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ABSTRACT
Ontologies are complex knowledge representation artefacts
used widely across biomedical, media and industrial domains.
They are used for defining terminologies and providing meta-
data, especially for linked open data, and as such their use
is rapidly increasing, but so far development tools have not
benefited from empirical research into the ontology author-
ing process. This paper presents the results of a study that
identifies common activity patterns through analysis of eye-
tracking data and the event logs of the popular authoring tool,
Protégé. Informed by the activity patterns discovered, we
propose design guidelines for bulk editing, efficient reason-
ing and increased situational awareness. Methodological im-
plications go beyond the remit of knowledge artefacts: we
establish a method for studying the usability of software de-
signed for highly specialised complex domains.
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INTRODUCTION
Ontologies define a domain of interest by describing entities
and their logical relationships. A number of fields including
healthcare, genetics, chemistry and geography have success-
fully adopted ontologies to represent the entities in these do-
mains [11]. We can illustrate how an ontology describes a
field of interest by showing an excerpt from the Wine ontol-
ogy [27]; according to this ontology we can say that wine is
a potable liquid made in a region using at least one variety
of grape. Using the Web Ontology Language, OWL [28], au-
thors can formalise the knowledge stated in that natural lan-
guage sentence using logical axioms that establish relation-
ships between classes of objects (Wine, PotableLiquid, Re-
gion and WineGrape) using OWL constructs (subClassOf)
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and properties (locatedIn and madeFromGrape) as shown
in Figure 1. The strict semantics of OWL, in conjunction
with an automated reasoner, allow implicit knowledge to be
inferred from the asserted ontology. These facilities help on-
tology builders construct robust and flexible knowledge rep-
resentations for use in a range of application settings [11].
Class: Wine

SubClassOf: food:PotableLiquid,
locatedIn some Region,
madeFromGrape min 1 owl:Thing

Wine 

locatedIn 

Region 

madeFromGrape 

WineGrape 

subClassOf 

PotableLiquid 

Figure 1. OWL syntax of the entities that define Wine and their visual
representation below. Diamonds indicate individuals of a class.

Ontologies are employed for a variety of purposes, but are
particularly useful for the definition of terminologies, which
are frequently used in the biomedical domain for data descrip-
tions. An exemplar is the SNOMED Clinical Terms terminol-
ogy [20], which defines more than 300 000 medical concepts,
and is mandated for use in around 60 countries. Similarly, the
Gene Ontology [21] has three sub-ontologies containing more
than 40 000 classes. It has been used to describe the func-
tional attributes of gene products of many species, amounting
to millions of annotations. The Gene Ontology also drives
many analysis tools in biology [14]. These large, often com-
plex, logical descriptions of a field of interest are key to much
data analysis and are increasingly used to describe the wealth
of Linked Open Data [2]. For instance, ontologies constitute
a core technology of the British Broadcasting Corporation
(BBC) website [3], which delivers information —including
archival audio content— to around 40 million unique users
per week. To support this activity, we must develop tools that
reliably support the creation, maintenance and use of ontolo-
gies, by a wide range of users.

Despite their success and significance, ontologies are known
to be complex to create and maintain, which hinders adop-
tion, particularly by novices. This complexity has a number
of dimensions:



– Cognitive complexity: description logics are difficult to un-
derstand [19] and consequently a steep learning curve is
required to sufficiently master them [31].

– Size: ontologies can be large artefacts containing hundreds
of thousands of axioms. Exploring, navigating and adding
even a single axiom to an ontology can cause disorientation
and confusion to a user [24].

– Expertise: ontologies are often used to model specific phe-
nomena such as genes, nanoparticles, or amino acids. This
requires domain experts to work together with computer
scientists —a common practice, but one that can generate
tensions between those playing different roles [18].

– Reasoning: because of the complexity of description
logics, the logical justifications used to explain inferred
knowledge or consistency problems in the ontology are of-
ten difficult to understand, let alone to correct [10].

One of the key factors contributing towards the acceptance
of a new technology is the availability of tools to create high
quality artefacts. Ontology authoring tools have seen many
improvements over recent years, and Protégé in particular has
become a popular integrated ontology development tool [5,
30]. However, primarily because little is known about how
ontology authors tackle their tasks, the ontology engineer-
ing community has thus far largely ignored the question of
whether existing tools are adequate to support authors. As a
result, and as suggested by the analysis of the literature be-
low, the interfaces of existing tools might not be well-suited
to the intended tasks.

Background
The literature covering the usability of ontology authoring
tools is scarce: seminal work in the realm of knowledge rep-
resentation systems indicates that adequate reporting of er-
rors and explanation of inferences are key to building usable
tools [15]. Heuristic evaluation has often been used to assess
the suitability of ontology authoring tools. These heuristics
comprise questions to check whether particular types of func-
tionality are implemented, e.g. “Is it possible to use multiple
inheritance?”, or cover aspects of usability, e.g. “Is there a
good overview of the ontology?” [7]. Other work suggests
that implementing faceted browsing, faceted viewing and in-
line editing would make semantic authoring tools more us-
able [12]. In a previous paper we proposed a framework [23],
constructed around the strategies reported by ontology au-
thors in an interview study, to evaluate ontology authoring
tools based on a number of design recommendations, such
as the inclusion of situational awareness mechanisms, effi-
cient ontology population methods and search capabilities,
amongst others. The conclusion of both this and previous
studies using heuristics and quality frameworks, is that cur-
rent tools have severe usability problems.

