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ABSTRACT 

 
Institution: The University of Manchester  
Name: Ceferino Varón González 
Degree Title: PhD Evolutionary Biology 
Thesis Title: Shape and phylogeny 
Date: 2014 
 
 
Geometric morphometrics, the science about the study of shape, 
has developed much in the last twenty years. In this thesis I first 
study the reliability of the phylogenies built using geometric 
morphometrics. The effect of different evolutionary models, 
branch-length combinations, dimensionality and degrees of 
integration is explored using computer simulations. 
Unfortunately in the most common situations (presence of 
stabilizing selection, short distance between internal nodes and 
presence of integration) the reliability of the phylogenies is very 
low. Different empirical studies are analysed to estimate the 
degree of evolutionary integration usually found in nature. This 
gives an idea about how powerful the effect of integration is over 
the reliability of the phylogenies in empirical studies. 
Evolutionary integration is studied looking at the decrease of 
variance in the principal components of the tangent shape space 
using the independent contrasts of shape. The results suggest 
that empirical data usually show strong degrees of integration in 
most of the organisms and structures analysed. These are bad 
news, since strong degree of integration has devastating effects 
over the phylogenetic reliability, as suggested by our 
simulations. However, we also propose the existence of other 
theoretical situations in which strong integration may not 
translate into convergence between species, like perpendicular 
orientation of the integration patterns or big total variance 
relative to the distance between species in the shape space. 
Finally, geometric morphometrics is applied to the study of the 
evolution of shape in proteins. There are reasons to think that, 
because of their modular nature and huge dimensionality, 
proteins may show different patterns of evolutionary integration. 
Unfortunately, proteins also show strong functional demands, 
which influence their evolution and that cause strong integration 
patterns. Integration is then confirmed as a widespread property 
in the evolution of shape, which causes poor phylogenetic 
estimates. 
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1. INTRODUCTION 

 Geometric morphometrics is the science that studies shape. It has 

been used in a wide variety of contexts, of which evolution is the main one. It 

is a science under continuous development (Adams, et al. 2013) and there 

are many areas within evolutionary biology in which great improvements have 

been achieved in the last few years, e.g. the application of geometric 

morphometrics to the study of plant evolution (Gómez, et al. 2006) or evo-

devo (Lawing and Polly 2010, Salazar-Ciudad and Marín-Riera 2013). 

Macroevolution has been one of the areas in which more interest and 

development has been lately (Klingenberg and Gidaszewski 2010, Catalano 

and Goloboff 2012, Klingenberg and Marugán-Lobón 2013, Monteiro 2013, 

Adams 2014c, Adams 2014b, Adams 2014a). In this thesis, I study geometric 

morphometrics in this context, first studying the relationship between shape 

and phylogenetics and then developing a morphometric method to study 

macroevolution in proteins, in which the problems found to estimate 

phylogenies in anatomical structures might not apply or be less severe. 

1.1. Geometric morphometrics and Phylogenetics 

 The utility of geometric morphometrics to build reliable phylogenies 

has been a controversial topic since twenty years ago, when the study of 

shape restarted to develop and there were the first attempts to study shape 

using geometric morphometrics in macroevolution (Bookstein 1994, Zelditch, 

et al. 1995, Naylor 1996, Rohlf 1998, Swiderski, et al. 1998, Zelditch, et al. 

1998, Monteiro 2000). Some authors proposed that geometric morphometrics 

can be useful to build phylogenies due to its multidimensional nature 

(González-José, et al. 2008). The fact that there is so much data available to 

describe the shape of each specimen supposes that there are 'many sources 

of variation' (MacLeod and Forey 2002) and therefore convergence should be 

less likely (chapter 1, no integration case). The great ability to discriminate 
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between different specimens using geometric morphometrics in empirical 

studies has reinforced that idea. In contrast to the one-dimensional data, 

which makes the reliability of the phylogenies to be very low (Lynch 1989), 

shape data is supposed to perform better.  

 Under that logic, different studies have been published trying to find 

the appropriate methods to build reliable phylogenies. The first attempts to 

infer phylogenies using shape characters used the partial warp scores (Fink 

and Zelditch 1995, Zelditch, et al. 1995, Swiderski, et al. 1998, Zelditch, et 

al. 1998, Clouse, et al. 2011) or principal component scores (MacLeod 2002, 

González-José, et al. 2008, Aguilar-Medrano, et al. 2011, González-José, et 

al. 2011) as cladistic characters. However, these procedures were criticized 

for the lack of biological meaning in the case of the former and their 

decomposition of the different dimensions in different characters in both cases 

(Bookstein 1994, Naylor 1996, Adams and Rosenberg 1998, Rohlf 1998, 

Monteiro 2000, Adams, et al. 2011, Zelditch, et al. 2012).  

 Shape data is characterized by some covariation (integration) between 

shape variables (Klingenberg 2013). Therefore, shape must not be 

decomposed into separate characters but treated as a multidimensional and 

multivariate character (Klingenberg and Gidaszewski 2010). This fact was 

taken into account by some other studies, in which clustering techniques or 

statistical approaches are used (Marcus, et al. 2000, Cannon and Manos 2001, 

Lockwood, et al. 2004, Caumul and Polly 2005, Couette, et al. 2005, 

Macholán 2006, Cardini and Elton 2008). However, the success of these 

methods in reconstructing phylogenies has been difficult to assess. In the first 

place, the results in the empirical studies are a consequence of specific 

evolutionary pathways that are unknown and therefore it is difficult to know 

the evolutionary diversification necessary in the organisms for these 

phylogenies to be reliable. In second place, most of the phylogenies built 

using shape data show partial agreement with other reliable sources (e.g. 
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molecular data), so the reliability depends at some extent on the expectations 

of the researcher. That explains the publication of studies in which the 

phylogenies are not completely correct but the authors are optimistic about 

the possibilities of shape data in this regard (Catalano and Goloboff 2012, 

Smith and Hendricks 2013). 

 Integration produces a concentration of the variation in specific 

directions of the shape space (Wagner 1984) and therefore it can 

substantially decrease the sources of independent variation and promote 

convergence (Goswami, et al. 2014). In the extreme, integration would 

transform shape into univariate data, where the phylogenetic estimates have 

been shown to be unreliable (Lynch 1989). That fact, together with some bad 

results obtained in empirical data (Klingenberg and Gidaszewski 2010), it has 

added in a good part of the morphometrician community a cautious attitude 

towards the use of shape to build phylogenies. As Joe Felsenstein pointed out 

in the morphomet emailing list (4th Dec 2013), 'For GM [Geometric 

morphometrics] coordinates or in fact for any quantitative traits, it is not 

appropiate to use them for inferring phylogenies unless you have some way of 

dealing with the covariances'. However, it has not been quantified how much 

integration affects the phylogenetic reconstruction in practice or whether the 

methods prepared to deal with covariances (Felsenstein 2002), beyond the 

specific requirements in terms of dimensionality and species sample size, 

significantly improve the reliability.  

1.2. Integration and convergence 

 In order to have a complete knowledge about the reliability of the 

phylogenies built using geometric morphometrics it is not enough to know 

how different degrees of integration affect phylogenetic accuracy. It is also 

important to know whether these conditions are met in empirical studies, so 
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the patterns of integration that are usually found in morphometric studies can 

be compared with the results found for these patterns in our simulations. 

 Integration is a widespread feature in morphometric data (Olson and 

Miller 1958, Cheverud 1996, Wagner and Altenberg 1996, Marroig and 

Cheverud 2001, Bookstein, et al. 2003, Monteiro, et al. 2005, Young and 

Badyaev 2006, Lockwood 2007, Klingenberg 2008, Hallgrímsson, et al. 2009, 

Gonzalez, et al. 2011, Klingenberg 2013, Armbruster, et al. 2014, Goswami, 

et al. 2014), which has been found in different organisms from mammals to 

plants. Indeed, different mechanisms promoting integration are present in the 

vast majority of the organisms (Klingenberg 2014). They all produce 

coordinated responses in different parts of the structures, which translates 

into patterns of phenotypic integration. These patterns seem to be different 

depending on the organisms (Jamniczky and Hallgrímsson 2009, Gómez, et 

al. 2014, Goswami, et al. 2014) but the variance of the eigenvalues of the 

covariance matrix of shape data (Wagner 1984, Young 2006) is a common 

consequence of all of them. The variance of the eigenvalues is a way of 

looking at the concentration of variation in specific directions of the shape 

space during the evolution of the species. Comparing this measure obtained 

from empirical data with the strength of integration set in our simulations we 

can assess whether the conditions in nature are favourable for the 

phylogenetic reconstruction using geometric morphometrics or not. 

 Homoplasy is behind the mistakes in the phylogenetic reconstruction, 

since it reflects similarity in shape between unrelated species. However, the 

importance of homoplasy goes beyond that and it is important to understand 

the evolution of the organisms (Losos 2011). Although integration is not 

essential for the production of convergence, it can promote it significantly 

(Losos 2011, Goswami, et al. 2014). The combination of different patterns of 

integration with different orientations of the major directions of variation and 
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different total variances can result in interesting conclusions to understand 

the evolution of species and the production of convergence. 

1.3. Proteins and integration 

 Integration has been found in almost all the morphological structures 

in which it has been studied using geometric morphometrics. However, in 

molecules like proteins, it has been only been studied from the perspective of 

the sequence (Trifonov and Frenkel 2009). Just as anatomical structures, 

proteins can have strong functional demands. Functional integration, the 

'association between parts interacting in some functional context' (p. 4) 

(Klingenberg 2014) is a feature that should be present in all the proteins, 

since the functionality is determined by the correct interaction in first place 

with the chaperons (Hartl and Hayer-Hartl 2002), which are responsible for 

the correct protein folding. In all the enzymes, in addition, their function is 

conditioned by the correct interaction between different parts of the proteins 

and different parts from different proteins.  

 Unlike the anatomical structures, where integration has been proposed 

to be the ancestral state, evolving towards modularity with time (Wagner and 

Altenberg 1996, Goswami, et al. 2014), the evolution of the proteins suggests 

modularity would be in principle the ancestral state. New proteins can appear 

after duplication of preexisting proteins (Lynch 2000). At early stages after 

that, some parts in the new proteins duplicate forming new modules (Halabi, 

et al. 2009). At that point, the modularity in the protein would be very strong 

(Trifonov and Frenkel 2009). Then, recombination between the new and the 

pre-existing modules happens so the protein would gain new functions 

(Hopfner, et al. 1998, Lynch 2000). Integration is then a feature that would 

appear later in the evolution. 

 The study of integration in proteins can give a new perspective over 

the differences in the evolution of anatomical and protein structures. The use 
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of geometric morphometrics in this regard would be stimulating for both 

fields, structural biology and geometric morphometrics, since it will give new 

perspectives about the study of shape to both sciences. 

1.4. Summary and aims 

 The first chapter of this thesis is a theoretical approach to the 

relationship between shape and phylogenetic inference, taking into 

consideration different features of the morphometric data that can affect the 

reliability of the phylogenies built using geometric morphometrics. Using 

computer simulations is a good start, because they allow us exploring a wide 

range of values in the factors that may affect the ability of geometric 

morphometrics to reconstruct correct phylogenies.  

 The next chapters study one of these factors specifically, integration, 

over the evolution of shape in a phylogenetic context. Since the first chapter 

is based on computer simulations, in the next two we explore empirical data, 

so we can check how widespread integration is in nature and how strong it is. 

Two different kinds of empirical data are studied, so our study is fairly 

extensive and strong evidence about the nature of integration is obtained. 

Empirical data from anatomical studies, that is the kind of data managed in 

geometric morphometrics, is studied in first place (second chapter). Along 

with it, we also assess the relationship between different features of the 

integration patterns and convergence, which contributes to errors during the 

process of phylogenetic inference studied before. 

 In the last chapter of this thesis, geometric morphometrics is applied 

to the study of protein shape. Integration and convergence are then studied 

under the same perspective that has been applied to anatomical structures to 

a new set of structures, proteins. Using the same technique will make a fair 

comparison between integration and convergence found in morphology and 

integration and convergence found in proteins. Therefore, we extend the 
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study of these features to the molecular world, where different effects and 

principles may apply. Molecular data may reveal new and exciting features 

regarding the relationship between integration, shape and phylogenetics. 

1.5. References 

	
  
Adams DC. 2014a. A generalized K statistic for estimating phylogenetic signal 

from shape and other high-dimensional multivariate data. Systematic 

Biology. 

Adams DC. 2014b. A method for assessing phylogenetic least squares models 

for shape and other high-dimensional multivariate data. Evolution. 

Adams DC. 2014c. Quantifying and comparing phylogenetic evolutionary rates 

for shape and other high-dimensional phenotypic data. Systematic 

Biology 63:166-177. 

Adams DC, Cardini A, Monteiro LR, O'Higgins P, Rohlf FJ. 2011. 

Morphometrics and phylogenetics: Principal components of shape from 

cranial modules are neither appropriate nor effective cladistic 

characters. Journal of Human Evolution 60:240-243. 

Adams DC, Rohlf FJ, Slice DE. 2013. A field comes of age: geometric 

morphometrics in the 21st century. Hystrix 24:7-14. 

Adams DC, Rosenberg MS. 1998. Partial warps, phylogeny, and ontogeny: A 

comment on Fink and Zelditch (1995). Systematic Biology 47:168-

173. 

Aguilar-Medrano R, Frédérich B, de Luna E, Balart EF. 2011. Patterns of 

morphological evolution of the cephalic region in damselfishes 

(Perciformes: Pomacentridae) of the Eastern Pacific. Biological Journal 

of the Linnean Society 102:593–613. 

Armbruster WS, Pélabon C, Bolstad GH, Hansen TF. 2014. Integrated 

phenotypes: understanding trait covariation in plants and animals. 



	
   20	
  

Philosophical Transactions of the Royal Society of London B Biological 

Sciences 369. 

Bookstein F. 1994. Can biometrical shape be a homologous character? In: 

Hall BK editor. Homology: The hierarchial basis of comparative biology. 

New York, Academic Press, p. 197-227. 

Bookstein FL, Gunz P, Mitteroecker P, Prossinger H, Schaefer K, Seidler H. 

2003. Cranial integration in Homo: singular warps analysis of the 

midsagittal plane in ontogeny and evolution. Journal of Human 

Evolution 44:167-187. 

Cannon CH, Manos PS. 2001. Combining and comparing morphometric shape 

descriptors with a molecular phylogeny: the case of fruit type evolution 

in Bornean Lithocarpus (Fagaceae). Systematic Biology 50:860–880. 

Cardini A, Elton S. 2008. Does the skull carry a phylogenetic signal? Evolution 

and modularity in the guenons. Biological Journal of the Linnean 

Society 93:813-834. 

Catalano SA, Goloboff PA. 2012. Simultaneously mapping and superimposing 

landmark configurations with parsimony as optimality criterion. 

Systematic Biology 61:392-400. 

Caumul R, Polly PD. 2005. Phylogenetic and environmental components of 

morphological variation: skull, mandible, and molar shape in marmots 

(Marmota, Rodentia). Evolution 59:2460–2472. 

Cheverud JM. 1996. Developmental integration and the evolution of 

pleiotropy. American Zoologist 36:44-50. 

Clouse RM, de Bivort BL, Giribet G. 2011. Phylogenetic signal in morphometric 

data. Cladistics 27:337–340. 

Couette S, Escarguel G, Montuire S. 2005. Constructing, bootstrapping, and 

comparing morphometric and phylogenetic trees: A case study of New 

World monkeys (Platyrrhini, Primates). Journal of Mammalogy 86:773–

781. 



	
   21	
  

Felsenstein J. 2002. Quantitative characters, phylogenies, and 

morphometrics. In: MacLeod N, Forey PL editors. Morphology, Shape & 

Phylogeny. London, Taylor & Francis, p. 27-44. 

Fink WL, Zelditch ML. 1995. Phylogenetic analysis of ontogenetic shape 

transformations: A reassessment of the piranha Genus Pygocentrus 

(Teleostei). Systematic Biology 44:343-360. 

Gómez JM, Perfectti F, Camacho JPM. 2006. Natural selection on Erysimum 

mediohispanicum flower shape: Insights into the evolution of 

zygomorphy. American Naturalist 168:531-545. 

Gómez JM, Perfectti F, Klingenberg CP. 2014. The role of pollinator diversity in 

the evolution of corolla-shape integration in a pollination-generalist 

plant clade. Philosophical Transactions of the Royal Society of London 

B Biological Sciences 369. 

Gonzalez PN, Oyhenart EE, Hallgrímsson B. 2011. Effects of environmental 

perturbations during postnatal development on the phenotypic 

integration of the skull. Journal of Experimental Zoology Part B: 

Molecular and Developmental Evolution 316B:547-561. 

González-José R, Escapa I, Neves WA, Cúneo R, Pucciarelli HM. 2008. 

Cladistic analysis of continuous modularized traits provides 

phylogenetic signals in Homo evolution. Nature 453:775-778. 

González-José R, Escapa I, Neves WA, Cúneo R, Pucciarelli HM. 2011. 

Morphometric variables can be analyzed using cladistic methods: A 

Reply to Adams et al. Journal of Human Evolution 60:244-245. 

Goswami A, Smaers JB, Soligo C, Polly PD. 2014. The macroevolutionary 

consequences of phenotypic integration: from development to deep 

time. Philosophical Transactions of the Royal Society of London B 

Biological Sciences 369:20130254. 

Halabi N, Rivoire O, Leibler S, Ranganathan R. 2009. Protein sectors: 

Evolutionary units of three-dimensional structure. Cell 138:774-786. 



	
   22	
  

Hallgrímsson B, Jamniczky HA, Young NM, Rolian C, Parsons TE, Boughner JC, 

Marcucio RS. 2009. Deciphering the palimpsest: Studuying the 

relationship between morphological integration and phenotypic 

covariation. Evolutionary Biology 36:355-376. 

Hartl FU, Hayer-Hartl M. 2002. Molecular chaperons in the cytosol: from 

nascent chain to folded protein. Science 295:1852-1858. 

Hopfner KP, Kopetzki E, Kresse GB, Bode W, Huber R, Engh RA. 1998. New 

enzyme lineages by subdomain shuffling. Proceedings of the National 

Academy of Sciences of the United States of America 95:9813-9818. 

Jamniczky HA, Hallgrímsson B. 2009. A comparison of covariance structure in 

wild and laboratory muroid crania. Evolution 63:1540–1556. 

Klingenberg CP. 2008. Morphological integration and developmental 

modularity. Annual Review of Ecology, Evolution and Systematics 

39:115-132. 

Klingenberg CP. 2013. Cranial integration and modularity: insights into 

evolution and development from morphometric data. Hystrix 24:43-

58. 

Klingenberg CP. 2014. Studying morphological integration and modularity at 

multiple levels: concepts and analysis. Philosophical Transactions of 

the Royal Society of London B Biological Sciences 369. 

Klingenberg CP, Gidaszewski NA. 2010. Testing and quantifying phylogenetic 

signals and homoplasy in morphometric data. Systematic Biology 

59:245-261. 

Klingenberg CP, Marugán-Lobón J. 2013. Evolutionary covariation in 

geometric morphometric data: analyzing integration, modularity, and 

allometry in a phylogenetic context. Systematic Biology 62:591–610. 

Lawing AM, Polly PD. 2010. Geometric morphometrics: recent applications to 

the study of evolution and development. Journal of Zoology 280:1-7. 



	
   23	
  

Lockwood CA. 2007. Adaptation and functional integration in primate 

phylogenetics. Journal of Human Evolution 52:490-503. 

Lockwood CA, Kimbel WH, Lynch JM. 2004. Morphometrics and hominoid 

phylogeny: Support for a chimpanzee-human clade and differentiation 

among great ape subspecies. Proceedings of the National Academy of 

Sciences of the United States of America 101:4356-4360. 

Losos JB. 2011. Convergence, adaptation, and constraint. Evolution 65:1827-

1840. 

Lynch M. 1989. Phylogenetic hypotheses under the assumption of neutral 

quantitative-genetic variation. Evolution 43:1-17. 

Lynch M. 2000. The probability of duplicate gene preservation by 

subfunctionalization. Genetics 154:459-473. 

Macholán M. 2006. A geometric morphometric analysis of the shape of the 

first upper molar in mice of the genus Mus (Muridae, Rodentia). 

Journal of Zoology (London) 270:672–681. 

MacLeod N. 2002. Phylogenetic signals in morphometric data. In: MacLeod N, 

Forey PL editors. Morphology, shape and phylogeny. London, Taylor & 

Francis, p. 100–138. 

MacLeod N, Forey PL. 2002. Introduction: morphology, shape and 

phylogenetics. In: MacLeod N, Forey PL editors. Morphology, Shape 

and Phylogeny. London, CRC Press. 

Marcus LF, Hingst-Zaher E, Zaher H. 2000. Application of landmark 

morphometrics to skulls representing the orders of living mammals. 

Hystrix 11:27–47. 

