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Abstract

Linear Algebra Over Semirings was submitted by David Wilding to The University

of Manchester on 10 September 2014 for the degree of Doctor of Philosophy.

Motivated by results of linear algebra over fields, rings and tropical semirings,

we present a systematic way to understand the behaviour of matrices with entries

in an arbitrary semiring. We focus on three closely related problems concerning the

row and column spaces of matrices. This allows us to isolate and extract common

properties that hold for different reasons over different semirings, yet also lets us

identify which features of linear algebra are specific to particular types of semiring.

For instance, the row and column spaces of a matrix over a field are isomorphic to

each others’ duals, as well as to each other, but over a tropical semiring only the

first of these properties holds in general (this in itself is a surprising fact). Instead

of being isomorphic, the row space and column space of a tropical matrix are anti-

isomorphic in a certain order-theoretic and algebraic sense.

The first problem is to describe the kernels of the row and column spaces of a

given matrix. These equivalence relations generalise the orthogonal complement of a

set of vectors, and the nature of their equivalence classes is entirely dependent upon

the kind of semiring in question. The second, Hahn-Banach type, problem is to

decide which linear functionals on row and column spaces of matrices have a linear

extension. If they all do, the underlying semiring is called exact, and in this case

the row and column spaces of any matrix are isomorphic to each others’ duals. The

final problem is to explain the connection between the row space and column space

of each matrix. Our notion of a conjugation on a semiring accounts for the different

possibilities in a unified manner, as it guarantees the existence of bijections between

row and column spaces and lets us focus on the peculiarities of those bijections.

Our main original contribution is the systematic approach described above, but

along the way we establish several new results about exactness of semirings. We give

sufficient conditions for a subsemiring of an exact semiring to inherit exactness, and

we apply these conditions to show that exactness transfers to finite group semirings.

We also show that every Boolean ring is exact. This result is interesting because it

allows us to construct a ring which is exact (also known as FP-injective) but not

self-injective. Finally, we consider exactness for residuated lattices, showing that

every involutive residuated lattice is exact. We end by showing that the residuated

lattice of subsets of a finite monoid is exact if and only if the monoid is a group.
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Introduction

1 Background and motivation

A semiring is an algebraic structure in which we can add and multiply elements,

where multiplication distributes over addition, but in which neither subtraction nor

division are necessarily possible. These assumptions might appear prohibitively

weak; what interesting facts about semirings can we hope to establish if we cannot

even rely on subtraction? But, of course, we do not usually attempt to prove grand

results about all structures of a particular kind (sets, groups, rings, and so on).

Rather, we focus our energy on structures that are specialised enough to allow

meaningful, non-trivial, things to be said about them (well-ordered sets, simple

groups, Noetherian rings). With this precedent in mind, the definition of a semiring

is entirely fit for purpose. It is weak enough to encompass an extraordinary variety

of mathematical objects, yet just strong enough to provide a general framework for

matrices and linear algebra that does not need to be rebuilt time and time again as

the class of semirings is charted.

Semirings were first explicitly defined and deemed worthy of study by Vandiver

[82] in 1934, but the notion is so simple and pervasive that several authors before

and since independently came very close to formulating a modern abstract definition.

For instance, in 1847 Boole [11] axiomatised what we would now call an idempotent

semiring (see page 15), and later Hilbert [39] and Huntington [42, 43] formulated

axioms for the semiring of non-negative integers. Golan [34] gives a brief history

of semiring theory, along with a very useful guide to the various alternative names

under which semirings continue to appear. For the brave reader, G lazek [31] provides

a comprehensive catalogue of the extensive and disparate literature on semirings and

their applications. We cannot possibly describe all the areas of mathematics (and

beyond) that have found a use for semirings, so in this section we only discuss a few

instances when matrices over semirings are of particular importance.

9



10 Introduction

One of the classic areas of mathematics in which semirings arise is the theory

of formal languages. A (formal) language is any set of words—finite strings of

symbols—taken from a fixed finite set, called the alphabet. For example, a, bad and

cddd are words over the alphabet {a, b, c, d}, and as such the set {a, bad, cddd}
is a language. The set of all languages over a fixed alphabet can be viewed as a

semiring: to “add” two languages simply take their union, and to “multiply” two

languages take the set of concatenations of a word from one language with a word

from the other language (so that, for example, the product of {a, b} and {c, d} is

{ac, ad, bc, bd}). Such semirings have applications in logic and theoretical computer

science because they make it possible to compare the power of different methods of

computation (see Sipser [80]).

Since a language is just an arbitrary set of words over a fixed alphabet, individual

languages tend not to be as interesting as whole sets of languages that have some

feature in common. One such set of languages is known as the regular languages. As

a subset of the semiring of all languages, the set of regular languages is closed under

addition and multiplication, so is a semiring in its own right. In fact, it is defined

to be the smallest such semiring that (to continue our example) contains the special

languages ∅, {a}, {b}, {c} and {d}, and that is also closed under the unary operation

which takes a language to the union of its nth powers for all integers n ≥ 0. This

operation is called the Kleene star of a language and it takes the singleton {a} to

the infinite language {ε, a, aa, aaa, . . . }, where ε denotes the unique word comprising

no symbols. It is not at all obvious, but as we now explain, regular languages are

intimately linked with matrices over a certain semiring.

A finite automaton is an abstract computing machine that takes as input a word

over a fixed alphabet and returns as output either a 1 (“true”) or a 0 (“false”).

The automaton decides the fate of a word by reading it symbol by symbol and,

at each step, modifying its internal state according to predefined rules. Some of

the (finitely many) states the automaton can be in are designated accept states,

so if the automaton finds itself in one of these states upon reaching the end of the

input word it outputs a 1. Otherwise it outputs a 0. The set of words for which an

automaton outputs a 1 is called the language accepted by the automaton, and by

a celebrated result of Kleene [53], the regular languages are precisely the languages

accepted by automata. Moreover, it turns out that the operation of an automaton

can be simulated by repeatedly multiplying the Boolean matrices that encode its
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rules (see Kuich and Salomaa [55]). This means that the study of regular languages

essentially boils down to considering finite collections of matrices over the Boolean

semiring {0, 1}, where addition is maximum (“or”) and multiplication is minimum

(“and”).

Arguably the most obvious and well-known application of matrices with entries

in a semiring is in linear algebra over a field—usually the field of real or complex

numbers—where a matrix corresponds to a system of linear equations that needs to

be solved. Since a field is a highly specialised type of semiring, matrices over fields

have many useful and interesting properties that are not necessarily available in the

case of an arbitrary semiring. We now briefly recall some of these properties (see

Roman [72] for the details).

Let A denote a matrix with entries in a field, and suppose that A has m ≥ 1

rows and n ≥ 1 columns. Suppose further that A has rank r ≥ 1. This means that

the vector space of all linear combinations of the rows of A, i.e., the row space of A,

has dimension r. The orthogonal complement of the row space of A, i.e., the null

space of A, then has dimension n − r, and in turn the orthogonal complement of

the null space of A has dimension n− (n− r) = r. In fact, this last vector space is

equal to the row space of A, and thus applying the double orthogonal complement

construction to the row space of a matrix over a field has no effect. Finally, the rank

of A turns out to also be the dimension of the column space of A. Therefore the

row space and column space of A are isomorphic vector spaces.

Another way to interpret this result is in terms of dual vector spaces. If X is a

vector space over a field then the dual of X is defined to be the vector space of all

linear functions from X to the field (linear functionals), and it is well-known that if

X is finite dimensional then X is isomorphic to its dual—although the isomorphism

depends on a choice of basis. In particular, the row space and column space of a

matrix A are isomorphic to their respective duals. So, since the row space of A

is isomorphic to the column space of A as well, we can treat the row and column

spaces as if they were each others’ duals. This property of matrices is of great interest

because it also holds over certain semirings that are quite unlike fields, despite the

fact that the row and column spaces of a matrix are not isomorphic in general. For

instance, it follows from the work of Wang [83] that the Boolean semiring is such

a semiring, and, more recently, some of the so-called tropical semirings have been

shown to enjoy the same property (see page 15).
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Tropical algebra is a relatively new area of mathematics which brings together

ideas from algebra, order theory and discrete mathematics, and which has numerous

applications in (for example) scheduling and optimisation, formal language theory,

numerical analysis and dynamical systems. The primary objects of study are the

tropical semirings—a family of semirings based on either the non-negative integers,

the integers or the real numbers, but with unusual semiring operations.1 Specifically,

“addition” is either maximum or minimum (depending on the author’s preference or

the desired application) and “multiplication” is usual addition. That is, in the so-

called max-plus formulation of tropical algebra the sum and product of two numbers

a and b are given by max{a, b} and a + b respectively, whereas in the min-plus

formulation their sum and product are given by min{a, b} and a + b respectively.

To help avoid confusion, it has become commonplace to use special symbols for

these repurposed operations: a⊕ b means either max{a, b} or min{a, b}, while a� b
and a ⊗ b both mean a + b. This process of replacing addition by maximum, say,

and multiplication by addition can be thought of as taking limits of logarithms (see

Litvinov [61]).

Tropical algebra is a powerful tool because it allows us to analyse inherently

non-linear problems in a linear, combinatorial way. The general strategy is to first

transform a (classical) non-linear system into a piecewise (tropical) linear system

and then use methods from tropical linear algebra to provide information about the

original system. This approach has been used to significantly speed up computation

of the eigenvalues of matrix polynomials (see Gaubert and Sharify [30]), and it can

also be used to understand discrete event dynamical systems (see Baccelli et al. [4]).

As a direct consequence of the usefulness of tropical linear algebra, matrices over

tropical semirings have been the subject of active investigation since the 1960s. The

first comprehensive account of tropical matrices and their practical applications in

scheduling was compiled by Cuninghame-Green [22] in 1979, and in the years that

followed, the theoretical and computational aspects of tropical linear algebra were

developed to the point where they could be used to attack an enormous variety

of synchronisation, optimisation and network flow problems (see Heidergott et al.

[37] and Butkovič [16]). Many such problems ultimately necessitate describing the

eigenvectors of a tropical matrix, and it turns out that an operation analogous to the

Kleene star (see above) can be used for this purpose. Specifically, if A is a tropical

1Sometimes also with a minimum element −∞ and/or a maximum element ∞.
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matrix then the matrix A0⊕A1⊕A2⊕A3⊕· · · can—provided it exists—be used to

construct the tropical eigenvectors of A. The appearance of the Kleene star here is

not entirely coincidental; there is a connection between tropical algebra and formal

language theory.

Recall that an automaton is an abstract machine that assigns either a 0 or a

1 to each word written using symbols taken from an underlying alphabet. So, put

another way, an automaton simply computes a function from the set of words to

the Boolean semiring {0, 1}. This way of thinking leads naturally to the notion of a

weighted automaton—a machine that computes a function from the set of words to

an arbitrary semiring—and, just as with Boolean automata, a weighted automaton

can be represented by matrices with entries in the chosen output semiring S. In 1961,

Schützenberger [74] showed that the set of functions to S which can be computed

using weighted automata coincides with the smallest semiring of functions to S

that contains certain basic functions and is closed under an appropriate Kleene star

operation. This semiring is now known as the semiring of rational power series with

coefficients in S, and in the case S is the Boolean semiring it is essentially just the

semiring of regular languages (see Berstel and Reutenauer [7]).1 Several finiteness

problems in formal language theory have been tackled by taking S to be a tropical

semiring (see Simon [78] and Pin [71]).

Various attempts have been made to use ideas from combinatorics and abstract

algebra to understand the behaviour of tropical matrices. For example, d’Alessandro

and Pasku [23] considered permutation properties of matrix products, Gaubert and

Katz [29] investigated reachability via matrix multiplication, and Simon [79] studied

finiteness conditions for semigroups of matrices. Systematic analysis of the structure

of multiplicative semigroups of tropical matrices began in 2010, with semigroups of

2×2 matrices the first to be considered. Izhakian and Margolis [44] discovered semi-

group identities and obtained an embedding of the bicyclic monoid, while Johnson

and Kambites [46] gave a description of maximal subgroups and Green’s relations.

Following on from these results, Hollings and Kambites [40] and Johnson and Kam-

bites [47] have shown that Green’s relations for n × n tropical matrices are very

much like those for matrices over a field. Moreover, implicit in the work of Hollings

and Kambites [40] is the fact that the row and column spaces of a tropical matrix

are isomorphic to each others’ duals, just as with matrices over a field (see above).

1Functions from the set of words to S are usually called (formal) power series with coefficients
in S.
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Recent investigations of tropical matrices have focussed on the combinatorial and

geometric properties of their row and column spaces. This approach was initiated in

2004 by Develin and Sturmfels [24], who introduced tropical polytopes (i.e., row and

column spaces of tropical matrices) and studied them as polyhedral complexes using

techniques from combinatorial geometry. The ability to treat a tropical polytope as

a geometric object has resulted in several interlocking definitions of the dimension of

a tropical polytope, and consequently there are numerous non-equivalent meanings

of the rank of a tropical matrix (see Develin et al. [25] and Akian et al. [1]). In this

potentially confusing environment, idempotent matrices are of great value because

they essentially have only one sensible notion of rank. Idempotent matrices are also

important for another reason: Johnson and Kambites [48] have shown that every

finite metric space is realised on the vertices of the tropical polytope associated with

some idempotent matrix of a certain kind.

Tropical geometry is a lively and rapidly expanding area of mathematics, and

our discussion of it barely scratches the surface. One of the most active and produc-

tive avenues of research is the application of tropical methods in algebraic geometry,

whereby algebraic varieties become polyhedral complexes called tropical varieties

(see Maclagan and Sturmfels [64] for a highly readable introduction). Since tropi-

cal mathematics is inherently combinatorial, many of its successful applications in

algebraic geometry involve counting the number of objects of a specific type. For

example, Mikhalkin [68] has shown that complex algebraic curves in the plane can

be counted by first replacing them with certain piecewise linear curves called tropical

curves.

Many recently discovered aspects of tropical linear algebra were either already

known to hold in a more general setting, or have been swiftly generalised after the

fact. The former aspects include the techniques used to solve matrix equations and

inequalities, while the latter include the relationships between row spaces, column

spaces and their duals. The solution of tropical matrix equations and inequalities

involves well-developed ideas from residuation theory (see Cuninghame-Green [22]),

and nothing more sophisticated, so this elementary aspect of tropical linear algebra

is present in a much wider variety of scenarios. We discuss some of these other

applications of residuation theory below. The duals of row and column spaces of

tropical matrices can also be described using residuation theory, but this relies upon

a special feature of the tropical semirings—namely the ability to negate elements.
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The observation that negation is of fundamental importance in tropical algebra

has prompted several researchers to investigate idempotent semirings which possess

a negation-like operation. A semiring is called idempotent if, as with the tropical

semiring, its addition operation is idempotent. That is, a semiring is idempotent if

it satisfies a + a = a for all elements a (note that for tropical semirings this means

a ⊕ a = a, not a � a = a). An idempotent semiring is called complete if arbitrary

sums are possible. This condition forces the semiring to have a minimum element

(the empty sum) and a maximum element (the sum of the whole semiring) in the

order defined by a ≤ b if and only if a+ b = b. For example, the Boolean semiring is

a complete idempotent semiring with minimum element 0 and maximum element 1,

and if we deliberately adjoin minimum and maximum elements ±∞ to the tropical

semiring of real numbers then we obtain another complete idempotent semiring.

Notice that each of these semirings has a negation-like operation which reverses the

order of the elements. In the case of the Boolean semiring, negation is simply the

involution interchanging 0 and 1, while in the case of the completed tropical semiring

it is the involution sending each real number a to −a and interchanging ±∞.

Cohen et al. [20] have established several Hahn-Banach type results about com-

plete idempotent semimodules over a class of complete idempotent semirings that

includes the Boolean semiring and the completed tropical semiring described above.

Specifically, they demonstrate how to extend continuous linear functionals defined

on complete subsemimodules of complete semimodules, as well as how to separate

points from complete subsemimodules (see Lax [60] for an introduction to standard

Hahn-Banach results in functional analysis). In the case of the completed tropical

semiring, these results generalise the separation result of Hollings and Kambites

[40] for row spaces of matrices. Similar functional analysis results in an idempotent

setting have been obtained by Litvinov et al. [62], who also give a very thorough

commentary on the history of such results.

The crucial common feature of the so-called reflexive semirings considered by

Cohen et al. [20] is the presence of an order-reversing negation operation, which

technically does not need to be an involution. In addition to their Hahn-Banach

type extension and separation results, this assumption allowed them to construct a

lattice anti-isomorphism between the row space and column space of each matrix

with entries in a reflexive semiring. Hollings and Kambites [40] improved upon this

result in the case of tropical semirings. Using the fact that tropical negation actually
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is an involution, they showed that the anti-isomorphisms between row and column

spaces of tropical matrices also have algebraic properties. Develin and Sturmfels [24]

have shown that the same anti-isomorphisms induce combinatorial isomorphisms

between the polyhedral complexes associated with the row and column spaces of

each matrix.

As we mentioned above, an indispensable tool in tropical algebra is the notion

of residuation. Loosely speaking, residuation is the ability to distinguish best, i.e.,

closest, approximate solutions to linear equations, and as such it gives us a way to

carry out division (to a greater or lesser degree of accuracy). The study of residuated

ordered algebraic structures was initiated in around 1920–40 by Krull [54] and Ward

and Dilworth [84] in connection with lattices of ideals in commutative ring theory.

Residuated structures, particularly residuated lattices, have since been adopted by

researchers working in algebra, logic and data analysis, as they provide a setting

in which to consider lattice-ordered groups, Boolean algebras, many-valued logics

and fuzzy formal concepts. We will describe these applications shortly, but first we

introduce residuated lattices.

A residuated lattice is essentially an idempotent semiring which is simultaneously

a lattice, and in which each linear equation has a maximal approximate solution.

In particular, this means that if a and b are elements of a residuated lattice then

there is a maximal approximate solution to the linear equation ax = b, that is,

there is a maximal element x satisfying ax ≤ b. For example, the tropical semiring

of real numbers, its completion with ±∞ adjoined, and the Boolean semiring are

all residuated lattices. Galatos et al. [27] describe more residuated lattices; for a

general introduction to residuation theory, see Blyth [9] or the foundational work of

Blyth and Janowitz [10].

Initially developed by Wille [88] in the 1980s, formal concept analysis is a data

analysis method that extracts certain concepts from the data describing the rela-

tionship between a given set of objects and a given set of attributes that the objects

may or may not have. Specifically, a formal concept is a subset X of objects and a

subset Y of attributes such that Y is the set of attributes that the objects X have

in common and such that X is the set of objects exhibiting the attributes Y . The

set of all formal concepts forms a lattice, so is accordingly called the concept lattice.

A discussion of the foundations of formal concept analysis is given by Ganter and

Wille [28].
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In applications of formal concept analysis, the relationship between the objects

and the attributes is often not binary; it may not be appropriate to say that a

particular object has, or does not have, a particular attribute, but rather that there

is only an extent to which the object has the attribute. Such concerns have led

some researchers to reinterpret the theory of formal concepts in many-valued logics

(see Bĕlohlávek [13]). The many-valued logics considered include intuitionistic logic

and  Lukasiewicz logic, which are modelled by the classes of Heyting algebras and

MV-algebras respectively. We do not give the definitions of these algebras here (see

Galatos et al. [27] for the relevant details), but the important point about them is

that they are residuated lattices.

It turns out that the object-attribute data from which a formal concept is derived

can be represented by a Boolean matrix with object many rows and attribute many

columns, where each entry records whether a particular object has a particular

attribute. More generally, if a many-valued logic is being used then this matrix is

allowed to have entries in a (fixed, complete) residuated lattice, so that each entry

records the extent to which a particular object has a particular attribute. Bĕlohlávek

and Konečný [14] have studied the row and column spaces of matrices with entries

in residuated lattices, and have generalised several results of Boolean matrix theory

(see Kim [52]).

2 Basic definitions, notation and conventions

In this section we review the elementary concepts that will allow us to give a precise

definition of what we mean by a ‘semiring’ (see Definition 4.1). We also remark on

our notational and mathematical conventions. Finally, we recall standard notation

for the semirings mentioned in section 1. An introduction to elementary order theory,

including a discussion of lattices, will be given in section 15.

Definition 2.1 Let S be a set and let · be a binary operation on S. Then (S, ·) is

a semigroup if a · (b · c) = (a · b) · c for all a, b, c ∈ S, that is, if · is associative.

If (S, ·) is a semigroup then we will write ab instead of a · b for a, b ∈ S unless it

happens to be clearer to explicitly mention the binary operation. Furthermore, we

will usually just say that S, rather than (S, ·), is a semigroup if the binary operation

is intended to be written in this way. If we have ab = ba for all a, b ∈ S then S is

called commutative. If there is an identity element 1 ∈ S satisfying a1 = a = 1a
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for all a ∈ S then (S, ·, 1) is called a monoid , and whenever a, b ∈ S with ab = 1

we call a a left inverse of b and, dually, b a right inverse of a. A monoid in which

each element a has a simultaneous left and right inverse a−1 is called a group.1 An

element a ∈ S of a semigroup S is called left cancellative if b = c whenever b, c ∈ S
with ab = ac. Dually, a is called right cancellative if b = c whenever b, c ∈ S with

ba = ca, and if each element of S is both left and right cancellative then S is called

cancellative. Notice that every group is cancellative. Standard introductions to the

theory of semigroups include Clifford and Preston [17] and Howie [41].

Definition 2.2 Let S be a semigroup, let X be a set and let · : X × S → X. Then

· is a right action of S on X if x · (ab) = (x · a) · b for all a, b ∈ S and all x ∈ X, that

is, if · is associative.

As with the binary operation on a semigroup (S, ·), we will use juxtaposition to

indicate the action of S on a set X so that the condition in Definition 2.2 becomes

x(ab) = (xa)b for all a, b ∈ S and all x ∈ X (hence brackets are not necessary).

Dually, a left action of S on X is defined to be an operation · : S×X → X satisfying

(ab)x = a(bx) for all a, b ∈ S and all x ∈ X. Actions of semigroups on sets are also

called ‘S-acts’, ‘S-sets’, ‘S-operands’, ‘S-polygons’, ‘S-systems’ and ‘S-automata’ in

the literature (see Kilp et al. [51, page 43]). If S is a monoid then a right action of

S on a set X satisfying x1 = x for all x ∈ X will be called a right monoid action

and, dually, a left action of S satisfying 1x = x for all x ∈ X will be called a left

monoid action.

At the most fundamental level, nearly all of the results presented in this thesis

concern actions of semigroups or monoids in one way or another, and this means that

many results have a dual statement with the words ‘left’ and ‘right’ (or derived terms

such as ‘row space’ and ‘column space’) interchanged. In the interest of brevity, we

will usually neither prove nor even state dual versions of results, although we will

make some dual definitions explicit at least. Our choice of which version of a result

to give is informed by our right bias, which in turn stems from our notation for

function application. If f : X → Y is a function between sets X and Y then fx

denotes the element of Y obtained by applying f to x. This convention makes right

actions the natural primary objects of study, as action-preserving functions then

satisfy f(xa) = (fx)a rather than the less mnemonic f(ax) = a(fx) for left actions.

1It is actually enough for each element to have a left inverse (see Dickson [26]).
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Throughout this thesis we write N for the natural numbers (starting with 1),

Z for the integers, R for the real numbers and C for the complex numbers, each

equipped with the usual operations of addition and multiplication. We also write B

for the set {0, 1} equipped with the operations of maximum and minimum, which we

think of as “addition” and “multiplication” respectively. This structure is called the

Boolean semiring . We mainly follow Hollings and Kambites [40] in our terminology

and notation for the various tropical semirings, except we use ‘max’ and ‘+’ instead

of their special symbols ‘⊕’ and ‘⊗’.

Definition 2.3

(i) The finitary tropical semiring FT is the set R equipped with the operations

of maximum and addition.

(ii) The tropical semiring T is the set R∪{−∞} equipped with the operations of

maximum and addition, where −∞ ≤ a and a + (−∞) = −∞+ a = −∞ for

all a ∈ R ∪ {−∞}.

(iii) The completed tropical semiring T is the set R∪{−∞,∞} equipped with the

operations of maximum and addition, where −∞ ≤ a ≤ ∞ and a + (−∞) =

−∞+ a = −∞ for all a ∈ R∪ {−∞,∞}, and where a+∞ =∞+ a =∞ for

all a ∈ R ∪ {∞}.

When first introducing a semiring, it is customary to distinguish its two identity

elements. However, since our definition of a semiring does not require either identity

element to exist, we need only specify the two binary operations that are to be taken

as “addition” and “multiplication” (by convention, the first operation mentioned is

intended to be addition). In section 4 we will present the formal definition of what

we mean by a semiring, and we will justify why the semirings introduced above

conform to that definition.

3 Summary of the thesis

In this thesis we study three related problems associated with linear algebra over

arbitrary semirings, and we give solutions to these problems for certain rings and

idempotent semirings. Many of our definitions and results build upon the work of

Wilding et al. [86].
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Some of the semirings that we are interested in do not possess an additive identity

element (e.g., the finitary tropical semiring FT) and some do not have a multiplica-

tive identity element either (e.g., the semiring of 2× 2 matrices with entries in FT),

so the first challenge is to formulate a workable theory of linear algebra over such

semirings. The key observation is that it is sufficient for a semiring to have ‘local’

identity elements for each finite set of elements, rather than for the whole semiring.

In section 4 we introduce precisely what we mean by a semiring with local iden-

tities, as well as the corresponding notion of a module over such a semiring, and

we show that these definitions recover the standard ones when the whole semiring

has an additive identity element and a multiplicative identity element. In section 5

we consider related concepts such as linear functions between modules, submodules,

homomorphisms between semirings, subsemirings and semiring retracts. Again, we

show that these concepts generalise their standard counterparts.

The presence of local identity elements allows us to define the row and column

spaces of a matrix in an unambiguous way—either abstractly as modules of vectors,

or concretely in terms of linear combinations and matrix multiplication. In section 6

we establish some basic properties of matrix multiplication and we show that Green’s

L and R relations for matrices can be characterised by row space and column space

equality respectively (see Proposition 6.6). We also show that Green’s D relation

induces isomorphism of row/column spaces (see Proposition 6.7). In section 7 we

discuss direct products and monoid semirings for finite monoids, and we show that

if S is a semiring and G is a finite group then the group semiring SG is a retract of

a full matrix semiring (see Theorem 7.3).

When presented with a semiring S, our first problem is to describe the ‘kernels’ of

the row space and column space of each matrix with entries in S. The kernel of a set

of vectors is an equivalence relation which generalises the orthogonal complement of a

set, and which has been studied by Cohen et al. [18]. We consider kernels in section 8.

Externally, the equivalence classes of the kernel of the row space of a matrix A form

a module which is isomorphic to the column space of A (see Proposition 8.6), so the

non-trivial aspect of the problem is to describe the internal structure of each kernel

class. As an aid to doing this we introduce the kernel of a relation, and it turns out

that together these two notions of kernel constitute a Galois connection between

sets of vectors and relations on vectors (see Proposition 8.4). Cohen et al. [19] have

also considered kernels of relations in the case of the completed tropical semiring T
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as a way to talk about ‘separability’. Accordingly, we define separability in terms

of the closed elements of the Galois connection just mentioned.

Our second problem is to determine which linear functionals on the row space

and column space of each matrix over a semiring S have a linear extension defined on

the appropriate containing module of vectors. The ideal situation is that every such

function has an extension (a restricted form of self-injectivity of S), in which case

S is called ‘exact’. In section 9 we characterise extendibility of linear functionals

in terms of representability by vectors (see Proposition 9.6) and, subsequently, we

show that exactness can be rephrased as a property of the kernel Galois connection

discussed above (see Proposition 9.10). We also show that the row and column

spaces of any matrix over an exact semiring are isomorphic to each others’ duals,

and that exactness allows us to characterise Green’s D relation for matrices by

isomorphism of row/column spaces (see Theorem 9.11).

As we discussed in section 1, the row and column spaces of a matrix with entries

in a field are isomorphic because they are vector spaces of the same dimension, but

isomorphism is not necessarily the “natural” choice of relationship between the row

and column spaces of a matrix over an arbitrary semiring. One reason to believe

this is that the row space of a matrix is naturally a left module, while the column

space is naturally a right module, and so there ought not to be an isomorphism

between the two modules. More plausibly, the row and column spaces of each matrix

over FT are naturally “anti-isomorphic” in the sense of section 16, not isomorphic,

and for matrices over C both isomorphism and conjugate isomorphism are equally

natural. Our third problem is therefore to explain the ways in which the row and

column spaces of each matrix over a semiring can be related; when presented with

a semiring we would ideally like to know which forms of isomorphism (if any) to

naturally expect between row and column spaces. In section 10 we introduce the

notion of a ‘conjugation’ on a semiring in an attempt to address this problem, and

we show that complex conjugation on C is such a conjugation (see Theorem 10.4).

We initiate detailed study of exactness in section 11 by showing that if S is an

exact semiring then each full matrix semiring over S is exact (see Proposition 11.1),

and that the product of exact semirings is exact (see Proposition 11.2). In section 12

we then consider exactness of subsemirings and subsemirings of exact semirings. We

show that if S is an exact subsemiring of a semiring T then the finitely generated

ideal structure of T must be at least as complicated as the finitely generated ideal
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structure of S (see Theorem 12.2). Going in the other direction, we give sufficient

conditions for a retract of an exact semiring to be exact (see Theorem 12.4), and we

apply this result to show that if S is an exact semiring and G is a finite group then

the group semiring SG is exact (see Corollary 12.5). We also show that if S has

identity elements and is exact then essentially the only ‘shapes’ of matrix semiring

over S that are exact are the symmetric ones, e.g., semirings of diagonal matrices,

not semirings of upper triangular matrices (see Theorem 12.3).

