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Chapter 1

Introduction

In the field of underwater acoustics, composite materials are often used to coat

the hulls of platforms in order to reduce the sound radiated by vibrating surfaces,

and to isolate sonar arrays from near-field sound sources. Internal activity and

machinery inside the platform can drive vibrations on the hull, which in turn affects

externally mounted sonar arrays and hence causes unwanted noise and interference.

The noise detected by a hull mounted array can be reduced by placing the sensors

in front of a multi-layered cladding system, with the goal being to absorb the sound

and hence reduce the impact of the self-noise received by the hydrophones.

The structure of the composite material used to coat the hull of a platform

can be complex. The cladding materials can comprise layers with different elastic

properties, they can contain randomly distributed microspherical inhomogeneities

or contain macroscopic inhomogeneities, usually voids, arranged on a periodic

lattice (see fig 1.1). The latter are referred to as lattice materials.

The purpose of this thesis is to investigate some of the properties of the cladding

materials consisting of periodically arranged macroscopic axisymmetric inhomo-

geneities, where, for mid-range frequencies, the wavelength is the same size as a

lengthscale of each scatterer. A particular focus of this work is to understand how
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Figure 1.1: A schematic representation of a simple cladding layer containing macro-
scopic, axisymmetric inclusions (a) cross section and (b) from above.

the spacing and shape of the scatterers in a periodic array affects the reflection and

transmission of an incoming acoustic wave. This is an area of considerable interest

in the field of wave propagation, and the area is substantial both in content and

existing literature.

Since the outbreak of the second world war, rubber coatings containing air filled

cavities have been used to coat platform hulls in an attempt to make them anechoic

[45, p.287]. This has driven both theoretical and experimental research into the

area. Arrays of cylindrical inclusions in a viscoelastic host medium were analysed

using a one-dimensional model by Gaunaurd [24]. In this paper, Gaunaurd studies

the viscoelastic deformations of a rubber layer, containing short cylindrical cavities,

that is harmonically excited by an incident wave. Wave scattering from spherical

inclusions is a classical problem in applied mathematics, and has been studied

extensively by analytical methods, such as in [43], due to the simple geometry of

the scatterers.

Scattering by arrays of non-spherical scatterers has been studied extensively

by Ivansson [30], by using a semi-analytical method that was initially employed

to study band gaps in photonic crystals [41, 48]. The wave field scattered by each
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cavity is expanded in spherical wave functions, and an equation is obtained for the

coefficients, hence taking into account the multiple scattering effects. In particular,

[29] uses the method to optimize an elastic layer for maximum anechoic effect.

For the frequency regime considered in this thesis, the analytical study of pe-

riodically spaced inclusions would generally require a simplifying hypothesis that

restricts the geometry of the scatterers to a few simple shapes, or to consider small

scatterers. Contrary to this, the restrictions that must be imposed on the shape

and size of the scatterer are greatly reduced if one employs a numerical method.

Finite element methods have proved successful in determining the acoustic be-

haviour for the analogous two-dimensional problem; for example plane wave scat-

tering from a one-dimensional array of cylindrical scatterers in an infinite domain

was considered by Hennion [28]. The approach was then extended to the doubly-

periodic case [28] [19]. The approach required only a single cell to be meshed, due

to the geometrical periodicity and application of Bloch-Floquet conditions.

As an alternative numerical approach, reflection and transmission of a plane

wave by a doubly periodic array of spherical scatterers is solved using the boundary

element method by Achenbach [3]. In this paper, the author reformulates the

boundary value problem as an integral equation over the surface of each sphere

via the use of Green’s theorem. Taking advantage of the geometrical periodicity,

this is then reduced to an integral equation over a single representative sphere. The

cost of this manipulation is that the kernel of the integral equation now involves

a doubly-periodic Green’s function.

On the other hand, the boundary element method has several distinct advan-

tages over the finite element method. In the first instance, the dimension of the

problem is reduced by one; for the fully three dimensional problem, one is re-

quired only to discretise the two dimensional surface of the scatterer. Further

to this, since the scatterers are bodies of revolution, the sought-after boundary
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functions can be expanded in complex Fourier series with respect to the circum-

ferential direction. Each of the Fourier coefficients satisfies a boundary integral

equation that can be reduced to a line integral over the surface generator of the

body, and an integral over the angle of revolution. The advantage of this is that the

circumferential integrals can be evaluated simultaneously using the Fast Fourier

transform algorithm, while the integrals over the surface generator can be calcu-

lated by Gaussian quadrature. This significantly reduces the computational cost

involved in calculating the unknown boundary functions.

A second advantage of the boundary element method is the associated suit-

ability for solving problems on unbounded domains. This is a considerable simpli-

fication over the use of the finite element method. In addition to this, the Green’s

functions for both the two-dimensional and three-dimensional problems are well

known.

The use of the boundary element method introduces several non-trivial prob-

lems. Not least of these is the singular nature of the Green’s function when the

field point and integration variable of the integral equation coincide. In two di-

mensions, the resulting integral equation is shown to have a removable singularity,

and in three dimensions the singularity is weak. We discuss the singularities in

detail in this thesis, and explain how to effectively handle them numerically.

As mentioned above, a consequence of the boundary element method is that

the kernel of the integral equation involves a doubly periodic Green’s function.

Such functions have attracted great interest in recent years, due to the wide range

of applications in which they arise. An exhaustive review of periodic Green’s

functions for the Helmholtz equation is given by Linton [38], in which he discusses

the Ewald method of evaluating such functions. A recent paper by Arens et. al [6]

discusses this method further and discusses the convergence of such functions in

detail. A thorough review of the current literature on the area of periodic Green’s
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functions is given in later chapters.

In this thesis, we wish to determine a method for evaluating the periodic

Green’s function, in both two and three dimensions, that is easily implementable

into the numerical scheme arising from the boundary element method. To this

end, we wish to analyse the function and devise a semi-analytical method to both

improve the convergence of such function, and to reduce the amount of computa-

tional power required to evaluate it. To the author’s knowledge, the method that

in developed in chapters 4 and 6, for singly periodic and doubly periodic arrays

respectively, is original.

In order to make progress on the complex problem of modelling composite ma-

terials containing periodically spaced inhomogeneities, it is necessary to make some

simplifications. Firstl, we neglect the layering that is generally involved in such

materials, and consider the domain of propagation to be homogeneous and infinite.

Second, we treat the elastic domain exterior to the macro inhomogeneities as a

compressible fluid, and consider the acoustic case, but incorporate the complex-

ity associated with generally shaped, axisymmetric macro inhomogeneities. This

reduces the complexity introduced by the coupling of elastic shear and compres-

sional waves dramatically, and allows focus to be given to the numerical scheme

itself. One of the primary aims of this thesis is to develop a robust method that

can be extended in a straightforward fashion to solve for varying geometries and in

the elastodynamic case. In the conclusions chapter, we discuss how the methods

described in this thesis can be adapted to the elastodynamic problem, and the

complexities involved in this.

This thesis is organised as follows. In chapter 2, we outline the notation and

background material that will be relevant for the rest of this thesis. In addition,

this chapter serves to give a historical context to the problem, and further moti-

vation for the methods used.
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In chapter 3 we discuss wave scattering from cylinders with arbitrary cross-

section. In chapter 4, we build on the method outlined in the preceding chapter and

solve for the reflection and transmission coefficients through an infinite, periodic

array of two dimensional scatterers. In chapter 5, we solve for the field scattered

by a single axisymmetric, three dimensional scatterer, before extending this to an

infinite, two-dimensional array in three-dimensional space in chapter 6. Finally,

we conclude with chapter 7 and discuss how the work described in this thesis can

be extended in future work.



Chapter 2

Background

2.1 Background and notation

In this chapter we review the main ideas and concepts used throughout this the-

sis. We cover the fundamentals required to understand, formulate and solve wave

scattering problems by the boundary element method. This chapter also serves to

provide a historical overview of wave propagation in periodic media, to aid in the

illustration of the motivation of the thesis.

When an otherwise homogeneous domain contains a body with different physi-

cal properties, an incident plane wave will be scattered by the body. We begin this

chapter by setting up a basic scattering problem that can be applied to various

physical problems where the field variable for which we wish to solve is governed

by Helmholtz’ equation. This serves as a base on which we develop the theory re-

quired for the more complicated problems considered in later chapters. We remain

as general as possible when formulating the problem so that in the subsequent

chapters we are able to refer back to this section. For the purposes of this back-

ground chapter, we refer to dimension d which can be either 2 or 3. In the case

where significant differences apply between two and three dimensions, we make

30
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this explicit. Throughout, the position vector x = (x1, x2) or (x1, x2, x3) describes

a rectangular Cartesian coordinate system in two or three dimensions.

It is assumed that the reader has undertaken an undergraduate course in wave

mechanics, and so will have already encountered acoustics and be familiar with the

governing equations. For an introduction to wave mechanics, the reader is directed

to [11], or for a text focused solely on acoustics we recommend [52]. The work in

this thesis can be extended to waves in linear elastic solids, and for comprehensive

texts on this the reader is referred to [36] and [2].

This section is also used to show how the governing equations of exterior wave

scattering problems can be reformulated as integral equations, and how such equa-

tions can be solved by the boundary element method. We describe only the con-

cepts of the boundary element method that relate directly to this thesis, but for

complete texts on the boundary element method see [23], [7] and [9], or for a text

that applies the boundary element method to acoustic problems directly see [17].

2.2 Acoustics

This thesis is concerned with the propagation of small disturbances in an inviscid,

compressible fluid that is otherwise at rest. Such disturbances are perturbations

of the fluid density ρ(x, t), pressure p(x, t), and velocity v(x, t), which we write as

ρ = ρ0 + ρ̂, ρ̂ ≪ρ0, (2.1)

p = p0 + p̂, p̂ ≪p0, (2.2)

v = v̂, (2.3)

where the perturbations are denoted by variables with hats, and each of the acous-

tic variables are initially at a uniform, time-independent state given by p = p0,

ρ = ρ0 and v = 0. In this case, the linearised continuity and conservation of
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momentum equations are

∂ρ̂

∂t
+ ∇ · (ρ0v̂) = 0, (2.4)

ρ0
∂v̂

∂t
+ ∇p̂ = 0. (2.5)

We assume that the fluid is barotropic, that is the density is a function of pressure

only ρ = ρ(p). Hence

ρ0 + ρ̂ = ρ(p0 + p̂). (2.6)

Since |p̂| ≪ p0, Taylor series expansion of (2.6) yields

ρ0 + ρ̂ ≈ ρ(p0) + p̂
dρ

dp
(p0), (2.7)

which to leading order is

ρ̂ = p̂
dρ

dp
(p0), (2.8)

since ρ0 = ρ(p0). Substituting this expression into equation (2.4) yields

∂p̂

∂t

dρ

dp
(p0) = −∇ · (ρ0v̂), (2.9)

which upon differentiation with respect to t and dividing by ρ0 gives

1

ρ0

dρ

dp
(p0)

∂2p̂

∂t2
= − 1

ρ0
∇ ·

(

ρ0
∂v̂

∂t

)

=
1

ρ0
∇2p̂, (2.10)

using (2.5). Finally, define

c =

{

dρ

dp
(p0)

}− 1
2

, (2.11)

and so we ultimately arrive at the d-dimensional wave equation

∇2p̂(x, t) =
1

c2

∂p̂(x, t)

∂t2
. (2.12)

The velocity also satisfies the wave equation:

∇2v̂(x, t) =
1

c2

∂v̂(x, t)

∂t2
, (2.13)
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and so each component of v̂ independently satisfies the scalar wave equation.

Expressing the velocity vector as the gradient of a scalar field φ̂(x) (the acoustic

velocity potential) then we have

v̂ = ∇φ̂(x), (2.14)

and so the velocity potential also satisfies the scalar wave equation:

∇2φ̂(x) =
1

c2

∂φ̂(x)

∂t2
. (2.15)

Once φ̂(x) is found, the pressure and velocity fluctuations can be found via the

relations (2.14) and

p̂ = −ρ0
∂φ̂

∂t
. (2.16)

Throughout this thesis, we consider monochromatic time-harmonic propaga-

tion and scattering, and so the total field can be written in the compact form

φ̂(x, t) = R

(

φ(x)e−iωt
)

= |φ(x)| cos (arg(φ(x)) − ωt) , (2.17)

where |φ(x)| is the amplitude of the pressure at a given position vector, arg(φ(x))

determines the phase of the oscillation and ω is the angular frequency of the waves.

Substituting equation (2.17) into equation (2.15) yields

∇2φ(x) + k2φ(x) = 0 in D ⊂ R
d. (2.18)

Hence the time-independent acoustic potential satisfies the d-dimensional Helmholtz’

equation in the domain of propagation D. The wavenumber k is given by

k =
ω

c
. (2.19)

In all acoustics problems studied in this thesis, we focus on sound hard scat-

tering problems, where the scatterer surface has much higher acoustic impedance
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than the acoustic impedance of the host medium. This is modelled mathematically

by a Neumann boundary condition:

∂φ(x)

∂n
= 0 on ∂V, (2.20)

where ∂/∂n denotes the normal derivative on the boundary ∂V . A radiation

condition is also required, which will be introduced later in this chapter.

2.3 An exterior scattering problem

Wave scattering from bodies is ubiquitous in science and engineering. With appli-

cations in elastodynamics, electromagnetism, water waves and acoustics to name

but a few, such problems are well studied and form a broad and important section

of classical applied mathematics. In general, the mathematical formulation for

such a problem can be expressed as a boundary value problem. We begin this

chapter by formulating a basic boundary value problem, an exterior scattering

problem, before discussing existing methods of solution.

Consider a plane time-harmonic wave φin(x)e−iωt of angular frequency ω, inci-

dent on a scatterer S located at the origin of a Cartesian coordinate system, Ox.

The region exterior to the scatterer, denoted D, comprises a wave medium that

extends to infinity in all spatial directions. The scatterer is of characteristic length

scale a and has a smooth surface denoted ∂V . As already noted, the dimension d

of this problem is either 2 or 3. Note here that the notation has been chosen so as

to be consistent with the problems studied in later chapters, where the geometry

is more complicated.

The total wave field φ(x) can be decomposed into the known incident wave

component and the scattered component:

φ(x) = φin(x) + φsc(x), (2.21)
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x1

x2

x3

D

∂V

φin(x)

Figure 2.1: Plane time-harmonic wave incident on a sound-hard body of revolution
with surface ∂V .

and we seek to find the scattered field. Under the assumption of linear acous-

tic theory which models pressure disturbances well in many important contexts

[11], the governing differential equation for the time independent wave potential

is Helmholtz’ equation,

∇2φ(x) + k2φ(x) = 0, (2.22)

which must be satisfied in the domain D.

The incident plane wave is of the form

φin(x) = eikp·x, (2.23)

which has been taken to be of unit amplitude due to the assumption of linearity,

where p is a two-dimensional or three-dimensional unit vector that defines the

angle of propagation of the incoming wave.

Boundary conditions on the surface ∂V are in general of Robin’s form

αφ(x) + β
∂φ(x)

∂n
= γ x ∈ ∂V, (2.24)
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where n is the inward pointing normal (pointing towards the interior of the surface)

on ∂V , and ∂/∂n denotes n·∇. Further, α, β and γ are given constants, determined

by the physics of the problem. In general, we will be solving for sound-hard

scattering problems, in which case we assume the constants to take the following

values: α = 0, β = 1 and γ = 0.

Finally, we require a boundary condition at infinity so as to ensure that the

scattered field consists of only outgoing waves. Therefore, φsc(x) must satisfy the

Sommerfeld radiation condition:

lim
|x|→∞

|x| d−1
2

(

∂

∂|x| − ik

)

φsc(x) = 0. (2.25)

The solution to the above boundary value problem exists and is unique, as

described in detail in [8]. The boundary value problem can easily be extended to

the case of multiple scatterers. In this case, the boundary ∂V denotes the sum of

each of the individual scatterer surfaces, and a boundary condition is required on

the surface of each distinct body.

2.4 Methods of solution

Various well-known methods exist to solve the boundary value problem described

in the preceding section. In this section, we outline two methods of solution that

can be used to solve such wave scattering problems. The first is the method of

separation of variables, which provides an exact solution for scatterers with simple

geometries, i.e. those whose surfaces coincide with separable coordinate systems.

Although the solution for cylindrical and spherical scatterers is well known, we

describe the method here since it provides a useful means for comparison for any

numerical scheme. In the case where the surface of the body does not directly

coincide with a coordinate surface, the method can be generalised to the T-matrix
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method, which approximates non-circular/non-spherical shapes by circular/spher-

ical multipoles. In order to extend this method to multiple scatterers, we can

combine separated solutions for each obstacle using an addition theorem, leading

to a linear system of equations.

Secondly, we describe how wave scattering problems can be formulated as

boundary integral equations, using the so-called direct method, by applying Green’s

theorem to a bounded domain. The result of this is an explicit representation for

the solution in terms of the Green’s function and the values of the unknown and

its normal derivative on the surface ∂V . Thus, once we know the value of the

wave variables on the boundary, we have an explicit formula for the potential at

any point in the field. The boundary values can be found by the boundary ele-

ment method (BEM), and this is the subject of section 2.5. The integral equation

method extends easily to multiple scatterers.

In this chapter we neglect to include any details of how each method can be

extended to solve the problems involving an infinite, periodic array of scatterers.

There are numerous implications involved in extending the problem to an infinite

array, and for this reason we dedicate a section to reviewing the current literature

on infinite periodic arrays (section 2.6). This section is intended to establish the

notation and fundamental integral equations used throughout this thesis, and will

be referred back to at various points throughout.

2.4.1 Separation of variables

The method of separation of variables dates back to Fourier’s paper [22], and since

then the method has been applied directly to Helmholtz’ equation in numerous

books and papers. In particular, the method was applied to electromagnetism

by Jones [18], hydrodynamics by Lamb [37] and acoustics by Lord Rayleigh [49].

The method was first extended to multiple scatterers in the early part of the
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20th century by Muller [44], who used the method for solving wave scattering by

numerous circular cylinders. Since then, the method has been used to study a

variety of physical problems, such as considering the scattering by a finite number

of cylinders in a specific arrangement [20]. Hybrid analytic-numerical methods

have been developed to solve problems for non-circular cylinders based on the

method of separation of variables, such as [26] in which Helmholtz’ equation is

solved in the far field via separation of variables, and in the area local to the

boundary of the cylinders by finite element methods.

As mentioned above, methods based on separation of variables can be used to

solve wave scattering problems for a single scatterer, provided that the surface of

the scatterer coincides with a coordinate surface. The solution is written in terms

of special functions which can be computed easily by many mathematical software

packages to a high degree of accuracy. One of the main goals of this thesis is to

develop a method to calculate the field generated by an arbitrary shaped body,

the surface of which will not in general coincide with one of the eleven coordinate

systems into which Helmholtz’ equation separates [42]. However, the analytical

result generated by the method for circular and spherical bodies is simple, exact,

and numerically effective, making it a useful comparison to the numerical results

calculated later in this thesis.

Separation of variables for a single circular cylinder

Consider the boundary value problem described in section 2.3, in the case where the

surface ∂V represents a circular cylinder of radius a with axis of revolution aligned

with the x3 axis of a Cartesian coordinate system. The direction of propagation

of the incident wave is in the (x1, x2) plane, making the problem x3 independent

and hence two-dimensional, as shown in figure 2.2. An associated polar coordinate

system (r, θ) is related to the Cartesian system by x1 = r cos θ and x2 = r sin θ.
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Figure 2.2: Plane time-harmonic wave incident on a circular cylinder.

The plane wave incident on the cylinder is

φin(x) = eik(x1 cos θ0+x2 sin θ0), (2.26)

for p = (cos θ0, sin θ0) where θ0 ∈ [0, 2π] is the angle of incidence and k is the

wavenumber. Using the Jacobi expansion [1], the incident wave can be expanded

into an infinite series of cylindrical wave functions,

φin(x) =
∞
∑

n=−∞

inJn(kr)ein(θ−θ0), (2.27)

where Jn(z) is the Bessel function of the first kind.

In polar coordinates, Helmholtz’ equation (2.22) has separated solutions

H(1)
n (kr)einθ, (2.28)

where n is an integer and H(1)
n (z) = J (1)

n (z) + iY (1)
n (z), where Y (1)

n (z) is a modified

Bessel function of the first kind. H(1)
n (z) is a Hankel function of the first kind,

which satisfies the radiation condition at infinity due to the choice of sign of the
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temporal exponent chosen in (2.17). By the principle of superposition, the total

wave field takes the form

φ(x) =
∞
∑

n=−∞

inJn(kr)ein(θ−θ0) +
∞
∑

n=−∞

inBnH(1)
n (kr)ein(θ−θ0), (2.29)

where the constants Bn are to be determined.

To complete the problem, we require a boundary condition. For the majority

of this thesis, we are concerned with Neumann problems, in which the normal

derivative of the unknown wave potential is zero on the boundary; that is, for the

circular cylindrical boundary,

∂φ

∂n
=

∂φ

∂r
= 0 on r = a. (2.30)

Applying this condition to the surface ∂V using expression (2.29) yields

∞
∑

n=−∞

[BnH ′(1)
n (ka) + J ′

n(ka)]ineinθ = 0, (2.31)

where the prime on the Bessel functions denotes differentiation with respect to its

argument. By orthogonality, the expression inside the square brackets must be

equal to zero and hence

Bn = − J ′
n(ka)

H ′
n(ka)

. (2.32)

Separation of variables for a single spherical scatterer

Now consider a three-dimensional exterior boundary value problem for the case

where ∂V represents the surface of a sphere, located at the origin of a Cartesian co-

ordinate system (x1, x2, x3) related to a spherical polar coordinate system (r, θ, φ),

via the equations

x1 = r sin θ cos φ, (2.33)

x2 = r sin θ sin φ, (2.34)

x3 = r cos θ. (2.35)
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Figure 2.3: Plane time-harmonic wave incident on a sphere.

The geometry is as shown in figure 2.3. We suppose, without loss of generality,

that the plane wave incident on the sphere is travelling in the direction of positive

x1, so that

φin(x) = eikx1. (2.36)

The plane wave can be represented as a series of spherical harmonics [42]

φin(x) =
∞
∑

ℓ=0

(2ℓ + 1) iℓ jℓ(kr) Pℓ(cos θ), (2.37)

where jℓ is the spherical Bessel function of the first kind and Pℓ is the Legendre

function of order ℓ [1]. The outgoing scattered field φsc(x) can be expressed as

φsc(x) =
∞
∑

ℓ=0

Aℓ hℓ(kr) Pℓ(cos θ), (2.38)

where hℓ is the spherical Hankel function of the first kind and the coefficients

Aℓ are to be determined from the boundary conditions. For Neumann boundary

conditions, a little algebra reveals the constants Aℓ to be

Aℓ = −(2ℓ + 1)iℓ ℓjℓ−1(ka) − (ℓ + 1)jℓ+1(ka)

ℓhℓ−1(ka) − (ℓ + 1)hℓ+1(ka)
. (2.39)
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2.4.2 Integral equation methods

In this section, we first derive a boundary integral equation (BIE) for an interior

problem. Although previously stated that we are considering only unbounded, and

therefore exterior problems, we must first consider the bounded problem before

manipulating the domain in order to reformulate the exterior problem as a BIE.

All of the boundary integral equations derived in this thesis are obtained by

the direct method, that is applying Green’s theorem to a bounded domain. From

here, we are able to take the limit as the position of the point source tends to

infinity, to see that locally the fundamental solution behaves as a plane wave.

Reformulating a boundary value problem as an integral equation can be a

useful tool for solving wave scattering problems where the fundamental solution

is known. That is, we must know the explicit representation of the response to a

point, time-harmonic source in free-space.

For Helmholtz’ equation, the fundamental solutions are well known in both

two and three dimensions. For a point source located at the point xs in a two-

dimensional domain, the fundamental solution at a point x is

G(x, xs) = − i

4
H

(1)
0 (k|x − xs|), (2.40)

where H(1)
n denotes the Hankel function of the first kind of order n.

In three dimensions, the fundamental solution of Helmholtz’ equation is given

by

G(x, xs) = − eik|x−xs|

4π|x − xs| . (2.41)

For both the two-dimensional and three-dimensional fundamental solutions, the

solution is singular as the field point approaches the source point. When the

source point is sufficiently far away from the field point x, local to the field point

the fundamental solution behaves as a plane wave.
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Figure 2.4: Domain for an interior problem.

An Interior Problem

We consider the d-dimensional problem of computing the wave field φ(x) in a

bounded, interior region. A plane, time-harmonic acoustic wave is propagating

in a closed region D ∈ R
d, bounded by the surface ∂V , to which some boundary

conditions are to be applied. The wave is due to a point source of strength κ,

located at a point ξ = xs where ξ = (ξ1, ξ2) for d = 2 and ξ = (ξ1, ξ2, ξ3) for d = 3.

The acoustic potential φ satisfies the d-dimensional inhomogeneous Helmholtz’

equation in the domain D; that is

∇2
ξφ(ξ, xs) + k2φ(ξ, xs) = κδ(ξ − xs), (2.42)

where the subscript ξ indicates that the Laplacian is taken with respect to ξ.

Unusually, we choose to take a right hand side in equation (2.42) so that we can

easily extend the method to the exterior problem in the following section. In order

to apply Green’s theorem, we introduce a new variable x, located at some point

in the domain D but not on the boundary ∂V . The fundamental solution G(ξ, x)

satisfies

∇2
ξG(ξ, x) + k2G(ξ, x) = δ(ξ − x). (2.43)
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Subtracting the product of φ(ξ, xs) with (2.43) from the product of G(ξ, x) with

(2.42), and integrating over the region D yields

∫∫

D
∇ · [G(ξ, x)∇ξφ(ξ, xs) − φ(ξ, xs)∇ξG(ξ, x)]dA(ξ) = κG(xs, x) − φ(x, xs)

(2.44)

where G is symmetric and so

G(xs, x) = G(x, xs). (2.45)

Upon employing the divergence theorem, we see that this equation can be rear-

ranged to give an explicit formula for φ(x, xs)

φ(x, xs) = κG(x, xs) −
∫

∂V

(

G(ξ, x)
∂φ

∂n
(ξ, xs) − φ(ξ, xs)

∂G

∂n
(ξ, x)

)

dS(ξ),

(2.46)

where n(x) is a unit normal pointing into the domain D and ∂/∂n = n · ∇. It is

to be understood that dS is a line element when d = 2 and a surface element when

d = 3. This equation is valid for all x ∈ D, providing x /∈ ∂V and x 6= xs. For

interior problems, equation (2.42) is generally homogeneous, which would result in

the term κG(x, xs) of equation (2.46) disappearing. We have chosen to retain this

term in so as to simplify the extension to exterior problems in the next section. It

should be noted that the Green’s function is symmetric with respect to the field

and source points, that is G(x, xs) = G(xs, x).

The above equation is an explicit representation for the solution φ(x) in terms

of the known fundamental solution, and the values of φ and its normal derivative

on the boundary ∂V . Thus, if we are able to compute these boundary values, we

are able to use equation (2.46) to calculate the value of φ(x, xs) at any point in

the domain D. Later on in this chapter, we illustrate how the boundary element

method can be used to calculate the boundary values, but first we must describe

how to derive an integral equation for the exterior problem.
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An Exterior Problem

In all subsequent chapters of this thesis, we are interested in studying exterior

problems, where the domain of propagation is bounded only by the scatterer (or

scatterers).

In order to derive an integral equation for the exterior problem, we must ma-

nipulate the boundary integral equation for bounded domains, i.e. equation (2.46).

To do this, we take the domain in which propagation occurs to be DR, which is

the region enclosed by the surface of the scatterer ∂V and the surface ∂VR, where

∂VR represents the surface of the circle (d = 2) or a sphere (d = 3), centered at the

origin, and of radius R. We choose R to be sufficiently large that xs is contained

within DR, and R ≫ a, where a is the characteristic lengthscale of the scatterer.

The region DR is as shown in figure 2.5. Since DR is a bounded region, the integral

equation (2.46) holds, yielding

φ(x, xs) = κG(xs, x) −
∫

∂V

(

G(ξ, x)
∂φ

∂n
(ξ, xs) − φ(ξ, xs)

∂G

∂n
(ξ, x)

)

dS(ξ)

−
∫

∂VR

(

G(ξ̂, x)
∂φ

∂n
(ξ̂, xs) − φ(ξ̂, xs)

∂G

∂n
(ξ̂, x)

)

dS(ξ̂), (2.47)

where we have let ξ → ξ̂ in the second integral, to indicate that the integration

variable is on the surface of ∂VR. Equation (2.47) holds for all x ∈ D, providing

that x /∈ ∂V , x /∈ ∂VR and x 6= xs.