Marroig G, Cheverud JM. 2001. A comparison of phenotypic variation and 

covariation patterns and the role of phylogeny, ecology, and ontogeny 

during cranial evolution of New World monkeys. Evolution 55:2576-

2600. 



	
   24	
  

Monteiro LR. 2000. Why morphometrics is special: The problem with using 

partial warps as characters for phylogenetic inference. Systematic 

Biology 49:796-800. 

Monteiro LR. 2013. Morphometrics and the comparative method: studying the 

evolution of biological shape. Hystrix. 

Monteiro LR, Bonato V, dos Reis SF. 2005. Evolutionary integration and 

morphological diversification in complex morphological structures: 

Mandible shape divergence in spiny rats (Rodentia, Echimyidae). 

Evolution & Development 7:429–439. 

Naylor GJP. 1996. Can partial warp scores be used as cladistic characters? In: 

Marcus LF, Corti M, Loy A, Naylor GJP, Slice DE editors. Advances in 

morphometrics. New York, Plenum Press, p. 519–530. 

Olson EC, Miller RL. 1958. Morphological integration. Chicago, University of 

Chicago Press. 

Rohlf FJ. 1998. On applications of geometric morphometrics to studies of 

ontogeny and phylogeny. Systematic Biology 47:147-158. 

Salazar-Ciudad I, Marín-Riera M. 2013. Adaptive dynamics under 

development-based genotype-phenotype maps. Nature 497:361-364. 

Smith UE, Hendricks JR. 2013. Geometric morphometrics character suites as 

phylogenetic data: Extracting phylogenetic signal from gastropod 

shells. Systematic Biology 62:366-385. 

Swiderski DL, Zelditch ML, Fink WL. 1998. Why morphometrics is not special: 

Coding quantitative data for phylogenetic analysis. Systematic Biology 

47:508-519. 

Trifonov EN, Frenkel ZM. 2009. Evolution of protein modularity. Current 

Opinion in Structural Biology 19:335-340. 

Wagner GP. 1984. On the eigenvalue distribution of genetic and phenotypic 

dispersion matrices: evidence for a nonrandom organization of 



	
   25	
  

quantitative character variation. Journal of Mathematical Biology 

21:77-95. 

Wagner GP, Altenberg L. 1996. Complex adaptations and the evolution of 

evolvability. Evolution 50:967-976. 

Young NM. 2006. Function, ontogeny, and canalization of shape variance in 

the primate scapula. Journal of Anatomy 209:623-636. 

Young RL, Badyaev AV. 2006. Evolutionary persistence of phenotypic 

integration: Influence of developmental and functional relationships on 

complex trait evolution. Evolution 60:1291-1299. 

Zelditch ML, Fink WL, Swiderski DL. 1995. Morphometrics, homology, and 

phylognetics: Quantified characters as synapomorphies. Systematic 

Biology 44:179-189. 

Zelditch ML, Fink WL, Swiderski DL, Lundrigan BL. 1998. On applications of 

geometric morphometrics to studies of ontogeny and phylogeny: A 

reply to Rohlf. Systematic Biology 47:159-167. 

Zelditch ML, Swiderski DL, Sheets HD. 2012. Geometric morphometrics for 

biologists: a primer. San Diego, Academic Press. 

 

	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  



	
   26	
  

 

 

 

Chapter 2 

 

Reliability of Estimating Phylogenies from Shape and Similar 

Multidimensional Data 

CEFERINO VARÓN GONZÁLEZ 1, SIMON WHELAN1,2  

AND CHRISTIAN PETER KLINGENBERG1 

1Faculty of Life Sciences, University of Manchester, Michael Smith Building, 

Oxford Road, Manchester M13 9PT, United Kingdom; 

2Dept. of Evolutionary Biology, EBC, Uppsala University, Norbyägen 18D, 

75236 Uppsala, Sweden 

  



	
   27	
  

Abstract 

 

In recent years, there has been some controversy whether multidimensional 

data such as geometric morphometric data on shape or information on gene 

expression can be used for estimating phylogenies. This study addresses this 

question with simulations of evolution in multidimensional phenotype spaces. 

The simulations use the four-taxon case, where there are just three possible 

tree topologies, and a comprehensive scheme to cover different combinations 

of branch lengths. Under an evolutionary model of isotropic Brownian motion, 

phylogeny can be estimated reliably if dimensionality is high. If phenotypic 

variation is integrated so that most variation is concentrated in one or a few 

dimensions, the reliability of phylogenetic estimates is seriously reduced, 

corresponding to the reduced dimensionality of the data. Taking into account 

integration by using Mahalanobis distance in estimating phylogenies can 

restore phylogenetic reliability only in part, depending on the sample size 

used to estimate patterns of integration. Evolutionary models with stabilizing 

selection produce unreliable estimates, which are little better than picking a 

phylogenetic tree at random. Finally, a best-case scenario with an 

evolutionary model of mutual repulsion among taxa produces reliable 

estimates of phylogeny, but cannot be considered a realistic model of 

evolution in natural clades. Overall, the simulations suggest that 

multidimensional data, under plausible evolutionary models, do not produce 

reliable estimates of phylogeny.  
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2.1. INTRODUCTION 

 Quantitative multidimensional data are often good descriptors of 

biological structures or functions and it is therefore sensible to examine 

whether they can be used as sources of information for phylogenetics. Some 

early studies that pioneered phylogenetics were based on considerations of 

multidimensional spaces of allele frequencies for multiple loci (Cavalli-Sforza 

and Edwards 1967) and several more recent studies have estimated 

phylogenetic trees from data on gene expression (Enard et al. 2002; Rifkin et 

al. 2003; Uddin et al. 2004; Brawand et al. 2011), but most such analyses 

have used morphometric data on the shapes of organisms or their parts (Fink 

and Zelditch 1995; Zelditch et al. 1995; Naylor 1996; Swiderski et al. 1998; 

Zelditch et al. 1998; MacLeod 2002; Lockwood et al. 2004; Polly 2004; 

González-José et al. 2008; Catalano et al. 2010; Aguilar-Medrano et al. 2011; 

Goloboff and Catalano 2011; Catalano and Goloboff 2012; Smith and 

Hendricks 2013; Watanabe and Slice 2014). It remains contentious, however, 

whether the phylogenies estimated from quantitative multidimensional 

variables are reliable.  

During the last two decades, a number of different aspects concerning 

this issue have been discussed. Some studies have suggested that partial 

warp scores (Fink and Zelditch 1995; Zelditch et al. 1995; Swiderski et al. 

1998; Zelditch et al. 1998; Clouse et al. 2011) or principal component scores 

(MacLeod 2002; González-José et al. 2008; Aguilar-Medrano et al. 2011; 

González-José et al. 2011) can be used as cladistics characters. These 

proposals, however, have been criticized for various reasons, especially 

concerning the decomposition of phenotypic spaces into distinct characters 

(Bookstein 1994; Naylor 1996; Adams and Rosenberg 1998; Rohlf 1998; 

Monteiro 2000; Zelditch et al. 2004; Adams et al. 2011). Some authors have 

advocated methods, different in many respects from the Procrustes approach 
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used almost ubiquitously in geometric morphometrics, that use landmarks as 

characters in cladistic analysis (Catalano et al. 2010; Goloboff and Catalano 

2011; Catalano and Goloboff 2012). An alternative is to use methods that do 

not divide the phenotypic variation into characters, but infer phylogenies from 

distances among taxa using clustering techniques (e.g., neighbor joining or 

UPGMA) or using statistical approaches such as maximum likelihood (e.g., 

Marcus et al. 2000; Cannon and Manos 2001; Lockwood et al. 2004; Caumul 

and Polly 2005; Couette et al. 2005; Macholán 2006; Cardini and Elton 2008). 

Such estimates of phylogenies may be unreliable, however, because 

theoretical studies and computer simulations have demonstrated that random 

evolutionary processes such as Brownian motion frequently produce 

convergence, so that phenotypic distance may not be a good indicator of time 

since divergence (Lynch 1989; Stayton 2008).  

These debates raise the question of how the quality of estimated trees 

can be assessed. So far, the majority of such assessments have compared 

trees obtained from morphometric data to trees hypothesized to reflect true 

phylogenetic history (Cole et al. 2002; Lockwood et al. 2004; Cardini and 

Elton 2008; González-José et al. 2008; Klingenberg and Gidaszewski 2010; 

Catalano and Goloboff 2012). Many of these studies produced partial 

agreement in the trees, which is somewhat ambiguous: adherents of a 

particular method can emphasize that the trees are partly correct, critics can 

point out that other aspects are wrong. Similarly, Smith and Hendricks (2013, 

p. 377) “consider it impressive” that morphometric characters were able to 

allocate 33–45% of taxa successfully to their positions in a phylogenetic tree, 

whereas skeptics might argue that this indicates a clear majority of failures. A 

possible solution for this problem is to use computer simulations of simple 

trees, as it has been used for testing methods to infer phylogenies from 

molecular data (Huelsenbeck and Hillis 1993; Hillis et al. 1994; Huelsenbeck 

1995). Simulations have been used in the context of geometric 
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morphometrics to examine the effect of different evolutionary scenarios on 

ancestor–descendant distances and to explore the consequences on 

phylogenetic inference (Polly 2004). However, the simulations were conducted 

only under restricted sets of parameters (e.g., dimensionality, patterns of 

integration, branch lengths) and simulation results were evaluated 

qualitatively.  

This study uses an extensive set of simulations to analyze how 

accurately phylogenies can be estimated using quantitative multidimensional 

data. Adopting an approach similar to that used by Huelsenbeck and Hillis 

(1993) in molecular phylogenetics, we use the four-taxon case as the simplest 

situation where different unrooted trees are possible, we systematically 

examine the effects of different combinations of branch lengths in the 

phylogeny, and we implement several evolutionary models. In addition, we 

vary the characteristics of the phenotypic variation, namely its dimensionality 

and the patterns of integration among the variables (Klingenberg 2008; 

Goswami et al. 2014). Together, these simulations furnish estimates of the 

accuracy of phylogenies inferred from multidimensional data under a wide 

range of conditions. The results provide new and decisive information to the 

debate about the role of multidimensional data in phylogenetics. 

2.2. MATERIALS AND METHODS 

2.2.1. Simulation strategy 

Complex phenotypes can be represented in a multidimensional space, 

in which evolving populations can be represented as points according to their 

average phenotypes. Examples of such multidimensional spaces are the space 

of gene expression (e.g., Brawand et al. 2011) and shape tangent spaces 

(Dryden and Mardia 1998; Kendall et al. 1999). Evolution of the mean 

phenotype in a population corresponds to movement of the respective point 
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through the space.  

Our strategy follows the one used by Huelsenbeck and Hillis (1993) for 

molecular sequence data, but uses models of evolution in multidimensional 

phenotypic spaces. The simulation uses four taxa because this is the minimal 

number for which there are several different unrooted trees (three different 

trees). We repeatedly run an evolutionary simulation for four taxa in a 

phenotypic space (Fig. 2.1). We then estimate the unrooted tree from the 

resulting multidimensional phenotypes by computing the tree length for all 

three possible tree topologies. The proportion of simulations in which the 

shortest tree matches the tree topology used in the simulation, the proportion 

of correct estimates, is a natural measure of reliability of the phylogeny 

reconstruction. Because there are only three possible trees (Fig. 2.2a), it is 

feasible to evaluate all three possible trees for each simulation and the 

analyses are therefore guaranteed to find the optimal tree in each simulation. 

Also, it is clear which tree is correct and which ones are incorrect and there is 

none of the ambiguity about whether a reconstructed tree is “mostly correct” 

or “incorrect in some fundamental features”, as it occurs in discussions of 

empirical examples involving more taxa. 
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Figure 2.1. Examples of the three different evolutionary models used in the 

study. a) Brownian motion model. At each iteration the phenotypic values 

change randomly (note that there is a computational shortcut with identical 

outcome, as the phenotypic change on each branch can be simulated with a 

single random variable drawn from a normal distribution with appropriate 

variance). b) Stabilizing selection. At each iteration the phenotypic values 

change a certain amount towards the phenotypic optimum (a phenotypic 

value of 35 in this case) and also have a low amount of random movement. c) 

Repulsion model. At each iteration the phenotypic values move a certain 

amount away from those of other lineages and also have a low amount of 

random movement. Note that crossings are much more unlikely than using 

Brownian motion model. 

 

To examine the effects of variation in branch lengths, we adopt the 

systematic exploration of different combinations of branch lengths used in the 
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computer simulations of Huelsenbeck and Hillis (1993). Branch lengths reflect 

the opportunity for evolutionary change along the branches of a phylogeny, 

and result jointly from the rate of evolutionary change and the time interval 

corresponding to the respective branch of the phylogeny. We conduct two 

different sets of simulations, one to analyze the effects of the relative lengths 

of internal versus terminal branches (Figure 2.2b) and another set to study 

the effect of long-branch attraction and related difficulties for phylogeny 

reconstruction (Fig. 2.2c). In both cases, we divide the five branches in two 

groups, within which all the branches have the same length. In the first case, 

one group contains the four peripheral branches and second group consists of 

just the central branch (Fig. 2.2b). The phylogenetic reconstruction should be 

easier when the central branch is long relative to the peripheral branches, 

because this situation provides ample opportunity for the two internal nodes 

to diverge, while each of them is likely to remain close to its two adjoining 

terminal nodes. Conversely, if the central branch is very short relative to the 

terminal branches, so that the tree approaches a polytomy, all four taxa are 

expected to be roughly equidistant to one another and which tree fits the data 

best is mainly due to random variation. Note that if the central branch 

actually has length zero, the three possible unrooted trees represent the true 

tree equally well, so the evaluation of the phylogenetic reconstruction does 

not make sense. Whereas these expectations are fairly straightforward, it is 

not clear to what extent intermediate combinations of branch lengths provide 

reliable estimates of phylogeny. Our simulations aim to establish this under 

several evolutionary models.  
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Figure 2.2. The three 

possible unrooted trees and 

two ways to vary branch 

lengths in the simulations.  

a) True phylogenetic tree 

simulated (left) and the two 

other possible tree 

topologies (right). b) 

Variation in branch lengths 

contrasting terminal versus 

central branches. All the 

terminal branches share a 

length and the central 

branch has a different 

length. The relative lengths 

of the two sets of branches 

are varied from 1;20 to 

20:1. When the central 

branch is very long relative to the terminal branches (right), it is expected 

that estimating the phylogeny should be easy. c) Variation in branch lengths 

contrasting two terminal branches with the three remaining branches (2-

versus-3 scenario). The situation at the left, where two terminal branches at 

either end of the central branch are much longer than the remaining three 

branches, is well known to be particularly challenging.  

 

In the second set of simulations, the central branch and one peripheral 

branch at either end of it have one branch length and the other two peripheral 

branches have another branch length (Fig 2c). This arrangement of relative 

branch lengths has been shown to pose potential challenges to phylogenetic 
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methods (Felsenstein 1978; Huelsenbeck and Hillis 1993; Huelsenbeck 1995). 

Remotely related terminal nodes may appear close because they are linked to 

the rest of the tree by long branches and therefore it may have a negative 

effect over the phylogenetic reconstruction. This situation has long been 

known as long-branch attraction or heterotachy, where the rate of 

evolutionary changes differs among lineages in the phylogeny, and has been 

widely studied in molecular phylogenetics (Wiens and Hollingsworth 2000; 

Bergsten 2005; Philippe et al. 2005; Wägele and Mayer 2007; Degtjareva et 

al. 2012). It is less clear, however, whether this problem has similarly serious 

effects on phylogeny estimation from multidimensional phenotypes. 

In both sets of simulations, each set of relative branch lengths varies 

from 1 to 20. Therefore, we have situations in which one set of branches is 

much longer than the other (up to 20 times) and all the intermediate 

situations including that in which all the branches have the same length. For 

each set of simulations and evolutionary model, we start with the univariate 

case and then increase the dimensionality to 2, 3, 5, 10, 20, 50 and 100 

dimensions. 

For each number of dimensions and combination of branch lengths, we 

repeat the simulations and the phylogenetic reconstruction 5000 times to 

obtain a percentage of how many times the phylogenetic method chooses the 

correct tree. This percentage constitutes our estimate of phylogenetic 

reliability or phylogenetic accuracy. By comparing the phylogenetic reliability 

under different conditions we can assess the effect of the dimensionality, 

branch lengths and integration. 

All the simulations are implemented using the R 2.10 statistical 

package (R Core Team 2013). The package 'mnormt' (Genz and Azzalini 

2013) is used to implement the multivariate approach. 
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2.2.2. Brownian Motion 

The first set of simulations assumes an evolutionary process according 

to a Brownian motion model, because this type of models has been of 

fundamental importance in discussions about phylogenies and quantitative 

traits (Cavalli-Sforza and Edwards 1967; Felsenstein 1973; Lynch 1989; 

Felsenstein 2002; Stayton 2008). This model assumes that the phenotype of 

each lineage evolves by a small amount for each short time span, and that 

this change is equally likely in every direction of the phenotypic space. In 

other words, the traits corresponding to the dimensions of the phenotypic 

space are evolving randomly, with equal evolutionary rates and independently 

of one another. The resulting evolutionary trajectory is a random walk 

through the phenotypic space (Fig. 2.1a). Under Brownian motion, there is an 

association between the time since the splitting of two lineages and the 

expected distance between the corresponding phenotypes, providing a 

possible basis for estimating phylogeny. Nevertheless, this association is not 

deterministic, but has a substantial stochastic component of variation, so that 

estimating the phylogeny from the distances between the phenotypes of the 

terminal nodes is inevitably fraught with a degree of uncertainty (Lynch 

1989). 

To conduct simulations under a Brownian motion model, random walks 

of lineages through the phenotypic space can be implemented explicitly 

(Figure 1a). It is more efficient, however, to obtain changes along the 

branches in the phylogeny directly as random vectors drawn from multivariate 

normal distributions with variances proportional to the respective branch 

lengths and zero covariances among variables (this follows from the 

multivariate version of the central limit theorem; e.g., Mardia et al. 1979). 

The phenotypes for the four terminal nodes can then be obtained by 

combining these changes in accordance with the true phylogenetic tree (Fig. 

2.2a). 
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The reconstruction of the phylogeny from the phenotypes of the 

terminal nodes is done by computing the tree length for each of the three 

possible trees using squared-change parsimony (Maddison 1991; McArdle and 

Rodrigo 1994) and accepting the shortest tree. This estimate is also the 

maximum-likelihood estimate of the phylogeny under the Brownian motion 

model (Maddison 1991; Felsenstein 2004). This procedure was repeated with 

different numbers of dimensions and combinations of branch lengths, as 

described above. 

For Brownian motion, the absolute scale of the branch lengths has no 

effect on the distribution of relative arrangements of taxa in phenotype space, 

other than the scale of distances between them. As branch lengths increase, it 

is expected that taxa will be farther from each other, but still will form the 

same relative patterns. This is different from molecular evolution, where there 

are saturation effects if the product of time and substitution rate becomes 

very large, because there are only four possible nucleotides (or 20 amino 

acids). Therefore, in each set of simulations, only the ratio of branch lengths 

in the two groups of branches needs to be varied, but not the absolute branch 

length. Accordingly, reliability is presented as the percentage of correctly 

estimated phylogenies, plotted as a function of the ratio of branch lengths in 

the two groups of branches. 

2.2.3. Brownian Motion with Phenotypic Integration 

The model of equal and independent evolution of all phenotypic traits 

is not a realistic representation of biological data, where integration among 

traits is virtually ubiquitous (Olson and Miller 1958; Cheverud 1996; Wagner 

et al. 2007; Klingenberg 2008, 2013). Integration means that traits are 

correlated with each other and that variation is concentrated in certain 

directions in phenotypic space (Wagner 1984; Klingenberg 2008; Pavlicev et 

al. 2009). 
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We include two more sets of simulations to investigate the effects of 

integration on estimation of phylogeny from multidimensional traits (Figure 

2.3). One model simulates very strong integration, in which one dimension 

accounts for 80% of the total variation and all the other ones take up the 

remaining 20% of variation in equal amounts. In another simulation, the 

relative amount of variance decreases in an exponential manner from one 

dimension to the next, so that each eigenvector of the covariance matrix is 

60% of the preceding eigenvector. At the end, all the eigenvalues are 

standardized so they sum up 1.  

 

Figure 2.3. Examples of the models of integration used in the study (shown 

here for 10 dimensions). In the scenario on the left, there is no integration: 

all the PCs have the same amount of variation. In the centre, the scenario of 

strong integration is shown, where the first PC has the 80% of the variation 

and the rest of the PCs share the 20%. On the right, the distribution of values 

follows an exponential model, which is a more realistic model of morphological 

integration. 

