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Electrical impedance tomography (EIT) is an imaging modality with many possible
practical applications. It is mainly used for geophysical applications, for which it is
called electrical resistivity tomography. There have also been many proposed medical
applications such as respiratory monitoring and breast tumour screening.

Although there have been many uniqueness and stability results published over the
last few decades, most of the results are in the context of the theoretical continuous
problem. In practice however, we almost always have to solve a discretised problem
for which very few theoretical results exist. In this thesis we aim to bridge the gap
between the continuous and discrete problems.

The first problem we solve is the three-dimensional triangulation problem of uniquely
embedding a tetrahedral mesh in R

3. We parameterise the problem in terms of dihe-
dral angles and we provide a constructive procedure for identifying the independent
angles and the independent set of constraints that the dependent angles must satisfy.
We then use the implicit function theorem to prove that the embedding is locally
unique. We also present a numerical example to illustrate that the result works in
practice. Without the understanding of the geometric constraints involved in em-
bedding a three-dimensional triangulation, we cannot solve more complex problems
involving embeddings of finite element meshes.

We next investigate the discrete EIT problem for anisotropic conductivity. It is
well known that the entries of the finite element system matrix for piecewise linear
potential and piecewise constant conductivity are equivalent to conductance values of
resistors defined on the edges of the finite element mesh. We attempt to tackle the
problem of embedding a finite element mesh in R

3, such that it is consistent with some
known edge conductance values.

It is a well known result that for the anisotropic conductivity problem, the bound-
ary data is invariant under diffeomorphisms that fix the boundary. Before investigating
this effect on the discrete case, we define the linear map from conductivities to edge
conductances and investigate the injectivity of this map for a simplistic example. This
provides an illustrative example of how a poor choice of finite element mesh can result
in a non-unique solution to the discrete inverse problem of EIT. We then extend the
investigation to finding interior vertex positions and conductivity distributions that
are consistent with the known edge conductances. The results show that if the total
number of interior vertex coordinates and anisotropic conductivity variables is larger
than the number of edges in the mesh, then there exist discrete diffeomorphisms that
perturb the vertices and conductivities such that no change in the edge conductances
is observed. We also show that the non-uniqueness caused by the non-injectivity of
the linear map has a larger effect than the non-uniqueness caused by diffeomorphism
invariance.
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Chapter 1

Introduction

1.1 An introduction to EIT

Electrical impedance tomography (EIT) is an imaging modality in which electrical

current is applied to the boundary of an object and the resulting voltage is measured

on the boundary via surface electrodes. From this information we attempt to infer

the electrical conductivity inside the object. Since different materials have different

electrical properties, the conductivity distribution can help to determine the distribu-

tion of materials in the interior of an object without requiring physical access to the

interior.

The idea of using electrical measurements to determine the conductivity distribu-

tion within an object was first conceived by Conrad Schlumberger in 1912, when he

attempted the first electrical field survey [29]. Since then, there have been many pub-

lications on the use of electrical imaging for geophysical applications, see for example,

[40], [16], [76] and [96]. When applied to geophysical problems the method is known as

electrical resistivity tomography (ERT) since the electrical resistivity, the reciprocal

of conductivity, is reconstructed, although the mathematical problem is the same as

in EIT.

The idea was introduced to the medical community by Barber and Brown in 1982,

[23]. Since the introduction by Barber and Brown, attempts have been made to

apply EIT to medical problems such as brain imaging for stroke patients [84], respira-

tory monitoring of intensive care patients [3], breast tumour screening [32], [45], and

prostate screening [95].

13



CHAPTER 1. INTRODUCTION 14

The mathematical problem of EIT (see section 2.1 for details) is ill-posed in the

sense that the interior conductivity does not depend continuously on the electrical

data measured, which means that large changes in the conductivity result in small,

sometimes indistinguishable, changes in the resulting voltage data [56]. When com-

bined with the fact that only finitely many electrodes can be applied to the object,

the ill-posed nature of EIT leads to poor spatial resolution. Due to the difference

in conductivity of different biological tissues [15] and rock types [38], EIT could lead

to high contrast images, which may be of greater importance than spatial resolution

in some practical applications. Although EIT has poor spatial resolution, it has the

ability to be a cheap alternative to other imaging modalities such as X-ray CT and

MRI when spatial resolution is not of primary importance.

We can divide the mathematical problem into two sub-problems: the so called

forward problem, which is the problem of computing the electrical potential given the

conductivity distribution; and the inverse problem, which is the problem of determining

the conductivity given the boundary measurements of the potential. The forward

problem is governed by a partial differential equation which will be introduced in

section 2.1, which must be solved for a given conductivity. The inverse problem is then

usually tackled as an optimisation problem in which we attempt to fit the modelled

boundary data to that given by the real measurements by perturbing the conductivity

in our model.

1.2 Thesis Objectives

Much of the mathematical literature for EIT is devoted to the uniqueness and stability

of the continuous problem, which is the problem of finding a conductivity distribution

in a continuous medium with infinitely many measurements, (see section 2.1 for a

review of results that have been proved in this area). In practice however, we must

find a numerical approximation to both the forward and inverse problems. The most

common technique for solving the forward problem is to use the finite element method

(see section 2.2), which involves partitioning the domain into polyhedra, then solv-

ing the problem for function values at fixed positions, which are then interpolated on

the rest of the domain. The finite element formulation results in a linear system of
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equations that must be solved for the approximate potential. It is well known that

for a piecewise linear approximation of potential and piecewise constant approxima-

tion of conductivity, the entries of the finite element system matrix are equivalent to

conductances of resistors in a resistor network (see section 4.2). In this thesis we will

consider the problem of finding a three-dimensional finite element discretisation and

choice of conductivity that is consistent with the conductance values of resistors in a

given resistor network. It is important that we gain an understanding of this problem

in order to establish the possible conductivity distributions we can hope to reconstruct

in real situations, where a numerical approximation to the full problem is necessary.

1.3 Thesis Organisation

In chapter 2 we first define the mathematical problem of EIT and review the main

results that have been proved about the uniqueness and stability of the problem. We

then introduce the forward problem and the finite element method. Next we give

an overview of some theory that we will use from the field of differential geometry.

Although our work will not explicitly use many of the definitions in this section, many

of the important definitions are dependent on earlier ones so we try to give a self-

contained treatment of the theory we need. In addition, an understanding of the theory

in this section is important for the problem of recovering anisotropic conductivity and

also for understanding some of the tools we will use in a discrete setting. We then

give an introduction to discrete differential geometry and some tools from algebraic

topology that we require. We introduce some basic graph theory next, which we link

in with the previous topic when possible. This will be important for understanding

resistor networks and for the geometric problem we will solve in chapter 3. The final

section of chapter 2 gives an overview of the singular value decomposition, which we

will use to gain an insight into the rank deficiency of systems of equations that arise

in our problems.

In chapter 3 we define the geometric constraints that the dihedral angles of a

tetrahedral mesh must satisfy in order for it to be embedded in three-dimensional

Euclidean space. We prove that given a subset of fixed dihedral angles and a set

of independent geometric constraints, the full set of dihedral angles that satisfy the
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constraints uniquely determine the vertex positions of the tetrahedra up to similarity.

We also provide a constructive procedure for finding the independent constraints and

for finding the vertex positions given the dihedral angles that satisfy the constraints.

We provide a numerical example to illustrate the procedure. This problem is important

because without knowledge of the geometric constraints that the angles, and therefore

the vertex positions satisfy, we cannot attempt the problem of finding a finite element

mesh that is both embeddable in R
3 and consistent with a resistor network.

In chapter 4 we first give an introduction to resistor networks and review previous

work that has attempted to solve the EIT problem in the context of resistor networks.

We then describe the linear mapping that maps conductivities to edge conductances

for various types of anisotropic conductivities, given a fixed finite element mesh. We

give results of numerical experiments that aim to tackle the problem of finding a fi-

nite element mesh and anisotropic conductivity that is consistent with conductance

values of a resistor network. The reason for tackling this problem is that in the finite

element formulation, the potential only depends on the conductivity through the edge

conductance values. This means that the inverse problem of finding a conductivity

distribution is actually a two-step process of first finding edge conductances that are

consistent with the data, and then finding a consistent embedding of a simplicial com-

plex in R
3, along with a conductivity distribution defined on the mesh that is consistent

with the conductance values. Our work assumes that we have already solved the first

step by finding the conductances that fit some given boundary measurements in the

hope that we can define constraints on the conductivity by utilising a priori informa-

tion, to ensure that the problem of recovering the vertex positions and conductivities

has a (locally) unique solution.



Chapter 2

Mathematical background

In this chapter we will describe the mathematical formulation of the EIT problem

and review some important results regarding uniqueness and stability of the problem.

We then introduce the finite element method in the context of EIT which we will

use to numerically solve the forward problem, which we will define in section 2.2.

Following this we give an introduction to some theory from differential geometry,

algebraic topology, graph theory and linear algebra, which we will use to set up and

solve problems related to EIT in later chapters.

We note that none of the work in this chapter is novel and is included to inform the

reader of the relevant background mathematics that is necessary in order to understand

the work of later chapters.

2.1 The inverse conductivity problem

2.1.1 Problem overview

In this section we describe the mathematical problem underlying practical EIT prob-

lems. We then review the main results regarding uniqueness and stability of the

problem. The problem was introduced to the mathematical community by Alberto

Calderón in his 1980 seminal paper “On an inverse boundary value problem” [27].

Since then the problem has received wide attention and the following description of

the mathematical problem of EIT can be found in many publications, for example

[92], [4].

17



CHAPTER 2. MATHEMATICAL BACKGROUND 18

Before proceeding with the problem definition we would like to introduce the Ein-

stein summation convention since it is very helpful in ensuring that correct indices are

used when we come to more complicated concepts involving vectors and tensors. It

is applied by summing over any indices that appear as both upper and lower indices

in a single expression. As an example, we can write the EIT operator - which we will

formally introduce in a moment - for anisotropic conductivity σij as

Lσ =
n
∑

i=1

n
∑

j=1

∂

∂xi
σij

∂u

∂xj
=

∂

∂xi
σij

∂

∂xj
,

since both indices i and j appear as upper indices (in the conductivity tensor) and

lower indices (as partial derivatives with respect to each coordinate direction). The

upper indexing notation used for σ will become clear later in this chapter. From now

on if an index appears as both upper and lower indices then we assume the Einstein

convention is applied and the expression represents a sum over this index.

Let Ω ⊂ R
n be a bounded domain with n ≥ 2 and let the anisotropic conductivity

be represented by the symmetric positive definite matrix-valued function σ = (σij).

Let Hk(Ω) be the Sobolev space for integer k ≥ 0, defined in [90], as the space of

functions whose derivatives up to and including k are square integrable over Ω. That

is,

Hk(Ω) =
{

u ∈ L2(Ω) : Dαu ∈ L2(Ω) for |α| ≤ k
}

.

For non-integer s ∈ R, let ξ be the Fourier-space variable in the Fourier transform of

u. Then the Sobolev space for non-integer s is

Hs(Ω) =
{

u ∈ L2(Ω) :
(

1 + |ξ|2
) s

2 û ∈ L2(Ω)
}

,

where û is the Fourier transform of u.

By assuming direct current and no internal sources of current, the electrostatic

potential u(x) ∈ H1(Ω) is governed by

Lσu := ∇ · (σ∇u) =
∂

∂xi
σij

∂u

∂xj
= 0 in Ω. (2.1)

The space to which the potential belongs is H1(Ω) since this implies u and its first

derivatives are finitely square integrable, which is physically equivalent to having finite

total power. The voltage on the boundary is given by the following Dirichlet boundary

condition:

u|∂Ω = φ, φ ∈ H1/2(∂Ω), (2.2)
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and the boundary current is given by the following Neumann boundary condition:

σ
∂u

∂ν

∣

∣

∣

∣

∂Ω

= σ∇u · ν|∂Ω = j, j ∈ H−1/2(∂Ω), (2.3)

where ν is the outer normal to Ω. In order to ensure conservation of charge the

following condition must also be satisfied on the boundary:
∫

∂Ω

j = 0. (2.4)

Solving (2.1) with either of the boundary conditions (2.2) or (2.3) for a given conduc-

tivity is the forward problem, which we will look at in more detail in section 2.2.

We define the Dirichlet-to-Neumann (D-N) map

Λσ : H1/2(∂Ω)→ H−1/2(∂Ω), (2.5)

as the mapping between the boundary voltages and currents, i.e.

Λσφ = σ
∂u

∂ν

∣

∣

∣

∣

∂Ω

. (2.6)

The inverse problem is to find σ given Λσ. There are two key concepts we must

consider when solving this problem: Does the boundary data uniquely determine the

conductivity? And if so, does the solution depend continuously on the data? In section

2.1.3, we will review the main results that have worked towards answering these two

questions.

2.1.2 A differential geometry viewpoint

Before reviewing these results, we now pose the inverse conductivity problem in an

alternative setting. We refer the reader to section 2.3 for definitions of many of the

concepts used in the following section. The following formulation was first considered

by Lee and Uhlmann in 1989 [71].

They illustrate how the electrostatic problem of determining the anisotropic con-

ductivity from its D-N map is related to that of determining a Riemannian metric

from its D-N map for harmonic functions. They investigate the following geometric

problem. Let M be the interior of a smooth n-manifold M with boundary and g a

smooth Riemannian metric on M such that u is harmonic and has Dirichlet boundary

data φ, that is,

∆gu = 0 in M, u|∂M = φ, (2.7)
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where ∆ is the Laplace-Beltrami operator of g given by

∆gu =
1

√

det(gkl)

∂

∂xi

(

√

det(gkl)g
ij ∂u

∂xj

)

. (2.8)

The Neumann data is given by

Λgφ = i∗ (⋆du) , (2.9)

where ⋆ is the Hodge star operator and i is the inclusion map, such that the pull-back

of a form ω under i, denoted i∗ω, restricts ω to the boundary ∂M . We give formal

definitions of these concepts in section 2.3.

It is then observed that for n ≥ 3 and M = Ω, the electrostatic problem and the

geometric problem are equivalent if

σij =
√

det(gkl)(g
ij), (2.10)

where (gij) = (gij)
−1 is the inverse metric tensor. We will revisit this problem in the

next section when we review past work that has considered the problem of uniqueness

of solution for the anisotropic inverse conductivity problem.

2.1.3 Uniqueness and stability of the inverse problem

We first review some results for the isotropic conductivity problem before going on to

review the anisotropic problem.

Isotropic conductivity

For the isotropic problem, the conductivity tensor is of the form σij = αδij , for some

scalar function α. Then we just denote the isotropic conductivity by the scalar function

σ. The problem of uniqueness was first considered by Calderón [27]. He considered

the quadratic form Qσ associated with Λσ defined as

Qσ(φ) =

∫

Ω

σ |∇u|2 dx, (2.11)

where u solves (2.1) with Dirichlet condition (2.2). Qσ represents the power necessary

to maintain a boundary potential φ on ∂Ω. By Green’s first identity we have

Qσ(φ) =

∫

∂Ω

uσ
∂u

∂ν
ds = 〈φ,Λσφ〉 . (2.12)
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Therefore knowledge of Qσ is equivalent to knowledge of Λσ. Calderón posed the

questions: Is σ uniquely determined by Qσ? If so, can we calculate σ from Qσ? Let

Φ : σ 7→ Qσ (2.13)

be the mapping from conductivity to the quadratic form. Then Φ is bounded for real

and positive σ ∈ L∞(Ω) and u ∈ H1(Ω). By considering a linearisation of Lσ about

σ = 1, it was shown that the map from conductivity σ to potential u has convergent

Taylor series about σ = 1, hence Φ is analytic since a mapping from conductivity to

potential is equivalent to the mapping Φ. It was also proved that the Fréchet derivative

dΦ is injective when σ is constant. By considering a linearisation of Lσ about σ0 = 1,

that is σ = 1 + δ for a small perturbation δ, it was also shown that the error in

computing σ from knowledge of Qσ is bounded by

‖δ‖L∞ = inf {K ≥ 0 : |δ(x)| ≤ K for almost all x ∈ Ω} .

In 1984 Kohn and Vogelius [63] proved that Qσ uniquely determines σ and all

its normal derivatives at the boundary, provided σ is smooth near the boundary,

i.e. σ ∈ C∞(B) where B is some neighbourhood of a point x0 ∈ ∂Ω. As a direct

consequence, if σ is real-analytic throughout Ω, we can use a Taylor series expansion

about the point x0 ∈ ∂Ω to find σ(x) for any point x ∈ Ω. The following year, Kohn

and Vogelius [65] then proved uniqueness for the less restrictive case of piecewise real-

analytic conductivity.

Since [65], uniqueness for the two-dimensional (2D) and three-dimensional (3D)

cases have been treated separately. We review the 2D case first. Global uniqueness

for a domain with smooth boundary (∂Ω ∈ C∞) and near constant conductivity

σ ∈ C∞(Ω) was proved by Sylvester and Uhlmann [87]. In 1996, Nachman [81] proved

global uniqueness for a domain with Lipschitz boundary and conductivity σ ∈ W 2,p(Ω),

for p > 1. This requirement on σ states that the conductivity and all its first and second

derivatives are in Lp(Ω). The following year, Brown and Uhlmann [25] relaxed the

restriction on the conductivity for global uniqueness to σ ∈ W 1,p(Ω), p > 2. The global

uniqueness problem for two dimensions was finally solved by Astala and Päivärinta

in 2006 [12], where they proved that no regularity conditions need be assumed on the

boundary of Ω and a conductivity σ ∈ L∞(Ω) is uniquely determined by Λσ.
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In 1987, Sylvester and Uhlmann [88] proved global uniqueness for three-dimensional

domains with smooth boundary and smooth conductivity σ ∈ C∞(Ω). Global unique-

ness for the case of a known background conductivity and unknown discontinuity was

proved by Isakov [58]. The restriction on σ from [88] was relaxed by Brown [24]

to σ ∈ C3/2+ǫ(Ω) for 0 < ǫ < 1/2. Panchenko et al. [82], proved uniqueness for

σ ∈ W 3/2,∞(Ω). The least restrictive assumption on σ for which uniqueness has been

proved for the three-dimensional case is by Haberman and Tataru [50], in which unique-

ness is proved for bounded conductivities of the form σ ∈ W 1,∞(Ω) or σ ∈ C1(Ω). The

general case of proving uniqueness for σ ∈ L∞(Ω) in 3D is still an open problem, how-

ever it is suggested by the authors of [50] that the assumption made in their paper,

that is, the conductivity is Lipschitz, is an optimal assumption.

For the particular case of locating an inclusion in an otherwise homogeneous do-

main, it has been proved that only one boundary measurement is required ([60] and

[10]).

The issue of stability has not been addressed as widely as uniqueness, although

some stability measures have been proved. As well as giving an alternative proof of

the main result in [63], Sylvester and Uhlmann [89] proved continuous dependence

of the conductivity at the boundary on the D-N map for two and three dimensions.

Alessandrini [6], proved that the inverse of the mapping σ 7→ Λσ has modulus of

continuity of logarithmic type. For a detailed review of the issue of stability and

problems yet to be solved the reader is referred to [8].

While these results help us to understand what assumptions we must make on the

boundary and the conductivity, they are all proven in the limiting case of boundary

data defined at infinitely many points. Realistically however, we can only take a finite

number of measurements on a subset of the boundary. There are some results of

uniqueness and stability for the case of partial boundary data in three dimensions.

Bukhgeim and Uhlmann [93] proved uniqueness for σ ∈ C2(Ω) given knowledge of the

D-N map on a possibly large subset of the boundary. Kenig et al. [62] improved the

result in [93] by proving the same result for knowledge of D-N on possibly smaller

subsets of the boundary. Isakov [59] proved uniqueness for partial data on a half-space

for the closely related Schrödinger equation. Heck and Wang [53] proved a log-log type

stability estimate for the case of partial boundary data.
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Anisotropic conductivity

Before giving an overview of the main results for this problem we refer the reader to

[4] and [92] for excellent reviews of work in this area.

In [71] it is commented that Luc Tartar observed that if ψ : Ω → Ω is a smooth

diffeomorphism such that ψ|∂Ω = I, then the conductivities σ and

σ̃ =
(Dψ) σ (Dψ)T

det (Dψ)
◦ ψ−1, (2.14)

have the same D-N maps, that is, Λσ̃ = Λσ. In the equivalent geometric problem this

means that for any diffeomorphism ψ : M → M , such that ψ(x) = x, for x ∈ ∂M ,

Λψ∗g = Λg, where ψ
∗g denotes the pullback of g under ψ.

Much of the work from this point forward has been towards proving that this

observation is the only obstruction to uniqueness of solution.

For the two-dimensional case it was conjectured in [71] that if Λg̃ = Λg, then there

exists a diffeomorphism ψ as defined above such that ψ∗g̃ is a conformal multiple of

g, that is, there exists some smooth function φ such that

ψ∗g̃ = φg. (2.15)

In two dimensions, uniqueness up to diffeomorphism has been proved in [13] for

σ ∈ L∞ by reducing the anisotropic problem to an isotropic one using isothermal

coordinates.

For the three-dimensional case, it has been shown in [68] that the D-N map uniquely

defines the metric g up to diffeomorphism for compact, real-analytic manifolds with

boundary in which the data is only measured on part of the boundary that is real-

analytic. This result was extended in [67] to non-compact real-analytic manifolds with

boundary.

Anisotropic conductivity partially known a priori

In 1983, Kohn and Vogelius [64] proved that in some neighbourhood of a point on the

boundary, if all but one eigenvector and eigenvalue of the unknown conductivity are

known in this neighbourhood, and if the eigenvector corresponding to the unknown

eigenvalue is not tangent to the boundary at this point then the unknown eigenvalue

and its derivatives up to the dimension n can be uniquely recovered at this point.
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In 1990, Alessandrini [7] considered conductivities of the form σ = A (a(x)), where

A(t) is a given matrix-valued function and a(x) is an unknown scalar function to be

determined by the data. Uniqueness was proved for piecewise analytic perturbations

of a. This result was extended in [9] to conductivities of the form σ = A(x, a(x)),

where again A(x, t) is a known matrix-valued function.

In 1997, Lionheart [73] considered the conformal inverse problem of recovering the

scalar function α such that σ = ασ0, given that σ0 is known a priori. By definition, two

metrics g and g0 are conformally related if g = λg0 for some function λ. It is observed in

[73] that since conformally related metrics result in conductivities σ(g) = λn/2−1σ(g0),

σ(g) = σ(g0) for n = 2, which suggests why this dimension is a special case. For

n ≥ 3, it is shown that the map from the space of scalar functions in the conformal

inverse problem to corresponding D-N map is injective. It is also shown that if ψ

is a diffeomorphism that fixes the boundary such that the pullback of g under ψ is

conformally related to g then the scalar function α is uniquely determined. Uniqueness

is also proved for piecewise analytic scalar functions α for the same problem.

Abascal et al. [1] presented numerical results that suggest all three eigenvalues

of the unknown conductivity tensor are uniquely determined if all the eigenvectors

are known a priori. These results were presented in the context of a piecewise linear

approximation of the eigenvalues in the finite element method (see section 2.2 for more

details on the finite element method).

2.2 Forward problem and finite element method

In the previous section we introduced the problem of determining the conductivity

from known boundary measurements. Most methods used for solving the inverse

problem in practice attempt to fit data simulated from some chosen conductivity to

the real measured data and perturb the conductivity in the simulation until the data

matches to a given tolerance [74]. Some direct methods, for example the factorisa-

tion method [26], do not rely on fitting the data but rely on the difference between

the real data and data simulated from a homogeneous conductivity distribution in

order to find inhomogeneities within the domain. In both cases we are required to

simulate the boundary data for a given conductivity distribution. This is known as
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the forward problem and involves solving the partial differential equation in (2.1) with

either boundary condition (2.2) or (2.3). In some special cases, such as a homogeneous

half-space domain, analytic solutions exist but in most practical problems the problem

domain and possible conductivity distributions are not simple enough for an analytic

solution to exist, so we are required to use numerical methods to simulate data.

A method that is well suited to complicated domains is the finite element method

(FEM). There are many books on the method, for example [86], [44], [80], which

discuss important issues such as convergence rates and error approximation. The

book by Bossavit [21] introduces the role that algebraic topology plays in the context

of FEM. This method involves discretising the domain into triangles in two dimensions

or tetrahedra in three dimensions, which are called elements. Since we live in a three-

dimensional world, we will focus on tetrahedral discretisation although much of the

finite element theory presented here is general and applies to two or three dimensions.

Once the domain is discretised we approximate the solution to the partial differential

equation (PDE) by piecewise polynomial functions of chosen degree. The following

subsections describe the process for reducing the PDE and boundary conditions to a

linear system of equations in terms of specific values of the interpolation polynomial.

2.2.1 Weak formulation

In order to formulate the problem in terms of FEM we start with the continuous case,

that is, with a function u ∈ H1(Ω), where Ω is the problem domain. Let v ∈ H1
0 (Ω)

be some trial function where H1
0 (Ω) = {v ∈ H1(Ω) : supp v = Ω} is the space of

square integrable functions with square integrable derivatives that are non-zero only

in the interior of Ω. We shall keep things general by assuming that the conductivity

is anisotropic so that σ is a tensor field. We refer the reader to section 2.3 for the

formal definition of a symmetric tensor, but for the purposes of this analysis we can

think of it as being an n×n symmetric matrix-valued function, where n is the problem

dimension.

Multiplying (2.1) by v and integrating over Ω gives

∫

Ω

v∇ · (σ∇u) dV = 0. (2.16)

We have the following vector identity for the divergence of a scalar function φ and a
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vector field F ,

∇ · (φF ) = φ∇ · F + F · ∇φ. (2.17)

Let φ = v and F = σ∇u, then combining (2.17) and (2.16) gives

∫

Ω

∇ · (vσ∇u) dV =

∫

Ω

∇v · (σ∇u) dV. (2.18)

Then applying the divergence theorem to the left hand side of (2.18) gives

∫

Ω

∇v · (σ∇u) dV =

∫

∂Ω

vσ∇u · ν dS, ∀v ∈ H1
0 (Ω) (2.19)

This is known as the weak form of the problem since (2.16) is clearly a weaker condition

on u than (2.1). The right hand side of (2.19) is just the Neumann boundary condition

in (2.3) multiplied by v and integrated over the boundary ∂Ω. In many practical

problems more realistic boundary conditions that model current applied on electrodes

are required. For a description of how these models are incorporated into the weak

form we refer the reader to [56].

2.2.2 Discretised Problem

In order to solve the weak form numerically we let V h ⊂ H1(Ω) and V h
0 ⊂ H1

0 (Ω)

be finite dimensional subspaces of H1(Ω) and H1
0 (Ω) respectively. Let uh ∈ V

h and

vh ∈ V
h
0 , then (2.19) holds for uh and vh. As noted earlier we would like to approximate

the potential u by piecewise polynomials of chosen degree. The simplest and most

widely implemented approximations are piecewise linear functions, so we will assume

that V h is the space of piecewise linear functions.

In order to find a numerical solution we need to discretise the domain Ω so that

we can approximate the potential at specific points and use the polynomials in V h

to interpolate the solution between these specified points. An approach that is very

useful for approximating complex geometries is to partition the domain into tetrahedra

resulting in a tetrahedral finite element mesh Ωh, which is a geometric approximation

to Ω. We label the vertices of the mesh xi, for i = 1, . . . , nV and the tetrahedra Tk, for

k = 1, . . . , nT . A tetrahedral mesh is the geometric realisation of a simplicial complex

which will be introduced in section 2.4, in which each tetrahedron is uniquely defined

by its vertices and the intersection of two tetrahedra is either a single vertex, an edge

defined by its endpoints, or a face.
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We introduce the following nodal basis functions

ϕi(xj) = δij,

where δij is the Kronecker delta and each ϕi is linear between vertices as we require for

the piecewise linear approximation we specified above. Clearly, a function ϕi is non-

zero only on tetrahedra for which xi is a vertex. We can then represent the solution

as a linear combination of the nodal basis functions,

uh(x) =

nV
∑

i=1

uiϕi(x), (2.20)

where ui are nodal values which need to be found. Let the test function vh be given

by ϕi at each node i, then inserting this into (2.19) gives

∫

Ωh

∇ϕi · (σ∇uh) dV =

∫

∂Ωh

ϕiσ∇uh · ν dS, for i = 1, . . . , nV . (2.21)

Inserting the expression for uh from (2.20) into the above we have

nV
∑

j=1

uj

∫

Ωh

∇ϕi · (σ∇ϕj) dV =

nV
∑

j=1

uj

∫

∂Ωh

ϕiσ∇ϕj · ν dS, for i = 1, . . . , nV . (2.22)

Depending on the model that is used to implement the applied current and measured

voltage on the boundary, the right-hand side of (2.22) will take different forms. We

refer the reader to [31] for a discussion and experimental validation of various boundary

condition models. Since it is not the purpose of this work to solve to full finite element

system we will just state that the finite element problem results in the problem of

solving a linear system of equations of the form

Ku = f, (2.23)

for the nodal potentials u and some vector f which is determined by the boundary

condition model. We define the system matrix K such that its entries are given by

Kij :=

∫

Ωh

∇ϕi · (σ∇ϕj) dV, (2.24)

for i, j = 1, . . . , nV . Then if we approximate the conductivity by a piecewise constant

function such that

σ(x) =

nT
∑

k=1

σkχk(x), (2.25)
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where χk is the characteristic function of tetrahedron Tk given by

χk(x) =











1 if x ∈ Tk,

0 if x /∈ Tk.