The direct participation of end users in the evaluation of
knowledge engineering tools is also scarce. In a study of non-
expert users, participants were asked to carry out basic tasks
including ontology loading, and entity addition, modification
and removal [13]. Tool efficiency, user attitude and aspects
of learnability were measured using questionnaires. Another
study, which involved authors tackling more difficult tasks

including, adding subsumptions, equivalence and range ax-
ioms, also used questionnaires to measure the effectiveness,
efficiency, and user experience of tools [8]. In an interview
study with expert ontology authors we found that individuals
employ sophisticated strategies to mitigate the weaknesses of
tools [24]. Based on these strategies, we proposed a set of de-
sign insights to improve sensemaking, exploration, ontology
building, debugging and evaluation tasks. The studies above
involving users agree that tools are difficult to use and that
no tool meets all the functional requirements of users. How-
ever, the results need to be handled with care. Ideally, they
should be complemented (and corroborated) with objectively
collected data to mitigate the cognitive biases that might have
been introduced due to self-reporting.

To date, there is little work investigating how ontology au-
thoring tools are actually used. In a recent study, Wang et al.
analysed the ontology editing history of the online version of
Protégé, using data mining techniques to predict the author-
ing event that is going to occur next [29]. In this instance,
however, little is said about the tasks or activities of users.

A key contribution of this paper is the method we employ
to identify the activity patterns of users. A priori we know
very little about how users deal with conceptual knowledge
artefacts and we ignore how the activities are exhibited. We
collect event data via an instrumented Protégé, combine this
with eye-tracking data, and use a data-driven approach to iso-
late core activities and their implementation details. We argue
that this approach is generalisable to other situations in which
individuals must deal with data of a complex nature, includ-
ing exploration of big linked data, spreadsheet use and other
forms of programming. The remaining contributions of the
paper are as follows:

– We build a version of Protégé that logs interaction data to
enable posterior analysis. The tool is openly available for
the community —see §Instrumenting Protégé.

– We run the first study in which interaction and gaze data
are used together to identify the authoring activities. This
methodological contribution goes beyond the construction
of knowledge artefacts, with potential application to study-
ing the usability of highly specialised complex software
whose users are typically experts —see §Study.

– We provide details about how the three main activities of
editing, reasoning and exploring are realised. This study
establishes a baseline for the exploration of how these ac-
tivities are linked across different settings, tasks, types of
users and ontologies —see §Results.

– We articulate the core activities and behaviours as design
guidelines that authoring tools should support to improve
the ontology engineering process. —see §Discussion.

INSTRUMENTING Protégé
Surveys indicate that Protégé is the preferred authoring tool
of the vast majority of ontology authors, with reported uptake
figures of around 68% in 2007 [5] and 74% in 2013 [30].
While we must be very careful about generalising our results
beyond the realm of Protégé, it is safe to say that the outcomes
of using Protégé in user studies are relevant to a majority of
ontology authors.
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Figure 2. Core areas of interest defined in Protégé (left); Pop-up areas of interest defined in Protégé (right).

We modified the source code of Protégé 4.3 so that the tool
logged the events triggered by users1. We classify these as
interaction events, authoring events and environment events.
Events occur in different areas of the Protégé user interface
as highlighted by Figure 2 (left). At the top, the file menu
contains a number of functionalities that can be reached by
navigating the menus. In addition to running the reasoner and
customising the views of Protégé, these drop-down menus
typically provide redundant functionalities to those offered
in the remaining areas. This area also contains a number of
tabs that display different views of the ontology. On the left
side, the class hierarchy and the property hierarchy contain
expandable treeviews that represent the hierarchy of classes
and properties as defined by subsumption axioms. On the
top-right side, in the annotations-usage area, annotations are
used to provide metadata for ontologies and their entities, and
often show comments, label synonyms or authoring metadata
about items in the hierarchies. Usage shows a list of axioms in
which the latest selected entity appears. At the bottom right,
the description area contains a list of the axiomatic descrip-
tions for the latest item selected in either of the hierarchies;
in addition, a number of functionalities to create and mod-
ify such entities can be invoked, for instance, a pop-up to set
restrictions (see the Edit entity dialogue in Figure 2, right).

Interaction Events
Interaction events are logged as applying to either asserted
hierarchies, entities and descriptions, or to inferred ones. The
former are explicitly authored by the user, whereas the latter
are built by the reasoner.

– Hierarchy expanded2 causes the class hierarchy and prop-
erty hierarchy to display child nodes of the clicked item.

– Hierarchy collapsed hides all the displayed subsumed
classes or properties of a particular item.

– Entity selected indicates the selection of an item in any of
the hierarchies.

– Description selected means an item contained in the de-
scription area is selected.