In passing, we pose a Baer type question in section 12: is a semiring S exact if all

linear functionals on finitely generated ideals of S have linear extensions defined on

S? This question remains open when restricted to rings (it is unknown whether every

‘F-injective’ ring is ‘FP-injective’; see Nicholson and Yousif [70, Question 10]), but

it has a negative answer as stated for semirings. Indeed, in section 20 we construct

a non-exact idempotent semiring with the property that each linear functional on a

finitely generated ideal has an extension (see Example 20.6).

In section 13 we show that exactness for rings (also known as FP-injectivity) is

characterised by a double orthogonal complement condition on the row and column

spaces of matrices (see Proposition 13.3). Several classes of rings are already known

to be exact, so it would not be especially productive to attempt to verify this dou-

ble orthogonal complement condition directly. Instead, we introduce the stronger

notion of an ‘exact annihilator ring’, over which the row space of each matrix is the

orthogonal complement of some column space (and vice versa). Exact annihilator

rings are desirable because the matrices used to “witness” exactness also provide

a description of orthogonal complements (see Proposition 13.8). In section 14 we

demonstrate how to construct such witnesses for matrices over Boolean rings and

proper homomorphic images of principal ideal domains. The fact that every Boolean

ring is an exact annihilator ring means that there exist exact rings which are not

self-injective (see page 89). This answers a question of Wilding et al. [86].

As well as being exact annihilator rings, Boolean rings and proper homomorphic

images of principal ideal domains are commutative elementary divisor rings. The

orthogonal complements of the row and column spaces of a matrix over such a ring

can be described as quotients (see Theorem 14.3), so in this regard Boolean rings and

proper homomorphic images of principal ideal domains behave just as if they were

fields.1 We also show in section 14 that the identity function on any commutative

1Some of them are in fact fields.
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elementary divisor ring (e.g., Z) is a conjugation in the sense outlined above, and

consequently the row space and column space of each matrix over such a ring are

isomorphic modules (see Theorem 14.2).

The other type of semiring we are interested in is residuated lattices. These

semirings are best studied from within algebraic order theory, so in sections 15

and 16 we provide an introduction to the prerequisite theory of partial orders and

ordered algebraic structures respectively. The discussion in section 15 covers posets,

lattices, Boolean algebras, monotone functions, adjunctions, order isomorphisms,

antitone functions, Galois connections and order anti-isomorphisms. The discussion

in section 16 covers ordered monoids, their actions on posets and the appropriate

notions of structure preserving functions and isomorphisms. We also introduce an

equivalent formulation of isomorphisms, which leads us to a sensible and powerful

definition of what we mean by an anti-isomorphism in this setting.

In section 17 we recall the definitions of residuated monoids and residuated lat-

tices, along with some standard illustrative examples. We also introduce residuation

in the more general context of ordered monoid actions. The residuated structures

we consider here can be interpreted as categories enriched over the acting monoid M

(see Proposition 17.3), so it is natural to ask for a characterisation of the categories

enriched over M that arise in this way. As a partial answer, we give conditions for an

enriched category to have a residuated structure as a quotient (see Theorem 17.4).

In section 18 we consider linear algebra over residuated lattices, which can be

treated as semirings by taking addition to be the lattice join operation. After estab-

lishing that residuated lattices have local identity elements (see Proposition 18.1),

we describe how to extend residuation to matrices via the lattice meet operation (see

Proposition 18.2). In particular cases this observation is not new; Cohen et al. [19]

have described the same residuation operations for matrices over T, while Bĕlohlávek

and Konečný [14] have defined similar operations for matrices with entries in com-

plete commutative residuated lattices. Matrix residuation can be used to show that

row and column spaces are always lattices (see Proposition 18.3). It also allows us

to understand the internal structure of kernel classes (see Proposition 18.5).

A residuated lattice viewed as a semiring may or may not be exact, so if we want

to obtain exactness then we must impose some additional structure. In section 19

we restrict to the case where residuation emerges from the presence of an (order

reversing) involution, and we show that all such residuated lattices are exact (see
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Theorem 19.4). Our approach essentially follows Cohen et al. [20, Theorem 34],

except we permit non-complete residuated lattices (e.g., FT). We also show that

the involution is a conjugation which induces an anti-isomorphism between the row

space and column space of each matrix (see Theorem 19.5). The anti-isomorphisms

we obtain here are more algebraic in flavour than the ones obtained by Cohen et al.

[20, Theorem 42] because we assume that the underlying residuated lattice has an

involution, whereas Cohen et al. [20] make a slightly weaker assumption. The results

in section 19 apply to the semirings B, FT and T, but not to T.

In section 20 we study powersets of monoids, viewed as residuated lattices (and

hence as semirings). We begin by showing that the powerset of a monoid is involutive

in the above sense if and only if the monoid is a group (see Theorem 20.1). This

result implies that the semiring of subsets of an arbitrary group is exact, but it

does not rule out the possibility that the semiring of subsets of a non-group monoid

might be exact for some other reason. If such a non-group monoid exists then it

cannot be cancellative (see Proposition 20.3). We also show that the powerset of a

finite monoid is exact if and only if the monoid is a group (see Corollary 20.5), so

if there does exist a non-cancellative monoid whose powerset is exact then it must

be infinite. The existence of such a monoid remains an open question deserving of

further investigation.
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4 Semirings and modules

As we discussed in section 3, we would like to be able to study linear algebra over a

variety of semirings, including certain semirings that are missing one or both of the

usual identity elements. With care, we can (for the most part) treat such semirings

just as we would any other semiring once we have established that linear algebra still

“works” in the absence of identity elements. This does require some non-standard

definitions, however, along with proofs of facts that are usually automatic, so in this

and the next section we prepare the foundational definitions and results that are

needed to obtain basic, expected, properties of semirings, modules and matrices.

The fundamental observation, made by Hollings and Kambites [40], is that in

most circumstances it is good enough to have elements that behave like identity

elements “locally”, but that are not necessarily true (i.e., “global”) identity elements.

In the context of linear algebra, local means finite because matrices have only finitely

many entries. Put another way, an application of global identity elements—such as

multiplication by an identity matrix—can often be replaced by an application of

identity elements local to the entries of some matrix. This observation motivates

the following precise definition of what we mean by a semiring with local identities.

Definition 4.1 Let S be a non-empty set, let + be a binary operation on S with

(S,+) a commutative semigroup and let · be a binary operation on S with (S, ·) a

semigroup. Then (S,+, ·) is a semiring if

(i) c(a+ b) = ca+ cb and (a+ b)c = ac+ bc for all a, b, c ∈ S; and if

(ii) for each non-empty finite L ⊆ S there are local identities 0L, 1L ∈ S satisfying

a+ b0L = a1L = a and a+ 0Lb = 1La = a for all a, b ∈ L.

As usual, we will simply say that S, rather than (S,+, ·), is a semiring unless

we want to draw attention to the operations that are to be used as addition and

25



26 Semirings, modules and matrices

multiplication. Notice that addition on a semiring S is defined to be commutative,

whereas multiplication need not be. We will say that S is a commutative semiring

in the case multiplication on S is commutative, although there will be very few

instances where we will actually need this additional assumption.

Hollings and Kambites [40] say that a (commutative) semiring S has ‘local zeros’

if for each non-empty finite L ⊆ S there is some c ∈ S with a + c = a for all

a ∈ L. Definition 4.1 (ii) clearly implies this condition, as we can just take c = b0L

for any b ∈ L, but our condition captures more of what it means for an element

to behave like a global zero would. Specifically, condition (ii) tries to mimic the

absorbing nature of zero by insisting that when 0L is multiplied by any b ∈ S, the

resulting elements b0L and 0Lb are still zero-like enough in the additive sense. We

also impose a less complicated “local ones” condition that requires each non-empty

finite L ⊆ S to have an associated element 1L that, on L, behaves exactly like

a multiplicative identity element would. As the following example demonstrates,

Hollings and Kambites [40] have no need for such a condition because the semirings

they consider already have multiplicative identity elements.

Example 4.2 The finitary tropical semiring FT = (R,max,+) is a commutative

semiring in the sense of Definition 4.1. If L ⊆ FT is non-empty and finite then

0L = min{a− b : a, b ∈ L} (4.1)

and

1L = 0 (4.2)

satisfy max{a, b + 0L} = a + 1L = a for all a, b ∈ L (see page 108 for 0L), and as

such Definition 4.1 (ii) holds for FT. In other words, FT has local identities.

The restriction to non-empty subsets in Definition 4.1 (ii) is not strictly necessary,

as if S is a semiring we can certainly find “local identities” 0∅, 1∅ ∈ S satisfying the

vacuous conditions a+ b0∅ = a1∅ = a and a+ 0∅b = 1∅a = a for all a, b ∈ ∅; simply

take 0∅ and 1∅ to be any elements of S. However, since such elements 0∅ and 1∅

are devoid of meaning, we prefer to overlook their existence. Moreover, removing

the supposition of non-emptiness in Definition 4.1 (ii) would complicate matters

when defining local identities in a uniform way. For example, in Proposition 18.1 we

define local identities for each finite subset L of a residuated lattice in a way that

(by convention) specifies a possibly non-existent top element in the case L = ∅.
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A semiring which has an additive identity element will be called a 0-semiring ,

and similarly a semiring which has a multiplicative identity element will be called

a 1-semiring . For example, FT is a 1-semiring with multiplicative identity element

0 ∈ R, but is not a 0-semiring because it has no bottom element.1 That is, there is

no element ⊥ ∈ R satisfying max{a,⊥} = a for all a ∈ R. The tropical semiring

T = (R ∪ {−∞},max,+) is a 0-semiring though, because the adjoined bottom

element −∞ satisfies max{a,−∞} = a for all a ∈ T.

A semiring which is both a 0-semiring and a 1-semiring will be called a standard

semiring . Despite the name, it is not yet clear that this definition actually matches

what Golan [34] calls a semiring, for although a standard semiring S automatically

comprises an additive commutative monoid (S,+, 0) and a multiplicative monoid

(S, ·, 1), Golan [34, page 1] also requires 0 ∈ S to satisfy a0 = 0 = 0a for all a ∈ S.

However, the following result shows that this property follows from Definition 4.1 in

the case S is a 0-semiring, and thus a standard semiring really is deserving of that

title.

Proposition 4.3 If S is a 0-semiring then a0 = 0 = 0a for all a ∈ S.

Proof Let a ∈ S and take L = {0, a0} ⊆ S. Then by Definition 4.1 (ii) there is

some 0L ∈ S satisfying 0 + 00L = 0 and 0+a00L = 0, and thus we have 00L = 0 and

a00L = 0 because 0 is the additive identity element in S. Therefore a0 = a00L = 0,

as required; a dual argument confirms that 0a = 0. �

As well as T and the completed tropical semiring T = (R∪ {−∞,∞},max,+),

other examples of standard semirings include Z, R and C because they each contain

the usual identity elements. The Boolean semiring B = ({0, 1},max,min) is also

a standard semiring, with additive identity element 0 and multiplicative identity

element 1. However, as we have defined it in section 2, N is not a standard semiring

because it does not contain 0 ∈ Z. In fact, N is not strictly a semiring in the sense

of Definition 4.1, as it does not contain a local identity 0{1} either.

If each element a of a standard semiringR has an additive inverse−a ∈ R, so that

the commutative monoid (R,+, 0) is a group, then R is called a ring (see Cohn [21,

page 21]). In this case a standard argument using the absorbing property of 0 ∈ R
shows that we have a(−1) = −a = (−1)a for all a ∈ R. Of the examples mentioned

above, only Z, R and C are rings. One of the key tools in the study of rings is

1Yes, this is confusing!
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the notion of a ‘module’ over a ring—essentially a commutative group on which

the ring acts—and, because of its usefulness, this idea has also been considered for

semirings. To account for local identities, our definition of a module over a semiring

differs slightly from the standard definition discussed below.

Definition 4.4 Let S be a semiring, let (X,+) be a commutative semigroup and

let · be a right action of (S, ·) on X. Then (X,+, ·) is a right S-module if

(i) x(a + b) = xa + xb and (x + y)a = xa + ya for all a, b ∈ S and all x, y ∈ X;

and if

(ii) for each non-empty finite L ⊆ X there are right local identities 0L, 1L ∈ S

satisfying x+ y0L = x1L = x for all x, y ∈ L.

The similarity between Definitions 4.1 and 4.4 makes it obvious that if S is a

semiring then S is itself a right S-module; the right action of S on S is just given

by multiplication. The notion of a left S-module is defined dually, and it is similarly

clear that S is always a left S-module. Proposition 5.6 generalises these observations.

Golan [34, page 149] defines a ‘semimodule’ over a standard semiring S to be

a commutative monoid (X,+, 0) on which (S, ·) acts, such that Definition 4.4 (i)

holds, and such that

(i) x0 = 0 = 0a for all a ∈ S and all x ∈ X; and

(ii) x1 = x for all x ∈ X.

We do not impose these last two conditions because we only require the existence of

local identities, but, just as with semirings, Definition 4.4 (ii) is formulated so as to

ensure that if S does happen to be a standard semiring then these two conditions

automatically hold. Proposition 4.5, below, confirms this. Moreover, if R is a ring

then then our R-modules are just modules in the conventional sense (see Cohn

[21, page 226]) because each x ∈ X has an additive inverse −x ∈ X defined by

−x = x(−1). It is for this reason that we use the term ‘module’. Note, however,

that Golan [34, page 150] reserves this term for a semimodule in which each element

has an additive inverse—even if the underlying standard semiring is not a ring.

Proposition 4.5 Let S be a semiring and let X be a right S-module.

(i) If S is a 0-semiring then X has an additive identity element 0 ∈ X satisfying

x0 = 0 = 0a for all a ∈ S and all x ∈ X.
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(ii) If S is a 1-semiring then x1 = x for all x ∈ X.

Proof (i). We will first show that y0 is the additive identity element in X for any

chosen y ∈ X. Let x ∈ X and take L = {x, y0}. Then by Definition 4.4 (ii) there

is some 0L ∈ S satisfying x + y00L = x. By Proposition 4.3 we have 0 = 00L, so

x+ y0 = x, and as such y0 is the additive identity element in X. Identity elements

are unique, so y0 does not depend on y, and this means that x0 = y0 for all x ∈ X.

It therefore remains to show that y0 = y0a for all a ∈ S, but this holds because we

have 0 = 0a by Proposition 4.3 again.

(ii). Let x ∈ X and take L = {x}. Then by Definition 4.4 (ii) there is some

1L ∈ S satisfying x1L = x. Hence x1 = x1L1 = x1L = x because 1L1 = 1L. �

5 Linear functions and homomorphisms

Given a fixed semiring S, structure preserving functions between S-modules ought

to respect the operations that Definition 4.4 requires an S-module to have. Specifi-

cally, we require a structure preserving function between right S-modules to respect

addition and the two right actions of S in the following sense.

Definition 5.1 Let S be a semiring and let f : X → Y be a function between right

S-modules X and Y . Then f is right S-linear if

(i) f(x+ y) = fx+ fy for all x, y ∈ X; and if

(ii) f(xa) = (fx)a for all a ∈ S and all x ∈ X.

Our definition of a linear function between S-modules is identical to the standard

definition of a ‘homomorphism’ between S-modules (see Golan [34, page 156]). This

might come as a surprise because Definitions 4.1 and 4.4 differ from the standard

definitions of a semiring and a module, respectively, so we might have expected

Definition 5.1 to also impose a local identities condition on a linear function. The

reason no such condition is required is that local identities for an S-module lie in

the semiring S, not the S-module, and thus a linear function between S-modules

does not directly interact with local identities for the S-modules.

If X and Y are right S-modules with X ⊆ Y and the inclusion function X ↪→ Y

right S-linear then we will say that X is a right S-submodule of Y . In such a case

Definition 5.1 (i) ensures that addition on X is just the restriction of addition on
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Y , and similarly Definition 5.1 (ii) ensures that the action of S on X is just the

restriction of the action of S on Y . That is, X is closed under addition on Y and

the action of S on Y , and in fact this is all we need to check in order for a non-empty

subset of Y to be an S-submodule of Y . In particular, when trying to show that a

non-empty subset X of a right S-module Y is actually a right S-submodule of Y , we

do not need to worry about verifying Definition 4.4 (ii) because local identities for

L ⊆ X will be the same as for L ⊆ Y provided X is closed under addition and the

right action of S. This mirrors what happens for standard semirings and modules

(see Golan [34, page 150]).

The image of a linear function is an important instance of a submodule. If

f : X → Y is a right S-linear function between right S-modules X and Y then

Im(f) = {fx : x ∈ X} is a right S-submodule of Y because, by Definition 5.1, it is

closed under addition and the right action of S.

The other important object associated with f is its set-theoretic kernel, i.e., the

equivalence relation defined by Ker(f) = {(x, x′) ∈ X ×X : fx = fx′}. In general

we cannot define the kernel of f to be the set {x ∈ X : fx = 0} because Y does

not necessarily contain an additive identity element 0. Moreover, even if Y does

have a 0 element, this alternative definition of Ker(f) would not be guaranteed to

provide useful information about f ; for {x ∈ X : fx = 0} to always give as much

information as Ker(f) we would need X and Y to have additive inverses as well.

Although Ker(f) it is not a submodule ofX, it does at least have some interaction

with the right S-module structure of X. Specifically, Ker(f) is a right S-congruence

on X. This means that Ker(f) is compatible with addition in the sense that if

(x, x′), (y, y′) ∈ Ker(f) then (x + y, x′ + y′) ∈ Ker(f), and that it is compatible

with the right action of S in the sense that if a ∈ S and (x, x′) ∈ Ker(f) then

(xa, x′a) ∈ Ker(f). These properties make it possible to turn the set X/Ker(f) of

equivalence classes of Ker(f) into a right S-module by defining

[x]Ker(f) + [y]Ker(f) = [x+ y]Ker(f) (5.1)

and

[x]Ker(f)a = [xa]Ker(f) (5.2)

for all a ∈ S and all x, y ∈ X. Note that if L ⊆ X/Ker(f) is non-empty and finite

then to satisfy Definition 4.4 (ii) we can simply take 0L = 0K and 1L = 1K where
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K is any set of representatives of the classes in L. That is, right local identities for

X/Ker(f) are inherited from Y .

The kernel and image of a right S-linear function are connected by the following

“first isomorphism theorem”, where, as usual, an isomorphism of right S-modules

is defined to be a right S-linear bijection. By a standard argument, the inverse of

an isomorphism is also right S-linear, so we may say that two right S-modules are

isomorphic (written X ∼= Y ) without specifying a direction.

Proposition 5.2 If f : X → Y is a right S-linear function between right S-modules

X and Y then X/Ker(f) ∼= Im(f) as right S-modules.

Proof It follows immediately from the above definition of Ker(f) that the surjective

function Im(f) → X/Ker(f) given by fx 7→ [x]Ker(f) is well-defined and injective.

Moreover, together with (5.1) and (5.2), right S-linearity of f ensures that this

bijection Im(f) → X/Ker(f) is also right S-linear, so is an isomorphism of right

S-modules. �

We will mainly be interested in studying functions between modules, but it will

occasionally be useful to consider functions between semirings. Unlike linear func-

tions, however, our definition of a structure preserving function between semirings

is quite complicated because it must account for local identities.

Definition 5.3 Let f : S → T be a function between semirings S and T . Then f

is a homomorphism if

(i) f(a+ b) = fa+ fb for all a, b ∈ S;

(ii) f(ab) = (fa)(fb) for all a, b ∈ S; and if

(iii) for each non-empty finite L ⊆ T there are local identities 0L, 1L ∈ Im(f)

satisfying a+ b0L = a1L = a and a+ 0Lb = 1La = a for all a, b ∈ L.

Conditions (i) and (ii) are unsurprising; they merely say that a homomorphism

must respect the semiring operations. The motivation for (iii) is much less obvious,

even though it clearly has something to do with local identities. We now explain

where this condition comes from, and why it is appropriate.

If S and T are standard semirings then a homomorphism f : S → T ought to

satisfy f0 = 0 and f1 = 1 (see Golan [34, page 105]), but in the context of local
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identities this condition splits into a “forwards” requirement and a “backwards”

requirement. Firstly, local identities for S should remain local identities in the

image of f , and secondly, there should be local identities for T that lie in the image

of f . The first (forwards) requirement is taken care of by Definition 5.3 (i) and (ii):

if L is a non-empty finite subset of S then we have

fa+ (fb)(f0L) = (fa)(f1L) = fa (5.3)

and

fa+ (f0L)(fb) = (f1L)(fa) = fa (5.4)

for all a, b ∈ L, and as such f0L and f1L still behave like local identities. The

second (backwards) requirement is precisely what Definition 5.3 (iii) demands: our

definition of a semiring requires T to have local identities, but Definition 5.3 (iii)

goes one step further and insists that local identities can actually be taken to lie in

Im(f).1

It is worth remarking that if f is surjective then Definition 5.3 (iii) is identical

to Definition 4.1 (ii) for T , and so a surjective function between semirings is a

homomorphism if and only if it respects addition and multiplication. This matches

up with the standard situation, as it can be shown that a surjective function f

between standard semirings satisfies f0 = 0 and f1 = 1 if it respects addition and

multiplication. The following result gives further confirmation that our definition of

a homomorphism is sensible.

Proposition 5.4 Let f : S → T be a homomorphism between semirings S and T .

(i) If S and T are 0-semirings then f0 = 0.

(ii) If S and T are 1-semirings then f1 = 1.

Proof (i). Take L = {0, f0} ⊆ T . Then by Definition 5.3 (iii) there is some

0L ∈ Im(f) satisfying 0 + (f0)0L = 0. That is, (f0)0L = 0. Since 0L ∈ Im(f) there

is some a ∈ S with 0L = fa, and thus Proposition 4.3 and Definition 5.3 (ii) give

f0 = f(0a) = (f0)(fa) = 0.

1Definition 5.3 (iii) does not say that all local identities for T must lie in Im(f), just that for
each suitable L we can find some that do. These local identities 0L and 1L need not be the same
ones first used to verify that T is a semiring, but sensibly chosen local identities will usually turn
out to be in Im(f) anyway.
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(ii). Take L = {1} ⊆ T . Then by Definition 5.3 (iii) there is some 1L ∈ Im(f)

satisfying 1(1L) = 1. Therefore 1L = 1, and so since 1L ∈ Im(f) there is some a ∈ S
with 1 = fa. Hence

f1 = (f1)1 = (f1)(fa) = f(1a) = fa = 1 (5.5)

by Definition 5.3 (ii). �

We will say that a semiring S is a subsemiring of a semiring T if S ⊆ T and the

inclusion function S ↪→ T is a homomorphism. Proposition 5.4 ensures that if S and

T are standard semirings with S a subsemiring of T then S and T share the same

identity elements, so in this case our definition of a subsemiring is equivalent to the

standard definition (see Golan [34, page 3]). What is not clear, however, is whether

our subsemiring relation is transitive in general. That is, if S is a subsemiring of T

and T is a subsemiring of U , is S a subsemiring of U? This question arises because

we have not yet shown—and it is certainly not obvious—that the composition of

two homomorphisms is again a homomorphism. The following result redresses this.

Proposition 5.5 If f : S → T and g : T → U are homomorphisms between semir-

ings S, T and U then g ◦ f is a homomorphism.

Proof It is obvious that g ◦ f respects addition and multiplication, so it remains to

show that for each non-empty finite L ⊆ U there are 0L, 1L ∈ Im(g ◦ f) satisfying

a + b0L = a1L = a and a + 0Lb = 1La for all a, b ∈ L. To simplify matters, we will

only show that there are 0L and 1L satisfying a + b0L = a1L = a; the proof that

they also satisfy the other requirement is dual.

Let L ⊆ U be non-empty and finite. Then by Definition 5.3 (iii) for g there are

0g, 1g ∈ Im(g) satisfying a + b0g = a1g = a for all a, b ∈ L. Since 0g, 1g ∈ Im(g)

we can write 0g = g0T and 1g = g1T for some 0T , 1T ∈ T . Now since {0T , 1T}
is a non-empty finite subset of T , Definition 5.3 (iii) for f tells us that there are

0f , 1f ∈ Im(f) with 0T + 1T0f = 0T and 1T1f = 1T . Finally, take 0L = g0f and

1L = g1f , which lie in the image of g ◦ f because 0f , 1f ∈ Im(f).

To show that a+ b0L = a for all a, b ∈ L, first observe that

0g + 1g0L = g0T + (g1T )(g0f ) = g(0T + 1T0f ) (5.6)
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by Definition 5.3 (i) and (ii) for g. The fact that 0T + 1T0f = 0T then gives

b(0g + 1g0L) = b(g0T ) = b0g (5.7)

for all b ∈ L, and thus if b ∈ L then b0g + b0L = b0g because b1g = b. Therefore

a+ b0L = a+ b0g + b0L = a+ b0g = a (5.8)

for all a, b ∈ L, as required.

To show that a1L = a for all a ∈ L, first observe that

1g1L = (g1T )(g1f ) = g(1T1f ) (5.9)

by Definition 5.3 (ii) for g. The fact that 1T1f = 1T then gives

a1g1L = a(g1T ) = a1g (5.10)

for all a ∈ L. Hence if a ∈ L then a1L = a, as required, because a1g = a. �

Proposition 5.6 Let f : S → T be a homomorphism between semirings S and T ,

and let X be a right T -module. Then X is a right S-module via the action of S

given by xa = x(fa) for all a ∈ S and all x ∈ X.

Proof The corresponding result for rings is well-known and is sometimes called

‘restriction of scalars’ (see Sharp [75, Remark 6.6]). In the context of semirings,

the only non-routine part of proving that X is a right S-module is establishing the

existence of right local identities that lie in S.

Let L ⊆ X be non-empty and finite. Then by Definition 4.4 (ii) for X as a right

T -module there 0T , 1T ∈ T satisfying x + y0T = x1T = x for all x, y ∈ L. Now

(as in the proof of Proposition 5.5) since {0T , 1T} is a non-empty finite subset of T ,

Definition 5.3 (iii) tells us that there are 0f , 1f ∈ Im(f) with 0T + 1T0f = 0T and

1T1f = 1T . The fact that 0f , 1f ∈ Im(f) means that we can then write 0f = f0L

and 1f = f1L for some 0L, 1L ∈ S.

If x, y ∈ L then

y0T + y0f = y0T + y1T0f = y(0T + 1T0f ) = y0T (5.11)
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because y1T = y and 0T + 1T0f = 0T , and thus

x+ y(f0L) = x+ y0f = x+ y0T + y0f = x+ y0T = x (5.12)

because x + y0T = x. In terms of the right action of S on X defined above, this

means that x+y0L = x for all x, y ∈ L. To show that x1L = x as well, let x ∈ L and

observe that x1T1f = x1T because 1T1f = 1T . The fact that x1T = x then gives

x(f1L) = x1f = x1T1f = x1T = x, (5.13)

and as such x1L = x. Hence Definition 4.4 (ii) is satisfied for X with the right action

of S defined above. �

Proposition 5.6 is especially useful for subsemirings, as it tells us that if S is a

subsemiring of T then every T -module can be viewed as an S-module. In particular,

T itself can be viewed as an S-module for each subsemiring S ⊆ T , and this lets

us consider S-linear functions between S and T . An important instance for us will

be when there is a surjective S-linear function T → S that “collapses” T onto S,

allowing us to transfer various properties of T to S (see Theorems 7.3 and 12.4). To

make this condition precise, we introduce the following notion of a ‘retract’. Our

use of this term is consistent with its uses in topology (see Hatcher [36, page 3]) and

group theory (see Lyndon and Schupp [63, page 2]).

Definition 5.7 Let S and T be semirings. Then S is a right retract of T if S

is subsemiring of T and there is a right S-linear function f : T → S that fixes S

pointwise, i.e., with fa = a for all a ∈ S.

6 Matrices and Green’s relations

Although we have introduced a completely abstract definition of a module over a

semiring (see Definition 4.4), we are mainly interested in finitely generated modules

of row vectors and column vectors. This is because our ultimate aim is to understand

(or at least provide general strategies for understanding) the behaviour of matrices

over a given semiring S, and two very important modules associated with a matrix

are the left S-module generated by its rows (its ‘row space’) and the right S-module

generated by its columns (its ‘column space’). In this section we define all these
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concepts, and we establish some basic properties of matrices that are usually taken

for granted over standard semirings. We also link Green’s relations for matrices with

row spaces and column spaces.

Definition 6.1 Let S be a semiring and let m,n ∈ N. A matrix of size m×n with

entries in S is a rectangular array A of elements of S, arranged into m rows and n

columns. More formally, A is simply a function {1, . . . ,m} × {1, . . . , n} → S.

Given a semiring S, we write Sm×n for the set of m × n matrices with entries

in S, and if A ∈ Sm×n is such a matrix then we write Aij for the i-jth entry of S.

That is, Aij ∈ S denotes the element at the ith position in column j (or equally

the jth position in row i) of A, where 1 ≤ i ≤ m and 1 ≤ j ≤ n. Special cases

of Definition 6.1 occur when m = 1 and when n = 1. In the first case we call an

element of S1×n a row vector , and, dually, in the second case we call an element of

Sm×1 a column vector . Notice that in the case m = n = 1 the “matrices” in S1×1

are essentially the elements of S, so we just identify S1×1 with S.

Matrices of the same size can be summed entrywise, making each
(
Sm×n,+

)
a

commutative semigroup. Specifically, if A,B ∈ Sm×n then we define another matrix

A+B ∈ Sm×n by

(A+B)ij = Aij +Bij (6.1)

for all 1 ≤ i ≤ m and all 1 ≤ j ≤ n. Matrices of appropriate sizes can also be

multiplied: if A ∈ Sm×n and B ∈ Sn×q then we define a matrix AB ∈ Sm×q by

(AB)ik =
n∑

j=1

AijBjk (6.2)

for all 1 ≤ i ≤ m and all 1 ≤ k ≤ q. It is straightforward to check that this

operation is associative whenever it is defined, so in particular each
(
Sn×n, ·

)
is a

semigroup. Finally, matrix multiplication distributes over matrix addition in the

sense of Definition 4.1 (i), and thus we are nearly able to say that each
(
Sn×n,+, ·

)
is a semiring.