Then (2.24) reduces to

Kij =

nT
∑

k=1

∫

Tk

∇ϕi · (σk∇ϕj) dV. (2.26)

Since the nodal basis function ϕi is non-zero only on tetrahedra for which xi is a

vertex and is linear on these tetrahedra, its gradient is constant on these tetrahedra

and zero elsewhere. Moreover, as specified earlier, ϕi must increase linearly on each

tetrahedron for which xi is a vertex, from 0 at the other vertices, to 1 at xi. Since the

other vertices all share the face opposite xi, the gradient ϕi has direction defined by

the inward normal of the face opposite vertex xi. To ensure that ϕi increases at the

correct rate, ∇ϕi is scaled by the perpendicular distance of xi to the face opposite xi.

Then the (i, j) entry of the system matrix is non-zero only when vertices xi and xj are

on the same tetrahedron, that is, they share an edge. Then Kij is given by

Kij =
∑

{m:{i,j}∈Tm}

|Tm|
n
(m)
i · (σmn

(m)
j )

h
(m)
i h

(m)
j

, (2.27)

where |Tm| is the volume of tetrahedron Tm, n
(m)
i is the inward normal of the face in

Tm opposite xi and h
(m)
i is the perpendicular distance of this face to vertex xi and the

sum is over tetrahedra that have {xi, xj} as an edge. Let

c
(m)
i =

n
(m)
i

h
(m)
i

,

and denote the vertices of the face opposite xi in Tm by {xj , xk, xl}. Then if we assume

an orientation of the vertices in Tm consistent with figure 2.1 and denote by lij the

length of the edge between xi and xj,

c
(m)
i =

(xk − xl)× (xj − xl)

‖(xk − xl)× (xj − xl)‖h
(m)
i

,

=
(xk − xl)× (xj − xl)

lklljl sin(αl,jk)lil sin(αl,ij) sin(θjl)
.

But sin θjl can also be written in terms of cross-products as
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xi

xj

xl

xk

n
(m)
i

h
(m)
i

θjl

αl,ij

αl,jk

Figure 2.1: Labelling used for basis function gradient calculations.

sin θjl =
‖ ((xj − xl)× (xi − xl))× ((xj − xl)× (xk − xl)) ‖

ljllil sin(αl,ij)ljllkl sin(αl,jk)
,

=
‖ ((xj − xl) · ((xi − xl)× (xk − xl))) (xj − xl)‖

ljllil sin(αl,ij)ljllkl sin(αl,jk)
,

=
6|Tk|

ljllillkl sin(αl,ij) sin(αl,jk)
.

Then

c
(m)
i =

(xk − xl)× (xj − xl)

6|Tm|
,

and similarly for c
(m)
j . Then for an anisotropic conductivity matrix defined on each

tetrahedron, the system matrix is given by

Kij =
∑

{m:{i,j}∈Tm={i,j,l,k}}

((xk − xl)× (xj − xl)) · (σm ((xi − xl)× (xk − xl)))

36|Tm|
. (2.28)

In chapter 4 we will give simplifications of the expression in (2.28) for various forms

of conductivity. For example, in the case of isotropic conductivity, this expression

reduces to the well known cotangent formula [21].
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2.3 Differential geometry

In this section we introduce some concepts from differential geometry that are neces-

sary for understanding problems related to anisotropy in EIT. It also turns out that

many concepts in applied mathematics can be described more generally and elegantly

using the theory in this section than are usually done so in more elementary texts.

Some of the concepts in this section can seem fairly abstract at first glance so we

attempt to give physical or intuitive explanations after giving formal definitions. Most

of the theory outlined in this chapter, along with many other related topics, can be

found in the books [2] and [46].

2.3.1 Manifolds

In the following, let M be a topological space. We refer the reader to [22] and [2] for

the general abstract definition of a topological space.

Definition 2.3.1. A chart is a pair (U, ϕU ), where U ⊂ M and ϕU is a bijection

ϕU : U → W , mapping U to some open set W ⊂ R
n.

So a chart is a mapping that assigns coordinates to a subset U of M locally. For

this reason a chart is sometimes called a coordinate patch and the function ϕU called

a coordinate map. The above definition can be extended to a subset W of any Banach

space but we restrict ourselves here to Euclidean space Rn so as not to overcomplicate

things.

Definition 2.3.2. Let (U, ϕU ) and (V, ϕV ) be two charts on M such that U ∩ V 6= ∅.

The overlap map is the map

ϕV U = ϕV ◦ ϕ
−1
U |ϕU (U∩V ),

such that ϕV U is a diffeomorphism, that is, ϕV U and its inverse are differentiable.

The overlap map can be thought of as assigning coordinates to U ∩ V using ϕU

then applying a change of coordinates to those associated with the chart (V, ϕV ).

Definition 2.3.3. A Ck atlas on M is a family of charts A = {(Ui, ϕi) : i ∈ I} for

some index set I, such that M =
⋃

i∈I Ui and the overlap map between any two

members of A is a Ck diffeomorphism.
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So an atlas is a collection of charts whose domains cover M and any overlap maps

are differentiable. Then for any point that lies in the intersection of two chart domains,

we can apply a differentiable change of coordinates to those assigned by one chart to

those assigned by the other. This is an important fact since it allows us to apply the

chain rule when we want to differentiate a function with respect to a different set of

local coordinates.

Definition 2.3.4. We say that two atlases A1 and A2 are equivalent if A1∪A2 is also

an atlas.

Clearly, the union of two atlases covers the underlying set M by the definition of

an atlas. Therefore two atlases are equivalent if the overlap map for a chart from each

atlas is a diffeomorphism, that is, there exists a differentiable change of coordinates

between local coordinate systems defined in different atlases.

Definition 2.3.5. A Ck differentiable structure D on M is an equivalence class of

Ck atlases on M , and the union of all atlases equivalent to A is the Ck differentiable

structure generated by A.

Definition 2.3.6. If we have a differentiable structure onM thenM is a differentiable

manifold. If every chart on M maps to values in an n-dimensional vector space then

M is an n-manifold.

Since a differentiable structure on M is an equivalence class of atlases that cover

M and defines a differentiable change of coordinates between the charts that form the

atlases, it seems reasonable to define a single atlas on M to determine the manifold.

2.3.2 Tangent vectors and vector fields

In the following we define p ∈ M as a point in the abstract set M . Only by applying

a coordinate map of a chart (U, φ) such that p ∈ U , do we assign coordinates to the

point p. We follow the approach of [2] and [46] of defining vectors as the velocity vector

of a curve in the manifold M . Let a, b ∈ R so that [a, b] is an interval on the real line,

then let c : [a, b]→ M be a curve such that c is differentiable, by which we mean the

composition ϕ ◦ c is differentiable in R
n. Then a point p ∈ M is the realisation of c

for a particular value on the interval [a, b], that is, p = c(t) for t ∈ [a, b]. The velocity



CHAPTER 2. MATHEMATICAL BACKGROUND 32

vector at a point p0 = c(0) ∈ U with local coordinates given by xU = (x1U , . . . , x
n
U) is

the vector

ċ(0) =

(

dx1

dt

∣

∣

∣

∣

t=0

, . . . ,
dxn

dt

∣

∣

∣

∣

t=0

)

.

Then if p also lies in the patch V , we can use the chain rule, since the overlap map of

U and V is a diffeomorphism, to change coordinates so that

dxiV
dt

∣

∣

∣

∣

t=0

=
∂xiV
∂xjU

(p0)
dxjU
dt

∣

∣

∣

∣

∣

t=0

.

We now define the notion of a vector on an n-manifold.

Definition 2.3.7. We define a tangent vector or contravariant vector or simply vector

X at p ∈ U ⊂M , as the n-tuple

XU =

(

dx1U
dt

, . . . ,
dxnU
dt

)

,

such that if p ∈ U ∩ V ,

X i
V =

∂xiV
∂xjU

(p)Xj
U .

Again, we have used the fact that the overlap map between two charts U and V

is a diffeomorphism which allows us to use the chain rule to change coordinates. We

see then that the numbers X i can be thought of as derivatives of the corresponding

local coordinates with respect to the artificial time we introduced to parameterise the

curve. We now define the vector space to which these contravariant vectors belong.

Definition 2.3.8. Let p ∈ M , then the tangent space of M at p, denoted by Mp is

the vector space consisting of all vectors tangent to M at p. If x = (x1, . . . , xn) is a

coordinate system for p then the set of directional vectors

∂

∂x1

∣

∣

∣

∣

p

, . . . ,
∂

∂xn

∣

∣

∣

∣

p

forms a basis for this vector space. We call this basis a coordinate frame.

Definition 2.3.9. We call the disjoint union of the tangent spaces of M the tangent

bundle, denoted TM . That is,

TM =
⊔

p∈M

Mp.

In order to define vectors as differentiable operators and use the above basis nota-

tion we use the following definition.



CHAPTER 2. MATHEMATICAL BACKGROUND 33

Definition 2.3.10. A vector field on U is the assignment of a vector X to each point

in U such that for p ∈M , the assignment X(p) is in the tangent space Mp.

Since we have a basis for the tangent space given in definition 2.3.8, we can write

a vector field X in terms of local coordinates x = (x1, . . . , xn) as a linear combination

of functions X i(x) and the basis functions ∂/∂xi as follows

X = X i(x)
∂

∂xi
. (2.29)

We now introduce the notion of the differential of a mapping between two manifolds

since this is used in the anisotropic non-uniqueness result of Tartar (see section 2.1.3 for

this result). Let M be an m-manifold and N an n-manifold and suppose F :M → N

is a mapping between the manifolds such that for a point p ∈ M , local coordinates

are denoted by x = (x1, . . . , xm) and for F (p) ∈ N we have local coordinates y =

(y1, . . . , yn), such that yi = F i(x1, . . . , xm) for i = 1, . . . , n.

Definition 2.3.11. The differential of F : M → N at a point p ∈ M is the map

F∗ : Mp → NF (p), such that for the vector X ∈ Mp that is a velocity vector ṗ = ċ(0),

F∗X is the velocity vector
dF (p)

dt

∣

∣

∣

∣

t=0

= Y i(y)
∂

∂yi
,

at the point F (p) on N . The Jacobian of the mapping is the matrix

(F∗)
i
j =

∂F i

∂xj
(p) =

∂yi

∂xj
(p).

We next introduce some concepts that rely on the differential of a mapping between

two manifolds. We will use the following concept later in this chapter when mapping

from discrete manifolds to Euclidean space and again in chapters 3 and 4.

Definition 2.3.12. A map ϕ : S → T between two topological spaces is a homeo-

morphism if it is a bijection and both ϕ and ϕ−1 are continuous. If such a map exists

between S and T then S and T are said to be homeomorphic.

The classic example of two spaces being homeomorphic is that of a teacup-shaped

object and a torus, since there exists a continuous deformation of the teacup into a

torus and back again. That is, the map defining the deformation is continuous, as is

the inverse.
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Definition 2.3.13. A mapping F : M → N is an immersion if F∗ : Mp → NF (p) is

injective for each point p ∈M .

Definition 2.3.14. An immersion F : M → N is an embedding if F is a homeomor-

phism onto F (M) with the relative topology induced from N .

We will give examples of immersions and embeddings in section 2.4 in terms of

discrete manifolds since we will use them in this context in our work.

2.3.3 Tensors and differential forms

We now extend the notion of vectors introduced in the previous subsection by intro-

ducing tensors, before going on to describe the important concepts of exterior and

differential forms.

Let E1, . . . , Ek be Banach spaces, and let Lk(E1, . . . , Ek;R) denote the vector space

of continuous k-multilinear maps from the product space E1 × . . .×Ek to R. We use

the above notation in the following definitions and begin with general definitions of

tensors before introducing them in the context of differentiable manifolds.

Definition 2.3.15. Let E be a vector space, then a tensor is an element of the

space T rs(E) = Lr+s(E∗, . . . , E∗, E, . . . , E;R), with r copies of E∗ and s copies of E,

contravariant of order r and covariant of order s.

The above definition matches the indexing notation we used in the previous sub-

section in that we used upper indices to define elements of contravariant vectors. By

E∗ we denote the dual space of E, which is the vector space of linear functionals on

E. So an element f ∈ E∗ is a mapping f : E → R. Let E be an n-dimensional vector

space, for example Rn. Let {e1, . . . , en} be a basis for E with corresponding dual basis

{e1, . . . , en}. As an example of the above definition let t ∈ T 0
2(E), then we can think

of the components of t as an n×n matrix tij = t(ei, ej), which is a bilinear map acting

on ei, ej .

Definition 2.3.16. Let t1 ∈ T
r1
s1
(E) and t2 ∈ T

r2
s2
(E) be two tensors, then their tensor

product t1 ⊗ t2 ∈ T
r1+r2
s1+s2(E), is given by
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(t1 ⊗ t2)(α
1, . . . , αr1 , β1, . . . , βr2 ,a1, . . . , as1 , b1, . . . , bs2) =

t1(α
1, . . . , αr1 , a1, . . . , as1)t2(β

1, . . . , βr2 , b1, . . . , bs2),

for αi, βi ∈ E∗ and ai, bi ∈ E.

We now define tensors in the context of differentiable manifolds. Recall the tangent

bundle TM is the vector space made up of the disjoint union of the tangent spaces of

the manifold M .

Definition 2.3.17. A tensor at a point p ∈ M is an element of T rs(Mp). A tensor

field is an element of T rs(M) := T rs(TM).

We can now define covariant vectors in terms of tensors.

Definition 2.3.18. A covariant vector, covector, or 1-form at p ∈ M is a tensor of

the form T 0
1(Mp) = M∗

p . The dual vector space M∗
p is called the cotangent space.

Similarly, a covector is an element of T 0
1(TM) = T ∗M . The space T ∗M is called the

cotangent bundle.

We now work towards defining a basis for the dual spaceM∗
p in terms of derivatives

as we did earlier for Mp.

Definition 2.3.19. Let f :M → R be some function. The differential of f at a point

p ∈M is the linear functional dfp :Mp → R.

So the differential dfp is a 1-form at p ∈ M which maps vectors in the tangent

space of a point in M to a real number. Hence dfp ∈ M
∗
p . Writing in terms of local

coordinates and the basis of the tangent space Mp defined in definition 2.3.8, we have

dfp(X) = dfp

(

Xj ∂

∂xj

)

= Xjdf

(

∂

∂xj

)

= Xj ∂f

∂xj
(p) = Xp(f), (2.30)

for X ∈ Mp. If we apply the differential of a coordinate map xi to a vector X ∈ Mp,

we have

dxi
(

Xj ∂

∂xj

)

= Xjdxi
(

∂

∂xj

)

= Xj ∂x
i

∂xj
= X i.

Then dx1, . . . , dxn is a basis for the cotangent space M∗
p . This means we can write

any 1-form α as a linear combination of functionals αj(x) and the basis functionals

dxi. That is,

α = αj(x)dx
j. (2.31)
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Definition 2.3.20. A differential 1-form is a covector of the form expressed in (2.31).

We now define the inner product on the tangent space.

Definition 2.3.21. An inner product 〈·, ·〉 is a bilinear form that is symmetric and

nondegenerate. That is, for vectors v, w ∈Mp, 〈v, w〉 = 〈w, v〉, and if 〈v, w〉 = 0, then

either v = 0 or w = 0.

Suppose we have two vectors v, w ∈Mp, then since the vectors ∂/∂xi form a basis

for the tangent space we can write their inner product as

〈v, w〉 =

〈

vi
∂

∂xi
, wj

∂

∂xj

〉

= vi
〈

∂

∂xi
, wj

∂

∂xj

〉

= vi
〈

∂

∂xi
,
∂

∂xj

〉

wj. (2.32)

Then the values
〈

∂
∂xi
, ∂
∂xj

〉

form a matrix, which we define in a moment.

Definition 2.3.22. The inner product 〈·, ·〉 is positive definite if for any v 6= 0, 〈v, v〉 >

0.

Definition 2.3.23. The assignment of a positive definite inner product 〈·, ·〉 on the

tangent bundle TM is called a Riemannian metric on M . A manifold with a Rie-

mannian metric is a Riemannian manifold. We define the metric tensor for a tangent

space with local coordinates x as the matrix (gij) with entries

gij(x) =

〈

∂

∂xi
,
∂

∂xj

〉

.

From the above definition we write the expression (2.32) in terms of the metric

tensor as

〈v, w〉 = vigijw
j.

We can also use the metric tensor to associate the 1-form ω with a vector w by

“lowering” the index,

ω = ωidx
i = gijw

jdxi.

If we define the inverse metric as the matrix (gij) = (gij)
−1, then we can associate a

vector with a given 1-form as follows

w = wi
∂

∂xi
= gijωj

∂

∂xi
.

We see from this that gij ∈ T 0
2(M) and gij ∈ T 2

0(M) are tensor fields that vary

between points on the manifold depending on the local coordinates assigned at each

point.
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Definition 2.3.24. The index lowering operator ♭ : TM → T ∗M associated with the

matrix (gij) maps vectors to 1-forms,

w♭ = gijw
jdxi.

The index raising operator ♯ : T ∗M → TM associated with the matrix (gij) maps

1-forms to vectors,

ω♯ = gijωj
∂

∂xi
.

We now have a way to associate a 1-form with a vector based on the Riemannian

metric.

We now extend the concept of a 1-form to a k-form.

Definition 2.3.25. A (differential) k-form is an antisymmetric covariant tensor field

ω ∈ T 0
k(M), that is

ω(. . . , wi, . . . , wj, . . .) = −ω(. . . , wj, . . . , wi, . . .).

We denote the space of k-forms on a manifold M by
∧kM .

We note here that a 0-form is simply a function that acts on the underlying coor-

dinates. From the above definition if a k-form ω has a repeated vector in its list of

arguments then ω = 0. We will introduce a way of forming the product of two k-forms

in a moment but first we define a useful notational device.

Definition 2.3.26. The symbol δIJ is the generalised Kronecker delta, which for two

index sets I = (i1, . . . , ik) and J = (j1, . . . , jk), is defined as

δIJ =



























1 if J is an even permutation of I,

−1 if J is an odd permutation of I,

0 if J is not a permutation of I.

Then the usual permutation symbol, the Levi-Civita symbol, which tests if a set of

indices is an odd or even permutation of {1, . . . , k}, can be written in terms of δIJ as

ǫi1i2···ik = δi1i2···ik1,2,...,k .
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Definition 2.3.27. The wedge product, also called the exterior product, is the map

∧ :

p
∧

M ×

q
∧

M →

p+q
∧

M.

For α ∈
∧pM , β ∈

∧qM ,

(α ∧ β)(vI) = δJKI α(vJ)β(vK),

where I = (i1, . . . , i(p+q)) is a set of indices, J = (j1 < . . . < jp), K = (k1 < . . . < kq)

are ordered index sets such that J,K ⊂ I.

The above definition gives us a way of calculating the product of two forms. Clearly,

α ∧ β is antisymmetric due to the appearance of the generalised Kronecker delta. As

an example of the wedge product, consider α, β ∈
∧1M , for M a 2-manifold. Let

α = α1dx
1 + α2dx

2,

β = β1dx
1 + β2dx

2.

Then

α ∧ β = (α1dx
1 + α2dx

2) ∧ (β1dx
1 + β2dx

2),

= (α1β2 − α2β1)dx
1 ∧ dx2.

Another important concept relating forms and vectors, and one which appears

in the geometric formulation of the EIT problem (see section 2.1.2), is the interior

product whose definition we now state along with an illustrative example.

Definition 2.3.28. For v, v2, . . . , vk ∈ Mp and ω ∈
∧kM , their interior product is

given by

ιv :
k
∧

M →
k−1
∧

M,

ω(v2, . . . , vk) 7→ ω(v, v2, . . . , vk),

such that ιvω = 0, if ω is a 0-form (function).

To illustrate the above definition we give the following example.

Example 2.3.1. Let M be a differentiable 3-manifold with a point p ∈ M , and let

v ∈ Mp be a vector on M . Suppose ∂i = ∂/∂xi, for i = 1, 2, 3 is a basis for Mp and
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dxi, for i = 1, 2, 3, is the corresponding basis forM∗
p . Then taking the interior product

of v and the 3-form ω = dx1 ∧ dx2 ∧ dx3 gives

ιv dx
1 ∧ dx2 ∧ dx3 = ιvj∂j dx

1 ∧ dx2 ∧ dx3,

= vjι∂j dx
1 ∧ dx2 ∧ dx3,

= vj
(

dx1(∂j)dx
2 ∧ dx3 − dx2(∂j)dx

1 ∧ dx3 + dx3(∂j)dx
1 ∧ dx2

)

,

= vjδ1jdx
2 ∧ dx3 − vjδ2jdx

1 ∧ dx3 + vjδ3jdx
1 ∧ dx2,

= v1dx2 ∧ dx3 − v2dx1 ∧ dx3 + v3dx1 ∧ dx2,

which is clearly a 2-form.

We now introduce a way of differentiating forms.

Definition 2.3.29. The exterior derivative is the map

d :
k
∧

M →
k+1
∧

M,

such that the following conditions hold:

1. d(α + β) = dα + dβ;

2. for f ∈
∧0M , df is the usual differential defined in definition 2.3.19;

3. for α ∈
∧p, β ∈

∧q,

d(α ∧ β) = dα ∧ β + (−1)pα ∧ dβ;

4. d2α = d(dα) = 0, for all forms.

2.3.4 Orientation and Volume

We now introduce the idea of orientation and volume for a Riemannian manifold.

An analogy in R
3 is that we think of orientation as “handedness”, that is, given the

basis vectors of the plane ex and ey, if we have a right-handed coordinate system

ex, ey, ez, the third basis vector is given by ez = ex × ey, and the oriented volume of a

parallelepiped P defined by vectors x, y and z is V (P ) = det(x, y, z).

Before we define orientation,we introduce a few related concepts.
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Definition 2.3.30. Let ϕ : M → M be a differentiable map between from an n-

manifold to itself. Let ω ∈
∧kN be a k-form on M . Then we define the pull-back ϕ∗

of ω by ϕ as the map

ϕ∗ :
k
∧

M →
k
∧

M,

ω(v1, . . . , vk) 7→ ω(ϕ∗v1, . . . , ϕ∗vk),

for v1, . . . , vk ∈Mp, where ϕ∗ is the differential as defined in 2.3.11.

So the pull-back ϕ∗ maps k-forms on M back to k-forms on M with the aid of the

Jacobian matrix ϕ∗.

Definition 2.3.31. Let ϕ : M → M be a mapping between two n-manifolds. The

determinant is the unique function detϕ such that

ϕ∗ω = (detϕ) ω,

for ω ∈
∧nM .

In this sense, we can think of detϕ as being the usual determinant of the Jacobian

matrix ϕ∗. In order to introduce the notion of orientation we begin by defining the

orientation of a tangent space and then a manifold.

Definition 2.3.32. For the tangent space Mp at p ∈ M , we call n-forms that are

nowhere zero, that is elements of
∧nMp, volume forms. We define an equivalence class

[ω] on volume forms by saying ω1 and ω2 are equivalent if there exists some positive

function c such that ω1 = cω2. An equivalence class [ω] is called an orientation on

Mp. The equivalence class [−ω] is a reverse orientation. A basis e1, . . . , en of Mp is

positively (negatively) oriented if ω(e1, . . . , en) > 0 (< 0).

Suppose we have the volume form ω = dy1∧ . . .∧dyn defined at point p ∈M with

positively oriented orthonormal coordinate system y1, . . . , yn, that is, 〈∂/∂yi, ∂/∂yj〉 =

δij . Suppose x1, . . . , xn is any coordinate system at p. Then since the coordinate system

given by y is orthonormal, we can write the metric tensor g(x) as

gij =
∂yk

∂xi
δkl
∂yl

∂xj
.
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Then

det (gij) = det

(

∂yk

∂xi
δkl
∂yl

∂xj

)

,

= det
(

(ϕ∗)
T (ϕ∗)

)

,

= (detϕ)2 .

Suppose we have the orientation preserving change of coordinates ϕ : M → M , then

the pull-back of ω under ϕ is

ϕ∗ω = ϕ∗(dy1 ∧ . . . ∧ dyn),

= (detϕ)(dx1 ∧ . . . ∧ dxn),

=
√

det (gij) dx
1 ∧ . . . ∧ dxn.

So this gives a volume form that can be defined for any coordinate system.

Definition 2.3.33. Let M be a Riemannian n-manifold with metric gij, then the

Riemannian volume form µg is given by

µg =
√

det (gij) dx
1 ∧ . . . ∧ dxn. (2.33)

Definition 2.3.34. AmanifoldM is orientable if there exists a volume form µg(p) 6= 0,

for all p ∈M .

We now have a way of orienting an orientable manifold, which will be important

later when we come to integration of forms.

2.3.5 Vector calculus on manifolds

In this section we introduce some concepts that will allow us to write the well-known

vector calculus operators in terms of differential forms. We begin by defining an

operator that maps k-forms to (n− k)-forms on n-manifolds.

Definition 2.3.35. For α, β ∈
∧kM , the Hodge star operator is the isomorphism

⋆ :
∧kM →

∧n−kM satisfying

α ∧ ⋆β = 〈α, β〉µg. (2.34)

Applied to a single k-form ω we have

⋆ω =
√

det (gij)g
i1j1 . . . gikjkωj1...jkǫi1...ikl1...ln−k

dxl1 ∧ . . . ∧ dxln−k .
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So the Hodge star maps k-forms to (n − k)-forms using a transformation that

depends on the Riemannian metric tensor. We now use the Hodge star in the following

definition of the adjoint operator of exterior differentiation.

Definition 2.3.36. The codifferential operator δ is the mapping

δ :
k
∧

M →
k−1
∧

M,

ω 7→ (−1)n(k+1)+1 ⋆ d ⋆ ω,

with δω = 0 if ω ∈
∧0M .

We now have all the tools required to do some vector calculus related to the in-

verse conductivity problem on manifolds. In the following two definitions let M be a

Riemannnian manifold with metric tensor g.

Definition 2.3.37. Let f ∈
∧0M be a 0-form (a function), then the gradient of f ,

denoted gradgf or ∇gf is the vector associated with the 1-form df , that is,

gradgf = (df)♯ .

We note that in some cases we will drop the subscript g in the above definition. In

terms of basis vectors and forms we can write the above definition as

gradf = (df)♯ =

(

∂f

∂xj
dxj
)♯

= gij
∂f

∂xj
∂

∂xi
,

so the components of the vector gradf are gij∂f/∂xj. Clearly if g is the identity

matrix as in R
3 this reduces to the usual gradient vector of a function f .

Definition 2.3.38. Let F be a vector field on M . The divergence of F , denoted divF

or ∇ · F is given by the scalar

divF = ⋆d
(

⋆F ♭
)

.

To show this in terms of components and basis vectors we will apply each operator

in turn. We restrict ourselves to a 3-manifold to simplify the notation. Let |g| denote

the determinant det (gij), then

⋆F ♭ = ⋆(gijF
jdxi) =

√

|g|F iǫijkdx
j ∧ dxk.
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Then applying the exterior derivative, we have

d
(

⋆F ♭
)

=
∂

∂xl

(

√

|g|F iǫijkdx
j ∧ dxk

)

dxl =
1
√

|g|

∂

∂xi

(

√

|g|F i
)

µg.

Then applying the Hodge star operator again gives

divF = ⋆d
(

⋆F ♭
)

=
1
√

|g|

∂

∂xi

(

√

|g|F i
)

.

Applying div to gradf results in the following operator.

Definition 2.3.39. The Laplace-Beltrami operator on functions on a Riemannian

manifold is given by div grad = ∇2.

So for a function f we have the following expression

div gradf = ∇2f =
1
√

|g|

∂

∂xi

(

√

|g|gij
∂f

∂xj

)

.

This is exactly equation (2.8) from the geometric formulation of the EIT problem. A

related operator is defined in the following.

Definition 2.3.40. The Laplace-deRham operator ∆ :
∧kM →

∧kM is defined by

∆ = dδ + δd. A k-form ω for which ∆ω = 0 is called harmonic and we denote the

space of harmonic k-forms by Hk(M) = {ω ∈
∧kM : ∆ω = 0}.

For a 0-form φ, we have

∆φ = dδφ+ δdφ = δdφ,

since δφ = 0 by definition 2.3.36. Then

∆φ = (−1)2n+1 ⋆ d ⋆ dφ = −div grad φ = −∇2φ.

