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We present an experimental study of the propagation of air finger/bubble through
a fluid-filled microchannel with centered rectangular occlusion. The displacement of
a wetting fluid (oil) by a non-wetting fluid (air) at a constant flow rate results in a
family of steadily propagating fingers/bubbles analogous to the propagation modes
recently reported by [15, 16, 17] in millimetre-scale tubes, indicating that gravity is
not an essential physical mechanism that underpins the emergence of these states.
The occurance of these propagation modes informed by a simple modification of the
tube geometry revealed that models based on idealized pore geometries are not able
to capture key features of complex practical flows. As the Ca = µU

σ
(which is the

ratio of viscous to surface tension forces, where µ is the fluid viscosity, U is the
velocity of the bubble and σ, the surface tension) increased beyond a given Cac, the
bubbles either localized in the least-constricted regions of the cross section or exhibit
spatial oscillations formed by periodic sideways motion of the interface at a fixed
distance behind the moving finger tip. We found that the transition from symmetic
to either localized or oscillatory state results from exchange of stability between two
different states rather than a continous evolution from one state to another. Also,
our experimental evidence suggests that the propagating fingers are dependent on the
dimension of the channel and the obstacle. Our results reveal that air fingers and finite
bubbles of aspect ratios α > 1 (defined as α = L/W where L is the distance between
the front and the rear of the bubble measured in its static symmetric state and W
is the width of the bubble) exhibit propagation modes that are both quantitatively
and qualitatively similar; but short bubbles with α < 1 undergo a transition similar
to that of a continous transition from one state to another. Our results conform with
recent report of [34].
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Chapter 1

1 Introduction

Understanding the flow of confined bubbles and droplets within natural and man-

made channels reveal a wide range of industrial applications ranging from enhanced

oil recovery to microfluidic chip-based chemical analysis. Microfluidics; which refers

to a set of technologies used for controling the flow dynamics of very small amount

of liquid and gases in a miniaturised system is an emerging research area not only

due to reduced sample volumes and cost involved when compared with macro-sized

components, but the ability to easily and accurately control the dynamics of the

flow. In these systems, there is competition between interfacial, viscous and/or cap-

illary forces. The study of viscous oil-water flows [29] and complex fluid flow [30]

in microchannel at low Reyolds number are examples of viscous forces dominated

flows while an experimental investigation of capillary instabilities in a microfluidic

T-Junction by [31] analogous to the classical Plateau-Rayleigh instabilities is domi-

nated by interfacial forces. Liquid-gas and liquid-liquid flows in microchannels have

recieved increasing experimental research interests [1, 2]. Bubbly flow in microchannel

have been shown to be very effective in heat transfer [5] and can effectively transport

reagents and encapsulate cells to perform chemical reactions and biological experi-

ments with high sensitivity [3, 4]. The ink-jet printing (a type of computer printing

that creates a digital image by propelling droplets of ink onto paper, plastic or other

substrates) is a product of an understanding of bubbles/droplets dynamics in con-

fined geometries. Advances in digital microfluidics (an alternative technology for

microfluidic systems based upon design, composition and manipulation of discrete

droplets and bubbles) have facilitated the understanding of diverse and complex flow

dynamics in microchannel network, as the formation, transport and merging of bub-

bles/droplets in microchannels are well understood [21]. Bubbles/droplets traveling
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through microchannel has been successfully applied to encode and decode informa-

tion and perform logical operations [22, 23]. Studies of two phase flows in microfluidic

channel network with the introduction of bifurcations and loops have been shown to

alter the flow behavior dramatically [22]. This is because a bubble/droplet arriving

at a T-junction flows into the branch characterized by lower resistance to flow. The

binary choice made by the droplets, causes flow resistance which influence the choice

of subsequent droplets within the branch, thereby, modifying the liquid flow rates

through the channels, provided the bubble/droplet does not break [24]. As droplets

are produced, they are transported along the microfluidic channels by the carrier fluid

thereby, displacing the fluid. For sufficiently small bubbles/droplets, this effect is not

significant as they are passively advected by the carrier fluid. The displacement of one

fluid by another immiscible fluid of lower viscosity (usually air) through a channel at

fixed flow rate, results to the formation of long bubble (air finger) which significantly

interacts with the channel geometry. This two-phase displacement flow is a funda-

mental fluid mechanics phenomenon such as the flow of oil and gas in oil pipelines,

extraction of oil from porous media [6], mammalian breathing, biomechanics of the

lungs [7], pulmonary airways [8] and emerging lab-on-chip technologies [12]. Many of

such two-phase displacement studies have been performed in simple geometries such

as rectangular and elliptical [9], polygonal [10] and circular cross-sections [11]. In

these geometries, a family of steadily propagating air fingers is formed when air is

introduced at a constant flow rate. These fingers are centered within the tube and

are surrounded by a film of the viscous liquid. The film deposited at the walls of the

capillary, which increases monotonically with the capillary number Ca = µU
σ

(which

is the ratio of viscous to surface tension forces where µ is the fluid viscosity, U is

the velocity of the bubble and σ, the surface tension), causes the bubble to move

faster than the average speed of the fluid [12]. Further studies of the mechanics of

pulmonary airway reopening was experimentally investigated by driving an air finger

through a collapsed fluid filled elastic tube [26]. In most practical applications how-

ever, more complex geometries are involved. For example, the pores in carbonate oil

reservoirs are irregular and consists of sudden changes in pore shapes and sizes [13]
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and airway collapse or mucus build-up in the lungs [14].