If S is a standard semiring then the constructions and properties described above

make each Sn×n a standard semiring (see Golan [34, page 27]), but if we are to

conclude that Sn×n is a semiring even when S is not standard then we need to

verify Definition 4.1 (ii) for Sn×n. The following result does this in a way that is

useful more generally.
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Proposition 6.2 Let S be a semiring and let L ⊆ Sm×n be non-empty and finite.

Then there are 0L, 1L ∈ S satisfying

A+B


0L 0L . . . 0L

0L 0L . . . 0L

...
...

. . .
...

0L 0L . . . 0L

 = A


1L 0L . . . 0L

0L 1L . . . 0L

...
...

. . .
...

0L 0L . . . 1L

 = A (6.3)

and

A+


0L 0L . . . 0L

0L 0L . . . 0L

...
...

. . .
...

0L 0L . . . 0L

B =


1L 0L . . . 0L

0L 1L . . . 0L

...
...

. . .
...

0L 0L . . . 1L

A = A (6.4)

for all A,B ∈ L.

Proof Take K = {Aij : A ∈ L, 1 ≤ i ≤ m and 1 ≤ j ≤ n} ⊆ S. Since L is non-

empty and finite, and since each A ∈ L has only finitely many entries, it is clear

that K is a non-empty finite subset of S. Therefore, by Definition 4.1 (ii) for S,

there are 0K , 1K ∈ S satisfying a + b0K = a1K = a and a + 0Kb = 1Ka = a for all

a, b ∈ K.

Now let A,B ∈ L. Then repeated application of the fact that a + b0K = a for

all a, b ∈ K gives

Aij +Bi10K + · · ·+Bin0K = Aij +Bi20K + · · ·+Bin0K

= Aij +Bi30K + · · ·+Bin0K

...

= Aij +Bin0K

= Aij

(6.5)

for all 1 ≤ i ≤ m and all 1 ≤ j ≤ n. Similarly

Aij1K +
n∑

k=1
k 6=j

Aij0K = Aij +
n∑

k=1
k 6=j

Aij0K = Aij (6.6)

for all 1 ≤ i ≤ m and all 1 ≤ j ≤ n, because we also have a1K = a for all a ∈ K,

and thus (6.3) is satisfied with 0L = 0K and 1L = 1K . A dual argument using the
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fact that a + 0Kb = 1Ka = a for all a, b ∈ K shows that (6.4) is also satisfied with

0L = 0K and 1L = 1K . �

An immediate consequence of Proposition 6.2 is that if L ⊆ Sn×n is non-empty

and finite then there are matrices 0L, IL ∈ Sn×n satisfying A + B0L = AIL = A

and A + 0LB = ILA = A for all A,B ∈ L. Therefore Definition 4.1 (ii) holds for

Sn×n, and as such Sn×n is a semiring. When we specifically want to treat Sn×n as a

semiring, rather than just as a set of matrices, we will refer to it as the full matrix

semiring Mn(S). Subsemirings of Mn(S) will be called matrix semirings .

Another very useful consequence of Proposition 6.2 is that we can use matrix

multiplication to “isolate” any desired column (or, dually, row) from a matrix. This

ability is often taken for granted in the context of standard semirings because we can

just multiply by a standard ‘basis’ vector to isolate a particular column (see Golan

[34, Example 17.1]), but in the absence of global identity elements it is something

less trivial that needs verifying. If A ∈ Sm×n then by Proposition 6.2 (with L = {A})
there is some IA ∈ Sn×n satisfying AIA = A, so if we write v1, . . . , vn ∈ Sn×1 for

the columns of IA then the jth column of A is given by Avj. Notice that each

column vector vj has jth entry 1L and all other entries 0L, by (6.3), and so the vj

are clearly analogues of the standard basis vectors we would normally use to isolate

the columns of A. A variation on this argument gives us the following result.

Proposition 6.3 Let S be a semiring and let A,B ∈ Sm×n. If Av = Bv for all

v ∈ Sn×1 then A = B.

Proof Take L = {A,B}. Then by Proposition 6.2 there is some IL ∈ Sn×n sat-

isfying AIL = A and BIL = B. By the above argument, for each 1 ≤ j ≤ n the

jth column of A is given by Avj, where vj ∈ Sn×1 denotes the jth column of IL,

and similarly the jth column of B is given by Bvj. Therefore the jth columns of A

and B are equal because, by the hypothesis, we have Avj = Bvj for all 1 ≤ j ≤ n.

Hence A = B. �

Matrix multiplication is rather trivial in the case of 1 × 1 matrices, as we just

recover multiplication on S (recall that we identified S1×1 with S), but (6.2) permits

1× 1 matrices to be multiplied by more than just other 1× 1 matrices. Indeed, we

can take any column vector x ∈ Sm×1 and multiply it by a ∈ S to obtain another

column vector xa ∈ Sm×1. This procedure has the effect of scaling (from the right)

each entry of x by a. The fact that matrix multiplication is associative means that
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we have x(ab) = (xa)b for all a, b ∈ S and all x ∈ Sm×1, and as such this scaling

is a right action of S on Sm×1. Moreover, Definition 4.4 (i) holds for Sm×1 because

x(a+ b) = xa+ xb and (x+ y)a = xa+ ya for all a, b ∈ S and all x, y ∈ Sm×1, and

thus Sm×1 is a right S-module provided it has right local identities. Proposition 6.2

immediately confirms the existence of right local identities, for if L ⊆ Sm×1 is non-

empty and finite then there are 0L, 1L ∈ S satisfying x + y0L = x1L = x for all

x, y ∈ L, by (6.3). Therefore Sm×1 is a right S-module by Definition 4.4.

Note that we could also view Sm×1 as a left S-module, via the action which

scales x ∈ Sm×1 on the left by a ∈ S, but it is more natural to view it as a right

module because then the action coincides with matrix multiplication. So, unless S

is commutative, we will treat Sm×1 as exclusively a right S-module. If we want a

left S-module of vectors, a dual argument confirms that the natural choice is S1×m

with the action of S given by matrix multiplication on the other side.

If A ∈ Sm×n then the columns of A are vectors in Sm×1, and there are n of

them, so taken together they are a non-empty finite subset of Sm×1. Given any such

L = {x1, . . . , xn} ⊆ Sm×1, a right S-linear combination of the xj is an expression

of the form x1a1 + · · · + xnan for a1, . . . , an ∈ S, and we write LS for the set of all

right S-linear combinations of the vectors in L. If x1, . . . , xn ∈ L are given as the

columns of a matrix A ∈ Sm×n then a right S-linear combination of the xj is just

an expression of the form Av for v ∈ Sn×1 (where the n entries of v are a1, . . . , an

above), and we write Col(A) instead of LS. Either way, Col(A) = LS is a right

S-submodule of Sm×1 because it is closed under addition and the right action of S.

The following definition records the construction of this very important module.

Definition 6.4 Let S be a semiring and let A ∈ Sm×n. The column space of A is

the right S-module

Col(A) =
{
Av : v ∈ Sn×1} ⊆ Sm×1 (6.7)

of all right S-linear combinations of the columns of A.

Notice that Col(A) is precisely the image of the function Sn×1 → Sm×1 given by

v 7→ Av. This function is right S-linear, and is obviously surjective as a function

Sn×1 → Col(A), but it need not be injective. In other words, two different vectors

in Sn×1 could give rise to the same element of Col(A). In section 8 we will introduce

a relation which records when this happens.
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In addition to being a right S-module, the column space of a matrix A ∈ Sm×n

is finitely generated because it comprises all linear combinations of a finite set of

vectors. An important special case is when A only has one row (m = 1), so that its

set L of “columns” is just a non-empty finite subset of S. In this case Col(A) = LS

is a finitely generated right ideal of S, where a right ideal of S is a right S-submodule

of S (i.e., a subset of S that is closed under addition and right multiplication by

elements of S).

When we speak of modules generated by sets, we might have in mind a slightly

different definition to the one given above: if L is a subset of a module X then we

could define the module generated by L to be the smallest submodule of X that

contains L, where ‘smallest’ means the intersection of all such submodules. The

following result confirms that this definition is equivalent to the above definition for

finitely generated submodules of Sm×1.

Proposition 6.5 Let S be a semiring and let A ∈ Sm×n. Then Col(A) is the

intersection of all the right S-submodules of Sm×1 that contain the columns of A.

Proof We begin by showing that Col(A) contains the columns of A. As described

above, by Proposition 6.2 there is some IA ∈ Sn×n satisfying AIA = A. For each

1 ≤ j ≤ n the jth column of A is then given by Avj, where vj denotes the jth

column of IA, and thus each column of A is contained in Col(A) by (6.7). Therefore

Col(A) is a right S-submodule of Sm×1 that contains the columns of A.

To show that Col(A) is the intersection of all such submodules, let X be a right

S-submodule of Sm×1 and suppose that X contains the columns x1, . . . , xn ∈ Sm×1

of A. Then since X is closed under addition and the right action of S, we have

x1a1 + · · · + xnan ∈ X for all a1, . . . , an ∈ S. But, by definition, each element of

Col(A) can be written as such a right S-linear combination for some a1, . . . , an ∈ S,

and so Col(A) ⊆ X. Hence Col(A) is the smallest right S-submodule of Sm×1 that

contains the columns of A. �

The row space of a matrix A ∈ Sm×n is the finitely generated left S-submodule

of S1×n defined by

Row(A) =
{
uA : u ∈ S1×m}. (6.8)

That is, Row(A) comprises all left S-linear combinations of the rows of A, and,

by Proposition 6.5 dual, Row(A) may also be characterised as the intersection of

all the left S-submodules of S1×n that contain the rows of A. In the special case
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n = 1, the “rows” of A form a non-empty finite set L ⊆ S and Row(A) = SL is a

finitely generated left ideal of S (a subset of S that is closed under addition and left

multiplication by elements of S).

To understand the multiplicative behaviour of matrices over a given semiring S,

it is helpful (in the first instance) to attempt to describe the equivalence relations

of Green [35] for matrices. Green’s relations can be defined on any semigroup, so,

in particular, can be defined on each semigroup
(
Sn×n, ·

)
. However, as we will see

below, Green’s relations can actually be defined for matrices of any size without any

extra difficulty; there is no great simplification in only considering square matrices

of a fixed size. Hollings and Kambites [40, Proposition 3.1] have already considered

Green’s matrices over commutative 1-semirings, so since the outcome over a general

semiring is essentially the same, we give only a brief summary of the key definitions

and results.

Two matrices A ∈ Sm×n and B ∈ Sp×q are R related , written A R B, if m = p

and there are P ∈ Sn×q and Q ∈ Sq×n satisfying AP = B and BQ = A. In other

words, A R B if and only if it is possible to get from A to B and back again by

multiplication on the right. Dually, A and B are L related , written A L B, if n = q

and there are P ∈ Sp×m and Q ∈ Sm×p satisfying PA = B and QB = A.

Proposition 6.6 Let S be a semiring, let A ∈ Sm×n and let B ∈ Sm×q. Then

A R B if and only if Col(A) = Col(B).

Proof By symmetry, it is sufficient to show that AP = B for some P ∈ Sn×q if

and only if Col(B) ⊆ Col(A). If AP = B for some P ∈ Sn×q then Col(B) ⊆ Col(A)

because APv = Bv for all v ∈ Sq×1. Conversely, if Col(B) ⊆ Col(A) then Col(A)

contains each column of B by Proposition 6.5. This means that the jth column of

B can be written as Avj for some vj ∈ Sn×1, and thus

B =
[
Av1 . . . Avq

]
= A

[
v1 . . . vq

]
(6.9)

for some [ v1 ... vq ] ∈ Sn×q, as required. �

Green’s H relation is defined to be the intersection of L and R, that is, two

matrices A ∈ Sm×n and B ∈ Sp×q are H related if and only if A R B and A L B.

Proposition 6.6 and its dual tell us that A H B if and only if Col(A) = Col(B) and

Row(A) = Row(B). Finally, another relation that can be produced from L and R is

their (relational) composition D = R ◦ L, which is defined as follows: A and B are
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D related if there is some C ∈ Sm×q with A R C L B. It turns out that A D B if

and only if there is some D ∈ Sp×n with A L D R B, and as such D is equal to the

alternative composition L ◦ R. It then follows that D is the smallest equivalence

relation containing L and R (see Clifford and Preston [17, Lemma 2.1]).

Proposition 6.7 Let S be a semiring, let A ∈ Sm×n and let B ∈ Sp×q. If A D B

then Col(A) ∼= Col(B) as right S-modules.

Proof Since A D B there is some C ∈ Sm×q with A R C L B. This means that

there are PA ∈ Sn×q and QA ∈ Sq×n satisfying APA = C and CQA = A, and also

that there are PB ∈ Sm×p and QB ∈ Sp×m satisfying PBB = C and QBC = B.

Therefore

QBAv = QBCQAv = BQAv ∈ Col(B) (6.10)

for all v ∈ Sn×1, and so we can define a function Col(A) → Col(B) by x 7→ QBx.

Similarly, we can define a function Col(B)→ Col(A) by x 7→ PBx because

PBBv = Cv = APAv ∈ Col(A) (6.11)

for all v ∈ Sq×1. These functions are clearly right S-linear, so it remains to show

that they are mutually inverse. This holds because we have

PBQBAv = PBBQAv = CQAv = Av (6.12)

for all v ∈ Sn×1 and

QBPBBv = QBCv = Bv (6.13)

for all v ∈ Sq×1. Hence Col(A) ∼= Col(B) as right S-modules. �

In section 9 we will explore a condition on S that allows us to characterise the

D relation by isomorphism of column spaces (see Theorem 9.11).

7 Direct products and monoid semirings

In section 6 we saw a construction that takes a semiring S and produces another,

related, semiring. Namely, if S is a semiring then we can form the full matrix

semiring Mn(S) for each n ∈ N. In this section we consider two more constructions

that can be used to produce new semirings.
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The first of these constructions takes two semirings S and T and makes the

Cartesian product S × T a semiring. Addition and multiplication on S × T are

defined componentwise, so that we have (aS, aT ) + (bS, bT ) = (aS + bS, aT + bT ) and

(aS, aT )(bS, bT ) = (aSbS, aT bT ) for all (aS, aT ), (bS, bT ) ∈ S × T (see Golan [34, page

19]). If L ⊆ S × T is non-empty and finite then the sets

LS = {aS : (aS, aT ) ∈ L} (7.1)

and

LT = {aT : (aS, aT ) ∈ L} (7.2)

are also non-empty and finite, so by Definition 4.1 (ii) for S and T there are local

identities 0LS
, 1LS

∈ S and 0LT
, 1LT

∈ T . Local identities for L are then given by

0L = (0LS
, 0LT

) and 1L = (1LS
, 1LT

), and with these local identities S × T is a

semiring in the sense of Definition 4.1. We call this semiring the direct product of S

and T .

The direct product construction is not limited to two semirings of course. If

S1, . . . , Sn are semirings then the n-fold product S1 × · · · × Sn is also a semiring, so

in particular the n-fold product Sn = S×· · ·×S is a semiring for every semiring S.1

Another construction related to Sn is that of a ‘monoid semiring’, defined below.

The idea here is that addition is the same as on Sn, but multiplication is changed

so as to be influenced by the structure of a fixed finite monoid.

Definition 7.1 Let S be a semiring and let (M, ·, 1) be a finite monoid. The monoid

semiring SM is the set of functions M → S with addition and multiplication given

by

(V +W )r = V r +Wr (7.3)

and

(VW )r =
∑
r=st

V s ·Wt (7.4)

respectively for all V,W ∈ SM and all r ∈ M . Note that ‘r = st’ here means “all

s, t ∈M satisfying r = st”.

1We can actually consider arbitrary direct products of semirings, as even if there are infinitely
many semirings, a non-empty finite subset of the Cartesian product has only finitely many elements
in each component. In other words, infinite direct products of semirings still have local identities.
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Multiplication on a monoid semiring is often called ‘convolution’ (see Golan [34,

page 29]). Note that it is sometimes possible to consider monoid semirings for infinite

monoids. For instance, if M is the free monoid on a finite set then the sum in (7.4)

is always finite, or if S = B then the sum in (7.4) exists regardless of whether it is

finite. Alternatively, if S is a 0-semiring then we could take all finitely supported

functions M → S instead of all functions M → S (see Golan [32, Chapter 4]).

Even in the case of a finite monoid M though, we have not made sure that SM

is always a semiring in the sense of Definition 4.1. To do this, we need to find

local identities for each non-empty finite L ⊆ SM . Since M is finite, the image of

each V ∈ L is a non-empty finite subset of S, so we can define a non-empty finite

K ⊆ S by K = {V r : V ∈ L and r ∈M}. By Definition 4.1 (ii) for S there are

local identities 0K , 1K ∈ S, and an argument similar to the proof of Proposition 6.2

then shows that the functions 0L, 1L ∈ SM given by

0Lr = 0K (7.5)

and

1Lr =

1K if r = 1,

0K otherwise
(7.6)

for all r ∈M are local identities for L.

An element of a Boolean monoid semiring BM assigns either a 0 or a 1 to

each element of M , so instead of working with functions V ∈ BM we can just

work with subsets {s ∈ M : V s = 1} of M . In other words, we can identify

BM with the powerset of M . After this identification, the sum and product of

subsets V,W ∈ BM are given by V ∪W and {st : s ∈ V and t ∈ W} respectively,

because addition and multiplication on B are given by disjunction and conjunction

respectively. The fact that B is a standard semiring means that it is not necessary to

consider local identities; BM is a standard semiring, with additive identity element ∅
and multiplicative identity element {1} ⊆M . As mentioned above, there is nothing

about this construction that fails if M is infinite, and thus there is a standard

semiring BM for every monoid M . However, not all of our results concerning

Boolean monoid semirings apply in the case M is infinite (see Theorem 20.4).

If G = {r1, . . . , rn} is a finite group of order n then we call SG a group semiring .
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In this case the product of V,W ∈ SG is given by

(VW )r =
n∑

j=1

V rj ·W
(
r−1j r

)
=

n∑
i=1

V
(
rr−1i

)
·Wri (7.7)

for all r ∈ G because r = st for s, t ∈ G if and only if t = s−1r, which also happens

if and only if s = rt−1. The expressions in (7.7) are reminiscent of the definition of

matrix multiplication, so we might expect SG to have an interpretation as a matrix

semiring. Indeed, the following result confirms this suspicion.

Lemma 7.2 Let S be a semiring and let G = {r1, . . . , rn} be a finite group of

order n. Then the function f : SG → Mn(S) given by (fV )ij = V
(
r−1i rj

)
for all

1 ≤ i, j ≤ n is an injective homomorphism.

Proof If V ∈ SG then the first row of fV is[
V
(
r−11 r1

)
. . . V

(
r−11 rn

)]
, (7.8)

so if we assume (without loss of generality) that r1 = 1 then we have V rj = (fV )1j

for all 1 ≤ j ≤ n. Therefore V can be recovered from the first row of fV , and thus

f is injective.

To show that f is a homomorphism, we first need to verify Definition 5.3 (i).

That is, we need to check that f(V +W ) = fV +fW for all V,W ∈ SG. This follows

immediately from (7.3) and (6.1). Next we need to check that f(VW ) = (fV )(fW )

for all V,W ∈ SG. By (7.7) we have

(f(VW ))ik = (VW )
(
r−1i rk

)
=

n∑
j=1

V rj ·W
(
r−1j r−1i rk

)
(7.9)

for all 1 ≤ i, k ≤ n, which we can rewrite as

(f(VW ))ik =
n∑

j=1

V
(
r−1i rj

)
·W
(
r−1j rk

)
=

n∑
j=1

(fV )ij · (fV )jk (7.10)

because
(
r−1i rj

)−1
r−1i rk = r−1j rk. Therefore f(VW ) = (fV )(fW ) by (6.2), and as

such Definition 5.3 (ii) holds for f .

Finally, we need to verify Definition 5.3 (iii). That is, for each non-empty finite

L ⊆ Mn(S) we need to find 0L, IL ∈ Im(f) satisfying A + B0L = AIL = A and
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A + 0LB = ILA = A for all A,B ∈ L. Proposition 6.2 confirms the existence of

local identities 0L, IL ∈ Mn(S), so if we can show that in fact 0L, IL ∈ Im(f) then

we will be done. Notice that Im(f) contains each matrix of the form
a b . . . b

b a . . . b
...

...
. . .

...

b b . . . a

 (7.11)

for a, b ∈ S, because this matrix is the image of the element of SG given by r1 7→ a

and ri 7→ b for all 1 < i ≤ n. In particular then, Im(f) contains the local identities

0L, IL ∈ Mn(S) of Proposition 6.2, and consequently Definition 5.3 (iii) holds for f .

Hence f is a homomorphism. �

Lemma 7.2 tells us that if S is a semiring and G is a finite group of order n then

we can view the group semiring SG as a subsemiring of the full matrix semiring

Mn(S). It also allows us to obtain the following powerful result, which implies that

the properties of SG are closely related to the properties of Mn(S). We will make

use of this fact in Corollary 12.5.

Theorem 7.3 Let S be a semiring and let G be a finite group of order n. Then

(i) SG ∼= S1×n as right SG-modules;

(ii) (SG)n×1 ∼= Mn(S) as right SG-modules; and

(iii) SG is a right retract of Mn(S).

Proof As above, write G = {r1, . . . , rn} with r1 = 1 and define f : SG → Mn(S)

by (fV )ij = V
(
r−1i rj

)
for all 1 ≤ i, j ≤ n. Then f is an injective homomorphism

by Lemma 7.2. Note that f is right SG-linear because the right action of SG on

Mn(S) is defined via f (see Proposition 5.6).

(i). Write g for the function Mn(S) → S1×n that selects the first row of each

matrix. It is clear that g is right Mn(S)-linear, where the right action of Mn(S) on

S1×n is given by matrix multiplication, so in particular g is right Im(f)-linear. This

means that g is right SG-linear, because, by Proposition 5.6, the right actions of

SG on Mn(S) and S1×n are defined via f . Therefore g ◦ f : SG → S1×n is right
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SG-linear. If V ∈ SG then

(g ◦ f)V =
[
(fV )11 . . . (fV )1n

]
=
[
V r1 . . . V rn

]
, (7.12)

so g ◦ f is a bijection, and as such g ◦ f is an isomorphism of right SG-modules.

(ii). This follows immediately from (i), as g ◦ f : SG→ S1×n can be extended to

a right SG-module isomorphism (SG)1×n → Mn(S) by applying it entrywise.

(iii). Since f : SG → Mn(S) is an injective homomorphism we can identify

SG with Im(f), and so to show that SG is a right retract of Mn(S) we need to

construct a right SG-linear function h : Mn(S) → SG satisfying (h ◦ f)V = V for

all V ∈ SG (see Definition 5.7). Take h = (g ◦ f)−1 ◦ g. Then h is right SG-linear

with h ◦ f = (g ◦ f)−1 ◦ (g ◦ f), and as such h ◦ f is the identity function on SG.

Hence SG is a right retract of Mn(S). �





The three main problems

8 Kernels and separation

Our aim is to present a systematic way to understand linear algebra over semirings,

so we now describe three problems whose solutions give useful information about the

behaviour of matrices with entries in an arbitrary semiring. In section 9 we study

the problem of extending linear functionals defined on row and column spaces, and

in section 10 we propose a way to explain the observed variety of relationships

(e.g., isomorphism, conjugate isomorphism and anti-isomorphism) between row and

column spaces. We begin in this section by introducing two kinds of ‘kernel’.

Our first kind of kernel is the kernel of a set of vectors. As we show in Propo-

sition 8.6 (i), the kernel of the row space of a matrix A records when two column

vectors become equal in the column space of A. In other words, the kernel of Row(A)

measures how far away the function that takes a column vector into Col(A) is from

being a bijection (see Definition 6.4). Given a semiring S, our first main problem is

to describe the kernel classes of the row space (and the column space) of an arbitrary

matrix with entries in S. As we will see in sections 13 and 18, the techniques used to

describe the structure of kernel classes must be tailored to the semiring in question,

and as such it is difficult to give a general approach to this problem.

Our other kind of kernel is the kernel of a relation on vectors, or, more usefully,

the ‘double kernel’ of a set of vectors. The double kernel is a closure operator that

enlarges a set of vectors by including all other vectors that behave in the same

way with respect to multiplication, and so by studying the double kernel of the row

space of a matrix A we can find out whether matrix multiplication tells us everything

there is to know about A. In section 9 we will link the double kernel of Row(A) with

linear functions on Col(A) and show that if the double kernel is strictly bigger than

Row(A) then there are more linear functions on Col(A) than matrix multiplication

alone can account for.

49
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Definition 8.1 Let S be a semiring and let X ⊆ S1×n. The kernel of X is the

relation

Ker(X) =
{

(v, v′) ∈ Sn×1 × Sn×1 : xv = xv′ for all x ∈ X
}
. (8.1)

It is clear from the form of (8.1) that if X ⊆ S1×n then Ker(X) is an equivalence

relation on Sn×1. Moreover, the fact that (8.1) is defined in terms of multiplication

means that Ker(X) is actually a right S-congruence on S1×n. This allows us to treat

the set Sn×1/Ker(X) of equivalence classes as a right S-module (see page 30), but

in view of Proposition 8.6 (ii), below, there is really no need to study this particular

module in the case X is the row space of a matrix. However, for completeness, we

at least show that Ker(X) is always a congruence.

Proposition 8.2 Let S be a semiring and let X ⊆ S1×n. Then Ker(X) is a right

S-congruence on Sn×1.

Proof To show that Ker(X) is a right S-congruence on Sn×1 we first need to show

that it is compatible with addition, so let (v, v′), (w,w′) ∈ Ker(X). Then xv = xv′

and xw = xw′ for all x ∈ X, from which we have x(v+w) = xv+xw = xv′+xw′ =

x(v′ + w′) for all x ∈ X. Therefore (v + w, v′ + w′) ∈ Ker(X), and as such Ker(X)

is compatible with addition.

We also need to show that Ker(X) is compatible with the right action, so let

a ∈ S and let (v, v′) ∈ Ker(X). Then xv = xv′ for all x ∈ X, which means that

x(va) = (xv)a = (xv′)a = x(v′a) for all x ∈ X. Therefore (va, v′a) ∈ Ker(X), and

as such Ker(X) is compatible with the right action of S. Hence Ker(X) is a right

S-congruence on S1×n. �

Notice that Definition 8.1 does not restrict X ⊆ S1×n in any way, i.e., X does

not need to be a right S-submodule of S1×n. This means that we can apply Ker(−)

to the empty subset of S1×n, vacuously giving Ker(∅) = Sn×1 × Sn×1. At the other

extreme, we have Ker
(
S1×n) =

{
(v, v) : v ∈ Sn×1} because if v, v′ ∈ Sn×1 with

xv = xv′ for all x ∈ S1×n then v = v′ by Proposition 6.3 dual. Proposition 8.5,

below, lists some more properties of Ker(−) as a function from subsets of S1×n to

relations on Sn×1.

The kernel of X ⊆ S1×n comprises all pairs of column vectors that give the same

product with each element of X, but once we have these pairs we could immediately

reverse the process and consider the set of row vectors in S1×n that give the same
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product with each element of Ker(X). We write Ker2(X) for this set, and we call it

the double kernel of X. To make this notation and terminology more meaningful,

we also introduce the following definition.

Definition 8.3 Let S be a semiring and let F ⊆ Sn×1 × Sn×1. The kernel of F is

the set

Ker(F ) =
{
y ∈ S1×n : yv = yv′ for all (v, v′) ∈ F

}
(8.2)

=
{
y ∈ S1×n : F ⊆ Ker(y)

}
. (8.3)

We have now defined two different notions of kernel: one which takes a set of row

vectors to a relation on column vectors, and one which takes a relation on column

vectors back to a set of row vectors. In particular, we are now able to meaningfully

take a “double” kernel by simply computing Ker Ker(X) for X ⊆ S1×n, and it

is clear from Definition 8.3 that this construction agrees with the double kernel

Ker2(X) described above. That is, we have

Ker2(X) = Ker Ker(X) =
{
y ∈ S1×n : Ker(X) ⊆ Ker(y)

}
, (8.4)

where Ker(y) is shorthand for Ker({y}). The relationship between our two notions

of kernel is captured by the following result.

Proposition 8.4 If S is a semiring then

X ⊆ Ker(F ) ⇔ F ⊆ Ker(X) (8.5)

for all X ⊆ S1×n and all F ⊆ Sn×1 × Sn×1.

Proof Let X ⊆ S1×n and let F ⊆ Sn×1×Sn×1. By (8.3) we have X ⊆ Ker(F ) if and

only if F ⊆ Ker(x) for all x ∈ X, and thus it is sufficient to show that F ⊆ Ker(X)

if and only if F ⊆ Ker(x) for all x ∈ X. But this is clear because we have

Ker(X) =
⋂
x∈X

Ker(x) (8.6)

by (8.1). �

Another way to express Proposition 8.4 is to say that taking kernels constitutes

a Galois connection (see Definition 15.1) between subsets of S1×n and relations on
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Sn×1. Specifically, we have two posets, namely Pow
(
S1×n) and Pow

(
Sn×1 × Sn×1)

ordered by inclusion, and two functions

Pow
(
Sn×1) Pow

(
Sn×1 × Sn×1)Ker(−)

Ker(−)
(8.7)

satisfying (8.5) for all X ∈ Pow
(
S1×n) and all F ∈ Pow

(
Sn×1 × Sn×1). We then

automatically obtain the following properties of Ker(−) as a function from subsets

of S1×n to relations on Sn×1, and vice versa.

Proposition 8.5 If S is a semiring then

(i) the functions

Ker(−) : Pow
(
S1×n)→ Pow

(
Sn×1 × Sn×1) (8.8)

and

Ker(−) : Pow
(
Sn×1 × Sn×1)→ Pow

(
S1×n) (8.9)

are inclusion-reversing;

(ii) the functions

Ker2(−) : Pow
(
S1×n)→ Pow

(
S1×n) (8.10)

and

Ker2(−) : Pow
(
Sn×1 × Sn×1)→ Pow

(
Sn×1 × Sn×1) (8.11)

are inclusion-preserving and expanding; and

(iii) we have Ker3(X) = Ker(X) for all X ∈ Pow
(
S1×n) and Ker3(F ) = Ker(F )

for all F ∈ Pow
(
Sn×1 × Sn×1).