 

Because the method for estimating phylogeny is based on the 

distances between phenotypes of the different taxa, the rotation of the 

coordinate system used does not influence the results. Because of this 

invariance under rotation, we can choose any coordinate system without loss 

of generality. Accordingly, we use the principal components (PCs) of the 
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evolutionary covariance matrix as the coordinate system for our simulations, 

so that evolutionary changes in the resulting coordinates are uncorrelated 

with one another. We can therefore simulate the evolutionary change on each 

branch by independently drawing random deviations from normal distributions 

with variances obtained as the eigenvectors of the evolutionary covariance 

matrix multiplied with the respective branch length.  

For this first set of simulations, tree length was computed using 

squared-change parsimony, where changes in every direction of phenotypic 

space are treated in the same way. This corresponds to the practice of many 

empirical studies that have estimated phylogenetic trees from untransformed 

morphometric variables (e.g., Lockwood et al. 2004; Caumul and Polly 2005; 

Couette et al. 2005; Cardini and Elton 2008; Smith and Hendricks 2013). 

2.2.4. Estimates of Phylogeny Compensating for Integration 

A way to take into account integration is the use of Mahalanobis 

distances in estimating phylogenies (Felsenstein 1973; Felsenstein 2002). 

Mahalanobis distances are based on a transformation of the phenotypic space 

that produces a modified space where the within-taxon variation is equal in 

every direction, so that the distance between groups becomes a measure of 

the degree of separation between them (Klingenberg and Monteiro 2005). In 

this modified space, therefore, the effect of integration within groups has 

been removed. This change, however, comes with other fundamental changes 

in the relative arrangement of taxon averages and in the scaling of different 

dimensions. 

If the evolutionary covariance matrix were known, therefore, the 

phenotypic space could be scaled by the inverse of this matrix, transforming 

the space to a new space in which the distances are Mahalanobis distances 

and in which the Brownian motion model for evolutionary change would apply. 

In practice, however, the evolutionary covariance matrix is not known, but 
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must be estimated from the available data, which is exceedingly difficult if the 

phylogeny itself is also unknown (Felsenstein 1973; Felsenstein 2002). In 

principle, the phylogeny and evolutionary covariance matrix could be 

estimated simultaneously, but severe limits on the relative number of taxa 

and dimensions of the phenotypic space apply (Felsenstein 2002).  

For the purpose of this study, and probably somewhat 

overoptimistically, we assume that the evolutionary covariance matrix is 

proportional to the within-taxon covariance matrix and the relevant 

information can therefore be obtained by characterizing patterns of individual 

variation within taxa. In practice, the pooled within-taxon covariance matrix 

can be computed from the deviations of individuals from the respective taxon 

means. In this study, we will simulate this situation by using a combined 

sample. This sample is created as a set of random numbers taken from a 

normal distribution with mean = (0,…,0) and the same covariance matrix 

used in the simulation of the averages. We conduct two sets of simulations, 

one with smaller and the other with larger sample sizes. In the first set of 

simulations with Mahalanobis distances we are taking a sample of 40 

individuals when the dimensionality of the phenotype space is d = 1, 2, 3, 5, 

10 and 20. When d = 50 we create a sample of 60 and when d = 100, the 

sample is of 120 individuals. These sample sizes are fairly typical of the 

sample sizes available in taxonomic studies, or may even be generous 

compared to many actual studies with similar dimensionality and only four 

taxa. In a second set of simulations, with larger sample sizes, we are taking a 

sample of 80 individuals when d = 1, 2, 3, 5, 10 and 20, a sample of 110 

when d = 50 and a sample of 220 when d = 100. These sample sizes are 

untypically large for taxonomic studies. 

For each simulation, three types of evolutionary covariance matrices 

were used: no integration (classical Brownian motion), strong integration with 

80% of the total variance in the first eigenvalue, and the exponential model, 
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in which each successive eigenvalue is 60% of the preceding one (Fig. 2.3). 

The same covariance matrix was used to simulate both the evolutionary 

divergence along the branches of the phylogeny and variation in the sample 

of individuals. That sample was then used to compute a within-taxon 

covariance matrix for each simulation round, from which the transformation of 

the phenotype space into a Mahalanobis space was computed. In the 

transformed space, tree lengths were computed by squared-change 

parsimony (amounting to a criterion of minimal squared Mahalanobis 

distance). 

2.2.5. Stabilizing Selection Model 

Stabilizing selection appears to be widespread (e.g., Estes and Arnold 

2007) and it can potentially have serious effects on estimates of phylogeny 

from the traits it affects (Polly 2004). The simulations of evolution under 

stabilizing selection were conducted as explicit random walks, starting from a 

root of the phylogeny located at the midpoint of the central branch (Fig. 

2.1b). When stabilizing selection is simulated, at each interval from time t to t 

+ 1, each population changes its position from xt to xt+1 following the 

equation xt+1 = xt + α(θ– xt) + σ, where α is a coefficient indicating the 

strength of stabilizing selection, θ is the position of the adaptive peak, and σ 

is an isotropic random deviation, drawn from a multivariate normal 

distribution with zero mean and an identity matrix as the covariance matrix. 

The coefficient α can take values from zero (in this case, the model will be the 

same as Brownian motion) to unity (in that case, the phenotype will be 

returned exactly to the optimum at each iteration, and will only deviate by the 

random effect newly added in that round).  

Each simulation consists of a number of iterations that is determined 

by the branch lengths of the phylogeny in each simulation run. The branch 

lengths are varied in steps of 5 iterations from 10 to 105 iterations, according 
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to the branch lengths required for the simulation (Fig. 2.2b, c). 

We conduct separate simulations with weak and strong stabilizing 

selection, which use values of α = 0.05 and α = 0.3 respectively. The 

simulations start with two populations at the root of the phylogeny, both with 

initial phenotypes x0 = (0,…,0). To test for the effect of the initial conditions, 

we conducted separate simulations where the starting point coincides with the 

optimal phenotype, θ= (0,…,0). A separate set of simulations is conducted for 

the situation where the starting point is at a distance to the optimum, which 

was set to θ= (35, 0, …, 0) (Fig. 2.1b). This is equivalent to a model that 

initially contains a component of directional selection, which then diminishes 

as each lineage approaches the optimum phenotype. 

2.2.6. Repulsion Model 

The final evolutionary model in this study was designed to produce the 

best possible conditions for the estimation of phylogeny from 

multidimensional phenotypes. To minimize the opportunity for convergence 

and parallelism, this model assumes that there is mutual repulsion among 

evolving lineages. A possible biological scenario for such repulsion is 

ecological character displacement, where morphologically and ecologically 

similar forms are under selection for divergence (Brown and Wilson 1956; 

Adams and Rohlf 2000; Adams 2010). We emphasize, however, that our aim 

is not to provide a realistic model of character displacement, but that the 

repulsion model is intended as a most favorable scenario for phylogeny 

estimation from multidimensional phenotypes. Some of the choices we made 

in implementing the model reflect this goal. 

 In the repulsion model, the phenotype of the i-th lineage changes in 

the interval from time t to t + 1 according to the following equation: 

𝐱!,!!! = 𝐱!,! + 𝛼
!

𝐱!,!!𝐱!,!!!! 𝐱!,! − 𝐱!,! + σ. 
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In this equation, the parameter α quantifies the strength of repulsion 

effect and was set to a value of 1.5, whereas the expression 𝐱!,! − 𝐱!,!  

denotes the distance between the phenotypic values of populations i and j at 

time t. Therefore, all the lineages in the simulations move away from each 

other at each unit of time by an amount that is inversely proportional to the 

distance between them. The parameter σ stands for the random component 

of variation, which is implemented as a random vector drawn from a 

multivariate isotropic distribution with zero mean and an identity matrix as 

the covariance matrix. This random component is therefore the same as 

isotropic Brownian motion. The number of model iterations, according to 

branch length, goes from 10 to 105 in increments of 5.  

2.3. RESULTS 

The simulations using Brownian motion show that the relative branch 

lengths and dimensionality play an important role in phylogenetic 

reconstruction (Fig. 2.4a, d). The phylogenetic reliability consistently 

improves as the central branch increases in length relative to the terminal 

branches (from left to right in the diagrams in Fig. 2.4a). In addition, as 

dimensionality increases, the region of high phylogenetic reliability expands 

toward shorter relative lengths of the central branch. 

At low dimensionality, the situation where the central and two terminal 

branches vary in length relative to the two remaining terminal branches (Fig. 

2.4d) appears more challenging than the situation where the central branch is 

contrasted to the four terminal branches (Fig. 2.4a). In the 2-versus-3 

simulations, there are always two terminal branches that are at least as long 

as the central branch, providing opportunities for homoplasy by parallel or 

convergent evolution (Fig. 2.4d). For high dimensionality, however, the 

probability of homoplasy is reduced because there are many more directions 

in which taxa can diverge. As a result, the estimates are quite reliable even 
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when the central branch is short relative to two terminal branches connected 

to it at either end. 

Phenotypic integration has a strong negative effect on the accuracy of 

phylogenetic estimates (Fig 4b, c, e, f). In the simulations with integration, 

reliability improves much less with increasing dimensionality than it does for 

isotropic Brownian motion and therefore the results are always worse than the 

corresponding simulations with isotropic variation. The effect of integration is 

similar to that of a reduction of the dimensionality. When one dimension 

contains 80% of the total variation, regardless of overall dimensionality, the 

relation between branch length ratios and reliability resembles that for the 

simulation with two dimensions and isotropic variation (compare Fig. 2.4b to 

Fig 2.4a, Fig. 2.4e to Fig. 2.4d). With the exponential model of integration, 

the relations of branch length ratios to reliability all resemble those for 3 or 5 

dimensions under the model of isotropic variation (compare Fig. 2.4c to Fig 

2.4a, Fig. 2.4f to Fig. 2.4d). In both these cases, most of the variation is 

contained in a single dimension or a few dimensions regardless of the overall 

dimensionality of the phenotypic space. Phenotypic integration effectively 

reduces the dimensionality of variation and therefore reduces the reliability of 

phylogeny estimation. 
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Figure 2.4. Estimation of the phylogenetic reliability under the Brownian 

motion model. The y-axis values are the percentages of right choices of the 

phylogenetic method and the x-axis values the logarithm of the ratio between 

the two sets of branches (central : terminal branches in a) to c) and 3-branch 

set : 2-branch set in d) to f)). In each diagram the number of dimensions 

used is indicated in the top left corner.  
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Using Mahalanobis distance to estimate phylogeny tends to improve 

reliability if there is phenotypic integration (compare Fig. 2.5b, e and Fig. 

2.6b, e versus Fig. 2.4b, e; Fig. 2.5c, f and Fig. 2.6c, f versus Fig. 2.4c, f).  

How much the effect of integration can be ameliorated by using Mahalanobis 

distances depends on the sample size and, to a lesser degree, on the number 

of dimensions with a significant amount of variation (Fig 2.5 and 2.6). 

Unsurprisingly, simulations using larger sample size show a greater 

improvement of phylogenetic accuracy than those with a smaller sample size 

(Fig 2.5 versus Fig 2.6). Nevertheless, neither set of simulations reaches the 

level of reliability for Brownian motion without integration (Fig. 2.4a, d), 

which would be expected if the true evolutionary covariance matrix were used 

for computing the Mahalanobis distances. The consequences of inaccurate 

estimates of the evolutionary covariance matrix are particularly evident if 

Mahalanobis distance is used for reconstructing phylogenies when there is no 

phenotypic integration (Fig. 2.5a, d, Fig. 2.6a, d). In this case, using 

Euclidean distance in the phenotypic space would be the optimal procedure, 

and the drop in reliability from the simulations using Euclidean distance (Fig. 

2.4a, d) is a direct consequence of the error in estimating the evolutionary 

covariance matrix. As expected, this drop is less accentuated for large sample 

size (Fig. 2.5a, d) than for small sample size (Fig. 2.6a, d). 
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Figure 2.5. Estimation of the phylogenetic reliability, using Mahalanobis 

distances to take integration into account. Large sample sizes were used to 

estimate covariance matrices. For further explanations, see Fig. 2.4. 
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Figure 2.6. Estimation of the phylogenetic reliability, using Mahalanobis 

distances to take into account integration. Covariance matrices were 

estimated based on small sample sizes. For further explanations, see Fig. 2.4. 
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Because the simulations with stabilizing selection were run over time 

and the outcome may differ according to the time scale when the starting 

phenotype is displaced from the optimum, we use a presentation where the 

absolute branch lengths are plotted in graphs (Fig. 2.7). Under stabilizing 

selection, phylogenetic reliability is not much better for most combinations of 

branch lengths than drawing trees randomly (Figure 2.7). If stabilizing 

selection is weak, the accuracy of the estimates is better where the terminal 

branches are very short (at the bottom of the diagrams in Fig. 2.7a, b), 

especially when the dimensionality is high. If the terminal branches are 

longer, phylogenetic accuracy is low because all lineages have time to 

approach the optimum regardless of ancestry. For the 2-versus-3 branch 

simulations, reliability is best if all branches are short and more or less equal 

(lower-left corners of the diagrams in Fig. 2.7d, e; note that this situation, 

with all branches short, is similar to the lower-left corners of the diagrams in 

Fig. 2.7a,b). A particular situation occurs for the simulation with weak 

stabilizing selection with an initial phenotype at some distance from the 

optimum, because there are some situations with very unequal branch 

lengths where phylogenetic reliability is worse than randomly drawing trees 

(left edges of the diagrams in Fig. 2.7e). In this situation, only the lineages of 

the two long terminal branches have time to approach the optimum and 

incorrect tree ((A,D),(B,C)) tends to be shorter than the correct tree 

((A,B),(C,D)). With strong stabilizing selection, there is no branch length 

combination in which the phylogenetic reliability is perceptibly better than for 

drawing a phylogeny at random. This is true regardless of dimensionality, and 

it makes no noticeable difference whether the simulations start with the 

optimal phenotype or at a distance from it (Fig. 2.7c, d; simulations starting 

at the optimal phenotypes not shown because the graphs look the same). 

 

 



	
   50	
  

 

Figure 2.7. Phylogenetic reliability in the simulations using evolutionary 

models with stabilizing selection. In each diagram the y-axis represents an 

increasing in the length of the central branch and the x-axis an increasing of 

the terminal branches (central : terminal branches in a) to c) and 3-branch 

set : 2-branch set in d) to f)). In each diagram the number of dimensions 
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used is indicated in the top left corner. The color legend at the bottom 

indicates the reliability of each branch-length combination. 

 

As expected, the repulsion model gives much better results (Figure 

2.8). Even in the univariate case, there are no branch-length combinations 

that yield an accuracy of less than 70%. Intriguingly, if there is more than 

one dimension and the terminal branches are long relative to the central 

branch, phylogenetic reliability is slightly worse than in the univariate case. 

This drop in reliability relates to the fact that the mutual repulsion among 

taxa can cause them to form a near-symmetric square (in 2 dimensions) or 

tetrahedron (in spaces with 3 or more dimensions) from which the phylogeny 

is difficult to infer. For phenotypic spaces with many dimensions, repulsion 

combines with the tendency for divergence for the random component of 

evolution, so that almost all the branch-length combinations yield a good or 

excellent reliability (Fig. 2.8). 

 

Figure 2.8. Phylogenetic reliability in simulations using the repulsion model 

of evolution. (a) Simulations using the contrasts of the relative lengths of 
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central versus peripheral branches. (b) Simulations using the two-versus 

three branch contrasts. In each diagram the number of dimensions used is 

indicated in the top left corner. The color legend at the bottom indicates the 

reliability of each branch-length combination. 

2.4. DISCUSSION 

The simulations in this study have shown that the accuracy of 

phylogenetic estimates from multidimensional phenotypes depends greatly on 

the evolutionary model and on the dimensionality of the phenotype under 

study. Isotropic Brownian motion with high dimensionality yields good 

estimates of phylogenetic trees, but it is an unrealistic scenario for real 

biological data. Phenotypic integration, which is ubiquitous in real data, 

severely reduces the reliability of phylogenetic estimates because it decreases 

the effective dimensionality (Fig. 2.4). Using Mahalanobis distances to 

address the problem of integration is a viable solution in principle, but our 

simulations show that this solution does not work well even with large sample 

sizes and under a variety of favorable assumptions (Fig. 2.5, 2.6). 

Furthermore, stabilizing selection has a devastating effect on phylogenetic 

estimates because it systematically erodes the phylogenetic signal in the data 

(Fig. 2.7). The most consistently successful simulations are those using the 

repulsion model (Fig 2.8), which was constructed specifically as a best-case 

scenario for estimating phylogeny but is probably an unrealistic model for real 

evolutionary phenomena. Here we explore these results further and evaluate 

them in light of published evidence to assess their possible implications.  

Most simulations show that the relative lengths of branches in the 

phylogeny are a key factor for the reliability of phylogenetic estimates. If the 

internal branch is very long relative to all four terminal branches, the 

phylogeny can be obtained reliably under all evolutionary scenarios except 

strong stabilizing selection (Fig. 2.4–2.8), as is to be expected for all 
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reasonable methods of phylogeny estimation. Conversely, if the internal 

branch is very short relative to the terminal branches, the phylogeny 

approaches an unresolved polytomy and no method can perform much better 

than randomly drawing a tree from the three possible topologies. The key 

question therefore is about the results of the simulations between these 

extreme situations and, particularly, for the situations where two terminal 

branches at opposite ends of the terminal branch differ in their lengths from 

the three remaining branches (Fig. 2.1c), a situation that has long been 

recognized to pose challenges for phylogeny estimation due to rate 

heterogeneity and long-branch effects (Felsenstein 1978; Huelsenbeck and 

Hillis 1993; Huelsenbeck 1995). This situation indeed proved difficult in many 

of the simulations, so that high reliability is only achieved if dimensionality is 

very high (Fig. 2.4–2.8). Nevertheless, although many simulations produced 

results that seem close to picking a phylogeny at random, even the 2-versus-

3 branch scenarios did not systematically yield an incorrect estimate of the 

phylogeny (except Fig. 2.7e). This differs from studies relating to molecular 

data, where the 2-versus-3 branch scenario, with certain combinations of 

evolutionary models and estimation methods, can systematically yield 

incorrect estimates of the phylogeny (Felsenstein 1978; Huelsenbeck and 

Hillis 1993; Huelsenbeck 1995). With multidimensional continuous traits and 

the evolutionary models studied here, it appears that random errors in 

phylogeny estimation are far more important than systematic errors. 

The evolutionary models and the dimensionality of the phenotype are 

very important to explain the results of any simulation study concerning 

phylogenetic accuracy (Huelsenbeck 1995; Swofford et al. 1996). Brownian 

motion has been widely used as a model for the evolution of phenotypic traits 

in one- or multidimensional settings (Cavalli-Sforza and Edwards 1967; 

Felsenstein 1973; Lynch 1989; Polly 2004; Stayton 2008). Brownian motion is 

an evolutionary model that is favorable for estimating phylogeny because the 
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expected distance between taxa increases with the time of separation (Lynch 

1989). Yet, a difficulty has been pointed out because this distance also has a 

high variance (a coefficient of variation of 1.4 for one-dimensional Brownian 

motion) and therefore may often lead to convergence, reversals and parallel 

evolution that may produce erroneous phylogenetic estimates (Lynch 1989; 

Stayton 2008; Klingenberg and Gidaszewski 2010). The squared distance 

between the phenotypes at either end of a branch of the phylogeny, up to a 

scaling factor the expected change along the branch, follows a chi-squared 

distribution with as many degrees of freedom as there are dimensions in the 

phenotypic space (this follows from the Pythagorean theorem and the 

definition of the chi-squared distribution with n degrees of freedom as the 

sum of squared values of n mutually independent random variates drawn 

from the standard normal distribution). The coefficient of variation for the chi-

squared distribution is the square root of two divided by the square root of 

the degrees of freedom. The relative variability of the phenotypic distances 

thus diminishes with increasing degrees of freedom, so that the phenotypic 

distances are a better reflection of the branch lengths with increasing 

dimensionality of the phenotype. Therefore, studying phenotypes with high 

dimensionality has been proposed as one way of increasing phylogenetic 

reliability (Felsenstein 1973; Polly 2004; González-José et al. 2008; Stayton 

2008). Note, however, that a substantial improvement is only achieved with 

dimensionalities that are quite high: the coefficient of variation is 0.44 for 10 

dimensions, 0.2 for 50 dimensions, 0.14 for 100 dimensions, and 200 

dimensions are necessary for a coefficient of variation of 0.1. The benefits of 

high dimensionality also can be understood intuitively because there is always 

just one direction in which two points can converge toward each other, but 

with increasing dimensionality, there are more and more directions in which 

two points can move away from each other. Convergence is very likely in the 

univariate case, as shown in previous studies (Lynch 1989), but it becomes 
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less probable as more dimensions are added (Fig. 2.3a,d; Stayton 2008). 

High dimensionality also can alleviate the problems of long-branch attraction 

and differences in evolutionary rates among branches in the phylogeny (Fig 

3d). This high dimensionality is typical for studies using genetic data (Cavalli-

Sforza and Edwards 1967; Brazil et al. 2008) or shape (Cardini and Elton 

2008; González-José et al. 2008; Piras et al. 2010; von Cramon-Taubadel and 

Smith 2012; Smith and Hendricks 2013). In principle, therefore, it seems that 

phylogenetic accuracy might be improved by adding more data, even though 

these beneficial effects will diminish with the number of dimensions already 

included. 