Recently, [15, 16] introduced a centred partial occlusion in millimetric tubes of

rectangular cross-section and uncovered multiple finger propagation modes when air

is driven through a channel filled with viscous fluid. Similar study by [17] revealed

that for sufficiently high occlusions, two alternative stable solutions are possible for

low flow rates: a steadily propagating asymmetric air finger that spans the majority

of the tube or a steadily propagating asymmetric air finger that localized within one

of the side-channels. A two-dimensional numerical investigation of finger propagation

modes captured all the finger dynamics earlier reported, and in addition, revealed a

new mode of finger behaviour such as bifurcation associated with tip-splitting [18].

These recent findings of [15, 16, 17, 18] have shown that a change in pore geometry

alters the dynamics of an air finger/bubble, indicating that models based on idealized

pore geometries are not able to capture key features of complex practical flows, whose

understanding is the motivation behind the present study.

In this study, we experimentally investigated and confirmed that the multiplicity

of propagation modes uncovered in millimetric channels also exist in microchannels

indicating that gravitational force does not dictate the physical mechanism that un-

derpins the emergence of the multiple propagation modes. Furthermore, we extended

the study to investigate the dymanics of finite (short) bubbles and determined the

critical capillary numbers, above which transition takes place. Our microchannel

geometry consists of rectangular cross-section with centered partial rectangular oc-

clusion. These occlusions alter the flow properties by causing in-flow local resistance

across the tubes.
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The remainder of this dissertation will proceed as follows: In chapter 2, the govern-

ing equation describing two-phase (liquid-gas) flow is presented and a brief description

of the Young-Laplace equation which explains the basis for bubble deformation in mi-

crochannels is highlighted. Also, we present some dimensionless numbers relevant to

our experiments. Chapter 3 is focuses on local bifurcation theory such as Pitch-fork,

Saddle node and Hopf bifurcations. In chapter 4, we discuss the experimental setup

and give a detail description of our experimental procedures as well as the parame-

ters used in our investigations. Also, we explain experimentally how the viscosity of a

Newtonian fluid is determined. We describe the method of producing long and short

bubbles and also give a detail procedure of the image processing technique adopted

in analysing our images. Chapter 5 is concern with the presentation of results while

the final chapter summarizes the major results of this dissertation.
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Chapter 2

2 Two-Phase (Liquid/Gas) Flow Equations

This chapter presents the basic equations of the simultaneous flow of two fluid phases.

As earlier stated, the two fluids are immiscible and there is no mass transfer between

the phases. The liquid phase (e.g oil) is the wetting phase denoted by L while the non-

wetting gas phase (e.g. air) is donated by G. We also include the concept of surface

tension and the Young-Laplace equation as well as some dimensionless numbers that

have significant effect on two-phase flows in microchannels.

2.1 Governing equations

The governing equations we considered in the present problem are the incompressible

Navier-Stokes equations. The liquid and gas phases are written seperately as:

ρ
L

(
∂u

L

∂t
+ u

L
· ∇u

L

)
= −∇P

L
+ µ

L
∇2u

L
+ ρ

L
g (2.1)

∇·u
L

= 0 (2.2)

due to imcompressibility of the liquid phase and

ρ
G

(
∂u

G

∂t
+ u

G
· ∇u

G

)
= −∇P

G
+ µ

G
∇2u

G
+ ρ

G
g (2.3)

∂ρ
G

∂t
+∇·(ρ

G
u

G
) = 0 (2.4)

due to compressibility of the gaseous phase; where ρL is the density of the liquid phase,

P
L

is the liquid pressure, u
L

is the velocity of the liquid, µ
L

is the liquid viscosity and

g is the gravity. Similarly, ρ
G

, P
G

, u
G

and µ
G

are respectively the density, pressure,

the flow velocity of the gaseous phase and the viscosity of the gaseous phase. We
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have that

∇P
L

= −ρ
L
g +∇P ∗

L
, ∇P

G
= −ρ

G
g +∇P ∗

G
which implies that

∇P ∗
G
− ρ

L
g = ∇P

G
− (ρ

L
− ρ

G
)g and P ∗

L
, P ∗

G
represent the physical pressures

in the liquid and gas phase respectively. We assumed no-slip condition at the tube

walls. The kinematic boundary condition for the system is Rt·n = u · n where R is

the position of the interface and n is the normal vector at the boundary.

2.2 Surface Tension

Fluid molecules experience mutual attractive forces. In an event that this mutual

molecular attraction is overcome via thermal agitation, the molecules transform from

liquid phase to gaseous phase. For liquid-gas interface, the cohesive forces between

the liquid molecules do not balance the attractive forces at the surface. Consequently,

they cohere more strongly with neighbouring molecules at the surface, which tends to

minimize the surface area; a phenomenon known as surface tension. Surface tension

results to interesting and fascinating physical phenomena; such as droplets formation,

formation of soap films and the formation of curved surfaces seen in a glass of water.

Surface tension induces excess pressure inside a bubble which can be determined by

the Young-Laplace equation. The Young-Laplace equation establishes the relation-

ship between curvature, surface energy and pressure difference between two phases.

