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Abstract

The study of non-linear input-output maps can be summarized by three concepts: Gain,
Positivity and Dissipativity. However, in order to make efficient use of these theorems
it is necessary to use loop transformations and weightings, or so called ”multipliers”.

The first problem this thesis studies is the feedback interconnection of a Linear Time
Invariant system with a memoryless bounded and monotone non-linearity, or so called
Absolute Stability problem, for which the test for stability is equivalent to show the ex-
istence of a Zames-Falb multiplier. The main advantage of this approach is that Zames–
Falb multipliers can be specialized to recover important tools such as Circle criterion
and the Popov criterion.

Albeit Zames-Falb multipliers are an efficient way of describing non-linearities
in frequency domain, the Fourier transform of the multiplier does not preserve the
L1(−∞,∞) norm. This problem has been addressed by two paradigms: mathematically
complex multipliers with exact L1(−∞,∞) norm and multipliers with mathematically
tractable frequency domain properties but approximate L1(−∞,∞) norm. However, this
thesis exposes a third factor that leads to conservative results: causality of Zames-Falb
multipliers. This thesis exposes the consequences of narrowing the search Zames-Falb
multipliers to causal multipliers, and motivated by this argument, introduces an anti-
causal complementary method for the causal multiplier synthesis in [1].

The second subject of this thesis is the feedback interconnection of two bounded sys-
tems. The interconnection of two arbitrary systems has been a well understood problem
from the point of view of Dissipativity and Passivity. Nonetheless, frequency domain
analysis is largely restricted for passive systems by the need of canonically factorizable
multipliers, while Dissipativity mostly exploits constant multipliers.

This thesis uses IQC to show the stability of the feedback interconnection of two
non-linear systems by introducing an equivalent representation of the IQC Theorem,
and then studies formally the conditions that the IQC multipliers need. The result of
this analysis is then compared with Passivity and Dissipativity by a series of corollaries.
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Glossary

Function Spaces

Notation Description
Ln

2 (−∞,0] subspace of Ln
2 (−∞,∞) with functions zero for

t > 0
Ln

2 [0,∞) subspace of Ln
2 (−∞,∞) with functions zero for

t < 0
Ln

2e extension of space Ln
2 [0,∞), i. e. f ∈ Ln

2e if
PT f ∈ Ln

2 [0,∞) for all T ∈R, T > 0
Ln

2 (−∞,∞) time domain Hilbert space of square integrable
Rn valued functions f :R→Rn

< x,y >L2 inner product of x,y ∈ Ln
2 (−∞,∞)

< x,y >T denotes < PT x,PT y >L2 for x,y ∈ L2[0,∞)n

||x||L2 induced norm of x ∈ Ln
2 (−∞,∞)

||F ||L2→L2 induced norm of bounded causal operator F :
Ln

2 [0,∞)→ Lm
2 [0,∞)

||G||∞ induced norm of bounded Linear Time Invariant
operator G ∈ R Ln×m

∞ , i. e. ||G||L2→L2 = ||G||∞
H2 space of functions in L2( jR) that are analytic

in C+ and uniformly square integrable along
Re{s}= a for all a ∈R+

< x,y >H2
inner product of x,y ∈H n

2

Ln
1 (−∞,∞) time domain Lebesgue space of absolute inte-

grable Rn valued functions f :R→Rn

||x||1 induced norm of x ∈ L1(−∞,∞)

L2( jR) space of square integrable functions on jR in-
cluding ∞

< x,y >L2( jR) inner product of x,y ∈ L2( jR)n

R L∞ set of proper rational transfer functions with real
coefficients and no poles on the imaginary axis
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Notation Description
R Ln×m

∞ set of n×m matrices with elements in R L∞

R H ∞ subset of R L∞ consisting of functions without
poles on the closed right-half plane

R H n×m
∞ set of n×m matrices with elements in R H ∞

R H −∞ subset of R L∞ consisting of functions without
poles on the closed left-half plane

R H −(n×m)
∞ set of n×m matrices with elements in R H −∞

PT f truncation of signal f (t) at time T , i.e. f (t) is
zero for all t > T

Field of Numbers
Notation Description
C complex numbers
Cn×m complex matrices of dimension n×m

Cn complex column vector with n entries
j the imaginary unit, i.e. j =

√
−1

jR the imaginary axis
Z integer numbers
Z+ strictly positive integer numbers
R real numbers
Rn×m real matrices of dimension n×m

R+ strictly positive real numbers
Rn real column vector with n entries

Matrix Operations

Notation Description
A = (ai j)n×m matrix of dimension n×m, with elements ai j
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Notation Description
A∗ complex conjugate transpose of matrix A
A ·B inner product of the vectors A,B ∈Rm

A−1 inverse of matrix A
A−∗ denotes (A−1)∗ or equivalently (A∗)−1

A−T denotes (A−1)T or equivalently (AT )−1

AT transpose of a matrix A
dim(A) dimension of the matrix A
I identity matrix with compatible dimensions
In identity matrix of dimension n×n

diag{a1,a2, ...,an} diagonal matrix with elements a1,a2, ...,an on the
main diagonal

A < B denotes (A−B)< 0
A≤ 0 hermitian matrix A=A∗ with non-positive eigen-

values
A < 0 hermitian matrix A = A∗ with strictly negative

eigenvalues
A≥ 0 hermitian matrix A = A∗ with non-negative

eigenvalues
A > 0 hermitian matrix A = A∗ with strictly positive

eigenvalues
0 zero matrix with compatible dimensions

Miscellaneous
Notation Description
∈ belongs to
� end of proof
∀ for all
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Notation Description
⇐⇒ equivalent to
=⇒ implies
⇐= is implied by
: such that
∃ there exists
≥ greater or equal
> greater than
≤ less or equal
< less than
� much greater than
� much less than
|x| modulus (or magnitude) of x ∈ C
x ∈ [a,b] a≤ x≤ b where a,x,b ∈R
x ∈ [a,b) a≤ x < b where a,x,b ∈R
x ∈ (a,b] a < x≤ b where a,x,b ∈R
x ∈ (a,b) a < x < b where a,x,b ∈R
infx∈X f (x) infimum of the function f (x) over x ∈ X

limx→a f (x) f (x) in the limit as x tends to a

limx↑a f (x) f (x) in the limit as x tends to a from below
maxx∈X f (x) maximum of the function f (x) over x ∈ X

minx∈X f (x) minimum of the function f (x) over x ∈ X

supx∈X f (x) supremum of the function f (x) over x ∈ X

∇xSu gradient of the Function Su with respect to the
variables vector x

∂

∂x differentiation operator with respect to x

[G,C] standard positive feedback interconnection of
plant P with controller C

||x|| Euclidean vector norm
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Notation Description

Operations on Systems

Notation Description
G∼ adjoint of a real-rational system G ∈ R Lm×n

∞ ,
that is G(s)∼ = G(−s)T = GT (−s)

G( jω)∗ complex conjugate transpose of frequency-
response function G, that is G( jω) at each fre-
quency ω, that is G( jω)∗ = G( j jω)T

G−1 inverse of real-rational system G, that is
G−1(s) = G(s)−1

G−∼ denotes (G−1)∼ or equivalently (G∼)−1

G( jω)−∗ denotes (G( jω)−1)∗ or equivalently (G( jω)∗)−1

G−T denotes (G−1)T or equivalently (GT )−1

GT transpose of a real-rational system G ∈ R Lm×n
∞ ,

that is G(s)T = GT (s)



Chapter 1

Introduction

1.1 Background and motivation

Feedback control is a tool that can lead to complicated problems because it changes
fundamentally the behaviour of a system and, most importantly, its stability. However,
there are two reasons for the need of its use, the first is disturbance rejection and the
second is to reduce the effect of uncertainty in the model of the system dynamics [2].
The stability of a system is a fundamental problem in control theory. The object of the
stability theory is to find the properties of the behaviour of a system without actually
solving the differential equations that describe it. Lyapunov was the first mathematician
that introduced mathematical tools for the analysis of arbitrary differential equations and
proved many of the fundamental theorems using the concept of state space representa-
tion [3]. However, Lyapunov stability using state space is not the only tool available
to describe the stability or instability of a system; Input-Output stability introduced by
Sandberg [4, 5] and Zames [6, 7, 8, 9] is a parallel and not always equivalent tool which
describes a system not by using differential equations and state space representations but
by input-output mappings that relate an output signal to each input signal. One of the
most noticeable differences is that Input-Output stability makes no mention of ”states”
[3].

The study of non-linear input-output maps can be summarized by three concepts:
Gain, Positivity and Dissipativity.

The work of Zames [6] compiles for first time a study of systems using input-output
mapping and assigns a gain, or operator norm to each of these mappings. Using this
concept, Zames describes the Small Gain Theorem. However, in practical systems, the
gain if this operators is big, therefore, in order to make an efficient use of this theorem,

19



CHAPTER 1. INTRODUCTION 20

it is necessary to use loop transformations and weightings, or so called ”multipliers”[7].
In parallel to gain, some operators will hold the positivity of an inner product be-

tween the input and its image. This concept is known as Passive systems, and was
inspired by the study of linear electric circuits [10]. The Passive operator theory was
first connected to the stability of closed loop systems by Youla [11] who proved that
a passive network in closed loop with a resistor is stable [12]. This concept has been
widely covered, usually under the name ”Positive operators” [13, 14, 10].

Dissipativity was first proposed by Popov [15, 10]. Popov himself also extended its
application with the aforementioned absolute stability [16] and the use of multipliers
[17]. However, the first formalization of the current definition of Dissipativity came
from Willems [18, 19]. Thereafter, Hill and Moylan [20, 21] extended the Kalman-
Yakubovich-Popov Lemma to deal with certain classes of non-linear systems.

The non-linear control problem is broad and irregular. However, for some specific
problems tools already exist. The main subject of this thesis is the feedback intercon-
nection of two bounded systems.

In order to gain an initial understanding of the broad problem, firstly the intercon-
nection of a Linear Time Invariant system with a memoryless non-linearity is addressed.
In practice, the Linear Time Invariant system will be studied separately from the non-
linear, time varying or uncertain element. In many applications this is a straightforward
task because the construction of the closed loop explicitly includes a relay, actuator or
sensor non-linearity; other applications are less obvious, but nevertheless by means of
tools like loop transformations their alternative representation becomes evident [22, 3].

For the class of non-linearities that admit a frequency description, Popov developed
a solution that he called the theory of absolute stability [16], in which stability is defined
as the existence of a global uniform asymptotic stable equilibrium point at the origin for
all non-linearities in a given sector [22]. The first of these frequency-domain conditions
is nowadays known as the Popov Criterion [16]. Several authors developed the Circle
Criterion simultaneously in which the class of non-linearities is slope-restricted [9, 5].
Their simplicity and graphical interpretation make these criteria the classical examples
of multipliers in modern non-linear control textbooks, e.g. [3, 23, 22, 24].

Most Time Invariant Linear systems and non-linearities do not fulfil the Passivity or
the Small Gain Theorems by themselves. However, some of these systems can be cor-
rected to hold the necessary gain or phase conditions by placing a convolution operator
or ”multiplier” [14].

For the class of bounded and monotone non-linearities, the celebrated paper [25]
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by Zames and Falb introduced a general characterization of the multiplier, preserving
the positivity of the non-linearity. These multipliers take into account the monotone
property to describe more accurately the non-linearity so stability can be determined
for bigger sector sizes. Zames–Falb multipliers [26] are a more general tool than Circle
criterion and the Popov criterion, as they can be recovered from Zames–Falb multipliers
by making specific simplifications. In addition, the conditions for the existence of the
multiplier are relaxed if the non-linearity is odd.

Zames-Falb multipliers are an efficient way of deducing stability for the Absolute
Stability problem, but the description of the multiplier does not allow the production
of a Fourier transform that preserves the L1(−∞,∞) norm in the frequency domain
[27, 25]. This problem has been addressed by two paradigms: mathematically complex
multipliers with exact L1(−∞,∞) norm [28, 29, 30], and multipliers with mathemati-
cally tractable frequency domain properties [31, 32, 1, 33] but approximate L1(−∞,∞)

norm. However, little attention has been paid to the effects that causality has on their
performance. The first question that this thesis aims to answer is ”Are causal multipliers
sufficient to construct Zames-Falb multipliers?”. The answer to this question motivates
the construction of an anti-causal complementary method for the only method in the
literature that lacks anti-causal multiplier synthesis [1].

An understanding of the multipliers is not restricted to Zames-Falb multipliers.
Since the introduction of multipliers by Popov in [16], the idea of describing non-
linearities that lie in a sector using a quadratic constraint ”over-bound” has expanded
to more classes of non-linearities which has led to the discovery of more frequency do-
main conditions for absolute stability [34]. The introduction of the Integral Quadratic
Constraints and their revolutionary homotopy based argument collects many of these
results and formalizes a more general frequency domain condition for the stability of a
non-linear operator with a Linear Time Invariant operator [35].

Integral Quadratic Constraints (IQC) is an attractive tool because it comprises many
results using one unified framework. The extension that is of most interest to this re-
search is the insight that IQCs bring to results for the positive operators [16, 36, 9, 8,
18, 19, 14] and the dissipative operators [24, 10, 37, 38, 39, 21, 20, 40].

IQC is not the only tool to study non-linear systems with frequency domain de-
scriptions. The interconnection of two arbitrary systems has been a well understood
problem from the point of view of Dissipativity and Passivity. Nonetheless, frequency
domain analysis is largely restricted to passive systems by canonical factorizations [14]
and Dissipativity can be restrictive because it mostly exploits constant multipliers [10].
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However, the IQC theory is not exempt from having complications. The IQC theory
makes the search for multipliers simple at the cost of having to show the well posedness
of ”attenuated” versions of the original closed loop in addition to the unattenuated one.
In order to make full use of this multiplier simplification, convex optimization tools are
the main focus of most research on IQC multipliers because they offer a mathematically
tractable procedure to obtain stability results in the form of Linear Matrix Inequalities
(LMI) [13, 41, 34]. In order to use this well understood family of tools, the multi-
plier has to have a state space representation and therefore usually multipliers with this
description are the most frequently studied [42].

The second question that this thesis addresses is ”Can IQC be used to introduce
dynamic multipliers to Dissipativity Theorem?”. The use of IQC to show the stability
of two non-linear systems which are interconnected has been proposed previously by
[43], as a possible extension to the IQC Theorem. The objective of this work is to
present formal conditions of the stability of the feedback interconnection of two non-
linear systems using IQC alone. The result of this work is then summarized as a series of
corollaries that describe classical results, including the construction of IQCs for Output
Dissipative systems.

In order to expose the gap between IQC, Dissipativity and Passivity, this research
first presents sufficient conditions that IQCs can hold in order to show stability of closed
loops using the Small Gain Theorem, the Passivity Theorem and hard IQC factorizations
from [42] as multipliers.

1.2 Organization of this thesis

This thesis is organized in 5 Chapters.

Chapter 2: Preliminaries

The objective of this chapter is to familiarize the reader with the notation and standard
definitions that are going to be used in the main body of this thesis. The first section
presents the definitions and theorems that will become useful from the functional analy-
sis and provides a summary of the main stability theorems derived from the input-output
representation of systems. In the second section the search for anti-causal Zames-Falb
multipliers is motivated using a simple example. In the third section, the feedback in-
terconnection of two non-linear systems is studied using well known factorizations of
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positive-negative IQCs, the resulting lemmas then reveal that multipliers for the Small
Gain Theorem and Passivity Theorem have fundamental and non-trivial restrictions. For
the well known results the proofs are only referenced. When a new result is introduced
the proof is described in the appendices for the sake of continuity in the corresponding
argument.

Chapter 3: Search for SISO Zames-Falb multipliers

This chapter presents the first result of this thesis. The second section summarizes the
state of the art in the search for Zames-Falb multipliers and indicates the advantages
and restrictions of each method. In this section an algebraic correction to the LMI
search in [32] is proposed. This work is made in order simplify the use of Zames-
Falb multipliers for comparison and general application purposes. The third section
focuses on the implementation of Zames-Falb multipliers using only causal functions
from which this work derives a novel and complementary result in order to also search
for anti-causal multipliers. In the same section, an extension using Popov multipliers
is deduced, achieving parallelisms with the previous result. The fourth section presents
9 examples compares the performances that all the methods described in this chapter
achieve. It concludes by presenting the advantages and restrictions of the novel multi-
plier synthesis method.

Chapter 4: IQC and Dissipativity

This chapter presents the second result of this thesis. It firstly presents a loop transfor-
mation and its stability properties. Then it proceeds to restate the conditions of the IQC
Theorem, such that it can now link two non-linear systems by Theorem 4.2.2. In order
to emphasize the importance of this reinterpretation, a complete version of the IQC is
recovered from Theorem 4.2.2 in Corollary 4.2.4 and Lemma 4.2.5. A discussion on the
well posedness of the required closed loop is presented, such that the applicability of
the main theorem is ensured when it is used in some special cases. In the third section a
series of corollaries are deduced that specialize version of Theorem 4.2.2 to versions of
Dissipativity and Passivity for bounded operators. In the final section, a well known ex-
ample is reinterpreted in the light of the main result of this chapter, extending previous
remarks made about delay operators and IQCs to the interconnection of two non-linear
systems.
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Chapter 5: Conclusions

This chapter presents the conclusions of this thesis and recapitulates the main contribu-
tions. In this section are summarized possible directions of future research.

Appendices A.1, A.2 and A.3

This chapter presents the proofs of the minor results presented in the introduction. This
material is placed in the appendices for the sake of continuity in the introduction.



Chapter 2

Preliminaries

2.1 Notation and definitions

2.1.1 Function spaces

Let L l
2(−∞,∞) be the Hilbert space of all Rl− valued Lebesgue measurable functions

f : (−∞,∞)→Rl equipped with an inner product < ., . >L2: L l
2(−∞,∞)×L l

2(−∞,∞)→
R, defined as < f ,g >L2=< g, f >L2=

∫
∞

−∞
f (t)T g(t)dt with f ,g ∈ L l

2(−∞,∞). The
induced norm is defined as || f ||L2 =< f , f >L2=

∫
∞

−∞
|| f (t)||2dt < ∞.

Definition 2.1.1. [44, p. 20] Let M : L l
2(−∞,∞)→ Lm

2 (−∞,∞) be a bounded linear

operator. The Hilbert adjoint of M is the operator M∼ : Lm
2 (−∞,∞)→ L l

2(−∞,∞) such

that:

< M f ,g >L2=< f ,M∼g >L2 ∀ f ∈ L l
2(−∞,∞),g ∈ Lm

2 (−∞,∞).

An operator M is called self adjoint if, and only if, M = M∼.
The Fourier transform of f ∈ L2(−∞,∞) is denoted by

f̂ ( jω) = F { f (t)}=
∫

∞

−∞

e− jωt f (t)dt.

The Fourier transform of the space L2(−∞,∞) is the space L2( jR), and the Fourier
transform of the space L2[0,∞) is the space H2 [45].

The inner product can also be defined using the Parseval’s Theorem [14]. If f ,g ∈
L2(−∞,∞) and f̂ , ĝ ∈ L2( jR), then:

25
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< f ,g >L2=
1

2π

∫
∞

−∞

f̂ ( jω)∗ĝ( jω)dω =< f̂ , ĝ >L2( jR)

A truncation of the signal f at time T is given by

PT ( f )(t) = ( f )T (t) =

{
f (t) ∀t ≤ T,

0 ∀t > T.

For ε > 0, t ≥ 0, Dε denotes the delay operator on L2e, i.e. Dεx is given by

Dε f (t) =

{
f (t− ε) ∀t ≥ ε,

0 ∀t < ε.

In addition, f belongs to the extended space L l
2e if PT ( f )∈L l

2[0,∞) for all T ∈R,T > 0.
The norm of the signal f ∈ L l

2e is || f ||T = ||PT f ||L2 =
∫ T

0 || f (t)||2dt < ∞ ∀T > 0.
Likewise, the inner product of the signals f ,g∈L l

2e is denoted < f ,g>T=<PT f ,PT g>L2

The following definitions are obtained from [13], specialized for the L2[0,∞) and
L2e spaces.

Definition 2.1.2. An operator F : L l
2e→ Lm

2e is causal if PT FPT = PT F ∀T ∈ [0,∞).

Definition 2.1.3. An operator F : L l
2e→ Lm

2e is said to be strongly causal if it is causal

and for all T ∈ [0,∞), ε > 0, and T ′ ∈ [0,∞),T ′ ≤ T there exists a real number ∆T > 0
such that

||PT ′+∆T (Fx−Fy)||L2 ≤ ε||PT+∆T (x− y)||L2 ∀x,y ∈ Lm
2e,

with PT ′x = PT ′y.

Definition 2.1.4. An operator F : L2[0,∞)l → L2[0,∞)m is said to be Lipschitz contin-

uous if

sup
x,y ∈ L2[0,∞)

x 6= y

||Fx−Fy||L2

||x− y||L2

< ∞

Definition 2.1.5. An operator F : L l
2e→ Lm

2e is said to be locally Lipschitz continuous

if ∀T ∈ [0,∞),PT FPT is Lipschitz continuous on L2[0,∞).

Definition 2.1.6. An operator F : L l
2e → Lm

2e is said to be strongly causal, uniformly
with respect to past inputs, if it is strongly causal operator and ∀T ∈ [0,∞), ε > 0, and
T ′ ∈ [0,∞), T ′ ≤ T , there exist real numbers ∆T > 0 and K < ∞ such that

||(PT ′+∆T −PT ′)(Fx−Fy)||L2 ≤ K||PT ′(x− y)||L2 + ε||(PT ′+∆T −PT ′)(x− y)||L2 ∀x,y ∈ Lm
2e.
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The induced norm of a bounded causal operator F : L l
2[0,∞)→ Lm

2 [0,∞) is given by

||F ||L2→L2 = sup{||F(u)||L2

||u||L2

: u ∈ L l
2[0,∞),u 6= 0}.

Furthermore, if the operator G is Linear Time Invariant, the induced norm can be
calculated as: ||G||∞ = ||G||L2→L2 = supω∈Rσmax(G( jω)), where σmax is the maximum
singular value [10].

2.1.2 Feedback Systems

2.1.2.1 Well posedness

Let the Figure 2.1 define a closed loop feedback interconnection between the operators
∆1 and ∆2, this will be denoted by the feedback interconnection [∆1,−∆2].

-

∆1

∆2

-
+

+
+

e1u1

u2e2y2

y1

Figure 2.1: Dissipativity feedback loop

The system in Figure 2.1 is represented by the following equations:

e =

[
e1

e2

]
=

[
u1

u2

]
+

[
0 −Im

In 0

][
y1

y2

]
= u+Hy, (2.1)

y =

[
y1

y2

]
=

[
∆1 0
0 ∆2

][
e1

e2

]
= Ge, (2.2)

where Gi j : L2e→ L2e and Hi j : L2e→ L2e are locally Lipschitz causal continuous op-
erators.

For the sake of completeness, here it will be reproduced the standard definitions of
well posedness for closed loop systems, taken from [46, 13]. It describes in detail the
necessary conditions that a functional description of a physical system has to hold to be
valid.

Definition 2.1.7. [46] The Closed Loop in equations (2.1) and (2.2) is said to be well

posed if it possesses properties 1)-3).

1. There exists a pair of causal, locally Lipschitz continuous operators E : Lm+n
2e →
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Lm+n
2e and Y : Lm+n

2e → Lm+n
2e such that the pair (e,y) given by e = Eu and y =Yu

is the unique solution to equations (2.1) and (2.2).

2. Let CSε be the system described by the equations obtained from equations (2.1)
and (2.2) after replacing Gi j and Hi j by Dεi jGi j and Dε′i j

Hi j, respectively. Then

CSε satisfies the above property 1).

3. Let (eε,yε) be the solution of CSε and let

ε0 = max
i=1,...,m+n; j=1,...,m+n

{εi j,ε
′
i j}

Then

lim
ε0→0

Pτeε = Pτe, lim
ε0→0

Pτyε = Pτy for any τ ∈ [0,∞) (2.3)

Now, a set of definitions is introduced that are useful in the description of the well
posedness of the feedback loop.

Definition 2.1.8. [46] Let F be a locally Lipschitz continuous causal operator from Lm
2e

to Ln
2e. Let T ∈ [0,∞) and ∆T > 0. Then, there exists two nonnegative numbers MT,∆T

and KT,∆T such that

||(PT+∆T − (PT−∆T )(Fx−Fy)||L2

≤MT,∆T ||(PT+∆T −PT−∆T )(x− y)||L2 +KT,∆T ||PT−∆T (x− y)||L2 ∀x,y ∈ Lm
2e (2.4)

Definition 2.1.9. [46] Let S be the set of the pairs (MT,∆T ,KT,∆T ) which satisfies in-

equality (2.4). The infimum M∗T,∆T of MT,∆T over the set S is defined as the uniform gain

of F in the interval [T −∆T,T +∆T ].

Definition 2.1.10. [46] The uniform instantaneous gain of F at T is defined as

lim∆T→0 M∗T,∆T

The following Definition and Theorem are necessary in order to describe the struc-
ture of matrices for multi input, multi output systems.

Theorem 2.1.11. [46] Let A be a real square matrix with non-positive off-diagonal

elements. Then, the next four conditions are mutually equivalent:

1. The principal minors of A are all positive.

2. The leading principal minors of A are all positive.
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3. There is a vector x (or y) whose elements are all positive such that the elements

of of Ax (or y) are all positive.

4. A is non-singular and the elements of A−1 are all non-negative.

Proof. See Theorem B1 in [46].

Definition 2.1.12. [46] The matrix A satisfying the conditions of Theorem 2.1.11 is

called an M−matrix.

Using this theorems, the following theorem will determine the well posedness of the
closed loop in Figure 2.1.

Theorem 2.1.13. [46] Let the uniform instantaneous gains of Gi j and H ji at T ∈ [0,∞)

be ai j(T ) and b ji(T ), respectively. Define the gain-product matrix Θ(T ) = (θ j j′(T )) by

θ j j′(T ) =
m+n

∑
i=1

b ji(T )ai j′(T ), j, j′ = 1, ...,m+n. (2.5)

Then, if the matrix I−Θ(T ) is an M−matrix for all T, the closed loop system defined

by equations (2.1) and (2.2) is well posed in the sense of Definition 2.1.7.

Proof. See Theorem 3 in [46].

Note that for the single input, single output case, Theorem 2.1.13 reduces to the case
1 of Theorem 2.1.14 [46], while still shows well posedness in the sense of Definition
2.1.7

Theorem 2.1.14. The feedback systems described by Figure 2.1 is well posed if either

of the following conditions is satisfied for all T ∈ [0,∞)

1. The product of the uniform instantaneous gain of the operators ∆1 and ∆2 is less

than α < 1.

Proof. See Theorem 4.1 in [13].

From this theorem, [13] deduces a series of corollaries for which the closed loop is
well posed for particular systems frequently found in engineering.

The first definitions describe the closed loop of systems with no feed-through:

Definition 2.1.15. Let F : L2e→ L2e be a causal operator. Then, F is said to delay all

inputs if for some ε > 0 the operator Fε defined as Fεx(t) = Fx(t +ε) is also causal (i.e.

F can be cascaded with a predictor and the composition remains causal).
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The following Corollary describes sufficient conditions for the well posedness of the
closed loop.