Proof Apply Proposition 15.2 to Proposition 8.4. �

Viewed as a function from subsets of S1×n to relations on Sn×1, the fact that

Ker2(−) is expanding means that we have X ⊆ Ker2(X) for all X ⊆ S1×n. We

can also see from (8.4) and (8.1) that Ker2(X) comprises all y ∈ S1×n with the

property that yv = yv′ for all v, v′ ∈ Sn×1 satisfying xv = xv′ for all x ∈ X,

so Ker2(X) enlarges X by including all y ∈ S1×n that—as far as multiplication is
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concerned—look just like elements of X. The elements of Ker2(X) will therefore

be called inseparable from X, while the elements of S1×n \ Ker2(X) will be called

separable from X. These definitions are in the spirit of ‘separation’ in the context

of topological vector spaces (see Aliprantis and Border [2, Chapter 5]).

Proposition 8.5 (iii) tells us that Ker4(−) = Ker2(−), and as such Ker2(−) is

idempotent. This makes Ker2(−) a closure operator on S1×n (see page 96), and

means that there are no vectors inseparable from Ker2(X) that were originally sep-

arable from X ⊆ S1×n. It therefore makes sense to think of Ker2(X) as being a

better behaved “completion” of X, and so if we want linear algebra over S to be

well-behaved then we should insist that Ker2(−) does not strictly enlarge row spaces

of matrices with entries in S. We will discuss this condition in section 9.

Now recall that our first main problem is to describe the equivalence classes of

Ker Row(A) for an arbitrary matrixA ∈ Sm×n. As the following result demonstrates,

these special kernels are easier to understand than the general kernels discussed

above.

Proposition 8.6 Let S be a semiring and let A ∈ Sm×n. Then

(i) Ker Row(A) =
{

(v, v′) ∈ Sn×1 × Sn×1 : Av = Av′
}

; and

(ii) Sn×1/Ker Row(A) ∼= Col(A) as right S-modules.

Proof (i). Let v, v′ ∈ Sn×1. If (v, v′) ∈ Ker Row(A) then we have uAv = uAv′ for

all u ∈ S1×m by (8.1), and thus Av = Av′ by Proposition 6.3 dual. Conversely, if

Av = Av′ then uAv = uAv′ for all u ∈ S1×m, and as such (v, v′) ∈ Ker Row(A) by

(8.1) again. Hence Ker Row(A) =
{

(v, v′) ∈ Sn×1 × Sn×1 : Av = Av′
}

.

(ii). It is clear from (i) that Ker Row(A) is just the (set-theoretic) kernel of

the surjective right S-linear function Sn×1 → Col(A) given by v 7→ Av. Therefore

Sn×1/Ker Row(A) ∼= Col(A) as right S-modules by Proposition 5.2. �

Proposition 8.6 (i) tells us that if A ∈ Sm×n then Ker Row(A) records the pairs

of column vectors that get identified in Col(A), but this does not reveal anything

about the “internal” structure of the equivalence classes of Ker Row(A). The “ex-

ternal” structure of the classes is described by Proposition 8.6 (ii), however, and

so if we understood the relationship between the row and column spaces of A (sec-

tion 10 deals with this problem) then we would be able to completely describe the

relationship between Row(A) and the external structure of its kernel.
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We are not able to say anything general about the internal structure of the classes

of Ker Row(A) because their contents depends on what type of semiring S is. One

possible way to describe Ker Row(A) in the case of a particular semiring would be

to find a smaller relation F ⊆ Sn×1 × Sn×1 that captures the essential information

about each equivalence class of Ker Row(A). Specifically, we could look for a small,

easy to understand relation F satisfying Ker Row(A) = Ker2(F ), and then explain

how to enlarge F to get Ker2(F ). We will take this approach in section 18.

9 Extensions and exactness

Linear functions are of fundamental importance in linear algebra, but until now we

have been exclusively focussing on matrices and vectors. We begin this section by

considering linear functions as objects in their own right, and we show that if A

is a matrix with entries in a semiring S then the set of all right S-linear functions

Col(A) → S is a left S-module. There are two reasons why we only prove this

particular restricted result. Firstly, we are mainly interested in the behaviour of

matrices anyway, and secondly, the way we have set up S-modules means that a

general result along the lines of “if X is a right S-module then the set of right S-

linear functions X → S is a left S-module” is not even possible. If we tried to prove

such a result we would run into technical difficulties establishing the existence of

local identities, but, as we will see, working with column spaces means that there is

ultimately something finite (the matrix) that we can use to produce local identities

for linear functions.

To help understand linear functions on column spaces, we consider when such

a function can be extended to a linear function on all appropriately-sized column

vectors—the most desirable situation being, of course, when each function has an

extension. This motivates our central definition: a semiring is (right) ‘exact’ if each

linear function on the column space of a matrix has an extension (see Definition 9.2).

Our next main problem after describing kernels (see section 8) is to decide

whether a given semiring is exact, or to at least provide some useful information

about linear functions, so it would be convenient if exactness was linked with kernels

in some way. As we show in Lemma 9.9, it turns out that there is a correspondence

between the linear functions on the column space of a matrix A and the elements

of the double kernel of the row space of A, and this leads to a characterisation of
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exactness in terms of double kernels.

Finally, we discuss some immediate consequences of exactness and we propose

some possible ways to show that particular semirings are exact. We will consider

many more consequences of exactness in sections 11 and 12.

Proposition 9.1 Let S be a semiring and let A ∈ Sm×n. Then the set

Col(A)∗ = {f : Col(A)→ S : f is right S-linear} (9.1)

is a left S-module.

Proof To show that Col(A)∗ is a left S-module, we first need to define addition and

a left action of S. The sum of f, g ∈ Col(A)∗ is given by (f + g)x = fx+ gx for all

x ∈ Col(A) and the left action of a ∈ S on f ∈ Col(A) is given by (af)x = a(fx)

for all x ∈ Col(A). It is easy to see that f + g : Col(A) → S and af : Col(A) → S

will be right S-linear, so they are indeed elements of Col(A)∗. It is also clear that

(ab)f = a(bf) for all a, b ∈ S and all f ∈ Col(A)∗, and as such we really have defined

an action of S on Col(A)∗ (see page 18).

Next we need to verify Definition 4.4 (i) dual for Col(A)∗, that is, we need to

check that (a + b)f = af + bf and a(f + g) = af + ag for all a, b ∈ S and all

f, g ∈ Col(A)∗. The proof of this is routine, and in fact no part of the proof so far

relies on any particular property of Col(A); this portion of the result holds for any

right S-module.

To verify Definition 4.4 (ii) dual for Col(A)∗, we need to establish the existence of

left local identities 0L, 1L ∈ S satisfying f +0Lg = 1Lf = f for all f, g ∈ L whenever

L ⊆ Col(A)∗ is non-empty and finite. Given such a set L, we define a non-empty

finite set K ⊆ S1×n by K = {fA : f ∈ L}, where fA ∈ S1×n denotes the row vector

obtained by applying f to the columns of A. This construction is described in more

detail on page 58, but the important point is that fA satisfies f(Av) = (fA)v for

all v ∈ Sn×1. Now let f, g ∈ L. By Proposition 6.2 there are 0K , 1K ∈ S satisfying

fA+ 0K(gA) = 1K(fA) = fA, (9.2)

and thus

f(Av) + 0K(g(Av)) = 1K(f(Av)) = f(Av) (9.3)

for all v ∈ Sn×1. The above definitions of addition and the left action of S on
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Col(A)∗ then give

(f + 0Kg)x = (1Kf)x = fx (9.4)

for all x ∈ Col(A), which means that f + 0Kg = 1Kf = f . Therefore L has left local

identities 0L = 0K and 1L = 1K , and as such Definition 4.4 (ii) dual is satisfied for

Col(A)∗. Hence Col(A)∗ is a left S-module. �

The left S-module Col(A)∗ is called the dual of Col(A), and its elements are

often called linear functionals on Col(A). As mentioned above, we are interested in

when a function f ∈ Col(A)∗ can be extended, so we should define precisely what

we mean by this. If S is a semiring and A ∈ Sm×n then an extension of f ∈ Col(A)∗

is a right S-linear function g : Sm×1 → S satisfying gx = fx for all x ∈ Col(A). The

dual of Row(A) and the notion of an extension of a linear functional f ∈ Row(A)∗

are defined dually.

Definition 9.2 A semiring S is

(i) right exact if each f ∈ Col(A)∗ has an extension whenever A ∈ Sm×n; and is

(ii) left exact if each f ∈ Row(A)∗ has an extension whenever A ∈ Sm×n.

A semiring which is both left and right exact will be called exact (see Wilding

et al. [86, section 3]). The most obvious examples of exact semirings are fields, for

if R is a field and A ∈ Rm×n then each f ∈ Col(A)∗ has an extension by standard

results of linear algebra (see Roman [72, Theorem 1.4 and page 103]). We will give

more examples of exact semirings in sections 14 and 19.

Example 9.3 The ring Z is not exact. For instance, if the function f ∈ (2Z)∗

given by 2b 7→ b for all b ∈ Z had an extension g then, by linearity, we would have

g1 = 1/2, which is impossible.

There is nothing special about Z in Example 9.3; the same trick shows that

any integral domain that is not a field cannot be exact. An integral domain is a

commutative non-trivial ring R in which each a ∈ R \ {0} is not a zero divisor , that

is, there is no b ∈ R \ {0} with ab = 0 (see Cohn [21, page 117]). If a 6= 0 is any

non-invertible element of R then the function f ∈ (aR)∗ given by ab 7→ b for all

b ∈ R is well-defined (because a is not a zero divisor) and does not have an extension

(because a is not invertible). Therefore R cannot be exact unless it is a field.
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The above argument is essentially a reformulation of a result of Wilding et al.

[86, Proposition 4.2], which says that in an exact commutative ring each non-zero

element is a zero divisor or is invertible. Proposition 13.5 generalises this result to

matrices.

The condition for a semiring S to be right exact is very similar to the condition

for S to be injective as a right S-module (see Golan [34, page 197]). In fact, as

we will see below, exactness is just a restricted form of such ‘self-injectivity’ of S.

Semirings which are known to be self-injective include the Boolean semiring (see

Wang [83, Lemma 1]), proper quotients of principal ideal domains (see Lam [56,

Example 3.12]) and certain Boolean rings (see Lam [56, Corollary 3.11D]).

Definition 9.4 A semiring S is right self-injective if whenever X and Y are right

S-modules and there are right S-linear functions f : X → S and h : X → Y with h

injective, there is some right S-linear function g : Y → S satisfying g ◦ h = f .

Definition 9.4 is much easier to comprehend (and remember) in the form of a

diagram: a semiring S is right self-injective if and only if whenever f : X → S is a

right S-linear function and h : X → Y is an injective right S-linear function, there

is some right S-linear function g : Y → S that makes the diagram

X Y

S

h

f
g

(9.5)

commute. In the case of exactness we have the same basic diagram, but h is only

permitted to be the inclusion of a column space into its containing module. That

is, S is right exact if and only if whenever A ∈ Sm×n and f : Col(A)→ S is a right

S-linear function, there is some right S-linear function g : Sm×1 → S that makes the

diagram

Col(A) Sm×1

S

f
g

(9.6)
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commute. This proves the following result.

Proposition 9.5 If S is a right self-injective semiring then S is right exact.

Proof If S is right self-injective then S is right exact because, as described above,

(9.6) is an instance of (9.5). �

Exactness for rings is usually called FP-injectivity (see Nicholson and Yousif [70,

page 95]) because, as we have just seen, it is a restricted form of self-injectivity.1

An FP-injective ring is also sometimes called ‘absolutely pure’, after Maddox [65].

We will briefly discuss the connection between FP-injectivity and self-injectivity for

rings in section 12.

Although exactness of a semiring follows from self-injectivity, we will not actually

show that any particular semiring is exact by establishing that it is self-injective. For

one thing, an exact semiring need not be self-injective (see page 89), but the main

reason we will not use self-injectivity to deduce exactness is that this approach does

not give us enough information about the behaviour of matrices. In fact, we will not

even show that any particular semiring is exact by directly checking Definition 9.2.

Instead, we will characterise exactness in terms of double kernels and subsequently

obtain exactness as a by-product of our attempt to understand kernels.

The first step towards casting exactness in terms of double kernels is to replace

linear functionals by vectors. If S is a semiring and f ∈ Col(A)∗ for some A ∈ Sm×n

then since Col(A) contains the columns of A, we can apply f to each column in turn

to obtain n elements of S. These n elements can then be written as a row vector

(in the same order as the columns from which they came). We write fA ∈ S1×n

for this vector, and it is straightforward to verify that right S-linearity of f implies

that we have f(Av) = (fA)v for all v ∈ Sn×1. Alternatively, we could take this to

be the defining property of fA.

The row vector fA contains all the information necessary to compute a linear

function f ∈ Col(A)∗ because if we want to find fx for a given x ∈ Col(A) then, by

the above property, we have fx = f(Av) = (fA)v for some v ∈ Sn×1. To actually

do this in practice, though, we would have to work backwards from x and construct

some v ∈ Sn×1 satisfying Av = x. This is not necessarily an easy problem, and, by

Proposition 8.6 (i), is related to the problem of describing Ker Row(A), so fA is not

necessarily the most useful vector encapsulating f .

1FP stands for ‘finitely presented’.
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It would be better if there was some u ∈ S1×m with fx = ux for all x ∈ Col(A),

then we could directly compute f by simply multiplying two vectors, but such a

vector u does not necessarily exist. It turns out that there is some u ∈ S1×m with

this property if and only if f has an extension.

Proposition 9.6 Let S be a semiring, let A ∈ Sm×n and let f ∈ Col(A)∗. Then f

has an extension if and only if there is some u ∈ S1×m satisfying fx = ux for all

x ∈ Col(A).

Proof (⇒). Suppose that f has an extension g : Sm×1 → S. By Proposition 6.2

there is some IA ∈ Sm×m with IAA = A, so since g is defined on the whole of Sm×1

we can apply it to the columns of IA and obtain a vector gIA ∈ S1×m. Therefore

g(Av) = g(IAAv) = (gIA)Av for all v ∈ Sn×1 because g is right S-linear, and as

such fx = gx = (gIA)x for all x ∈ Col(A) because g is an extension of f .

(⇐). Suppose that there is some u ∈ S1×m with fx = ux for all x ∈ Col(A).

Then the right S-linear function Sm×1 → S given by y 7→ uy is clearly an extension

of f . �

Note that Proposition 9.6 certainly does not claim that every extension of f can

be written in the form y 7→ uy for some u ∈ S1×m. It merely tells us that if f has an

extension then there is a (possibly different) extension that can be written in this

form. This issue is not something we need to worry about for standard semirings,

as the existence of a global identity matrix I then ensures that any extension g of f

can be written as y 7→ (gI)y, but, as the following example illustrates, when S only

has local identities there may be extensions of f that cannot be written like this.

Example 9.7 Let A ∈ FT2×2 and define a function f : Col(A)→ FT by x 7→ x11,

where FT = (R,max,+) denotes the finitary tropical semiring. Since f just selects

the first entry of each vector in Col(A), it is clear that f is right FT-linear (our

choice of FT is not significant yet), and as such f ∈ Col(A)∗. Moreover, there

is no reason to restrict the definition of f to the vectors in Col(A); the function

FT2×1 → FT given by y 7→ y11 is obviously an extension of f .

Suppose that this extension of f can be written as y 7→ uy for some u ∈ FT1×2.

Then we have

y11 = uy = max{u11 + y11, u12 + y21} (9.7)

for all y ∈ FT2×1. In the case y21 = 0 this means that u12 ≤ y11 for all y11 ∈ FT,

which says that FT has a bottom element u12. This is a contradiction, because FT
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has no bottom element, and so we conclude that f has an extension that cannot be

written in the form y 7→ uy for any u ∈ FT1×2.

Proposition 9.8 Let S be a semiring, let A ∈ Sm×n and let f ∈ Col(A)∗. Then f

has an extension if and only if fA ∈ Row(A).

Proof By Proposition 9.6, f has an extension if and only if there is some u ∈ S1×m

satisfying fx = ux, which happens if and only if there is some u ∈ S1×m with

(fA)v = f(Av) = uAv for all v ∈ S1×n. Therefore, by Proposition 6.3, f has an

extension if and only if there is some u ∈ S1×m with fA = uA, that is, if and only

if fA ∈ Row(A). �

While we might not necessarily have fA ∈ Row(A), we do at least always have

fA ∈ Ker2 Row(A). This is because if v, v′ ∈ Sn×1 with Av = Av′ then

(fA)v = f(Av) = f(Av′) = (fA)v′ (9.8)

because f is right S-linear. In other words, Ker Row(A) ⊆ Ker(fA), which means

that fA ∈ Ker2 Row(A) by Definition 8.3. Conversely, each element of Ker2 Row(A)

gives rise to an element of Col(A)∗, and this allows us to show that Col(A)∗ and

Ker2 Row(A) are in fact isomorphic as left S-modules. Note that Ker2 Row(A) is

a left S-submodule of S1×n because we have Ker(y) ∩ Ker(z) ⊆ Ker(y + z) and

Ker(y) ⊆ Ker(ay) for all a ∈ S and all y, z ∈ S1×n.

Lemma 9.9 Let S be a semiring and let A ∈ Sm×n. Then the function from

Col(A)∗ to Ker2 Row(A) given by f 7→ fA is an isomorphism of left S-modules,

with inverse given by y 7→ (Av 7→ yv).

Proof The function given by f 7→ fA is left S-linear because of how we made

Col(A)∗ a left S-module (see the proof of Proposition 9.1), so it remains to show

that the proposed inverse is correct.

Let y ∈ Ker2 Row(A). Then Ker Row(A) ⊆ Ker(y) by Definition 8.3, which

means that if v, v′ ∈ Sn×1 with Av = Av′ then yv = yv′, and as such the function

given by Av 7→ yv is well-defined. Call this function f . It is clear that f is right

S-linear, so f ∈ Col(A)∗, and since we have (fA)v = (fAv) = yv for all v ∈ Sn×1 it

follows immediately from Proposition 6.3 that fA = y. Therefore the composition

Ker2 Row(A)→ Col(A)∗ → Ker2 Row(A) is the identity function.
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Now let f ∈ Col(A)∗ so that fA ∈ Ker2 Row(A), as described above. Then the

function given by Av 7→ (fA)v is just f because (fA)v = f(Av) for all v ∈ Sn×1,

and as such the composition Col(A)∗ → Ker2 Row(A)→ Col(A)∗ is also the identity

function. Hence Col(A)∗ ∼= Ker2 Row(A) as left S-modules. �

An immediate consequence of Lemma 9.9 is that if S is a semiring and A ∈ Sm×n

then Ker2 Row(A) = {fA : f ∈ Col(A)∗}. Together with the above results, this fact

gives us our working characterisation of exactness.

Proposition 9.10 Let S be a semiring. Then S is right exact if and only if

Ker2 Row(A) = Row(A) for all A ∈ Sm×n.

Proof (⇒). Suppose that S is right exact and let A ∈ Sm×n. We already know

that Row(A) ⊆ Ker2 Row(A), by Proposition 8.5 (ii), so it is sufficient to show

that the reverse inclusion also holds. Now let y ∈ Ker2 Row(A). Then y = fA

for some f ∈ Col(A)∗, by the above observation. Since S is right exact, f has an

extension by Definition 9.2 (i), and thus y = fA ∈ Row(A) by Proposition 9.8.

Hence Ker2 Row(A) = Row(A).

(⇐). Suppose that Ker2 Row(A) = Row(A) for all A ∈ Sm×n. To show that S

is right exact we need to verify that each f ∈ Col(A)∗ has an extension whenever

A ∈ Sm×n, so let A ∈ Sm×n and let f ∈ Col(A)∗. Then fA ∈ Ker2 Row(A) by the

above observation, and so fA ∈ Row(A), which means that f has an extension by

Proposition 9.8 again. Hence S is right exact by Definition 9.2 (i). �

Proposition 9.10 tells us that exactness can be phrased in terms of a separation

property: a semiring S is right exact if and only if each y ∈ S1×n \ Row(A) is

separable from Row(A) whenever A ∈ Sm×n. This is the way that Hollings and

Kambites [40, Lemma 4.1] originally formulated exactness, and it allowed them

to show that the finitary tropical semiring FT = (R,max,+) and the completed

tropical semiring T = (R∪{−∞,∞},max,+) are both exact. They were also able to

obtain Theorem 9.11 (ii), below, for the tropical semiring T = (R∪{−∞},max,+),

even though it is an open question whether T is exact.

Theorem 9.11 Let S be a right exact semiring, let A ∈ Sm×n and let B ∈ Sp×q.

Then

(i) Col(A)∗ ∼= Row(A) as left S-modules; and
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(ii) Col(A) ∼= Col(B) as right S-modules if and only if A D B.

Proof (i). By Lemma 9.9, Col(A)∗ ∼= Ker2 Row(A) as left S-modules, so if S is

right exact then Col(A)∗ ∼= Row(A) as left S-modules by Proposition 9.10.

(ii). If A D B then Col(A) ∼= Col(B) as right S-modules by Proposition 6.7, so

it remains to show that A D B whenever Col(A) ∼= Col(B).

Let f : Col(A) → Col(B) be an isomorphism of right S-modules and for each

1 ≤ i ≤ p write fi for the right S-linear function Col(A)→ S given by x 7→ (fx)i1.

Then by Proposition 9.6 there are u1, . . . , up ∈ S1×m with (fx)i1 = fix = uix for all

x ∈ Col(A) and all 1 ≤ i ≤ p. Therefore f is given by

fx =


u1x

...

upx

 =


u1
...

up

x (9.9)

for all x ∈ Col(A), and as such there is a matrix P ∈ Sp×m with fx = Px for

all x ∈ Col(A). A similar argument shows that there is a matrix Q ∈ Sm×p with

f−1x = Qx for all x ∈ Col(B).

The fact that f−1 ◦ f is the identity function on Col(A) means that QPAv = Av

for all v ∈ Sn×1, and thus QPA = A by Proposition 6.3. Therefore A L PA. Also,

since the image of f is Col(B) we have

Col(B) = {Px : x ∈ Col(A)} =
{
PAv : v ∈ Sn×1} = Col(PA), (9.10)

and as such B R PA by Proposition 6.6. Hence A D B because A L PA R B. �

Recall from section 8 that to understand Ker Row(A) for a given A ∈ Sm×n,

it would be helpful if we could find a smaller relation F ⊆ Sn×1 × Sn×1 satisfying

Ker2(F ) = Ker Row(A). The idea is that such a relation would be easier to describe,

yet would still capture the essential information about Ker Row(A). One way for F

to satisfy Ker2(F ) = Ker Row(A) would of course be if Ker(F ) = Row(A), and it

turns out that if each A ∈ Sm×n has such a relation F then we obtain right exactness

of S in addition to a useful description of Ker Row(A).

Lemma 9.12 Let S be a semiring. Then S is right exact if for each A ∈ Sm×n

there is some F ⊆ Sn×1 × Sn×1 satisfying Ker(F ) = Row(A).
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Proof Let A ∈ Sm×n and suppose that there is some F ⊆ Sn×1 × Sn×1 satisfying

Ker(F ) = Row(A). Then Ker3(F ) = Ker2 Row(A), where Ker3(F ) = Ker(F ) by

Proposition 8.5 (iii), and thus we have Ker2 Row(A) = Row(A). Hence S is right

exact by Proposition 9.10. �

We will apply Lemma 9.12 in the proof of Theorem 19.4 to show that certain

tropical-like semirings are exact.

10 Conjugations on semirings

Our last main problem is to explain the relationship between the row space and

column space of a matrix with entries in a given semiring. It is not clear how

best to approach this problem, as, in general, the row space of a matrix A could

be nothing like the column space of A. On the other hand, Row(A) and Col(A)

could be isomorphic, as in the case of a field, and so we should not expect to be

able to say anything meaningful about the relationship between Row(A) and Col(A)

unless the semiring in question has some particular structure that we can make use

of. To simplify matters, we will restrict our attention to cases where there is an

isomorphism-like connection between Row(A) and Col(A) for each matrix A.

Motivated by the fact that the row space and column space of a matrix with

entries in C are conjugate isomorphic as well as isomorphic, we introduce a notion

of a ‘conjugation’ on a semiring S. Our definition of a conjugation is formulated so

as to induce a bijection between Row(A) and Col(A) for each A ∈ Sm×n. Moreover,

these bijections will be structure preserving in a way that depends on the particular

conjugation chosen. We will give more examples of conjugations and their induced

“conjugate isomorphisms” in Theorems 14.2 and 19.5.

Since a conjugation should ultimately connect two objects (namely the row space

and column space of a matrix), we will require a conjugation on a semiring S to

be an involution on S. Note that by an involution on S we just mean a function

: S → S satisfying a = a for all a ∈ S; we do not require to interact with

addition or multiplication in any way. If also satisfies a+ b = a+ b and ab = b a

for all a, b ∈ S then we will call a standard involution (see Golan [33, page 68]).

Given an involution on a semiring S, we extend to matrices with entries in

S via the transpose operation. That is, we define A ∈ Sn×m by Aji = Aij for each

A ∈ Sm×n, so that we have A+B = A + B and AB = BA for all A,B ∈ Sm×n



64 The three main problems

if happens to be a standard involution. For instance, if S is commutative then

the identity function on S is a standard involution, and thus when this involution is

extended to matrices we simply recover the familiar properties (A+B)T = AT +BT

and (AB)T = BTAT. We can now properly define what we mean by a conjugation

on S.

Definition 10.1 Let S be a semiring and let be an involution on S. Then is

a conjugation on S if for each A ∈ Sm×n there are M,N ∈ Sm×n satisfying

(i) MuA = AuM and MuAN = uA for all u ∈ S1×m; and

(ii) AvN = NvA and MAvN = Av for all v ∈ Sn×1.

Definition 10.1 looks impenetrable, but the idea behind it is quite simple. For

each A ∈ Sm×n a conjugation should induce a bijection between Row(A) and Col(A),

so we insist that there are functions Row(A)→ Col(A) and Col(A)→ Row(A) that

somehow rely on conjugation. The two functions we have in mind are

Row(A) Col(A) Row(A),
x 7→Mx x 7→ xN (10.1)

and all that (i) and (ii) are saying is that these functions have the correct codomains

and are mutually inverse. Specifically, MuA = AuM and AvN = NvA (which are

actually a little stronger than is strictly necessary) ensure that Mx ∈ Col(A) for

all x ∈ Row(A) and that xN ∈ Row(A) for all x ∈ Col(A), while MuAN = uA

and MAvN = Av ensure that x 7→ Mx and x 7→ xN compose to give the identity

functions on Row(A) and Col(A) respectively.

The bijection x 7→Mx that a conjugation induces between Row(A) and Col(A)

is a linear function (multiplication by M) composed with the conjugation itself, so it

is reasonable to expect the interaction of this bijection with the S-module structures

of Row(A) and Col(A) to reflect the way the conjugation interacts with addition

and multiplication on S. In particular, if is a standard involution then, as the

following result shows, the induced bijection between Row(A) and Col(A) is very

similar to an isomorphism of S-modules.

Proposition 10.2 Let S be a semiring, let be a standard involution on S and

let A ∈ Sm×n. If is a conjugation then there is a bijection f : Row(A)→ Col(A)

satisfying f(x+y) = fx+fy and f(ax) = (fx)a for all a ∈ S and all x, y ∈ Row(A).
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Proof Write f for the bijection x 7→ Mx described above. Then since is a

semiring involution we have

f(x+ y) = Mx+ y = M(x+ y) = Mx+My = fx+ fy (10.2)

and

f(ax) = Max = Mxa = (fx)a (10.3)

for all a ∈ S and all x, y ∈ Row(A). �

In cases where S is commutative and the identity function on S is a conjugation

(see Theorem 14.2), Proposition 10.2 tells us that Row(A) ∼= Col(A) as S-modules

for all A ∈ Sm×n. As we show in Theorem 10.4, below, complex conjugation on C

is a conjugation in the sense of Definition 10.1, and so in this case Proposition 10.2

recovers the fact that there is a conjugate isomorphism between Row(A) and Col(A)

for all A ∈ Cm×n (see Roman [72, Theorem 9.18]). To help show that complex

conjugation is a conjugation in our sense, and to make it easier to show that other

standard involutions are conjugations, we first prove the following useful result.

Lemma 10.3 Let S be a semiring and let be a standard involution on S. Then

is a conjugation if for each A ∈ Sn×n there are M,N ∈ Sn×n satisfying MA = AM

and AMN = A.

Proof Let B ∈ Sm×n. We need to find MB, NB ∈ Sm×n satisfying Definition 10.1

(i) and (ii) for B, but we cannot directly use the hypothesis unless B is square.

So suppose that m ≥ n and write A ∈ Sm×m for the square matrix obtained by

repeating some columns of B as necessary. It is obvious that A and B have the

same column space, and thus A R B by Proposition 6.6. This means that there are

P ∈ Sm×n and Q ∈ Sn×m with AP = B and BQ = A. By the hypothesis, there are

also MA, NA ∈ Sn×n with MAA = AMA and AMANA = A.

Now take MB = MAQ and NB = NAP . To satisfy Definition 10.1 (i) for B we

first need to show that MBuB = BuMB for all u ∈ S1×m, but since is a standard

involution it is sufficient to show that MBB = BMB. This holds because we have

MBB = MAQB = MAA = AMA = BQMA = BMB. (10.4)

Next we need to show that MBuBNB = uB for all u ∈ S1×m. For this it is sufficient
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to show that BMBNB = B, and indeed we have

BMBNB = BQMANAP = AMANAP = AP = B. (10.5)

To satisfy Definition 10.1 (ii) for B it is sufficient to show that BNB = NBB and

MBNBB = B. For the first of these we have

BNB = NBMBBNB = NBBMBNB = NBB (10.6)

by (10.4) and (10.5), and for the second we have

MBNBB = MBBNB = BMBNB = B (10.7)

by (10.4), (10.5) and (10.6).

