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Abstract—Close proximity hyperspectral and multispectral 
imaging of crops and soils offers significant potential to optimize 
sustainable intensification of arable produce and seeds breeding, 
through the real-time precision management of plant pathogens, 
viruses and pests and the non-destructive high throughput 
screening for beneficial crop traits. These opportunities have been 
recently reported and are the subject of ongoing R&D within 
industry and academia. The broad uptake of the technology by 
large commercial end-users, through integration with in-field and 
glasshouse machinery, is limited by cost and equipment 
reliability. It is further restricted by spectral and spatial 
resolution, power budget and size, when extending its 
applicability to consumer markets and small-holder farmers. This 
study verifies, for the first time, that multispectral sensor systems 
architectures, exploiting proprietary narrowband LEDs and 
silicon C-MOS imaging detectors, are capable of substituting for 
conventional and more expensive line-scanning hyperspectral 
imaging systems when operated in close proximity (c. 1-2m) of a 
crop canopy. This was achieved by comparing the data from a 
prototype version of the new LED-sensor system versus a 
reference laboratory hyperspectral imaging unit, which was 
previously developed for crop phenotyping, and the early 
detection of two fungal pathogen borne diseases in whole barley 
and sugar beet plants. The choice of crops and diseases replicates 
earlier studies, with the reference hyperspectral unit, and serves 
to demonstrate the generic applicability of the new LED-sensor 
system to cereal and tuber classes of crops. The results indicate 
that the new approach can deliver data of comparable quality to 
that of the reference system, for in-field duties, and offers the 
opportunity for higher sensitivity and spatial resolution. Future 
potential to apply the new multispectral, LED-based system 
within commercial products is then discussed.  

Keywords—hyperspectral, crop, agriculture, disease, fungal 
pathgen, barley, sugar beet, stress, sensor, instrument 

I.  INTRODUCTION 
Remote sensing of crop and terrestrial features through the 

imaging of analysis of visible (VIS, 400-700 nm), near infrared 
(NIR, 700-1000 nm) and short wave infra-red (SWIR, 1000-
2500 nm) wavelengths has been exploited by the agriculture 
and food supply industry for a number of years [1-3]. Typically 
the hyperspectral imaging (HIS) sensor units, capable of 
scanning VIS, NIR and SWIR ranges, have been located on 
aircraft or orbiting earth-observation satellite platforms and 
have mapped broad areas of land through calculating Spectral 

Vegetation Indices (SVI) [4], one of the earliest and most 
common being Normalized Difference Vegetation Index 
(NDVI) [5]. NDVI utilizes the ‘red-edge’ which represents the 
significant difference in reflectance of a crop canopy to light of 
wavelengths around 700nm. With reference to (1), R750 and R660 
are the reflected sunlight intensities at 750nm (NIR) and 660nm 
(Red) wavelengths, respectively. These reflected wavelengths 
represent the divide where photon energies are less than 
sufficient for photosynthesis by chlorophyll a or b and so their 
absorbance by plants would result in heating and potential 
damage of the tissue by sunlight. 

 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 𝑅𝑅750−𝑅𝑅660
𝑅𝑅750+𝑅𝑅660

 (1) 

NDVI, and subsequent SVIs, use subsets of the HSI data, 
conventionally ratioing image pixel-intensities at one 
wavelength with their corresponding values at one or more 
alternate wavelengths. As a consequence Multispectral Imaging 
(MSI) camera systems are often subsisted, for full spectrum 
HSI detectors, to detect specific SVIs. MSI detectors 
incorporate narrowband light detectors or filter assemblies 
which are specifically tuned to the required wavelengths for the 
SVIs. This enables MSI sensors to be manufactured more cost 
effectively than HSI cameras and potentially to offer more 
wavelength accuracy and higher scanning speeds. However, the 
aerial positioning of these large area scanners dictates that they 
require sunlight energy as the only practicable source of light 
energy. This has the disadvantage that the reflected light energy 
available at any given narrowband of wavelengths will be low 
under normal crop production environments. Thus, to gain 
suitable signal-to-noise ratio (SNR) at the necessary 
wavelengths for SVIs requires high-sensitivity detectors which, 
due to the movement of the aircraft or satellite, must also be 
capable of capturing the light energy at relatively high speed to 
achieve adequate spatial resolution. This requires remote HSI 
and MSI cameras to have high light sensitivity, often 
incorporating cooling units to reduce the thermal generation of 
electron transport (‘dark current’) in the photon detectors. To 
reduce system cost and payload weight, the resulting detector 
assemblies are commonly combined with line- and raster-
scanning optical beam steering subsystems so that one, or a 
small number, of detectors can map the required image area. 