Corollary 2.1.16. The feedback system described by Figure 2.1 is well posed if the open

loop operator ∆1∆2 delays all inputs.

Proof. See Corollary 4.1.1 in [13].

The next Corollary describes sufficient conditions for the well posedness for a more
general class of operators, which include some classes of ordinary differential equations.

Corollary 2.1.17. The feedback system described by the Figure 2.1 is well posed if the

operator ∆1 is strongly causal, uniformly with respect to past inputs.

Proof. See Corollary 4.1.2 in [13].

2.1.2.2 Stability

The following definition describes the notion of stability of systems in the input-output
framework.

Definition 2.1.18. [24] Let F : L l
2e→ Lm

2e. F is L2[0,∞) stable if F(u) ∈ Lm
2 [0,∞) for

every u∈L l
2[0,∞). F is L2[0,∞) stable with finite gain and zero bias if there exists c > 0

such that

||F(u)||L2 ≤ c||u||L2 ∀u ∈ L l
2[0,∞) (2.6)

Note that if F is causal, then (2.6) is equivalent to ||F(u)||T ≤ c||u||T , ∀T > 0,u ∈
L l

2e.
The following theorems present the required properties to develop the proof of the

interconnection for two non-linear systems. These two theorems are the main founda-
tion for the stability analysis using the function analysis procedure. Note that in all these
theorems, well posedness is first required as a separate test in order to show stability.

-

∆1

∆2

+
+

+
+

u1ω1

ω2u2y2

y1

Figure 2.2: Positive feedback interconnection

Theorem 2.1.19. [22, p. 217] (Small Gain Theorem) Assume that the positive feedback

interconnection in Figure 2.2 is well posed and the operators hold ∆1 : L l
2e → Lm

2e,

∆2 : Lm
2e→ L l

2e for all T ≥ 0 are L2[0,∞) stable, that is
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• ||∆1(u1)||T ≤ γ1||u1||T ∀u1 ∈ L l
2e,∀T ≥ 0

• ||∆2(u2)||T ≤ γ2||u2||T ∀u2 ∈ Lm
2e,∀T ≥ 0

for some scalars γ1,γ2 ≥ 0. If

γ1γ2 < 1,

then, the closed loop is L2[0,∞) stable.

Proof. See Theorem 5.6 in [22].

Theorem 2.1.20. [10, p. 257](Passivity Theorem) Assume that both ∆1,∆2 are pseudo

Very Strictly Passive, i.e.

< ∆1(e1),e1 >T +β1 ≥ δ1||∆1(e1)||2T + ε1||e1||2T , ∀e1 ∈ L2e,T ≥ 0,

< ∆2(e2),e2 >T +β2 ≥ δ2||∆2(e2)||2T + ε2||e2||2T , ∀e2 ∈ L2e,T ≥ 0.

Assume the negative feedback in Figure 2.3 is well posed.

-

∆1

∆2

-

+

+

+
e1u1

u2e2y2

y1

Figure 2.3: Negative feedback interconnection

Then, if

• ε1 +δ2 > 0.

• ε2 +δ1 > 0.

the feedback system is L2[0,∞) stable.

Proof. See Theorem 5.4 in [10].

2.2 Motivation for Zames-Falb multipliers

2.2.1 Absolute stability problem

The study of stability for non-linear systems is a complicated matter and most of the
stability results are only found for special cases. The instance that is the interest of
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this work is the absolute stability problem, which studies feedback interconnection of a
Linear Time Invariant operator with a memoryless non-linear operator. Such intercon-
nection is presented in Figure 2.4. The feedback interconnection is L2[0,∞) stable if for
any r ∈ L2[0,∞), the internal signals hold Gu ∈ L2[0,∞) and φ(y) ∈ L2[0,∞). Attention
in this thesis is restricted to rational stable LTI systems, i.e. G(s) ∈ R H ∞.

-

G

φ

-
+ ur y

Figure 2.4: Absolute stability

Assume that the non-linearity is now restricted in the following manner

Definition 2.2.1. A memoryless function φ : [0,∞)×Rm→ Rm is said to belong to the

sector

• [0,∞] if uT φ(t,u)≥ 0 ∀t ∈ [0,∞),u ∈Rm.

• [K1,∞] if uT [φ(t,u)−K1u]≥ 0 ∀t ∈ [0,∞),u ∈Rm.

• [0,K2] with K2 = KT
2 > 0 if φ(t,u)T [φ(t,u)−K2u]≤ 0 ∀t ∈ [0,∞),u ∈Rm.

• [K1,K2] with K = K2−K1 = KT > 0 if [φ(t,u)−K1u]T [φ(t,u)−K2u] ≤ 0 ∀t ∈
[0,∞),u ∈Rm.

The system in Figure 2.4 is said to be absolutely stable if it has a global uniform
asymptotic stable equilibrium point at the origin for all non-linearities given in a sector;
that is to say, if the system in Figure 2.4 can be represented by the following equations:

ẋ = Ax+Bu

y =Cx+Du

u =−φ(t,y)

where x ∈ Rn, u,y ∈ Rm, (A,B) is controllable, (A,C) is observable and φ : [0,∞)×
Rm→Rm.

The well posedness of the loop is always assured when D = 0 [22]. When this is
not the case, conditions for well posedness are readily available throughout Theorem
2.1.13.
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In the literature there exist some solutions to this problem based on frequency anal-
ysis. The circle criterion [9, 22] is the most simple and thus it presents the worst perfor-
mance that can be expected from any algorithm.

Theorem 2.2.2. [22] The closed loop in Figure 2.4 is absolutely stable if:

• φ belongs to the sector [K1,∞] and G(s)[I +K1G(s)]−1 is strictly positive real, or

• φ belongs to the sector [K1,K2], with K = K2−K1 = KT > 0, and [I+K2G(s)][I+

K1G(s)]−1 is strictly positive real.

Proof. See Theorem 7.1 in [22].

For the scalar case, the circle criterion is stated as follows[9]:

Theorem 2.2.3. [9] Assume that the feedback interconnection in Figure 2.4 is well

posed and φ belongs to the sector [k1 + γ,k2− γ], k1 ≤ k2,k2 > 0 with offset δ≥ 0, then

if G( jω) holds any of the following conditions:

• Case 1A. If k1 > 0, then∣∣∣∣G( jω)+
1
2

(
1
k1

+
1
k2

)∣∣∣∣≥ 1
2

(
1
k1
− 1

k2

)
+δ ∀ω ∈R

and the Nyquist diagram of G( jω) does not encircle the point −1
2 (1/k1 +1/k2),

• Case 1B. If k1 < 0, then∣∣∣∣G( jω)+
1
2

(
1
k1

+
1
k2

)∣∣∣∣≤ 1
2

(
1
k2
− 1

k1

)
−δ ∀ω ∈R.

• Case 2. If k1 = 0, then

Re{G( jω)} ≥ −(1/k2)+δ ∀ω ∈R.

for some non-negative δ and γ, where at least one of them is greater than zero, then the

closed loop in Figure 2.4 is L2[0,∞) bounded.

Proof. See A Circle Theorem in [9].

If the non-linearity φ :R→R is restricted furthermore to be a local Lipschitz, mem-
oryless single input, single output operator, then the closed loop in Figure 2.4 describes
an autonomous system. For this problem there exists the Popov Criterion [16, 22].



CHAPTER 2. PRELIMINARIES 34

Theorem 2.2.4. Consider the system given by the following equation:

ẋ = Ax+Bu

y =Cx

u =−φ(y)

where G(s) =C(sI−A)−1B, and:

• (A,B) is controllable,

• (A,C) is observable,

• φ : R→ R is a locally Lipschitz memoryless single input, single output operator

such that φ belongs to the sector [0,K], i.e.

0 < yφ(y)< K

then, the system is absolutely stable if there exists a constant γ≥ 0, with 1+λnγ 6= 0 for

every eigenvalue λn of A, such that 1
K +(I + sγ)G(s) is strictly positive real.

Proof. Assume all systems are single input, single output and see Theorem 7.3 in [22].

Although this summary is not exhaustive, it presents the background that inspires
this thesis. The following section introduces the Zames-Falb multipliers, the subject of
study if the third Chapter of this thesis.

2.2.2 Zames-Falb Multipliers

Although they were put forward more than 40 years ago, Zames–Falb multipliers remain
attractive as a solution for different problems. For example, in [27] conditions for their
application to multivariable non-linearities are established; their application to repeated
non-linearities is described in [47] and [48]; in [49], a less-conservative bound on the
L2[0,∞) norm of a system including saturations is given using a Zames-Falb multiplier,
with a correction in the methodology published in [50], and most recently in [51] a
subclass of the Zames–Falb multiplier is proposed in order to remove some constraints
on the non-linear system stability analysis.

Following [25], Zames–Falb multipliers are used when the non-linearity is a real-
valued function φ : R→ R satisfying the following properties: (i) φ(0) = 0, (ii) φ is
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bounded by C > 0, i.e. |φ(x)| ≤C|x|, and (iii) φ is monotone, i.e. (x−y)(φ(x)−φ(y))≥
0∀x,y ∈R.

The classical loop transformation (for instance, see [22, 52]) allows the generaliza-
tion to slope-restricted non-linearities in the sector [α,β] as follows:

α≤ φ(x)−φ(y)
x− y

≤ β

for all x 6= y, as shown in Figure 2.5.

α

β

y

φ(y)

φ(0) = 0

Figure 2.5: Slope-restricted monotone non-linearity in the sector [α,β]

The first stability result is presented in [22] and uses only the sector boundaries and
a loop transformation to find sufficient conditions for the stability of the closed loop.

Corollary 2.2.5. [22] Let φ : R→ R be a bounded and sector-restricted non-linearity

in the sector [α,β] with φ(0) = 0. Then, the feedback interconnection in Figure 2.4 is

stable if, and only if, the feedback interconnection between

G̃(s) =
1+βG(s)
1+αG(s)

and a bounded monotone non-linearity φ̃(x) in Figure 2.6 with φ̃(0) = 0, is stable.

-

G(s)

α

α

1
β−α

φ(x)

+

-

+

-

+

+

++-

+

G̃(s)

φ̃(x)

β−α

Figure 2.6: Loop transformation
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Then, using the loop transformations in Figure 2.7, a set of less conservative stability
conditions is derived, using a Zames-Falb multiplier. Note that the sector condition for
the non-linearity is now restricted to [0,k].

k 1
k

φ M−1
-

M

G
u

φ
e2

r
-

a)

b)

G M

rG

k 1
k

φ M−1
+

-
M+

c)

G

rG

M∼− M+

M−∼−

1
k

1
k

y

y

y

Figure 2.7: Turner loop transformation[1]

Theorem 2.2.6. [14] Consider a feedback system from Figure 2.4, with equations

u = r−φ(y)

y = Gu

where G ∈ R H ∞ is a Linear Time Invariant operator represented by convolution

y(t) = G∗u(t) =
∞

∑
i=1

giu(t− τi)+
∫

∞

0
g(τ)u(t− τ)dτ

with the following properties

• g ∈ L1[0,∞), i.e.
∫

∞

0 |g(τ)|dτ < ∞.

• {τi} is a sequence in [0,∞) and gi is a sequence in l1, i.e. ∑
∞
i=1 |gi|< ∞.

and φ :R→R is a monotone memoryless operator such that φ has the following prop-

erties:



CHAPTER 2. PRELIMINARIES 37

• φ(0) = 0;

• [φ(a)−φ(b)](a−b)≥ 0 ∀a,b ∈R;

• and for some K < ∞, φ belongs to the sector φ ∈ [0,K].

Assume the feedback interconnection is well posed. Suppose that there is a non-causal

convolution operator M whose impulse response is of the form

m(t) = δ(t)+ z(t) = δ(t)+
∞

∑
−∞

ziδ(t− ti)− za(t) (2.7)

where

∑ |zi|< ∞,
∫

∞

−∞

|za(τ)|dτ < ∞ and ti ∈R

Assume that

||M||1 =
∞

∑
−∞

|zi|+
∫

∞

−∞

|za(τ)|dτ < 1 (2.8)

and that there is a δ > 0 such that

Re{M( jω)G( jω)} ≥ δ > 0, ∀ω ∈R (2.9)

where M( jω) = F {m(t)}. Then, if either

za(t)≥ 0 and zi ≥ 0, ∀i (2.10)

or

φ is an odd function, (2.11)

then the system is L2[0,∞) stable.

Proof. See Theorem VI.9.20 in [14].

From now on, Equation (2.8) is refereed to as the L1(−∞,∞) norm of the multiplier
and it will be denoted for the rational transfer functions as

||za(t)||1 =
∫

∞

−∞

|za(t)|dt < ∞.

For the summation of δ(.), Equation (2.8) will be denoted in similar fashion:

||z(t)||1 =
∞

∑
i=−∞

|zi|< ∞.
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Using conditions in Theorem 2.2.6, two classes of Zames-Falb multipliers can be
defined: the general class when the non-linearity is odd and a subclass when the non-
linearity is non-odd.

Definition 2.2.7. Let M be a multiplier such that its impulse response m(t) is defined

by (2.7). Then M is a Zames–Falb multiplier for odd monotone non-linearities, i.e.

M ∈Modd , if m(t) satisfies (2.8) and φ satisfies (2.11).

Definition 2.2.8. Let M be a multiplier such that its impulse response m(t) is defined by

(2.7). Then M is a Zames–Falb multiplier for monotone non-linearities, i.e. M ∈M , if

m(t) satisfies (2.8) and (2.10).

Remark 2.2.9. M is a subset of Modd .

Remark 2.2.10. The set of odd monotone non-linearities is a subset of the monotone

non-linearities.

The main limitation of the Zames–Falb multipliers is that they do not have an equiv-
alent frequency-domain characterization. When the multiplier approach is used, two
steps must be completed. The first step consists of finding a class of multipliers preserv-
ing the positivity of the class of non-linearities. The second step is to fulfil the open loop
frequency conditions for the linear system, as stated in the IQC theorem [35, 14, 13].

Since the introduction of the Zames–Falb multipliers [25], great efforts have been
made to characterize the L1(−∞,∞) norm of the multiplier, often trading simplicity for
the calculation of the norm by the complexity of the problem to the test of equation
(2.9), either allowing non rational multipliers [28, 26], or using only rational multipliers
with limited structure [29, 27, 30]. However, [1] showed that this was not the only
source of conservatism; the use of causal multipliers can be as restrictive. In Chapter 3
this restriction will be studied in more detail.

For now, an example that illustrates the problem can be shown. In order to know
how conservative a method can be, in the literature it is common to use the Kalman
conjecture as the maximum slope for which the feedback interconnection of Figure 2.4
can be stable [28, 26]. Using the definition of the Nyquist value:

Definition 2.2.11. Given a stable linear plant G ∈ R H ∞, the Nyquist value, kk is the

supremum of the values k such that kG satisfies the Nyquist criterion for all k ∈ [0,K],

i.e.

kk = sup{k ∈R+ : inf
ω∈R
{|1+ kG( jω)|}> 0 ∀k ∈ [0,K]}
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then, the Kalman conjecture states:

Conjecture 2.2.12. The feedback interconnection of a strictly proper plant G ∈ R H ∞,

and the sector non-linearity φk : R→ R belonging to the sector [0,kk] is stable if the

feedback loop [G,k] is stable for all 0≤ k < kk.

This is known to be true for systems of order n ≤ 3, but is false in general [53].
However, this result suggests that for systems of order n≤ 3, the feedback loop in Figure
2.4 is stable and consequently it should be possible to find a Zames-Falb multiplier that
reaches that Nyquist value. The following Lemma formalizes the existence of a first
order Zames-Falb multiplier:

Lemma 2.2.13. Given a strictly proper plant G ∈ R H ∞ with order 3 or less, and k <

kk, then there exists a first order Zames-Falb multiplier M such that Re{M( jω)(1+
kG( jω))}> 0 ∀ω ∈R.

Proof. From Theorem 1 in [53], it is known that for all G ∈ R H ∞ of order 3 or less,
there exists a multiplier M of the form

M = {M(s) = τ+θs−ξs2,τ≥ 0,ξ≥ 0,τ+ξ+ |θ|> 0}

This multiplier belongs to the set of Park multipliers when ξ 6= 0:

MP = {MP(s) = a2 +bs− s2,a,b ∈R}

Then, using Lemma 5.3 in [54], the result follows.

The following example exploits this property to show how conservative a causal
multiplier can be.

Take Example 1 in [1]

G(s) =
s2−0.2s−0.1
s3 +2s2 + s+1

(2.12)

It is evident that for the frequency ω =

√
13−
√

129
20 , the Nyquist plot is closer to the

Nyquist point when kk = 4.5895. Then, if a Zames-Falb multiplier exists, it will be
restricted to the sector k ∈ [0,4.5895). Using Lemma 2.2.13 it is known that there exists
a first order Zames-Falb multiplier such that Re{M( jω)(1+ kG( jω))} > 0 ∀ω ∈ R.
The Zames-Falb multiplier M( jω) needs to compensate for the phase response at any
frequency where 1+ kG( jω) exceeds [−90,90]. In the case of Example 1, Figure 2.8
shows that the phase excess is 75◦.
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Figure 2.8: Excess of phase lead for k=4.5895

It was first in [55] that the artificial limits introduced by the choice of causal and
anti-causal multipliers were noted. Given that the Zames-Falb multiplier is of order 1,
the maximum phase compensation introduced by them can be calculated. Firstly note
that causal multipliers have little effect on the phase lag.

Lemma 2.2.14. Let M( jω) be a causal Zames-Falb multiplier of order 1, there then

exists a multiplier such that its phase lag reaches at most ∠(M( jω))>−arctan(
√

2/4).

Proof. Take the multiplier M( jω)= 1+Z( jω), where Z( jω)= ac
jω+bc

and where ac,bc >

0. It is easy to show that in order to make M( jω) hold the L1(−∞,∞) norm in equation
(2.8), ac < bc. Then, taking the phase of the multiplier M( jω):

∠(M( jω)) = ∠
(

1+
ac

jω+bc

)
= arctan

(
− acω

ω2 +b2
c +acbc

)
,

it shows that the maximum of this function happens at ω0 =
√

b2
c +bcac. Note then that
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∠(M( jω0)) = arctan
(
− ac

2
√

b2
c+acbc

)
and

− arctan

(
ac

2
√

b2
c +a2

c

)
< ∠(M( jω0))<−arctan

(
ac

2
√

2bc

)
.

Taking the limits when ac→ bc, then ∠(M( jω0))→−arctan
(√

2/4
)

.

However, when the multiplier needs phase lag, an anti-causal multiplier can intro-
duce the necessary compensation.

Lemma 2.2.15. Let M( jω) be an anti-causal Zames-Falb multiplier of order 1, there

then exists a multiplier such that its phase lag reaches at most ∠(M( jω))>−90◦.

Proof. Similar to Lemma 2.2.14.

Likewise, note that anti-causal multipliers have little effect on the phase lead.

Lemma 2.2.16. Let M( jω) be an anti-causal Zames-Falb multiplier of order 1, there

then exists a multiplier such that its phase lead reaches at most

∠(M( jω))< arctan(
√

2/4).

Proof. Similar to Lemma 2.2.14.

But when the multiplier needs phase lead, a causal multiplier can introduce maxi-
mum compensation.

Lemma 2.2.17. Let M( jω) be a causal Zames-Falb multiplier of order 1, there then

exists a multiplier such that its phase lead reaches at most ∠(M( jω))< 90◦.

Proof. Similar to Lemma 2.2.14.

In summary, these lemmas bound the phase of first order causal multipliers to
(−arctan(

√
2/4),90◦) and anti-causal multipliers to (−90◦,arctan(

√
2/4)). Therefore,

to show stability for 0 ≤ K ≤ 1.243, the circle criterion is enough given that the phase
remains within (−90◦,90◦). For the interval 1.243 < k ≤ 1.805 a causal multiplier can
provide the necessary −arctan(

√
2/4), but no more. In contrast, only an anti-causal

multiplier can produce multipliers with the necessary 75◦ to reach the Nyquist interval
1.243 < k ≤ 4.5894 because its phase is not constrained by its L1(−∞,∞) norm. One
of these multipliers is found by inspection:

Z(s) = 1+
2.1342

s−2.1722
. (2.13)
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Multiplier Maximum slope k
Causal order 1 1.805
Causal order 3, Tuner[1] 2.3418
Causal High Order (order 9) [32] 2.4655
Causal Irrational [29, 26] 2.5938
Causal order 3 plus Popov multiplier [33] 3.9689
Non-causal order 1, equation (2.13) 4.5894
Nyquist Value 4.5894

Table 2.1: Maximum slope for different classes of multipliers

It is easy to see that:

• the L1(−∞,∞) norm of the dynamic part of Z(s) is∥∥∥ 2.1342
s−2.1722

∥∥∥
1
= 0.9825 < 1 = M(∞)

• Re{M( jω)(1+4.5849G( jω))}> 0 ∀ω ∈R.

There are other methods in the literature, such as Turner [1, 50], where a third order
Zames-Falb multiplier is found, but it only allows a maximum slope of k≤ 2.3418. This
improvement seems to suggest that the limitations on the Zames-Falb multiplier are not
only due to the order of such a multiplier but is also due its causality.

Table 2.1 shows the results of implementing different methods in the literature, ar-
tificially restricted to search only causal multipliers. Methods in [32, 29, 26] are origi-
nally designed for anti-causal multipliers as well, but by restricting the search to causal
multipliers, the convergence of the methods remains unaltered, while giving an insight
into the effect of the causality restriction. Although these methods deliver superior
results to those of Turner [1] it is clear that when the artificial condition of causality
is introduced, they are still unable to reach the maximum theoretical slope defined by
Conjecture 2.2.12.

Note that if the non-linearity is restricted even more, such that Popov Theorem 2.2.4
can be applied to allow the use of the method in [33], the causal search is still unable to
reach the Nyquist value.

Chapter 3 will study a complement to the method presented in [1] in order to extend
its applicability when an anti-causal multiplier is required.
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2.3 Motivation for the IQC Theorem

The successful results presented in Chapter 3 inspired the work in Chapter 4. The
inclusion of non-causal Zames-Falb multipliers was shown to remove conservatism in
the test for absolute stability. The objective of Chapter 4 is to find the conditions under
which dynamic multipliers can be used with the Dissipativity Theorem.

The objective of this analysis is to present sufficient conditions for L2[0,∞) stabil-
ity for the system presented in Figure 2.9, where ∆1 : Lm

2e → L l
2e and ∆2 : L l

2e → Lm
2e

are non-linear causal operators. Among the existing solutions to this problem are the
Dissipativity Theorem, Passivity Theorem and Small Gain Theorem. These successful
tools present a stability condition for feedback closed loop systems using the open loop
properties of the interconnected systems [39, 21, 20, 38, 13, 14].

-

∆1

∆2

+
+

+
+

u1ω1

ω2u2y2

y1

Figure 2.9: Closed loop system

y1 = ∆1(u1),y2 = ∆2(u2),

u1 = ω1 + y2,

u2 = ω2 + y1. (2.14)

However, the use of dynamic multipliers with these theorems is not a trivial task.
This section will illustrate the most common ways multipliers are introduced into the
Small Gain Theorem and the Passivity Theorem, and the fundamental restrictions de-
manded for any multiplier candidate.

The interconnection of two non-linear systems is well understood in the Dissipativity
theory. The seminal work on Dissipativity [39], and its extension presented as cyclo-
dissipative systems [37], give an extensive study on stability using constant and dynamic
causal multipliers. However, the use of causal multipliers is a necessary restriction
because the analysis is made using causal time domain inner products [52, 24]. Passivity
does allow to use dynamical anti-causal multipliers, but those multipliers have to hold a
so called canonical factorization [14]. Note that the Dissipativity Theorem and Passivity
Theorem are defined only for negative feedback, in contrast to the Small Gain Theorem
which allows positive and negative feedback.
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The following definition of Dissipativity exemplifies the class of multipliers allowed.

-

∆1

∆2

-
+

+
+

e1u1

u2e2y2

y1

Figure 2.10: Dissipativity feedback loop

Theorem 2.3.1. [24] Let ∆1 : Lm
2e→ L l

2e and ∆2 : L l
2e→ Lm

2e be two causal operators

such that the feedback interconnection given by Figure 2.10 is well posed. Furthermore,

let Q1,R2 : L l
2e→ L l

2e, Q2,R1 : Lm
2e→ Lm

2e, and S1,S∼2 : Lm
2e→ L l

2e be bounded causal

operators, Q1,Q2,R1,R2 are self adjoint, scalars σ,ε > 0 exist and

Q̂ =

[
Q1 +σR2 −S1 +σST

2

−ST
1 +σS2 R1 +σQ2

]
(2.15)

satisfies < y, Q̂y >T≤−ε < y,y >T ∀y ∈ L l+m
2e . If:〈[

∆1(u1)

u1

]
,

[
Q1 S1

ST
1 R1

][
∆1(u1)

u1

]〉
T

≥ 0 ∀u1 ∈ Lm
2e (2.16)

and 〈[
u2

∆2(u2)

]
,

[
R2 ST

2

S2 Q2

][
u2

∆2(u2)

]〉
T

≥ 0 ∀u2 ∈ L l
2e (2.17)

then, the feedback interconnection of ∆1 and ∆2 given in Figure 2.10 is L2[0,∞) stable.

The conditions for the previous theorem apparently allow for the use of dynamic
multipliers Q1,Q2,R1,R2. However, when these multipliers are set to belong to R L∞,
the only kind of allowed multiplier that is causal and self-adjoint at the same time is a
constant matrix. Furthermore, when the proof for Theorem 2.3.1 is studied in detail,
it is also necessary to show that the adjoint of S1,S∼2 is stable, and again, if the set is
restricted to R L∞, this means that they are constant matrices.

Passivity (Theorem 2.1.20), alternatively, presents a way of taking advantage of
non-causal multipliers. Non-causal multipliers are specially suitable for the description
of memoryless non-linear operators and sometimes they are necessary to avoid con-
servatism, as presented in Section 2.2. However, Passivity has the disadvantage that
it requires the strict factorization of the selected multipliers because it shows stability
exists using the construction of an equivalent system [14].
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The following is the definition of an IQC. This mathematical tool allows one to
characterize a class of non-linearities using frequency domain conditions.

Definition 2.3.2. [35] Suppose Π : jR→ C(l+m)×(l+m) is a bounded measurable Her-

mitian function and ∆ : L l
2e→ Lm

2e is a causal bounded operator. The operator ∆ is said

to satisfy the IQC defined by Π if

〈[
U( jω)

V ( jω)

]
,Π( jω)

[
U( jω)

V ( jω)

]〉
L2( jR)

≥ 0 ∀U ∈H l
2 ,V = F {∆(F −1{U})}. (2.18)

Using this frequency condition, [35] presents the celebrated IQC Theorem. This
theorem shows the stability of the feedback interconnection of a linear system with a
class of non-linearities that can be memoryless or dynamic; the only limitation is that
this non-linearity has to be L2 bounded. Note that once it is established that a non-
linearity belongs to a class of IQC, the only information that is required to show stability
is the multiplier Π( jω) from Definition 2.3.2. Loosely speaking, the IQC Theorem
uses well-known frequency domain conditions and presents a set of requirements under
which frequency domain analysis is sufficient to show the stability of the non-linear
interconnection in Figure 2.9.

