hovering flapping wing flows at 

insect scale are largely independent of Reynolds number. This is consistent with the 

experimental observations that show that the net force vector at high angles of attack is 

normal to the wing surface indicating dominance of pressure forces at these low 

Reynolds numbers and the relative lack of influence of viscous forces 

[142,146,148,149]. In their experimental study, Lentink and Dickinson [142] tested the 

aerodynamics of a fruit fly wing model at three Reynolds numbers using the same 

kinematics, but using fluids of different viscosities. They found that the lift–drag 

coefficient polars did not change much and almost no dependence on Reynolds number 
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over the range they measured (100< Re <14,000) was demonstrated. Similarly, Sane 

and Dickinson [150, p. 1094] reported that their measured forces might not be crucially 

dependent on viscosity, stating that ‘Both viscid and inviscid models show reasonable 

agreement with forces measured on our apparatus using identical kinematics’. 

Building on the previous, a proposed analytical manipulation that would explain the 

variation of the induced power factor with Reynolds number is presented. This will be 

achieved using the analytical expression of the induced power factor due to wake 

periodicity provided by Ellington (Equation 3.33). Here, a rearrangement of Equation 

3.34 is proposed for the spacing parameter as follows 
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where AR is a single wing aspect ratio, fR2 is the mean wing tip speed, c is the mean 

chord, ν is the air kinematic viscosity and Re is the Reynolds number based on the wing 

tip speed [151]. In the above equation, the kinematic viscosity was enforced into the 

expression to obtain the Reynolds number. This means that the main parameter 

controlling the Reynolds number is the wing speed and chord, while the viscosity has no 

effect. However, this can be accepted at typical insects Reynolds numbers due to the 

minor role of viscosity on the aerodynamic characteristics of flapping wings discussed 

previously.  

With other contributors to k being fixed (i.e. kflap and kind) and following Spedding 

and McArthur [120], an inviscid wing span efficiency due to wake periodicity can be 

defined as the inverse of the induced power factor due to the same effect as 
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Figure 3.7 shows the effect of varying the Reynolds number on the value of this wing 

span efficiency for a fruit fly wing, with the mass and aspect ratio taken from Table 3.1. 

For Reynolds numbers above ~ 100, the span efficiency is effectively independent of 

Reynolds number, whereas below this value, the efficiency drops increasingly rapidly 

towards zero. This is in good agreement with the experimental observations of Lentink 

and Dickinson [142]. 
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Figure 3.7 Variation of the wing span efficiency due to wake periodicity effect with Reynolds 

number for the fruit fly. The mean lift coefficient variation with Reynolds number adopted from 

[152] is included for comparison.  
 

For comparison, Figure 3.7 also shows mean flapping cycle lift coefficient as a 

function of Reynolds number from CFD results of Wu and Sun [152]. Although the 

quantities presented on Figure 3.6 are different, the span efficiency will directly 

influence the lift coefficient values attained during a flapping cycle, hence, allowing a 

meaningful comparison of the shape of variation. 

3.4.2 Figure of Merit  

Not all aerodynamic losses are due to induced effects; other sources as skin friction and 

pressure drag of the wing should be included in the assessment of flapping flight 

aerodynamic efficiency. The figure of merit, FM, is defined as the ratio of the ideal 

power to hover to the actual power required including all possible sources responsible 

for this actual power; it is written as [133,140] 
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The numerator of the above expression is the ideal induced power coefficient given by 

the momentum theory representing the minimum possible power level. The first term in 

the denominator is the actual induced power coefficient that accounts for the previously 

discussed non-ideal induced effects through the factor, k. The second term of the 

denominator, 
proPC , is the profile power coefficient. Note that if profile effects are 

ignored, the figure of merit returns to the reciprocal of the induced power factor and 

become analogous to the inviscid span efficiency. 
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It is useful at this point to consider the values of FM for rotary platforms. In 

practice, FM values for rotary wings range between 0.7 and 0.8 and in some cases can 

approach 0.82 [133]. However, the previous values are for full-scale helicopters and it is 

more appropriate to consider FM values for rotors at the micro-scale; herein some of the 

figures found in the literature are reported. Leishman [133, Ch. 6] provided 

experimental data gauging the performance of a small rotating wing MAV with a 3 inch 

radius rotor representing a convenient platform for comparison. For this rotor, the 

estimated value of the profile drag coefficient was 0.035 based on low Reynolds number 

airfoil data and the induced power factor, k, was given a value of 1.75 based on the 

asymptotic value of the measured FM curve. Thus, these values lead to a maximum FM 

of 0.5 which represents a lower hovering performance compared to large rotors. 

Ramasamy et al. [153] conducted rotor performance measurements on a similar two 

bladed rotor with a radius of 86 mm and a uniform chord of 19 mm giving a blade 

aspect ratio of 3.7. They confirmed the low aerodynamic efficiency the rotor had with 

an average FM of about 0.5. However it is noteworthy to mention that this experiment 

was conducted at blade tip chord Reynolds number around 50,000 where the flow 

turbulence is expected to affect the aerodynamic characteristics as opposed to insects 

that generally fly in a laminar world of Reynolds number below 10,000 [154]. The 

highest measured FM by Bohorquez et al.
 
[13] for a single rotor configuration of the 

MICOR MAV (see Section 2.2.1.1) at a rotor tip Reynolds number of 25,000 was 0.42. 

They also showed that profile drag accounts for 45% of the losses as opposed to 30% in 

full-scale helicopters. Other hover performance measurements of rotors at the micro-

scale showed maximum FM values between 0.4 and 0.6 [155,156].  

Lentink et al. [9] compared what they called ‘hover efficacy’ of both a flapping and 

a rotary fruit fly wing model at typical Reynolds numbers of insect operation using the 

experimental results from reference [142]. The important aspect of this comparison is 

that the two different motions (i.e. rotary and flapping) are compared at the same 

Reynolds number for the same wing within one experiment. Through the comparison of 

aerodynamic power and inertial power loss, they suggested that helicopter-like MAVs 

but fitted with insect-like wings can be significantly, up to a factor 4, more energy 

efficient than flapping insect-like MAVs. 

Ellington [151] conducted a useful analysis on some hovering insects including the 

ladybird, cranefly, hoverfly, dronefly, honey bee and bumble bee to evaluate their 

efficiency using a measure similar to the figure of merit. However, this measure was 
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referred to as the aerodynamic efficiency and was given the symbol, ηa (the 

aerodynamic efficiency was defined as the minimum power required to hover divided 

by the actually expended aerodynamic power). In this analysis, Ellington evaluated the 

induced power based on his own model [122]. He estimated the profile drag coefficient 

using the expression obtained from wind tunnel measurements of some insect wings at 

high angles of attack: Re/7
proDC . The obtained mean values for 

proDC ranged 

between 0.14 and 0.35 leading to profile power values of similar magnitude as induced 

power values. Thus, the aerodynamic efficiency, ηa, values ranged between 0.35 and 

0.55. Ellington described these aerodynamic efficiency levels as being ‘not bad’ 

considering the enhanced profile power for wings operating at high angles of attack and 

low Reynolds numbers. Note that Ellington analysis will be critically reinvestigated 

again in Chapter 5 in light of its comparison to the results from a developed lifting line 

theory for hovering flight. 

 

 
 
Figure 3.8 Figure of Merit values for eight hovering insects. Power loading is calculated from 

Sun and Du [145] CFD results. 
 

Now to provide more accurate estimates for the FM, the values of power loading 

for the eight hovering insects are calculated from the CFD results of Sun and Du [145] 

and are plotted in Figure 3.8 for each insect against its corresponding ideal disk loading 

based on insect data in Table 3.1. On the same plot, power loading values following the 

momentum theory for different values of FM are plotted based on [133] 
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The eight insects show FM values ranging between 0.15 (as for fruit fly) and 0.28 

(as for honey bee) representing very low aerodynamic efficiency levels. As will be 

shown in Chapter 4, the tangential skin friction force for insect-like flows can be 

neglected and only pressure and induced drag components are sufficient to account for 

the total aerodynamic power budget. If only the induced component is considered, then 

the FM value would be around 0.6 (based on mean value of overall k in Table 3.2 and 

using the expression: 1/k). However, the FM values in Figure 3.8 are considerably lower 

demonstrating the significant role of pressure drag towards the obtained aerodynamic 

efficiency which is consistent with the high angle of attack operation nature of flapping 

insects. This pressure drag contribution affects to a great extent the degree of efficiency 

attained, leading to considerably low efficiency measures compared to micro-scale 

rotors which typically operate at low angles of attack. Note that the relative contribution 

of pressure and induced components to the overall drag of insect-like hovering flight 

will be reinvestigated comprehensively in Chapter 5. 

It is noteworthy at this point to address that the figure of merit should be used with 

considerable care as a comparative measure between two wing configurations when 

they are also compared at the same disk loading. Here comes the role of the power 

loading as a useful measure that should be used in conjunction with the previous 

measures to gauge the aerodynamic efficiency [131,133]. The power loading is defined 

as the quotient of thrust to power (hence analogous to a propulsive efficiency) and it 

decreases rapidly with increasing the disk loading. Therefore, a hovering configuration 

with a low disk loading will require relatively low power per unit of thrust produced and 

might be judged as more efficient, even if the figure of merit is of low value. To 

illustrate this point, the case of cranefly and honey bee shown on Figure 3.8 are 

compared. The cranefly has a FM value of 0.18 while the honey bee has a FM value of 

0.28; nevertheless, the power loading of the cranefly is higher than the honey bee case 

due to its lower disk loading and hence can be regarded as a more efficient platform. 

This consideration should also apply when comparing flapping and rotary platforms 

where in some cases a flapping platform can have higher power loading despite of the 

lower FM. Yet, an important point to remember is that power loading suffers from being 

a dimensional quantity providing an absolute measure of efficiency, whilst both the 

induced power factor and the figure of merit are non-dimensional quantities providing 

relative measures of the efficiency.  
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3.5  Chapter Conclusions  

This chapter has provided an analytical treatment of a flapping wing to capture the 

different aerodynamic effects influencing normal hovering flight in terms of the induced 

power factor. A number of non-ideal but physical effects that should be accounted when 

designing and/or analysing a hovering flapping wing are discussed comprehensively, 

including the effects of: non-uniform downwash velocity distribution, wake periodicity 

tip losses and effective flapping disk area. A novel method that combines actuator disk 

and lifting line blade theories is proposed to handle the effect of non-uniform downwash 

distribution taking into consideration the possible effect of advance ratio on the 

aerodynamic characteristics of the wing. The developed model has been validated 

against results from the literature and good agreement with experimental investigations 

on the effect of advance ratio on the aerodynamics of a revolving fruit fly wing has been 

obtained. A very good agreement has also been found between the results of the 

proposed model and experimental measurements of the circulation distribution on a 

revolving fruit fly wing at zero advance ratio. Different methodologies for the 

evaluation of the tip losses are presented and analysed. This allowed an investigation on 

the variation of normal hovering flapping wings induced power factor with Reynolds 

number.  

Specific conclusions for the evaluated induced power factor for eight hovering 

insect cases at zero advance ratio are as follows: 

1. Contributions to the induced power factor: The non-uniform downwash effect leads 

to k values ranging between 1.14 and 1.24; wake periodicity have been evaluated 

using two approaches where the two calculation results are around 1.1; losses due 

to effective flapping disk area lead to k around 1.2. 

2. Overall induced power factor: values of the total k accounting for all three 

discussed effects range from 1.3 for the ladybird and 1.88 for the hoverfly and are 

most clustered between 1.5 and 1.6 for the remaining species. Losses due to 

reduction in effective actuation area from flapping stroke angle values less than π 

represent the major contributor to the overall k for most insects. 

Specific conclusions for achieving ideal values of the hovering induced power 

factor (i.e k=1) are as follows: 
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1. The contribution to k arising from the non-uniform downwash effect is found to 

depend on both the wing chord distribution and the advance ratio. Thus, for a given 

advance ratio this effect can be eliminated through appropriate choice of the wing 

chord distribution. (The optimum hovering chord distribution for zero advance 

ratio, representing the typical hovering case which is of most interest, will be 

presented in Chapter 6).  

2. The wake periodicity contribution to k can be minimised through having lower disk 

loading values.  Additionally, it is confirmed from the different wake periodicity 

models that normal hovering in which the two wing strokes provide weight support 

is more efficient than asymmetric strokes along an inclined stroke plane in which 

mainly one wing stroke provides the weight support.   

3. The effective flapping disk contribution to k can be controlled through the 

kinematic parameters: (a) stroke plane angle and (b) flapping stroke angle. 

Obviously, to minimise kflap to unity, a horizontal stroke plane (i.e normal hovering) 

should be employed and a flapping stroke angle of 180 degrees should be used. 

The figure of merit of eight hovering insects was estimated and the following 

specific conclusions were obtained: 

1. It is found that the figure of merit attained values ranging from 0.15 to 0.28 for the 

eight insects considered suggesting very low aerodynamic efficiency levels for 

insect-like hovering flight. 

2. The effect of the pressure drag component on the efficiency levels is discussed 

showing a significant contribution to the efficiency levels obtained due to the high 

angles of attack operation in hovering flapping flight. 
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 4 

 A Quasi-Steady Aerodynamic Model 

of Normal Hovering Flight
2
  

 

This chapter provides a compact and transparent model for the quasi-steady 

aerodynamics of normal hovering flight. A generic analytical methodology for 

evaluating the steady translational force coefficients of flapping wings in normal hover 

and its validation against available experimental data is discussed. The coefficient 

expressions are then implemented within a quasi-steady blade element model for the 

analysis of several hovering insects. Generated aerodynamic forces and expended 

aerodynamic power are calculated and validated against other existing aerodynamic 

modelling methodologies including CFD simulations. The analytical model is then 

compared with two other possible analytical approaches to aero-modelling of wings 

with a leading-edge vortex (LEV). Similarities and differences between the models are 

identified and results of the three approaches are compared to available experimental 

data. This allows a reassessment of the role of the LEV in lift augmentation of 

revolving/flapping wings. 

 

                                                 
2 Significant sections of this chapter are based on the publication: Nabawy MRA, Crowther WJ. 2014 On 

the quasi-steady aerodynamics of normal hovering flight part II: model implementation and evaluation. J. 

R. Soc. Interface 11: 20131197 (doi 10.1098/rsif.2013.1197) 
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4.1  Introduction  

There have been several attempts to construct sophisticated analytical models for the 

aerodynamics of insect flight such as those developed by Minotti [157] and Ansari et al. 

[158,159]. Another class of aerodynamic models representing a medium cost, medium 

fidelity treatment is based on the unsteady vortex lattice method as developed by Fritz 

and Long [160] and Roccia et al. [161]. However, the simpler so-called ‘semi-

empirical’ quasi-steady models [1] are generally more widely used because they are 

relatively fast, offer insight into the generated forces and allow the comparison between 

different types of wing morphologies and kinematics. These models require the use of 

experimental data for the flapping translational force coefficients within the model. 

Hence their applicability is dependent on the availability of experimental data, such as 

those presented by Dickinson et al. [162] and by Usherwood and Ellington [146,147]. 

Examples of semi-empirical quasi-steady models are provided by Walker and 

Westneat [163], Sane and Dickinson [150], Berman and Wang [164], Whitney and 

Wood [100] and Khan and Agrawal [165]. The main physical assumption in these 

models is that the flapping wing instantaneous aerodynamic forces are equivalent to the 

forces generated during the wing steady motion at the same instantaneous velocity and 

angle of attack [166]. These models start with a definition of wing kinematics from 

which the angle of attack and the incident velocity in the wing frame of reference are 

obtained. The lift and drag forces acting on the wing due to its flapping translation are 

then calculated using the available experimental data on flapping translational force 

coefficients. Finally, force components due to wing rotation as well as the non-

circulatory added mass effects are usually added. The success of a quasi-steady 

aerodynamic model is based primarily on the availability of appropriate flapping 

translational force coefficients from experimental data. However, quality experimental 

data are limited to a few specific geometries and test cases, and force coefficients can 

show considerable change with variations in the wing shape [167].  

In contrast to analytical models, CFD models have the benefit of providing detailed 

information on both the generated aerodynamic forces and the structure of the wake and 

surrounding fluid. However, from an interpretation point of view, it is generally difficult 

to separate the contributions of the various fluid dynamic mechanisms to force 

generation [1] and as a result these models may not provide insight appropriate to 
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engineering design or insect physiological analysis. CFD models are also 

computationally expensive meaning that they are of limited use as part of optimisation 

studies. Example CFD models include those developed by Liu et al. [168] to study a 

hawkmoth wing in hover, Ramamurti and Sandberg [169] for a fruit fly wing as well as 

the comprehensive CFD studies of different insect wings developed by Sun and his 

group [145,152,170,171]. 

The aim of this chapter is to develop and validate a generic, transparent and 

compact modelling treatment for representing the aerodynamics of insect-like flapping 

wings in hover. The main intended use of the resulting model is in the preliminary 

engineering design of insect-scale flapping wing vehicles; however, the model can also 

be used to support quantitative studies of insect physiology. A fundamental aspect of the 

model is its ability to be generic through accounting for different aerodynamic effects 

related to flapping flight including, for example, the influence of wing shape and 

kinematics on the aerodynamic characteristics. It allows wider application of ‘semi-

empirical’ quasi-steady models as it removes constraints imposed by the availability of 

experimental data, allowing flexible analysis, design and optimisation of hovering 

flapping wings.  

4.2. Flapping Wing Analytical Model 

4.2.1 Wing morphology 

The modelling process begins with definition of the wing shape in terms of chord 

distribution as a function of span. Here, the procedure proposed by Ellington [141] is 

used to define the chord distribution through a beta function representation. This 

representation provides a compact analytical description of wing shape using just three 

variables: wing length, mean chord and the non-dimensional radial location of the wing 

centre of area. Details of this method were provided in Section 3.3.2 and hence will not 

be repeated here. 

4.2.2 Wing kinematics 

The wing kinematics are defined using the axis systems shown in Figure 4.1. The 

reference axis system is (x0, y0, z0) with the x0-axis taken parallel to the earth surface. 

Kinematics of the wing are defined by Euler rotations relative to the reference axis 
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system. These rotations govern the stroke-plane angle, σ (Figure 4.1a), wing flapping 

angle,   (Figure 4.1b) and wing pitching (varying incidence) angle,   (Figure 4.1c).  

 

 
 

Figure 4.1 Axis systems. (a) Stroke plane axes, for clarity, x1 and x2 are aligned with the body axis. (b) 

Flapping axes. (c) Pitching axes. (d) Lift-Drag frame. 

 

In normal hovering, most insects use symmetrical half strokes and horizontal stroke 

plane (σ of -90 degrees) [1,167]. Maximum angular deviation from the stroke plane is 

typically small (less than 15 degrees, see Figure 6 in [171] and Figure 1 in [172]) and it 

is common to assume that the motion is planar [1,8,165,167].  Therefore, the required 

kinematic angles to be defined are the flapping angle,  , and the pitching angle,  . The 

angles )(t  and )(t  are defined here using representations as those given by Berman 

and Wang [164]. However, their parametric expressions are reduced to simpler 

expressions more compatible with the current work as follows 

   

 
  )2cos(sin

sin
)( 1

1
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C

t 

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 ftC
C
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where max  is the flapping angle amplitude, max  is the pitching angle amplitude and f is 

the flapping frequency. The parameters C  and C  are used to control the shape of 
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flapping and pitching cycles respectively where 0 < C  < 1 and 0 < C  < ∞ [164]. In 

the limit where C  → 0, )(t becomes sinusoidal, and when C  approaches 1, )(t

becomes a triangular waveform as shown in Figure 4.2a. On the other hand, as C  

approaches 0, )(t becomes sinusoidal while as C  tends to ∞, )(t  becomes 

rectangular as shown in Figure 4.2b. The phase lag angle,  , controls the pitching 

timing through the flapping cycle and is 90 degrees for the symmetric case. Note that, a 

comprehensive investigation into the optimisation of kinematics for different 

aerodynamic objectives will be presented in Chapter 7. 

 

 
 

Figure 4.2 Kinematics model for symmetric normal hovering, (a) Flapping angle, )(t  and (b) 

pitching angle, )(t . The parameters C  and C  are used to control the shape of flapping and 

pitching cycles.  
 

Once the kinematics of the wing are defined, the instantaneous angular velocity in 

the wing frame is derived. The linear velocity vector, U, is then obtained by cross 

multiplication of the angular velocity vector and the position vector in the wing frame 

[100]. The wing geometric angle of attack, αg, defined as the angle between the zero lift 

line and the instantaneous velocity vector (Figure 4.1d) in the x-z plane, is obtained as 
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 ),(2arctan
33 xzg UU . (4.3) 

   

The instantaneous lift and drag force components on each wing strip are expressed as 
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(4.4) 

   

where ρ is the density, c is the chord, while, CL and CD are the flapping wing 

translational lift and drag coefficients which will be discussed comprehensively in next 

section. 

4.2.3  Aerodynamics 

4.2.3.1 Modelling principles 

 
 
Figure 4.3 Illustration of an idealised conception of the vortex wakes from the three principal 

wing motions used for practical lift generation: (a) Parallel translating. (b) Revolving. (c) 

Flapping. For flapping motion, it is assumed that wing rotation at the beginning and end of each 

half stroke occurs instantaneously and the angular velocity is constant through each half stroke 

such that the starting and stopping vortices are coincident. In practice, the flapping wake 

structure is significantly less stable than the wakes for translating and rotating motion due to self 

induced velocities and thus represents the most idealised case of the three wakes shown. 
 

Previous experimental work conducted on flapping wings has included experiments on 

model insect wings in parallel translation motion as well as revolving and flapping 

translations. These three possible wing motions are shown schematically in Figure 4.3 

with an idealised conception of their associated vortex structures. An objective of this 

diagram is to show that whilst the three wing motions lead to quite different wake 

structures, the fundamental building blocks of the wake are similar and hence it should 

be anticipated that an aerodynamic theory for the flapping case can built from 

modification of existing components developed for translating and revolving flight. It 
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has been observed in experimental studies that at small angles of attack the wing lift 

coefficients are almost the same for all three wing motions (see Figure 12 in [146], 

Figure 1 in [9] and Figure 7 in [173]). However, once the wing enters the high angles of 

attack region, the lift coefficients of parallel translating wings drop significantly due to 

wing stall. On the other hand, revolving and flapping wings do not exhibit classical 

abrupt stall characteristics and the lift coefficient tends to increase up to a maximum 

value at around 45 degrees. The reason for this is typically attributed to the formation of 

a leading-edge vortex (LEV) on the top surface of the wing [146,174,175]. This LEV 

has stable characteristics and is often continuously attached during the flapping cycle. 

Section 4.4 will comprehensively discuss the possible methods to theoretically model 

the LEV, and will provide a theoretical argument for attributing the observed lift 

enhancement and in particular the role of the LEV in lift production. 

4.2.3.2 Translational aerodynamic force coefficients 

The current study considers a very simple aerodynamic model for the translational 

aerodynamic force on a flapping wing based on a normal force as a function of angle of 

attack [8,134] 

   

 
gNgN CC  sinˆ)(  , (4.5) 

   

where NĈ is the magnitude of the normal force coefficient at 90 degrees angle of attack, 

which will depend primarily on Reynolds number and wing shape [164,176].  Resolving 

the normal force in the lift and drag directions gives 

   

 
gNggNgL CCC  2sinˆcossinˆ)(

2

1  and 

gNgD CC  2sinˆ)(  . 
(4.6) 

   

This model is based on the following assumptions: 

(1) Absence of classical wing stall; i.e. the wing undergoes a 3d flapping translation 

where the leading edge vortex is stable and does not grow with time. Because there 

is no new vorticity generated at the leading edge, no additional vorticity is 

generated at the trailing edge and the wing satisfies the Kutta condition at angles 

beyond which classical stall would occur for parallel translating wings [148]. This 

means that the lift is a continuous function of angle of attack. 
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(2) The wing is an infinitesimally thin flat plate, and hence there is no chordwise 

component to the integrated surface pressure force. 

(3) The chordwise tangential force due to skin friction is negligible compared to the 

integrated surface pressure force acting normal to the wing chord. 

(4) The magnitude of the normal pressure force is proportional to the projected wing 

chord perpendicular to the flow direction [134]. 

Because of assumption 4, the current model will be named as the ‘normal force’ model. 

Additionally, it is understood that assumption 1 (absence of classical wing stall) will 

become invalid at angles of attack approaching 90 degrees where from a symmetry 

argument, there must be a separation at both the leading and trailing edges, and hence 

the Kutta condition cannot be satisfied.  

Experiments on model insect wings and CFD simulations [134,177] have shown 

that the above model provides a close approximation of the measured translational 

steady lift coefficient and is widely used for modelling lift for insect physiology and 

engineering studies [100,164,176].  Within this community, it is customary to present 

the model as 

   

 
gTgL CC  2sin)(  , (4.7) 

   

where CT is referred to as the translational lift constant and is equal to half the peak 

normal force coefficient. 

A value for translational lift constant loosely based on a method used by Hewes 

[178] is obtained as follows. Taking the limit of Equation 4.7 in the vicinity of small 

angles of attack gives 

   

 
gTL CC )2( . (4.8) 

   

Hence, 

   

 
dLT CC 3,2

1
 , (4.9) 

   

where, CLα,3d is the three dimensional wing lift curve slope at small angles of attack. For 

a given wing shape, the wing lift curve slope can be obtained using an appropriate wing 

theory and hence an expression for CT can be obtained. A suitable way for the 

evaluation of the three dimensional wing lift curve slope is to use Prandtl lifting line 

theory [179,180]  



4. A Quasi-Steady Aerodynamic Model of Normal Hovering Flight 

 

135 
 

   

 

AR

kC
E

C
C

dl

dl

dL








2,

2,

3,



 . 
(4.10) 

   

The above lifting line expression gives good results for aspect ratios above 3 [137], 

hence can be applied to most insect wings, which have aspect ratios ranging between 3 

and 5 [141]. An important aspect of the above relation is that it accounts for the 

influence of the vorticity in the wake on the wing lift curve slope [144,175,181]. Note 

that the experimental values of the lift coefficient, used within ‘semi-empirical’ quasi-

steady aerodynamic models, are calculated based on the linear velocity at the radius of 

second moment of area for the wing. This allows the obtained lift coefficient values to 

be compared directly with those from wings in parallel translation motion [146,148]. 

These experiments were also performed under stationary conditions (i.e. the wing is 

moved at a constant angular velocity with fixed angle of attack). Therefore, stationary 

aerodynamic treatments are valid and the above expression for evaluation of the 3d 

wing lift curve slope is appropriate. 

An expression for the steady lift coefficient due to translation is thus obtained by 

substituting Equations 4.9 and 4.10 into Equation 4.7, giving  
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Note that, the above expression is consistent with the un-stalled, high angle of attack 2d 

airfoil lift coefficient expression,  
 cossin2sin 2,2

2,

dl

C

l CC dl  , usually used in 

helicopter and fixed wing aerodynamics [182,183]. 

As discussed in Chapter 3, the two dimensional aerofoil lift curve slope, Clα,2d, has 

a theoretical value of 2π rad
-1

 (0.11 deg
-1

) for a flat plate. However, Spedding and 

McArthur [120] showed experimentally that this value reduces at the low Reynolds 

number at which insects operate. Okamoto et al. [139,184] have shown that for a flat 

plate wing at typical insects Reynolds numbers, the lift curve slope takes a value of 0.09 

deg
-1

;
 
hence, this value will be used here. The parameter E is the edge correction 

proposed by Jones [185] for the lifting line theory and is evaluated as the quotient of the 

wing semi perimeter to its length [185,186] (a discussion on this parameter will be 
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provided in Chapter 5 as well). The aspect ratio, AR, is based on the span of a single 

wing, [100,145,158,164] on the assumption that the lift and hence bound circulation 

drops to zero at the inboard edge of the wing and there is no carry-over of lift to the 

opposite wing. The parameter k is the ‘k-factor’ included to correct for the difference in 

efficiency between assumed ideal uniform downwash distribution and real downwash 

distribution [120,127,187,188]. In this chapter, the k-factor required within Equation 

4.11 will be estimated using the induced power factor expression of hovering actuator 

disc models [127,188]. The induced power factor of normal hovering flight was 

discussed comprehensively in Chapter 3 and was analytically expressed in terms of 

three contributors accounting for the non-uniform downwash velocity distribution, tip 

losses and effective flapping disk area.  