Now in order to consider an infinite, exterior domain, we must take the limit as

R → ∞ in the second integral of equation (2.47). In both the two-dimensional and

three-dimensional cases, we can show asymptotically that as R approaches infinity,

the integral over the boundary ∂VR vanishes. The exact details are included in the

main body of this thesis; for the two-dimensional result see chapter 3 and for the
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Figure 2.5: Domain for exterior problem.

three-dimensional result see chapter 5. It follows that

φ(x, xs) = κG(xs, x) −
∫

∂V

(

G(ξ, x)
∂φ

∂n
(ξ, xs) − φ(ξ, xs)

∂G

∂n
(ξ, x)

)

dS(ξ).

(2.48)

Finally, we take the limit as |xs| → ∞. In this limit, local to the scatterer, the

fundamental solution behaves as a plane wave of frequency ω, and choosing the

constant κ to be such that κG(xs, x) = φin(x) the plane wave is of unit amplitude.

This is shown in figure 2.6. As a consequence, we arrive at the following boundary

integral equation for the exterior problem:

φ(x) = φin(x) −
∫

∂V

(

G(ξ, x)
∂φ

∂n
(ξ) − φ(ξ)

∂G

∂n
(ξ, x)

)

dS(ξ), (2.49)

where the argument, xs, of φ has been omitted by convention. No boundary

condition has been used in obtaining equation (2.49), indeed the integral equation

holds irrespective of what boundary conditions apply on ∂V . It is a mathematically

equivalent representation of the boundary value problem described in section 2.3.

In the case where Dirichlet boundary conditions are applied to the surface of the

scattering body, the second term in the integral in equation (2.49) disappears,

whereas for the case where Neumann conditions apply, the first term vanishes.
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Figure 2.6: Domain of propagation for the exterior scattering problem.

We now turn our attention to solving (2.49) by the boundary element method.

2.5 The boundary element method

Since the 1980s, the Boundary Element Method (BEM) has been used as a powerful

tool to solve problems in acoustics, electrodynamics and electromagnetism amongst

other fields. Many advances have been made in the area by mathematicians and

engineers alike, making the boundary element method an attractive tool for solving

complicated problems.

The BEM has been described as a semi-analytical method for solving physical

problems, since it relies on our analytical abilities in determining fundamental so-

lutions, effectively handling singularities and other various difficulties that require

analytical manipulation. In this section, we describe why the BEM is particularly

well suited to solving acoustics problems involving the particular length-scales and

scatterer shapes under investigation in this thesis, before continuing to describe

the mathematical principles involved in solving acoustic wave scattering problems

by the BEM.
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2.5.1 A brief history of boundary element methods

Up until 1977, the BEM was known as the Boundary Integral Equations Method

(BIEM), pioneered by the likes of Jaswon [31] and Rizzo [50]. The first article to

use the term ‘Boundary Element Methods’ was [13], which directly compared the

advantages and disadvantages of the use of boundary element methods to Finite

Element Methods (FEM). It was the following year that the first text book was

published in the area [14].

Since the late 1970s, there has been a steady stream of research into BEM,

studying complicated boundary value problems in a wide range of applications, and

there have been many text books published, aimed at mathematicians, engineers

and physicists. Although the advances in recent years are both interesting and

beneficial to a wide range of applications, we will not describe them in great detail

in this thesis. Instead we describe the main tools involved in the classical BEM

approach, which is sufficient for solving the problems we consider. For additional

details, we refer the interested reader to complete BEM texts, such as that by

Gaul [23].

2.5.2 Singularities of the integral equation

The integral equation of the form (2.49) returns the value of the potential φ in the

domain D when the solution on the boundary is known. To obtain an equation that

contains only boundary data, we must move the field point x onto the boundary

∂V . The resulting equation is a boundary integral equation, which is then suitable

to be discretised and solved by the boundary element method.

The process of moving the field point onto the boundary requires careful at-

tention, since when r = |ξ − x| → 0, the Green’s function, in both two and three

dimensions, becomes singular. We can handle such a singularity by analytically
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evaluating the integral over a small region of the boundary where the singularity

lies. Such a process is non-trivial, and although well known, it is instructive to

present the details of the two-dimensional singularity in section A.2, and for the

three-dimensional case in section 5.3.2.

In both the two-dimensional and three-dimensional cases, the result of moving

the field point onto the boundary is a so-called free-term of the form

cφ(x). (2.50)

The coefficient c is known as a free-term coefficient, and we show that for smooth

boundaries for both d = 2, 3, c is equal to 1/2. The result of this is a slightly

modified integral equation for a sound hard scatterer given by

φ(x) = φin(x) + −
∫

∂V
φ(ξ)

∂G

∂n
(ξ, x) dS(ξ) +

1

2
φ(x), x ∈ ∂V, ξ ∈ ∂V, (2.51)

or

1

2
φ(x) = φin(x) + −

∫

∂V
φ(ξ)

∂G

∂n
(ξ, x) dS(ξ), x ∈ ∂V, ξ ∈ ∂V, (2.52)

where the dash on the integral sign indicates that we have ‘cut out’ a small region of

the integration contour. Equation (2.52) is the boundary integral equation for the

unknown velocity potential φ(x) in an infinite domain containing a rigid scatterer

with boundary ∂V .

2.5.3 Discretisation

Boundary value problems that can be formulated as a boundary integral equation

with a known fundamental solution can typically be solved by the BEM. Both

two-dimensional and three-dimensional problems are tackled in this thesis, but in

each case the problems are reduced to a boundary integral equation where the

integral is over a one-dimensional curve. In two dimensions, the integral is over
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Figure 2.7: Two-dimensional (a) linear and (b) quadratic elements with inward
pointing normal.

the boundary of the cross-sectional shape, and in three dimensions we show how

exploiting the axisymmetry allows us to formulate a boundary integral equation

over the generating line of the three-dimensional body. For this reason, in this

section we will describe how the BEM can be used to solve problems with an

integral equation of the form of

1

2
φ(x) = φin(x) + −

∫

∂V
φ(ξ)

∂G(ξ, x)

∂n
dS(ξ), (2.53)

where the boundary ∂V can be described by a smooth curve. We divide the

boundary into N segments, denoted Γj , so that

∂V =
N
∑

j=1

Γj, (2.54)

where each Γj is a smooth section of the curve ∂V . With this discretisation of the

boundary, equation (2.53) can be expressed as

1

2
φ(x) = φin(x) +

N
∑

j=1

−
∫

Γj

φ(ξ)
∂G(ξ, x)

∂n
dS(ξ). (2.55)

The idea of the BEM is to approximate both the solution of the equation

(2.55), on the boundary elements Γj , and the shape of the element itself, by a set
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of shape functions, Ψk. These shape functions can be one of many different choices:

trigonometric functions, systems of eigenfunctions, polynomial functions to name

but a few. In this thesis we choose to represent our solution by a set of polynomial

shape functions of degree m. To do this, we express the unknown potential φj on

an element j in terms of a set of m + 1 interpolation (shape) functions Ψk(ν) and

the value of the potential at a discrete set of nodes. For each element j, there are

m + 1 nodes. The continuous value over an element j can be expressed in terms

of a local parameter ν ∈ [−1, 1], in the following way

φj(ν) =
m+1
∑

k=1

Ψk(ν)φk
j , (2.56)

The value of the potential at the kth node of the jth element is φk
j , and it is this

discrete set of values that we seek to find. Once the nodal values are found, we can

use the shape functions to interpolate over the element and find the approximate

solution at any point on the boundary ∂V .

Throughout this thesis, we use a quadratic interpolation to describe both the

shape of the element and the variation in the unknown. However, it is instructive

to first introduce linear elements to describe the method. In this section, we first

consider the case of linear before describing quadratic approximations, however the

method is easily extended to higher order polynomial approximations (see [23]).

The shape functions are determined such that for each node point (xk
1, xk

2), we

chose a piecewise linear or quadratic function Ψk(ν) whose value is 1 at (xk
1, xk

2)

and 0 at the other node points.
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Figure 2.8: Linear shape functions.

In the case where we wish to assume a linear approximation, that is m = 1, the

shape functions are given by

Ψ1(ν) =
1

2
(1 − ν), (2.57)

Ψ2(ν) =
1

2
(1 + ν), (2.58)

as shown in figure 2.8. By equation (2.56), the linear approximation to the poten-

tial φ(x) on an element j is given by

φj(ν) = Ψ1(ν)φ1
j + Ψ2(ν)φ2

j . (2.59)

Substituting this expression into equation (2.55) yields the discretised boundary

integral equation

1

2
φ(x) = φin(x) +

N
∑

j=1

∫

Γj

(

Ψ1(ν)φ1
j + Ψ2(ν)φ2

j

) ∂G

∂n
(ξ, x)dS(ξ), (2.60)

where the solution is now determined by the discrete coefficients φk
j . In order to

map between the global coordinate system ξ = (ξ1, ξ2) and the local coordinate

ν, we assume that the elements Γj are approximated by the same interpolation

functions as the unknown potential. In this case, the elements are referred to as
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isoparametric. With this assumption, on the jth element,

ξ1(ν; j) = ξ1
1,jΨ

1(ν) + ξ2
1,jΨ

2(ν), (2.61)

ξ2(ν; j) = ξ1
2,jΨ

1(ν) + ξ2
2,jΨ

2(ν) (2.62)

where (ξk
1,j, ξk

2,j) are the global coordinates of the kth node of element j. We can

therefore write

∫

Γj

(

Ψ1(ν)φ1
j + Ψ2(ν)φ2

j

) ∂G

∂n
(ξ, x)dS(ξ)

=
∫ 1

ν=−1

(

Ψ1(ν)φ1
j + Ψ2(ν)φ2

j

) ∂G

∂n
(ξj(ν), x)|Jj(ν)|dν, (2.63)

where |Jj(ν)| is the Jacobian given by

|Jj(ν)| =

√

√

√

√

(

∂ξ1(ν; j)

∂ν

)2

+

(

∂ξ2(ν; j)

∂ν

)2

. (2.64)

Introduce

hk
j (x) =

∫ 1

ν=−1
Ψk(ν)

∂G

∂n
(ξj(ν), x)|Jj(ν)|dν, (2.65)

then expression (2.60) can be expressed as

1

2
φ(x) = φin(x) +

N
∑

j=1

(

h1
j(x)φ1

j + h2
j(x)φ2

j

)

. (2.66)

When referring to the unknown coefficients φk
j , the superscript k refers to a

local system of notation, but since the following relation exists:

φ1
j = φ2

j−1 = φj, (2.67)

we can relabel the coefficients in terms of a global labelling system φj , as shown

in figure 2.9. After doing this, we arrive at the following equation

1

2
φ(x) = φin(x) +

(

h1
1(x) + h2

N(x)
)

φ1 +
N
∑

j=2

(

h1
j(x) + h2

j−1(x)
)

φj . (2.68)
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Γj
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Figure 2.9: The relationship between the local and global labelling system of the
unknown coefficients when linear elements are assumed.



2.5. THE BOUNDARY ELEMENT METHOD 55

Quadratic elements

ν

Ψ1(ν)

0
0

1

1 b

ν

Ψ2(ν)

0
0

1

1
ν

Ψ3(ν)

0
0

1

1

Figure 2.10: Quadratic shape functions.

In the case where we assume isoparametric quadratic elements, we require an extra

node at the centre of each element. The quadratic shape functions are given by

Ψ1(ν) =
1

2
ν(ν − 1), (2.69)

Ψ2(ν) = (ν + 1)(1 − ν), (2.70)

Ψ3(ν) =
1

2
ν(ν + 1), (2.71)

as shown in figure 2.10. The potential across an element j is now assumed to have

the following form,

φj(ν) = Ψ1(ν)φ1
j + Ψ2(ν)φ2

j + Ψ3(ν)φ3
j , (2.72)

and the shape of the element is approximated on the jth element according to

ξ1(ν; j) = ξ1
1,jΨ

1(ν) + ξ2
1,jΨ

2(ν) + ξ3
1,jΨ

3(ν), (2.73)

ξ2(ν; j) = ξ1
2,jΨ

1(ν) + ξ2
2,jΨ

2(ν) + ξ3
2,jΨ

3(ν), (2.74)

where (ξk
1,j, ξk

2,j) is the global coordinate of the kth node on the jth element. With

this discretisation, we have

∫

Γj

φ(ξ)
∂G

∂n
(ξ, x)dS(ξ)

=
∫ 1

ν=−1

(

Ψ1(ν)φ1
j + Ψ2(ν)φ2

j + Ψ3(ν)φ3
j

) ∂G

∂n
(ξj(ν), x)|Jj(ν)|dν. (2.75)
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As in the case of linear elements, let

hk
j (x) =

∫ 1

ν=−1
Ψk(ν)

∂G

∂n
(ξj(ν), x)|Jj(ν)|dν, (2.76)

and so the discretised boundary integral equation in local notation is given by

1

2
φ(x) = φin(x) +

N
∑

j=1

(

h1
j(x)φ1

j + h2
j(x)φ2

j + h3
j(x)φ3

j

)

. (2.77)

Relabelling equation (2.77) in terms of a global labelling system is slightly

more complicated than in the linear case, since there are 2N nodes, and hence 2N

unknown values. We have the following relations

φ3
j = φ1

j+1 = φ2j+1, (2.78)

φ2
j = φ2j (2.79)

and so relabelling in an anti-clockwise fashion (as shown in figure 2.11), we arrive

at the following boundary integral equation

1

2
φ(x) = φin(x)+

(

h1
1(x) + h3

N(x)
)

φ1+
2N−1
∑

j=3
j odd

(

h3
j−1

2
(x) + h1

j+1
2

(x)
)

φj+
2N
∑

j=2
j even

h2
j

2
(x)φj.

(2.80)

2.5.4 The collocation method

Equations (2.68) and (2.80) represent two partially-discretised boundary equa-

tions, that are still functions of the continuous variable x. Each of these equations

can now be used to set up a system of equations to determine the unknown bound-

ary values. In this thesis, we describe the collocation method only, due to its versa-

tility and computational efficiency [23]. Alternatively, we could use the symmetric

Galerkin BEM, which involves a double surface integral, which for large problems

can dramatically increase the computational cost. For details of this method, the

reader is referred to [53].
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Figure 2.11: Figure to show the relationship between the local and global labelling
system of the unknown coefficients when quadratic elements are assumed.



58 CHAPTER 2. BACKGROUND AND HISTORY

In the collocation method, it is convenient to choose the field point x to be

at a discrete number of points around the boundary, and require that equations

(2.68) and (2.80) hold exactly at each of these collocation points. We choose these

points to be at the nodes so that no additional unknowns are introduced. We thus

require that, for linear elements

1

2
φi = φin

i +
(

h1
i1 + h2

iN

)

φ1 +
N
∑

j=2

(

h1
ij + h2

i(j−1)

)

φj , i = 1, . . . N (2.81)

and for quadratic elements

1

2
φi = φin

i +
(

h1
i1 + h3

iN

)

φ1 +
2N−1
∑

j=3
j odd

(

h3
i j−1

2
+ h1

i j+1
2

)

φj +
2N
∑

j=2
j even

h2
i j

2
φj , i = 1, . . . 2N.

(2.82)

Equation (2.81) is a system of N linear equations for the N unknowns φj, and

(2.82) is a 2N system for the 2N unknowns. In matrix form we can write this as

[

1

2
I − H

]

Φ = Φin, (2.83)

where H is a dense matrix consisting of the integrals hk
ij , I is the identity matrix,

Φ is the vector of unknown potentials φj and Φin is the vector containing the

value of the incident wave at each collocation point. The diagonal elements of

the matrix H appear to be singular; however, in the two-dimensional case the

integrands are bounded and in the three-dimensional case the singularities are

logarithmic. These integrals can therefore be calculated numerically using typical

Gaussian quadrature, as can the off diagonal elements. Once the elements of H

have been calculated, the system (2.83) can be solved with a standard linear solver.
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2.6 Multiple scattering

The method of separation of variables can be used to solve wave scattering prob-

lems for a single obstacle, provided that its surface coincides exactly with a co-

ordinate surface. Such problems are solved in many text books, including [36].

When more than one obstacle is present, the separated solutions can be combined

by the use of appropriate addition formulae, which leads to an infinite system of

simultaneous equations [42]. This method is commonly referred to as the multi-

pole method, first proposed by Zaviska [61], and was extended by Twersky in [55]

and [56]. The method has subsequently been used by many different authors to

solve for problems involving a range of different configurations of scatterers, for

example [59] and [16]. The method has been applied to problems involving infinite

arrays of circular cylinders by Linton and Evans in the paper [40]. More recently,

Zalipaev et al [60] have used the method to study periodic arrays, and Parnell

and Abrahams [46] have used the method to obtain an homogenised governing

equation in the low frequency limit.

In this thesis, we are concerned with multiple scattering from an infinite array

of non-spherical shaped bodies, where both the characteristic length scale of the

scatterer, and the periodicity of the scatterers are of the same order of magnitude

as the wavelength of the incident wave. We are interested in deriving a method that

allows us to solve for the reflection and transmission of a plane wave from an array

of such bodies, regardless of the shape of the scatterer and for midrange frequencies.

The multipole method is particularly suited to regular shaped bodies, where the

distance between scatterers is large compared to the wavelength of the incident

wave. For this reason, we choose to adopt the method described in [4], which

takes advantage of the geometrical periodicity and formulates the boundary value

problem as an integral equation over a single representative cell, before solving the

resulting equation by the boundary element method. This provides us with no
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problem when considering irregular shaped bodies, nor the length scales involved.

Challenges arise when using the boundary element method for infinite arrays of

scatterers, the most significant of which is the resulting periodic Green’s function

that becomes the kernel of the integral equation when it is reduced over a single

cell. Such functions are difficult to evaluate numerically, due to the relatively low

convergence rate of the sum. In chapter 4, we consider the convergence of the

Green’s function for a one-dimensional array, and in chapter 6 we consider the

corresponding sum for a two-dimensional array in three-dimensional space.



Chapter 3

Scattering from two-dimensional

bodies

3.1 Problem statement

Referring back to the exterior scattering problem of section 2.3, in this chapter

we consider the case where the scatterer S is an infinite rigid cylinder, the cross-

section of which is of characteristic lengthscale a and the axis of revolution of

which lies along the x3 axis of a rectangular Cartesian coordinate system. Since

there is no variation in the out of plane direction, the problem is x3-independent,

and so the resulting problem is fully two dimensional in the (x1, x2) plane.

The incoming plane wave φin(x1, x2) is characterised by the angle θ0, and has

propagation vector

p = (cos θ0, sin θ0), (3.1)

in the (x1, x2) plane, and so by equation (2.23), the incident plane wave is of the

form

φin(x) = φin(x1, x2) = e−ik(x1 cos θ0+x2 sin θ0), (3.2)

61
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x1

x2

φin

∂V

D

θ0

Figure 3.1: Exterior scattering problem for a scatterer S with boundary ∂V .

where θ0 ∈ [0, 2π].

The problem is illustrated schematically in figure 3.1. We suppose that the

scatterer is sufficiently far away from other objects, so that it is suitable to model

the domain of propagation as being the entirety of R2, that is D = R
2\S, where

S is the scatterer domain, bounded by ∂V .

The velocity potential φ(x1, x2) is assumed to satisfy Helmholtz equation

∂2φ

∂x2
1

+
∂2φ

∂x2
2

+ k2φ = 0 x ∈ D (3.3)

subject to Neumann boundary conditions

∂φ

∂n
(x1, x2) = 0 x ∈ ∂V. (3.4)

It should be noted at this point that the wave number k is non-dimensionalised

on the length-scale of the scatterer a.
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3.2 Boundary integral equation

In order to express the above boundary value problem as an integral equation,

we follow the method as described in section 2.4.2. This requires us to apply

Green’s theorem to the region bounded by the rigid surface of the two-dimensional

scatterer, ∂V , and a large circle ∂VR of radius R ≫ a, that is centered at the origin

of the Cartesian co-ordinate system (x1, x2). This region is as shown in figure 2.5.

We take a source in the bounded domain D, then, as explained in Appendix A.1,

we let |xs| → ∞ with an appropriate choice of source coefficient so that we find

an incoming plane wave which has the form of expression (3.2). Following the

method outlined in Appendix A, we arrive at equation (A.23)

φ(x) = φin(x) +
∫

∂V

(

φ(ξ)
∂G

∂n
(ξ, x)

)

dS(ξ) x /∈ ∂V, ξ ∈ ∂V. (3.5)

In order to use the boundary element method on equation (3.5), both the field

point x and the integration variable ξ must lie on the boundary ∂V . Due to the

singular nature of the Green’s function at the point where x → ξ, this requires

careful manipulation, and the details are shown in Appendix A.2. The result of

this is the derivation of a free-term, and the resulting integral equation is as follows

1

2
φ(x) = φin(x) + −

∫

∂V

(

φ(ξ)
∂G

∂n
(ξ, x)

)

dS(ξ) x ∈ ∂V, ξ ∈ ∂V. (3.6)

This is now in a suitable form to apply the boundary element method, and the

following section describes the discretisation process.

3.3 Discretisation

We choose to discretise equation (3.6) into quadratic isoparametric elements. Fol-

lowing the discretisation method described in section 2.5.3, the fully discretised
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Figure 3.2: The figure on the right shows the shape on the left discretised into
32 quadratic elements (each represented by a different colour), with 64 nodes
(represented by points).

form of equation (3.6), collocated at each node i (1≤ i ≤ 2N), is given by

1

2
φi = φin

i +
(

h1
i1 + h3

iN

)

φ1 +
2N−1
∑

j=3
j odd

(

h3
i j−1

2
+ h1

i j+1
2

)

φj +
2N
∑

j=1
j even

h2
i j

2
φj, i = 1, . . . , 2N.

(3.7)

Following the method in section 2.5.3, the fully discretised form of equation

(3.6), collocated at each node (i = 1 . . . 2N) is given by

1

2
φi = φin

i +
(

h1
i1 + h3

iN

)

φ1 +
2N−1
∑

j=3
j odd

(

h3
i j−1

2
+ h1

i j+1
2

)

φj +
2N
∑

j=2
j even

h2
i j

2
φj , i = 1, . . . 2N.

(3.8)

As a reminder of notation, we have

hk
ij =

∫ 1

ν=−1
Ψk(ν)

∂G

∂n
(ξj(ν), xi)|Jj(ν)|dν. (3.9)

In matrix form, the linear system we wish to solve is
[

1

2
I − H

]

Φ = Φin, (3.10)
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where I is the identity matrix, Φin is a vector containing the value of the incident

wave at each of the collocation points, and H is the coefficient matrix containing

the integrals hk
ij . We wish to solve the above system in order to find the discrete

boundary values at the collocation points.

3.3.1 Evaluation of coefficient matrix

The matrix H is a densely populated matrix, and so its components must be

evaluated carefully so as to ensure efficient and accurate evaluation. Each entry

hk
ij of H is an integral with respect to the coordinate ν over the interval ν ∈ [−1, 1].

The ith row of matrix H is of the form
[

(h3
iN + h1

i1) h2
i1 (h3

i1 + h1
i2) h2

i2 . . . (h3
i(N−1) + h1

iN) h2
iN .

]

(3.11)

The point xi = (xi
1, xi

2) is the collocation point and ξj(ν) = (ξj
1(ν), ξj

2(ν)) is in

terms of the local, homogeneous coordinate ν, given by

ξj
1(ν) = ξ1

1,jΨ
1(ν) + ξ2

1,jΨ
2(ν) + ξ3

1,jΨ
3(ν), (3.12)

ξj
2(ν) = ξ1

2,jΨ
1(ν) + ξ2

2,jΨ
2(ν) + ξ3

2,jΨ
3(ν). (3.13)

The normal derivative of the Green’s function can be calculated using the

identities (A.25)-(A.27), and the inward facing unit normal on an element j can

be calculated using (3.12) and (3.13) to be the following:

nj = (nj
1, nj

2) = N

(

−dξj
2

dν
,
dξj

1

dν

)

, (3.14)

where N is the normalising factor

N =







(

dξj
1

dν

)2

+

(

dξj
2

dν

)2






− 1
2

. (3.15)

In terms of ν, on an element j, the components of the gradient ∇ξG(ξj(ν), xi) are

given by

∂G(ξj(ν), xi)

∂ξj
1

= ik(ξj
1(ν) − xj

1)
H

(1)
1 (krj(ν))

4rj(ν)
, (3.16)
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ξ1

ξ2

Γj

xi

ν

1ν1−1

T (ξ)

Figure 3.3: Figure to show the transformation of element j into a local co-ordinate
system ν ∈ [−1, 1]. The point xi maps to the point ν = ν1.

∂G(ξj(ν), xi)

∂ξj
2

= ik(ξj
2(ν) − xj

2)
H

(1)
1 (krj(ν))

4rj(ν)
, (3.17)

where

rj(ν) =
√

(ξj
1(ν) − xi

1)2 + (ξj
2(ν) − xi

2)
2. (3.18)

Ultimately, we have

∂G

∂n
(ξj(ν), xi) =

ikN

4

(

−dξj
2

dν
(ξj

1 − xj
1) +

dξj
1

dν
(ξj

2 − xj
2)

)

H
(1)
1 (krj)

rj
, (3.19)

where the dependence on ν has been suppressed.

For xj
1 6= ξj

1 and xj
2 6= ξj

2, the above expression is non-singular and therefore all

entries to H where i 6= j, are slowly varying, and can be evaluated using Gaussian

quadrature to a high degree of accuracy. In the case where i = j, the integrals are

not simple to evaluate, and this is the subject of the next section.

Evaluation of Singular Integrals

In the case where i = j, we may expect hk
ij → ∞ due to the singularity of the

Hankel function for a zero argument. Contrary to this, the following analysis shows

that as the integration variable approaches the collocation point, the function

∂G(ξj(ν), xi)/∂n(ξ) is bounded, and takes a finite value at the point where xj
1 = ξj

1

and xj
2 = ξj

2.
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Suppose that in the local co-ordinate system ν, the collocation point xi is at

the point ν = ν1, so that in the global co-ordinate system (ξ1, ξ2) we have

xi = (ξ1(ν1), ξ2(ν1)), (3.20)

as shown in figure 3.3. The bracketed term of equation (3.19) is therefore given by

−dξj
2

dν
(ξj

1 − xj
1) +

dξj
1

dν
(ξj

2 − xj
2) = −dξj

2

dν
(ν)(ξj

1(ν) − ξj
1(ν1)) +

dξj
1

dν
(ν)(ξj

2(ν) − ξj
2(ν1)).

(3.21)

Suppose that ν is a small distance ǫ away from ν1, so that

ξj
1(ν1) = ξj

1(ν − ǫ), (3.22)

which upon Taylor series expansion results in

ξj
1(ν) − ξj

1(ν1) = ǫ
dξj

1

dν
(ν) − ǫ2

2!

d2ξj
1

dν2
(ν) + O(ǫ)3, (3.23)

and

ξj
2(ν) − ξj

2(ν1) = ǫ
dξj

2

dν
(ν) − ǫ2

2!

d2ξj
2

dν2
(ν) + O(ǫ)3. (3.24)

Substituting (3.23) and (3.24) into (3.21) yields

− dξj
2

dν
(ξj

1 − ξj
1(ν1)) +

dξj
1

dν
(ξj

2 − ξj
2(ν1)) =

− dξj
2

dν

(

ǫ
dξj

1

dν
− ǫ2

2!

d2ξj
1

dν2

)

+
dξj

1

dν

(

ǫ
dξj

2

dν
− ǫ2

2!

d2ξj
2

dν2

)

+ O(ǫ)3, (3.25)

which upon simplification can be rewritten as

−dξj
2

dν
(ξj

1 − ξj
1(ν1)) +

dξj
1

dν
(ξj

2 − ξj
2(ν1)) =

ǫ2

2!