1The UI of the following versions including Protégé 5.0 is consistent
with the version we instrumented.
2Protégé provides different ways of accomplishing certain events.
For brevity, we describe how they most often occur in the study.

Authoring Events
– Class/property addition is typically carried out by typing

the name of a new entity in the textbox of the Pop-up win-
dow —see the leftmost dialogue in Figure 2, right.

– Entity edited:start records that the dialogue for establish-
ing relationships between entities, or modifying existing
ones, has appeared. If we want to assert that all objects
of the Wine class belong to a particular Region, the Edit
entity dialogue provides two options: one, adding OWL
statements using Manchester syntax in a textbox (writing
locatedIn some Region in the class expression editor);
or two, selecting, in the hierarchy, the restricted property
(locatedIn), the restriction filler (Region) and setting ex-
istential (∃) as the type of quantifier.

– Entity edited:finish indicates that the editing is finished.
– Entity renamed is the action of modifying the original

name of an entity in a hierarchy by typing the new name
in a pop-up text box.

– Entity deleted removes the selected entity.
– Entity dragged moves an entity to another location.
– Convert into defined class turns a given class’s restrictions

from necessary into necessary and sufficient conditions.
– Set property defines the characteristics of a property by

clicking on a set of checkboxes.

Environment Events
– Run reasoner invokes an automated reasoner. The results

show whether any class is unsatisfiable or the ontology is
inconsistent (i.e. there is a logical contradiction in the on-
tology), and any inferred knowledge is exposed.

– Get explanation shows the axioms that led to a given infer-
ence, including the unsatisfiability or inconsistency of any
constructs —see the rightmost dialogue in Figure 2, right.

– Load ontology loads an OWL file into the environment.
– Back moves the focus to the previous view.
– Undo reverts the ontology to the state before the last mod-

ification was made.
– Save saves the current state of the ontology.

We report a thorough description of our instrumented version
of Protégé, which includes more events and functionalities in
addition to the ones above [25]. Generated log files (see an



excerpt below) contain a timestamp, the name of the event,
and the object of the event.
1: 1390228276585,Element edited:finish,StEmilion subclass of:
Bordeaux and madeFromGrape value CabernetSauvignonGrape
2: 1390228277786,Save ontology,wine.owl
3: 1390228280204,Reasoner invoked,HermiT 1.3.8
4: 1390228280647,Mouse entered,Class hierarchy
5: 1390228282910,I_Entity hovered,Burgundy
6: 1390228283049,I_Entity selected,Burgundy
7: 1390228283661,I_Hierarchy expanded,Burgundy

This excerpt shows that the user added a property made-
FromGrape and a filler to that property CabernetSauvi-
gnonGrape to the class of StEmilion wines (line 1); that, the
ontology is saved (line 2); and the reasoner is invoked (line
3). When the reasoner is finished the user enters the class hi-
erarchy (line 4), selects an inferred class (line 6) and finally
expands the inferred hierarchy under Burgundy.

STUDY

Participants
Sixteen participants (11 male) between 22 and 47, median age
32.5, took part in our study. They had a background in com-
puter science, and worked both in academia and industry. We
used snowball sampling to contact possible candidates and
invited any who reported to be knowledgeable about OWL
and Protégé to participate. Participants completed a question-
naire containing 5-point Likert scales on the following: “As-
sess your expertise with OWL”; “Assess your expertise with
Protégé”; “Assess your knowledge about potato varieties” (to
ascertain the familiarity of participants with the domain of the
tasks), where 1 indicated ‘Novice’ and 5, ‘Expert’.

Experimental Design
The overall goal was to construct an ontology of potatoes to
drive a ‘potato finder’ application. Participants were asked to
carry out the following tasks of increasing difficulty:

1. Classify the potatoes by cropping times.
2. Import a file containing descriptions of potato yields. Rep-

resent the yields of each kind of potato and classify by
combinations of yield and cropping time.

3. Add in a representation of culinary role (i.e. preferred way
of cooking). Build at least two classes that combine the
three axes (culinary role, yield and cropping time).

Participants were told not to start from scratch, but to adopt
the persona of a ‘jobbing’ ontologist given an OWL ontology
to extend and maintain. No explicit instructions were given
on how to accomplish the tasks, but because participants were
experts, we expected them to exhibit a repertoire of activi-
ties, including the invocation of the reasoner and the estab-
lishment of restrictions on classes. Participants were given a
printed table with the necessary information —cropping time,
yield or skin colour— to build the potato ontology. We also
provided them with an OWL file containing 13 subclasses of
various potato varieties and another one with a small hierar-
chy of cropping times for potatoes, which also removed some
of the burden of large amounts of editing. There was no fixed
time specified in which to complete the tasks, but participants
were free to stop at any time. Participants filled out a post-
test questionnaire about the perceived difficulty of each task

using a 5-point Likert scale, where 1 indicated ‘easy’ and 5,
‘difficult’.