Theorem 2.3.3. (IQC Theorem [35]) Let G ∈ R H l×m
∞ , and let ∆ : L l

2e → Lm
2e be a

bounded causal operator. Assume that:

1. ∀τ ∈ [0,1], the interconnection of G and τ∆ is well posed;

2. ∀τ ∈ [0,1], τ∆ satisfies the IQC defined by Π( jω);

3. there exists ε1 > 0 such that[
G( jω)

I

]∗
Π( jω)

[
G( jω)

I

]
≤−ε1I ∀ω ∈R

Then, the feedback interconnection of G and ∆ is L2[0,∞) stable.

Proof. See Theorem 1 in [35].

2.3.1 Stability Theorems based on loop transformations

The foundation of this analysis depends on the following definitions.
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Definition 2.3.4. [42, p. 2305-2306] Π ∈ R L(l+m)×(l+m)
∞ is a Hermitian function with

the following structure:

Π =

(
Π11 Π12

Π∼12 Π22

)
,

where Π11 ∈ R L l×l
∞ , Π12 ∈ R L l×m

∞ and Π22 ∈ R Lm×m
∞ , Π is called a strict Positive

Negative IQC (PN-IQC) multiplier if positive scalars q,r > 0 exist, such that

• Π11( jω)≥ qIl ∀ω ∈R,

• Π22( jω)≤−rIm ∀ω ∈R.

Definition 2.3.5. [42] A rational Function Π : jR→ C(l+m)×(l+m) admits a hard IQC

factorization if Φ̂ ∈ R H (l+m)×(l+m)
∞ and J ∈ C(l+m)×(l+m) exist, such that Π = Φ̂∼JΦ̂

and any bounded causal operator ∆ which satisfies the IQC defined by Π also satisfies∫ T
0

(
Φ

[
u

∆(u)

])T

JΦ

[
u

∆(u)

]
dt ≥ 0

∀T ≥ 0,u ∈ L l
2[0,∞).

The following theorem shows that if an operator ∆ holds a strict PN-IQC, it will also
hold the same inner product for all truncated times.

Theorem 2.3.6. [42] Let Π ∈ R L(l+m)×(l+m)
∞ be a strict PN-IQC multiplier. There

then exists a hard IQC factorization Π = Φ∼MΦ such that M :=

(
Il 0
0 −Im

)
and Φ :=(

Y 0
P X

)
where Y,Y−1 ∈ R H l×l

∞ , X ∈ R H m×m
∞ and P ∈ R H m×l

∞ .

Proof. See [42].

The results introduced in this section extend the use of dissipative stability [24] to
non constant matrices. The resulting lemmas use IQC multipliers [14, 35] to describe
the causal bounded operators ∆1 and ∆2. The main analytical tool used in these results
are the strict PN-IQC multipliers, which allows to infer time domain conditions from
the frequency dependent IQCs.

2.3.1.1 Stability analysis using the Small Gain Theorem

The first attempt to produce an extension of Dissipativity using IQC multipliers will
be based on the Small Gain Theorem. Note that this theorem will use the strict PN-
IQC multiplier to describe the properties of the non-linearities and then uses IQC hard
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factorization to formulate the stability conditions in the time domain. The latest step is
inspired by the proof of Dissipativity in [24].

Lemma 2.3.7. Let two causal bounded operators ∆1 : L l
2e → Lm

2e, ∆2 : Lm
2e → L l

2e be

interconnected as in Figure 2.9. Suppose that:

1. the feedback loop [∆1,∆2] is well posed,

2. there exists self-adjoint Π1( jω),Π2( jω) ∈ R L(l+m)×(l+m)
∞ with Π1,22( jω) > 0

and Π2,11( jω)> 0 ∀ω ∈R∪{∞} such that

〈(
V1( jω)

U1( jω)

)
,Π1( jω)

(
V1( jω)

U1( jω)

)〉
L2( jR)

≥ 0

∀U1 ∈H l
2 ,V1 = F {∆1(F −1{U1})} (2.19)

and〈(
U2( jω)

V2( jω)

)
,Π2( jω)

(
U2( jω)

V2( jω)

)〉
L2( jR)

≥ 0

∀U2 ∈H m
2 ,V2 = F {∆2(F −1{U2})}. (2.20)

3. there exists positive scalars ε,λ > 0 such that

Π1( jω)+λΠ2( jω)≤−εIl+m ∀ω ∈R, (2.21)

4. let H =

[
0 Im

Il 0

]
, then noting that

(
Ŷ∼1 ( jω)Ŷ1( jω)− P̂∼1 ( jω)P̂1( jω) −P̂∼1 ( jω)X̂1( jω)

−X̂∼1 ( jω)P̂1( jω) −X̂∼1 ( jω)X̂1( jω)

)
= HT

Π1( jω)H,

(
Ŷ∼2 ( jω)Ŷ2( jω)− P̂∼2 ( jω)( jω)P̂2( jω) −P̂∼2 ( jω)X̂2( jω)

−X̂∼2 ( jω)P̂2( jω) −X̂∼2 ( jω)X̂2( jω)

)
= Π2( jω),
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assume that: (
X1 P1√
λP2

√
λX2

)−1

∈ R H ∞ (2.22)

Then the feedback interconnection [∆1,∆2] is L2[0,∞) stable.

Proof. See Appendix A.1.

The main source for conservatism in Lemma 2.3.7 is the need to find the PN-IQC
multipliers that describe the non-linearities such that they hold the causal inverse in
equation (2.22). The source of the problem is the lack of time domain information
available from equation (2.21). This kind of restriction is also present in recent works
such as [56], where time domain conditions are used in the proof, even when frequency
domain conditions seem to be the most appropriate tool.

Note that by making Π1,Π2 constant matrices, Dissipativity Theorem 7.3 in [24],
and Dissipativity Theorem from Proposition 5.8 in [10] can be recovered for the negative
feedback interconnection of L2[0,∞) stable operators (output passive systems).

2.3.1.2 Stability analysis using the Passivity Theorem

The second attempt to produce an extension of Dissipativity using IQC multipliers will
be based on the Passivity Theorem. This attempt is inspired by the mixed small gain and
passivity properties that some systems can hold[56]. However, a new problem arises:
the non-linearity is not represented using a standard IQC in the frequency domain, but
it is represented using time domain integrals instead.

Lemma 2.3.8. Let two causal bounded operators ∆1 : L l
2e → Lm

2e, ∆2 : Lm
2e → L l

2e be

interconnected as in Figure 2.11.

-

∆1

∆2

-
+

+
+

e1u1

u2e2y2

y1

Figure 2.11: Closed loop proposition

Suppose that:

1. the feedback interconnection [∆1,∆2] is well posed,



CHAPTER 2. PRELIMINARIES 49

2. there exists PN-IQC Π̃1( jω),Π̃2( jω) ∈ R L(l+m)×(l+m)
∞

Π1( jω) =

[
Ỹ1( jω) 0
P̃1( jω) X̃1( jω)

]∼[
Il 0
0 −Im

][
Ỹ1( jω) 0
P̃1( jω) X̃1( jω)

]
, (2.23)

Π̃2( jω) =

[
Ỹ2( jω) 0
P̃2( jω) X̃2( jω)

]∼[
Im 0
0 −Il

][
Ỹ2( jω) 0
P̃2( jω) X̃2( jω)

]
, (2.24)

such that〈[
Y1 0
P1 X1

](
(u1(t))T

(∆1u1(t))T

)
,

[
Il 0
0 −Im

][
Y1 0
P1 X1

](
(u1(t))T

(∆1u1(t))T

)〉
L2

≥ 0 ∀u1 ∈ L l
2[0,∞),T ≥ 0 (2.25)

and〈[
Y2 0
P2 X2

](
(u2(t))T

(∆2u2(t))T

)
,

[
Im 0
0 −Il

][
Y2 0
P2 X2

](
(u2(t))T

(∆2u2(t))T

)〉
L2

≥ 0 ∀u2 ∈ Lm
2 [0,∞),T ≥ 0 (2.26)

where Π̃1 and Π̃2 are the Fourier transforms of Π1 and Π2.

3. there exists positive scalars ε,λ > 0 such that(
0 Im

Il 0

)
Π1( jω)

(
0 Il

Im 0

)
+λΠ2( jω)≤−εIl+m ∀ω ∈R. (2.27)

4. −λX∼2 P2 = P∼1 X1.

Then the feedback interconnection [∆1,∆2] is L2[0,∞) stable.

Proof. See Appendix A.2.

An important question arises from this theorem. Why not use IQC to describe the
non-linear system properties?. The information contained in the hard IQC needs to be
reformulated such that it allows to use this information in the time domain. Take IQC
from equation (2.18),〈[

Ui( jω)

Vi( jω)

]
,Πi( jω)

[
Ui( jω)

Vi( jω)

]〉
L2( jR)

≥ 0 ∀Ui ∈H l
2 ,Vi = F {∆i(F −1{Ui})},
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then use Theorem 2.3.6 and the Parseval’s Theorem to obtain the following equivalent
time domain description of the non-linearity

∫
∞

0
(Yiu(t))TYiu(t)− (Piu(t)+Xi∆iu(t))T (Piu(t)+Xi∆iu(t))dt ≥ 0 ∀u ∈ L l

2[0,∞)

⇐⇒
∫

∞

0
(YiuT (t))TYiuT (t)− (PiuT (t)+Xi∆iuT (t))T (PiuT (t)+Xi∆iuT (t))dt ≥ 0

∀uT ∈ L l
2e. (2.28)

In order to transform the non-linear terms from infinite time response Xi∆iu(t)T to a
truncated time response Xi(∆iu(t))T , add and subtract∫

∞

0 (PiuT (t)+(Xi∆iu(t))T )
T (PiuT (t)+(Xi∆iu(t))T )dt to equation (2.28), i.e.:

∫
∞

0
(YiuT (t))TYiuT (t)dt−

∫
∞

0
uT (t)T PT

i PiuT (t)dt−2
∫

∞

0
uT (t)T PT

i Xi(∆iuT (t))T dt

−
∫

∞

0
(∆iuT (t))T

T XT
i Xi(∆iuT (t))T dt

+2
∫

∞

T
uT (t)T PT

i Xi((∆iuT (t))T −∆iuT (t))dt

+
∫

∞

T
(∆iuT (t))T

T XT
i Xi(∆iuT (t))T dt−

∫
∞

T
(∆iuT (t))T XT

i Xi∆iuT (t)dt ≥ 0 ∀uT ∈ L l
2e.

(2.29)

then, in order to show conditions (2.25) and (2.26) from IQC, i.e.

∫
∞

0
(YiuT (t))TYiuT (t)− (PiuT (t)+Xi(∆iuT (t))T )

T (PiuT (t)+Xi(∆iuT (t))T )dt ≥ 0

∀uT ∈ L l
2e (2.30)

it is necessary to show that

2
∫

∞

T
(PiuT (t))T Xi((∆iuT (t))T −∆iuT (t))dt

+
∫

∞

T
(Xi(∆iuT (t))T )

T Xi(∆iuT (t))T dt−
∫

∞

T
(Xi∆iuT (t))T Xi∆iuT (t)dt ≤ 0

∀uT ∈ L l
2e (2.31)

so this term can be safely removed without affecting the positivity of equation (2.29).
It is clear that for memoryless ∆i, the solution is trivial, because (∆iuT (t))T =

∆iuT (t), i.e. equation (2.32) is equal to zero.
It is also clear that for constant Pi,Xi the inequality (2.32) is true, because for uT =
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0 ∀t > T and (∆iuT (t))T = 0 ∀t > T :

2
∫

∞

T
(PiuT (t))T Xi((∆iuT (t))T −∆iuT (t))dt

+
∫

∞

T
(Xi(∆iuT (t))T )

T Xi(∆iuT (t))T dt−
∫

∞

T
(Xi∆iuT (t))T Xi∆iuT (t)dt

= 2
∫

∞

T
0PT

i Xi(0−∆iuT (t))dt +
∫

∞

T
0XT

i Xi0dt−
∫

∞

T
∆iuT (t)T XT

i Xi∆iuT (t)dt

=−
∫

∞

T
∆iuT (t)T XT

i Xi∆iuT (t)dt ≤ 0 ∀uT ∈ L l
2e (2.32)

It is worthwhile noting that this information is enough to obtain the Passivity Theorem
with anti-causal multipliers as a corollary, using the conditions of Theorem VI.9.20 in
[14].

Corollary 2.3.9. Consider the feedback system of Figure 2.9, where ∆1 : L2(−∞,∞)→
L2(−∞,∞), ∆2 : L2(−∞,∞)→ L2(−∞,∞) are two causal bounded operator dynamical

systems with gain ||∆1||L2→L2, ||∆2||L2→L2 . Suppose the negative feedback interconnec-

tion [∆1,−∆2] is well posed. Let there be a non-causal multiplier M̂,M̂−1 ∈ R L∞ with

canonical factorization M = M−M+, where M∼−,M+ ∈ R H ∞, such that

1. for some δ > 0

<U1,M̂∆1(U1)>L2(−∞,∞)≥
δ

2
<U1,U1 >L2(−∞,∞) ∀U1 ∈ L2(−∞,∞) (2.33)

2. and it holds that:

<U2,∆2(M̂∼U2)>L2(−∞,∞)≥ 0 ∀U2 ∈ L2(−∞,∞) (2.34)

then, the system is L2[0,∞) stable.

Proof. See Appendix A.3.

For the sake of argument, a detailed proof of Corollary 2.3.9 is presented. The main
objective of this exercise is to show that appropriate Π1( jω) and Π2( jω) exists such
that Lemma 2.3.8 can be used.

However, due to the complexity of equation (2.32), dynamic multipliers for Dissi-
pativity remain an open question using this approach.

This chapter has introduced the two classical approaches to studying non-linear sys-
tems and it has shown that using the apparently advantageous factorization from [42]
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results in a loss of information in the IQCs representing the non-linear systems. In the
literature two alternative solutions are given for the problem; the first used in this work
consists of the interconnection of circular graphs [43]. The second approach was pre-
sented in [57] and uses non standard loop transformations. However, these options are
not discussed in this thesis.



Chapter 3

Search for SISO Zames-Falb
multipliers

Acknowledgements

The material on Sections 2.2, 3.2.3, 3.3 and 3.4 was published in Systems & Control Let-
ters, co-authored with Joaquin Carrasco, Alexander Lanzon and William P. Heath, enti-
tled ”LMI searches for anti-causal and non-causal rational Zames-Falb multipliers”[58].

3.1 Introduction

This Chapter studies the stability of the feedback interconnection between a linear sys-
tem and a memoryless non-linearity, typically described by a conic condition. Theorems
such as the Passivity Theorem and the Small Gain Theorem [8, 9] test an open loop
frequency-domain condition on the linear part of the system interconnection, and then
conclude stability of the original non-linear problem. The success of these techniques
lies in their simplicity, because they use analysis of open–loop properties to show the
stability of closed loop systems.

The class of Zames–Falb multipliers is defined in Theorem 2.2.6 as follows: M(s)

is a Zames–Falb multiplier if its unit impulse response m(t), is given by

m(t) = δ(t)+
∞

∑
i=−∞

ziδ(t− ti)+ za(t), (3.1)

53
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where ti ∈R, zi ∈R, δ is the Dirac delta, za(t) is an absolutely integrable function, and

∞

∑
i=−∞

|zi|+
∫

∞

−∞

|za(t)|dt < 1. (3.2)

Given a linear plant G(s), an appropriate multiplier within the class of Zames-Falb
should be found such that M(s)G(s)> 0 is strictly positive real. A complete solution of
the above problem remains open.

To date, only partial solutions have been presented in the literature. In this work only
three structures are studied. Although they use slightly different non-linearities, multi-
pliers for odd monotone non-linearities can be generated by approximating
L1(−∞,∞) norm using the triangle inequality [31]. However, no significant improve-
ment is achieved for this comparison. Instead, this work uses the fact that the odd
monotone non-linearities are a subset of the monotone non-linearities, and compares
the performance assuming all non-linearities are odd.

We can summarize the three solutions as follows: In [28, 26, 29], the multiplier
is construed by finite summation of Dirac delta distributions, with za(t) = 0 for all
t ∈ R; in [31], the multiplier has only one Dirac delta at t = 0, i.e. zi = 0 ∀i ∈ Z,
and the Laplace transform of za(t) has a specific choice of its poles, in other words,
the multiplier is formed by a summation of exponential functions. Finally, in [1], as
in [31], the multiplier only has a Dirac delta at t = 0, and the Laplace transform of za(t)

is limited to be a causal transfer function of the same order as the linear system G(s).
The objective of this Section is to summarize the properties of each method, study

the conditions to compute a multiplier, and carry out a comparison to test their perfor-
mance in several examples.

3.2 The multiplier synthesis

The solution given by Zames and Falb guarantees the absolute stability if a multiplier
can be found. The following statement formalizes the problem:

Problem 3.2.1. Given a linear plant G(s) ∈ R H ∞, find the largest k > 0 such that the

feedback interconnection of G and a slope-restricted (and odd) monotone non-linearity

in the sector [0,k] is absolutely stable, or alternatively, find the largest k > 0 such that

there exists a Zames-Falb multiplier M(s) ∈M (M(s) ∈Modd respectively) such that:

Re{M( jω)(1+ kG( jω))} ≥ ε ∀ω ∈R (3.3)
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for some constant ε > 0.

In this section, basic descriptions of the three methods for solving Problem 3.2.1
are given. All of them require a linear search in k. Each one of the following methods
focuses only in one part of the general multiplier in equation 3.1, either the summation
of delta distributions, rational causal transfer functions and rational non-causal transfer
functions. None of the methods successfully find the biggest sector boundary for all
plants. This issue is discussed in Section 3.4.

3.2.1 Summation of δ(.) distributions

Safonov [28] proposes a parametrization of the Zames–Falb multiplier using only the
δ(t− ti) distributions in equation (3.1). Making za(t) = 0 and taking the restrictions of
a Zames—Falb multiplier presented in equation (3.2), the method considers a finite N

subset of the δ(t− ti) summation, i.e.

mN(t) = δ(t)−h(t) = δ(t)−
N

∑
i=0

ziδ(t− ti), (3.4)

with a Laplace transform written as follows

MN(s) = 1−
N

∑
k=1

zietis, (3.5)

where ∑
N
k=1 zi < 1. It is worthwhile noting that the method is developed only for a search

in the set M , i.e. zi > 0 ∀i ∈ Z+. Then, Problem 3.2.1 is redefined as follows:

Problem 3.2.2 ([28, 26]). Given a linear plant G(s) ∈ R H ∞, find the largest k > 0
such that the feedback interconnection of G(s) and a slope-restricted non-linearity [0,k]
is absolutely stable, or alternatively, find the largest k > 0 such that there exists an

integer N and two sequences z = {z1, ...,zN} and TN = {t1, ..., tN} such that:

1. ∑
N
k=0 zi < 1

2. for some ε > 0

Re{(1−
N

∑
k=1

zie jtiω)G̃( jω)} ≥ ε ∀ω ∈R (3.6)

where G̃(s) = (1+ kG(s)), and
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3. zi ≥ 0 ∀i.

For a fixed k, the problem is to find a Zames–Falb multiplier that maximizes the
following function:

ψN(z) = min
ω∈R

Re{(1−
N

∑
k=1

zie jtiω)G̃( jω)}. (3.7)

Algorithm 1 summarizes the search for the multiplier [26]. Step 3) in Algorithm 1 is
developed as the optimization Algorithm 2. These instructions will generate a linear
program that can be solved using any commercial solver.

Algorithm 1 Summation of δ(t) distributions
Step 1)
INITIALIZE PROGRAM

ω1← 0
[ω2, ...,ωNω]←frequencies where |∠G̃( jω)|= 1◦

Set NT ← length of T
Set TN = [t1, ..., tNt ]← [−π/ω2, ...,−π/ωNω

] {initialization taken from [28]}
Set ε← small number > 0 {complementary initialization taken from [26]}

Step 2)
SOLVE λ>0 = minω∈RRe{G̃( jω)}

Step 3)
SOLVE λ>N = maxz∈ZN ψN(z) (Algorithm 2)

if |λ>N −λ>N−1|< ε then
go to Step 4

else
Set TN+1← TN

⋃
tN+1 (optimize equation (15) in [26])

Set N← N +1 and go to Step 3
end if
Step 4)
if λN > 0 then

The closed loop system is absolutely stable.
else

Inconclusive.
end if

Gapski [26] developed a method to find the new time tN+1 iteratively by optimizing
of the right directional derivative of ψN+1(zl) in the direction of tn+1 using only the op-
timal solution zl obtained with the vector TN . This solution is implemented in Step 3 of
Algorithm 1. Chang [29] proposes a method to increase the performance of Algorithm
2 in order to optimize the search of the time tN+1, however, in his work an initial t1 is
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Algorithm 2 SOLVE λN = maxz∈ZN ψN(z) (step 3 in Algorithm 1, taken from Step b)
in [26])

Step a)
For N fixed, set ε > 0 sufficiently small, L← 1
z1 = 0 ∈RN and calculate ψN(z1) ∈ δψN(z1),
and µ1 ∈ δψN(z1) from equation (12) in [26]

Step b)
Solve λL+1 = maxλ≤1,z∈ZN{λ : ψN(zl)

+< µl,z− zl >≥ λ, l = 1, ...,L}
and let zL+1 be the optimal solution

Step c)
if |λl−ψN(zl)|< ε then

stop
else

λN ← λL+1, L← L+1
calculate ψN(zL+1) ∈ δψN(zL+1) and
calculate µL+1 ∈ δψN(zL+1)
go back to step b)

end if

chosen in each case so that the program starts close to the optimal values; this choice
minimizes the effect of the latest improvement. Algorithms 1 and 2 are reproduced here
for the sake of completeness.

The main disadvantage of this method is the numerical search over frequency, where
there is no analytical tool to confirm stability. This problem is made evident by Exam-
ples 5 and 6 in Section 3.4.

3.2.2 Summation of exponential functions

Impulses are impractical to implement and require high frequency analysis. In order to
approximate the effect of a multiplier constructed by impulses, but based on a summa-
tion of exponential functions, the following lemma is used [31]:

Lemma 3.2.3 ([59]). If f (t) ∈ L1[0,∞), then for every ε > 0, there exists a vector

(a0,a1, · · · ,aN) ∈RN+1 such that

∫
∞

0
| f (t)−

N

∑
i=0

aie−tt i+α|dt < ε (3.8)

where α >−1
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The construction of the multiplier is reproduced from [31]. Replacing t by −t, the
same result can also be determined for L1(−∞,0]. By choosing α = 0, an orthogonal
basis for the approximation can be obtained: e+i (t) = e−tt i, t ≥ 0 (e+i (t) = 0 for t ≤
0), e−i (t) = ett i, t ≤ 0 (e−i (t) = 0 for t ≥ 0), then the Nth can be approximated by a
function mN(t) ∈ L1(−∞,∞) for monotone odd non-linearity. However, in order to
construct a convex search, the function mN(t) needs to be composed of two positive
functions xN(t),yN(t) ≥ 0, mN(t) = xN(t)− yN(t). Then using the absolute value of
a sum, the L1(−∞,∞) norm of mN(t) is bounded by a function that does not contain
absolute values,∫

∞

−∞

|mN(t)|dt =
∫

∞

−∞

|xN(t)− yN(t)|dt ≤
∫

∞

−∞

(xN(t)+ yN(t))dt ≤ 1.

Now, using Lemma 3.2.3, define xN(t) = ∑
N
i=1(aie+i (t)+ bie−i (t)) and yN(t) = δ(t)+

∑
N
i=1(cie+i (t)+die−i (t)), the resulting multiplier is

mN(t) = δ(t)−h(t) = δ(t)−
N

∑
i=1

(aie+i (t)+bie−i (t))+
N

∑
i=1

(cie+i (t)+die−i (t)). (3.9)

By obtaining the Fourier transform of equation (3.9)

MN( jω) = 1−
N

∑
i=0

(
ai

( jω+1)i+1 −
bi

( jω−1)i+1

)
i!

+
N

∑
i=0

(
ci

( jω+1)i+1 −
di

( jω−1)i+1

)
i!, (3.10)

then Problem 3.2.1 can be reformulated as follows:

Problem 3.2.4 ([31]). Given a stable LTI plant G(s) ∈ R H ∞, find the largest k > 0
such that the feedback interconnection of G(s) and a slope-restricted non-linearity [0,k]
is absolutely stable, or alternatively, find the largest k > 0 such that there exists an

integer N and four diagonal matrices AN = diag{a1, ...,aN}, BN = diag{b1, ...,bN},
CN = diag{c1, ...,cN} and DN = diag{d1, ...,dN} satisfying:

1. ∑
N
i=0(ai +(−1)ibi + ci +(−1)idi)i! < 1;

2. for some ε > 0
Re{MN( jω)G̃( jω)} ≥ ε, ∀ω ∈R (3.11)

where G̃(s) = (1+ kG(s)); and
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3. the following inequalities hold

∑
N
i=0 ai(−1)i( jω)2i

(1− jω)N(1+ jω)N ≥ 0 ∀ω ∈R, (3.12)

∑
N
i=0 bi( jω)2i

(1− jω)N(1+ jω)N ≥ 0 ∀ω ∈R. (3.13)

∑
N
i=0 ci(−1)i( jω)2i

(1− jω)N(1+ jω)N ≥ 0 ∀ω ∈R, (3.14)

∑
N
i=0 di( jω)2i

(1− jω)N(1+ jω)N ≥ 0 ∀ω ∈R. (3.15)

4. ai,bi,ci,di ≥ 0 ∀i = 1,2, ...,N.

In [31], a search method is not proposed. However [29] proposes a solution based
on the use of a linear program using a frequency swap, but this method can be time
consuming, and just as inaccurate as the Summation of δ(.) distributions due to the
frequency search. In a later version of [31], published as [32], a Zames-Falb multiplier
search is presented using only LMI solutions for Problem 3.2.4. However, the details of
the technique using only LMI are inaccurate [32, p. 643-647]. This section corrects the
state space representations.

The first step of Problem 3.2.4 is a summation, that can be written as a LMI parametrized
by the affine variables AN ,BN ,CN ,DN . Then, the first part of the problem can be rewrit-
ten as:

Find AN ≥ 0, BN ≥ 0, CN ≥ 0, DN ≥ 0 such that

N

∑
i=0

(ai +(−1)ibi + ci +(−1)idi)i! < 1

⇐⇒



0!
1!
...

(N−1)!
N!



T

(AN +CN)



1
1
...
1
1


+



(−1)00!
(−1)11!

...
(−1)N−1(N−1)!

(−1)NN!



T

(BN +DN)



1
1
...
1
1


−1 < 0

(3.16)

Then, from the second step on Problem 3.2.4, consider equation (3.10) and write it
in explicit form:
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MN( jω) = 1−
N

∑
i=0

(
ai

( jω+1)i+1 −
bi

( jω−1)i+1

)
i!,

+
N

∑
i=0

(
ci

( jω+1)i+1 −
di

( jω−1)i+1

)
i!