In more recent years work has been reported on close-
proximity, i.e. in-field, analysis of spectral and hyperspectral 
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crop features. Research include both abiotic and biotic stress 
detection, for drought [6], pests [7] and pathogens [8], as well 
as speciation of crops versus parasitic weeds [9], estimation of 
soil carbon [10] and wheat protein content [11]. These studies 
have tended to adopt the remote passive HSI and MSI detectors, 
from the geospatial imaging sector, and then to take advantage 
of the variation in plant and soil data arising intra and inter crop 
canopy to identify new spectral features. This spatial and 
spectral information, when incorporated into models alongside 
appropriate meta-data, shows significant potential for HSI and 
MSI to provide rapid and non-invasive methods of 
autonomously detecting pre-visual symptoms of specific plant 
stresses, early emergence of weeds and screening of useful 
phenotypic traits. However, to achieve broad uptake of these 
techniques by the commercial agriculture industry requires the 
current hyperspectral camera’s functionality to be device-
engineered into a fundamentally lower cost and robust 
technology. 

When translating HSI to the field environment, there is less 
of a need to be reliant on sunlight as the sole source of light 
energy. For example, fluorescence imaging of chlorophyll 
activity is a commonly used technique which is reliant on the 
active illumination of leaf samples from dark- and semi-dark 
adjusted plants [12]. Similarly the laser lighting has been 
applied to gain spectral data from crop canopies [13] and closed 
environment Light Emitting Diode (LED) lit transportable 
chambers have been deployed on tractors for field phenotyping 
using SVIs [14]. Commercial non-imaging units also exist for 
inferring nitrogen content, notably the N-Sensor™ from Yara 
International ASA (Norway), though these are reliant on 
passive sensing of the SVI relevant wavelengths [15]. 

This paper introduces the design and validation of a new 
sensor architecture that can deliver high spatial-resolution MSI 
data suitable for close proximity mapping and analysis of plant 
features. The approach reported has been engineered to meet 
the needs of commercial crop production, of broad-acre cereal 
and horticultural crops, as well as field phenotyping for 
industrial seeds breeding. To achieve this it incorporates a 
modified proprietary silicon C-MOS (Complementary Metal 
Oxide Semiconductor) detector array integrated with VIS-NIR 
optics, synchronized LED active-illumination and low 
computationally-intensive vision processing to provide a 
technology platform for direct in-field use within mass-
production handheld or machine mounted instrumentation. To 
demonstrate the effectiveness of the new MSI sensor system, its 
operation was verified through comparative analysis with a 
reference laboratory HSI instrument, which was configured to 
replicate earlier studies on fungal pathogen emergence in sugar 
beet [16] and barley crops. The latter are representative of 
monocotyledons and dicotyledonous plants. 

II. CLOSE PROXIMITY SENSOR SYSTEM ENGINEERING 

A. System Concept 
Mass produced silicon (Si) imaging arrays, as embedded 

within digital cameras and smartphones, are capable of 
detecting electromagnetic wavelengths in the approximate 
range 400-1100nm. The longer wavelength limit is controlled 
by the energy of the incident photon. As a photon interacts with 
other particles by transferring its energy to the other particle 

and then disintegrates itself. This exchange of energy happens if 
the maximum energy that the photon can bring is at least equal 
to the smallest quantum of energy that the other particle can 
accept. For a monocrystalline silicon lattice, this smallest 
quantum is 1.1eV, referred to as the ‘silicon band gap’ [17]. 
From quantum mechanics (2) this equates to a photon having a 
wavelength of 1125nm or shorter. Where: Eph is photon energy 
(J, 1eV=1.602x10-19J), h is Plank’s constant (6.626x10-34Js), c is 
the speed of light in a vacuum (2.998x108m/s) and λ is 
wavelength (m). 