It effectively describes both spherical and non-spherical bubble shapes either with

or without the influence of external force. The general expression for the pressure

difference between two phases seperated by non-spherical surface is

4P = σ

[
1

R1

+
1

R2

]
(2.5)

where 4P is the pressure gradient, σ is the surface tension force, R1 and R2 are the

radii of curvatures of phases 1 and 2 respectively. Equation (2.5) is the Young-Laplace

equation. This equation is essential to bubble phenomena in microchannel.

Note: 4P is positive and defined as the pressure at the convex side minus the pressure
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at the concave.

In the absence of any external force, a static interface has the same mean curvature

at every point. In large scale phenomena, such as ocean waves, 4P due to surface

tension is negligible as R1, R2 → ∞. Conversely, for small scale phenomena, 4P is

significant as R1, R2 → 0. In table 1, we present surface tension σ data for some

liquid-vapour interface at different temperatures.

Liquid T (oC) σ(N/m)
Water 20 0.073
Water 100 0.059
Blood 37 0.058

Mercury 20 0.47
Benzene 20 0.029
Glycerine 20 0.063

Galden HT 270 25 0.02
200cs Silicon oil 25 0.021

Table 1: Liquid-vapour interface surface tension values of some liquids at different
temperatures

2.2.1 Magragoni Effect

Marangoni effect (or Gibbs-Marangoni effect) is the transfer of mass along an inter-

face between two immiscible fluids propelled by surface tension gradient. The flow

dynamics is directed from a region of low surface tension to a region of high surface

tension. Surface tension gradient may be caused by temperature gradient, surfactants

or electric charge surface potentials [32]. Some observable Marangoni effects are tears

of wine, the stabilization of soap films, crystal growth e.t.c. Surfactants have strong

effect on pressure drop which can push a bubble through a capillary.
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2.3 Dimensionless number

Despite the fact that the assumption of the continuum hypothesis governs both

macrofluidic and microfluidic flows, there exist some differences in the dimension-

less numbers associated with large scale and that associated with small scale flows.

In microchannels for instance, gravity does not affect the flow due to the small chan-

nel height. The resulting dimensionless Bond number: Bo = ρgh2

σ
(which is a measure

of the relative importance of surface tension forces compared to body forces) is less

than unity, and as a result, does not play significant role in microfluidic flows. Thus

the orientation of the channels either vertical or horizontal has no influence on the

flow regime. Also, the Reynolds number: Re = ρUL
µ

(ratio of inertia to viscous forces,

where U is the characteristic velocity change over the characteristic length scale L)

for microchannel flows is usually small because the viscous effects are greater than

the effects of inertia. At high numbers (Re � 1), inertia is dominant and the momen-

tum equation (2.1) reduces to Euler’s equation describing ideal non-viscous flow. On

the other hand, if (Re � 1), equation (2.1) collapses to the creeping flow equation.

Another important feature of the Reynolds number is that it characterizes whether

the flow is laminar or turbulent. The Weber number: We = ρU2L
σ

(a measure of the

relative importance of the fluid’s inertia compared to its surface tension) is small since

surface tension plays dominant role in microfluidic flows. While the Reynolds, Bond

and Weber numbers are small in microfluidic flows, the capillary number: Ca = µU
σ

(ratio of viscous to surface tension forces), can be either small or large depending on

the flow rate Q. Finally, we introduce here a bulk measure of the fluid displacement

referred to as Wet fraction m = 1− Q
AU

(defined as the ratio of the liquid volume left

behind when an air finger has exited the tube, to the total volume of the tube; where

A = WH − wh is the cross-sectional area of the tube). In our experiments, we used

the wet fraction in the characterization of the flow dynamics of both air finger and

finite bubbles; I must confess that we are yet to give a physical interpretation of m

in the characterization of finite bubbles.
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Chapter 3

3 Local Bifurcation Theory

The theory of bifurcation attempts to explain the numerous phenomena which occur

in solids, in flows of liquid and gases when parameter values exceed a specific thresh-

old. The buckling of the Euler rod, the onset of oscillations in an electric circuit and

the different experimentally observed regimes in pipe flows both in large and small

scales, all occur when a specific physical parameter exceeds a threshold value. In dy-

namical systems, when a small change in parameter values (or bifurcation parameter)

results to sudden qualitative or topological behavioural change, bifurcation is said to

have occurred in such a system. A central issue in the study of bifurcation in fluid

mechanics is the characterization of the range of conditions above which certain flows

exist as well as the mechanisms underlying the transitions between the different flow

patterns. Bifurcation theory gives the mathematical existence of various bifurcation

scenarios seen in experiments and other systems.

In this section, we introduce a local bifurcation theory such as symmetric breaking

pitchfork bifurcation; a most fundamental bifurcation theory evident in two-phase

displacement flow through an axially-uniform rectangular occlusion within a rectan-

gular cross-section [15, 16, 17, 19, 34] as well as saddle node and Hopf bifurcations.

We will adopt simpler equations in explaining these bifurcation theories in general.

These simple (standard) equations are able to capture the different bifurcation types

mentioned above.

3.1 Pitchfork Bifurcation

In this bifurcation, a family of fixed points transfers its stability traits to two families

before or after the bifurcation point. The normal form is given as

19



du

dt
= µu± u3 (3.1)

where µ ∈ < is a control parameter that can be externally tuned. If the transfer

of stability occurs before the bifurcation points, it is called subcritical bifurcation

(du
dt

= µu + u3) but if this takes place after the bifurcation point, it is referred to

as supercritical bifurcation (du
dt

= µu − u3). Pitchfork bifurcations are inherent in

physical systems that possess an underlying symmetry. (See figure 1). A typical

example of Pitchfork bifurcation is the buckling of the Euler rod earlier mentioned.