Apparatus
The instrumented Protégé was deployed on a Windows 7 lap-
top with a Tobii X2-60 eye-tracker installed. The areas of in-
terest (AOIs) correspond to those defined in Figure 2. It must
be noted that the AOIs are not necessarily static as their ar-
rangement and layout changes depending on the view being
used, and users do often switch views. There are 8 differ-
ent views on the default Protégé installation. While there is
a general view (the one shown in Figure 2), the other views
specialise in particular aspects of the ontology: classes, prop-
erties or queries. Thus, when users switch to another view
or a pop-up dialogue appears, the AOIs are redefined accord-
ingly. Video and audio were also recorded; completion times
were logged during observation of the video recordings.

RESULTS
A median of 4 was obtained for both the questions regard-
ing OWL and Protégé expertise, which confirms that partici-
pants were tending towards being experts, whereas a median
of 1.5 for expertise about potatoes suggests little knowledge
about the domain. Participants perceived an increasing level
of difficulty in the tasks: Mdn = 1 and M = 1.4 for task
1, Mdn = 2 and M = 2.1 for task 2, and Mdn = 2 and
M = 2.5 for task 3. A Kruskal-Wallis test indicates that
these differences are significant, χ2 = 12.19, p < 0.005.
Median completion times were 10min 42s for task 1, 12min
11s for task 2 and 18min 37s for task 3. Again, the Kruskal-
Wallis test suggest that these differences are significant, χ2 =
10.65, p < 0.005. Reasoning time was included in comple-
tion times; the impact of delays was negligible as the aggre-
gated median time for reasoning across participants was just
560 ms.

Log Data Analysis
The logs of participants’ interaction with Protégé show 9 210
events of the types mentioned in §Instrumenting Protégé and
around 55K mouse hovering events. Figure 3, on the left
hand side, shows the distribution of frequencies of the events.
The top three events alone (Entity selected, Description se-
lected and Entity edited:start) account for the vast majority
of events (56%). On the other hand, the 8 events that are less
frequently triggered —those at the bottom of the long tailed
distribution— account for just 3.5% of all the events. If we
analyse event frequency by event category we find that inter-
action events account for 65% of events, followed by author-
ing events (30%) and environment events (5%). 83% of the
interaction events are on asserted entities, whilst 17% are on
inferred entities. If we consider interaction events individu-
ally, the ratio of inferred events to the total number of events
(inferred+asserted) shows that 13% of entity selections, 9%
of description selections, 34% of hierarchy expansions and
36% of hierarchy collapses occur on the inferred entities.

We compute the correlations between completion times and
the frequency of events in each task using Spearman’s cor-
relation test. For task 2 we find there is a strong posi-
tive relationship between completion time and the number
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Figure 3. Log data of all participants: frequency of events (left) and frequency of N-grams of the same consecutive event (right) — (i) indicates inferred.

of selected entities ρ = 0.76, p < 0.002, and expansion
ρ = 0.67, p < 0.007 and collapse ρ = 0.63, p < 0.02 of
the asserted hierarchies. Interestingly, the more times ex-
planations are requested (ρ = 0.61, p < 0.03) and the rea-
soner is invoked (ρ = 0.48, p < 0.06) the longer it takes to
complete a task. Similar relationships are found for task 3
where there is a strong positive correlation between comple-
tion time and reasoner invocation (ρ = 0.72, p < 0.003) as
well as with the number of times an entity has been renamed
(ρ = 0.63, p < 0.02). Even if the correlations of the same
event do not hold between tasks (except for the invocation
of the reasoner), the strong correlations between completion
time and number of selected entities, and the times the hier-
archy is expanded and collapsed suggest that it took longer
for participants to complete tasks because navigating in the
asserted hierarchy kept them busy. Also, since the reasoner
had to be run to classify entities, there are at least two ex-
planations of why it takes longer to complete tasks for those
who run the reasoner more often: (i) it might be a symptom of
a trial and error strategy for not achieving the classifications
enunciated by the tasks; (ii) it may be indicative of a partic-
ular authoring style in which participants run the reasoner at
each modification in order to limit the spread of errors [24].

We define authoring patterns as common sequences of events.
In order to identify such sequences we carry out an N-gram
analysis of the events in the log files using the tau package [4]
for the R statistical computing environment. A preliminary
analysis shows there are many repeated N-grams of the same
event. This is particularly illustrative of the events shown on
the right hand side of Figure 3. In this case, an N-gram of
size 3 means there are 3 consecutive occurrences of the same
event: e.g. class addition, class addition, class addition. Fig-
ure 3 depicts that higher N-grams are less frequent. However,
surprisingly, there are around 100 N-grams of size 10 for the
entity selection event and a high number of size 3–6 N-grams
for the rest of the depicted events. It is worth highlighting that
all of these events (except class addition, which requires text
entry) are performed using a mouse click. This facilitates trig-
gering the same consecutive event without much effort. The
high number of N-grams containing consecutive entity selec-

tions and class expansion events (either asserted or inferred)
indicates that a great deal of activity occurs in the class and
property hierarchy areas. Results also suggest that adding en-
tities and navigating the class hierarchy is a highly repetitive
and monotonous task. Another observation reveals that for
N-grams > 3, more consecutive expansions occur in the in-
ferred hierarchy than in the asserted.