 𝐸𝐸𝑝𝑝ℎ = ℎ𝑐𝑐
𝜆𝜆

 (2) 

For photons of wavelengths shorter than 1125nm the 
probability of interaction with silicon is controlled by the 
absorption coefficient α (m-1). From the Beer-Lambert 
relationship (3), a photon penetration depth can be defined at 
the thickness of material required to absorb 1/e (37%) of the 
incoming radiation. Where: I(z) is the intensity of photons at 
depth z into the material, for Io incident light at the surface, and 
e is Euler's number (~2.718) 

 𝑁𝑁(𝑧𝑧) = 𝑁𝑁0𝑒𝑒𝛼𝛼𝛼𝛼 (3) 

For silicon, at room temperature, this equates to less than a 
1µm penetration at below 400nm wavelengths [18], see Fig. 1, 
so dictating a shorter wavelength limit on practical Si C-MOS 
detectors. Similar logic may be applied to the usable emission 
wavelengths of Si-LEDs. 

 
Fig. 1. Silicon photon absorption coefficient vs. photon energy at different 
temperatures (source 1,2[18] & 3 [19]) 

Despite these physical limitations on silicon optical 
components, it is clear that they are capable operating at 
wavelengths longer than the visible region and well into the 
NIR. The reason why consumer digital imaging devices are 
frequently limited in their wavelength range is through the 
inclusion of an optical low-pass filter to specifically prevent the 
interference of non-visible wavelengths within visual images. 
However, these filters are not an inherent part of C-MOS 
detectors and are readily removable. Some manufacturers of 
commodity cameras now adopt the policy of dispensing with 
the cost of the filter entirely and using software to correct for 
NIR light interference. 

LEDs, whether they generate non-coherent or laser light, are 
inherently narrow bandwidth. This is by virtue of the 
wavelength of emission being dictated by the band gap of the 



pure or alloyed semiconductor materials used. Through 
combining these narrowband light emitters with the broadband 
C-MOS imaging detectors it is then possible to strobe through a 
series of SVI relevant wavelengths through sequentially 
lighting the object under investigation with the corresponding 
LED light source. Provided the degree of illumination, in each 
case, does not saturate the detector and the image sequence can 
be collected at a rate where the object remains constant 
throughout, or any movement can be compensated for, then it is 
possible to create a MSI by subtracting a reference ambient lit 
image from the raw image data-set. This is the basic operating 
premise behind the new MSI sensor system for in-field crop 
analysis. 

B. Sensor System Engineering for Fungal Pathogen Trial 
The MSI sensor system, used within the fungal pathogen 

investigation, was comprised of a Canon Model 1100D Digital 
Single Lens Reflex (D-SLR), which was modified through 
extraction of the low-pass filter (source: Baadar Planetarium 
Gmbh, Mammendorf, Germany). This unit was then embedded 
within a light-board assembly, comprised of over 1000, 5mm 
diameter, narrowband LED emitters which were spectrally 
selected to emit light with center wavelengths at 530, 570, 670, 
735 and 830nm (source: Roithner Lasertechnik GmbH, Vienna, 
Austria). Each LED having a Full Width at Half Maximum 
(FWHM) of 15-20nm. The specific wavelengths being selected 
as the most significant bands for the SVIs previously identified 
from the reference fungal pathogen studies (see Section III, 
[16]). The numbers of each class of LED being defined by their 
individual theoretical output efficiencies, such that 
approximately identical emission intensities were obtained from 
each lighting-cluster. Fine adjustment of the overall light 
intensity, at each wavelength, was then adjusted through Pulse 
Width Modulation (PWM) of individual current sources, which 
were addressable per wavelength cluster. The PWM period was 
set to be at least an order of magnitude shorter than the 
minimum camera exposure time, to ensure uniformity of 
illumination without the need to accurately synchronize image 
frame-capture with the current modulation. Specular reflectance 
was reduced, without the inclusion of a light diffuser element 
through orientation of the individual LEDs with respect to the 
parallel camera lens assembly such that their cone of light 
emission would not result in direct reflection of the light energy 
into the detector by an orthogonal reflective surface, such as a 
waxy leaf. The LEDs, making up each light cluster, being 
evenly distributed over the surface of the composite light board, 
see Fig 2, to gain even light distribution within the camera’s 
field of view. 