2.3.6 Integration on manifolds

In this section we introduce the concept of integration of differential forms on man-

ifolds. We then use this theory to give the weak form of the EIT problem in terms

of differential forms. We first introduce a concept that will be necessary in giving a

formal definition of an integral on a manifold.
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Definition 2.3.41. A partition of unity on a manifold M is a locally finite open

covering {Ui} of M along with continuously differentiable non-negative functions fi :

M → R, such that the support of each fi is a closed subset of Ui and
∑

i fi(m) = 1

for all m ∈M . If A = {(Vα, ϕα)} is an atlas on M , a partition of unity subordinate to

A is a partition of unity {(Ui, fi)} such that for each set Ui, Ui ⊂ Vα(i).

We can think of a partition of unity as a covering of coordinate patches with a set

of functions mapping to the real line that are normalised in the sense that the sum of

the functions at any point is 1.

We now define the integral of a differential form on an open set of Rn.

Definition 2.3.42. Let ω ∈
∧n U have compact support for U ⊂ R

n open. Then we

can write ω(x) = ω1···n(x)dx
1 ∧ . . . ∧ dxn. Then the integral of ω over U is given by

the Riemann integral
∫

U

ω =

∫

Rn

ω1···n(x) dx
1 . . . dxn.

So integrating a volume form over a subset of Rn reduces to the usual Riemann

integral of the components of the form over Rn.

Definition 2.3.43. Let M be an oriented manifold and A be an atlas of positively

oriented charts. Let P = {Ui, fi} be a partition of unity subordinate to A. Let ω be

a volume form on M and ωi = fiω so that ωi is compactly supported on Ui, then
∫

P

ω =
∑

i

∫

Ui

ωi.

Moreover, for any other atlas B and subordinate partition of unity Q,
∫

P
ω =

∫

Q
ω.

Then the integral of ω is
∫

M

ω =

∫

P

ω.

So we can define the integral of a volume form over a manifold by considering any

atlas and subordinate partition of unity. Thus we can think of the integration of a

volume form as the sum of the Riemann integrals of the volume form on each local

coordinate chart.

We now give a formal definition of the boundary of a subset of Rn before defining

the boundary of a manifold. This will be required for the statement of Stokes’ theorem,

which is the generalisation to manifolds of the Green’s identities we used in section

2.2.1.



CHAPTER 2. MATHEMATICAL BACKGROUND 45

Definition 2.3.44. Let λ be some linear functional on R
n. We call the space R

n
λ =

{x ∈ R
n : λ(x) ≥ 0} a half-space of Rn. We denote by R

n
+ the positive nth half-space

with λ the projection on xn.

Definition 2.3.45. Let U ⊂ R
n
λ be open, then the interior of U is given by Int U =

U ∩ {x ∈ R
n : λ(x) > 0} and the boundary of U is given by ∂U = U ∩ kerλ.

We can think of the function λ as a level set function whose zero level set defines

the boundary of the subspace U . We now give a few definitions that lead up to the

definition of a manifold with boundary. In the following let M be an n-manifold.

Definition 2.3.46. A chart with boundary is a coordinate chart (U, ϕ) on M , such

that ϕ(U) ⊂ R
n
λ.

Definition 2.3.47. An atlas with boundary is an atlas on M whose charts are charts

with boundary.

Definition 2.3.48. A manifold with boundary is a topological space with an atlas of

charts with boundary on M . We denote the boundary of M , a (n − 1)-manifold, by

∂M .

So a manifold with boundary is a manifold whose coordinate charts have boundary

determined by the level set λ.

Before stating the very important result given by Stokes’ theorem we define the

following map, that maps volume forms on a manifold boundary to the manifold.

Definition 2.3.49. The inclusion map is the map i : ∂M →M .

We now state Stokes’ theorem for the integration of volume forms on a differentiable

manifold.

Theorem 2.3.1. Let M be an oriented n-manifold with boundary and let ω ∈
∧n−1M

have compact support. Then
∫

M

dω =

∫

∂M

i∗ω.

We usually drop the inclusion map notation and just write

∫

M

dω =

∫

∂M

ω.



CHAPTER 2. MATHEMATICAL BACKGROUND 46

We give one last definition before we proceed to the weak formulation of the geo-

metric EIT problem.

Definition 2.3.50. The L2 inner product of two k-forms on M is given by

〈α, β〉L2 =

∫

M

α ∧ ⋆β.

We now let M be a Riemannian manifold with metric gij. Let u ∈
∧0M be a

harmonic function, that is, u satisfies the geometric formulation of the EIT problem

in (2.7). Then taking the inner product with the 0-form v we have

0 = 〈v,∆u〉L2 = 〈v, δdu〉L2 =

∫

M

v ∧ ⋆δdu.

Given a 0-form α and a 1-form β, from definition 2.3.29 we have

d(α ∧ ⋆β) = dα ∧ ⋆β + α ∧ d ⋆ β,

= dα ∧ ⋆β − α ∧ ⋆δβ,

so

α ∧ ⋆δβ = dα ∧ ⋆β − d(α ∧ ⋆β).

Then

0 = 〈v,∆u〉L2 ,

= 〈dv, du〉L2 −

∫

M

d(v ∧ ⋆du),

= 〈dv, du〉L2 −

∫

∂M

v ∧ ⋆du,

by Stokes’ theorem. Then the weak form of the geometric EIT problem is

∫

M

dv ∧ ⋆du =

∫

∂M

v ∧ ⋆du, ∀v ∈
0
∧

M. (2.35)

If we compare this to the expression in (2.19) we can see that the conductivity σ acts

as a Hodge star operator.

The reason for posing the problem in this way will become clearer when we discuss

discrete differential geometry in section 2.4 and when we come to apply these ideas in

chapter 4.
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2.3.7 Curvature

In chapter 3 we will want to measure how much an n-manifold differs from R
N . The

concept of curvature is such a measure and can be thought of as the rate of change of

tangent vectors defined on the manifold. In this section we give some formal definitions

relating to curvature. We note that [41] has some good introductory material on this

topic.

Recall from section 2.3.2 that we define a vector field in the tangent bundle as an

assignment of a vector X(p) at each point p ∈M , where each p ∈M is the realisation

of a differentiable curve c : [a, b] → M for a particular value, that is, p = c(t) for

t ∈ [a, b].

In the following, let p ∈ M be a point, Y be a tangent vector field to M along

the curve c in some neighbourhood of p and X = X(p) ∈Mp a vector tangent to any

curve through p. Let x = (x1, . . . , xn) be a local coordinate system for M at p. Let ∂i

denote the basis vector ∂/∂xi.

Definition 2.3.51. The Levi-Civita connection ∇(X, Y ) 7→ ∇XY is given by the

covariant derivative of the vector field Y at p. This is given by

∇XY =

(

X iY jΓkij +X i∂Y
k

∂xi

)

∂

∂xk
, (2.36)

where the Γkij are called Christoffel symbols and are given by

Γkij =
1

2

(

∂

∂xi
gjl +

∂

∂xj
gli −

∂

∂xl
gij

)

glk.

In particular,

∇∂i∂j = Γkij∂k.

If we have a Euclidean coordinate system with curve c parameterised by t, and

p0 = c(0), then (2.36) reduces to

∇XY = X i∂Y
k

∂xi
∂

∂xk
= X(p0)

(

Y k ∂

∂xk

)

= X(p0)
dY

dt

∣

∣

∣

∣

t=0

,

which is just the tangential component of the velocity of vector Y . So the expression

involving the Christoffel symbols takes care of the non-Euclidean nature of the manifold

M .

We can now define curvature in terms of the Levi-Civita connection.
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Definition 2.3.52. The Riemann curvature of the Riemannian manifold M is the

operator R(X, Y ) : TM → TM given by

R(X, Y )Z = ∇Y∇XZ −∇X∇YZ +∇[X,Y ]Z,

where [X, Y ] is the Lie bracket defined as the following vector field

[X, Y ] = (XY − Y X) =

(

Xj ∂Y
i

∂xj
− Y j ∂X

i

∂xj

)

∂

∂xi
.

We define the Riemann curvature tensor as the tensor Rl
ijk such that

R(∂i, ∂j)∂k = ∇∂j∇∂i∂k −∇∂i∇∂j∂k,

= ∇∂j (Γ
m
ik∂m)−∇∂i

(

Γmjk∂m
)

,

=

(

ΓljmΓ
m
ik − ΓmjkΓ

l
im +

∂

∂xj
Γlik −

∂

∂xi
Γljk

)

∂l,

=: Rl
ijk∂l.

Definition 2.3.53. The Ricci curvature tensor is the contraction of the Riemann

curvature tensor, that is,

Rij := Rk
ikj,

= ΓkjmΓ
m
ik − ΓmjkΓ

k
im +

∂

∂xj
Γkik −

∂

∂xi
Γkjk.

So the Ricci curvature tensor gives us a way of measuring how the metric gij varies

in each direction throughout the manifold. Clearly, if gij(x) = δij for all x ∈ M , then

Rij = 0. To give a scalar value that measures the overall curvature at each point in

the manifold we have the following definition.

Definition 2.3.54. The (Ricci) scalar curvature is the trace of the Ricci curvature

tensor, that is,

R := gijRij.

So the scalar curvature is a weighted sum of the Ricci curvatures in each coordinate

direction which provides an overall curvature value.
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2.4 Algebraic topology and discrete differential ge-

ometry

In this section we will introduce some concepts from algebraic topology related to

discrete differential geometry, which will be useful when we come to solve some real

problems defined on manifolds. For a discussion of the topological concepts introduced

in this section, along with many other related topics and more generalised concepts,

the reader is referred to the books [22] and [11]. For a more direct introduction to

this theory applied to physical problems, see [46], and for electromagnetic problems

specifically, see [49]. For an excellent introduction to differential forms in a discrete

setting the reader is referred to the book chapter [39].

2.4.1 Chains and simplicial complexes

Suppose we want to discretise a manifold, then we need a way of breaking the space

into discrete finite pieces that approximate the manifold. We call these pieces p-cells,

where p is the dimension of the object. We start by defining discrete points in the

manifold which are 0-cells, then by inserting 1-cells between given pairs. We can then

define 2-cells as the 2-dimensional pieces bounded by 1-cells, 3-cells bounded by 2-cells

and so on until the dimension of the cells is equal to the dimension of the manifold.

The structure defined by these cells is a cell complex or CW complex. We shall not

give a more formal definition of these general complexes since we only really need to

keep in mind the structure we described above. However, we give a formal definition

of a smaller class of cell complexes that we will use in our work.

Definition 2.4.1. The standard p-simplex is the set

∆p =

{

(λ0, . . . , λp) ∈ R
p+1 :

p
∑

i=0

λi = 1, 0 ≤ λi ≤ 1

}

,

where the λi are called barycentric coordinates.

Definition 2.4.2. A singular p-simplex is a map σ : ∆p → R
n that assigns coordinates

to the points in ∆p. Then

σ =

{

x ∈ R
n : x =

p
∑

i=0

λivi, v1, . . . , vp ∈ R
n

}

,
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is the convex hull of the vertices v0, . . . , vp.

We shall denote a simplex by σ = {v0, . . . , vp} or simply {0, . . . , p}. As an example,

a 3-simplex is a tetrahedron defined by its four vertices. A triangular face of the

tetrahedron is a 2-simplex and an edge is a 1-simplex. We define a vertex as a 0-

simplex.

Definition 2.4.3. A (p − 1)-face of a p-simplex is a (p − 1)-simplex whose set of

vertices is a subset of the vertices of the p-simplex.

For example, a triangular face of a tetrahedron is a 2-face. An edge of a triangular

face is a 1-face.

Definition 2.4.4. A simplicial complex is a collection K of simplices such that every

face of each simplex is in K, and the intersection of two simplices is either empty or a

common face.

Definition 2.4.5. Given a simplicial complex K of dimension n, the p-skeleton Sp is

the simplicial complex formed by the q-simplices, for q ≤ p.

As an example of the above definition, consider a single tetrahedron. This can be

thought of as a simplicial complex formed by all the p-simplices for p = 0, 1, 2, 3. The

2-skeleton is then just the simplicial complex defined by only the vertices, edges and

faces of the tetrahedron.

As for manifolds, an important concept that needs consideration is that of orien-

tation which we define for a simplex below.

Definition 2.4.6. We define an equivalence class [τ ] on orderings of the vertices of a

p-simplex by saying two orderings τ1 and τ2 are equivalent if τ2 is an even permutation

of τ1. An equivalence class [τ ] is an orientation.

As an example, consider the 2-simplex {v0, v1, v2}. Then {v0, v1, v2} = {v1, v2, v0}

and {v0, v1, v2} = −{v0, v2, v1}.

Definition 2.4.7. We define the boundary of a p-simplex σ to be the signed sum of

the (p− 1)-faces of σ. Let σ = {v0, . . . , vp}, then the boundary operator ∂p maps σ to

its (p− 1)-faces as follows

∂pσ =

p
∑

i=0

(−1)i {v0, . . . , v̂i, . . . , vp} ,



CHAPTER 2. MATHEMATICAL BACKGROUND 51

(a) Immersion that is not an embedding. (b) Immersion that is an embedding.

Figure 2.2: Examples of immersions of planar piecewise flat triangulated manifolds in
R

2.

where the notation v̂i signifies that vi is omitted from the sequence.

We now introduce the concept of a triangulated manifold. By triangulation of a

manifold we mean that the manifold is represented by a simplicial complex embedded

in the manifold. We use the definition given in [47] since it suits our needs and is fairly

simple to picture.

Definition 2.4.8. A triangulated manifold (M,K) is a topological n-manifold M

together with a triangulation K ofM . A piecewise flat triangulated manifold (M,K, l)

is a triangulated manifold together with a positive function l defined on the 1-faces

of the triangulation such that the simplices can be embedded in Euclidean space with

embedded edge lengths given by l.

As noted in [30], a piecewise flat triangulated manifold is an alternative name for

a piecewise linear triangulated manifold. We will use the terms discrete manifold and

triangulated manifold interchangeably although a discrete manifold in general could

be represented by a partition into any polyhedra. It is worthwhile giving an example
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of an embedded triangulation here since we defined the somewhat abstract notions of

immersions and embeddings earlier (definitions 2.3.13 and 2.3.14) without giving an

example. The two-dimensional piecewise flat triangulated manifolds shown in figure

2.2 are examples of immersions in R
2. The example in 2.2a is an immersion since the

map between tangent spaces is locally injective but it is not an embedding because the

map to the plane is not globally injective, therefore it is not a homeomorphism. The

example in 2.2b is an immersion for the same reaosns as the previous example. It is

also an embedding since the map to the plane is a continuous bijection with continuous

inverse.

We now move on to the notion of chains, an important concept in discrete differ-

ential geometry.

Definition 2.4.9. A p-chain on an oriented simplicial complex K is a linear combi-

nation of the p-simplices in K. We denote the group of p-chains on K by Cp(K). Then

c ∈ Cp(K) is given by

c =
∑

σ∈K

cσσ,

with coefficients cσ ∈ R.

We can see that the boundary ∂p of a p-simplex is a (p− 1)-chain on the (p− 1)-

faces with coefficients −1 or 1. In fact, we can extend the definition of the boundary

operator so that it can be applied to p-chains as

∂pc = ∂p
∑

σ∈K

cσσ =
∑

σ∈K

cσ∂pσ.

Then the boundary operator defines a mapping ∂p : Cp(K) → Cp−1(K) from p-chains

to (p − 1)-chains, with ∂p = 0, for p ≤ 0. We have the following important result

regarding the boundary operator applied to chains.

Lemma 2.4.1. Let ∂p : Cp(K)→ Cp−1(K) be the boundary operator on p-chains. Then

∂p−1∂p = 0.

Proof. If we apply the operator twice to a p-simplex σp we have

∂p−1∂pσ = ∂p−1





∑

σp−1∈im ∂p

σp−1
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which is the sum over each (p − 2)-simplex on σp twice with opposite sign. Since

the boundary of a chain is a linear combination of boundaries of simplices, the result

follows.

Definition 2.4.10. A p-cycle is a p-chain c such that ∂pc = 0. That is, a p-cycle is

in the kernel of ∂p.

This is a fairly intuitive definition if we consider 1-cycles, since these are closed loops

on 1-simplices. For example, consider the oriented 2-simplex with vertices {v0, v1, v2}.

If we define the oriented edges e0 = {v1, v2}, e1 = {v2, v0}, e2 = {v0, v1}, then the

1-chain

c =
2
∑

i=0

ei

is a 1-cycle since

∂1c =
2
∑

i=0

∂1ei = (v2 − v1) + (v0 − v2) + (v1 − v0) = 0.

Definition 2.4.11. A p-boundary is a p-chain that is the boundary of a (p+1)-chain.

That is, a p-boundary is in the image of ∂p+1.

In the example above, we see that the 0-chain v2− v1 is a 0-boundary since ∂1e0 =

v2 − v1.

The series of p-chain spaces related by the boundary operator can be represented

by the following notation:

0 −→ Cn
∂n−→ Cn−1

∂n−1

−→ . . .
∂2−→ C1

∂1−→ C0
∂0−→ 0,

which defines a chain complex. We now introduce the concept of homology that relates

p-cycles to p-boundaries in a chain complex. This will be useful in subsequent chapters

when we need to find the independent cycles of p-chains.

Definition 2.4.12. We define an equivalence class [c] on p-chains by setting c1 ∼ c2

if c1 − c2 = ∂p+1c3, where c1, c2 ∈ Cp(K) and c3 ∈ Cp+1(K). If c1 and c2 are p-cycles

then we say they are homologous. The quotient group

Hp(K) = ker ∂p/im ∂p+1

is called the pth simplicial homology group of K.
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v0

v1

v2

v3

e0

e1

e2

e3

e4

e5

F0

F1

F2

F3 T

Figure 2.3: Oriented 3-simplex T .

So two p-cycles are homologous if they differ by the boundary of a (p + 1)-chain.

This concept will be useful later when we need to find independent cycles in graphs

defined on simplicial complexes.

Definition 2.4.13. The dimension of the pth homology group Hp(K) is called the pth

Betti number which we denote

βp = dimHp(K).

The Betti numbers are topologically invariant, that is, they are invariant under

homeomorphisms.

Definition 2.4.14. We define theEuler characteristic of a manifold M as the topo-

logical invariant

χ(M) =
∑

p

(−1)pβp(K), (2.37)

where K is some simplicial complex representing M .

As a simple example, consider the oriented 3-simplex depicted in figure 2.3. It is

homeomorphic to the 3-ball so it will have the same Euler characteristic. We start

by computing H0. Since ∂vi = 0 for i = 0, 1, 2, 3, every 0-chain is a cycle. Since the
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difference of any two 0-cycles is the boundary of an edge, each 0-cycle is homologous to

any other 0-cycle so H1 = 〈v0〉, where X = 〈x1, . . . , xn〉 denotes that x1, . . . , xn span

the space X. Thus β0 = 1. If there were multiple components, for example, 2 separate

3-simplices with no edges between them, then we would have another equivalence class

generated by one of the vertices in the second 3-simplex, in which case we would have

β0 = 2. Extending this argument inductively, we can see that β0 is the number of

connected components of a manifold.

For H1, we consider 1-cycles. We can see from the figure that any 1-cycle will be

the boundary of a 2-chain, therefore ker ∂1 = im ∂2 and β1 = 0. For H2, we see that

multiples of ∂3T = F0 + F1 + F2 + F3 are the only boundaries of 3-chains since T is

the only 3-simplex. But the only 2-cycles are multiples of F0 +F1 +F2 +F3, therefore

ker ∂2 = im ∂3 and β2 = 0. For H3, there are no 3-cycles so β3 = 0. Since there are

no p-chains for p > 3, Hp = 0 for p > 3. Then the Euler characteristic of a solid

3-simplex, and therefore the solid three-dimensional ball, is χ = 1.

The famous Euler-Poincaré theorem gives another way to compute the Euler char-

acteristic of a cell complex. We state it here for reference.

Theorem 2.4.1. Let K be a cell complex and let ki be the number of i-cells in K.

Then the Euler characteristic is given by the alternating sum

χ(K) =
∑

i

(−1)iki.

This means that it if we can find all but one of the Betti numbers in a simple way,

then we can compute the Euler characteristic using the above formula and find the

unknown Betti number by rearranging (2.37).

2.4.2 Cochains and integration on discrete manifolds

In this section we will introduce the discrete counterparts of forms and the evaluation

of these objects via integration.

Definition 2.4.15. A p-cochain ω is a linear functional that maps p-chains to scalars.

That is, p-cochains are dual to p-chains. Denote by Cp the space of p-cochains, then

for ω ∈ Cp,
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ω : Cp → R,

c 7→ ω(c).

Recall for the continuous case, that we evaluate a k-form by integrating over a

k-dimensional (sub)manifold. In the discrete setting we evaluate a p-cochain by in-

tegrating over a p-chain. Let ω ∈ Cp(K), c ∈ Cp(K), then denote by [ω, c] the dual

pairing between p-cochains and p-chains where

ω(c) = [ω, c] =

∫

c

ω =

∫

∑
i ciσi

ω =
∑

σ∈K

cσ

∫

σ

ω.

The last integral in the expression above is the integration of a p-form ω over simplex

σ which gives a discretisation of the p-form as a value on each p-simplex. Then taking

the linear combination of these integrals over each simplex results in the scalar value

ω(c).

We now introduce the discrete counterpart to the exterior derivative. We use

the discrete version of Stokes theorem (theorem 2.3.1) to define this discrete exte-

rior derivative which gives a straightforward definition in terms of concepts already

introduced and ensures that Stokes’ theorem is satisfied automatically.

Definition 2.4.16. The coboundary operator denoted d : Cp(K) → Cp+1(K) is the

adjoint of the boundary operator ∂. If [ω, c] is the dual pairing between p-cochains

and p-chains, then the coboundary operator is defined as

[dω, c] = [ω, ∂c] .

Since d is dual to ∂, we also have dd = 0. Clearly the above definition of d is just

Stokes’ theorem in a discrete setting. To see how this would be implemented we have

[dω, c] =

∫

c

dω =

∫

∑
i ciσi

dω =

∫

∂
∑

i ciσi

ω =

∫

∑
i ci∂σi

ω =
∑

σ∈K

cσ

∫

∂σ

ω = [ω, ∂c] .

Now that we have defined the dual of the boundary operator we have all the tools

required to define the dual notion of the homology groups. We can define the cochain

complex

0
dn
←− Cn

dn−1

←− . . .
d1
←− C1

d0
←− C0 ←− 0.

Then we can define equivalence classes using d as we did for ∂.
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Definition 2.4.17. The pth cohomology group Hp(K) of K is given by the quotient

group

Hp(K) = ker dp/im dp−1.

Before we go any further we need to introduce the concept of duality with respect

to the discretised manifold.

Definition 2.4.18. The dual complex K∗ of a simplicial complex K is the cell complex

constructed by defining an (n− p)-cell σ∗ for each p-simplex σ ∈ K.

In the following, we restrict ourselves to triangulations that are “well-centred”,

that is, the circumcentre of each n-simplex lies within the simplex. It is known that

the dual cells of well-centred meshes are orthogonal, that is, the dual of an interior

primal 0-simplex is a convex polygon, [94], which is important in the following def-

inition. The dual cells can be defined in many ways, the most obvious being the

circumcentric definition. The circumcentric dual complex is constructed by comput-

ing the circumcentre of each n-simplex of K, then each dual p-cell is the convex hull of

the n-simplex circumcentres that share the primal (n− p)-face. For example, in three

dimensions, the dual 0-cells are the circumcentres of the 3-simplices, dual 1-cells are

the lines joining the circumcentres of the two 3-simplices that share the primal 2-face,

a dual 2-cell is the two dimensional convex hull of the 3-simplex circumcentres that

share the corresponding primal edge and a dual 3-cell is the volume constructed by

the convex hull of the circumcentres of the surrounding 3-simplices.

We introduce this concept here since it is required for introducing a particular form

of the wedge product. Many defintions of the discrete wedge product are introduced

in [55], but since we are interested in the wedge product of a form and a Hodge star

applied to a form we require the notion of the primal-dual wedge product.

Definition 2.4.19. Let α ∈ Cp(K) be a p-cochain and β ∈ Cn−p(K∗) be a dual

(n− p)-cochain. The primal-dual wedge product denoted α∧β is an n-cochain defined

on the union of p-simplices and dual (n− p)-cells with the same properties as for the

continuous wedge product given in definition 2.3.27.

To illustrate this definition consider two triangles sharing an edge e in a two-

dimensional simplicial complex K. Let α ∈ C1(K) and β ∈ C1 (K∗) be given by
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constants a and b on edge e and zero elsewhere. Then the wedge product α∧β is defined

on the set D, the convex hull of the two endpoints of e and the two circumcentres of

the triangles sharing edge e, that is, the endpoints of the dual edge e∗. Let c ∈ C1(K)

be the 1-chain with value 1 on every primal edge, and c′ ∈ C1(K
∗) be the 1-chain with

value 1 on every dual edge. Since the integral of α∧β is zero over all edges other than

e the dual pairing [α ∧ β, c] is given by

[α ∧ β, c] =
∑

i

cic
′
i

∫

D

α ∧ β,

= ab.

We now introduce the last discretised concept that is present in our work. Recall

from definition 2.3.35 that the Hodge star operator is defined in terms of the wedge

product and inner product of two k-forms. In the discrete case we require the Hodge

star to map p-cochains to (n − p)-cochains and we do this by mapping to the dual

cochain. We use the following definition given in [55] which defines the Hodge star in

terms of the dual pairing between chains and cochains.

Definition 2.4.20. The discrete Hodge star defined on a simplicial complex K is the

map ⋆ : Cp(K)→ Cn−p(K∗) that satisfies the following relation on each p-simplex σ,

1

|σ∗|
[⋆ω, σ∗] =

1

|σ|
[ω, σ] ,

for a p-cochain ω ∈ Cp(K).

In the above definitions we have applied the dual pairing of cochains and chains to

a cochain and a simplex. To extend the definition to a chain defined on every p-simplex

we would take the linear combination of the above expression on each simplex, where

the coefficients of the linear combination are given by the coefficients of the chain as

usual.

2.5 Graph Theory

In this section we introduce some basic concepts from graph theory which will be useful

in conjunction with the previous section. Where appropriate we will draw attention to

analogous concepts from the previous section. The material in this section is covered

in more detail and with more generality in the books [17] and [61].
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Definition 2.5.1. We define a graph G as the pairG = (V,E), where V = {v1, . . . , vnV
}

is the set of vertices and E ⊂ {{vi, vj} : vi, vj ∈ V } is the set of edges. If the pair

{vi, vj} ∈ E then we say that vi and vj are adjacent.

We can see from this definition that the elements of E are unordered pairs of

vertices. For a general graph, an edge may join a vertex to itself but for our work we will

only consider graphs with the extra stipulation that E ⊂ {{vi, vj} : vi, vj ∈ V, i 6= j},

that is, an edge is an unordered pair of distinct vertices.

So we can think of a graph as an unoriented simplicial complex of 0-simplices and

1-simplices. This satisfies the definition of a simplicial complex since every 0-face of

an edge is just a vertex which is clearly in the complex, and the intersection of two

edges is a common vertex or is empty.

We now define some notions related to sequences of edges in a graph. For the

following definitions let W = (e1, . . . , en) with ei ∈ E, be a sequence of edges in G.

Definition 2.5.2. If there exist vertices v0, . . . , vn ∈ V such that ei = {vi−1, vi} ∈ E

for i = 1, . . . , n, then the sequence W is called a walk. If v0 = vn then W is a closed

walk.

Definition 2.5.3. If the edges in W are distinct then W is a trail. If v0 = vn then W

is a closed trail.

Definition 2.5.4. If the v0, . . . , vn are distinct then W is called a path and if v0 = vn

with v0, . . . , vn−1 distinct then the path is a cycle.

We can see from the last definition that a cycle in a graph is a specific case of a

1-cycle when defined in terms of chains. We can think of a 1-chain as a union of trails

with weights and orientations. It is a union of trails because we only include each edge

once since we take a linear combination of the edges to produce a chain.

We can relate the cycles of a graph to the first homology group of the simplicial com-

plex formed by the vertices and edges of the graph. Recall that H1(G) = ker ∂1/im ∂2,

then since there are no 2-simplices im ∂2 = ∅, so H1(G) = ker ∂1. But ker ∂1 is just

the space of 1-cycles, so β1(G) = dimH1(G) is just the number of independent cycles

in the graph G. This is also known as the cyclomatic number and there is a theorem

which gives an alternative formula for the cyclomatic number, but we require a few

more related concepts before stating this theorem.
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Definition 2.5.5. Two vertices u, v ∈ V are connected if there exists a walk such that

the start and end vertices are u and v respectively. If all pairs of vertices of a graph

are connected then the graph is called connected.

Definition 2.5.6. We define an equivalence class on a graph G by saying that vertices

u and v are equivalent if they are connected. The equivalence classes defined by this

relation are called connected components of G.

Definition 2.5.7. A graph G with no cycles is called acyclic.

Definition 2.5.8. A tree is a graph that is connected and acyclic.

Definition 2.5.9. A spanning tree T = (VT , ET ) of a graph G = (V,E) is a subgraph

of G that is a tree and contains every vertex of G. That is, VT = V and ET ⊆ E.

The following theorem is stated as a corollary in [17] but we state it here since it

is important for our later work.