(

dξj
2

dν

d2ξj
1

dν2
− dξj

1

dν

d2ξj
2

dν2

)

+ O(ǫ)3. (3.26)

Similarly, using expressions (3.23) and (3.24), the function rj (expression (3.18))

can be expanded to give

(rj)2 = ǫ2





(

dξj
1

dν

)2

+

(

dξj
2

dν

)2


+ O(ǫ)3, (3.27)



68 CHAPTER 3. SINGLE SCATTERER

and for small arguments, the Hankel function of the first kind, to leading order, is

given by

H
(1)
1 (z) = − 2i

πz
+ O(z log z). (3.28)

Using expressions (3.27) and (3.28), we can write

H
(1)
1 (krj)

4r
= − i

2πkǫ2





(

dξj
1

dν

)2

+

(

dξj
2

dν

)2




−1

+ O
(

1

ǫ

)

. (3.29)

Substituting expressions (3.26) and (3.29) into (3.19) allows us to write the normal

derivative of the Green’s function as an expansion in terms of ǫ,

∂G(ξj, xi)

∂n(ξ)

=
1

4π

(

dξj
2

dν

d2ξj
1

dν2
− dξj

1

dν

d2ξj
2

dν2

)





(

dξj
1

dν

)2

+

(

dξj
2

dν

)2




− 3
2

+ O (ǫ) . (3.30)

Thus, as the integration variable approaches the collocation point, rather than

being singular, the normal derivative of the Greens function remains bounded,

and is finite. Ultimately, this means that ∂G/∂n in the integrand of hk
ij is smooth

and finite-valued over all elements, meaning that each integral entry to the matrix

H can be calculated using Gaussian quadrature.

3.4 Results

3.4.1 Convergence - L2 norm relative error

In order to give confidence in the numerical results calculated using the boundary

element method for non-circular two dimensional shapes, we first compare the

numerical solution to the analytical solution for a circular cylinder, calculated in

2.4.1.
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Figure 3.4: Comparison between the numerical solution (blue) and analytical so-
lution (red) for the angular distribution of the modulus of the potential on the
boundary around the surface of a circular cylinder with varying frequencies.(a)
k = 0.1, (b) k = 1, (c) k = 2, (d) k = 5.
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In figure 3.4 we directly compare the numerical solution to the analytical so-

lution, where the angle of incidence of the incoming wave is θ = 0, for increasing

values of k. It can be seen from the figure that the numerical solution closely

matches the analytical solution, for a relatively low number of elements. For

k = 0.1 and 1, 12 elements (24 nodes) are used, and for k = 3 and 5, we use 32

elements (64 nodes).

The rate of convergence with increasing number of elements can be quantified

by calculating the l2-norm relative error of the numerical solution. A rigorous

mathematical analysis of the convergence of the expected rate of convergence is

given in [21], and the paper [35] derives the same results from a more intuitive, less

rigorous standpoint. In this chapter, we have studied the case where the geometry

and the acoustic variables are described by their values at a discrete number of

nodes, and the discretised equation is collocated at the node points, resulting in a

system of linear equations. The integrals are calculated by Gaussian quadrature,

and the resulting linear system solved by use of the in-built Matlab backslash

operator. The above formulation results in four possible sources of error:

1. quadratric approximation of the acoustic variables,

2. quadratric approximations of the geometry,

3. the numerical integration scheme used to calculate the integrals hk
ij in the

matrix of coefficients,

4. errors in solving the system of equations (3.10).

The results of various studies into the convergence of numerical integration and

linear solvers (see for example [47] and [15]) suggest that the errors introduced by

the final two points are negligible. The effect of discretising the geometry brings

in significant errors for non-smooth shapes, where geometrical singularities occur

at corners. For this reason, for smooth bodies, we assume that the main source of

error is due to the approximations to the acoustic variables. For quadratic shape
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Figure 3.5: Error (3.31) as a function of the number of nodes M for quadratic
isoparametric elements. The blue line corresponds to a frequency of k = 1, and
the red line corresponds to a frequency of k = 5.

functions, the above papers conclude that the solution is expected to converge

cubically as the number of elements increase.

We can test this by calculating the error E in the field scattered by a circular

cylinder, as defined below. The vector φana is the analytical solution at the nodal

points, and the vector φbem is the corresponding vector of numerical values at the

nodes. The error is defined by

E =

√

√

√

√

∑M
i=1 |φana

i − φbem
i |2

∑M
i=1 |φana

i |2 . (3.31)

Figure 3.5 is a log-log plot of the relative error E for k = 1 and k = 5, as a function

of the number of nodes. It can be seen that the error at frequency corresponding

to k = 5 is higher than for k = 1, with the same discretisation, meaning that more

elements are required for higher frequencies to obtain the same accuracy of result.

Both lines have approximate gradient -3, corresponding to a cubic convergence.

The gradient of the line corresponding to k = 5 is slightly steeper than that of the
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line corresponding to k = 1, which we assume is caused by the numerical error

arising from the evaluation of the integrals.

3.4.2 Limit to concavity of the scatterer

Having established that the relative error is cubic, as stated in the literature, we

are now in a position to present results for various, non-circular shaped scatterers.

Up until this point, we have made no restrictions on the shape of the scatterer,

other than to state that the boundary must be smooth. Throughout the theory,

we have assumed that Rayleigh’s hypothesis is valid: the generating sources of

the scatterer lie inside the boundary (i.e. in S), and not in the acoustic domain

D. In this section, we describe how the relative error can be used to determine

whether or not the method described above is suitable for a given shape. We

also perform a numerical experiment to demonstrate that the method we have

described is suitable for solving shapes that are comparatively concave.

As a numerical investigation into the limit to concavity of a shape, we calculate

the acoustic potential at a discrete number of points around the boundary of a

‘peanut’-shaped scatterer with surface given by the following parametric equations:

x(θ) = cos θ

(

1 − σ cos(2θ)

1 + σ

)

, θ ∈ [0, 2π] (3.32)

y(θ) = sin θ

(

1 − σ cos(2θ)

1 + σ

)

, θ ∈ [0, 2π] (3.33)

where σ ∈ [0, 1] is a parameter that determines the concavity of the shape, as

shown in figure 3.8. The boundary element method was used to calculate the

boundary potential for the shape described above, with σ increasing in increments

of 0.1. The modulus of the boundary potential for successive values of σ up to

0.8 are plotted in figure 3.9, for an incoming plane wave at angle π/2. We can see

from these figures that the boundary potential increases smoothly from one value
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σ = 0 σ = 0.1 σ = 0.2

σ = 0.3 σ = 0.4 σ = 0.5

σ = 0.6 σ = 0.7 σ = 0.8

Figure 3.6: Change in shape of boundary ∂V defined by (3.32) and (3.33) for σ

increasing from 0 to 0.8. The typical length scale is the height of the scatterer.
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Figure 3.7: Values of the modulus of the boundary potential, defined by (3.32)

and (3.33) for the shapes corresponding to those in figure 3.8, for k = 1 and σ

increasing from 0 to 0.8, for 32 elements. The incoming wave is propagating at an

angle θ0 = π/2 from the horizontal.

of σ to the next, indicating that the boundary element formulation is likely to be

working effectively.
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In order to quantify the effect of concavity on our ability to accurately compute

a numerical solution, we consider the relative error, defiend as

Ei
R =

|φi
N − φi

N+1|
|φi

N | , (3.34)

where φi
N is the value of the potential at a location i on the boundary for a given

number of elements N . We calculate this at a node corresponding to i = 1, which is

the point at which the shape is most convex, and hence the place where we suspect

the lowest rate of convergence on the shape. The relative error was calculated for

increasing σ, and for k = 1 (fig 3.10) and k = 5 (fig 3.11).

As expected, for σ = 1, corresponding to a ‘figure of eight’ shape, the numerical

solution does not converge, due to non-uniqueness problems and discontinuities of

slope at the point at which the boundary touches. For k = 1 and for all other

values of σ considered in figure 3.10, the relative error decreases with gradient -3

on a log-log plot, indicating cubic convergence. One would expect this to be the

case for low values of σ, but the plots show that the numerical method also works

for very convex shapes, up to and including σ = 0.9. Similarly, figure 3.11 show

that the same results apply taking k = 5, the only difference being that for this

value the plots indicate that 40 elements are required for the relative error to reach

cubic convergence; this is not unexpected for larger values of the wavenumber.
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σ = 0 σ = 0.1 σ = 0.2

σ = 0.3 σ = 0.4 σ = 0.5

σ = 0.6 σ = 0.7 σ = 0.8

Figure 3.8: Change in shape of boundary ∂V defined by (3.32) and (3.33) for σ

increasing from 0 to 0.8. The typical length scale is the height of the scatterer.
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Figure 3.9: Values of the modulus of the boundary potential, defined by (3.32)

and (3.33) for the shapes corresponding to those in figure 3.8, for k = 1 and σ

increasing from 0 to 0.8, for 32 elements. The incoming wave is propagating at an

angle θ0 = π/2 from the horizontal.
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Figure 3.10: Relative convergence rate as concavity factor σ increases from 0 to

0.9 for k = 1 for angle of incidence θ0 = π/2.
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Figure 3.11: Relative convergence rate as concavity factor σ increases from 0 to

0.9 for k = 5 for angle of incidence θ0 = π/2.
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3.4.3 Results for various shaped scatterers

In the previous section 3.4.2, the notion of relative error was introduced as a

method to determine whether the above formulation is suitable for any given

shape. In this section, we first present the relative error convergence plots for

two different shapes; an ellipse and a ‘boomerang’ shape, for increasing frequency

(k = 0.1, 1, 2, 5) with an incoming plane wave of angle π/2 and the point corre-

sponding to θ = 0. Having determined that the relative error converges cubically

for each shape, the boundary element method is used to solve for the acoustic po-

tential at a discrete number of points around the boundary for increasing values of

k. Finally, the known boundary values can be substituted back into the boundary

integral equation, and hence used to obtain the field in a square region a distance

of 5 wavelengths away from the origin. We can use these plots to compare the

scattered field between non-circular and circular shaped bodies.

Ellipse

The first shape considered is an elliptical scatterer with boundary given by the

following parametric equations:

x = 2 cos t, (3.35)

y = sin t, t ∈ [0, 2π], (3.36)

i.e. eccentricity
√

3/2. Figure 3.12 shows that the relative error is converging

cubically, indicating that the boundary element solution is working as we would

expect. Having confirmed this, the acoustic potential is calculated numerically for

wavenumbers k = 0.1, 1, 2, 5. The boundary values are plotted against polar angle

θ in figure 3.13, and we can clearly see that as k increases, the ‘shadow’ region

around the back of the cylinder becomes more pronounced, and in figure 3.14 we

start to see more complicated diffraction patterns for increasing k.
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Figure 3.12: Figure to show the relative error for an ellipse, for k = 0.1, 1, 2, 5 for
an angle of incidence θ0 = π/2.
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Figure 3.13: Boundary values (modulus of potential) for an elliptical scatterer for

frequencies (a) k = 0.1, (b) k = 1, (c) k = 2 and (d) k = 5 for an incoming angle

θ0 = 0. For figures (a), (b) and (c), 40 nodes we used, whereas for (d) 100 nodes

were used.
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Figure 3.14: Density plyots of the total acoustic velocity field in the neighbourhood

of the elliptical cylinder for increasing values of frequency (k = 0.1, 1, 2, 5 from left

to right, starting in the top left). The angle of incidence is π/2, and 16 quadratic

elements were used in the numerical calculation.
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‘Boomerang’

We repeat the computations but now with a boomerang shape described by the

following parametric equations

x =
1

2
(2 cos(t) − cos(2t)), (3.37)

y =
3

2
sin(t). (3.38)

Boundary plots for increasing k are shown in figure 3.15, and similar to the elliptical

scatterer, the scattering patterns become more complicated for increasing k. The

density plots 3.16 show how the far field is affected for increasing k. As in the case

of the elliptical scatterer, the convergence of the numerical scheme is cubic.

3.5 Conclusions

In this chapter, we have formulated the problem of wave scattering from a two-

dimensional, general shaped scatterer in an infinite wave field, subject to an in-

cident plane wave. We first use Green’s theorem to express the boundary value

problem as an integral equation, before using the boundary element method to

solve for the resulting field on the boundary. We were able to show that the nu-

merical solution converges cubically, as expected, for smooth shapes. Further to

this, the method is accurate for convex shapes that would prove difficult to solve

for analytically, particularly for higher frequencies.

This chapter has served as an introduction to the techniques used throughout

this thesis, and in the next chapter we extend the method to solve for an array

of two-dimensional scatterers, before investigating the problem of scattering from

three-dimensional bodies.
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Figure 3.15: Boundary values (modulus of potential) for a ‘boomerang’ shaped
scatterer for varying frequencies (a) k = 0.1, (b) k = 1, (c) k = 2, (d) k = 5 for an
incoming angle θ0 = /pi/3. For figures (a), (b) and (c), 40 nodes we used, whereas
for (d) 100 nodes were used.
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Figure 3.16: Density plots of the total acoustic velocity field in the neighbourhood
of the ‘boomerang’-shaped cylinder for increasing values of frequency (k=0.1,1,2,5
from left to right, starting in the top left). The angle of incidence is π/2, and 16
quadratic elements were used in the numerical calculation.



Chapter 4

Scattering from a one-dimensional

array of cylindrical scatterers

4.1 Introduction

We consider the reflection and transmission of acoustic waves by an array of iden-

tical cylindrical scatterers of arbitrary cross section, that are periodically spaced

in an infinite domain of fluid. The longitudinal axes of the cylinders are perpen-

dicular to the plane of propagation of the incident wave, and so the x3 dependence

can be factored out and the problem posed is entirely two-dimensional.

86



4.1. INTRODUCTION 87

D

x1

∂V 0 ∂V M∂V 1∂V −1∂V −M

φin

x2

θ0
d

Figure 4.1: Harmonic wave, with propagation angle θ0, incident on a periodic array

of parallel equally-spaced cylinders.

The approach taken is the theory initiated by Lord Rayleigh [49]. The bound-

ary value problem is formulated as an integral equation which, as a consequence

of the periodicity of the geometry, can be reduced to an integral equation over a

single cell, the kernel of which is an infinite sum of Hankel functions, which we refer

to as a periodic Green’s function. The normal derivative of the periodic Green’s

function is slowly convergent, and to take effective advantage of the benefits pro-

vided by reducing the problem to a single cell, we must be able to evaluate such

functions accurately and efficiently. Periodic Green’s functions are encountered in

various areas of applied mathematics, such as in the study of diffraction gratings

[58] and the study of photonic crystals [32]. As a result, they are the focus of

numerous papers in the literature. A detailed review of the history and the effi-

cient evaluation of periodic Green’s functions in both two- and three-dimensions is

given by Linton [38]. In this chapter, we present a new way to evaluate the periodic

Green’s function effectively, which is easily implemented into the numerical scheme

described in the previous chapter. We truncate the sum and analytically derive an
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asymptotic expression for the infinite ‘tails’. We further verify that this method

dramatically improves the rate of convergence of the periodic Green’s function,

with very little effect on the computation time.

The reduced integral equation is solved numerically by the boundary element

method, using quadratic isoparametric elements. The reflection and transmission

coefficients are calculated by an application of Green’s theorem to the total field,

following the steps in [4]. We use this paper to verify our results for an array of

circular cylinders, before presenting the reflection and transmission coefficients for

arrays of non-circular cylinders.

This chapter is arranged as follows: we first set up the boundary value prob-

lem and define the reflection and transmission coefficients that we wish to calculate

before expressing the problem as a boundary integral equation over a single cell

of the array. We then go on to discuss the convergence of the periodic Green’s

function and derive a first order correction term for the truncated sum, present-

ing results to confirm the improved convergence rate. We then describe how to

calculate the reflection and transmission coefficients, before briefly describing the

numerical method used to solve the integral equation. Finally we present results

for the reflection and transmission coefficients and conclude the chapter.

4.2 Problem statement

A plane time-harmonic wave of the form

φin(x, y) = e−ikp·x (4.1)

is incident on an infinite array of rigid cylindrical rods in an acoustic medium. The

vector p is the propagation vector

p = (cos θ0, sin θ0), 0 ≤ θ0 ≤ 2π (4.2)
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where θ0 is the angle of incidence of the incoming plane wave. The longitudinal

axis of each of the cylinders is parallel to the x3-axis, and they are equally spaced

with distance d along the x1-axis of a Cartesian coordinate system. As in the

previous chapter, the depth dependence is factored out and the resulting problem

is fully two-dimensional. The radius of each of the cylinders is characterised by

a typical length scale a, and the mth cylinder is denoted Sm. The surface of

the scatterer Sm is denoted ∂V m, and so the infinite domain D is bounded by

∂D =
⋃

m ∂V m, ∀m ∈ Z. The geometry of the problem is shown in figure 4.1.

The total field, φ(x1, x2) can be written as the sum of the incident wave field

and the scattered field φsc(x1, x2) in the usual way

φ(x) = φin(x) + φsc(x) (4.3)

and the boundary conditions to be applied are

∂φ

∂n
= 0, x ∈ ∂V m ∀m ∈ Z. (4.4)

The acoustic field φ(x) satisfies Helmholtz equation in the region exterior to

the scatterers,

∇2φ(x) + k2φ(x) = 0, (4.5)

where ∇2 is the two-dimensional Laplacian.

By equations (4.1), (4.3), (4.5), and the periodic geometry of the scatterers, it is

evident that the scattered field φsc(x) also satisfies the two-dimensional Helmholtz

equation, which can be solved by separation of variables to give

φsc
±(x) =

∞
∑

n=−∞

Φn
±e−iγnx1∓i(k2−γ2

n)
1
2 x2, (4.6)

where the upper and lower signs ± refer to the transmitted/reflected field respec-

tively, and the quantities γn are to be determined. The quantities Φn
± are constants
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related to the reflection and transmission coefficients, and we discuss this later in

this chapter. The scattered field can be simplified by writing

φsc
±(x) = φ̂sc

±(x)e−ikx1 cos θ0 , (4.7)

where we have explicitly factored out the phase factor in common with the incident

wave. As a consequence of (4.7) and the geometrical periodicity of the array, the

following relation holds

φ̂sc
±(x1, x2) = φ̂sc

±(x1 + md, x2). (4.8)

Expression (4.8) can be used to determine the quantities γn in equation (4.6) as

γn = k cos θ0 +
2πn

d
(4.9)

and so

φsc
±(x) =

∞
∑

n=−∞

Φn
±e−i(k cos θ0+ 2πn

d
)x1∓iαnx2, (4.10)

where we have defined αn by

α2
n = k2 −

(

k cos θ0 +
2πn

d

)2

, (4.11)

where αn is taken to be positive if it is real, and to have positive imaginary part

if not.

Now, by equations (4.1), (4.3) and (4.10), for x2 < 0, the total transmitted

field can be expressed as

φ(x) = (1 + Φ0
+)e−ik cos θ0x1−ik sin θ0x2 +

∞
∑

n=−∞
n 6=0

Φn
+e−i(k cos θ0+ 2πn

d )x1−iαnx2 , (4.12)

and for x2 > 0 the total field, including the reflected component is

φ(x) = e−ik cos θ0x1−ik sin θ0x2 + Φ0
−e−ik cos θ0x1+ik sin θ0x2 (4.13)

+
∞
∑

n=−∞
n 6=0

Φn
−e−i(k cos θ0+ 2πn

d )x1+iαnx2.



4.3. BOUNDARY INTEGRAL EQUATION 91

From equations (4.12) and (4.13), it is evident that the total field consists of an

infinite discrete set of wave modes; for a given frequency only a finite number of

these modes will be propagating. As the frequency increases to make α2
n > 0,

the nth wave mode will cut-on and convert from a evanescent wave mode to a

propagating mode. From the above expression, it is evident that the cutting on of

a higher order mode is equivalent to the cutting-on of a plane wave, propagating

at an angle different to that of the incident wave. The zeroth order wave mode is

always propagating (since α2
0 > 0 ∀k), and as the frequency increases more modes

will cut on. This is discussed further in section 4.7 of this thesis.

4.3 Boundary integral equation

To formulate an integral equation representation of this problem, we follow the

method described in chapter 2.4.2. The region DR to which we apply Green’s

theorem is enclosed within a large circle, with boundary ∂SR, and is exterior to a

finite number of cylinders
M
∑

m=−M

∂V m, (4.14)

where M is such that the array is contained inside ∂VR, as shown in figure 4.2.

We later take the value M → ∞. Note that xs lies in DR.

From equation (2.47) we have

φ(x, xs) = κG(xs, x) +
M
∑

m=−M

∫

∂V m
φ(ξ, xs)

∂G

∂n
(ξ, x)dS(ξ)

−
∫

∂VR

(

G(ξ̂, x)
∂φ

∂n
(ξ̂, xs) − φ(ξ̂, xs)

∂G

∂n
(ξ̂, x)

)

dS(ξ̂), ξ̂ ∈ ∂VR, (4.15)

where we have applied the boundary condition (4.4) on the surface of the cylinders,

and the hat notation indicates that the variable ξ̂ is on the boundary ∂VR. If we

follow precisely the same procedure as used in chapter 3, then we see that the
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∂VRR

Figure 4.2: Region to which Green’s theorem is applied to derive the boundary
integral equation representation of the boundary value problem described in section
4.2.
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integral over the large circle VR will tend to 0 as the radius R → ∞. Similarly, if

we take the point xs to a point at infinity and choose the value of κ to be

κ = 2(1 − i)
√

πe−ikaR1

√

kaR1, (4.16)

as described in Appendix A.1, then we yield a boundary integral equation

φ(x) = φin(x) +
M
∑

m=−M

∫

∂V m

(

φ(ξ)
∂G

∂n
(ξ, x)

)

dS(ξ) x /∈ ∂V m, ξ ∈ ∂V m.

(4.17)

for a finite number of cylinders, insonified by a plane wave. We can now allow

M → ∞, so that the integral equation (4.17) becomes

φ(x) = φin(x) +
∞
∑

m=−∞

∫

∂V m

(

φ(ξ)
∂G

∂n
(ξ, x)

)

dS(ξ) x /∈ ∂V m, ξ ∈ ∂V m.

(4.18)

As in the single scatterer case, the Green’s function G(x, ξ) is a Hankel function

of the first kind,

G(x, ξ) = − i

4
H

(1)
0 (k|ξ − x|). (4.19)

Now define a cell Ap by

pd − d

2
≤ x1 ≤ pd +

d

2
, (4.20)

and let x0 = (x0
1, x0

2) and ξ0 = (ξ0
1 , ξ0

2) be points in the zeroth cell A0. For two

arbitrary points xp = (xp
1, xp

2), ξm = (ξm
1 , ξm

2 ), the following relations can be used

to relate the coordinates in the p and mth cell to those in the zeroth cell:

xp
1 = x0

1 + pd, xp
2 = x0

2, (4.21)

ξm
1 = ξ0

1 + md, ξm
2 = ξ0

2 . (4.22)

By these relations, the incident field (4.1) can be written as

φin(xp) = e−ik cos θ0(x0
1+pd)−ik sin θ0x0

2, (4.23)

= φin(x0)e−ikpd cos θ0. (4.24)
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The form of the incident wave and the periodic geometry now suggests, as discussed

in section 4.2, that the total field will be of the form

φ(xp) = φ(x0)e−ikpd cos θ0 . (4.25)

We can therefore write

r = ξm − xp, (4.26)

so that by relations (4.21) and (4.22) we have

|r| = [(x0
1 + d(p − m) − ξ0

1)2 + (x0
2 − ξ0

2)2]
1
2 = rp−m. (4.27)

Substituting p − m = m̂ and dropping the hat notation yields

rm = [(x0
1 + dm − ξ0

1)2 + (x0
2 − ξ0

2)2]
1
2 . (4.28)

Using expressions (4.19), (4.24), (4.25) and (4.28), the integral equation for the

infinite problem (4.17) can be reduced to a boundary integral equation on a single

cylinder ∂V 0,

φ(x0) = φin(x0) +
∫

∂V 0
φ(ξ0)

∂GP

∂n
(x0, ξ0)dS, x /∈ ∂V 0, ξ ∈ ∂V 0, (4.29)

where GP (x0, ξ0) is the periodic Green’s function

GP (x0, ξ0) = − i

4

∞
∑

m=−∞

eikdm cos θ0H
(1)
0 (krm). (4.30)

The above analysis has shown that using the periodicity of the geometry and

the incoming wave, rather than integrating over each of the cylinder surfaces, we

are able to integrate over the surface of a single reference cylinder, ∂S0. As a

consequence, the kernel of equation (4.29) is a sum of Hankel functions, which we

refer to as a periodic Green’s function. In order for the reduction to a single cell

to be advantageous, we must be able to evaluate the summation (4.30) quickly

and efficiently. In the following section, we investigate the convergence properties

of the sum, and describe a novel way of evaluating the periodic Green’s function

that can easily be implemented into the numerical scheme.
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4.4 Convergence of the periodic Green’s func-

tion

The normal derivative of the periodic Green’s function can be calculated using the

identity
∂GP

∂n
(x0, ξ0) = n · ∇ξ0GP (x0, ξ0), (4.31)

where n is the unit normal pointing into the body and ∇ξ0GP (x0, ξ0) represents

the gradient of the periodic Green’s function with respect to ξ0, the components

of which are

∂GP

∂ξ0
1

(x0, ξ0) = −ik

4

∞
∑

m=−∞

eikdm cos θ0(x0
1 + dm − ξ0

1)H
(1)
1 (krm)

rm
, (4.32)

∂GP

∂ξ0
2

(x0, ξ0) = −ik

4

∞
∑

m=−∞

eikdm cos θ0(x0
2 − ξ0

2)H
(1)
1 (krm)

rm
, (4.33)

where

rm = [(x0
1 + dm − ξ0

1)2 + (x0
2 − ξ0

2)2]
1
2 . (4.34)

To calculate the rate of convergence of the summations, let

u = x0
1 − ξ0

1 , (4.35)

v = x0
2 − ξ0

2 , (4.36)

where we assume u and v are O(1) quantities. Substituting this into expression

(4.34) yields

krm = kd|m|
(

1 +
2u

dm
+

(u2 + v2)

(dm)2

) 1
2

, (4.37)

and the series expansion for large m yields

krm ∼ kd|m| + k sgn(m)u + O
(

1

m

)

. (4.38)

The far field expansion of H
(1)
1 (z) is given by [1],

H
(1)
1 (z) ∼

√

2

πz
ei(z− 3π

4
). (4.39)
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By substituting expressions (4.38) and (4.39) into equation (4.32), we can see that

for large m,

∂GP

∂ξ1

(x0, ξ0)

∣

∣

∣

∣

∣

mth term

∼ −ik

4

eikdm cos θ0 (u + dm)

kd|m|

√

2

πkd|m|e
i(kd|m|− 3π

4
)eiku sgn(m).

(4.40)

Similarly, by expression (4.33) we have

∂GP

∂ξ2
(x0, ξ0)

∣

∣

∣

∣

∣

mth term

∼ −ik

4

eikdm cos θ0 (v)

kd|m|

√

2

πkd|m|e
i(kd|m|− 3π

4
)eiku sgn(m). (4.41)

It is evident from the above two expressions that the derivative of the Green’s

function with respect to ξ1 decays as |m|−1/2, and so dominates the convergence

of ∂Gp/∂n, since the derivative with respect to ξ2 converges more quickly in m (as

O(m− 3
2 )). The convergence of ∂GP /∂n is therefore comparatively slow, and for

numerical purposes we seek a representation of the Green’s function that converges

at a faster rate.

The approach generally taken in the literature to evaluate periodic Green’s

function is that due to Ewald [39] and [6]. Given a slowly convergent sum over an

array Λ,
∑

Λ

Φ(Rm), (4.42)

the idea of the Ewald summation is to introduce the function F (Rm), which tends

rapidly to zero as |Rm| → 0, and write the slowly convergent sum as

∑

Λ

Φ(Rm) =
∑

Λ

Φ(Rm)F (Rm) +
∑

Λ

Φ(Rm) (1 − F (Rm)) , (4.43)

so that the first sum on the right hand side can be easily computed, and the

second sum, although still slowly convergent, can be calculated by application of

the Poisson summation formula. For further details of this method, the reader is

referred to the comprehensive review by Linton [39].

In this chapter, we present an alternative approach to calculating a faster

converging representation of the periodic Green’s function, whereby we truncate

the summation and asymptotically calculate a first order correction term.
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We begin by truncating the sum of expression (4.32) at the Mth cylinder, and

define σ1 and σ2 to be

σ1 = −ik

4

∞
∑

m=M+1

eikdm cos θ0(x0
1 + dm − ξ0

1)H
(1)
1 (krm)

rm

, (4.44)

and

σ2 = −ik

4

−(M+1)
∑

m=−∞

eikdm cos θ0(x0
1 + dm − ξ0

1)H
(1)
1 (krm)

rm

, (4.45)

so that the total sum can be expressed as

∂GP

∂ξ1
(x0, ξ0) = −ik

4

M
∑

m=−M

eikdm cos θ0(x0
1 + dm − ξ0

1)H
(1)
1 (krm)

rm
+ σ1 + σ2. (4.46)

The aim of this section is to calculate an asymptotic approximation for the sums

σ1 and σ2 for sufficiently large M .