= 1−
∑

N
i=0 aii!∑

N−i
k=0

(
N− i

k

)
( jω)k

∑
N+1
k=0

(
N +1

k

)
( jω)k

+

∑
N
i=0 bii!∑

N−i
k=0

(
N− i

k

)
( jω)k(−1)N−i−k

∑
N+1
k=0

(
N +1

k

)
( jω)k(−1)N+1−k

+

∑
N
i=0 cii!∑

N−i
k=0

(
N− i

k

)
( jω)k

∑
N+1
k=0

(
N +1

k

)
( jω)k

−
∑

N
i=0 dii!∑

N−i
k=0

(
N− i

k

)
( jω)k(−1)N−i−k

∑
N+1
k=0

(
N +1

k

)
( jω)k(−1)N+1−k

(3.17)

where

(
x

y

)
= x!

y!(x−y)! . Using the Controllable Canonical Form [60, p. 75], the

following state space representation is proposed.

MN( jω) = 1+

[
Aa Ba

−Ca −Da

]
+

[
Ab Bb

Cb Db

]
+

[
Ac Bc

Cc Dc

]
+

[
Ad Bd

−Cd −Dd

]
,

(3.18)
Note that the denominator for ai and ci is the same, therefore

Aa = Ac = Aac =



0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
... . . . ...

...
0 0 0 · · · 1 0
0 0 0 · · · 0 1

−1 −(N +1) − (N+1)N
2 · · · − (N+1)N

2 −(N +1)


. (3.19)
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Using the Controllable Canonical form, the matrix for Ba is equal to Bc

Ba = Bc = Bac =



0
0
...
0
0
1


. (3.20)

Moreover, numerators for ai and ci differ only in the constant coefficients, therefore
Ca−Cc is

Cc−Ca =



0!
1!
· · ·

(N−2)!
(N−1)!

N!



T

(−AN +CN)



1 N N(N−1)
2 · · · N 1

1 (N−1) (N−1)(N−2)
2 · · · 1 0

...
...

... . . . ...
...

1 2 1 · · · 0 0
1 1 0 · · · 0 0
1 0 0 · · · 0 0


. (3.21)

Given that all the transfer functions are strictly proper,

Da = Dc = 0. (3.22)

Note that the denominator for bi and di is the same, therefore

Ab = Ad = Abd =



0 1 0 · · · 0 0

0 0 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 1 0

0 0 0 · · · 0 1

(−1)N (−1)N−1(N +1) (−1)N−2 (N+1)N
2 · · · − (N+1)N

2 (N +1)


(3.23)
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Using the Controllable Canonical form, the matrix for Bb is equal to Bd

Bb = Bd = Bbd =



0
0
...
0
0
1


(3.24)

The numerators for bi and di only differ in the constant coefficients, therefore Cb−Cd

is expressed as

Cb−Cd =



0!
1!
...

(N−2)!
(N−1)!

N!



T

(BN−DN)

×



(−1)N (−1)N−1N (−1)N−2 N(N−1)
2 · · · −N 1

(−1)N−1 (−1)N−2(N−1) (−1)N−3 (N−1)(N−2)
2 · · · 1 0

...
...

... . . . ...
...

1 −2 1 · · · 0 0
−1 1 0 · · · 0 0
1 0 0 · · · 0 0


(3.25)

Given that all the transfer functions are strictly proper,

Db = Dd = 0. (3.26)

Finally, equation (3.18) can be rewritten as
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MN( jω) = 1+

[
Aac Bac

Cc−Ca Dc−Da

]
+

[
Abd Bbd

Cb−Cd Db−Dd

]

=

 Aac 0 Bac

0 Abd Bbd

Cc−Ca Cb−Cd 1+Dc−Da +Db−Dd

 . (3.27)

For the second step of Problem 3.2.4, make state space representation of G̃:

G̃ =

[
AG BG

kCG kDG +1

]
. (3.28)

Then, equation (3.11) can be rewritten as

Re

{[
AMG BMG

CMG DMG

]}
=Re




Aac 0 kBacCG Bac(kDG +1)
0 Abd kBbdCG Bbd(kDG +1)
0 0 AG BG

Cc−Ca Cb−Cd kCG kDG +1


> ε

∀ω ∈R. (3.29)

Note that AN ,BN ,CN ,DN are affine variables, in accordance to [32]. In other words, by
letting AMG, BMG be constant matrices, the solution of the LMI depends linearly on the
variables XMG, AN , BN , CN , DN . Using the Kalman-Yakubovich-Popov Lemma [41],
the inequality (3.29) is equivalent to the following problem:

Find XMG = XT
MG and AN ≥ 0, BN ≥ 0, CN ≥ 0, DN ≥ 0 such that[

XMGAMG +AT
MGXMG XMGBMG−CT

MG

BT
MGXMG−CMG −DMG−DT

MG + ε

]
< 0 (3.30)

For the third step of Problem 3.2.4, check the positivity of the multipliers using
equations (3.12), (3.13), (3.14) and (3.15). First, rewrite the inequalities as a summation
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of a constant element with a strictly proper transfer function:

0≤ ∑
N
i=0 ai(−1)i( jω)2i

(1− jω)N(1+ jω)N = aN +

∑
N−1
i=0

(
ai−aN

(
N

i

))
( jω)2i(−1)N−i

∑
N
i=0

(
N

i

)
( jω)2i(−1)N−i

∀ω ∈R,

(3.31)

0≤ ∑
N
i=0 bi( jω)2i

(−1+ jω)N(1+ jω)N = bN(−1)N +

∑
N−1
i=0

(
bi−bN

(
N

i

)
(−1)N−i

)
( jω)2i(−1)N

∑
N
i=0

(
N

i

)
( jω)2i(−1)N−i

∀ω∈R,

(3.32)

0≤ ∑
N
i=0 ci(−1)i( jω)2i

(1− jω)N(1+ jω)N = cN +

∑
N−1
i=0

(
ci− cN

(
N

i

))
( jω)2i(−1)N−i

∑
N
i=0

(
N

i

)
( jω)2i(−1)N−i

∀ω ∈R,

(3.33)

0≤ ∑
N
i=0 di( jω)2i

(−1+ jω)N(1+ jω)N = dN(−1)N +

∑
N−1
i=0

(
di−dN

(
N

i

)
(−1)N−i

)
( jω)2i(−1)N

∑
N
i=0

(
N

i

)
( jω)2i(−1)N−i

∀ω∈R.

(3.34)

Using the Controllable Canonical Form [60, p. 75], the following state space represen-
tations are obtained from equations (3.31), (3.32), (3.33), (3.34)

Za( jω) =

[
Aap Bap

Cap Dap

]
≥ 0 ∀ω ∈R, (3.35)

Zb( jω) =

[
Abp Bbp

Cbp Dbp

]
≥ 0 ∀ω ∈R, (3.36)

Zc( jω) =

[
Acp Bcp

Ccp Dcp

]
≥ 0 ∀ω ∈R, (3.37)
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Zd( jω) =

[
Ad p Bd p

Cd p Dd p

]
≥ 0 ∀ω ∈R, (3.38)

where the state spaces matrices are the following. First notice that all denominators are
equal, then

Aap = Abp = Acp = Ad p =



0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
... . . . ...

...
0 0 0 · · · 1 0
0 0 0 · · · 0 1

(−1)N−1 0 (−1)N−2N · · · N 0


. (3.39)

Using the controllable canonical form in all equations results in

Bap = Bbp = Bcp = Bd p =



0
0
...
0
0
1


(3.40)

Noting that only the numerators are different, the following matrices are defined:

Cap =
[
(−1)N(a0−aN) 0 (−1)N−1(a1−aNN) · · · −(aN−1−aNN) 0

]

=



(−1)N

(−1)N−1

...
(−1)1

(−1)0



T

AN



1 0 0 · · · 0 0
0 0 1 · · · 0 0
...

...
... . . . ...

...
0 0 0 · · · 1 0

−(−1)N 0 −N(−1)N−1 · · · −N(−1)1 0


(3.41)
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Dap = aN =



0
0
...
0
1



T

AN



0
0
...
0
1


(3.42)

Cbp =
[
(b0−bN(−1)N)(−1)N 0 (b1−bNN(−1)N−1)(−1)N · · · (bN−1 +bNN)(−1)N 0

]

=



(−1)N

(−1)N

...
(−1)N

(−1)N



T

BN



1 0 0 · · · 0 0
0 0 1 · · · 0 0
...

...
... . . . ...

...
0 0 0 · · · 1 0

−(−1)N 0 −N(−1)N−1 · · · −N(−1)1 0


(3.43)

Dbp = bN(−1)N =



0
0
...
0

(−1)N



T

BN



0
0
...
0
1


(3.44)

Ccp =
[
(−1)N(c0− cN) 0 (−1)N−1(c1− cNN) · · · −(cN−1− cNN) 0

]

=



(−1)N

(−1)N−1

...
(−1)1

(−1)0



T

CN



1 0 0 · · · 0 0
0 0 1 · · · 0 0
...

...
... . . . ...

...
0 0 0 · · · 1 0

−(−1)N 0 −N(−1)N−1 · · · −N(−1)1 0


(3.45)

Dcp = cN =



0
0
...
0
1



T

CN



0
0
...
0
1


(3.46)
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Cd p =
[
(d0−dN(−1)N)(−1)N 0 (d1−dNN(−1)N−1)(−1)N · · · (dN−1 +dNN)(−1)N 0

]

=



(−1)N

(−1)N

...
(−1)N

(−1)N



T

DN



1 0 0 · · · 0 0
0 0 1 · · · 0 0
...

...
... . . . ...

...
0 0 0 · · · 1 0

−(−1)N 0 −N(−1)N−1 · · · −N(−1)1 0


(3.47)

Dd p = dN(−1)N =



0
0
...
0

(−1)N



T

DN



0
0
...
0
1


(3.48)

Noting that the positivity of a transfer functions implies the positivity of the real
part of that transfer function, to check the positivity of equations (3.12), (3.13), (3.14),
(3.15), it is necessary to show

Re{Za( jω)} ≥ 0 ∀ω ∈R, (3.49)

Re{Zb( jω)} ≥ 0 ∀ω ∈R, (3.50)

Re{Zc( jω)} ≥ 0 ∀ω ∈R, (3.51)

Re{Zd( jω)} ≥ 0 ∀ω ∈R. (3.52)

Once again, note that AN ,BN ,CN ,DN are affine variables in accordance to[32]. In
other words, by letting Aap, Abp, Acp, Ad p, Bap, Bbp, Bcp, Bd p be constant matrices, the
resulting LMIs depend linearly on the variables XAZ , XBZ , XCZ , XDZ , AN , BN , CN , DN .
Then, using the Kalman-Yakubovich-Popov Lemma [41], the inequalities (3.49), (3.50),
(3.51) and (3.52) are equivalent to the following problems:

Find XAZ = XT
AZ and AN ≥ 0 such that[

XAZAap +AT
apXAZ XAZBap−CT

ap

BT
apXAZ−Cap −Dap−DT

ap

]
≤ 0, (3.53)
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find XBZ = XT
BZ and BN ≥ 0 such that[

XBZAbp +AT
bpXBZ XBZBbp−CT

bp

BT
bpXBZ−Cbp −Dbp−DT

bp

]
≤ 0, (3.54)

find XCZ = XT
CZ and CN ≥ 0 such that[

XCZAcp +AT
cpXCZ XCZBcp−CT

cp

BT
cpXCZ−Ccp −Dcp−DT

cp

]
≤ 0, (3.55)

find XDZ = XT
DZ and DN ≥ 0 such that[

XDZAd p +AT
d pXDZ XDZBd p−CT

d p

BT
d pXDZ−Cd p −Dd p−DT

d p

]
≤ 0. (3.56)

Finally, Problem 3.2.4 can be formalized as:

Problem 3.2.5 ([31]). Given a stable LTI plant G(s)∈R H ∞, find the largest k > 0 such

that the feedback interconnection of G(s) and a slope-restricted non-linearity [0,k] is

absolutely stable, or alternatively, find the largest k > 0 such that there exists an integer

N and four diagonal matrices AN = diag{a1, ...,aN} ≥ 0,

BN = diag{b1, ...,bN} ≥ 0, CN = diag{c1, ...,cN} ≥ 0 and DN = diag{d1, ...,dN} ≥
0,satisfying:

1. There exists AN , BN , CN , DN ≥ 0 such that



0!
1!
...

(N−1)!
N!



T

(AN+CN)



1
1
...

1
1


+



(−1)00!
(−1)11!

...

(−1)N−1(N−1)!
(−1)NN!



T

(BN+DN)



1
1
...

1
1


−1< 0,

2. there exists XMG = XT
MG and AN , BN , CN , DN ≥ 0 such that[

XMGAMG +AT
MGXMG XMGBMG−CT

MG

BT
MGXMG−CMG −DMG−DT

MG + ε

]
< 0,
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3. • there exists XAZ = XT
AZ and AN ≥ 0 such that[

XAZAap +AT
apXAZ XAZBap−CT

ap

BT
apXAZ−Cap −Dap−DT

ap

]
≤ 0,

• there exists XBZ = XT
BZ and BN ≥ 0 such that[

XBZAbp +AT
bpXBZ XBZBbp−CT

bp

BT
bpXBZ−Cbp −Dbp−DT

bp

]
≤ 0,

• there exists XCZ = XT
CZ and CN ≥ 0 such that[

XCZAcp +AT
cpXCZ XCZBcp−CT

cp

BT
cpXCZ−Ccp −Dcp−DT

cp

]
≤ 0,

• there exists XDZ = XT
DZ and DN ≥ 0 such that[

XDZAd p +AT
d pXDZ XDZBd p−CT

d p

BT
d pXDZ−Cd p −Dd p−DT

d p

]
≤ 0.

3.2.3 Causal transfer functions

In [1], a LMI search has been proposed for multipliers of fixed order. The multiplier is
restricted to the set of causal rational transfer functions of the same order as the plant,
and restrict all coefficients zi = 0 from equation (3.1), removing the delta distributions
from the multiplier:

M( jω) = 1−Ch( jωI−Ah)
−1Bh, (3.57)

where the dimensions of the matrices Ah, Bh and Ch are the same as the state–space
minimal representation of the plant. Moreover, the original search presented in [1] uses
the IQC Theorem, and as a consequence, the analysis was done using positive feedback.
In this section it is used negative feedback in order to compare the result with previous
methods. However, the results remain equivalent [61].

Following [50], Dh is fixed to zero. Furthermore, imposing the LMI for bounded
Peak-to-Peak Gain, described in [62], on matrices Ah, Bh and Ch to ensure that M ∈
Modd, Problem 3.2.1 can be reformulated as follows:

Problem 3.2.6 ([1]). Given a stable LTI plant G(s) ∈ R H ∞, find the largest k > 0
such that the feedback interconnection of G(s) and an odd slope-restricted non-linearity
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[0,k] is absolutely stable, or alternatively, find the largest k > 0 such that there exist a

multiplier M(s) satisfying the conditions:

1. there exists a positive matrix Y > 0 and positive constants µ > 0, λ > 0 such that[
A>h Y +YAh +λY Y Bh

B>h Y −µI

]
< 0, (3.58)

λY 0 C>h
0 (1−µ)I 0

Ch 0 1

≥ 0; (3.59)

2. there is an ε > 0 such that

Re{M( jω)G̃( jω)} ≥ εI ∀ω ∈R, (3.60)

where G̃(s) = (1+ kG(s)).

As opposed to the previous two methods, the search can only be carried out within
Modd. In the spirit of a multi-objective synthesis [62], the existence of the multiplier is
ensured with the following Proposition.

Proposition 3.2.7 ([1]). Given a LTI plant G(s) ∈ R H ∞ ∼ (Ap,Bp,Cp,Dp) and a con-
stant k > 0. There exists a multiplier M(s) fulfilling conditions of Problem 3.2.6 if
there exist positive definite symmetric matrices S11 > 0,P11 > 0, unstructured matrices
Ãu, B̃u,C̃u, and scalars µ > 0 and λ > 0 such that following inequalities are satisfied.S11Ap +AT

p S11 S11Ap +AT
p P11 +KCT

p B̄T
u + ĀT

u S11Bp−KCT
p +C̄T

u

? P11Ap +KB̄uCp +AT
p P11 +KCT

p B̄T
u P11Bp + B̄u(I +KDp)−KCT

p

? ? −(I +KDp)− (I +KDT
p )

< 0

(3.61)[
−ĀT

u − Āu +λ(P11−S11) −B̄u

−B̄T
u −µI

]
< 0, (3.62)

λ(P11−S11) 0 C̄T
u

0 1−µ 0
C̄u 0 1

> 0; (3.63)

Proof. See Proposition 2 in [1].
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That is, consider the system in Figure 3.1 a) and perform the loop transformation of
Passivity Theorem (Theorem 2.2.6) over the following representation:

u = r−φy,

y = Gu. (3.64)

The resulting loop (Figure 3.1 c) ) is the following representation.

y =
1
k

φy+ ỹ

ỹ = Gr− 1
k
(kG+ I)φy

k 1
k

φ M−1
-

M

G
u

φ
e2

r
-

a)

b)

G M

rG

k 1
k

φ M−1
+

-
M+

c)

G

rG

M∼− M+

M−∼−

1
k

1
k

y

y

y

Figure 3.1: Turner loop transformation[1]

A relaxation for searching the boundary of the L1(−∞,∞) norm is proposed in [1]
was demonstrated as incorrect, because it allowed multipliers to obtained where the
L1(−∞,∞) norm was larger than 1. The results have been corrected in [50]. Although λ

is suggested to be fixed to a small value in [1], a linear search over λ is needed to obtain
a good result.
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3.2.3.1 Addition of Popov multiplier

Recently, the addition of a Popov multiplier has been proposed in [63, 33] for strictly
proper plants, i.e. Dp = 0. Two new parameters are added to the multiplier

M(s) = MZF +(ν+ηs) (3.65)

where ν > 0, η ∈R and MZF ∈Modd.
This addition can improve the result significantly since the equivalent Zames–Falb

multiplier can be non-causal if η < 0. As a result, Proposition 3.2.7 can be rewritten

Proposition 3.2.8. Given a LTI plant G(s)∈R H ∞∼ (Ap,Bp,Cp,0) and a constant k >

0 such that the feedback interconnection of G(s), there exist a multiplier M(s) = MZF +

(ν+ηs), MZF ∈Modd fulfilling conditions of Theorem 2.2.6 if there exist positive definite

symmetric matrices S11 > 0,P11 > 0, unstructured matrices Ãu, B̃u,C̃u, and scalars ν >

0, η ∈R, µ > 0 and λ > 0 such that the following inequalities are satisfied.

S11Ap +AT
p S11 S11Ap +AT

p P11 +KCT
p B̄T

u + ĀT
u S11Bp−K(I + vI +ηAT

p )C
T
p +C̄T

u

? P11Ap +AT
p P11 +KB̄uCp +KCT

p B̄T
u P11Bp + B̄u−K(I + vI +ηAT

p )C
T
p

? ? −2I−2vI−ηK(CpBp +BT
pCT

p )

< 0

(3.66)[
−ĀT

u − Āu +λ(P11−S11) −B̄u

−B̄T
u −µI

]
< 0, (3.67)

λ(P11−S11) 0 C̄T
u

0 1−µ 0
C̄u 0 1

> 0; (3.68)

Proof. See Proposition 1 in [33].

The maximum slope results from this method are presented in Section 3.4. The ap-
parent poor performance of this method compared to the summation of δ(.) distributions
and summation of exponential functions was explained in Section 2.2. The following
section then shows a way to complement this powerful tool in order to exploit the ben-
efits of anti-causal multipliers.
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3.3 Anti-causal Transfer Functions

The last method described, introduced by [1], shows promising results, combining sim-
plicity and performance. However, as was discussed in Section 2.2, this method is
artificially limited by its applicability of only causal multipliers. This section describes
a modification that allows the use of non-causal multipliers, and is considered as a com-
plementary method. The general class of Zames-Falb multipliers can be factorized into
causal and anti-causal parts using the canonical factorization of Lemma 3 in [25], i.e.
M( jω) = M−( jω)M+( jω), where M∼−,(M

∼
−)
−1,M+,(M+)

−1 ∈ R H ∞. In other words,
using the algorithm of [1], M−( jω) is assumed to be the identity, while this work will
propose to make M+( jω) the identity. The results are described in two methods to
introduce the non-causal multiplier: a Causal Search, and an Anti-causal Search.

3.3.1 Causal Search

This first method inverts the loop transformation. Take the condition from equation
(2.9), and by writing the multiplier in the general factorizable form, the following state-
ments are equivalent:

Re{M( jω)G̃( jω)}> 0 ∀ω ∈R,

⇐⇒ Re{G̃( jω)M−∼( jω)}> 0 ∀ω ∈R,

⇐⇒ Re{(M∼( jω)G̃−1( jω))−1}> 0 ∀ω ∈R,

⇐⇒ Re{M∼( jω)G̃−1( jω)}> 0 ∀ω ∈R. (3.69)

The inverse G̃−1( jω) = (1+ kG( jω))−1 exists and is stable because without loss of
generality, the feedback interconnection [G,k] is stable. Using the canonical factoriza-
tion from Lemma 3 in [25], M( jω) = M−( jω)M+( jω), then making M+ = I and using
equation (3.69) yields the following equivalence

Re{M−( jω)G̃( jω)}> 0 ∀ω ∈R

⇐⇒ Re{M∼−( jω)G̃−1( jω)}> 0 ∀ω ∈R. (3.70)

Thus, the search for an anti-causal multiplier is equivalent to a search of the adjoint
multiplier using the inverse of the plant G̃−1( jω) = (I + kG( jω))−1. The adjoint of
any anti-causal multiplier is a causal multiplier, therefore the search is done over the
equivalent causal multiplier. The method can be stated as follows:
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Proposition 3.3.1. Given a LTI plant G(s) ∈ R H ∞ ∼ (Ap,Bp,Cp,Dp) and a constant

k > 0, assume without loss of generality that the feedback interconnection [G,k] is sta-

ble. Let us define the matrices:

Âp = Ap−Bp(I + kDp)
−1Cp, (3.71)

B̂p =−Bp(I + kDp)
−1, (3.72)

Ĉp = k(I + kDp)
−1Cp, (3.73)

D̂P = (I + kDp)
−1. (3.74)

Then, there exists a multiplier M(s) fulfilling conditions of Problem 3.2.6 if there exist

positive definite symmetric matrices S11 > 0,P11 > 0, unstructured matrices Ãu, B̃u,C̃u,

and scalars µ > 0 and λ > 0 such that the following inequalities are satisfied.

S11Âp + ÂT
p S11 S11Âp + ÂT

p P11 +ĈT
p B̄T

u + ĀT
u S11B̂p−ĈT

p +C̄T
u

? P11Âp + ÂT
p P11 + B̄uĈp +ĈT

p B̄T
u P11B̂p + B̄uD̂p−ĈT

p

? ? −D̂p− D̂T
p

< 0 (3.75)

[
−ĀT

u − Āu +λ(P11−S11) −B̄u

−B̄T
u −µI

]
< 0, (3.76)

λ(P11−S11) 0 C̄T
u

0 1−µ 0
C̄u 0 1

> 0. (3.77)

The reconstruction of the multiplier can be carried on as suggested in [1], solving
the following equations:

Āu = P12AhQT
12S11 (3.78)

B̄u = P12Bh (3.79)

C̄u =ChQT
12S11. (3.80)

This process starts using P22 = I with the following equation:[
Q11 Q12

QT
12 Q22

]
=

[
P11 P12

PT
12 I

]−1

=

[
(P11−P12PT

12)
−1 −(P11−P12PT

12)
−1P12

−PT
12(P11−P12PT

12)
−1 I +PT

12(P11−P12PT
12)
−1P12

]
(3.81)
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where it follows that

P12PT
12 = P11−S11 (3.82)

QT
12S11 =−PT

12, (3.83)

Then, the solutions are

Ah =−P−1
12 ĀuP−T

12 (3.84)

Bh = P−1
12 B̄u (3.85)

Ch =−C̄uP−T
12 . (3.86)

Finally, the multiplier M( jω) that fulfills all conditions for Theorem 2.2.6 is M( jω) =

M−( jω) = I−BT
h ( jωI +AT

h )C
T
h .

3.3.2 Anti-causal Search

The original method from Proposition 3.2.7 published in [1] is based in the multi-
objective synthesis developed in [62]. The method proposed in this section is a com-
plementary search, where P > 0 in Proposition 3.2.7 is replaced by P < 0, where the
non-singularity of P allows the substitution. A prior lemma is needed to bound the
L1(−∞,∞) norm of the anti-causal transfer function.

Lemma 3.3.2. Given a strictly proper transfer function H(s) ∈ R H ⊥∞ , parametrized by

H(s) =C(Is−A)−1B, where −A is Hurwitz. Assume that there exist Y < 0, µ > 0, and

λ > 0 such that [
ATY +YA−λY −Y B

−BTY −µ

]
< 0, (3.87)

−λY 0 CT

0 ξ−µ 0
C 0 ξ

> 0, (3.88)

then ||H(s)||1 < ξ.

Proof. The result is straightforward, since ||H(s)||1 is the same as ||(H∼(s))T ||1, where
H∼(s) is given by

(H∼(s))T = (−1)C(sI− (−A))−1B (3.89)

moreover, the factor (−1) can be ignored when taking norms. Therefore, taking W =
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−Y in equations (3.90) and (3.91), then there exists W > 0, µ > 0 and λ > 0 such that[
−ATW +W (−A)+λW WB

BTW −µ

]
< 0, (3.90)

λW 0 CT

0 ξ−µ 0
C 0 ξ

> 0, (3.91)

As a result, using the bound on the Peak-to-Peak gain in [62], the L1(−∞,∞) norm is
equivalent to ||− (H∼(s))T ||1 = ||H(s)||1 < ξ.

Using this lemma, a new proposition is made to find an anti-causal Zames-Falb
multiplier.