Once the lift coefficient is obtained, the steady translational drag coefficient can be 

obtained from Equation 4.6 using trigonometry, with the assumption that the tangential 

friction force is zero 

   

 
gTgLgD CCC  2sin2tan)(  . (4.12) 

   

The above relation will underestimate the drag coefficient at very low angles of attack 

where skin friction contributes to the drag. However, during hover, flapping wings 

typically operate at relatively higher angles of attack (between 25 and 45 degrees) 

where the model accuracy is good [146]; this point is further highlighted in Appendix 

A.  

4.2.3.3 Non Translational coefficients 

At the end of every half stroke, the flapping wing pitches about a spanwise axis and 

there has been an argument that rotational forces exist as a function of this instantaneous 

rotation rate [150,162]. These forces are usually modelled using the quasi-steady 

treatment for the case of small-amplitude flutter on thin rigid wings [150] and it is 

therefore necessary to make an assumption that the theory holds true for large angles of 

attack. Given this, the rotational component of the total aerodynamic force is then 

defined using the Kutta-Joukowski equation and the instantaneous circulation due to 

wing rotation as follows 

   

 2cCrotrot  , (4.13) 

 drUdF rotrot   ,
 

(4.14) 
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where Ω is the wing angular velocity around a spanwise axis at ox̂  and the rotational 

coefficient, Crot, is given by 

   

 )ˆ75.0( orot xC  , (4.15) 

   

where ox̂ varies from 0 to 1 and is usually taken as 0.25 [189]. It should be noted that 

for symmetric hovering half strokes (which is the main concern of this work), the forces 

due to rotation effects sum to zero and therefore can be ignored [100,150]. Nevertheless, 

rotational effects are believed to have an important role in control and manoeuvrability 

[146].  

The final class of aerodynamic force considered is non circulatory and forces in this 

class are referred to as ‘added mass’ forces.  These are the forces that results from 

accelerating or decelerating the neighbouring air mass surrounding the wing due to 

flapping motion. They are usually modelled as [150,163,164]  
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The outer bracket in the above equation is the mass of air surrounding a wing element, 

while nv  is the first derivative of the normal velocity component of the chord relative to 

air. However, once again, for symmetrical half-strokes, the net added mass force is zero 

[1,134,150,176].  

4.3 Model Results  

4.3.1  Comparison with experimental results of revolving wings 

The force coefficients modelled in the present work are three dimensional steady 

coefficients that account for the downwash effect on the aerodynamic characteristics. In 

this section, Equations 4.11 and 4.12 are used to calculate the variation of the lift and 

drag coefficients with geometric angle of attack for hawkmoth and bumble bee wings 

and results are compared with the measured steady force coefficients from revolving 

wing experiments of Usherwood and Ellington [146,147]. These experiments were 

performed at Reynolds numbers similar to those experienced by the actual insect with 

(single) wing aspect ratios of 2.83 and 3.16 for the hawkmoth and the bumble bee 
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respectively. Here, these aspect ratio values are used as well as the revolving wing k 

values (i.e k=kindkper) evaluated in Chapter 3 giving a k value of 1.27 for the hawkmoth 

and 1.29 for the bumble bee. Also lift and drag coefficients are evaluated for the case of 

fruit fly wing using a revolving wing k value of 1.37 (see Table 4.1). The results are 

compared with the experimental data of Lentink and Dickinson [142] who provided 

revolving wing data at similar Reynolds number experienced by the actual insect (Re 

=110). 

 

 
 
Figure 4.4 Lift coefficient variation with (i) angle of attack and (ii) drag coefficient. Results 

evaluated using the current model are compared to available experimental measurements for (a) 

hawkmoth; experimental data digitised from Figure 6 of [146], (b) bumble bee; experimental 

data digitised from Figure 7 of [147] and (c) fruit fly; experimental data digitised from Figure 7 

of [142]. 
 

Figure 4.4 compares the calculated lift coefficient variation for the entire range of 

geometric angles of attack as well as the calculated drag polars against the experimental 

data. There are two aspects to the fit between theory and experiment that need to be 

considered. First, the degree to which the form of the data fits the model, and second the 

agreement between predicted and measured amplitude. The agreement between the 

model and experiments with respect to either the fit or the amplitude is good, though the 

agreement is better for lift than for drag. Given that the flow topology is different at 90 

degrees angle of attack for the reasons discussed in Section 4.2.3.2, some sort of 

discrepancy at very high angles of attack is not unexpected. In terms of the impact of 

the model discrepancy, it should be noted that most insect wings operate at mid-stroke 
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angle of attack range between 25
 
and 45

 
degrees

 
(see Table 4.2), and in this range there 

is very good fit between the model and data. The fruit fly data has a drag offset, and a 

possible remedy, as proposed by Dickson and Dickinson [134], is to add a constant 

representing the drag coefficient at zero lift. However, it is noteworthy to mention that 

Usherwood and Ellington [146,147] and Lentink and Dickinson [142] measurements at 

higher Reynolds number (Re ~ O(10
3
) to O(10

4
)) did not show any existence of this 

drag offset. 

4.3.2 Comparison with previous flapping wing aerodynamic models  

Table 3.1 of Chapter 3 provided the morphological and kinematic data of eight hovering 

insects taken from Sun and Du [145] against which the current model will be validated. 

Here, a wing is divided into 50 evenly spaced wing strips in the spanwise direction and 

a wing flapping period is divided into 500 evenly spaced time steps. Aerodynamic 

forces on each strip are integrated along the wing length and averaged over the flapping 

period. For evaluation of the aerodynamic power consumed during the flapping cycle 

the energetic cost to the hovering insect is assumed to be given by the time-averaged 

mechanical power output, where power can be positive or negative. This approach is 

consistent with that used by Sun and Du [145] to determine the net aerodynamic power. 

A specific power, P
*
, is then obtained as power divided by the total mass. Accounting 

for negative power assumes that mechanical energy can be stored and released when the 

wing does positive work. This method of accounting also means that inertial power 

cancels out and thus can be ignored (see Figure 10 of [145]). It is noteworthy to mention 

that Sun and Du demonstrated the minor contribution of the wing rotational power 

component compared to the wing translational power component. Thus rotational power 

was neglected in their aerodynamic power evaluation.  

Table 2 shows the values of kind, kper and kflap accounting for the non-uniform 

downwash velocity distribution, tip losses due to wake periodicity, and effective 

flapping disk area respectively. They are calculated using the procedure presented in 

Chapter 3 for eight insect species based on their data provided in Table 3.1. These 

values are repeated here as they will be used within the analysis of the obtained results. 
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Table 4.1 Contributions to the induced power factor, k. 

 

Insect kind kper kflap kind kper kind kper kflap 

Fruit fly (FF) 1.21 1.14 1.10 1.37 1.51 

Bumble bee (BB) 1.17 1.10 1.25 1.29 1.61 

Hawkmoth (HM) 1.14 1.12 1.22 1.27 1.55 

Honey bee (HB) 1.18 1.10 1.17 1.30 1.52 

Cranefly (CF) 1.24 1.09 1.21 1.35 1.63 

Hoverfly (HF) 1.20 1.10 1.41 1.33 1.88 

Dronefly (DF) 1.16 1.09 1.29 1.26 1.63 

Ladybird (LB) 1.15 1.12 1.01 1.29 1.30 

 

Results from the quasi-steady blade element implementation are now compared 

with CFD results from Sun and Du [145] as well as the quasi-steady blade element 

model of Berman and Wang [164]. Both simulations used a horizontal stroke plane, 

symmetrical half strokes, a sinusoidal variation of flapping angle (corresponding to C  

→ 0) and a trapezoidal like variation of the pitching angle with a time interval over 

which rotation lasts of about 25% of the flapping cycle duration. This corresponds to a 

value of 5 for C  in the current model. The mid-stroke geometric angle of attack, αg,mid, 

used by Sun and Du in their calculations are given in Table 4.2. Vertical force to weight 

ratio as well as specific power results from the current model compared to other models 

are shown in Table 4.2. The vertical force is defined as the magnitude of the z-

component of the total force produced by a pair of wings in the reference frame (x0, y0, 

z0) and is the force used for weight support ( WL / =Fz0/W). 

 
Table 4.2 Comparison between current model and that of CFD by Sun and Du [145] and quasi-

steady model of Berman and Wang [164]. 

 

Insect 

Current model CFD, Sun & Du [145] 

Quasi-steady, 

Berman & Wang 

[164] 

WL /  
P*
 

 (W.kg-1) 
αg,mid 

(deg.) 
WL /  

P*
 

 (W.kg-1) WL /  

Fruit fly  0.98 26 44 1 30 1.003 

Bumble bee  1.06 43 28 1 42 0.95 

Hawkmoth  0.92 30 32 1 33 1.15 

Honey bee  1.1 43 25 1 41               - 

Cranefly  1.3 18 30 1 16               - 

Hoverfly  1 25 29 1 27               - 

Dronefly  1.2 37 26 1 32               - 

Ladybird  0.96 30 43 1 28               - 
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The results in Table 4.2 show very good agreement with CFD results for weight 

support and power consumption for the eight insects. It should be remembered that Sun 

and Du developed their simulation model to obtain the value of αg,mid (supplied in Table 

4.2) that would enable weight support. Hence, all their WL / ratios are almost 1. In the 

current model their αg,mid values are used to calculate WL / . The current model 

correctly predicts near unity values of WL / , but with a small underestimation in the 

hawkmoth and an overestimation in the cranefly and dronefly. The above results 

demonstrate that the proposed model is able to obtain usefully accurate results for a 

wide range of insects with different wing shapes and with different operating 

conditions. Table 4.2 also shows results from the quasi-steady blade element model 

developed by Berman and Wang which was limited to the analysis of only three insect 

for which experimental data are present. Additionally, Berman and Wang represented 

all wing planform shapes as a half ellipse; the model implemented here represents the 

wing planform shape using the more convenient beta representation.  

An Important feature of the proposed model is its transparency, in that it provides 

greater insight into how the different problem parameters affect the solution; hence 

allowing improved understanding of the flapping problem. As an example, results 

shown in Figure 4.5 allow assessment of how each of the three effects included within k 

affects the calculated aerodynamics (in terms of the weight support ratio). The fruit fly 

represents a case where kind and kper are the main contributors to k, while the hoverfly 

represents a case where the kflap effect is the most significant. Figure 4.5 also shows the 

importance of accounting for k in aerodynamic calculations, as assuming an ideal case 

(k =1) can lead to significant overestimation of the generated force (e.g. 23% for the 

hoverfly case).  

 

 
 
Figure 4.5 Effect of accounting different contributors to k on the weight support calculation for 

(a) fruit fly and (b) hoverfly. In both figures, ∆ represents the percentage difference in value 

between calculated WL / and unity. 



Design of Insect-Scale Flapping Wing Vehicles 

 

142 
 

4.4 The Role of the Leading-Edge Vortex in Lift Augmentation  

4.4.1  Overview 

As introduced in Section 4.2.3.1, a leading-edge vortex (LEV) is known to form on thin 

wings with moderate aspect ratio (~3), steadily revolving at high angles of attack and 

low Reynolds number of O(10
4
) or lower, Figure 4.6. The LEV is stable in that its 

location remains fixed near the leading edge and it does not grow with time; this allows 

the flow over the upper surface of the wing to separate at the leading edge but then 

reattach before the trailing edge, Figure 4.6a. A wing with a stable LEV is thus able to 

satisfy the Kutta condition at the trailing edge at angles of attack beyond which classical 

stall would occur for wings where no LEV is present, and consequently a substantial 

enhancement of the wing lift coefficient is achieved [148].  

 

 
 
Figure 4.6 (a) A sectional view schematic showing the simplest valid LEV structure for a 

cylindrical vortex. The LEV is stable at high angles of attack with flow reattachment on the 

upper surface and satisfaction of the Kutta condition at trailing edge. The black dots represent 

stagnation points. (b) An idealised top view schematic illustrating a conical LEV topology for a 

steadily revolving wing with a focus at the root. This topology has been observed at Reynolds 

numbers of O(103 to 104) [174]. 
 

There has been substantial research within the last two decades directed at 

understanding the aerodynamic characteristics of revolving and flapping wings at 

Reynolds numbers relevant to insect flight. Some of these studies [174,175,181] 

performed flow visualisation to identify the flow topology and determine possible 

causes for the stability of the LEV, whilst others measured the generated forces for 

different wing morphologies and kinematics [134,142,146,147]. The identified LEV 

topologies were shown to vary from a conical form with a substantial spanwise flow at 

the vortex core (as that observed on model hawkmoth wings at Reynolds number from 

10
3
 to 10

4
 [174], Figure 4.6b) to a more of a cylindrical form with a substantially 
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weaker corewise vortex flow (as that observed on fruit fly and thrip wings at Reynolds 

number of the order 10
2
 and 10

1
 [175,190]). However, these differences in the LEV 

flow topologies were not reflected in differences in the measured lift coefficients, which 

showed remarkable similarity [147,148,154].  

The similarity of the lift coefficients despite differences in flow topology suggests 

that the LEV is playing a role that is independent of its shape and thus motivates the 

reassessment of the exact role of the LEV in lift augmentation. Is the LEV increasing 

the lift by directly increasing circulation at a given angle of attack? Or is it acting as a 

flow control mechanism that prevents or delays stall at high angles of attack? A clear 

answer to the above questions is of importance because it affects the selection of the 

analytical approach through which the problem should be handled.  

This section will provide an objective review of two different possible approaches 

to aero-modelling of wings with a LEV and compare them with the current ‘normal 

force’ model. Similarities and differences between the models are identified and results 

of the three approaches are compared to available experimental data. 

4.4.2  Comparison with the potential flow model 

Following the work of Saffman and Sheffield [191], Huang and Chow [192] and Pitt-

Ford and Babinsky [6], the model considered here is based on inviscid, incompressible 

and irrotational 2d potential flow over a flat plate with an embedded free vortex. This 

model is based on the well-known Joukowski transformation approach where the flow is 

mapped from a circle of radius a to a flat plate with a chord length of 4a inclined at an 

angle of attack α to the free stream, U. A free vortex element is included with a 

circulation Γfree located at 
 ie  in the circle plane where is the radius and  is the 

angle with respect to origin. An image vortex of equal but opposite sign to Γfree is 

located at the inverse square point and a second vortex of equal circulation to Γfree is 

located at the circle centre; thus, the circulations of image vortices cancel [6]. The Kutta 

condition is satisfied by equating the velocity to zero at a . The magnitude of the 

bound circulation is thus obtained as [6] 

   

  
22 cos2

cos2
sin4

aa

aa
aU free




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The first term of the right hand side of Equation 4.17 is the well known result for the 

bound circulation of a flat plate at incidence whereas the second term accounts for the 
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circulation added by the free vortex (LEV) located at 
 ie . The lift coefficient is 

thus obtained from Equation 4.17 as 
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where 
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The effect of the addition of a free vortex in the above results can be referred to as a 

‘flap effect’ as the second term represents an additional constant increment in circulation 

at all angles of attack. For more details, see the discussion on the different wing lift 

augmentation effects in Appendix B. Now, for a given chord, U and α, Equation 4.18 

becomes one equation in three unknowns (Cl, Γfree and ζ ); thus cannot be used without 

further input to evaluate the lift, so either additional information or experimental data 

(as in [6]) needs to be used to define some of the unknown parameters. Here, a 

hypothesis is made that a non-zero value of Γfree is required to capture the high lift effect 

of the LEV. Thus, let Γfree = 0; if the calculated lift values are less than experimental 

values, then the hypothesis is true whereas if the calculated lift is equal to or more than 

the experimental values, then the hypothesis is false. For Γfree = 0 the lift coefficient 

returns to the flat plate formula, i.e.  sin2sin2,  dll CC . This formula will be 

evaluated against experimental results of 3d wings, hence it is necessary to use the 3d 

wing lift curve slope, CLα,3d, that accounts for the downwash effect.  

Note that in the potential flow model, it is the lift that is proportional to sin  rather 

than the normal force. This leads to increasing divergence between the potential flow 

and normal force models as the angle of attack approaches 90 degrees. 

4.4.3 Comparison with the leading edge suction analogy  

The conical LEV created on laminar revolving/flapping wings is similar in form to that 

observed over delta wings at subsonic speeds and high angles of attack. The leading 

edge suction analogy was originally proposed by Polhamus for delta wings [193], and 

due to the similarities in the flow structure between delta wings and flapping wings, the 

leading edge suction analogy has usually been considered as a possible aerodynamic 

treatment for the flapping problem (see reviews by Sane [148], Ansari et al. [1] and 
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Taha et al. [167]) and the model has been adopted by a number of researchers [194-196] 

to tackle the flapping wing problem. In this section, Polhamus model will be thoroughly 

analysed in the light of its application to revolving/flapping wing aerodynamics 

modelling.  

The leading edge suction analogy is based on an assumption, substantiated from 

experiments, that the flow external to the LEV passes around the vortex and reattaches 

to the wing upper surface. It is formulated on the basis that the leading edge flow 

separation that creates the LEV causes a loss of the leading edge suction and the lift is 

thus comprised of two components: the first is the potential flow lift with zero leading 

edge suction. The second is a vortex lift equivalent to the leading-edge suction 

associated with the potential flow. Polhamus did not provide a theoretical proof of his 

analogy concept; however, it proved useful in estimating force coefficients on delta 

wings. The model is expressed as follows [193]  

   

   ggiPPggPL KKKKC  cossin
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 , (4.20) 

   

where KP is the wing lift curve slope at small angles of attack, Λ is the wing sweep 

angle and Ki is the derivative of the induced drag coefficient with respect to the square 

of the lift coefficient. Thus, Equation 4.20 can be written as 
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Assuming a non-swept wing which is consistent with insect wings, the above 

relation has almost the same shape of variation with angle of attack as the sin 2αg 

relation. This is shown in Figure 4.7a where each of the two relation plots is normalised 

by its maximum (amplitude) value. Next, in order to compare the amplitudes, Equation 

4.21 is rearranged as 
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Note that the first bracket in the above expression is the ‘normal force’ model. The 

second bracket represents an additional term multiplied to the proposed lift coefficient 

relation of the ‘normal force’ model which will be named KPolhamus. Figure 4.7b 

illustrates the variation of this term with the wing aspect ratio. In this illustration and 

without losing generality, the parameter k was assigned a unity value and the angle of 

attack is taken as 45 degrees to represent the condition of maximum CL value.  

The implications of the results in Figure 4.7b are: first, the value of the KPolhamus 

term is of the order of unity. From this we can conclude that the Polhamus model is 

matching quantitatively with the normal force model. Second, the term KPolhamus has a 

slightly higher value than unity. This is to be expected as Polhamus did not take into 

account the effect of the vortex flow on the attached flow [195], hence would over-

predict the lift. Third, the term KPolhamus increases with the increase in aspect ratio. Once 

again this is expected as the Polhamus model is known to increasingly over-predict the 

wing lift coefficient as the wing aspect ratio increases. Polhamus obtained very good 

agreement for his model with delta wing experimental data of aspect ratios up to 1.5; 

however, for an aspect ratio of two, lower experimental lift coefficient values were 

evident (see discussion of [193]). Therefore, for the range of insect wing aspect ratios, 

the Polhamus model is expected to over predict the lift. It should be noted that the 

values of angle of attack and k used for the result in Figure 4.7b lead to maximum 

values of KPolhamus; hence, the maximum deviation case is considered. Furthermore, the 

values of KPolhamus are only weakly sensitive to the angle of attack and/or k values; 

hence, the conclusions derived here may be considered as general results. 

 

 

 
 
Figure 4.7 (a) Comparison of the shape of variation of the Polhamus and the sin 2α relation. 

Each plot is normalised by its amplitude value. (b) KPolhamus variation with the wing aspect ratio 

for a unity k-factor at 45 degrees angle of attack using the extended lifting line model [137]. 
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4.4.4 Models evaluation and discussion 

Figure 4.8 compares the calculated lift coefficient variation for the first quadrant of 

geometric angle of attack. When reviewing the data in Figure 4.8 it should be noted that 

for normal hovering flight the typical values for the mid-stroke angles vary between 25 

and 45 degrees (see Table 4.2) and therefore particular attention should be focussed on 

the degree of correlation in this angle of attack range.  

 
 
Figure 4.8 Lift coefficient variation with geometric angle of attack using three different models. 

Owing to the failure in capturing the lift symmetry, the potential flow model results are only 

shown up to an angle of attack of 45 degrees. Models results are compared to available 

experimental measurements for (a) hawkmoth; experimental data taken from Figure 6 of [146], 

(b) bumble bee; experimental data taken from Figure 7 of [147] and (c) fruit fly; experimental 

data taken from Figure 7 of [142]. Gray band represents typical angle of attack values within the 

mid-strokes of normal hovering insect flight. 
 

The potential flow model results shown in Figure 4.8 fail to capture the lift 

symmetry about the 45 degrees angle of attack and continue to increase to a maximum 

value at 90 degrees where the lift is known to vanish. However, it offers good 

evaluation of lift up to around 25 degrees angle of attack after which it starts to over-

predict the measurement data. Despite these concerns, the important result here is that 

by setting Γfree to zero, the model over-predicted the lift coefficient. Hence the gsin  

term alone in Equation 4.18 is more than sufficient to estimate the lift value, and 

additional circulation from the leading-edge vortex is not required to predict the 

observed lift coefficient values.  

The normal force model provides the best fit with respect to both the shape of 

variation and the amplitude. Note that the normal force model is simply the potential 

flow model multiplied by gcos with the leading-edge vortex strength set to zero. At 

very small angles of attack the normal force model thus reduces to the well-known lift 

expression gdLgdLL CCC   3,3, sin  . At very high angles of attack the 
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multiplication by gcos  allows the lift to tend to zero at 90 degrees angle of attack as 

required by basic geometric considerations.  

The leading edge suction analogy provides a fair fit with respect to the shape of 

variation of lift against αg; however, it overestimates the lift magnitudes up to an αg 

value around 60
◦
 and then starts to underestimate it. It is noteworthy that the potential 

lift component of the leading edge suction analogy, CL,p, is a further attenuation of the 

potential lift, i.e. CL,p = Equation 4.11 × gcos . The 
g2cos in the CL,p term was 

explained by Polhamus to arise from the assumption of a Kutta-type flow condition at 

the leading edge [197]. However, the application of a Kutta condition at the leading 

edge was shown to be mathematically invalid by Saffman and Sheffield [191]. This 

attenuation of the potential lift was compensated for by the addition of vortex lift, CL,v ; 

hence allowing recovery of the total lift coefficient value. The total lift coefficient of the 

leading edge suction analogy for the angles of attack between 0 and 45 degrees angle of 

attack can be regarded as effectively having a higher lift curve slope compared to the 

‘normal force’ model (for more details see Appendix B).  

Based on the presented comparison, the normal force model is the most accurate 

model over the whole first quadrant of angle of attack. It is also the simplest of the 

models and does not explicitly include any aerodynamic force contribution from the 

LEV.  Hence, the LEV does not have a direct effect on lift by increasing circulation or 

generating increased local suction; rather, it has an indirect effect on high lift by 

preventing flow separation in the same manner as a ‘slat’ in classical aerodynamics. 

4.5 Chapter Conclusions 

 

A generic, transparent and compact model for the design and/or analysis of rigid 

flapping wings in hover has been presented. The model is generic in that it can be 

applied to wings of arbitrary planform geometry following arbitrary kinematic cycles, 

and is transparent in that the model parameters are clearly linked to attributes of the 

flow physics. The model is compact in the sense that relatively modest computational 

effort is required for solution compared to higher order models such as those based on 

CFD, and hence the model is suitable for use as part of preliminary engineering design 

and optimisation of flapping wings. 
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The modelling capability provides an improvement in the state of the art in that 

relevant aerodynamic model parameters are obtained by analytical means from 

geometry and kinematic information alone; aerodynamic data from experiments or 

higher order models is not required. The model is implemented using a quasi-steady 

blade element framework with parametric control of both wing chord distribution and 

wing kinematics. 

The developed model has been validated against experimental and numerical results 

from the literature with the following outcomes: 

1. Comparison of the calculated steady force coefficients with available experimental 

data for revolving hawkmoth, bumble bee and fruit fly model wings shows good 

agreement with respect to both the shape of variation of the force coefficients with 

incidence as well as the magnitude. 

2. Comparison of the calculated aerodynamic forces and consumed power with 

available numerical CFD simulations for eight insect cases shows good agreement. 

 

The validated model is used to evaluate the relative impact of different contributors 

to the induced power factor for the hoverfly and fruit fly. It is shown that assumption of 

an ideal induced power factor (k=1) for a hoverfly leads to a 23% overestimation of the 

generated force due to flapping. 

The developed so-called ‘normal force’ model was compared to other analytical 

models including the potential flow model with an embedded vortex and the Polhamus 

leading edge suction analogy. The potential flow model provides its best correlation to 

the experimental measurements when the embedded vortex strength is set to zero. For 

this case, good matching results are evident just up to a 25 degrees geometric angle of 

attack. Moreover, this model does not allow lift coefficient symmetry around the 45 

degrees angle of attack. To the contrary, the lift coefficient increases up to 90 degrees 

geometric angle of attack where the lift is known to vanish. On the other hand, the 

Polhamus leading edge suction analogy shows an acceptable agreement with respect to 

the shape of variation of lift coefficient over the full range of incidence up to 90 degrees 

geometric angle of attack. However, the magnitude of the lift coefficient is always 

higher than experimental values particularly in the expected range of operation of 

normal hoverers. This was shown to be consistent with the expected overestimation in 

the lift coefficient values by the Polhamus analogy for typical insect wing aspect ratios. 
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In conclusion, of the three models evaluated, the ‘normal force’ model provides the 

best correlation with measured lift values from steadily revolving wings experiencing a 

LEV, despite the fact that it does not account for additional circulation due to the LEV 

as in the potential flow model, or account for a vortex lift (suction) component as in the 

Polhamus model. This shows that it is unnecessary to add a specific lift contribution 

from the LEV to explain the high lift generated in the experimental results and thus the 

hypothesis that the LEV eliminates wing stall in a similar manner to a ‘slat effect’ in 

classical aerodynamics is the simplest sufficient theoretical explanation for the observed 

behaviour.  
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 5 

 A Quasi-Steady Lifting Line Theory 

for Insect-Like Hovering Flight  

 

In this chapter, a novel lifting line formulation is presented for the quasi-steady 

aerodynamic evaluation of insect-like wings in hovering flight. The approach represents 

an alternative route for accurate estimation of aerodynamic forces and provides 

quantitative information on the relative contribution of induced and profile drag 

components associated with lift production for insect-like wings in hover. The main 

adaptation to the original Lifting Line Theory (LLT) is the use of an equivalent angle of 

attack, which enables capture of the steady non-linear aerodynamics at high angles of 

attack whilst preserving the essential linear aspects of the original LLT. A simple 

methodology to include other non-ideal induced effects due to wake periodicity and 

effective actuator disc area within the lifting line theory is included in the model. Low 

Reynolds number effects as well as the edge velocity correction required to account for 

different wing planform shapes are also incorporated through modification of the 2d lift 

curve slope. The model is successfully validated against measurements from revolving 

wing experiments and high order CFD simulations.  
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5.1  Introduction  

The classical lifting line theory (LLT), developed by Prandtl a century ago provided the 

first satisfactory analytical treatment for the evaluation of the aerodynamics of a finite 

wing [198-200]. The LLT laid the foundation for understanding the aerodynamics of 

flight, and is still widely used today to provide accurate predictions of the lift and 

induced drag for 3d wings [201,202]. The solutions delivered by the LLT are closed 

form and they are many orders of magnitude faster to evaluate compared to higher order 

computational methods. They are also able to provide deep insight into how different 

wing parameters affect the aerodynamic performance [201]. 

The physical foundation of the LLT is based on Prandtl's hypothesis that the lift of 

a finite wing is reduced compared to the lift of an infinite wing due to the change of the 

local flow direction induced by the free vortices in the wake. The Kutta-Joukowski 

theorem can then be applied at each wing section, which is assumed to behave as a 2d 

wing at a modified angle of attack referred to as the effective angle of attack.  This 

concept led Prandtl to his well-known linear equation governing the circulation on a 

finite lifting surface, which will be formally introduced in Section 5.2.2. Because the 

obtained governing equation is of an integro-differential type, there exists no unique 

mathematical procedure to solve it, and throughout the past century different 

mathematical methods have been proposed to handle the problem [203]. The most well-

known solution methodology is that presented by Glauert [135] who provided a solution 

in the form of an infinite Fourier sine series with the series coefficients obtained from 

the collocation method. 