Mantel test correlation
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Figure 4. Mantel tests on transition matrices: *** stands for p < 0.001,
** p < 0.01 and * p < 0.05, where correlations r > 0.45.

Informed by the work of Thimbleby et al. [22] we build an
adjacency matrix for each participant, where each cell con-
tains the number of transitions from state Si to state Sj , and
where the states are those events described in §Instrumenting
Protégé. These transition matrices can be considered the fin-
gerprint of each participant and enable us to identify the sim-
ilarity of the participants’ interaction by comparing the ma-
trices. One way of discerning the similarity between finger-
prints is by computing correlations between transition ma-
trices using Mantel’s test3. An analysis of fingerprints on an

3Mantel’s test is used in ecology to compare the genetic distance
between organisms.
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Figure 5. Eye-tracking data: distribution of aggregated dwell times on AOIs (left); matrix of consecutive transitions between AOIs (right).

individual basis yields an almost linear correlation for the ma-
jority of participants across the three tasks (r = 0.73 on aver-
age across all users), which suggests consistency of behaviour
at an individual level. Similarly, results in Figure 4 show that
the inter-user behaviour is very similar, which suggests the
presence of patterns. However, it can also be seen that not all
participants have common patterns, which may be indicative
of different authoring styles.

Eye-Tracking Data Analysis
We collected 21 304 fixations in the defined areas of inter-
est (AOI). The Shapiro-Wilk normality test indicates that the
number of fixations and the aggregated dwell time on AOIs
are not normally distributed, W = 0.63, p v 0.00 and
W = 0.69, p v 0.00 respectively. We therefore apply
a Friedman test to see if differences in the number of fixa-
tions and aggregated dwell time on the AOIs is statistically
significant. Indeed, the Friedman test reveals a significant
effect of AOI on dwell time, χ2(7) = 80.932, p v 0.00.
Post-hoc pairwise comparisons using Wilcoxon signed-rank
test (with Bonferroni correction) indicate there are signifi-
cant differences between all AOIs, except for Property hi-
erarchy and Annotations. There is also a statistically sig-
nificant difference in the number of fixations on the AOIs,
χ2(7) = 82.247, p v 0.00. Post-hoc pairwise comparisons
using the Wilcoxon signed-rank test (with Bonferroni correc-
tion) suggests all differences are significant.

Table 1 shows the number of fixations and the overall dwell
time on each AOI, while the boxplots on the left side of Fig-
ure 5 depict the distribution of dwell time on each AOI across
all participants. The data suggest that the class hierarchy gets
by far the greatest number of fixations (43%) and receives
attention from participants 45% of the time. With the excep-
tion of the Edit entity dialogue (both 26% of the fixations and
dwell time) and the description area (17% of the fixations and
15% of dwell time) the remaining areas obtain only a small
number of fixations.

The matrix on the right of Figure 5 conveys the frequency of
transitions between different areas. In other words, it shows

File
menu

Ann.
-Usage

Class
hierarchy Desc. Pop-up Edit

entity
Property
hierarchy Expl.

Fixations 314 722 9061 3557 883 5579 791 397

Dwell time 73.75 173.96 2318.29 766.79 227.99 1351.05 172.18 93.14
Mdn 4.11 6.85 111.61 60.05 9.45 73.69 7.85 0
SD 4.45 15.87 130.98 32.92 14.71 79.07 13.67 23.83
Max 14.59 60.26 444.53 103.23 37.60 226.36 51.01 89.36
Min 0 0.43 19.48 8.80 0.15 13.03 0.35 0

Table 1. First two rows: number of fixations and aggregated dwell time
on each AOI. Below, descriptive statistics of dwell time across partici-
pants. All times are reported in seconds.

where the participants look in ti based on where they were
looking in ti−1. While it is expected that cells at the diagonal
of the matrix will get the higher number of fixations —it is
likely that if there is a fixation in a given area the next fixa-
tion will be in the same area— there are also some unexpected
findings. First of all, the matrix is (almost) symmetric, which
indicates that frequencies are similar in both directions: i.e.
fixating first on the class hierarchy and then on the descrip-
tion area is equally as likely as fixating on the description
area and then looking at the class hierarchy. Secondly, there
are some symmetric transitions not located on the diagonal,
which stand out because of their higher frequency:

– From the class hierarchy to the description area.
– From the class addition pop-up dialogue to the class hier-

archy.
– From the Edit entity dialogue to the class hierarchy.
– From the Edit entity dialogue to the description area.

Again, these findings emphasise the centrality of the class hi-
erarchy and its role as a pivotal element in most activities.