In practice, however, the variation in the data often does not “fill” the 

entire dimensionality of the phenotypic space, but is concentrated mostly in a 

few of the available dimensions because of integration (Olson and Miller 1958; 

Cheverud 1996; Klingenberg 2008, 2013; Goswami et al. 2014). The 

simulations in this study show that integration is a significant force that 

reduces the effective dimensionality of variation and therefore also limits the 

reliability of phylogenetic estimates (Fig 2.4b, c, e, f). In the simulations 

where one dimension accounts for 80% of the total variation, even in spaces 

of high dimensionality, phylogenetic reliability resembles that of a model with 

isotropic variation in one or two dimensions (compare Fig. 2.4a to Fig. 2.4b, 

Fig. 2.4d to Fig. 2.4e). This reflects the fact that most variation indeed is in a 

single dimension. Likewise, in the simulations using the exponential model of 

integration, even with high dimensionality, phylogenetic reliability does not 

exceed that for an isotropic model with 3–5 dimensions (Fig. 2.4a, d versus 

2.4c, f). Because most variation is concentrated within just a few dimensions 

and this distribution remains essentially the same no matter how many 

additional dimensions are included, the overall dimensionality of the 

phenotypic space seems immaterial for phylogenetic reliability. It appears 

from these simulations that integration may be an important problem for 



	
   56	
  

phylogenetic reconstruction. This raises the question whether the simulations 

of integration are realistic at all. The scenario in which 80% of the variation is 

contained in the first principal component was designed to be extreme and 

probably exceeds the level of integration in real data, although some 

examples come relatively close (e.g., analyses with more than 60% of 

variation among species in the PC1; Klingenberg et al. 2012). The exponential 

model of integration is more realistic, as numerous examples show 

comparable or greater strengths of interspecific integration in geometric 

morphometric data (Monteiro et al. 2005; Sidlauskas 2008; Friedman 2010; 

De Esteban-Trivigno 2011b, a; Monteiro and Nogueira 2011; Brusatte et al. 

2012; Santana and Lofgren 2013; Baab et al. 2014; Martín-Serra et al. 2014; 

Watanabe and Slice 2014), although some other studies found somewhat 

weaker integration, albeit still with most variation concentrated in just a few 

dimensions (Figueirido et al. 2010; Chamero et al. 2013; Klingenberg and 

Marugán-Lobón 2013; Sherratt et al. 2014). Altogether, the exponential 

model of integration used in the simulation seems to be fairly realistic by 

comparison with empirical data, so that the results of those simulations need 

to be taken seriously. Even though including additional data in a phylogenetic 

analysis seems a tempting way of improving phylogenetic reliability, it is 

therefore unlikely to make much of a difference unless the new data are more 

or less independent of those already included. Because of the near-ubiquity of 

phenotypic integration (Klingenberg 2013), this is unlikely to be successful. 

Morphological integration is a serious problem for phylogenetic reliability. 

In principle, the adverse effects of integration can be mitigated by 

using Mahalanobis distance in the process of estimating phylogeny 

(Felsenstein 1973; Felsenstein 2002). If the correct evolutionary covariance 

matrix is used to compute Mahalanobis distances, this eliminates the effects 

of integration and phylogenetic reliability therefore should be the same as for 

Brownian motion with no integration. Our simulations with estimated 
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covariance matrices show some improvements of phylogenetic reliability (Fig. 

2.5, 2.6), but phylogenetic reliability is not restored completely to the levels 

for Brownian motion without integration (Fig. 2.4a, d). Reliability is better if 

large sample sizes are used (Fig. 2.5), but the simulations also indicate that 

the mitigating effects are reduced if smaller sample sizes are used (Fig. 2.6). 

The drop in phylogenetic reliability when estimated Mahalanobis distances are 

applied in a situation without integration directly shows the effects of error in 

estimating the within-taxon covariance matrix (compare Fig. 2.5a,d and Fig. 

2.6a,d to Fig. 2.4a,d). When assessing what implications these simulations 

have for empirical studies, we need to take into account that we made some 

assumptions that are favorable for phylogenetic reliability. The sample sizes 

varied from 40 to 120 for the simulations with smaller sample sizes, from 80 

to 220 for the simulations with larger sample sizes. These sample sizes, from 

10 to 30 or 20 to 55 specimens per taxon, are comparable to some studies 

with relatively large sample sizes (Lockwood et al. 2004; Cardini and Elton 

2008), but often studies using geometric morphometrics are based on sample 

sizes at the lower end of this spectrum (Aguilar-Medrano et al. 2011; Smith 

and Hendricks 2013), and some studies use individual specimens as taxa 

(MacLeod 2002; González-José et al. 2008). In addition, the simulations 

assume that the pattern of evolutionary covariation can be estimated from 

the pattern of within-taxon covariation. This assumption is motivated by 

results from quantitative genetic theory, stating that the pattern of 

evolutionary divergence is a scaled version of the pattern of genetic variation 

within populations if evolution is due to random drift (Lande 1979). This 

reasoning contains further auxiliary assumptions. First, the phenotypic 

patterns of integration must be sufficiently similar to the genetic ones to 

serve as a proxy for them, a point that remains contentious (Cheverud 1988; 

Willis et al. 1991; Kruuk et al. 2008). Second, the patterns of within-taxon 

variation need to be constant across the whole phylogeny, so that it is 
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possible to obtain a single estimate of within-taxon variation; this assumption 

also is under continuing debate (Steppan et al. 2002; Arnold et al. 2008). 

Some morphometric studies have found similar patterns of integration within 

and between populations or species (Monteiro et al. 2005; Drake and 

Klingenberg 2010; Smith 2011; Klingenberg et al. 2012; Goswami et al. 

2014), but this kind of similarity cannot be generally expected and there are 

case studies demonstrating that the patterns and strength of phenotypic 

integration can evolve (Jamniczky and Hallgrímsson 2009; Sanger et al. 

2012; Gómez et al. 2014). All these assumptions built into our models are 

favorable for using of Mahalanobis distances in estimating phylogeny, but it is 

doubtful how realistic they are. It is therefore possible that these simulations 

give an overoptimistic picture and that using Mahalanobis distance to account 

for integration is less promising than it may appear from our simulation 

results. 

When the evolutionary model used in the simulations is stabilizing 

selection, the results are rather discouraging because the phylogenetic 

reliability, with most of the combinations of branch lengths, is little better 

than for picking a tree at random (Fig. 2.7). When stabilizing selection is 

weak, some reliable results can be obtained when dimensionality is high and 

the terminal branches are short (Fig. 2.7a, b). When stabilizing selection is 

strong, phylogenetic reliability is low in all simulations regardless of the 

branch lengths. Under stabilizing selection, all the different lineages evolve 

toward the adaptive peak regardless of their ancestry and, once arrived at the 

optimum phenotype, each of the lineages tend to return immediately from 

any random movement away from the oprtimum. Because stabilizing 

selection affects each lineage regardless of ancestry, it will erode any 

phylogenetic signal that results from phenotypic deviations shared by sister 

lineages just after splitting from each other. Once the lineages have split, 

each evolves separately in a balance between the addition of new random 
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variation and the constant corrections toward the optimum phenotype, which 

can remove any relation to ancestral phenotypes. If stabilizing selection is 

sufficiently strong or if the terminal branches of the phylogeny are sufficiently 

long, the relative positions of the lineages in phenotype space have no 

association with their relatedness. Therefore, under these conditions, 

reconstructing the phylogeny from phenotypic values may indeed be no better 

than picking a tree at random. Studies of quantitative phenotypes such 

morphological traits and gene expression have found extensive evolutionary 

conservation, which is consistent with the view that stabilizing selection is 

widespread (Rifkin et al. 2003; Estes and Arnold 2007; Hunt 2007; Kalinka et 

al. 2010; Gallego Romero et al. 2012). It is therefore likely that problems 

similar to those in our simulations will occur in many studies that attempt to 

estimate phylogenies from multidimensional phenotypes. 

In addition to stabilizing selection, the simulations that start at a 

distance from the optimal phenotype contain a component of directional 

selection that is present until the evolving lineages reach the region of the 

fitness peak. For many simulations, this additional component of selection has 

little effect (compare Fig. 2.7a to Fig. 2.7b; no visible difference with strong 

stabilizing selection). Under weak stabilizing selection, however, there are 

circumstances when that directional component affects phylogeny 

reconstruction from the phenotypes so that it systematically yields the wrong 

tree, that is, it performs worse than picking a tree at random. This happens in 

the two-versus-three branch simulations when two branches are relatively 

long and the remaining three branches are very short (left edges of the 

diagrams in Fig. 2.7e). Because of the short branches, two lineages at 

opposite ends of the (short) central branch remain near the starting point, 

whereas the two lineages corresponding to the long branches undergo parallel 

evolution toward the optimal phenotype. As a result, the arrangement of taxa 

in phenotype does not reflect their relatedness. This scenario is probably not a 
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realistic one for natural evolution, but it highlights the pitfalls of evolution 

when there are directional trends, so that reconstruction of ancestral values 

from measurements of descendants faces serious difficulties (Oakley and 

Cunningham 2000; Webster and Purvis 2002), in combination with the long-

established problems concerning long branches (Felsenstein 1978; 

Huelsenbeck and Hillis 1993).    

Whereas evolution under a model of Brownian motion, in principle at 

least, can continue without bounds, models of stabilizing selection ensure that 

phenotypes sooner or later converge toward the optimal phenotype and 

remain in that region. If stabilizing selection is sufficiently strong or the 

branches are sufficiently long, there is therefore no longer an association 

between the time of separation and the phenotypic distance between taxa. In 

other words, the phenotype loses any phylogenetic signal it may have had 

(see the upper-right regions of the diagrams on Fig. 2.7). This phenomenon is 

analogous to the problem of substitution saturation in molecular data, when 

the product of substitution rate and branch lengths is so large that each 

position is expected to have undergone multiple substitutions and therefore 

loses phylogenetic information. This is different from the other models used in 

this study, where no such phenomenon exists and phenotypic differences are 

expected to increase with time. In real organisms, however, there cannot be 

an indefinite amount of change. Simulations of Brownian motion can easily 

produce phenotypes that are clearly non-functional (Polly 2004), so that it 

might be preferable to view the models as restricted to a domain of 

phenotype space within which phenotypes are viable. In practice, however, 

this problem is may not be a serious problem because the amount of 

phenotypic variation tends to be within tractable limits even at large 

phylogenetic scale (Marcus et al. 2000; Friedman 2010; Sallan and Friedman 

2012; Klingenberg and Marugán-Lobón 2013; Sherratt et al. 2014). Any 

effects of such boundaries, if they exist, would manifest themselves as 
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stabilizing selection and therefore would probably be detrimental to 

phylogenetic reliability. 

The repulsion model was specifically designed as a best-case scenario 

for phylogenetic analysis, and it is therefore not too surprising that 

phylogenetic reliability was high under a wide range of conditions (Fig. 2.8). 

The results are unusual by comparison to the other models because the 

simulation in a one-dimensional phenotypic space has a better phylogenetic 

reliability than those two- or higher-dimensional spaces when the length of 

the central branch is short relative to the terminal branches. This is because, 

if there are multiple dimensions, taxa can evolve “past one another” by 

moving in different directions to form nearly symmetric configurations such as 

squares (in 2 dimensions) or tetrahedral for which phylogenies are difficult to 

estimate. By contrast, when there is only a single dimension, taxa 

consistently push one another in opposite directions. The repulsion model, 

although favorable for phylogeny reconstruction, is not a realistic evolutionary 

scenario. The idea of repulsion is loosely based on the phenomenon of 

character displacement, where competition due to the presence of 

morphologically and ecologically similar taxa leads to selection for divergence 

(Brown and Wilson 1956; Stuart and Losos 2013). Geometric morphometric 

studies have suggested character displacement in a range of taxa including 

salamanders, shrews and bats (Rácz and Demeter 1998; Adams and Rohlf 

2000; Gannon and Rácz 2006). Nevertheless, it is unclear how widespread 

character displacement may be because there are only few case studies 

where a sufficient range of evidence is available to rule out possible 

alternative explanations (Stuart and Losos 2013). Regardless of this question, 

the repulsion model, as used in this study, is not intended as a realistic model 

of character displacement. In the model, repulsion is active over larger 

distances in phenotypic space than it would be plausible for character 

displacement (e.g., scaling the repulsion effect by the inverse of the square or 
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a higher power of distance might provide a more realistic model), but in this 

way the model contains a more consistent tendency for lineages to diverge 

from each other and thus provides more favorable conditions for phylogeny 

reconstruction. Yet, even under these very optimistic conditions, phylogenetic 

reliability is not perfect unless dimensionality is high or the central branch of 

the phylogeny is relatively long. In the presence of morphological integration, 

which concentrates variation in just a few dimensions of the phenotypic 

space, there is therefore still an appreciable probability that phylogenetic 

estimates are erroneous.  

In conclusion, the simulations in this study demonstrate that estimates 

of phylogenetic trees derived from multidimensional data tend to be reliable 

only under specific conditions that are unlikely to apply in naturally evolving 

clades. Widespread phenomena such as morphological integration and 

stabilizing selection can severely limit phylogenetic reliability, under some 

circumstances to the extent that estimating phylogenies from 

multidimensional data is little better than picking trees at random (Fig. 2.7). 

This conclusion is more pessimistic than several earlier assessments of the 

suitability of morphometric data for estimating phylogenies (e.g., MacLeod 

2002; Lockwood et al. 2004; Polly 2004; Caumul and Polly 2005; Smith and 

Hendricks 2013), but is in line with earlier studies that found discrepancies 

between morphometric estimates and independently obtained phylogenetic 

trees (e.g., Marcus et al. 2000; Caumul and Polly 2005; Cardini and Elton 

2008; Klingenberg and Gidaszewski 2010). The simplicity of the four-taxon 

simulations, where there is no ambiguity whether an estimate is correct or 

incorrect, and the broad spectrum of different combinations of branch lengths 

and evolutionary models makes our conclusions robust and decisive. We 

understand that the results are frustrating to some investigators, particularly 

to paleontologists, because morphometric data may be the only or at least 

most easily available data for many fossil and even some extant taxa 
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(MacLeod 2002; Smith and Hendricks 2013). Where possible, other data such 

as DNA sequence information can be used instead, which suffers from these 

difficulties to a lesser extent and where vast amounts of information are 

available (Rannala and Yang 2008). Even where such alternatives are not 

available, however, we think it is preferable to recognize the limitations of 

phylogenetic inference from such data, rather than to use approaches that 

may provide unreliable results. 
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Abstract 

 

Integration is a common feature in shape data, which produces concentration 

of the variation in some directions of the shape space. It plays an important 

role in the diversification of species and has been proposed as one enhancer 

of convergence between species. In this study, we analyse how strong 

patterns of evolutionary integration are in empirical data. We fit some simple 

models (linear, exponential, logistic and Gompertz) to the decrease of 

variation in the principal components of the independent contrasts of shape. 

Then, we look at the coefficients of the best fitting function so the strength of 

decrease can be assessed, used as an estimate of integration. We take into 

account the effect of allometry and the use of weighted squared-change 

parsimony in our estimates. Finally, we study the effect of different patterns 

of evolutionary integration on convergence using computer simulations. The 

empirical datasets we analyse reveal strong patterns of integration in a wide 

sample of structures and organisms, the exponential model being the function 

that fits best. Allometry, as expected, is one present integrating factor in 

many of the studies. These results confirm the important role of strong 

patterns of evolutionary integration in promoting convergence between 

species with similar directions of evolution in the phenotypic space. However, 

our simulations show theoretical situations in which strong patterns of 

integration can also prevent convergence. That is the case when the 

directions of the major axes of variation are perpendicular or when the 

amount of evolution is big relative to the distance between the species. 
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3.1. INTRODUCTION 

 Integration is a fairly well studied feature in geometric morphometrics. 

It is defined as the covariation between different parts of one structure (Olson 

and Miller 1958, Wagner and Altenberg 1996, Wagner, et al. 2007, 

Klingenberg 2013, Goswami, et al. 2014). This covariation between different 

parts of the morphological structures is a product of many different biological 

processes acting at an earlier level of expression, such as genetic (pleiotropy, 

linkage desequilibrium), developmental and environmental mechanisms 

(Klingenberg 2014). These processes shape variation in organisms producing 

concentration in some specific directions of shape space. This differential 

variation in different directions of shape space in species has been defined 

many times as a constraint to evolution, based on the fact that there are 

directions of shape space in which evolution is more likely (Armbruster, et al. 

2014, Goswami, et al. 2014). However, the directions of the shape space in 

which most variation is concentrated may facilitate the evolution along these 

directions (Schluter 1996, Renaud, et al. 2006, Armbruster, et al. 2014, 

Goswami, et al. 2014).  

 One effect of evolutionary integration, i. e. the concentration of 

variation along specific directions during the evolution of the species, is a 

reduction of dimensionality and therefore a high probability of homoplasy 

(Goswami, et al. 2014) (Chapter 1). In the extreme, integration would 

approach the unidimensional problem, where homoplasy has been 

theoretically shown (Lynch 1989). Integration would then cause problems in 

phylogenetic reconstruction, where convergence causes distantly-related 

species to be closer in shape space than anyone of them to their sister nodes 

(Chapter 1). However, we can theoretically expect some changes in the 

patterns of integration during the diversification of the species. Heterochrony, 

for example, can cause the adults of a species to evolve under a pattern of 
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integration followed by the infants of other species (Goswami, et al. 2014). 

Unfortunately, these changes have been shown to be small between close-

related species (Goswami, et al. 2014). 

 Different approaches have been used in the literature to assess the 

degree of integration in a structure, or from a different perspective, the 

presence or absence of modularity (Klingenberg 2013). Partial least squares, 

matrix correlation and the ordination of covariance matrices are some of them 

(Klingenberg 2013). In this study we will focus just on the analysis of the 

variance in the eigenvalues obtained from the principal component analysis 

(Wagner 1984, Young 2006, Pavlicev, et al. 2009). Many studies analysing 

integration have used correlation matrices between the different variables, 

normally length measurements (Haber 2011). However, while the magnitude 

of the relationship between different parts of the shape may be discarded in 

traditional morphometrics, this is less appropriate when dealing with 

geometric morphometrics, since computing the correlation matrix distorts the 

scale in the shape space. Therefore, the rotation of the configurations during 

the Procrustes superimposition influences the eigenvalues of the correlation 

matrix. Exploring the covariance matrix is a better option, which has been 

implemented in a number of studies (Hallgrímsson, et al. 2009, Jamniczky 

and Hallgrímsson 2009, Ivanović and Kalezić 2010, Gonzalez, et al. 2011, 

Jojić, et al. 2011, Gómez-Robles and Polly 2012). 

 Here we analyse the patterns of evolutionary integration in different 

datasets and run some simulations to explain the effect of integration on the 

probability of convergence between two clades. We fit simple mathematical 

models to empirical measures of the degree of evolutionary integration, so a 

general picture about this feature in morphometric data is obtained. This will 

help to obtain a general view about the strength of integration in nature and 

to understand the variation in the evolution of shape. The effect of 

evolutionary allometry and the information about branch lengths in the 
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phylogenies over integration are also analysed. Then, some simulations will 

explain the effect of different patterns of integration over the probability of 

convergence between two clades in a two-dimensional space. In those 

situations in which the probability of convergence is very low phylogenies 

could be built reliably. 

3.2. MATERIALS AND METHODS 

3.2.1. Patterns of evolutionary integration in empirical data 

 The patterns of evolutionary integration are inferred using 

morphometric data of a group of species and a phylogeny that represents the 

evolutionary relationship between them. Independent contrasts of shape can 

then be obtained (Felsenstein 1985, Rohlf 2001, Klingenberg and Marugán-

Lobón 2013). The independent contrasts recover the pattern of evolutionary 

divergence across the clade under study. This is a scaled version of the 

pattern of integration of each species under the assumption of evolution by 

drift, as predicted by the quantitative genetics theory (Lande 1979). Here we 

infer the pattern of evolutionary phenotypic integration by obtaining the 

variance in the eigenvalues obtained from a principal component analysis 

(PCA) of the independent contrasts of shape. 