−5 0 5
−1.5

−1

−0.5

0

0.5

1

1.5

µ

u

(a)

−5 0 5
−1.5

−1

−0.5

0

0.5

1

1.5

µ

u

(b)

Figure 1: (a) Supercritical and (b) Subcritical Pitchfork bifurcation. The solid line
branches indicate stable solutions while the dash line branches denote unstable solu-
tions.

3.2 Saddle-node Bifurcation

A saddle-node or turning point bifurcation results in a collision and subsequent dis-

appearance of two equilibra positions in a dynamical system. The normal form is

given by

du

dt
= µ± u2 (3.2)
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The above equation can be written separately as du
dt

= µ − u2 for supercriticality or

du
dt

= µ+u2 for subcriticality. In the supercritical case, the solution branch u =
√
µ is

linearly stable while in the subcritical case, u = −√µ is the unstable solution branch.

See figure 2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−2.5
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2

2.5

µ
u

(b)

Figure 2: (a) Supercritical and (b) Subcritical Saddle-node bifurcation. The solid
line branches indicate stable solutions while the dash line branches denote unstable
solutions.

3.3 Hopf Bifurcation

Hopf bifurcation (also called Poincaré-Andronov-Hopf bifurcation) is a bifurcation

observed in form of local birth and death of a periodic solution as the parameter

increases beyond a critical value. Hopf bifurcation occurs in differential equations

when a linearised pair of complex conjugate eigenvalues at a fixed point becomes

purely imaginary. This means that a Hopf bifurcation can occur in systems having

two or more dimensions. The normal form of Hopf bifurcation when written in polar

coordinates is given as
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dr

dt
= νr ± r3 (3.3)

θ̇ = ω (3.4)

As in Pitchfork bifurcation, the sign here also determined whether the Hopf bifurca-

tion is subcritical or supercritical. See figure below

(a)

(b)

Figure 3: (a) Supercritical and (b) Subcritical Hopf bifurcation for parameter values:
ν < 0, ν = 0 and ν > 0 respectively. Source: [33]
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Chapter 4

4 Experimental Methods

In this section, we present the experimetal setup and techniques developed to study

the dynamics of long bubbles (air fingers) and short bubbles as they propagate through

a fluid filled rectangular microchannel with centered partial rectangular occlusion

driven by constant flux. The description of the experimental apparatus used for the

study is given in §4.1. In §4.2, we present the properties of the fluid and describe

the experimental procedure used to determine the dynamic viscosity. The process of

producing long and short bubbles are discussed in §4.3 as well as the method applied

to verify the uniformity of the channel. Finally, in §4.4, we present the imaging

techniques with MATLAB image analysis toolsbox.

4.1 Experimental Setup

4.1.1 Description of the experimental apparatus.

The schematic channel diagram of the experimental setup is shown in figure 4. The

channel was manufactured by micro-milling of a piece of perspex (CAT3D-M6, CNC,

milling machine, Datron Technologies Ltd), and sealed with a clear adhesive film

(Corning), which was supported by a precision-milled flat perspex lid. There are

three channels labelled Channels 1, 2 and 3. The channels have constant height and

length of 300 ± 5 µm and 9.60 ± 0.05 cm respectively with a rectangular centered

partial occlusion each having constant length of 9.0 ± 0.05 cm thereby leaving a

length of 0.60 ± 0.05 cm unoccluded space in all channel to allow initial states of

the fingers/bubbles to be symmetric before driving them through the occluded part

of the channels. The widths of both the channels and the obstacles were measured

with a travelling microscope. The measurements were done at five regularly spaced

locations along each channel and obstacle from which averaged values were determined

23



Q

W

Obstacle

Air

(a)

W

H
w

h

(b)

Figure 4: Schematic diagram of the channel geometry. Figure 4 (a) illustrates how
liquid is withdrawn at constant flow rate Q from one end of the initially liquid-
filled tube, with two of the outlets at the other end of the channel occluded for the
production of an air finger while no outlet is occluded for the production of finite
(short) bubble. Figure 4 (b) is the cross section of the channel. The outer width and
height of the cross section are W and H respectively, while the corresponding centered
rectangular occluded cross section are w and h respectively.

and shown in table 2. The specified depth values of both the channel and obstacle

during production, are also presented in table 2. Each tube has three outlets at the

beginning and an outlet at the rear. See figure 4 (a & b) for top and side views of the

channel. The motion of the steadily propagating finger/bubble tips were recorded via

top-view at a rate of 100 frames per second with high-speed (PCO) still camera with

resolution (1280× 1024) mounted on a 60 mm lens placed at a distance of 8.8± 0.05

cm above the microchannel. A LED light was difused through a sheet of tracing paper

placed under the channel to capture the dynamics of the fingers/bubbles for different

flow rates Q. These flow rates were produced with a syringe pump (KDS 210 KD

scientific) connected to 500 µl syringe attached to the end of the channel through a

flexible tubing. The velocity of the finger/bubble tip position U , between frames, and

hence the capillary number Ca were determined from image analysis of the frames
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with MATLAB. The aspect ratio of the channel; α = W/H (ratio of the width W and

height H of the channel) lies in the range 1 ≤ α ≤ 10 typical of microfluidic channels

[10].