For large m, we can use expressions (4.39) and (4.38) to write

σ1 ∼ −ik

4

∞
∑

m=M+1

eikdm cos θ0dm

d|m|

√

2

πkrm

eikrm− 3πi
4 , (4.47)

and

σ2 ∼ −ik

4

−(M+1)
∑

m̂=−∞

eikdm̂ cos θ0dm̂

d|m̂|

√

2

πkrm̂

eikrm̂− 3πi
4 . (4.48)

Writing m = −m̂ in the second summation, and adding σ1 to σ2, results in

σ1 + σ2 ∼ −ik

4
e− 3πi

4

√

2

πkd

∞
∑

m=M+1

(

eikdm(cos θ0+1)+iku − eikdm(1−cos θ0)−iku

√
m

)

. (4.49)

Now let m = M + 1 + p, and after some rearranging equation (4.49) becomes

σ1 + σ2 =∼ −ke− πi
4

4

√

2

πkd



eikd(M+1)(1+cos θ0)+iku
∞
∑

p=0

eikdp(cos θ0+1)

(M + 1 + p)
1
2

− eikd(M+1)(1−cos θ0)−iku
∞
∑

p=0

eikdp(1−cos θ0)

(M + 1 + p)
1
2



 . (4.50)

The first summation of equation (4.50) can be written as

∞
∑

p=0

eikdp(cos θ0+1)

(M + 1 + p)
1
2

= Φ
[

eikd(cos θ0+1),
1

2
, M + 1

]

, (4.51)
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where Φ [z, s, a] is the Lerch transcendent, a generalisation of the Hurwitz zeta-

function and the poly-logarithm, which admits the following integral representation

[25]

Φ [z, s, a] =
1

Γ(s)

∫ ∞

0

ts−1e−at

1 − ze−t
dt (4.52)

and so the summation (4.51) can expressed in integral form as

∞
∑

p=0

eikdp(cos θ0+1)

(M + 1 + p)
1
2

=
1√
π

∫ ∞

0

t− 1
2 e−(M+1)t

1 − eikd(cos θ0+1)−t
dt. (4.53)

Making the change of variable t = q/(M + 1), we have

∞
∑

p=0

eikdp(cos θ0+1)

(M + 1 + p)
1
2

=
1√
π

∫ ∞

0

(

M + 1

q

) 1
2 e−q

(

1 − eikd(cos θ0+1)e
−q

M+1

)

dq

(M + 1)
. (4.54)

As M → ∞, e
−q

M+1 → 1, and so for sufficiently large M

∞
∑

p=0

eikdp(cos θ0+1)

((M + 1) + p)
1
2

∼ 1√
π

1√
M + 1

1

(1 − eikd(cos θ0+1))

∫ ∞

0

e−q

√
q

dq, (4.55)

and the integral on the right hand side of this expression can be evaluated as
√

π,

and so ultimately

∞
∑

p=0

eikdp(cos θ0+1)

((M + 1) + p)
1
2

∼ 1√
M + 1

1

(1 − eikd(cos θ0+1))
. (4.56)

The same procedure can be followed to show that

∞
∑

p=0

eikdp(1−cos θ0)

((M + 1) + p)
1
2

∼ 1√
M + 1

1

(1 − eikd(1−cos θ0))
. (4.57)

Therefore, if we truncate the normal derivative of the periodic Green’s function at

m = ±M , the first order correction term is found by substituting equations (4.56)

and (4.57) into (4.50):

σ1 + σ2 = −e− πi
4

4

√

2

πkd

1√
M + 1

[

eikd(M+1)(1+cos θ0)+ik(x−ξ1)

(1 − eikd(cos θ0+1))

− eikd(M+1)(1−cos θ0)−ik(x−ξ1)

(1 − eikd(1−cos θ0))

]

+ O

(

1

(M + 1)
3
2

)

. (4.58)
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With this first order correction, the periodic Green’s function can be expressed

as

∂GP

∂n
(x0, ξ0) = −n1

ik

4

M
∑

m=−M

eikdm cos θ0(x1 + dm − ξ1)H1(krm)

rm

− n2
ik

4

M
∑

m=−M

eikdm cos θ0(x2 − ξ2)H1(krm)

rm
+

n1



−e− πi
4

4

√

2

πkd

1√
M + 1

[

eikd(M+1)(1+cos θ0)+ik(x−ξ1)

(1 − eikd(cos θ0+1))

− eikd(M+1)(1−cos θ0)−ik(x−ξ1)

(1 − eikd(1−cos θ0))

])

+ O

(

1

(M + 1)
3
2

)

. (4.59)

By adding in the correction term we are able to calculate the Green’s function

with error (M +1)−3/2. Although, as previously mentioned, such summations have

already been studied in various literature, adding such a simple correction term

allows for the Green’s function to be calculated easily and efficiently numerically.

4.4.1 Numerical verification

We are able to qualitatively show the effect of the correction term on the truncated

sum by considering the periodicity of ∂GP /∂n as x1 varies, with and without the

correction term. It is clear from the form of the periodic Green’s function that

the value of ∂GP /∂n is periodic with period d, where ∂/∂n denotes the directional

derivative on the boundary of the scatterer. Figure 4.3 shows the effect of adding in

the first order correction term on the periodicity of the function. For 101 cylinders

(corresponding to a value of M = 50 in equation (4.59)), the plots show the

absolute value of the periodic Green’s function as x1 increases, with source points

located a distance d/a = 5 apart, and random values between -1 and 1 are chosen

for n1 and n2. The blue plot corresponds to the value of the uncorrected sum,

truncated at M = 50. It is obvious that the sum is far from having converged,

and has the form of an amplitude modulated wave. The error is calculated by
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estimating the values at the maxima, and subtracting the least from the greatest;

it is found to be O(10−2). In contrast, the red plot has the addition of the first

order correction term, given explicitly in equation (4.59). It is clear from this plot

that the Green’s function displays more closely periodic peaks and troughs, and

the error is calculated to be O(10−3), agreeing with the error predicted by the

correction term.

We can quantify the effect of the correction term by investigating the value of

the uncorrected sum compared with the corrected sum for increasing values of M .

The plots shown in figures 4.4, 4.5, 4.6 and 4.7 display the absolute value of the

normal derivative ∂GP /∂n for M increasing from 60 to 600, for the uncorrected

truncated sum (blue) and corrected (red). For each plot, the values of k, d and

θ0 are given, and all other parameters of equation (2.59) are chosen to be random

numbers between 0 and 1, so as to show representative results. The dramatic

increase in the rate of convergence indicates that for all frequencies considered in

this thesis, the correction term (4.59) provides an efficient and accurate way to

accelerate convergence.
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Figure 4.3: Absolute value of the uncorrected (blue) and corrected (red) normal

derivative of the periodic Green’s function for 101 circular cylinders with a spacing

of k = 5, as a function of x1.
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Figure 4.4: Figure, for M increasing from 50 to 600, indicating the convergence of (a) the uncorrected periodic
Green’s function, (b) the Green’s function including the correction term and (c) a direct comparison of the two.
Note the different vertical scales in (a) and (b). The parameter values were set to ka = 0.1, d = 3 and θ0 = π/3.
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Figure 4.5: Figure, for M increasing from 50 to 600, indicating the convergence of (a) the uncorrected periodic
Green’s function, (b) the Green’s function including the correction term and (c) a direct comparison of the two.
Note the different vertical scales in (a) and (b). The parameter values were set to ka = 1, d = 5 and θ0 = π/4.
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Figure 4.6: Figure, for M increasing from 50 to 600, indicating the convergence of (a) the uncorrected periodic
Green’s function, (b) the Green’s function including the correction term and (c) a direct comparison of the two.
Note the different vertical scales in (a) and (b). The parameter values were set to ka = 2, d = 5 and θ0 = π/5.
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Figure 4.7: Figure, for M increasing from 50 to 600, indicating the convergence of (a) the uncorrected periodic
Green’s function, (b) the Green’s function including the correction term and (c) a direct comparison of the two.
Note the different vertical scales in (a) and (b). The parameter values were set to ka = 5, d = 10 and θ0 = π/2.
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Figure 4.8: Unit cell for application of the reciprocal identity.

4.5 Reflection and transmission coefficients

To quantify the energy transmitted through the array, compared to the energy

reflected by it, we determine the reflection and transmission coefficients, which we

define to be

T0 = 1 + Φ0
+, (4.60)

Tn = Φn
+, for n ∈ {Z/0}, (4.61)

Rn = Φn
−, for n ∈ Z, (4.62)

where the quantities Φn
± are as defined in (4.6).

In order to numerically determine the reflection and transmission coefficients,

we follow the approach taken by Achenbach [4], which is to express Tn and Rn

as integrals over the surface of the central cylinder. This approach requires that
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the acoustic potential on the surface of the central cylinder is known, which we

calculate later in this chapter numerically using the boundary element method.

From equations (4.12) and (4.13), in the region x2 < 0 the total field is given

by

φ(x) = (1 + Φ0
+)e−ik cos θ0x1−ik sin θ0x2 +

∞
∑

n=−∞
n 6=0

Φn
+e−i(k cos θ0+ 2πn

d )x1−iαnx2, (4.63)

and in the region x2 > 0

φ(x) = e−ik cos θ0x1−ik sin θ0x2 + Φ0
−e−ik cos θ0x1+ik sin θ0x2 (4.64)

+
∞
∑

n=−∞
n 6=0

Φn
−e−i(k cos θ0+ 2πn

d )x1+iαnx2 .

where

α2
n = k2 −

(

k cos θ0 +
2πn

d

)2

. (4.65)

For the purpose of calculating the reflection and transmission coefficients, we

introduce the following auxiliary functions:

φA,n
± (x) = ei(k cos θ0+ 2πn

d )x1±iαnx2, n ∈ Z, (4.66)

both of which satisfy Helmholtz equation. Applying Green’s theorem to the region

enclosed by the contour L, as shown in figure 4.8 gives

∫

L

[

φ(x)
∂φA,n

∓

∂n
(x) − φA,n

∓ (x)
∂φ

∂n
(x)

]

dS = 0. (4.67)

Because of the periodicity, as in equation (2.8), the integrals over l1 and l3 will

cancel, resulting in

∫

∂V 0

[

φ(x)
∂φA,n

∓

∂n
(x) − φA,n

∓ (x)
∂φ

∂n
(x)

]

dS = −
∫

l2+l4

[

φ(x)
∂φA,n

∓

∂n
(x) − φA,n

∓ (x)
∂φ

∂n
(x)

]

dS.

(4.68)
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Substituting equations (4.63) and (4.64) into (4.68), the right hand side can be

integrated over the lines l2 and l4. Noting that ∂φ/∂n = 0 on the boundary ∂V 0,

equation (4.68) can be re-expressed as

Φn
∓ =

1

2idαn

∫

∂V 0
φ(x)

∂

∂n
ei(k cos θ0+ 2πn

d )x1∓iαnx2dS, (4.69)

where n is the inward pointing normal to S0. Equation (4.69) is an explicit expres-

sions for the Φn
± coefficients, which can be calculated by numerical integration, pro-

vided that the boundary velocity potential is known. In the following section, we

describe how this can be calculated numerically by the boundary element method,

before using the boundary values and equation (4.69) to calculate the reflection

and transmission coefficients.

4.6 Discretisation and numerical solution

The governing boundary integral equation, valid for any point within the domain

D, as derived in section 4.3, is repeated here for reference

φ(x0) = φin(x0) +
∫

∂S0
φ(ξ0)

∂GP

∂n
(x0, ξ0)dS(ξ0) x0 /∈ ∂S0, ξ0 ∈ ∂S0. (4.70)

In order to apply the collocation method, as described in chapter 2, the field

point x0 is moved onto the boundary ∂V 0. The integrand is singular at the point

where x0 = ξ0, since the periodic Green’s function is a sum of zero order Hankel

functions. Qualitatively, this is the same problem experienced in section A.2, and

so following the same process as described in section A.2, the overall governing

integral equation is given by

1

2
φ(x0) = φin(x0) +

∫

∂V 0
φ(ξ0)

∂GP

∂n
(x0, ξ0)dS(ξ0) x0, ξ0 ∈ ∂S0. (4.71)

Let us now consider how equation (4.71) can be discretised. The contour ∂V 0

is divided into N elements

∂V 0 =
N
∑

j=1

Γj , (4.72)
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which have node points at each end and at the centre of the element. We assume

quadratic isoparametric elements so that the shape functions specify both the

variation in the geometry and the variation in the unknown boundary potential,

and are given explicitly by

Ψ1(ν) =
1

2
ν(ν − 1), (4.73)

Ψ2(ν) = (ν + 1)(1 − ν), (4.74)

Ψ3(ν) =
1

2
ν(ν + 1). (4.75)

We seek to find the boundary values at the node points. Following the procedure

described in chapter 2.5.3, we arrive at the following discretised boundary integral

equation:

1

2
φ(x0) = φin(x0) +

(

h1
1(x

0) + h3
N (x0)

)

φ1+

2N−1
∑

j=1
j odd

(

h3
j−1

2
(x0) + h1

j+1
2

(x0)
)

φj +
2N
∑

j=2
j even

h2
j

2
(x0)φj, (4.76)

where

hk
j (x0) = −

∫ 1

ν=−1
Ψk(ν)

∂GP

∂n
(ξ0

j (ν), x0)|Jj(ν)|dν. (4.77)

With an anticlockwise relabelling system, equation (4.76) can be arranged to the

final, discretised equation,

1

2
φi = φin

i +
(

h1
i1 + h3

iN

)

φ1 +
2N−1
∑

j=1
j odd

(

h3

i
(j−1)

2

+ h1

i
(j+1)

2

)

φj +
2N
∑

j=2
j even

h2
i j

2
φj (4.78)

for i = 1, . . . , 2N . Equation (4.78) is collocated at the 2N nodes around the

boundary, resulting in a linear system of equations of the form

[

1

2
I − H

]

Φ = Φin, (4.79)

where H is the matrix of coefficients. The solution to the system (4.79) is the

value of the acoustic potential at the nodal points of the discretised shape ∂S0.
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The integrals hk
ij are evaluated in virtually the same was as that described in

the previous chapter, section 3.3.1, the only difference being the Green’s function

is a sum of Hankel functions, rather than a single Hankel function. Since the only

term in the summation of the periodic Green’s function that becomes singular is

the H
(1)
1 (kr0) term, there are no further complexities introduced in this section

with regards to evaluating the matrix H and the reader is referred to chapter 3.3.1

for a description of how to evaluate the components.

4.7 Results

4.7.1 Boundary values

The solution to (4.79) is a vector of the nodal values of the acoustic potential on

the boundary of the scatterer. In chapter 3.4.1, we showed that for a selection

of different shaped scatterers, the numerical scheme converges cubically, as pre-

dicted. Since there is qualitatively no difference in the numerical scheme in this

chapter, we do not concern ourselves with the convergence of the boundary ele-

ment method. Rather, we are more concerned with the convergence of the periodic

Green’s function.

In section 4.4, we verified that the derived correction term for the truncated

summation dramatically improves the convergence rate of the periodic Green’s

function. To further strengthen this result, figures 4.9, 4.10 and 4.11 show how

the value of the acoustic potential on the first node converges in M , for both the

cases without and with the correction term.

It is clear from figure 4.9 (b) that the formulation including the corrected

Green’s function convergences at a much faster rate than that without. From the

plot, we can see that for M greater than approximately 175 in the sum of expression

(4.59), there is a slight oscillation to O(10−3). For M > 200, the corrected Green’s
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Figure 4.9: Plot indicating the convergence of the nodal values for a circular
scatterer for ka = 0.1 with incoming angle π/2. The vertical axis is the value
of the acoustic potential at the first node, for increasing values of M . Figure
(a) shows the value without the correction term, (b) shows the value with the
correction term and (c) shows the values from (a) and (b) plotted together; note
the diferent vertical scales in the first two plots.

function has no visible oscillation. Similarly, from 4.10 and 4.11, we can see that

for M ∼ 200 the corrected Green’s function has converged much faster.

Now that we have established that for M = 200 the corrected Green’s function

has converged to a much greater degree, we are in a position to present some results

for the boundary value of the acoustic potential. Figures 4.12, 4.13, 4.14 and 4.15

indicate how the value around the boundary of cylinder at the origin varies for

different frequencies, various shapes and for two different incident angles. In each

figure, the plots labelled (a) are for an incident wave that is normal to the array

(θ0 = π/2), and the plots labelled (b) are for an incident angle of π/3. In each



112 CHAPTER 4. TWO DIMENSIONAL ARRAYS

200 400 600 800 1000

1.275

1.280

1.285

1.290

1.295

1.300

1.305

1.310

200 400 600 800 1000

1.29620

1.29622

1.29624

1.29626

200 400 600 800 1000

1.275

1.280

1.285

1.290

1.295

1.300

1.305

1.310

M

MM

(a) (b)

(c)

Figure 4.10: Plot indicating the convergence of the nodal values for a circular
scatterer for ka = 1 with incoming angle π/2. The vertical axis is the value of the
acoustic potential at the first node, for increasing values of M . Figure (a) shows
the value without the correction term, (b) shows the value with the correction
term and (c) shows the values from (a) and (b) plotted together; note the diferent
vertical scales in the first two plots.

case, the shape of the scatterer is shown by a grey line, and the solid blue/purple

lines, for an incoming wave of angle π/2 and π/3 respectively, are the boundary

values around the central cylinder of the array. For reference, the corresponding

boundary values are shown for a single cylinder as a dashed line. In each case, the

non-dimensional spacing d/a is set to 5 and the dimensionless wave number k is

respectively 0.1, 1, 2 and 5 in the four figures.

As we would expect, for ka = 0.1, for all shapes, the value around the bound-

ary remains almost identical to the single scatterer, and for this small value we

would expect the plane wave to be almost entirely transmitted through the array.
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Figure 4.11: Plot indicating the convergence of the nodal values for a circular
scatterer for ka = 2 with incoming angle π/2. The vertical axis is the value of
the acoustic potential at the first node, for increasing values of M . Figure (a)
shows the value without the correction term, (b) shows the values from (a) and
(b) plotted together; note the diferent vertical scales in the first two plots.

Similarly, for ka = 1 and for normal angle of incidence, the boundary values for

each shape have a similar shape to the single scatterer case. The boundary values

that are most changed by the presence of the array are those for an ellipse, which

would be expected due to the scatterers being wider and therefore closer together.

For an angle of incidence π/3, the boundary values start to lose the symmetry

that they display for normal incidence, and figure 4.13 (f) has an interesting cusp

at the point corresponding to 3π/2.

As the frequency increases to ka = 2, figure 4.14 reveals that the potential

on the boundary is significantly different from the single scatterer plot, and for

incident angle π/3 the asymmetry is obvious. Increasing the frequency to ka = 5,
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so that the wavelength is comparable to the size of the scatterer, we see from figure

4.15 that diffraction patterns are forming around the surface of the scatterer.
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Figure 4.12: Boundary values for various shaped cylinders for ka = 0.1 for a non-

dimensional spacing kd = 5. The plots in the left column show the boundary value

for an incoming wave that is normal to the array (θ0 = π/2), and the plots in the

right column are the boundary values for an incoming wave at an angle π/3 to the

horizontal. In each plot, the grey line shows the shape of the cylinder, the dashed

line shows the corresponding boundary value for a single scatterer, and the solid

line is the boundary value of the central cylinder in the array.
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Figure 4.13: Boundary values for various shaped cylinders for ka = 1 for a non-

dimensional spacing kd = 5. The plots in the left column show the boundary value

for an incoming wave that is normal to the array (θ0 = π/2), and the plots in the

right column are the boundary values for an incoming wave at an angle π/3 to the

horizontal. In each plot, the grey line shows the shape of the cylinder, the dashed

line shows the corresponding boundary value for a single scatterer, and the solid

line is the boundary value of the central cylinder in the array.



4.7. RESULTS 117

-2 -1 1 2

-1

1

2

-2 -1 1 2

-1

1

2

-2 -1 1 2

-1

1

2

-2 -1 1 2

-1

1

2

-2 -1 1 2

-1

1

2

-2 -1 1 2

-1

1

2

(a) (b)

(c) (d)

(e) (f)

Figure 4.14: Boundary values for various shaped cylinders for ka = 2 for a non-

dimensional spacing kd = 5. The plots in the left column show the boundary value

for an incoming wave that is normal to the array (θ0 = π/2), and the plots in the

right column are the boundary values for an incoming wave at an angle π/3 to the

horizontal. In each plot, the grey line shows the shape of the cylinder, the dashed

line shows the corresponding boundary value for a single scatterer, and the solid

line is the boundary value of the central cylinder in the array.
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Figure 4.15: Boundary values for various shaped cylinders for ka = 5 for a non-

dimensional spacing kd = 5. The plots in the left column show the boundary value

for an incoming wave that is normal to the array (θ0 = π/2), and the plots in the

right column are the boundary values for an incoming wave at an angle π/3 to the

horizontal. In each plot, the grey line shows the shape of the cylinder, the dashed

line shows the corresponding boundary value for a single scatterer, and the solid

line is the boundary value of the central cylinder in the array.
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4.7.2 Reflection and transmission

Expressions (4.12) and (4.13) indicate that reflected and transmitted waves are of

the form

Φn
∓e−i(k cos θ0+ 2πn

d )x1±iαnx2, (4.80)

where the ± corresponds to the reflected/transmitted wave fields respectively, and

Φn
± are related to the reflection and transmission coefficients Rn and Tn by relations

(4.60), (4.61) and (4.62), and can be found using the method described in section

4.5. We can see from the form of (4.80), that the nth mode will be propagating

providing that αn is real valued, i.e. α2
n > 0. In the case where αn is complex, the

pth wave mode will be evanescent, where |p| ≥ n.

From equation (4.11), the nth mode will be propagating if the following con-

dition holds:

k >
∣

∣

∣

∣

k cos θ0 +
2πn

d

∣

∣

∣

∣

. (4.81)

Therefore, for n > 0, the cut-on frequency k+
n for the nth mode is

k+
n =

2πn

d(1 − cos θ0)
, (4.82)

and for n < 0 the cut-on frequency k−
n for the nth mode is

k−
n =

−2πn

d(1 + cos θ0)
. (4.83)

For normal incidence, that is θ0 = π/2, it is clear from the above two expressions

that the positive and negative modes begin propagating at the same frequency.

However, for all other values of θ0, the negative modes will begin to propagate

before the corresponding positive mode. For example, for an angle of incidence

θ0 = π/3 and dimensionless spacing of 5, the cut-on frequency of the n = 1 mode

is k+
1 = 4π/5, whereas the cut-on frequency of the n = −1 mode is k−

1 = 4π/15.

Numerical calculations were carried out to determine the reflection and trans-

mission coefficients for an array with non-dimensional spacing d/a = 5, for varying
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angles of incidence θ0 and various shapes. The absolute values of the reflection

and transmission coefficients for each array are shown in figures (4.16-4.18). In

each case, 24 elements were used, making a total of 48 nodes.

In figure 4.16, we see that for an incident wave that is normal to the array,

the first order modes, both positive and negative, begin propagating at k = 2π/5.

Subsequently, the second order modes begin propagating at k = 4π/5, and these

can clearly be seen in the figure. At the cut-on frequencies, there are sharp changes

in the reflection and transmission coefficients, because the energy is redistributed

over a larger number of propagating modes [4]. It can be seen from equations

(4.65)-(4.69) that, for a normally incident wave,

αn = α−n, (4.84)

and

(Φn
∓)∗ = Φ−n

∓ ; (4.85)

hence equation (4.69) gives

(Rn)∗ = R−n and (Tn)∗ = T−n. (4.86)

Figure 4.17 shows the absolute values of the reflection and transmission coeffi-

cients for a wave of angle of incidence π/3 on an array of cylinders, and compares

results for circular cylinders with those for peanut-shaped ones. As has already

been mentioned, no positive modes cut on in the range of frequencies presented.

Similarly, figure 4.18 compares the reflection and transmission for an array of cir-

cular cylinders with those for an array of elliptical cylinders, with incident angle

π/6.

The results generated for the reflection and transmission coefficients can be

verified by considering the power balance. Since the problem is steady-state, the

net amount of energy flow through a representative cell, as shown in figure 4.8, is
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Figure 4.16: Reflection and transmission coefficients from an array of circular
cylinders for an incident plane wave of propagation angle θ0 = π/2.
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Figure 4.17: Reflection and transmission coefficients from an array of cylinders
with a (a) circular cross section, (b) peanut-shaped cross section for an incident
plane wave of propagation angle θ0 = π/3.
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Figure 4.18: Reflection and transmission coefficients from an array of cylinders
with a (a) circular cross section, (b) elliptical cross section for an incident plane
wave of propagation angle θ0 = π/6.
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identically zero. As a result, the following relation holds (see [4])

P =
∑

n

αn

α0

(

|Tn|2 + |Rn|2
)

= 1, (4.87)

where the summation includes only the propagating modes. Tables 4.1 to 4.3

confirm that for various values of k and for various shapes of cylinders, the power

balance relation (4.87) is satisfied with only a very small numerical error.

Finally, figure 4.19 is a representation of the field reflected and transmitted by

different arrays of scatterers. The frequency is chosen so that only one/two/three

Fourier modes of equation (4.12) and (4.13) are propagating in row one/two/three

respectively. It is clear from the plots that the array of peanut shaped scatterers

causes the least disruption to the plane wave, which is perhaps due to the fact

that these cylinders have the smallest width, and so it is easiest for the wave to

transmit through the array.

k 0.001 0.615516 1.36006 1.76973 2.17941 3.10319 3.58968

P 1 1.00001 0.999907 0.999997 1.00006 0.999993 0.999929

Table 4.1: Table to show how closely the power balance relation (4.87) is satisfied

by the reflection and transmission coefficients in figure 4.16.

k 0.0180563 0.205675 1.23105 1.31633 1.94942 2.20526 2.42699

P 1.0 1.0 1.0 1.00001 0.999998 1.0 1.00001

Table 4.2: Table to show how closely the power balance relation (4.87) is satisfied

by the reflection and transmission coefficients in figure 4.17 (a).
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Figure 4.19: Reflected and transmitted from arrays of various shaped cylinders for
increasing frequency with an incoming angle of incidence θ0 = π/3. The first row
corresponds to a frequency k = 0.1, the second row a frequency of k = 1 and the
final row has a frequency of k = 1.7. The frequencies have been chosen so as to
ensure that the first row has only the zeroth mode propagating, the second row
has both the zeroth and first modes propagating, and the final row has the zeroth,
first and second modes propagating.
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k 0.001 0.186222 0.626124 1.04487 1.46362 1.74146 1.85722

P 1.0 1.00001 0.999988 1.00001 1.00001 1.00003 0.999963

Table 4.3: Table to show how closely the power balance relation (4.87) is satisfied

by the reflection and transmission coefficients in figure 4.18 (b).

4.8 Conclusions

In this chapter, we have developed the initial problem tackled in chapter 3 to solve

for the field scattered from an infinite periodic array of arbitrary shaped scatterers

in two dimensions. Although similar problems are studied in the literature, we

have introduced a new method for evaluating the periodic Green’s function that

is compatible with the boundary element method and easily implementable.

We have verified the correction term for various values of ka, and shown that it

is a good approximation for low to mid-range frequencies. Having confirmed that

the correction term converges quickly for M = 200, we have presented results for

the boundary values around the surface of the central cylinder in the array, and

compared these directly to the single scatterer results, derived in chapter 3.

We have also presented results for the reflection and transmission coefficients

for arrays of cylinders with various cross sections. We have relied on the previous

chapter’s results for numerical convergence, and for an array of circular cylinders

we can confirm that our results agree with those in the literature.

This chapter serves as a basis on which we develop the novel ideas in the

following chapters.



Chapter 5

Scattering from bodies of

revolution

5.1 Introduction

In this section, we investigate the pressure distribution around the surface of a

rigid, axisymmetric, three dimensional scatterer in an infinite fluid that is created

when an acoustic plane wave is obliquely incident on the scatterer. We consider

the case where the wavelength λ of the propagating wave is of the same order of

magnitude as the characteristic lengthscale of the inclusions, say a.