From Events to Activities
The analysis of log and eye-tracking data alone yields a num-
ber of interesting findings about how repetitive the authoring
process is and how most activities occur around the class hi-
erarchy. In order to deepen our understanding of common
authoring activities, we conducted N-gram analysis with log
data and eye-tracking data merged as follows:
1395152087431,eye,Class hierarchy
1395152088065,eye,Class hierarchy



1395152090012,log,EntitySelected
1395152090589,log,EntitySelected
1395152091213,eye,Description
1395152091483,log,EntitySelected
1395152092605,log,EntitySelected
1395152093684,log,EntitySelected
1395152094896,log,HExpanded

The analysis of log data has already shown that participants
exhibit similar behaviours (see Figure 4), as described in in
§Log Data Analysis. However, the high frequency of the same
events occurring consecutively initially obscures some com-
mon activities. The eye-tracking data also contains a high
number of consecutive fixations in the same AOI, as shown
by the diagonal of the matrix in Figure 5. To facilitate the
analysis we merge the sequences of consecutive events. We
illustrate this merging in the following log file shown, where
the ‘M’ before events stands for ‘multiple’:
1395152088065,eye,M_Class_hierarchy
1395152090589,log,M_entity_selected
1395152091213,eye,Description
1395152093684,log,M_entity_selected
1395152094896,log,HExpanded

Using this merged data, the method used to identify the activ-
ities was to compute N-grams> 3 increasing the N-gram size
one at a time until the output of the computation only yielded
concatenation of repeated and smaller N-grams. Then, we
selected the atomic N-grams as the representative ones and
removed their permutations. The analysis of N-grams reveals
that interaction can be classified into three main types of ac-
tivity: editing, reasoning and exploration. Figure 6 depicts
these activities, where an arc between states indicates a tran-
sition, and its value gives the probability that the transition
is about to happen, while a dashed arc means there may be
a gaze event in between two interaction events. These gaze
events are typically fixations on the class hierarchy and the
description area. For instance, the transition between Run
reasoner and Select entity in Figure 6 (right) indicates that
41% of the time after the reasoner has been invoked, partici-
pants select an entity in the class hierarchy right after looking
at the class hierarchy and/or at the description area.

Exploration
There are several activities that suggest participants are ex-
ploring the class hierarchy. Most notably, Figure 6 (left)
shows that participants expand the asserted class hierarchy
after loading an ontology, presumably to check the arrange-
ment of the class hierarchy and the features of classes in the
description area. The expansion of the asserted class hier-
archy is often followed (48% of the time) by the repeated
selection of different classes while participants look at their
descriptions, and then finally settle on one. Interestingly, ex-
ploration of the inferred class hierarchy differs from explo-
ration of the asserted one in several ways. Firstly, the goal of
the exploration of the inferred hierarchy is not the selection
of a description (for a later modification), but the observation
and checking of the inferred class hierarchy and the features
of its elements (which may have changed after running the
reasoner). Secondly, exploration of the asserted class hier-
archy entails expanding the hierarchy until a desired depth
level is reached and then selecting and observing a number
of items at that level; this suggests that participants may have
a clear idea of the location of the classes for which they are

looking. By contrast, the exploration of the inferred class
hierarchy suggests more uncertainty, as participants expand
the hierarchy multiple times, select and check the features of
multiple classes and then again, expand the class hierarchy.
This finding, together with the higher number of consecutive
N-grams on the expansion of the inferred class hierarchy (see
Figure 3, right), provides evidence for the exploratory nature
of the navigation of the inferred hierarchy. Exploration of
the asserted hierarchy is about familiarisation with the ontol-
ogy and finding a specific location to add or modify an entity,
while exploration of the inferred one is to check the state of
the ontology.

Editing
The repetitiveness of editing classes is demonstrated by the
number of times (362, an average of 22.6 per participant) the
editing activity shown in Figure 6 (centre) is found. This four-
step activity entails selecting an entity, which is followed by
the selection of another one 37% of the time, and the selection
of a description 29% of the time. As denoted by the dashed
arcs, a fixation on the class hierarchy or on the description
area is common in such transitions. If a description is selected
it is likely to be modified (63% of the time) and followed by
another selection of an entity 59% of the time.

Whilst editing, participants select entities in the class hier-
archy and either look at their descriptions, or look for other
entities in the class hierarchy. After the desired entity has
been selected, it is modified by adding properties to classes or
establishing restrictions on the class relationships. The high
probability that these events occur consecutively, along with
the frequency with which this activity is performed, indicates
that entities were modified in batches. This can be explained
by the fact that the tasks mostly consisted of adding restric-
tions to 13 classes that represented potato varieties.

Reasoning
We uncovered a number of patterns of activities before the
reasoner is run, and a number after the reasoning process has
finished. As depicted in Figure 6 (right), saving the current
ontology occurs before the reasoner is invoked 40% of the
time; after converting a class into a defined one, and looking
at the class hierarchy, the reasoner is run 17% of the time.
There are two key activities that occur after running the rea-
soner: 41% of the time participants observe the consequences
of reasoning on the asserted hierarchy and the description
area, then select one or more classes, and check their descrip-
tions. Since the description area shows the inferred features
of classes, this behaviour may indicate that participants are
checking whether the reasoner had consequences for the fea-
tures of classes, in addition to classifying classes. To check
classification, participants expand the inferred class hierarchy
and make selections on inferred entities, which occurs 30% of
the time after the reasoner has been run.