Channels W ± 5 µm H ± 5 µm w ± 5 µm h± 5 µm
Channel 1 1000 300 350 150
Channel 2 900 300 332 100
Channel 3 1000 300 333 150

Table 2: Channel and Obstacle dimensions. W and H denote the width and height of
the channel while w and h represent the respective width and height of the obstacle.
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4.2 Properties of fluid used

We used Galden HT 270 (Perfluorinated fluid from Solvay Solexis) for the experiment.

Also, we used the manufacturer’s specified surface tension value of 0.02 Nm−1 at

25oC in our calculations but we measured the viscosity and density of the fluid in

our controlled laboratory temperature at 21 ± 1oC to be µ = 0.0313 Pa.s and ρ =

1856 kg/m3 respectively. We give detailed experimental process used to measure the

viscosity here. The apparatus used were a capillary viscosmeter (size 5 & ref =65882

Poulten Selfe & Lee Ltd); (See figure 5), a stop watch, a clamp stand, and the fluid

sample.

Figure 5: Ost-

wald viscometer

.

The viscometer was filled with the viscous fluid using tube (1),

so that the sample is between (C & D). This will ensure that the

amount of fluid does not obstruct Air Tube (2) during use. The

viscometer was vertically positioned with a clamp stand to ensure

accurate reading. A sealed rubber tubing was connected to (2) and

a gentle suction was applied through (3) until the liquid reaches

approximately 5mm above the upper timing (A). The liquid is held

at this level by sealing tube (3). The air tube (2) was then released

to allow the liquid to fall away from the bottom of the capillary

tube. Finally, Timing Tube (3) is released to allow the liquid to

flow under its own head. We measured the flow time in seconds for

the bottom of the meniscus to pass from the top edge of (A) to the

top edge of (B) with a stop watch. The process was repeated five

times with t = 577.874 seconds as the averaged flow time. (Note:

The measurement was done in the control laboratory temperature

of 21oC).

Now, kinematic viscosity is given as:

ν = ct
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where c = 0.02739(mm2/s)/s is a constant value given by the manufacturer of the

viscometer and t is the average time. Thus ν = 16.86814 (mm2/s) and the dynamic

viscosity µ = νρ = 0.0313 Pa.s.

4.3 Production of finger & bubble

An air finger was produced by driving in air at a constant volume flux Q imposed

by withdrawing the liquid at the end of the tube completely filled with viscous liquid

with a syringe pump. After a short distance, the propagating finger advances at a

constant speed. The finger is surrounded by a liquid film whose thickness increases

monotonically with the capillary number. Finite bubbles were formed at the beginning

of the unoccluded part of the channels with the three outlets open, by manually

injecting air into the tube with a low constant flux flow. The air was injected with

a 500 µl syringe and needle. We were able to produce different sizes of bubbles

of unknown volumes, which we characterized by measuring their static symmetric

length L (defined as the distance between the front and rear of the bubble). A

short unoccluded rectangular inlet section ensured that the finger/bubble was initially

symmetric about the mid-plane of the tube.

4.3.1 Uniformity of the Channels

The motion of a constant flux propagating finger/bubble is altered as it travels

through wider or narrower sections of any channel. Thus we investigate the uni-

formity of the channels by driving in an air finger at low flow rate (Q=30 µl)/min

through the channels. This is because at low flow rate, the finger is symmetric and

fills the entire width of the channels with approximately zero contact angle (since the

liquid fully wets the tube walls). The process was carried out both at the beginning

(first half of length 4.5 ± 0.05 cm) and at the end (2nd half) of the three channels.

This is so because the camera cannot cover the entire channel and still produced

resolved images for experimental analyses. In figure 6, the front tip positions of the
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bubble with respect to time both at the beginning and at the end of Channel 1 main-

tain an approximate speed of 1.46 mm/s. This shows that the channel is appreciably

uniform along the entire length. Also, in Channels 2 and 3, the front tip positions

of the bubbles with respect to time maintain approximate speeds of 1.51 mm/s and

1.46 mm/s respectively as the bubbles propagate the entire length of the channels as

shown in figures 7 and 8. This indicates that the uniformity of the channels is ideal

for experimental analyses.
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Figure 6: Front tip oposition of long bubble as it propagates through channel 1. The
speed of the bubble at the beginning of the channel was 1.46 mm/s and remained un-
changed as it travels through the entire length of the channel. This is not unexpected
since the graphs of figure 6 (a & b) are appreciably uniform along the entire channel.
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Figure 7: Front tip position of long bubble as it propagates through channel 2. In this
channel, the bubble maintains an approximate speed of 1.51 mm/s at the beginning
and at the end of the channel.
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Figure 8: Front tip position of long bubble as it propagates through channel 3. Also

in this channel, the bubble maintains an approximate speed of 1.46 mm/s both at

the beginning and at the end of the channel

.
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4.4 Imaging process

Analyses of small scale two-phase displacement flows depend greatly on accurately de-

tecting the visualized image edges of the displacement flow dynamics. Edge detection

procedure was developed in Matlab in order to analyse the experimental images and

to extract quantitative data of the flow dynamics. A built-in edge’ fuction was used,

which converts a captured video image, by detecting rapid changes in intensity, into

a binary image, with the edges labelled as 1’s and 0’s for the background. The outer

edges of the fingers/bubbles were visualized as dark contours due to the refraction at

the air-oil interface of light through a tracing paper placed directly under the tube

and viewed from above. The ’edge’ function provides various edge detection meth-

ods and for this study, the ’canny’ method was chosen. The ’canny’ method enables

the selection of two threshold values in order to detect both strong and weak edges.