Whilst the LLT is usually used for the aerodynamic modelling of high aspect ratio, 

planar, fixed wings in steady flows, the long reach of Prandtl's insight is demonstrated 

through the various adaptations presented over the years that have enabled much 

broader applicability of his original model. With few alterations, the LLT has been 

successfully used to predict the aerodynamics of a wide variety of lifting surfaces under 

a wide variety of flow conditions. Jones [185] proposed a simple correction for the LLT 

which he showed could bring the lifting line result into close agreement with the lifting 

surface result over an extended range of wing aspect ratio, hence improving accuracy of 

the LLT for low aspect ratio wings. Phillips and Snyder [204] extended the lifting line 

formulation so that it can be used for non-planar wings with arbitrary camber, sweep 
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and dihedral. Sclavounos [205] developed an unsteady lifting line treatment for wings 

of large aspect ratio undergoing time-harmonic oscillations where he showed in the 

zero-frequency limit that it reduces to the Prandtl's lifting line theory, whilst for high 

frequencies it tends to the two-dimensional strip theory. Mehrle [206] extended 

Multhopp's quadrature method to the calculation of the circulation of cyclic periodic 

lifting systems, e.g. for wings operating in swirling flow. Anderson [207] proposed a 

numerical iterative lifting line treatment that uses look-up tables of the sectional lift as a 

function of effective angle of attack for the use within flight conditions such as spins 

and high angles of attack manoeuvres. 

The LLT has also been adopted for the evaluation of the aerodynamics of wings 

prescribing rotary and flapping motions. Conlisk [208] discussed the implementation of 

the LLT for rotary wings in hover, and highlighted the importance of accounting for the 

effect of the linear velocity variation along the blade on the bound circulation 

distribution. Leishman [133, Ch. 14] provided a generic formulation of the LLT for 

rotary wing motions; whereas, Johnson [140, Ch. 10] discussed the importance of 

adopting corrections to the LLT to handle specific rotary wing aerodynamic 

phenomenon such as wake periodicity. 

Lifting line formulations very similar to that of fixed wings have been used in 

references [121,209] for the mathematical modelling of the avian flight power curve. 

Philips et al. [210] presented a LLT for forward flapping flight in which some unsteady 

flow effects were accounted for through the use of a 3d model of the vortex wake to 

evaluate the unsteadiness to a first order. For a review of lifting line models for flapping 

wings in forward flight, the reader is referred to reference [211].  

For hovering flapping flight, two significant contributions have been presented. The 

first is by Sane [132] who proposed a semi-empirical lifting line blade model for 

hovering insects to investigate the mean induced flow over their bodies. However, the 

model relied on experimental data; hence, measurements are still required as inputs to 

the calculation. The second contribution was by Ansari et al. [1] who reviewed the use 

of lifting line blade theory based on the Glauert solution [135]  in the context of insect-

like flapping wings: a general description of the model was provided and some results 

for the variation of the mean lift with flapping frequency and wing shape were 

presented. However, their model relied on a linear aerodynamic representation which 

would significantly over-estimate the lift and induced drag at high angles of attack 
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where insects are known to operate. Additionally, other relevant aerodynamic 

phenomena such as wake periodicity were not included.  

The aim of this chapter is to provide a convenient theoretical treatment for 

evaluating the aerodynamics of insect-like wings in the translational phase of the 

flapping cycle. This work builds on the foundation laid in Chapters 3 and 4 which 

establishes a compact transparent formulation for the quasi-steady aerodynamics of 

hovering. The contribution of this chapter lies in the novel reformulation of the LLT for 

application to estimating the translational forces for hovering wings and the subsequent 

insight that this brings to the flow physics. In particular, the modelling approach allows 

unique insight into the relative contribution of induced and profile drag for flapping 

wings; something that is currently missing in the available literature. Whilst the present 

contribution only considers quasi-steady effects, there is a logical path to include 

rotational and added mass effects as model extensions using the method discussed in 

Section 4.2.3.3 that would enable capturing aerodynamic time history effects if 

required.  

5.2 The Lifting Line Model 

5.2.1 Basic assumptions 

The lifting line theory assumes a fluid that is incompressible and inviscid. 

Compressibility effects are negligible for application areas of interest. With regard to 

viscous effects, recent experimental measurements [142] have demonstrated that insect-

like flapping wing aerodynamics depends only very weakly on Reynolds number (see 

Section 3.4.1), and numerical studies [169] demonstrated that the flows are well 

modelled by the inviscid Euler equations. Nevertheless, and following the general 

practice within the LLT, the Reynolds number effect is taken into account in the two 

dimensional properties of the wing section represented through the section lift curve 

slope. 

The wing is assumed to be an infinitesimally thin and un-cambered rigid flat plate 

with zero spanwise twist and zero sweep. Wing twist about a spanwise axis can be 

included as an alteration to the wing geometric angle of attack. 

The lifting line theory is valid as long as the Kutta condition is satisfied, and in 

general this will be the case if there is an absence of classical wing stall [201]. For the 

current problem, the formation of a leading-edge vortex (LEV) on the wing top surface 
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prevents classical wing stall as discussed comprehensively in the previous chapter: the 

LEV is stable in the sense that it does not shed as the wing motion progresses, and 

allows the flow over the upper surface of the wing to separate at the leading edge but 

subsequently reattach upstream of the trailing edge. The Kutta condition is therefore 

established at the trailing edge at angles of attack beyond which classical stall would 

occur for wings where no LEV is present [148,212,213].  

Other secondary aerodynamic effects from wing pronation and supination as well 

as the wing-wing interactions (clap-and-fling) are not included in the current model. 

Thus the current modelling treatment is consistent with the well known ‘revolving 

wing’ concept which captures the quasi-steady aerodynamics between stroke reversals. 

5.2.2 LLT fundamental equations 

The wing is modelled as a vortex of strength Г(r) bound to the aerodynamic centre. The 

goal is to determine Г(r) as a function of the wing geometric properties. The Kutta-

Joukowski theorem is used to obtain the lift per unit span [133,135] 
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where ρ is the air density, U(r) is the sectional flow speed along the wing length, r is 

wing radial position measured from the wing root, c is the chord, Clα,2d is the 2d-aerofoil 

lift curve slope, αg is the wing geometric angle of attack and αi is the induced angle of 

attack. Thus Г(r) is obtained as 
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where w(r) is the induced downwash velocity distribution along the wing length 

determined by [135] 
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where r


 is the wing station at which the downwash is calculated, and r is the location 

of vortices responsible for the downwash.  

Equation 5.2 represents Prandtl's fundamental lifting line equation. Note that 

Equation 5.2 was already introduced in Chapter 3 where it was sufficient to calculate 
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the shape of the downwash distribution and thus the value of kind. However, to apply it 

for the calculation of lift and induced drag coefficients of insect-like wings in hover, it 

is rewritten here as 
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The above equation represents the basis for the developed lifting line theory for 

hovering wings which, in the present work, will be referred to as LLThw. Three main 

adaptations are introduced in Equation 5.4. These correct for (1) non-linear 

aerodynamics of the lift curve, (2) non-ideal induced downwash effects, and (3) 

planform effects on the 2d lift curve slope. Each of these corrections is now considered 

in detail.  

5.2.3 Adapting the LLT for non-linear aerodynamics 

The primary adaptation introduced here to the classical LLT is the introduction of the 

concept ‘equivalent angle of attack’ to account for non-linearity in the wing lift curve. 

This equivalent angle, αeq, is defined as the geometric angle of attack within the linear 

aerodynamic representation that will provide the same lift coefficient of the 3d wing 

within a non-linear aerodynamic representation. The original LLT formulation assumes 

a linear lift curve for the wing; i.e. the 3d wing lift coefficient is proportional to the 

geometric angle of attack 

   

 
gLC  . (5.5) 

   

However, for an insect-like wing in hover, the lift coefficient increases to a maximum at 

a geometric angle of attack of 45 degrees and then decreases back to zero at a 90 

degrees angle of attack. As discussed in Chapter 4, it has been shown that this behaviour 

can be adequately represented by the trigonometric  relationship 

   

 
ggLC  cossin . (5.6) 

   

Experiments on revolving and flapping wings [134] show that despite its simplicity the 

function gg  cossin  provides an excellent representation of the variation of the 

measured steady lift coefficient with geometric angle of attack. The physical foundation 

of the gg  cossin  variation is based on the assumption that pressure forces dominate 
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over skin friction forces for this type of flow, hence the magnitude of the normal force 

is proportional to gsin  (see Chapter 4 for more details on the physical foundations). 

By comparison of Equations 5.5 and 5.6, an equivalent angle of attack expression can 

be derived as 
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where 

   

 
gggg

C  /cossin . (5.8) 

   

 

 
 
Figure 5.1 Variation of (a) the correction term, and (b) the equivalent angle attack against the 

geometric angle of attack.  
 

Figure 5.1 shows the correction term, 
g

C , and the equivalent angle of attack 

variations against the geometric angle attack. The maximum lift coefficient at a 45 

degrees geometric angle of attack is achieved with a 29 degrees equivalent geometric 

angle of attack within the linear aerodynamics representation. At small angles of attack (

15g ), the equivalent angle of attack is almost equal to the geometric angle of attack 

meaning that the LLThw converges to the original LLT at low angles of attack. On the 

other hand, at very high angles of attack (
90g ) the equivalent angle of attack 

reduces back towards zero as required by basic geometric considerations. 

By applying the above adaptation within the LLT expressions, the quasi-steady 

non-linear lift curve behaviour essential to the insect-like flapping wing problem is well 

captured.  An important aspect of this proposed technique is that no alterations to the 

fundamental LLT equations are required, and the underlying physics of the LLT is well 

preserved. Whilst the concept of the equivalent angle of attack is quite simple and 
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appears as an obvious approach to handle the problem, it has not been attempted before 

either within the context of hovering insect-like wing problem or within any other non-

linear aerodynamic treatment of a lifting surface. The proposed adaptation has some 

similarities with the well known Prandtl-Glauert compressibility transformation [207] 

which allows solution of compressible flow problems using incompressible-flow 

calculation methods. The proposed LLT transformation allows solution of non-linear 

aerodynamic problems using linear aerodynamic calculation methods by applying linear 

aerodynamic methodologies to non-linear aerodynamic cases. It is believed that the 

proposed technique also opens the door for solution of other 3d lifting surface problems 

with non-linear aerodynamic behaviour. 

5.2.4 Adapting the LLT for non-ideal induced downwash effects 

The second adaptation applied here is to account for non-ideal but physical effects that 

influence the downwash magnitude of the wing, including wake periodicity and 

effective flapping disk area. These effects are absent for fixed wings but must be 

considered for flapping wings as shown in Chapter 3. In Chapter 3, a more formal 

derivation of these effects based on the method of Stepniewski and Keys [130] was 

presented. Here an alternative route, but with the same end outcome, to the modelling of 

wake periodicity and effective flapping disk area effects is presented.  

Consider the actuator disk theory expression for the induced velocity magnitude in 

hover 
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where kind accounts for the non-uniformity in the downwash and is already accounted 

for in the lifting line formulation. However, the other two effects (i.e. wake periodicity 

and effective flapping disk area) associated with flapping flight which are directly 

related to the downwash need to be included in the lifting line formulation. Here, these 

effects are explained through their effect on the effective disk area, Sd,ef. For flapping 

flight, the disk area is defined as [122] 
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where ϕ is the amplitude of the flapping stroke angle; however, to obtain an expression 

for Sd,ef, a further modification is implemented as 

   

 2
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The correction of R to Ref is to account for the aerodynamic phenomena of wing tip 

losses due to discreteness and periodicity in the wake (see Figure 3.1). Now, by simple 

factorisation, the downwash expression (Equation 5.9) can be written as 
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where, 
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Which are consistent with the results obtained in Section 3.2.1. That is, the overall 

downwash magnitude is increased due to the additional factor kperkflap compared to the 

case with no assumed wake periodicity effects and with the wing sweeping the whole 

circular disk area, i.e. R = Ref and 2ϕ = π. Thus, from this simple momentum theory 

analysis, it can be seen that in the presence of these additional non-ideal effects a 

flapping wing has an overall induced velocity increased by the factor kperkflap. This lead 

to the development of the effective downwash definition in Equation 5.4 to account for 

these effects 
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In Chapter 3, numerical evaluations of the kper and the kflap parameters were 

presented for eight insect species. It was found that the value of kper is clustered around 

1.1; therefore without losing generality, this value will be used throughout this chapter. 

On the other hand, the value of kflap varies considerably between different insects and 

thus insect specific values must be used. 
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5.2.5 Correcting the 2d aerofoil lift curve slope 

The final amendment to the LLT presented here is based on a well known correction to 

the 2d aerofoil lift curve slope originally proposed by Jones and usually referred to as 

the Jones edge-velocity correction [136,185,186]. Jones incorporated his correction into 

the 2d aerofoil lift curve slope leading to the concept of the effective 2d lift curve slope 

[186] 
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where E is the Jones correction evaluated as the ratio of the wing semi-perimeter to the 

wing length. Thus the effective lift curve slope can be dealt with as a characteristic of 

the wing planform as well as the wing section [186]. This correction is most pronounced 

for wings with low aspect ratios, and as discussed in Section 5.1 Jones showed that by 

applying his correction the LLT becomes capable of capturing low aspect ratio effects.  

Following Ellington [141], the wing chord distribution is defined through a beta 

function representation as discussed in Section 3.3.2. Insect wings typically have aspect 

ratios ranging from 2.5 to 6 [141,214], thus for the low aspect ratio cases the Jones 

correction is relevant. Figure 5.2 shows the variation of the Jones correction factor, E, 

for different combinations of the wing aspect ratio ( cRAR / ) and area centroid 

location. 

 
 
Figure 5.2 Variation of the Jones edge correction factor, E, for different combinations of wing 

aspect ratio and area centroid location. The wing planform is represented through the beta 

formulation for 1̂r values from 0.4 to 0.6 which is representative of the range found in nature. In 

this illustration, the wing is symmetric about the mid-chord. 
 

The remaining unknown in Equation 2.16 is the 2d aerofoil lift curve slope, Clα,2d. 

As shown in previous chapters, for a flat plate at low Reynolds numbers, experimental 
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evidence suggests that Clα,2d is less than the theoretical value of 2π and can be given a 

value of 0.09 deg
-1

 = 5.15 rad
-1

 [137,139,184,195]. 

5.2.6 Solution methodology 

Having introduced the essential adaptations to the LLT, Equation 5.4 is now solved 

using the well-known Glauert method [1,135]. First, the wing spanwise location is 

substituted with [135] 

   

 cosRr  , (5.17) 

   

where   is a generic parameter used to define position along the wing. Given the 

symmetry of the problem, only the starboard wing is considered and thus   varies from 

0 to π/2. The circulation, Г(r), is then expressed as a sine Fourier series as [135] 

   

 
marRUr

m

m





1

sin)(4)( , (5.18) 

   

where the velocity along the wing length is given by the linear variation 

   

  coscos)( tipURrrU   . (5.19) 

   

Substituting Equation 5.18 into Equation 5.15 and integration using the Glauert 

integrals [138,1] leads to an expression for the effective downwash as a function of the 

radial position 
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The am coefficients in the above equation can be obtained using the Glauert approach by 

equating Equations 5.4 and 5.18 leading to 
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where  
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Note that the above expressions are similar to those presented in Section 3.2.2; however, 

the effect of advance ratio is removed and the corrections introduced in this chapter are 

added. Again following the conventional lifting line solution approach, only the odd 

terms of m are considered due to problem symmetry. The series is then truncated to a 

finite series and the am coefficients are obtained by solving the set of simultaneous 

linear equations obtained from satisfying Equation 5.21 at a convenient number of wing 

stations equal to the number of terms in the series. Finally, the lift and induced drag 

forces can be obtained from 
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Thus, the lift and induced drag coefficients are obtained as 
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Note that in the above equations, the lift and drag forces are non-dimensionalised using 

the dynamic pressure at the wing radius of the second moment of wing area. 

5.3 Results and Discussion 

5.3.1 Comparison with revolving wing experimental measurements 

The revolving wing experiment was introduced in Section 4.3.1 as a well-known 

measurement technique employed for insect wing aerodynamic characterisation 

[142,146,147,215-218]. The wing is rotated in the fashion of a simple propeller blade to 

simulate a continuous down (or up) stroke that excludes the effects that occur at stroke 

reversal such as wing flipping and wing-wing interactions. In this section, the developed 

LLThw is compared to available experimental measurements from revolving wing 

experiments. Because there are no measurements available for induced drag, only lift 
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coefficient data will be compared here. Although revolving wing experiments have been 

conducted for different species, the wings used in each case are in close morphological 

similarity. Thus, the available data does not allow a full validation of the LLThw against 

a wide range of planforms. In what follows the LLThw is compared to three sets of 

available experimental data for an insect, a bird and a hummingbird. It is worth 

mentioning that compared to Chapter 4 results, two more experimental results of 

revolving wings are presented here. This is just to show further possible comparisons 

and it should be mentioned that the LLThw results compares well to the previously 

demonstrated revolving wing experiments including the bumble bee and fruit fly. 

Table 5.1 Morphological parameters of revolving wings. 

Wing AR 2̂r  1̂r (Eqn. 3.38) 
Reynolds 

number 

Hawkmoth [146] 2.83 0.511 0.44 8,071 

Pigeon [216] 3.21 0.512 0.443 54,000 

Hummingbird [218] 4.06 0.499 0.43 9,800 

 

Usherwood and Ellington [146] provided steady lift coefficient measurements 

against the geometric angle of attack for a hawkmoth model wing. Later, Usherwood 

[216] provided similar measurements for pigeon wings at higher Reynolds number. 

Recently, Kruyt et al. [218] provided measurements for hummingbird wings which they 

argue are more precise than previous measurements [e.g. 217]. Note that the 

hummingbird case is based on measuring a real wing; thus, wing compliance is not fully 

controlled especially at very high angles of attack [218] and thus the geometric angle of 

attack has significant uncertainty. Nevertheless, this test case remains useful for 

comparison against the developed LLThw especially in the normal operation range of 

angles of attack (i.e αg < 45
◦
). The morphological parameters of these three wings are 

provided in Table 5.1; these parameters were used as inputs within the LLThw to 

calculate the lift coefficient variation with the geometric angle of attack and results are 

compared in Figure 5.3. Within the calculation of the three cases, the value of kper was 

set to 1.1 whereas by definition the kflap for a revolving wing is unity.  
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Figure 5.3 Lift coefficient variation with geometric angle of attack. Results evaluated using the 

LLThw are compared to available experimental measurements for (a) hawkmoth; experimental 

data adapted from Figure 6 of reference [146], (b) pigeon; experimental data adapted from 

Figure 3A of reference [216] and (c) hummingbird; experimental data adapted from Figure 6A 

of reference [218]; for this case, experimental data beyond 45◦ are affected by the wing 

compliance, and the setup dynamics may have influenced the obtained measurements [218]. 
 

The results shown in Figure 5.3 show a good agreement with the experimental 

measurements in both form and amplitude for the three cases considered. Note that the 

shape of variation of the lift coefficient with angle of attack is a consequence of the 

proposed definition of the equivalent angle of attack which implicitly ensures a sin 2α 

shape of variation (see Figure 5.1b). Of more relevance is the good agreement in the 

amplitudes of the lift coefficient over the whole first quadrant of angle of attack.  

Now the LLThw is used to evaluate the maximum lift coefficient amplitude (CL at 

45g ) for revolving wings within a range of aspect ratios and chord distributions 

similar to real insect wings, Figure 5.4. As expected, the value of the maximum lift 

coefficient increases as the aspect ratio increases; however, this result must be 

considered with some caution as an increase in the wing aspect ratio also reduces the 

chord with respect to the LEV size [143]. Thus, the lift coefficient amplitude increase 

will stop at some critical point (whose prediction is beyond the capability of the current 

model) when the LEV size to chord ratio approaches the vortex attachment limit and 

stall features become significant. Another important result from Figure 5.4 is that the 

maximum lift coefficient value decreases as the wing area centroid is shifted towards 

the tip, despite the fact that having more area towards the tip produces a greater lift 

force, everything else being equal. Thus, whilst a higher lift force is achieved by having 

more area towards the tip, a higher lift coefficient is achieved in hovering flight by 

having more wing area towards the root.  
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Figure 5.4 Contours of maximum lift coefficient amplitude against wing aspect ratio and wing 

area centroid location. The range of values for the aspect ratio and area centroid location were 

chosen to represent realistic limits for insect wings.  In this illustration the value of kper is set to 

1.1 whereas kflap is unity. 

 

5.3.2 Application of the LLThw to insect wings in symmetric normal hovering 

flight 

In this section, the LLThw is verified against the CFD results from Sun and Du [145] 

that provide comprehensive simulations for a variety of wing shapes operating at 

different conditions. In their simulations Sun and Du used a horizontal stroke plane, 

symmetrical half strokes and a sinusoidal-like variation of flapping angle, Figure 5.5. 

The geometric angle of attack was prescribed such that it takes a constant value, αg,mid, 

along a half stroke and then performs a smooth sinusoidal variation around stoke 

reversal similar to that shown in Figure 5.5. Because the flapping cycle half-strokes are 

symmetrical, only the variation within the down-stroke is shown. Note that the 

symmetry of the half-stroke also implies that the net mean forces due to rotational and 

added mass effects are zero [134,176,213], and only forces due to wing translation 

contribute to the net mean force production. Table 5.2 reviews the main aerodynamic 

results from Sun and Du. The mass, wing geometrical data and motion kinematic data 

used to obtain these results were previously presented in Table 3.1.  

 

Table 5.2 Summary of the main aerodynamic results from the Sun and Du CFD simulations 

[145]. Abbreviations stand for honey bee, dronefly, bumble bee, hoverfly, cranefly, hawkmoth, 

ladybird and fruit fly respectively. Insects ordered by increasing angle of attack. 

Insect HB DF BB HF CF HM LB FF 

αg,mid (deg.) 25 26 28 29 30 32 43 44 

WL /  1 1 1 1 1 1 1 1 

massP /
(W.kg-1) 

41 32 42 27 16 33 28 30 
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Figure 5.5 Kinematics variation similar to those employed by Sun and Du [145]. Owing to the 

symmetry of half-strokes, only the down-stroke period is shown. TDC is the cycle top dead 

centre, BDC is the cycle bottom dead centre and Mid denotes the Mid-half stroke. 

 

The main output of the Sun and Du simulations are the calculated values of the 

mid-stroke geometric angle of attack, αg,mid that would provide weight support (supplied 

in Table 5.2). Here, these αg,mid values are used to calculate the mean lift force. Table 

5.3 presents the mean lift to weight ratio obtained from the current lifting line theory for 

the different levels of adaptations employed. The purpose of showing the results for 

different adaptations is to demonstrate the transparency of the current framework and 

provide a deeper insight into how these adaptations affect the solution, thus providing 

more fundamental understanding of the physics of the problem. For example, results are 

most sensitive to the inclusion of E for wings of lower aspect ratios such as for the 

hawkmoth case. Also, the kflap value becomes a significant effect when the flapping 

stroke angle is relatively low as in the hoverfly case; whereas for a case such as the 

ladybird where the wings scan all the possible area, this effect is negligible. However, 

the most significant adaption is the inclusion of the non-linear lift curve, which accounts 

for more than half of the overestimation in the average mean lift to weight ratio. This 

correction is most significant for the ladybird and the fruit fly, which have higher 

operating αg,mid values and thus non-linear effects are more pronounced.  
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Table 5.3 Mean lift to weight ratio calculated from the LLThw for different adaptations. 

Insect 

Linear aero 

kper excluded 

kflap excluded 

E excluded 

Nonlinear aero 

 kper excluded 

kflap excluded 

E excluded 

Nonlinear aero 

 kper included 

kflap excluded 

E excluded 

Nonlinear aero 

 kper included 

kflap included 

E excluded 

Nonlinear aero 

 kper included 

kflap included 

E included 

HB  1.53 1.34 1.29 1.20 1.11 

DF  1.72 1.48 1.43 1.29 1.20 

BB 1.54 1.30 1.25 1.14 1.05 

HF  1.44 1.20 1.16 1.01 0.96 

CF  1.71 1.40 1.36 1.27 1.22 

HM 1.44 1.16 1.11 1.02 0.92 

LB  1.64 1.09 1.05 1.04 0.96 

FF 1.72 1.07 1.02 0.98 0.90 

Average ± 

s.d. 
1.6 ± 0.12 1.26 ± 0.15 1.21 ± 0.15 1.12 ± 0.12 1.04 ± 0.12 

 

It can be seen from the results shown in Table 5.3 that without including any of the 

adaptations, the original LLT will always overestimate the lift produced with an average 

error of +60% for the eight insects. On the other hand, by applying the proposed 

adaptations, the developed LLThw formulation is able to predict the mean lift to weight 

ratio with an average error of 4% compared to the higher order CFD simulations, Figure 

5.6a.  

 

 
 
Figure 5.6 Comparison of the aerodynamic performance of eight hovering insects from the 

developed LLThw against CFD results from Sun and Du [145]; (a) lift to weight ratio and (b) 

specific aerodynamic power. 
 

The mean lift to weight ratios obtained from the current model confirm that it is not 

necessary to account for unsteadiness due to the Wagner effect (indeed, most insect 

wing aerodynamics predictive models have neglected the Wagner effect, but see models 

of references [163,219,220]). Sane [148] has tackled this point comprehensively, and 

using the available experimental evidence he has discussed the lack of influence of the 

Wagner effect compared to other unsteady effects such as rotational and added mass 
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effects. Nevertheless, Taha et al. [220] showed that incorporating unsteady treatments 

allows better capture of the force time history near stroke reversals. Thus including an 

unsteady treatment for the quasi-steady models including rotational and added mass 

effects may improve their predictive capabilities for unsymmetrical half-strokes where 

rotational effects can be used for control and manoeuvrability [146,220].  

The total drag comprises the induced drag and profile drag containing the effects of 

skin friction and pressure drag of the wings. As discussed in previous chapters, 

experiments on insect-like wings in simulated hovering flight showed that the skin 

friction component is negligible, especially at the relatively higher Reynolds numbers 

(O(10
3
) or higher) [142,146,154]. Thus, with the assumption of zero tangential friction 

forces, the total drag coefficient can be estimated for an infinitesimally thin flat plat 

using  

   

 
gLD CC tan , (5.27) 

   

which was formally introduced in Chapter 4; however, here the wing lift coefficient, CL, 

will be obtained from the developed LLThw. The specific aerodynamic power 

expenditure for the eight insects based on Equation 5.27 is shown in Figure 5.6b, and a 

very good agreement is observed compared to the CFD results.  

Table 5.4 Aerodynamic characteristics calculated from the current LLThw. Insects re-ordered by 

increasing angle of attack obtained from the LLThw. 

Insect 
αg,mid 

(deg.) 
WL /  midg

LC
,

 
midg

iDC
,

 
midg

DC
,

 
midg

D

L

C

C

,

 
midg

D

L

C

C

,

2/3



 

midg
D

iD

C

C

,

 
D

iD

C

C
 

DF 20.5 1 0.89 0.12 0.33 2.67 2.52 0.35 0.24 

HB 22 1 0.90 0.13 0.36 2.48 2.35 0.36 0.25 

CF 22.5 1 1.07 0.14 0.44 2.41 2.50 0.31 0.22 

BB 26 1 1.02 0.17 0.50 2.04 2.06 0.34 0.25 

HF 31 1 1.19 0.22 0.72 1.66 1.82 0.31 0.24 

HM 38 1 1.22 0.25 0.95 1.28 1.41 0.26 0.21 

LB 45 0.96 1.47 0.26 1.47 1.00 1.21 0.17 0.14 

FF 45 0.902 1.20 0.27 1.20 1.00 1.10 0.22 0.18 

 

Predictions of the induced drag can be made directly from the developed LLThw, 

and Table 5.4 provides explicit analytical results of the ratio of the induced drag to the 

total drag. Both the mid half-stroke value as well as the mean flapping cycle value are 

provided for the induced to total drag ratio. In this demonstration it was more 
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convenient to recalculate the mid-stroke geometric angle of attack, αg,mid that would 

provide weight support based on the developed LLThw. These αg,mid values are then used 

to evaluate the aerodynamic quantities in Table 5.4. Note that for the cases of the fruit 

fly and the ladybird operation at 45 degrees geometric angle of attack leads to a slightly 

sub-unity value of the weight support ratio for the given kinematics and wing 

morphology parameters in Table 3.1. However, an alteration of the max value by only a 

few degrees can correct for this if required. 