Proposition 3.3.3. Given a LTI plant G(s) ∈ R H ∞ ∼ (Ap,Bp,Cp,Dp) and a constant
k > 0. There exists a multiplier M(s) fulfilling conditions of Problem 3.2.6 if there exist
positive definite symmetric matrices S11 > 0,P11 > 0, unstructured matrices Ãu, B̃u,C̃u,
and scalars µ > 0 and λ > 0 such that following inequalities are satisfied.S11Ap +AT

p S11 S11Ap +AT
p P11 +KCT

p B̄T
u + ĀT

u S11Bp−KCT
p +C̄T

u

? P11Ap +KB̄uCp +AT
p P11 +KCT

p B̄T
u P11Bp + B̄u(I +KDp)−KCT

p

? ? −(I +KDp)− (I +KDT
p )

< 0,

(3.92)[
−ĀT

u − Āu−λ(P11−S11) B̄u

B̄T
u −µI

]
< 0, (3.93)

−λ(P11−S11) 0 C̄T
u

0 1−µ 0
C̄u 0 1

> 0. (3.94)

Proof. Note that the following statements are equivalent, from equation (3.11)

Re{M( jω)G̃( jω)} ≥ εI ∀ω ∈R,

⇐⇒ Re


 Ap 0 Bp

KBhCp Ah Bh(I +KDp)

KCp −Ch I +KDp


≥ εI∀ω ∈R (3.95)

using the Kalman-Yakubovich-Popov Lemma [41], equation (3.95) is equivalent to



CHAPTER 3. SEARCH FOR SISO ZAMES-FALB MULTIPLIERS 77

⇐⇒ ∃P = PT such that P

[
Ap 0

KBhCp Ah

]
+

[
AT

p KCT
p BT

h

0 AT
h

]
P P

[
Bp

Bh(I +KDp)

]
−

[
KCT

p

−CT
h

]
[
BT

p (I +KDT
p )B

T
h

]
P−

[
KCp −Ch

]
−(I +KDp)− (I +KDT

p )

< 0, (3.96)

where P =

[
P11 P12

PT
12 P22

]
. Note that positivity of P is not required. Assume that P and

P12 are not singular, and P22 < 0. The inverse of P−1 = Q can be expressed as follows[
Q11 Q12

QT
12 Q22

][
P11 P12

PT
12 P22

]
=

[
Q11P11 +Q12PT

12 Q11P12 +Q12P22

QT
12P11 +Q22PT

12 QT
12P12 +Q22P22

]
=

[
I 0
0 I

]
(3.97)

then, the following relations are true:[
Q11 I

QT
12 0

]T [
P11 P12

PT
12 P22

]
=

[
Q11 Q12

I 0

][
P11 P12

PT
12 P22

]
=

[
I 0

P11 P12

]
(3.98)

Applying a congruence transformation diag(

[
Q11 Q12

I 0

]
, I), and then a second congru-

ence transformation, diag(S11, I, I) = diag(Q−1
11 , I, I), matrix (3.96) is equivalent to

S11Ap +AT
p S11 S11Ap +AT

p P11 +KCT
p BT

h PT
12 +S11Q12AT

h PT
12 S11Bp−KCT

p +S11Q12CT
h

? P11Ap +KP12BhCp +AT
p P11 +KCT

p BT
h PT

12 P11Bp +P12Bh(I +KDp)−KCT
p

? ? −(I +KDp)− (I +KDT
p )

< 0

(3.99)

Now, define the unstructured matrices:

Āu = P12AhQT
12S11, (3.100)

B̄u = P12Bh, (3.101)

C̄u =ChQT
12S11. (3.102)

Then, equation (3.99) is equivalent to

S11Ap +AT
p S11 S11Ap +AT

p P11 +KCT
p B̄T

u + ĀT
u S11Bp−KCT

p +C̄T
u

? P11Ap +KB̄uCp +AT
p P11 +KCT

p B̄T
u P11Bp + B̄u(I +KDp)−KCT

p

? ? −(I +KDp)− (I +KDT
p )

< 0,

(3.103)
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which is condition (3.92).
Now the attention can shift to the description of the anti-causal multiplier. From

Lemma 3.3.2 consider equation (3.90) and apply the congruence transformation
diag(S11Q12, I), then equation (3.90) is equivalent to[

S11Q12AT
h Y QT

12S11 +S11Q12YAhQT
12S11−λS11Q12Y QT

12S11 −S11Q12Y Bh

−BT
h Y QT

12S11 −µI

]
< 0.

(3.104)
Let Y = P22, using the definition of the inverse of P from equation (3.97) and the short-
hand notation from equations (3.100),(3.101),(3.102), equation (3.104) is equivalent to[

−ĀT
u − Āu−λ(P11−S11) B̄u

B̄T
u −µI

]
< 0,

which is equation (3.93).
Similarly, from Lemma 3.3.2 consider equation (3.91) and use the congruence trans-

formation diag(S11Q12, I, I). Assume again Y = P22, use the definition of the inverse
of P from equation (3.97) and the shorthand notation from equations (3.100), (3.101),
(3.102), then equation (3.91) is equivalent to−λ(P11−S11) 0 C̄T

u

0 (1−µ)I 0
C̄u 0 1

> 0,

which is equation (3.94).
Finally, in order to remove the assumption about P, it is necessary to show that the

feasibility of equations (3.92), (3.93) and (3.94) ensures the existence of a non-singular
P12,P and P22 < 0.

Using equation (3.92) and the Kalman-Yakubovich-Popov Lemma [41],

S11 = Q−1
11 > 0 ⇐⇒ Q11 > 0,

and therefore non-singular. Using equation (3.94) it is known that P11−S11 < 0. With-
out loss of generality, make P22 =−I, then:[

Q11 Q12

QT
12 Q22

][
P11 P12

PT
12 −I

]
=

[
Q11P11 +Q12PT

12 Q11P12−Q12

QT
12P11 +Q22PT

12 QT
12P12−Q22

]
=

[
I 0
0 I

]
(3.105)
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where it follows that

− (P11−S11)> 0 ⇐⇒ −Q11P11 + I > 0,

then there exists Q12PT
12 > 0 such that −Q11P11 + I−Q12PT

12 = 0. Using

Q11P12−Q12 = 0 ⇐⇒ Q11P12 = Q12,

implies that P12 is non-singular, by noting that

Q12PT
12 > 0 ⇐⇒ Q11P12PT

12 > 0 ⇐⇒ P12PT
12 > 0.

Finally, using the fact that

−Q11P11 + I−Q12PT
12 = 0 ⇐⇒ Q11 = (P11 +P12PT

12)
−1,

the structure of the inverse of P is:[
Q11 Q12

QT
12 Q22

]
=

[
P11 P12

PT
12 −I

]−1

=

[
(P11 +P12PT

12)
−1 (P11 +P12PT

12)
−1P12

PT
12(P11 +P12PT

12)
−1 −I +PT

12(P11 +P12PT
12)
−1P12

]
,

consequently, P is not singular.
Therefore, conditions of Problem 3.2.6 are fulfilled, and the feedback interconnec-

tion is L2[0,∞) stable.

3.3.2.1 Addition of Popov multiplier

Popov multiplier is a limiting case of the Zames-Falb multiplier [64], i.e.

1+qs = lim
ε→0

1+qs
1+ εs

.

A detailed analysis can be found in [54]. Therefore, since the method proposed origi-
nally in [1] is restricted to causal multipliers and its anti-causal part has been developed
in the previous section, the addition of a Popov multiplier as proposed in [33, 63] to
these causal or anti-causal searches improves the parametrization of the Zames-Falb
multiplier. The result in [33] generates a non-causal Zames-Falb multiplier with a lim-
ited anti-causal part whereas the following result will generate Zames-Falb multipliers
with a limited causal part.
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Proposition 3.3.4. Given a LTI plant G(s) ∈ R H ∞ ∼ (Ap,Bp,Cp,0) and a constant

k > 0. There exist a multiplier M(s) = MZF +(ν+ηs), MZF ∈Modd fulfilling conditions

of Problem 3.2.6 if there exist positive definite symmetric matrices S11 > 0,P11 > 0,

unstructured matrices Ãu, B̃u,C̃u, and scalars ν > 0, η ∈ R, µ > 0 and λ > 0 such that

the following inequalities are satisfied.

S11Ap +AT
p S11 S11Ap +AT

p P11 +KCT
p B̄T

u + ĀT
u S11Bp−K(I + vI +ηAT

p )C
T
p +C̄T

u

? P11Ap +AT
p P11 +KB̄uCp +KCT

p B̄T
u P11Bp + B̄u−K(I + vI +ηAT

p )C
T
p

? ? −2I−2vI−ηK(CpBp +BT
pCT

p )

< 0

(3.106)[
−ĀT

u − Āu−λ(P11−S11) B̄u

B̄T
u −µI

]
< 0, (3.107)

−λ(P11−S11) 0 C̄T
u

0 1−µ 0
C̄u 0 1

> 0; (3.108)

This result can be shown either using IQC machinery and following [1], [63], or
using classical loop transformation techniques. Here, the latter is preferred for the sake
of additional insight.

Proof. In this case, the class of Zames-Falb multiplier plus Popov is defined by the
addition of a Popov multiplier and a Zames-Falb multiplier, i.e.

MPZF(s) = MZF(s)+ v+ηs (3.109)

where MZF ∈Modd, ν > 0, η∈R. Then, the existence of a multiplier MPZF(s) such that

Re{MPZF( jω)(1+ kG( jω))}> 0 (3.110)

implies the L2[0,∞) stability of the feedback interconnection of Figure 2.4 via Theorem
2.2.6.

First, note that the structure of MPZF( jω)(1 + kG( jω)) is non-proper unless the
constant term in G(s) is zero. Then, the following expressions are equivalent to equation
(3.110):

Re{(1−Ch( jωI−Ah)
−1Bh + vI +η jωI)G̃( jω)} ≥ εI∀ω ∈R
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⇐⇒ Re




Ap 0 0 Bp

KBhCp Ah 0 Bh

0 0 Ap Bp

(I + vI)KCp −Ch ηKCpAp I + vI +ηKCpBp


≥ εI∀ω ∈R.

(3.111)

Using the transformation T =

 I 0 0
0 I 0
−I 0 I

, and removing uncontrollable modes, equa-

tion (3.111) results in

⇐⇒ Re


 Ap 0 Bp

KBhCp Ah Bh

KCp(I + vI +ηAp) −Ch I + vI +ηKCpBp


≥ εI∀ω ∈R. (3.112)

Now, using the proof for Proposition 3.3.1, replace equation (3.95) with equation (3.112),
the rest of the proof follows in similar fashion. Finally, equation (3.103) is replaced by
equation (3.106), which is ensured in the conditions for this proposition.

Remark 3.3.5. As commented in [50] and [62], a search over λ is required for ob-

taining competitive results. In the causal Zames-Falb search [1, 50] as well as in the

anti-causal search presented in this section, the maximum slope k appears to have a

quasi-convex dependence with respect to λ. However, the addition of the Popov multi-

plier, in [33] and in this section changes this behaviour, and several local maxima can

appear.

Now, the reconstruction of the multiplier can be carried on as suggested in [1], solv-
ing the following equations:

Āu = P12AhQT
12S11

B̄u = P12Bh

C̄u =ChQT
12S11.

This process starts using P22 =−I with the following equation:[
Q11 Q12

QT
12 Q22

][
P11 P12

PT
12 −I

]
=

[
Q11P11 +Q12PT

12 Q11P12−Q12

QT
12P11 +Q22PT

12 QT
12P12−Q22

]
=

[
I 0
0 I

]
,
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where it follows that

P12PT
12 = S11−P11,

QT
12S11 = PT

12.

Then, the solutions are

Ah = P−1
12 ĀuP−T

12 ,

Bh = P−1
12 B̄u,

Ch = C̄uP−T
12 .

Finally, the multiplier M( jω) that fulfils all conditions for Theorem 2.2.6 is MPZF( jω)=

1−Ch( jωI−Ah)
−1Bh + v(I + η

v jωI).

3.4 Numerical Results

The multiplier set in Theorem 2.2.6 is divided according to their structure in Figure 3.2.
For monotone non-linearities there exists two multiplier synthesis: summation of deltas [28],
and the specialization of [31]. In contrast, for the class of odd monotone non-linearities,
the list of multipliers are the following: causal rational transfer function [1] and the
extension to non-causal multipliers using Popov multiplier [63, 33]; a complement of
the causal method, namely, the anti-causal Proposition 3.3.1 and the extension to non-
causal Proposition 3.3.4; finally summation of exponentials [31] and Park’s method
[30], which are originally non-causal. It can be noted that none of the structures are
able to cover the complete multipliers set. At the same time it can be seen that there is
no method that provides the best results for all of the examples.

Nine examples (see Table 3.1) are revisited in order to analyse the performance of
each method. Examples 1-6 were proposed in [1]. Example 7 was given in [35] and
example 8 was proposed in [29]. Example 9 is new. In each example, the non-linearity
is allowed within sector and slope [0,k], and then the bisection method is used to find
the maximum k for which the closed loop is stable. For examples 1, 2 and 9, results for
the anti-causal methods are obtained using 1/k+G( jω) rather than 1+ kG( jω) as the
numerical results sometimes differ.
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M

Modd

Deltas

Deltas

M(s)

M(s)

Causal

Causal

Problem:3.2.2

Problem:3.2.4 Problem:3.2.4

Rational Theorem 1[30]

3.3.1
Prop:

Rational

Prop:
3.3.4

Prop: 2[1]Prop: 2[63]
Prop: 1[33]

Figure 3.2: Schematic representation of multiplier sets

Table 3.1: Example list

Example Transfer Function
1 [1] P1(s) = s2−0.2s−0.1

s3+2s2+s+1
2 [1] P2(s) =−P1(s)
3 [1] P3(s) = s2

s4+0.2s3+6s2+0.1s+1
4 [1] P4(s) =−P3(s)
5 [1] P5(s) = s2

s4+0.0003s3+10s2+0.0021s+9
6 [1] P6(s) =−P5(s)
7 [35] P7(s) = s2

s3+2s2+2s+1

8 [29] P8(s) = 9.432 (s2+15.6s+147.8)(s2+2.356s+56.21)(s2−0.332s+26.15)
(s2+2.588s+90.9)(s2+11.79s+113.7)(s2+14.84s+84.05)(s+8.83)

9 (new) P9(s) = s2

s4+5.001s3+7.005s2+5.006s+6
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Table 3.2: Sector/slope bound obtainable using various multiplier synthesis methods

Example Ex. 1 Ex. 2 Ex. 3 Ex. 4 Ex. 5 Ex. 6 Ex. 7 Ex. 8 Ex. 9
Park [30] 4.5894 1.0894 0.7083 0.7883 0.00183 0.00183 10,000+ 62.5691 26.0097
Turner [1, 63, 33] (Proposi-
tion 3.2.7)

2.2428 1.0894 0.7049 0.8526 0.00181 0.00095 17.605 87.3854 5.2643

Anti-causal Turner (Proposi-
tion 3.3.1)

4.5894 1.0745 0.9846 0.6135 0.00095 0.00182 10,000+ 21.6190 38.5982

Turner+Popov [63, 33]
(Proposition 3.2.8)

3.2897 1.0894 0.7760 1.0792 0.00333 0.00318 17.724 87.3854 13.7834

Anti-causal Turner+Popov
(Proposition 3.3.4)

4.5894 1.0745 1.4513 0.7222 0.00319 0.00333 10,000+ 22.4304 91.0858

Deltas [28, 26, 29] (Algo-
rithm 1)

4.5894 1.0894 1.6122 1.2652 Unreliable Unreliable 95.406 83.1430 80.2735

Exponentials [32] 4.5894 1.0803 1.1192 0.9107 0.000576 0.0012 10,000+ 13.4375 49.5643
Nyquist value 4.5894 1.0894 ∞ 3.5 ∞ 1.7142 ∞ 87.3854 ∞
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Table 3.2 shows the results for the plants in Table 3.1. The Nyquist value is shown
as an upper limit for the maximum sector-slope, and it represents the maximum k such
that KG satisfies the Nyquist criterion for all 0 < K < k. Given that examples 1 and 2
are third order plants, the Kalman Conjecture is valid for these plants [53], therefore the
Nyquist value becomes the supremum for the maximum stabilizing sector-slope.

The summation of δ(.) distributions, using Algorithm 1, can achieve better results
on Example 4, but it is necessary to perform an evaluation of equation (3.6) in Problem
3.2.2 for a large number of frequencies and times TN in order to be accurate, because the
transfer function is not rational. Examples 5 and 6 show that this lack of accuracy leads
to bad performance with lightly damped plants. Additionally, the initial time t1 is crucial
for the convergence of the problem, because the algorithm can easily converge to a local
minimum. This method contains no conservatism when computing the L1(−∞,∞) norm
for the function MN(s), and therefore the main identified source of conservatism lies in
the correct choice of the vector TN .

The summation of exponentials is more accurate in the computation of equation
(2.9) when using Theorem 2.2.6, because the test of Problem 3.2.4 can be executed us-
ing LMIs. The L1(−∞,∞) norm (equation (2.8)) for the generated multiplier MN(s) in
[32] is approximated, and seems to be the only source of conservatism. This method
reaches good performance for Examples 1 and 7 with low order multipliers, however,
in order to improve the results for the rest of the examples, a multiplier of greater or-
der was required. This method presents an important advantage over Safonov’s original
approach, because it requires no initial selection of time t1. This automatic search ex-
plains why this method is able to find the maximum sector boundaries proposed by the
Kalman conjecture in Examples 1 and 2 without problem. In [1] the method proposed
by Chen [31] is assumed to be more conservative than Park’s method [30]. Neverthe-
less, using the synthesis described in Section 3.2.2, the above statement is not general
as shown in examples 3 and 4.

Park’s method was included as reference for minimal expected performance, since
it can be seen as a convex search within the first order Zames-Falb multipliers [65] with
no conservatism in the L1(−∞,∞) norm, even with lightly damped plants.

Despite this, these two methods can synthesis multipliers within M as close as de-
sired to any multiplier in this set by increasing N. Park’s results show that there exist
multipliers within M which cannot be achieved by these two methods. Therefore, nu-
merical issues are the main source of conservatism in these methods for lightly damped
plants, see examples 5 and 6.
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Remarkably, results for the anti-causal Turner+Popov method improves the maxi-
mum slope where the Park’s method is better than the causal method [1] (examples 1, 3
and 6). Nevertheless, the addition of the Popov multiplier in [33, 63] and its implemen-
tation for the anti-causal method provides a reliable and competitive method if they are
combined.

Example 9 has been designed to show under what circumstances the methods pro-
posed in this work are expected to provide better results than alternative methods in
the literature. Anti-causal multipliers are expected to be more appropriate than causal
multipliers for achieving negative values of the phase. In addition, temporal searches
such as summation of δ(.) in Section 3.2.1 can be very inaccurate for lightly damped
plants and summation of exponentials from Section 3.2.2 can be conservative within
the set of Zames-Falb multipliers, due to the use of a triangle inequality for bounding
the L1(−∞,∞) norm (see equation (18) in [32]); one more time, in plants with slightly
damped poles it can be a drawback. Therefore, the proposed example has two resonant
poles at −0.0005± 1 j, two zeros at 0 to ensure the Nyquist value at infinity, and two
other poles at -2 ant -3 so the order is more than 3.

The numerical results show that the causal multipliers are more appropriate when the
Nyquist plot of the plant reaches the minimum value of its real part in the third quadrant
(Examples 4 and 6), whereas anti-causal multipliers are more appropriate when this
minimum is reached in the second quadrant (Examples 1,3,5 and 7). This empirical rule
agrees with the analysis in Section 2.2.2.

3.5 Conclusions

The set of Zames–Falb multipliers is not fully explored by the current methods for
multiplier synthesis. The elusive description of the L1(−∞,∞) norm of a function as a
frequency condition has introduced fundamental conservatism into most methods that
synthesize multipliers based in rational transfer functions. However, this problem is
well-known in the literature and has been the focus of the multiplier synthesis problem.

The summation of exponentials deals with the problem by allowing only signals
with positive impulse in order to find the value of the norm. The summation of delta
distributions appears as the simplest approach to find the exact value of the norm of the
function. However, the simplicity of the norm calculation trades off with the compu-
tational complexity required to verify any other conditions expressed in the frequency
domain. This complexity leads to the need for expert experience in using the method in
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order to achieve its best performance. In contrast, the rational causal multiplier intro-
duces only an approximate upper bound for the L1(−∞,∞) norm, but simplifies the test
for any other frequency condition, because they can be reduced an LMI. The main ad-
vantages of these methods is their multiplier flexibility, both summation of exponentials
and summation of delta distributions require little information from the Linear Time
Invariant plant in order to define their structure. This flexibility is a potential advantage
when Zames-Falb multipliers are used in problems outside the domain of Absolute Sta-
bility. Problems like Absolute Stability with delay [66, 67, 68, 69, 70, 71, 72, 73, 74, 75]
and stability of systems with hysteresis [76] should find in this summary an ideal starting
point when choosing a way to synthesize Zames-Falb multipliers.

In order to extend and simplify the use of Zames-Falb multipliers for more general
problems, this thesis presented an algebraic correction to the LMI search proposed in
[32] to perform a multiplier search.

In contrast, the search for causal transfer functions seems to be an optimal solution
to find Zames-Falb multipliers, given that it can define the position of poles and zeros in
one step, but fails to achieve the maximum performance for all the selected examples.
For the first order Zames-Falb multipliers, theoretical results have shown that causal
Zames-Falb multipliers have a corresponding constraint on their phase lead. An exam-
ple given in the literature has been used to show that a non-causal multiplier obtained by
inspection beats all the convex searches if they are restricted artificially to causal Zames-
Falb multipliers. Therefore, the causality of the transfer function has been identified via
examples in this paper to be a significant source of conservatism.

Using the method developed in [1], a search of anti-causal multipliers has been pro-
posed, which is a complementary solution to the search of causal multipliers. The new
search has been tested and it improves the results given by Turner’s method [1] in the
examples where it is not competitive. A similar extension to that of [63] is proposed to
avoid the anti-causal limitation. The anti-causal search developed in this paper confirms
that a major source of conservatism for some examples in [1] is the restriction to causal
multipliers. The combination of causal and anti-causal methods with the addition of
the Popov multiplier generates results at least competitive with the best in the literature.
However, the delta method can provide better results in some cases due to its advantages
measuring the L1(−∞,∞) norm of the multiplier. Finding an efficient search over the
entire class of Zames-Falb multipliers remains an open problem.



Chapter 4

IQC and Dissipativity

4.1 Introduction

The Introduction of this thesis presented the two stability results, obtained using the
factorization proposed by [42]. The first result, Lemma 2.3.7, attempts to introduce non-
causal multipliers for dissipative systems. This result makes use of IQC framework [35]
as the way to analyse the non-linearities because this descriptions allows to transforms
without difficulty a test for stability into a Linear Matrix Inequality (LMI) problem.
Moreover, Lemma 2.3.7 is a result that does not depend on any homotopy argument.
However, the way loop transformations are used imposed a restrictive condition on the
multiplier structure for the equivalent system, namely its causal invertibility.

The second result, Lemma 2.3.8, attempts to use conditions similar to that of the
IQC Theorem to show stability via Passivity Theorem. However, this lemma is unable to
completely capture the structure of the IQC to describe non-linear systems and therefore
falls short in achieving a generalization of Passivity with arbitrary dynamic multipliers.

The main results of this chapter are Theorem 4.2.2, Corollary 4.2.4 and Lemma
4.2.5. Theorem 4.2.2 makes successful use of the IQC framework to show the stability
of the feedback interconnection of two non-linear systems. The trade off made by The-
orem 4.2.2 is that it requires that every operator to be open loop L2[0,∞) stable before
doing the feedback interconnection. Subsequently, Corollary 4.2.4 presents a link be-
tween the standard representation of IQCs from [35] and the standard representation of
Dissipativity, but with the added freedom of dynamic multipliers. Finally, Lemma 4.2.5
shows the equivalence of Theorem 4.2.2 and the IQC Theorem [35].

88
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4.2 Stability Using the IQC Theorem

This section develops an explicit stability theorem using exclusively the IQC Theorem
for the system in Figure 4.1a.

-

∆1

∆2

+
+

+
+

u1ω1

ω2u2y2

y1

(a) Original closed loop

-

H + +[
ω1
ω2

]
[

u1
u2

][
y1
y2

] [
∆1 0
0 ∆2

]

(b) Modified closed loop

Figure 4.1: Equivalent System Closed loop

For the feedback interconnection in Figure 4.1a, the following remarks summarize the

conditions for well posedness and stability. Consider H =

[
0 In

Im 0

]
.

Lemma 4.2.1. The well posedness of the non-linear operator[
∆1 0
0 ∆2

][
I−H

[
∆1 0
0 ∆2

]]−1

(4.1)

is equivalent to the well posedness of the system in Figure 4.1a.

Furthermore, the L2[0,∞) stability of the causal non-linear operator (4.1) is equiv-

alent to the L2[0,∞) stability of the system in Figure 4.1a.

Proof. For two causal bounded non-linear operators ∆1 : Lm
2e → Ln

2e and ∆2 : Ln
2e →

Lm
2e, the feedback interconnection [∆1,∆2] in Figure 4.1a can also be represented by the

following equation: [
y1

y2

]
=

[
∆1 0
0 ∆2

][
I−H

[
∆1 0
0 ∆2

]]−1[
ω1

ω2

]
. (4.2)

Then, the well posedness of the mapping [ωT
1 ,ω

T
2 ]

T to outputs [yT
1 ,y

T
2 ]

T is equivalent

to the well posedness of the operator

[
∆1 0
0 ∆2

][
I−H

[
∆1 0
0 ∆2

]]−1

shown in Figure

4.1b. Additionally, if the system in Figure 4.1a is well posed, the L2[0,∞) stability of the
mapping from [ωT

1 ,ω
T
2 ]

T to outputs [yT
1 ,y

T
2 ]

T (Figure 4.1a) is equivalent to the L2[0,∞)

stability of the non-linear causal operator

[
∆1 0
0 ∆2

][
I−H

[
∆1 0
0 ∆2

]]−1

(Figure 4.1b).
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Note that the feedback interconnection in Figure 4.1a can be represented by the
equivalent loop in Figure 4.1b. Hence, to show the stability of the system in Figure
4.1a, it could be used the equivalent representation in Figure 4.1b via Remark 4.2.1.

The following Theorem presents an improved version of Lemma 2.3.7 and Lemma
2.3.8, but deduced from the IQC Theorem. Note that this result will still depend on the
continuous well posedness of the interconnection [τ∆1,τ∆2] for all τ ∈ [0,1]. However,
this is an equivalent representation of the IQC Theorem, thus successfully removes con-
dition in equation (2.22) from Lemma 2.3.7, and unlike Lemma 2.3.8, it makes full use
of the IQC library.

Theorem 4.2.2. Given two Hermitian measurable functions Π1,Π2 : R→ Cm+n×m+n

and given two causal bounded operators ∆1 : Lm
2e→ Ln

2e, ∆2 : Ln
2e→ Lm

2e. Suppose that:

1. ∀τ ∈ [0,1], the feedback interconnection [τ∆1,τ∆2] is well posed,

2. ∆1 and ∆2 satisfy the following IQCs:〈(
ỹ1

x̃1

)
,

(
Π1,11( jω) Π1,12( jω)

Π∼1,12( jω) Π1,22( jω)

)(
ỹ1

x̃1

)〉
L2( jR)

≥ 0

∀x̃1 ∈H m
2 , ỹ1 = F {∆1(F −1{x̃1})}, (4.3)

〈(
x̃2

ỹ2

)
,

(
Π2,11( jω) Π2,12( jω)

Π∼2,12( jω) Π2,22( jω)

)(
x̃2

ỹ2

)〉
L2( jR)

≥ 0

∀x̃2 ∈H n
2 , ỹ2 = F {∆2(F −1{x̃2})}. (4.4)

with Π1,22( jω),Π2,11( jω)≥ 0 ∀ω ∈R

Then, the feedback interconnection [∆1,∆2] is L2[0,∞) stable if there exist some

constants λ,ε > 0 such that

Π1( jω)+λΠ2( jω)≤−εI ∀ω ∈R. (4.5)

Proof. Firstly, note equation (4.5) implies that Π1,11( jω),Π2,22( jω) are uniformly strictly
negative over all frequencies since

Π1,11( jω)+λΠ2,11( jω)+ εI ≤ 0 =⇒ Π1,11( jω)≤−λΠ2,11( jω)− εI < 0 ∀ω ∈R,
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and

Π1,22( jω)+λΠ2,22( jω)+ εI ≤ 0 =⇒ λΠ2,22( jω)≤−Π1,22( jω)− εI < 0 ∀ω ∈R.