However, weak edges are only reflected in the output only if they are connected to

strong edges. We were able to detect the visualized image edges and also their front

tip positions as they propagate through the channel. The program was designed to

extract all consecutive snapshots picturing the advancing tip position from each ex-

perimental movie (avi file). This enabled us to determine the average velocity of the

finger/bubble as it propagates through the channel within the visualisation window.

The algorithm is presented as follows:

(i) We read in the ’reference image’ and also the image of an empty channel with

’imread’ function in matlab and subtracted the image from the empty channel.

(ii) The region of view for both the subtracted and unsubtracted images were cropped

before ’canny’ edge detector was applied to detect the edges of the images by looking

for local maxima of the image gradient. An ’image gradient’ is a directional change

in the intensity or colour of an image. The lower and upper thresholds were manu-

ally adjusted until a satisfactory threshold (threshold value which produces a clearer

image edges) was achieved.

(iii) We then use the ’bwareaopen’ function which removes from the binary images,

all connected components (objects) that have fewer than 100 pixels and thereafter,
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the binary images were closed with the ’imclose’ function.

(iv) Furthermore, we used a flat linear structuring element with the ’strel’ and ’bw-

conncomp’ funtions to find the number of pixels in the region.

(v) Finally, the maximum pixels locations in the region and the coordinates are de-

termined and plotted on the reference image.

The outputs of the matlab code are presented in figures (9 & 10) while the matlab

code is given in appendix A.
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Figure 9: Matlab output of the detected peak positions of a finger as it propagates

through the channel from left to right.
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Front tip

Figure 10: Matlab output of the detected front tip positions of symmetric and local-
ized finite bubbles as they propagate through the channel from left to right.
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Chapter 5

5 Experimental Results

5.1 Multiple Family of Propagating Fingers.

The morphology of an air finger/bubble as it propagates through the tube depends

strongly on Ca and the obstacle dimension. In our experimental measurements, this

is observed by the changes in the shape of the bubbles and also, in the measurements

of the finger velocity. The nature of these fingers and their oil recovery properties is

a function of a bulk measure of the fluid displacement given by the wet fraction m.

Top-views of the different types of fingers and bubbles observed in our experiments

are shown in figures (11 - 18). The arrows indicate the direction of motion of the

finger/bubble.

Figure 11: Symmetric finger; the arrow indicates the direction of flow in all cases.
Ca = 0.0026 Channel 2

Figure 12: Asymmetric finger. Ca = 0.014 Channel 1

Figure 13: Localized finger. Ca = 0.032 Channel 3
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Figure 14: Oscillatory finger. Ca = 0.057 Channel 2

U OilAir

Figure 15: Symmetric finite bubble; the arrow indicates the direction of flow in all
cases. Ca = 0.0025 Channel 3

Air
U

Oil

Figure 16: Asymmetric finite bubble. Ca = 0.013 Channel 1

U Oil
Air

Figure 17: Localized finite bubble. Ca = 0.047 Channel 3

U OilAir

Figure 18: Oscillatory finite bubble. Ca = 0.053 Channel 2
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The series of top-view pictures as above, clearly revealed that long and short

bubbles exhibit similar propagation states.

5.2 Bifurcation graphs

We conducted severial series of experiments in the three tubes initially filled with

viscous fluid and driving in air through the tubes by withdrawing the liquid at the

end of each tube. The flow rate was incremented in steps of Q = 30 µl/min. At

low values of capillary number, a thin film of fluid was deposited on the tube wall

behind the advancing bubble tip. As Ca is increased, which corresponds to increasing

Q, a thicker film of fluid is deposited on the walls of the tubes. This is because the

interface curvature increases due to increase in fluid pressure gradient that drives the

axial flow. Further increment of Ca above a critical capillary number Cac, the sym-

metric bubbles lose stability to asymmetric non-localized bubbles which subsequently,

localized through symmetry-breaking [19]. The localized finger selects a path of least

constricted region of the tube cross-section. This is because, the minimal but un-

avoidable imperfaction in the manufacturing of the obstacle, introduced bias into the

system. Figure 19 is a plot of a bifurcation graph of channel 1 obtained by constant

increment of the flow rate in steps of Q = 30 µl/min. The experiment was con-

ducted at the beginning and at the end of the channel. Each data point represents

a single experiment. At low capillary number, 0 < Ca ≤ 0.012, symmetric fingers

propagate through the tube both at the beginning and at the end. As the capillary

number increases not beyond Cac = 0.012, there is a monotonic increase in the wet

fraction. Further increment of the capillary number beyond Cac deforms the tip of

the advancing finger due to increases in fluid pressure, a feature common to many

front propagating systems such as bubbles advancing in rigid tubes and Hele-Shaw

channels [9, 11, 16, 17, 28]. The increase in the fluid pressure, causes the finger to

lose its symmetry about the vertical midplane running parallel to the length of the