Theorem 2.5.1. Every connected graph has a spanning tree.

Proof. To create a spanning tree T we simply remove edges from the graph. For every

edge removed, we either remove a cycle or the graph is no longer connected. Therefore

only removing edges that are components of a cycle until it is acyclic ensures that the

graph stays connected.

Let Z(G) denote the cycle space of the graph G, then the cyclomatic number which

is simply dimZ(G) is given by the following theorem (see [17] for a proof).

Theorem 2.5.2. For a graph G with k connected components, m edges and n vertices,

the cyclomatic number is given by

dimZ(G) = m− n+ k.

2.6 Singular Value Decomposition

In this section we provide an introduction to the singular value decomposition (SVD),

which is a useful tool from linear algebra. The theory in this section, including proofs

of the stated theorems, can be found in the book [48]. Throughout this section let

A ∈ R
m×n be a real matrix. We introduce the SVD through the theorem that shows

its existence.
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Theorem 2.6.1. There exist orthogonal matrices

U = (u1 · · · um) ∈ R
m×m, V = (v1 · · · vn) ∈ R

n×n

such that

UTAV = Σ = diag(σ1, . . . , σp) ∈ R
m×n, p = min {m,n} ,

where σ1 ≥ σ2 ≥ . . . ≥ σp ≥ 0.

Definition 2.6.1. The singular value decomposition (SVD) of A is given by

A = UΣV T ,

for matrices U , V and Σ defined in theorem 2.6.1. The values σ1, . . . , σp are the singular

values of A, the u1, . . . , um are the left singular vectors of A and the v1, . . . , vn are the

right singular vectors of A.

We note here that the singular values have no correspondence with the conductivity

in EIT, but the notation σi for these values is standard in linear algebra texts.

The SVD is related to the eigensystems of AAT and ATA as we show in the

following.

Corollary 2.6.1. If m ≥ n then for i = 1, . . . , n

Avi = σiui, ATui = σivi.

Following this we have

ATAvi = σiV ΣTUTui = σiV ΣT ei = σ2
i vi,

AATui = σiUΣV
Tvi = σiUΣ

T ei = σ2
i ui,

where ei is the ith Euclidean basis vector. Hence (σ2
i , vi) and (σ2

i , ui) are eigenpairs of

ATA and AAT respectively.

A useful property of the SVD is that it can be used to characterise the range and

null space of a matrix as shown in the following.

Corollary 2.6.2. If A has r positive singular values, then rank A = r and

null A = span {vr+1, . . . , vn} ,

range A = span {u1, . . . , ur} .

Since the row space of A is orthogonal to the null space we can see that {v1, . . . , vr}

is a basis for the row space of A.
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2.7 Conclusion

In this chapter we have defined the EIT problem and reviewed some of the uniqueness

and stability results from the literature. As the reader may have noticed, almost all

these results are based on the continuous problem, yet when we attempt to solve the

problem in practice we will work on a discretised problem. There has not been much

work in attempting to extend the results for the continuous case to the more practical

discrete problem. In the following chapters we will tackle some problems that attempt

to bridge the gap between the theory of the continuous problem and what we can

hope to achieve in the discrete problem. We will review some results in this area in

the relevant chapters.

The rest of this chapter gave an introduction to the mathematical theory that we

will need to tackle the problems in the following chapters.



Chapter 3

A three-dimensional triangulation

problem

3.1 Introduction

In this chapter we lay the foundations for finding an embedding of a finite element mesh

associated with anisotropic conductivity in R
3. Before we begin to add information

related to the conductivity, we solve a three-dimensional triangulation problem which

consists of constructing a triangulation given the dihedral angles of the tetrahedra

that form the triangulation. The work in this chapter extends the two-dimensional

embedding of a planar triangulation of Al-Humaidi [5], in which a nice review of the

historical applications of such triangulation problems can be found. We therefore

review this work before extending to the three-dimensional case.

When working in three dimensions we are required to find a tetrahedral mesh that

satisfies certain consistency conditions, some of which are very different to those for

the planar case. In this chapter, we list the consistency conditions that the dihedral

angles must satisfy and prove that these conditions locally define a unique embedding.

We then provide a constructive algorithm to compute the vertex positions given these

angles. This algorithm is an extension of the algorithm outlined in [5].

63
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i

jk

αi,jk

αj,ikαk,ij

(a) Face angle labels.

i

j

kl

θij,kl

(b) Dihedral angle labels.

Figure 3.1: Illustration of angle notation.

3.2 Notation

Here we give an overview of the notation we will use throughout this chapter for both

the planar and three-dimensional cases. Let K be a simplicial complex of the required

dimension as in definition 2.4.4. So for the planar case K is a collection of 2-simplices

and K is a collection of 3-simplices in the three-dimensional case. In both cases let

V be the set of 0-simplices (vertices), E be the set of 1-simplices (edges) and F be

the set of 2-simplices (triangles). In the three-dimensional case we denote the set of

3-simplices (tetrahedra) by T .

When we consider the embedding of the manifold that is represented by the sim-

plicial complex, we use subscripts I and B to denote the set of interior and boundary

k-simplices respectively. For example, the sets of interior and boundary 0-simplices

are denoted VI and VB respectively, such that VI ∪ VB = V .

Since we require some results from graph theory, we let G = (V,E) be the graph

whose vertices V and edges E are the 0-simplices and 1-simplices of K respectively.

We denote the face angle at vertex i in the 2-simplex {i, j, k} by αi,jk such that

αi,jk ∈ (0, π) for any i, j and k. For the three-dimensional case we also require dihedral

angles which are denoted θij,kl for the dihedral angle of edge {i, j} in tetrahedron

{i, j, k, l}, such that θij,kl ∈ (0, π) for any i, j, k and l. This notation is illustrated in

figure 3.1. We also denote by lij the length of edge {i, j} when the graph is embedded

in R
N . That is, l is the nonnegative function l : E → R+ such that

lij = l({i, j}) = ‖vi − vj‖2,
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where vi is the position of vertex i in R
N .

3.3 Planar triangulations

If we embed the simplicial complex in Euclidean space then we have a piecewise flat

manifold (M,K, l) where l are the edge lengths. In this section we restrict ourselves

to the case of R2. The problem in two dimensions is to find an embedding given a set

of consistent face angles. The 1-skeleton of a single triangular face is geometrically

self-dual, that is, a triangle with edges dual to vertices. Therefore in two dimensions

we can think of face angles as being dual to edge lengths in a geometric sense.

In order to embed K in Euclidean space there are certain consistency conditions

that must be met. We define the first of these in a moment, but first let us give some

definitions. We define the curvature as in [47] which we give here for reference.

Definition 3.3.1. The scalar curvature Ri at vertex i is

Ri = 2π −
∑

{j,k}∼i

αi,jk, (3.1)

where {j, k} ∼ i denotes that the edge {j, k} shares a triangle with vertex i.

Note that the sum is over the triangles for which i is a vertex. We see that the

curvature defined here is the discrete analogy to the scalar curvature defined in 2.3.54.

Since we require the two-dimensional manifold to be embedded in R
2, that is, we have

a flat manifold, we require that the curvature be zero. Therefore our first consistency

condition is
∑

{j,k}∼i

αi,jk = 2π, (3.2)

for all interior vertices i ∈ VI .

For the next condition we must consider the space of cycles as defined in 2.4.1.

Let us define the graph G′ that is formed from the vertices and edges of the dual

complex of K. Then G′ = (F,E ′), since each face in F has a dual vertex, and E ′ =

{{fi, fj} : fi, fj ∈ F, fi ∩ fj ∈ E}
1. Suppose we have a cycle in G′ that encloses an

interior vertex i and let {f1, . . . , fk} be the vertices of G
′ that form this cycle. In order

1This is not technically the dual graph of G, since this would also have an extra vertex that is not
dual to any face and extra edges connecting this extra vertex to the vertices dual to faces containing
boundary edges of G.
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to ensure than the last simplex in the cycle intersects with the first simplex such that

the definition of a simplicial complex is maintained (see definition 2.4.4), the angles

opposite the enclosed vertex satisfy the following sine rule constraint

∑

{j,k}∼i

(ln sinαj,ki − ln sinαk,ij) = 0. (3.3)

Again we sum over the triangles {i, j, k} that contain vertex i and we assume that the

orientation of simplices is consistent.

We also have the obvious condition that all angles within a triangle sum to π. It

is shown in [5] that these 3 conditions are necessary and sufficient to ensure that a

planar simplicial complex can be embedded in R
2.

3.4 The three-dimensional problem

3.4.1 Problem overview

We now move onto the problem of embedding the three-dimensional piecewise flat

manifold (M,K, l) in R
3. In this case we wish to determine an embedding from the

knowledge of the tetrahedron dihedral angles and the vertex positions of a single face in

order to fix similarity transformations. This is analogous to the two-dimensional case

since in three dimensions the geometric dual of the 2-skeleton of a single tetrahedron is

also a tetrahedron (see figure 3.3). Therefore we can think of dihedral angles as being

dual to edge lengths in the three-dimensional problem. Posing the problem in terms

of dihedral angles also has the advantage that it may be extended to the problem of

embedding an isotropic finite element mesh in R
3, since the edge conductances are

given in terms of edge lengths and dihedral angles. In the following section we give an

overview of a related problem that has been well studied.

3.4.2 Distance geometry

The problem of finding the coordinates of a set of points given some distances between

pairs of points is known in the literature as the distance geometry problem (DGP).

This problem has received much attention particularly in the fields of molecular con-

formation [69], [52], [33] and sensor networks [97].
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For a review of the theory and history of the DGP as well as an overview of many

methods for solving the problem particularly when applied to molecular conformation,

the reader is referred to [72], and references therein. We also give an overview of the

problem to highlight its similarities and differences with our problem. The theory of

distance geometry dates back to 1841, when Cayley [28] introduced the now well-known

Calyey-Menger determinant for k points as

D(v1, . . . , vk) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 1 1 · · · 1

1 0 l212 · · · l21k

1 l212 0 · · · l22k
...

...
. . . . . .

...

1 l21k l22k · · · 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

, (3.4)

along with the volume formula for an n-simplex formed by n + 1 points in Euclidean

space:

V (v1, . . . , vn+1) =
1

n!

√

(−1)n+1

2n
D(v1, . . . , vn+1). (3.5)

Many related geometrical concepts relating set congruences and distances were in-

troduced by Menger in the German paper of 1928 [78] and in 1931 [79], along with a

theorem stating that matrices of the form (3.4) are in fact matrices of squared distances

if certain conditions are satisfied, (see [42] for an account of these historic results).

The distance geometry problem is defined in [72] as follows: Given an integer N > 0

and an undirected graph G = (V,E) whose edges are weighted by their Euclidean

lengths lij = l({i, j}), determine whether there exists a function x : V → R
N such that

‖x(i)− x(j)‖2 = lij . Simply put, if we have a graph on which we know the Euclidean

lengths of edges, does there exist an embedding of the vertices that is consistent with

these lengths?

Th the DGP is clearly similar to our problem in that we also want to find an

embedding of V given some information about G. The theory behind the DGP is very

general and the methods that have been developed to solve the problem allow arbitrary

graphs to be considered or at most only some a priori knowledge of the general form of

the graph. Our problem differs from the DGP in that the graph for which the lengths

arise forms a simplicial complex. Since we know that the graph is always of this type it

seems prudent to use this information in the problem formulation. Due to the reasons
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Figure 3.2: Angles at a vertex of a tetrahedron transformed to a spherical triangle.
The face angles a, b, c map to geodesic distances on the unit sphere. The dihedral
angles A, B, C map to the spherical angles between these geodesics.

stated in section 3.4.1 and the fact that geometric constraints can be directly applied

to the dihedral angles, we formulate the problem in terms of such angles rather than

distances between points, which would be the edge lengths in our case. The following

section describes the constraints that the dihedral angles must satisfy in order for the

embedding of the simplicial complex to be geometrically consistent.

3.4.3 Spherical trigonometry

Another geometrical concept that will be useful for our work in this chapter is spherical

trigonometry, which is the study of angles and related lengths on the surface of the unit

sphere. In our problem it will be necessary to convert dihedral angles to face angles

and vice versa. Spherical trigonometry allows us to do this by relating the face angles

of the three faces that meet at a vertex of a tetrahedron to the dihedral angles on

the three edges that meet at the same vertex. We can form a spherical triangle using

the face angles as the (curved) edges of the spherical triangle and the dihedral angle

of the edge opposite a given face becomes the angle opposite the corresponding edge.

Figure 3.2 illustrates this transformation from a tetrahedron to a spherical triangle for

a single vertex. There are many identities for a spherical triangle that are analogous

to those for a Euclidean triangle. Since we only require a conversion from dihedral
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angles to face angles we quote the ”spherical law of cosines for sides” [51], which is

given by

cos a = cos b cos c+ sin b sin c cosA, (3.6)

and the ”spherical law of cosines for angles”, which is given by

cosA = − cosB cosC + sinB sinC cos a. (3.7)

So to write the dihedral angle A in terms of the face angles a, b and c we rearrange

(3.6) to give

cosA =
cos a− cos b cos c

sin b sin c
. (3.8)

To write the face angle a in terms of the dihedral angles that meet at this vertex we

rearrange (3.7) to give

cos a =
cosA+ cosB cosC

sinB sinC
. (3.9)

Clearly (3.8) can be rewritten for dihedral angles B and C, and (3.9) can be written

for face angles b and c.

3.5 Consistency conditions

To ensure that our embedding is consistent with the definition of a simplicial complex

and to ensure that we can embed it in R
3, we need to derive some constraints on

the dihedral angles. We show this in the following subsections then check that we do

in fact have the correct number of independent constraints to compute the desired

variables, the vertex positions.

3.5.1 Spherical Cayley-Menger consistency condition

Before we consider representing the manifold by a three-dimensional simplicial com-

plex, we consider the construction of a single tetrahedron. In order to fix similarity

transformations (three translation variables, three rotations and one scaling), we are

required to fix seven vertex coordinates. Since a single tetrahedron has four vertices,

each with 3 coordinates, we require

3× 4− (3 + 3 + 1) = 5
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Figure 3.3: 2-skeleton of a single tetrahedron and graph defined by the vertices and
edges of its dual complex (blue) with overlaid minimal spanning tree (red).

independent coordinate variables. We therefore have five independent dihedral angles

and since there are six edges in a tetrahedron, we have one degree of freedom and so

we require one constraint to uniquely embed a single tetrahedron in R
3.

We define the following “spherical Cayley-Menger” matrix for the tetrahedron

{i, j, k, l},

Mijkl =

















−1 cos θij,kl cos θik,jl cos θil,jk

cos θij,kl −1 cos θjk,il cos θjl,ik

cos θik,jl cos θjk,il −1 cos θkl,ij

cos θil,jk cos θjl,ik cos θkl,ij −1

















. (3.10)

In [14], the following condition on the dihedral angles of a single tetrahedron is proved:

detMijkl = 0. (3.11)

Hence, given five independent dihedral angles of a tetrahedron, the sixth is constrained

by (3.11). If we wished to embed a three-dimensional simplicial complex in R
N for

some large N the Cayley-Menger constraint would still hold. If, for example, we began

with a tetrahedron in R
3 and we add a dimension every time we add a new vertex, since

the Cayley-Menger condition is a constraint on each individual tetrahedron which can

be embedded in R
3, the condition still holds.

Above we noted that in [5] it was shown that in order to embed a triangulated

surface in R
N for some N , the angles at the triangle vertices must satisfy a set of sine

rule conditions for each cycle in the graph whose vertices and edges are derived from
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the dual complex of the triangulated surface. Since the faces of a tetrahedron form a

triangulation of the surface of a sphere in R
3, the face angles must satisfy these sine

conditions. Let G′
F = (FC , EF ) be the graph with vertex and edge sets given by the

vertices and edges of the 2-skeleton dual complex. The vertices of G′
F are the face

circumcentres FC , and EF are the edges connecting these vertices. From section 2.5,

the dimension of the cycle space Z for a graph is

dimZ = ne − nv + nc, (3.12)

where nc is number of connected components, ne is the number of edges and nv is the

number of vertices. This can also be computed as the number of edges in the graph

that do not belong to a spanning tree of the graph. Then as shown in figure 3.3, the

dimension of the cycle space of G′
F is 6− 4+1 = 3 and so there are three independent

sine constraints for the face angles. As shown above, there are 5 independent face

angles, with 12 face angles in total, therefore there are 7 dependent face angles for a

single tetrahedron. Since we have found 3 constraints from the sine rule condition, we

require 7− 3 = 4 additional constraints. These additional constraints are the obvious

constraints on triangular face angles, that the three face angles sum to π. Since there

are 4 faces in a tetrahedron, we have the 4 extra constraints. Since four points that

satisfy the Cayley-Menger condition in (3.11) form a tetrahedron, this single constraint

for the dihedral angles incorporates the seven consistency conditions for the face angles

of a single tetrahedron.

Proposition 3.5.1. The spherical Cayley-Menger condition in (3.11) is the three-

dimensional analogue to the π constraint in the planar case.

Proof. In the planar case the spherical Cayley-Menger matrix is given by

Mijk =











−1 cosαi,jk cosαj,ik

cosαi,jk −1 cosαk,ij

cosαj,ik cosαk,ij −1











. (3.13)

For a single triangle, let the angles be given by α, β and γ. Then

detM = cos2 α + cos2 β + cos2 γ + 2 cosα cos β cos γ − 1.

For a triangle, we have the condition α + β + γ = π, so γ = π − α− β. Then



CHAPTER 3. A THREE-DIMENSIONAL TRIANGULATION PROBLEM 72

detM = cos2 α + cos2 β − 2 cosα cos β cos(α + β) + cos2(α + β)− 1,

= cos2 α + cos2 β − 2 cos2 α cos2 β+

2 cosα cos β sinα sin β + cos2(α + β)− 1,

= cos2 α sin2 α + cos2 β sin2 β+

2 cosα cos β sinα sin β + cos2(α + β)− 1,

= (cosα sin β + sinα cos β)2 + cos2(α + β)− 1,

= sin2(α + β) + cos2(α + β)− 1,

= 0.

So the sum to π condition for angles on a triangle results in the corresponding spherical

Cayley-Menger determinant to be zero also.

3.5.2 Curvature consistency condition

We now move onto global conditions that we require when we fit multiple tetrahedra

together. As in the two-dimensional case we require that the manifold that we embed

to be flat. In [47] two types of curvature are defined for three-dimensional manifolds

and are as follows.

Definition 3.5.1. For a three-dimensional piecewise flat manifold, the edge curvature

Rij is

Rij =



2π −
∑

{k,l}∼{i,j}

θij,kl



 lij , (3.14)

where {k, l} ∼ {i, j} denotes that edge {k, l} shares a tetrahedron with edge {i, j} so

the sum is over all tetrahedra containing edge {i, j}.

Definition 3.5.2. The scalar curvature of a three-dimensional piecewise flat manifold

is defined at vertices as

Ri =
∑

j

Rijd
j
i , (3.15)

where Rij is the edge curvature and d j
i is the pre-metric that satisfies lij = d j

i + d i
j .

The edge curvature is the discrete analogue to Ricci curvature defined in 2.3.53

and the scalar curvature is the discrete analogue to the Ricci scalar curvature defined



CHAPTER 3. A THREE-DIMENSIONAL TRIANGULATION PROBLEM 73

αi

θi

θi+1

ωi

ωi+1

ωi+2

ui

ui+1

Figure 3.4: Vectors and angles required to rotate inward normal of face Fi to normal
of Fi+1.

in 2.3.54. Again, since we wish to embed the manifold represented by the simplicial

complex K in Euclidean space, we require zero curvature in the interior of the manifold.

Since Rij = 0 for j ∼ i implies Ri = 0, we can use the edge curvature condition. Since

lij > 0 for all edges {i, j} ∈ E the curvature consistency condition is

∑

{k,l}∼{i,j}

θij,kl = 2π, (3.16)

for all interior edges {i, j} ∈ EI . Due to the relationship between scalar and edge

curvature, it seems intuitive that some of the edge curvature conditions may depend

on each other. Let us now define the graph G′ = (T, FI) whose vertices and edges

are given by the dual complex of K. So the vertices of G′ are represented by the

3-simplices of K and the edges of G′ are dual to the interior 2-simplices of K. From

this point onwards when we refer to the dual graph, we mean G′, not the actual dual

of the graph G = (V,E).

Lemma 3.5.1. The edge curvature constraints are defined on the cycle space of the

dual complex. Furthermore, the number of curvature constraints is β0−χ+nEI
−nVI ,

where β0 is the zero’th Betti number and χ is the Euler characteristic of the domain.

Proof. Consider a chain c ∈ C1(G
′). Each edge connecting two nodes in this chain is
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dual to a face in G. We also consider the vector-valued cochain ω ∈ C0(G′) which for

each tetrahedron Ti in the chain is given by the inward normal (with respect to Ti) of

the face Fi dual to the edge we have traversed in the chain to reach Ti. Then using

the following rotation formula [54], the inward normal ωi+1 is given by

ωi+1 = ωi cos θi + (ui × ωi) sin θi + (1− cos θi)(ui · ωi)ui, (3.17)

where ui is the unit vector along the edge shared by Fi and Fi+1 which is the axis of

rotation, and θi is the dihedral angle on this edge in Ti. The vectors and angles used

in this expression are illustrated in figure 3.4. By definition, ωi is normal to any of

the edges on Fi so the last term is zero. Since the axis of the next rotation is also the

vector along an edge of the current tetrahedron we can write ui+1 in terms of ui, ωi+1

and the face angle of the face shared by the two axes of rotation at their shared vertex

ai as

ui+1 = ui cosαi + (ωi+1 × ui) sinαi, (3.18)

then inserting ωi+1 from (3.17) gives

ui+1 = ui cosαi + ((ωi cos θi + (ui × ωi) sin θi)× ui) sinαi. (3.19)

Using the vector triple product identity we have

(ui × ωi)× ui = ωi(ui · ui)− ui(ui · ωi). (3.20)

But again the last term is zero since ui is orthogonal to ωi. Inserting (3.20) into (3.19)

gives

ui+1 = ui cosαi + (ωi × ui) cos θi sinαi + ωi sin θi sinαi. (3.21)

Let mi = ui × ωi so that

ωi+1 = ωi cos θi +mi sin θi, (3.22)

and

mi+1 = ui+1 × (ωi cos θi + (ui × ωi) sin θi),

= (ui cosαi + (ωi × ui) cos θi sinαi + ωi sin θi sinαi)×

(ωi cos θi + (ui × ωi) sin θi),

= (ui × ωi) cosαi cos θi − ωi cosαi sin θi + ωi × (ui × ωi) sinαi,
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= ((ui × ωi) cos θi − ωi sin θi) cosαi + ui sinαi,

= (mi cos θi − ωi sin θi) cosαi + ui sinαi. (3.23)

If the same edge is used as the axis of rotation for two successive rotations then

ui = ui+1 and αi = 0 so that (3.23) reduces to

mi+1 = mi cos θi − ωi sin θi. (3.24)

Recall definition 2.4.10, a p-cycle c is a p-chain such that ∂pc = 0, therefore

[ω, ∂c] = 0, (3.25)

where [·, ·] is the dual pairing between chains and cochains. Then applying Stokes’

theorem (theorem 2.3.1), (3.25) gives

[ω, ∂c] = [dω, c] = 0. (3.26)

where d is the coboundary operator which is defined for the dual edge e as

(dω)e = ωi+1 − ωi. (3.27)

So combining (3.26) and (3.27), we have

n
∑

i=1

ωi+1 − ωi = 0,

which reduces to ωn+1 = ω1.

Now consider a cycle c ∈ C1(G
′) of length n + 1 defined on edges in E ′ that form

the boundary of a face in G′, that is, the edges on which c is defined are dual to faces

in the primal graph G that all share a common edge in the primal graph and this edge

is enclosed by the edges of the cycle. Then combining (3.22) and (3.24) we have the

following expressions for each rotation:

ω2 = ω1 cos θ1 +m1 sin θ1,

m2 = m1 cos θ1 − ω1 sin θ1,

ω3 = ω2 cos θ2 +m2 sin θ2,

= (ω1 cos θ1 +m1 sin θ1) cos θ2 + (m1 cos θ1 − ω1 sin θ1) sin θ2,

= ω1 cos (θ1 + θ2) +m1 sin (θ1 + θ2) ,
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m3 = m2 cos θ2 − ω2 sin θ2,

= (m1 cos θ1 − ω1 sin θ1) cos θ2 − (ω1 cos θ1 +m1 sin θ1) sin θ2,

= m1 cos (θ1 + θ2)− ω1 sin (θ1 + θ2) ,

ω4 = ω3 cos θ3 +m3 sin θ3,

= (ω1 cos (θ1 + θ2) +m1 sin (θ1 + θ2)) cos θ3+

(m1 cos (θ1 + θ2)− ω1 sin (θ1 + θ2)) sin θ2,

= ω1 cos (θ1 + θ2 + θ3) +m1 sin (θ1 + θ2 + θ3) ,

m4 = m3 cos θ3 − ω3 sin θ3,

= (m1 cos (θ1 + θ2)− ω1 sin (θ1 + θ2)) cos θ3−

(ω1 cos (θ1 + θ2) +m1 sin (θ1 + θ2)) sin θ2,

= m1 cos (θ1 + θ2 + θ3)− ω1 sin (θ1 + θ2 + θ3) ,

...

ωn+1 = ωn cos θn +mn sin θn,

=

(

ω1 cos

(

n−1
∑

i=1

θi

)

+m1 sin

(

n−1
∑

i=1

θi

))

cos θn+

(

m1 cos

(

n−1
∑

i=1

θi

)

− ω1 sin

(

n−1
∑

i=1

θi

))

sin θn,

= ω1 cos

(

n
∑

i=1

θi

)

+m1 sin

(

n
∑

i=1

θi

)

. (3.28)

Recall from above that for cycles we have ωn+1 = ω1. Then (3.28) gives

ω1 = ω1 cos

(

n
∑

i=1

θi

)

+m1 sin

(

n
∑

i=1

θi

)

(3.29)

which holds if and only if
∑n

i=1 θi = pπ for p ∈ 2Z. But p = 0 would result in

degenerate tetrahedra and p > 2 results in intersecting tetrahedra, hence p = 2. This

is exactly the edge curvature condition from definition 3.16, hence the edge curvature

condition is defined for cycles in the dual graph.

In order to compute the number of independent cycles we will need to use some

concepts from algebraic topology. Since the dimension of the cycle space for a graph

is equal to the dimension of the 1st homology group, the number of independent

curvature constraints is given by the first Betti number (see section 2.5). If we consider
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Figure 3.5: Dihedral angles required to compute a face angle for two neighbouring
tetrahedra.

the graphG′ as being made of only the vertices and edges, then from the Euler-Poincaré

formula we have

χ(G′) = χ(X)− n2 + n3,

where n2 is the number of 2-cells we removed to form G′ and n3 is the number of 3-cells

removed. Since each 2-cell of G′ is dual to an interior edge of G, we have n2 = nEI

and since each 3-cell is dual to an interior vertex in G, we have n3 = nVI . Here nEI

and nVI denote the number of interior edges and vertices of G respectively. Since the

alternating sum of Betti numbers is equal to the Euler characteristic and βp = 0 for

p > 3, the number of independent curvature constraints is given by

β1 = β0 − χ+ nEI
− nVI , (3.30)

as required.
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3.5.3 Face angle constraints

The next set of conditions must be satisfied when two tetrahedra share a face. In order

for two adjacent tetrahedra to fit together consistently, the shared face must be formed

consistently in both tetrahedra. As shown in section 3.4.3, we can write a face angle

at a given vertex in terms of the dihedral angles of the three edges of a tetrahedra that

meet at the vertex using the spherical law of cosines for sides. Rewriting (3.8) in our

standard notation for the angles of tetrahedron Tijkl, at vertex i we have

αi,jk =
cos θil,jk + cos θij,kl cos θik,jl

sin θij,kl sin θik,jl
. (3.31)

Then for the tetrahedra to fit together consistently the face angles for the shared face

must be equal at each vertex. Then for the two tetrahedra Tijkl and Tijkm sharing face

Fijk, at vertex i we have the condition

cos θil,jk + cos θij,kl cos θik,jl
sin θij,kl sin θik,jl

=
cos θim,jk + cos θij,km cos θik,jm

sin θij,km sin θik,jm
. (3.32)

The angles used in this condition are illustrated in figure 3.5. This constraint is

somewhat analogous to the sine rule constraint in the planar case. In the planar case,

the sine rule constraint ensures that edge lengths between adjacent triangles match,

whereas here we ensure that the face angles match which in turn forces edge lengths

to match since we can determine edge lengths from angles using the sine rule and the

initial scaling introduced by fixing the seven vertex coordinates. For each interior face

of the mesh (i.e. a face shared by two tetrahedra) there are three of these conditions,

but due to the π rule for face angles only two are independent (see section 3.3).