By repeating some rows of B instead of some columns, a dual argument confirms

that Definition 10.1 (i) and (ii) are also satisfied for B in the case m ≤ n. Hence

is a conjugation. �

Theorem 10.4 Complex conjugation : C → C is a conjugation in the sense of

Definition 10.1.

Proof Let A ∈ Cn×n. As a consequence of the singular value decomposition of A

(see Roman [72, page 445]) there are P,Q ∈ Cn×n with P and Q unitary, that is,

with P = P−1 and Q = Q−1, and with PAQ real diagonal. Therefore PAQ = PAQ,

because taking the conjugate transpose of a (square) real diagonal matrix has no

effect, and thus

P QA = P
(
QAP

)
P = P (PAQ)P = AQP (10.8)

because is a standard involution. We also have

AQPP Q = AQQ = A, (10.9)

and as such A satisfies the hypothesis of Lemma 10.3 with M = N = P Q. Hence

is a conjugation. �
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11 Exact matrix and product semirings

Before giving examples of exact semirings (see sections 14 and 19), we would like

to further develop the abstract theory of exactness so that we can understand the

examples in context. Specifically, we are interested in the extent to which exactness

can be transferred. If a semiring S is exact, what can be said about subsemirings of

S, semirings containing S as a subsemiring and semirings constructed from S?

In this section we show that the full matrix and direct product constructions

described in sections 6 and 7 (respectively) preserve exactness. When combined

with the general results about subsemirings in section 12, these facts allow us to

easily show that more semirings related to S are exact whenever S is. For instance,

if S is exact then we can deduce that the group semiring SG is exact for every finite

group G by realising SG as a matrix semiring and applying exactness of full matrix

semirings (see Corollary 12.5).

Since we are considering the problem of transferring exactness from one semiring

to another, it will be necessary to refer to row spaces and kernels in more than

one semiring at a time. To remove any ambiguity, we will write RowS(A) and

KerS RowS(A) for the row space of a matrix A and its kernel when A is intended

to be interpreted as a matrix with entries in S. This distinction is particularly

important in our first result, as a matrix with entries in Mn(S) can also be regarded

as a block matrix with entries in S.

Proposition 11.1 If S is a right exact semiring then each Mn(S) is right exact.

Proof For convenience, we write T instead of Mn(S) in this proof.

Let A ∈ T p×q and let y ∈ Ker2T RowT (A). Each entry of A is an n × n matrix

with entries in S, so we can treat A as a pn × qn matrix with entries in S. That

is, we identity T p×q and Spn×qn, and similarly we have y ∈ T 1×q = Sn×qn with rows

67
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y1, . . . , yn ∈ S1×qn.

We want to show that each yi ∈ Ker2S RowS(A), so let v, v′ ∈ Sqn×1 with Av =

Av′. Now write w,w′ ∈ Sqn×n = T q×1 for the matrices obtained by repeating v and

v′, so that w = [ v ... v ] and w′ = [ v′ ... v′ ], then we have Aw = Aw′ over T because

Av = Av′ over S. Therefore (w,w′) ∈ KerT RowT (A), and thus (w,w′) ∈ KerT (y)

because y ∈ Ker2T RowT (A). This means that yw = yw′ over T , so yiv = yiv
′ over S

for all 1 ≤ i ≤ n because w and w′ were defined using v and v′ respectively. Hence

each yi ∈ Ker2S RowS(A) because, as we have just shown, KerS RowS(A) ⊆ KerS(yi)

for all 1 ≤ i ≤ n.

We can now use right exactness of S. By Proposition 9.10 each yi ∈ RowS(A),

so for each 1 ≤ i ≤ n there is some ui ∈ S1×pn with yi = uiA. Combining these

vectors, we obtain a matrix

u =


u1
...

un

 ∈ Sn×pn = T 1×p (11.1)

which satisfies y = uA over T , and as such y ∈ RowT (A). We have therefore shown

that Ker2T RowT (A) ⊆ RowT (A), and so in fact Ker2T RowT (A) = RowT (A). Hence

T is right exact by Proposition 9.10. �

Our other useful result in this section is that the direct product of exact semirings

is an exact semiring. This result is not at all surprising, and is quite easy to prove,

but unfortunately the proof is rather off-putting. The fundamental observation is

that we can split any matrix over S × T into a matrix over S (the “left part”)

and a matrix over T (the “right part”) using the obvious correspondence between

(S × T )m×n and Sm×n × Tm×n.

Proposition 11.2 If S and T are right exact semirings then S × T is right exact.

Proof Let A ∈ (S × T )m×n and let y ∈ Ker2S×T RowS×T (A). Each entry of A is a

pair, so we write AS ∈ Sm×n for the matrix comprising the left-hand entries of A

and AT ∈ Tm×n for the matrix comprising the right-hand entries of A. Similarly,

we write yS ∈ S1×n and yT ∈ T 1×n for the left and right parts of y.

We want to show that yS ∈ Ker2S RowS(AS) and yT ∈ Ker2T RowT (AT ), so let

vS, v
′
S ∈ Sn×1 with ASvS = ASv

′
S and let vT , v

′
T ∈ T n×1 with ATvT = ATv

′
T . Then
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Av = Av′, where v, v′ ∈ (S × T )n×1 denote the vectors with left parts vS, v
′
S respec-

tively and right parts vT , v
′
T respectively. Therefore (v, v′) ∈ KerS×T RowS×T (A),

and thus (v, v′) ∈ KerS×T (y) because y ∈ Ker2S×T RowS×T (A). This means that

yv = yv′, with left part ySvS = ySv
′
S and right part yTvT = yTv

′
T , and as such

KerS RowS(AS) ⊆ KerS RowS(yS) (11.2)

and

KerT RowT (AT ) ⊆ KerT RowT (yT ). (11.3)

Hence yS ∈ Ker2S RowS(AS) and yT ∈ Ker2T RowT (AT ).

We are now ready to use right exactness of S and T . By Proposition 9.10 we

have yS ∈ RowS(AS) and yT ∈ RowT (AT ), so there are uS ∈ S1×m and uT ∈ S1×n

with yS = uSAS and yT = uTAT . Therefore y = uA, where u ∈ (S × T )1×m denotes

the vector with left part uS and right part uT , and as such y ∈ RowS×T (A). To

summarise, we have shown that Ker2S×T RowS×T (A) ⊆ RowS×T (A), and so in fact

Ker2S×T RowS×T (A) = RowS×T (A). Hence Proposition 9.10 confirms that S × T is

right exact. �

12 Ideals and exact subsemirings

In this section we consider what effect exactness of a semiring S has on the sub-

semirings of S and on the semirings containing S as a subsemiring. We begin by

showing that if S is exact then it must be contained in every larger semiring in a

“rigid” way. This places quite a strong restriction on the finitely generated ideals of

any semiring that contains S as a subsemiring, and allows us to show, for instance,

that an exact integral domain must be a field.

The significance of finitely generated ideals then leads us to wonder whether

“partial” exactness of a semiring S (i.e., at the level of finitely generated ideals)

always transfers to genuine exactness of S. In other words, when studying exactness,

is it sufficient to just consider the finitely generated ideals of S? This question is also

motivated by the well-known result of Baer [5] which characterises self-injectivity of

a ring purely in terms of its ideals.

Finally, we ask when exactness can be transferred down from a semiring to

a subsemiring. Our main result (Theorem 12.4) gives sufficient conditions for a

subsemiring of an exact semiring to be exact, and is of most use in the case of a full
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matrix semiring. In section 11 we showed that each Mn(S) is exact if S is an exact

semiring, so the results in this section allow us to transfer exactness of S to various

matrix semirings. In particular, as we deduce in Corollary 12.5, exactness of S can

be transferred to the group semiring SG for every finite group G.

Note that, as in section 11, we use a subscript to indicate the semiring in which

the entries of a matrix lie.

Lemma 12.1 Let T be a semiring and let S be a subsemiring of T . If S is right

exact then

(i) RowT (A) ∩ S1×n = RowS(A); and

(ii) RowS(A) ⊆ RowS(B) if and only if RowT (A) ⊆ RowT (B)

for all A ∈ Sm×n and all B ∈ Sp×n.

Proof (i). It is clear that RowS(A) ⊆ RowT (A) ∩ S1×n, so it remains to show that

the reverse inclusion also holds. Let x ∈ RowT (A) ∩ S1×n. Then x = uA for some

u ∈ T 1×m. We want to show that x ∈ Ker2S RowS(A), so let v, v′ ∈ Sn×1 and suppose

that Av = Av′. Then xv = uAv = uAv′ = xv′, and thus (v, v′) ∈ KerS(x). Therefore

x ∈ Ker2S RowS(A) because we have just shown that KerS RowS(A) ⊆ KerS(x).

Hence x ∈ RowS(A) by Proposition 9.10.

(ii). First suppose that RowS(A) ⊆ RowS(B). Then, in particular, RowS(B)

contains each row of A. Therefore RowT (B) contains each row of A because S ⊆ T ,

and thus RowT (A) ⊆ RowT (B) because, by Proposition 6.5 dual, RowT (A) is the

smallest left T -submodule of T 1×n that contains each row of A. Conversely, if

RowT (A) ⊆ RowT (B) then RowT (A)∩S1×n ⊆ RowT (B)∩S1×n, and so we conclude

that RowS(A) ⊆ RowS(B) by (i). �

Lemma 12.1 (ii) tells us that if S is a right exact subsemiring of a semiring T

then the function given by RowS(A) 7→ RowT (A) is an order embedding from the

poset of row spaces in S1×n to the poset of row spaces in T 1×n (see page 93). This

function is well-defined and injective because we have RowS(A) = RowS(B) if and

only if RowT (A) = RowT (B) for all A ∈ Sm×n and all B ∈ Sp×n, and the fact that

it is an order embedding means that the inclusion structure of row spaces over T

must be at least as complicated as the inclusion structure of row spaces over S. In

particular, T cannot have a simpler poset of finitely generated left ideals than S.
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Theorem 12.2 Let T be a semiring and let S be a subsemiring of T . If S is right

exact then there is an order embedding from the poset of finitely generated left

ideals of S to the poset of finitely generated left ideals of T .

Proof Apply Lemma 12.1 (ii) in the case n = 1, as described above. �

One consequence of Theorem 12.2 is that any exact commutative non-trivial

ring that is a subring of a field must itself be a field. This is because a field only

has two finitely generated ideals: the zero ideal and the whole field. An exact

non-trivial subring of a field could not have more than two finitely generated ideals

as there would be no order embedding, and yet it must have at least two finitely

generated ideals because otherwise it would then be the trivial ring. Such a ring

must therefore have precisely two finitely generated ideals, so must be a field. Every

integral domain is a subring of a field (see Cohn [21, Theorem 6.2.3]), and thus by

the above observation an exact integral domain must be a field. We also outlined a

direct proof of this fact just after Example 9.3.

Now—slightly tangentially—recall that our original definition of exactness was

that a semiring is right exact if each right S-linear function from the column space of

a matrix to S has an extension (see Definition 9.2). In particular, if S is right exact

then every linear functional on a finitely generated right ideal of S has an extension.

Does this property characterise right exactness? That is, given a matrix A ∈ Sm×n

and a linear function f : Col(A) → S, is it possible to produce an extension of f

only using extensions of linear functionals on finitely generated right ideals of S? If

so, it would be sufficient to define exactness in terms of linear functionals on finitely

generated ideals.

The corresponding question for self-injectivity of rings has a positive answer: by

the work of Baer [5], a ring R is right self-injective if and only if each linear functional

on a right ideal of R has an extension (see Rotman [73, Theorem 3.30]). This means

that (when we are concerned with injectivity, at least) linear functionals on right

ideals of R capture the complexity of linear functionals on right R-modules. Whether

this works for exactness—also known as FP-injectivity—of rings is an open question,

however. The property of all linear functionals on finitely generated ideals of a ring

R having an extension is known as F-injectivity of R, and it is unknown whether

every F-injective ring is FP-injective (see Nicholson and Yousif [70, Question 10]).

It is much easier to resolve the above question for semirings. In Example 20.6

we will construct a non-exact semiring with the property that each linear functional
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on a finitely generated ideal has an extension. This means that, in general, it

is not possible to transfer partial exactness up from finitely generated ideals of a

semiring to row and column spaces of matrices. It turns out that Bear’s test for

self-injectivity does not work when stated for semirings either. For instance, the

semiring in Example 20.6 is finite, and as such each ideal has the linear functional

extension property, but (by Proposition 9.5) this semiring cannot be self-injective

as it is not even exact.

If S is an exact subsemiring of a semiring T then Lemma 12.1 restricts parts of

the structure of matrices over T , but it does not tell us anything about the parts that

do not intersect with S. Away from S, the behaviour of matrices could be completely

different, so it seems unlikely that we could formulate a useful characterisation of

when exactness can be transferred up from S to T . The opposite direction in which

we could consider transferring exactness is, of course, down from a semiring to a

subsemiring. We are most interested in when it is possible to transfer exactness

down from a full matrix semiring to a subsemiring, so we begin by considering what

happens for matrix semirings comprising all the matrices of a given shape. For

instance, we might wonder if semirings of upper triangular matrices can ever be

exact. To make this notion precise, we introduce the following definitions.

Let S be a standard semiring. A relation E ⊆ {(i, j) : 1 ≤ i, j ≤ n} will be

called an n-shape if it is reflexive and transitive, and given such a relation we define

ME(S) = {A ∈ Mn(S) : Aij = 0 for all (i, j) /∈ E}. (12.1)

An n-shape E records the matrix entries that are permitted to be non-zero, so ME(S)

should be interpreted as comprising all the matrices of shape E. For example, if we

take E = {(i, i) : 1 ≤ i ≤ n} then ME(S) is the semiring of diagonal n× n matrices

with entries in S, and if we take E = {(i, j) : 1 ≤ i ≤ j ≤ n} then ME(S) is the

semiring of upper triangular n×n matrices with entries in S. Notice that if we take

E = {(i, j) : 1 ≤ i, j ≤ n} then we simply recover Mn(S) because (12.1) does not

force any matrix entries to be zero.

The definition of an n-shape ensures that ME(S) is a subsemiring of Mn(S)

for each n-shape E. Specifically, the assumption that E is transitive means that

ME(S) is closed under multiplication, and the assumption that E is reflexive means

that ME(S) contains the identity matrix. (It is clear from (12.1) that ME(S) is

always going to be an additive submonoid of Mn(S), so we need not worry about
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addition or zero.) We are now in a position to characterise the shapes for which the

corresponding matrix semiring inherits exactness from S.

Theorem 12.3 Let S be a right exact standard semiring and let E be an n-shape.

Then ME(S) is right exact if and only if E is an equivalence relation.

Proof (⇒). Suppose that ME(S) is right exact. By definition, an n-shape is reflex-

ive and transitive, so it is sufficient to show that E is symmetric. Also notice that

(i, j) ∈ E if and only if δij ∈ ME(S), where δij ∈ Mn(S) denotes the matrix with

i-jth entry 1 and all other entries 0. It is therefore enough to show that δij ∈ ME(S)

implies that δji ∈ ME(S) for all 1 ≤ i, j ≤ n.

Let 1 ≤ i, j ≤ n and suppose that δij ∈ ME(S). Since E is reflexive we have

δjiδij = δjj ∈ ME(S), and thus δjj ∈ Mn(S)δij ∩ME(S). Lemma 12.1 (i) then gives

δjj ∈ ME(S)δij, because ME(S) is right exact with δij ∈ ME(S), and as such there

is some A ∈ ME(S) satisfying δjj = Aδij. Therefore

δji = δjjδji = Aδijδji = Aδii ∈ ME(S) (12.2)

because A, δii ∈ ME(S). Hence E is symmetric.

(⇐). Suppose that E is symmetric. Then E has 1 ≤ m ≤ n equivalence classes

E1, . . . , Em with cardinalities n1, . . . , nm (respectively) satisfying n1 + · · ·+nm = n.

Each class Ek has a corresponding n-shape Ek × Ek, and since the Ek are pairwise

disjoint we can identify ME(S) with the direct product

ME1×E1(S)× · · · ×MEm×Em(S). (12.3)

Using a bijection between Ek and {1, . . . , nk}, we can then identify MEk×Ek
(S) with

Mnk
(S), and thus we can identify ME(S) with the direct product

Mn1(S)× · · · ×Mnm(S). (12.4)

By assumption S is right exact, so by Proposition 11.1 each Mnk
(S) is right exact.

Hence ME(S) is right exact by Proposition 11.2. �

Theorem 12.3 tells us everything we really want to know about when the semiring

of matrices of a given shape over an exact standard semiring S is exact. Essentially,

the shape must be symmetric in order for the corresponding matrix semiring to be
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exact. For example then, semirings of upper triangular matrices will never be exact,

but the semiring comprising all the matrices of shapea 0 b

0 c 0

d 0 e

 , (12.5)

for a, b, c, d, e ∈ S, will be exact because it can be identified with M2(S)× S.

In general, a full matrix semiring will have more subsemirings that just those

comprising all the matrices of a given shape. For instance, if S is a semiring and

G is a finite group of order n then Lemma 7.2 tells us that the group semiring SG

can be viewed as a subsemiring of Mn(S). It would therefore be helpful if we could

find sufficient conditions for an arbitrary matrix semiring to inherit exactness from

Mn(S). This problem of transferring exactness down from a semiring to a subsemir-

ing appears more amenable to a general result than the problem of transferring

exactness up from a subsemiring, as there are no unknown elements to account for.

Indeed, the following result shows that if a subsemiring is sufficiently similar to its

containing semiring then downwards transfer of exactness is possible.

Theorem 12.4 Let T be a right exact semiring and let S be a right retract of T .

If there is an injective left S-linear function g : T → S1×q for some q then S is right

exact.

Proof Let A ∈ Sm×n and let y ∈ Ker2S RowS(A). Then KerS RowS(A) ⊆ KerS(y).

We begin by showing that y ∈ Ker2T RowT (A). To do this, let v, v′ ∈ T n×1 and

suppose that Av = Av′. By applying g entrywise, we can extend it to a function

g : T n×1 → Sn×q, and the assumption that g is left S-linear then means that we have

g(Av) = A(gv) and g(Av′) = A(gv′). Therefore A(gv)w = A(gv′)w for all w ∈ Sq×1

because Av = Av′, and as such ((gv)w, (gv′)w) ∈ KerS RowS(A) ⊆ KerS(y) for all

w ∈ Sq×1. This means that y(gv)w = y(gv′)w for all w ∈ Sq×1, so by Proposition 6.3

we have y(gv) = y(gv′). Left S-linearity of g then gives g(yv) = g(yv′), and thus

yv = yv′ because g is injective. That is, (v, v′) ∈ KerT (y). We have therefore shown

that KerT RowT (A) ⊆ KerT (y), and as such y ∈ Ker2T RowT (A).

We can now use right exactness of T . By Proposition 9.10 we have y ∈ RowT (A),

which means that y = uA for some u ∈ T 1×m. Since S is a right retract of T , there

is a right S-linear function f : T → S that fixes S pointwise (see Definition 5.7).
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Note that, as above, f can be extended to a function f : T 1×m → S1×m and to a

function f : T 1×n → S1×n. The assumption that f is S-linear and fixes S pointwise

then gives y = fy = f(uA) = (fu)A, and as such y ∈ RowS(A). We have therefore

shown that Ker2S RowS(A) ⊆ RowS(A), and so in fact Ker2S RowS(A) = RowS(A).

Hence S is right exact by Proposition 9.10. �

Corollary 12.5 If S is a right exact semiring then the group semiring SG is right

exact for every finite group G.

Proof Suppose that G has order n. By Theorem 7.3 (iii), SG is a right retract

of Mn(S), and by Theorem 7.3 (ii) dual, there is (in particular) an injective left

SG-linear function Mn(S)→ (SG)1×n. Hence SG is right exact by Proposition 11.1

and Theorem 12.4. �

Shitov [76, Theorem 3.5] has shown that if R is a ring and G is a group then

the group ring RG is exact if and only if R is exact and G is locally finite. His

proof that exactness of RG implies exactness of R essentially uses Theorem 12.4 to

transfer exactness down from RG to R. Specifically, R is a right retract of RG via

the function that selects any diagonal entry (i.e., the constant term) of an element

of RG, and the required injective left R-linear function RG → R1×n is given by

selecting the first row of an element of RG.
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13 Orthogonal complements and exact annihilators

The kernel of a set of row vectors over a semiring records the pairs of column

vectors that give the same result when multiplied with each row vector in the set

(see Definition 8.1). Over a ring, however, we do not need to keep track of pairs

of column vectors because we can rewrite an equality of the form xv = xv′ as

x(v − v′) = 0, and this means that it suffices to simply record which single column

vectors give the zero vector when multiplied with each row vector. Consequently,

the kernel becomes much easier to understand, as it is sufficient to only consider

one of its equivalence classes. This representative class is called the ‘orthogonal

complement’ of the set of row vectors.

In this section we recall some basic properties of orthogonal complements and

we show that exactness of a ring is equivalent to a familiar double orthogonal com-

plement condition. Orthogonal complements are closely linked with annihilators, so

we also introduce a notion of ‘exact annihilator’ and the corresponding property of

a ring being an ‘exact annihilator ring’. Being an exact annihilator ring is slightly

stronger than being an exact ring, and this means that, in addition to exactness,

we can gain valuable information about the structure of orthogonal complements by

constructing exact annihilators. We will illustrate this for various rings in section 14.

Definition 13.1 Let R be a ring and let X ⊆ R1×n. The orthogonal complement

of X is the set

X⊥ =
{
v ∈ Rn×1 : xv = 0 for all x ∈ X

}
. (13.1)

Comparing this definition with Definition 8.1, we see that X⊥ is precisely the

equivalence class [0]Ker(X). As mentioned above, in the context of rings this is the

only class we need to consider because if v, v′ ∈ Rn×1 then (v, v′) ∈ Ker(X) if and

only if v − v′ ∈ X⊥. Put another way, since X⊥ is a right R-submodule of Rn×1,

77
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it is (in particular) an additive subgroup of Rn×1, and the equivalence classes of

Ker(X) are just the cosets of X⊥. This means that quotienting Rn×1 by the right

R-submodule X⊥ gives the same result as quotienting it by the right R-congruence

Ker(X) would, and so Proposition 8.6 (ii) immediately gives Proposition 13.2 (i),

below.

Part (ii) of Proposition 13.2 follows from the fact that, as with kernels, taking

orthogonal complements constitutes a Galois connection between R1×n and Rn×1.

The only difference in the case of orthogonal complements is that both functions of

the Galois connection take a set of vectors to a set of vectors, rather than one of

them taking a relation on vectors to a set of vectors instead (see Proposition 8.4).

That is, a set of column vectors also has an orthogonal complement—defined dually

to (13.1)—and together the two functions between Pow
(
R1×n) and Pow

(
Rn×1) form

a Galois connection.

Proposition 13.2 Let R be a ring and let A ∈ Rm×n. Then

(i) Rn×1/Row(A)⊥ ∼= Col(A) as right R-modules; and

(ii) Row(A)⊥⊥⊥ = Row(A) ⊆ Row(A)⊥⊥.

Proof See above. �

Since it is simpler and sufficient (when working with rings) to study orthogonal

complements instead of kernels, we would like to turn Proposition 9.10 into a char-

acterisation of exactness that is phrased purely in terms of orthogonal complements.

In view of Proposition 13.2 (ii), and the fact that Proposition 9.10 involves a double

kernel, the following result is the appropriate such characterisation.

Proposition 13.3 A ring R is right exact if and only if Row(A)⊥⊥ = Row(A) for

all A ∈ Rm×n.

Proof By Proposition 9.10 it is enough to show that Row(A)⊥⊥ = Ker2 Row(A) for

all A ∈ Rm×n, but in fact this holds more generally because if X ⊆ R1×n then we

have

X⊥⊥ =
{
y ∈ R1×n : yv = 0 for all v ∈ X⊥

}
=
{
y ∈ R1×n : X⊥ ⊆ {y}⊥

}
=
{
y ∈ R1×n : Ker(X) ⊆ Ker(y)

}
= Ker2(X)

(13.2)
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by Definition 13.1 dual and Definition 8.3. �

We will not actually use Proposition 13.3 to show that any specific rings are

exact, however. Instead, the rings considered in section 14 will be shown to be exact

using a stronger condition on annihilators of matrices (see Proposition 13.7, below).

A right annihilator of a matrix A ∈ Rm×n is simply a matrix B ∈ Rn×q satisfying

AB = 0, but for our purposes the following characterisation will be more useful.

Proposition 13.4 Let R be a ring, let A ∈ Rm×n and let B ∈ Rn×q. Then B is a

right annihilator of A if and only if Row(A) ⊆ Col(B)⊥.

Proof Following Proposition 8.6 (i) dual, the definition of Col(B)⊥ can be simplified

to

Col(B)⊥ =
{
x ∈ R1×n : xB = 0

}
. (13.3)

It is apparent from this description that Col(B)⊥ is what would sometimes be called

the ‘left null space’ of B.

(⇒). Suppose that AB = 0 and let x ∈ Row(A). Then x = uA for some

u ∈ R1×m. Therefore xB = uAB = 0, and as such x ∈ Col(B)⊥ by (13.3).

(⇐). Suppose that Row(A) ⊆ Col(B)⊥. Then uAB = 0 for all u ∈ R1×m, by

(13.3) again, and thus AB = 0. �

Each matrix A ∈ Rm×n has a collection of trivial right annihilators—namely

the zero matrices of all appropriate sizes—and if A happens to be invertible then

it is obvious that these are the only right annihilators of A. Even if A is not

invertible, it is still possible for the zero matrices to be the only annihilators of A

(e.g., consider the non-invertible “matrix” 2 ∈ Z, as in Example 9.3), but if R is

exact then there is a very satisfying relationship between inverses and annihilators.

The following generalisation of a result of Wilding et al. [86, Proposition 4.2] makes

this relationship precise.

Proposition 13.5 Let R be a right exact ring and let A ∈ Rm×n. Then A has a

left inverse if and only if A has no non-zero right annihilator.

Proof (⇒). Suppose that A has a left inverse P ∈ Rn×m and let B ∈ Rn×q be a

right annihilator of A. Then we have B = InB = PAB = P0 = 0, where In denotes

the n× n identity matrix, and consequently A has no non-zero right annihilator.

(⇐). Suppose that A has no non-zero right annihilator. Then Row(A)⊥ = {0}
because each v ∈ Row(A)⊥ is a right annihilator of A, and thus Row(A)⊥⊥ = R1×n.
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Therefore Row(A) = Row(A)⊥⊥ = R1×n = Row(In) by Proposition 13.3, since R is

right exact, and as such there is some P ∈ Rn×m with PA = In by Proposition 6.6

dual. �

Now recall that our general strategy for showing that an arbitrary semiring is

right exact is to find a relation FA satisfying Row(A) = Ker(FA) for each matrix

A with entries in S (see Lemma 9.12). In the context of rings, a more fruitful

approach would be to try to find a matrix BA ∈ Rn×q with Row(A) = Col(BA)⊥ for

each A ∈ Rm×n, and it is clear from Proposition 13.3 that this would mean looking

for a special kind of right annihilator of A. By Proposition 13.2 (ii) dual, such a

matrix BA would give

Row(A)⊥⊥ = Col(BA)⊥⊥⊥ = Col(BA)⊥ = Row(A), (13.4)

and thus if each A ∈ Rm×n has one of these special right annihilators then R is right

exact by Proposition 13.3. This observation motivates the following definitions and

proves Proposition 13.7, below.

Definition 13.6 Let R be a ring and let A ∈ Rm×n. A right exact annihilator of

A is a matrix B ∈ Rn×q satisfying Row(A) = Col(B)⊥.

If each A ∈ Rm×n has a right exact annihilator then we will call R a right exact

annihilator ring , and, dually, if each A ∈ Rm×n has a left exact annihilator then we

will call R a left exact annihilator ring . Note that a left exact annihilator of A is a

matrix B ∈ Rp×m satisfying Col(A) = Row(B)⊥. A ring which is both a left and a

right exact annihilator ring will be called an exact annihilator ring.

Proposition 13.7 If R is a right exact annihilator ring then R is right exact.

Proof Apply Proposition 13.2 (ii) dual and Proposition 13.3 to Definition 13.6, as

described above. �

The definition of an exact annihilator illustrates why we chose to use the term

‘exact’ in the first place: if B ∈ Rn×q is a right exact annihilator of A ∈ Rm×n then

we have an exact sequence

R1×m R1×n R1×qA B (13.5)
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of left R-modules. Specifically, Row(A) is the image of the function u 7→ uA and,

by (13.3), Col(B)⊥ is the kernel of the function x 7→ xB (in the standard R-module

sense), so if B is a right exact annihilator of A then the image of the first function

equals the kernel of the second function because Row(A) = Col(B)⊥. This makes

(13.5) an exact sequence.

The existence of a right exact annihilator of a matrix A ∈ Rm×n gives us some

information about Row(A)⊥, as we have Row(A)⊥ = Col(B)⊥⊥ whenever B is a

right exact annihilator of A, but in general we will not really know anything about

the structure of Col(B)⊥⊥ unless R is left exact. Dually, if we start with a left exact

annihilator ring then we might not be able to fully understand Col(A)⊥ unless R

is right exact. We will therefore be in the best position to describe Row(A)⊥ and

Col(A)⊥ if we start with an exact annihilator ring.

Proposition 13.8 Let R be an exact annihilator ring and let A ∈ Rm×n. Then

there is some B ∈ Rn×q satisfying Row(A) = Col(B)⊥ and Row(A)⊥ = Col(B).

Proof Since R is a right exact annihilator ring there is some B ∈ Rn×q satisfying

Row(A) = Col(B)⊥. Therefore Row(A)⊥ = Col(B)⊥⊥, as above. Now since R is

also a left exact annihilator ring it is, in particular, left exact by Proposition 13.7

dual, and thus Row(A)⊥ = Col(B) by Proposition 13.3 dual. �

Proposition 13.8 tells us that if our aim is to understand orthogonal complements

over a ring R (which it is) then we should try to show that R is an exact annihilator

ring. Moreover, it also tells us that it is the exact annihilators themselves that are

key to gaining this understanding. The focus of the next section will therefore be

on how to actually construct exact annihilators over specific rings.