For simplicity of the proof, define: Π̃1( jω) = HT Π1( jω)H. Therefore, the follow-
ing IQCs hold for all τ∈ [0,1] if, and only if, the products (4.3) and (4.4) hold, as shown
in Remark 2 in [35].〈(

x̃1

τỹ1

)
,Π̃1( jω)

(
x̃1

τỹ1

)〉
L2( jR)

≥ 0 ∀x̃1 ∈H m
2 , ỹ1 = F {∆1(F −1{x̃1})}, (4.6)

〈(
x̃2

τỹ2

)
,Π2( jω)

(
x̃2

τỹ2

)〉
L2( jR)

≥ 0 ∀x̃2 ∈H n
2 , ỹ2 = F {∆2(F −1{x̃2})}. (4.7)

The feedback loop can be seen as the bounded causal non-linear operator ∆ =[
∆1 0
0 ∆2

]
interconnected in positive feedback with the linear static system

H =

(
0 In

Im 0

)
∈ R H m+n×m+n

∞ .

Then, the following conditions hold:

1. ∀τ ∈ [0,1], the interconnection [H,τ∆] is well posed

2. Adding equation (4.6) and equation (4.7), multiplied by some constants
α1,α2 > 0, will remain positive ∀τ ∈ [0,1], i.e.

α1

〈(
x̃1

τỹ1

)
,Π̃1( jω)

(
x̃1

τỹ1

)〉
L2( jR)

+α2

〈(
x̃2

τỹ2

)
,Π2( jω)

(
x̃2

τỹ2

)〉
L2( jR)

≥ 0

∀x̃1 ∈H m
2 , x̃2 ∈H n

2 , ỹ1 = F {∆1(F −1{x̃1})}, ỹ2 = F {∆2(F −1{x̃2})}.

The following statements are equivalent:
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∀τ ∈ [0,1] and ∀α1,α2 > 0,

〈
x̃1

τỹ1

x̃2

τỹ2

 ,

(
α1Π̃1( jω) 0

0 α2Π2( jω)

)
x̃1

τỹ1

x̃2

τỹ2


〉

L2( jR)

≥ 0

∀x̃1 ∈H m
2 , x̃2 ∈H n

2 , ỹ1 = F {∆1(F −1{x̃1})}, ỹ2 = F {∆2(F −1{x̃2})}.

⇐⇒ ∀τ ∈ [0,1] and ∀α1,α2 > 0,

〈
x̃1

x̃2

τ

(
ỹ1

ỹ2

)
 , Γ

(
α1Π̃1( jω) 0

0 α2Π2( jω)

)
Γ


x̃1

x̃2

τ

(
ỹ1

ỹ2

)

〉

L2( jR)

≥ 0

∀x̃1 ∈H m
2 , x̃2 ∈H n

2 , ỹ1 = F {∆1(F −1{x̃1})}, ỹ2 = F {∆2(F −1{x̃2})}, (4.8)

where Γ =


Im 0 0 0
0 0 In 0

0 In 0 0
0 0 0 Im

 .

Given that τ

(
ỹ1

ỹ2

)
is the Fourier transform of τ

(
∆1 0
0 ∆2

)[
x1

x2

]
, with

[
x1

x2

]
=

F −1

{[
x̃1

x̃2

]}
then the inner product (4.8) satisfies the Integral Quadratic Con-

straint ∀τ ∈ ε[0,1] with

Π( jω) = Γ

[
α1Π̃1( jω) 0

0 α2Π2( jω)

]
Γ

parametrized by α1,α2.

3. The following statements are equivalent:

∃ε1 > 0, α1,α2 ≥ 0 such that[
H

I

]∗
Π( jω)

[
H

I

]
≤−ε1I ∀ω ∈R,
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⇐⇒ ∃ε1 > 0, α1,α2 ≥ 0 such that[
H

I

]∗(
α1Π̃1( jω) 0

0 α2Π2( jω)

)[
H

I

]
≤−ε1I ∀ω ∈R,

since

[
H

I

]∗
Γ =

[
H

I

]∗
⇐⇒ ∃ε > 0, λ≥ 0 such that

Π1( jω)+λΠ2( jω)≤−εI ∀ω ∈R. (4.9)

[Multiply all the inequality by 1
α1

, and let λ = α2
α1

and ε = ε1
α1

. Note also that
Π̃1( jω) = HT Π1( jω)H]

Note that the last equation is true from equation (4.5).

Using the IQC Theorem and Conditions 1,2,3, then the feedback interconnection[
H,

(
∆1 0
0 ∆2

)]
is L2[0,∞) stable. By Lemma 4.2.1, the equivalent feedback

interconnection [∆1,∆2] is L2[0,∞) stable.

Although Jönsson [43] first outlines these kind of interconnections, it does not ex-
plore the limitations imposed by the IQC Theorem over the non-linear systems, namely
equation 4.9.

Regarding Lemma 2.3.7 and Lemma 2.3.8, first note that the resulting corollary has
no link with Passivity or Dissipativity, because this result depends on an homotopy argu-
ment to show L2[0,∞) stability. Second, note that the operators Π1( jω) and Π2( jω) are
required to hold Π1,22( jω)≥ 0, Π2,11( jω)≥ 0, and from equation (4.5), Π1,11( jω)< 0,
Π2,22( jω)< 0. However, these operators are not restricted to the class of PN-IQC mul-
tipliers, because Π1( jω) and Π2( jω) are not required to belong to R L∞ (i.e. includes
irrational operators).

Moreover, the representation in Theorem 4.2.2 also makes it easy to connect IQCs
and other areas of non-linear control. The corollaries in Section 4.3 will explore some
of the classical Passivity and Dissipativity Theorems and their connection to the IQC
structure.

In order to make the connection between Theorem 4.2.2 and the IQC Theorem,
first is necessary to define a class of multipliers that hold conditions of Theorem 4.2.2
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directly.

Definition 4.2.3. An Hermitian measurable function Π :R→Cm+n×m+n with structure

Π( jω) =

[
Π11( jω) Π12( jω)

Π∼12( jω) Π22( jω)

]
.

is said to be a positive-negative multiplier if Π11( jω)≥ 0,Π22( jω)≤ 0 ∀ω ∈R

Do not confuse PN-IQCs with positive-negative multipliers, as the later only refers
to non-rational operators, but does not implies the existence of any time domain condi-
tion such that of hard IQC multipliers[35].

The direct implementation of Theorem 4.2.2 initially implies a restriction to use
positive-negative multipliers. This limitation will be removed later.

Corollary 4.2.4. Let G ∈ R H l×m
∞ and ∆ : L2[0,∞)l → L2[0,∞)m be a causal bounded

operator. Assume that there exists an Hermitian measurable function Π :R→Cm+n×m+n

with Π11( jω)≥ 0,Π22( jω)≤ 0 ∀ω ∈R, and

1. the feedback interconnection of [G,τ∆] is well posed ∀τ[0,1];

2. ∆ satisfies the IQC defined by Π( jω), i.e.〈(
U( jω)

V ( jω)

)
,Π( jω)

(
U( jω)

V ( jω)

)〉
L2( jR)

≥ 0

∀U( jω) ∈H l
2 ,V = F {∆(F −1{U})}; (4.10)

3. there exists ε1 > 0 such that[
G( jω)

I

]∼
Π( jω)

[
G( jω)

I

]
≤−ε1I ∀ω ∈R. (4.11)

Then, the feedback interconnection [∆,G] is L2[0,∞) stable.

Proof. For this proof, make ∆1 = G and ∆2 = ∆. Because of the linearity of G, the well
posedness of [G,τ∆] implies the well posedness of [

√
τG,
√

τ∆] ∀τ ∈ [0,1].

• Case 1: ||∆||2L2
||G||2∞−1 < 0. Consider ∆1 = G, ∆2 = ∆. Choose λ as in (4.23), ε

as in (4.24), Π1 as in (4.25) and Π2 as in (4.26).
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• Case 2: ||∆||2L2
||G||2∞−1 = 0. Choose

λ = 1,

ε =
ε1||∆||2L2→L2

1+ ||∆||2L2→L2

,

Π1( jω) =−Π( jω)−

(
0 0
0 ε1I

)
− ε1||∆||2L2→L2

2+ ||∆||2L2→L2

1+ ||∆||2L2→L2

(
I 0
0 −||G||2∞I

)
,

Π2( jω) = Π( jω)+ ε1

(
||∆||2L2→L2

I 0
0 −I

)
.

• Case 3: ||∆||2L2→L2
||G||2∞−1 > 0. Choose

λ = 1,

ε =
ε1

(1+ ||G||2∞)(1+ ||∆||2L2→L2
)
,

Π1( jω) =−Π( jω)−

(
0 0
0 ε1I

)

−
ε1||∆||2L2→L2

+ ε1(||∆||2L2→L2
||G||2∞−1)

(||∆||2L2→L2
||G||2∞−1)(1+ ||G||2∞)

(
I 0
0 −||G||2∞I

)
,

Π2( jω) = Π( jω)+
ε1||∆||2L2→L2

(1+ ||∆||2L2→L2
)(||∆||2L2→L2

||G||2∞−1)

(
||∆||2L2→L2

I 0
0 −I

)
,

Then G,∆ satisfy the IQCs (4.3) and (4.4). Π1( jω) and Π2( jω) fulfill Π1,22( jω),
Π2,11( jω) > 0 ∀ω ∈ R∪{∞}. Meanwhile, Π1( jω),Π2( jω),λ,ε satisfy (4.5). Then
the system is L2[0,∞) stable via Theorem 4.2.2.

The following lemma shows that a feedback interconnection [G,∆] holding condi-
tions 1-3 of Theorem 2.3.3 will also hold the conditions of Theorem 4.2.2. In other
words, the original closed loop can be decomposed into a succession of equivalent sys-
tems via loop transformations, where each one holds positive-negative multipliers. This
procedure is necessary when Π22( jω) is not sign definite.

Lemma 4.2.5. Let G ∈ R H l×m
∞ and ∆ : L l

2[0,∞)→ Lm
2 [0,∞) be a bounded causal op-

erator. Assume that:
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1. for every τ ∈ [0,1], the feedback interconnection of [G,τ∆] is well posed;

2. for every τ ∈ [0,1], the IQC defined by a hermitian Π( jω) is satisfied by τ∆, i.e.〈(
U

τV

)
,Π( jω)

(
U

τV

)〉
H2

≥ 0 ∀U ∈H2,V = F {∆(F −1{U})}. (4.12)

3. there exists ε > 0 such that[
G( jω)

I

]∼
Π( jω)

[
G( jω)

I

]
≤−ε1I ∀ω ∈R (4.13)

Then, the feedback interconnection of G and ∆ is L2[0,∞) stable.

Proof. Because of the linearity of G, the well posedness of [G,τ∆] implies the well
posedness of [

√
τG,
√

τ∆] ∀τ ∈ [0,1]. The rest of the proof will build from Corollary
4.3.1 and Corollary 4.2.4.

• Assume Π22( jω)≤ 0. choose τ = 1 and use Corollary 4.2.4.

• Assume Π22( jω) is not sign definite.

This proof is divided in two steps. The first step is to find a τ0 ∈ [0,1] such that the
feedback interconnection [G,τ0∆] is stable. A trivial solution for this step is to choose
τ0 =

1
2||G||∞||∆||L2→L2

and use Small Gain Theorem, or Corollary 4.3.1. Then, the positiv-
ity of Π22( jω) is not an obstacle to find two positive-negative multipliers.

The second step is to show the stability for τ = 1. This step is made by an iterative
process of successive small modifications of the stable system. Figure 4.2 represents a
sketch of the proof.

-

G

∆

+
+

+
+

u1ω1

ω2u2

y2

y1

τ0

τ1
ω3 y1

∆̂

... ...

+ +

+
+

Figure 4.2: Closed loop iterative process
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The first problem is to find an IQC parametrized by simple positive-negative multi-
plier Π2( jω) that ∆̂ fulfils, with input ω3 and output y1.〈(

W3

Y1

)
,Π2( jω)

(
W3

Y1

)〉
H2

≥ 0 ∀W3 ∈H m
2 ,Y1 = F {∆̂(F −1{W3})}.

Using equations (4.12) and (4.13), the closed loop in Figure 4.2 holds the following
IQC, for any γ,κ > 0:

∫
∞

−∞

γ

(
U2

τ0Y1

)∼
Π( jω)

(
U2

τ0Y1

)

+κ

(
G( jω)U1

U1

)∼(
−Π( jω)−

(
0 0
0 ε1I

))(
G( jω)U1

U1

)
dω≥ 0

∀U1 ∈H m
2 ,U2 ∈H l

2 ,Y1 = F {∆(F −1{U2})}, (4.14)

where U1,U2 are the Fourier transforms of u1,u2. Using the stable closed loop of Figure
4.2, signals u1 and u2 are

u1 = ω1 +ω3 + τ0∆(u2)

u2 = ω2 +Gu1.

Without loss of generality, make ω2 = ω1 = 0. Then

u2 = Gu1 = Gω3 + τ0G∆(u2),

u1 = ω3 + τ0∆(u2).

Make the appropriate substitutions on equation (4.14). Consequently the system ∆̂ is
well posed using Condition 1 and L2[0,∞) stable for τ0, therefore it holds the following
IQC

∫
∞

−∞

(
W3

Y1

)∼[
γ

(
G( jω)∼ 0

τ0G( jω)∼ τ0I

)
Π( jω)

(
G( jω) τ0G( jω)

0 τ0I

)

+ κ

(
G( jω)∼ I

τ0G( jω)∼ τ0I

)(
−Π( jω)−

(
0 0

0 ε1I

))(
G( jω) τ0G( jω)

I τ0I

)](
W3

Y1

)
dω≥ 0

∀W3 ∈H m
2 ,Y1 = F {∆̂(F −1{W3})},
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where ω3 is the desired input signal and y1 = ∆(u2) is the desired output. Choose
γ = 1,κ = 1, then

∫
∞

−∞

(
W3

Y1

)∼
Π2( jω)

(
W3

Y1

)
dω≥ 0 ∀W3 ∈H m

2 ,Y1 = F {∆̂(F −1{W3})},

with

Π2( jω) =[
−Π12( jω)∼G( jω)−G( jω)∼Π12( jω)−Π22( jω) −τ0Π12( jω)∼G( jω)− τ0Π22( jω)

−τ0G( jω)∼Π12( jω)− τ0Π22( jω) 0

]

+

[
−ε1I −τ0ε1I

−τ0ε1I −τ2
0ε1I

]
. (4.15)

Note that Π2,11( jω)≥ 0 ∀ω ∈R using equation (4.13), i.e.

−Π
∼
12( jω)G( jω)−G( jω)∼Π12( jω)−Π22( jω)− ε1I

≥ G( jω)∼Π11( jω)∼G( jω)≥ 0 ∀ω ∈R.

Then, Π2( jω) is a positive-negative multiplier.
In addition, note that the positive constant operator τ1I, where τ1 ∈ (0,1] holds the

following IQC with a positive-negative multiplier:

∫
∞

−∞

[
τ1Y1

Y1

]∼
Π1( jω)

[
τ1Y1

Y1

]
dω≥ 0 ∀Y1 ∈H m

2 ,

with

Π1( jω) =

[
− 1

τ2
1
X( jω) − 1

τ1
S( jω)∼

− 1
τ1

S( jω) X( jω)+S( jω)+S( jω)∼+Z( jω)

]
(4.16)

for any X( jω) = X( jω)∼ ≥ 0, Z( jω) = Z( jω)∼ ≥ 0 and S( jω) such that X( jω) +

S( jω)+S( jω)∼+Z( jω)≥ 0.
Choose

X( jω) =−τ
2
1(Π22( jω)+G( jω)∼Π12( jω)+Π12( jω)∼G( jω)),

S( jω) =−τ1τ0(ε1I +Π22( jω)+G( jω)∼Π12( jω)),

Z( jω) =
ε1τ2

0
2

I.



CHAPTER 4. IQC AND DISSIPATIVITY 99

Make
λ = 1,

then, adding equation (4.16) and (4.15) yields:

Π1( jω)+λΠ2( jω) =
−ε1I 0

0
−τ2

1(Π22( jω)+G( jω)∼Π12( jω)+Π12( jω)∼G( jω))

−τ1τ0(2ε1I +2Π22( jω)+G( jω)∼Π12( jω)+Π12( jω)∼G( jω))

−τ2
0ε1

1
2 I

 .

As a result, considering the fact that Π( jω) is bounded, and choosing τ1 such that
τ1 ≤ τ0, the following inequality can be determined:

Π1( jω)+Π2( jω)

≤

[
−ε1I 0

0 τ1τ0(3||Π22||∞ +4||G||∞||Π12||∞)− τ2
0ε1

1
2 I

]
∀ω ∈R. (4.17)

Choose

τ1 =
τ0ε1

1
2

2ε1 +3||Π22||∞ +4||G||∞||Π12||∞
(4.18)

Then, noting that τ0 ∈ [0,1] implies

Π1( jω)+Π2( jω)≤

[
−ε1I 0

0 − τ2
0ε2

1
2ε1+3||Π22||∞+4||G||∞||Π12||∞ I

]
≤−εI ∀ω ∈R.

where

ε =
τ2

0ε2
1

2ε1 +3||Π22||∞ +4||G||∞||Π12||∞
.

On the other hand, using equation (4.13) it can be shown that

X( jω) =−τ
2
1(Π22( jω)+G( jω)∼Π12( jω)+Π12( jω)∼G( jω))> τ

2
1ε1I ∀ω ∈R,

furthermore, considering the fact that Π( jω) is bounded it also holds that
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X( jω)+S( jω)+S( jω)∼+Z( jω)

> τ
2
1ε1I +

1
2

τ
2
0ε1I

ε1 +2||Π22||∞ +4||G||∞||Π12||∞
2ε1 +3||Π22||∞ +4||G||∞||Π12||∞

> 0,

therefore, Π1( jω) is a positive-negative multiplier.
Finally, since the system is bounded for τ = τ0, where 1 ≥ τ0 > 0, there exists τ1

such that the closed loop is also stable for

1≥ τ = τ0 + τ1 = τ0 +
τ0ε1

1
2

2ε1 +3||Π22||∞ +4||G||∞||Π12||∞
.

Since the system is bounded for τ = τ0 +τ1, where 1≥ τ0 +τ1 > 0, there exists τ2 such
that the closed loop is also stable for

1≥ τ = τ0 + τ1 + τ2 = τ0 +
(2τ0 + τ1)ε1

1
2

2ε1 +3||Π22||∞ +4||G||∞||Π12||∞
.

Since the system is bounded for τ = τ0+τ1+τ2, where 1≥ τ0+τ1+τ2 > 0, there exists
τ3 such that the closed loop is also stable for

1≥ τ = τ0 + τ1 + τ2 + τ3 = τ0 +
(3τ0 +2τ1 + τ2)ε1

1
2

2ε1 +3||Π22||∞ +4||G||∞||Π12||∞
....etc

This sequence describes a divergent series on ∑i τi. By induction, G and ∑i τi∆

satisfy the IQCs (4.3) and (4.4) for all i. Moreover, Π1( jω) and Π2( jω) fulfil the
positive-negative conditions Π1,22( jω),Π2,11( jω) > 0 ∀ω ∈ R∪ {∞}. Meanwhile,
Π1( jω),Π2( jω),λ,ε satisfy (4.5). Then the system is L2[0,∞) stable for successive τi,
i = 0,1, ... until τ = 1 via Theorem 4.2.2.

This corollary shows that Theorem 4.2.2 is a complete and equivalent reinterpreta-
tion of the IQC Theorem [35]. Moreover, it demonstrates the applicability of Theorem
4.2.2, where by choosing one system to be Linear Time Invariant, IQC Theorem can
be recovered. The demonstration method used in this section have the additional ad-
vantage of being applicable to extend multipliers of Dissipative based proofs for IQC,
such as Theorem 1 in [57], from strict PN-IQCs to multipliers Π( jω) where Π22( jω) is
indefinite.

The apparent disadvantage of Theorem 4.2.2 is the need for well posedness on a
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sector τ ∈ [0,1]. This problem will be discussed in the following section.

4.2.1 Comments on the well posedness of the closed loop

Condition 1 on Theorem 4.2.2 asks for the well posedness of the closed loop for all
τ ∈ [0,1]. There exists some cases where this condition can be determined from when
the systems are well posed for τ = 1.

Take operators that delay all inputs, according to Definition 2.1.15:

Lemma 4.2.6. Let ∆1 : L2e→ L2e and ∆2 : L2e→ L2e be L2[0,∞), if the operator ∆1∆2

delays all inputs, then, the closed loop [τ∆1,τ∆2] is well posed for all τ ∈R+.

Proof. Scaling ∆1,∆2 by some real constant produces operators τ∆1,τ∆2 that delay all
inputs. The result follows Corollary 2.1.16.

From this lemma, it is evident a feedback interconnection with a pure delay will
always be well posed for all τ ∈ [0,1] if it is well posed for τ = 1.

Similarly, assume ∆1 to be strongly causal, uniform with respect to past inputs ac-
cording to Definition 2.1.6, and ∆2 to be locally Lipschitz continuous according to Def-
inition 2.1.5, then:

Lemma 4.2.7. Let ∆1 : L2e→L2e be strongly causal, uniform with respect to past inputs

and ∆2 : L2e→ L2e be L2[0,∞) be locally Lipschitz continuous. Then, the closed loop

[τ∆1,τ∆2] is well posed for all τ ∈R+.

Proof. Multiplying ∆1 by any τ results in a strongly causal operator τ∆1, uniform with
respect to past inputs, and multiplying ∆2 by any τ results in a locally Lipschitz contin-
uous operator τ∆2. The result follows from Corollary 2.1.17.

An important remark is made in [13] regarding this lemma. It is reproduced here for
the sake of argument.

Remark 4.2.8. Consider the case when the output y is related to the input u through the

ordinary differential equation:

ẋ = f (x(t),u(t), t)

y = g(x(t), t)

where t > 0, x(0) ∈ Rm, x ∈ Lm
2 [0,∞), u ∈ L l

2[0,∞) and y ∈ Ln
2 [0,∞), f is continuous

on t > 0 and Lipschitz continuous on Lm
2 [0,∞)×L l

2[0,∞), and g is continuous on t > 0
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and Lipschitz continuous on Lm
2 [0,∞). It is easy to show the mapping from u ∈ L l

2[0,∞)

into y∈Ln
2 [0,∞) is well defined, strongly causal operator, uniformly with respect to past

inputs.

Then, Lemma 4.2.7 shows the well posedness for all τ ∈ [0,1] of the feedback inter-
connection of [G,τ∆], where G ∈ R H ∞ is strictly proper, and therefore strongly causal,
uniform with respect to past inputs, and ∆ is:

• Linear Time Invariant operator with bounded gain.

• Constant real scalar.

• Multiplication by harmonic oscillation.

• Slowly time varying scalar.

• Continuous ”Popov” non-linearity.

• Monotonic and monotonic odd non-linearities.

For systems with feed-through, the following lemma enumerates the conditions for
the well posedness of the feedback loop for all τ ∈ [0,1].

Let the attenuated feedback interconnection [τ∆1,τ∆2] be represented by the follow-
ing equations:

e =

[
e1

e2

]
=

[
u1

u2

]
+

[
0 −Im

In 0

][
y1

y2

]
= u+Hy, (4.19)

y =

[
y1

y2

]
= τ

[
∆1 0
0 ∆2

][
e1

e2

]
= τGe. (4.20)

Lemma 4.2.9. Let the uniform instantaneus gains of Gi j and H ji at T ∈ [0,∞) be ai j(T )

and b ji(T ), respectively. Define the gain-product matrix Θ(T ) = {θ j j′(T )} by

θ j j′(T ) =
m+n

∑
i=1

b ji(T )ai j′(T ), j, j′ = 1, ...,m+n. (4.21)

Then, if the matrix I−Θ(T ) is an M−matrix for all T, the closed loop system defined by

equations (4.19) and (4.20) is well posed in the sense of Definition 2.1.7 for all τ∈ [0,1].
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Proof. Note that the gain-product matrix Θ̂(T ) = {θ̂ j j′(T )} for the attenuated system
in equations (4.19) and (4.20) is the following expression:

θ̂ j j′(T ) = τ

m+n

∑
i=1

b ji(T )ai j′(T ), j, j′ = 1, ...,m+n, (4.22)

then the following inequality can be determined for all i, j = 1, ...,m+n:

0 < θ̂i j(T )≤ θi j(T ).

From [46], it is known that if I−Θ(T ) is an M-matrix, then the matrix I− Θ̂(T ) is
also an M-matrix. The result follows from Theorem 2.1.13.

Therefore, for those cases when the conditions for well posedness hold for τ = 1,
well posedness also will also hold for τ ∈ [0,1]. This Lemma can be used when Lemma
4.2.7 can no be applied: for example, when the Linear Time Invariant system is biproper
G ∈ R H ∞.

The need for well posedness of the feedback loop for all τ ∈ [0,1] can be a dis-
advantage when the IQC Theorem is applied [57]. However, there are many non-linear
interconnections that are well posed under trivial conditions. This section illustrates that
showing the well posedness of closed loops is not a complicated task for an important
group of non-linearities. Furthermore, works like [76] and [77] show that conditions for
the existence of unique solutions are also available for some non-continuous operators.
When the operators are continuous, showing the well posedness can be a trivial task, as
mentioned in the Appendix A in [3].

Well posedness is not the main focus of this work, and consequently, it will be
assumed that the feedback interconnection is well posedness in the corollaries.

4.3 Corollaries

The following list of corollaries is a direct implementation of Theorem 4.2.2. This sec-
tion will deduce some well known results, such as Small Gain Theorem, Dissipativity
and Passivity for the interconnection of L2[0,∞) bounded operators. The latest require-
ment is necessary because the Theorem 4.2.2 requires the open loop operators to be
L2[0,∞) bounded in order to show stability.

The objective of this exercise is to illustrate the utility of Theorem 4.2.2 to ex-
press stability results applicable to the feedback interconnections of operators that are
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L2[0,∞) stable in open loop.

4.3.1 Small Gain Theorem

The Small Gain Theorem can be deduced directly from the boundedness of two non-
linear systems. Note that the feedback interconnection is positive feedback in this ver-
sion of the theorem, but that has no bearing on the result.

Corollary 4.3.1. Let ∆1 : L2[0,∞)→L2[0,∞), ∆2 : L2[0,∞)→L2[0,∞) be two bounded

causal operators with gains ||∆1||L2→L2 and ||∆2||L2→L2 , such that

||∆1||L2→L2 ||∆2||L2→L2 < 1 and the feedback interconnection [τ∆1,τ∆2] is well posed

∀τ ∈ [0,1], then the feedback interconnection in Figure 4.1a is L2[0,∞) stable.

Proof. Choose

λ =
1+ ||∆1||2L2→L2

1+ ||∆2||2L2→L2

, (4.23)

ε =
1−||∆1||2L2→L2

||∆2||2L2→L2

1+ ||∆2||2L2→L2

, (4.24)

Π1 =

[
−I 0
0 ||∆1||2L2→L2

I

]
, (4.25)

Π2 =

[
||∆2||2L2→L2

I 0
0 −I

]
. (4.26)

Then, ∆1,∆2 satisfy the IQCs (4.3) and (4.4), parametrized by the strict positive-
negative multipliers Π1 and Π2. Meanwhile, Π1,Π2,λ,ε satisfy (4.5). Then the system
is L2[0,∞) stable via Theorem 4.2.2.

4.3.2 Dissipativity

This corollary takes the conditions from Theorem 7.4 in [24], which is a version of Dis-
sipativity multi-input, multi-output operators. However, this corollary is restricted to be
used only for non-linear systems that are bounded and connected in negative feedback,
i.e. R1,R2 ≥ 0. Note that Theorem 2 in [20] shows that the requirement of finite gain
stability over the non-linearities ensures that there exists at least one (P,Q,S) triplet with
Q1,Q2 < 0.