3.6 Uniqueness of three-dimensional problem

In this section we lay out a constructive procedure for finding the independent con-

straints and dependent dihedral angles for a contractible domain. We show that this

procedure produces the correct number of equations for calculating the unknown ver-

tex positions. We then use the implicit function theorem to show that the consistency

conditions defined in the previous section uniquely determine the 3nV − 7 unknown

vertex coordinates.
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(a) (b)

Figure 3.6: Case 1 of constructive procedure. The current tetrahedron is the shaded
tetrahedron.

3.6.1 Constructive Procedure

We now give a constructive procedure for finding the independent set of constraints

that uniquely determines an embedding of a three-dimensional simplicical complex in

R
3. We restrict ourselves to the case of a contractible domain. In order to identify

the angles that are independent of the constraints and those that depend on the

constraints, we traverse a spanning tree of the dual mesh.

Lemma 3.6.1. Consider a three-dimensional triangulation K of a three-dimensional

contractible domain. Let G′ = (V ′, E ′) = (T, FI) be the dual graph defined in section

3.5.2. Let nX be the cardinality of X, where X is replaced by the relevant set of k-

simplices. For example, nV is the number of vertices. Then there are nT + (nEI
−

nVI ) + (2nFI
− 3nVI ) independent constraints on the dependent dihedral angles of the

embedded simplicial complex K.
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(a) Case 2 (b) Case 3 (c) Case 4

Figure 3.7: Cases 2, 3 and 4 of constructive procedure. The current tetrahedron is the
shaded tetrahedron.

Proof. Let S ′ be a spanning tree of G′. We begin the construction at the root of

this tree and construct a single tetrahedron. As shown in section 3.5.1, we have five

independent dihedral angles and one degree of freedom which is constrained by the

spherical Cayley-Menger constraint. We now traverse the edges of S ′. Whenever we

reach a new node (tetrahedron) in the tree, one of the following holds:

Case 1: Only one dual edge has been traversed between the current node and

previously visited nodes. There are two possibilities in this case:

(a) Only the tetrahedra whose vertices are shared by the face dual to this edge

have been visited so we know only one face of the current tetrahedron;

(b) Some other tetrahedron which does not share a face with the current tetra-

hedron but that shares the fourth vertex has been visited;

Case 2: Two adjacent tetrahedra have been visited so we know two faces and all

vertices;

Case 3: Three adjacent tetrahedra have been visited therefore we know three

faces and four vertices;

Case 4: Four adjacent tetrahedra have been visited therefore we know all four

faces.

Considering each case we have the following constructive procedure for computing

the constrained dihedral angles.

Case 1 (a): If we have only previously visited the previous node in this branch

of the tree there is one vertex left to find, therefore we have three variables that
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can be chosen arbitrarily. Let the dihedral angles at the edges of the known face be

the independent variables in this tetrahedron then the three dihedral angles to be

determined are those on the edges that meet at the fourth vertex. As described above,

we have two independent constraints by ensuring that the face angles of the known

face match when computed for the new tetrahedron and the previous one. We also

have the Cayley-Menger constraint for this tetrahedron which is clearly independent of

these face angle constraints and any previous constraints that may have been defined.

Case 1 (b): Since all vertices are known, all the dihedral angles of this tetrahe-

dron are to be determined by constraints. The constraints which need to be satisfied

involving the angles of this tetrahedron cannot yet be determined so we end the search

down this branch of the tree and return later in which case this tetrahedron will fall

into one of the following cases.

Case 2: If we have previously visited two tetrahedra that share faces with this

tetrahedron then we have no vertices left to find and so all the angles in this tetrahedron

are constrained. In this case there must be an edge in G′ that has been removed to

create S ′ so by temporarily reinserting this edge creates a cycle in G′. Hence, there is

a curvature constraint around the interior edge of the primal graph G that is enclosed

by reinserting this dual edge. We have two faces known for which we match two angles

each with the previously visited adjacent tetrahedra. The final condition is again the

Cayley-Menger condition for this tetrahedron. Therefore we have 6 new conditions for

6 new unknowns. Clearly, these three types of constraints are independent since they

are defined by different geometric properties.

Case 3: In this case we must have three interior edges since we cannot have a tree

that has already visited three adjacent tetrahedra otherwise. We must also enclose an

interior vertex in this case which is the vertex at which the three known faces meet. As

given by the first Betti number of G′, for every interior vertex we lose one independent

curvature constraint so we have two curvature constraints for this tetrahedron which

are found by using the approach used in case 2 of temporarily reinserting the missing

dual edges. We now have three faces each with two angles to match but we only

require three more constraints. Considering the vertex at which the edges whose

curvature constraints are independent meet, there is only one dihedral angle left to

find so we use the face angle of the face opposite this edge to compute its dihedral
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angle. Then using the face angles of the other two known faces at the vertices that

are not on the edges that have a curvature constraint allows us to compute the fourth

and fifth unknown angles. Then the Cayley-Menger constraint gives six independent

constraints. Hence, whenever we enclose an interior vertex, we lose three independent

face angle constraints.

Case 4: In this case all the edges of this tetrahedron are interior edges. We

remove a curvature constraint associated with an edge adjacent to each vertex such

that the edges associated with the two remaining independent constraints share a

common vertex. For the faces sharing these edges in this tetrahedron, the process for

finding the independent face angle constraints is the same as in case 3. For the other

interior vertices of this tetrahedron, we find another tetrahedron that shares one of the

curvature constraint edges, apply the curvature constraint to this edge and repeat the

process for removing face angles until three face angle constraints have been removed

for each of the interior vertices of this tetrahedron, ensuring that we only remove three

face angle constraints for an interior vertex in a single tetrahedron.

In each case we have the Cayley-Menger constraint so we have nT of these con-

straints. Every case involved matching 2 face angles of previously visited faces except

for the last tetrahedron to enclose an interior vertex, and since this involves matching

every interior face in the mesh, we have 2nFI
− 3nVI independent face angle matching

conditions. We also have the nEI
− nVI independent curvature constraints so adding

together we have the specified total number of independent constraints.

3.6.2 Number of equations

In this section we will check that the number of equations from the consistency con-

ditions matches the number of constraints for a contractible domain. We will also see

how a change in topology affects the required number of constraints.

Lemma 3.6.2. For a contractible domain, the number of independent dihedral angles

is equal to the number of degrees of freedom in the survey problem, that is, the number

of unknown vertex coordinates. For domains with topology such that β0 − χ 6= 0, we

require 6 extra constraints.
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Proof. We have the following relations that we will use to check the number of equa-

tions. Since VI ∪ VB = V and VI ∩ VB = ∅, and similarly for E and F , we have the

following relations

nV = nVI + nVB , (3.33)

nE = nEI
+ nEB

, (3.34)

nF = nFI
+ nFB

. (3.35)

Since K is a discretisation of a three-dimensional volume, the Euler characteristic for

K is

χK = nV − nE + nF − nT = χ. (3.36)

Likewise, the Euler characteristic for the dual complex K∗ is

χK∗ = nT − nFI
+ nEI

− nVI = χ. (3.37)

Let KB be the simplicial complex formed by the 2-simplices representing the surface

triangulation. Then since this is the surface of a three-dimensional domain, the Euler

characteristic for the boundary triangulation is

χKB
= nVB − nEB

+ nFB
= 2χ, (3.38)

where the second equality is a result that can be found in [49]. Each tetrahedron is

formed by 4 faces and each interior face is shared by 2 tetrahedra, whilst each boundary

face belongs to only 1 tetrahedron, hence

4nT = 2nFI
+ nFB

. (3.39)

If we consider the boundary of M , each boundary face has 3 boundary edges and 2

boundary faces meet at each boundary edge, so

3nFB
= 2nEB

. (3.40)

Let nθ and neq be the number of dihedral angles and constraints respectively, then

nθ − neq = 6nT − (nT + (β0 − χ+ nEI
− nVI ) + (2nFI

− 3nVI )) ,

= 3nV − β0 − 3nVB + nFB
+ nT + χ− nEI

+ nVI , (by (3.33) and (3.39)),

= 3nV − β0 − 6χ+ nV − 2nE + nF + nFB
+ nVI , (by (3.38) and (3.36)),
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= 3nV − β0 − 5χ+ nT + nV − nEI
− nFB

, (by (3.40) and (3.37)),

= 3nV − β0 − 6χ+ nEB
− nFI

− 2nFB
+ 2nT , (by (3.36) and (3.35)),

= 3nV − 7β0 + 6(β0 − χ), (by (3.39) and (3.40)).

Therefore we have the correct number of constraints to ensure that we can find

the vertex positions up to similarity for domains such that β0 = χ. Then for each

connected component, by fixing two vertex positions and one coordinate of another

vertex of the same face it is possible to find the relative vertex positions of all vertices

of the embedding.

For domains with β0 > χ we require 6(β0 − χ) extra equations compared to those

given in the constructive proof of lemma 3.6.1. An example of such a domain is a solid

torus.

When β0 < χ, 6(β0 − χ) of the constraints are redundant. An example of such a

domain is a solid sphere with a smaller spherical void at its centre.

3.6.3 Proof of Uniqueness

By applying the constructive procedure of section 3.6.1 we can find the set of inde-

pendent and dependent dihedral angles required to define and satisfy the constraints

respectively. Let θ̃ and θ be the vectors of independent and dependent dihedral angles

respectively. As shown in section 3.6.2 there are ni = 3nV − 7 independent angles so

θ̃ ∈ R
ni and we have nd = nT + (nEI

− nVI ) + (2nFI
− 3nVI ) independent equations

and dependent angles, so θ ∈ R
nd . Let

f : R
ni × R

nd → R
nd ,

(θ̃, θ) 7→ c,

be the vector valued function representing the value of the non-linear functions that

form the constraints for given values of θ̃ and θ. We note here that the three forms f

can take are as follows:

fCM = det(M),

fFA =
cos θil,jk + cos θij,kl cos θik,jl

sin θij,kl sin θik,jl
−

cos θim,jk + cos θij,km cos θik,jm
sin θij,km sin θik,jm

,
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fcurv = 2π −
∑

{k,l}∼{i,j}

θij,kl,

as outlined in section 3.5. Here fCM are the Cayley-Menger determinants for each

tetrahedron as defined in (3.11), fFA are the values of the face angle matching condi-

tions from (3.32) and fcurv are the curvature conditions from (3.16).

We now quote the well-known implicit function theorem (see for example [90]) since

we will use it in the following.

Theorem 3.6.1. Let f : U × V → W be a smooth function where U ⊂ R
m and

V,W ⊂ R
n. Let

(x, y) = (x1, . . . , xm, y1, . . . , yn).

Let f(x0, y0) = w0 for a fixed point (x0, y0). If the sub-matrix Jf,y(x0, y0) = ∂f/∂y|(x0,y0)

of the Jacobian of f evaluated at (x0, y0) is invertible, then there exists an open set U0

of U containing x0, an open set W0 of W containing f(x0, y0) and a unique smooth

function g : U0 → V with g(x) = y such that f(x, g(x)) = 0 for x ∈ U0.

Lemma 3.6.3. Let Jf,θ(θ̃, θ) = ∂f/∂θ|(θ̃,θ) and let (θ̃0, θ0) be a set of angles that satisfy

the constraints so that f(θ̃0, θ0) = 0, then the Jacobian Jf,θ(θ̃0, θ0) has full rank.

Proof. From lemma 3.6.1 the constraints are independent, therefore it follows that the

Jacobian has full rank.

Lemma 3.6.4. For the set of dihedral angles (θ̃0, θ0) satisfying the consistency con-

straints, there exists a neighbourhood U ⊂ R
ni of θ̃0 and a neighbourhood V ⊂ R

nd of

θ0, a unique continuously differentiable function g : U → V with g(θ̃) = θ such that

f
(

θ̃, g(θ̃)
)

= 0 for θ̃ ∈ U .

Proof. For angles (θ̃0, θ0) satisfying the constraints the Jacobian Jf,θ(θ̃0, θ0) has full

rank by lemma 3.6.3, therefore is invertible. Then by the implicit function theorem

(theorem 3.6.1) the statement holds.

The above lemma states that if the Jacobian with respect to the dependent angles

is invertible for a complete set of angles that satisfy the constraints, then we can

perturb the independent angles by a small amount such that it is possible to find a

unique set of dependent angles that satisfy the constraints.
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Theorem 3.6.2. Given a set of dihedral angles (θ̃0, θ0) that satisfy the consistency

conditions defined in section 3.5, the three coordinates of two vertices v1, v2 sharing

an edge and one coordinate of a third vertex sharing a face with the v1 and v2 defines

a unique embedding of the simplicial complex K.

Proof. Given a set of dihedral angles we can compute all the face angles using (3.31).

We can also compute all the edge lengths for E using the sine rule where the length of

edge {1, 2} defines the scaling throughout. Let F1 be the face shared by the 3 known

vertices. To compute the the unknown coordinates of the third vertex we solve the

following non-linear system

(v3 − v1)
T (v2 − v1)

‖v3 − v1‖‖v2 − v1‖
= cosα1,23,

(v1 − v3)
T (v2 − v3)

‖v1 − v3‖‖v2 − v3‖
= cosα3,12,

for the two unknown coordinates of v3. Let S ′ be a spanning tree of G′ (not neces-

sarily the same tree as used to define the independent angles) and root the tree at

a tetrahedron that has F1 as a face. By traversing the spanning tree we visit each

tetrahedron of K via a face whose vertex coordinates are known. Therefore we are

left with the problem of finding the fourth vertex of the tetrahedron. Let Tijkl be the

current tetrahedron and assume that the known vertices are vi, vj, vk. To compute the

fourth vertex vl we rotate the vector ljl(vk − vj)/ljk by αj,kl about nijk,l, then rotate

again about (vj − vk)/ljk by (π− θjk,il). Here nijk,l is the outward normal of Fijk with

respect to Tijkl given by

nijk,l =
(vk − vi)× (vj − vi)

‖vk − vi‖‖vj − vi‖
.

Since we define α, θ ∈ (0, π), the above expression for computing the fourth vertex is

unique given unique values of vi, vj and vk.

As we traverse S ′ we will visit some tetrahedra whose fourth vertex may have

already been located. We must check that the vertex position computed for the current

tetrahedron is the same as the position computed from any other tetrahedron that

shares this vertex. The face angle matching constraints ensures that both face angles

and edge lengths are equal between tetrahedra that share the edges and faces. The

curvature constraints ensure that the intersection of two neighbouring tetrahedra is
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Figure 3.8: Example mesh.

exactly the face shared by both tetrahedra. The Cayley-Menger constraint ensures that

the edges in a tetrahedron join up to form a non-degenerate tetrahedron. Therefore the

constraints ensure that the angles and edge lengths used to compute the fourth vertex

in the current tetrahedron are consistent with those used to compute the vertex in any

previous tetrahedra that have been visited. Therefore, the position of the fourth vertex

is unique in each tetrahedron, hence by induction on S ′ the embedding is unique.

3.7 Numerical Example

In this section we will show an example of the triangulation problem in practice.

We begin with a three-dimensional simplicial complex embedded in R
3 and compute

all the dihedral angles with knowledge of the vertex positions. We then traverse a

spanning tree of the dual graph to find the independent equations and angles and

perturb the angles by adding normally distributed random variables with a specified

standard deviation. We then solve the resulting non-linear system using fsolve from

MATLAB’s Optimization Toolbox [77]. Once we have the dihedral angles we traverse

a spanning tree of the dual graph and compute the vertex positions as described above.

To compute the vertex positions we use an extension of the code used in [5] and the
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(a) ǫ = 1× 10−2. (b) ǫ = 8× 10−2.

Figure 3.9: Resulting embeddings for random perturbations of the independent angles
with standard deviation ǫ.

graph theory toolbox of Sergey Iglin [57]. Figure 3.8 shows the mesh we will use

as the example in this section. This mesh is a modification of a mesh produced by

NETGEN [85]. The original mesh had one interior vertex but in order to illustrate

the embedding problem with more degrees of freedom, six more interior vertices were

added before remeshing using the delaunay function in MATLAB. The mesh has the

following parameters: nV = 29, nVI = 7, nE = 125, nF = 174 and nT = 77.

Figure 3.9 shows the resulting meshes when the initial angles are perturbed by

normally distributed random vectors with standard deviations ǫ = 1 × 10−2 and ǫ =

8 × 10−2. For perturbations larger than 8 × 10−2, the optimisation routine did not

converge. As illustrated by figure 3.9b, a perturbation of 8 × 10−2 applied to the

independent angles results in large perturbations in some of the dependent angles. This

example illustrates how it is possible to apply a small perturbation to the independent

angles that originally satisfied the constraints, that produces a perturbation in the

dependent angles such that the full set of angles satisfy the constraints described in

section 3.5. This illustrates the practical application of lemma 3.6.4 and theorem

3.6.2. A plot of the singular values of Jf,θ defined in section 3.6 is given in figure 3.10a

for the perturbed independent angles and resulting dependent angles that satisfy the

constraints. This plot illustrates that the Jacobian has full rank up to a tolerance

of 10−6. The resulting value of the residual from fsolve was of the order of 10−12
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Figure 3.10: Plots of singular values σi, from largest to smallest, against the corre-
sponding ranking i of each singular value, of the Jacobian for the two mappings f and
h. The singular values are calculated for the dihedral angles that satisfy the constraints
after applying a perturbation to the original independent angles with ǫ = 8× 10−2.

so using a tolerance much less than 10−6 to measure the rank of the Jacobian seems

sensible. This is another illustration of the numerical results matching the theory

given in section 3.6.

Although we prove theorem 3.6.2 directly using our constructive procedure, an-

other possible way of proving this theorem would be to introduce a function from

the unknown vertex coordinates to the independent dihedral angles and show that

this function is invertible in a neighbourhood of the dihedral angles that satisfy the

constraints. Let

h : Rni → R
ni ,

v 7→ θ̃,

where ni is the number of independent dihedral angles as before and v are the unknown

vertex coordinates. Let Jh(v) be the Jacobian of h for some set of vertex coordinates

v. Here we state the well-known inverse function theorem (see [90] for example).

Theorem 3.7.1. Let f : U → V be a smooth function between two open sets U, V , such

that U, V ⊂ R
n. Let u0 ∈ U and v0 ∈ V such that f(u0) = v0. Suppose the Jacobian

Df(u0) is invertible, then there exists a neighbourhood U0 of u0 and a neighbourhood

V0 of v0 such that f : U0 → V0 is invertible and f−1 : V0 → U0 is also smooth.
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Suppose h(v0) = θ̃0, then if Jh(v0) is full-rank we can use the inverse function

theorem to show that h is invertible in some neighbourhood of θ̃0. That is, if we start

with a mesh with known vertex coordinates, we can perturb the independent angles by

some amount such that the resulting angles produce a unique set of consistent vertex

coordinates. Figure 3.10b shows a plot of the singular values of a finite difference

approximation of Jh evaluated at the new vertex coordinates after perturbing the

independent angles. For this plot it is clear that Jh is invertible for this set of vertex

coordinates which again matches the theory outlined here. The MATLAB code that

produced the results in this section can be found in Appendix A.

3.8 Conclusion

In this chapter we have extended the two-dimensional work of [5] to the three-dimensional

case. We defined novel constraints on the dihedral angles of a tetrahedral mesh such

that it can be embedded in R
3 and proved that these constraints lead to a locally

unique embedding of a three-dimensional simplicial complex. Without the work in

this chapter it is not possible to tackle the problem in the next chapter which is to

find an embedding of a simplicial complex with the added constraint that it is consis-

tent with a finite element discretisation of the EIT problem.



Chapter 4

Discrete EIT problem in R
3

4.1 Introduction

In this chapter we introduce the concept of resistor networks and relate this concept

to the finite element (FE) system matrix introduced in section 2.2. In the resistor

network formulation, the elements of the FE system matrix are shown to be equivalent

to conductances of resistors placed on the edges of the mesh. We then extend the

problem of embedding a 3-simplicial complex K in three-dimensional space to the case

of having knowledge of only the edge conductances for each edge of the mesh. This

assumes that we have solved the inverse problem on the mesh to obtain the edge

conductances. We treat this problem because when solving the forward problem using

finite elements, the conductivity only affects the data through the edge conductances.

Therefore, when solving the inverse problem in practice, the best possible scenario is to

accurately find the edge conductances and then hope to fit a conductivity distribution

to the edge conductances. In this chapter we will investigate the uniqueness of this

mapping between edge conductances and conductivities for some example meshes.

As described in section 2.1, it has been shown that the anisotropic electrical

impedance tomography (EIT) problem does not have a unique solution. In the discrete

problem, the diffeomorphism that causes the non-uniqueness could be a change in the

position of interior vertices of the mesh with the change in conductivity given by equa-

tion (2.14). So the (possibly arbitrary) choice of finite element mesh would constrain

the reconstructed conductivity distribution. Then the characterisation of the effect

of mesh choice on the conductivity distribution becomes an important problem. In

91
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this chapter we will use numerical experiments to investigate how this non-uniqueness

affects the discrete problem and how we may overcome this problem by constraining

the conductivity using a priori information about the form of the anisotropy.

The novelty of this work lies in the numerical experiments that suggest uniqueness

and non-uniqueness for the discrete EIT problem given certain assumptions on the

anisotropy. The MATLAB code that produced the results in this chapter can be

found in appendix B.

4.2 Resistor networks

In this section we introduce some definitions and theory related to resistor networks

before reviewing some results from past work related to resistor networks in the context

of EIT.

4.2.1 Introduction

The theory introduced in this section is taken from [36]. Throughout this section

let G = (V,E) be a graph as defined in section 2.5. We also use the same notation

for labelling boundary and interior components from chapter 3. In order to define a

resistor network we need to introduce functions that will be defined on the graph.

Definition 4.2.1. A conductivity onG is a function that assigns a positive real number

to each edge in G. So

γ : E → R
+,

e 7→ γe,

and the number γe is called the edge conductance of the edge e ∈ E.

Definition 4.2.2. A resistor network Γ = (G, γ) is a graph G and a conductivity

function γ defined on G.

If we define a potential u on the vertices ofG, as we have done in the FE formulation

of the EIT problem, then the resistor network can be thought of as an electrical network

whose nodes are the vertices of G. Furthermore, for edge e = {i, j} the current ce
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through edge e is given by Ohm’s Law:

ce = γe (ui − uj) . (4.1)

We will consider only networks in which there is at most a single edge connecting two

nodes so that ce given in (4.1) is the total current from i to j. Kirchhoff’s current law

states that the current ci entering the network at a node i is the sum of the currents

from i to nodes adjacent to i, that is

ci =
∑

j∼i

γij (ui − uj) . (4.2)

The following definition is important for EIT in which we assume no internal current

sources.

Definition 4.2.3. A potential u is γ-harmonic at node i if the total current from i

to its adjacent nodes is zero, that is

ci = 0. (4.3)

If the above equation holds for all the interior nodes i = 1, . . . , nVI then u is a γ-

harmonic function.

If we also impose the discrete version of the conservation of charge condition in

(2.4) on a resistor network with boundary then a γ-harmonic function has zero current

at every node.

Definition 4.2.4. The Kirchhoff matrix K ∈ R
nV ×nV is a symmetric matrix whose

entries are given by

Kij =



























−γij , for i ∼ j,

∑

i∼k γik, for i = j,

0, for i ≁ j.

The vector of currents at each node is given by the system c = Ku.

We can see here then that the Kirchhoff matrix is equivalent to the FE system

matrix defined in section 2.2 for piecewise linear potential on well-centred simplices,

where the edge conductances for the FE mesh are the integrals given in (2.26) for each

pair of vertices sharing an edge. That is, the edge conductance of an edge {i, j} is
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the sum of contributions to this integral from each tetrahedron that has {i, j} as an

edge. So if we simulate voltages using FEM for EIT reconstruction, it is clear that the

individual conductivities are not explicitly “seen” by the voltages, only their summed

contributions to the edge conductances count towards the voltages. Thus the best we

can hope for is that we can reconstruct the edge conductances from the boundary data

and then try to recover the conductivities from the edge conductances. Later in this

chapter we will explore the relationship between conductivities and edge conductances

for various conductivity types.

4.2.2 Previous work related to EIT

In this section we review past work that has posed the EIT problem in terms of resistor

networks. The problem of determining resistor values was considered in [70], in which

the problem was posed as a discrete version of the inverse conductivity problem. It

was shown that the conductivity of resistors in an integer lattice can be determined

from boundary measurements provided the conductivities are small perturbations of

a constant.

In [34] an inductive argument is used to prove global uniqueness for the conductivity

values of a resistor network on an integer lattice. The argument involves finding the

conductivities for two resistors in a corner of the network, then using this approach

iteratively through the network. This also leads to a direct reconstruction method for

the resistor conductivity values.

Uniqueness of the Dirichlet to Neumann map was proved in [35] based on a matrix

representation of the map on a resistor network. This representation was also used to

give a clearer representation of the reconstruction procedure given in [34].

Circular planar resistor networks are considered in [37]. It is shown that the edge

conductances can be uniquely determined from the Dirichlet to Neumann map by

making use of a specific type of graph transformation defined for planar graphs.

Circular planar resistor networks based on adaptive radial layered finite difference

grids are considered in [20]. It is shown that the edge conductances can be uniquely

recovered from boundary data for certain numbers of layers and the algorithm of [34] is

used to recover the resistor values. An optimisation-based reconstruction that does not

require a-priori information is then applied to recover the conductivity and a method
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for incorporating a-priori information into the reconstruction is given. An extension of

[20] to the partial data problem is given in [18]. The extension to partial data involves

a coordinate transformation of the grids from the previous paper, which results in the

grid being finer close to the parts of the boundary where the data is given. This work

is extended further in [19] to the case of pyramidal finite difference grids, which are

particularly useful in geophysical applications, where the domain is often modelled

as a half-space with data only defined on the boundary of the half-space. Again,

uniqueness of the edge conductances from boundary data is shown for an even number

of layers in the grid. A layer-by-layer approach for finding the edge conductances is

given, then the reconstructed conductivities are found using linear interpolation of

edge conductances across cells.

Resistor networks derived from planar finite element models are considered in [66].

It is shown that there are unique edge conductances for a resistor network that pro-

duce a Dirichlet to Neumann map that matches the Dirichlet to Neumann map of a

FE model for piecewise constant anisotropic conductivity. They show that the non-

uniqueness in the continuum problem extends to the FE formulation for anisotropic

conductivities, that is, perturbations in interior vertex positions that correspond to dif-

feomorphisms with the conductivity perturbed as in (2.14), do not change the Dirichlet

to Neumann map. This is to be expected since the FEM is defined to converge to the

continuous case as the mesh is refined. It is also shown that there exists another type

of non-uniqueness in the discrete problem. This non-uniqueness presents itself in the

form of adding a function to the weak form integral for a triangle and subtracting the

same function in the adjacent triangle for interior edges. It is shown that if a change

in conductivity is equivalent to this adding and subtracting of functions on interior

edges then there is no change in the Dirichlet to Neumann map.

It seems that this non-uniqueness will also be present in the three-dimensional case,

where an edge has multiple tetrahedra sharing it. In the three-dimensional case rather

than adding and subtracting the same function to either side of the edge we would

just require that the additional functions defined on tetrahedra around an edge sum to

zero. We will give an example of this in the following section, in which we show that by

perturbing the conductivity so that the contributions of the conductivity perturbation

to the edge conductance sum to zero for each edge, the edge conductances do not
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change, therefore the Dirichlet to Neumann map does not change.

Our work is a step towards extending the planar resistor network based work of

[5] and [83] to the three-dimensional case. In [5], sufficient conditions were given

for the existence and uniqueness of the planar embedding of a specific kind of two-

dimensional layered simplicial complex with known edge conductances. To prove this,

a labelling method is used that shows the Jacobian of the vertex position to angle

and conductivity map has full rank. This result allows use of the inverse function

theorem to prove that for a given embedded simplicial complex K0 with known edge

conductances γ0, there exists a set of edge conductances γ in some neighbourhood

of γ0 and a simplicial complex K with the same topology as K0 such that K can be

embedded in the plane.

Paridis [83] considered the problem of embedding a two-dimensional simplicial com-

plex in R
3, such that the embedding is consistent with some known edge conductance

values. The author uses a circumcircle representation of the embedded triangulation

to give face angles in terms of edge conductances, then uses the work of Duffin [43] to

prove that there is an open neighbourhood of edge conductances γ0 for which a planar

simplicial complex with edge conductances in this neighbourhood can be embedded in

R
n for some n. Alexandrov’s theorem is then used to prove existence and uniqueness

of the embedding in R
3 under certain curvature conditions. At first glance, the result

proved by Paridis is not restricted to the planar case since it requires the dual graph

of 2-simplices, however the result makes use of the fact that at most two faces meet

at an edge and the edge conductances are functions of face angles belonging to single

faces. Since there is no theoretical limit on the number of faces that meet at an edge

in a three-dimensional simplicial complex we cannot directly extend this result to the

three-dimensional case. The circumcircle representation of a two-dimensional simpli-

cial complex [83] also results in a nonlinear resistor network problem defined on the

graph based on the dual complex of the two-dimensional simplicial complex. This is

possible due to the fact that the dual cells of 1-simplices are of the same dimension,

that is they are also 1-cells. In three dimensions this is clearly not the case. It is possi-

ble that a better understanding of the discrete Hodge star, which incorporates duality,

for a three-dimensional simplicial complex may lead to an extension of the result in [83]

based on the Cayley-Menger determinant in each tetrahedron, rather than the sum to
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π condition imposed in the two-dimensional case. In addition, removing the curvature

constraints from the three-dimensional problem to introduce the edge conductances is

not very practical since it would require embedding a three-dimensional manifold in

R
4.