Ultimately we wish to solve the problem of reflection and transmission from an

infinite array of periodically distributed scatterers in an acoustic medium. Before

considering such a complex problem, in this chapter we solve the problem for

a single scatterer, in order to formulate the integral equation and develop the

numerical methods that can later be extended to solve for an infinite number of

scatterers. Solving the problem presented in this chapter for one scatterer is also

useful to explore various technical aspects involved, such as the computational

cost of solving the numerical scheme, convergence of the solution and the limit of

127
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concavity of the scatterer before the scheme breaks down.

The approach taken is to expand the incident wave field, the acoustic potential

and the normal derivative of the Green’s function into complex Fourier series with

respect to the azimuthal angle, and we find that each Fourier coefficient of the

acoustic potential satisfies a boundary integral equation over a one-dimensional

line that generates the axisymmetric body. The integral equation is discretised

using the boundary element method, and we discuss how the non-singular terms

and the singular terms of the resulting coefficient matrix can be calculated.

In the results and conclusions sections of this chapter, the convergence of the

numerical scheme is shown to be cubic (with an increasing number of elements),

matching theoretical predictions. The convergence of the azimuthal Fourier series

is also discussed, and the related subject of the Rayleigh hypothesis. The outcomes

of this chapter provide us with a foundation on which we can develop the more

difficult problem considered in the following chapter 6.

5.2 Problem statement

Following the exterior scattering problem outlined in chapter 2, in this chapter we

wish to solve for the field scattered by a three-dimensional body S located in an

infinite fluid medium, D. We work in Cartesian coordinates x = (x1, x2, x3), and

we limit our attention to problems in which the scatterer S is axisymmetric with

respect to the x3 axis. All such bodies can be described by a generating curve C,

which when rotated about the x3 axis maps out the surface of S, as illustrated in

figure 5.1.

Consider an incident plane wave of wavelength λ which is of the same order of

magnitude as the characteristic lengthscale of the scatterer, say a. With respect

to a spherical polar coordinate system, the angle of propagation of the incident
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x1

x3

Figure 5.1: An example of a three-dimensional scatterer that is axisymmetric
about the x3 axis.

wave is described by polar angle φ0 and azimuthal angle θ0, and so the incoming

plane wave is of the form

φin(x) = e−ik(sin φ0 cos θ0x1+sin φ0 sin θ0x2+cos φ0x3). (5.1)

The coordinate system is shown in figure 5.2

The acoustic potential φ(x1, x2, x3) satisfies Helmholtz equation in the acoustic

medium,

∂2φ

∂x2
1

+
∂2φ

∂x2
2

+
∂2φ

∂x2
3

+ k2φ = 0 in D, (5.2)

where k is the wave number. We assume that the scatterers are sound-hard, and

so on the surface ∂V we apply a Neumann boundary condition

∂φ

∂n
(x) = 0, (5.3)

where n is a coordinate measured in the inward normal direction to ∂V .

For a point x ∈ D, it follows from equation (2.49) that the problem admits a
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Figure 5.2: Spherical coordinate system.

frequency domain integral equation of the form

φ(x) = φin(x) +
∫

∂V
φ(ξ)

∂G

∂n
(ξ, x)dS(ξ), (5.4)

where ξ = (ξ1, ξ2, ξ3) ∈ D, and the boundary condition (5.3) has been taken into

account. In three dimensions, the fundamental solution G(ξ, x) satisfies

∂2G

∂ξ2
1

+
∂2G

∂ξ2
2

+
∂2G

∂ξ2
3

+ k2G = δ(x, ξ), (5.5)

and is known explicitly to be

G(x, ξ) = − eik|x−ξ|

4π|x − ξ| . (5.6)

As in the previous chapters, we wish to solve equation (5.4) by the boundary

element method. The surface ∂V is a two-dimensional surface and so evaluation

of (5.4) requires integration over two variables. As it stands, this equation could

be fully discretised by dividing ∂V into two dimensional elements, either triangles

or quadrilaterals, and approximating the boundary potential by suitable shape

functions. This approach is taken in various papers in the literature, such as [51].

However, since we are considering bodies of revolution, we are able to exploit

the axisymmetry of the scatterers and reduce the dimensionality of the governing
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integral equation by one, thus resulting in an equation in which the integration is

only over the generating curve C. Such equations are similar to those encountered

in earlier chapters, and the contour of integration can be discretised into one-

dimensional elements, leading to a very substantial saving in computational time.

In the following section, we show explicitly how the two-dimensional boundary

integral equation (5.4) is reduced by Fourier expanding the boundary functions,

before discussing how the resulting governing equation can be solved numerically.

5.3 Boundary integral equation

5.3.1 Fourier decomposition of boundary functions

Consider the Cartesian coordinate system ξ = (ξ1, ξ2, ξ3) with which we associate

the cylindrical polar system (r, θ, ξ3) by the following relations:

ξ1 = r cos θ,

ξ2 = r sin θ,

ξ3 = ξ, (5.7)

and similarly we relate the field point with coordinates x = (x1, x2, x3) to the polar

coordinate system (ρ, ϕ, x) via the relations

x1 = ρ cos ϕ,

x2 = ρ sin ϕ,

x3 = x. (5.8)

Transforming the governing integral equation (5.4) into cylindrical coordinates, we

obtain

φ(ρ, ϕ, x) = φin(ρ, ϕ, x) +
∫ 2π

0

∫

C
φ(r, θ, ξ)

∂G

∂n
(r, θ, ξ, ρ, ϕ, x) r dldθ, (5.9)
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Figure 5.3: Generating curve C of a ‘pear’-shaped scatterer.

where dl is an infinitesimal line segment of the curve C. The transformed incident

wave is

φin(x) = e−ikρ cos(ϕ−θ0) sin φ0e−ikx cos φ0 , (5.10)

which can be expanded into a discrete complex Fourier series [42, p.30] with respect

to the azimuthal angle ϕ,

φin(x) =
∞
∑

n=−∞

i−nJn(kρ sin φ0)e
−inθ0e−ikx cos φ0einϕ. (5.11)

We can also expand the (boundary) velocity potential into a discrete complex

Fourier series with respect to the angle ϕ, i.e.

φ(x) =
∞
∑

m=−∞

φm(ρ, x)eimϕ. (5.12)

The boundary unknowns are expressed as complex Fourier expansions as opposed

to sine and cosine expansions so as not to divide the problem into symmetric and

antisymmetric modes, which would make numerical implementation more difficult

in particular for elastic problems (see for example [54]),
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Similarly, the complex Fourier expansion of the normal derivative of the Green’s

function G is of the form

∂G

∂n
(r, θ, ξ, ρ, ϕ, x) =

∞
∑

n=−∞

A−n(r, ρ, ξ, x)ein(θ−ϕ). (5.13)

The Fourer coefficients A−n are known quantities that can be calculated by use

of the Fast Fourier Transform algorithm, but we defer the details of this to the

following section, so that the continuity of this section is not disrupted.

Upon substituting the above Fourier expansions (5.12) and (5.13) into the

integral equation (5.9), the integral term on the right hand side is given by

∫ 2π

0

∫

C

∞
∑

m=−∞

φm(r, ξ)eimθ
∞
∑

n=−∞

A−n(r, ξ, ρ, x)ein(θ−ϕ) r dldθ. (5.14)

Changing the order of integration and rearranging the summations allows us to

rewrite expression (5.14) as

∞
∑

m=−∞

∫

C
φm(r, ξ)

∞
∑

n=−∞

A−n(r, ξ, ρ, x)e−inϕ r dl
∫ 2π

0
ei(n+m)θdθ. (5.15)

The integration over θ is zero unless n = −m, in which case it equals 2π, and so

expression (5.15) is equivalent to

2π
∞
∑

m=−∞

∫

C
φm(r, ξ)Am(r, ξ, ρ, x)eimϕ r dl. (5.16)

Via expressions (5.11), (5.12) and (5.16), the boundary integral equation (5.9)

can be expressed in terms of Fourier series as

∞
∑

m=−∞

φm(ρ, x)eimϕ =
∞
∑

m=−∞

Im(ρ, x)eimϕ−imθ0

+ 2π
∞
∑

m=−∞

∫

C
φm(r, ξ)Am(r, ξ, ρ, x)eimϕ r dl, (5.17)

where, by equation (5.11),

Im(ρ, x) = i−mJm(kρ sin φ0)e−ikx cos φ0 . (5.18)
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Multiplying equation (5.17) by e−ilϕ and integrating from 0 to 2π with respect to

ϕ yields

φm(ρ, x) =Im(ρ, x)e−imθ0

+ 2π
∫

C
φm(r, ξ)Am(r, ρ, x, ξ) r dl. (5.19)

We can see from the above analysis that for a single axisymmetric scatterer in

a linear acoustic medium, the integral equation for each Fourier coefficient φm

decouples, resulting in a separate infinite system of equations for each coefficient.

Assuming that the Fourier series (5.12) converges for a value m = M , then we are

required to solve a 2M + 1 integral equation system for each contributing Fourier

coefficient. This ultimately will enable us to solve for the field at any point in the

domain.

Fourier Coefficients of the Normal Derivative of the Green’s Function

To find the normal derivative of G(ξ, x), we use the identity

nξ · ∇ξG(ξ, x) =
∂G

∂n
(ξ, x), (5.20)

where nξ is an inward pointing unit normal (with respect to the coordinate ξ).

Due to the axisymmetry about the ξ3 axis, the inward pointing normal will have

zero component in the θ̂ direction, and so nξ will be of the form

nξ = n1r̂ + n2ξ̂3, (5.21)

where r̂ and ξ̂3 are unit normals in the direction of r and ξ3 respectively. In

cylindrical coordinates, we therefore have

nξ · ∇ξG(ξ, x) = n1
∂G

∂r
(ξ, x) + n2

∂G

∂ξ3

(ξ, x). (5.22)

The 3D Green’s function (5.6) can be expressed in terms of cylindrical coordinates

(5.7) and (5.8) as

G(r, θ, ξ, ρ, ϕ, x) = − eikR

4πR
, (5.23)
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where

R =
√

ρ2 + r2 − 2rρ cos(ϕ − θ) + (x − ξ)2. (5.24)

Direct differentiation of equation (5.23) with respect to r and ξ yields,

∂G

∂r
=

∂R

∂r

eikR

4πR

(

1

R
− ik

)

, (5.25)

∂G

∂ξ
=

∂R

∂ξ

eikR

4πR

(

1

R
− ik

)

, (5.26)

where

∂R

∂r
=

r − ρ cos(θ − ϕ)

R
, (5.27)

∂R

∂ξ
=

ξ − x

R
. (5.28)

The normal derivative of the Green’s function is therefore

∂G

∂n
(ξ, x) =

eikR

4πR

(

1

R
− ik

)

(

n1
∂R

∂r
+ n2

∂R

∂ξ

)

. (5.29)

For ease of notation, let

F (n1, n2; r, ρ; θ, ϕ; ξ, x) =
eikR

4πR

(

1

R
− ik

)

(

n1
∂R

∂r
+ n2

∂R

∂ξ

)

, (5.30)

where, for notational purposes, we henceforth neglect to write all arguments of F

aside from θ and ϕ. From equation (5.13) and the axisymmetry of the body, F

satisfies F (θ, ϕ) = F (θ − ϕ) and hence has a Fourier series expansion given by

F (θ − ϕ) =
∞
∑

n=−∞

A−nein(θ−ϕ). (5.31)

Multiplying both sides by eim(θ−ϕ) and integrating over θ from −π to π yields

A−m =
1

2π

∫ π

−π
F (θ − ϕ)e−im(θ−ϕ) dθ

=
1

2π

∫ π

−π

eikR

4πR2

(

1

R
− ik

)(

n1(r − ρ cos(θ − ϕ)) + n2(ξ − x)
)

e−im(θ−ϕ) dθ.

(5.32)
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Now let

Vm = 2πAm, (5.33)

and substitute into equation (5.19) to yield

φm(ρ, x3) =Im(ρ, x3)e
−imθ0

+
∫

C
φm(r, ξ3)Vm(r, ρ, x3, ξ3) r dl. (5.34)

Equation (5.34) is the Helmholtz integral equation for the mth Fourier bound-

ary velocity potential φm, where the field point x is at some location in the acoustic

medium, D, but not on the curve C. In order to solve this equation by the bound-

ary element method, the field point x is required to lie on the contour C. At the

point where r = ρ, and ξ = x, the kernel of the integral equation becomes singu-

lar. In the following section, we analyse the resulting singularity and determine

the effect that this has on the boundary integral equation.

5.3.2 Singularity of the integral equation

In order to use the collocation boundary element method, we must first investigate

the effect of allowing the field point x to approach the boundary ∂D. As ρ → r,

and x → ξ, the integral

2π
∫

C
φm(r, ξ3)Am(r, ξ, ρ, x) r dl (5.35)

becomes singular due to the 1/R3 term of the normal derivative of the Green’s

function in the integrand of equation (5.32). In order to analyse the singularity,

we take the limit as the field point approaches the boundary.

Suppose that x approaches an arbitrary point on the boundary ξ0 = (r0, ξ0),

where |ξ0| = O(1), which is at the origin of a coordinate system (u, v), the u axis

of which lies tangent to the contour C at the point ξ0 and the v axis points into the

fluid domain, and is at an angle β to the horizontal axis of ξ. Divide the contour
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C

2ǫ

Exterior

N̂

n̂

(r0, ξ0
3)

(ρ, x)

U

β

Interior

Figure 5.4: Geometry of the scatterer close to the singular point.

C into two separate regions, Cǫ and C \ {Cǫ}, where Cǫ is of length 2ǫ centered at

the point ξ0. Take ǫ to be sufficiently small so that local to ξ0, Cǫ is the straight

line segment [−ǫ, ǫ] ∈ R
1, as shown in figure 5.4. Splitting the integration region

in this way, and taking the limit as ǫ → 0, the integral (5.35) is given by

2π
∫

C
φm(r, ξ)Am(r, ξ, ρ, x) r dl = 2π−

∫

C
φm(r, ξ)Am(r, ξ, ρ, x) r dl

+ 2π lim
ǫ→0

∫ ǫ

−ǫ
φm(r, ξ)Am(r0, ξ0, ρ, x) r du, (5.36)

where −
∫

represents the integral over C \ {Cǫ} in the limit as ǫ → 0. This integral

is non-singular, and hence can be evaluated numerically without difficulty. Let I

be the integral

I = lim
ǫ→0

∫ ǫ

−ǫ
φm(r, ξ)

(

2πAm(r0, ξ0, ρ, x)
)

r du. (5.37)

By simple trigonometry, we can see from figure 5.4 that the local co-ordinate
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system (u, v) can be expressed in terms of r0, ρ, ξ0 and x via the following relations

u = (ρ − r0) sin β − (x − ξ0) cos β, (5.38)

y = (ρ − r0) cos β + (x − ξ0) sin β, (5.39)

which upon rearranging yields

ρ − r0 = u sin β + v cos β, (5.40)

x − ξ0 = −u cos β + v sin β. (5.41)

Now suppose that ρ − r0 and x − ξ0 are small quantities of order ǫ2 say, where

ǫ ≪ 1. Hence, make the change of variable

u = ǫ2U, (5.42)

v = ǫ2V, (5.43)

so that by equations (5.40) and (5.45), we have

ρ − r0 = ǫ2 (U sin β + V cos β) , (5.44)

x − ξ0 = ǫ2 (−U cos β + V sin β) . (5.45)

Making the above change of variable to integral (5.37), and using the fact that

φm is analytic near (r0, ξ0), we have

I = φm(ρ, x) lim
ǫ→0

∫ 1
ǫ

− 1
ǫ

2πAm(r0, ξ0, ρ, x) r0 ǫ2dU, (5.46)

where

2πAm =
∫ π

−π

eikf

4πf 2

(

1

f
− ik

)

[n1(r
0 − ρ cos θ) + n2(ξ0 − x)]e−imθdθ (5.47)

with

f =
√

ρ2 + (r0)2 − 2r0ρ cos θ + (x − ξ0)2 (5.48)

=
√

(ρ − r0)2 + 2r0ρ(1 − cos θ) + (x − ξ0)2. (5.49)
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Note that we have made the change of variable θ−ϕ → θ in (5.32) for convenience.

Substituting equations (5.44) and (5.45) into (5.49) yields

f =
{

ǫ4(U sin β + V cos β)2 + 2ρ[ρ − ǫ2(U sinβ + V cos β)](1 − cos θ)

+ǫ4(−U cos β + V sin β)2
}

1
2 ,

(5.50)

or equivalently

f =
√

ǫ4(U2 + V 2) + [2ρ2 − 2ρǫ2(U sin β + V cos β)](1 − cos θ). (5.51)

The integral (5.46) is singular for f = 0, which we can see from the above

expression (5.51) occurs when U = V = 0 and θ = 0. Rewrite (5.46) by splitting

the integration range in the following way,

2πAm =
∫ −ǫ

−π
IF (θ)dθ +

∫ π

ǫ
IF (θ)dθ +

∫ ǫ

−ǫ
IF (θ)dθ, (5.52)

where IF (θ) is the integrand of (5.46). The first two terms are non-singular and

bounded in the limit as ǫ → 0, and so can be evaluated numerically without prob-

lem. To evaluate the final term of (5.52), make the following change of variable,

θ = ǫ2α, (5.53)

or

1 − cos θ = 1 − cos(ǫ2α). (5.54)

It follows from the Taylor series expansion of cos(ǫ2α) that

1 − cos(ǫ2α) =
ǫ4α2

2
+ O(ǫ6), (5.55)

which upon substitution into expression (5.51) yields

f = ǫ2
√

U2 + V 2 + ρ2α2 + O(ǫ)4. (5.56)
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Referring back to (5.46), and using (5.53) and (5.56), the following expansions

hold true:

eikf = 1 + O(ǫ)2, (5.57)

e−imθ = 1 + O(ǫ)2, (5.58)

(5.59)

and since 1/f ≫ −ik, we also have

1

f
− ik ≈ 1

f
. (5.60)

By figure 5.4, it can be seen that n1 = − cos β and n2 = − sin β, so that

n1(r0 − ρ cos θ) + n2(ξ
0 − x) = − cos β

(

r0 − ρ +
ρǫ4α2

2
+ O

(

ǫ6
)

)

− sin β(ξ0 − x),

(5.61)

which, by expressions (5.44) and (5.45), can be rewritten as

n1(r0 − ρ cos θ) + n2(ξ0 − x) = − cos β
(

−ǫ2(U sin β + V cos β) + O
(

ǫ4
))

− sin β(−ǫ2(−U cos β + V sin β). (5.62)

Finally, upon simplification, we have

n1(r0 − ρ cos θ) + n2(ξ0 − x) = ǫ2V + O
(

ǫ4
)

. (5.63)

The asymptotic expansion of the integrand of (5.47) for small ǫ can be found

by substituting (5.57), (5.58), (5.60) and (5.63) into (5.47), and so ultimately the

singular integral of (5.52) is given in terms of ǫ by
∫ ǫ

−ǫ
IF (θ)dθ =

∫ 1
ǫ

− 1
ǫ

V

4π(U2 + V 2 + ρ2α2)
3
2 ǫ2

dα. (5.64)

Substituting (5.52) and (5.64) into expression (5.46) yields

I = φm(ρ, x) lim
ǫ→0

∫ 1
ǫ

− 1
ǫ

(∫ −ǫ

−π
IF (θ)dθ +

∫ π

ǫ
IF (θ)dθ+

∫ 1
ǫ

− 1
ǫ

V

4π(U2 + V 2 + ρ2α2)
3
2 ǫ2

dα,

)

r0 ǫ2dU. (5.65)
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In the limit as ǫ → 0, let the final term of (5.65) be denoted by IA, and is given

explicitly by

IA = φm(ρ, x)
∫ ∞

−∞

∫ ∞

−∞

V ρ

4π(U2 + V 2 + ρ2α2)
3
2

dα dU. (5.66)

IA is non-singular, and can easily be evaluated by first making the following change

of variable,

U = V y, (5.67)

α =
zV

ρ
, (5.68)

so that IA becomes

IA =
1

4π
φm(ρ, x)

∫ ∞

−∞

∫ ∞

−∞

V 3 dy dz

V 3(y2 + z2 + 1)
3
2

. (5.69)

Finally, we make a change of variable to convert to a plane polar coordinate system

y = ρ cos τ, (5.70)

z = ρ sin τ, (5.71)

so that in terms of these variables, expression (5.69) can be re-expressed as

IA =
1

4π
φm(ρ, x)

∫ 2π

τ=0
dτ
∫ ∞

ρ=0

ρ dρ

(ρ2 + 1)
3
2

(5.72)

=
2πφm(ρ, x)

4π

[

−1

(ρ2 + 1)1/2

]∞

0

(5.73)

=
1

2
φm(ρ, x). (5.74)

The above analysis has shown that allowing the field point x to lie on the

boundary ∂D results in a so-called free term. Referring back to equation (5.19)

and applying the above result, we obtain the following boundary integral equation

1

2
φm(ρ, x) =Im(ρ, x)e−imθ0

+
∫

C
φm(r, ξ)Am(r, ξ, ρ, x) r dl. (5.75)
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As in the two-dimensional boundary integral equation (see section A.2), the result

of taking the field point onto the boundary is to reduce the field at any point in

space by a half. This result is well known in the literature (see [23] and [13]), but

to the writers knowledge the above analysis is a novel way of showing the result.

5.4 Numerical solution

Equation (5.75) is now in a form where it can be solved by the boundary element

collocation method. As in previous chapters, we follow the discretization method

described in chapter 2.5. We use N quadratic elements to describe both the

variation in the boundary value and the shape of the elements. The resulting

discretised version of equation (5.75) is

1

2
φm

i = Im
i e−imθ0 + 2π









2N−1
∑

j=3
j odd

φm
j

[

h1,m

i
(j+1)

2

+ h3,m

i
(j−1)

2

]

+
2N
∑

j=2
j even

φm
j h2,m

i j

2

+ φm
1 h1,m

i1 + φm
2N+1h

3,m
iN



,

(5.76)

where the superscript m refers to the Fourier mode. Note that in the previous

section, the Fourier mode was denoted by a subscript. The components hk,m
ij are

the integrals

hk,m
ij =

∫ 1

ν=−1
Ψk(ν)Am(rj(ν), ξj(ν), ρi, ϕi) rj(ν) dl, (5.77)

where dl is an infinitesimal increment of the boundary.

Equation (5.76) represents an infinite number of equations, each with 2N + 1

unknowns. For each Fourier mode m, the system can be represented as a matrix

system in the following way

[

1

2
I − Hm

]

Φm = φm
in

, (5.78)
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where Hm is a dense matrix of integrals and Im is a vector comprising the nodal

values of the incident wave.

Each integral of the matrix Hm involves a line integral over the body generator

C and an integral over the polar angle θ. Compared to using the boundary element

method to mesh the entire surface of the body S, the advantages of solving for

each Fourier harmonic are obvious - the number of unknowns has been significantly

reduced, and hence the time spent solving the linear system of equations is reduced.

The total boundary velocity potential could be found using Gaussian quadrature

techniques similar to those used for the two dimensional case, but this can be

computationally expensive due to the dense nature of the matrix Hm, and because

each of the integrals have to be evaluated for each Fourier mode that contributes

to the overall solution. The computation time required to evaluate each integral

can be dramatically improved by calculating each of the circumferential integrals

simultaneously by using the fast Fourier transform algorithm. The purpose of

the following section is to explain how each component of the matrix Hm can be

evaluated numerically.

5.4.1 Evaluation of coefficient matrix

For each mode of expression (5.78), each matrix Hm contains singular and non-

singular elements. The following matrix shows the locations of the singular inte-

grals for a representative system, where the shape C has been discretized into 4

elements:
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























































h1
11 h2

11 h1
12 + h3

11 h2
12 h1

13 + h3
12 h2

13 h1
14 + h3

13 h2
14 h3

14

h1
21 h2

21 h1
22 + h3

21 h2
22 h1

23 + h3
22 h2

23 h1
24 + h3

23 h2
24 h3

24

h1
31 h2

31 h1
32 + h3

31 h2
32 h1

33 + h3
32 h2

33 h1
34 + h3

33 h2
34 h3

34

h1
41 h2

41 h1
42 + h3

41 h2
42 h1

43 + h3
42 h2

43 h1
44 + h3

43 h2
44 h3

44

h1
51 h2

51 h1
52 + h3

51 h2
52 h1

53 + h3
52 h2

53 h1
54 + h3

53 h2
54 h3

54

h1
61 h2

61 h1
62 + h3

61 h2
62 h1

63 + h3
62 h2

63 h1
64 + h3

63 h2
64 h3

64

h1
71 h2

71 h1
72 + h3

71 h2
72 h1

73 + h3
72 h2

73 h1
74 + h3

73 h2
74 h3

74

h1
81 h2

81 h1
82 + h3

81 h2
82 h1

83 + h3
82 h2

83 h1
84 + h3

83 h2
84 h3

84

h1
91 h2

91 h1
92 + h3

91 h2
92 h1

93 + h3
92 h2

93 h1
94 + h3

93 h2
94 h3

94

























































The modal dependence has been suppressed in the above matrix for ease of nota-

tion, but it is to be understood that the above elements are all associated with a

single mode m. Each element hk,m
ij is of the form (1.77) where Am is as equation

(5.32). In the following sections, we deal with the evaluation of the singular and

non-singular elements separately.

5.4.2 Non-singular elements

Determining the non-singular components of (5.79) requires us to evaluate a double

integral over the polar angle θ and the homogeneous coordinate ν. Such integrals

can be costly to evaluate numerically if standard quadrature is used, however they

can be evaluated much more efficiently with the use of the Fast Fourier Transform

(FFT) algorithm. Write expression (5.77) in the form

hkm
ij =

∫ 1

ν=−1

(

Ψk(ν) rj(ν) |Jj(ν)|
∫ π

θ=−π
If(rj(ν), ξj(ν), ρi, ϕi, θ̂) e−imθ̂ dθ̂

)

dν,

(5.79)

where If(rj(ν), ξj(ν), ρi, ϕi, θ̂) is given by

If =
eikR

8π2R2

(

1

R
− ik

)

(

n1(rj(ν) − ρi cos θ̂) + n2(ξj(ν) − xi)
)

(5.80)
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and

R =
√

ρ2
i + r2

j (ν) − 2rj(ν)ρi cos(ϕ − θ) + (xi − ξj(ν))2. (5.81)

Let the integral over θ̂ be Pm(ν, ρi, ϕi), so that

Pm(ν, ρi, ϕi) =
∫ π

θ=−π
If(rj(ν), ξj(ν), ρi, ϕi, θ̂) e−imθ̂ dθ̂. (5.82)

Discretising the integration range [−π, π] into M = 2µ increments, for some integer

µ, and then evaluating the function If at each θ̂ step results in

Ik
f (ν) = If(ν, ∆θ̂), for k = 0, 1, 2, ..., m. (5.83)

We then take the Fast Fourier Transform (FFT) of the data Ik
f in Matlab, using

F(ν) = FFT(If (ν)) (5.84)

where If(ν) is a vector containing the discretised data. F(ν) is a vector of discrete

Fourier transforms whose nth element is the (n − 1)th transform (since Matlab

vectors start with index 1):

F(n+1)(ν, ρi, ϕi) =
M−1
∑

n=0

Ik
f (ν)e

2πkni
N , for n = 0, 1, 2... (5.85)

The solution to equation (5.82) is given by

Pn(ν, ρi, ϕi) =
1

M
F(n+1)(ν, xi). (5.86)

This result can be substituted back into expression (5.79) to give

hkm
ij =

∫ 1

ν=−1
Ψk(ν) rj(ν) |Jj(ν)| Pm(ν, ρi, ϕi)dν. (5.87)

The integration over ν can now be evaluated by Gaussian quadrature.
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5.4.3 Singular elements

The boxed elements of the above matrix are those which turn singular at some

point in the integration range. Each integral is of the form

hkm
ij =

∫ 1

ν=−1

(

Ψk(ν) rj |Jj(ν)|
∫ π

θ=−π

∂G

∂n
(rj, ξj, ρi, ϕi) e−imθ̂ dθ̂

)

dν. (5.88)

It should be understood that (rj , ξj) = (rj(ν), ξj(ν)) in the above integral and for

the remainder of this section, but we have chosen to omit the ν dependence for

ease of notation. Define the integral I(rj(ν), ξj(ν), ρi, ϕi, m) by

I(rj , ξj, ρi, ϕi, m) =
∫ π

−π

∂G

∂n
(rj , ξj, ρi, ϕi)e

−imθ̂dθ̂, (5.89)

and recall that

G(rj , ξj, ρi, ϕi, m) = − eikR

4πR
, (5.90)

where

R =
√

(rj − ρi)2 + (ξj − xi)2 + 2rjρi(1 − cos θ̂). (5.91)

It is clear from the above expressions that G becomes singular when rj(ν) = ρi,

ξj(ν) = xi and θ̂ = 0. In this section, we analyse the singularity of expression

(5.89) and describe a way to efficiently integrate such functions.