On average for the eight insects, the induced drag is shown to contribute 22% of the 

total drag based on the mean cycle values and 29% of the total drag based on the mid 

half-stroke values (Note that the mean cycle values are directly related to the assumed 

motion kinematic profiles in Figure 5.5). For insects operating with high mid-stroke 

angles of attack (such as the ladybird and the fruit fly) this ratio decreases below 20% 

for the mean cycle values which is consistent with the expected prevalence of profile 

drag as the angle of attack increases.  

 

 
 
Figure 5.7 Demonstration of (a) the ratio of the induced drag to total drag based on the LLThw, 

and (b) the ratio of the induced power to the total aerodynamic power based on Ellington's 

calculations in [151]. 
 

The results in Table 5.4 show that the ratio of induced to profile component is 

overestimated when employing Ellington's approach [151], Figure 5.7. Ellington 

analysed some hovering insects including the ladybird, cranefly, hoverfly, dronefly, 

honey bee and bumble bee based on measured kinematics and low order methods for 

evaluating the aerodynamic power, Figure 5.7b. Based on an average for the considered 

insects, the ratio of the induced power to the total aerodynamic power was around 0.5. 

However, the induced power prediction in [151] was based on the Rankine-Froude 

estimate multiplied by the induced power factor value which had an average value of 

1.15 for the considered insects, a value that was shown to be underestimating the 
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induced power factor of normal hovering flyers [188,221]. Furthermore, the profile 

power was evaluated based on a low order expression of the profile drag coefficient,

2/1Re7 
proDC , an expression based on flow past a cylinder [222]. Whilst this 

expression was shown to be working at low angles of attack, it becomes unreasonable at 

high angles of attack. 

The obtained drag results confirm that for better aerodynamic efficiency, wings 

should operate at lower geometric angles of attack. This can be confirmed from the two 

important aerodynamic performance indices: glide number, DL CC / (GN) and the power 

factor DL CC /2/3
(PF) whose values generally decrease as the operational mid-stroke 

geometric angle of attack increases. Whilst these indices are affected by other 

parameters and/or variables such as those defining the wing morphology and 

kinematics, it is clear that the geometric angle of attack value is the parameter that has 

the greatest influence. The values obtained for these indices are consistent with those 

obtained from experimental measurements of insect-like hovering wings [142], which 

are very low compared to fixed wing figures mainly due to the much higher drag 

associated with the flapping mode of flight.   

5.4 Chapter Conclusions 

 

A novel lifting line formulation, LLThw, has been proposed for the quasi-steady 

aerodynamic evaluation of insect-like wings in hovering flight. The developed 

modelling capability provides a framework to adapt the original LLT for hovering flight 

and opens the door for simplified yet accurate modelling of 3d lifting surfaces at 

different operating conditions. The fully theoretical framework allows accurate 

estimation of the aerodynamics of insect-like wings from geometry and kinematic 

information alone, as well as providing deeper understanding of the associated 

aerodynamics in terms of the induced and profile drag associated with the lift 

production. 

The main adaptation proposed is the introduction of the concept of the equivalent 

angle of attack, which enables the linear aerodynamic LLT formulation to capture the 

steady non-linear aerodynamics of wings at high angles of attack using a simple 

analytical correction term. Additionally, a simplified methodology to include a number 

of non-ideal induced effects within the lifting line theory has been presented. These 
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non-ideal effects are necessary to correctly represent the flapping wing physics, 

including wake periodicity effects due to discreteness in the wake as well as the 

effective actuator disk area effect. Finally, low Reynolds number effects as well as the 

well-known edge velocity correction that improves the LLT performance for various 

wing planform shapes has been incorporated within the 2d lift curve slope value. 

The developed LLThw has been validated against available measurements from 

revolving wing experiments for hawkmoth, pigeon and hummingbird wings, and shows 

very good agreement with respect to both the shape of variation of the lift coefficient 

with incidence as well as the magnitude. Comparison of the results obtained from the 

LLThw and higher order CFD simulations shows that the developed methodology can be 

judged as a powerful predictive tool for the preliminary evaluation of insect wing 

aerodynamic performance. The mean lift to weight ratio results are on average within 

+4% of the available CFD results for eight insect cases. The developed model has been 

used to assess the relative impact of the proposed adaptations on the LLT for the 

investigated insects. Excluding these adaptations leads on average to a 60% over 

estimation in the mean lift force required for weight support, and that most of this 

discrepancy is due to the non-linear lift curve effect. The developed model also provides 

explicit evaluation of the induced drag component of insect wings. It is shown that on 

average for the eight insects considered, the induced drag contributes 22% of the total 

drag based on the mean cycle values and 29% of the total drag based on the mid half-

stroke values.   
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 6 

 Optimum Revolving Wing Planform  

 

In this chapter, a novel theoretical solution is introduced for the optimum planform for 

wings used to provide weight support by continuous or reciprocating rotation in a 

stationary fluid. This solution is of interest as a benchmark to which hovering wing 

geometries driven by broader multidisciplinary engineering or evolutionary constraints 

can be compared. Whilst there are some clear practical differences between continuous 

rotary (revolving) and reciprocating rotary (flapping) wing motions, the aerodynamic 

behaviour for the reciprocating rotary motion is fundamentally the same as for 

continuous rotation apart from wake capture and stroke reversal effects, which are of a 

secondary nature compared to the steady aerodynamics. For brevity and following 

insect flight aerodynamic literature, in this chapter wings performing continuous rotary 

motion or within the steady translational phase of the reciprocating rotary motion are 

referred to as ‘revolving wings’. 
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6.1  Introduction  

From a design perspective, it is of relevance to identify optimum wing geometries for 

hovering air vehicles. Additionally, there has been an argument that for flapping 

vehicles, it is easier modifying wing geometry than wing kinematics [223]. Yet, there 

have not been theoretical studies to investigate the effect of wing geometry on the 

flapping wing aerodynamic performance evaluated in terms of the profile and induced 

losses associated with lift generation. Thus, the aim of this compact chapter is to 

provide an assessment of the aerodynamic performance of relevant wing planforms for 

hovering flight. The chapter starts with driving a novel theoretical solution for the 

optimum hovering wing in terms of chord and twist distributions that would minimise 

the total aerodynamic power expenditure for a given lift. Then the effect of removing 

the optimum twist distribution on the aerodynamic performance is examined. 

6.2  Derivation of the Optimum Planform 

The optimum wing is defined as a wing that will produce a given lift for the least total 

power required, where the power is made up from both profile and induced components 

[224]; consequently, for a wing to be optimum for a given amount of lift [133]:  

1- Each wing section should be operated at its optimum effective angle of attack (i.e 

angle of attack that allows the best lift to drag characteristic of the wing section) to 

minimise profile power, and  

2- The downwash distribution along the wing length should be uniform to minimise the 

induced power. 

Following steady linearised aerodynamic treatments, the local wing lift coefficient, 

Cl, is given by 
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where αg is the geometric angle of attack, αe is the effective angle of attack and αi is the 

induced angle of attack defined as 

   

 )(/)()( rUrwri  , (6.2) 
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where w is the downwash velocity, U is the sectional flow velocity and r is the distance 

along the span from the wing root. Note that for revolving wings the 2d airfoil lift curve 

slope, Clα,2d, may vary with span as the local Reynolds number varies; however, the 

assumption of a constant average value along the wing length does not lead to any 

serious loss of accuracy [133].   

Consider first the optimum design of a parallel translating wing (fixed wing) for 

which the sectional flow velocity along the wing length is constant. For an untwisted 

wing, minimum profile power for a given amount of lift is achieved when there is a 

constant effective angle of attack along the wing length equal to the angle of attack for 

best lift to drag ratio of the wing section. This constraint can be achieved 

simultaneously with the minimum induced power condition since the constant 

downwash required for minimum induced power also gives a constant effective angle of 

attack. Thus for a practical design solution, a minimum power wing can be achieved 

without twist by implementing an elliptic chord distribution to give minimum induced 

power (constant downwash) and then adjusting the wing loading such that the lift 

coefficient at the design operating point is equal to the lift coefficient for best lift to drag 

ratio. 

Consider now the optimal design of a revolving wing. Here, the sectional flow 

velocity along the wing takes the linear form 

   

 
rRrrU ˆ)(    , R

r
r ˆ  (6.3) 

   

where   is the angular velocity and R is the length of the wing. Given Equations 6.2 

and 6.3, for a revolving wing with constant downwash distribution, the induced angle of 

attack is hyperbolic; or alternatively, for a constant induced angle of attack, the imposed 

downwash distribution must be linear. Thus to achieve minimum power for a revolving 

wing, it is necessary to prescribe both the wing planform and the wing twist 

distribution. 

The design process for an optimal revolving wing is as follows. First, the minimum 

profile power constraint is met by specifying an appropriate geometric twist 

distribution, )(rg , to achieve a constant optimum effective angle of attack, opte, , for a 

constant downwash [133,140] 
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Next the chord distribution required to achieve the constant downwash for minimum 

induced power is specified in terms of the circulation distribution along the wing and 

the lift coefficient required for the minimum profile constraint [137] 
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In the helicopter literature [133,140], the optimum chord distribution for minimum 

power is derived from a simple physical interpretation based on momentum theory. This 

model requires a constant bound circulation to produce a uniform downwash 

distribution [140]. From Equation 6.5, it thus follows that the optimum chord would be 

of a hyperbolic shape (due to the linear velocity distribution in denominator). According 

to the Helmholtz theorem, this uniform circulation along the wing length leads to a 

single vortex of the same strength trailing from each of the wing tips. This is a 

significant simplification of the problem and quantitative determination of finite wing 

aerodynamics calls for a more accurate model. Thus, it is convenient to take the 

problem a step further by setting the circulation strength along the wing to an elliptic 

distribution which from lifting line theory is known to produce a constant downwash 

velocity distribution [137]. Since lift and hence bound circulation falls to zero at the 

inboard edge of the wing and there is no carryover of lift to the opposite wing 

[181,213,221], Γ(r) should vary elliptically on a single blade/wing spanning along

Rr 0 . Therefore, )(r is expressed as an ellipse with the centre at R/2 and a major 

axis length of R as follows 
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After simple manipulation it can be shown that 
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Substituting Equations 6.3 and 6.7 into 6.5, it can be shown that the optimal chord 

distribution is proportional to the expression 1
ˆ
1 
r

.Thus, the optimum chord 

distribution for a revolving wing can be written as 
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where c is the mean geometric chord and the factor 2.019/π preceding the above 

expression is obtained from satisfying the condition 1ˆ
1

0

)ˆ(
 rd

c

rc
 [141]. This optimum 

chord distribution is shown in Figure 6.1 together with a number of other relevant chord 

distributions for reference. It is noteworthy that the obtained optimal chord distribution 

will only produce the minimum induced losses due to the downwash distribution effect; 

other non-ideal induced losses sources discussed in Chapter 3 are not function of the 

wing planform distribution but mainly function of wing kinematics and thus are not 

accounted for here. 
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Figure 6.1 Comparison of the chord distribution for minimum power for a revolving wing 

against a number of reference planforms. The so-called optimum distribution (black) is the 

chord distribution derived in this work (Equation 6.8) and is capable of producing an elliptic 

circulation distribution on a revolving wing. Thus, from the lifting line theory considerations, it 

is able to produce a constant downwash distribution. The hyperbolic distribution (blue) 

produces a constant circulation distribution on a revolving wing. Within the helicopter literature, 

it has been referred to as the ‘optimum hovering rotor’ [133,140]. The beta distribution (red) is a 

practical representation of an insect wing planform from biological studies [141]. In practice, it 

provides a good aerodynamic performance with respect to induced losses owing to the non-

uniform downwash effect. The elliptic distribution (yellow) produces an elliptic circulation 

distribution and hence a constant downwash distribution for parallel translating wings. For 

untwisted revolving wings, it produces a linear downwash distribution and thus a constant 

induced angle of attack along the wing length. In this illustration, all wings have an aspect ratio 

of 4 and same length R. 

6.3  Aerodynamic Performance of Untwisted Revolving Wing 

Planforms 

For rotary rigid wings, it is practically feasible to implement a twist distribution along 

the wing length; however for a flapping wing, the forward and backward reciprocating 

motion implies a periodic change in sign of the implemented twist distribution which is 

mechanically expensive to implement, except through aeroelastic means, as in insect 

wings. Thus, now the effect of chord distribution only (zero twist) on the aerodynamic 

performance is considered. By prescribing the chord distribution only, only one of the 

two optimality constraints can be achieved at a time. First, the constant downwash 

velocity constraint (minimum induced power) is relaxed while maintaining operation at 

a constant optimum effective angle of attack along the wing length (minimum profile 

power). For an untwisted wing, a constant distribution of the effective angle of attack is 
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obtained when a constant induced angle of attack distribution is achieved (see Equations 

6.1 and 6.2). In turn, this is obtained from a linear variation of the downwash which can 

be realised in hovering through the elliptic chord distribution 
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This shows that the elliptic chord distribution leads to a constant induced angle of 

attack distribution for both parallel and revolving translations; however, the constant 

sectional velocity distribution associated with the parallel translation motion leads in 

turn to a constant downwash velocity distribution and thus a unity induced power factor. 

On the other hand, the linear downwash distribution of the elliptic chord for a revolving 

wing leads to an induced power factor due to non-uniform downwash, kind, value of 1.13 

(i.e. 13% more induced power compared to the ideal uniform downwash condition for a 

given lift [187,188]). 

 

 
 
Figure 6.2 Effect of enforcing a no twist constraint on (a) downwash velocity and (b) 

circulation distributions for the chord distributions prescribed by Equations 6.8 and 6.9. In this 

illustration, the wing aspect ratio is 4 for the two chord distributions. An untwisted revolving 

wing with an elliptic chord distribution produces a linear downwash distribution and thus is able 

to produce a constant effective angle of attack distribution along the wing length. An untwisted 

revolving wing with the chord distribution prescribed by Equation 6.8 produces a downwash 

distribution very near to the constant distribution and thus is still able to significantly reduce the 

induced power expenditure. The optimum conditions of constant downwash and elliptic 

circulation distributions (obtained by prescribing both twist and chord distributions) are added 

to the plot to qualitatively correlate them to those of the two chords without twist. Downwash 

and circulation distributions are normalized using the maximum value of each distribution. 

Downwash and circulation distributions are evaluated based on the lifting line blade theory 

detailed in Section 3.2.2. 
 

Next, if the constant effective angle of attack requirement is relaxed and no twist 

distribution is applied to the wing, it is found that the optimum chord distribution 

prescribed by Equation 6.8 still significantly reduces the induced power expenditure. 

This is shown in Figure 6.2 through plotting the downwash and circulation distributions 
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for this chord distribution using the lifting line blade model detailed in Chapters 3 and 

5. The downwash and circulation distributions produced are very near to the constant 

and elliptic distributions respectively. To further demonstrate this point, Figure 6.3 

shows the kind for the untwisted optimum wing planform for different aspect ratios (

cRAR / ) within the practical operational range. The kind values for the optimum 

chord shown in Figure 6.3 slightly decrease with wing aspect ratio, and have values of 

1.016 or less (i.e. no more than 1.6% above the ideal uniform downwash condition). 

Figure 6.3 also shows the variation of kind of the elliptic chord distribution which 

demonstrates a very important outcome that: the kind value of the elliptic planform is 

independent of aspect ratio. 

 

 
 
Figure 6.3 Variation of the induced power factor due to non-uniform downwash distribution 

with aspect ratio. All chord distributions do not employ any twist distribution. The value of kind 

is evaluated based on the method developed in Section 3.2. 
 

The optimum chord distribution presented here is clearly difficult to implement due 

to the broad widening at the root region, and is seldom found in nature; however, it 

provides a useful reference point to which other less optimal but more practical chord 

distributions can be compared. This approach has parallels with the use of the elliptic 

planform as an ideal minimum induced power baseline for fixed wing design (noting 

that the elliptic planform itself is impractical for most applications) [188]. In a previous 

contribution [188] using simple optimisation technique, an ‘arcsech’ distribution was 

identified to be able to reduce the kind value to 1.036 for a wing with aspect ratio of 3 up 

to a kind value of 1.016 for a wing with aspect ratio of 7. Whilst an ‘arcsech’ distribution 

has less root broadening compared to a wing described by Equation 6.8, it is still judged 

as being impractical. As discussed in Section 3.3.2, most insect wing shapes can be 

accurately represented using a beta function with the non-dimensional radius of first 

moment of wing area varying between 40 to 60 percent of the wing length according to 
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the insect species [141], Figure 6.4a. The value of kind for the range between these two 

cases is shown in Figure 6.4b for a wing with aspect ratio of 4 (Note that kind is weakly 

dependent on AR as demonstrated in Figures 3.6a and 6.3).  

 

 
 
Figure 6.4 (a) Demonstration of beta chord distributions for hovering wings. (b) The induced 

power factor due to non-uniform downwash, kind, as a function of the non-dimensional radius of 

first moment of wing area. The wing aspect ratio is 4 (mid range value for insect wings) and the 

wing area is constant. (c) A hummingbird wing planform similar to a beta distribution chord 

with centre of area at 0.4R, photograph by Florian Kuster, National Geographic Your Shot. 
 

Figure 6.4b shows that a wing whose centre of area location is at 0.4R distance 

from the root has the lowest kind of 1.07. This distribution is less optimal compared to 

http://yourshot.nationalgeographic.com/profile/781702/
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the chord distribution described by Equation 6.8, but it is more practical. Thus, the cost 

of increased practicality is an increase in the induced power factor which is raised to 

1.07, see Figure 6.3. In reality a hummingbird wing planform is best represented by a 

beta distribution whose centre of area is around 40% of the wing length [217], Figure 

6.4c. Thus, it can be argued that a hummingbird-like wing planform is the optimum 

practical wing with respect to minimisation of induced losses. 

6.4  Chapter Conclusions  

An optimum revolving wing planform that produces an elliptic circulation distribution 

has been derived. This represents a refinement to current practise in the rotary wing 

literature where a simplified vortex model with a bound vortex of constant circulation is 

employed. Additionally, useful insights into the aerodynamic performance of several 

untwisted revolving wing planforms are presented. It has been shown that even without 

applying any twist distribution the optimum chord distribution derived in this chapter 

produces a downwash distribution very near to the constant distribution and thus the 

induced power expenditure is still significantly reduced.  

The optimum chord distribution requires a very broad root region presenting an 

implementation disadvantage that makes it difficult to realise this planform in practice. 

An investigation into the effect of wing shape on induced power factor of relevance to 

real hovering insects has been undertaken using wing shapes represented by a beta 

function. A wing planform, similar to that of a hummingbird, whose centre of area is at 

forty percent of the wing length provides the minimum k due to non-uniform downwash 

with a value of 1.07. Thus, it has slightly less optimal performance in terms of 

downwash distribution but with a more practical planform shape. 

The elliptic wing has always been an attractive planform known for its minimum 

induced drag within the fixed wing literature. The current study has revealed the unique 

aerodynamic advantage of the elliptic wing when performing a revolving motion. It has 

been shown that for any aspect ratio an untwisted elliptic revolving wing can allow all 

wing sections to operate at the same optimum effective angle of attack for a minimum 

profile power requirement.  
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 7 

 Aero-Optimum Hovering Kinematics 

 

Hovering flight for flapping wing vehicles requires rapid and relatively complex 

reciprocating movement of a wing relative to a stationary surrounding fluid. This 

chapter will develop a compact analytical aero-kinematic model for optimisation of 

flapping wing kinematics against aerodynamic criteria of effectiveness and efficiency. 

The combined aero-kinematic model provides explicit analytical expressions for both 

lift and power of a hovering wing in a compact form. The model is also used to predict 

the required flapping frequency for a given geometry and basic aerodynamic 

parameters.  
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7.1  Introduction  

Effective hovering flight requires generation of rapid wing motion relative to the 

stationary surrounding fluid. For helicopter-like vehicles the wing motion is generated 

relatively simply by continuous rotation of the wing; however, the absence of a viable 

continuously rotating joint in nature means hoverers have to adopt a reciprocating 

motion in which the direction and pitch angle of the wing must be reversed at the end of 

each stroke. The fundamental kinematic relations are quite simple: as the wing goes 

back and forth, the wing should be pitched such that the leading edge is always 

travelling forward and a positive angle of attack is maintained; however inclusion of 

non sinusoidal motion primitives makes the problem non trivial. This chapter presents a 

novel formulation of a parameterised analytical aero-kinematic model for hovering 

flapping flight that can be used in an explicit fashion to evaluate kinematics optimised 

for different flight performance requirements. The model is also unique in that it can 

make explicit prediction of the required flapping frequency from relatively basic 

geometric and weight information. This provides the means for low order design of 

insect-scale flapping wing vehicles or alternatively prediction of flapping frequency of 

insects from a relatively small number of basic input parameters. 

Identification of optimum flapping kinematics has been the goal of a number of 

previous studies addressing the aerodynamic efficiency of hovering flapping flight 

[164,225,226]. An optimisation problem is typically formulated to identify the wing 

motion that minimises power expenditure for a given wing while satisfying a weight 

support (thrust) constraint. The aerodynamic models adopted vary from numerical CFD 

models solving the flow governing equations [226] to the simpler quasi-steady models 

[164,225]. The main objectives of these studies were typically either to understand 

insect flying behaviour [164] or to search for flapping motions that are aerodynamically 

efficient compared to steady fixed wing flight [225,226]. Some other studies have 

varied one or two kinematic parameters at a time to investigate the effect of these wing 

kinematic parameters on the aerodynamic performance [165,227] with the aerodynamic 

performance assessed based on average lift and average lift to drag ratio values over the 

flapping cycle. It is reported that lift is increased by increasing flapping frequency, 

increasing flapping stroke amplitude, and advancing wing pitch rotation [227], and that 

parameter values for maximum average lift are different to those maximising the 
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average lift to drag ratio [165].  These studies [165,227] omitted important aspects such 

as consideration of the different time shapes of variation for the Euler angles through 

the flapping cycle [227], or were specific for a linear aerodynamic force coefficient 

representation [165]. Thus despite allowing insight into the problem, a clear procedure 

for specification of the kinematics requirements within the engineering design of insect-

scale flapping wing vehicles is yet to be defined.  

In the following, two aspects of aerodynamic performance are considered: optimum 

kinematics for maximum effectiveness defined in terms of the maximum aerodynamic 

lift force that can be generated, and optimum kinematics for maximum efficiency 

defined based on minimising the power expenditure required to generate a given amount 

of lift. Section 7.2 defines the motion kinematics and the aerodynamic models upon 

which the developed aero-kinematic model is based. An interpretation of the developed 

model is presented in Section 7.3. Section 7.4 provides results in the form of efficiency 

and effectiveness maps as a function of motion control parameters and comparison of 

predicted against actual flapping frequency of a number of different insect species. 

7.2 Aero-Kinematic Model 

7.2.1 Kinematic motion parameterisation 

The kinematics of a rigid wing flapping motion is defined explicitly by three time 

varying Euler rotations at the shoulder. For insect wing work it is convenient to use the 

rotation sequence shown in Figure 7.1. The flapping stroke angle ϕ(t) represents the 

main up and down motion of the wing with respect to the defined lateral plane of the 

insect. For normal hovering the stroke plane defined by the flapping motion will be 

horizontal with respect to gravity. Any forward or aft sweep ε(t) of the wing during 

flapping will cause the wing to deviate from its original stroke plane, where ε(t) is 

referred to as the stroke plane deviation angle. Finally, a rotation θ(t) is applied about 

the wing longitudinal axis to alter the geometric angle of attack of the wing, where θ(t) 

is referred to as the wing pitching angle. 
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Figure 7.1 (a) The three Euler rotations from the body axes (xb, yb, zb) to the wing axes 

(xw, yw, zw). (b) For zero stroke plane deviation angle, the axis systems (x1, y1, z1) and 

(x2, y2, z2) become identical and only two Euler rotations are required from the body to 

the wing axes.  The flapping wing kinematic motion is defined using: the flapping 

angle, ϕ, the stroke plane deviation angle, ε (zero for Figure 7.1b), and the wing 

pitching angle, θ. The angle ϕ is a rotation about xb, the angle ε is a rotation about z1, 

the angle θ is a rotation about y2.  

 

For the present work, angle time histories are defined using parameterisations 

similar to those given by Berman and Wang [164], however the number of parameters 

were consolidated to improve the robustness of the motion optimisation process without 

significant loss of model fidelity. This consolidation is based on the assumption of 

planar symmetric normal hovering flight in which the wing motion has symmetric half-

strokes and the stroke plane deviation angle is zero, reducing the required number of 

motion parameters of Berman and Wang [164] model from 11 to 5. The symmetric 

normal hovering assumption is justified on the basis that this is a more efficient style of 

flapping compared to flapping with asymmetric strokes along an inclined stroke plane 

(for detailed discussions, see references [176,188,221]). The assumption of a planar 

wing motion is consistent with experimental studies visualising real insect kinematics 

[171,172] where it has been shown that the typical deviation angle amplitudes over the 

flapping cycle are small and do not make a significant contribution to the generation of 

primary flight forces.  

Following from the above, the time variation of the flapping angle is defined as 

[164] 
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For the aerodynamic model we require the flapping velocity. This is obtained by 

differentiation of Equation 7.1 to give 
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The pitching angle time variation is defined by [164] 
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The flapping and pitching motion defined in Equations 7.1 to 7.3 is controlled with five 

parameters (ϕmax, θmax, f, Cϕ and Cθ), where ϕmax is the flapping angle amplitude, θmax is 

the pitching angle amplitude, f is the flapping frequency, and Cϕ and Cθ are parameters 

that control the shape of variation of the flapping and pitching cycles respectively. 

These parameters are sufficient to simulate a range of flapping motions relevant to 

biological and engineering studies, and provide intuitive control parameters for 

evaluation of feasible engineering designs. Figure 7.2 shows range of the kinematic 

variations that can be simulated with the above motion parameterisation using values of 

Cϕ and Cθ set to their bound values.  
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Figure 7.2 Flapping and pitching angle variations during a flapping cycle for different values 

of Cϕ and Cθ. Stick diagrams of the wing motion are represented for a time interval 0.0625T. 

For visualisation purposes, the wing graphic is shown rotated around the mid-chord. The black 

dots represent the wing leading edge in the graphs. The time variation of the flapping and 

pitching angles is shown in black and red respectively. TDC denotes Top Dead Centre; BDC 

denotes Bottom Dead Centre and Mid denotes Mid half-stroke. 
 

7.2.2 Aerodynamic model 

7.2.2.1 Generic aerodynamic formulation 

The aerodynamic model adopted here is based on a quasi-steady treatment. The lift and 

drag coefficients, CL and CD, of the hovering flapping wing are defined in terms of the 

geometric angle of attack, αg, based on the well-established non-linear expressions 

introduced in Chapter 4 

   

 )2sin()( gTgL CC   , (7.4) 

 )(sin2)( 2

gTgD CC   , (7.5) 

   

where CT is the translational lift coefficient which depends primarily on the wing shape 

and Reynolds number [176,213]. Note that Equations 7.4 and 7.5 require two 

assumptions: Firstly the wing has an un-cambered section with zero twist distribution 

along the span   0
0


g
LC


, which is likely to be valid under normal hovering 

conditions for most insect wings. Secondly, the skin friction drag on the wing is 

negligible compared to other drag components including pressure and induced drag

  0
0


g
DC


, which is consistent with the experimental drag measurements of insect-

as discussed in Chapter 4 and 5. For completeness, further justification for assuming a 

negligible CD0 value is included in Appendix A. The current aerodynamic model also 
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ignores the wake capture effect which can be important during start of the flapping 

cycle under some conditions [172]. However, the wing translational phase is the 

primary contributor to the force generation within the flapping cycle and is alone 

sufficient to provide weight support [146,176,213].  

Here, the energetic cost for hovering is given by the time averaged power output, 

which can be positive or negative; hence it is assumed that mechanical energy can be 

stored and released when the wing does positive work. This is appropriate for most 

engineering designs where an elastic spring element can be used to recover the energy; 

though there is some debate on the degree to which this applies in nature. Nevertheless, 

some studies show that insects have elastic elements within the flight muscles, thorax 

and wing hinges that can significantly reduce the inertial power expenditure; for review 

of this point, the reader is referred to references [151,228]. The assumption of full 

elastic energy recovery as well as the employment of symmetric half-strokes leads to a 

zero net inertial cost; additionally, symmetric kinematics leads to zero net force 

components due to rotational and added mass effects [134,176,229]. Thus, relatively 

simple analytic formulae to describe the problem can be derived. 