4.3 Edge conductances in EIT

In the previous chapter we showed how a non-degenerate three-dimensional simplicial

complex K can be embedded in R
3 with knowledge of dihedral angles and the vertex

positions of one face. We now attempt to find an embedding of a finite element

discretisation of the EIT problem. As shown in section 2.2 and highlighted in section

4.2, for isotropic, piecewise constant conductivity, the discrete EIT problem produces

a system matrix K that is equivalent to edge conductances γ on a resistor network.

Note that in this section we do not pay attention to the given boundary conditions (or

in fact the potential u at all) since we will only be interested in the problem of finding

a triangulation of R
3 and conductivity distribution that fit a known vector-valued

function γ.

In this section, we will consider how various conductivity types are mapped to edge

conductances for a given geometry and topology. Let

QX,K : σ 7→ γ

be the linear map taking piecewise constant anisotropic conductivities to edge conduc-

tances for a given set of vertex positions X and triangulation given by the simplicial

complex K. Since QX,K is a discrete linear mapping we can represent it by the matrix

Q ∈ R
nE×knT where k is the number of unknown conductivity components per tetra-

hedron. For example, for the isotropic case k = 1, and for the anisotropic case k = 6,

since the conductivity is represented by a 3×3 symmetric matrix in each tetrahedron.

As we stated in the introduction to this chapter, we assume we have solved the inverse

problem to get the edge conductances, therefore if we wish to find the conductivity

distribution for a given mesh we are required to invert the mapping QX,K. Then if Q

has a non-trivial null-space the mapping QX,K is not injective and so we cannot find

a unique piecewise constant conductivity that produces the given edge conductances
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for the given mesh. That is, if rank Q < knT , we cannot expect to recover unique

conductivity values. This is clearly a huge obstacle to overcome when solving the EIT

problem, since for an arbitrary mesh our reconstructed conductivity distribution may

be one of infinitely many possible solutions to the discrete EIT problem.

We will now give expressions for Q for various types of conductivity distributions

in terms of vertex positions. It is well known, see for example [21], that for isotropic

conductivities the edge conductances can be computed using the following cotangent

formula

γij =
1

6

∑

{k,l}

σijkllkl cot θkl,ij, (4.4)

where lkl is the length of the edge opposite edge {i, j} in the given tetrahedron and

the sum is over tetrahedra for which {i, j} is an edge. This is possible because the

edge conductances are invariant to rotations and translations in the isotropic case. For

general anisotropic conductivities the edge conductances are not invariant to rotations

so knowledge of the angle between face normals and preferred directions of conductiv-

ity are required. Clearly, this information is not available if the conductivity tensor

is unknown. This is the main reason for not parameterising the embedding by the

dihedral angles as we did in the previous chapter.

Let Qmn be the mapping from the nth conductivity variable (of the knT in total)

to the mth edge. Let {i, j} be the mth edge, then let the tetrahedron to which the

nth conductivity variable belongs be t = {i, j, k, l}. Let xi be the position of the ith

vertex in Euclidean space as usual. Let

c
(t)
i = (xk − xl)× (xj − xl), (4.5a)

c
(t)
j = (xi − xl)× (xk − xl), (4.5b)

then the gradient of linear basis functions on tetrahedron t are given by the vectors

∇ϕ
(t)
i =

c
(t)
i

6|Vt|
, (4.6a)

∇ϕ
(t)
j =

c
(t)
j

6|Vt|
, (4.6b)

where |Vt| is the volume of tetrahedron t as before. Let

s = (s11, . . . , s1k, s21, . . . , s2k, . . . , snT k)
T ∈ R

knT

be the vector of stacked conductivity variables.
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4.3.1 Isotropic conductivity

For isotropic conductivity, σ = βI in each tetrahedron for some scalar β, so s ∈ R
nT .

Then

Qmn = −|Vn|∇ϕi · ∇ϕj, (4.7)

= −
cTi cj
36|Vn|

, (4.8)

where the index m indicates edge m = {i, j}, and we have dropped the superscript (t)

since it is clear that we only consider functions on the tetrahedron to which the nth

conductivity variable belongs.

4.3.2 Anisotropic conductivity

For a general anisotropic conductivity, the conductivity is of the form

σ =











σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ33











, (4.9)

for each tetrahedron. So there are 6 conductivity variables per tetrahedron and s ∈

R
6nT . Due to the anisotropy we require a different expression for Q for each component

of the conductivity. We have

Qm,6(t−1)+1 = −c
1
i c

1
j/(36|Vt|), (4.10a)

Qm,6(t−1)+2 = −(c
1
i c

2
j + c2i c

1
j)/(36|Vt|), (4.10b)

Qm,6(t−1)+3 = −(c
1
i c

3
j + c3i c

1
j)/(36|Vt|), (4.10c)

Qm,6(t−1)+4 = −c
2
i c

2
j/(36|Vt|), (4.10d)

Qm,6(t−1)+5 = −(c
2
i c

3
j + c3i c

2
j)/(36|Vt|), (4.10e)

Qm,6(t−1)+6 = −c
3
i c

3
j/(36|Vt|), (4.10f)

where cpi is the pth coordinate of the vector ci.

4.3.3 Anisotropy constrained by a priori information

In this section we assume that we have some information about the anisotropy, whether

that be that we know some components of it, we know it in specific locations or we
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have some information about the type of anisotropy present. In section 2.1.3 we gave

references to uniqueness results for the continuous problem when partial knowledge of

the conductivity is given.

Uniaxial anisotropy with known direction

Here we consider the case of an anisotropic conductivity distribution that has one

preferred direction, which is known and is orthogonal to a surface. Practically, this

could occur in geophysical applications when the subsurface has a layered structure

that is finer than the resolution of our reconstruction and we know the directions of

the layers from some other modality, such as seismic imaging.

Mathematically, this means that the conductivity tensor has one unique eigen-

value corresponding to the eigenvector orthogonal to the layer surfaces and a repeated

eigenvalue that corresponds to the two eigenvectors tangential to the layers, w1 and

w2. The eigenvalues and eigenvectors are dependent on the position, which allows for

layers that vary in direction throughout the domain. The tangential eigenvectors are

unique up to rotations in the plane tangential to the layer surfaces with the constraint

that they remain orthogonal to each other. This technicality will not matter because

we can decompose the conductivity so that it does not rely on the tangential eigen-

vectors. Let λn and λw be the eigenvalues corresponding to the normal and tangential

eigenvectors respectively. Then since σ is a real symmetric matrix it has an eigenvalue

decomposition

σ = UΛUT ,

where U is orthogonal and has the eigenvectors of σ as columns. Then

σ =
(

n w1 w2

)

diag(λn, λw, λw)
(

n w1 w2

)T

,

= λnnn
T + λw

(

w1w
T
1 + w2w

T
2

)

,

= (λn − λw)nn
T + λw

(

nnT + w1w
T
1 + w2w

T
2

)

,

= (λn − λw)nn
T + λwUU

T ,

= (λn − λw)nn
T + λwI.

The reconstruction problem is then to compute the unknown eigenvalues given knowl-

edge of the eigenvector n. So let s = (λ1n, λ1w, λ2n, λ2w, . . . , λnTn, λnTw)
T ∈ R

2nT ,
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then

∇ϕi · (σ∇ϕj) = λn (n · ∇ϕi) (n · ∇ϕj) + λw (∇ϕi · ∇ϕj − (n · ∇ϕi) (n · ∇ϕj)) .

Which gives the following expressions for the linear map from conductivity variables

to edge conductances

Qm,2(t−1)+1 = −

(

nT ci
) (

nT cj
)

36|Vt|
, (4.11a)

Qm,2(t−1)+2 =
1

36|Vt|

((

nT ci
) (

nT cj
)

− cTi cj
)

. (4.11b)

Conformally related anisotropy known up to scaling factor

Here we consider the case of anisotropic conductivity that is known up to a scalar

factor. The continuous version of this problem was considered in [73], as described in

section 2.1.3. Here we let σ = αA where A is a known matrix-valued function and

α is a scalar function to be found. The form of the matrix Q is similar to that of

the isotropic case except the matrix A acts as a metric in the inner product of the

gradients of the FE basis functions. That is

Qmn = −
cTi Acj
36|Vn|

, (4.12)

and s = (α1, . . . , αnT
)T ∈ R

nT .

4.3.4 Example of a non-injective QX,K

In this section we use a simple example to illustrate how a poor choice of mesh can

result in a non-trivial null space of the matrix Q which causes non-uniqueness of the

conductivity distribution. This is the three-dimensional analogy of the second type

of non-uniqueness of the discrete problem described in [66], (see section 4.2.2 for a

summary of the main results from this paper).

The example meshes we will use for the examples in this section are shown in figure

4.1. We will refer to the mesh in figures 4.1a and 4.1b as the original and perturbed

meshes respectively. We label the tetrahedra in an anti-clockwise ordering starting

with the tetrahedron whose centroid has positive (x, y, z) coordinates. The mesh has

6 boundary vertices, 1 interior vertex and 8 tetrahedral elements. It has 18 edges so we

have Q ∈ R
18×8k, where again k is the number of unknown conductivity components
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(a) Original mesh. (b) Original mesh with interior vertex
perturbed by the vector (0.1, 0.1, 0.1)T .

Figure 4.1: Mesh used for the example in section 4.3.4. The interior vertex is at the
origin in (a) and is perturbed in (b).

per tetrahedron. We can observe that the tetrahedra in the original mesh are identical

to each other, therefore for homogeneous conductivity the conductances of edges in

the same position in each tetrahedron relative to the origin will be equal.

The figures that we will discuss can be found at the end of this section. Figure

4.2a shows the singular values of Q for the original mesh. We can see that for the

original mesh, Q has four singular values that are below the threshold of what we can

consider non-zero when using double precision floating point arithmetic, therefore Q

has a non-trivial null space. A rational basis for the null space given by reducing Q to

reduced row echelon form is shown in 4.2b. With the ordering of tetrahedra outlined

above, we can see from the null vectors that if we add equal and opposite amounts

to the conductivity of tetrahedra as we go around an edge, then we will produce no

change in the edge conductances. Since the vectors shown here span the null space, we

can use any linear combination of the vectors to perturb the conductivity and produce

no change in the edge conductance values. For example, the first basis vector tells us

that perturbations of conductivity values of the form δs = α (−1, 1,−1, 1, 0, 0, 0, 0), for

some α ∈ R, such that the conductivity remains positive in each tetrahedron, results

in no change in edge conductances.

Figure 4.3 shows the singular values of Q for the perturbed mesh. All the singular
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values are non-zero, therefore Q has full rank for the perturbed mesh. This illustrates

that by breaking the symmetry in the mesh by perturbing the interior vertex we can

remove the non-uniqueness related to the discretisation.

Figure 4.4a shows the singular values of Q for anisotropic conductivity on the

original mesh. If we didn’t know the dimensions of Q, then this plot could lead us

to think that Q has full rank. In fact, since Q ∈ R
18×48, the maximum possible rank

of Q is 18, therefore we will always have a null space of dimension at least 30. The

vectors in figure 4.4b provide a basis for nullQ. Again, a perturbation in conductivity

formed by any linear combination of these vectors will produce no change in the edge

conductances. As an example, the first vector defines a perturbation in conductivity

that is zero in every component except for σ22 in the first and second tetrahedra, where

these two components of the perturbation are equal but with opposite sign. Figure 4.5

shows a similar situation for the perturbed mesh with the null space having the same

dimension as for the original mesh. We note that null Q is slightly different for this

mesh due to the perturbation applied to the interior vertex. So the non-uniqueness

for anisotropic conductivity in the discrete problem appears due to the fact that there

is not enough information in the edge conductances to uniquely determine the six

components of the conductivity tensor in each tetrahedron. This non-uniqueness is

observable before we even consider a diffeomorphism of the mesh that would result in

the discrete analogy of Tartar’s non-uniqueness result in (2.14).

In an attempt to reduce the number of unknown conductivity components, we

could utilise some a priori information to constrain the anisotropy. We require knT <

nE. If we know in advance that the anisotropy is caused by fine layers, as described

in section 4.3.3, we can formulate the problem so that we only have two unknown

conductivity components for each tetrahedron. This will at least give us a chance

of Q having full rank in this particular example. [83] provides the number of edges

and tetrahedra for some example meshes. For many typical meshes it is shown that

2nT ≈ nE, with 2nT > nE in some cases and 2nT < nE in others. For the cases where

the number of edges is less, we would need to constrain the conductivity further in

some tetrahedra. In many physical applications this is typically done anyway. For

example, in geophysical applications, borehole sample data is often used to provide

prior information, so for elements close to the boreholes it would seem prudent to fix
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the conductivity here since we can be reasonably sure of the conductivity distribution

in these locations. Going back to our example, we can see from figure 4.6 that for the

original mesh and the anisotropy defined by flat layers perpendicular to the z-axis, Q

has non-trivial null space. Figure 4.6b shows a basis for nullQ. Figure 4.7 shows how

perturbing the interior vertex increases the rank but Q still has a null space in this case.

Figures 4.8 and 4.9 show the results for the original and perturbed meshes respectively

in the case of layers perpendicular to the radial direction. In both cases we observe

that Q has a null space. Figures 4.10 and 4.11 show the case of layered anisotropy

where the direction perpendicular to the layers is a Gaussian random perturbation of

(0, 0, 1)T in each tetrahedron. We note that the same random vector was applied for

both the original and perturbed meshes to ensure no bias was introduced. Comparing

figures 4.10a and 4.6a we can see that perturbing the eigendirections of the layers

increases the rank in the original mesh, although nullQ is still non-trivial. Comparing

figures 4.11 and 4.7 we see that adding the random perturbation to the eigendirections

increases the rank again. The combination of perturbing the interior vertex to remove

symmetries in the mesh and perturbing the eigendirections results in Q being full-

rank. We also note that this procedure was tried for a number of different random

perturbations and the results were the same in each case.

We next consider the case of conductivities conformally related to a known tensor

field. The conductivity is of the form σ = αA, for some unknown scalar function α

and known matrix-valued function A. Figures 4.12, 4.13 and 4.14 show the singular

values of Q for the original and perturbed meshes where the known matrix is constant

across tetrahedra. The matrices used in the figures are

A =











1 0.1 0

0.1 1 0

0 0 1











, B =











1 0.1 0.1

0.1 1 0

0.1 0 1











, C =











1 0.1 0.1

0.1 1 0.1

0.1 0.1 1











.

In each figure we observe that for the perturbed mesh, in each caseQ has full rank. This

should be expected after seeing the results for isotropic conductivity since isotropic

conductivities are just a special case of the conformal class with the matrix A fixed as

the identity everywhere. We see that as we make the conductivity more anisotropic,

the rank of Q increases. Figure 4.15 shows that if the known matrix-valued function

is a random anisotropic perturbation of the identity in each tetrahedron, then even
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for the original mesh, Q has full rank. In a sense we have broken the symmetry by

defining the conductivity to have different preferred directions at different points in

the domain.

Although the example in this section is somewhat contrived, it illustrates that

without even considering the non-uniqueness of anisotropic conductivities due to dif-

feomorphisms, which will be considered in the next section, the solution to the discrete

EIT problem can still be non-unique if we are not careful about the mesh that is used

for solving the forward problem. It also illustrates how constraining the conductivity

to be of a particular class can remove the non-uniqueness in some cases.
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1 2 3 4

1

2

3

4

5

6

7

8

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(b) Rational basis for nullQ.

Figure 4.2: Singular values of Q for the original mesh and vectors forming the rational
basis for nullQ with isotropic conductivity.
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Figure 4.3: Singular values of Q for the perturbed mesh with isotropic conductivity.
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(b) Rational basis for nullQ.

Figure 4.4: Singular values of Q for the original mesh and vectors forming the rational
basis for nullQ with anisotropic conductivity.
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(b) Rational basis for nullQ.

Figure 4.5: Singular values of Q for the perturbed mesh and vectors forming the
rational basis for nullQ with anisotropic conductivity.
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(b) Rational basis for nullQ.

Figure 4.6: Singular values of Q for the original mesh and vectors forming the rational
basis for null Q. The conductivity here was constrained to be formed by a layered
structure, where the vector orthogonal to the layer directions is constant and given by
n = (0, 0, 1)T .
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(b) Rational basis for nullQ.

Figure 4.7: Singular values of Q for the perturbed mesh and vectors forming the
rational basis for null Q. The conductivity here was constrained to be formed by a
layered structure, where the vector orthogonal to the layer directions is constant and
given by n = (0, 0, 1)T .
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(b) Rational basis for nullQ.

Figure 4.8: Singular values of Q for the original mesh and vectors forming the rational
basis for null Q. The conductivity here was constrained to be formed by a layered
structure, with layers perpendicular to the radial direction.
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(b) Rational basis for nullQ.

Figure 4.9: Singular values of Q for the perturbed mesh and vectors forming the
rational basis for null Q. The conductivity here was constrained to be formed by a
layered structure, with layers perpendicular to the radial direction.
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Figure 4.10: Singular values of Q for the original mesh and vectors forming the ra-
tional basis for null Q. The conductivity here was constrained to be formed by a
layered structure, where the vector orthogonal to the layers are random perturbations
of (0, 0, 1)T .
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Figure 4.11: Singular values of Q for the perturbed mesh. The conductivity here was
constrained to be formed by a layered structure, where the vector orthogonal to the
layers are random perturbations of (0, 0, 1)T .
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(a) Original mesh.
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(b) Perturbed mesh.

Figure 4.12: Singular values of Q for the original and perturbed meshes for conformal
anisotropy with constant matrix function A, (see text for A).
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(b) Perturbed mesh.

Figure 4.13: Singular values of Q for the original and perturbed meshes for conformal
anisotropy with constant matrix function B, (see text for B).
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(a) Original mesh.
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(b) Perturbed mesh.

Figure 4.14: Singular values of Q for the original and perturbed meshes for conformal
anisotropy with constant matrix function C, (see text for C).
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(b) Perturbed mesh.

Figure 4.15: Singular values of Q for the original and perturbed meshes for conformal
anisotropy with the known matrix given as a random perturbation of the identity in
each tetrahedron.
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4.4 Embedding a finite element discretisation in R
3

In this section we will extend the survey problem of chapter 3 to that of embedding

a finite element mesh in R
3, such that the embedding is consistent with a known set

of edge conductance values. This problem is the second part of the inverse problem

that we described earlier. That is, given some edge conductance values, can we find

an embedding of the mesh and a conductivity distribution defined on this mesh, that

is consistent with the edge conductances?

If we were to restrict the problem to the case of finding an isotropic conductivity

distribution and an embedding then it would make sense to pose the problem in

terms of finding all the dihedral angles of the embedded mesh, since the dihedral

angles can be used to directly compute edge conductances through the cotangent

formula. However, it is our aim to investigate the anisotropic problem in which the

dihedral angles cannot be used to compute the edge conductances. We assume that

our boundary data is available at every boundary vertex, therefore in order to ensure

that we have the correct positions for our boundary data we fix the positions of all

the boundary vertices. Then our problem becomes: Given a simplicial complex, a set

of edge conductance values and a known surface mesh embedded in R
3 representing

the boundary of the domain, find the interior vertex positions and piecewise constant

anisotropic conductivity distribution that is consistent with the edge conductances. In

this section we present some numerical results that illustrate how the non-uniqueness

of EIT appears in the discretised problem.

We start with an embedded mesh and an initial conductivity distribution. We then

apply a random perturbation to the conductivity and compute the edge conductances.

We then attempt to fit the interior vertices and conductivities to the perturbed edge

conductances. We use MATLAB’s fsolve optimisation function to find new vertex

positions and conductivity values that are consistent with the edge conductances. We

use the original mesh and conductivities as the initial guess. We can apply the SVD

to the Jacobian of the constraints computed at the converged solution to investigate

the uniqueness of the problem.

For the numerical example we will use the mesh shown in figure 3.8. The figures will

will discuss can be found at the end of this chapter. Table 4.1, shows the relative errors
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Conductivity type Vertex error
(

‖v−v0‖2
‖v0‖2

)

Conductivity error
(

‖σ−σ0‖2
‖σ0‖2

)

Isotropic 3.98× 10−10 1.08× 10−7

Anisotropic 7.36× 10−3 1.02
Layered 1.86× 10−3 1.34× 10−1

Conformal 8.61× 10−10 9.25× 10−8

Table 4.1: Relative errors for converged solution of embedding problem.

for the vertex coordinates and the conductivity values. For the vertex coordinates,

the relative error is the norm of the difference between the converged values and the

initial coordinates, divided by the norm of the initial coordinates. For the conductivity

values, the error is the norm of the difference between the converged values and the

perturbed values that were used to compute the edge conductances. We can see from

the table that the isotropic and conformal conductivity cases have relatively small error

compared to the anisotropic and layered conductivity cases. From figure 4.16 we can

see that the Jacobian at the converged solution for both the isotropic and conformal

cases has full rank, therefore we can expect to find a locally unique solution to the

problem. This suggests that the vertex position and conductivity errors for these cases

is due to compounded floating point error in calculations in the optimisation process.

If the vertex positions have not changed from the initial values and the error in the

conductivity values is small then this suggests that the change in edge conductance

values is due only to the change in conductivity that we applied. In the cases of fully

anisotropic and anisotropy due to layers, we see that the errors are much larger than

we would expect from compounded floating point error. From figure 4.16, we can see

that the Jacobian at the converged solution is rank-deficient, therefore there is not a

unique combination of vertex coordinates and conductivities that produces the given

edge conductances. The errors in the table show that the optimisation algorithm found

a set of interior vertices and conductivities different to those that initially produced

the edge conductances but which are still consistent with the edge conductances. This

suggests that the difference between the initial vertex positions and the vertex positions

from the converged solution represents a linearisation of a discrete diffeomorphism that

causes the non-uniqueness in the anisotropic EIT problem.

We note here that we used an analytic expression for the Jacobian J rather than

the finite difference approximation utilised by the fsolve function. The derivative of
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the edge conductance constraints with respect to the conductivity variables is just the

matrix Q. The derivative of the geometric constraints with respect to the conductivity

is clearly zero. The derivative of the geometric constraints with respect to the vertex

coordinates are also zero, since perturbing a vertex causes the dihedral angles in all

the tetrahedra sharing the vertex to be perturbed, such that the geometric constraints

are still satisfied. This is because perturbing a vertex does not change the connectivity

of the mesh and so the relevant edges move with the vertex. We therefore do not need

to apply the geometric constraints when we perturb the interior vertex coordinates.

The geometric constraints would be important if we had parameterised the problem in

terms of dihedral angles and conductivity variables, as was done in [5] for the planar

mesh case.

In order to give an expression for the derivative of the edge conductances with

respect to the vertex positions, we will consider a single tetrahedron T = {i, j, k, l}

and edge conductance γe for edge e = {i, j}. Clearly the vertex positions only appear

in the edge conductances through the linear map represented by the matrix Q so the

derivative of the edge conductances with respect to the vertex coordinates is JQs,

where JQ is the Jacobian of Q with respect to the vertex coordinates and s ∈ R
6nT

is the usual conductivity variable vector for a general anisotropic distribution. We

assume that the tetrahedron is positively oriented such that

detV = det (xi − xl, xj − xl, xk − xl) ,

is positive. Let 〈ci, cj〉r be the component of the inner product ci · cj from (4.10)

corresponding to the rth conductivity variable defined on T , where ci, cj are defined

in (4.5). For example, for Qe1, 〈ci, cj〉1 = c1i c
1
j . Then for the pth coordinate of the qth

vertex, where q = i, j, k, l, we have the following expressions for the components of Qe

on tetrahedron T

∂Qe,r

∂xpq
=

1

6(detV )2

(

∂ 〈ci, cj〉r
∂xpq

−
detV

6
tr

(

V −1 ∂V

∂xpq

)

〈ci, cj〉r

)

. (4.13)

Written in this form and comparing to the Lie derivative of the Hodge star, [91], [75],

we can see that (4.13) is the discretisation of the Lie derivative of the conductivity

with respect to the vertex positions. The last term is the derivative of the tetrahedron

volume with respect to the vertex coordinate. We have the following expression for
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the derivative of the volume |T | = (detV )/6,

∂|T |

∂xpq
=











−cpq , for q = i, j, k,

cpi + cpj + cpk, for q = l,

(4.14)

where we define ck = (xi − xl) × (xj − xl). To compute the partial derivatives of the

ci and cj we introduce the function Ppq which acting on a vector, picks out the pth

component of a permutation of the vector as follows,

Ppq(x) = xr1δpr2 − x
r2δpr1 ,

where r = {r1, r2} is an even permutation of {1, 2, 3} with q removed, xr is the rth

coordinate of the vector x and δpr is the Kronecker delta. Then for p, q = 1, 2, 3,

∂cqi
∂xpi

= 0,
∂cqj
∂xpi

= Ppq(xl − xk),

∂cqi
∂xpj

= Ppq(xk − xl),
∂cqj
∂xpj

= 0,

∂cqi
∂xpk

= Ppq(xl − xj),
∂cqj
∂xpk

= Ppq(xi − xl),

∂cqi
∂xpl

= Ppq((xj − xl)− (xk − xl)),
∂cqj
∂xpl

= Ppq((xk − xl)− (xi − xl)).

Then inserting these expressions, along with (4.14), into (4.13) gives the Jacobian for

each term with respect to the relevant vertex coordinate. For the different classes of

anisotropy, we can transform the conductivity variables into the anisotropic conductiv-

ity variables for each tetrahedron by applying the relevant constraints. For example,

the anisotropic conductivity variables for the isotropic case for a single tetrahedron t

are simply given by st = σt (1, 0, 0, 1, 0, 1)
T , where σt is the scalar conductivity for t.

If the geometric constraints are included in the optimisation and a finite difference

approximation is used to calculate the Jacobian, then the singular values exhibit odd

behaviour. Figure 4.17 illustrates the effect that the step size of the finite difference

approximation has on the singular values of the Jacobian. We can see that as the

step size decreases the finite difference approximation actually gets worse and results

in non-zero singular values that should in fact be zero. Clearly, the maximum rank of

the Jacobian is the number of edges in the mesh, since we only have this many edge

conductances from which to determine the interior vertex positions and conductivity
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values. We can see from these plots that there are two distinct groupings of the non-

zero singular values in both cases. This is due to the difference in scales between the

vertex positions and the conductivity variables. Figure 4.18 shows the singular values

after correcting for the difference in scaling and removing the geometric constraints

from the Jacobian. We can see here that the step change in the singular values is no

longer apparent when the scale correction is applied. We observe that J now has full

row rank and the null space is due to the extra number of variables compared to the

number of edge conductances. Figure 4.19 shows the corresponding bases for the row

and null spaces of J defined by the right singular vectors. We can see that the basis

vectors corresponding to the largest singular values have larger terms in the entries that

correspond to the interior vertex coordinates. This suggests that the vertex coordinates

are easier to find from the edge conductances than the conductivity variables. It also

shows that a perturbation applied to the vertex coordinates has a larger effect on the

edge conductances than a perturbation in conductivities. Figures 4.19b and 4.19d also

provide evidence for this, since the entries corresponding to the conductivity variables

are much larger than those corresponding to the vertex coordinates. Therefore small

changes in the conductivity will have less of an effect on the edge conductance values.

If the non-uniqueness was mainly due to the diffeomorphism invariance, then we would

expect the components of the null space corresponding to conductivity and vertices

to have roughly the same magnitude. Therefore, these results suggest that the non-

uniqueness caused by the null space of the linear map QX,K dominates the effect of the

diffeomorphism invariance in the discrete anisotropic EIT problem. In order to ensure

a unique solution to the discrete problem we should ensure that the total number of

interior vertex coordinates and conductivity variables is less than the number of edges

in the mesh.

4.5 Conclusions

In this chapter we have shown that the FE system matrix is equivalent to the con-

ductance values of a resistor network, whose resistors are positioned on the edges of

the finite element mesh. We introduced the linear map QX,K that maps conductivity

values to edge conductances for a given embedding of a simplicial complex in three
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dimensions. We have shown how the conductivity can be parameterised using a priori

information about the type of anisotropy that is present. For these different classes of

anisotropy, we presented a small numerical example that illustrates the non-injectivity

of the linear map when the mesh has certain properties. We then considered the prob-

lem of finding the interior vertex positions of the mesh and the piecewise constant

conductivity distribution that is consistent with a given set of edge conductances. We

have shown how using a finite difference approximation to calculate the Jacobian of

the objective function can be misleading and presented analytic expressions for the

derivative of the edge conductances with respect to vertex positions and conductivi-

ties. We then illustrated that the non-uniqueness of the discrete EIT problem is due

mainly to the non-injectivity of the linear map QX,K as opposed to the diffeomorphism

invariance of the anisotropic EIT problem. The diffeomorphism invariance still plays

a part in the anisotropic problem but is not as big an issue as the non-uniqueness

caused by having more variables than edge conductances.
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(d) Conformal.