 We study a set of empirical datasets obtained from 16 different studies 

using geometric morphometrics (Klingenberg and Gidaszewski 2010, Álvarez, 

et al. 2011, Abe and Lieberman 2012, Brusatte, et al. 2012, Foth, et al. 2012, 

Klingenberg, et al. 2012, Álvarez, et al. 2013, Foth and Rauhut 2013, 

Klingenberg and Marugán-Lobón 2013, Baab, et al. 2014, Watanabe and Slice 

2014), collected from Dryad using the keywords 'geometric morphometrics 

phylogen*' and unpublished studies (Table 3.1). These are all the studies 

uploaded to the repository in which all the morphometric raw data and a 

phylogeny were available. Unpublished data from the authors of this study is 



	
   80	
  

also included. In those studies in which there are different structures analysed 

(Klingenberg, et al. 2012) the morphometric data of each one is treated 

separately (Table 3.1). The same applies to the studies (Foth, et al. 2012, 

Watanabe and Slice 2014) in which two possible phylogenies are considered, 

so calculations are repeated using both phylogenies. We also do separate 

calculations for the weighting process in the phylogenies that contain branch 

lengths information. By estimating the integration patterns using branch-

length information and not using it we can check the importance of this 

decision of the researchers in the estimation of evolutionary integration. From 

each of these datasets two datasets are treated separately: one where the 

branch lengths of the phylogeny are the same and one where the branches 

are different. Note that in some of these studies the dimensionality is higher 

than the species sample size, which results in an effective dimensionality of n-

1 (Table 3.1). In symmetric structures just the symmetric component is used 

for the analyses, so the dimensionality is reduced. 

First author Year Structure S d 

Klingenberg 2010 Drosophila wings 9 8 

Benítez* 2014 Drosophila wings 59 26 

Klingenberg 2012 Whole leaf 20 18 

  Distal leaflet 20 12 

  Lateral leaflet 20 12 

Foth 2012 Pterosauria skulls 31 29 

Foth 2013 Theropods skulls 41 36 

  Paraves skulls 14 13 

Klingenberg*  Beetles heads 271 13 

  Beetles pronotums 290 6 

Klingenberg*  Waterfowls 21 19 
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Table 3.1. List of the studies that have been analyzed. In the first column it 

is written the first author of the study and in the second column the year. The 

studies marked with an * are unpublished. The third column reflects the 

structure analyzed. The four and fifth columns give the species sample size 

and the dimensionality of the dataset. 

 

 Evolutionary allometry has been suggested to be an integrating factor 

(Klingenberg 2013). The effect of size over shape usually follows a linear 

function, so it causes concentration in one specific direction of the shape 

space, i. e. integration. The strength of this effect depends on how much 

allometric variation there is in comparison to the rest of variation 

(Klingenberg 2013). In order to study its integrative effect, in this study we 

Klingenberg 2013 Birds skulls 160 18 

Álvarez 2013 Rodents 24 23 

Álvarez 2011 Rodents 17 16 

Varón-

González* 

 Serine proteases 27 26 

  Active site 27 5 

  Substrate-specificity 

area 

27 25 

Varón-

González* 

 Serine proteases 29 28 

  Active site 29 5 

  Substrate-specificity 29 19 

Brusatte 2012 Dinosaurs skulls 35 34 

Abe 2012 Trilobites 61 31 

Baab 2014 Lemurs 33 32 

Watanabe 2014 Crocodiles 10 9 
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also decompose the datasets in which we find allometry in: a) the original 

dataset, b) a dataset with the residuals of the regression of the independent 

contrasts of shape over the independent contrasts of centroid size and c) a 

dataset with the residuals of the regression of the independent contrasts of 

shape over the independent contrasts of the log-transformed centroid size. 

Note that in those datasets in which the dimensionality is higher than the 

species sample size these residuals looses one extra dimension. In total, 71 

sets of PC relative variances in each PC are obtained using MorphoJ 

(Klingenberg 2011).  

 We use four models that can recover the decreasing in variation in 

each PC (Figure 3.1), using only those dimensions that contain some 

variation. We use a least-squares procedure to fit the functions of these 

models to the empirical values and to obtain the error of each fitting. The 

function with the least error is chosen as the best-fitting model. The model 

choice is also done using the corrected version of the Akaike's information 

criterion (AICc) (Akaike 1973, Sugiura 1978). This corrected version is less 

prone to be biased due to small sample sizes (Hurvich 1991). 

 The first function we use is the linear model (y=bx+a), i.e. the 

simplest model, being y the relative amount of variation in each PC and x 

each PC. We also test the exponential model (y=eaebx), in which the 

decreasing of variation in each PC is much faster in the first PCs for the same 

b than the linear model and therefore integration would be stronger. Then, 

two more models are tested based on the exponential model: a logistic model 

(y=100eaebx/(1+eaebx)) and a Gompertz model (y=100e-e(a+bx)) in which the 

variation in the first PCs approach an asymptote of 100% (Figure 1). The 

Gompertz model also allows the decreasing of variation to be smoother in the 

last PCs for the same b than in the logistic model, so it represents a model in 

which there is less integration. The logistic and the Gompertz curves add one 

flatter part (that approaching the asymptote of 100%) to the exponential 
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model. They are more complex and represent weaker integration models than 

the exponential for the same b, since the decay in variation is more gradual in 

the first PCs in these parts and more abrupt in the case of the last PCs in the 

case of the Gompertz model (Figure 3.1). In all the models the parameter a is 

related to the amount of the variation (that is very similar, since the relative 

amount of variance always varies from 0 and adds up to 100) and the 

parameter b the strength of the decay in variation. We look at the latter to 

study the strength of integration. As we measure the decay of variation and 

therefore this parameter is negative, the bigger its absolute value is the more 

integration there is. We use this measure to check the effect of using branch-

length information in the estimation of the independent contrasts and the 

removal of the allometric effect over integration. 
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Figure 3.1. Example of fitting with five different dimensions of variation. In 

the x axis there is the numbering of five principal components. In the y axis 

the relative amount of variation is represented. The white dots represent the 

relative amount of variation in each principal component obtained from the 

independent contrasts of shape in an empirical study. Each line represents the 

best fitting function for each kind of model (green - lineal model, blue - 

exponential model, red - logistic model, pink - Gompertz model). 

 

 In order to control for the number of clades and dimensionality we use 

simulations. We create a sample of species distributed in a n-dimensional 
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shape space supposing no integration at all. Then, we run a PCA and we 

check which function fits better the decreasing of variation in the PCs. 

Replicating the process 1000 times we obtain a percentage of preferred 

models for a specific combination of dimensionality and sample size. We test 

the combinations of dimensionality and species sample size observed in the 

empirical datasets (Table 3.1). We check the probability of obtaining those 

functions in the absence of integration for the same combinations of 

dimensionality and sample size as in the empirical studies. If there is a high 

probability of obtaining a specific function for a combination of dimensionality 

and sample size and we obtained that function in the dataset with those 

conditions, they may be affecting our estimations about the best-fitting 

function. 

3.2.2. Integration and probability of convergence 

 Once the pattern of evolutionary integration is studied in empirical 

studies, we study the theoretical relationship between the strength of 

integration and convergence using simulations. This will give an estimate of 

the impact of the patterns of integration over the reliability of the 

phylogenetic inference in empirical studies. This can also explain patterns of 

diversification in shape. The patterns of integration obtained in the empirical 

datasets reflect the pattern of integration during the evolution of each species 

when evolution happens by drift, as predicted by the quantitative genetic 

theory (Lande 1979). We can simulate the evolution of just two species in a 

phenotypic space in presence of different patterns of integration and look at 

the probability of them to converge.  

 We set two species one unit of distance far away in a bivariate 

phenotypic space. We fix one of them and let the other one evolve according 

to a Brownian motion model of evolution. We simulate three different patterns 

of integration, in which one dimension accounts for 95%, 80% and 60% of 
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the variation and the other dimension take up the rest. If after the evolution 

the Euclidean distance between the two clades has decreased then 

convergence has happened (Figure 3.2). Replicating this process 1000 times 

we obtain a percentage, our estimation of the probability of convergence.  

 

Figure 3.2. Simulations in which the 

effect of the different variances, 

patterns of integration and 

orientations over the probability of 

homoplasy between two clades 

(species A and B) is studied. Species 

A is fixed and Species B, starting in 

B1, evolves according to a Brownian 

motion model of evolution. If the distance between A and B has decreased 

after the evolution (e.g. if the evolution of B ends up in B2), then 

convergence has happened. If the distance increases (e. g. if the evolution of 

B ends up in B3), then convergence has not happened. In this example the 

orientation between the major axis of evolution of B and the axis connecting 

both species at the beginning of the simulation is 90 degrees. 

 

 In addition to the strength of the integration pattern, there are two 

more features that can influence the probability of convergence between two 

clades and that we take into account in our simulations. The first of them is 

the orientation of the pattern of evolutionary integration in relation to the 

fixed clade. This is defined as the angle between the axis connecting both 

clades at the beginning of the simulation and the major axis of variation in 

the evolving clade. An angle of 0 degrees represents the situation in which 

the evolving clade moves mainly in the axis that connects both clades. A 

similar situation (but less extreme) is expectable in closely-related species, so 

Species A

Species B

B1

B2

B3
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the area of the shape space in which they have evolved is mostly the same. 

In our simulations, we use orientations of 0, 20, 45, 60 and 90 degrees. 

 The third important feature to estimate the probability of convergence 

is the ratio between the total variance in the evolution of the clade and the 

distance between the two clades at the beginning of the simulations. Since 

this distance is set to one, the ratio is equal to the total variance in the 

evolution. Under the Brownian motion model of evolution, the total variance is 

determined by the multiplication of the rate of evolutionary change and the 

time this clade is evolving (Felsenstein 2004). We run the simulations using 

total variances of 0.1, 0.5, 1, 1.5 and 2. 

 We simulate the evolution of the clade by obtaining a random vector 

from a bivariate normal distribution with mean (0,0), i.e. the starting point, 

and a covariance matrix defined as the multiplication of those total variances 

times a diagonal matrix with the relative amount of variance in each 

dimension. This random vector is then multiplied by a rotation matrix, which 

gives the orientation. The result is a vector, which represents the position of 

the evolved clade. R 3.0.2 (R Core Team 2013) has been used for both the 

fitting process and the simulations. The package MuMIn has been used for the 

AICc estimation of each model. 

3.3. RESULTS 

3.3.1. Patterns of evolutionary integration in empirical data 

 The exponential function is the model that best fits the majority of 

patterns of integration, in 60 out of 71 datasets under the least-squares 

criterion and in 62 out of 71 datasets using the AICc (Table 3.2). Using the 

AICc, the logistic function is chosen as the best model for 8 of the remaining 

datasets and the Gompertz function for one. Using the least-squares criterion, 

the logistic function is found as the best model in 9 of the remaining cases. 
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The Gompertz curve is chosen as the best function in the other 2 datasets. 

The coefficient of decay in the exponential functions varies, for base e, from -

1.004 when the distal leaflet of Potentilla is analysed to -0.183 in a group of 

serine proteases, very close to the coefficient of -0.186 of the South American 

rodents’ cranium (Fig. 3.3). For the 60 datasets in which the exponential 

model is the preferred, the average coefficient of decay of variation is -0.428. 

The median is -0.352, a value between the coefficients obtained for the 

Pterosauria skulls using two different phylogenies. 

First author Structure  Least-

squares 

Best model 

% 

Exp 

fun. 

Coeff. 

of 

decay 

AICc best 

model 

Klingenberg Drosophila 

wings 

 Exponential 1.40 -0.56 Exponential 

Benítez Drosophila 

wings 

 Exponential 1.2 -0.27 Exponential 

Klingenberg Whole leaf  Exponential* 0 -0.56 Exponential* 

 Distal 

leaflet 

 Exponential* 7.5 -1.00  Exponential 

 Lateral 

leaflet 

 Exponential 7.5 -0.93 Exponential 

Foth Pterosauria 

skulls 

 Exponential 0 -0.35 Exponential* 

Foth Theropods 

skulls 

 Exponential 0 -0.21 Exponential 

 Paraves 

skulls 

 Exponential 0.1 -0.39 Exponential* 

Klingenberg Beetles  Exponential 38.9 -0.34 Exponential 
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Table 3.2. Results of the model-fitting process. The first two columns 

represent again the first author and the structure analyzed. The best fitting 

function using the least-squares criterion is mentioned in the third column. 

The next column gives the probability of obtaining a logarithmic model as the 

heads 

 Beetles 

pronotums 

 Exponential 48.7 -0.61 Logistic 

Klingenberg Waterfowls  Exponential 3.2 -0.28 Exponential 

Klingenberg Birds 

skulls 

 Exponential 31.5 -0.23 Exponential 

Álvarez Rodents  Exponential 0 -0.19 Exponential 

Álvarez Rodents  Exponential 0 -0.38 Exponential 

Varón-

González 

Serine 

proteases 

 Exponential 0 -0.18 Logistic* 

 Active site  Exponential 37.8 -0.63 Exponential 

 Substrate-

specificity 

area 

 Exponential 0 -0.38 Exponential 

Varón-

González 

Serine 

proteases 

 Logistic* 0 - Exponential 

 Active site  Logistic* 40.3 - Exponential 

 Substrate-

specificity 

 Exponential 0.6 -0.38 Exponential 

Brusatte Dinosaurs 

skulls 

 Exponential 0 -0.23 Logistic* 

Abe Trilobites  Exponential 0 -0.28 Exponential 

Baab Lemurs  Exponential 0 -0.19 Exponential 

Watanabe Crocodiles  Logistic 1.20% - Exponential 
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best fitting function in our simulations using the same ratio 

sample/dimensionality in absence of integration. The fifth column gives the 

coefficient of decreasing of variation for the raw data in each structure. The 

last column gives the selected method by AICc. Those datasets in which the 

preferred model changes using weighted squared-change parsimony or 

allometric residuals are labeled with an *. 

 

 There is no systematic effect of the weighted version of the squared-

change parsimony on this coefficient of integration. In three structures the 

weighted version increases the integration while in seven of them it decreases 

it. When we check for the effect of allometry over integration, we find that it 

is hidden by the fact that in some of the datasets the number of dimensions is 

in principle bigger than the number of species (Fig. 3.3). This reduces the 

dimensionality. The coefficients in those datasets reveal a higher integration 

in the datasets where the effect of allometry has been removed. In most of 

the rest of the datasets, where the number of species is bigger than the 

dimensionality and therefore removing the effect of allometry does not 

remove any dimension, the coefficient of decay of variation is smaller when 

the effect of allometry is not removed. The exceptions are the theropods 

skulls, where the coefficient varies from -0.210 when no allometry is taken 

into account to -0.214 when the effect of allometry is removed using the 

logarithmic centroid size, and the substrate specificity area of one group of 

serine proteases, where the coefficient varies from -0.534 to -0.552 (Table 

3.2, Fig. 3.3). 
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Figure 3.3. Representation of the different coefficients of decay of variation 

in those studies in which the exponential model has been chosen. In the x 

axis the 60 different datasets are represented. The y axis represents the 

coefficients. Different colours represent different structures. Clusters are 

obtained in many cases: these are different datasets where the same 

structure is analysed and the variation in the coefficient is very small. For 

example, when the same structure is analysed using the raw data, the 

allometric residuals for the centroid size and the allometric residuals for the 

log-transformed centroid size. Note that in some of these cases one extra 

dimension is lost when the allometric residuals are used, so the coefficients 

are not entirely comparable. 
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 In our first set of simulations, in which we estimate the best-fitting 

curves for the different combinations of dimensionality and species sample 

size in absence of integration, we find that the probability of finding the 

logarithmic model as the best model is the highest when the taxa sample is 

much bigger than the dimensionality (Table 3.2). There are five datasets that 

have a sample size/dimensionality ratio with which the probability of obtaining 

the exponential model in absence of integration is significant. In one of these 

datasets it was found during the fitting process that the logistic model fits the 

best, so no artefact due to the sample size/dimensionality ratio seem to be 

acting. In the beetle pronotum we find that in absence of integration the 

linear model is almost as likely to be found due to the sample 

size/dimensionality ratio (41%). However, during the fitting of the empirical 

values of variation in each PC we found that the difference in the fitting errors 

between these two models (linear and exponential) is substantial. Therefore, 

the results found should not be due to the ratio sample size/dimensionality. In 

the case of the bird skulls the Gompertz function is much more favoured 

(42%). Just in the beetle heads and one of the active site datasets there are 

reasons to think that the fitting process may have favoured the function 

obtained independently of the integration pattern. 

3.3.2. Probability of convergence in the two-dimensional space 

 The probability of convergence between two species in a bivariate 

space approximates to 50% when the ratio variance/distance between the 

taxa decreases. The evolving species changes so little that the small amount 

of evolution towards the fixed species or away from it determines whether 

there is convergence or not. The probability of convergence in this case 

depends only on the little component of the variation that is towards the other 

clade or away from it. Big variance always avoids convergence: because the 

taxa are very close relative to expected evolution at the start, it is unlikely 
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that they end up even closer. The evolving taxon always ends up at a bigger 

distance no matter the direction of the change (Figure 3.4). When integration 

is taken into account (Tables 3.3-3.5) the probability of convergence 

increases with the degree of integration if the angle between the evolving 

species and the vector between both species at the beginning is low. The 

evolution of the clade towards the other or away from it determines the 

appearance or not of convergence. When the angle is 0 degrees and the 

pattern of integration is extreme, the probability of convergence tends to 

50%. In this case, that there would be variation just in one dimension, the 

evolving clade could move just towards the fixed clade or away from it. If the 

angle between the evolutionary trajectories is close to ninety degrees then 

the probability of convergence decreases with the degree of integration. In 

this case, there is no evolution towards the fixed species but perpendicular to 

it and therefore the evolving species can just move away from the other 

species. When the degree of integration is low, the angle does not matter 

(Figure 3.4). 

 

var/ori 0 20 45 60 90 

0.01 48.7 47.8 51 49 43.3 

0.5 49.5 44.7 43.2 36.3 24.4 

1 47.7 45.8 34.6 29.4 19.4 

1.5 45.9 41.5 34.7 27.2 17.5 

2 41.1 36.8 31.5 22.1 18.6 

 

Table 3.3. Simulations in which a very strong degree of integration is 

considered (95% of variation in the first dimension and 5% in the second). 

The rows are the ratios of variance/distance between taxa. The columns are 

the different orientations of the integration pattern (expressed as the degrees 

of the angle between the pattern of integration and the vector between both 
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taxa at the beginning of the simulations. The results are the proportion of 

simulations ending up at a lower distance than at the beginning for the 

combination of integration pattern, orientation of the evolution and total 

variance. Colour legend: Probability of convergence > 45% (red), >40% 

(orange), <25% (blue). 

 

var/ori 0 20 45 60 90 

0.01 50.2 47.8 51.1 49.4 46.9 

0.5 45.5 47.4 42.7 35.5 30 

1 39.4 41 33.1 30.8 25.7 

1.5 36.3 34.8 28 26.9 21.9 

2 33.4 33.1 25.8 23.6 21.7 

 

Table 3.4. Simulations in which a strong degree of integration is considered 

(80% of variation in the first dimension and 20% in the second). The rows are 

the ratios of variance/distance between taxa. The columns are the different 

orientations of the integration pattern (expressed as the degrees of the angle 

between the pattern of integration and the vector between both taxa at the 

beginning of the simulations. Colour legend: Probability of convergence > 

45% (red), >40% (orange), <25% (blue). 

 

var/ori 0 20 45 60 90 

0.01 50.7 47.6 48.9 48.7 50 

0.5 43.5 42 41.3 36.8 38.9 

1 36.1 34.6 33.9 35.1 33.2 

1.5 33.7 32.3 31.6 31.6 27.3 

2 27.4 30.3 27.5 27.1 25.5 
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Table 3.5. Simulations in which a weak degree of integration is considered 

(60% of variation in the first dimension and 40% in the second). The rows are 

the ratios of variance/distance between taxa. The columns are the different 

orientations of the integration pattern (expressed as the degrees of the angle 

between the pattern of integration and the vector between both taxa at the 

beginning of the simulations. Colour legend: Probability of convergence > 

45% (red), >40% (orange), <25% (blue). 

 

 

Figure 3.4. Illustration of the results of the simulations studying the 

probability of convergence under different patterns of integration and 

orientations of the major axis of variation. Each diagram represents one 

bivariate space in which there are two species separated by one unit of 

distance, one in the centre of the black centre (with a radius of one unit) and 

one in the centre of the red ellipse (over the radius of the circle). We let the 

red species to evolve under a Brownian motion model of evolution and a 

specific degree of integration and orientation. On the left we see the 

situations where there is high integration and on the right the situation where 
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there is a lower degree of integration. On the top we see the situations where 

the evolution of the red species follows an orientation of 90 degrees with 

respect to the axis connecting both species at the beginning. On the bottom 

the evolution happens under an orientation of 0 degrees. After the evolution 

the red species will finish in one point within the red ellipse. The area of the 

red ellipse falling into the black centre determines how likely is convergence 

to happen between the two species. We can see that in the situation in the 

bottom left corner (high integration and 0 degrees) 50% of the red ellipse 

falls into the black centre, so the probability of convergence is bigger than in 

any other case. In the top left situation (high integration and 90 degrees) the 

area of the red ellipse falling into the black centre is minimum. 

3.4. DISCUSSION 

 Evolutionary integration is present in all the morphometric data. The 

decreasing in variation in each direction of the shape space follows an 

exponential curve in the vast majority of the datasets analysed (Table 3.3). 