Given the symmetry of half-strokes, the hovering lift and power will be based on 

averaged values during the down-stroke phase. In the down stroke the time variation of 

the angle of attack can be written as 
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Using Equations 7.2 to 7.6, it can be shown, after some mathematical manipulation, that 

the average lift and power can be expressed as 
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where 
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where ρ is the air density, R is the wing length from root to tip, c is the mean geometric 

chord and 2̂r , 3̂r are the non-dimensional second and third radii of moment of area of the 

wing. 

7.2.2.2 Explicit formulae for average lift and power 

Whilst the lift and power expressions in Equations 7.7 and 7.8 are relatively simple, 

analytic evaluation of the integrals is not trivial. Nevertheless, with mathematical effort, 

explicit analytical formulae can be obtained for specific kinematic profiles. These 

specific profiles include: (1) sinusoidal flapping and pitching angle variations (i.e. Cϕ = 

Cθ = 0), and (2) rectangular pitching angle variation for any flapping angle variation (i.e. 

Cθ→∞). These profiles allow simplification of the integrand in Equations 7.7 and 7.8, 

and instead of performing the integration numerically analytical expressions can be 

obtained for the average lift and power as 
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where Hypergeom denotes the Barnes extended hypergeometric function, and can be 

easily implemented from commercial software libraries as Matlab
®

 and Mathematica
®

. 

Note that for the case when Cθ→∞, the value of αg is constant along the half-stroke and 

thus is taken out of the integration. Also for this case, the lift and power expressions 

become singular when Cϕ is zero; however, using a small value of Cϕ (as 0.001) allows 

representative simulation of the sinusoidal flapping variation. Using the above lift 

equation, the frequency, f, can be calculated to satisfy a weight, W, requirement as 
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Equation 7.13 should prove useful within the design of a flapping wing vehicle as it 

defines the flapping frequency required to carry a certain total weight for a given wing 

geometry and kinematic parameters. Substitution of the above frequency relations into 

Equation 7.12 delivers expressions for the average power for a given weight constraint 

as 
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Equation 7.15 shows that the average power is inversely proportional to the power 

factor, DL CCPF /2/3 , which is a measure of the amount of weight that can be lifted per 

unit aerodynamic power [218]. For a Cϕ value of 0.001 (corresponding to sinusoidal 

variation of the flapping angle), Equation 7.15 reduces to 
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Whilst for a unity Cϕ value corresponding to constant angular velocity variation with 

respect to time, Equation 7.15 reduces to 
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Equations 7.16 and 7.17 are consistent with the final results of reference [230]; and 

apart from the appearance of the term containing 2̂r  and 3̂r  due to the linear variation of 
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the sectional velocity along the wing length (i.e. rrU )( ), Equation 7.17 is the same 

as the well-know aerodynamic power relation for steady flight of fixed wing vehicles. 

Whilst this does not validate the model in anyway, it does provide circumstantial 

evidence that the analytical approach is sound.  

7.3 Model Interpretation 

7.3.1 Selection of flapping profile 

Before progressing to evaluation of the complete aerodynamic model as a function of 

both flapping and pitching control parameters (Cϕ and Cθ), it is instructive to consider 

the implications of changing flapping kinematics using a simple case in which the pitch 

change at the end of each stroke is instantaneous (Cθ →∞) such that the geometric angle 

of attack is constant during each half-stroke. From inspection of Equation 7.7 it can be 

seen that with the flapping velocity, , as the only variable, the lift will be proportional 

to the mean square of the flapping velocity over the flapping cycle. Consider the two 

flapping profiles given by Cϕ = 0 and Cϕ = 1 corresponding to a sinusoidal and triangular 

motion, respectively. For a given flapping frequency and stroke amplitude the 

sinusoidal profile will have the higher mean square value, hence it is anticipated that 

solutions for high effectiveness obtained from the complete model will be biased 

towards sinusoidal flapping profiles. If we now consider efficiency as the goal, 

measured in terms of power/lift, then from dividing Equations 7.8 by 7.7 for the case of 

Cθ →∞ we can see by inspection that efficiency is proportional to the ratio of mean 

cube to mean square of the flapping velocity. Thus for efficiency we would expect 

flapping kinematics to be biased towards triangular flapping profiles.  

7.3.2 Selection of the pitching amplitude and the flapping amplitude 

The selection of the pitching angle amplitude, θmax, depends on which design criteria 

should be prioritised. By inspection, for maximum lift to be generated θmax should take a 

value which maximises the wing lift coefficient, which for the present aerodynamic 

model (see Equation 7.4) occurs at 45 degrees. This is consistent with practise adopted 

within the early stages of the design process in a number of previous studies 

[225,227,229]. On the other hand, if efficiency in terms of power for a given lift is to be 

minimised, then Equation 7.15 shows that to achieve this design criteria the power 
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factor, PF, has to be maximised which in turn is achieved by decreasing the mid-stroke 

angle of attack amplitude through increasing θmax (see Appendix A). 

With regard to selection of the flapping angle amplitude, ϕmax, this should always 

be as large as possible: in terms of effectiveness, larger stroke amplitudes allow higher 

instantaneous velocity values for the same wing geometry and operational frequency 

(see Equation 7.2) and hence generation of higher aerodynamic forces; in terms of lift 

production efficiency, a larger stroke means a larger disk area and hence a lower disk 

loading. This leads to lower average downwash velocity and reduced induced power 

expenditure. Furthermore, higher velocity and larger disk area combined leads to lower 

inflow ratios and thus lower induced losses due to the wake periodicity effect as shown 

in Chapter 3. 

7.4 Results 

7.4.1 Effectiveness and efficiency maps 

Further to the qualitative interpretation of the kinematic-aerodynamic model in Section 

7.3.1, consider a numerical evaluation in the form of contour maps of effectiveness and 

efficiency as a function of the flapping and pitching control parameters Cϕ and Cθ, 

Figure 7.3. 

 
 
Figure 7.3 Variation of (a) normalised lift, and (b) inverse of the normalised power for a given 

lift for different combinations of Cϕ and Cθ. The values are normalised with respect to the 

values obtained for sinusoidal flapping and pitching angle variations. Red indicates ‘better’ in 

each case. This demonstration is based on integrands numerical integration of Equations 7.7 

and 7.8 with θmax value of 45 degrees. 
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Note that lift and power values are normalised with respect to the lift and power 

values for sinusoidal flapping and pitching angles variations (i.e. Cϕ = Cθ = 0). 

Sinusoidal variations of the flapping and pitching angles are used as the reference 

kinematics because they are simple to implement and also minimise peak acceleration in 

the wing motion which reduces instantaneous actuator power requirement [231]. Also, 

the upper bound for the Cθ parameter was set to 5 representing a practical upper bound 

for this control parameter.  A value of 5 for Cθ is equivalent to completing of wing 

rotation within around 25% of the flapping cycle period, see Figure 7.2. This upper 

bound is consistent with observations of insects [145,171,172], and the performance of 

engineered flapping mechanisms [100,229]. 

7.4.1.1 Maximum effectiveness 

Here the wing kinematics that leads to generation of the largest aerodynamic force for a 

given wing geometry and flapping frequency are identified, irrespective of the required 

power. It is a given that the wing operates at a maximum stroke amplitude and a value 

for θmax of 45 degrees, so the task becomes that of identifying the shape of variation of 

flapping and pitching angles during the stroke. Lift generated for constant wing 

geometry, constant kinematic parameters (except Cϕ and Cθ) and constant translation 

force coefficient for different combinations for Cϕ and Cθ is shown in Figure 7.3a. It can 

be seen that for any flapping angle variation a step-like variation of the pitching angle 

(i.e. constant incidence through half-strokes) will always provide the highest lift. The 

best combination for highest effectiveness is to have a sinusoidal variation of the 

flapping angle (implying sinusoidal variation of the velocity) with the step-like pitching 

variation. This combination produces 6.5% more lift compared to the sinusoidal 

reference kinematics. This result is consistent with the discussion in Section 7.3.1 

(model interpretation). On the other hand, the combination of a triangular variation of 

the flapping angle and a sinusoidal variation of the pitching angle is the least good with 

respect to aerodynamic effectiveness, producing 30% less lift compared to the 

sinusoidal reference kinematics. 

7.4.1.2 Maximum efficiency 

Here, minimum power for a given lift constraint is used as the criteria for the kinematic 

pattern selection. Lift is kept constant for different kinematic motions by adjusting the 

flapping frequency value. The efficiency contours shown in Figure 7.3b are represented 
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as the inverse of the power expended for a given lift for different value combinations of 

Cϕ and Cθ. It can be seen that the best combination for highest efficiency (lowest power 

for given lift) is to have a triangular variation of the flapping angle with a step-like 

pitching angle variation, i.e. a constant flapping velocity and a fixed pitch angle in each 

half stroke. These profiles are consistent with those discussed in Section 7.3.1 (model 

interpretation) and are consistent with the higher order calculus of variation result 

obtained by Taha et al. [230]. They are also similar to the kinematics used by Schenato 

et al. [232]. Moreover they are compatible with optimal hovering rotor aerodynamics 

where, in the absence of unsteady effects, a rotor is usually operated at a constant 

angular speed and a constant optimal angle of attack [133].  

On the other hand, the combination of a triangular variation of the flapping angle 

and a sinusoidal variation of the pitching angle is the least good with respect to 

aerodynamic efficiency. Note that the kinematics for least good effectiveness and least 

good efficiency are the same. Also for both best effectiveness and best efficiency the 

optimum pitching angle variation is the step-like variation. Therefore it remains only to 

choose a sinusoidal flapping angle variation for maximum effectiveness or a triangular 

flapping angle variation for maximum efficiency.  

 

 
 
Figure 7.4 Variation of the inverse of the normalised power for a given lift for the efficiency 

optimum combination (Cϕ = 1 and Cθ →∞) with geometric angle of attack value. This 

demonstration is based on the quotient of the analytical expressions of Equations 7.14 and 7.17. 
 

It is noteworthy to mention that the contour values in Figure 7.3b are based on 

integrand numerical evaluations with a θmax value of 45 degrees. Changing the value of 

θmax will only change the efficiency contour values, but does not change the conclusion 

that a triangular variation of the flapping angle with a step-like pitching angle variation 

are the most efficient motion profiles. To further demonstrate this point, Figure 7.4 
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compares the mean aerodynamic power for a given lift values of the ideal motion profile 

(Cϕ = 1 and Cθ →∞) with respect to the reference sinusoidal case. This evaluation is 

based on the quotient of Equations 7.14 and 7.17. The superiority of the efficiency-

optimum combination can be directly seen from the figure and this superiority even 

improves as the angle of attack decreases which is consistent with the discussion of 

Section 7.3.2. However within the typical angle of attack operation range for insect-like 

wings [145], the variation of the curve shown in Figure 7.4 is not very significant. 

7.4.1.3 Practical implementation of the optimum kinematic profiles 

Whilst the triangular variation of the flapping angle is mathematically elegant, it is 

challenging from a practical point of view due to the high acceleration requirement at 

the end of each half-stroke. Additionally, insect-scale flapping vehicles are typically 

driven at resonance to achieve the large amplitude motion required for sufficient 

flapping; for a linear transmission system operating at resonance, the output will be 

sinusoidal by default regardless of the driving waveform [231]. 

Similarly, rectangular variation of the pitch angle to give rapid reversal of 

geometric angle of attack at the end of each half-stroke may be mechanically more 

expensive than a sinusoidal variation due to the higher actuation torque required and the 

fact that resonance cannot be used to amplify this motion. A number of practical 

flapping wing implementations have successfully used passively generated pitching 

kinematics in which wing hinge properties are exploited to generate a pitching motion 

of the correct phase to the flapping motion [100,229]. Use of a suitably nonlinear 

structural response, e.g. via implementation of a softening torsional stiffness, can allow 

passively generated pitching kinematics to more closely approximate the rectangular 

variation required for both maximum efficiency and maximum effectiveness. 

Whilst the combination of a triangular variation of the flapping angle and a 

rectangular variation of the pitching angle is practically challenging for a flapping wing, 

it is trivial to implement using a rotary wing. Comparison of Equations 7.16 and 7.17, 

shows us that sinusoidal flapping expends 20% more aerodynamic power than 

triangular flapping for the same lift. Thus apart from practicality issues, a flapping wing 

becomes most efficient when it approaches the rotary wing motion. This also support 

the argument presented in references [9] and [142] that a rotating (spinning or 

revolving) wing motion is more efficient at generating lift than a flapping motion. 
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Using the second expression of Equation 7.11, it can be shown that sinusoidal 

flapping generates 23% more lift compared to triangular flapping for all other variables 

being the same. Given that a sinusoidal variation in velocity is the most effective 

solution for a flapping wing at a given frequency, why is it that we do not see this in 

engineered continuously rotating wings? The answer appears to be that for these 

systems it is easier mechanically to increase the speed by increasing the frequency than 

it is to introduce angular velocity variations within each cycle.  

7.4.2 Selection of the flapping frequency 

Table 7.1 Comparison between reported and calculated frequency for eight hovering insects. 

Weight, morphological and kinematic parameters are taken from reference [145]. Insects listed 

in order of increasing mass. 

Insect 
mass 

(mg) 

R 

(mm) 

c  
(mm) 2̂r  max

 
(deg.)

 
freported 

(Hz) 

fcalculated 

(Hz) 

error 

(%) 

FF  0.72 2.02 0.67 0.596 75 254 281 +9.6 

CF 11.4 12.7 2.38 0.614 61.5 45.5 44.6 -2.11 

HF 27.3 9.3 2.2 0.578 45 160 166 +3.7 

LB 34.4 11.2 3.23 0.538 88.5 54 63.6 +15 

DF 68.4 11.4 3.19 0.543 54.5 157 141 -11 

HB 101.9 9.8 3.08 0.566 65.5 197 176 -11.9 

BB 175 13.2 4.02 0.554 58 155 149 -4 

HM  1648 51.9 18.26 0.525 60.5 26.3 27.8 +5.5 

      Mean absolute error 7.88% 

      Mean error 0.6% 

 

The flapping frequency, f, can always be selected in order to satisfy a given weight 

constraint; that is, more lift can always be generated by flapping faster. For the present 

analysis it is assumed that the angle of attack during each half-stroke is constant (which 

is consistent with requirements for both efficiency and effectiveness). Thus the flapping 

frequency is calculated from the second formula in Equation 7.13, with Cθ →∞. A 

comparison between predicted and reported flapping frequency for eight hovering 

insects is given in Table 7.1. Insect weight, morphological and kinematic data is from 

Sun and Du [145]. Calculated flapping frequency is obtained from Equation 7.13 using 

a Cϕ = 0.001 and a representative value of 1.1 for the lift coefficient. The obtained 

results are in close agreement with the frequency values reported by Sun and Du [145] 

with a mean absolute error of 7.9% and mean error of 0.6% for the eight calculations. 

Note that accuracy in the predicted frequency can be significantly improved by using 

lift coefficient values specific to each wing geometry; however, the point to make with 
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the data is that even assuming a universal value of 1.1, the predicted results are still 

usefully accurate over a broad range of insect sizes and wing geometries.  

7.5 Chapter Conclusions 

A simple approach for optimum kinematic motion selection of hovering flapping wings 

has been proposed. Explicit analytical expressions for the average lift and power of the 

most relevant kinematic motions for hovering flapping flight are derived. These 

expressions are useful for the purposes of preliminary engineering design of flapping 

wing vehicles and prediction of flapping frequency of robotic and natural insects from 

weight and morphological data. Flapping and pitching angle variations are identified for 

achieving maximum effectiveness, and for achieving maximum efficiency.  

For effectiveness, the flapping angle profile should be sinusoidal, whereas for 

efficiency, the flapping angle profile should be triangular, with the pitching angle being 

rectangular in each case. Operation at maximum effectiveness generates 23% more lift 

compared to optimum efficiency case, and expends 20% more aerodynamic power to 

produce the same lift compared to optimum efficiency case.  

The use of a rectangular pitching profile and sinusoidal flapping profile increases 

the maximum attainable effectiveness by around 6.5% compared to the dual sinusoidal 

reference case. Whereas, the use of triangular flapping and rectangular pitching profiles 

increases the maximum attainable efficiency by at least 55% compared to the dual 

sinusoidal reference case.  
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 8 

 Dynamic Performance of 

Piezoelectric Bending Actuators
3
  

 

Previous chapters dealt with the different aspects of the wing performance. This chapter 

will consider the flapping vehicle actuator. The aim is to acquire improved 

understanding of the underlying electromechanical properties of piezoelectric actuators 

in dynamic operation. Here, a detailed analytical modelling treatment of the dynamic 

electromechanical behaviour of piezoelectric actuators with different configurations is 

developed. Experimental validation of the model for unimorph actuators is presented. 

An expression for the Electromechanical Coupling Factor (EMCF) is extracted from the 

analytical model and is used as the objective for parametric design studies for the 

different actuator configurations. Valuable insights into the selection of the 

configuration, the material properties and the operation variables controlling the 

dynamic performance of this class of actuators are delivered. 

                                                 
3 This chapter is an extended version of the publication: Nabawy MRA, Parslew B, Crowther WJ. 2015 

Dynamic performance of unimorph piezoelectric bending actuators. Proc IMechE PartI: J Systems and 

Control Engineering 229: 118-129(doi 10.1177/0959651814552810) 
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8.1  Introduction  

Piezoelectric bending actuators are a class of actuators designed to utilise the inverse 

piezoelectric effect to convert input electric energy to useful mechanical work, and are 

capable of producing relatively large bending deflections at low voltage [233]. Some 

common applications for this class of actuators include laser mirror alignment, ink 

ejection in printing, and atomic force microscopy. For these applications, operation is 

typically performed off-resonance in order to prioritise positional accuracy over 

amplitude. However, the flapping wing propulsion application has an alternative 

objective that is the actuator should achieve large tip displacements for flapping motion 

amplification. Thus, operation at resonance becomes a fundamental requirement for the 

concept operation. Although the concern of the current work is for insect-scale flapping 

wing propulsion, it should be noted that the current work is also useful for other 

resonant devices such as cooling fans [234-236] and micro-pumps [237].  The objective 

of all these engineering applications is to maximise fluid flow rate with respect to 

electrical power consumption. In order to properly address this challenge a detailed 

understanding of the underlying electromechanical properties of the actuator is 

necessary.  

Piezoelectric actuators come in different arrangements, and are mainly classified by 

the type and number of layers involved. Well known examples include unimorphs 

(actuators with a passive elastic layer and an active piezo-layer), bimorphs (actuators 

with two active piezo-layers), and triple layer actuators (actuators with two active piezo-

layers sandwiching a passive elastic layer), Figure 8.1. Unimorphs are often preferred 

for their simple structure, ease of manufacture and improved reliability compared to 

bimorph structures [78,111]. However, bimorphs can offer better electromechanical 

behaviour. Thus, a triple layer actuator combines the merits of both configurations as it 

can provide good electromechanical behaviour, whilst the elastic layer improves the 

mechanical reliability [238]. The mechanical reliability issue was indeed the main 

criteria for actuator selection for the different flapping wing concepts presented in 

Chapter 2 where most of them were either using a unimorph or a triple layer actuator. 
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Figure 8.1 Schematic drawing of piezoelectric bending actuators. (a) Unimorph, (b) bimorph, 

(c) triple layer actuator. 
 

Existing theoretical treatments of piezoelectric actuators characterisation can be 

broadly divided into two cases: static and dynamic actuation. Static actuation 

characterisation has been widely dealt with in the available literature. For static 

operation, the complete set of constituent equations relating the driving parameters 

(moment, force, uniform load and voltage) to the response parameters (deflection slope, 

deflection, volumetric displacement and charge) have been derived for unimorph and 

bimorph cantilever actuators [239] [240]. Wang et al. [111] used these equations to 

investigate actuator performance metrics as the electromechanical coupling factor and 

the maximum energy transmission coefficient. For unimorphs, they found that these 

metrics are related to the transverse coupling coefficient, k31, the Young's modulus of 

the materials and the thickness ratio of the actuator layers, whereas for bimorphs it was 

found that dependency was on transverse coupling coefficient only. Note that maximum 

energy transmission coefficient is a direct function of the EMCF; thus, best 

configurations with respect to EMCF are also best with respect to the maximum energy 
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transmission coefficient. Static actuation constitutive equations have also been driven 

for the triple layer configuration [238]; however, its electromechanical performance was 

not assessed as for the unimorph and bimorph cases.  

Dynamic actuation characterisation for piezoelectric bending actuators has been 

addressed at different levels but still there are significant gaps that require addressing. 

Smits and Ballato [241] provided the equations describing the dynamic behaviour of 

bimorph actuators in the form of a complete dynamic admittance matrix relating the 

harmonically varying driving parameters (tip moment, tip force, uniformly applied body 

force and voltage) to response parameters (tip rotation, tip deflection, volumetric 

displacement and charge). However, damping was ignored in their derivation and the 

work was not extended to the unimorph case. Later, dynamic structural models of 

unimorph actuators have been presented (e.g. [242]); however, only actuator mode 

shapes and natural frequencies were predicted. More recently, analytical models for 

actuators and harvesters have been developed by Inman and his group taking damping 

into account [243-247]. Actuation application models [243-245] have been provided for 

unimorphs whereas harvesting application models were provided for unimorphs [246] 

and triple layer actuators [247]. Actuation application models concentrated only on 

relating unimorph beam deflections to the applied voltage; whereas energy harvesting 

application models [246,247] provided more assessment on the relation between charge, 

current and voltage. Nonetheless the presented models were not extended to include a 

dynamic admittance matrix relating the driving parameters to response parameters for 

unimorphs, bimorphs or triple layer actuators, and no assessment of the actuation 

electromechanical coupling performance was provided. 

Actuator displacement, force and resonant frequency are important extrinsic metrics 

for actuation characterisation; however, the intrinsic metric provided by 

electromechanical coupling factor provides a more fundamental insight into the actuator 

performance for different applications (see discussion on this issue by Wang et al. 

[111], Rodriguez et al. [248] and Ikeda [249]). Thus, this chapter focuses the modelling 

and discussion on assessment of the electromechanical coupling factor rather than the 

higher level outputs of force and displacement. There have been some attempts to 

characterise the electromechanical coupling characteristics of unimorphs in dynamic 

operations. Basak et al. [242] developed analytical and finite element models to 

compute the open and short circuits natural frequencies of unimorphs from which they 

calculated the dynamic electromechanical coupling factor using the simple ‘Mason 
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formula’ (a discussion on methods to evaluate the electromechanical coupling will be 

presented in Section 8.2). A similar approach was also followed by Bidakhvidi et al. 

[250] to evaluate the dynamic electromechanical coupling factor of piezoelecric 

flapping wing propulsion structures. Chung et al. [62] demonstrated that the product of 

resonant frequency and vibration amplitude serves as a viable measure of unimorph 

performance. The same measure was applied later by Lal Kummari et al. [251] to the 

optimization of motion amplification mechanisms for flapping wing actuators. The use 

of the product of resonant frequency and vibration amplitude was based on an 

observation that this measure varies with the unimorph elastic/active layer thickness 

ratio in a similar fashion to the static EMCF [62]. Therefore, the discussed methods can 

be regarded as indicatory rather than predictive, and there remains a need to develop a 

more comprehensive treatment of actuator dynamic characterisation that can be used for 

engineering design. 

In this chapter, a comprehensive extended analytical model is developed for the 

dynamic operation of piezoelectric actuators taking into account realistic operation 

conditions quantified by the damping ratio. The model is cast in the form of a matrix 

relating the harmonic driving parameters to response parameters allowing for the 

extraction of an analytical expression for the electromechanical coupling factor in 

dynamic operation. This allows for the first time analysis of the significant effect that 

damping can have on a piezoelectric actuator dynamic electromechanical coupling 

performance. The present work therefore provides insight into optimised selection of 

materials and configurations that allow high dynamic performance of actuators for use 

within insect-scale flapping wing vehicles (or any other resonant application). The next 

section will discuss the different measures of actuator performance represented through 

the definition of the electromechanical coupling factor. This will be followed by the 

development of a dynamic electromechanical model for piezoelectric actuators and its 

experimental verification. Finally, a comprehensive analysis of the electromechanical 

coupling performance based on the theoretical model will be presented. 

8.2 Electromechanical Coupling Factor (EMCF) 

The electromechanical coupling coefficient (EMCC) is a performance metric for a 

transducer; however, it is usually more meaningful to use the square of the EMCC, 

referred to as the electromechanical coupling factor (EMCF, k
2
), which corresponds to 
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the ratio of the stored mechanical energy to the supplied electrical energy 

[111,248,249]. Whilst EMCF is not a direct measure of the transducer efficiency, it 

represents a measure of the unavailable or ineffective fraction of energy [249] within an 

actuation cycle. Therefore, it serves as a useful measure to gauge piezoelectric actuator 

performance. 

There are a number of different ways of deriving an expression for the EMCF. For 

a system close to resonance, a simple expression based on Mason's formula is given as 

[248,252,253] 
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where fr is the resonant frequency and fa is the nearest anti-resonant frequency to fr 

determined from experimental measurements [248,253]. However, an alternative less 

restrictive expression for the EMCF can be obtained directly from the piezoelectric 

actuator equations according to Ikeda [249]. When the physical and electrical 

configuration of the piezoelectric actuator is defined, its behaviour is given by a set of 

constitutive equations derived in the form [111,249] 
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where δ, F, Q and V are the tip deflection, tip force, charge and voltage, respectively. 

The EMCF is then defined as [111,249] 
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Here the dynamic EMCF of different piezoelectric actuators will be derived from an 

analytical expression of Equation 8.2 which in dynamic operation can be written as 
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where the real and imaginary parts of tie   represent a cosine and sine form of excitation, 

respectively. Once derived, the elements of the dynamic matrix, Dij(x), can be used in 

the same sense of Equation 8.3 to evaluate the dynamic EMCF of piezoelectric 
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actuators. Whilst Equation 8.4 is presented in the form required for extraction of the 

EMCF, it also can be used to provide metrics for force and displacement using the first 

row that relates displacement, force and voltage, as will be used in next chapter. 

8.3 Electromechanical Model  

The derivation presented here builds on previous analytical treatments of bending 

actuators [241,243-247,254-256]. Each of these studies contributed to the foundations 

that the present work utilises to derive a more comprehensive model of piezoelectric 

actuators dynamic behaviour. Here, the bending actuator model is based on a uniform 

composite Euler-Bernoulli beam. The electrodes are assumed to be: (1) very thin 

(negligible thickness) compared to actuator layers; (2) perfectly conductive and (3) 

cover the entire PZT surface from top and bottom, so the electric field is uniform over 

the length [246]. The governing equation of motion can be written as [246,256] 
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where Y is Young’s modulus, I is the area moment of inertia of the composite cross 

section, cv is the equivalent viscous damping coefficient that include damping sources, 

A  is the mass per unit length, f is the external applied force per unit length, x is the 

spatial coordinate along the length of the actuator, t is time and δ is the transverse 

deflection.  

It should be noted that Equation 8.5 does not consider the Kelvin-Voigt damping 

term which requires a temporal derivative of the spatial fourth derivative. Viscous 

damping is influential at lower vibration modes, while Kelvin-Voigt damping is 

influential at higher vibration modes [246,257,258]. The main concern of the current 

model is towards the application of flapping wing propulsion which operates at the first 

resonant frequency to achieve large displacements necessary for its functionality; 

therefore, it is appropriate to neglect the Kelvin-Voigt damping. Thus, the damping 

coefficient, cv, is given by 

   

  nnv Ac  2 , (8.6) 

   

where  is the damping ratio and ω is the natural frequency and n indicates the nth 

mode. 
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Table 8.1 Configuration parameters for the different actuators. 

 

Parameter Unimorph [231,246] Bimorph Triple Layer Actuator [247] 
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Table 8.1 provides the configuration parameters that will be used throughout the 

current derivation. These include: the neutral axis position, y , the rigidity, YI, the mass 

per unit length, A , the voltage loading parameter, 
p , the distance between the neutral 

axis and PZT layer centre line, 
pch , and the thickness defining the electric field, 

Eh . In 

the provided expressions within Table 8.1, d31 is the piezoelectric constant, b is the 

actuator width, h is the thickness, Y is the Young's modulus,   is the material density 

and the subscripts e and p denote the elastic and PZT layers respectively. Note that the 

unimorph expressions are the most complex due to its non-symmetric configuration. 