How Activities Connect to Each Other
Once the main activities are identified we are able to detect
them programmatically. Consequently we can reconstruct
the authoring process, which can roughly be described as
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Figure 6. Exploration activities (left); the editing activity (centre); the reasoning activity (right). Dashed arrows indicate fixations on the class or
description area between states.

an initial exploration of the ontology, a burst of modifica-
tions combined with exploration, and exploration after rea-
soning. Since activities (as opposed to events) have clear
boundaries, activity completion times can be measured. We
find that exploring the inferred hierarchy after reasoning takes
longer with each task (from Mdn = 4.56s in task 1 to
Mdn = 16.27s in task 3) perhaps because of the increased
complexity. On the other hand, the editing activity stays sta-
ble (from Mdn = 9.48s in task 1 to Mdn = 8.88s in task
3). We can also identify different authoring styles: some par-
ticipants run the reasoner every time they add a defined class;
others only run it once all defined classes have been defined;
others follow hybrid approaches.

DISCUSSION

Identification of Authoring Activities
The number of consecutive class additions, and the strong
patterns found for editing activities, indicate that ontology
authoring is highly repetitive and is carried out in batches:
first classes and properties are added, then these are edited
by adding properties to classes, and establishing restrictions
on relationships. While the mouse event driven interface of
Protégé certainly enables users to perform these monotonous
tasks, correlations in §Log Data Analysis suggest that explor-
ing the asserted hierarchy to place a new entity is a source of
delay.

The class hierarchy receives the attention of users 45% of
the time and most of the action occurs within its boundaries.
Findings in §Eye-Tracking Data Analysis indicate that users’
attention centres here when they add new classes and edit ex-
isting entities on pop-up dialogues, suggesting that the class
hierarchy acts as an external memory of the ontology. This
means that the decision making process for adding names to
new entities and making modifications is based on the current
state of the class hierarchy. Alongside the class hierarchy, the
description area also plays an important role across all activi-
ties. When users explore the class hierarchy, seek the location
of a class to be modified, or run the reasoner, their gaze fixates
on the class hierarchy and the description area (see Figure 6).
This behaviour suggests that the class hierarchy plays the role
of an index containing pointers to extended information; this

information is then accessed by looking at the container of
the features of each element, i.e. the description area.

Even if reasoning engines have improved over the years, they
(or their interaction with Protégé) sometimes show unstable
behaviour that causes the authoring environment to freeze.
The observed activity of saving the current ontology before
running the reasoner might therefore be a strategy to prevent
information loss. Those participants who ran the reasoner
more often tended to be those who took longer to complete
the tasks. Frequent reasoning may also be due to a particular
authoring style, or an indicator of a ‘trial and error’ strategy
for debugging [24].

We found that navigation of the inferred class hierarchy tends
to be of an exploratory nature, and occurs to check the state
of the hierarchy. By contrast, navigation of the asserted hi-
erarchy is more directed —users know what they are looking
for— and focuses on finding the specific location of a class
to which a modification is planned. The direct relationship
between a greater number of class hierarchy expansions and
higher completion times might be explained by unsuccessful
directed search. Similarly, exploring the hierarchy right af-
ter the ontology is loaded and checking the description of its
elements suggests a strategy of becoming familiar with the
ontology.

Design Recommendations
We enumerate a set of design recommendations that cater
for authors’ information needs, as expressed by the activities
identified above.

– Support bulk editing: Authoring tools should provide
bulk editing functionalities to add entities, and to estab-
lish restrictions on these entities —this is especially use-
ful when building ontologies from scratch. This may be
through including spreadsheet functionalities, and/or al-
lowing authors to upload CSV (or similar) files as a mech-
anism to populate ontologies; such features and tools do
exist, but these are not part of Protégé by default.

– Place editing features close to the class hierarchy: Be-
cause the class hierarchy appears to play the role of an ex-
ternal memory, functionality for editing ontologies should



be placed closer to the class hierarchy, and ideally the au-
thoring environment should include recommendations for
establishing restriction on entities, and suggestions for the
names of those being added based on lexical patterns [17].

– Show entity descriptions close to the class hierarchy:
The class hierarchy also plays the role of an index that users
navigate when they wish to obtain information about the
features of entities, which they must then read in the de-
scription area. While Protégé allows the description and
class hierarchy to be juxtaposed, this is not the default;
these areas should be merged rather than scattered, allow-
ing details of entities to be hidden and shown on demand,
and avoiding a division of attention across the screen.

– Anticipate reasoner invocation: As saving the ontology is
a good predictor of running the reasoner, this could be used
to anticipate the invocation of the reasoner in the back-
ground to save time (reasoning can be a lengthy process).

– Automatic detection of authoring problems: The ‘trial
and error’ authoring strategy, which is operationalised
as the concatenation of editing and reasoning activities,
is used for debugging and indicates authoring difficul-
ties [24]. Detecting this strategy automatically opens up
new avenues to problem pre-emption.

– Make changes to the inferred hierarchy explicit: In or-
der to check the (sometimes unexpected) consequences of
running the reasoner, users engage in a detailed exploration
of the inferred class hierarchy, which is time consuming
and may be prohibitively difficult in large ontologies. This
occurs because the changes made to the ontology as a re-
sult of reasoning are not made explicit by Protégé, and
therefore they have to be actively sought. Authoring tools
should give explicit feedback about the consequences of
reasoning, without obliging users to perform a manual ex-
ploration of the class hierarchy. There could, for example,
be an area for containing notifications produced by a tool
that computes the semantic difference of the ontology be-
fore and after reasoning [9].