We begin by regularizing integral (5.89) by subtracting off and subsequently

adding back the function I2, given by

I2(ρi, xi, ν) = − 1

4π

∂

∂n

∫ π

−π

dθ̂
√

(rj − ρi)2 + (ξj − xi)2 + rjρiθ̂2
(5.92)

so that

I(ρi, xi, ν, m) = I1(ρi, xi, ν, m) + I2(ρi, xi, ν), (5.93)

in which

I1(ρi, xi, ν, m) = − 1

4π

∂

∂n

∫ π

−π
dθ̂





eikRe−imθ̂

R
− 1
√

(rj − ρi)2 + (ξj − xi)2 + rjρiθ̂2



 .

(5.94)
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The first term of equation (5.93) is non-singular, and so when this is substituted

back into expression (5.88) we have

∫ 1

ν=−1

(

Ψk(ν) rj |Jj(ν)| I1(ρi, xi, ν, m)
)

dν, (5.95)

and both the ν integration and θ̂ integration are easily evaluated by Gaussian

quadrature. We turn our attention to the evaluation of the remaining, singular

integral
∫ 1

ν=−1

(

Ψk(ν) rj |Jj(ν)| I2(ρi, xi, ν)
)

dν. (5.96)

Begin by writing

α2 =
(rj − ρi)

2 + (ξj − xi)
2

rjρi

, (5.97)

so that

I2(ρi, xi, ν) = − 1

4π

∂

∂n

∫ π

−π

dθ̂
√

(rjρi)(α2 + θ̂2)
. (5.98)

Now let θ̂ = α sinh u and equation (5.98) becomes

I2(ρi, xi, ν) = − 1

2π

∂

∂n

[

sinh−1(π/α)
√

rjρi

]

. (5.99)

In order to calculate the normal derivative in equation (5.99), we make use of

the identity
∂

∂n
=

1

|n|

(

−∂ξ

∂ν

∂

∂r
+

∂r

∂ν

∂

∂ξ

)

, (5.100)

where

|n| =

√

√

√

√

(

dξ

dν

)

+

(

dr

dν

)2

, (5.101)

and so we need to calculate the following

∇(r,ξ)F (ρ, x, ν) (5.102)

in which

F (ρ, x, ν) = − 1

2π

sinh−1(π/α)
√

rjρi
. (5.103)
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To calculate the derivative of F with respect to ξ we use the chain rule and write

− 1

2π

∂

∂ξ

(

sinh−1(π/α)
√

rjρi

)

= − 1

2π
√

rjρi

∂α

∂ξ

∂

∂α
sinh−1(π/α), (5.104)

which after some algebra yields

− 1

2π

∂

∂ξ

(

sinh−1(π/α)
√

rjρi

)

=

(ξj − xi)

((rj − ρi)2 + (ξj − xi)2)
√

(rj − ρi)2 + (ξj − xi)2 + rjρiπ2
. (5.105)

Similarly, by the chain rule we calculate the derivative with respect to r as

− 1

2π

∂

∂r

(

sinh−1(π/α)
√

rjρi

)

=
1

4πrj
√

rjρi
sinh−1

(

π

α

)

+
1

2α
√

rjρi

∂α

∂r

1√
α2 + π2

.

(5.106)

Substituting expression (5.97) into equation (5.106) yields

− 1

2π

∂

∂r

(

sinh−1(π/α)
√

rjρi

)

=
1

4πrj
√

rjρi

sinh−1
(

π

α

)

+

√
rjρi

2
√

(rj − ρi)2 + (ξj − xi)2
√

(rj − ρi)2 + (ξj − xi)2 + π2rjρi

∂α

∂r
, (5.107)

and it can be easily shown that

∂α

∂r
=

(rj − ρi)
√

rjρi

√

(rj − ρi)2 + (ξj − xi)2
−
√

(rj − ρi)2 + (ξj − xi)2

2rj
√

rjρi
. (5.108)

Hence,

− 1

2π

∂

∂r

(

sinh−1(π/α)
√

rjρi

)

=
1

4πr
√

rjρi
sinh−1

(

π

α

)

+
(rj − ρi)

2 ((rj − ρi)2 + (ξj − xi)2)
√

(rj − ρi)2 + (ξj − xi)2 + π2rjρi

− 1

4rj

√

(rj − ρi)2 + (ξj − xi)2 + π2rjρi

. (5.109)
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Finally, sinh−1(z) = ln(z +
√

1 + z2), and so combining the above results we have

I2(ρi, xi, ν) = − (4πrj)
−1

√

(

∂ξj

∂ν

)2
+
(

∂rj

∂ν

)2





1
√

rjρi
ln







π
√

rjρi
√

(rj − ρi)2 + (ξj − xi)2

+

√

√

√

√1 +
π2rjρi

(rj − ρi)2 + (ξj − xi)2







− π
√

(rj − ρi)2 + (ξj − xi)2 + π2rjρi





∂ξj

∂ν

+
1

2

√

(

∂ξj

∂ν

)2
+
(

∂rj

∂ν

)2√

(rj − ρi)2 + (ξj − xj)2 + π2rjρi






−∂ξj

∂ν
(rj − ρi) +

∂rj

∂ν
(ξj − xi)

(rj − ρi)2 + (ξj − xi)2







. (5.110)

Having analytically evaluated expression (5.96) over the polar angle θ̂, the remain-

ing integral over ν has the above integrand. The first term of equation (5.110)

becomes logarithmically singular when (ρi, xi) = (rj, ξj), which can easily be han-

dled numerically by a suitable quadrature scheme. The remaining term of the

integrand is

1

2

√

(

∂ξj

∂ν

)2
+
(

∂rj

∂ν

)2√

(rj − ρi)2 + (ξj − xi)2 + π2rjρi







−∂ξj

∂ν
(rj − ρi) +

∂rj

∂ν
(ξj − xi)

(rj − ρi)2 + (ξj − xi)2







.

(5.111)

Substituting this back into equation (5.96)

∫ 1

ν=−1









Ψk(ν) rj |Jj|
1

2

√

(

dξj

dν

)2
+
(

drj

dν

)2√

(rj − ρi)2 + (ξj − xi)2 + π2rjρi






−dξj

dν
(rj − ρi) +

drj

dν
(ξj − xi)

(rj − ρi)2 + (ξj − xi)2









 dν. (5.112)

We can show, following a similar analysis to that of section 3.3.1, that when

(rj , ξj) = (ρi, xi) the following is true,

−dξj

dν
(rj − ρi) + drj

dν
(ξj − xi)

(rj − ρi)2 + (ξj − xi)2

∣

∣

∣

∣

∣

∣

(rj ,ξj)=(ρi,xi)

=
1

2

(

dξj

dν

d2rj

dν2
− drj

dν

d2ξj

dν2

)(

drj

dν
+

dξj

dν

)−1

.

(5.113)
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Consequently, the integrand in (5.112) appears to be singular at the point when

r = ρ = 0 and ξ = x i.e. when the square root in the denominator vanishes.

This occurs when collocation point is either the first or last node (corresponding

to the top/bottom of the curve C respectively). Substituting in the explicit rep-

resentations of rj , ξj , Jj(ν), and Ψk in terms of ν for each k, with ρi, xi a the first

collocation point (so ρi = 0), reveals in fact that the singularities cancel out in

the integrand of (5.112). In fact, it is possible to write the integrand of (5.112)

explicitly in terms of ν when the collocation point is at the first node, and the last

node, for each k = 1, 2, 3. In summary, these are: first node, k = 1:

−1
2
(ν − 1)νr4(r2(ξ1 − ξ3) + r3(ξ2 − ξ1))

(ζ2
1 + r2

4)
3/2

, (5.114)

first node, k = 2:

2(ν − 1)2(ν + 1)r2
2(ξ1 − ξ3)

(ζ2
1 + 4(ν − 1)2r2

2)
3/2

, (5.115)

first node, k = 3:

(ν − 1)ν(ν + 1)r2
2(ξ1 − ξ3)

(ζ2
1 + 4(ν − 1)2r2

2)
3/2

, (5.116)

last node, k = 1:
1
2
(ν − 1)νr5(r1(ξ3 − ξ2) + r2(ξ1 − ξ3))

(ζ2
2 + r2

5)
3/2

, (5.117)

last node, k = 2:
1
2
(ν − 1)νr5(r1(ξ3 − ξ2) + r2(ξ1 − ξ3))

(ζ2
2 + r2

5)
3/2

, (5.118)

last node, k = 3
1
2
ν(ν + 1)r5(r1(ξ3 − ξ2) + r2(ξ1 − ξ3))

(ζ2
2 + r2

5)
3/2

, (5.119)

where (r1, ξ1), (r2, ξ2) and (r3, ξ3) are the coordinates of the first, second and third

node respectively on a given element. We have made the following substitution to
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simplify the above equations:

ζ1 = (ν − 2)ξ1 − 2(ν − 1)ξ2 + νξ3, (5.120)

ζ2 = ν(ξ1 − 2ξ2 + ξ3) − 2ξ2 + 2ξ3, (5.121)

r4 = 2(ν − 1)r2 − νr3, (5.122)

r5 = νr1 − 2(ν + 1)r2. (5.123)

Ultimately, what the above analysis has shown is that the only singularity in ν that

remains is logarithmic, which can be dealt with by the Matlab function ‘quadgk’.
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5.5 Results

5.5.1 Convergence of numerical scheme

Convergence of the Boundary Element Method

As in section 3.4.1, four main sources of error can be identified from the numerical

formulation described in section 5.4:

1. errors relating to approximations in the boundary,

2. errors relating to approximations in the unknown boundary values,

3. errors relating to the numerical integration of the elements of the coefficient

matrix,

4. errors relating to the solution of the linear system of equations.

In the evaluation of the non-singular entries to the coefficient matrix (5.79), the

integration scheme used is the adaptive Lobatto quadrature rule, and we specify

that the error is within 10−8. The logarithmically singular terms are evaluated by

use of the adaptive Gauss-Kronrod quadrature rule, which is capable of integrating

functions that have weak singularities at the end points [27]. Again, we set the

tolerance of the integral to be such that the integral is calculated to within an

error of 10−8.

We also assume that errors related to solving the linear system of equations

are considered to be negligible. At certain frequencies, the formulation of the

boundary integral equation for the exterior scattering problem breaks down; the

values at which this happens are known as characteristic frequencies. At these

frequencies, the exterior integral equation also fails to obtain a unique solution.

This problem was first explored by Schneck [10], and he terms this problem the

non-uniqueness problem. Schneck shows that the characteristic frequencies of the
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exterior Neumann problem are the eigenfrequencies of the interior Dirichlet prob-

lem [33]. The problem arises regardless of the choice of shape function, and is a

purely mathematical problem. The theory behind the non-uniqueness problem is

complex, and much literature has been published on the subject, see for example

[34]. It has been shown in [5] that the convergence rate is not destroyed close

to characteristic frequencies O(10−6). In all numerical calculations carried out in

this thesis, no anomalous results were found, and so we assume that we have not

chanced upon a characteristic frequency. We can conclude that the dominant error

is due to discretization in the geometry and the boundary values, and we concern

ourselves with the convergence rate of the boundary element method.

The work by Julh [35] shows that when using the quadratic isoparametric

formulation, described earlier in this chapter, the rate of convergence of the error

is calculated to be cubic. We test our numerical results by calculating the absolute

value of the relative error for a spherical scatterer, defined as:

E =

√

√

√

√

∑M
i=1 |φana

i − φbem
i |2

∑M
i=1 |φana

i |2 . (5.124)

The vector φana is the analytical solution at the nodal points, and the vector

φbem is the corresponding vector of numerical values at the nodes. The analytical

solution φana is derived in section (2.4.1). The angle of incidence is chosen to be

φ0 = 0, θ0 = 0, so that the zeroth Fourier mode is the only contributing mode.

The convergence of the Fourier sequence is the subject of the next section.

The error for various frequencies plotted against the number of nodes is shown

on a log-log plot in figure 5.5. For each frequency, the slope of the line is calculated

to be approximately -3, in agreement with the theory of reference [21] and [35].

The results indicate that higher frequencies affect the accuracy of the boundary

element method, producing larger errors for the same discretisation, but the rate

of convergence is unaltered by the frequency. It is evident from the figure that
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Figure 5.5: The error, as defined by equation (5.124), is shown for frequencies
k = 1 and k = 2 against the number of nodes on a log-log plot.

to achieve errors less than 10−3 for a frequency regime of k = 1, approximately

16 elements are required. To achieve at least the same accuracy for a frequency

corresponding to k = 5, we require 25 elements.

The agreement of the calculated convergence with the literature leads us to

have confidence in the robustness of the boundary element routine.

Convergence of Fourier Series

In the previous section, we showed that the value of the relative error in the

axisymmetric problem decreases cubically as the number of elements increases,

agreeing with the literature. Recall from expression (5.12) that the wave field

can be represented by a Fourier series expansion. For non-axisymmetic problems,

where the angle of incidence of the incoming wave is not aligned with the axis of

revolution of the scatterer, an infinite number of Fourier modes contribute to the

total solution.
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Figure 5.6 is a qualitative representation of the convergence of the Fourier series

(5.12), for a spherical scatterer with angle of incidence φ0 = π/2 and θ0 = 0. The

figure shows the convergence of the sum for an increasing number (2M + 1) of

Fourier modes, for a frequency corresponding to (a) k = 2, and (b) for k = 5. It is

clear that for higher frequencies, the solution requires a greater number of Fourier

modes to converge onto the actual solution (dashed line). This is not unexpected

as the solution becomes more oscillatory with increasing frequency.

We can numerically investigate the convergence of the Fourier series for non-

spherical scatterers by measuring the magnitude of each Fourier coefficient, as

shown in figure 5.7. Assuming that the series converges, we deem it sufficiently

accurate to ignore any coefficient that is of magnitude less than 10−6. In the

following results, we truncate the sum (5.12) at the point M , where the magnitude

of the (M + 1)th Fourier coefficient has decreased below 10−6.

Figure 5.8 shows the three dimensional boundary values on a sphere for fre-

quencies corresponding to k = 0.1, k = 1, k = 2 and k = 5. In each instance,

the incoming wave is propagating at an angle φ0 = 0, and so the problem is fully

axisymmetric and only the zeroth Fourier mode is required. In each calculation,

24 elements were used.
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Figure 5.6: Figure to show qualitatively the convergence of the Fourier series for a
spherical scatterer for (a) k = 2 (b) k = 5 for the mode number M increasing from
0 to 4, 7 respectively. The dotted line is the analytical solution and we can see
that for M = 4, 7, the numerical solution is very close to the analytical solution.
The plot was created for N = 12 elements, with an incoming angle of φ0 = π/2
and θ0 = 0.
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Figure 5.7: Figure to show qualitatively the absolute convergence of the Fourier

series for increasing k for a sphere with incoming angle φ0 = π/2, θ0 = 0, N = 12

boundary elements were used. It is clear from the above plot that a greater number

of modes is required for higher values of k.
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(a) (b)

(c) (d)

Figure 5.8: Plots to show the boundary values of the acoustic potential on a

spherical scatterer with angle of incidence φ0 = θ0 = 0. N = 24 elements were

used and in this case we only require one Fourier mode as the problem is fully

axisymmetric.(k = 0.1, 1, 2, 5).
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(a) (b)

Figure 5.9: The spheroidal shaped body of revolution is generated by the cross
section on the left.

5.5.2 Results for various shaped scatterers

Spheroid

The generating curve of the spheroid shown in figure (5.9) is generated by the

following parametric equations:

x = 2 cos t, (5.125)

y = sin t, t ∈ [0, 2π]. (5.126)

Using the method described in the preceding sections, we calculate the magnitude

of the Fourier coefficients for increasing frequencies (k = 0.1, 1, 2, 5) and plot them

as a function of the Fourier mode M in figure 5.10. We truncate the sum at the

point at which the Fourier coefficient goes below 10−6 (as shown in table 5.1), and

we then plot the magnitude of boundary values around the surface of the shape

in figure 5.11. It is clear that for increasing frequencies, the wave field around the

surface becomes more complex, due to increased diffraction. This is in agreement

with the results of previous chapters.



160 CHAPTER 5. SCATTERING FROM BODIES OF REVOLUTION

2 4 6 8 10 12 14

0.1

0.2

0.3

0.4

0.5

0.6

k=0.1
k=1
k=2
k=5

Figure 5.10: Figure to show the magnitudes of the Fourier coefficients for increasing

M for a spheroid with incoming angle φ0 = π/4, θ0 = 0.

M 0 1 2 6 10 15

k=0.1 0.98443 0.11314 0.00539 9.722×10−10 1.144×10−17 1.601×10−28

k=1 0.29954 0.59885 0.41202 0.00087 1.070×10−7 1.525×10−13

k=2 0.42303 0.22558 0.43868 0.04067 0.00009 4.347×10−9

k=5 0.22641 0.27271 0.26160 0.25979 0.17608 0.00145894

Table 5.1: Table to show the magnitudes of the Fourier coefficients for each mode

M for increasing frequencies, corresponding to figure 5.10.
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(a) (b)

(c) (d)

Figure 5.11: Plots to show the boundary values of the acoustic potential on a

spheroidal scatterer with angle of incidence φ0 = π/4 and θ0 = 0. N = 32

elements were used and the number M of Fourier modes was chosen by looking at

table 5.1. The sum is truncated at the point at which the Fourier series coefficient

is less that 10−6.
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Figure 5.12: A Pear or Gourd-shaped body of revolution is generated by the cross
section on the left.

‘Pear’ or ‘Gourd’

Scatterers of particular interest are those shaped similar to that depicted in figure

5.12 (b), that have considerable asymmetry with respect to the plane x3 = 0. The

shape was generated using a ‘pear curve’, further information about which can be

found in [57]. Unlike the other shapes analysed throughout this thesis, the pear

or gourd shape cannot be described by parametric equations, but by the following

implicit form

− 4 + x8 + 4x7 + 4x6y2 + 6x6 + 12x5y2 + 6x5 + 6x4y4 + 14x4y2 + 5x4 + 12x3y4

+ 4x3y2 + 2x3 + 4x2y6 + 10x2y4 + 2x2y2 + x2 + 4xy6 − 2xy4 + 2xy2 + y8

+ 2y6 − 3y4 + y2 = 0. (5.127)

When rotated about the vertical x3 axis, the resulting body of revolution is shown

in figure 5.12 (b).

The same plots were generated for the pear shape as those for the spheroid in

the previous subsection. The magnitude of the Fourier coefficients were calculated
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Figure 5.13: Figure to show the magnitude of the Fourier coefficients for a gourd
with incoming angle φ0 = π/3, θ0 = 0 for increasing M .

for varying frequencies (see figure 5.13 and table 5.2), and as we would expect

more Fourier modes are required to reach an error of 10−6 for higher frequencies.

Using these values, the boundary values on the surface of the body are plotted for

increasing frequencies in figure 5.14.

M 0 1 2 6 10 15

k=0.1 0.993734 0.07179 0.00197 3.923×10−11 5.116×10−20 4.606×10−32

k=1 0.566153 0.62158 0.18698 0.00003 5.002×10−10 4.541×10−17

k=2 0.363159 0.49079 0.53411 0.00218 4.785×10−7 2.349×10−10

k=5 0.334266 0.30536 0.33502 0.26106 0.00281 9.467×10−7

Table 5.2: Table to show the magnitudes of the Fourier coefficients for each mode

M for increasing frequencies, related to figure 5.13.
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(a) (b)

(c) (d)

Figure 5.14: Plots to show the boundary values of the acoustic potential on a
pear-shaped scatterer with normal angle of incidence. N = 20 elements were used
for k = 0.1, 1 and N = 40 elements for k = 2, 5.



Chapter 6

Scattering from a two-dimensional

array in three-dimensional space

6.1 Introduction

In the previous chapter, we saw that for acoustic wave scattering from a three-

dimensional axisymmetric body in an infinite acoustic medium, the governing inte-

gral equation can be reduced to an infinite number of boundary integral equations,

namely one for each Fourier component φm of the acoustic potential φ. Each inte-

gral equation can be solved by the boundary element method and a finite number

of Fourier modes can give an accurate approximation to the acoustic potential.

In this chapter we are interested in the problem of determining the reflection

and transmission coefficients for each acoustic wave mode when a plane wave is inci-

dent on a two-dimensional array of periodically spaced identical, three-dimensional

bodies. As in chapter 5, we are concerned in particular with the case where the

wavelength of the incident wave, λ, is of the same order of magnitude as the

characteristic length scale of the scatterer, a, say. The construction of the integral

equation and decomposition of each function into Fourier modes follows closely the

165
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method used in chapter 5, and so we neglect many of the details in this chapter.

The main focus of this chapter is the resulting periodic Green’s function. For this

reason, much of this chapter relates directly to the periodic Green’s function that

arises as a consequence of the geometric periodicity. In particular, we consider the

convergence of the periodic Green’s function, and derive a semi-analytical way to

determine the double integrals involving the periodic Green’s function to reduce

computation time.

Various papers in the literature consider scattering in periodic arrays by using

the boundary element method, notably [3]. However, the latter paper considers

solely the case of reflection and transmission from an array of spheres, and neglects

to take into account the axisymmetry of the scatterers in order to reduce the

integral equations to line integrals. It also gives no indication as to how the

doubly-periodic Green’s function is evaluated.

6.2 Problem formulation

A plane time-harmonic acoustic wave of the form φin(x)e−iωt is incident on a

doubly-periodic array of identical three-dimensional hard scatterers in an acoustic

medium. The scatterers are of characteristic length scale a and their centres (i.e.

some suitable point inside the inclusion) are located in the x1, x2 plane at positions

x1 = md1, x2 = nd2 where m, n = 0, ±1, ±2 . . . . Each scatterer is axisymmetric

about an axis parallel to the x3-axis. The scatterer located at the point (md1, nd2)

is denoted Smn, and the surface of this scatterer ∂V mn. The surface of each of

the scatterers can be described by a curve C, that when rotated 2π about a line

parallel to the x3 axis maps out the surface ∂V mn. The geometry is as shown in

figure 6.1.
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x2

x1

d1

d2

Figure 6.1: Periodic geometry of identical, axisymmetric scatterers from above.

x3

x2

x1
θ0

φ0

r

Figure 6.2: Direction of propagation of incident time-harmonic wave in spherical
coordinates.
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The incident wave is of the form

φin(x) = eik(sin φ0 cos θ0x1+sin φ0 sin θ0x2+cos φ0x3), (6.1)

and the velocity potential φ(x) satisfies the three-dimensional Helmholtz’ equation

in the acoustic medium,

∇2φ(x) + k2φ(x) = 0 (6.2)

where

∇2 =
∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

. (6.3)

The scatterers are sound hard and so we apply

∂φ(x)

∂n
= 0 on ∂V mn ∀m, n ∈ Z, (6.4)

where ∂/∂n denotes the differentiation in the normal direction (pointing inwards)

and the coordinate n is not to be confused with the integer counter in the x2

direction. The total field can be decomposed into the sum of the incident field and

the scattered field φsc as follows

φ(x) = φin(x) + φsc(x). (6.5)

By periodicity, the field at the point (x1 + md1, x2 + nd2, x3) differs from the

field at the point (x1, x2, x3) by a phase factor, relating to the spacing and the

phase of the incident wave. This is expressed as follows

φsc(x1 + md1, x2 + nd2, x3) = φsc(x1, x2, x3)e
ik(md1 sin φ0 cos θ0+nd2 sin φ0 sin θ0). (6.6)

6.3 Boundary integral equation

The fundamental solution to Helmholtz’ equation, G(x, ξ), satisfies

∇2G(x, ξ) + k2G(x, ξ) = δ(x − ξ), (6.7)
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x1

x2

d2

d1

pd1

qd2

Figure 6.3: Plan view of cell A(p,q).

which for three dimensional problems is given explicitly by

G(x, ξ) =
−eik|x−ξ|

4π|x − ξ| . (6.8)

Application of Helmholtz’ theorem to equations (6.8) and (6.2) yields an integral

equation representation for the unknown velocity potential (see section 2.4.2)

φ(x) = φin(x) +
∑

n

∑

m

∫

∂V mn
φ(ξ)

∂G(x, ξ)

∂n
dS(ξ), ξ ∈ ∂V mn, x /∈ ∂V mn, (6.9)

where x lies outside of the scatterers and the summations over m and n both range

from negative infinity to positive infinity. Note that ∂/∂n is the (inward pointing)

normal derivative at ξ, i.e. ∂/∂n = n · ∇, n = (n1, n2) is the unit normal vector.
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To now take advantage of the geometrical periodicity, define a cell A(p,q) by

−d1

2
+ pd1 ≤ x1 ≤ d1

2
+ pd1, (6.10)

−d2

2
+ qd2 ≤ x2 ≤ d2

2
+ qd2, (6.11)

−∞ ≤ x3 ≤ ∞, (6.12)

as shown in figure 6.3. Using these relations, a point x0 = (x0
1, x0

2, x0
3) in the cell

A(0,0) can be related to a point x(p,q) in cell A(p,q) by the relations

x
(p,q)
1 = x0

1 + pd1, (6.13)

x
(p,q)
2 = x0

2 + qd2, (6.14)

x
(p,q)
3 = x0

3. (6.15)

Similarly, the point ξ0 = (ξ0
1 , ξ0

2 , ξ0
3) ∈ S00 can be related to the point ξ(m,n),

by expressions

ξ
(m,n)
1 = ξ0

1 + md1, (6.16)

ξ
(m,n)
2 = ξ0

2 + nd2, (6.17)

ξ
(m,n)
3 = ξ0

3. (6.18)

Substituting equations (6.13) to (6.15) into the incident wave (6.1) yields

φin(x) = φin(x0)eik(pd1 sin φ0 cos θ0+qd2 sin φ0 sin θ0), (6.19)

which now suggests that the total field φ(x) in cell A(p,q) will take the form

φ(x) = φ(x0)eik(pd1 sin φ0 cos θ0+qd2 sin φ0 sin θ0). (6.20)

We now substitute equations (6.19) and (6.20) into the integral equation (6.9) and

divide by eik(pd1 sin φ0 cos θ0+qd2 sin φ0 sin θ0) to give

φ(x0) = φin(x0)+
∑

m

∑

n

∫

∂V mn
φ(ξ0)eik((m−p)d1 sin φ0 cos θ0+(n−q)d2 sin φ0 sin θ0) ∂G

∂n
(|x−ξ|)dS(ξ0),

(6.21)
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where

|x−ξ| =
[

(x0
1 − (m − p)d1 − ξ0

1)2 + (x0
2 − (n − q)d2 − ξ0

2)2 + (x0
3 − ξ0

3)2
] 1

2 . (6.22)

Relabelling n̂ = n − q and m̂ = m − p, dropping the hat notation and passing the

summations under the integration sign yields

φ(x0) = φin(x0) +
∫

∂V 00
φ(ξ0)

∂GP

∂n
dS(ξ0), (6.23)

where GP (x0, ξ0) is the doubly periodic Green’s function

GP (x0, ξ0) =
∑

m

∑

n

eik(md1 sin φ0 cos θ0+nd2 sin φ0 sin θ0)G(Rmn) (6.24)

and

Rmn =
[

(x0
1 − md1 − ξ0

1)2 + (x0
2 − nd2 − ξ0

2)2 + (x0
3 − ξ0

3)2
]

1
2 . (6.25)

Now taking the point x0 → ∂V 00, we arrive at the boundary integral equation

for the unknown acoustic potential φ(x0):

1

2
φ(x0) = φin(x0) + −

∫

∂V 00
φ(ξ0)

∂GP

∂n
dS(ξ0), (6.26)

where the factor of 1/2 in the left hand term is due to the Cauchy principal value

integral on the right hand side (denoted by −
∫

). The derivation of the factor 1/2 is

given in chapter 5.3.2.