Also, the expressions for the bimorph case can be obtained either by substituting 

pe hh  and 
pe YY  in the unimorph expressions or by substituting 0eh and 0eY in 

the triple layer actuator expressions. 
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For forced oscillations the steady state response of the beam can be obtained using 

modal analysis making use of the orthogonality of the mode shapes  
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where l is the actuator length. The integral, In, can be obtained numerically once the 

mode shape, Xn(x), is defined for given boundary conditions. Using the orthogonality 

property, the steady-state solution of Equation 5 is given by [245,254] 
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where Tn(t) are determined from [254] 
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For a uniform cantilever beam the mode shapes are given by [256] 
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whose derivative with respect to x is given by 
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where 
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The clamped-free condition leads to the characteristic equation [256] 

   

 1)cosh()cos( ll  . (8.13) 

   

The first two roots of Equation 8.13 are l1 = 1.8751 and l2 = 4.6941 and the 

undamped natural frequency of the nth mode is given as 
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which is approximately the resonant frequency for light damping.  
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Whilst there are several expressions available within the literature to represent the 

clamped-free boundary condition, the above one is chosen for the characteristic of 

   

 lI 1 , (8.15) 

   

and thus the so-called ‘generalised mass’ [258] appearing on the right hand side of 

Equation 8.9 becomes the actual actuator mass at the first resonant frequency 

   

 
actmassAImass  11  , (8.16) 

   

The ‘generalised mass’ will appear extensively throughout the next steps of the 

derivation and thus having it simplified for the current application using Equation 8.16 

reduces the numerical effort involved in later calculations. Note also that the mode 

shape expression given by Equation 8.10 has the following useful characteristics 

   

 2)(1 lX and 111 2)(  lX , (8.17) 

   

In order to obtain an expression for D11(x) in Equation 8.4 the force per unit length 

appearing in the right hand side of Equation 8.5 is expressed to represent an equivalent 

concentrated harmonic force at the actuator tip [255,258] 

   

 )(),( lxFetxf D
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where )(xD  is the Dirac delta function. Thus, the right hand side of Equation 8.9 

becomes 
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Since tiFe  is independent of x it is taken out of the integration and using the Dirac 

delta function property 
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the right hand side of Equation 8.9 becomes 
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where 

   

 

n

n
n

I

lX
lg

)(
)(1  . (8.22) 

   

Substituting Equation 8.21 back into Equation 8.9 leads to 
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The particular (steady state) solution of the above differential equation is well known in 

the vibration literature as [256] 
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Hence, following Equation 8.8 the first element of the dynamic matrix, D11(x), is 

obtained as 
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Now, the second element of the dynamic matrix, D12(x), will be derived. It can be 

shown that the right hand side of Equation 8.5 (i.e force per unit length) due to a voltage 

excitation of a bending actuator is given by [244,246,247] 
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where p is given for the different configurations in Table 8.1.Following a similar 

procedure to that used to derive D11(x), Equation 8.26 is substituted into the right hand 

side of Equation 8.9 and making use of the Dirac delta function property 
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the right hand side of Equation 8.9 becomes 
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where 
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Substituting Equation 8.28 back in Equation 8.9 leads to 
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Again the solution of the above equation is similar to that given in Equation 8.24; thus, 

the second element of the dynamic matrix, D12(x), is obtained 
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In order to obtain the expression of the third element of the dynamic matrix, D21(x), 

the relationship between charge, Q, and electric transverse displacement, D3, is used 

[241,246,247,255] 
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An expression of the electric displacement can be obtained from the equations 

describing piezoelectricity [241,246,247] 
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where T is the stress, S is the strain and E is the electric field; subscripts 1 and 3 denote 

the x and y directions, respectively. Using the above equations it can be shown that the 

electric transverse displacement, D3, is related to the piezoelectric strain, S1, and the 

transverse electric field, E3, by 
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with 
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where k31 is the piezoelectric material transverse electromechanical coupling coefficient 

[111] (a material property). An expression for S1 of a piezoelectric actuator can be 

written as [246,247] 
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where pch is defined for the different configurations in Table 8.1. Note that Equation 

8.36 is based on the more convenient average strain and not the strain at the top of the 

piezoelectric layer as adopted in reference [241]. Substituting back with Equations 8.34 

and 8.36 into 8.32 leads to 
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Integrating Equation 8.37 with respect to x leads to 
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Performing the remaining integration and substituting the electric field as voltage 

divided by Eh  defined in Table 8.1 gives 
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It can be proved that the following relation holds for the actuators under consideration 
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therefore, the electric charge is 
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In order to obtain the relation between tip force and charge, the displacement, δ, caused 

by a tip force defined through the element D11(x) is substituted for in the above equation 

while setting the voltage to zero leading to 
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Therefore, the third element of the dynamic matrix D21(x) is obtained as 
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Note that D21(l) has exactly the same value as D12(l); this can be shown from comparing 

Equations 8.31 and 8.43 making use of Equation 8.29; therefore, the symmetry of the 

dynamic matrix is guaranteed at the tip 
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Finally, to obtain the relationship between charge and voltage, the displacement, δ, 

caused by voltage defined through the element D12(x) is substituted into Equation 8.41 

leading to 
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Therefore, the fourth element of the dynamic matrix, D22(x), is obtained as 
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The expressions presented for the dynamic matrix elements are in the most general 

form and can be used for the electromechanical behaviour evaluation of piezoelectric 

actuators of different configurations and subjected to different boundary conditions. 

However, because the main concern of the current work is towards the tip behaviour of 

cantilever actuators operating at the first resonant frequency, the expressions of the 

dynamic matrix elements reduce to 
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Using the mode shape properties given in Equations 8.16 and 8.17, the above equations 

reduce to 
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Using the above expressions and following Equation 8.3, an expression for the dynamic 

EMCF of piezoelectric actuators at the first resonant frequency (i.e. r1=1) can be 

obtained as 
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where 
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It is noteworthy that the presented expressions for the bimorph and triple layer 

actuators consider the series connection case. As for parallel connection )(11 lD will 

remain the same; however,
seriesparallel

lDlD )(2)( 1212  , and
seriesparallel

lDlD )(4)( 2222  . 

Therefore, the expression for the EMCF in parallel connection remains the same as that 

given in Equation 8.53. 
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8.4 Experimental Verification  

In this section, an experimental setup to measure the dynamic actuation of unimorphs 

will be presented. Only unimorph actuators will be measured due to the easiness of their 

preparation from commercial available diaphragms. The objectives of this experiment 

are to: (1) identify the level of damping ratio required within the dynamic model, (2) 

validate possible aspects of the dynamic model given the available measurement 

facilities, (3) evaluate the EMCF experimentally making use of Mason's formula 

(Equation 8.1) and compare with the EMCF values obtained later in Section 8.5 from 

the dynamic model.  

The test specimens used in the current study are five unimoph actuators of the same 

width and thickness, but different lengths, Figure 8.2. The elastic layer is brass and the 

active layer is PZT (Murata PIEZOTITE ceramic, P-7 [259]). The test specimens were 

manufactured from commercially available diaphragms (Murata Manufacturing Co., 

Ltd., Part number: 7BB-35-3L0 [259], Figure 8.2a). This provides a fast and cost 

effective way to prepare beams of different lengths; however, it limits the ability to vary 

the thicknesses of the elastic and PZT layers. Table 8.2 provides typical properties of 

the prepared unimorph beams. 

 
Table 8.2 Typical properties of the measured unimorph beams. 

 

Geometric properties 

length, l (mm) 16, 18, 20, 22, 24 
width, b (mm) 4.5 
elastic layer thickness, he (mm) 0.3 
active layer thickness, hp (mm) 0.23 

Elastic layer material properties 

material Brass 
Young's modulus, Ye (GPa) 110 
density, ρe (kg/m3) 8600 

Active layer material properties 

model Murata PIEZOTITE ceramic 
type PZT, P-7 
Young's modulus, Yp (GPa) 63 
density, ρp (kg/m3) 7800 
electromechanical coupling, k31 0.38 
piezoelectric constant, d31 (10-12 m/V) -207 
maximum voltage (V) 15 
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Figure 8.2 (a) Piezoelectric diaphragms used to manufacture the unimorph beams. (b) 

Unimorph cantilever beams used during the measurements. Each beam is 4.5 mm wide.  
 

Figure 8.3 shows the experimental apparatus. Beam oscillation displacement was 

measured using a Polytec PDV-100 laser vibrometer. The input sinusoidal signal to the 

beams was generated using a TTi TG200 20 MHz DDS function generator amplified 

using a TREK PZD350 Piezo Driver/Amplifier. The measurement setup was managed 

through LabVIEW. Data acquisition was conducted within the frequency range 

appropriate for each measurement/beam combination with 1 Hz resolution. 

 

 
 
Figure 8.3 The piezoelectric unimorph actuator measurement setup.  

 

Firstly, the fundamental frequency and associated mode shape were measured for 

each beam, Figure 8.4. A comparison of the measured first resonant frequency with that 

evaluated from the model (Equation 8.14) is shown in Figure 8.4a. Also, Figure 8.4b 

shows the experimental and theoretical mode shapes for the 24 mm beam. The 

theoretical mode shape is obtained from Equation 8.10, and the experimental mode 

shape is obtained by measuring the amplitude of the deflection along the beam while 
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operating around the first resonant frequency. Both results show good agreement 

between the model and the experimental measurements.  

 

 
 
Figure 8.4 (a) Fundamental bending resonant frequency variation with the beam length having 

all other variables fixed. (b) Fundamental mode shape of the 24 mm beam; δ is the amplitude of 

deflection along the beam length and δmax is the amplitude of deflection at the beam tip. 
 

Next, measurements were conducted to characterise the damping ratio at first 

resonant frequency based on an evaluation of the harmonic vibration response  
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2 rf

ff 
 , (8.56) 

   

where   fr1 is the first resonant frequency, and f1 and f2 are the half-power point 

frequencies where the response is 0.707 of the maximum [254]. Figure 8.5a shows the 

measured tip velocity in the range around the first resonant frequency for the 16 mm 

beam at different input voltage amplitudes. The response is weakly nonlinear with 

voltage, with the first resonant frequency decreasing as the voltage increases. This 

observation was also reported by Wang et al. [260]. The damping ratios for the 16 mm 

beam were higher than those of other beams. For this reason the 16 mm beam results are 

used to exemplify the variation of damping ratio with voltage in Figure 8.5b. For this 

case, the damping ratio increases with increasing voltage, and varies between 0.011 and 

0.022.  
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Figure 8.5 (a) Measured tip velocity of the 16 mm actuator plotted against driving frequency at 

several driving voltage amplitudes. (b) Variation of damping ratio with voltage amplitude for 

the 16 mm beam. Note that, an input signal greater than 12 V yields tip velocities higher than 

the measurable limits of the vibrometer. 
 

Having obtained the damping coefficient values at the different voltage levels, the 

second element of the dynamic matrix, D12(x), can now be used to relate the driving 

voltage to the output displacement. Figure 8.6a compares the measured tip deflection 

amplitude of the 24 mm unimorph due to a 7.5 voltage amplitude signal with that 

evaluated from the theoretical model using the expression of D12(l). Over the range of 

frequencies considered, a very good agreement is evident. Figure 8.6b compares the 

measured and modelled tip deflection amplitude at the fundamental bending resonant 

frequency as a function of the input voltage amplitude for the 16 mm and 24 mm 

unimorphs. Note that the resonant frequency of the beam shifts slightly with the voltage 

amplitude (Figure 8.5a); thus, the experimental values in Figure 8.6b are the measured 

beam tip deflection values at the fundamental resonant frequency corresponding to each 

voltage amplitude. 

 

 
 
Figure 8.6 (a) Tip deflection amplitude of the 24 mm actuator for the first two modes. (b) Tip 

deflection amplitude of the 16 mm and 24 mm actuators at their fundamental (first) resonant 

frequency as a function of the input voltage amplitude. 
 

Finally, the tip velocity to harmonic voltage excitation frequency response function 

(FRF) was measured for each of the five beam specimens, with the objective of 
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determining the anti-resonant frequencies required in Mason's formula (Equation 8.1). 

Figure 8.7 shows the FRF for measurements with an input voltage amplitude of 7.5V, 

representing a mid-range value for the input signal.  

 

 
 
Figure 8.7 Experimental tip velocity to harmonic voltage excitation FRF of the five beams. The 

voltage level is 7.5 V for all beams. 
 

Table 8.3 shows that the variation of the EMCF using Equation 8.1 for the different 

beam specimens is minimal and an average value of 0.88 ± 0.013 (mean ± s.d.) can be 

assigned for all beams. Note that varying the voltage level changes the resonant and 

anti-resonant frequencies slightly; however, the EMCF value from Mason's formula 

remains almost unchanged. The important outcome here is that the average value for the 

dynamic EMCF is significantly higher than that for static operation. This will be 

discussed in the next section, which will focus on evaluating the dynamic EMCF for 

unimorphs using the derived dynamic model. 

 
Table 8.3 Unimorph actuators EMCF at excitation level of 7.5 V. 

 

l 

(mm) 

fr1 

(Hz) 

fa1 

(Hz) 

k
2
 

Eqn. 8.1 

16 954 2822 0.88 

18 824 2568 0.9 

20 650 1826 0.87 

22 566 1558 0.87 

24 454 1380 0.89 

 

8.5 Electromechanical Coupling in Dynamic Operation  

The electromechanical coupling factor, k
2
, was discussed comprehensively in Section 

8.2 as an important measure for piezoelectric device performance. Here, the EMCF in 
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dynamic operation will be evaluated using the derived expression of Equation 8.53. It 

should be noted that the results presented in this section are all based on the theoretical 

model of Equation 8.53. Within this equation, the material properties and damping 

levels will be selected to be similar to those from the experiments. Note that, the 

dynamic k
2
 from Equation 8.53 is evaluated at the first resonant frequency as this 

condition provides maximum tip deflection which is consistent with the objective of the 

current application.  

The current analysis shows that the dynamic EMCF of piezoelectric actuators 

depends only on: (1) the Young's modulus of the elastic and active layers, (2) the 

thicknesses of the elastic and active layers, (3) the damping ratio, ζ1 and  4) the PZT 

layer material transverse electromechanical coupling coefficient, k31 (Note that the first 

two factors do not apply to the bimorph case). In what follows, the influence of each of 

these four factors on the dynamic EMCF will be discussed in detail. 

8.5.1 Young's modulus and thickness ratios effects 

For the current analysis, unimorphs made of the same active layer but with different 

passive layer materials are considered; the active layer material properties used are 

Yp=63 GPa and k31=0.38. Figure 8.8a shows the unimorph dynamic EMCF plotted 

against elastic/piezo thickness ratio for different elastic materials for a damping ratio of 

0.005 representing the lower end of damping obtained from experiments. The overall 

trend is a rapid increase in EMCF as the thickness ratio increases from zero, with a peak 

reached at an optimum thickness ratio; beyond this, the EMCF decreases slightly as the 

thickness ratio increases. The effect of increasing elastic material stiffness is to shift the 

thickness ratio for peak EMCF (optimum thickness ratio) to the left. This optimum 

thickness ratio is found to vary only with the Young's modulus ratio of the elastic and 

active layers, Figure 8.8b.  Decreasing damping ratio increases the peak value of EMCF 

however does not affect the thickness ratio at which it occurs. Stiffer elastic material 

leads to higher peak EMCF values; however, at very low damping ratios, the peak 

EMCF for different stiffness ratio values are relatively closer.  
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Figure 8.8 (a) Unimorph dynamic EMCF as function of (passive/active) layer thickness ratio 

for different passive layer materials for a damping ratio of 0.005. The active layer material 

properties are Yp=63 GPa and k31=0.38. (b) Dynamic operation optimum thickness ratio 

variation with the Young's modulus ratio for unimorphs. 
 

 

 
 
Figure 8.9 (a) Triple layer actuator dynamic EMCF as function of (passive/active) layer 

thickness ratio for different passive layer materials for a damping ratio of 0.005. The active 

layer material properties are Yp=63 GPa and k31=0.38. Blue is for a steel elastic layer, black is 

for brass, and red is for aluminum. (b) Dynamic operation optimum thickness ratio variation 

with the Young's modulus ratio for triple layer actuators. Note the difference in scales between 

Figure 8.8 and 8.9. 
 

Figure 8.9a shows the triple layer actuator dynamic EMCF plotted against 

elastic/piezo thickness ratio for different elastic materials for a damping ratio of 0.005. 

Here, the thickness ratio is defined as the elastic layer thickness to the total piezo layers 

thickness. The same active layer properties of the unimorph case are used for 

performance comparison. Note that, the zero thickness ratio case represents the bimorph 

performance. It can be clearly seen that bimorphs can achieve better EMCF values 

compared to unimorphs (also see Figure 8.11a), and that there is an optimum thickness 

ratio for the triple layer actuator through which it can achieve higher EMCF values 

compared to bimorphs. Again, this optimum thickness ratio is found to vary only with 

the Young's modulus ratio of the elastic and active layers, Figure 8.9b.  Similar to 

unimorphs, the effect of increasing elastic material stiffness is to shift the thickness ratio 

for peak EMCF (optimum thickness ratio) to the left. Decreasing damping ratio 
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increases the peak value of EMCF however does not affect the thickness ratio at which 

it occurs. Unlike unimorphs, stiffer elastic material leads to lower EMCF values; 

however, at very low damping ratios, the EMCF for different stiffness ratio values are 

relatively closer.  

8.5.2 Damping ratio and k31 effects 

The effect of the damping ratio is shown for the different actuators in Figures 8.10a, 

8.11a and 8.12a. It can be seen for all cases that as the damping ratio decreases, the 

EMCF values increases. A similar analysis using several materials but based on the 

static equations showed that a typical unimorph or bimorph actuator can only achieve 

EMCF values up to 0.08 for unimorphs and 0.11 for bimorphs [111], which is an order 

of magnitude less than the peak EMCF values shown here. This highlights the important 

role damping plays in determining the achievable performance of such actuators in 

dynamic operation: piezoelectric actuators achieve high dynamic EMCF values when 

subjected to light damping. These high EMCF values are similar to EMCF values 

obtained experimentally using Mason's formula.  

The effect of the PZT layer transverse electromechanical coupling coefficient on 

the dynamic EMCF is similar to the damping ratio effect, Figures 8.10b, 8.11b and 

8.12b. It also scales the EMCF curve up (higher k31) and down (lower k31) without 

influencing the EMCF shape variation against the (elastic/active) thickness ratio. This is 

demonstrated for a range of values of electromechanical coupling coefficients that is 

typical of currently available actuators. 

 

 
 
Figure 8.10 Unimorph dynamic EMCF as function of (passive/active) layer thickness ratio for a 

brass passive layer and an active layer of Yp= 63 GPa. (a) Effect of damping ratio, k31=0.38. (b) 

Effect of the PZT layer transverse electromechanical coupling coefficient, ζ1 =0.02. 
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Figure 8.11 Bimorph dynamic EMCF. (a) Effect of damping ratio, k31=0.38. The EMCF of an 

optimum thickness unimorph with steel passive layer is shown for reference. Practically, this 

unimorph configuration can achieve the best EMCF values; thus, the superiority of bimorphs 

against unimorphs is demonstrated. (b) Effect of the PZT layer transverse electromechanical 

coupling coefficient for bimorphs. 
 

 
 
Figure 8.12 Triple layer actuator dynamic EMCF as function of (passive/active) layer thickness 

ratio for a brass passive layer and an active layer of Yp= 63 GPa. (a) Effect of damping ratio, 

k31=0.38. (b) Effect of the PZT layer transverse electromechanical coupling coefficient, ζ1 

=0.02. 
 

8.5.3 Equivalent static EMCF  

Lastly, the static and dynamic EMCF at equivalent conditions are compared. There is a 

damping ratio at which the piezoelectric actuator dynamic electromechanical coupling is 

equal to the static one. Figure 8.13 compares the static EMCF (based on equations in 

Appendix C) with the dynamic EMCF at a damping ratio of 0.44 and 0.425 for a 

unimorph and a triple layer actuator respectively. Both actuators have an elastic layer 

made from brass and an active layer with Yp= 63 GPa. The static and dynamic curves 

are the same and have the same peak value showing that for practical purposes the 

optimum thickness ratio for static operation is the same as that for dynamic operation.  



8. Dynamic Performance of Piezoelectric Bending Actuators 

 

223 
 

 
 
Figure 8.13 EMCF plotted for (a) a unimoph and (b) a triple layer actuator at static and 

equivalent dynamic condition. The elastic layer is made of brass and the active layer(s) made 

with material of Yp=63 GPa and k31=0.38. 
 

8.6 Chapter Conclusions  

A comprehensive analytical model of the dynamic electromechanical behaviour of a 

piezoceramic bending actuator has been derived and successfully validated against 

experimental data. The model provides a mapping between force, displacement, voltage 

and charge. Damping is modelled using experimental data. Experimental validation is 

based on measurement of mode shape and frequency response of a series of unimorph 

beams of varying length but of the same thickness and material. The experimental 

frequency response is weakly nonlinear with excitation voltage, with a reduction in 

natural frequency and increase in damping with increasing excitation amplitude.  

An analytical expression for the EMCF extracted from the model is used as the 

objective for parametric design studies. It is found that the shape of variation of EMCF 

with thickness ratio for a given piezoelectric actuator geometry is the same for both 

static and dynamic operation, meaning that an actuator optimised for static operation 

with respect to maximising EMCF will also be optimal for dynamic operation. 

However, the achievable values of the EMCF for dynamic operation are dependent on 

damping ratio.  

For unimorphs and triple layer actuators, a peak value of EMCF occurs at an 

optimal thickness ratio that varies only with the Young's modulus ratio of the elastic and 

active layers of the actuator. Increasing elastic layer material Young’s modulus shifts 

the optimal thickness ratio to the left (thinner elastic layer). For unimorphs, increasing 

the thickness ratio beyond the optimal value (increasing elastic layer thickness) has a 

relatively minor effect on the achievable EMCF for practical actuator configurations. 

However for triple layer actuators, increasing the thickness ratio beyond the optimal 
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value is more influential on the achievable EMCF compared to unimorphs. Thus 

operation at the optimal thickness ratio is more crucial for the triple layer actuator. A 

triple layer actuator with an optimum thickness ratio can achieve higher peak EMCF 

value compared to bimorphs. A bimorph, in turn, can achieve higher peak EMCF 

compared to optimum unimorph configurations.  

For all actuators considered in this chapter, the achievable magnitude of EMCF is 

increased by decreasing the damping ratio and/or increasing k31. However, for 

unimorphs and triple layer actuators, the thickness ratio for given material properties at 

which maximum EMCF is achieved is independent of both damping ratio and k31. As 

the actuator damping is reduced towards zero, EMCF is decreasingly sensitive to 

thickness ratio for practical actuator configurations and tends towards a value of unity. 
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 9 

 Sizing of Piezoelectric Actuators for 

Insect-Scale Flapping Wing Vehicles 

 

In this chapter, a low order transparent design method for preliminary design of the 

propulsion system of insect-scale flapping wing vehicles is presented. The design 

method is an integration of the different models developed throughout this thesis. The 

propulsion system drive chain is modelled as a damped second order dynamic system 

operated at resonance. The design method allows designers to explore the interaction 

between electric, mechanical and aerodynamic domains in a single design environment. 

Design scaling laws and mass breakdown using the available data are presented. Data 

from flapping insects are used as an indicator of the feasible space whilst not 

considered the best. The process is illustrated using three design points based on all up 

weights of 50, 500 and 5000 mg. The process is also used to assess the performance of 

unimorph configuration against that of triple layer actuator configuration. Important 

insights are delivered regarding the feasible design space for such class of air vehicles.  
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9.1  Introduction  

Integrated design of resonant flapping wing vehicles presents a particular challenge to 

propulsion system drive train design due to the need to match the dynamics of the 

actuator with the wing via a suitable mechanical transmission mechanism. Given the 

level of analytical challenge and the relative immaturity of micro electro mechanical 

systems the current focus of most piezoelectric driven flapping wing design efforts is on 

achieving the basic requirement of lift greater than or equal to weight in hover and 

establishment of basic stability and control. This situation is not dissimilar to the status 

for powered flight at the beginning of the 20
th

 Century.  

The aim of this chapter is to develop a low order preliminary design method for the 

propulsion system of piezoelectric insect-scale flapping wing vehicles. The design 

process is based on the developments in analytical modelling of piezoelectric bending 

actuators, flapping wing aerodynamics, and flapping wing kinematics presented 

throughout this thesis. The main design contribution is the preliminary sizing of the 

piezoelectric actuator that forms the heart of the propulsion system. The level of 

uncertainty in technology specific weight estimates is currently high due to lack of 

historically successful vehicles upon which mass estimation heuristics can be based. 

There is also considerable uncertainty associated with manufacturing. Given the 

absence of engineering heuristic data, both data from insects to benchmark engineered 

designs are used. Whilst engineering solutions may outperform biologically evolved 

forms in the long run, the current effort focuses on achieving weight support in hover as 

a primary goal.  

A visualisation of an insect-scale flapping wing vehicle of the same weight and 

wing loading as a bumble bee based on the design process that will be presented in this 

chapter is shown in Figure 9.1. Note that for this class of vehicles at current technology 

levels the wing design in term of planform and kinematics is very similar to that of 

insects whereas the actuation and power systems are very different.  
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Figure 9.1 (a) Illustration of the general arrangement of a piezoelectric flapping wing vehicle 

concept. The vehicle all up weight, wing loading and kinematic parameters are set to that of a 

bumble bee [145]. Primary design constraint is L=W. Primary design output is actuator sizing. 

The power electronics board shown is a scaled model of the board presented in [261,262]. The 

batteries are an illustration based on scaling of existing LiPo batteries. 
 

Two requirements are asked of the design process here: (1) that it is fully physics 

based for the actuator sizing, and (2) the underlying equations are cast in dimensionless 

form to facilitate understanding of the underlying laws.  

In what follows, Section 9.2 defines the general arrangement, the expected mass 

ratios of the different vehicle components, the general configuration of the vehicle and 

the operational kinematics. Section 9.3 provides details of the major design models of 

the process including aerodynamics, system dynamics simulation, actuator sizing and 

electromechanical performance estimation. Section 9.4 explores the design space 

through a sensitivity analysis to demonstrate the influence of the main design variables 

on the outputs of the design process. Finally, conclusions are provided in Section 9.5. 

9.2 Design Problem Setup 

9.2.1 General arrangement description  

The vehicle propulsion system is based on the provision of a separate piezoelectric 

actuator for each wing. As part of the design selection process both unimorphs and 

triple layer actuators are considered in this work, Figure 9.2. These actuator 

configurations provide a good balance between performance, ease of fabrication and 

reliability for the proposed application at current technology levels.  
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Figure 9.2 Schematic drawing of piezoelectric bending actuators considered for the design 

process; (a) unimorph and (b) triple layer actuator. 
 

 
 
Figure 9.3 (a) Schematic drawing of the propulsion system. The actuator shown is a unimorph, 

the transmission is assumed to have a constant transmission ratio, and the wing contribution is 

represented as inertial and damping elements. (b) Linear, single degree of freedom, lumped 

parameter model for systems dynamics simulation. 
 

The transmission element is required for efficient matching of the low impedance 

load (wing) with high impedance source (piezoelectric actuator/muscle). In biological 

systems (insects), the transmission between muscle and wing is through a relatively 

complex system of flexures. By their nature, flexure systems are non-linear at the high 
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output angle displacements (± 90
◦
) required for aerodynamically efficient flapping flight 

as discussed in Chapter 3. For the present work, the transmission is modelled as a linear 

system with constant transmission/gear ratio. The transmission is illustrated as a geared 

system in Figure 9.3a for clarity. The work can be extended to accommodate non-linear 

transmission designs through appropriate linearisation, e.g. as undertaken in [91,229]. 

The geared transmission is assumed to be mass-less and loss-less. The flapping 

angle, ϕ, can be related to the actuator tip displacement, δ using 

   

 )(ˆ)()( tGtGt in   , (9.1) 
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where, G is the gain of the transmission, lT is the transmission output radius, and l is the 

transmission input radius equivalent to the actuator length. Note that in practice the 

actuator tip does not follow an exactly circular path; however due to the small actuator 

deflection compared to the actuator length, deviations are small enough to ignore.  

It is useful to define two non-dimensional quantities to support the current 

modelling approach. First is the wing mechanical advantage, MA, which appears within 

the system dynamics expressions for wing inertia and damping. It is defined as  
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where R is the wing length. The second non-dimensional quantity is a ratio named 

Actuator Length Ratio denoted by ALR and defined as 
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Thus, based on the above definitions the following relations can be written 
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In this work, it is chosen to constrain the design space by setting the ALR to unity. 