The PWM duty cycle could then be adjusted, per 
wavelength, by software to then compensate for the quantum 
efficiency of both the imaging detector and the specific LED 
components. This was achieved by using an optically ‘gray’ 
(half-energy) diffuse reflectance tile, suitable for VIS and NIR 
wavelengths (source: Thorlabs Ltd, Ely, UK) and balancing the 
total light intensity, at each wavelength, such that a signal equal 
to approximately half the detectors dynamic range was 
achieved with the camera aperture set to minimum. The latter 
was a precaution to increase the focal depth of the optical 
assembly and so minimize the effects of chromatic aberration, 

especially at the NIR wavelengths where a proprietary visual 
camera lens may not be optimized. 

  
Fig. 2. LED lighting assembly with center wavelengths at 530, 570, 670, 735 
and 830nm showing location of camera in centre. 

Low-level control of the current sources and camera shutter 
activation was provided through a dedicated embedded 
microcontroller card integrated with bespoke drive electronics. 

III. VALIDATION OF SENSOR SYSTEM FOR EARY FUNGAL 
PATHOGEN DETECTION 

A. Equipment and Operating Procedure 
The validation trial, for the new MSI sensor system, was 
performed on two model systems. The first using pathogen 
inoculated barley and the second with inoculated sugar beet. 
Both studies exploited the same reference HSI instrumentation 
(for detailed description see [20]), located at INRES 
(University of Bonn), and the new experimental MSI sensor 
system, as shipped from the University of Manchester. The 
reference system comprised of two hyperspectral line cameras 
and associated lighting attached to a linear translation gantry, 
as shown in Fig 3, positioned approximately 1 meter above 
crop samples. Only one of the cameras, the ImSpector V10E 
(source: Spectral Imaging Ltd, Oulu, Finland) with a spectral 
resolution of 2.8nm from 400-1000nm and a spatial resolution 
of 0.19 mm (1650 pixels per line), was used in the study as the 
spectral range of the second was incompatible with the 
investigation.  

To acquire data from the HSI instrumentation the following 
procedure was followed, this took approximately 10 minutes 
per camera for each plant sample: The system was calibrated 
against a white reference bar, comprised of barium sulfate 
which extended across the scan line of the cameras; The linear 
stage was moved across the entire width of the reference bar 
with a scan speed linked to the frame rate of the hyperspectral 
camera and to the distance to the object; The previous step was 
repeated with the shutter of the camera closed to acquire a dark 
current measurement; The white reference was then removed 
and the camera shutter re-opened; New start and end points 
were then programmed for the gantry, which covered the entire 
range of interest for the specimen plant, followed by recording 
a scan of the specimen in a similar manner to the calibration 
scan and; A second dark current reading was taken for the 
entire image and the data from the white reference and the dark 



current readings were then used to correct for the spectral and 
spacial variations of the light source and camera sensitivity. 
This process was undertaken using in-house software. The 
scanning process and the camera controlling was undertaken 
using the Data cube software (Spectral Imaging Ltd, Oulu, 
Finland), the normalization routine and data preprocessing was 
undertaken using in-house software in ENVI/IDL. The output 
files from the normalization procedure were then available for 
analysis in a similar manner to that previously reported [16]. 