14 Commutative elementary divisor rings

The purpose of this section is to give examples of rings that behave very much like

fields—at least from the point of view of linear algebra. The results in section 13

suggest that exact annihilator rings are good candidates because, for one thing,

they are exact, but also because they admit a promising description of orthogonal

complements in terms of exact annihilators. To simplify the process of finding

exact annihilators, our basic assumption will be that we have an elementary divisor

ring. This will allow us to reduce the problem of constructing exact annihilators
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of arbitrary matrices to the much less complicated problem of constructing exact

annihilators of elements of the ring.

The examples we consider in this section (homomorphic images of principal ideal

domains and, later, Boolean rings) are commutative, so we will usually assume

that we are working with a commutative elementary divisor ring. As we show in

Theorem 14.2, the row and column spaces of a matrix with entries in such a ring

are actually isomorphic, and this leads to a very nice relationship between the row

space of a matrix and its orthogonal complement.

Definition 14.1 A ring R is an elementary divisor ring if for each A ∈ Rm×n there

are invertible matrices P ∈ Rm×m and Q ∈ Rn×n with PAQ diagonal.

Examples of elementary divisor rings include the integers (see below) and the

ring of real analytic functions (see Brewer et al. [12, pages 96–100]). The above

definition of an elementary divisor ring was introduced by Kaplansky [49], but the

idea goes back at least as far as Smith [81] who introduced a procedure to find

invertible matrices P ∈ Zm×m and Q ∈ Zn×n with PAQ diagonal for any given

A ∈ Zm×n.1 This procedure is not special to the integers though; it also works for

matrices with entries in any principal ideal domain (an integral domain in which

each ideal is generated by a single element). That is, every principal ideal domain

is an elementary divisor ring (see Cohn [21, Theorem 10.5.4]). By definition, a

principal ideal domain is also commutative, and as such the following result applies

to every principal ideal domain.

Theorem 14.2 If R is a commutative elementary divisor ring then

(i) the identity function on R is a conjugation; and

(ii) Row(A) ∼= Col(A) as R-modules for all A ∈ Rm×n.

Proof (i). Let A ∈ Rn×n. Then since R is an elementary divisor ring there are

invertible matrices P ∈ Rm×m and Q ∈ Rn×n with PAQ square (because A is

square) diagonal. In particular then, (PAQ)T = PAQ. Commutativity of R implies

that the identity function on R is a standard involution, which in turn means that

A
(
P−1QT

)T
PTQ−1 = AQP−TPTQ−1 = AQQ−1 = A. (14.1)

1Kaplansky [49] originally also placed a divisibility condition on the diagonal entries of PAQ,
but at some point it appears to have become acceptable to drop this condition.
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Therefore the matrices M = P−1QT and N = PTQ−1 satisfy one of the requirements

in the hypothesis of Lemma 10.3. For the other requirement to be satisfied, we need

to show that MAT = AMT, but this holds because we have

P−1QTAT = P−1
(
QTATPT

)
P−T = P−1(PAQ)P−T = AQP−T. (14.2)

Hence the identity function on R is a conjugation by Lemma 10.3.

(ii). As noted above, commutativity of R implies that the identity function on

R is a standard involution. By (i) it is also a conjugation, so by Proposition 10.2

there is an R-module isomorphism Row(A)→ Col(A) for each A ∈ Rm×n. �

In particular, Theorem 14.2 (ii) tells us that the row and column spaces of any

given integer matrix are isomorphic. This fact is interesting, but not especially useful

because the integers are our standard example of a non-exact ring (see Example 9.3).

The real benefit of having an isomorphism between the row and column spaces of a

matrix becomes clear when we consider exact annihilators, and, of course, Z is not

an exact annihilator ring.

Theorem 14.3 Let R be a commutative elementary divisor ring. If R is an exact

annihilator ring then Row(A)⊥ ∼= R1×n/Row(A) as R-modules for all A ∈ Rm×n.

Proof Suppose that R is an exact annihilator ring and let A ∈ Rm×n. Then by

Proposition 13.8 there is some B ∈ Rn×q with Row(A) = Col(B)⊥ and Row(A)⊥ =

Col(B). Therefore Row(A)⊥ ∼= Row(B) ∼= R1×n/Col(B)⊥ by Theorem 14.2 (ii) and

Proposition 13.2 (i) dual. Hence Row(A)⊥ ∼= R1×n/Row(A) as R-modules because

Row(A) = Col(B)⊥. �

This property of row spaces is well-known in the case R is a field, as it follows

from standard results concerning rank and nullity (see Roman [72, Theorems 1.16

and 2.8]). For example, if R = R and A = [ 1 0 0
0 1 0 ] then Row(A) is a plane passing

through the origin in three-dimensional space and the cosets of this plane lie along

a perpendicular line passing through the origin. The orthogonal complement of

Row(A) is also a line in three-dimensional space because it has basis [ 0 0 1 ]T, and

thus Row(A)⊥ ∼= R1×3/Row(A) as vector spaces.

As mentioned above, our main reason for considering elementary divisor rings is

to make it as easy as possible to construct exact annihilators of matrices. The proof

of the following result demonstrates how to use the existence of exact annihilators
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of elements of an elementary divisor ring to construct an exact annihilator of an

arbitrary matrix. We will illustrate this procedure in Examples 14.6 and 14.8.

Lemma 14.4 Let R be an elementary divisor ring. If each element of R has a right

exact annihilator then R is a right exact annihilator ring.

Proof Suppose that each element of R has a right exact annihilator. Then by

Definition 13.6, for each a ∈ R there is some row vector u with Ra = Col(u)⊥.

We begin by showing that each diagonal matrix D ∈ Rm×n has a right exact

annihilator. To do this, we need to find some matrix C with Row(D) = Col(C)⊥,

and so since adding or removing zero rows does not change Row(D) we may assume

that D is square diagonal. That is, we may assume that D has diagonal entries

a1, . . . , an ∈ R. We then define C ∈ Rn×q by

C =


u1 0 . . . 0

0 u2 . . . 0
...

...
. . .

...

0 0 . . . un

 , (14.3)

where each ui ∈ R1×qi satisfies Rai = Col(ui)
⊥, and where q = q1 + · · · + qn. By

construction, this matrix satisfies

Col(C)⊥ =
{
x ∈ R1×n : x1i ∈ Col(ui)

⊥ for all 1 ≤ i ≤ n
}
, (14.4)

and since D is diagonal we also have

Row(D) =
{
x ∈ R1×n : x1i ∈ Rai for all 1 ≤ i ≤ n

}
. (14.5)

Therefore Row(D) = Col(C)⊥ because Rai = Col(ui)
⊥ for each 1 ≤ i ≤ n, and as

such C is a right exact annihilator of D.

Now let A ∈ Rm×n be an arbitrary matrix with entries in R. Since R is an

elementary divisor ring there are invertible matrices P ∈ Rm×m and Q ∈ Rn×n

with PAQ diagonal, so by the above argument there is some C ∈ Rn×q satisfying

Row(PAQ) = Col(C)⊥. The fact that P and Q are invertible means that

Row(A) =
{
x ∈ R1×n : xQ ∈ Row(PAQ)

}
, (14.6)
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and thus x ∈ Row(A) if and only if xQ ∈ Col(C)⊥. Therefore Row(A) = Col(QC)⊥,

as it is obvious that xQ ∈ Col(C)⊥ if and only if x ∈ Col(QC)⊥, and as such QC is

a right exact annihilator of A. Hence R is a right exact annihilator ring. �

Now recall that while every principal ideal domain is a commutative elementary

divisor ring (see page 82), not every principal ideal domain is an exact annihilator

ring (e.g., the ring Z is not even exact; see Example 9.3). As a result, Theorem 14.3

is not applicable to all principal ideal domains. However, it turns out that all proper

quotients of principal ideal domains are exact annihilator rings (in addition to being

commutative elementary divisor rings), so in particular Theorem 14.3 is applicable

to the ring Z/mZ for each m > 0 because the following result is.

Theorem 14.5 If R is a proper homomorphic image of a principal ideal domain

then

(i) R is a commutative elementary divisor ring; and

(ii) R is an exact annihilator ring.

Proof Since R is a proper homomorphic image of a principal ideal domain, there

is a principal ideal domain R′ and a surjective homomorphism f : R′ → R with

Ker(f) 6= {0}.
(i). As Henriksen [38, Proof of Theorem 3] notes, any homomorphic image of a

(commutative) elementary divisor ring is again a (commutative) elementary divisor

ring. Therefore R is a commutative elementary divisor ring because R′ is a principal

ideal domain.

(ii). Since R is commutative it is sufficient to show that R is a right exact

annihilator ring, because if B is a right exact annihilator of A ∈ Rm×n then BT is a

left exact annihilator of AT. By (i) R is an elementary divisor ring, so by Lemma 14.4

it is actually enough to show that each a ∈ R has a right exact annihilator, but now

since aT = a we do not need to worry about distinguishing between left and right

exact annihilators of a.

Let a ∈ R. Then since f is surjective there is some a′ ∈ R′ with fa′ = a. The

kernel of f is an ideal of R′, so since R′ is a principal ideal domain there is some

d′ ∈ R′ with Ker(f) = d′R′. Moreover, we have d′ 6= 0 because by assumption

Ker(f) 6= {0}. Now take r ∈ R′ to generate the ideal a′R′+ d′R′, then we can write
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a′ = rs and d′ = rb′ for some s, b′ ∈ R′. Note that b′ 6= 0 because d′ 6= 0. If we take

b = fb′ then we have

ab = (fa′)(fb′) = f(a′b′) = f(rsb′) = f(rb′s) = f(d′s) = 0 (14.7)

because f is a homomorphism and because d′s ∈ d′R′ = Ker(f). Therefore b is an

annihilator of a.

To show that b is an exact annihilator of a, let c ∈ R and suppose that bc = 0.

We then want c ∈ aR. Writing c = fc′ for some c′ ∈ R′, we have b′c′ ∈ Ker(f) = d′R′

because f(b′c′) = (fb′)(fc′) = bc = 0, and thus b′c′ = d′t = rb′t for some t ∈ R′.

Since R′ is an integral domain (and since b′ 6= 0) this implies that c′ = rt. Therefore

c′ ∈ rR′ = a′R′+ d′R′ because r was chosen to generate a′R′+ d′R′, and this means

that c ∈ aR because d′R′ = Ker(f). Hence b is an exact annihilator of a. �

The proof of Theorem 14.5 (ii) is quite technical, so we now illustrate how to

construct a right exact annihilator of a matrix with entries in Z/mZ for m > 0.

Example 14.6 Take R = Z/60Z and consider the problem of constructing a right

exact annihilator of

A =

[
7 2

9 6

]
. (14.8)

The first step is to reduce A to a diagonal matrix by finding invertible matrices

P,Q ∈ R2×2 with PAQ diagonal. The matrices

P =

[
1 0

33 1

]
and Q =

[
43 34

0 1

]
(14.9)

have inverses

P−1 =

[
1 0

27 1

]
and Q−1 =

[
7 2

0 1

]
, (14.10)

and it is easily verified that

PAQ =

[
1 0

0 12

]
. (14.11)

The next step is to construct a right exact annihilator of PAQ, and to do this

we need to find exact annihilators of 1 and 12 in R. An exact annihilator of a ∈ R
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can be found by dividing 60 by any generator of the ideal aZ + 60Z. More precisely,

60/ gcd{a, 60} is an exact annihilator of a, where gcd{a, 60} denotes the greatest

common divisor of a and 60 in Z. Therefore 0 ≡ 60/1 mod 60 is an exact annihilator

of 1 in R, and similarly 5 ≡ 60/12 mod 60 is an exact annihilator of 12 in R. The

proof of Lemma 14.4 then tells us that

C =

[
0 0

0 5

]
and QC =

[
0 50

0 5

]
(14.12)

are right exact annihilators of PAQ and A respectively.

Notice that in the case R = Z/mZ for some m > 0, each R-submodule of R1×n

must be the row space of some matrix because R1×n only has finitely many elements.

Furthermore, Theorem 14.3 tells us that if X is any R-submodule of R1×n then the

product of the cardinalities of X and X⊥ is mn. We can verify this in Example 14.6:

direct computation reveals that Row(A) ⊆ (Z/60Z)1×2 has 300 elements, and it

is easy to check that Row(A)⊥ = Col(QC) has 12 elements, giving a product of

3600 = 602.

The other examples of exact annihilator rings that we are interested in are

Boolean rings. A ring R is a Boolean ring if each element is multiplicatively idem-

potent, that is, if aa = a for all a ∈ R. It follows from this definition that if R

is a Boolean ring then R is commutative and satisfies −a = a for each a ∈ R. It

is also clear that a = aaa for all a ∈ R, and consequently each finitely generated

ideal of R is principal (see Lam [57, Theorem 4.23]). The powerset of any set can

be given the structure of a Boolean ring by taking addition to be the symmetric

difference of subsets and multiplication to be the intersection of subsets. Jacobson

[45, section 8.5] provides a detailed discussion of this construction, which results in

the field Z/2Z in the simplest non-trivial case.1

Theorem 14.7 If R is a Boolean ring then

(i) R is a commutative elementary divisor ring; and

(ii) R is an exact annihilator ring.

Proof (i). Nicholson [69] calls a ring clean if each element is the sum of a unit and

an idempotent, so since a− 1 is idempotent for each a ∈ R, it is obvious that R is

1It is easy to show that Z/2Z is the only field which is also a Boolean ring.
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clean. McGovern [66, Theorems 3.7 and 3.13; Proposition 3.14] has shown that if a

clean ring has the property that each finitely generated ideal is principal then the

ring must be an elementary divisor ring. Therefore R is a commutative elementary

divisor ring because in addition to being clean, R is commutative and has all finitely

generated ideals principal (see above).

(ii). As in the proof of Theorem 14.5 (ii), by (i) and Lemma 14.4 it is sufficient

to show that each a ∈ R has an exact annihilator. Since a is idempotent we have

a(1− a) = a− a = 0, and as such 1− a is an annihilator of a. To show that 1− a is

an exact annihilator of a, let c ∈ R and suppose that (1 − a)c = 0. We then want

c ∈ aR, but this is obvious because c = ac. �

If R is a Boolean ring then the proof of Theorem 14.7 (ii) tells us how to construct

a right exact annihilator of any given A ∈ Rm×n using the fact that 1− a = 1 + a is

an exact annihilator of a ∈ R. The following example gives some indication of the

general form of a right exact annihilator of A.

Example 14.8 Let R be a Boolean ring and take

A =
[
a b

]
(14.13)

for any a, b ∈ R. To construct a right exact annihilator of A we first need to find an

invertible matrix Q ∈ R2×2 with AQ diagonal. (Since A only has one row we can

implicitly take P = 1.) The matrix

Q =

[
1 b

1 + a 1 + b+ ab

]
(14.14)

has inverse

Q−1 =

[
1 + b+ ab b

1 + a 1

]
, (14.15)

and we have

AQ =
[
a+ b+ ab b+ b+ ab+ ab

]
=
[
a+ b+ ab 0

]
(14.16)

because b+ b = 0 and ab+ ab = 0.

Next we need to construct a right exact annihilator of AQ, but before we can

do this we must add a zero row to make AQ square diagonal. The resulting matrix
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has diagonal entries a + b + ab and 0, and these elements have exact annihilators

1 + a+ b+ ab and 1 respectively. The proof of Lemma 14.4 then tells us that

C =

[
1 + a+ b+ ab 0

0 1

]
(14.17)

and

QC =

[
1 + a+ b+ ab b

1 + a+ b+ ab 1 + b+ ab

]
(14.18)

are right exact annihilators of AQ and A respectively.

Theorem 14.7 (ii) tells us that every Boolean ring is an exact annihilator ring, and

consequently every Boolean ring is exact by Proposition 13.7. This result is already

known for some Boolean rings, as the powerset of any set is known to be self-injective

when viewed as a ring (see Lam [56, Corollary 3.11D]). However, this alternative

approach cannot be used to show that every Boolean ring is exact because not every

Boolean ring arises as the powerset of a set. In fact, there even exist Boolean rings

which are not self-injective, and so the observation that every Boolean ring is exact

is of genuine interest. The standard construction of a non-self-injective Boolean ring

is described by Lambek [58, page 45]: take the set of finite or cofinite subsets of

any infinite set, with addition and multiplication given by symmetric difference and

intersection respectively.





Residuated structures

15 Preliminary order theory

The semirings we will consider in the final sections of this thesis are all ‘residuated’

in the sense that division is possible up to a partial order. Specifically, an element

a of such a 1-semiring S may or may not have a multiplicative inverse a−1 ∈ S

satisfying aa−1 = 1, but there will at least be some b ∈ S satisfying ab ≤ 1 in a

suitable partial order. Moreover, there will always be a uniquely identifiable (in

fact, a maximum) such element b, which we think of as being what remains after

“dividing” 1 by a. As we will show in sections 18 and 19, the ability to divide in

this way is very powerful, and it allows us to say a lot about linear algebra over S.

The above notion of residuation is actually applicable in a wider context—namely

that of an ordered monoid acting on a poset—so before discussing residuation for

semirings we will introduce this more general form of residuation (see section 17). In

addition to providing a natural setting for residuation, actions of ordered monoids

generalise actions of ordered semirings, i.e., ordered modules, and give us a sensible

way to define what we mean by an ‘anti-isomorphism’ of ordered modules. We

will study actions of ordered monoids in section 16, but first we recall some basic

definitions and results of order theory.

The fundamental objects in order theory are partially ordered sets, or ‘posets’ for

short. A poset is a set X together with a partial order ≤ on X, where a partial order

is a binary relation on X which is reflexive (x ≤ x for all x ∈ X), antisymmetric

(x = y whenever x, y ∈ X with x ≤ y and y ≤ x) and transitive (x ≤ z whenever

x, y, z ∈ X with x ≤ y and y ≤ z). A join-semilattice is a poset X in which each

pair x, y ∈ X has a join, or ‘least upper bound’, x ∨ y satisfying

x ∨ y ≤ z ⇔ x ≤ z and y ≤ z (15.1)
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for all z ∈ X. Similarly, X is called a meet-semilattice if each pair x, y ∈ X has a

meet , or ‘greatest lower bound’, x ∧ y satisfying

z ≤ x ∧ y ⇔ z ≤ x and z ≤ y (15.2)

for all z ∈ X. A poset which is both a join-semilattice and a meet-semilattice is

called a lattice. Lattices are an extremely important type of poset because they can

be treated as algebraic objects (join and meet are commutative, associative binary

operations on X). Birkhoff [8] covers the general theory of lattices in great detail

and discusses some of its applications to other areas of mathematics.

The prototypical example of a lattice is the powerset of any set. In this case

the partial order is given by subset inclusion and the join and meet operations are

given by union and intersection respectively. Such a lattice X is special because the

join and meet operations distribute over one another. Additionally, X has bottom

and top elements ⊥ ∈ X and > ∈ X respectively, satisfying ⊥ ≤ x ≤ > for all

x ∈ X, and an involution called the complement which satisfies x ∨ x = > and

x ∧ x = ⊥ for all x ∈ X. It follows automatically from the various axioms that

the complement interchanges ⊥ and >. A lattice having these features is called a

Boolean algebra, in honour of Boole [11]; the precise axioms were first formulated

by Whitehead [85]. Note that there is a correspondence between Boolean algebras

and the Boolean rings considered in section 14 (see Birkhoff [8, Theorem 10.3]).

Order-preserving functions between posets are called ‘monotone’, or sometimes

‘isotone’. Specifically, a function f : X → Y between posets X and Y is monotone

if it satisfies

x ≤ y ⇒ fx ≤ fy (15.3)

for all x, y ∈ X. Monotone functions do not necessarily respect joins or meets if

they exist in X and Y . That is, if X and Y are lattices then a monotone function

f : X → Y may or may not satisfy f(x ∨ y) = fx ∨ fy and f(x ∧ y) = fx ∧ fy for

all x, y ∈ X. If f satisfies the former condition then it is called join-preserving ; if it

satisfies the latter condition then it is called meet-preserving .

A bijection f : X → Y between posets X and Y is called an order isomorphism

if f and f−1 are monotone. If X and Y happen to be lattices then f and f−1

are both join-preserving and meet-preserving (see Proposition 15.5, below). It is

necessary to define an order isomorphism in this way because, as with continuous
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functions in topology, the inverse of a monotone function need not be monotone.

The requirement that f−1 is also monotone means that we have

x ≤ y ⇔ fx ≤ fy (15.4)

for all x, y ∈ X. Any function f : X → Y satisfying (15.4) for all x, y ∈ X is called

an order embedding , and as such every order isomorphism is an order embedding.

In fact, an order isomorphism is precisely a surjective order embedding because if

f : X → Y is an order embedding then f is injective, by (15.4), so is an order

isomorphism as a function X → Im(f).

A function f : X → Y between posets X and Y is called antitone if it satisfies

x ≤ y ⇒ fy ≤ fx (15.5)

for all x, y ∈ X. If f is a bijection and f−1 is also antitone then f is called an order

anti-isomorphism. Order anti-isomorphisms do not preserve joins and meets if they

exist, rather, an order anti-isomorphism f : X → Y satisfies f(x∨ y) = fx∧ fy and

f(x ∧ y) = fx ∨ fy for all x, y ∈ X if X and Y are lattices. Note that if X is a

Boolean algebra then the complement : X → X is an order anti-isomorphism.

Definition 15.1 Let X and Y be posets. A Galois connection between X and Y

is a pair of functions f : X → Y and g : Y → X satisfying

y ≤ fx ⇔ x ≤ gy (15.6)

for all x ∈ X and all y ∈ Y .

If f : X → Y is an order anti-isomorphism between posets X and Y then f and

f−1 constitute a Galois connection between X and Y . In general, Galois connections

are weaker than order anti-isomorphisms, but this is not a bad thing because it means

that Galois connections can arise in a wider variety of situations. Moreover, as we

saw in Propositions 8.5 and 13.2, when a Galois connection does arise we can still

deduce a great deal about the relationship between the two posets involved.

Proposition 15.2 Let f : X → Y and g : X → Y be a Galois connection between

posets X and Y . Then

(i) f and g are antitone;
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(ii) g ◦ f and f ◦ g are monotone;

(iii) x ≤ (g ◦ f)x for all x ∈ X and y ≤ (f ◦ g)y for all y ∈ Y ; and

(iv) f ◦ g ◦ f = f and g ◦ f ◦ g = g.

Proof See Galatos et al. [27, Lemma 3.7]. �

In view of Proposition 15.2, a Galois connection between posets X and Y is

sometimes defined to be a pair of antitone functions f : X → Y and g : Y → X

satisfying x ≤ (g ◦ f)x for all x ∈ X and y ≤ (f ◦ g)y for all y ∈ Y (see Blyth [9,

page 14]). This definition implies the condition in Definition 15.1 because

y ≤ fx ⇒ x ≤ (g ◦ f)x ≤ gy (15.7)

and

x ≤ gy ⇒ y ≤ (f ◦ g)y ≤ fx (15.8)

for all x ∈ X and all y ∈ Y , that is, (15.6) holds for all x ∈ X and all y ∈ Y .

Definition 15.3 Let X and Y be posets. An adjunction between X and Y is a

pair of functions f : X → Y and g : Y → X satisfying

fx ≤ y ⇔ x ≤ gy (15.9)

for all x ∈ X and all y ∈ Y .

As we can see from Proposition 15.4, below, an adjunction is just the monotone

version of a Galois connection. However, there is a slight subtlety in that the

functions f and g in an adjunction do not satisfy identical conditions, whereas

the functions in a Galois connection are essentially interchangeable. Specifically, if

f : X → Y and g : Y → X constitute an adjunction then, by Proposition 15.4 (iii),

g ◦ f satisfies x ≤ (g ◦ f)x for all x ∈ X but f ◦ g satisfies (f ◦ g)y ≤ y for all y ∈ Y .

Therefore f ◦ g and g ◦ f behave differently, and this means that an adjunction has

an inherent direction.

To account for the fact that the two functions in Definition 15.3 have different

properties, we will call f the lower adjoint and g the upper adjoint . This terminology

is adapted from category theory, where f would be called the ‘left adjoint’ and g
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would be called the ‘right adjoint’ (see Simmons [77, Example 1.3.3]).1 It turns out

that only one adjoint is needed to completely specify an adjunction; we may simply

say that a function f : X → Y is a lower adjoint—or has an upper adjoint—and the

function g : Y → X will be uniquely determinied by gy = max{x ∈ X : fx ≤ y} for

all y ∈ Y (see Galatos et al. [27, Lemma 3.3]).

Proposition 15.4 Let f : X → Y be a function between posets X and Y . If f has

an upper adjoint g : Y → X then

(i) f and g are monotone;

(ii) g ◦ f and f ◦ g are monotone;

(iii) x ≤ (g ◦ f)x for all x ∈ X and (f ◦ g)y ≤ y for all y ∈ Y ; and

(iv) f ◦ g ◦ f = f and g ◦ f ◦ g = g.

Proof See Galatos et al. [27, Lemmas 3.1 to 3.3]. �

The lower adjoint of an adjunction between posets is often called a ‘residuated’

function, after Blyth and Janowitz [10]. However, we prefer to reserve this term for

the case of certain multiplication functions being lower adjoints (see Definition 17.1)

because it is suggestive of “division”. Note that Blyth and Janowitz [10, page 11]

define a monotone function f : X → Y to be residuated if there is a monotone

function g : Y → X satisfying x ≤ (g ◦ f)x for all x ∈ X and (f ◦ g)y ≤ y for all

y ∈ Y . By a similar argument to the one given above for Galois connections, this

definition is equivalent to the definition of a lower adjoint.

If f : X → Y is an order isomorphism between posets X and Y then f is a lower

adjoint, with upper adjoint f−1. It is also an upper adjoint, with lower adjoint

f−1, so in this case there is an adjunction between X and Y in both directions. In

general, though, the existence of an adjunction in one direction between X and Y

does not imply that there will be an adjunction the other direction (put another

way, not every lower adjoint is also an upper adjoint). Adjunctions are weaker than

order isomorphisms, but are still strong enough to automatically preserve additional

structure that X and Y might have. The following result exemplifies this feature of

adjunctions, and allows us to immediately see that an order isomorphism must be

both join-preserving and meet-preserving.

1It is safer to use the terms ‘lower’ and ‘upper’ here because ‘left’ and ‘right’ adjoints could be
too easily confused with left and right actions in section 17.
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Proposition 15.5 Let f : X → Y be a function between lattices X and Y . If f

has an upper adjoint g : Y → X then f is join-preserving and g is meet-preserving.

Proof See Galatos et al. [27, Lemma 3.5]. �

A closure operator on a poset X is a monotone function h : X → X which is

expanding (x ≤ hx for all x ∈ X) and idempotent. It is clear from Proposition 15.4

that if f : X → Y is a lower adjoint between posets X and Y , with upper adjoint

g : Y → X, then g ◦ f is a closure operator on X. Notice that g ◦ f is idempotent

because we have (g ◦ f) ◦ (g ◦ f) = g ◦ (f ◦ g ◦ f) = g ◦ f by Proposition 15.4 (iv).

If f and g were a Galois connection between X and Y then Proposition 15.2 would

tell us that f ◦ g is also a closure operator, but the fact that f and g have different

roles in an adjunction means that f ◦ g is not a closure operator on Y . Instead,

f ◦ g is an interior operator on Y because it is monotone, idempotent and satisfies

(f ◦ g)y ≤ y for all y ∈ Y .

16 Ordered monoids and actions

The semirings we will study in sections 18 to 20 are partially ordered, so underlying

each one is an ordered (multiplicative) monoid. In this section we recall the definition

of an ordered monoid and we consider actions of ordered monoids on posets. By

characterising isomorphisms in this setting, we arrive at a natural definition of an

anti-isomorphism of ordered algebraic structures. In section 17 we will introduce

residuation in the context of ordered monoids acting on posets.

An ordered monoid is a monoid (M, ·, 1) together with a partial order ≤ on M

that is compatible with multiplication in the sense that

a ≤ b ⇒ ca ≤ cb and ac ≤ bc (16.1)

for all a, b, c ∈ M . In other words, if a monoid M is to be an ordered monoid then

the multiplication functions c− : M → M and −c : M → M must be monotone for

each c ∈M . Any monoid M can be made into an ordered monoid by setting a ≤ b if

and only if a = b, but, of course, we are primarily interested in less trivial examples.

The motivating examples to have in mind are the group (R,+, 0) with the standard

ordering of R and the Boolean monoid ({0, 1},min, 1) with 0 < 1.1 Notice that

1The Boolean monoid is also known as the ‘two-element semilattice’.
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these monoids are the multiplicative monoids of the finitary tropical semiring FT

and the Boolean semiring B respectively.

Recall from section 2 that if M is a monoid then a right monoid action of M

on set X is a function · : X ×M → X satisfying x(ab) = (xa)b and x1 = x for all

a, b ∈ M and all x ∈ X. This definition is completely algebraic, so is not sufficient

for considering actions of M when M is an ordered monoid and X is a poset. In

such a case, the action of M on X ought to be compatible with the partial orders on

M and X in much the same way that multiplication and the partial order on M are

compatible. That is, all the actions of M we consider should satisfy some version of

(16.1). The following definition makes this requirement precise.

Definition 16.1 Let M be an ordered monoid, let X be a poset and let · be a right

monoid action of M on X. Then (X, ·) is a right M-poset if

a ≤ b ⇒ xa ≤ xb (16.2)

and

x ≤ y ⇒ xa ≤ ya (16.3)

for all a, b ∈M and all x, y ∈ X.