This decision is based on a practicality argument: increasing the length of the actuator 

helps in terms of increasing the available tip displacement for a given thickness of the 

piezoelectric layer [231]; however, as the actuator becomes long compared to the wing 

length, it starts to become the limiting factor on vehicle overall compactness. A 

dimensionless ALR of around unity appears to be a good compromise based on existing 

successful designs (see for example [87,100]: the Harvard Microrobotic Fly had an 

actuator length of 13 mm and a wing length around 12 mm).  Within insects, it is found 

that the average body length to wing length is around unity (see Table 2 of [141]). As an 

incidental outcome, the choice of a unity ALR leads to some simplification of the 

mathematics in that G becomes equal to MA.  

9.2.2 Mass breakdown  

An aircraft conceptual design process requires an estimate of the all up (total takeoff) 

weight as well as the main weight fractions contributing to this takeoff weight [263]. 

Here, it is chosen to use the following mass breakdown developed by Whitney and 

Wood [229] 

   

 
otheractsbatstotal mmmm  , (9.7) 

   

where mtotal is the total vehicle mass, mbats refers to the mass of the batteries, macts is the 

mass of the two piezoelectric actuators and mother includes the payload mass, the wing 

mass, the airframe mass or any sensor mass, etc. The mass fraction, μother 

(μother=mother/mtot) is chosen to be one of the design variables in the current design 

process and it typically takes a value in the range 35.025.0  other [10,229]. 

Following [10,229], the remaining mass is assumed to split equally between the 

batteries and the actuators  
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and thus the mass fraction of a single actuator is 
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The above mass breakdown is based on current practice, however should be considered 

as a place holder till more data from successful designs is present. 

9.2.3 Design scaling laws  

It is useful to obtain scaling laws that allow insight into how the design space varies 

with physical scale. Figure 9.4 shows a log-log plot for the wing length, R, against the 

weight for different insect species as well as for available resonant flapping wing 

concepts. The insect data are based on [145] and were given in Table 3.1, whereas those 

of insect-like flapping wing concepts are based on the collected data in Table 2.3. It is 

important to note that all resonant flapping wing concepts were tether powered and thus 

the weight shown in Figure 9.4 is based on the empty mass  

   

 
otheractsbatstotalempty mmmmm  . (9.10) 

   

 

 
 
Figure 9.4 Scaling of size with weight for insects and resonant flapping wing concepts. Weight 

of flapping wing concepts is based on empty weight (all up weight minus batteries weight). 
 

Based on the data shown in Figure 9.4, the following scaling laws are obtained 

   

 3617.01794.0 insins WR  , 8n , 85.02 R  (9.11) 

   

 3519.2902.17 insins RW  , 8n , 85.02 R  (9.12) 

   

 3599.0

,1977.0 NAVemptyNAV WR  , 7n , 845.02 R  (9.13) 

   

Note that, the exponent of the wing length in Equation 9.12 is slightly less than 3, where 

3 is the volume exponent if the scaling constant is the effective density. It is important 

again to mention that the derived scaling laws here should be considered as place 

holders within the design process till more data for flapping wing nano air vehicles 

(NAVs) are available. 
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9.2.4 Wing configuration  

For the purpose of design, the wing is considered as a thin, rigid plate mounted on a 

fulcrum via a single rotational degree of freedom along the flapping axis. The wing has 

a second rotary degree of freedom in pitch along the wing spanwise axis. In the present 

model, it is assumed that this latter degree of freedom is passive (unactuated), however 

is free to move in response to wing aerodynamic and inertial forces generated through 

the flapping motion. The dynamics of the pitch degree of freedom are not included 

within the overall system model. However, the underlying physics is captured through 

constraint of pitch motion kinematics to that possible with a passive hinge. 

The wing has an effective mass mwing located at the wing structure radius of 

gyration rmw giving a moment of inertia Iwing about the flapping axis of 

   

 2

mwwingwing rmI  . (9.14) 

   

The wing effective mass fraction of a single wing is constrained to be within the range 

03.001.0  wing based on observed values from insects [145]. The wing effective 

mass contains the effects of wing structural inertia, mw,s, and wing aerodynamic inertia, 

mw,a, [86] such that:  22
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Note that the wing aerodynamic inertia is usually neglected within the literature e.g. 

[56,91,229,264] since it is typically much smaller compared to the structural wing 

inertia. 

Regarding the wing radius of gyration, if the wing structural mass is assumed to be 

distributed uniformly along the spanwise axis then RRrmw 5774.03/  . As a 

reference point, the Harvard Microrobotic Fly (HMF) wing has a R equal to 11.95 mm 

and mwing equal 0.91 mg [100]. The estimated value of Iwing calculated from Equation 

9.14 is 43.32 mg.mm
2
, which compares acceptably well with the reported wing inertia 

of 45.3 mg.mm
2 

[91]. Additionally Roll et al. [265] experimentally measured the radius 

of gyration of 16 wing candidates made of mylar film spanned over unidirectional 

carbon fibre frame. They measured the wing inertia based on the undamped compound 

pendulum formula as proposed by Ellington [141]. The obtained non-dimensional 
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radius of gyration values ranged between 0.47 to 0.61with an average value of 0.56 

which again compares well with the assumed value of 0.577. 

The wing planform shape is defined using Ellington's beta function representation 

[141]. Three variables are required for the chord distribution definition: the wing length, 

R, the wing aspect ratio, AR (which defines the mean chord, cRAR / ) and the non-

dimensional radial location of the wing centre of area, 1̂r . The chord distribution is thus 

given by 
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where the parameters are chosen as 
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where 1̂r , 2̂r and 
3̂r are the non-dimensional radii of first, second and third moments of 

wing area respectively. The value of 1̂r is selected as a design variable within the current 

design process whose value ranges between 0.4 and 0.6. As discussed in Chapter 5, 

from an aerodynamic point of view, a wing with 1̂r of 0.4 allows higher lift coefficient 

values whereas a wing with 1̂r of 0.6 produces a higher lift force due to the more area 

towards the tip where the velocity is higher.  

Higher values of the wing aspect ratio are known to improve the aerodynamic 

induced effects. However as the aspect ratio increases there can be insufficient chord 

length to allow smooth flow reattachment on the wing upper surface necessary to 

prevent shedding of the LEV, and thus the wing losses its ability to generate sufficient 

flight lift coefficients. Also structurally, higher aspect ratio leads to higher moment of 

inertia which directly influences the system resonance frequency. These are probably 

the main reasons why insect wing aspect ratios are most clustered between 3 and 4 

[141,214].  Thus, a typical constant value of 3.5 will be used for the aspect ratio in the 

current model (Note that this value was recommended by Ellington for MAV candidates 

[214] and was the wing aspect ratio value of the HMF [100]). 
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Finally, an important aerodynamic wing characteristic that will be required within 

the system dynamics simulation is the non-dimensional spanwise location of the wing 

centre of pressure, cpr̂ . The centre of pressure location determines the lever arm for 

aerodynamic moment calculation around the wing root, and is calculated here based on:

2

2

3

3
ˆ/ˆ rr .  

9.2.5 Operational kinematics  

 

 
 

Figure 9.5 Wing kinematics used within the design process. Owing to the symmetry of half-

strokes, only the down-stroke is shown. Value of αg,mid set by physical end stops within the wing 

passive pitch mechanism. 

 

The current process assumes symmetric normal hovering flight with the wings moving 

along the horizontal stroke plane with symmetrical half strokes and no deviation from 

the original stroke plane. It is assumed that the flapping angle time variation is 

sinusoidal and the pitching angle variation (defining the geometric angle of attack 

variation) is trapezoidal-like, Figure 9.5. This model is similar to that found in insects 

[145,171,172,266] and similar waveforms have been successfully implemented on 

insect-scale flapping wing vehicles using passive control of wing pitch [100]. These 

kinematics have also been shown to be approaching the optimum variations for 

aerodynamic effectiveness as shown in Chapter 7. 

9.3 The Design Process 

9.3.1 Aerodynamic model 

The current study only focuses on the aerodynamics of hovering flight for several 

reasons: (1) hovering flight is necessary for takeoff and landing of flapping wing 
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vehicles and is typically the main driver for propulsion system sizing. (2) Relatively 

simple expressions for the lift and power requirements can be derived owing to the 

absence of the forward speed component. (3) Several forward flight performance 

characteristics such as the maximum speed and range can be estimated once the 

hovering requirements are identified [214,229]. The aerodynamic model adopted here is 

based on a quasi-steady treatment which provides an appropriate balance between 

accuracy and simplicity for preliminary design. The instantaneous lift and drag forces 

on a single flapping wing are given by 
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where the lift and drag coefficients, CL and CD, are defined in terms of the geometric 

angle of attack, αg, based on the well-established non-linear expressions 
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where CT is the translational lift coefficient which depends primarily on the wing shape 

and Reynolds number. The value of CT is evaluated based on the method proposed in 

Chapter 4 as 
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The two dimensional aerofoil lift curve slope, Clα,2d, takes the value 0.09 deg
-1

 for flat 

plate wings at typical insect Reynolds numbers [195]. The parameter E is the quotient of 

the wing semi perimeter to its length. The parameter k is the induced power factor 

included to correct for the difference in efficiency between assumed ideal uniform 

downwash distribution and real downwash distribution, and is evaluated based on the 

method proposed in Chapter 3. Thus unlike previous efforts [100,229], the current 

model accounts for the induced effects of the insect-like wing flows.  

It is important to mention that the above aerodynamic relations are most accurate 

within the Reynolds number range 15000Re1000  [142]. Aerodynamics at higher 
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Reynolds numbers can be dominated by turbulent mixing which may cause the LEV to 

be unstable with periodic shedding limiting the maximum achievable lift coefficients 

[154,215]. On the other hand, if the Reynolds number is significantly lower than this 

range, viscous effects may play a role that cannot be neglected [148] (see also 

discussion of Appendix A).  

For the given kinematics and using the method developed in Chapter 7, an 

analytical expression can be obtained for the average lift produced by the two wings as 
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Using the above equation, the required flapping frequency, f, can be calculated to satisfy 

a weight (W=mtotg) requirement as  
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Use of Equation 9.23 to predict the flapping frequency of the Harvard Microrobotic Fly 

described in [98] (mass = 80 mg, max =55
◦
) gives a flapping frequency of 119.7 Hz, 

which is very close to the actual frequency of 120 Hz.  

Given the relationship between weight and wing size for insects identified in 

Equation 9.12, the relationship in 9.23 can be used to provide an estimate of the likely 

flapping frequency as a function of insect size (R) only. This frequency can then be used 

as a comparator for the flapping frequency calculated as part of the design process for a 

vehicle at the same scale. This is not to say that the insect derived value of frequency is 

the correct one, rather it informs the designer how close a candidate solution is to 

existing viable solutions. 

To enumerate the reference frequency, the following parameter values are used: 2̂r

=0.56, AR=3.5, CL=1.1 and max =90
◦
. Values for 2̂r , AR and CL are insect average values 

from [145]. The 90
◦ 
value for max is only attained by few insects, however it represents 

an aerodynamic optimum, useful for comparison purposes. Thus, the obtained relation 

for the reference frequency, fref is 

   

 82405.07448.1  Rfref
, (9.24) 

   

where R is in meters.  
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9.3.2 System dynamics simulation 

The actuator output is represented as a force, Fact, acting at the free end (tip) of the 

actuator that gives the equivalent torque to that produced by the inverse piezoelectric 

effect [91,235]. Thus, 

   

 )2sin()sin( ftFtFF bresbact   , (9.25) 

   

where Fb is the actuator blocking force. It is assumed here that the actuator viscous 

damping is minor compared to the aerodynamic damping generated from the wing. 

Thus the system governing equation can be written as 

   

 )2sin( ftFkcm bacteqeq    . (9.26) 

   

The actuator stiffness, kact, can be calculated from the beam relation [267] 
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where (YI)act is the actuator rigidity which for a unimorph configuration is given by 
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where b is the actuator width, Y is the Young's modulus, h is the thickness and the 

subscripts e and p denote the elastic and PZT layers respectively and for unimorphs the 

neutral axis position, y , is given by 

   

 















































pe

p

e

ppee

p

e

hh
Y

Y

hhhh
Y

Y

y

2

2 22

. (9.29) 

   

Furthermore, the mass of the unimorph actuator is given by 

   

 )( ppeeact hhlbm   , (9.30) 

   

where ρ is the material density. For a triple layer actuator configuration the rigidity is 

given by 
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and the actuator mass is given by 

   

 )2( ppeeact hhlbm   . (9.32) 

   

However, the effective actuator mass, mact,ef, at the actuator tip within the lumped 

parameter system, as given by Lord Rayleigh, is [267] 
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33
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Thus, the equivalent system mass, meq, that also takes into account the wing effective 

inertia [229] can be written as 

   

  2

3
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, MAmmm wingefacteq  . (9.34) 

   

Finally, an expression for the equivalent system damping, ceq, is derived. Taking 

the moment around the fulcrum point [229] it can be shown that the damping force on 

the actuator is given by 

   

 MArDF cpdamp
ˆ , (9.35) 

   

where, the drag force, D, is given by Equation 9.18. By substituting Equation 9.6 into 

9.18, the drag force on a single wing can be expressed as a function of the actuator 

displacement, δ, as 
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Therefore the actuator damping force can be expressed as 
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where KD is the damping constant. Clearly, Equation 9.37 is nonlinear; however, a 

linearised expression for the equivalent damping can be obtained following the 

equivalent viscous-damping method [256] where an approximation to the steady state 
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oscillation can be made. This is achieved by equating the aerodynamic energy 

dissipated per cycle to that of an equivalent linear viscous damping leading to 
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where δmax can be obtained using  
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The above expressions thus allow a direct evaluation of the required blocking force 

magnitude, Fb, to achieve δmax while operating at system resonance: 
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9.3.3 Actuator sizing and electromechanical coupling characteristics 

An important aspect of the design process is the selection of the actuator materials and 

dimensions. In Chapter 8, it has been shown that a peak value of the electromechanical 

coupling factor (EMCF) occurs at an optimal thickness ratio, and this optimal thickness 

ratio varies only with the Young's modulus ratio of the elastic and active layers for the 

actuator. Increasing the elastic layer material Young's modulus allows higher peak 

EMCF values and thus higher energy transmission coefficient (ratio of output 

mechanical energy to input electrical energy) for a unimorph actuator. Polynomial 

fitting has been applied to the optimum thickness ratio curve in Figure 8.8b, and for a 

unimorph actuator the following quartic polynomial is obtained 
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For a triple layer actuator, the curve fitting was applied to Figure 8.9b and the following 

polynomial was obtained 
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Both relations have an R
2
 value of 1 over the (Ye/Yp) range between 1 and 4, and thus are 

excellent fits for the obtained theoretical results of Chapter 8. 

Recall that the actuator length with respect to wing size is fixed a priori. In order to 

obtain the values of the actuator width and thicknesses, two other equations in addition 

to Equation 9.41 or 9.42 have to be satisfied. The first is the actuator mass equation, 

either Equation 9.30 for unimorphs or Equation 9.32 for triple layer actuators. The 

second is for the system resonance frequency: 
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k
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Satisfaction of equations for the optimum thickness ratio, actuator mass and system 

resonance frequency thus determines the values of the actuator width, the PZT active 

layer thickness and the elastic layer thickness simultaneously. These equations are non-

linear algebric equations in three variables, and were solved using a custom non-linear 

solver developed in Matlab
®

. The solver error was consistently of the order ~ 10
-12

 

confirming that the problem was well posed and solutions were accurate.  

For piezoelectric bending actuators, the admittance matrix relating the driving 

parameters (force and voltage) to the response parameters (deflection and charge) was 

derived in Chapter 8. The first row of this matrix relates blocking force magnitude to the 

voltage magnitude. After some simplification the following result is obtained  
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where d31 is the piezoelectric constant and hpc is the distance between the neutral axis 

and PZT layer centre line which for unimorphs is given as 
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whereas for triple layer actuators is given as 
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Now that the required actuator drive voltage is known, preliminary design of the 

vehicle power electronics system can be undertaken. Related to this, the designer also 
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needs to assess the actuator field strength at the calculated design point. Increasing field 

strength enables greater output from the actuator, but ultimately there is a technology 

dependent limit due to dielectric breakdown and/or piezoelectric depolarisation. The 

limit to the maximum electric field strength is dependent on the PZT material, the 

duration of application and operating temperature. Manufacturers usually provide 

typical operating limits of 1000 V/mm [268]; however, there are some piezoelectric 

actuators that can sustain up to 2500 V/mm [77]. For unimorphs, the field strength is 

given by 
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whereas for a triple layer actuator is calculated from 
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Finally, the system Q factor can be estimated from 
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where 
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9.3.4 The calculation process  

Here, both design parameters and design variables within the design process are 

referred to. Design parameters are those values that are constant within the design 

process as material physical constants or fundamental constants as the gravitational 

acceleration. A summary of the parameters used within the design process and their 

nominal values is provided in Table 9.1. Design variables are model states that change 

with inputs or varying parameters. For the current problem in hand, six design variables 

are used. Their lower and upper bounds as well as their nominal values are given in 

Table 9.2. 
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Table 9.1 Design parameters included within the design process and their available nominal 

values. 

Parameter Sym. Type Value Comment 

Actuator Length 

Ratio 

ALR geometric 1 Driven by vehicle form factor 

requirement  

Wing aspect ratio AR geometric 3.5 For LEV attachment, and is an 

average value for biological 

and robotic insects 

Mid half-stoke 

geometric angle of 

attack 

αg,mid kinematic 45 

(deg) 

For maximum lift 

effectiveness 

Piezo-layer 

Young's modulus 

Yp material 63 

(GPa) 

Based on PZT typical 

characteristics [111,231] 

Piezo-layer density ρp material 7800 

(kg.m-3) 

Based on PZT typical 

characteristics [111,231] 

Piezoelectric 

constant 

d31 material -320 

(10-12 m/V) 

Based on PZT typical 

characteristics [77,111] 

elastic-layer 

Young's modulus 

Ye material 195 

(GPa) 

Based on steel characteristics  

elastic-layer 

density 

ρe material 7800 

(kg.m-3) 

Based on steel characteristics  

 

Table 9.2 Design variables included within the design process with their lower, upper and 

nominal values. 

Variable Sym. Type Lower bound Nominal value Upper bound 

Takeoff mass mtotal inertia 50 

(mg) 

500 

(mg) 

5000 

(mg) 

Other 

components 

mass fraction 

μother inertia 0.25 0.3 0.35 

Wing effective 

mass fraction 

μwing inertia 0.01 0.02 0.03 

Wing centre of 

area 
1̂r  geometric 0.4 0.5 0.6 

Flapping angle 

amplitude 

ϕmax kinematic 20 

(deg) 

45 

(deg) 

70 

(deg) 

Transmission 

gain 

G Transmission 5 10 15 

 

A summary of the design process in a form similar to that of a preliminary design 

diagram [263] is shown in Figure 9.6. 
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Figure 9.6 Insect-scale flapping wing vehicle design process. The processes shown in orange 

are not considered in the current framework. The main output of the process is sizing of the 

piezoelectric actuator. 

 

The design process starts with input of a total takeoff mass requirement. Based on 

the mass breakdown explained in Section 9.2.2, the actuator mass budget and the 

vehicle empty mass are determined. The empty weight is then used within the 

developed statistical relation (Equation 9.13) to determine the wing length, R. This is 

then fed together with total vehicle mass, wing kinematics and wing geometry variables 

and parameters into the aerodynamic model. The main two outputs of the aerodynamic 

model are the value of the system resonance frequency that would allow weight support 

and the damping constant, KD. Given the actuator length ratio, ALR and the transmission 
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gain, G, the wing mechanical advantage, MA, is determined. The value of the maximum 

tip actuator displacement, δmax, is then evaluated and consequently the required blocking 

force, Fb. The actuator sizing process is then undertaken to evaluate the actuator 

dimensions. Finally, the required voltage amplitude is evaluated and subsequently the 

electric field strength, E3. 

It is important to recognise that the current design process is driven by the weight 

support requirement without consideration of the efficiency of the system components. 

Whilst this would be overly simplistic for design of existing classes of fixed and rotary 

wing flight vehicles, this is believed to be appropriate for current technology flapping 

wing vehicles for two reasons: (1) the primary goal at the current time is to build 

methods and procedures that will allow self supported hovering flapping flight from 

piezoelectric actuated flapping robotic insects. (2) The efficiency of flappers at this 

scale is low anyhow. For example, in Chapter 8, the EMCF values were shown to 

decrease significantly as the damping ratio increases. Given the expected operational 

damping ratios, the EMCF is expected to be low and thus piezoelectric actuation 

efficiency will be even lower [111,231] with an expected electrical to mechanical 

efficiency of the actuator including power electronics to be around 10% [229]. 

Therefore, given the problem in hand, detailed consideration of efficiency at this design 

stage becomes less critical. 

9.4 Results 

In this section, a sensitivity analysis is used to develop an understanding of the 

relationships between design variables and main outputs of the design process, Figure 

9.7. Within this figure, the design variables are presented on the x-axis and the design 

outputs are on the y-axis. Design variables and outputs are given in dimensionless form 

(apart from the field strength for which there is no convenient value to normalise 

against). Recognising the importance of choice of all up weight (and hence, according 

to inbuilt scaling relationships, physical scale and flapping frequency) the sensitivity 

analysis is run for three different mass values (50, 500 and 5000 mg). The results in 

each column of the sensitivity analysis are obtained by variation of the design variable 

for that column alone whilst all other variables are fixed to their nominal values given in 

Table 9.2.  
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There are a number of points that need to be checked before interpretation of the 

results in Figure 9.7. First the Reynolds number, Re, should be within the range of 

validity of the aerodynamic model. In the present case, the Re is in the range 

15000Re1000  which is acceptable based on the discussion in Section 9.3.1. 

The second check point is the actuator aspect ratio (beam length to thickness) 

which is favourable to be greater than 30 [269] in the Euler-Bernoulli formulation for 

the actuator electromechanical characterisation model. In the present analysis (judged 

from Figure 9.7iv), the actuator aspect ratio satisfies this requirement for the different 

variations of the design variables. 

The third check point of this demonstration is the values of the Q factor which at 

the nominal design variables values has a value of the order of 10 or lower. This means 

a system damping ratio, ζeq, of 0.05 or higher. These values are an order of magnitude 

higher than a typical actuator viscous damping which is around 0.005 (see Chapter 8 

experimental results); thus, the assumption of neglecting the actuator viscous damping 

within the lumped parameter representation is quite justified. Ellington [214] provided 

Quality factor values for some insects calculated based on the ratio of the peak kinetic 

energy of the oscillator to the energy dissipated per cycle. The obtained values for Q 

were 6.5 for the fruit fly, 10 for the hawkmoth and 19 for the bumble bee. These values 

are in quite good agreement with the demonstrated values here.  

The fourth check point is the computed electric field strength. At nominal design 

variables values, the maximum electric field is of the order 1000 V/mm or less which is 

acceptable based on the discussion in Section 9.3.3.  
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Figure 9.7 Sensitivity analysis of (i) Reynolds number, (ii) flapping frequency, (iii) Q factor, 

(iv) PZT substrate thickness, (v) actuator width and (vi) electric field against (a) components 

other than batteries and actuators mass fraction, (b) wing mass fraction, (c) wing area centroid, 

(d) flapping angle amplitude, (e) transmission ratio gain. The actuator configuration in this 

demonstration is a unimorph configuration. Note that the value of R changes as μother changes 

and is constant elsewhere. Because the ALR is unity, actuator dimensions are normalised with 

respect to R. Mid values of the design variables are the nominal values of variables in Table 9.2 
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Now turning to investigate the outcomes of the sensitivity analysis; first, flapping 

frequency, f, is considered which represents a main output of the aerodynamic model. 

Note that μwing and G do not contribute to the aerodynamic model and thus do not affect 

the frequency values. Generally, the f/fref ratios are larger than unity; i.e., the vehicle 

flapping frequencies are higher than the biological reference frequencies. It is seen that 

for the range of ϕmax considered (20
◦
-70

◦
) there is a large impact on flapping frequency: 

At low amplitudes the wing has to flap faster to achieve the same lift, everything else 

being equal. As ϕmax approaches 90
◦
, the flapping frequency ratio approaches 1, as 

expected from the definitions used. However, if the effect of flapping amplitude on the 

piezoelectric field strength is considered, subfigure (6,4), it can be seen that reduced 

flapping frequency is achieved at the expense of increased field strength. Thus, it may 

be necessary to flap at a higher frequency in order to work within the technological 

limits of available piezoelectric material. 

With regards to the assumed weight fractions of the vehicle, the effect of the 

effective wing mass ratio, μwing, is much greater than the mass fraction μother for the 

variable ranges considered, despite the wing mass fraction being very small. The reason 

for this is the comparatively large inertial load the wing presents to the actuator via the 

transmission system. This result captures one of the unique design challenges for 

flapping wing vehicles in that the wing inertia has a significant effect on the propulsion 

system design, which is not the case for rotary or fixed wing design.  

Variable 1̂r  has a similar effect to ϕmax, and both taken together define the 

‘aerodynamic effectiveness’ of the wing. Note that increasing the aerodynamic 

effectiveness leads to a decreased Q-factor (subfigures (3,3-4)) consistent with more 

power per cycle being absorbed by the aerodynamic load. 

An important outcome of Figure 9.7 is what we can learn from scaling the 

configuration to different weights. It can be seen that system performance monitors 

become less favourable as the all up vehicle mass increases, e.g.  E3 increases, and the 

Q-factor decreases. This supports established engineering practice in that piezoelectric 

actuation becomes less practical as the length scale increases. In terms of the 

configuration dimensions, the actuator length ratio stays the same as the all up mass 

increases. On the other hand, as the all up mass increases the actuator cross section 

aspect ratio (b/h) decreases; i.e. the actuator cross section tends to be more of a square 

shape rather than a rectangle shape.  
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An assessment of the influence of the actuator configuration selection on the 

actuator sizing process is shown in Figure 9.8. The results shown are for an all up 

weight of 500 mg, and to allow a meaningful comparison, the same material properties 

are used for both actuator configurations. A variable PTT is introduced equal to the total 

thickness of the PZT layers. Hence, for a unimorph PTT is equal to hp whereas for a 

triple layer actuator it is equal to 2hp; however, it should be noted that the hp value of a 

unimorph is not necessarily equal to hp value of a triple layer actuator. Also remember 

that from comparison of Equations 9.41 and 9.42, it is evident that for a given hp value 

the he value of a triple layer actuator is smaller compared to that of a unimorph.  

The obtained results shows that a triple layer actuator designed for the same inputs 

as a unimoph will have a slightly smaller width and larger thickness. More importantly, 

it requires a reduced electric field strength, which is favourable. Note that the lower 

electric field strength is not just because of the larger total PZT thickness but also 

because of the lower voltage required for a triple layer actuator.  

 

 
 

Figure 9.8 Sensitivity analysis comparisons for unimorphs and triple layer actuators. All 

demonstrations are for an all up mass of 500 mg. PTT denotes PZT Total Thickness and for a 

unimorph is equivalent to hp whereas for a triple layer actuator is equivalent to 2hp. Active and 

elastic layers material properties are the same for both cases. 
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9.5 Chapter Conclusions 

This chapter presented a theoretical framework for the design of piezoelectric insect-

scale flapping wing vehicles that exploit resonance as a means for motion amplification. 

A multi-physics modelling approach spanning electrical, mechanical and aerodynamic 

domains is presented that allows designers to explore interactions between domains in a 

single transparent design environment. The work specifically considered unimorph and 

triple layer actuator as candidate piezoelectric actuator configurations within the 

process. However, the developed models are cast in a generic fashion allowing easy 

adaptation to other configurations, as required. The developed methodology assumes a 

generic conserving mechanical transmission mechanism between the actuator and the 

wing with a constant transmission ratio, allowing simple theoretical representations for 

both kinematics and kinetics of the system. Non-dimensional variables are used 

throughout to facilitate intuitive investigation of the available design space over a wide 

range of design mass.  

The current work considered quasi-steady treatments for the wing aerodynamics 

and assumed simple but realistic wing kinematics, allowing the solution procedure to 

begin with an explicit evaluation of the flapping frequency for weight support based on 

supplied wing kinematics and geometric data. From the other side the actuator design is 

constrained by specifying the actuator length based on compactness considerations as 

well as specifying the actuator material properties based on optimum electromechanical 

coupling performance. At the heart of the process lies the system dynamics simulation 

module which interfaces the aerodynamics to the electromechanics and facilitates 

design iteration of the actuator breadth, thicknesses and operating voltage to achieve the 

required flapping frequency and blocking force within the upper weight limit set for the 

actuator.  