tube, thereby selecting a path of least resistance and localizes at one side of the chan-
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nel wall shown in the inset of figure 19. Similar scenario as in channel 1 was also

observed in channel 3 as shown in figure 20. In channel 2 with lower obstacle height,

we observed symmetric fingers at lower capillary numbers. As the capillary number

exceeds the critical capillary value of Cac = 0.032, the axial symmetry of the finger

is broken, which almost smoothly transcends to asymmetric non-localized finger in

which the tip propagates with an almost constant shape and speed, but leaves be-

hind a spatially varying periodic disturbance. Top-view images of a symmetric and

oscillatory fingers are shown in the inset of figure 21. This unique but complex finger

propagation mode is due to the existence of a symmetry-breaking pitchfork bifurca-

tion between the symmetric and asymmetric steady states while [15] suggested that

a global homoclinic connection gave rise to the oscillatory propagation modes.
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 aymmetric non−localized finger (beginning of tube)
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asymmetric non−localized finger (end of tube)

Figure 19: Channel 1: Wet fraction m as a function of capillary number Ca. The
insets are top-view images of air fingers propagating through the channel from right to
left. Each data point represents a single experiment. The experiment was conducted
at the beginning and at the end of the channel.
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Figure 20: Channel 3: Wet fraction m as a function of capillary number Ca. Each
data point represents a single experiment. The experiment was conducted at the
beginning and at the end of the channel
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Figure 21: Channel 2: Wet fraction m as a function of capillary number Ca. The
insets are top-view images of air fingers propagating through the channel from right
to left. Each data point represents a single experiment conducted at the end of the
channel

5.3 Oscillatory Fingers and Bubbles

Further experiments and measurements were carried out to investigate the oscillatory

fingers/bubbles observed in channel 2, of which oscillatory bubbles have been shown

to have applications in pumps, filters, mixers and transporters [35]. The oscillatory

propagation mode is the most striking and complex feature observed in our exper-

iments. In this context, we define ‘oscillatory’ to mean when the moving finger tip

leaves behind a spatially varying periodic disturbance which then remains stationary

in the laboratory frame. The disturbance at the interface occurs along one side of the

finger, where the waves amplitudes seen are centered along the edge of the obstacle.

The other side of the finger lies close to the channel wall. Consequently, the finger

tip spans the region over the obstacle and one of the two unoccluded regions. Oscil-
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lations emerged at high capillary numbers i.e Ca > 0.032. As Ca increases, there is

a significant reduction in the variation of the tip shape over the period of oscilations.

This mechanism for the onset of oscillations is consistent with that proposed by [15]

in millimetric channels. For large-amplitude oscillations, our finger interface shapes

are similar to a square wave due to the channel walls as shown in fig. 14. We noted

that for air fingers, oscillations are always initiated near the finger tip and propagates

backwards while finite bubbles oscillations can arise from either end of the bubble

[34]. We investigate the wavelength of the finger for different flow rates as well as the

finger tip length (Ltip) (define as the distance from the tip position of the finger to

the point beyond which oscillation occurs) with MATLAB inbuilt ’imdistline’ func-

tion. We determine the wave length by measuring the length of three consecutive

fully developed wave lengths behind the Ltip and averaged it. This was done for the

different images recorded for a range of flow rates with constant increment of Q = 30

µl/min. From our experimental results presented in figure 22, as the capillary number

increases, there is rapid oil evacuation from the unoccluded region once the interface

has passed over the edge of the obstacle, thereby, causing an increase in the frequency

of oscillations and subsequent decrease in wavelength. This is why the wavelength

decreases as Ca increases and may even cease to exist for high enough flow rates, as

reported by [15] in millimetric channels. Conversely, Ltip has direct proportionality

with Ca. The increase in the capillary number causes the finger to broaden more

slowly across the obstacle, which induces a more rapid change in curvature; and as a

result, Ltip increases with increasing Ca. See figure 23.
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Figure 23: Characteristic tip length (Ltip) (the disdance from the tip to the position
beyond which oscillations occur), plotted as a function of difference between the
capillary number and the critical capillary number Cac. Each data point represents
a single experiment.
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5.4 Dynamics of finite (short) bubbles

We study the propagation of finite bubbles in tubes initially filled with fluid and

investigate their bifurcation graphs to deduce if their exists any relationship between

air finger and finite bubbles. Refer to §4 for the method of producing finite bubbles.

We conducted the experiment with bubbles of different aspect ratios (defined as α =

L/W where L is the distance between the front and the rear of the bubble measured

in their static symmetric states and W is the width of the bubble). Each bubble

was driven through the fluid filled channel by withdrawing the fluid at the end of

the channel with constant increment of Q = 30 µl/min. In fig. 24, we present the

responses of finite bubbles of different aspect ratios (α) when subjected to the same

flow rate. We plotted the global measure m as a function of Ca in all cases. Bubbles

with α > 1 increase monotonically and almost perfectly aligned with increase in Ca in

their symmetric states and also exhibit similar pattern when in their localized states.

But there is significant deviation of the data points for the bubble with α = 1; reason

we are not able to conclude at this point, but we believe there was an additional

inherent drag force due to the balance between the length (L) and width (W ) of

the bubble. The propagation speeds of finite bubbles are generally less than that

of the long fingers for the same flow rate due to the presence of a rear meniscus

inducing additional drag as noted by [16] who also reported that bubbles too small to

be deformed by the tube geometry, will simply act as passive tracers that will follow

the flow streamlines thereby, creating a qualitative change in the flow dynamics. The

inset in figure 24 is a finite bubble of α = 7/5 when in symmetric and localized states.