Condition (16.2) says that if a poset X is to be a right M -poset then for each

x ∈ X the function x− : M → X must be monotone. Similarly, (16.3) requires

the function −a : X → X to be monotone for each a ∈ M . These two conditions

are sometimes combined into an equivalent single requirement: the right action

of M on X must be monotone as a function X ×M → X (see Bulman-Fleming

and Mahmoudi [15, page 443]), where the partial order on X × M is given by

(x, a) ≤ (y, b) if and only if x ≤ y and a ≤ b. However, for reasons that will become

clear in section 17, we prefer to treat the action of M on X as two separate families

of monotone functions, parametrised by the elements of X and M respectively.

A right M -poset is an ordered algebraic structure, that is, it is partially ordered

and has some algebraic structure (the right action of M) which interacts with the

partial order. Structure preserving functions between M -posets should therefore

respect the partial orders and the actions of M . Specifically, a structure preserving

function f : X → Y between right M -posets X and Y should be monotone and

should satisfy f(xa) = (fx)a for all a ∈ M and all x ∈ X. If such a function is an

order isomorphism then it is called an isomorphism of right M -posets. Note that,
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as usual in algebra, the inverse of an isomorphism f satisfies f−1(ya) =
(
f−1y

)
a for

all a ∈ M and all y ∈ Y , so is automatically a structure preserving function in the

appropriate sense.

We would also like to consider anti-isomorphisms between M -posets, but to do

this we obviously need a suitable notion of what an ‘anti-isomorphism’ even is in this

context. The above definition of an isomorphism is not much help in this regard,

as it turns out to be incorrect to naively define an anti-isomorphism of M -posets to

be an order anti-isomorphism that respects the actions of M .1 Instead, we need to

take inspiration from a more sophisticated characterisation of isomorphisms. The

following definition is the first step in this direction.

Definition 16.2 Let M be an ordered monoid and let f : X → Y be a function

between right M -posets X and Y . Then f is right M-monotone if

xa ≤ y ⇒ (fx)a ≤ fy (16.4)

for all a ∈M and all x, y ∈ X.

By taking a = 1 in Definition 16.2, we see that a right M -monotone function

f : X → Y is monotone (this works because the action of M on a right M -poset

is assumed to be a monoid action), and by taking y = xa we see that f satisfies

(fx)a ≤ f(xa) for all a ∈ M and all x ∈ X. Therefore a right M -monotone

function is almost a structure preserving function in the sense described above.

Definition 16.2 does not guarantee that f(xa) ≤ (fx)a for all a ∈M and all x ∈ X
though, so in general the notion of a right M -monotone function is weaker than

that of a structure preserving function. However, as the following result shows, if

f happens to have an inverse that is also right M -monotone then it is true that

f(xa) ≤ (fx)a for all a ∈M and all x ∈ X as well.

Proposition 16.3 Let M be an ordered monoid and let f : X → Y be a bijection

between right M -sets X and Y . If f and f−1 are right M -monotone then we have

f(xa) = (fx)a for all a ∈M and all x ∈ X.

Proof Let a ∈ M and let x ∈ X. Then since f is right M -monotone we have

(fx)a ≤ f(xa) by taking y = xa in Definition 16.2. It therefore remains to show

1The complement anti-isomorphism on a Boolean algebra does not satisfy b ∧ a = b ∧ a for all
elements a, b.
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that f(xa) ≤ (fx)a. Since f−1 is also right M -monotone we have

xa =
(
f−1(fx)

)
a ≤ f−1((fx)a), (16.5)

because (fx)a ≤ (fx)a, and thus f(xa) ≤ (fx)a because f is monotone. �

Proposition 16.3 tells us that if f : X → Y is right M -monotone and has a right

M -monotone inverse then f is an order isomorphism satisfying f(xa) = (fx)a for

all a ∈M and all x ∈ X, i.e., f is an isomorphism of right M -posets. Conversely, a

monotone function f : X → Y satisfying f(xa) = (fx)a for all a ∈M and all x ∈ X
is clearly right M -monotone, so since the inverse of a right M -poset isomorphism

f : X → Y is also monotone with f−1(ya) =
(
f−1y

)
a for all a ∈M and all y ∈ Y it

follows that f and f−1 are both right M -monotone. We may therefore characterise

an isomorphism of right M -posets as a right M -monotone function that has a right

M -monotone inverse.

Although it does not initially appear to be useful, being able to characterise

isomorphisms of M -posets in terms of M -monotone functions is certainly progress,

as the definition of an M -monotone function accounts for the partial orders and the

actions of M in one combined condition. This might seem counter-productive (it

is impossible to say how an M -monotone function interacts with the actions of M

without mentioning partial orders), but in fact it is just what we need because it

captures the correct sense in which an anti-isomorphism of M -posets should interact

with the actions of M . Specifically, an anti-isomorphism should satisfy an antitone

version of (16.4). The two obvious candidates for such a condition are

xa ≤ y ⇒ fy ≤ (fx)a (16.6)

and

xa ≤ y ⇒ (fy)a ≤ fx. (16.7)

Condition (16.7) is much better than (16.6) because it would enable us to show

that the composition of two anti-isomorphisms is an isomorphism, but for technical

reasons (16.7) is still not quite right. In section 19 we will see that when an anti-

isomorphism arises naturally it is between a right M -poset and a left M -poset, not

between two right M -posets. We should therefore make one of the actions in (16.7)

a left action instead of a right action.
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Definition 16.4 Let M be an ordered monoid and let f : X → Y be a function

from a right M -poset X to a left M -poset Y . Then f is M-antitone if

xa ≤ y ⇒ a(fy) ≤ fx (16.8)

for all a ∈M and all x, y ∈ X.

Note that a left M-poset is just a poset Y together with a left monoid action

of M , such that for each y ∈ Y and each a ∈ M the functions −y : M → Y and

a− : Y → Y are monotone.

We now define an anti-isomorphism of M -posets to be an M -antitone bijection

f : X → Y whose inverse is also M -antitone. If we assume that X denotes a right

M -poset and that Y denotes a left M -poset then, technically, Definition 16.4 cannot

be applied to f−1 because f−1 is a function from a left (not a right) M -poset to

a right (not a left) M -poset. The upshot of this is that we must actually use a

slightly modified version of Definition 16.4 for f−1; when we say that f−1 : Y → X

is M-antitone we really mean that f−1 satisfies

ax ≤ y ⇒
(
f−1y

)
a ≤ f−1x (16.9)

for all a ∈M and all x, y ∈ Y .

To prevent ambiguity, we will exclusively refer to the function from the right

M -poset to the left M -poset as being the anti-isomorphism. This convention means

that an anti-isomorphism always satisfies (16.8), and that the inverse of an anti-

isomorphism always satisfies (16.9). If there is an anti-isomorphism from a right

M -poset X to a left M -poset Y then we will say that X and Y are anti-isomorphic

(without regard for the direction of the anti-isomorphism) and we will write X ∼=Y .

As the name suggests, an M -antitone function from a right M -poset to a left

M -poset is antitone (take a = 1 in Definition 16.4). An anti-isomorphism from a

right M -poset to a left M -poset is therefore an order anti-isomorphism, and thus

the composition of (the inverse of) an anti-isomorphism with an anti-isomorphism

is an order isomorphism. In fact, as a consequence of the similarity between M -

monotone and M -antitone functions, such a composition is actually an isomorphism

of M -posets. This result confirms that our notion of anti-isomorphism of M -posets

is sensible.



Residuation and enriched categories 101

Proposition 16.5 Let M be an ordered monoid. Then the composition of the

inverse of an anti-isomorphism of M -posets with an anti-isomorphism of M -posets

is an isomorphism of right M -posets.

Proof Let f : X → Z be an anti-isomorphism from a right M -poset X to a left

M -poset Z and let g : Y → Z be an anti-isomorphism from a right M -poset Y to

Z. We want to show that g−1 ◦ f is an isomorphism of right M -posets, so in view

of Proposition 16.3 it is sufficient to show that g−1 ◦ f and
(
g−1 ◦ f

)−1
are right

M -monotone. Since f and g are anti-isomorphisms we have

xa ≤ y ⇒ a(fy) ≤ fx ⇒
(
g−1(fx)

)
a ≤ g−1(fy) (16.10)

for all a ∈M and all x, y ∈ X, by (16.8) and (16.9), and as such g−1 ◦ f is right M -

monotone by Definition 16.2. A similar argument shows that
(
g−1 ◦ f

)−1
= f−1 ◦ g

is right M -monotone. Hence g−1 ◦ f is an isomorphism of right M -posets. �

17 Residuation and enriched categories

In this section we introduce residuation for M -posets, where throughout M denotes

an ordered monoid. A residuated M -poset turns out to have the structure of an

enriched category (see Proposition 17.3), so we also investigate the conditions under

which an enriched category gives rise to a residuated M -poset. We begin by defining

what it means for an M -poset to be residuated.

Definition 17.1 Let M be an ordered monoid. A right M -poset X is residuated if

there is a function dR : X ×X →M , called right residuation, satisfying

xa ≤ y ⇔ a ≤ dR(x, y) (17.1)

for all a ∈M and all x, y ∈ X.

Equivalently, by Definition 15.3, a right M -poset X is residuated if and only if

for each x ∈ X the function x− : M → X has an upper adjoint dR(x,−) : X → M .

Notice that each upper adjoint dR(x,−) satisfies a ≤ dR(x, xa) and xdR(x, y) ≤ y

for all a ∈ M and all y ∈ X. This suggests that dR(x,−) can be thought of as

approximating “division by x”, and accordingly dR(x, y) is often written as x \ y
(see Galatos et al. [27, page 92]) or y : x (see Blyth and Janowitz [10, page 211]).
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However, in view of Proposition 17.3, below, we prefer to think of dR(x, y) as being

a kind of distance from x to y.

A left M -poset X is residuated if there is a function dL : X×X →M , called left

residuation, satisfying

ax ≤ y ⇔ a ≤ dL(y, x) (17.2)

for all a ∈ M and all x, y ∈ X. As above, this definition says that for each x ∈ X
the function −x : M → X is a lower adjoint, with upper adjoint dL(−, x) : X → M

satisfying a ≤ dL(ax, x) and dL(y, x)x ≤ y for all a ∈ M and all y ∈ X. Note that

it is fairly standard to write y / x instead of dL(y, x).

Definition 17.2 A residuated monoid is an ordered monoid M that is residuated

as a right M -poset and as a left M -poset.

An ordered monoid M is a right M -poset and a left M -poset via multiplication,

so Definition 17.2 tells us that if M is a residuated monoid then there are functions

dR, dL : M ×M →M satisfying

a ≤ dL(c, b) ⇔ ab ≤ c ⇔ b ≤ dR(a, c) (17.3)

for all a, b, c ∈ M . This condition says that the functions dR(a,−) : M → M and

dL(−, b) : M →M are upper adjoints for the multiplication functions a− : M →M

and −b : M → M respectively, so by Proposition 15.4 (i) each such multiplication

function is monotone. The definition of an ordered monoid requires these functions

to be monotone anyway, so we do not appear to have gained anything by applying

Proposition 15.4 (i). However, this observation is useful because it means that when

verifying Definition 17.2 we do not actually need to check that we have an ordered

monoid.

If the poset underlying a residuated monoid M is a lattice then M is called a

residuated lattice. In such a case, Proposition 15.5 tells us that for each c ∈ M the

multiplication functions c− : M →M and −c : M →M are join-preserving because

they are lower adjoints. That is, we have

c(a ∨ b) = ca ∨ cb (17.4)

and

(a ∨ b)c = ac ∨ bc (17.5)
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for all a, b, c ∈ M . Note that if M was not residuated, but was just an ordered

monoid that happened to be a lattice, then (17.4) and (17.5) would not necessarily

hold because monotone functions need not be join-preserving. Proposition 15.5 also

tells us that for each c ∈M the functions dR(c,−) : M →M and dL(−, c) : M →M

are meet-preserving because they are upper adjoints. Therefore

dR(c, a ∧ b) = dR(c, a) ∧ dR(c, b) (17.6)

and

dL(a ∧ b, c) = dL(a, c) ∧ dL(b, c) (17.7)

for all a, b, c ∈M .

A Boolean algebra can be viewed as an ordered monoid by taking meet as multi-

plication and the top element as 1, and it turns out that every such ordered monoid

(M,∧,>) is a residuated lattice with dR(a, b) = a ∨ b for all a, b ∈ M (see Galatos

et al. [27, Lemma 3.22]). In particular, the Boolean monoid ({0, 1},min, 1) is a

residuated lattice with dR(a, b) = max{1 − a, b} for all a, b ∈ {0, 1}. Since the join

operation on a lattice is always commutative, every Boolean algebra is a commu-

tative monoid, and this means that we have dL(b, a) = dR(a, b) for all elements a, b

of a Boolean algebra. Not every residuated monoid is commutative though, so in

general right and left residuation will be different.

Another important class of residuated monoids is the ordered groups , that is, the

ordered monoids which happen to be groups. If G is an ordered group then we have

a ≤ cb−1 ⇔ ab ≤ c ⇔ b ≤ a−1c (17.8)

for all a, b, c ∈ G, and as such G is a residuated monoid with dR(a, c) = a−1c and

dL(c, b) = cb−1 for all a, b, c ∈ G. In particular, the group (R,+, 0) is a residuated

monoid with dR(a, b) = dL(b, a) = b − a for all a, b ∈ R. This ordered group is

actually a lattice, with a∨ b = max{a, b} and a∧ b = min{a, b} for all a, b ∈ R, and

thus (R,+, 0) is a residuated lattice. We will give a few more examples of residuated

lattices in sections 19 and 20; Galatos et al. [27, section 3.4] give several more.

Proposition 17.3 Let M be an ordered monoid and let X be a residuated right

M -poset. Then

(i) dR(x, y) · dR(y, z) ≤ dR(x, z) for all x, y, z ∈ X; and
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(ii) 1 ≤ dR(x, x) for all x ∈ X.

Proof (i). Let x, y, z ∈ X and take a = dR(x, y). Then in particular a ≤ dR(x, y),

so xa ≤ y by (17.1). Similarly, if we take b = dR(y, z) then we have yb ≤ z, and

thus x(ab) = (xa)b ≤ yb ≤ z because X is a right M -poset. Therefore ab ≤ dR(x, z)

by (17.1) again, which means that dR(x, y) · dR(y, z) ≤ dR(x, z).

(ii). Let x ∈ X. Then since the right action of M on X is a monoid action we

have x1 = x. Hence 1 ≤ dR(x, x) by (17.1) because x1 ≤ x. �

Proposition 17.3 tells us that if M is an ordered monoid then every residuated

right M -poset can be interpreted as a small category enriched over M . The general

definition of an enriched category is rather complicated (see Kelly [50, section 1.2]),

so we give a simplified definition which only applies in this setting. Let (M, ·, 1) be

an ordered monoid. Then an M -category , or a category enriched over M , is a set

X together with a function d : X ×X →M satisfying d(x, y) · d(y, z) ≤ d(x, z) and

1 ≤ d(x, x) for all x, y, z ∈ X, i.e., d must satisfy Proposition 17.3 (i) and (ii). The

objects in an M -category are the elements of the set X, just as in a normal small

category, but instead of having (sets of) morphisms between objects we associate

a monoid element d(a, b) with each pair a, b ∈ X of objects. An enriched category

can also be thought of as a heavily generalised metric space: if we take M to be

the monoid (R,+, 0) with the reverse ordering of R then an M -category is a set X

together with a function d : X × X → R satisfying d(x, z) ≤ d(x, y) + d(y, z) and

d(x, x) ≤ 0 for all x, y, z ∈ X (see Lawvere [59]).

If M is an ordered monoid then every residuated right M -poset is an M -category,

but does the converse hold? This seems unlikely in general, as there are at least two

obstructions to an arbitrary M -category (X, d) being a residuated right M -poset.

Firstly, we can define a natural preorder (a reflexive and transitive binary relation)

on X using d, but this preorder is not necessarily a partial order. If we are willing

to quotient X by an equivalence relation though, this preorder turns into a partial

order (see Simmons [77, Exercise 2.6.7]). Secondly, there is no obvious way to define

a right action of M on X, and so we essentially have to just assume that one exists.

The following result therefore appears to be the best partial converse we can obtain

in general.

Theorem 17.4 Let M be an ordered monoid and let (X, d) be an M -category. If
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there is a function · : X ×M → X satisfying

1 ≤ d(xa, y) ⇔ a ≤ d(x, y) (17.9)

and

b ≤ d(xa, x(ab)) (17.10)

for all a, b ∈ M and all x, y ∈ X then there is an equivalence relation ∼ on X with

X/∼ a residuated right M -poset and dR([x], [y]) = d(x, y) for all x, y ∈ X.

Proof The binary relation � on X defined by

x � y ⇔ 1 ≤ d(x, y) (17.11)

is reflexive because 1 ≤ d(x, x) for all x ∈ X. This relation is also transitive because

if x, y, z ∈ X with 1 ≤ d(x, y) and 1 ≤ d(y, z) then the assumption that M is an

ordered monoid gives 1 ≤ d(x, y) ·d(y, z) ≤ d(x, z). Therefore � is a preorder on X,

and as such the binary relation ∼ on X defined by

x ∼ y ⇔ x � y and y � x (17.12)

is an equivalence relation on X. Moreover, the quotient X/∼ is a poset with

[x] ≤ [y] ⇔ x � y (17.13)

for all x, y ∈ X (see Simmons [77, Exercise 2.6.7]).

To show that X/∼ is a residuated right M -poset, we first need to define a right

monoid action of M on X/∼. We would like to define [x]a = [xa] for all a ∈M and

all x ∈ X, but it is not yet clear that this is well-defined. That is, we need to check

that x ∼ y implies xa ∼ ya for all a ∈ M and all x, y ∈ X. In view of (17.12) it is

sufficient to show that x � y implies that xa � ya for all a ∈M and all x, y ∈ X.

Let a ∈ M , let x, y ∈ X and suppose that x � y. Then 1 ≤ d(x, y) by (17.11),

so d(y, ya) ≤ d(x, y) · d(y, ya) ≤ d(x, ya) because M is an ordered monoid. Now

since 1 ≤ d(ya, ya) we have a ≤ d(y, ya) by (17.9), and thus a ≤ d(y, ya) ≤ d(x, ya).

Therefore 1 ≤ d(xa, ya) by (17.9) again, which means that xa � ya. As described

above, this result allows us to define [x]a = [xa] for all a ∈ M and all x ∈ X. By
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combining this definition with (17.9), (17.11) and (17.13) we then obtain

[x]a ≤ [y] ⇔ a ≤ d(x, y) (17.14)

for all a ∈M and all x, y ∈ X.

If we can show that X/∼ is a right M -poset then (17.14) will ensure that it

is residuated, so it remains to show that our proposed right action of M on X/∼
is actually a right monoid action that is monotone in the sense of Definition 16.1.

However, (17.14) already tells us that for each x ∈ X the function [x]− : M → X/∼
is monotone (because it is a lower adjoint), and when we showed above that x � y

implies xa � ya for all a ∈ M and all x, y ∈ X we essentially showed that each

function −a : X/∼ → X/∼ is also monotone. Therefore X/∼ is a residuated right

M -poset, provided we really do have a right monoid action.

To show that we have a right monoid action of M on X/∼, we first need to show

that [x](ab) = ([x]a)b for all a, b ∈ M and all x ∈ X. One inequality is clear, as we

have

([x]a)b = [xa]b ≤ [x(ab)] = [x](ab) (17.15)

by (17.10) and (17.14). For the reverse inequality, (17.14) gives a ≤ d(x, xa) and

b ≤ d(xa, (xa)b) because [x]a ≤ [xa] and [xa]b ≤ [(xa)b], so

ab ≤ d(x, xa) · d(xa, (xa)b) ≤ d(x, (xa)b) (17.16)

because M is an ordered monoid. Therefore [x](ab) ≤ [(xa)b] = ([x]a)b by (17.14)

again, and as such [x](ab) = ([x]a)b.

Finally, we need to show that [x]1 = [x] for all x ∈ X. Since 1 ≤ d(x, x), (17.14)

gives [x]1 ≤ [x]. For the reverse inequality we have 1 ≤ d(x, x1) by (17.9) because

1 ≤ d(x1, x1), so x � x1 by (17.11). This means that [x] ≤ [x1] = [x]1, and thus

[x]1 = [x]. Therefore X/∼ is a right M -poset. Hence (17.14) confirms that X/∼ is

a residuated right M -poset with dR([x], [y]) = d(x, y) for all x, y ∈ X. �
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18 Matrix residuation

Recall from section 17 that a residuated lattice is an ordered algebraic structure

that is simultaneously a lattice and a (multiplicative) monoid. By taking addition

to be the lattice join operation we can treat a residuated lattice as a semiring,

and this makes it possible to work with matrices over residuated lattices. In this

section we show that the behaviour of matrices with entries in a residuated lattice is

controlled by left and right residuation, but it turns out that residuation alone is not

powerful enough to answer all of our questions about matrices. Specifically, we can

use residuation to describe kernel classes (see Proposition 18.5), but a residuated

lattice may or may not be exact.

In section 19 we will consider special residuated lattices where residuation can be

expressed in terms of an involution (in fact, a conjugation), and we will show that

the presence of such an involution guarantees exactness. It is not known whether

every exact residuated lattice must be ‘involutive’ in this sense however, but in

section 20 we will show that at least some non-involutive residuated lattices are also

not exact. Our main new result (Corollary 20.5) is that the residuated lattice of

subsets of a finite monoid is exact if and only if the monoid is a group.

Let (M, ·, 1) be a residuated lattice. Since M is a lattice, join is a commutative,

associative binary operation on M , and as such (M,∨) is a commutative semigroup.

Furthermore, (M, ·) is a semigroup satisfying c(a∨ b) = ca∨ cb and (a∨ b)c = ac∨ bc
for all a, b, c ∈ M , by (17.4) and (17.5). This means that Definition 4.1 (i) holds

for (M,∨, ·), and so to make M a semiring we just need to produce local identities

that satisfy Definition 4.1 (ii). That is, for each non-empty finite L ⊆ M we need

to find 0L, 1L ∈ M with a ∨ b0L = a1L = a and a ∨ 0Lb = 1La = a for all a, b ∈ L.

A residuated lattice is assumed to be a monoid, so it is obvious that we can simply

take 1L = 1, but the existence of 0L is less clear.

107
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Proposition 18.1 Let M be a residuated lattice and let L ⊆M . If L is non-empty

and finite then there is some 0L ∈ M satisfying a ∨ b0L = a and a ∨ 0Lb = a for all

a, b ∈ L.

Proof Since L is non-empty and finite we may take

0L =
∧

a,b∈L

dR(b, a) ∧ dL(a, b), (18.1)

where dR and dL denote right and left residuation respectively. Now let a, b ∈ L.

Then 0L ≤ dR(b, a) by (15.2), and so (17.3) gives b0L ≤ a. Therefore a∨ b0L = a by

(15.1). A dual argument involving dL(a, b) confirms that a ∨ 0Lb = a. �

Proposition 18.1 completes the above verification of Definition 4.1 (ii) in the

case of a residuated lattice, and consequently any residuated lattice (M, ·, 1) can be

viewed as a semiring S = (M,∨, ·). In fact, S is a 1-semiring because M has an

identity element. The finitary tropical semiring FT = (R,max,+) and the Boolean

semiring B = ({0, 1},max,min) arise in this way, as (R,+, 0) and ({0, 1},min, 1)

are residuated lattices with ∨ = max (see page 103). Notice that if L ⊆ FT is

non-empty and finite then (18.1) tells us that we can take 0L = min{a−b : a, b ∈ L}
because dR(b, a) = dL(a, b) = a− b for all a, b ∈ FT.

Now let S be a residuated lattice. Since S is a semiring we can add and multiply

matrices over S in accordance with (6.1) and (6.2), and (because of the way we are

treating S as a semiring) these operations interact with the partial order on S in

several important ways. Firstly, the sum of two matrices is precisely their entrywise

join because addition on S is the join operation. This means that if we extend

the partial order on S to Sm×n by setting A ≤ B if and only if Aij ≤ Bij for all

1 ≤ i ≤ m and all 1 ≤ j ≤ n, then each Sm×n is a lattice and we have A+B = A∨B
for all A,B ∈ Sm×n. Note that the meet of A and B in Sm×n is similarly given by

the entrywise meet of A and B.

Matrix multiplication also interacts with the extended partial orders on each

Sm×n: if A,B ∈ Sm×n with A ≤ B then we have CA ≤ CB for all C ∈ Sp×m

and AD ≤ BD for all D ∈ Sn×q. Put another way, for each C ∈ Sp×m and each

D ∈ Sn×q the functions C− : Sm×n → Sp×n and −D : Sm×n → Sm×q are monotone.

In particular, the right (monoid) action of S on Sm×1 satisfies

a ≤ b ⇒ xa ≤ xb (18.2)
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and

x ≤ y ⇒ xa ≤ ya (18.3)

for all a, b ∈ S and all x, y ∈ Sm×1, and as such each Sm×1 is a right S-poset by

Definition 16.1. In fact, the following result shows that each Sm×1 is a residuated

right S-poset.

Proposition 18.2 If S is a residuated lattice then dR and dL extend to functions

dR : Sm×n × Sm×q → Sn×q and dL : Sm×q × Sn×q → Sm×n satisfying

A ≤ dL(C,B) ⇔ AB ≤ C ⇔ B ≤ dR(A,C) (18.4)

for all A ∈ Sm×n, all B ∈ Sn×q and all C ∈ Sm×q.

Proof Let A ∈ Sm×n, let B ∈ Sn×q and let C ∈ Sm×q. Since AB ≤ C if and only

if (AB)ik ≤ Cik for all 1 ≤ i ≤ m and all 1 ≤ k ≤ q, (6.2) gives

AB ≤ C ⇔
n∨

j=1

AijBjk ≤ Cik for all i, k. (18.5)

Therefore

AB ≤ C ⇔ AijBjk ≤ Cik for all i, j, k (18.6)

by (15.1), and thus

AB ≤ C ⇔ Bjk ≤ dR(Aij, Cik) for all i, j, k (18.7)

by (17.3). Finally, (15.2) gives

AB ≤ C ⇔ Bjk ≤
m∧
i=1

dR(Aij, Cik) for all j, k, (18.8)

and as such AB ≤ C if and only if B ≤ dR(A,C) once we define dR(A,C) ∈ Sn×q

by

(dR(A,C))jk =
m∧
i=1

dR(Aij, Cik) (18.9)

for all 1 ≤ j ≤ n and all 1 ≤ k ≤ q. Notice that this definition recovers right

residuation on S in the case m = n = q = 1.
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A dual argument confirms that AB ≤ C if and only if A ≤ dL(C,B), where

dL(C,B) ∈ Sm×n is defined by

(dL(C,B))ij =

q∧
k=1

dL(Cik, Bjk) (18.10)

for all 1 ≤ i ≤ m and all 1 ≤ j ≤ n. �

In the case n = q = 1, Proposition 18.2 tells us that if S is a residuated lattice

then there is a function dR : Sm×1 × Sm×1 → S satisfying

xa ≤ y ⇔ a ≤ dR(x, y) (18.11)

for all a ∈ S and all x, y ∈ Sm×1. The existence of such a function makes Sm×1

a residuated right S-poset (see Definition 17.1). Note that Hollings and Kambites

[40] write 〈x | y〉 instead of dR(x, y) in the case S is the completed tropical semiring

T = (R ∪ {−∞,∞},max,+).

If S is a residuated lattice and X is a right S-module then we have

x+ x = x1 + x1 = x(1 + 1) = x(1 ∨ 1) = x1 = x (18.12)

for all x ∈ X, and as such addition on X is idempotent. This means that we can

partially order X by setting x ≤ y if and only if x+ y = y. Notice that in the case

X = Sm×1 this partial order is precisely the entrywise partial order defined above

because addition on Sm×1 is entrywise join. Definition 4.4 (i) then ensures that

every right S-module is a right S-poset. Moreover, if f : X → Y is a right S-linear

function between right S-modules X and Y then f preserves the S-poset structures

of X and Y , i.e., f is monotone and satisfies f(xa) = (fx)a for all a ∈ S and all

x ∈ X. Every isomorphism of right S-modules is therefore an isomorphism of right

S-posets.

Our use of addition to partially order a given S-module means that joins always

exist in S-modules: if X is an S-module and x, y ∈ X then x+ y satisfies

x+ y ≤ z ⇔ x+ y + z = z

⇔ x+ z = z and y + z = z

⇔ x ≤ z and y ≤ z

(18.13)
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for all z ∈ X because addition on X is idempotent. So, since the join operation on

an S-module is given by addition, every join-preserving function—hence every order

isomorphism—between S-modules satisfies Definition 5.1 (i). Every isomorphism of

right S-posets is therefore an isomorphism of right S-modules, and thus the notions

of right S-module isomorphism and right S-poset isomorphism are equivalent. In

view of Proposition 16.5, this suggests that S-poset anti-isomorphism is the strongest

notion of anti-isomorphism between S-modules that we could hope for.

As we discussed briefly above, some S-modules not only have joins, but are in

fact lattices. For instance, each Sm×1 is a lattice with entrywise join and meet. If

A ∈ Sm×n then the column space of A is a right S-submodule of Sm×1, so is closed

under joins in Sm×1, but it is not clear whether Col(A) is closed under meets in

Sm×1. Example 18.4, below, demonstrates that in general the column space of a

matrix is not closed under meets. However, the following result shows that we can

always use residuation to define (possibly different) meets in Col(A).

Proposition 18.3 Let S be a residuated lattice and let A ∈ Sm×n. Then Col(A)

is a lattice, with the meet of x, y ∈ Col(A) given by AdR(A, x ∧ y).

Proof This follows from a more general result, which we first prove. Let f : X → Y

be a lower adjoint between lattices X and Y , with upper adjoint g : Y → X. We will

show that Im(f) has meets, with the meet of fx and fy given by (f ◦ g)(fx ∧ fy)

for all x, y ∈ X. Let x, y, z ∈ X. Then

fz ≤ (f ◦ g)(fx ∧ fy) ⇔ z ≤ (g ◦ f ◦ g)(fx ∧ fy) (18.14)

by Definition 15.3, where (g ◦ f ◦ g)(fx∧ fy) = g(fx∧ fy) by Proposition 15.4 (iv).