6.4 Fourier expansion of the boundary functions

We can exploit the axisymmetry of the scatterers to reduce the integral in equation

(6.26) to an integral over the generating shape C, reducing the dimensionality of

the problem by one. However, due to the presence of multiple scatterers the

integral equations for distinct Fourier modes will not decouple, as was the case for

a single scatterer.
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Following the method of section 5.3.1, we relate the field point x0 to the

cylindrical coordinates (ρ, ϕ, x) and the integration variable ξ0 to the coordinates

(r, θ, ξ). We then express each of the boundary functions as a complex Fourier

series expansion about the azimuthal angle;

φin(x0) =
∞
∑

α=−∞

iαJα(kρ sin φ0)e
iα(ϕ−θ0)eikx cos φ0 (6.27)

=
∞
∑

α=−∞

Iα(ρ, x)eiαϕ, (6.28)

φ(x0) =
∞
∑

α=−∞

φα(ρ, x)eiαϕ, (6.29)

∂GP

∂n
=

∞
∑

β=−∞

Aβ(r, ξ, ρ, ϕ, x)eiβθ. (6.30)

Writing the surface integral of (6.26) as an integral over the generating line C and

the polar angle θ, and substituting in each of the Fourier series expansions yields

1

2

∑

α

φα(ρ, x)eiαϕ =
∑

α

Iα(ρ, x)eiαϕ

+
∫

C

∫ 2π

θ=0

∑

α

φα(r, ξ)eiαθ
∑

β

Aβ(r, ξ, ρ, ϕ, x)eiβθ r dθ dl. (6.31)

Since the integral over θ is equal to zero unless α = −β, in which case it is equal

to 2π, we have

1

2

∑

α

φα(ρ, x)eiαϕ =
∑

α

Iα(ρ, x)eiαϕ + 2π
∑

α

∫

C
φα(r, ξ)A−α(r, ξ, ρ, ϕ, x) r dl.

(6.32)

We now expand A−α into a complex Fourier series with respect to the angle ϕ:

A−α =
∞
∑

γ=−∞

Bγ,α(r, ξ, ρ, x)eiγϕ, (6.33)

and substituting this into (6.32) we have

1

2

∑

α

φα(ρ, x)eiαϕ =
∑

α

Iα(ρ, x)eiαϕ +2π
∑

α

∫

C
φα(r, ξ)

∞
∑

γ=−∞

Bγ,α(r, ξ, ρ, x)eiγϕ r dl.

(6.34)
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Multiplying equation (6.34) by e−iδϕ and integrating from 0 to 2π with respect to

ϕ gives

1

2
φδ(ρ, x) = Iδ(ρ, x) + 2π

∞
∑

α=−∞

∫

C
φα(r, ξ)Bδ,α(r, ξ, ρ, x) r dl. (6.35)

The coefficients Bδ,α can be calculated using

Bδ,α =
1

2π

∫ π

−π
A−α(r, ξ, ρ, ϕ, x)e−iδϕdϕ, (6.36)

and since

A−α =
1

2π

∫ π

−π

∂GP

∂n
(r, θ, ξ, ρ, ϕ, x)e−iαθdθ (6.37)

then we can write

Bδ,α =
1

4π2

∫ π

−π

∫ π

−π

∂GP

∂n
(r, θ, ξ, ρ, ϕ, x)e−iαθe−iδϕdθdϕ. (6.38)

The doubly periodic Green’s function is given (using the form derived in section

5.3.1) explicitly by

∂GP

∂n
=

∞
∑

m=−∞

∞
∑

n=−∞

[n1 (kr + mkd1 cos θ + nkd2 sin θ − kρ cos(θ − ϕ))

− n2k(x − ξ)]
eikRmn

4πkR3
mn

(1 − ikR)eik(md1 sin φ0 cos θ0+nd2 sin φ0 sin θ0), (6.39)

where

R2
mn = ρ2 + r2 − 2md1ρ cos ϕ − 2nd2ρ sin ϕ + 2nd2r sin θ + 2md1r cos θ

− 2rρ sin θ sin ϕ − 2rρ cos θ cos ϕ

+ m2d2
1 + n2d2

2 + (x − ξ)2. (6.40)

Finally, making the change of index in equation (6.35) yields an integral equation

for each Fourier coefficient of the boundary potential:

1

2
φα(ρ, x) = Iα(ρ, x) + 2π

∞
∑

β=−∞

∫

C
φβ(r, ξ)Bα,β(r, ξ, ρ, x) r dl, α ∈ Z. (6.41)
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Suppose that the Fourier series (6.29) converges to a sufficient degree of accu-

racy after M modes, then

1

2
φα(ρ, x) = Iα(ρ, x) + 2π

M
∑

β=−M

∫

C
φβ(r, ξ)Bα,β(r, ξ, ρ, x) r dl

= Iα(ρ, x) + 2π
{∫

C
φ−M(r, ξ)Bα,−M r dl +

∫

C
φ−M+1(r, ξ)Bα,−M+1 r dl

+ · · · +
∫

C
φ0(r, ξ)Bα,0 r dl + · · · +

∫

C
φα(r, ξ)Bα,α r dl

+ · · · +
∫

C
φM−1(r, ξ)Bα,M−1 r dl +

∫

C
φM(r, ξ)Bα,M r dl.

(6.42)

The above analysis has used the periodicity of the array and the axisymmetry

of the scatterers to reduce the complexity of the problem in two ways. The first is

that by taking advantage of the axisymmetry of the scatterers, we have reduced the

dimensionality of the boundary integral equation; rather than integrating over the

two-dimensional surface of the scatterer, we need only integrate over the generating

curve C. As a consequence of this, the integral equation for each Fourier coefficient

depends on all other coefficients, as can clearly be seen from expression (6.42).

Later in this chapter, we discuss how this affects the numerical scheme that we

have used so far in this thesis.

The second point, regarding periodicity, is that rather than integrating over

each scatterer in turn, we have reduced the integral equation to hold over a single

reference cell. As in chapter 4, the effect of this is that the kernel of the integral

equation is now a doubly periodic Green’s function. The next section of this

chapter deals with evaluation of this Green’s function, and presents a novel way

to analytically improve the convergence that can easily be implemented in the

numerical scheme described so far in this thesis.



6.5. CONVERGENCE OF PERIODIC GREEN’S FUNCTION 175

D̄

D
x1

x2

Md1

Nd2

−Md1

−Nd2

Figure 6.4: The infinite domain divided into regions D and D̄.
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6.5 Convergence of periodic Green’s function

The doubly periodic Green’s function, as stated above, is given by

∂GP

∂n
=

∞
∑

m=−∞

∞
∑

n=−∞

[n1 (kr + mkd1 cos θ + nkd2 sin θ − kρ cos(θ − ϕ))

− n2k(x − ξ)]
eikRmn

4πkR3
mn

(1 − ikRmn)eik(md1 sin φ0 cos θ0+nd2 sin φ0 sin θ0). (6.43)

The method that we take is an extension of that shown in chapter 4.4. We divide

the domain into two regions, D and D̄ as shown in figure 6.4, and write the

summations of (6.43) as;

∂GP

∂n
=

M−1
∑

m=−M

N−1
∑

n=−N

[n1 (kr + mkd1 cos θ + nkd2 sin θ − kρ cos(θ − ϕ))

− n2k(x − ξ)]
eikRmn

4πkR3
mn

(1 − ikRmn)eik(d1m sin φ0 cos θ0+nd2 sin φ0 sin θ0)

+
∑

(m,n)∈D̄

∑

[n1 (kr + mkd1 cos θ + nkd2 sin θ − kρ cos(θ − ϕ))

− n2k(x − ξ)]
eikRmn

4πkR3
mn

(1 − ikRmn)eik(md1 sin φ0 cos θ0+knd2 sin φ0 sin θ0). (6.44)

Let Sd be the second term of (6.44), and take ̺0 =
√

M2d2
1 + N2d2

2 ≫ 1. Then, in

this region (from (6.40))

Rmn ∼ ̺

(

1 − [md1(x
0
1 − ξ0

1) + nd2(x0
2 − ξ0

2)]

̺2

)

, (6.45)

where

̺ =
√

m2d2
1 + n2d2

2 (6.46)

and so

Sd ∼
∑

(m,n)∈D̄

∑−ikn1(md1 cos θ + nd2 sin θ)

4π̺2
eik̺eik(md1 sin φ0 cos θ0+nd2 sin φ0 sin θ0)

e−ik[md1(x0
1−ξ0

1)+nd2(x0
2−ξ0

2)]/̺. (6.47)
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The rest of this section deals with finding an analytical approximation to the

above double sum. To leading order, the (m, n)th term of expression (6.47) can

be approximated by the integral (I.D. Abrahams, personal communication, 2014)

Imn =
in1k3d1d2

4π

∫ m+1

x=m

∫ n+1

y=n

(d1x cos θ + d2y sin θ)

̺2

(

xd1

ρ
+ sin φ0 cos θ0

)

[

eikd1(xd1
̺

+sin φ0 cos θ0) − 1
]

(

yd2

̺
+ sin φ0 sin θ0

)

[

eikd2(yd2
̺

+sin φ0 sin θ0) − 1
]eik(̺+sin φ0[xd1 cos θ0+yd2 sin θ0])

ei k
̺

[xd1(r cos θ−ρ cos ϕ)+yd2(r sin θ−ρ sin ϕ)]dxdy.

(6.48)

Then Imn can be substituted into the sum of (6.47) which turns Sd into an integral,

I, over the whole exterior domain D̄. In order to evaluate this integral, we make

the change of variables from Cartesian to polar coordinates

xd1 = ̺ cos Φ, (6.49)

yd2 = ̺ sin Φ, (6.50)

and so

dxdy =
̺

d1d2
d̺dΦ. (6.51)

Substituting these into I yields

I =
in1k3

4π

∫ 2π

Φ=0

∫ ∞

̺=L(Φ)
cos(Φ − θ)

(cos Φ + sin φ0 cos θ0)

[eikd1(cos Φ+sin φ0 cos θ0) − 1]

(sin Φ + sin φ0 sin θ0)

[eikd2(sin Φ+sin φ0 sin θ0) − 1]

eik̺[1+sin φ0 cos(Φ−θ0)]eikr cos(Φ−θ)e−ik̺ cos(Φ−ϕ)d̺dΦ, (6.52)

where L(Φ) is the contour given by the four straight line segments shown in figure

6.5. In order to evaluate I, we divide the domain into four regions; D̄1, D̄2, D̄3

and D̄4 as shown.
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D̄1

D̄2

D̄2

D̄3

D̄4

x1

x2

Md1

Nd2

−Md1

−Nd2

Φ1 Φ1

L

L

L

L

̺

̺

̺

̺

Φ

Figure 6.5: Domain D̄ divided into four regions: D̄1, D̄2, D̄3 and D̄4.
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In D̄1, the lower limit is

L(Φ) =
Md1

cos Φ
, (6.53)

Φ1 = tan−1

(

Nd2

Md1

)

, [−Φ1 < Φ < Φ1]. (6.54)

In D̄2, the lower limit is

L(Φ) =
Nd2

sin Φ
, [Φ1 < Φ < π − Φ1]. (6.55)

In D̄3, the lower limit is

L(Φ) =
−Md1

cos Φ
, [(π − Φ1) < Φ < (π + Φ1)]. (6.56)

In D̄4, the lower limit is

L(Φ) =
−Nd2

sin Φ
, [(π + Φ1) < Φ < (2π − Φ1)]. (6.57)

Write

I =
in1k3

4π

∫ 2π

Φ=0

∫ ∞

̺=L(Φ)
g(Φ)eik̺[1+sin φ0 cos(Φ−θ0)]d̺dΦ, (6.58)

where

g(Φ) = cos(Φ − θ)
(cos Φ + sin φ0 cos θ0)

[eikd1(cos Φ+sin φ0 cos θ0) − 1]]

(sin Φ + sin φ0 sin θ0)

[eikd2(sin Φ+sin φ0 sin θ0) − 1]]

eikr cos(Φ−θ)−ikρ cos(Φ−ϕ). (6.59)

Assuming a slight dissipation in k, the integrand of (1.61) can be integrated in ̺

to give

I =
−n1k2

4π

{

∫ Φ1

−Φ1

f(Φ)eikMd1Ψ1(Φ) dΦ +
∫ π−Φ1

Φ1

f(Φ)eikNd2Ψ2(Φ)dΦ

+
∫ π+Φ1

π−Φ1

f(Φ)e−ikMd1Ψ1(Φ)dΦ +
∫ 2π−Φ1

π+Φ1

f(Φ)e−ikNd2Ψ2(Φ)dΦ

}

, (6.60)

where

f(Φ) =
g(Φ)

[1 + sin φ0 cos(Φ − θ0)]
, (6.61)
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Ψ1(Φ) =
[1 + sin φ0 cos(Φ − θ0)]

cos Φ
, (6.62)

Ψ2(Φ) =
[1 + sin φ0 cos(Φ − θ0)]

sin Φ
. (6.63)

Now since M, N → ∞, we can use the method of stationary phase on each

integral. We begin by evaluating the integrals in D̄1 and D̄3, before those in D̄2

and D̄4.

Evaluation of integrals in D̄1 and D̄3

Define

ID̄1
=

−n1k2

4π

∫ Φ1

−Φ1

f(Φ)eikMd1Ψ1(Φ)dΦ (6.64)

and

ID̄3
=

−n1k2

4π

∫ π+Φ1

π−Φ1

f(Φ)e−ikMd1Ψ1(Φ)dΦ. (6.65)

The phase term Ψ1(Φ) is stationary when

dΨ1

dΦ
= 0. (6.66)

Rewriting Ψ1 in the following way,

Ψ1 =
1

cos Φ
+ sin φ0 cos θ0 +

sin Φ sin φ0 sin θ0

cos Φ
, (6.67)

it follows that

dΨ1

dΦ
=

sin Φ

cos2 Φ
+ sin φ0 sin θ0

(

1 +
sin2 Φ

cos2 Φ

)

=
(sin Φ + sin φ0 sin θ0)

cos2 Φ
. (6.68)

Now for ID̄1
, since −π/2 < −Φ1 < Φ < Φ1 < π/2, 1/ cos2 Φ is bounded and the

stationary phase point is at

Φs = − sin−1(sin φ0 sin θ0). (6.69)

Now depending on the angles φ0 and θ0, one of two situations could arise:
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1. sin Φ1 > | sin φ0 sin θ0|, in which case the stationary phase point is in D̄1,

2. sin Φ1 < | sin φ0 sin θ0|, in which case there is no stationary phase point in

D̄1.

For the purposes of this thesis, we choose values of φ0 and θ0 so that case (1) is

true. This is because the convergence of the doubly-periodic Green’s function is

slower (i.e. the truncation error is largest) when there are stationary points present;

thus, it is most instructive to investigate this case.

In D̄3, it is easily shown that the stationary phase point is at π − Φs, and the

same conditions as above apply.

We expand Ψ1 as a Taylor series about Φs and neglect terms of order higher

than (Φ − Φs)
2, yielding

Ψ1(Φ) = Ψ1(Φ) + (Φ − Φs)
dΨ1

dΦ

∣

∣

∣

∣

∣

Φs

+
(Φ − Φs)

2

2!

d2Ψ1

dΦ2

∣

∣

∣

∣

∣

Φs

+ . . . (6.70)

d2Ψ1

dΦ2

∣

∣

∣

∣

∣

Φs

=
d

dΦ

(

sin Φ + sin φ0 sin θ0

cos2 Φ

)∣

∣

∣

∣

∣

Φ=Φs

=
1

cos Φs
. (6.71)

Therefore, writing Φ − Φs = ǫ we get

Ψ1(Φ) =
[1 + sin φ0 cos(Φs − θ0)]

cos Φs
+

ǫ2

2 cos Φs
. (6.72)

Hence

ID̄1
=

−n1k2

4π
f(Φs)

∫ Φ1−Φs

−Φ1−Φs

eikMd1Ψ1(Φs)e
ikMd1ǫ2

2 cos Φs dǫ. (6.73)

Let

ǫ

√

kMd1

2 cos Φs

= u, (6.74)

so that

ID̄1
∼ −n1k2

4π
f(Φs)e

ikMd1Ψ1(Φs)
∫ ∞

−∞

eiu2

√

kMd1

2 cos Φs

du. (6.75)

This can be integrated directly to give

ID̄1
∼ −e

iπ
4

2

√

cos Φs

2πkMd1
n1k2f(Φs)e

ikMd1Ψ1(Φs), (6.76)
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where

f(Φs) =
cos(Φs − θ)(ikd2)−1

[1 + sin φ0 cos(Φs − θ0)]

(cos Φs + sin φ0 cos θ0)

[eikd1(cos Φs+sin φ0 cos θ0) − 1]
eikr cos(Φs−θ)−ikρ cos(Φs−ϕ).

(6.77)

In D̄3, the saddle point is at π − Φs, and so let ǫ = Φ − π + Φs, and so Taylor

expanding Ψ1 about π − Φs yields

Φ1(Φ) = Φ1(π − Φs) +
ǫ2

2 cos(π − Φs)
+ . . .

=
[sin φ0 cos(Φs + θ0) − 1]

cos Φs
− ǫ2

2 cos Φs
. (6.78)

Following the same procedure as described above, ID̄3
can be approximated by the

method of stationary phase to give

ID̄3
∼ −e

iπ
4

2

√

cos Φs

2πkMd1

n1k2f(π − Φs)e
−ikMd1Ψ1(π−Φs), (6.79)

where f is as in equation (6.77) with Φs replaced by π − Φs.

Evaluation of integrals in D̄2 and D̄4

Define

ID̄2
=

−n1k2

4π

∫ π−Φ1

Φ1

f(Φ)eikNd2Ψ2(Φ)dΦ (6.80)

and

ID̄4
=

−n1k2

4π

∫ 2π−Φ1

π+Φ1

f(Φ)e−ikNd2Ψ2(Φ)dΦ. (6.81)

The phase term Ψ2(Φ) is stationary when

dΨ2

dΦ
= 0, (6.82)

or

dΨ2

dΦ
= − cos Φ

sin2 Φ
+ sin φ0 cos θ0

(

−1 − cos2 Φ

sin2 Φ

)

= −(cos Φ + sin φ0 cos θ0)

sin2 Φ
= 0.

(6.83)
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Now for D̄2, 0 < Φ1 < Φ < π − Φ1 < π, and so 1/ sin2 Φ is bounded. Hence the

stationary phase point Φss is at

Φss = cos−1(− sin φ0 cos θ0) = π − cos−1(sin φ0 cos θ0). (6.84)

As in the case for integrals ID̄1
and ID̄3

, one of two cases could occur:

1. cos Φ1 > | sin φ0 cos θ0|, in which case the stationary phase point lies in

D̄2/D̄4,

2. cos Φ1 < | sin φ0 cos θ0|, in which case there is no stationary phase point in

D̄2/D̄4.

We assume that case (1) holds, and discuss case (2) later in the chapter.

To calculate the saddle contribution in the integral ID̄2
, let ǫ = Φ − Φss, and

Taylor series expanding Ψ2(Φ) about this point yields

Ψ2(Φ) ∼ Ψ2(Φss) +
ǫ2

2

d2Ψ2

dΦ2

∣

∣

∣

∣

∣

Φ=Φss

, (6.85)

where

d2Ψ2

dΦ2

∣

∣

∣

∣

∣

Φ=Φss

=
2 cos Φ

sin3 Φ
(cos Φ + sin φ0 cos θ0) +

1

sin Φ

∣

∣

∣

∣

Φss

(6.86)

and so

Ψ2(Φ) ∼ Ψ2(Φss) +
ǫ2

2 sin Φss
. (6.87)

Therefore

ID̄2
∼ −n1k2

4π
f(Φss)e

ikNd2Ψ2(Φss)
∫ π−Φ1−Φss

Φ1−Φss

e
ikNd2ǫ2

2 sin Φss dǫ (6.88)

=
−n1k2

4π
f(Φss)e

ikNd2Ψ2(Φss)e
iπ
4

√

2π sin Φss

kNd2

(6.89)

= −e
iπ
4

2

√

sin Φss

2πkNd2
n1k2f(Φss)e

ikNd2Ψ2(Φss), (6.90)
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where

f(Φss) =
cos(Φss − θ)(ikd1)−1

[1 + sin φ0 cos(Φss − θ0)]

(sin Φss + sin φ0 sin θ0)

[eikd2(sin Φss+sin φ0 sin θ0) − 1]
eikr cos(Φss−θ)−ikρ cos(Φss−ϕ).

(6.91)

Finally, to evaluate ID̄4
, the saddle point is at 2π − Φss and so let ǫ = Φ − 2π +

Φss. Therefore, by Taylor series expansion,

Ψ2(Φ) ∼ Ψ2(2π − Φss) +
ǫ2

2 sin(2π − Φss)
= − [1 + sin φ0 cos(Φss + θ0)]

sin Φss

− ǫ2

2 sin Φss

.

(6.92)

ID̄4
∼ −n1k2

4π
f(2π − Φss)e

−ikd2NΨ2(2π−Φss)
∫ −Φ1+Φss

−π+Φ1+Φss

e
ikNd2ǫ2

2 sin Φss dǫ (6.93)

=
−n1k2

4π
f(2π − Φss)e

−ikd2NΨ2(2π−Φss)e
iπ
4

√

2π sin Φss

kNd2

(6.94)

= −e
iπ
4

2

√

sin Φss

2πkNd2
n1k

2f(2π − Φss)e
−ikNd2Ψ2(2π−Φss), (6.95)

where f(2π − Φss) is as in (6.91) with Φss replaced by 2π − Φss.

Therefore, the doubly periodic Green’s function (6.43) can be approximated

by the following expression

∂GP

∂n
∼

M−1
∑

m=−M

N−1
∑

n=−N

[n1 (kr + mkd1 cos θ + nkd2 sin θ − kρ cos(θ − ϕ))

− n2k(x − ξ)]
eikRmn

4πkR3
mn

(1 − ikRmn)eik(md1 sin φ0 cos θ0+nd2 sin φ0 sin θ0)

+ ID̄1
+ ID̄2

+ ID̄3
+ ID̄4

. (6.96)

6.5.1 Numerical verification of doubly-periodic Green’s func-

tion

In figures 6.7, 6.9 and 6.11, we have picked representative values of the variables

for k = 0.1, k = 1 and k = 5, noted in the caption of each figure. The plots show

the magnitude of the normal derivative of the doubly periodic Green’s function at
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the origin of the array plotted against an increasing value of M (chosen to take

the same value as N in the double summation). For the cases where k = 0.1

(figure 6.7) and k = 1 (figure 6.9), we see an improvement in the convergence by

an order of magnitude when we add in the correction term. In the case where we

take k = 5, the correction factor does not make a significant difference, and at this

point it is not fully understood why this is so.

Figures 6.6, 6.8 and 6.10 show, for the same parameter values and for M =

N = 150, how the magnitude of the periodic Green’s function varies spatially in

̺. We can see that for both k = 0.1 and k = 1, the spatial periodicity is increased

noticeably by the inclusion of the correction term. For a frequency of k = 5, the

truncated sum without the correction term already appears to be periodic to a

high level of accuracy, and so we can still have confidence that implementing the

method described above into the boundary element method will produce reliable

results for the boundary values and reflection and transmission coefficients.

It is clear from the figures that the correction term here, in general, improves

the convergence rate a significant amount. But, in comparison to the improvements

to the convergence seen in chapter 4, the correction term derived for the doubly

periodic Green’s function in this chapter is not as impressive. It is unclear why

this is the case, and it is possible that this is due to a small algebraic error in

calculating the correction term, or when implementing it numerically. Based on

the above analysis, we expect the order of the error to be at least O(1/̺) when

corrected as shown in equation (6.96), but in fact the error may be O(1/̺(3/2)), as

was found for the one-dimensional array in chapter 4. To improve the accuracy

we could obtain the next order correction term, which would definitely ensure the

convergence with error O(1/̺3/2).
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Figure 6.6: The above plots (from top left to bottom right) show the absolute value of the normal derivative of the
doubly periodic Green’s function plotted against ρ, (a) without the correction term, (b) with the correction term,
(c) both with the correction term and without to show direct comparison and (d) the location of the stationary
phase points. The following parameter values were chosen: φ0 = π/8, θ0 = π/3, x = 0.1, d1 = d2 = 2, k = 0.1.
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Figure 6.7: The absolute value of the normal derivative of the doubly periodic Green’s function plotted against
increasing M . The parameter values are set as follows: φ0 = π/8, θ0 = π/3, x = 0.1, d1 = d2 = 2, k = 0.1.
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Figure 6.8: The above plots (from top left to bottom right) show the absolute value of the normal derivative of the
doubly periodic Green’s function plotted against ρ, (a) without the correction term, (b) with the correction term (in
red), (c) both with the correction term and without to show direct comparison and (d) the location of the stationary
phase points. The following parameter values were chosen: φ0 = −π/3, θ0 = π/4, x = 0.1, d1 = d2 = 2, k = 1.
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Figure 6.9: The absolute value of the normal derivative of the doubly periodic Green’s function plotted against
increasing M . The parameter values are set as follows: φ0 = −π/3, θ0 = π/4, x = 0.1, d1 = d2 = 2, k = 1.
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Figure 6.10: The above plots (top left to bottom right) show the absolute value of the normal derivative of the
doubly periodic Green’s function plotted against ρ, (a) without the correction term, (b) with the correction term (in
red), (c) both with the correction term and without to show direct comparison and (d) the location of the stationary
phase points. The following parameter values were chosen: φ0 = π/8, θ0 = π/3, x = 0.1, d1 = d2 = 2, k = 5.
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Figure 6.11: The absolute value of the normal derivative of the doubly periodic Green’s function plotted against
increasing M . The parameter values are set as follows: φ0 = π/8, θ0 = π/3, x = 0.1, d1 = d2 = 2, k = 5.
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6.6 Discretisation and numerical solution

Having proposed an efficient method for evaluating the doubly periodic Green’s

function, the governing integral equation for each Fourier mode (repeated below

for reference) can now be solved by the boundary element method.

1

2
φα(ρ, x) = Iα(ρ, x) + 2π

∞
∑

β=−∞

∫

C
φβ(r, ξ)Bα,β(r, ξ, ρ, x) r dl, α ∈ Z. (6.97)

As in previous chapters, we choose to use isoparametric quadratic elements. The

fully discretised form of equation (6.97) is

1

2
φα

i = Iα
i e−iαθ0 + 2π





2N−1
∑

j=3,odd

φα
j

[

h1,α

i
(j+1)

2

+ h3,α

i
(j−1)

2

]

+
2N+1
∑

j=2,even

φα
j h2,α,β

i j

2

+φα
1 h1,α,β

i1 + φα
2N+1h

3,α,β
iN

)

, (6.98)

where

hk,α,β
ij =

∫ 1

−1
Ψk(ν)Bα,β(rj(ν), ξj(ν), ρi, xi)rj(ν)|J (ν)|dν. (6.99)

Suppose that 2M + 1 Fourier modes are required for the Fourier series to converge

sufficiently, then in matrix form, for a given fourier mode A,

1

2
ΦA

n = IA
n + H−M,AΦA

−M + H−M+1,AΦA
−M+1

+ · · · + HA,AΦA
A + · · · +

H0,AΦA
0

+ · · · + HM−1,AΦA
M−1

+ HM,AΦA
M . (6.100)

If N elements are used, then each Hm,A is a (2N +1)× (2N +1) matrix consisting

of integrals of the form of expression (6.99), and ΦA
n is a (2N +1) vector containing

the unknown nodal values of the Ath Fourier coefficient of φ.

6.6.1 Evaluation of coefficient matrix

Each matrix of expression (6.100) is of the form of that given in chapter 5.4.1, the

only difference being that in this chapter the kernel of each of the integrals hk
ij is
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now a doubly periodic Green’s function. Regardless of this, the evaluation of both

the non-singular and singular elements are quantitively the same as described in

sections 5.4.2 and 5.4.3 respectively, since the only term of the doubly periodic

Green’s function that becomes singular is when m = n = 0.

6.7 Reflection and transmission coefficients, ze-

roth mode

To determine the reflection and transmission coefficients, we follow the same ap-

proach as used by Achenbach to calculate the reflection and transmission of an

obliquely incident wave by an array of spherical cavities ([3]).

The scattered field φsc(x) can be expressed as discrete Fourier representation

in x1 and x2 co-ordinates:

φsc
±(x) =

∑

q

∑

p

Φpq
± ei(αpx1+βqx2±γpqx3), (6.101)

where the +/− apply for x3 > 0 and x3 < 0 respectively. Solving Helmholtz’ equa-

tion in three dimensions, and applying condition (6.6), we can write the following

αp = k sin φ0 cos θ0 +
2pπ

d1

, (6.102)

βq = k sin φ0 sin θ0 +
2qπ

d2
, (6.103)

γpq =
√

k2 − α2
p − β2

q . (6.104)

It follows from equations (6.1), (6.5) and (6.101), that for low enough frequency,

the total propagating field in x3 > 0 is given by the zeroth mode (p = q = 0):

φT (x) = (1 + Φ00
T )eik(sin φ0 cos θ0x1+sin φ0 sin θ0x2+cos φ0x3), (6.105)
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and for x3 < 0 the propagating field is

φR(x) = eik(sin φ0 cos θ0x1+sin φ0 sin θ0x2+cos φ0x3) + Φ00
R eik(sin φ0 cos θ0x1+sin φ0 sin θ0x2−cos φ0x3).