This suggests that shape is a character that evolves mainly in few of the 

possible directions of the shape space in a vast majority of the structures, 

since no systematic effect of the ratio sample size/dimensionality has been 

found (Table 3.3). The degree of integration is smaller in all the datasets in 

which the effect of evolutionary allometry has been removed and sample size 

is relatively large, hence the dimensionality does not change, confirming its 

integrative role. The fact that the variation is concentrated in few dimensions 

during the evolution of the species is one important feature in the enhancing 

of the probability of convergence between them when the directions of 

variation in the evolution of both species is similar and the amount of 

variation is too. However, patterns of high integration in two species evolving 

in perpendicular directions would avoid convergence. When the total variance 
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is big relative to the distance between the species, convergence is very 

unlikely too. 

 We have found an overwhelming support for the exponential function 

as the best function describing the pattern of evolutionary integration in most 

of the organisms and structures. This function represents the model with the 

most abrupt decrease in variation in the PCs. Although a small number of 

studies is analysed, it is the preferred curved in the vast majority of the 

datasets even when a heterogeneous set of structures are analysed. In 

addition, the results in the simulations suggest that there are just two 

structures in which a preference towards the exponential model due to the 

ratio between dimensionality and number of species may be expected. In 

absence of integration, the eigenvalues are known to converge when the 

sample is much bigger than the dimensionality and to be more spread out 

when they are similar (Johnstone 2001, Bickel and Levina 2008). The 

logarithmic decrease in variation supposes a strong integration in most of the 

structures used in geometric morphometrics. Evolution in shape is favoured in 

just few directions of the shape space, while it is constrained in all the others.  

 On average, the integration coefficient in the exponential function is -

0.4282. That means that each PC accounts for the variation of about the 65% 

of the variation of the previous PC. There are some extreme cases, like the 

distal leaflet of the genus Potentilla, in which this coefficient decreases to -

1.0042, so the variation in one PC is of about the 35% of the previous one. 

This is a dramatic decrease and represents the most strong integration 

pattern of the datasets analysed. On the other extreme, we have the shape of 

a group of serine proteases and the cranium of a group of South American 

caviomorph rodents, where each PC is about the 83% of the previous one, so 

consecutive PCs are fairly similar.  

 The fact that few studies are used may be of importance in the 

analysis of the effect of allometry and the weighting process over the degree 



	
   98	
  

of integration, even when the results are coherent with the current knowledge 

about these features. This is especially remarkable due to the small ratio 

dimensionality/species sample size used in many morphometric datasets, 

which can 'hide' their effect in the integration coefficient via the removal of 

one dimension. Allometry has been proposed to be an integrating factor in 

morphological structures (Klingenberg 2013). The increase in the gene 

expression behind the increase in size, for example, may reinforce pleiotropic 

effects or developmental patterns and therefore enhance integration. In 

biological structures the effect of size over shape is often close to be linear 

and therefore 'a considerable proportion of the total shape variation may be 

concentrated in the direction of the allometric effects' if these are big enough 

(Klingenberg 2013).  

 There is a less straightforward relationship between integration and 

the weighting process during the mapping of the data on the phylogeny. An 

unweighted mapping of the data on the phylogeny minimizes the distance of 

the whole phylogeny in the shape space. It places the internal nodes where 

this distance is minimized and therefore they tend to be around the average 

position of the terminal nodes. The weighted version of the mapping adds 

some 'flexibility' to some branches and removes it from others, therefore the 

position between the internal nodes is less regular. The relationship between 

the weighting process and the relative amount of variation obtained in each 

PC depends on the specific case and there is no general effect that can be 

extracted from our results. 

 Strong patterns of integration, as the ones we have found in the 

empirical data, have an effect over the probability of two species to 

convergence in the shape space. They are therefore implicated in the 

production of similar phenotypes independently of natural selection (Losos 

2011). The main consequence of this is different scenarios for the impact of 

integration over the reliability of the phylogenetic reconstruction. Integration 
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constraints the evolution of one clade in a specific direction of the shape 

space and therefore the probability of convergence depends on the angle 

between this major axis of variation and the direction of the axis connecting 

both clades. When the angle between these two axes is low then a high 

degree of integration increases the probability of convergence and makes the 

phylogenetic reconstruction fairly unreliable (chapter 3.1), since they would 

share a unidimensional shape space (Lynch 1989). This situation is expected 

under our assumption of stability in the pattern of integration in the whole 

phylogeny, which may be frequent when close related species are studied 

(Goswami, et al. 2014). Therefore, the phylogenies built using geometric 

morphometrics and closely related species are in principle less reliable than 

those using distantly related species (chapter 3.1). It would be in those cases 

in which the species evolve under different patterns of integration, with 

different orientations and variations, when a high degree of integration in 

both of them prevents convergence. In terms of phylogenetic reconstruction, 

this situation can produce partial success, e.g. when the families of species 

were successfully clustered but not the species within families (Cardini and 

Elton 2008). While the integration pattern may be conserved within a family 

of species, it may be different on a larger scale (Goswami, et al. 2014). 

Therefore, the probability of convergence would be much higher within clades 

than among them. There are, however, exceptions to these general patterns, 

since the pattern of integration can evolve at a smaller phylogenetic scale 

(Gómez, et al. 2014). 

 For the simulations we have made some theoretical assumptions that 

may be controversial, starting with the premise that shape evolves according 

to a Brownian motion model of evolution, for which there is evidence against 

(Estes and Arnold 2007). Although it has been shown empirically that the 

pattern of genetic or phenotypic variation is similar to the pattern of 

evolutionary divergence (Monteiro, et al. 2005, Drake and Klingenberg 2010, 
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Smith 2011, Klingenberg, et al. 2012, Goswami, et al. 2014), this expectation 

may not be fulfilled for all the cases. We have also assumed that the patterns 

of integration within-species are stable along the whole phylogeny (Steppan, 

et al. 2002, Arnold, et al. 2008), assumption that is not entirely clear. 

 In this study we surveyed the degree of integration found in empirical 

studies and its implications over the evolution of the species. The role of 

integration in macroevolution has been assessed from many different 

perspectives lately (Armbruster, et al. 2014, Goswami, et al. 2014, 

Klingenberg 2014), explaining the effect of this feature over the evolution of 

the species. However, although our results suggest that a stable pattern of 

integration at the macroevolutionary level is a source of convergence, other 

features like the change in the amount of variation or the orientation between 

evolutionary trajectories still need further study to accurately assess the 

effect of the concentration of variation in some dimensions over the evolution 

of the species. 
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Abstract 

 

Shape is a fundamental feature for the correct performance of the proteins, 

which guarantees the proper interaction of them with their environment. 

Different methods have been used to study protein structure in studies of 

evolution. However, the most common technique used to study evolution of 

shape in anatomical structures, geometric morphometrics, has been used 

very few times for molecular data. In this study we explain how to implement 

geometric morphometric methods in protein data to study different aspects of 

the evolution of shape demonstrated in serine proteases. We test whether 

there is phylogenetic signal for shape in this family of proteins, as well as the 

role of the changes in size during the diversification of the family in the 

patterns of diversification in shape. Then, the relationship between variation 

in shape and specific functions of the proteins is established. Finally, the 

relationship between similarity in shape and similarity in sequence is 

explored. In addition to the complete protein shapes, specific parts of them 

are studied including the active site and the area of the proteins involved in 

substrate specificity. The results obtained by applying these methods to a set 

of serine proteases are congruent with the literature existent: there is 

phylogenetic signal although some convergence can be identified, 

evolutionary allometry plays an important role in the diversification of shape 

and the shape in the area involved in substrate specificity can discriminate 

between functional groups in these proteins. Geometric morphometrics can be 

useful in the description and explanation of the evolution of shape in protein 

studies. 
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4.1. INTRODUCTION 

 In the last twenty years there has been a great development of the set 

of techniques used to analyse shape and size, all of them forming the science 

known as geometric morphometrics (Adams, et al. 2013). This field has 

enhanced the study of the evolution of shape in a very wide range of 

organisms and contexts, from biomechanical performance (O'Higgins and 

Milne 2013) to sexual selection (Sanger, et al. 2013). 

 Geometric morphometrics is formed by a set of ideas and statistical 

techniques that are now well-established (Zelditch, et al. 2012). Shape is 

defined as all the geometrical features of a configuration but its position, 

orientation and size. It can be composed of a set of quantitative continuous 

variables, which define the position of a group of landmarks within a 

configuration in either 2D or 3D. It is studied using multivariate statistics, so 

the variation in the position of the landmarks can be assessed altogether. The 

analyses are both descriptive and explanatory, so regressions using size, 

analyses of symmetry and covariation tests are also included in the common 

geometric morphometrics 'toolkit' (Adams, et al. 2013). Shape studies are 

capable of not only describing the variation but also explaining the presence 

of that variability to some extent. 

 The methods used in geometric morphometrics are not restricted to 

morphological structures at the organismal scale. There are no special 

conditions that constrain the application of geometric morphometrics to 

anatomical structures. Indeed, these tools have been applied successfully to a 

broad range of organisms: e.g. mammals (Klingenberg 2013), plants (Gómez, 

et al. 2014), rotifers (Fontaneto, et al. 2007), algae (Neustupa and Šťastný 

2006, Neustupa and Nēmcová 2007, Neustupa, et al. 2010) or protists 

(Poulíčková, et al. 2010). However, very few molecular studies have been 

published using them (Adams and Naylor 2000, Theobald and Wuttke 2006a, 



	
   109	
  

Theobald and Wuttke 2008). Despite the fact that the importance of the 

three-dimensional conformation in the evolution of proteins has been widely 

assessed in the literature and many different approaches has been applied to 

study it (Russell, et al. 1997, Martin, et al. 1998, Orengo, et al. 1999, Todd, 

et al. 1999, Thornton, et al. 2000, Chelliah, et al. 2004, Socolich, et al. 2005, 

Goldstein 2008, Siltberg-Liberles, et al. 2011, Meyer and Wilke 2013), no 

recent attempt of applying the set of techniques developed lately in geometric 

morphometrics has been done. This is surprising, since the study of protein 

evolution could benefit from the techniques geometric morphometrics offers in 

obtaining a new perspective about the evolution of molecular structures.  

 However, the application of the methods used in geometric 

morphometrics to proteins supposes a conceptual and methodological 

challenge, since changes in the evolution of the shape of the proteins may be 

different to the changes in the evolution of the anatomical structures (e. g. 

more abrupt or relatively larger). These difficulties can show up in the 

application of the common techniques successfully used in morphological 

studies and in the explanation of the results. In this study we analyse the 

potentials and the pitfalls of the current techniques developed in geometric 

morphometrics in their application to study the evolution of the shape in 

proteins. We have two different aims: in first place to confirm different 

features about the evolution of shape in proteins using these new methods 

(e.g. allometric patterns or the importance of functional demands). That will 

give an estimate of the reliability of these new tools and will show the 

efficiency of these methods to study protein evolution. In second place, the 

results will also allow us to suggest new hypotheses about the evolution of 

protein shape. In studies about anatomical structures, patterns that can be 

studied in proteins (e.g. evolutionary allometry) have been related to other 

ones that have not been explored in these molecules (e.g. integration) 

(Klingenberg 2013). If we find common patterns in proteins and anatomical 
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structures we may be able to propose new hypotheses about the evolution of 

protein shape. We apply geometric morphometrics tools to a group of 

chymotrypsin-like serine proteases (Table 4.1) (Rawlings and Barrett 1993, 

Barrett and Rawlings 1995, Krem and Di Cera 2001), a very well known 

family of proteins. 

4.2. MATERIALS AND METHODS 

4.2.1. Protein Shape Data 

 The raw data used in geometric morphometrics is a set of x, y and z 

coordinates of the position of specific points, landmarks, taken in an arbitrary 

reference system. In anatomical structures, these landmarks can be located 

in any position of a given structure. In the case of the proteins, the landmarks 

are the different atoms of the structure. As it also happens in morphological 

studies, the data collection in crystallography is not free from different kinds 

of measurement errors (Borek, et al. 2003). Since geometric morphometrics 

can detect very subtle differences in shape, the application of these 

techniques requires the protein structures to be well resolved. That increases 

the accuracy of the position of the landmarks. The parameters used to assess 

the quality of the data have been the resolution, R and Rfree factors (Table 

4.1). The crystallographic methods detect areas in a given space that resist 

the crossing of electrons or X-ray. It is assumed that the structure of interest 

is embedded in that area of electron-density. In crystallography, the 

resolution refers to the magnitude of that area. Resolution can be viewed as 

an empty contour surface, e.g. a cylinder, in which the structure under study 

is. The resolution would be the diameter of that cylinder. The smaller that 

diameter is, the better the signal is. The shape of the area of electron-density 

tends to resemble the shape of the molecule under study. Therefore the 

better the determination should be. The resolution of a resolved structure 
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represents the limits in which the data collection has been made or, in other 

words, 'the amount of data (...) used in the structure determination' (Chapter 

8, p. 185) (Rhodes 2010). However, the situation is better than just having a 

'cloud' in which our structure should be embedded: we have some a priori 

models about the shape of the structure. The R-factor reveals the coherence 

between the observed data in the structure determination and the data 

calculated from a model for that specific protein (Morris, et al. 1992). The 

lower it is, the more agreement there is between what our model predicts and 

the data obtained. In other words, the coherence between the shape of the 

cloud of electron density we have obtained and the shape of the prediction we 

have for that structure. A low R-factor is a measure of good data reliability. 

The R-factor is correlated with the resolution, so the smaller the area of 

electron density (resolution) the better the determination of the structure is 

(R-factor) (Kleywegt and Jones 1997, Rhodes 2010). The Rfree factor is used 

as a cross-validation parameter for the R factor (Brünger 1992). The fit of the 

predicted model for our structure in the electron density cloud may not be 

optimal. The fitting is a statistical process (e.g. maximum likelihood) that tries 

to optimize the matching between electron-density cloud and predicted 

model. However, it can be trapped in local optima. The Rfree factor checks 

the quality of the fitting using some of the data not used in the previous 

fitting. In the case that the fitting process reaches an optimum, the predicted 

model does not fit in the obtained data well enough even when it could. We 

would be under-interpreting the data. Alternatively, it may happen that during 

the fitting the model has been changed in an unrealistic way to fit the data, so 

it has over-interpreted the data. In those cases in which there have not been 

any over or under-interpretation of the data it converges to the same value as 

the R factor. 

 In order to study evolution it is necessary to limit studies to 

homologous regions of the structures. If we identify those areas of the 
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structure that are homologous and we leave out the rest of the data, the 

interpretations of the results can be made in an evolutionary context. 

Hypotheses of homology between areas of the different structures can be 

obtained using sequence alignments (Wong, et al. 2008, Blackburne and 

Whelan 2013), so corresponding amino acids can be identified. There are 

different options to establish homology hypotheses depending on the proteins 

that are going to be compared. In the situation in which the proteins studied 

are evolutionary distant, the use of genetic data can help. The protein 

sequences may be completely different but in the genetic data there may be 

homologous regions where relatively few nucleotides have change. As a 

consequence of these nucleotides changes, the protein sequence signal may 

be lost. However, homologous regions may be identified in the DNA and then 

translate that to hypothesis of homology between amino acids. In the 

opposite situation, in which all the proteins belong to the same family and are 

relatively conserved, the DNA sequence alignment should not give much more 

information than the protein sequence alignment. In any case, the method 

used to obtain the sequence alignment also needs to be considered depending 

on the proteins of interest (Blackburne and Whelan 2012). Different methods 

can give the same results with proteins that share the same distance in the 

sequence space between them. The study of proteins with different distances 

may require sequence alignment methods especially careful with the 

identification of homologous amino acids (Blackburne and Whelan 2012, 

Blackburne and Whelan 2013). Once the homologous amino acids are 

identified, their side chains can be discarded to study the overall shape of the 

proteins. At the end, just the xyz coordinates of the alpha carbons should be 

included in the analyses.  

 In our study, we used a family of 27 serine proteases taken from the 

Protein Data Bank (Berman, et al. 2000). Three of these proteins, the 

neuropsin and the first two salmon trypsins, have two different chains that 
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have been treated as different proteins, so the dataset is finally composed of 

30 structures (Table 4.1). Although all the proteins belong to the same 

evolutionary family and therefore are relatively conserved, the sequence 

distances between them are very different. These conditions are not ideal 

then for the part of the analyses that involve the protein sequence. Some 

databases like HOMSTRAD (Mizuguchi, et al. 1998) offer groups of 

homologous proteins with a high sequence similarity and trustworthy 

sequence alignments but with some limitations in the quality of the structural 

data, which we have prioritized, given that the structural analysis is where the 

novelty of this study lies. 

 

Protein (PDB 

ID) 

Species Molecular 

Replacement 

(PDB ID) 

Res. 

(Å) 

Physiological 

Process 

Azurocidin 

(1A7S) 

Homo sapiens Preliminar 

Azurocidin 

1.12 Immunological 

Trypsin (1FNI) Sus scrofa Bovine β-Trypsin 1.63 Digestive 

Trypsin 

(1H4W) 

Homo sapiens Human Trypsin I 

(1TRN) 

1.7 Other 

Trypsin (1HJ8) Salmo salar Anionic salmon 

trypsin form 2 

(1BIT) 

1 Digestive 

Pro-chymase 

(1NN6) 

Homo sapiens Activated human 

chymase (1klt) 

1.75 Immunological 

Kallikrein 

(1SPJ) 

Homo sapiens Human K6 

structure (1LO6) 

1.7 Other 

Chymotrypsin 

(1YPH) 

Bos taurus Yes (but not 

published) 

1.34 Immunological 
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Urokinase 

(4FU9) 

Homo sapiens Yes (but not 

published) 

1.6 Coagulation 

Trypsin (4I8H) Bos taurus Bovine Trypsin 

(3MFJ) 

0.75 Digestive 

Trypsin (4M7G) Streptomyces 

erythraeus 

S. griseus 

Trypsin (1SGT) 

0.81 Digestive 

Matriptase 

(1EAX) 

Homo sapiens No 1.3 Immunological 

Factor VIIa 

(1KLI) 

Homo sapiens Factor VIIa 

(1CVW) 

1.69 Coagulation 

Chymase 

(1KLT) 

Homo sapiens Homology 

construct of 

human chymase 

1.9 Immunological 

Elastase 

(1GVK) 

Sus scrofa PPE BCM7 

structure (1QIX) 

0.95 Immunological 

Thrombin-like 

venom (3SG9) 

Gloydius 

saxatilis 

AaV-SP-I (1OP0) 1.43 Coagulation 

Prostasin 

(3DFJ) 

Homo sapiens Human plasma 

kallikrein 

(2ANW) 

1.45 Coagulation 

Complement 

Factor D 

(1BIO) 

Homo sapiens Factor D 

molecule B in 

triclinic cell 

1.5 Immunological 

Factor Xa 

(3FFG) 

Homo sapiens No 1.54 Coagulation 

Trypsin III 

(2ZPS) 

Salmo salar Salmon trypsin 

(1MBQ) 

1.55 Digestive 

Thrombin Homo sapiens Human thrombin 1.55 Coagulation 
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(3U69) (1VZQ) 

Trypsin II 

(2ZPR) 

Salmo salar Salmo trypsin 

(1MBQ) 

1.75 Digestive 

Trypsin I 

(2ZPQ) 

Salmo salar Salmo trypsin 

(1MBQ) 

1.9 Digestive 

Neuropsin 

(1NPM) 

Mus musculus Bovine 

pancreatic β-

Trypsin 

2.1 Other 

Trypsin (2F91) Pontastacus 

leptodactylus 

N 1.2 Digestive 

AHV (4E7N) Agkistrodon 

halys 

Yes (Not 

published) 

1.75 Coagulation 

Viper venom 

(3S9B) 

Daboia rusellii 

siamensis 

ACC-C (2AIQ) 1.9 Coagulation 

 

Table 4.1. Table of the proteins used in the morphometric study. From left to 

the right, the columns express the protein used, the organisms where they 

have been obtained, the molecules used in the molecular replacement (where 

molecular replacement has been used), the resolution and the physiological 

function in which they are involved. The data about the molecular 

replacement has been obtained from the original publications (Kang, et al. , 

Razeto, et al. , Zeng, et al. , McGrath, et al. 1997, Jing, et al. 1998, Karlsen, 

et al. 1998, Kishi, et al. 1999, Deepthi, et al. 2001, Leiros, et al. 2001, 

Friedrich, et al. 2002, Katona, et al. 2002a, Katona, et al. 2002b, Sichler, et 

al. 2002, Reiling, et al. 2003, Laxmikanthan, et al. 2005, Fodor, et al. 2006, 

Koizumi, et al. 2008, Rickert, et al. 2008, Toyota, et al. 2009, Quan, et al. 