Figure 4.16: Singular values of Jacobian at converged solution for different classes of
conductivity.
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Figure 4.17: Comparison of analytic and finite difference approximations of the Jaco-
bian at converged solution with various finite difference step sizes, for two classes of
conductivities.
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Figure 4.18: Singular values of Jacobian with difference in scaling between vertex
positions and conductivities accounted for.
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Figure 4.19: Singular vectors that provide bases Row and null spaces of the analytic
Jacobian of the edge conductances for anisotropic (top) and layers perpendicular to
the radial direction (bottom).



Chapter 5

Conclusions and future work

5.1 Summary

In this thesis we have bridged the gap between theoretical results based on the contin-

uous EIT problem and the more practical discrete problem. Firstly, we have extended

the two-dimensional work of [5] and provided a set of independent consistency condi-

tions on the dihedral angles for a three-dimensional simplicial complex to be uniquely

embedded in R
3. The planar π constraint on triangles has been extended to the

spherical Cayley-Menger condition on tetrahedra. For each interior face we have the

condition that the face angles calculated from the dihedral angles of two adjacent

tetrahedra must be equal. To ensure that the embedding is a flat triangulated mani-

fold we extend the planar curvature condition to edge curvature, which is the discrete

analogue of Ricci curvature. To prove that a set of dihedral angles that satisfy these

constraints result in a unique embedding, we have developed a constructive proce-

dure which utilises the spanning tree of the graph defined on the 0- and 1-cells of the

dual complex. For each vertex we visit in this graph, we identify the independent

dihedral angles, and the independent constraints that the other dihedral angles must

satisfy. This constructive procedure provides an algorithmic way of determining the

constraints we need and is implemented in a numerical example to illustrate that the

local uniqueness result holds in practice.

We then consider the problem of embedding a triangulated 3-manifold with bound-

ary in R
3, such that the embedding is consistent with a finite element mesh with
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piecewise constant conductivity. We observed that this problem is equivalent to find-

ing an embedding of a three-dimensional resistor network whose conductances are

equal to the finite element system matrix. We parameterise the problem in terms of

the embedded interior vertex positions and anisotropic conductivity defined on each

tetrahedron. We parameterise the conductivity depending on the a priori information

available about the anisotropy and we define the linear map Q from conductivity com-

ponents to edge conductances for different classes of anisotropy. We used a simplistic

example to illustrate the effect that a poorly chosen mesh can have on the injectivity

of this linear map. We also investigated the effect of the anisotropy parameterisation

on the uniqueness of the discrete EIT problem when the interior vertex coordinates are

not fixed. We found that the non-uniqueness due to the non-injectivity of Q is a bigger

issue than the non-uniqueness of the anisotropic problem due to the diffeomorphism

invariance inherited from the continuous problem.

5.2 Future Work

In order to extend the result of [83], a possible direction of research is the implementa-

tion of the discrete Hodge star as defined in section 2.4, in the context of the discrete

EIT problem. Since the discrete Hodge star relates k-cochains to their duals, it seems

plausible that a circumsphere representation similar to the circumcircle parameteri-

sation from [83] could result in a three-dimensional Ohm-Kirchhoff network defined

on the dual complex. Since this would rely on the cotangent formula for isotropic

conductivity it would not be applicable to the anisotropic problem but it would at

least give a theoretical result for the isotropic case.

In order to allow more conductivity variables to be defined in the anisotropic pa-

rameterisation, an extension of our work to higher order conductivity approximation

would be be advantageous. In [1], a piecewise linear approximation is used which

allows the conductivity to be defined at vertices, and the Jacobian of the boundary

data with respect to conductivity variables is shown to be full rank for some example

meshes. Since the number of vertices in a three-dimensional mesh is typically less that

the number of tetrahedra, this may lead to more classes of anisotropic conductivity

that can be uniquely reconstructed.
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Appendix A

Triangulation Problem Code

% dihedral survey solve.m

clear

%% Load netgen mesh

meshdir = './NetgenMeshes/';

meshfile = 'sphere very coarse';

[~,H, V] = mesh reader([meshdir,meshfile,'.vol']);

%% Add a few more interior verts and remesh

V extra = [-0.45,0.1,0.08; 0.46,0.04,-0.1; 0.03,-0.44,0.04; ...

0.02,0.42,0.09;0.01,-0.02,-0.46; -0.04,0.06,0.43];

V = [V; V extra];

H = delaunay(V);

get mesh parameters

%% Plot:

figure(1);clf; tetramesh(H,V,'FaceAlpha',0); axis off

%% Go through tree and solve constraints then do survey solve by

% converting dihedrals to face angles

tree = grMinSpanTree(D);

rt = 1;

Dm=treesort(D(tree,:),rt); % easier if a directed tree.
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th0 = th;

options = optimset('Display','iter');

%% Perturb dihedrals and solve survey problem

pp = 1:9;

ep = [1e-2,1e-1];

for p = kron(ep,pp)

Vnew = [];

cnt = 0;

while isempty(Vnew) && cnt<5

cnt = cnt+1;

fprintf('Perturbation: %.0e, Attempt: %i\n',p,cnt);

thp = th + p*randn(size(th));

[thnew,dep idx,TF,J,remove match] = ...

apply dihedral constraints(H,F,E,find(~isbnde),Dm,thp,th0,options);

%% Recalculate face angles

aa = all dihedral2face angles(thnew,H,F,TF);

anew = zeros(nf,3);

for f=1:nf

[i,j] = find(TF==f);

anew(f,:) = aa(i(1),(j(1)-1)*3+(1:3));

end

%% Survey solve

facein = get first face(F,H,Eb,V);

fh=2; figure(fh); clf(fh); figure(fh);

Vnew = survey solve3d(H,anew,facein,V(facein(1:2),:),V(facein(3),3),fh);

figure(fh); axis equal, axis off

end

if cnt==5 && isempty(Vnew), break, end

%% Plot svd of variable vertex 2 independent dihedral Jacobian

vi = 1:3*nv;

vi([(facein(1)-1)*3+(1:3),(facein(2)-1)*3+(1:3),(facein(3)-1)*3+1]) = [];

% New

Jhh = vert2dihedral jacobian(Vnew,H);

Jh = Jhh(reshape(~dep idx',[],1),vi);

figure(4); semilogy(svd(Jh),'o');
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xlabel('i'); ylabel('\sigma i')

% Independent to dependent Jacobian (from fsolve)

figure(3); clf; semilogy(svd(J),'o');

xlabel('i'); ylabel('\sigma i')

end

% get mesh parameters.m

%% Find dual, etc

nt = size(H,1); nv = size(V,1);

H = orientH3d(H,V);

[E,F,D,Centroids,FC,FD]=meshtograph3d(H,V);

nf = size(F,1); nf0 = size(D,1); nfb = nf-nf0; ne = size(E,1);

%% Compute face angles

a = calc face angles(V,F);

%% Compute dihedral angles for each tet

th = zeros(nt,6);

for k=1:nt

th(k,:) = calc dihedrals(V(H(k,:),:));

end

%% Find interior edges

isbnde = find interior edges(E,H,th);

neb = sum(isbnde); ne0=ne-neb;

E0 = E(~isbnde,:);

Eb = E(isbnde,:);

e1 = find(all(E==Eb(1,1) | E==Eb(1,2),2));

%% Find interior verts:

vlist = 1:nv;

vb idx = ismember(vlist,Eb(:)); vb = vlist(vb idx);

vi = vlist(~vb idx);

nvi = length(vi); nvb = length(vb);
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%% Find interior faces

Fi = get interior faces(F,H);

nf0 = size(Fi,1);

%% Edge lengths:

l = calc edge lengths(E,V);

function [E,F,D,C,FC,FD]=meshtograph3d(H,V)

% [E,F,D,C,FC,FD]=meshtograph3d(H,V)

%

% Return the graph from a mesh.

%

% Input:

% H - topology matrix

% V - geometry (vertex positions)

%

% Output:

% E - edges (1-faces of simplicial complex)

% F - faces of tets (2-faces of simplicial complex)

% D - edges of dual mesh

% C - tetrahedron centroids (for plotting dual)

% FC - Face centroids

% FD - Dual of 2-skeleton

%

% Modification of Al Humaidi's code.

%% Edges and faces

nt = size(H,1);

E=[]; F=[];

% This will produce interior edges multiple times

e idx = flipud(combnk(1:4,2)); nei = size(e idx);

f idx = flipud(combnk(1:4,3)); nfi = size(f idx);

for it=1:nt

E=[E;reshape(H(it,e idx),nei)];

F=[F;reshape(H(it,f idx),nfi)];

end
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% Sorting makes it easier to spot duplicates

E=sort(E,2); F=sort(F,2);

%Remove duplicates

E=unique(E,'rows'); F=unique(F,'rows');

%% Dual and centroids

if nargout>2

nf=size(F,1);

D=[];

% Find the faces in two tets

for i=1:nf

[ts1,j] = find(H==F(i,1));

[ts2,j] = find(H==F(i,2));

[ts3,j] = find(H==F(i,3));

ts = intersect(ts1',ts2');

ts = intersect(ts,ts3');

if length(ts)==2

D = [D;ts];

end

end

if nargout>3 && nargin==2

% and centroid for plotting

C = zeros(nt,3);

for t=1:nt

C(t,:) = mean(V(H(t,:),:));

end

% Face centroids

if nargout>4

FC = zeros(nf,3);

for t=1:nf

FC(t,:) = mean(V(F(t,:),:));

end

end

% Two faces share an edge then they are in dual of 2-skeleton

if nargout>5
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FD = [];

ne = size(E,1);

% For each edge, find faces that share it

for e=1:ne

faces = find(sum(F==E(e,1) | F==E(e,2),2)==2);

FD = [FD; combnk(faces,2)];

end

end

end % nargout>3

end % nargout>2

function Hn = orientH3d(H,V)

nt=size(H,1);

for it = 1:nt

v1 = V(H(it,1),:);

v2 = V(H(it,2),:);

v3 = V(H(it,3),:);

v4 = V(H(it,4),:);

s = det( [v2-v1;v3-v1;v4-v1]);

if s<0

H(it,:)=H(it,[2,1,3,4]);

end

end

Hn=H;

function a = calc face angles(V,F)

% a = calc face angles(V,F)

%

% Calculate face angles a from vertex positions V.

nf = size(F,1);
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a = zeros(nf,3);

for k=1:nf

v1 = V(F(k,1),:); v2 = V(F(k,2),:); v3 = V(F(k,3),:);

a(k,1) = acos( (v3-v1)*(v2-v1)'/(norm(v3-v1)*norm(v2-v1)) );

a(k,2) = acos( (v1-v2)*(v3-v2)'/(norm(v1-v2)*norm(v3-v2)) );

a(k,3) = acos( (v2-v3)*(v1-v3)'/(norm(v2-v3)*norm(v1-v3)) );

end

function th = calc dihedrals(V)

% th = calc dihedrals(V)

%

% Calculate dihedral angles for a tetrahedron.

% th(i) is angle at ith edge in tet using following convention

% 1: edge (1,2)

% 2: edge (1,3)

% 3: edge (1,4)

% 4: edge (2,3)

% 5: edge (2,4)

% 6: edge (3,4)

th = zeros(1,6);

v1 = V(1,:); v2 = V(2,:); v3 = V(3,:); v4 = V(4,:);

% Outer normals if tet is positively oriented

n1 = cross( v3-v2, v4-v2 ); n1=n1/norm(n1);

n2 = cross( v1-v3, v4-v3 ); n2=n2/norm(n2);

n3 = cross( v1-v4, v2-v4 ); n3=n3/norm(n3);

n4 = cross( v3-v1, v2-v1 ); n4=n4/norm(n4);

th(1) = acos(-n3*n4'); th(2) = acos(-n2*n4'); th(3) = acos(-n3*n2');

th(4) = acos(-n4*n1'); th(5) = acos(-n1*n3'); th(6) = acos(-n1*n2');

function isbnde = find interior edges(E,H,th)

% isbnde = find interior edges(E,H,th)

%
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% Find the interior edges of a mesh using dihedral angles.

ne = size(E,1);

isbnde = false(1,ne);

edge order = flipud(combnk(1:4,2));

for k=1:ne

% find tets for which edge belongs

tets = find(sum( H==E(k,1) | H==E(k,2),2 )==2);

ang=0;

% Find edge verts in each tet

for l=tets'

v1 = find(H(l,:)==E(k,1));

v2 = find(H(l,:)==E(k,2));

ang = ang+th(l,all( edge order==v1 | edge order==v2, 2 ));

end

isbnde(k) = (2*pi-ang > 1e-12);

end

function Fi = get interior faces(F,H,TF)

if nargin<3

TF = find all tet faces(H,F);

end

nf = size(F,1);

Fi = zeros(nf,1);

nfi = 0;

for f=1:nf

[i,~] = find(TF==f);

if length(i)==1, continue, end

nfi=nfi+1;

Fi(nfi) = f;

end

Fi(nfi+1:end) = [];

function TF = find all tet faces(H,F)
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% TF = find all tet faces(H,F)

nt = size(H,1);

TF = zeros(nt,4);

for t=1:nt

f combo = combnk(H(t,:),3);

for k=1:4

TF(t,k) = find(all(F==f combo(k,1) | F==f combo(k,2) | ...

F==f combo(k,3),2));

end

end

function l = calc edge lengths(edges,v)

l = sqrt(sum( (v(edges(:,1),:) - v(edges(:,2),:)).ˆ2 , 2) );

function [thnew,dep idx,TF,J,remove match,exitflag] = ...

apply dihedral constraints(H,F,E,E0,D,th,th0,options,varargin)

%% Initialise some variables

if nargin<7

options = optimset('Display','iter');

end

nf = size(F,1);

nt = size(H,1);

nv = max(max(H));

TF = find all tet faces(H,F);

Fi = get interior faces(F,H,TF);

Fb = ~ismember(1:nf,Fi);

Vb = unique(F(Fb,:));

Vi = find(~ismember(1:nv,Vb));

fk idx = false(nf,1); % has face been visited already?

vk idx = false(nv,1);

rt idx = [];

dep idx = false(nt,6); % list of dependent angles
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tet type = zeros(nt,1);

%% First face only has Cayley-Menger constraint

rt = D(1);

dep idx(rt,6) = true; % arbitrarily choose last edge as dependent

vk idx(H(rt,:)) = true;

fk idx(TF(rt,:)) = true;

%% Compute other constraint

ne = size(E,1);

curva idx = cell(1,ne);

curvt idx = cell(1,ne);

face matched = false(nf,1);

facein = intersect(TF(rt,:),TF(D(1,2),:));

opp idx1 = zeros(nf,3); opp idx2 = zeros(nf,3);

th idxa1 = zeros(nf,3); th idxa2 = zeros(nf,3);

th idxb1 = zeros(nf,3); th idxb2 = zeros(nf,3);

tet idx1 = zeros(nf,1); tet idx2 = zeros(nf,1);

remove match = false(nf,3);

v removed = false(nv,1);

tet removed = false(nt,1);

%% Get dependent variables

[dep idx,tet type] = trav tree dep var(H,F,D,TF,rt,rt,facein,...

fk idx,vk idx,dep idx,tet type);

%% Check the independent variables are within the required range:

if any(any(th(~dep idx)<=0 | th(~dep idx)>=pi))

warning('Some of the independent angles are inconsistent.');

thnew = [];

J = [];

return

end

%% Find constraint indices

fk idx = false(nf,1); fk idx(TF(rt,:)) = true;

[curva idx,curvt idx,opp idx1,opp idx2,th idxa1,th idxa2,...

th idxb1,th idxb2,tet idx1,tet idx2,remove match,...

face matched,fk idx,rt idx,v removed,tet removed] = ...
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trav tree setup const(H,F,Fi,Vi,E,E0,TF,D,rt,tet type,...

curva idx,curvt idx,opp idx1,opp idx2,th idxa1,th idxa2,th idxb1,...

th idxb2,tet idx1,tet idx2,fk idx,rt idx,...

remove match,face matched,v removed,tet removed,false,varargin{:});

%% Remove one interior angle from each face:

for f = Fi'

v = 1:3;

if sum(remove match(f,:),2)==2, continue, end

for i = v

if remove match(f,i), continue, end

% if ~ismember(F(f,i),

remove match(f,i) = true;

break % only remove one for each face

end

end

%% Apply constraints

fun = @(TH) apply survey constraints(TH,th,Fi,dep idx,...

curva idx,curvt idx,opp idx1,opp idx2,th idxa1,th idxa2,...

th idxb1,th idxb2,tet idx1,tet idx2,remove match);

if size(th0,2)>1

th0 = th0(dep idx);

end

fprintf('Running fsolve...');

[th dep,~,exitflag,~,J] = fsolve(fun,th0,options);

cnt = 0;

while exitflag>1 && cnt<5

fprintf('Trying again from last point...');

[th dep,~,exitflag,~,J] = fsolve(fun,th dep,options);

cnt = cnt+1;

end

thnew = th;

thnew(dep idx) = th dep;

function [dep idx,tet type,fk idx,vk idx] = trav tree dep var(H,F,D,...

TF,rt,rrt,facein,fk idx,vk idx,dep idx,tet type,varargin)
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% Traverse tree to get dependent variables

num known = sum(fk idx(TF(rt,:)));

v known = sum(vk idx(H(rt,:)));

if num known==1 && v known==3

tet type(rt) = 1;

% 3 dependents are the 3 edges not on facein

FF = F(facein,:);

e idx = flipud(combnk(H(rt,:),2));

V diff = setdiff(H(rt,:),FF);

dep idx(rt,any(e idx==V diff,2)) = true;

elseif num known==1 && v known==4

tet type(rt) = 2;

% 6 dependents are all edges

dep idx(rt,:) = true;

elseif num known==2

tet type(rt) = 3;

% 6 dependents are all edges

dep idx(rt,:) = true;

elseif num known==3

tet type(rt) = 4;

% 6 dependents are all edges

dep idx(rt,:) = true;

elseif num known==4 && rt~=rrt

tet type(rt) = 5;

% 6 dependents are all edges

dep idx(rt,:) = true;

end

fk idx(TF(rt,:)) = true; vk idx(H(rt,:)) = true;

% Get the next tet

r=find(D(:,1)==rt);
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for ir =r'

nexttet=D(ir,2); % The next tet

nextface=intersect(TF(rt,:),TF(nexttet, :));

[dep idx,tet type,fk idx,vk idx] = trav tree dep var(H,F,D,TF,...

nexttet,rrt,nextface,fk idx,vk idx,dep idx,tet type,varargin{:});

end

function [curva idx,curvt idx,opp idx1,opp idx2,th idxa1,th idxa2,...

th idxb1,th idxb2,tet idx1,tet idx2,remove match,...

face matched,fk idx,rt idx,v removed,tet removed] = ...

trav tree setup const(H,F,Fi,Vi,E,E0,TF,D,rt,tet type,...

curva idx,curvt idx,opp idx1,opp idx2,th idxa1,th idxa2,...

th idxb1,th idxb2,tet idx1,tet idx2,fk idx,rt idx,remove match,...

face matched,v removed,tet removed,edge cond flag,varargin)

% Traverse tree to setup constraints

% Add all interior faces of this tet to match list:

faces = TF(rt,:);

faces(face matched(faces)) = []; % Remove faces already done

faces(~ismember(faces,Fi)) = []; % Remove boundary faces

for f=faces

[rtf idx,stf idx] = find face match idx(TF,H,F,f,1:3);

opp idx1(f,:) = rtf idx(:,1)';

opp idx2(f,:) = stf idx(:,1)';

th idxa1(f,:) = rtf idx(:,2)';

th idxa2(f,:) = stf idx(:,2)';

th idxb1(f,:) = rtf idx(:,3)';

th idxb2(f,:) = stf idx(:,3)';

tet idx1(f) = rtf idx(1,4);

tet idx2(f) = stf idx(1,4);

end

face matched(faces) = true;

% rt idx(rt) = true;

rt idx = [rt idx,rt];

if tet type(rt)==3 % 2 faces known
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% 1st constraint is curvature so find edge shared by both known faces

[curva idx,curvt idx] = curv cond(H,F,E,E0,TF,...

rt,fk idx,rt idx,curva idx,curvt idx,2);

elseif tet type(rt)==4 | | tet type(rt)==5 % 3 or 4 faces known

% curvature constraints which all tets surrounding have been visited

[curva idx,curvt idx] = curv cond(H,F,E,E0,TF,...

rt,fk idx,rt idx,curva idx,curvt idx,tet type(rt)-1);

% Remove interior angle if tet encloses an interior vertex

V = H(rt,:);

V(~ismember(V,Vi)) = []; % only interior vertices

V(v removed(V)) = [];

vlist = [];

for v=V

[t,~] = find(H==v); % Find the tets this vertex is in

% if all(rt idx(t)) % have we visited all these tets?

if all(ismember(t,rt idx))

vlist = [vlist,v];

end

end

if ~isempty(vlist)

ntets = zeros(size(vlist));

for v=vlist

[t,~] = find(H==v); t(t==rt) = [];

ntets(vlist==v) = sum(~tet removed(t));

end

[~,ti] = sort(ntets);

vlist = vlist(ti);

for v=vlist

[tets,~] = find(H==v);

tets(tet removed(tets)) = [];

% reverse order we visited the tets:

tets = fliplr(rt idx(ismember(rt idx,tets)));

for t = tets

faces = TF(t,:);

[ii,~] = find(F(faces,:)==v);

if any(any(remove match(faces(ii),:))), continue, end

EE = find edges3d(H(t,:),E); % edges in this tet
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for e=EE

if isempty(curva idx{e}), EE(EE==e) = []; end

end

EE = EE(any(E(EE,:)==v,2));

if length(EE)<3, continue, end

% Remove one of these edges

reidx = EE(1);

curva idx{reidx} = [];

curvt idx{reidx} = [];

% Faces sharing removed edge:

i = sum(F(faces,:)==E(reidx,1) | ...

F(faces,:)==E(reidx,2),2)==2;

faces = faces(i);

if ~edge cond flag

% Remove angles on these faces at interior vertex

[i,j] = find(F(faces,:)==v);

for k=1:length(i)

remove match(faces(i(k)),j(k)) = true;

end

% Remove angles not on removed edge

[i,j] = find(F(faces,:)~=E(reidx,1) & ...

F(faces,:)~=E(reidx,2));

for k=1:length(i)

remove match(faces(i(k)),j(k)) = true;

end

end

% Other face containing interior vertex:

face = TF(t,:);

face(all(F(face,:)~=v,2)) = [];

face(sum(F(face,:)==E(reidx,1) | ...

F(face,:)==E(reidx,2),2)==2) = [];

remove match(face,F(face,:)~=v) = true;

tet removed(t) = true;

v removed(v) = true;

break

end

end

end

end
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fk idx(TF(rt,:)) = true;

% Get the next tet

r=find(D(:,1)==rt);

for ir =r'

nexttet=D(ir,2); % The next tet

if ~isempty(varargin)

figure(varargin{1}); hold on;

C = varargin{2};

plot3(C(D(ir,:),1),C(D(ir,:),2),C(D(ir,:),3),'LineWidth',1.5);

end

[curva idx,curvt idx,opp idx1,opp idx2,th idxa1,th idxa2,...

th idxb1,th idxb2,tet idx1,tet idx2,remove match,face matched,...

fk idx,rt idx,v removed,tet removed] = ...

trav tree setup const(H,F,Fi,Vi,E,E0,TF,D,nexttet,tet type,...

curva idx,curvt idx,opp idx1,opp idx2,th idxa1,th idxa2,...

th idxb1,th idxb2,tet idx1,tet idx2,fk idx,rt idx,remove match,...

face matched,v removed,tet removed,edge cond flag,varargin{:});

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [curva idx,curvt idx,curv used,opp edge] = ...

curv cond(H,F,E,E0,TF,rt,fk idx,rt idx,curva idx,curvt idx,nface)

faces = TF(rt,fk idx(TF(rt,:)));

f idx = combnk(1:nface,2);

if nface==4, f idx = flipud(f idx); end

ncurv = size(f idx,1);

curv cnt=0;

curv used = zeros(1,ncurv);

opp edge = zeros(1,ncurv);

for c=1:ncurv % max number of unique interior edges

se = intersect(F(faces(f idx(c,1)),:),F(faces(f idx(c,2)),:));

e idx = all(E==se(1) | E==se(2),2);

if ~ismember(find(e idx),E0), continue, end % skip boundary edges

[cidx,tidx] = find curv idx(H,se,rt idx);

if isempty(cidx), continue, end

curva idx{e idx} = cidx;

curvt idx{e idx} = tidx;
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curv cnt=curv cnt+1;

curv used(curv cnt) = find(e idx); % Keep track of edges used here

oppv = H(rt,H(rt,:)~=E(e idx,1) & H(rt,:)~=E(e idx,2));

opp edge(curv cnt) = find(all(E==oppv(1) | E==oppv(2),2));

end

curv used(curv used==0) = [];

opp edge(opp edge==0) = [];

function fun = apply survey constraints(TH,th,Fi,dep idx,...

curva idx,curvt idx,opp idx1,opp idx2,th idxa1,th idxa2,...

th idxb1,th idxb2,tet idx1,tet idx2,remove match,flag)

th(dep idx) = TH;

fun = [];

% All tets have Cayley-Menger constraint

% if nargin<16 | | ~flag

fun = spherical cayley menger(th);

% end

for e=1:length(curva idx)

if isempty(curva idx{e}), continue, end

curv sum = curv constraint(th,curva idx{e},curvt idx{e});

fun = [fun; abs(2*pi - curv sum)];

end

% Others are the shared face angle matchings

for f=1:size(opp idx1,1);

if ~ismember(f,Fi), continue, end

for v=1:3

if remove match(f,v),continue,end

% if opp idx1(f,v)==0, continue, end

a rt = dihedrals2face(th(tet idx1(f),...

[opp idx1(f,v),th idxa1(f,v),th idxb1(f,v)]));

as = dihedrals2face(th(tet idx2(f),...

[opp idx2(f,v),th idxa2(f,v),th idxb2(f,v)]));

fun = [fun; abs(as-a rt)];
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end

end

function dcm = spherical cayley menger(th)

% dcm = spherical cayley menger(th)

nt = size(th,1);

dcm = zeros(nt,1);

for k=1:nt

CM = [-1, cos(th(k,[6,5,4])); ...

cos(th(k,6)),-1,cos(th(k,[3,2]));...

cos(th(k,[5,3])),-1,cos(th(k,1));...

cos(th(k,[4,2,1])),-1];

dcm(k) = det(CM);

end

function curv sum = curv constraint(TH,cidx,tidx)

% Find all tets for which this is an edge

lt = length(tidx);

curv sum = 0;

for t=1:lt

curv sum = curv sum+TH(tidx(t),cidx(t));

end

function a = dihedrals2face(th)

a = acos((cos(th(1)) + cos(th(2))*cos(th(3)))./(sin(th(2))*sin(th(3))));

function edge idx = find edges3d(elem,edges)

% Find the edges that belong to elem.
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edge idx(1) = find( all(edges==elem(1) | edges==elem(2) , 2) );

edge idx(2) = find( all(edges==elem(1) | edges==elem(3) , 2) );

edge idx(3) = find( all(edges==elem(1) | edges==elem(4) , 2) );

edge idx(4) = find( all(edges==elem(2) | edges==elem(3) , 2) );

edge idx(5) = find( all(edges==elem(2) | edges==elem(4) , 2) );

edge idx(6) = find( all(edges==elem(3) | edges==elem(4) , 2) );

function facein = get first face(F,H,Eb,V)

ff = find( sum(F==Eb(1,1) | F==Eb(1,2),2)==2);

for i=1:length(ff)

f1 = ff(i);

facein = F(f1,:);

tetin = sum( H==facein(1) | H==facein(2) | H==facein(3),2)==3;

if sum(tetin)==1, break, end

if i==length(ff), error('No boundary faces for this edge.'); end

end

fo = setdiff(H(tetin,:),facein);

if isinorder3d(V(facein,:),V(fo,:))

facein=facein([2,1,3]);

end

function isit=isinorder3d(face v,opp v)

% isit=isinorder3d(face v,opp v)

%

% Test orientation of next face w.r.t node opposite.

v1 = face v(1,:);

v2 = face v(2,:);

v3 = face v(3,:);

isit = det( [v1-opp v;v2-opp v;v3-opp v])>0;

function V = survey solve3d(H,a,f1,v,z,fh,F,D,tree)
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% V = survey solve3d(H,a,f1,v,fh)

%

% Extension of Al Humaidi survey solve code to 3D.

% Inputs:

% H - element topology matrix [n elements x 4]

% a - face angles for each face [n face x 3]

% f1 - vertex numbers of first face [1 x 3] (Note: This face must be

% ordered clockwise from the outside of the tet.