  
Fig. 3. Reference HSI camera assembly on gantry, showing ImSpector (top 
centre left) camera and halogen light sources 

As the new MSI system captured a complete image, at each 
of the illumination wavelengths, the camera was positioned 
centered approximately 1 meter above the plant specimens such 
that it had a similar field-of-view to the reference line-scanning 
HSI instrument and was triggered autonomously, via the 
embedded microcontroller. Image recording followed the 
procedure as follows: A first dark current reading was taken 
with no illumination; The object was illuminated with the first 
SVI wavelength and the image captured after a short delay 
(>100ms) to enable stabilization of the LED lighting cluster, 
which remained lit for a short period (>100ms) after image 
capture; The object was illuminated and image captured, as 
before, for the second, and all remaining, SVIs in sequence and; 
A second dark current reading was taken to enable sensor drift 
to be retrospectively compensated for. A reference ‘gray tile’ 
was included in the MSI sensor system’s image space, to enable 
internal calibration of the data during post-processing of the 
information. Typically the full cycle took less than a minute for 
a 3 component SVI. This delay was dominated by the 
comparatively slow access time of the memory card in the D-
SLR camera.  

 

B. Experimental Programme for Validation of Sensor System 
for Early Detection of Fungal Pathogen Crop Diseases 
The HSI and MSI sensor systems were investigated at the 

example of barley (Hordeum vulgare) and relevant foliar plant 
diseases caused by fungal pathogens: Powdery mildew 
(Blumeria graminis f. sp. hordei; Brown rust (Puccinia hordei) 
and; Net blotch (Pyrenophora teres) This was followed by 
complementary trials on sugar beet plant samples (Beta 
vulgaris) and the plant diseases: Cercospora leaf spot 
(Cercospora beticola)and; sugar beet rust (Uromyces betae)For 
the purposes of reporting the sensor system validity, only one 

protocol for pathogen inoculation will be detailed for each plant 
species followed by the corresponding results from the 
instruments. 

Barley Inoculation Protocol for Powdery Mildew 
disease: As a biothrophic pathogen B. graminis hordei requires 
a living host in order to survive. As such, an infected population 
of barley plants is maintained at INRES and this was used as 
inoculum source in the study. Inoculation comprised of shaking 
heavily infested barley plants above 4 week old healthy test 
plants, cv. Leibniz (KWS, Einbeck, Germany). The plants were 
kept at 18 / 22°C (night / day) temperatures and a relative 
humidity (RH) of 60%  in a greenhouse environment.  

Sugar Beet Inoculation Protocol for Cercospora Leaf 
Spot disease: Cercospora beticola (necrotroph pathogen) can 
be stored by retaining dried infected leaves. To prepare a spore 
suspension the dried leaves are placed in a 100% RH humidity 
chamber for 24 hours. This allowed the pathogen to form spores 
at stromas on the leaf lesions. The prepared leaves can then be 
cut into small sections and added to tab water and stirred to 
wash the spores from the leaves, with a small amount of 
Polysorbate (‘Tween’) surfactant (source: Sigma Aldrich 
Gmbh, Seelze, Germany) added to the water. After the leaves 
and water have been sufficiently mixed (c. 10 minutes), the 
leaves and spore suspension are separated by filtered through 
muslin. The number of spores per millilitre is calculated by 
counting spores in a Fuchs-Rosenthal chamber under a light 
microscope, and the suspension is diluted to the desired 
concentration of 3x10³ spores/ml. The spore suspension was 
sprayed on to the 6 week old test plants (cv. Pauletta, KWS 
Einbeck, Germany), ensuring that both sides of the plant leaves 
are sprayed. Subsequently incubation took place in plastic bags 
at 100% RH for 48 hours.  

Measurements were taken daily, as per the protocol in 
Section III A., of the infected plants, alongside healthy control 
plants, from the point of inoculation up to 30 days after (i.e. 
post necrosis). Six plants per pathogen treatment were 
measured daily; additionally six healthy plants were measured 
as control plants. 