2010, Huang, et al. 2011, Nakayama, et al. 2011, Figueiredo, et al. 2012, 

Liebschner, et al. 2013, Blankenship, et al. 2014) 
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 We use two different programs for the alignment in order to test the 

importance of the hypotheses of amino acid homology and the ability of 

different methods to deal with it. We execute from the European 

Bioinformatics Institute website (http://www.ebi.ac.uk/): webPRANK 

(Löytynoja and Goldman 2010) and MUSCLE software (Edgar 2004). These 

methods belong to two different kinds of multiple sequence alignment 

programs: while the former is 'intended to produce evolutionarily realistic 

alignments', the latter is a 'similarity based' one (Blackburne and Whelan 

2013) (Page 645). The main technical difference between these two methods 

is the treatment of the indels during the alignment process. While MUSCLE 

tries to minimize the number of them webPRANK treats insertions and 

deletions differently using phylogenetic information (Löytynoja and Goldman 

2008). 

 The outcome of each sequence alignment is a hypothesis of 

homologous amino acids in the 30 structures and the phylogeny used for the 

alignment. In the case of MUSCLE this phylogeny contains information about 

branch lengths, while the phylogeny obtained from webPRANK assumes equal 

branch lengths. Based on the alignment, the structural data of the 

homologous amino acids is collected. These data can be different, although 

the expectation is that many amino acids are proposed as homologous in both 

alignments due to the conservation in the family. We leave out the side chains 

of the morphometric analyses and focus on the backbone. In those amino 

acids in which we find A and B atoms in the PDB file we always choose the A 

one (Word, et al. 1999). The subsequent morphometric analyses are done 

independently for the dataset collected using MUSCLE for the alignment and 

the dataset collected using webPRANK for the alignment. 

 One extra outcome in the alignment using MUSCLE is a similarity 

matrix for all the structures built by other 'similarity based' sequence 

alignment program, CLUSTALW 2.1 (Larkin, et al. 2007). This similarity 
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matrix is built comparing proteins in pairs and giving a score at each residue 

position, so it penalizes gap openings, gap extensions and uses a protein 

weight matrix that evaluates the similarity of each possible amino acid to 

each other. 

4.2.2. Procrustes Superimposition and Size 

 The morphometric analyses start with the superimposition of the 

different structures. A wide range of superimposition techniques have been 

used in protein structural biology (Adams and Naylor 2000, Theobald and 

Wuttke 2005, Theobald and Wuttke 2006b, Theobald and Wuttke 2006a, 

Hirsch and Habeck 2008, Theobald and Wuttke 2008, Fang, et al. 2009, 

Hasegawa and Holm 2009, Liu, et al. 2009, Mechelke and Habeck 2010, Sun, 

et al. 2012, Theobald and Steindel 2012, Gapsys and de Groot 2013). 

Geometric morphometrics uses a technique called Procrustes superimposition, 

which consists in three steps. First, all the structures are shifted to one 

arbitrary position, so the centroid (average point of all the landmarks) of all 

the structures falls in the same position. Then, all the structures are rescaled 

to the same size, usually the same centroid size, i.e. squared root of the the 

sum of the squared distances between each landmark and the centroid 

(Dryden and Mardia 1998). Finally, the structures are rotated so the variance 

in the position of the landmarks is minimized via a least-squares method. 

After this process, position, orientation and size are standardized (Dryden and 

Mardia 1998). This technique has received some criticism, since least-squares 

does not take into account the different variance of the atoms (the 

landmarks) can have (Theobald and Wuttke 2006a, Theobald and Wuttke 

2008). However, although we agree that heterocedasticity is a property 

certainly common both in proteins and in anatomical structures, other 

techniques proposed to solve this problem require further assumptions. 

Procrustes superimposition has performed reasonably well in anatomical 
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studies and gives support to the rest of the methods developed in geometric 

morphometrics, including the theoretical construction of the shape space 

(Dryden and Mardia 1998). The shape space is a theoretical curved space 

where all the possible shapes are represented. It has certain properties, such 

as its dimensionality, determined by the Procrustes superimposition. The 

dimensionality of the shape space is 3 times the number of landmarks (for 3D 

data) minus 7, the degrees of freedom lost during the superimposition. These 

properties remain unexplored for different superimposition methods. An 

important feature is the fact that for most of biological data the tangent shape 

space is a good local approximation to the shape space (curved) (Marcus, et 

al. 2000). This projects a portion of a curved space into a flat tangent space, 

so it extensively facilitates the mathematics and statistics behind the 

methods. However, when dealing with evolutionary distant proteins, it may be 

reasonable to check whether this equivalency still holds, since such features 

have not been shown with molecular data. 

 We use four different datasets for the morphometric analyses, in which 

the 30 structures are included. The first one is composed by the alpha-

carbons of the whole proteins and the other three are just specific parts of 

them: 2) the catalytic tryad plus one amino acid involved in the formation of 

the oxyanion hole (active site), the Ser195, His57 and Asp102 plus the Gly193, 3) 

the part of the protein involved in the substrate specificity, formed by the 

aminoacids 190-192, 214-215 and 225-228 in the webPRANK dataset and by 

the same aminoacids plus the aminoacid 189 in the MUSCLE dataset (Perona 

and Craik 1995, Hedstrom 2002, Polgár 2005) and 4) the aminoacids 

proposed to be evolutionary markers in this family, the catalytic tryad plus 

Ser214 and Pro225 (Krem and Di Cera 2001). 
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4.2.3. Comparative methods 

 The data in macroevolutionary studies is influenced by its phylogenetic 

structure, so comparative methods are required to track the evolutionary 

changes in shape in the proteins (Felsenstein 1985). In this sense, 

comparative methods have been used to study morphological structures in 

geometric morphometrics for some time now (Klingenberg and Marugán-

Lobón 2013, Monteiro 2013) and there should not be any difference for 

protein studies. 

 The use of independent contrasts allows the study the evolution of 

shape by removing the effect of phylogenetic relatedness (Felsenstein 1985, 

Rohlf 2001, Klingenberg and Marugán-Lobón 2013). In other words, the 

comparison between sister nodes avoids finding common shape features 

between structures that are closer in the phylogeny. For that, apart from the 

shape data a reliable phylogeny with the different structures under study is 

needed. 

 The extraction of reliable phylogenetic information from molecular data 

can be done during the sequence alignment, using again DNA or the residues 

sequence depending on the evolutionary proximity of the proteins used. Once 

a reliable phylogeny is obtained, we can assess the distribution of our data in 

the shape space. For that, we can run first by a principal component analysis 

(PCA), so the variance in shape in our sample and the distances between 

proteins is observed. Then, it is possible to map the data on a reliable 

phylogeny using squared-change parsimony (Maddison 1991, McArdle and 

Rodrigo 1994), so the position of the internal nodes of the phylogeny in the 

shape space and the evolution in shape between nodes are estimated. This 

allows the observation of the distribution of the different structures in shape 

space and possible clusters of them. The overall phylogenetic signal can be 

assessed via permutation test, i.e. whether or not the pattern of shape 
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similarity in the family of proteins follows the pattern of phylogenetic 

relatedness (Klingenberg and Gidaszewski 2010). 

 In our example, the phylogenies obtained in the alignments are 

mapped using the weighted squared-change parsimony in the case of the 

dataset obtained using MUSCLE and the unweighted version in the case of the 

dataset obtained using webPRANK. 

4.2.4. Allometry 

 Size is a factor commonly found to influence the evolution of shape. 

The change in shape due to the change in size is called allometry and it has 

been extensively studied in geometric morphometrics (Monteiro 1999, Piras, 

et al. 2010, Sidlauskas, et al. 2011, Klingenberg and Marugán-Lobón 2013, 

Voje, et al. 2014, Watanabe and Slice 2014). Although size is standardized 

during the superimposition, it is stored as a variable for further analyses, so 

the evolutionary relationship size-shape can be studied using a multivariate 

linear regression of the independent contrasts of shape on the independent 

contrasts of centroid size (Klingenberg and Marugán-Lobón 2013). 

 However, the effect of size on the evolution of shape may be very 

different in proteins to morphological structures. Whereas the centroid size 

usually varies smoothly in the evolution of anatomical structures, relatively 

few changes in a protein sequence can bend the protein and therefore change 

its centroid size drastically. This is the case, for example, when globular and 

fibrous proteins are studied. Fortunately, protein volumes has been shown to 

be under conservation in proteins (Gerstein, et al. 1994), so big changes may 

be uncommon. In any case, they may reveal important biological features of 

the proteins. Outliers can also be left out to test their influence on the results 

concerning the whole family. 

 In those analyses in which allometry is found, analyses using the 

residuals of the regression are encouraged. This is the variance that is left 
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after removing the predicted effect of size, so analyses removing the effect of 

size are interested to know at what extend some results are an effect of size. 

4.2.5. Structure and function 

 Size is one factor that can explain the evolution of shape in a structure 

but it is not necessarily the most important one. Functional demands also 

influence the protein structure (Goldstein 2008). Geometric morphometrics 

can test hypothesis of functional diversification (De Esteban-Trivigno 2011). 

Some clusters of proteins with the same function can appear when using a 

PCA, suggesting a relationship between shape and function. However, this 

technique is not ideal to discriminate groups in the dataset since it does not 

take into account any group structure. For that purpose, we use a canonical 

variate analysis (CVA) (Albrecht 1980). We first need to group the specimens 

according to their function and the variation within these groups is estimated. 

Then, the space is transformed so the variance is increased in those directions 

in which the within-groups variance is smaller and decreased in those ones in 

which the within-groups variance is bigger. That maximizes the separation 

among groups (Klingenberg and Monteiro 2005). However, because CVA is 

based on the variance of the groups, it is sensitive to low sample sizes. 

Whereas that may not be a problem when specific parts of the proteins are 

used (as long as the number of landmarks is not very high), this is the case 

when we analyse the whole proteins. To avoid that problem, a between-group 

PCA can be run (Klingenberg and Spence 1993, Boulesteix 2002, 

Mitteroecker, et al. 2005, Mitteroecker and Bookstein 2011). In it, first a PCA 

of the proteins averaged by the functional groups is run. Then, a new PCA is 

run for all the proteins using the scores of the previous PCA. 

 For the serine proteases, we classify the specimens in three groups 

according to the physiological function in which they are involved: 

immunological, coagulation, digestive and other (Blasi, et al. 1987, Perona 
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and Craik 1997, Roach, et al. 1997, Belaaouaj, et al. 1998, Jing, et al. 1998, 

Friedrich, et al. 2002, Katona, et al. 2002a, Krem and Di Cera 2002, Sichler, 

et al. 2002, Reiling, et al. 2003, Wątorek 2003, Terayama, et al. 2005, 

Yousef, et al. 2005, Fodor, et al. 2006, Gallwitz and Hellman 2006, Rickert, et 

al. 2008, Toyota, et al. 2009, Huang, et al. 2011, Nakayama, et al. 2011, 

Porter, et al. 2012, Blankenship, et al. 2014) (Table 1). 

4.2.6. Sequence and structure 

 The sequence is the last factor influencing shape that we studied. It is 

possible to know by how much the similarity in the sequences is related to the 

shape and therefore at what extend the sequences are responsible of all the 

previous results. For that, we use the partial least squares (PLS) (Rohlf and 

Corti 2000). Two blocks of data are included in this analysis: the shape data, 

represented by the coordinates obtained after the Procrustes superimposition 

(Procrustes coordinates), and a set of variables reflecting the diversification of 

the sequences. In order to obtain the latter, we first get a similarity matrix 

from the sequence alignment, which is transformed into a dissimilarity matrix 

subtracting each measure from 100. This similarity matrix is usually obtained 

with the sequence alignment and its calculation depends on the specific 

software. Then a Principal Coordinate Analysis (PCoA) (Gower 1966) is run 

using that. PCoA produces a set of variables reflecting the diversification of 

the sequences. The PCo Scores obtained are used to run the PLS along with a 

permutation test, where the null hypothesis is the independence between 

them and the shape variables. The RV coefficient gives us a percentage of 

correlation between these variables (Klingenberg 2009). However, here 

sample size also matters, so it may be advisable to use a reduced number of 

PCo Scores.  

 The morphometric analyses were all run in MorphoJ (Klingenberg 

2011). The removal of side chains of the data taken from the PDB and the 
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analyses regarding the PCoA were run using R version 3.0.2 (R Core Team 

2013). The removal of some non-homologous aminoacids was done using 

Microsoft Excel for Mac 2011 version 14.4.3. 

4.3. RESULTS 

 Using both the dataset obtained from the alignment with the 

evolutionary-based alignment method and the dataset obtained from the 

alignment with the similarity-based method there is little variation in size in 

this family of proteins. The test for evolutionary allometry is significant 

(webPRANK dataset: p-value=0.0014; % predicted: 12.27%; MUSCLE 

dataset: p-value=0.0342; % predicted: 6.60%) (Figure 4.1). We also find a 

stronger effect of the size over shape in both datasets when we test the 

evolutionary allometry using the active site (webPRANK dataset: p-

value=0.0015; % predicted= 49.0665%; MUSCLE dataset: p-value=<0.0001; 

% predicted= 94.003%), the part involved in substrate specificity (webPRANK 

dataset: p-value= 0.0155; % predicted= 26.0165%; MUSCLE dataset: p-

value= <0.0001; % predicted= 98.2451%) or the evolutionary markers 

subdivision (webPRANK dataset: p-value= 0.0015; % predicted= 24.99%; 

MUSCLE dataset: p-value= <0.0001; % predicted= 99.4915%). However, in 

all these datasets there is (at least) one outlier regarding size (Figure 4.1). 

When we repeat these analyses removing the protein causing the outlier, the 

Prochymase, the results are different. In the active site there is not 

evolutionary allometry (webPRANK dataset: p-value=0.5843; % predicted: 

2.3974%; MUSCLE dataset: p-value=0.0631; % predicted: 7.4291%). We 

still find evolutionary allometry for the substrate specificity area (webPRANK 

dataset: p-value=0.0042; % predicted: 23.9865%; MUSCLE dataset: p-

value<0.0001; % predicted: 18.2093%) and the evolutionary markers 

(webPRANK dataset: p-value=0.0013; % predicted: 25.8719%; MUSCLE 

dataset: p-value=0.0005; % predicted: 23.8659%) but much softer. 



	
   124	
  

 

 

Figure 4.1. Scores of the Evolutionary Allometry regression using the 

independent contrasts of the whole proteins and the data obtain from the 

alignment with webPRANK. Each dot in the graph represents one contrast. In 

the y-axis the change associated to the difference in centroid size can be 

observed. On the top, the proteins appear partly unfolded while on the 

bottom the proteins are more compact.  

 

This allometric effect is especially strong in the case of the analyses in which 

the datasets aligned with the similarity-based method are used and just some 

part of the protein is included. In these cases the contrast between chymase 

and prochymase is always situated apart from the rest of the contrasts. Since 

the transition from the structure of the prochymase to the chymase is 

mediated by a conformational change, so the change between them in 

important parts of the protein as the active site and parts involved in the 

substrate specificity is not only evolutionary but also functional.  

 Following the theory of gene duplication followed by functional 

differentiation (Lynch 2000), the phylogenies present clades in which the 

proteins share the physiological function (Figures 4.2 & 4.3). Therefore, it is 
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not surprising to find in both datasets a strong phylogenetic structure in the 

shape data when we use the whole protein (p-values<0.0001) (Figures 4.4 & 

4.5). However, there are some differences that can be observed in the PCAs. 

In the PCA run over the evolutionary-based dataset, the proteins that are far 

from the rest are the snake venoms, the factor VIIa and the matriptase, 

revealing uncommon shape features that may relate to their uncommon 

function (Figure 4.4). The pro-chymase is very close to the chymase, as 

expected, given that they are indeed two different forms of the same protein. 

All the trypsins but those from a bacteria and a crustacean, evolutionarily 

remotely related organisms from the other organisms, are clustered together. 

In the PCA run over the similarity-based dataset, however, the proteins have 

a distribution more difficult to explain from the evolutionary point of view 

(Figure 4.5). The pro-chymase and the chymase are far away from the rest of 

proteins and the structures of the trypsins are more different relatively to the 

other proteins.  
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Figure 4.2. Phylogenies obtained from the sequences in webPRANK (left) and 

MUSCLE (right). The first letters refer to the protein and the last 2 letters are 

the initials of the species. 
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Figure 4.3. PC Scores of shape mapped on the phylogeny using webPRANK 

and the whole proteins. 

 

 

Figure 4.4. PC Scores of shape mapped on the phylogeny using MUSCLE and 

the whole proteins. 
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When only the active site is used, there is no phylogenetic signal (webPRANK 

dataset: p-value=0.8150; MUSCLE dataset: p-value=0.9908) (Figure 4.6). A 

marginally nonsignificant phylogenetic signal is found when the residuals of 

that regression are taken (webPRANK dataset: p-value=0.0591; MUSCLE 

dataset: p-value=0.0529). When we use the amino acids involved in 

substrate specificity (Hedstrom 2002), we again do not find phylogenetic 

signal (webPRANK dataset: p-value=0.2238; MUSCLE dataset: p-

value=0.9741). If we remove the effect of size we find marginal 

nonsignificance for the dataset obtained from the webPRANK alignment (p-

value=0.0545) but complete significance for the dataset from the MUSCLE 

alignment (p-value=0.0029). The only test that gives different results for the 

datasets obtained using the evolutionary-based method and the similarity-

based one is that one regarding the phylogenetic signal using the evolutionary 

markers identified by Krem and Di Cera (2000, 2001) (webPRANK dataset: p-

value=0.0007; MUSCLE dataset: p-value=0.9826).  

 

 

Figure 4.5. PC Scores of shape mapped on the phylogeny using webPRANK 

and the active site. 
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 The CVA analysis, a discriminant analysis, reveals that there is not a 

good discrimination between functional groups using either of the alignments 

in the active site. However, when we use the amino acids involved in the 

general substrate-specificity the discrimination between all the groups is 

highly significant (in both datasets all the p-values<0.005) (Figure 4.7). When 

we use the between-group PCA, so it is used a PCA of the amino acids 

averaged by function to run a PCA on these scores, we find a good 

differentiation between functional groups, especially when the evolutionary-

based method has been used (Figure 4.8). There are many results that are 

very similar using either of the alignments and the choice of homologous 

aminoacids. 

 

 

Figure 4.6. CVA of shape using the part of the protein involved in substrate 

specificity and webPRANK. 
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Figure 4.7. Results of the between-group PCA. PCA of shape of the whole 

proteins using the dataset obtained from webPRANK and the PC Scores from 

the PCA of the dataset average by function. 
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Figure 4.8. Partial Least Squares run using the Procrustes Coordinates of the 

whole proteins (Block 1) and the PCo Scores of the dissimilarity matrix 

obtained in MUSCLE (Block 2). 
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Figure 4.9. Sequence space in the Partial Least Squares: two dimensions of 

top covariation. 

 

 

Figure 4.10. Shape space in the Partial Least Squares: two dimensions of top 

covariation. 
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4.4. DISCUSSION 

 Geometric morphometrics is a very powerful tool to find subtle 

differences in shape between proteins and propose hypotheses about their 

evolution. In first place, we have been able to confirm previous features 

studied in the literature about serine proteases: the constraint in size, the 

phylogenetic signal in the shape of these proteins, specific convergent cases 

associated to special functional demands and a strong relationship between 

sequence and structure. Therefore, geometric morphometrics can be used to 

study these features in other families of proteins that are not known enough. 

In second place, our results are analogous to those found in many anatomical 

studies, so there are forces (sequence variation, size, functional demands) 

that are common in the generation of the shape diversification. That gives an 

opportunity to propose new hypotheses about the evolution of the structure in 

proteins. For example, these forces behind shape variation in  the evolution of 

serine proteases (functional demands, allometry)have been suggested to be 

integrating factors in anatomical structures (Klingenberg 2008, Armbruster, et 

al. 2014, Klingenberg 2014). If we establish an analogy with protein 

evolution, we can suggest an important role of evolutionary integration in the 

evolution of the serine proteases, which could be tested in the future. 

4.4.1. Importance of the Raw Data 

 The importance of choosing evolutionarily corresponding landmarks 

has been emphasized in geometric morphometrics (Bookstein 1991, Zelditch, 

et al. 2012). In proteins, this process can be done using a sequence 

alignment. Our results using webPRANK and MUSCLE suggest that the former, 

as expected due to previous studies (Blackburne and Whelan 2012, 

Blackburne and Whelan 2013), is more coherent with previous evolutionary 

studies in this family. The results obtained with the similarity-based approach 

looks more sensitive to the functionality of the proteins, as illustrated by the 
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positions of the chymase and the prochymase in the shape space, where they 

are distant from the rest of proteins. This big difference may be due to the 

conformational change that is needed to convert prochymase into chymase 

(Reiling, et al. 2003). However, both methods gave relatively similar results in 

the tests we run, given that there are many amino acids in common using 

both methods and that, for those areas within the proteins, the resulting 

differences where due just to differences in the phylogeny. In studies in which 

a family of proteins is studied and therefore all the proteins are evolutionarily 

conserved, we do not expect the results to be very different. In this case, the 

results obtained using either webPRANK or MUSCLE are coherent with the 

literature published about serine proteases. 