% v - coordinates of first edge [2 x 3]

% x - x-coordinate of 3rd vertex of first face

% fh - (optional) figure handle for plotting (if not given then no

% plotting, if gcf then use current window

%

% Output:

% V - coordinates of all vertices in mesh [n v x 3]

%

global newV cnt

% Get edges, faces, dual graph and min spanning tree of dual

if nargin<6

fh = [];

end

if nargin<7

[~,F,D]=meshtograph3d(H);

end

if nargin<9

tree = grMinSpanTree(D);

end

% Edges of min spanning tree of dual graph

Dm=D(tree,:);

% The root of the tree is face f1, find this in face in F

r = find(all( (F==f1(1) | F==f1(2)) | F==f1(3) , 2 ));

if length(r)~=1

error('Not found face [%d, %d, %d]',f1);

end
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% Which tet is this face in?

root tet = find(sum( (H==f1(1) | H==f1(2)) | H==f1(3) , 2 )==3);

Dm=treesort(Dm,root tet); % easier if a directed tree.

% Compute the y and z position of 3rd vertex:

a1 = a(r,F(r,:)==f1(1)); % angle at first vertex

a2 = a(r,F(r,:)==f1(2));

a3 = a(r,F(r,:)==f1(3));

idx = combnk(1:3,2);

for k=1:3

func = @(vv) third vertex(vv,v(1,:),v(2,:),z,a1,a2,a3,idx(k,:));

options = optimset('Display','notify');

[v3,~,exitflag] = fsolve(func,[1,1],options);

if exitflag==1, break, end

end

if exitflag~=1

V = [];

fprintf('3rd vertex could not be found.\n\n');

return

end

v(3,:) = [v3,z];

nv = max(max(H));% number of vertices

newV= zeros(nv,3);

newV(f1(1),:)=v(1,:);

newV(f1(2),:)=v(2,:);

newV(f1(3),:)=v(3,:);

cnt=0;

if ~isempty(fh)

figure(fh(1)); hold on;

plot3(v([1:3,1],1),v([1:3,1],2),v([1:3,1],3),'o-'); view(3);

pause(1);

traverse tets(H,Dm,F,a,root tet,f1,v,fh)

else

traverse tets(H,Dm,F,a,root tet,f1,v)

end

V=newV;
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function f = third vertex(v3,v1,v2,z,a1,a2,a3,idx)

v3 = [v3,z];

f = [cos(a1) - ( (v3-v1)*(v2-v1)' )/( norm(v3-v1)*norm(v2-v1) );...

cos(a2) - ( (v3-v2)*(v1-v2)' )/( norm(v3-v2)*norm(v1-v2) );...

cos(a3) - ( (v1-v3)*(v2-v3)' )/( norm(v1-v3)*norm(v2-v3) )];

f = f(idx);

function traverse tets(H,Dm,F,a,troot,facein,v,varargin)

global newV cnt

cnt=cnt+1;

% we are in tet troot and entered it from facein

nextvertex = setdiff(H(troot,:),facein);

if length(nextvertex)~=1

error('Next vertex not unique!');

end

% Find vertex numbers in the face opposite new vertex

fo4 = find( all(F==facein(1) | F==facein(2) | F==facein(3),2) );

id42 = F(fo4,:)==facein(2);

% Face opposite vertex 1:

fo1 = find( all(F==facein(2) | F==facein(3) | F==nextvertex,2) );

id12 = F(fo1,:)==facein(2);

id13 = F(fo1,:)==facein(3);

id14 = F(fo1,:)==nextvertex;

% Face opposite vertex 3:

fo3 = find( all(F==facein(1) | F==facein(2) | F==nextvertex,2) );

id32 = F(fo3,:)==facein(2);

newV(nextvertex,:) = find missing vertex(v(1,:),v(2,:),v(3,:),...

a(fo1,id12),a(fo1,id13),a(fo1,id14),a(fo3,id32),a(fo4,id42));
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if nargin>7

figure(varargin{1}); hold on

for k=1:3

plot3(newV([facein(k),nextvertex],1),...

newV([facein(k),nextvertex],2),...

newV([facein(k),nextvertex],3),'-o'); view(3);

end

hold off

pause(0.1)

end

%Get the next tet

[r,~]=find(Dm(:,1)==troot);

for ir =r'

nexttet=Dm(ir,2); %The next tet

nextface=intersect(H(troot,:),H(nexttet, :));

nextv = zeros(3,3);

nextv(1,:)= newV(nextface(1),:);

nextv(2,:)= newV(nextface(2),:);

nextv(3,:)= newV(nextface(3),:);

oldv = setdiff(H(troot,:),nextface);

if ~isinorder3d(newV(nextface,:),newV(oldv,:))

nextface=nextface([2,1,3]);

nextv=nextv([2,1,3],:);

end

traverse tets(H,Dm,F,a,nexttet,nextface,nextv,varargin{:});

end

function v4 = find missing vertex(v1,v2,v3,a12,a13,a14,a32,a42)

% v4 = find missing vertex(v1,v2,v3,a12,a13,a14,a32,a42)

%

% Computes the position of the 4th vertex of a tetrahedron given the face

% angles aij where aij is the angle for the face opposite vertex i and

% at vertex j.

v12 = v1-v2;
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v23 = v3-v2; l23 = norm(v23);

l24 = l23*sin(a13)/sin(a14); % distance along an edge to new vertex

th = acos(cos(a32)/(sin(a12)*sin(a42)) - cot(a12)*cot(a42)); % dihedral

n4 = -cross(v23,v12); n4 = n4/norm(n4); % Outward normal

v4 = rotate vector3d(l24*v23/l23,n4,a12)+v2;

v4 = rotate vector3d((v4-v2),-v23/l23,pi-th)+v2;

function p = rotate vector3d(v,u,a)

% p = rotate vector3d(v,u,a)

%

% Rotate point v by angle a about the axis defined by the unit vector u.

p = cos(a)*v + sin(a)*cross(u,v) + (1-cos(a))*dot(u,v)*u;

if size(p,1)~=size(v,1)

p = p';

end



Appendix B

Discrete EIT Code

% edgecondmap nonuniqueness.m

%% Create simple 8-tet mesh:

H = [1,2,3,4; 1,2,4,5; 1,2,5,6; 1,2,6,3; ...

7,2,3,4; 7,2,4,5; 7,2,5,6; 7,2,6,3];

th = linspace(0,2*pi,5); th(end)=[];

V = [0,0,1; 0,0,0; [cos(th(:)),sin(th(:)),zeros(4,1)]; 0,0,-1];

pert = true;

if pert

V(2,:) = V(2,:)+0.1;

p str = ' pert';

else

p str = '';

end

get mesh parameters;

%% Random number stream setup

if ~exist('defaultStream','var')

defaultStream = RandStream.getDefaultStream;

savedState = defaultStream.State;

else

defaultStream.State = savedState;

end

%% Define conduductivity type

158
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% % Anisotropic

% cond type.string = 'anisotropic';

% % Layers:

% cond type.string = 'layered';

% % cond type.normals = Centroids; % radial

% % cond type.normals = repmat([0,0,1],nt,1);

% r = 0.1*randn(nt,3);

% cond type.normals = repmat([0,0,1],nt,1) + r;

%

% cond type.normals = cond type.normals./repmat(sqrt(sum(...

% cond type.normals.ˆ2,2)),1,3);

% % Isotropic:

% cond type.string = 'isotropic';

% Multiplicative constant:

cond type.string = 'conformal';

cond type.constraints = repmat([1,0,0,1,0,1]',nt,1);

r = 0.1*randn(6*nt,1);

cond type.constraints = cond type.constraints + r; % random

constraint str = ' random';

%% Get conductivity to edge conductance map

Q = cond2edgecondmap(H,E,V,cond type);

%% Plot singular values

[QQ,RR] = qr(Q);

[UU,SS,VV] = svd(QQ*RR);

sing = diag(SS);

sing = sing./sing(1); % scale on largest sing value

figure(1); clf; semilogy(sing,'o');

ax = axis; ax([3,4]) = [1e-18,1]; axis(ax);

Z = null(Q,'r');

Z = Z./repmat(max(abs(Z),[],1),size(Z,1),1); % normalise

figure(3); clf; imagesc(Z); axis image; colorbar; % rational null
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function [A,Z] = cond2edgecondmap(H,E,V,cond type)

% [A,Z] = cond2edgecondmap(H,E,V,cond type)

%

% Calculate the linear map between anisotropic conductivity s and the

% edge conductance. If Z is requested then the rational null space is

% also returned. n is the layer normal vector for each tet.

nt = size(H,1);

ne = size(E,1);

type flag = 1;

A = zeros(ne,6*nt);

iv1=1; iv2=2;

if nargin>3

switch cond type.string

case 'anisotropic'

type flag = 1;

case 'layered'

type flag = 2;

n = cond type.normals;

A = zeros(ne,2*nt);

case 'isotropic'

type flag = 3;

A = zeros(ne,nt);

case 'conformal'

type flag = 4;

c = cond type.constraints;

A = zeros(ne,6*nt);

otherwise

error('%s not recognised as a possible conductivity type.'...

,cond type.string);

end

end

% Compute volume of each tet:

v1 = V(H(:,1),:); v2 = V(H(:,2),:); v3 = V(H(:,3),:); v4 = V(H(:,4),:);

vol = abs( sum( (v1-v4).*cross(v2-v4,v3-v4,2),2) )/6;

const = 36;
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for e=1:ne

[tets1,ni] = find(H==E(e,1));

[tets2,nj] = find(H==E(e,2));

[tets,ii,jj] = intersect(tets1,tets2);

ni=ni(ii); nj=nj(jj); % nodes in tet on this edge

for tk = 1:length(tets)

t = tets(tk);

% Need to get opposite nodes in correct order

no = find( H(t,:)~=H(t,ni(tk)) & H(t,:)~=H(t,nj(tk)) );

i = H(t,ni(tk)); j = H(t,nj(tk));

k = H(t,no(iv1)); l = H(t,no(iv2));

vi=V(i,:); vj=V(j,:);

vk=V(k,:); vl=V(l,:);

if det([(vi-vl)',(vj-vl)',(vk-vl)']) < 0

tmp = k;

k = l;

l = tmp;

vk=V(k,:); vl=V(l,:);

end

c1 = cross(vk-vl,vj-vl); c2 = cross(vi-vl,vk-vl);

if type flag==1 | | type flag==4

A(e,(t-1)*6 + (1:6)) = [c1(1)*c2(1), ...

c1(1)*c2(2)+c1(2)*c2(1), c1(1)*c2(3)+c1(3)*c2(1),...

c1(2)*c2(2), c1(2)*c2(3)+c1(3)*c2(2), c1(3)*c2(3)]./...

(const*vol(t));

elseif type flag==2

idx = (t-1)*2;

A(e,idx+1) = c1*(n(t,:)'*n(t,:))*c2';

A(e,idx+2) = c1*c2' - A(e,idx+1);

A(e,idx+(1:2)) = A(e,idx+(1:2))/(const*vol(t));

elseif type flag==3

A(e,t) = c1*c2'/(const*vol(t));

end

end

end

A = -A;

if type flag==4
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A = condmap2multconst(A,c);

end

if nargout>1

Z = null(A,'r');

end

function B = condmap2multconst(A,s)

% B = condmap2multconst(A,s)

%

% Convert conductivity-to-edge-conductance map to constrained matrix for

% conductivity known up to multiplicative constant.

[ne,ntt] = size(A); nt = ntt/6;

for t=1:nt

idx = (t-1)*6 + (1:6);

B(:,t) = sum(A(:,idx).*repmat(s(idx)',ne,1),2);

end

% test edgecond2vertices dihedrals.m

clear

%% Load netgen mesh

meshdir = './NetgenMeshes/';

meshfile = 'sphere very coarse';

% meshfile = 'cylinder v coarse';

[~,H, V] = mesh reader([meshdir,meshfile,'.vol']);

%% Add a few more interior verts and remesh

if strcmp(meshfile,'sphere very coarse');

V extra = [-0.45,0.1,0.08; 0.46,0.04,-0.1; 0.03,-0.44,0.04; ...

0.02,0.42,0.09;0.01,-0.02,-0.46; -0.04,0.06,0.43];

V = [V; V extra];

H = delaunay(V);
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end

get mesh parameters

%% Tree:

tree = grMinSpanTree(D);

rt = 1;

Dm=treesort(D(tree,:),rt); % easier if a directed tree

%% Random number stream setup

defaultStream = RandStream.getDefaultStream;

load randstream;

defaultStream.State = savedState;

%% Define type of conductivity perturbation

% Anisotropic

sv = repmat([1,0,0,1,0,1],nv,1);

s = repmat([1,0,0,1,0,1],nt,1); % tets

cond type test.string = 'anisotropic';

% % Layers:

% cond type test.string = 'layered';

% cond type test.normals = Centroids; % spherical

% % cond type test.normals = repmat([0,0,1],nt,1);

% s = repmat([1,1]',nt,1);

% sv = repmat([1,1],nv,1);

% % Isotropic:

% cond type test.string = 'isotropic';

% sv = ones(nv,1);

% s = ones(nt,1);

% % Multiplicative constant:

% cond type test.string = 'conformal';

% cond type test.constraints = repmat([1,0,0,1,0,1]',nt,1);

% sv = ones(nv,1);

% s = ones(nt,1);

pp = 1; ep = [1e-1];
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%% Options

options = optimset(@fsolve);

options.Display = 'iter';

options.Algorithm = 'levenberg-marquardt';

options.fix boundary = true;

options.fix cond boundary = false;

options.conductivity = 'tets';

options.Jacobian = 'on';

%% Run simulations

spp = ep*pp

fprintf('Perturbation: %.0e\n',spp);

while 1

sp = s + spp*randn(size(s));

flag = false;

if strcmp(cond type test.string,'anisotropic')

% Check pos def

sss = unstack conductivity(reshape(sp',[],1));

for k=1:length(sss)

if any(eig(sss{k})<=0), flag = true; break, end

end

else

% Check both eigenvalues positive

if any(any(sp<=0)), flag=true; end

end

if flag, continue, end

break

end

sp = reshape(sp',[],1);

s0 = s;

%% Compute edge conductances

if isfield(cond type test,'constraints')

r = 0.1*randn(6*nt,1);

cond type test.constraints = cond type test.constraints+r;

end

Q = cond2edgecondmap(H,E,V,cond type test);
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C = Q*sp;

%% Initial point:

v0 = V;

cond type = cond type test; % Assume a-priori knowledge is correct

%% Find mesh perturbation

[vnew,snew,J,exitflag,fval] = ...

edgecond2vertices dihedrals(H,F,E,find(~isbnde),Dm,v0,C,s0,...

cond type,options);

%% Errors

v err = norm(V(:)-vnew(:))./norm(V(:))

s err = norm(snew(:)-sp(:))./norm(sp(:))

function [vnew,snew,Jexitflag,fval] = ...

edgecond2vertices dihedrals(H,F,E,E0,D,v0,C,s0,cond type,options)

%% Initialise some variables

nf = size(F,1);

nt = size(H,1);

nv = max(max(H));

TF = find all tet faces(H,F);

Fi = get interior faces(F,H,TF);

Fb = ~ismember(1:nf,Fi);

Vb = unique(F(Fb,:));

Vi = find(~ismember(1:nv,Vb));

%% Apply edge conductance constraints

if isfield(options,'fix boundary') && options.fix boundary

fix boundary = true;

options = rmfield(options,'fix boundary');

vb pos = v0(Vb,:);

v00 = reshape(v0(Vi,:)',[],1);

else

fix boundary = false;

vb pos = [];
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v00 = reshape(v0',[],1);

end

s00 = reshape(s0',[],1);

sb = [];

fix cond boundary = false;

cond flag = false;

if isfield(options,'conductivity')&& strcmp(options.conductivity,'verts')

if isfield(options,'fix cond boundary') && ...

options.fix cond boundary

fix cond boundary = true;

options = rmfield(options,'fix cond boundary');

sb = s0(Vb,:);

s00 = reshape(s0(Vi,:)',[],1);

end

cond flag = true;

options = rmfield(options,'conductivity');

end

fun = @(x) apply edgecond2vertices dihedral constraints(x,nv,ne,C,E,H,...

Vb idx,Vi,Vb,sb,cond type,fix boundary,fix cond boundary,cond flag);

fprintf('Running fsolve...');

[x,fval,exitflag,~,J] = fsolve(fun,[v00;s00],options);

cnt = 0;

while exitflag>1 && cnt<5

fprintf('Trying again from last point...');

[x,fval,exitflag,~,J] = fsolve(fun,x,options);

cnt = cnt+1;

end

if fix boundary

vnew = zeros(nv,3);

vnew(Vb,:) = v0(Vb,:);

n vert var = 3*length(Vi);

vnew(Vi,:) = reshape(x(1:n vert var),3,[])';

else

n vert var = 3*nv;

vnew = reshape(x(1:n vert var),3,nv)';

end

if cond flag
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if fix cond boundary

snew = reshape(x(n vert var+1:end)',[],length(Vi))';

else

snew = reshape(x(n vert var+1:end)',[],nv)';

end

else

snew = reshape(x(n vert var+1:end)',[],nt)';

end

function [fun,J] = apply edgecond2vertices dihedral constraints(x,nv,...

ne,C,E,H,Vb idx,Vi,Vb,sb,cond type,fix boundary,...

fix cond boundary,cond flag)

%% Vertex input

if fix boundary

V = zeros(nv,3);

V(Vb idx,:) = Vb;

n vert var = 3*length(Vi);

V(Vi,:) = reshape(x(1:n vert var),3,[])';

else

n vert var = 3*nv;

V = reshape(x(1:n vert var),3,nv)';

end

%% Conductivity input

if cond flag

if fix cond boundary

% conductivity on interior vertices

sv = zeros(length(Vi),size(sb,2));

sv(Vi,:) = reshape(x(n vert var+1:end),[],length(Vi))';

sv(Vb idx,:) = sb;

else

sv = reshape(x(n vert var+1:end),[],nv)';

end

s = vertcond2tetcond(sv,H);

s = reshape(s',[],1);

else
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% conductivities on tets

s = x(n vert var+1:end);

end

%% Edge conductances

Q = cond2edgecondmap(H,E,V,cond type);

Ce = Q*s;

eidx = 1:ne;

fun = Ce(eidx)-C(eidx);

%% Analytic Jacobian

if nargout>1

J = zeros(ne,size(x,1));

J(:,1:3*length(Vi)) = edgecond2vertices analytic jacobian(...

H,E,V,Vi,s,cond type);

J(:,3*length(Vi)+1:end) = Q;

end

function J = edgecond2vertices analytic jacobian(H,E,V,vi,s0,cond type)

%% Initialise arrays

nt = size(H,1);

ne = size(E,1);

nvi = length(vi);

J = zeros(ne,3*nvi);

%% Put in correct form for fully anisotropic

s = change cond2anisotropic(cond type,s0,nt);

%% Compute volume on each tet

v1 = V(H(:,1),:); v2 = V(H(:,2),:); v3 = V(H(:,3),:); v4 = V(H(:,4),:);

vol = abs( sum( (v1-v4).*cross(v2-v4,v3-v4,2),2) )/6;

const = 36;

%% For each edge differentiate wrt every vertex position

for e=1:ne

% Reset dQ
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dQ = zeros(3*nvi,6*nt); % General anisotropic for now

% Q only non-zero on tets that edge is adjacent to

[tets1,ni] = find(H==E(e,1));

[tets2,nj] = find(H==E(e,2));

[tets,ii,jj] = intersect(tets1,tets2);

ni=ni(ii); nj=nj(jj); % nodes in tet on this edge

for tk = 1:length(tets)

t = tets(tk);

% Need to get opposite nodes in correct order

no = find( H(t,:)~=H(t,ni(tk)) & H(t,:)~=H(t,nj(tk)) );

% These are local nodes for this edge on this tet

i = H(t,ni(tk)); j = H(t,nj(tk));

k = H(t,no(1)); l = H(t,no(2));

% Which ones are interior vertices?

i idx = find(vi==i); j idx = find(vi==j);

k idx = find(vi==k); l idx = find(vi==l);

xi=V(i,:); xj=V(j,:);

xk=V(k,:); xl=V(l,:);

% Test correct way around:

if det([(xi-xl)',(xj-xl)',(xk-xl)']) < 0

tmp = k;

k = l;

l = tmp;

xk=V(k,:); xl=V(l,:);

k idx = find(vi==k); l idx = find(vi==l);

end

% Calcluate ci's and cj's and their derivs:

ci = cross(xk-xl,xj-xl); cj = cross(xi-xl,xk-xl);

dA = d detA(xi,xj,xk,xl);

dV = dA/(6*vol(t)); % extra scaling factor

cstr = 'ijkl';

% These local indices are only non-zeros in dQ

for p=1:3

dci = calc dci(xj,xk,xl,p);

dcj = calc dcj(xi,xk,xl,p);

for cc=1:length(cstr)

idx = eval([cstr(cc),' idx']);

if ~isempty(idx)

dQ((idx-1)*3+p,(t-1)*6+(1:6)) = ...
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calc dQ(ci,cj,dci,dcj,p,dV,cc);

end

end

end

% Divide by volume part:

dQ(:,(t-1)*6+(1:6)) = -dQ(:,(t-1)*6+(1:6))/(const*vol(t));

end

J(e,:) = (dQ*s)';

end

%% Subfunctions

function dQ = calc dQ(ci,cj,dci,dcj,p,dA,idx)

dQ = zeros(1,6);

% Diagonal components

dQ(1) = dci(1,idx)*cj(1) + ci(1)*dcj(1,idx) - ci(1)*cj(1)*dA(p,idx);

dQ(4) = dci(2,idx)*cj(2) + ci(2)*dcj(2,idx) - ci(2)*cj(2)*dA(p,idx);

dQ(6) = dci(3,idx)*cj(3) + ci(3)*dcj(3,idx) - ci(3)*cj(3)*dA(p,idx);

% Off-diagonals

dQ(2) = dci(1,idx)*cj(2) + ci(1)*dcj(2,idx) + ...

dci(2,idx)*cj(1) + ci(2)*dcj(1,idx) - ...

(ci(1)*cj(2) + ci(2)*cj(1))*dA(p,idx);

dQ(3) = dci(1,idx)*cj(3) + ci(1)*dcj(3,idx) + ...

dci(3,idx)*cj(1) + ci(3)*dcj(1,idx) - ...

(ci(1)*cj(3) + ci(3)*cj(1))*dA(p,idx);

dQ(5) = dci(2,idx)*cj(3) + ci(2)*dcj(3,idx) + ...

dci(3,idx)*cj(2) + ci(3)*dcj(2,idx) - ...

(ci(2)*cj(3) + ci(3)*cj(2))*dA(p,idx);

function dci = calc dci(xj,xk,xl,p)

dci = zeros(3,4);

for q=1:3

dci(q,2) = delta perm(xk,xl,p,q); % dci q/dxj p

dci(q,3) = delta perm(xl,xj,p,q); % dci q/dxk p

dci(q,4) = delta perm(xj-xl,xk-xl,p,q); % dci q/dxl p

end

function dcj = calc dcj(xi,xk,xl,p)

dcj = zeros(3,4); % d x n v
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for q=1:3

dcj(q,1) = delta perm(xl,xk,p,q); % dcj q/dxi p

dcj(q,3) = delta perm(xi,xl,p,q); % dcj q/dxk p

dcj(q,4) = delta perm(xk-xl,xi-xl,p,q); % dcj q/dxl p

end

function v = delta perm(x,y,p,q)

kd = eye(3);

e = [2,3; 3,1; 1,2];

r1 = e(q,1); r2 = e(q,2);

v = (x(r1)-y(r1))*kd(p,r2) - (x(r2)-y(r2))*kd(p,r1);

function dA = d detA(xi,xj,xk,xl)

dA = zeros(3,4);

dA(:,1) = cross(xj-xl,xk-xl)';

dA(:,2) = cross(xk-xl,xi-xl)';

dA(:,3) = cross(xi-xl,xj-xl)';

dA(:,4) = -sum(dA(:,1:3),2);

function s = change cond2anisotropic(cond type,s0,nt)

switch cond type.string

case 'anisotropic'

s = s0;

case 'layered'

n = cond type.normals;

s = zeros(6*nt,1);

I = eye(3);

for t = 1:nt

idx = (t-1)*2;

ss = (s0(idx+1)-s0(idx+2))*(n(t,:)'*n(t,:)) + s0(idx+2)*I;

idx = (t-1)*6+(1:6);

s(idx) = [ss(1,1),ss(1,2),ss(1,3),ss(2,2),ss(2,3),ss(3,3)]';

end

case 'isotropic'

s = zeros(6*nt,1);

for t=1:nt

idx = (t-1)*6+(1:6);

s(idx) = [s0(t),0,0,s0(t),0,s0(t)]';
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end

case 'conformal'

A = cond type.constraints;

s = zeros(6*nt,1);

for t=1:nt

idx = (t-1)*6+(1:6);

s(idx) = s0(t)*A(idx);

end

otherwise

error('%s not recongnised as a possible conductivity type.',...

cond type.string);

end

% plot edgecond2vertpos jacobian.m

%% Load netgen mesh

meshdir = './NetgenMeshes/';

meshfile = 'sphere very coarse';

% meshfile = 'cylinder v coarse';

[~,H, V] = mesh reader([meshdir,meshfile,'.vol']);

%% Add a few more interior verts and remesh

if strcmp(meshfile,'sphere very coarse');

V extra = [-0.45,0.1,0.08; 0.46,0.04,-0.1; 0.03,-0.44,0.04; ...

0.02,0.42,0.09;0.01,-0.02,-0.46; -0.04,0.06,0.43];

V = [V; V extra];

H = delaunay(V);

end

%% Get parameters

get mesh parameters

%% Tree:

tree = grMinSpanTree(D);

rt = 1;

Dm=treesort(D(tree,:),rt); % easier if a directed tree
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%% Random number stream setup

defaultStream = RandStream.getDefaultStream;

load randstream;

defaultStream.State = savedState;

%% Define type of conductivity perturbation

% % Anisotropic

% sv = repmat([1,0,0,1,0,1],nv,1);

% s = repmat([1,0,0,1,0,1]',nt,1); % tets

% cond type test.string = 'anisotropic';

% Layers:

cond type test.string = 'layered';

cond type test.normals = Centroids; % spherical

% cond type test.normals = repmat([0,0,1],nt,1);

% r = 0.1*randn(nt,3);

% cond type test.normals = cond type test.normals + r;

s = repmat([1,1]',nt,1);

sv = repmat([1,1],nv,1);

% % Isotropic:

% cond type test.string = 'isotropic';

% sv = ones(nv,1);

% s = ones(nt,1);

% % Multiplicative constant:

% cond type test.string = 'mult const';

% cond type test.constraints = repmat([1.2,-0.2,-0.1,1.1,0,1]',nt,1);

% sv = ones(nv,1);

% s = ones(nt,1);

Q = cond2edgecondmap(H,E,V,cond type test);

C = Q*s;

%% Options

options.fix boundary = true;

options.fix cond boundary = false;

options.conductivity = 'tets';
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%% Jacobian at a point where constraints are met (i.e. initial mesh)

% p = [1e-5,1e-7,1e-9,1e-11,1e-13,1e-15];

% % p = [1e-8,1e-15];

% J = cell(length(p),1);

% for i=1:length(p)

% fprintf(1,'Perturbation: %.0e ...\n',p(i));

% options.perturbation = p(i);

% J{i} = edgecond2vertices jacobian(H,F,E,find(~isbnde),...

% Dm,V,C,s,cond type test,options);

% end

%% Analytic:

options.jacobian type = 'analytic';

options.perturbation = 1e-8;

fprintf(1,'Analytic Jacobian ...\n');

Ja = edgecond2vertices jacobian(H,F,E,find(~isbnde),...

Dm,V,C,s,cond type test,options);

%% Plot singular values

% leg = cell(length(J)+1,1);

% col str = 'robogokomocor*';

% for i=1:length(J)

% [QQ,RR] = qr(J{i});

% [Uv,Sv,Vv] = svd(QQ*RR);

% Sv = diag(Sv)./Sv(1,1);

% semilogy(Sv,col str((i-1)*2+(1:2))); hold on;

% leg{i} =sprintf('p = %.0e',p(i));

% end

[QQ,RR] = qr(Ja(:,1:3*nvi));

[Uv,Sv,Vv] = svd(QQ*RR);

[QQ,RR] = qr(Ja(:,3*nvi+1:end));

[Us,Ss,Vs] = svd(QQ*RR);

% Sv = diag(Sv)./Sv(1,1);

% figure(1); clf; semilogy(diag(Sv),'r*');%,'LineStyle','-');

% hold on; semilogy(diag(Ss),'bo'); hold off%,'LineStyle','-');

J = [Ja(:,1:3*nvi)/Sv(1),Ja(:,3*nvi+1:end)/Ss(1)];

[QQ,RR] = qr(J);

[UU,SS,VV] = svd(QQ*RR);
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SS = diag(SS)./SS(1,1);

figure(4); semilogy(SS,'o');

ax = axis; ax(3:4) = [1e-18,1e0]; axis(ax);

% leg{length(J)+1} = 'Analytic';

% hold off;

% legend(leg);

figure(2); imagesc(VV(:,1:ne)); axis image; colorbar

figure(3); imagesc(VV(:,ne+1:end)); axis image; colorbar