IV. RESULTS 
Though this initial investigation exploited a five wavelength 

MSI instrument, the approach is entirely scalable to larger 
numbers, to accommodate multivariate model-based 
classification approaches and more complex SVIs. For the 
purposes of summarizing the findings of the MSI sensor trials, 
the results presented here have been limited to a subset of two 
SVI studies on the exemplar crops and diseases using two and 
three wavelength SVIs.  

With respect to Fig. 4, the images represent two significant 
stages in the early development of powdery mildew on barley 
plants inoculated with B. graminis f. sp. hordei. Each pixel in 
Fig. 4B and 4C corresponds to a NDVI calculation, as per Eqn. 
1, where the NIR illumination is provided by an 830nm LED 
and the visible red light from a 670nm source. These 
substitutions are justified as NDVI measurements allow for this 
degree of tolerance, whilst having negligible effects on the 
readings. The reference HSI instrument was similarly 
configured to measure NDVI at the 830 and 670nm bands. To 



aid clarity, the NDVI images, in Fig. 4, have been false-colored 
from blue (low values) to red (high values) using the 'jet' color 
map [21]. 

A course wire graticule was used to hold the leaves 
perpendicular to the camera assemblies and also act as a 
position index across images. Powdery mildew has been used to 
illustrate the sensor system operation as the NDVI can readily 
detect the spread of mycelia from B. graminis f. sp. hordei 
spores as they spread and obscure the leaf's surface reflectance. 
The corresponding results from a visual camera, the reference 
HSI instrument and the new MSI sensor system are shown in 
Fig. 4a, 4b and 4c, respectively. These indicate that the greater 
pixel density of the modified D-SLR camera (12.2 effective 
megapixels, 4,272 × 2,848) combined with the ability to 
illuminate the sample with relatively high intensity light only at 
the SVI relevant wavelengths enabled the MSI sensor to 
achieve greater spatial and spectral sensitivity than the HSI 
instrument, without thermal or light stressing the sample. 

 
Fig. 4. Powdery mildew infected barley leaf after 6 and 8 days post-
inoculation: (A) Color camera image; (B) NDVI image from reference HSI 
instrument and; (C) NDVI image from MSI sensor system. 

Fig. 5 provides results from the new MSI sensor system for 
Cercospora leaf spot disease in sugar beet using the CLS index 
(4). Similar results from the reference HSI instrument, and the 
definition of the CLS index, having been previously reported 
[16], i.e.: 

 𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑅𝑅698−𝑅𝑅570
𝑅𝑅698+𝑅𝑅570

− 𝑅𝑅734 (4) 

Where: R734, R698 and R570 are the reflected light intensities 
at 734, 698 and 570nm wavelengths, respectively. Due to the 
lack of availability, from standard suppliers, of suitable format 
LEDs at the 698nm wavelength a 670nm source was substituted 
in the MSI instrument and a 735nm source provided the 
illumination for the R734 measurements, as the required 
wavelength was suitably close to be within the FWHM 
envelope of the selected LED.  

Comparison of the visual camera image (Fig. 5A), with the 
false-color (‘jet’ color map) CLS SVI image (Fig. 5B) 
illustrates the sensitivity of the CLS index for detecting the 
onset of the disease. The early symptoms on the leaf by the 
Cercospora leaf spot being indistinct within the visual image 
but clearly observable as distinct lighter colored patches in the 
spectrally enhanced CLS index image (3 examples circled in 
images). Fig. 5B was recorded by the new MSI sensor system 
and, again, demonstrated that the unit could provide results for 
the SVIs at least as detailed as that from the reference HSI 
instrument but with a higher spatial resolution. 

   
Fig. 5. Cercospora leaf spot infected sugar beet leaf: (A) Color camera image 
and; (B) CLS index image from MSI sensor system. 