Methodological Considerations
The uptake figures of Protégé as the preferred environment to
build ontologies indicate that it is an authoring environment
used by the vast majority of authors (around 70%). However,
our study contains some confounding factors that should be
taken into account when assessing its external validity. There
is the question as to whether the relatively small number of
expert users, educated in computer science, are representative
of novice authors, or those from other domains. Our findings
are naturally most applicable to the population studied (i.e.
OWL and Protégé experts), but we used an accessible domain
to minimise the effect of domain expertise.

It is difficult to say to what extent the activities we found are
generalisable to the ontology authoring process, and to what
extent they are particular to the tool used, and the tasks carried
out. We suggest that the identified activities will occur in
other tasks, although their periodicity and the way in which
activities are connected may vary. That is, sometimes there
will be less reasoning and more editing, but the activities will
still be present. We establish a baseline for future work that
will include running studies in the wild, where the activity of

users will be monitored on real projects, and running studies
with different user groups, including novices.

Implications Beyond Knowledge Artefacts
Studying usability in highly-specialised domains requires the
investment of significant resources, in terms of familiarisation
with the domain and acquiring a minimum level of knowl-
edge [6]. The identification of typical tasks is fundamen-
tal to informing usability walkthroughs. Our method, which
is domain agnostic, facilitates the identification of activities
by allowing them to emerge from the data. This methodol-
ogy will thus have applications in highly-specialised complex
software domains such as bioinformatics, e-health or design.

Previous work investigating the construction and curation
of complex structured data has primarily explored the
workarounds individuals employ when carrying out infor-
mation management tasks in the fragmented landscapes of
databases and spreadsheets [26]. End-users are able to pub-
lish complex data such as online spreadsheets, JSON, RDF
and Bibtex files, provided that they have the appropriate de-
velopment environment [1]. These studies, including those
in which the authoring patterns of software programmers are
discussed [16], conclude that the demands of users often ex-
ceed the capabilities of tools and, as a result, users develop
sophisticated authoring strategies to mitigate the limitations.

Often, identifying such strategies relies on qualitative enquiry
methods, which are able to provide rich information, but do
not scale, and may be subject to experimenter or recall bias.
Here we describe a bottom-up method for identifying user
activities, unknown a priori, when they deal with complex
information structures. Whilst this does not necessarily pro-
vide the same depth of information as a qualitative study, it
provides potentially greater breadth, and supports a more eco-
logically valid design, as participants are free to engage in the
tasks without interruption. We propose that this approach is
useful not only for identifying the authoring strategies carried
out by those who construct complex conceptual knowledge
artefacts, but also those used for the construction of other
complex artefacts of the kinds mentioned above.

CONCLUDING REMARKS
Understanding the activities performed by ontology authors
is important, not only to make sense of the authoring process,
but also to build tools that provide better support for engi-
neering complex knowledge artefacts. Following an emer-
gent, data-driven approach, we identify common authoring
activities, discover how the user interface of the most pop-
ular current tool introduces inefficiencies into the authoring
process, and propose a set of design guidelines that address
these issues. Implications of this work go beyond the realm of
ontology authoring; we suggest that the method we employ is
generalisable to other scenarios in which users must deal with
domain specific software and complex structured data.
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available at http://owl.cs.manchester.ac.uk/whatif/.
The research was funded by the EPSRC (EP/J014176/1).

http://owl.cs.manchester.ac.uk/whatif/


REFERENCES
1. Benson, E., and Karger, D. R. End-users publishing

structured information on the web: An observational
study of what, why, and how. In Proc. of CHI ’14
(2014), 1265–1274.

2. Bizer, C., Heath, T., and Berners-Lee, T. Linked data -
the story so far. International Journal on Semantic Web
and Information Systems 5, 3 (2009), 1–22.

3. British Broadcasting Corporation. BBC ontologies.
Retrieved from http://www.bbc.co.uk/ontologies.

4. Buchta, C., Hornik, K., Feinerer, I., and Meyer, D. tau:
Text analysis utilities. Available at
http://cran.r-project.org/web/packages/tau/.

5. Cardoso, J. The semantic web vision: Where are we?
IEEE Intelligent Systems 22, 5 (2007), 84–88.

6. Chilana, P. K., Wobbrock, J. O., and Ko, A. J.
Understanding usability practices in complex domains.
In Proc. of CHI ’10 (2010), 2337–2346.

7. Duineveld, A., Stoter, R., Weiden, M., Kenepa, B., and
Benjamins, V. WonderTools? a comparative study of
ontological engineering tools. International Journal of
Human-Computer Studies 52, 6 (2000), 1111–1133.

8. Dzbor, M., Motta, E., Buil, C., Gomez, J. M., Goerlitz,
O., and Lewen, H. Developing ontologies in OWL: An
observational study. In OWL: Experiences and
Directions Workshop (2006).
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