Corollary 4.3.2. Let ∆1 : L l
2[0,∞)→ Lm

2 [0,∞),∆2 : Lm
2 [0,∞)→ L l

2[0,∞) be bounded

causal operator with gains ||∆1||L2→L2 and ||∆2||L2→L2 , such that the negative feedback
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interconnection [τ∆1,−τ∆2] is well posed ∀τ ∈ [0,1]. Furthermore, let R1,Q2 ∈ Rm×m

and R2,Q1 ∈ Rl×l be any symmetric matrices and let S1 ∈ Rm×l , S2 ∈ Rl×m. It holds

that ∆1 and ∆2 are (Q,R,S)-operator dissipative, i.e.:

〈U1,R1U1〉T +2〈U1,S1V1〉T + 〈V1,Q1V1〉T ≥ 0 ∀T > 0,∀U1 ∈ L l
2e,V1 = ∆1(U1)

(4.27)
and

〈U2,R2U2〉T +2〈U2,S2V2〉T +〈V2,Q2V2〉T ≥ 0 ∀T > 0,U2 ∈Lm
2e,V2 =∆2(U2) (4.28)

where

R1 ≥ 0.

R2 ≥ 0.

and the following inequality holds for some positive scalars λ,ε1 > 0(
Q1 +λR2 (−1)ST

1 +λS2

(−1)S1 +λST
2 R1 +λQ2

)
≤−ε1I, (4.29)

then the feedback system is L2[0,∞) stable.

Proof. Note that via Theorem 2.3.6, equations (4.27) and (4.28) imply〈[
V1

U1

]
,

[
Q1 ST

1

S1 R1

][
V1

U1

]〉
H2

≥ 0 ∀U1 ∈ H l
2 ,V1 = F {∆1(F −1{U1})} (4.30)

and〈[
U2

V2

]
,

[
R2 S2

ST
2 Q2

][
U2

V2

]〉
H2

≥ 0 ∀U2 ∈ H m
2 ,V2 = F {∆2(F −1{U2})} (4.31)

Now, choose

λ > 0,

ε =
ε1

2
,

Π1 =

[
Q1 −ST

1

−S1 R1 +
ε1
2 I

]
, (4.32)
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Π2 =

[
R2 +

ε1
λ2 I S2

ST
2 Q2

]
. (4.33)

Adding (4.32) to λ (4.33) yields

Π1 +λΠ2 =

[
Q1 +λR2 +

ε1
2 I ST

1 +λS2

S1 +λST
2 R1 +

ε1
2 I +λQ2

]
≤−ε1

2
I.

Then ∆1,∆2 satisfy the IQCs (4.3) and (4.4), parametrized by the strict positive-negative
multipliers Π1 and Π2. Meanwhile, Π1,Π2,λ,ε satisfy (4.5). Then the system is
L2[0,∞) stable via Theorem 4.2.2.

4.3.3 Passivity

For this corollary, the conditions used are taken from Theorem 5.4 in [10, p. 257-
259]. However, the non-linearity studied in this Corollary is restricted to be open loop
L2[0,∞) stable. Note that Theorem 2 in [20] shows that the finite gain stability over the
non-linearities imposes an implicit restriction over the structure of the multiplier Π1 and
Π2, where there always will be a set of multipliers such that δ1,δ2 > 0.

Corollary 4.3.3. Consider the feedback system of Figure 4.1a with two causal bounded

operator ∆1 : L l
2e[0,∞)→ Lm

2e[0,∞), ∆2 : Lm
2e[0,∞)→ L l

2e[0,∞) with gains ||∆1||L2→L2 ,

||∆2||L2→L2 . Suppose the negative feedback interconnection [−τ∆1,τ∆2] is well posed

∀τ ∈ [0,1].

1. Let the systems ∆1 and ∆2 satisfy

< u1,∆1(u1)>T≥ δ1||∆1(u1)||2T + ε1||u1||2T ∀u1 ∈ L l
2e,T > 0 (4.34)

and

< u2,∆2(u2)>T≥ δ2||∆2(u2)||2T + ε2||u2||2T ∀u1 ∈ Lm
2e,T > 0, (4.35)

2. where the scalars ε1,ε2,δ1,δ2 ∈R hold:

ε1 +δ2 > 0, ε2 +δ1 > 0. (4.36)
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Then, the system is L2[0,∞) stable.

Proof. Note that using the boundedness of ∆1,∆2, the negative feedback interconnec-
tion, and using the Parseval’s Theorem, equations (4.34) and (4.35) imply the following
IQC:〈[

V1

U1

]
,

[
−δ1I −1

2 I

−1
2 I −ε1I

][
V1

U1

]〉
H2

≥ 0 ∀U1 ∈H l
2 ,V1 = F {∆1(F −1{U1})}

and 〈[
U2

V2

]
,

[
−ε2I 1

2 I
1
2 I −δ2I

][
U2

V2

]〉
H2

≥ 0 ∀U2 ∈H m
2 ,V2 = F {∆1(F −1{U2})}.

Now, lets consider the possible combinations of the scalar parameters δ1,ε1,δ2,ε2:

• Case 1: 1−||∆1||2L2→L2
||∆2||2L2→L2

> 0. Consider λ from equation (4.23), ε from
equation (4.24), Π1 from equation (4.25) and Π2 from equation (4.26).

• Case 2: ε1 > 0,ε2 > 0,δ1 >− ε1
||∆1||2L2→L2

,δ2 >− ε2
||∆2||2L2→L2

.

Choose

ε = min{

ε1
||∆1||2L2→L2

+δ1

2
,

ε2
||∆2||2L2→L2

+δ2

2
},

λ = 1,

Π1 =

(−
ε1

||∆1||2L2→L2

−δ1)I −1
2 I

−1
2 I

ε2
||∆2||2L2→L2

+δ2

2

 ,

Π2 =


ε1

||∆1||2L2→L2

+δ1

2
1
2 I

1
2 I (− ε2

||∆2||2L2→L2

−δ2)I

 .
• Case 3: 1−||∆1||2L2→L2

||∆2||2L2→L2
< 0.

Now, two cases can happen:

• Case 3.1: ε1 ≥ 0,ε2 < 0,δ1 ≥ 0,δ2 ≥ 0.

Choose

ε =
||∆1||2L2→L2

(δ1 + ε2)+δ2 + ε1

(1+ ||∆1||2L2→L2
)(1+ ||∆2||2L2→L2

)
,
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λ = 1,

Π1 =

[
−δ1I −1

2 I

−1
2 I −ε1I

]

+
(||∆2||2L2→L2

+ ||∆1||2L2→L2
||∆2||2L2→L2

−1)(δ2 + ε1)+(δ1 + ε2)

(1+ ||∆1||2L2→L2
)(||∆1||2L2→L2

||∆2||2L2→L2
−1)

[
−I 0

0 ||∆1||2L2→L2
I

]
,

Π2 =

[
−ε2I 1

2 I
1
2 I −δ2I

]

+
||∆2||4L2→L2

(||∆1||2L2→L2
(δ1 + ε2)+(δ2 + ε1))

(1+ ||∆2||2L2→L2
)(||∆1||2L2→L2

||∆2||2L2→L2
−1)

I 0
0 − 1

||∆2||2L2→L2

I

 ,
• Case 3.2: ε1,ε2 ≤ 0.

Choose

ε =
(δ1 + ε2)+(δ2 + ε1)||∆2||2L2→L2

(1+ ||∆1||2L2→L2
)(1+ ||∆2||2L2→L2

)
> 0,

λ = 1,

Π1 =

[
−δ1I −1

2 I

−1
2 I −ε1I

]

+
||∆1||2L2→L2

(δ1 + ε2)+ ||∆1||2L2→L2
||∆2||2L2→L2

(ε1 +δ2)

(1+ ||∆1||2L2→L2
)(||∆1||2L2→L2

||∆2||2L2→L2
−1)

[
−I 0
0 ||∆1||2L2→L2

I

]
,

Π2 =

[
−ε2I 1

2 I
1
2 I −δ2I

]

+
(||∆1||2L2→L2

||∆2||2L2→L2
−1+ ||∆1||2L2→L2

)(δ1 + ε2)+(ε1 +δ2)

(1+ ||∆2||2L2→L2
)(||∆1||2L2→L2

||∆2||2L2→L2
−1)

[
||∆2||2L2→L2

I 0

0 −I

]
.

• Case 4: 1 = ||∆1||2L2→L2
||∆2||2L2→L2

. Then, two cases happen;

• Case 4.1: ε1 ≥ 0,ε2 < 0,δ1 ≥ 0,δ2 ≥ 0. Choose

ε = min{δ1 + ε2

2
,
δ2 + ε1

2
},
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λ = 1,

Π1 =

[
−δ1I −1

2 I

−1
2 I −ε1I

]
+

− ε1
||∆1||2L2→L2

I 0

0 (ε1 +
δ2+ε1

2 )I

 ,
Π2 =

[
−ε2I 1

2 I
1
2 I −δ2I

]
+ ε1

 1
||∆1||2L2→L2

I 0

0 −I

 .
• Case 4.2: ε1,ε2 ≤ 0.

Choose
ε = min{δ1 + ε2

2
,
δ2 + ε1

2
},

λ = 1,

Π1 =

[
−δ1I −1

2 I

−1
2 I (−ε1 +

δ2+ε1
2 )I

]

Π2 =

[
(−ε2 +

δ1+ε2
2 )I 1

2 I
1
2 I −δ2I

]

Then ∆1 and ∆2 satisfy the IQCs (4.3) and (4.4), parametrized by the strict positive-
negative multipliers Π1 and Π2. Meanwhile, Π1,Π2,λ,ε satisfy (4.5). Then the
system is L2[0,∞) stable via Theorem 4.2.2.

This Corollary implies that the negative feedback interconnection of systems that at
least hold Outputs Strict Passivity, i.e. (ε1 ≥ 0,ε2 ≥ 0,δ1 > 0,δ2 > 0) will be L2[0,∞)

stable. This limitation happens because bounded operators will always hold Output
Passivity [20]. This corollary hence does not contain completely Passivity Theorem.

4.3.4 Passivity with non-causal multipliers

For this corollary the conditions are taken from Passivity Theorem 9.20, in chapter VI
of [14] with the following condition in the multipliers: M̂,M̂−1 ∈ R L∞.

Corollary 4.3.4. Consider the feedback system of Figure 4.1a, where ∆1 : L2(−∞,∞)→
L2(−∞,∞), ∆2 : L2(−∞,∞)→ L2(−∞,∞) are two causal bounded operator dynamical

systems with gain ||∆1||L2→L2, ||∆2||L2→L2 . Suppose the negative feedback interconnec-

tion [τ∆1,−τ∆2] is well posed ∀τ ∈ [0,1]. Let there be a multiplier M̂,M̂−1 ∈R L∞ such

that
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1. for some δ > 0

<U1,M̂∆1(U1)>L2(−∞,∞)≥
δ

2
<U1,U1 >L2(−∞,∞) ∀U1 ∈ L2(−∞,∞) (4.37)

2. and it holds that:

<U2,∆2(M̂−1U2)>L2(−∞,∞)≥ 0 ∀U2 ∈ L2(−∞,∞) (4.38)

then, the system is L2[0,∞) stable.

Proof. Note that equation (4.37) and negative feedback implies the following IQC using
Parseval’s Theorem〈[

V̂1

Û1

]
,

[
0 M̂∼( jω)

M̂( jω) −δI

][
V̂1

Û1

]〉
L2( jR)

≥ 0

∀Û1 ∈H2,V̂1 = F {∆1(F −1{Û1})}. (4.39)

Given that ∆1 is finite gain, the previous matrix can be perturbed by γ1 > 0 and remain
positive:

〈[
V̂1

Û1

]
,

− γ1
||∆1||2L2→L2

I M̂∼( jω)

M̂( jω) (γ1−δ)I

[V̂1

Û1

]〉
L2( jR)

≥ 0

∀Û1 ∈H2,V̂1 = F {∆1(F −1{Û1})}.

Likewise, (4.38) implies the following inequality using Parseval’s Theorem.〈[
Û2

−V̂2

]
,

[
0 −M̂∼( jω)

−M̂( jω) 0

][
Û2

−V̂2

]〉
L2( jR)

≥ 0

∀Û2 ∈H2,V̂2 = F {∆2(F −1{Û2})}.

Given the finite gain of ∆2, the previous product can be perturbed by γ2 > 0 and remain
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positive

〈[
Û2

−V̂2

]
,

 γ2I −M̂∼( jω)

−M̂( jω) − γ2
||∆2||2L2→L2

I

[ Û2

−V̂2

]〉
L2( jR)

≥ 0

∀Û2 ∈H2,V̂2 = F {∆2(F −1{Û2})} (4.40)

Then, there are 3 cases for which stability can be verified:

• Case 1: ||∆1||2L2→L2
||∆2||2L2→L2

−1 < 0. Consider λ from equation (4.23), ε from
equation (4.24), Π1 from equation (4.25) and Π2 from equation (4.26).

• Case 2: 1 = ||∆1||2L2→L2
||∆2||2L2→L2

. Choose

ε =
δ

2+ ||∆1||2L2→L2

,

λ = 1,

Π1( jω) =

[
0 M̂∼( jω)

M̂( jω) −δI

]
+2δ

− 1
||∆1||2L2→L2

I 0

0 I

 ,

Π2( jω) =

[
0 −M̂∼( jω)

−M̂( jω) 0

]

+
δ(||∆1||2L2→L2

+4)

||∆1||2L2→L2
(||∆1||2L2→L2

+2)

I 0
0 − 1

||∆2||2L2→L2

I

 .
• Case 3: 1−||∆1||2L2→L2

||∆2||2L2→L2
< 0. Choose

ε =
δ

(||∆1||2L2→L2
+1)(||∆2||2L2→L2

+1)
,

λ = 1,
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Π1( jω) =

[
0 M̂∼( jω)

M̂( jω) −δI

]

+(δ+
δ

(||∆1||2L2→L2
||∆2||2L2→L2

−1)(||∆1||2L2→L2
+1)

)

− 1
||∆1||2L2→L2

I 0

0 I

 ,

Π2( jω) =

[
0 −M̂∼( jω)

−M̂( jω) 0

]

+
δ||∆2||4L2→L2

(||∆1||2L2→L2
||∆2||2L2→L2

−1)(||∆2||2L2→L2
+1)

I 0
0 − 1

||∆2||2L2→L2

I

 .
Then ∆1,∆2 satisfy the IQCs (4.3) and (4.4), parametrized by the strict positive-negative
multipliers Π1( jω) and Π2( jω). Meanwhile, Π1( jω),Π2( jω),λ,ε satisfy (4.5). Then
the system is L2[0,∞) stable via Theorem 4.2.2.

This result does not need or imply the existence of a canonical factorization, a fact
that was originally stated in [35]. This is because stability is not verified by a passive
equivalent feedback interconnection. Instead, a homotopy argument starts from a stable
feedback interconnection [τ∆1,−τ∆2] and then proceeds to modify it until it transforms
into the complete feedback interconnection [∆1,−∆2]. Because the use of homotopy
technique, the well posedness of [τ∆1,−τ∆2] is required for all τ ∈ [0,1] instead of the
canonical factorization. Note that as stated in [35], this is trivial because Passivity IQC
is strict PN-IQC.

However, this result can only be used for ∆1 and ∆2 that are L2[0,∞) bounded, and
therefore it is not equivalent to Passivity Theorem.

4.4 Example

Recently, the interconnection of a delay and a so-called output strictly equilibrium-

independent passive operator with equilibrium-independent roll-off was outlined in
[78]. This interconnection is an important example where the need for description of
non-linear systems in closed loop needs to be explicitly stated.

First the properties of the non-linearity are defined for the example. These properties
are taken from [78].
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Definition 4.4.1. ∆OP is a dynamical system described as

ẋ = f (x,u), (4.41)

y = h(x). (4.42)

∆OP is said to be output strictly equilibrium-independent passive (OSEIP) with gain

γ1 > 0 if for every ũ∈Rm, there exists a once differentiable storage function Sũ :Rn→R
such that Sũ(x)> 0 ∀x 6= x̃, Sũ(x̃) = 0, and

∇xSũ · f (x,u)≤ (u− ũ)T (y− ỹ)− 1
γ1
(y− ỹ)T (y− ỹ)

for all u ∈Rm, x ∈Rn, where ỹ = h(x̃).

Then, in order to use IQCs, define the corner frequency as follows:

Definition 4.4.2. ∆OP in equations (4.41) and (4.42) is said to have equilibrium-independent

roll-off with corner frequency ωc > 0 and gain γ2 if for every ũ∈Rm, there exists a once

differentiable storage function Vũ(x) :Rn→R such that Vũ(x)> 0 ∀x 6= x̃, Vũ(x̃) = 0,

and

0≤−∇Vũ · f (x,u)+ γ
2
2(u− ũ)T (u− ũ)− z̄T z̄,

∀x ∈Rn,∀u ∈Rm, where

z̄ =
∂h
∂x

f (x,u)
1

ωc
+ y− ỹ,

where ỹ = h(x̃).

We will call this non-linearity ∆EIRO. In [78], it is shown that ∆EIRO holds the IQC
with the following multiplier:

Π2,ξ,γ2( jω) =

1 0

0 − 1+( ω

ωc )
2

γ2
2(1+ξ( ω

ωc )
2)

 , (4.43)

where γ2 > 0, ωc > 0 is the corner frequency and 0 < ξ� 1 is introduced to make
Π2,ξ,γ2 proper.

It also holds an IQC with the passivity multiplier

Π1,γ1( jω) =

[
0 1

2
1
2 − 1

γ1

]
, (4.44)

where γ1 > 0.
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The feedback interconnection is represented in Figure 4.3, with ∆2 = ∆EIRO and
∆1 = γe−sT :

-

∆1

∆2

-

+

+

+

e1u1

u2e2y2

y1

Figure 4.3: Negative feedback interconnection

The following equations describe the feedback interconnection:

e1 =−u1 +∆2e2,

e2 = u2−∆1e1.

In order to be able to apply Theorem 4.2.2, it is necessary to show that the feed-
back interconnection is well posed. However, this is a trivial task because the series
∆1∆2(u(t), t) = ∆EIRO(u(t−θ), t−θ) delays all inputs. This can be shown by placing
the series ∆1∆2 in series with a predictor of θ prediction time, the resulting operator
is equal to ∆EIRO(u(t), t), which is causal. Consequently, using Corollary 4.2.6 the
feedback interconnection [τ∆1,τ∆2] is well posed for all τ ∈ [0,1]. Furthermore, note
that the feedback interconnection can also be equivalently represented by the following
equations:

e1 =−u1 +∆2e2, (4.45)

e2 = u2− γ∆2e2 + e3, (4.46)

e3 = γ∆2e2−∆1e1. (4.47)

The equivalent representation is presented in the Figure 4.4.
Showing the stability of ∆̂2 is trivial. ∆2 holds the IQC parametrized by equation

(4.44), then it is evident that the passive system in feedback with negative gain is stable,
i.e.

< y2,γy2 >T= γ||y2||2T ∀y2 ∈ L2e,T > 0,

< e2,∆2e2 >T≥
1
γ1
||∆2e2||2T ∀e2 ∈ L2e,T > 0.
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-

−∆1

∆2

-
+

+
+

e1u1

u2e2y2

y1

-

+ +

+
e3

∆̂1

∆̂2

γ

γ

Figure 4.4: Delay encapsulation

By using Theorem 2.1.20 with ∆1 = γ and ∆2 = ∆EIRO, feedback loop holds the follow-
ing parametrization: δ1 = γ, δ2 =

1
γ1

, ε1 = 0 and ε2 = 0. It is easy to show that

ε1 +δ2 =
1
γ1

> 0,

ε2 +δ1 = γ > 0.

Consequently, ∆̂2 is L2[0,∞) stable. Therefore, the subsystem ∆̂2 will hold the following
IQC:

〈[
E2

Y2

]
,
[
α1Π1,γ1( jω)+α2Π2,ξ,γ2( jω)

][E2

Y2

]〉
H2

≥ 0

∀E2 ∈H2,Y2 = F {∆2(F −1{E2})}.

Making the appropriate substitutions from equations (4.45), (4.46) and making u2 = 0,
∆̂2 holds the following IQC〈[

E3

Y2

]
,

[
I 0
−γI I

][
α1Π1,γ1( jω)+α2Π2,ξ,γ2( jω)

][I −γI

0 I

][
E3

Y2

]〉
H2

≥ 0

∀E2 ∈H2,Y2 = F {∆2(F −1{E2})}.
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Choosing α2 =
α1
2γ

yields

〈[
E3

Y2

]
,Π3( jω)

[
E3

Y2

]〉
H2

≥ 0 ∀E2 ∈H2,Y2 = F {∆2(F −1{E2})}, (4.48)

with

Π3( jω) =

α1
2γ

0

0 −α1γ

2 −
α1
γ1
− α1

2
1+( ω

ωc )
2

γγ2
2(1+ξ( ω

ωc )
2)

 . (4.49)

Meanwhile, the delay encapsulation holds the following absolute value:

|E3|= |γY2− γe− jωτY2|= γ|1− e− jωτ||Y2| ≤ |D( jω)||Y2|, (4.50)

Likewise, the norm of the encapsulated delay will hold

||E3||2H2
= ||γY2− γe− jωτY2||2H2

= γ
2|1− e− jωτ|2||Y2||2H2

≤ D( jω)∼D( jω)||Y2||2H2
.

(4.51)
This function can be bounded by a causal linear filter D( jω) ∈ R H ∞. In this case,

we are interested only in the filter already present in the IQC, held by equation (4.48).
Now, considering the norms of the delay, the following IQC is fulfilled:

D( jω)∼D( jω)||Y2||2H2
−||E3||2H2

≥ 0 ⇐⇒

[
E3

Y2

]
Π4( jω)

[
E3

Y2

]
≥ 0 ∀ω ∈R (4.52)

with

Π4( jω) =

[
−1 0
0 D( jω)∼D( jω)

]
. (4.53)

Adding equation (4.49) with λ > 0 times (4.53) yields

Π3( jω)+λΠ4( jω) =

α1
2γ
−λ 0

0 −α1
2γ
(γ2 +2 γ

γ1
+

1+( ω

ωc )
2

γ2
2(1+ξ( ω

ωc )
2)
)+λD( jω)∼D( jω)

 .
Results in [78] assumes γ1 = γ2 = 1. For simplicity, choose εh > 1, εl < 1 such that
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εhεl > 1, then choose

λ =
εhα1

2γ
,

D( jω)∼D( jω) = εl(γ
2 +2γ+

1+( ω

ωc
)2

1+ξ( ω

ωc
)2 ).

Consequently, given that ξ� 1 results in

Π3( jω)+λΠ4( jω) =

 (1−εh)α1
2γ

0

0 (εhεl−1)α1
2γ

(γ2 +2γ+
1+( ω

ωc )
2

1+ξ( ω

ωc )
2 )


≤min{(1− εh)α1

2γ
,
(εhεl−1)α1

2γ
(γ2 +2γ+

1
ξ
)}I ∀ω ∈R

Choose
ε = min{(1− εh)α1

2γ
,
(εhεl−1)α1

2γ
(γ2 +2γ+

1
ξ
)} (4.54)

It is evident that ε1 and ε2 can then be made arbitrarily close to 1.
Then ∆̂1, ∆̂2 satisfy the IQCs (4.3) and (4.4), parametrized by the strict Positive

Negative IQC multipliers Π3( jω) in equation (4.49) and Π4( jω) in equation (4.53).
Meanwhile, Π3( jω),Π4( jω),λ,ε satisfy (4.5). Then the system is L2[0,∞) stable via
Theorem 4.2.2.

In order to compare this result, it is only left to find a relationship between the delay
τ and the gain γ. This is evident from equation (4.51), i.e.

γ
2|1− e− jωτ|2 < γ

2 +2γ+
1+( ω

ωc
)2

1+ξ( ω

ωc
)2 ∀ω ∈R.

Making the substitution ω̂ = τω, this equation can be written equivalently

2γ
2(1− cos(ω̂))< γ

2 +2γ+
1+( ω̂

ωcτ
)2

1+ξ( ω̂

ωcτ
)2
∀ω̂ ∈R. (4.55)

An exact solution optimizing the relation between ωcτ and γ is not of the interest of
this work. However, for the sake of argument, a numerical solution to equation (4.55)
is presented in Figure 4.5. Notice that equation (4.55) and equation (23) in [78] are a
very close match for n = 1. Furthermore, when τ→ 0, the feedback interconnection of
∆̂2 and a positive constant is recovered, and therefore γ can be unbounded. On the other



CHAPTER 4. IQC AND DISSIPATIVITY 118

hand, if τ→ ∞, equation (4.55) is only true for γ < 1, therefore recovering Passivity
Theorem and the Small Gain Theorem respectively.
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Equation (23)
in [78]

Equation
(4.55)

Figure 4.5: Gain Vs Time constant

This example depicts the novelty of Theorem 4.2.2, because it shows that general-
izations such as Appendix 2.9 in [79] only partially contemplate the full potential of
the IQC analysis, nonetheless, that is a step in the right direction. It is noteworthy that
Theorem 4.2.2 has transformed the disturbance itself in the focus of attention.

Additionally, this work now suggest a way to show the stability of the feedback
interconnections made by ∆EIRO with the full library of IQCs.

4.5 Conclusions

This chapter shows the need for the reinterpretation of the IQC Theorem in the general
form of Theorem 4.2.2, where two non-linear systems are interconnected in positive
feedback. In this form, Passivity, Dissipativity and Small Gain Theorem are partially
recovered when the systems interconnected are assumed to be bounded.

This work is an explicit and non trivial reinterpretation of the original IQC Theorem
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using loop transformations. However, this reinterpretation shows precise limitations on
the conditions that these non-linearities have to hold in order to be compatible feedback
interconnections, namely the requirement to hold PN-IQC multipliers.

In the introduction, there were developed two lemmas that can exploit IQCs descrip-
tion of non-linear uncertainties, but using Passivity or Small Gain Theorems to deduce
stability. This effort is a focus in the literature with works like [57] that explicitly have
found stability conditions using only PN-IQC multipliers. Although showing the well
posedness only for τ = 1 seems to save considerable effort, this section showed that
many non-linear disturbances have no problem observing the conditions for the most
basic definition of well posedness presented in [13] for all τ ∈ [0,1]. Instead, the main
focus of this work the reformulation of the IQC Theorem to an equivalent representation
that explicitly studies feedback interconnections of two non-linear systems.

This work initially studies the Small Gain Theorem and how it can be recovered
from Theorem 4.2.2 with the extra condition of well posedness for all τ ∈ [0,1]. Then it
studied how the IQC Theorem can be recovered first for strict PN-IQCs and then for the
general class of IQCs. The resulting conclusion is that when a feedback interconnection
holds the conditions of the IQC Theorem, it will have an equivalent representation that
holds PN-IQC multipliers, although this would need to be done in small increments.

The study of the relation between IQC and Dissipative systems shows that the intro-
duction of dynamic multipliers is still an open question. The corresponding corollary
partially recovers the Dissipativity Theorem, but it is restricted to the feedback inter-
connection of Output Passive operators.