(6.106)

Note for convenience we neglect the evanescent modes as they carry no energy.

The T/R have been used to replace the +/− from equation (6.101) to represent

the transmitted and reflected field respectively. Our aim is to calculate φT/R(x),

and to do this we follow the paper of Achenbach [3], who introduced auxiliary wave

states φA
T/R(x) that are opposite in phase and propagate in directions opposite to

the zeroth-order reflected wave mode:

φA
T (x) = eik(− sin φ0 cos θ0x1−sin φ0 sin θ0x2−cos φ0x3), (6.107)

φA
R(x) = eik(− sin φ0 cos θ0x1−sin φ0 sin θ0x2+cos φ0x3). (6.108)

Since both the total field φT/R(x) and the auxiliary states φA
T/R(x) satisfy Helmholtz

equation, application of Green’s theorem yields

∫

S

[

φ(x)
∂φA

F (x)

∂n
− φA

F (x)
∂φ(x)

∂n

]

dS = 0, (6.109)

where F represents either T or R depending on whether we are seeking Φ00
T or Φ00

R .

The surface S = S±
1 + S±

2 + S±
3 + S00 is as shown in figure 6.12, and the normal n

points out of the fluid domain.

To find the transmission coefficient, we first set F = T in equation (6.109)

and integrate over each surface S±
m in turn. Starting with surface S+

3 , the normal

coordinate n is −x3, and the field φ(x) is of the form of equation (6.105), since

x3 > 0. By equations (6.105) and (6.107) we have

∂φT

∂x3

= ik cos φ0(1 + Φ00
T )eik(sin φ0 cos θ0x1+sin φ0 sin θ0x2+cos φ0x3), (6.110)

∂φA
T

∂x3
= −ik cos φ0e

−ik(sin φ0 cos θ0x1+sin φ0 sin θ0x2+cos φ0x3), (6.111)
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Figure 6.12: Unit cell for application of reciprocal identity.
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and so the surface integral is given by
∫

d1
2

−
d1
2

∫
d2
2

−
d2
2

[

φT (x)
∂φA

T (x)

∂x3

− φA
T (x)

∂φT (x)

∂x3

]

dx2dx1 = −2ikd1d2 cos φ0(1 + Φ00
T ).

(6.112)

The integral over S−
3 can be calculated by choosing the normal n to be −x3,

and choosing φ(x) in the form of equation (6.106) since x3 < 0. By equations

(6.106) and (6.107) we have

−φR
∂φA

T

∂x3

= ik cos φ0 + ik cos φ0Φ
00
R e−2ik cos φ0x3, (6.113)

φA
T

∂φR

∂x3

= ik cos φ0 − ik cos φ0Φ00
R e−2ik cos φ0x3 . (6.114)

Substituting equations (6.113) and (6.114) into the integral over S−
3 yields

∫
d1
2

−
d1
2

∫
d2
2

−
d2
2

[

−φR(x)
∂φA

T (x)

∂x3
+ φA

T (x)
∂φR(x)

∂x3

]

dx2dx1 = 2ikd1d2 cos φ0. (6.115)

We now show that the integrals over S+
2 and S−

2 are equal in magnitude, but

opposite in sign to each other and so sum to zero. For x3 > 0, from (6.105) and

(6.113),

φ(x)
∂φA

T

∂x2
(x) − φA

T (x)
∂φ

∂x2
(x) = −2ik sin φ0 sin θ0(1 + Φ00

T ), (6.116)

and in x3 < 0, from (6.106) and (6.113),

φ(x)
∂φA

T

∂x2
(x) − φA

T (x)
∂φ

∂x2
(x) = −2ik sin φ0 sin θ0(1 + Φ00

R e−2ik cos φ0x3). (6.117)

Hence, on S+
2 , n = x2, and so

∫

S+
2

[

φ(x)
∂φA

T

∂x2
(x) − φA

T (x)
∂φ

∂x2
(x)

]

dS =

− 2ik sin φ0 sin θ0

{

(1 + Φ00
T )

d2l

2
+ d2

∫ 0

− l
2

(1 + Φ00
R e−2ik cos φ0x3)dx3

}

, (6.118)

whereas on S−
2 , n = −x2 yielding

∫

S−

2

[

φ(x)
∂φA

T

∂x2
(x) − φA

T (x)
∂φ

∂x2
(x)

]

dS =

2ik sin φ0 sin θ0

{

(1 + Φ00
T )

d2l

2
+ d2

∫ 0

− l
2

(1 + Φ00
R e−2ik cos φ0x3)dx3

}

. (6.119)
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The sum of these two integrals cancel and the result is zero. The same argument

can be repeated for S±
1 , revealing that these two integrals also cancel:

∫

S+
1 +S−

2

[

φ(x)
∂φA

T

∂x2

(x) − φA
T (x)

∂φ

∂x2

(x)

]

dS = 0. (6.120)

By equations (6.112) and (6.115), and due to the integrals over S±
2 and S±

1

cancelling, we can reduce the identity (6.109) to

∫

S00

[

φ(x)
∂φA

T (x)

∂n
− φA

T (x)
∂φ(x)

∂n

]

dS = 2ikd1d2 cos φ0Φ
00
T . (6.121)

Thus, we can now write

Φ00
T =

1

2ikd1d2 cos φ0

∫

S00
φ(x)

∂φA
T (x)

∂n
dS, (6.122)

where we have used the boundary condition (6.4). Similarly, by using the identity

∫

S

[

φ(x)
∂φA

R(x)

∂n
− φA

R(x)
∂φ(x)

∂n

]

dS = 0, (6.123)

we find that

Φ00
R =

1

2ikd1d2 cos φ0

∫

S00
φ(x)

∂φA
R(x)

∂n
dS, (6.124)

and so in general we obtain

Φ00
T/R =

1

2ikd1d2 cos φ0

∫

S00
φ(x)

∂

∂n

(

e−ik(sin φ0 cos θ0x1+sin φ0 sin θ0x2)∓ik cos φ0x3

)

dS,

(6.125)

where the ∓ in the exponent corresponds to T/R respectively. The total field φ(x)

is found via the boundary element method, and so Φ00
T/R can be calculated by using

Gaussian quadrature. Finally, define the reflection and transmission coefficients,

R0, T0 for the zeroth mode as

T0 = 1 + Φ00
T , (6.126)

R0 = Φ00
R . (6.127)
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6.8 Conclusions

Perhaps the most noteworthy part of this chapter is the analysis of section 6.5.

Increasing the rate of convergence of the doubly periodic Green’s function is a noto-

riously difficult problem, and has been considered by various authors throughout

the literature, most notably in the review paper by Linton [38]. As Achenbach

makes no note of the methodology for dealing with the periodic Green’s function

in his work on doubly periodic structures [3], we assume that he approximates the

value of the double sum merely by truncating the double summation at sufficiently

high values of the counters m and n. The aim of this section 6.5 was to develop

a more accurate and efficient method of computing the Green’s function so that

it can easily be implemented into the numerical scheme described earlier in this

thesis.

In this chapter, we have, more generally, shown how to extend the method

developed in chapters 4 and 5 to a doubly periodic array of three-dimensional, ar-

bitrary shaped scatterers. The main difference in the calculations of this chapter

compared to chapter 5 is the fact that due to the presence of multiple scatterers,

and consequent loss of axisymmetry, the system is now coupled, significantly in-

creasing the computational cost involved in calculating the matrix of coefficients.

Currently, the code written by the author to solve the integral equations in this

thesis is implemented in Matlab. Adding the coupling effects from this chapter

could easily be implemented, but will require parallelizing of the code to increase

computational speed. Alternatively, another option would be to rewrite the code

in a language, such as C++, which is recognised as being more efficient at such

large tasks.



Chapter 7

Conclusions

7.1 Summary

This thesis has investigated the time-harmonic acoustic scattering by periodic

arrays of cylinders and bodies of revolution of arbitrary cross-section. The moti-

vation for this was to investigate the reflection and transmission of plane waves

through arrays of macroscopic inclusions in an otherwise homogeneous medium.

The problem was of particular interest to Thales Underwater Systems, who have

previously investigated wave scattering from single bodies of revolution. The re-

search was published in an internal report by Peter Brazier-Smith [12]. Due to the

complexity involved in studying the fully elastic model, we chose here to consider

the acoustic problem with the intention of developing a method that could feasibly

be extended to the elastodynamic problem.

The background, set out in chapter 2, introduced the physical motivation, his-

tory and mathematical concepts used throughout the thesis, such as the theory

of boundary integral equations and the boundary element method. In addition

to this, we discussed existing literature in wave propagation in periodic media. It

was shown that a number of investigations into reflection and transmission through
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periodic arrays have been undertaken, but are limited in their evaluation of the re-

sulting periodic Green’s functions. It became clear whilst undertaking the research

work that in order for the boundary element method to be an effective numerical

scheme for infinite periodic problems, further investigation into the convergence of

periodic Green’s functions was required.

In chapter 3, we investigated the problem of acoustic wave scattering by a

single, two-dimensional sound-hard body of arbitrary shape. The aim of this

section was to show step-by-step how the boundary value problem is reformulated

as a boundary integral equation, the kernel of which is the Hankel function of the

first kind. The governing integral equation was then discretised and solved using

the boundary element method, to solve for the unknown potential at a discrete

number of points on the body’s surface. To prove that the numerical results

are reliable, the convergence rate was calculated to be cubic, as predicted in the

existing literature. Finally, the field on the surface of the body was calculated for

various shaped scatterers and for various frequencies. Using these values, it was

possible to calculate the field at any point in the domain.

Chapter 4 built upon the work of chapter 3, and considered an infinite periodic

array of arbitrary-shaped cylinders, subject to a plane time-harmonic incident

wave. It was shown that, because of the periodicity of the array, the integral

equation over the surface of each cylinder can be reduced to an equation with an

integral over the surface of just a single representative body. As a consequence, the

kernel of the resulting integral equation is a periodic Green’s function. A novel way

to increase the rate of convergence of the periodic Green’s function was discussed,

which involves truncating the sum and calculating the leading order correction

from the infinite ‘tails’ of the array. It was shown that this method dramatically

improved the convergence rate of the sum, and consequently the computational

cost involved in solving the numerical scheme. With the first order correction term,
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the reflection and transmission coefficients were calculated over a range of values

of frequency and were shown to closely match those already in the literature for

circular cylinders. Refelction and transmission coefficients are also calculated for

an inifinite array of elliptical scatterers, and ‘peanut’ shaped scatterers.

Having comprehensively studied two-dimensional scattering problems in chap-

ters 3 and 4, chapter 5 looked at wave scattering by a single three-dimensional

axisymmetric body. It was shown that by expressing each of the boundary func-

tions as a complex Fourier series in terms of the azimuthal angle, the integral

equation over the two-dimensional surface of the body can be reduced to an in-

tegral over the generating curve of the surface. Further to this, the integral over

the azimuthal angle can be calculated by application of the Fast Fourier Trans-

form, dramatically reducing the computational time required to calculate all of

the elements of the coefficient matrix. Due to the axisymmetry of the problem,

the system of equations for each Fourier coefficient of the acoustic potential de-

couples. Numerical results for the surface potential were calculated for a range

of frequencies of incident wave, and numerical investigations were made into the

number of Fourier modes required for convergence.

Finally, chapter 6 sought to extend the work of all previous chapters and of-

fered a scheme for determining the reflection and transmission of a time-harmonic

wave through a double-periodic array of three-dimensional axisymmetric scatter-

ers. As in chapter 4, the integral equation over all scatterers can be expressed as an

equation over a single representative cell, at the cost of having a doubly-periodic

Green’s function as the kernel of the integral equation. The double sum of the

Green’s function was truncated, and the contribution from the domain exterior

to this finite region was evaluated asymptotically using the method of stationary

phase. This allowed us to calculate an analytical first-order correction term to the
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Green’s function, increasing the rate of convergence of the double sum and decreas-

ing the computational cost of evaluating the double sum to a sufficient degree of

accuracy. The results shown in this section indicate that the method works well for

low frequencies, but the increase in the rate of convergence for higher frequencies

is not as dramatic.

As in chapter 5, the boundary functions were expressed as complex Fourier

series, but due to the presence of multiple scatterers the doubly periodic problems

for the azimuthal modes do not decouple. This means that the computational effort

required to solve the coupled system of integral equations by the boundary element

method is increased considerably. Due to this, and time constraints, we were

unable to provide results for the reflection and transmission coefficients. Despite

this, full details are given as to how one would implement the boundary element

method.

Through existing and novel analytic techniques, combined with the use of the

boundary element method, we have been able to produce a framework that can be

used to evaluate the reflection and transmission coefficients for periodic arrays of

two-dimensional and three-dimensional arbitrary shaped scatterers, where the all

of lengthscales involved are the same order.

7.2 Future Work

As just described, this thesis has presented a numerical framework for investigating

reflection and transmission through arrays of periodically-spaced macroscopic scat-

terers. However, due to time constraints and lack of computer processing power,

we were unable to produce plots of the reflection and transmission coefficients for

the problem described in chapter 6, and so this would be the obvious first objective

for future work.
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In addition to this, the physical motivation for the problem requires the method

to be extended to solve for the fully elastic case, i.e. for the scattering of compres-

sional or shear waves by an array of voids with aligned axes of symmetry. The

model is more complex than the acoustic case because of the (coupled) traction

free boundary conditions on the bounding surface of the voids. Although these

factors add significantly to the complexity of the problem, the method described

herein should still be applicable.

In order to more accurately represent real physical situations, the problem

can be further extended to include reflecting boundaries, or changes in material

properties, above and below the plane of the scatterers (to represent surrounding

materials). This represent a particular challenge; such boundaries may preclude

representing the incident field as a single propagating wave.

Thales Underwater Systems have sponsored various research projects within

the Waves Group at The University of Manchester, and a significant achievement

would be to combine some of the work done by different individuals. In particular,

a difficulty that could be addressed in future research is the common situation in

which the lattice substrate is visco-elastic or rubbery to see how such properties

affect the scattering by doubly-periodic arrays. In such materials Poisson’s ratio

may be very close to one half, presenting difficulties both for finite element mod-

elling and numerical evaluation of some analytical schemes. Such difficulties arise

because of the large difference in magnitude of bulk and shear moduli. With voided

materials the strained response of the substrate becomes dominated by shear de-

formation about the inclusions, whereas in homogeneous materials the equations

of state are dominated by terms involving the bulk modulus. In addition, the

dynamic response of visco-elastic materials is complicated by hysteresis. Further,

one could consider the impact of large amplitude compression. This would lead

to distortion of voided cavities and may give rise to non-linear inhomogeneous
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pre-stresses.
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Appendix A

Derivation of boundary integral

equation in 2D

A.1 Boundary integral formulation

In order to express the boundary value problem described in section 3.2 as an

integral equation, we follow the method as described in section 2.4.2. This requires

us to apply Green’s theorem to the region bounded by the rigid surface of the two-

dimensional scatterer ∂V and a large circle ∂VR of radius R ≫ a, that is centered

at the origin of the Cartesian co-ordinate system (x1, x2). This region is as shown

in figure 2.5. From equation (2.47), the integral equation representation is

φ(x, xs) = κG(xs, x) +
∫

∂V

(

φ(ξ, xs)
∂G

∂n
(ξ, x)

)

dS(ξ)

−
∫

∂VR

(

G(ξ̂, x)
∂φ

∂n
(ξ̂, xs) − φ(ξ̂, xs)

∂G

∂n
(ξ̂, x)

)

dS(ξ̂), (A.1)

where φ(ξ, xs) is the solution to Helmholtz equation subject to a point force of

strength κ at the point ξ = xs, that is

∂2φ

∂x2
1

+
∂2φ

∂x2
2

+ k2φ = κδ(ξ − xs). (A.2)
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In the above equation, k is the non-dimensional wavenumber (non-dimensionalised

on a) and the notation ξ̂ has been used make explicit the fact that the integration

variable is on the surface ∂VR in the second integral. The fundamental solution

G(ξ, x) satisfies

∇2
ξG(ξ, x) + k2G(ξ, x) = δ(ξ − x). (A.3)

We wish to show that the integral over the surface ∂VR tends to zero as R

tends to infinity. Let

IR =
∫

∂VR

(

G(ξ̂, x)
∂φ

∂n
(ξ̂, xs) − φ(ξ̂, xs)

∂G

∂n
(ξ̂, x)

)

dS(ξ̂), (A.4)

where xs = (xs
1, xs

2) and ξ̂ = (ξ̂1, ξ̂2). Also let

r′ = |ξ̂ − xs| (A.5)

=

√

ξ̂1

2
+ ξ̂2

2 − 2(ξ̂1xs
1 + ξ̂2xs

2) + (xs
1)

2 + (xs
2)2. (A.6)

Expressing ξ̂ in terms of polar coordinates, ξ̂1 = R cos θ and ξ̂2 = R sin θ, r′ can

be written in terms of R and θ as follows

r′ =
√

R2 − 2R(xs
1 cos θ + xs

2 sin θ) + (xs
1)

2 + (xs
2)2. (A.7)

Take the source distance to be |xs| = O(1), so that R ≫ |xs|, and hence r′ can be

expanded in terms of R to give

r′ = R − (xs
1 cos θ + xs

2 sin θ) + O
(

1

R

)

. (A.8)

The far field form of the total field [1, 9.2.3] is

φ(ξ, xs) ∼ i

4

√

2

kπr′
ei(kr′− π

4 )ζ(θ), (A.9)

for some function ζ(θ). Equation (A.9) can be expressed in terms of R and θ by

the substitution of (A.8) into (A.9) to give

φ(ξ, xs) =
i

4

√

2

kπR
ei(kR− π

4
)e−ik(xs

1 cos θ+xs
2 sin θ)ζ(θ) + O

(

1

R3/2

)

. (A.10)
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Similarly, the fundamental solution G(ξ̂−x) = −i/4H
(1)
0 (k|ξ̂−x| admits the same

far field expression, that is

G(ξ, x) =
i

4

√

2

kπR
ei(kR− π

4
)e−ik(ξ̂1 cos θ+ξ̂2 sin θ) + O

(

1

R3/2

)

. (A.11)

Differentiating equations (A.10) and (A.11) with respect to R yields

∂φ

∂R
(ξ, xs) = −k

4

√

2

kπR
ei(kR− π

4
)e−ik(xs

1 cos θ+xs
2 sin θ)ζ(θ) + O

(

1

R3/2

)

, (A.12)

∂G

∂R
(x, ξ) = −k

4

√

2

kπR
ei(kR− π

4
)e−ik(ξ̂1 cos θ+ξ̂2 sin θ) + O

(

1

R3/2

)

, (A.13)

and substituting equations (A.10), (A.11), (A.12) and (A.13) into expression (A.4)

results in

∫ 2π

0

{

ζ(θ)

(

ik

8πR

)

e2i(kR− π
4

)e−ik(ξ̂1 cos θ+ξ̂2 sin θ)e−ik(xs
1 cos θ+xs

2 sin θ)

+ ζ(θ)

(

−ik

8πR

)

e2i(kR− π
4

)e−ik(ξ̂1 cos θ+ξ̂2 sin θ)e−ik(xs
1 cos θ+xs

2 sin θ)

+ O
(

1

R2

)}

R dθ = O
(

1

R

)

. (A.14)

We can therefore see that in the limit as R → ∞, the integral term associated

with ∂VR of (A.1) tends to zero, and the resulting integral equation for the two-

dimensional exterior boundary value problem is

φ(x, xs) = κG(x, xs) +
∫

∂V
φ(ξ, xs)

∂G(x, ξ)

∂n
dS. (A.15)

Since the domain D is now unbounded, we can choose to take the limit as |xs|
tends to infinity by expressing xs in terms of a polar coordinate system (R1, θ1),

that is

xs
1 = R1 cos θ1 (A.16)

xs
2 = R1 sin θ1, (A.17)
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so that

(xs
1)2 + (xs

2)2 = R2
1. (A.18)

The modulus of the distance between the integration variable x and the point xs

can now be expanded for large R1,

|x − xs| = R1 − (x1 cos θ1 + x2 sin θ1) +
(

1

R1

)

, (A.19)

and from this it follows that the far field expansion of the fundamental solution

G(x, xs) for large R1 is

κG(x, xs) = κ

[

i

4

√

2

kπR1
ei(kR1− π

4
)

]

e−ik(x1 cos θ0+x2 sin θ0) + O

(

1

R
3/2
1

)

. (A.20)

Choosing the constant κ to take the value

κ = 2(1 − i)
√

πkR1e
−ikR1 , (A.21)

means that as we take the limit R1 → ∞, local to the scatterer κG(x, xs) behaves

as an incoming plane wave. That is

κG(x, xs) = e−ik(x1 cos θ0+x2 sin θ0). (A.22)

Substituting (A.22) into (A.15) yields

φ(x) = φin(x) +
∫

∂V

(

φ(ξ)
∂G

∂n
(ξ, x)

)

dS(ξ) x /∈ ∂V, ξ ∈ ∂V. (A.23)

The fundamental solution satisfying equation (A.3) is the Hankel function of

the first kind:

G(ξ, x) = − i

4
H

(1)
0 (k|ξ − x|). (A.24)

The normal derivative ∂G(ξ, x)/∂n(ξ) can be calculated by the following identity

∂G

∂n
(ξ, x) = n · ∇ξG(ξ, x), (A.25)
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where n is the unit normal orientated away from D (i.e. into S) and ∇ξ is the gra-

dient of the Green’s function with respect to ξ, which can be calculated explicitly:

∂G

∂ξ1

(ξ, x) = ik
(ξ1 − x1)H

(1)
1 (kr)

4r
, (A.26)

∂G

∂ξ2

(ξ, x) = ik
(ξ2 − x2)H

(1)
1 (kr)

4r
, (A.27)

where

r =
√

(ξ1 − x1)2 + (ξ2 − x2)2. (A.28)

A.2 Singularity of the integral equation

Equation (A.23) is a Fredholm integral equation of the second kind for the unknown

velocity potential φ(x). We intend to solve for φ(x) by discretising the integral

equation and specifying that it is satisfied exactly at a discrete number of points

on the boundary ∂V (the collocation method, as discussed in chapter 2). Before

we do this, we must allow the field point x to approach the boundary, so that both

the field point and the integration variable ξ lie on ∂V . The following treatment

shows that the normal derivative of the Green’s function has a singularity at the

point at which x = ξ, and so requires careful analysis.

In the following subsection, we show that for smooth shapes, we can handle

the singularity by analysing a small portion of the boundary ∂V as x → ξ. In the

limit as this integration range goes to zero, we show that we are able to evaluate

the integral analytically to derive a so-called free-term, so that we are able to solve

the boundary integral equation numerically.

A.2.1 Derivation of free-term

Suppose that x approaches an arbitrary point ξ = ξ0 on the smooth boundary ∂V ,

that is at the origin of a local Cartesian coordinate system (u, v), orientated such



A.2. SINGULARITY OF THE INTEGRAL EQUATION 217

v̂

û

x

ξξ0

Figure A.1: Local coordinate system near the point ξ = ξ0.

that the unit vector û is tangent to ∂V and the unit vector v̂ is aligned with the

outward-pointing unit normal N to ∂V . Divide the integration contour ∂V into

two regions, ∂Vǫ and ∂V \ ∂Vǫ, where ∂Vǫ is of length 2ǫ centered at the point ξ0.

We take ǫ to be sufficiently small so that local to ξ0, ∂Vǫ can be approximated by

the straight line segment [−ǫ, ǫ] ∈ R
1. Take the field point x to be a point located

a distance ǫ2 normally from ξ0, say

x = ξ0 + ǫ2v̂ (A.29)

The geometry is as shown in figure A.1. Dividing the integration curve into the

two regions as described above, and taking the limit as ǫ → 0 allows us to write

the integral of the governing equation (A.23) as

∫

∂V
φ(ξ)

∂G

∂n
(x, ξ)dS(ǫ) = −

∫

∂V
φ(ξ)

∂G

∂n
(x, ξ)dS(ǫ) + lim

ǫ→0

∫ ǫ

−ǫ
φ(ξ)

∂G

∂n
(x, ξ)du,

(A.30)

where the dash on the integral sign is used to show that we have taken the following

limit

−
∫

∂V
φ(ξ)

∂G

∂n
(x, ξ)dS(ǫ) = lim

ǫ→0

(

∫

∂V \∂Vǫ

φ(ξ)
∂G

∂n
(x, ξ)dS(ǫ)

)

. (A.31)
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ê1

ê1 = (1, 0)

ê2

ê2 = (0, 1)

x1

x2

θ

n̂

ξ0

û

v̂

ξ

x

Figure A.2: Orientation of the unit normals û and v̂ with respect to the basis
vectors (ê1, ê2).

We discuss the implications of this (section 3.3.1) and show that in the limit as

ǫ → 0, the integrand is continuous. Let I denote the integral

I = lim
ǫ→0

∫ ǫ

−ǫ
φ(ξ)

∂G

∂n
(x, ξ)du. (A.32)

Take the vectors ê1 = (1, 0) and ê2 = (0, 1) to be the basis vectors that span

the (ξ1, ξ2) plane. From figure A.2, ê1 and ê2 are related to the unit vectors û, v̂

by the following:






û

v̂





 =







cos θ sin θ

− sin θ cos θ













ê1

ê2





 , (A.33)

where θ is as shown in figure A.2. In the integration range of I, the inward pointing
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normal is −v̂ = sin θê1 − cos θê2, and hence

∂G

∂n
(x, ξ) =

ik

4r
H

(1)
1 (kr)[sin θ(ξ1 − x1) − cos θ(ξ2 − x2)], (A.34)

where

r = |ξ − x| =
√

u2 + v2 (A.35)

and

v = (ξ1 − x1) sin θ + (x1 − ξ2) cos θ, (A.36)

as shown in figure A.3. Therefore

∂G

∂n
=

ikv

4r
H

(1)
1 (kr), (A.37)

and since

H
(1)
1 (kr) ∼ −i

π

(

2

kr

)

+ O (r log(r)) , as r → 0, (A.38)

then
∂G

∂n
∼ iv

4r

(−2i

πr

)

=
v

2π(u2 + v2)
+ O

(

v log(u2 + v2)
)

. (A.39)

Now make the substitution v = ǫ2, so that the integral I, in terms of ǫ is

I = lim
ǫ→0

∫ ǫ

−ǫ
φ(ξ)

(

ǫ2

2π(u2 + ǫ4)
+ O[ǫ2 ln ǫ]

)

du. (A.40)

We can further simplify I by noting that as x approaches the boundary, we have

φ(ξ) ∼ φ(x) + O(ǫ), (A.41)

and so

I =
1

2π
lim
ǫ→0

∫ ǫ

−ǫ
[φ(x) + O(ǫ)]

(

ǫ2

u2 + ǫ4
+ O[ǫ2 ln ǫ]

)

du. (A.42)

If we now make the following substitution,

u = ǫ2z, (A.43)



220APPENDIX A. DERIVATION OF BOUNDARY INTEGRAL EQUATION IN 2D

u

ûv̂

v

θ

θ

θ

ξ1 − x1

ξ
2 −

x
2

r =
√

u2 + v2

Figure A.3: Orientation of û and v̂.

then

I =
φ(x)

2π
lim
ǫ→0

(

∫ 1
ǫ

− 1
ǫ

dz

z2 + 1
+ O[ǫ]

)

(A.44)

=
φ(x)

2π

∫ ∞

−∞

dz

z2 + 1
, (A.45)

=
φ(x)

2π
(π) =

1

2
φ(x). (A.46)

Finally, substituting this into expression (A.30) results in

∫

∂V
φ(ξ)

∂G

∂n
(x, ξ)dS(ǫ) = −

∫

∂V
φ(ξ)

∂G

∂n
(x, ξ)dS(ǫ) +

1

2
φ(x). (A.47)

It follows that

1

2
φ(x) = φin(x) + −

∫

∂V

(

φ(ξ)
∂G

∂n
(ξ, x)

)

dS(ξ) x ∈ ∂V, ξ ∈ ∂V. (A.48)