An important feature of the current air vehicle design problem is the aero-

mechanical coupling that leads to unique aspects of the design problem. The design 

process needs to find the operational frequency at the start which is similar to finding 

the head speed in rotary vehicles design. However because the system is resonant, 

actuator physical sizing comes into play. Also, a fixed or a rotary wing vehicle design 

does not include acceleration considerations; however, for a flapping wing inertial loads 

become part of the design of the propulsion system. 
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The design process outputs a number of design performance metrics that enables 

the designer to evaluate the solution against higher level trades within the overall 

vehicle design loop. Clear scope limitations are also provided including the feasible 

Reynolds number range for applying the aerodynamic module as well as field strength 

feasible range to avoid piezoceramic breakdown. The developed design process was 

tested through conducting a sensitivity analysis for the influence of the design variables 

on the design process outcomes allowing undertaking a design trade within a fast and 

robust computational environment. Several important outcomes were obtained from the 

conducted sensitivity study including: (1) demonstration of the primary effect of the 

flapping angle amplitude selection on the air vehicle operation, and that the current 

technological limits of piezoelectric materials constrain operation to lower flapping 

angle-higher frequency compared to biological reference. (2) Demonstration of 

deterioration of piezoelectric actuated concepts as the mass scale increases and thus 

defines the feasible design space for piezoelectic actuated insect-scale flapping wing 

vehicles. (3) Demonstration of the superiority of triple layer actuators over unimorph 

actuators in terms of the electromechanical performance.  

An important issue with the proposed design process is that it is based on the 

satisfaction of an effectiveness criterion (i.e. lift ≥ weight) without consideration of 

efficiency. However, this is an acceptable limitation at the current state of technology 

and given that the primary goal at present is to achieve self supported hovering flapping 

flight at insect scale from piezoelectric driven propulsion systems. Thus future work 

should include more detailed modules for evaluating the total system efficiency 

including aerodynamic losses, losses within the transmission system, electromechanical 

actuator deficiency in parallel with limitations to charge recovery circuits, efficiency of 

power electronics circuits, and available power sources efficiency levels. Another issue 

to recognise within the proposed design process is the development of design scaling 

laws based on the current available heuristic data as well as relying on very limited past 

experience for the mass breakdown of the vehicle. However, the level of uncertainty in 

technology specific weight estimates and uncertainty associated with manufacturing are 

currently high due to the lack of historical successful vehicles upon which estimation 

heuristics can be based. Therefore it is necessary to note that the current design process 

should always be updated with reliable vehicle data when released.  
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 10 

 Conclusions and Future Work  

 

This chapter is divided into two main sections. The first summarises the main 

conclusions from this dissertation whereas the second provides directions for future 

research. Both sections are presented as a series of statements each followed by a brief 

supporting summary. 
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10.1  Conclusions 

A comprehensive literature review of the state of the art for hover-capable micro 

and nano air vehicles is conducted.  

A thorough literature review of the designs presented in the pursuit of providing an 

engineering solution to develop miniature air vehicles has been provided.  A taxonomy 

based on wing and actuator kinematics has been proposed to classify the different 

vehicles under development. The air vehicles were classified into three main groups 

including rotary wing, flapping wings with rotary actuation and flapping wings with 

reciprocating actuation. More focus was directed towards the last class of designs, and a 

detailed assessment of the main subsystems constituting these vehicles has been 

provided. Comprehensive discussions have been presented on the strengths and 

weaknesses of the presented designs; additionally potential design challenges were 

identified to improve efficiency, effectiveness and performance. 

Flapping flight is aerodynamically much less efficient than previously thought. 

An analytical treatment to quantify the losses captured in the induced power factor, k, 

has been provided for flapping wings in normal hover including the effects of non 

uniform downwash, wake periodicity and finite flapping amplitude. The method is 

based on a novel combination of actuator disc and lifting line blade theories that also 

takes into account the effect of advance ratio. The model has been validated against 

available experimental results. An evaluation of the contributions to induced power 

factor showed that for some insects the induced power can be twice the ideal value in 

hover. The figure of merit has been evaluated for eight hovering insects giving values 

between 15% and 28%. Compared to rotary and fixed wing flight modes, flapping flight 

not only has higher or at least equal levels with respect to common aerodynamic 

deficiency sources, but also has further deficiency sources characteristic to its operation. 

Specific outcomes for the induced power factor evaluation showed that the induced 

power factor due to the non-uniform downwash effect, kind, can attain values up to 1.25 

in hovering for realistic insect wing planforms defined based on a beta function. The 
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induced power factor due to the wake periodicity effect, kper, can reach to a value of 

1.15 for typical insect-like normal hovering. The induced power factor due to effective 

flapping disk area, kflap, attained a maximum value of 1.4 for real hovering insects. The 

evaluation of the figure of merit of eight hovering insects showed the prevalence of the 

profile component in determining the aerodynamic efficiency owing to the typical high 

angles of attack operation associated with hovering flapping flight. 

The leading-edge vortex (LEV) on revolving/flapping wings eliminates wing stall in 

a similar manner to a ‘slat effect’ in classical aerodynamics. 

It is well established that the presence of a stable leading-edge vortex (LEV) on steadily 

revolving wings enables significantly higher lift coefficients at high angles of attack, yet 

there is no clear mechanism to explain how the additional lift is generated. Three 

analytical treatments for modelling revolving/flapping wings at low Reynolds numbers 

consistent with insect-scale hovering flight have been discussed with the aim of 

providing a theoretical argument for attributing the observed lift enhancement and in 

particular the role of the LEV in lift production. The three analytical models 

investigated were based on (1) potential flow theory, (2) the so-called normal force 

model, and (3) the Polhamus leading edge suction analogy. These models were derived 

in a form that exposes the contribution of the LEV and enables model closure based on 

analytical estimation of the lift curve slope at small angles of attack. Models have been 

evaluated against available experimental data and for the potential flow model, it was 

shown that the best fit with experimental data is with the LEV strength set to zero. The 

normal force model was shown to be equivalent to the potential flow model resolved in 

the lift direction with the LEV circulation set to zero. The potential lift term of the 

Polhamus model was shown to have a structure similar to the normal force model, but 

with an additional multiplier that attenuates the potential lift. It has been found that the 

normal force model is the most accurate model over the whole first quadrant of angle of 

attack and it is also the simplest of the models and does not explicitly include any 

aerodynamic force contribution from the LEV.  Hence it was concluded that the LEV 

does not have a direct effect on lift by increasing circulation or generating increased 

local suction; rather, it has an indirect effect on high lift by preventing flow separation 

in the same manner as a slat in classical aerodynamics. 
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Quasi-Steady aerodynamic models of normal hovering flight are no longer semi-

empirical.  

Generic, transparent and compact models for evaluation of the aerodynamic 

performance of insect-like flapping wings in hovering flight have been presented. The 

models are generic in that it can be applied to wings of arbitrary morphology and 

kinematics without use of experimental data, are transparent in that the aerodynamic 

components of the model are linked directly to morphology and kinematics via physical 

relationships, and are compact in the sense that they can be efficiently evaluated for use 

within a design optimisation environment. An important aspect of the developed models 

in Chapters 4 and 5 is the method by which translational force coefficients for the 

aerodynamic model are obtained from first principles, however important insights were 

also provided for the morphological and kinematic treatments that improve the clarity 

and efficiency of the overall model. The full models have been evaluated against 

experimental data for revolving wings and good agreement is obtained for lift and drag 

up to 90 degrees incidence. Comparison of the models output with data from CFD 

studies on a range of different insect species also showed good agreement with 

predicted weight support ratio and specific power.  The validated model was used to 

evaluate the relative impact of different contributors to the induced power factor, and it 

was shown that assumption of an ideal induced power factor (k=1) for a normal 

hovering hoverfly can lead to a 23% overestimation of the generated force due to 

flapping. 

The novel concept of the equivalent angle of attack is a powerful modelling 

treatment that enables the linear lifting line theory to capture the steady nonlinear 

aerodynamics of wings at high angles of attack.  

A novel lifting line formulation has been proposed for the aerodynamic evaluation of 

insect-like wings in hovering flight. The main adaptation is the introduction of the 

concept of the equivalent angle of attack, which enables the linear LLT formulation to 

capture the steady nonlinear aerodynamics of wings at high angles of attack using a 

simple analytical correction term. Additionally, simplified methodologies to include the 

non-ideal effects including wake periodicity, effective flapping disk area, low Reynolds 
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number effect as well as the well-known edge velocity correction within the lifting line 

theory have been presented. The validation of the developed lifting line theory for 

hovering wings (LLThw) against available measurements from revolving wing 

experiments showed very good agreement with respect to both the shape of variation of 

the lift coefficient with incidence as well as the magnitude. Comparison of the results 

against CFD simulations showed that the mean lift to weight ratio results are on average 

within +4% accuracy. The developed model has been used to assess the relative impact 

of the proposed adaptations on the LLThw for the investigated insects. Excluding these 

adaptations leads on average to a 60% over estimation in the mean lift force required for 

weight support, and most of this discrepancy is due to the nonlinear aerodynamic effect.  

In normal hovering flight, the induced drag contributes 22% of the total drag. 

The developed LLThw allowed for a first time explicit evaluation of the induced drag 

component of insect wings. On average for the eight insects investigated based on their 

reported kinematic profiles, the induced drag is shown to contribute 22% of the total 

drag based on the mean cycle values and 29% of the total drag based on the mid half-

stroke values. For insects operating with high mid-stroke angles of attack (such as the 

ladybird and the fruit fly) this ratio decreases below 20% which is consistent with the 

expected prevalence of profile drag as the angle of attack increases. 

A theoretical solution is derived for the optimum revolving wing planform.  

An optimum planform for wings performing continuous rotary motion or within the 

steady translational phase of the flapping motion capable of producing an elliptic 

circulation distribution has been derived. The obtained expression is proportional to

1
ˆ
1 
r

, where r̂ is the non dimensional location along the wing length. A wing 

planform defined by this relation whilst prescribing the correct twist distribution will be 

able to minimise both induced and profile powers expenditure. Nevertheless without 

applying any twist distribution, the derived optimum chord distribution produces a 

downwash distribution very near to the constant distribution and thus the induced power 

expenditure is still significantly reduced. 



Design of Insect-Scale Flapping Wing Vehicles 

 

256 
 

A hummingbird-like wing is the most efficient realistic planform with respect to 

induced losses.  

The derived optimum chord distribution requires a very broad root region; however the 

beta chord distribution provides a less optimal performance in terms of downwash 

distribution but with a more practical planform shape. An untwisted wing planform, 

similar to a hummingbird, whose centre of area is at forty percent of the wing length 

provides the minimum induced power factor due to non-uniform downwash with a 

value of 1.07.  

A revolving elliptic wing planform is capable of minimising profile losses. 

This work has revealed the unique aerodynamic advantage of elliptic wings performing 

continuous rotary motion or within the steady translational phase of the flapping 

motion. It has been shown that for any aspect ratio, an untwisted elliptic revolving wing 

can allow all wing sections to operate at the same optimum effective angle of attack for 

a minimum profile power requirement.  

For maximum effectiveness, the flapping angle kinematic profile should be 

sinusoidal, whereas for maximum efficiency, it should be triangular, with the 

pitching angle being rectangular in both cases. 

A compact analytical aero-kinematic model has been developed and was shown to be 

useful for the optimisation of flapping wing kinematics against aerodynamic criteria of 

effectiveness (maximum lift) and efficiency (minimum power for a given amount of 

lift), as well as for making predictions of the required flapping frequency for a given 

geometry and basic aerodynamic parameters. The kinematic treatment is based on a 

consolidation of an existing formulation that allows explicit derivation of flapping 

velocity for complex motions whereas the aerodynamic model is based on the quasi-

steady analysis. The combined aero-kinematic model provided novel explicit analytical 

expressions for both lift and power of a hovering wing in a compact form that enable 

exploration of a rich kinematic design space. Good agreement was found between 

model predictions of flapping frequency and observed results for a number of insects 



Conclusions and Future Work 

 

257 
 

and optimal hovering kinematics identified using the model were consistent with results 

from studies using higher order computational models. It was found that for 

effectiveness, the flapping angle profile should be sinusoidal, whereas for efficiency, the 

flapping angle profile should be triangular, with the pitching angle being rectangular in 

each case. The optimum effectiveness kinematics generate 23% more lift and expend 

20% more aerodynamic power to produce the same lift compared to optimum efficiency 

kinematics. Compared to the dual sinusoidal kinematics, the use of a rectangular 

pitching profile and sinusoidal flapping profile increases the maximum attainable 

effectiveness by around 6.5%, whilst, the use of triangular flapping and rectangular 

pitching profiles increases the maximum attainable efficiency by at least 55%. 

Electromechanical coupling performance of piezoelectric bending actuators in 

dynamic operation is the same as that of static operation; however for light 

damping, the electromechanical coupling factor is typically an order of magnitude 

higher than that of static operation.  

A comprehensive analytical model of the dynamic electromechanical behaviour of 

piezoelectric actuators has been developed and successfully validated against 

experimental data. The model provides a mapping between force, displacement, voltage 

and charge. Damping is modelled using experimental data. Experimental validation was 

based on measurement of mode shape and frequency response of a series of unimorph 

beams of varying length but of the same thickness and material. The experimental 

frequency response was found to be weakly nonlinear with excitation voltage, with a 

reduction in natural frequency and increase in damping with increasing excitation 

amplitude. An expression for the ElectroMechanical Coupling Factor (EMCF) has been 

extracted from the analytical model and was used as the objective for parametric design 

studies. The design parameters are thickness ratio and Young’s modulus ratio of the 

elastic and piezoceramic layers, and the piezoelectric constant k31. The operational 

design point is defined by the damping ratio. It was found that the relative variation of 

the EMCF with the design parameters for dynamic operation is the same as that of static 

operation; however, for light damping the magnitude of the peak EMCF will typically 

be an order of magnitude greater than that of static operation. For the actuator 

configuration considered in this work, it was shown that the absolute variation of EMCF 
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with thickness ratio for dynamic operation is same as that for static operation when the 

damping ratio is 0.44 for unimorphs and 0.425 for triple layer actuators.  

Triple layer actuators have the best electromechanical characteristics.  

A triple layer actuator with an optimum thickness ratio can achieve higher peak EMCF 

value compared to bimorphs which in turn can achieve higher peak EMCF compared to 

optimum unimorph configurations. For unimorphs and triple layer actuators, a peak 

value of EMCF occurs at an optimal thickness ratio that varies only with the Young's 

modulus ratio of the elastic and active layers of the actuator. Increasing elastic layer 

material Young’s modulus leads to thinner elastic layer for both cases. The relations 

defining the optimum thickness ratio as function of the Young's modulus ratio have 

been derived as simple polynomials suitable for designing the propulsion system. Triple 

layer actuators have also shown superiority when implemented within flapping wing 

designs in the sense that they require lower operational electric field strength and thus 

allow improved reliability of the piezoceramic. 

The design process for piezoelectric actuated robotic flying insects is conceptually 

different from rotary and fixed wing air vehicles.  

A design process for sizing piezoelectric propulsion system actuators for insect-scale 

flapping wing vehicles has been developed. Multi-physics modelling of the combined 

electrical, mechanical and aerodynamic domains was presented. Compared to fixed and 

rotary wing air vehicles, the design problem is unique due to the aero-mechanical 

coupling involved. Owing to the system resonance the actuator sizing is directly 

connected to the aerodynamic flapping frequency required for sufficient lift generation; 

also owing to acceleration considerations, inertial loads become a major player within 

the design of the propulsion system. 
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Piezoelectric propulsion performance deteriorates beyond the insect scale, and at 

the current state of technology robotic insects are less efficient compared to their 

biological counterparts.  

The design process presented in this work demonstrated that engineered solutions tend 

to be driven to higher frequency operation than biological equivalents at the same scale. 

It also showed the performance deterioration of piezoelectric actuated concepts as the 

mass scale increases: as the mass increases, engineered solutions tend to have lower Q 

factor, and they require higher electric field which is usually beyond the available 

piezoceramic technology. Moreover, as the mass increases the vehicle has to operate at 

higher Reynolds number where there is more chance for leading-edge vortex shedding. 

Thus, it can be argued that piezoelectric propulsion with flapping wings is most suited 

for the insect-scale and becomes a less efficient concept as the scale increases.  
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10.2  Recommendations for Future Work 

Investigate the aerodynamic performance of flapping wings over the extended 

range of advance ratios.  

The current work concentrated on hovering flight as a first step; however, it is important 

to extend the aerodynamic treatment to forward flight as well. The aim is to provide a 

full investigation for the effect of the advance ratio on the flapping aerodynamics. 

Chapter 3 laid the foundation for including the advance ratio into the aerodynamic 

characterisation; however, further work is still required. The problem is non-trivial 

because other aspects such as the LEV stability and the change of stroke-plane angle 

inclination must be accounted for. A particular aim is to identify the so-called ‘critical 

advance ratio’ for insect-like flappers which defines the limits of  aerodynamic 

performance in terms of the maximum achievable speed, as well as the lift generation 

effectiveness and efficiency variations with the forward speed build up.  

Conduct aerodynamic experiments to fully characterise the wing planform effects 

on the aerodynamic performance and efficiency.  

Dedicated experiments towards full characterisation of the wing geometry effects on the 

aerodynamic performance of revolving/flapping wings are a calling requirement. The 

aim here is to investigate the effect of chord distribution and aspect ratio on the lift, 

drag, wing regions of flow separation, and aerodynamic efficiency measured in terms of 

the figure of merit. This would allow a full and comprehensive comparison with the 

developed theoretical models. Indeed, some experiments have been started to 

characterise the lift and figure of merit of available propellers as that used within the 

Nano-Hubsan quad-rotor and the initial results indicate very low figure of merit values 

matching with the conclusions derived from the developed analytical treatments. 
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Develop detailed theoretical models for the rotational, added mass, and wake 

capture effects for non-symmetric half-stroke kinematics.  

The current work concentrated on symmetric half-stroke kinematics for weight support. 

However for the vehicle to manoeuvre, different sorts of non-symmetry must be 

introduced to the kinematics. For this case the net forces due to rotational and added 

mass effects are no longer zero and can play an important role in control and 

manoeuvrability. Thus to approach the control problem, robust theoretical modelling 

treatments for the associated aerodynamic phenomena have to be developed taking into 

account the effect of the wing pitch axis location and the detailed profile distribution of 

the wing leading-edge.  

Investigate experimentally the efficiency of elastic storage within engineering 

designs.  

The current work has always assumed a perfect elastic storage for the flapping motion. 

This is an appropriate practice for most of engineering designs where an elastic spring 

element can be used in theory to recover the energy. Though it will be instructive to 

conduct experimental measurements on the possible elastic element options for insect-

scale flapping wing vehicles to assess the degree of validity of this assumption and 

provide either empirical or theoretical models for any evident elastic storage deficiency.   

Develop theoretical models for the dynamic electromechanical characterisation of 

piezoelectric actuators with generic configurations.  

There is currently some evidence showing that actuator width tapering provides better 

electromechanical performance for static actuation. It is instructive to extend the 

dynamic model presented here to investigate the width tapering value for dynamic 

operation. The developed analysis in this thesis also considered beams with the 

piezoelectric layer fully covering the entire beam. Thus, a model extension to 

investigate the effect of partial coverage may be beneficial.  
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Characterise the non-ideal operation effects on the performance of piezoelectric 

actuators.  

The current work investigated the primary design variables on the electromechanical 

performance of piezoelectric actuators including material properties, geometry and 

damping effects. Some of the effects associated with piezoelectric actuation were 

characterised based on the conducted experiments such as the variation of the resonance 

frequency and damping with the excitation amplitude. However, a theoretical method 

for their inclusion within the developed models should be developed. Some other 

sources of losses such as actuator saturation and temperature increase are also expected 

at a high driving field operation. The influence of these effects on the actuator operation 

should also be investigated experimentally and theoretically. 

Update the developed design process of robotic insects with successful design data 

as soon as they are released to improve design scaling laws, and encounter system 

efficiency modules within the design process. 

It is important to always improve the design capabilities of the developed design 

process through updating it with mass and scale data from successful insect-scale 

flapping wing vehicles as soon as they appear. This will decrease the level of current 

uncertainty in technology specific weight estimates and uncertainty associated within 

manufacturing of these types of vehicles. Additionally, it is highly recommended to 

include more detailed modules for evaluating the total system efficiency particularly 

models for friction losses within the transmission system, losses within charge recovery 

circuits, losses within power electronics circuits and losses within available battery 

technology.  

Provide an insect-scale flapping wing vehicle demonstrator.  

An ultimate goal of this work is to develop a battery powered insect-scale flapping wing 

vehicle. Several milestones in the pursuit of achieving this goal have been provided in 

this thesis mainly in developing the foundation and the understanding required for this 

longstanding target. Indeed the next-step is to make use of these foundations to provide 
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an un-tethered insect-scale flapping wing vehicle demonstration; however, this task is 

not an easy one. Several design iterations are required to refine the transmission 

mechanism design and fabrication. Full simulation and experimental validation of the 

passive pitching properties of different hinge configurations are required. Addressing 

the different manufacturing challenges should then come as a final step.  

Investigate ‘Manufacturing’ challenges.  

Our ability to change the ongoing ‘robotic-insect’ dream to a full truth lies to a great 

extent in our success to provide robust and cheap micro-manufacturing techniques. 

There have been intense efforts, including the current work, to understand what needs to 

be done. This is not to say that no more focused research into the physical aspects is 

required, but probably what has been achieved is sufficient to provide guide lines for an 

operating concept. However without manufacturing facilities, these concepts are just ink 

on papers or routines awaiting execution on simulation software.  
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 Appendix A 

 Evaluation of the Effect of Skin 

Friction Drag on the Aerodynamic 

Performance of Flapping Wings at 

Insect Scales  

 

Experimental measurements for insect-like model wings at Reynolds number of O(10
3
) 

or higher have shown that at zero angle of attack the drag coefficient can be sensibly 

approximated as zero [142,146,213]. However at lower Reynolds number of O(10
2
), 

experiments on fruit fly model wings showed that CD0 may be more significant as the 

Reynolds number decreases [142,154,164]. To evaluate the effect of the friction 

tangential force within the lift and drag coefficient relations, the following equations are 

used for the wing lift and drag coefficients following reference [8]  

   

 )sin()2(cos)2sin()( 2

0 ggDgTgL CCC   , (A.1) 

 )cos()2(cos)(sin2)( 2

0

2

ggDgTgD CCC   , (A.2) 

   

where CD0 is the drag coefficient at zero geometric angle of attack. Figure A.1 shows the 

variation of the relevant aerodynamic indices: the power factor DL CC /2/3
(PF) and the 

glide number, DL CC / (GN) against geometric angle of attack for a range of CD0 values, 

and a fixed CT value of 1.5. Note that variations of the CT values within its typical range 

do not change the general conclusions from this analysis. 
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Figure A.1 Variation of the power factor and glide number against angle of attack for a range of 

skin friction drag values. The highlighted part represents the operating mid-stroke angle of 

attack range for most insects between 25 to 45 degrees. 
 

The main outcomes from Figure A.1 are: (1) the power factor and glide number 

increase as the geometric angle of attack decreases within the insect-like flapping 

operation range; thus to achieve higher efficiency the operational geometric angle of 

attack should be biased towards low values. (2) As the geometric angle of attack 

increases, the influence of CD0 becomes less significant. Thus for the fruit fly, which 

operates at a typical mid-stroke geometric angle of attack of 44
 
degrees [145], the effect 

of having a high CD0 does not affect the flight performance. On the other hand, insects 

such as the honey bee and bumble bee employ mid-stroke geometric angle of attack 

values around 25 degrees [145]. However, they operate at Reynolds number of O(10
3
) 

and above where the skin friction drag is negligible [146,164].  
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 Appendix B 

 Lift Augmentation Mechanisms  

 

Following classical aeronautics, a wing can achieve higher lift coefficient values if one 

(or a combination) of three effects is adopted, Figure B.1. The first is known as the flap 

effect which is to have a positive offset in CL-αg curve allowing an increased lift 

coefficient, CL, value for the same angle of attack, αg. The second approach is to 

increase the possible achievable maximum lift coefficient value by delaying (or 

elimination) of the angle of attack at which stall occur, αstall without shifting the angle of 

zero lift and is known as the slat effect [270]. Instead of following the first approach that 

offsets the CL-αg curve by a constant value which is independent of αg, the third 

approach is to increase the lift curve slope and thus allowing a higher lift coefficient 

value but here the added lift increment is dependent on αg. 

 

 
 
Figure B.1 Different approaches adopted to achieve higher lift coefficient values. 
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Figure B.2 Different approaches adopted to achieve higher lift coefficient values extended to 

the first positive quadrant aerodynamics. Abrupt stall characteristics of the original lift curve are 

removed for better clarity of the concept. 
 

Now the above three effects are extended to the complete first positive quadrant 

aerodynamics relevant for revolving and flapping wings where operation is at high 

angles of attack, Figure B.2. Despite that this extension goes outside normal practice, it 

remains consistent with physical observations. As shown in Figure B.2, the flap effect 

allows the same CL to be achieved at reduced αg with CL,max being almost unchanged 

whilst the slat effect enables the recovery of lift lost due to leading edge stall and hence 

allows the increase of CL at post-stall αg. Therefore from a modelling point of view, the 

flap effect is consistent with provision of an increment in circulation at all angles of 

attack whilst the slat effect is consistent with an increase in circulation at angles of 

attack where the maximum lift coefficient, CL,max, is limited by stall. Therefore, the flap 

effect is consistent with the potential flow model results, the slat effect is consistent with 

the ‘normal force’ model results, and the increased slope effect is consistent (within 

450  g ) with the leading edge suction analogy. 
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 Appendix C 

 Static Actuation Constituent 

Equations  

 

The static actuation constituent equations governing piezoelectric actuators are written 

as 
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The elements of the static matrix that were used for the evaluation of the EMCF static 

curve of the unimorph actuator in Figure 8.13a are given as [111,239] 
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The elements of the static matrix that were used for the evaluation of the EMCF static 

curve of the triple layer actuator in Figure 8.13b are given as [238] 
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 Appendix D 

 Thesis Publications  

 

The following are the papers published by the time of the thesis submission: 

 Nabawy, M. R. A., Crowther, W. J. 2014 On the quasi-steady aerodynamics of 

normal hovering flight part I: the induced power factor. J. R. Soc. Interface 11: 

20131196. (doi 10.1098/rsif.2013.1196) 

 Nabawy, M. R. A., Crowther, W. J. 2014 On the quasi-steady aerodynamics of 

normal hovering flight part II: model implementation and evaluation. J. R. Soc. 

Interface 11: 20131197. (doi 10.1098/rsif.2013.1197) 

 Nabawy, M. R. A., Parslew, B., Crowther, W. J. 2015 Dynamic performance of 

unimorph piezoelectric bending actuators. Proc. Inst. Mech. Eng. I J. Syst. Control 

Eng. 229(2), 118-129. (doi 10.1177/0959651814552810) 

 Nabawy, M.R.A., Crowther, W.J. Is flapping flight aerodynamically efficient? 32nd 

AIAA Applied Aerodynamics Conference, AIAA Aviation and Aeronautics Forum 

and Exposition, 16 - 20 June 2014, Atlanta, Georgia. (doi 10.2514/6.2014-2277) 

 

The following are the papers either submitted or in preparation for journal publication: 

 Nabawy, M. R. A., Crowther, W. J. Optimum revolving wing planform.  

 Nabawy, M. R. A., Crowther, W. J. Aero-optimum hovering kinematics. 

 Nabawy, M. R. A., Crowther, W. J. A quasi-steady lifting line theory for insect-like 

hovering flight. 

 Nabawy, M.R.A., Crowther, W.J. Electromechanical coupling of piezoelectric 

bending actuators in dynamic operation. 
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 Nabawy, M.R.A., Crowther, W.J. Sizing of piezoelectric actuators for insect scale 

flapping wing vehicles. 

 Nabawy, M.R.A., Crowther, W.J. Towards an insect-scale air vehicle: a review of 

design concepts, system components and development challenges. 

 

The following are the presentations given by the time of thesis submission:  

 

 An aerodynamic evaluation of insect wing shapes and kinematics optimised for 

efficiency or effectiveness, Society for Experimental Biology Annual meeting, 1-4 

July 2014, Manchester, UK.  
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