In the special case of Passivity, the need for canonical factorization was exchanged
for the well posedness of the feedback loop for all τ ∈ [0,1], due to the proof strategy
used in the IQC Theorem. This remark was originally made for the IQC Theorem
in [35], albeit applicable originally for the interconnection of a Linear Time Invariant
system with a bounded perturbation.

Finally, an example from the literature was selected that showcases the intercon-
nection of Passivity and delay operators using IQC techniques and the potential utility
brought out by the novel representation in Theorem 4.2.2.



Chapter 5

Conclusions

This chapter presents a summary of the contributions of this thesis and proposes future
research based on the findings of this thesis.

5.1 Contributions to the Zames-Falb multipliers

This work was inspired by the need of anti-causal Zames-Falb multipliers to show the
stability of a class of non-linear systems. In the introduction an example of such a
system is developed and appropriate lemmas are collected that ensure the existence of
anti-causal Zames-Falb multipliers for systems that fulfil the Kalman Conjecture. In
order to illustrate this problem, methods available from the literature were modified
such that only causal Zames-Falb multipliers are calculated. This effort showed indis-
putable evidence for the need of anti-causal multipliers search algorithms. Chapter 3
was devoted to solve this problem.

At the beginning of Chapter 3, this thesis studies the state of the art concerning
Zames-Falb multiplier synthesis. A minor contribution presented in this chapter is the
correct algebraic representation of the Zames-Falb synthesis presented in [32].

The main contribution made by Chapter 3 is an extension of the Zames-Falb mul-
tiplier search presented in [1] and [33] to anti-causal multipliers. The new proposed
algorithms, anti-causal Zames-Falb syntheses and anti-causal Zames-Falb plus Popov
multiplier synthesis, can then be used in tandem with [1] and [33] to find less conserva-
tive estimates for the stability margins in high order plants.
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5.2 Contributions to the IQC theory

In the introduction to IQC analysis some possible loop transformations where explored
that are traditionally implemented to use the Small Gain Theorem and the Passivity
Theorem in order to adopt IQCs as the description of the non-linear systems. This work
produced little results when used with the PN-IQC multiplier factorization presented in
[42]. However, this analysis showed that PN-IQCs are an invaluable tool in order to
construct a stable feedback interconnection of two non-linear systems.

The main contribution of this chapter is the solution to the stability problem of the
feedback interconnection of two non-linear systems that hold IQCs is the reinterpreta-
tion of the IQC Theorem and the generalization of the PN-IQCs to positive-negative
multipliers. The resulting theorem is then used to derive well known results, such as
the Small Gain Theorem, Dissipativity and Passivity. Theorem 4.2.2 showed that the
IQC Theorem can be sufficient to deal with an extended class of systems. Additionally,
Corollary 4.2.4 and Lemma 4.2.5 demonstrated that Theorem 4.2.2 is an equivalent
representation of the IQC Theorem with explicit conditions for the interconnection of
non-linear systems. In order to show the need for the reinterpretation made in Theorem
4.2.2, a well-known example in the literature is reconstructed using only the new theo-
rem, potentially opening the application of IQCs, where they no longer are restricted to
describe uncertainties.

5.3 Directions for Future Research

In the area of Zames-Falb multipliers, there are two possible options in the continuation
of the research of Chapter 3.

• Zames-Falb multipliers are used only for analysis. The pioneering work of [80]
suggests that Zames-Falb multipliers can also be used to synthesize controllers.

• Zames-Falb multipliers are not exclusive to monotone non-linearities. The pre-
sented multiplier synthesis methods for the class Modd can be used with the work
in [76] to study hysteresis non-linearities.

• The problem of Absolute Stability with delay has been identified to be a candidate
application of Zames-Falb multipliers combined with IQCs for delay. The state
of the art of this area can be found in [10, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75].
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In the area of the IQC Theorem, the following problems are put forward, which are a
direct consequence of the feedback interconnection studied in Chapter 3.

• The last example opens a new question: Can ∆EIRO be trivially interconnected
with other non-linearities described in the IQCs rather than delay?.

• The work on Absolute Stability with delay has shown that more general structures
than ∆EIRO are already covered by classical Lyapunov analysis [74, 72, 70, 69, 68,
67, 10]. Theorem 4.2.2 suggests that IQCs can also be used to study this problem
from the point of view of Input-Output analysis.

• The introduction left open the question of having a proof that shows the stability
of the interconnection of two non-linear systems using IQCs and the Passivity
Theorem. A generalization of a recent work in Dissipativity [57] may provide the
correct solution to the problem.



Appendix A

Appendix

A.1 Proof to Lemma 2.3.7

This section presents the proof the stability problem solved by Lemma 2.3.7. The first
part of the proof builds an equivalent loop transformation, the second part focuses in
proving the stability of the closed loop using Small Gain Theorem. In this stage of the
work, the inverse in equation (2.22) has shown to be very restrictive condition, only
allowing multipliers with a very specific structure, and thus, it becomes the biggest
restriction for the application of this result.

Proof. From equations (2.19) and (2.20), it is know that the plant ∆i, i = 1,2 holds the
following inequalities, using Theorem 2.3.6 and Definition 2.3.5 :〈[

Yi 0
Pi Xi

][
ui

∆i(ui)

]
,

[
I 0
0 −I

][
Yi 0
Pi Xi

][
ui

∆i(ui)

]〉
T

≥ 0 ∀ui ∈ L2e (A.1)

The sum of (2.19) and (2.20) will remain positive, then the following expressions are
equivalent:

⇐⇒

〈[
Y1 0
P1 X1

][
u1

∆1(u1)

]
,

[
Il 0
0 −Im

][
Y1 0
P1 X1

][
u1

∆1(u1)

]〉
T

+λ

〈[
Y2 0
P2 X2

][
u2

∆2(u2)

]
,

[
Im 0
0 −Il

][
Y2 0
P2 X2

][
u2

∆2(u2)

]〉
T

≥ 0

∀u1 ∈ L l
2e,u2 ∈ Lm

2e.
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⇐⇒

〈
Y1 0 0 0
0
√

λY2 0 0
P1 0 X1 0
0
√

λP2 0
√

λX2




u1

u2

∆1(u1)

∆2(u2)

 ,

×


Il 0 0 0
0 Im 0 0
0 0 −Im 0
0 0 0 −Il




Y1 0 0 0
0
√

λY2 0 0
P1 0 X1 0
0
√

λP2 0
√

λX2




u1

u2

∆1(u1)

∆2(u2)


〉

T

≥ 0

∀u1 ∈ L l
2e,u2 ∈ Lm

2e,T ≥ 0.

⇐⇒
〈[

Y 0

P X

](
ū

Θ(ū)

)
,

[
Il+m 0

0 −Im+l

][
Y 0

P X

](
ū

Θ(ū)

)〉
T

≥ 0 ∀ū ∈ L l+m
2e ,T ≥ 0

[Replace the following shorthand notations:]

Y =

[
Y1 0
0
√

λY2

]
,

P =

[
P1 0
0
√

λP2

]
,

X =

[
X1 0
0
√

λX2

]
,

ū =

(
u1

u2

)
,

Θ(ū) =

(
∆1(u1)

∆2(u2)

)
.

⇐⇒

〈(
z̄

P Y −1ẑ+X Θ(Y −1ẑ)

)
,

[
Il+m 0

0 −Im+l

](
z̄

P Y −1ẑ+X Θ(Y −1ẑ)

)〉
T

≥ 0

∀z̄ ∈ L l+m
2e ,T ≥ 0.

[Make the following change of variable: ẑ = Y ū, given that Y ,Y −1 ∈ R H ∞.]

⇐⇒ < z̄, z̄ >T

−< P Y −1ẑ+X Θ(Y −1ẑ),P Y −1ẑ+X Θ(Y −1ẑ)>T≥ 0
∀z̄ ∈ L l+m

2e ,T ≥ 0
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⇐⇒ ||(P Y −1 +X ΘY −1)(ẑ)||T ≤ ||z̄||T ∀z̄ ∈ L l+m
2e ,T ≥ 0 (A.2)

By executing the inner product, it was shown that the non-linear system on Figure
A.3 holds finite gain stability less than 1.

Π̂1( jω), Π̂2( jω), Ŷ ( jω), P̂ ( jω), X̂ ( jω) are the Fourier transforms of Π1, Π2, Y ,
P , X respectively. Note that equation (2.21) is equivalent to the following expressions:

⇐⇒ H∗Π̂1( jω)H +λΠ̂2( jω)<−γI ∀ω ∈R

⇐⇒ H∗Ŷ ∗( jω)Ŷ ( jω)H−H∗P̂ ∗( jω)P̂ ( jω)H

−H∗P̂ ∗( jω)X̂ ( jω)− X̂ ∗( jω)P̂ ( jω)H− X̂ ∗( jω)X̂ ( jω)<−γI ∀ω ∈R.

[Expanding the matrices, and replacing the shorthand notation.]

=⇒

[
Ŷ ( jω)H

P̂ ( jω)H + X̂ ( jω)

]∗[
−I 0
0 I

][
Ŷ ( jω)H

P̂ ( jω)H + X̂ ( jω)

]
> 0 ∀ω ∈R.

[Multiplying by -1 and removing the small variable γ.]

=⇒

〈[
Y H

P H +X

]
ḡ,

[
−I 0
0 I

][
Y H

P H +X

]
ḡ

〉
T

> 0 ∀ḡ ∈ L2e,T ≥ 0

[Using Theorem 2.3.6 and noting that P̂ H + X̂ ,(P̂ H + X̂ )−1 ∈ R H ∞.]

⇐⇒

〈[
I

Y H(X +P H)−1

]
c̄,

[
I 0
0 −I

][
I

Y H(X +P H)−1

]
c̄

〉
T

> 0 ∀c̄ ∈ L2e,T ≥ 0

[Make ḡ = (X +P H)−1c̄, noting that P H +X ,(P H +X )−1 ∈ R H ∞.]

⇐⇒ ||Y (I +HX−1P )−1HX−1c̄||2T < ||c̄||2T ∀c̄ ∈ L2e,T ≥ 0

||Y (I +HX−1P )−1HX−1c̄||T < ||c̄||T ∀c̄ ∈ L2e,T ≥ 0 (A.3)

In order to use Small Gain Theorem, note that Figure A.1 represents the original
closed loop.

The equations that represent the connection in Figure A.1 are the following expres-
sions:
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+ ∆1

+∆2

wl
1 ul

1

wm
2um

2

Figure A.1: Closed loop figure

u1 = w1 +∆2(u2)

u2 = w2 +∆1(u1).

⇐⇒
v̄ = H−1w̄+Θ(ū)

ū = Hv̄

[Take Θ =

[
∆1 0
0 ∆2

]
,H =

[
0 I

I 0

]
.]

⇐⇒ Figure A.2 shows the closed loop interconnection:

Θ

+H

ū

H−1w̄v̄

Figure A.2: Closed loop figure

⇐⇒ {
X v̄ = X H−1w̄+X Θ(ū)

ū = Hv̄

⇐⇒ {
X v̄+P Y −1ē = X H−1w̄+P Y −1ē+X Θ(Y −1ē)

Y −1ē = Hv̄

[Given that Y −1 ∈ R H ∞, then ū = Y −1ē.]
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⇐⇒ {
c̄ = X H−1w̄+P Y −1ē+X Θ(Y −1ē)

Y −1ē = HX−1c̄−HX−1P Y −1ē

[Rewriting the equation in closed loop format requires the a further substitution
c̄ = X v̄+P Y −1ē. It is know that X̂∼( jω)X̂ ( jω)> 0, then the inverse X−1 exists.
Make the following variable substitution v̄ = X−1c̄−X−1P Y −1ē.]

⇐⇒ {
c̄ = X H−1w̄+(P +X Θ)(Y −1ē)

ē = Y (I +HX−1P )−1HX−1c̄

Y −1

Θ̂

Θ

P

X +
z̄

Figure A.3: Modified non-linearity

Y

Ĥ

H

P

X−1 +e

-
+c̄

Figure A.4: Modified linearity

[The new non-linear plant is a linear combination of the original Θ() and the
multipliers P ,Y −1,X , can be represented in Figure A.3, while the linear part of
the plant can be represented as Figure A.4.]

⇐⇒ Figure A.5.

Therefore, for the equivalent system, using equations (A.2) and (A.3) and using the
small gain Theorem 2.1.19, the closed loop is L2[0,∞).

A.2 Proof to Lemma 2.3.8

Proof. Let λ > 0. Adding equation (2.25) with to λ (2.26) will remain positive.
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Y −1

∆̂()

∆()

P

X +
ē

Y

Ĥ

H

P

X−1 + +

-
+c̄ X H−1w̄

Figure A.5: Equivalent closed loop

||Y1(u1)T ||2L2
−||P1(u1)T ||2L2

−||X1(∆1u1)T ||2L2
−2〈X1(∆1u1)T ,P1(u1)T 〉L2

+λ||Y2(u2)T ||2L2
−λ||P2(u2)T ||2L2

−λ||X2(∆2u2)T ||2L2
−2λ〈X2(∆2u2)T ,−P2(u2)T 〉L2

≥ 0 ∀(u1)T ∈ L l
2[0,∞),(u2)T ∈ Lm

2 [0,∞),T ≥ 0.

now, taking the feedback interconnection:

u1 = w1 +∆2(u2)

u2 = w2 +∆1(u1)

given the well posedness of the system, then, the truncated signals exists:

(u1)T = (w1)T +(∆2u2)T

(u2)T = (w2)+(∆1u1)T

In the other hand, because of causality, the inner product can be determined for all
truncated signals. Therefore, making the substitution of (∆1u1T )T and (∆2u2T )T



APPENDIX A. APPENDIX 129

0≤ ||Y1(u1)T ||2L2
−||P1(u1)T ||2L2

−λ||X2(u1)T ||2L2

+λ||Y2(u2)T ||2L2
−λ||P2(u2)T ||2L2

−||X1(u2)T ||2L2

−2〈P1(u1)T ,X1(u2)T 〉L2
−2λ〈X2(u1)T ,P2(u2)T 〉L2

+2〈P1(u1)T ,X1(w2)T 〉L2
+2λ〈X2(u1)T ,X2(w1)T 〉L2

+2〈X1(u2)T ,X1(w2)T 〉L2
+2λ〈P2(u2)T ,X2(w1)T 〉L2

−λ〈X2(w1)T ,X2(w1)T 〉L2
−〈X1(w2)T ,X1(w2)T 〉L2

∀(u1)T ∈ L l
2[0,∞),(u2)T ∈ Lm

2 [0,∞),T ≥ 0. (A.4)

now, from equation (2.27), the following inequality can be determined:

[
−X̃1

∼
( jω)X̃1( jω) −X̃1

∼
( jω)P̃1( jω)

−P̃1
∼
( jω)X̃1( jω) Ỹ1

∼
( jω)Ỹ1( jω)− P̃1

∼
( jω)P̃1( jω)

]

+

[
λỸ2
∼
( jω)Ỹ2( jω)−λP̃2

∼
( jω)P̃2( jω) −λP̃2

∼
( jω)X̃2( jω)

−λX̃2
∼
( jω)P̃2( jω) −λX̃2

∼
( jω)X̃2( jω)

]
≤−εIl+m ∀ω ∈R.

therefore, the following relations hold:

λỸ∼2 ( jω)Ỹ2( jω)−λP̃∼2 ( jω)P̃2( jω)− X̃∼1 ( jω)X̃1( jω) ≤ −εIl+m ∀ω ∈R
Ỹ∼1 ( jω)Ỹ1( jω)− P̃∼1 ( jω)P̃1( jω)−λX̃∼2 ( jω)X̃2( jω) ≤ −εIl+m ∀ω ∈R

(A.5)

Note that the integrals from equation (A.4) can be determined for infinite times with
truncated inputs, then, using equation (A.5) the inner products are rewritten as follows,
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using equation (A.5) and assuming −λX∼2 P2 = P∼1 X1

0≤ ||Y1(u1)T ||2L2
−||P1(u1)T ||2L2

−λ||X2(u1)T ||2L2

+λ||Y2(u2)T ||2L2
−λ||P2(u2)T ||2L2

−||X1(u2)T ||2L2

−2〈P1(u1)T ,X1(u2)T 〉L2
−2λ〈X2(u1)T ,P2(u2)T 〉L2

+2〈P1(u1)T ,X1(w2)T 〉L2
+2λ〈X2(u1)T ,X2w1T 〉L2

+2〈X1(u2)T ,X1(w2)T 〉L2
+2λ〈P2(u2)T ,X2w1T 〉L2

−λ||X2w1T ||2L2
−||X1(w2)T ||2L2

≤−ε||(u1)T ||2L2
− ε||(u2)T ||2L2

+2〈P1(u1)T ,X1(w2)T 〉L2
+2λ〈X2(u1)T ,X2w1T 〉L2

+2〈X1(u2)T ,X1(w2)T 〉L2
+2λ〈P2(u2)T ,X2w1T 〉L2

−λ||X2w1T ||2L2
−||X1(w2)T ||2L2

∀(u1)T ∈ L l
2[0,∞),(u2)T ∈ Lm

2 [0,∞),T ≥ 0.

Then:

ε||(u1)T ||2L2
+ ε||(u2)T ||2L2

≤−λ||X2(w1)T ||2L2
−||X1(w2)T ||2L2

+2〈P1(u1)T ,X1(w2)T 〉L2
+2λ〈X2(u1)T ,X2(w1)T 〉L2

+2〈X1(u2)T ,X1(w2)T 〉L2
+2λ〈P2(u2)T ,X2(w1)T 〉L2

∀(u1)T ∈ L l
2[0,∞),(u2)T ∈ Lm

2 [0,∞),T ≥ 0.

which is less or equal to the absolute values of the inner products

ε||(u1)T ||2L2
+ ε||(u2)T ||2L2

≤+λ||X2||2∞||(w1)T ||2L2
+ ||X1||2∞||(w2)T ||2L2

+2||P∼1 X1||∞||(u1)T ||L2||(w2)T ||L2 +2λ||X2||2∞||(u1)T ||L2||(w1)T ||L2

+2||X1||2∞||(u2)T ||L2||(w2)T ||L2 +2λ||P∼2 X2||∞||(u2)T ||L2||(w1)T ||L2

∀(u1)T ∈ L l
2[0,∞),(u2)T ∈ Lm

2 [0,∞),T ≥ 0. (A.6)

Using Cauchy-Schwartz and sub multiplicative inequalities. Now, eliminate (u1)T

from equation (A.6) using (u1)T = (w1)T − (∆2u2)T and its norm:
||(u1)T ||L2 = ||(w1)T − (∆2u2)T ||L2 ≤ ||(w1)T ||L2 + ||∆2||L2→L2||(u2)T ||L2
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||(u2)T ||2L2
≤

3λ||X2||2∞||(w1)T ||2L2
+ ||X1||2∞||(w2)T ||2L2

+2||P∼1 X1||∞||(w1)T ||L2 ||(w2)T ||L2

ε

+2
(||X1||2∞ + ||P∼1 X1||∞||∆2||L2→L2)||(w2)T ||L2

ε
||(u2)T ||L2

+2
λ(||X2||2∞||∆2||L2→L2 + ||P∼2 X2||∞)||(w1)T ||L2

ε
||(u2)T ||L2

∀(u2)T ∈ Lm
2 [0,∞),T ≥ 0.

then:
||(u2)T ||2L2

≤ c̄(T )+2b̄(T )||(u2)T ||L2 ∀(u2)T ∈ Lm
2 [0,∞),T ≥ 0.

where b̄(T ) and c̄(T ) tend to finite values b̄ and c̄, respectively, as T →∞, since w1,w2 ∈
L2[0,∞).

therefore
||(u2)T ||L2→L2 ≤ b̄(T )+

√
b̄(T )2 + c̄(T )

∀T ∈ [0,∞), tending to a constant value as T → ∞. Therefore u2 ∈ L2[0,∞).
Likewise, eliminate (u2)T from equation (A.6) using (u2)T = (w2)T +(∆1u1)T and

its norm: ||(u2)T ||L2 = ||(w2)T +(∆1u1)T ||L2 ≤ ||(w2)T ||L2 + ||∆1||L2→L2||(u1)T ||L2

||(u1)T ||2L2
≤

λ||X2||2∞||(w1)T ||2L2
+3||X1||2∞||(w2)T ||2L2

+2λ||P∼2 X2||∞||(w2)T ||L2 ||(w1)T ||L2

ε

+2
(||P∼1 X1||∞ + ||X1||2∞||∆1||L2→L2)||(w2)T ||L2

ε
||(u1)T ||L2

+2
λ(||X2||2∞ + ||P∼2 X2||∞||∆1||L2→L2)||(w1)T ||L2

ε
||(u1)T ||L2

∀(u1)T ∈ L l
2[0,∞),T ≥ 0.

then
||(u1)T ||2L2

≤ c̃(T )+ b̃(T )||(u1)T ||L2 ∀(u1)T ∈ L l
2[0,∞),T ≥ 0.

where b̃(T ) and c̃(T ) tend to finite values b̃ and c̃, respectively, as T →∞, since w1,w2 ∈
L2[0,∞).

therefore
||(u1)T ||L2 ≤ b̃(T )+

√
b̃(T )2 + c̃(T )

∀T ∈ [0,∞), tending to a constant value as T → ∞. Therefore u1 ∈ L2[0,∞).
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A.3 Proof to Corollary 2.3.9

Proof. Using equation (2.33), the following inner product can be determined:

<U1,M̂( jω)V1 >H2
=<U1,M̂−( jω)M̂+( jω)V1 >H2

=< M̂∼−( jω)U1,M̂+( jω)V1 >H2
≥ δ

2
<U1,U1 >H2

U1 ∈H2,V1 = F {∆1(F −1{U1})}

Now, make the following substitution W1 = M̂∼−( jω)U1 ⇐⇒ M̂−∼− ( jω)W1 = U1 and
F1 = M̂+( jω)V1 ⇐⇒ M̂−1

+ ( jω)F1 =V1

<W1,F1 >H2
≥ δ

2
< M̂−∼− ( jω)W1,M̂−∼− ( jω)W1 >H2

∀ W1 ∈H2,F1 = F {M+∆1M−∼− (F −1{W1})}

Now, given that M̂∼−( jω) and M̂−∼− ( jω) are bounded, it is evident that:
||M̂∼−U ||2H2

≤ ||M̂∼−||2∞||U ||2H2
. Replacing back U = M̂−∼− ( jω)V ,

||M̂−∼− V ||2H2
≥ 1
||M̂∼− ||2∞

||V ||2H2
.

<W1,F1 >H2
≥ δ

2
< M̂−∼− ( jω)W1,M̂−∼− ( jω)W1 >H2

≥ δ

2||M̂∼−||2∞
<W1,W1 >H2

∀ W1 ∈H2,F1 = F {M+∆1M−∼− (F −1{W1})}

2 <W1,F1 >H2
− δ

||M̂∼−||2∞
<W1,W1 >H2

≥ 0

∀ W1 ∈H2,F1 = F {M+∆1M−∼− (F −1{W1})} (A.7)

For the Condition (2.34), the positivity of the following inner product holds:

<U2,V2 >H2
≥ 0 ∀U2 ∈H2,V2 = F {∆2(M−1

+ F −1{M−1
− U2})}

Then, make the following substitution: W2 = M̂−1
− ( jω)U2 ⇐⇒ M̂−( jω)W2 =U2

< M̂−( jω)W2,V2 >H2
=<W2,M̂∼−( jω)V2 >H2

≥ 0

∀W2 ∈H2,V2 = F {∆2(M−1
+ F −1{W2})}
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The stability test is now for the feedback interconnection [M+∆1M−∼− ,−M∼−∆2M−1
+ ].

The feedback interconnection [M+∆1M−∼− ,−M∼−∆2M−1
+ ] is well posed because the feed-

back interconnection [∆1,−∆2] is well posed. This follows from the equivalence of the
feedback interconnections presented in Figure A.6.

∆1
e1

(M∼−)
−1 M+

∆2
e2

M−1
+M∼−

u1

u2

-
M∼−

M+

∆1
e1 M

∆2
e2

M−1

u1

u2

-

M

∆1
e1

∆2
e2

u1

u2

-
a)

b)

c)

Figure A.6: Closed loop equivalent systems

In order to show stability, the following cases are taken into consideration:

• Case 1: 1−||M+∆1M−∼− ||2L2→L2
||M∼−∆2M−1

+ ||2L2→L2
> 0 (Small Gain Theorem).

Choose

λ =
1+ ||M+∆1M−∼− ||2L2→L2

1+ ||M∼−∆2M−1
+ ||2L2→L2

,

ε =
1−||M+∆1M−∼− ||2L2→L2

||M∼−∆2M−1
+ ||2L2→L2

1+ ||M∼−∆2M−1
+ ||2L2→L2

,

Π1 =

[
−I 0
0 ||M+∆1M−∼− ||2L2→L2

I

]
,

Π2 =

[
||M∼−∆2M−1

+ ||2L2→L2
I 0

0 −I

]
.

• Case 2: 1−||M+∆1M−∼− ||2L2→L2
||M∼−∆2M−1

+ ||2L2→L2
< 0.

Choose
λ = 1,
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ε =

δ

||M̂∼− ||2∞
(||M+∆1M−∼− ||2L2→L2

+1)(||M∼−∆2M−1
+ ||2L2→L2

+1)
,

Π1 =

[
0 I

I − δ

||M̂∼− ||2∞
I

]
+

δ

||M̂∼− ||2∞

− 1
||M+∆1M−∼− ||2L2→L2

I 0

0 I


+

δ
1

||M+∆1M−∼− ||2L2→L2
+1

||M̂∼− ||2∞(||M+∆1M−∼− ||2L2→L2
||M∼−∆2M−1

+ ||2L2→L2
−1)

− 1
||M+∆1M−∼− ||2L2→L2

I 0

0 I



Π2 =

δ

||M̂∼−||
2
∞

(||M∼−∆2M−1
+ ||2L2→L2

)2

||M∼−∆2M−1
+ ||2L2→L2

+1

||M+∆1M−∼− ||2L2→L2
||M∼−∆2M−1

+ ||2L2→L2
−1

I 0
0 − 1

||M∼−∆2M−1
+ ||2L2→L2

I


+

[
0 −I

−I 0

]

• Case 3: 1 = ||M+∆1M−∼− ||2L2→L2
||M∼−∆2M−1

+ ||2L2→L2
. Choose

λ = 1,

ε =

δ

||M̂∼− ||2∞
||M+∆1M−∼− ||2L2→L2

+2
,

Π1 = 2
δ

||M̂∼−||2∞

− 1
||M+∆1M−∼− ||2L2→L2

I 0

0 I

+[0 I

I − δ

||M̂∼− ||2∞
I

]

Π2 =

δ

||M̂∼− ||2∞
(||M+∆1M−∼− ||2L2→L2

+4)

||M+∆1M−∼− ||2L2→L2
(||M+∆1M−∼− ||2L2→L2

+2)

I 0
0 − 1

||M∼−∆2M−1
+ ||2L2→L2

I


+

[
0 −I

−I 0

]

Given that in all cases Π1 and Π2 are constant matrices, equation (2.32) holds. Then,
∆1,∆2 satisfy equations (2.25) and (2.26), parametrized by the constant strict Positive
Negative IQC multipliers Π1 and Π2. Meanwhile, Π1,Π2,λ,ε satisfy (2.27). Then the
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system is L2[0,∞) stable via Lemma 2.3.8.
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