Therefore

fz ≤ (f ◦ g)(fx ∧ fy) ⇔ fz ≤ fx ∧ fy (18.15)

by Definition 15.3 again, and thus

fz ≤ (f ◦ g)(fx ∧ fy) ⇔ fz ≤ fx and fz ≤ fy (18.16)

by (15.2). This means that (f ◦ g)(fx ∧ fy) is the meet of fx and fy in Im(f), as

claimed.
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Now, Proposition 18.2 tells us that the function A− : Sn×1 → Sm×1 is a lower

adjoint, with upper adjoint dR(A,−) : Sm×1 → Sn×1. Hence Col(A) = Im(A−) has

meets, with the meet of Av and Aw in Col(A) given by AdR(A,Av ∧ Aw) for all

v, w ∈ Sn×1. �

Example 18.4 The column space of

A =

1 0

0 1

1 1

 ∈ B3×2 (18.17)

comprises
[
0
0
0

]
,
[
1
0
1

]
,
[
0
1
1

]
and

[
1
1
1

]
, so is not closed under meets in B3×1 because

1

0

1

 ∧
0

1

1

 =

0

0

1

 /∈ Col(A). (18.18)

Instead, Proposition 18.3 tells us that the meet of
[
1
0
1

]
and

[
0
1
1

]
in Col(A) is

[
0
0
0

]
because dR

(
A,
[
0
0
1

])
= [ 00 ] and A[ 00 ] =

[
0
0
0

]
.

Notice that if A ∈ Sm×n is a matrix with entries in a residuated lattice S then the

function AdR(A,−) : Sm×1 → Sm×1 used in Proposition 18.3 is an interior operator

on Sm×1 because it is the lower adjoint of an adjunction composed with the upper

adjoint (see page 96). Alternatively, we could use Proposition 18.2 to show that

AdR(A,−) is monotone, idempotent and satisfies AdR(A, y) ≤ y for all y ∈ Sm×1.

Cohen et al. [20, page 403] call AdR(A,−) the ‘canonical projector’ onto Col(A),

and, as they note, AdR(A,−) fixes Col(A) pointwise. This property can be seen

by appealing to Proposition 15.4 (iv), or by using the direct argument given in the

proof of Proposition 18.5 (ii) below.

Similarly, the function dR(A,A−) : Sn×1 → Sn×1 is a closure operator on Sn×1

because it is monotone, idempotent and satisfies v ≤ dR(A,Av) for all v ∈ Sn×1. The

first part of the following result shows that the kernel of Row(A) can be characterised

as the pairs of vectors which have the same closure under dR(A,A−); Ker Row(A)

is the set-theoretic kernel of this closure operator.

Proposition 18.5 Let S be a residuated lattice and let A ∈ Sm×n. Then
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(i) Ker Row(A) =
{

(v, v′) ∈ Sn×1 × Sn×1 : dR(A,Av) = dR(A,Av′)
}

; and

(ii) Ker Row(A) = Ker2(F ), where F =
{

(v, dR(A,Av)) : v ∈ Sn×1}.

Proof (i). Let v, v′ ∈ Sn×1 and suppose that (v, v′) ∈ Ker Row(A). Then Av = Av′

by Proposition 8.6 (i), and thus dR(A,Av) = dR(A,Av′). Conversely, suppose that

dR(A,Av) = dR(A,Av′). Since Av ≤ Av, Proposition 18.2 gives v ≤ dR(A,Av).

Therefore v ≤ dR(A,Av′) because dR(A,Av) = dR(A,Av′), and thus Av ≤ Av′ by

Proposition 18.2 again. A similar argument shows that Av′ ≤ Av, and as such

Av = Av′. Hence (v, v′) ∈ Ker Row(A) by Proposition 8.6 (i).

(ii). Let v, v′ ∈ Sn×1 and suppose that (v, v′) ∈ Ker Row(A). Then (i) gives

dR(A,Av) = dR(A,Av′). By Definition 8.1, to show that (v, v′) ∈ Ker2(F ) we need

to show that yv = yv′ for all y ∈ Ker(F ), so let y ∈ Ker(F ). Then yv = ydR(A,Av)

and yv′ = ydR(A,Av′) by Definition 8.3 and the definition of F . Therefore yv = yv′,

as required for (v, v′) ∈ Ker2(F ), because dR(A,Av) = dR(A,Av′).

Conversely, suppose that (v, v′) ∈ Ker2(F ). Then yv = yv′ for all y ∈ Ker(F ) by

Definition 8.1. Now let w ∈ Sn×1. Then since Aw ≤ Aw we have w ≤ dR(A,Aw)

by Proposition 18.2, and thus Aw ≤ AdR(A,Aw) because multiplication by a fixed

matrix is a monotone function. Since dR(A,Aw) ≤ dR(A,Aw), Proposition 18.2

also gives AdR(A,Aw) ≤ Aw, and as such Aw = AdR(A,Aw). We therefore have

uAw = uAdR(A,Aw) for all u ∈ S1×m and all w ∈ Sn×1, so, by Definition 8.3

and the definition of F , each uA ∈ Ker(F ). This means that uAv = uAv′ for all

u ∈ S1×m. Hence (v, v′) ∈ Ker Row(A) by Definition 8.1. �

Part (ii) of Proposition 18.5 tells us that the closure operator dR(A,A−) captures

the essential information about Ker Row(A), in the sense that no information is lost

if Ker Row(A) is reduced to just the pairs (v, dR(A,Av)) for v ∈ Sn×1. To compute

the classes of Ker Row(A) using dR, start with the closed vectors, i.e., the vectors

dR(A, x) for x ∈ Col(A). Each such vector will be the maximum element in its class,

and the class of dR(A, x) will comprise as many of the vectors beneath dR(A, x) as

possible. Specifically, the class of dR(A, x) will be the set of all v ∈ Sn×1 which

satisfy

x ≤ y ⇔ v ≤ dR(A, y) (18.19)

for all y ∈ Col(A), as these are precisely the vectors whose closure is dR(A, x).
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19 Involutive residuated lattices

In section 18 we explained how matrix residuation can be used to describe kernels

over residuated lattices, thus addressing the first of our main problems. Our second

main problem is to decide whether an arbitrary semiring is exact, but in the case

of residuated lattices we do not yet have any tools with which to do this. Since a

residuated lattice may or may not be exact (see Corollary 20.5), we must assume that

our residuated lattices have some additional structure if we are to decide whether

they are exact. In this section we argue that a very useful piece of extra structure to

insist upon is a certain kind of involution, and we show that every residuated lattice

equipped with such an involution is exact. We also show that the involution induces

an anti-isomorphism between the row space and column space of each matrix.

Definition 19.1 A residuated lattice S is involutive if there is an involution on

S satisfying a = dR
(
a, 1
)

= dL
(
1, a
)

for all a ∈ S (see Wille [87, page 38]).

Combining Definition 19.1 with (17.3), we see that the involution on an involutive

residuated lattice S must satisfy

a ≤ b ⇔ ab ≤ 1 ⇔ b ≤ a (19.1)

for all a, b ∈ S, and thus in cases where 1 = 1 the involution can be thought of as

approximating a “multiplicative inverse”. For instance, every ordered group (G, ·, 1)

whose underlying poset is a lattice is an involutive residuated lattice with a = a−1 for

all a ∈ G. However, this analogy breaks down for more exotic involutive residuated

lattices: if (S,∨,∧) is a Boolean algebra then S is an involutive residuated lattice

because the complement : S → S satisfies (19.1), with 1 = >, but the complement

is the worst imaginable approximation to a multiplicative inverse because it satisfies

a ∧ a = ⊥ for all a ∈ S.

In accordance with our convention (see page 63), we extend the involution on an

involutive residuated lattice S to matrices by setting Aji = Aij for all A ∈ Sm×n.

Proposition 19.2 If S is an involutive residuated lattice then

AB ≤ C ⇒ BC ≤ A (19.2)

for all A ∈ Sm×n, all B ∈ Sn×q and all C ∈ Sm×q.
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Proof Let A ∈ Sm×n, let B ∈ Sn×q and let C ∈ Sm×q. Then (as in the proof of

Proposition 18.2) we have

AB ≤ C ⇔ AijBjk ≤ Cik for all i, j, k (19.3)

and

BC ≤ A ⇔ BjkCki ≤ Aji for all i, j, k (19.4)

⇔ BjkCik ≤ Aij for all i, j, k. (19.5)

It therefore suffices to show that

ab ≤ c ⇒ bc ≤ a (19.6)

for all a, b, c ∈ S, so let a, b, c ∈ S and suppose that ab ≤ c. Then ab ≤ c because

is an involution, and thus abc ≤ 1 by (19.1). Hence bc ≤ a by (19.1) again, as

required. �

In particular, Proposition 19.2 tells us that if S is an involutive residuated lattice

then the function : Sm×1 → S1×m is S-antitone in the sense of Definition 16.4.

Moreover, the inverse function : S1×m → Sm×1 is also S-antitone (in the dual

sense) because a double application of Proposition 19.2 gives

ax ≤ y ⇒ xy ≤ a ⇒ ya ≤ x (19.7)

for all a ∈ S and all x, y ∈ S1×m. The involution on S therefore induces an anti-

isomorphism of S-posets from Sm×1 to S1×m. That is, Sm×1 ∼=S1×m as S-posets.

Note that these anti-isomorphisms exist even if S is not commutative, whereas S

needs to be commutative for the transpose operation to induce an isomorphism of

S-posets between Sm×1 and S1×m.

Proposition 19.2 will feature heavily in all of our manipulations of matrices over

involutive residuated lattices, so it is worth thinking about how to remember what

it allows us to do. Intuitively, (19.2) says that the three terms in an inequality of

the form AB ≤ C may be cycled one place to the left, at the cost of introducing

a ‘ ’ to the two terms that cross the ‘≤’. As we saw above, the fact that is an

involution means that we can apply this procedure once more to obtain CA ≤ B,

and consequently the terms in an inequality of the form AB ≤ C may also be cycled

one place to the right at the same cost. In the results that follow we make frequent
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use of this cycling technique without further mention.

Note that a straightforward adaptation of the proof of Proposition 19.2 shows

that if A,B ∈ Sm×n with A ≤ B then B ≤ A.1 Therefore is antitone as a function

from Sm×n to Sn×m. This result is also easy to remember, thanks to the above rule

which says that any term crossing a ‘≤’ must pick up a ‘ ’, so we will use it too

without further mention.2

If S is an involutive residuated lattice then we can express matrix residuation

in terms of the involution on S. Specifically, Proposition 18.2 gives dR(A,C) = CA

for all A ∈ Sm×n and all C ∈ Sm×q because

AB ≤ C ⇔ CA ≤ B ⇔ B ≤ CA (19.8)

for all B ∈ Sn×q. Dually, dL(C,B) = BC for all B ∈ Sn×q and all C ∈ Sm×q.

These results illustrate why the presence of an involution lets us tackle problems

(e.g., obtaining exactness) that residuation alone is not powerful enough for, even

if the final answer does not actually refer to the involution: the involution gives us

an “intermediate place” to work. When proving facts involving residuation we first

apply the involution to turn column vectors into row vectors (for example), then do

some manipulation of row vectors, and finally apply the involution a second time so

that the end result can be phrased in terms of residuation. If a residuated lattice is

not involutive then this middle step is not possible, and as a result we are limited

in what we can prove using residuation.

Lemma 19.3, below, is a good example of a result that is ostensibly only about

residuation, but that is actually proved using an involution in the way described

above. Notice that Lemma 19.3 improves upon Proposition 18.5 (ii) for involutive

residuated lattices because if Row(A) = Ker(F ) then Ker Row(A) = Ker2(F ).

Lemma 19.3 Let S be an involutive residuated lattice and let A ∈ Sm×n. Then

Row(A) = Ker(F ), where F =
{

(v, dR(A,Av)) : v ∈ Sn×1}.

Proof First recall from Definition 8.3 that

Ker(F ) =
{
y ∈ S1×n : yv = ydR(A,Av) for all v ∈ Sn×1}. (19.9)

1Or just apply Proposition 19.2 to AI ≤ B, where I is an identity matrix local to A and B.
2We can use these cycling rules to show that if S is an involutive residuated lattice then ab ≤ c

if and only if a ≤ bc for all a, b, c ∈ S. This means that the category associated with S (create an
object for each a ∈ S and a morphism from a ∈ S to b ∈ S if a ≤ b; see Awodey [3, pages 9–10])
is ‘∗-autonomous’ (see Barr [6]). Such categories are used to model linear logic (see Melliès [67]).
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Since Av = AdR(A,Av) for all v ∈ Sn×1 (see page 112) we have uAv = uAdR(A,Av)

for all u ∈ S1×m and all v ∈ Sn×1, and as such x ∈ Ker(F ) for all x ∈ Row(A). It

therefore remains to show that Ker(F ) ⊆ Row(A).

Now let y ∈ Ker(F ). Then in particular yy = ydR(A,Ay), where yy ≤ 1 because

1y ≤ y. Therefore

yAyA = ydR(A,Ay) ≤ 1 (19.10)

because dR(A, x) = xA for all x ∈ Sm×1 (see above), and thus y ≤ AyA. We also

have AyA ≤ y because Ay ≤ Ay, so in fact y = AyA, and as such y ∈ Row(A).

Hence Ker(F ) ⊆ Row(A). �

Theorem 19.4 If S is an involutive residuated lattice then S is exact.

Proof If A ∈ Sm×n then by Lemma 19.3 there is some F ⊆ Sn×1 × Sn×1 satisfying

Row(A) = Ker(F ). Hence S is right exact by Lemma 9.12; a dual argument confirms

that S is also left exact. �

The finitary tropical semiring FT = (R,max,+) is an involutive residuated

lattice with a = −a for all a ∈ FT (see page 114), so is exact by Theorem 19.4.

The completed tropical semiring T = (R∪{−∞,∞},max,+) is also exact because

it too is an involutive residuated lattice—although proving this requires some case

analysis because of how T is defined (see Definition 2.3). Note that the involution

on T extends the involution on FT by interchanging −∞ and ∞. Every Boolean

algebra is also an involutive residuated lattice, so in particular the Boolean semiring

B = ({0, 1},max,min) is exact. We will explore some consequences of B being exact

in section 20.

In section 18 we demonstrated that if S is a residuated lattice then kernel classes

can be described using residuation. Now, thanks to Theorem 19.4, we know that

if in addition S is involutive then S is exact. Our third and final main problem

is to understand the relationship between the row space and column space of each

A ∈ Sm×n, and, as we discussed in section 10, one way to do this is via a conjugation

on S. The definition of a conjugation is practically rigged to ensure that if S is

involutive then the involution on S is a conjugation, but since the involution on an

involutive residuated lattice is not a standard involution, section 10 does not provide

any insight into the properties of the induced bijection between Row(A) and Col(A).

It turns out that Row(A) and Col(A) are anti-isomorphic as S-posets.



118 Linear algebra over residuated lattices

Theorem 19.5 If S is an involutive residuated lattice then

(i) the involution on S is a conjugation; and

(ii) Row(A) ∼=Col(A) as S-posets for all A ∈ Sm×n.

Proof (i). Let A ∈ Sm×n. Then AuAA = dL(uA,A)A = uA for all u ∈ S1×m and

AAvA = AdR(A,Av) = Av for all v ∈ Sn×1 (see pages 112 and 116). Therefore

Definition 10.1 (i) and (ii) are satisfied with M = N = A, and as such the involution

on S is a conjugation.

(ii). Continuing from above, we know that the function Col(A)→ Row(A) given

by x 7→ xA is a bijection with inverse given by x 7→ Ax. It is therefore sufficient

to show that this function and its inverse are S-antitone in the appropriate senses.

Firstly, we have

xa ≤ y ⇒ ay ≤ x ⇒ ayA ≤ xA (19.11)

for all a ∈ S and all x, y ∈ Sm×1 because multiplication by a fixed matrix is a

monotone function, so in particular the function Col(A)→ Row(A) given by x 7→ xA

is S-antitone by Definition 16.4. Dually, the inverse of this function is also S-antitone

because we have

ax ≤ y ⇒ ya ≤ x ⇒ Aya ≤ Ax (19.12)

for all x, y ∈ S1×n. Hence the function Col(A)→ Row(A) is an anti-isomorphism of

S-posets. �

Hollings and Kambites [40, Theorem 2.4] have already shown that if S is FT

or T then Row(A) ∼=Col(A) for all A ∈ Sm×n. Their notion of anti-isomorphism

would not be suitable for all involutive residuated lattices, but it turns out to be

equivalent to our notion of anti-isomorphism of S-posets in the case S is FT or T.

20 Subsets of groups and monoids

If S is an involutive residuated lattice then Theorem 19.4 tells us that S is an exact

semiring. It then follows from Corollary 12.5 (and its dual) that the group semiring

SG is exact for every finite group G, so in particular every finite group semiring BG

is exact because B is an involutive residuated lattice. As we discussed in section 7,
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in the case of B it is not actually necessary to restrict to finite groups, but since

Corollary 12.5 applies to arbitrary exact semirings it can only be used to establish

that BG is exact for finite groups G. In this section we show that BG is an involutive

residuated lattice for every group G, and as a result every group semiring BG is in

fact exact.

Let (M, ·, 1) be a monoid, finite or infinite. Then the powerset of M can be

made into an ordered monoid by setting VW = {st : s ∈ V and t ∈ W} for all

V,W ⊆ M and by taking the partial order to be subset inclusion. Moreover, this

ordered monoid (Pow(M), ·, {1}) turns out to be residuated, with

dR(V,W ) = {r ∈M : V r ⊆ W} (20.1)

and

dL(W,V ) = {r ∈M : rV ⊆ W} (20.2)

for all V,W ⊆M (see Galatos et al. [27, section 3.4.10]). Therefore (Pow(M), ·, {1})
is a residuated lattice, because Pow(M) is a lattice with join and meet given by union

and intersection respectively.

Now recall from section 7 that if M is a monoid then the semiring BM can be

identified with the powerset of M , and that the sum and product of V,W ∈ BM

are given by V ∪ W and {st : s ∈ V and t ∈ W} respectively. When viewed in

this way it is clear that BM is just the semiring corresponding to the residuated

lattice (Pow(M), ·, {1}), and consequently all the results in section 18 apply to BM .

However, the results in section 19 cannot be applied to BM unless M is a group.

Theorem 20.1 Let M be a monoid. Then the residuated lattice BM is involutive

if and only if M is a group.

Proof (⇒). Suppose that BM is involutive. Then ∅ = M and M = ∅ because

the involution on BM is an order anti-isomorphism. Now let s ∈ M . Then we

have sMs ⊆M = ∅ because Ms ⊆Ms, and thus sMs = ∅. If Ms were non-empty

we would have st ∈ sMs for some t ∈ Ms, so since sMs = ∅ we must also have

Ms = ∅. Therefore Ms = ∅ = M , and as such there is some r ∈ M with rs = 1.

That is, s has a left inverse in M . Hence M is a group.

(⇐). Suppose that M is a group. To show that BM is involutive we need to

produce an involution on BM that satisfies V = dR
(
V, {1}

)
= dL

(
{1}, V

)
for all

V ∈ BM . The involution on BM defined by V =
{
s−1 : s ∈ V

}
for all V ∈ BM



120 Linear algebra over residuated lattices

satisfies this condition because we have

dR
(
V, {1}

)
= dR(V, {1}) = {r ∈M : sr = 1 for all s ∈ V } = V (20.3)

and

dR
(
{1}, V

)
= dR({1}, V ) = {r ∈M : rs = 1 for all s ∈ V } = V (20.4)

for all V ∈ BM , by (20.1) and (20.2) respectively. �

Corollary 20.2 If G is a group then BG is exact.

Proof By Theorem 20.1, BG is an involutive residuated lattice. Hence BG is exact

by Theorem 19.4. �

Now we have established that BG is exact for every group G, we turn our

attention to the converse problem: if M is a monoid, does exactness of BM force M

to be a group? Theorem 20.1 tells us that if BM is an involutive residuated lattice

then M must be a group, but this does not quite answer the question because BM

could conceivably be exact without being involutive. The problem is easy to resolve

for cancellative monoids, as the following result implies that if M is cancellative

with BM exact then M must actually be a group.

Proposition 20.3 Let M be a monoid and let r ∈M . If BM is right exact and r

is left cancellative then r has a left inverse in M .

Proof Let V, V ′ ∈ BM and suppose that (V, V ′) ∈ Ker Row({r}). Then rV = rV ′,

and as such rv ∈ rV ′ for all v ∈ V . Therefore for each v ∈ V there is some v′ ∈ V ′

with rv = rv′, but since r is left cancellative we have v = v′ ∈ V ′. This means that

V ⊆ V ′, so V = V ′ by symmetry. Definition 8.3 then gives {1} ∈ Ker2 Row({r}),
because 1V = 1V ′, and thus {1} ∈ Row({r}) by Proposition 9.10. Hence r has a

left inverse in M because there is some W ∈ BM satisfying {1} = Wr. �

Proposition 20.3 deals with cancellative monoids, but the above problem remains

open for arbitrary monoids; must M be a group if BM is exact, or does there exist

a non-cancellative monoid M with BM exact? However, if we restrict to finite

monoids then the following key result enables us to show that BM is exact only if

M is a group.

Theorem 20.4 Let M be a finite monoid. Then for each r ∈ M there is a matrix

A ∈ (BM)2×2 satisfying
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(i) [ M ∅ ] ∈ Ker2 Row(A); and

(ii) [ M ∅ ] ∈ Row(A) if and only if r has a left inverse in M .

Proof Let r ∈ M . Then since M is finite there is some n ∈ N for which rn is

idempotent (see Howie [41, section 1.2]). Now take

A =

[
{r} ∅
{1} {rn}

]
∈ (BM)2×2. (20.5)

(i). By Definition 8.3, to conclude that [ M ∅ ] ∈ Ker2 Row(A) we must show that

Ker Row(A) ⊆ Ker([ M ∅ ]), so let V, V ′,W,W ′ ∈ BM and suppose that

A

[
V

W

]
= A

[
V ′

W ′

]
. (20.6)

We then need to check that

[
M ∅

] [V
W

]
=
[
M ∅

] [V ′
W ′

]
. (20.7)

That is, we need to check that

MV = MV ∪ ∅W = MV ′ ∪ ∅W ′ = MV ′, (20.8)

and thus by symmetry it is sufficient to check that MV ⊆ MV ′. If V = ∅ then we

are done, so suppose that V 6= ∅ and let qs ∈MV . Now if s ∈ V ′ then we are done

because qs ∈MV ′, so suppose further that s /∈ V ′.
Combining (20.6) with the definition of A gives[

rV

V ∪ rnW

]
=

[
rV ′

V ′ ∪ rnW ′

]
(20.9)

In particular, we have rV = rV ′, and thus we can write rs = rs′ for some s′ ∈ V ′

because s ∈ V . Our assumption that s ∈ V also means that s ∈ V ∪ rnW , so (20.9)

gives s ∈ V ′ ∪ rnW ′. Therefore s ∈ rnW ′ because we are assuming that s /∈ V ′, and

as such s = rnt′ for some t′ ∈ W ′. Since rn is idempotent we then have

s = rnt′ = rnrnt′ = rns = rn−1rs = rn−1rs′, (20.10)



122 Linear algebra over residuated lattices

where s′ ∈ V ′, and as such qs ∈MV ′. Hence MV ⊆MV ′, as required.

(ii). By (20.5), [ M ∅ ] ∈ Row(A) if and only if there are V,W ∈ BM with[
M ∅

]
=
[
V W

]
A =

[
V r ∪W Wrn

]
. (20.11)

This happens if and only if there is some V ∈ BM with V r = M (because Wrn = ∅
if and only if W = ∅), and thus [ M ∅ ] ∈ Row(A) if and only if there is some s ∈M
with sr = 1. Hence [ M ∅ ] ∈ Row(A) if and only if r has a left inverse in M . �

Corollary 20.5 Let M be a finite monoid. Then BM is exact if and only if M is

a group.

Proof (⇒). Suppose that BM is exact and let r ∈ M . Then by Theorem 20.4

there is some A ∈ (BM)2×2 with [ M ∅ ] ∈ Ker2 Row(A), and with [ M ∅ ] ∈ Row(A)

if and only if r has a left inverse in M . Now, since BM is exact, Proposition 9.10

gives Ker2 Row(A) = Row(A), and thus we have [ M ∅ ] ∈ Row(A). Therefore r has

a left inverse in M . Hence M is a group.

(⇐). Suppose that M is a group. Then BM is exact by Corollary 20.2. �

That groups are the only finite monoids M for which BM is exact is a non-trivial

outcome, and to prove it we really do need to use a result such as Theorem 20.4. In

other words, to show that exactness of BM implies that M is group it is necessary

to use the fact that (right) exactness tells us about row spaces of matrices over BM ,

not just finitely generated ideals of BM . The reason we have to use the full power of

exactness is that there exist finite non-group monoids M with Ker2(X) = X for all

(finitely generated) left ideals X ⊆ BM , and so at this level BM has precisely the

exactness-like properties it would have if M were a group. The following example

illustrates this obstruction in the case of a particular such a monoid.

Example 20.6 The two-element monoid M = {1, r} with multiplication given by

· 1 r

1 1 r

r r r

(20.12)

is not a group, so by Corollary 20.5 BM is not exact.1 Direct computation reveals

1In section 16 we referred to M as the ‘Boolean monoid’ and the ‘two-element semilattice’.
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that the ideals of BM are

{∅} = (BM)∅, (20.13)

{∅, {r}} = (BM){r}, (20.14)

{∅, {r}, {1, r}} = (BM){1, r} (20.15)

and

{∅, {1}, {r}, {1, r}} = (BM){1}, (20.16)

and thus each ideal of BM is principal. Furthermore, each ideal of BM is generated

by an idempotent because we happen to have V V = V for all V ∈ BM .

Now, if S is a semiring and a ∈ S is idempotent then the left ideal of S generated

by a satisfies Ker2(Sa) = Sa. To prove this, let b ∈ Ker2(Sa) and observe that(
1{a,b}, a

)
∈ Ker(Sa) because a1{a,b} = a = aa. Since b ∈ Ker2(Sa), Definition 8.3

then gives
(
1{a,b}, a

)
∈ Ker(b), and as such b = b1{a,b} = ba. Hence Ker2(Sa) ⊆ Sa,

as required.

This result tells us that Ker2(X) = X for all ideals X ⊆ BM because, as we

observed above, each ideal of BM is generated by an idempotent. If M were a group

we would instead obtain Ker2(X) = X for all ideals X ⊆ BM from exactness of

BM , and so in this respect M is indistinguishable from a group.





Bibliography

[1] M. Akian, R. Bapat, and S. Gaubert. Max-plus algebra. In L. Hogben, edi-

tor, Handbook of Linear Algebra, Discrete Mathematics and Its Applications,

chapter 25. Chapman and Hall, Boca Raton, 2006.

[2] C. D. Aliprantis and K. C. Border. Infinite Dimensional Analysis. Springer,

Berlin, third edition, 2006.

[3] S. Awodey. Category Theory, volume 52 of Oxford Logic Guides. Oxford Uni-

versity Press, Oxford, second edition, 2010.

[4] F. Baccelli, G. Cohen, G. J. Olsder, and J.-P. Quadrat. Synchronization and

Linearity: An Algebra for Discrete Event Systems. John Wiley & Sons, New

York, 1992.

[5] R. Baer. Abelian groups that are direct summands of every containing abelian

group. Bull. Amer. Math. Soc., 46:800–806, 1940.

[6] M. Barr. *-Autonomous Categories, volume 752 of Lecture Notes in Mathemat-

ics. Springer, Berlin, 1979.

[7] J. Berstel and C. Reutenauer. Noncommutative Rational Series with Applica-

tions. Cambridge University Press, Cambridge, 2011.

[8] G. Birkhoff. Lattice Theory. American Mathematical Society, New York, second

edition, 1948.

[9] T. S. Blyth. Lattices and Ordered Algebraic Structures. Springer, London, 2005.

[10] T. S. Blyth and M. F. Janowitz. Residuation Theory, volume 102 of Inter-

national Series of Monographs in Pure and Applied Mathematics. Pergamon

Press, Oxford, 1972.

125



126 Bibliography

[11] G. Boole. The Mathematical Analysis of Logic. Macmillan, Barclay and Macmil-

lan, Cambridge, 1847.

[12] J. W. Brewer, J. W. Bunce, and F. S. Van Vleck. Linear Systems over Com-

mutative Rings, volume 104 of Lecture Notes in Pure and Applied Mathematics.

Marcel Dekker, New York, 1986.

[13] R. Bĕlohlávek. Concept lattices and order in fuzzy logic. Ann. Pure Appl.

Logic, 128(1–3):277–298, 2004.
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and S. Romero-Vivó, editors, Positive Systems, volume 389 of Lecture Notes in

Control and Information Sciences, pages 291–303. Springer, Berlin, 2009.

[31] K. G lazek. A Guide to the Literature on Semirings and their Applications

in Mathematics and Information Sciences. Kluwer Academic Publishers, Dor-

drecht, 2002.

[32] J. S. Golan. Power Algebras over Semirings. Kluwer Academic Publishers,

Dordrecht, 1999.

[33] J. S. Golan. Semirings and Affine Equations over Them. Kluwer Academic

Publishers, Dordrecht, 2003.

[34] J. S. Golan. Semirings and their Applications. Kluwer Academic Publishers,

Dordrecht, 2010.



128 Bibliography

[35] J. A. Green. On the structure of semigroups. Ann. of Math. (2), 54(1):163–172,

1951.

[36] A. Hatcher. Algebraic Topology. Cambridge University Press, Cambridge, 2002.

[37] B. Heidergott, G. J. Olsder, and J. van der Woude. Max Plus at Work. Prince-

ton Series in Applied Mathematics. Princeton University Press, Princeton, 2006.

[38] M. Henriksen. Some remarks on elementary divisor rings. II. Michigan Math.

J., 3(2):159–163, 1955.
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