V. CONCLUSIONS AND DISCUSSION 
The study verifies, for the first time, that multispectral 

sensor systems architectures, exploiting proprietary narrowband 
LEDs and Si C-MOS imaging detectors, are capable of 
substituting for more conventional line-scanning hyperspectral 
imaging systems, when operated in close proximity (c. 1-2m) 
from a crop canopy. This has been reported versus early 
symptom detection for two, economically significant, fungal 
pathogen caused diseases and their corresponding host crops. 
Two and three wavelength component SVIs have been 
presented, however, the extrapolation of the technique to 
greater numbers of wavelengths, for more complex SVIs or to 
generate pseudo hyperspectral images, would be a 
straightforward task. As a consequence, the system now offers a 
commercially viable route to translate crop and soil SVIs and 
hyperspectral models into engineered systems that maybe 
integrated within farm and glasshouse machinery to manage 
fungal diseases in crop production. Similarly, the technique also 
offer potential for commercial-scale localized real-time sensing 
of non-visual phenotypes in crop breeding programs and SVIs 
relevant to soil organic carbon composition, pre-harvest milling 
wheat protein content and intra-row weed mapping. 

The next hardware engineering challenge is to develop the 
fixed-frame image capture techniques, as exemplified during 
the current laboratory trials, so that they may be reproduced 
from mobile, ground based, sensor platforms. For early 
adoption tractor-mount sensors would be the initial target as 
modern field machinery, enabled with: Radar ground speed 
sensors; Wheel rotation encoders and; Real Time Kinematic 
(RTK) Global Positioning Systems (GPS), capable of ±20mm 
location accuracy, provide a ready source of meta-data to 
enable ‘stitching’ of the individual wavelength image locations. 
This is a non-trivial task, given that field applications are 
currently applied at up to 17km/hr for broad acre crops, and 
may require high-speed electronics (e.g. FPGA) to be coupled 
with indexing of the individual images via existing location-
specific data, such as crop drilling maps or tramlines (‘tractor 
wheel furrows’), or the inclusion of artificial VIS/NIR 
reflective index markers in the field. Complementary handheld 
sensor systems may not require neighboring images to be 
merged to compensate for intentional movement of the viewing 
position but will require image stabilization to ensure that the 
individual wavelength images can be overlaid with the same 



spatial reference. In both cases changing image angles will also 
have to be compensated for, either through optical beam 
steering or, more ideally, the design of angle invariant SVIs and 
multispectral models. 

If the new MSI sensor system is to be deployed within real-
time mapping and closed-loop control systems, such as for the 
precision application of crop protection products or nutrients, 
then there is also a need to rapidly identify salient features from 
the multispectral data. The application of linear and non-linear 
multivariate models to determine the most pertinent spectral 
components corresponding to a crop feature, using supervised 
and non-supervised learning techniques, is the basis of the 
fungal pathogen models exploited within this study and by 
researchers elsewhere [6-11]. Such approaches also offer the 
potential to swiftly compute reduced-dimensionality MSI data 
whilst retaining the majority of the original spectral 
information. The resulting 'spectrally enhanced' images then 
significantly reduce the computational complexity of 
autonomously extracting additional spatially relevant crop 
features. For example the spectral signature of a secretome 
from both benign and pathogenic fungal spores may be similar 
but distinct from the background spectra of the host plant's leaf. 
The spectral analysis alone would therefore be incapable of 
separating pathogenic from non-pathogenic infected leaves. 
However, dimensional reduction by multivariate analysis may 
highlight, in 'false color', otherwise indistinct patches of the 
secretome, such that simplified, i.e. high speed and low 
computationally-intensive, spatial analysis can be applied to 
determine potentially unique spore infiltration patterns. 

Research into each of these areas is being actively pursued 
by the authors. Further developments of the technology to: 
Extend the spectral range: Incorporate fluorescence relaxation 
imaging and; Embed the sensors within robotic units for field, 
glasshouse and laboratory usage, are also underway. The exact 
engineering of the MSI sensor systems is highly dependent on 
the eventual duty, whether it is orientated towards the large 
commercial farming applications or for <US$100 handheld 
devices applied to new opportunities in livestock healthcare or 
crop disease control in smallholder farming or consumer 
products. Perhaps the largest challenge is to now identify where 
the sensor system may have greatest beneficial impact on 
sustainable food supply. 
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