Similar experiments were also conducted in channel 2 with bubbles of α = 1.3 and

α = 0.97 and plotted on the same graph with an air finger shown in figure 25. While

the air finger and the bubble with α = 1.3 revealed obvious bifurcation point, the

bubble with α = 0.97 undergo an almost continous transition from one state to

another.
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Figure 24: Channel 3: Wet fraction m as a function of capillary number Ca. We
considered four bubbles with different aspect ratios as shown above. The aspect
ratios are characterized as the ratio of the length and width of the bubbles measured
in their symmetric static states. The insets are top-view images of a bubble with
α = 7/5 in symmetric and localized states propagating through the channel from
right to left. Each data point represents a single experiment.
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Figure 25: Channel 2: Wet fraction m as a function of capillary number Ca. The
insets are top-view images of an air finger and two finite bubbles in their symmetric
and oscillatory states as they propagate through the channel from left to right. Each
data point represents a single experiment.
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Chapter 6

6 Summary

The results of an experimental investigation of the propagation of air finger/bubble

through a fluid-filled rectangular microchannel tubes with centered rectangular par-

tial occlusion have been presented. A simple modification of the tube geometry is

evident to have fundamentally altered the dynamics of bubble propagation induced

by constant flux. In addition to the single, symmetric mode seen in unoccluded

channels, there exists asymmetric, localized and oscillatory modes in our occluded

microchannels analogous to the family of propagating fingers recently uncovered by

[16, 15] in millimetre-scale tubes, indicating that gravity is not an essential physical

mechanism that underpins the emergence of these states. Our results have shown

that air fingers and finite bubble (α > 1) exhibits propagation modes that are quan-

titatively and qualitatively similar. We observed symmetric finger/bubble at low

capillary numbers which lost symmetry to either asymmetric, localized or oscillatory

fingers/bubbles through supercritical symmetry-breaking bifurcation as the capillary

number increases beyond a given threshold. Our results revealed almost continous

transition between states for a short bubble with characteristic aspect ratio less than

one. Symmetric fingers are noted for greater oil recovery property while the asym-

metric, localized and oscillatory fingers limit the amount of liquid recovered. These

bubble propagation modes offer further potential for geometry-induced manipulation

of droplets for lab-on-chip applications.
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Appendix A

MATLAB programme to detect the tip position of a finger/bubble during

propagation through the channel

%Clear the work space with the command:

Clear all

% Read the reference image and save it with the variable name Im5

Im5=imread(‘reference image.tif’);

% Similarly, read in an image of the empty channel

Im6=imread(‘empty.tif’);

% Substract the image from the empty channel

Im=Im6-Im5;

% Crop the region of view of both the subtracted and unsubtracted images

Im=Im(30:140,200:800);

Im5C=Im5(30:140,200:800);

% Use Canny edge detection to find the edges by looking for local maxima of the

gradient of Im. The gradient is calculated using the derivative of a Gaussian filter.

This method uses two thresholds to detect strong and weak edges, and includes the

weak edges in the output only if they are connected to strong edges.

Im=edge(Im,‘Canny’,a,b);

where a and b are lower and upper threshold respectively. Note: a and b are

manually adjusted until a satisfactory threshold is achieved.

% View the image with the function

imshow( Im,[ ]);
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% Morphologically open the binary image and remove all connected components

(objects) that have fewer than P pixels, thereby, producing another binary image.

We assign P =100 in our code.

Im=bwareaopen(Im,100);

% Create a flat linear structuring element that is symmetric with respect to the

neighborhood center. 1 denotes the length of the line and 0 specifies the angle (in

degrees) of the line as measured in a counterclockwise direction from the horizontal

axis

se2=strel(‘line’,1,0);

% Morphologically open and close the binary image Im with the structuring element

se2

Imfco=imopen(Im,se2);

Imfco=imclose(Imfco, se2);

% Determine the connected components of Imfco

cc=bwconncomp(Imfco);

% Measure the properties of cc using the structure ‘Area’ and ‘PixelList’ where

Area finds the number of pixels in the region while PixelList create a P-by-Q matrix

specifying the locations of pixels in the region.

s = regionprops(cc, ‘Area’,‘PixelList’);

% Create a vector of the binary image containing only the regions whose area is

greater than 100 and find the maximum region.

idx = find([s.Area] >100);

idmax = find([s.Area] ==max([s.Area]));
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% Find the maximum pixels locations in the region and specify their coordinates

id1=find(s(idmax).PixelList(:, 1)==max(s(idmax).PixelList(:, 1)));

id2=find(s(idmax).PixelList(:, 2)==min(s(idmax).PixelList(:, 2)));

xmax = s(idmax).PixelList(id1,1);

ymax = s(idmax).PixelList(id1,2);

% Plot the detected tip position on the original image as well as showing the image

boundary

hold on

plot(xmax,ymax,‘rx’);

b=bwboundaries(Im);

figure();

imshow(Im5C);

for k=1; plot(bk(:,2),bk(:,1),‘r’,‘Linewidth’,2)

plot(xmax,ymax,‘wx’,‘Linewidth’,3);

end
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