 Once the homologous amino acids are chosen, the structural data 

needs to be collected. However, as landmark data in morphological studies, 

crystallographic data is not free from methodological problems and 

measurement errors. Even if the measurement errors (Borek, et al. 2003) 

associated to our data are reasonable, the information obtained from the 

structure may not be enough to explain biological features (Wlodawer, et al. 

2008). Proteins are not stable structures with an immutable shape, so they 

vary depending on whether they are active or inactive and whether they are 

bound to other molecules. This is especially pertinent when the proteins are 

obtained from databases, as in this study, so the structures were obtained for 

different purposes: e.g. at different conformational stages or bound to other 

different molecules. In addition, most of these structures were collected using 

molecular replacement (Table 4.1), meaning that the structure of the proteins 

has been obtained using the structure of other known similar proteins and 

therefore the coordinates of some atoms in different proteins are not 

independent, so some similarities obtained in the results can be a product of 

this dependence. 
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4.4.2. Morphometric explanations 

 Our findings support some general knowledge about the structure of 

the proteins, such as the observed degree of size conservatism. Small 

variations in size are associated with changes in shape (Fig. 4.1), so when the 

distance between specific atoms increases the chemical interactions can have 

the same effect over shape. However, size conservatism is not complete in 

our sample, it is altered by some abrupt changes in the bending of the 

proteins that caused big changes in size (Fig. 4.1). The identification of abrupt 

changes can be very interesting biologically. In this case, there has been a big 

change in size in the branch connecting the matriptase from humans with the 

ancestor originating two trypsins: one from a bacteria and one from a 

crayfish. The big evolutionary distance between these organisms could explain 

such difference in size. Abrupt changes in the folding of the proteins can be 

one generator of allometry in proteins. The importance of allometry is that 

size can be one driver of integration (Klingenberg and Marugán-Lobón 2013). 

When in the active site and the area involved in substrate specificity we 

remove the effect of size over shape, we can obtain phylogenetic signal in our 

shape data. Therefore, in serine proteases, size variation in these areas can 

be one driver for the convergence in shape. 

 When the whole protein is studied, the appearance of phylogenetic 

signal is expected, since in general the proteins within phylogenetic clades 

share the same function (Figure 4.2) (Krem, et al. 2000, Krem and Di Cera 

2001), with some exceptions (Yousef, et al. 2003). That makes extreme 

forms and specific events of convergence more noticeable and interesting. 

This is the case of the venoms, far away in the scatter plot, which obviously 

have a different mechanism of action than the rest of coagulation factors. 

Factor VIIa, another protein far from the rest of the sample, has a regulation 

mechanism via one cofactor, which is different to the rest of serine proteases 

(Sichler, et al. 2002). The presence or lack of phylogenetic signal found in 
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different parts of the protein can give some information about the evolution of 

shape in these areas (suggesting an important role in the biology of the 

proteins). The part of the protein involved in substrate specificity, a binding 

pocket for the side chains of the substrates, illustrates that the shape in this 

part is a possible adaptation to specific physiological processes so the 

phylogenetic signal has been lost. CVA has allowed us to differentiate 

functional groups when the part involved in substrate specificity has been 

used. However, a caveat is necessary here. Although the dimensionality here 

is much lower than when the whole protein is used and the results are better, 

the ratio between sample size and dimensionality is still too low. That should 

not be a problem when this hypothesis is tested using the between-group PCA 

for the whole protein, where the same results hold. This is compatible with 

the fact that the substrate specificity has driven the evolution of these 

proteins (Perona and Craik 1997, Esmon and Mather 1998, Krem, et al. 2000, 

Rose and Di Cera 2002). In other circumstances, in which the ratio sample 

size/dimensionality is a bigger problem, other techniques such as the cross-

validation procedure can be used (Lachenbruch 1967). We also found that the 

variation in shape in the active site does not recover the pattern of 

phylogenetic relatedness and the CVA using this area cannot discriminate 

between groups either. In this case, allometry is playing a major role in the 

formation of convergence. 

 Finally, we have studied the relationship between the sequence and 

the shape, not only important to understand the evolution of this family but 

also to be extrapolated to others (Dessailly, et al. 2009, Williams and Lovell 

2009, Marks, et al. 2011). As expected, the relative amount of shape 

variation that is associated to the sequence is high, especially bearing in mind 

that just the evolutionarily corresponding amino acids are included in the 

analysis. The collection of more data would allow a more accurate assessment 

of this relationship as well as the origin of the shape in variation in areas 
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where there is hardly any sequence variation, such as the active site. In 

addition, more data would also allow a more accurate application of the CVA 

and the opening of a broad new kind of studies involving the integration 

within the shape of the proteins (Trifonov and Frenkel 2009). In proteins like 

the serine proteases, where the different domains have probably originated 

by duplications (Halabi, et al. 2009), this kind of studies would be very 

promising. 

4.5. CONCLUSION AND FUTURE WORK 

 Overall, geometric morphometrics has been able to track the evolution 

of the protein structure in the serine proteases, identifying important features 

such as size changes or functional demands. The study of shape using 

geometric morphometrics also allows the association between shape and 

sequence in proteins, which in turn could be associated to DNA sequences. 

That would establish a pathway to study the evolution of the structure in 

proteins from their origin. The results obtained are coherent with the 

literature published in these proteins and the methods can be applied in many 

other fields where protein shape is important, as studies about coevolution, 

crystallography or immunology. In future studies we strongly recommend 

doing the collection of the data and avoid the collection via databases, so the 

previous pitfalls can be avoided. The replication of the data would also help 

for that purpose and would add many possibilities for the implementation of 

new methods. 

4.6. REFERENCES 

 

Adams DC, Naylor GJP. 2000. A comparison of methods for assessing the 

structural similarity of proteins. In: Guerra C, Istrail S editors. 



	
   138	
  

Mathematical methods for protein structure analysis and design. 

Heidelberg, Springer, p. 109-115. 

Adams DC, Rohlf FJ, Slice DE. 2013. A field comes of age: geometric 

morphometrics in the 21st century. Hystrix 24:7-14. 

Albrecht GH. 1980. Multivariate analysis and the study of form, with special 

reference to canonical variate analysis. American Zoologist 20:679-

693. 

Armbruster WS, Pélabon C, Bolstad GH, Hansen TF. 2014. Integrated 

phenotypes: understanding trait covariation in plants and animals. 

Philosophical Transactions of the Royal Society of London B Biological 

Sciences 369. 

Barrett AJ, Rawlings ND. 1995. Families and clans of serine proteases. 

Archives of Biochemistry and Biophysics 318:247-250. 

Belaaouaj A, McCarthy R, Baumann M, Gao Z, Ley TJ, Abraham SN, Shapiro 

SD. 1998. Mice lacking neutrophil elastase reveal impaired host 

defense against gram negative bacterial sepsis. Nature 4:615-618. 

Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov 

IN, Bourne PE. 2000. The Protein Data Bank. Nucleic Acids Research 

28:235-242. 

Blackburne BP, Whelan S. 2012. Measuring the distance between multiple 

sequence alignments. Bioinformatics 28:495-502. 

Blackburne BP, Whelan S. 2013. Class of multiple sequence alignment 

algorithm affects genomic analysis. Molecular Biology and Evolution 

30:642-653. 

Blankenship E, Vukoti K, Miyagi M, Lodowski DT. 2014. Conformational 

flexibility in the catalytic triad revealed by the high-resolution crystal 

structure of Streptomyces erythraeus trypsin in an unliganded state. 

Acta Crystallographica Section D 70:833-840. 



	
   139	
  

Blasi F, Vassalli JD, Danø K. 1987. Urokinase-type plasminogen activator: 

Proenzyme, receptor and inhibitors. The Journal of Cell Biology 

104:801-804. 

Bookstein F. 1991. Morphometric tools for landmark data: geometry and 

biology. Cambridge, Cambridge University Press. 

Borek D, Minor W, Otwinowski Z. 2003. Measurement errors and their 

consequences in protein crystallography. Acta Crystallographica 

Section D Biological Crystallography 59:2031-2038. 

Boulesteix FL. 2002. A note on between-group PCA. International Journal of 

Pure and Applied Mathematics 19:359-366. 

Brünger AT. 1992. Free R value: a novel statistical quantity for assessing the 

accuracy of crystal structures. Nature 355:472-475. 

Chelliah V, Chen L, Blundell TL, Lovell SC. 2004. Distinguishing structural and 

functional restraints in evolution in order to identify interaction sites. 

Journal of Molecular Biology 342:1487-1504. 

De Esteban-Trivigno S. 2011. Ecomorfología de xenartros extintos: análisis de 

la mandíbula con métodos de morfometría geométrica. Ameghiniana 

48:381–398. 

Deepthi S, Johnson A, Pattabhi V. 2001. Structures of porcine beta-trypsin-

detergent complexes: the stabilization of proteins through hydrophilic 

binding of polydocanol. Acta Crystallographica Section D 57:1506-

1512. 

Dessailly BH, Redfern OC, Cuff A, Orengo CA. 2009. Exploiting structural 

classifications for function prediction: towards a domain grammar for 

protein function. Current Opinion in Structural Biology 19:349-356. 

Dryden IL, Mardia KV. 1998. Statistical shape analysis. New York, John Wiley 

& Sons. 

Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy 

and high throughput. Nucleic Acids Research 32:1792-1797. 



	
   140	
  

Esmon CT, Mather T. 1998. Switching serine protease specificity. Nature 

Structural Biology 5:933-937. 

Fang Y, Liu YS, Ramani K. 2009. Three dimensional shape comparison of 

flexible proteins using the local-diameter descriptor. BMC Structural 

Biology 9. 

Felsenstein J. 1985. Phylogenies and the comparative method. The American 

Naturalist 125:1-15. 

Figueiredo AC, Clement CC, Zakia S, Gingold J, Philipp M, Pereira PJB. 2012. 

Rational design and characterization of D-Phe-Pro-D-Arg-derived direct 

thrombin inhibitors. Plos One 7:e34354. 

Fodor K, Harmat V, Neutze R, Szilágyi L, Gráf L, Katona G. 2006. 

Enzyme:Substrate hydrogen bond shortening during the acylation 

phase of serine protease catalysis. Biochemistry 45:2114-2121. 

Fontaneto D, Herniou EA, Boschetti C, Caprioli M, Melone G, Ricci C, 

Barraclough TG. 2007. Independently evolving species in asexual 

bdelloid rotifers. Plos Biology 5:e87. 

Friedrich R, Fuentes-Prior P, Ong E, Coombs G, Oehler R, Pierson D, Gonzalez 

R, Huber R, Bode W, Madison EL. 2002. Catalytic domain structures of 

MT-SP1/Matriptase, a matrix-degrading transmembrane serine 

proteinase. Journal of Biological Chemistry 277:2160-2168. 

Gallwitz M, Hellman L. 2006. Rapid lineage-specific diversification of the mast 

cell chymase locus during mammalian evolution. Immunogenetics 

58:641-654. 

Gapsys V, de Groot BL. 2013. Optimal superpositioning of flexible molecule 

ensembles. Biophysical Journal 104:196-207. 

Gerstein M, Sonnhammer ELL, Chothia C. 1994. Volume changes in protein 

evolution. Journal of Molecular Biology 236:1067-1078. 

Goldstein RA. 2008. The structure of protein evolution and the evolution of 

protein structure. Current Opinion in Structural Biology 18:170-177. 



	
   141	
  

Gómez JM, Perfectti F, Klingenberg CP. 2014. The role of pollinator diversity in 

the evolution of corolla-shape integration in a pollination-generalist 

plant clade. Philosophical Transactions of the Royal Society of London 

B Biological Sciences 369. 

Gower JC. 1966. Some distance properties of latent root and vector methods 

used in multivariate analysis. Biometrika 53:325. 

Halabi N, Rivoire O, Leibler S, Ranganathan R. 2009. Protein sectors: 

Evolutionary units of three-dimensional structure. Cell 138:774-786. 

Hasegawa H, Holm L. 2009. Advances and pitfalls of protein structural 

alignment. Current Opinion in Structural Biology 19:341-348. 

Hedstrom L. 2002. Serine protease mechanism and specificity. Chemical 

Reviews 102:4501-4523. 

Hirsch M, Habeck M. 2008. Mixture models for protein structure ensembles. 

Bioinformatics 24:2184-2192. 

Huang K, Zhao W, Gao Y, Wei W, Teng M, Niu L. 2011. Structure of 

saxthrombin, a thrombin-like enzyme from Gloydius saxatilis. Acta 

Crystallographica Section F 67:862-865. 

Jing H, Babu YS, Moore D, Kilpatrick JM, Liu XY, Volanakis JE, Narayana SVL. 

1998. Structures of native and complexed complement factor D: 

Implications of the atypical His57 conformation and self-inhibitory loop 

in the regulation of specific serine protease activity. Journal of 

Molecular Biology 282. 

Kang YN, Stuckey JA, Nienaber V, Giranda V. Crystal structure of the 

urokinase. [To be Published]. 

Karlsen S, Iversen LF, Larsen IK, Flodgaard HJ, Kastrup JS. 1998. Atomic 

resolution structure of human HBP/CAP37/azurocidin. Acta 

Crystallographica Section D Biological Crystallography 54:598-609. 



	
   142	
  

Katona G, Berglund GI, Hajdu J, Gráf L, Szilágyi L. 2002a. Crystal structure 

reveals basis for the inhibitor resistance of human brain trypsin. 

Journal of Molecular Biology 315:1209-1218. 

Katona G, Wilmouth RC, Wright PA, Berglund GI, Hajdu J, Neutze R, Schofield 

CJ. 2002b. X-ray structure of a serine protease acyl-enzyme complex 

at 0.95-Å resolution. Journal of Biological Chemistry 277:21962-

21970. 

Kishi T, Kato M, Shimizu T, Kato K, Matsumoto K, Yoshida S, Shiosaka S, 

Hakoshima T. 1999. Crystal structure of neuropsin, a hippocampal 

protease involved in kindling epileptogenesis. Journal of Biological 

Chemistry 274:4220-4224. 

Kleywegt GJ, Jones TA. 1997. Model building and refinement practice. 

Methods in Enzymology 277:208-230. 

Klingenberg CP. 2008. Morphological integration and developmental 

modularity. Annual Review of Ecology, Evolution and Systematics 

39:115-132. 

Klingenberg CP. 2009. Morphometric integration and modularity in 

configurations of landmarks: tools for evaluating a priori hypotheses. 

Evolution & Development 11:405-421. 

Klingenberg CP. 2011. MorphoJ: an integrated software package for geometric 

morphometrics. Molecular Ecology Resources 11:353-357. 

Klingenberg CP. 2013. Cranial integration and modularity: insights into 

evolution and development from morphometric data. Hystrix 24:43-

58. 

Klingenberg CP. 2014. Studying morphological integration and modularity at 

multiple levels: concepts and analysis. Philosophical Transactions of 

the Royal Society of London B Biological Sciences 369. 



	
   143	
  

Klingenberg CP, Gidaszewski NA. 2010. Testing and quantifying phylogenetic 

signals and homoplasy in morphometric data. Systematic Biology 

59:245-261. 

Klingenberg CP, Marugán-Lobón J. 2013. Evolutionary covariation in 

geometric morphometric data: analyzing integration, modularity, and 

allometry in a phylogenetic context. Systematic Biology 62:591–610. 

Klingenberg CP, Monteiro LR. 2005. Distances and directions in 

multidimensional shape spaces: Implications for morphometric 

applications. Systematic Biology 54:678-688. 

Klingenberg CP, Spence JR. 1993. Heterochrony and allometry: Lessons from 

the water strider genus Limnoporus. Evolution 47:1834-1853. 

Koizumi M, Fujino A, Fukushima K, Kamimura T, Takimoto-Kamimura M. 

2008. Complex of human neutrophil elastase with 1/2SLPI. Journal of 

Synchroton Radiation 15:308-311. 

Krem MM, Di Cera E. 2001. Molecular markers of serine protease evolution. 

The EMBO Journal 20:3036-3045. 

Krem MM, Di Cera E. 2002. Evolution of enzyme cascades from embryonic 

development to blood coagulation. Trends in Biochemical Sciences 

27:67-74. 

Krem MM, Rose T, Di Cera E. 2000. Sequence determinants of function and 

evolution in serine proteases. Trends in Cardiovascular Medicine 

10:171-176. 

Lachenbruch PA. 1967. An almost unbiased method of obtaining confidence 

intervals for the probability of misclassification in discriminant analysis. 

Biometrics 23:639-645. 

Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, 

Valentin F, Wallace IM, Wilm A, Lopez R, et al. 2007. Clustal W and 

Clustal X version 2.0. Bioinformatics 23:2947-2948. 



	
   144	
  

Laxmikanthan G, Blaber SI, Bernett MJ, Scarisbrick IA, Juliano MA, Blaber M. 

2005. 1.70 Å X-ray structure of human apo kallikrein 1: Structural 

changes upon peptide inhibitor/substrate binding. Proteins: Structure, 

Function and Bioinformatics 58:802-814. 

Leiros HK, McSweeney SM, Smalås AO. 2001. Atomic resolution structures of 

trypsin provide insight into structural radiation damage. Acta 

Crystallographica Section D 57:488-497. 

Liebschner D, Dauter M, Brzuszkiewicz A, Dauter Z. 2013. On the 

reproducibility of protein crystal structures: five atomic resolution 

structures of trypsin. Acta Crystallographica Section D 69:1447-1462. 

Liu YS, Fang Y, Ramani K. 2009. Using least median of squares for structural 

superposition of flexible proteins. BMC Bioinformatics 10. 

Löytynoja A, Goldman N. 2008. Phylogeny-aware gap placement prevents 

errors in sequence alignment and evolutionary analysis. Science 

320:1632-1635. 

Löytynoja A, Goldman N. 2010. webPRANK: a phylogeny-aware multiple 

sequence aligner with interactive alignment browser. BMC 

Bioinformatics:579. 

Lynch M. 2000. The probability of duplicate gene preservation by 

subfunctionalization. Genetics 154:459-473. 

Maddison WP. 1991. Squared-change parsimony reconstructions of ancenstral 

states for continuous-valued characters on a phylogenetic tree. 

Systematic Zoology 40:304-314. 

Marcus LF, Hingst-Zaher E, Zaher H. 2000. Application of landmark 

morphometrics to skulls representing the orders of living mammals. 

Hystrix 11:27–47. 

Marks DS, Colwell LJ, Sheridan R, Hopf TA, Pagnani A, Zecchina R, Sander C. 

2011. Protein 3D structure computed from evolutionary sequence 

variation. Plos One 6:e28766. 



	
   145	
  

Martin ACR, Orengo CA, Hutchinson EG, Jones S, Karmirantzou M, Laskowski 

RA, Mitchell JBO, Taroni C, Thornton JM. 1998. Protein folds and 

functions. Structure 6:875-884. 

McArdle B, Rodrigo AG. 1994. Estimating the ancestral states of a continuous-

valued character using squared-change parsimony: An analytical 

solution. Systematic Biology 43:573-578. 

McGrath ME, Mirzadegan T, Schmidt BF. 1997. Crystal structure of 

phenylmethanesulfonyl fluoride-treated human chymase at 1.9 Å. 

Biochemistry 36:14318-14324. 

Mechelke M, Habeck M. 2010. Robust probabilistic superposition and 

comparison of protein structures. BMC Bioinformatics 11. 

Meyer AG, Wilke CO. 2013. Integrating sequence variation and protein 

structure to identify sites under selection. Molecular Biology and 

Evolution 30:36-44. 

Mitteroecker P, Bookstein F. 2011. Linear discrimination, ordination, and the 

visualization of selection gradients in modern morphometrics. 

Evolutionary Biology 38:100-114. 

Mitteroecker P, Gunz P, Bookstein FL. 2005. Heterochrony and geometric 

morphometrics: a comparison of cranial growth in Pan paniscus versus 

Pan troglodytes. Evolution & Development 7:244-258. 

Mizuguchi K, Deane CM, Blundell TL, Overington JP. 1998. HOMSTRAD: A 

database of protein structure alignment for homologous families. 

Protein Science 7:2469-2471. 

Monteiro LR. 1999. Multivariate regression models and geometric 

morphometrics: the search for causal factors in the analysis of shape. 

Systematic Biology 48:192-199. 

Monteiro LR. 2013. Morphometrics and the comparative method: studying the 

evolution of biological shape. Hystrix. 



	
   146	
  

Morris AL, MacArthur MW, Hutchinson EG, Thornton JM. 1992. Stereochemical 

quality of protein structure coordinates. Proteins: Structure, Function 

and Genetics 12:345-364. 

Nakayama D, Ben Ammar Y, Miyata T, Takeda S. 2011. Structural basis of 

coagulation factor V recognition for cleavage by RVV-V. FEBS Letters 

585:3020-3025. 

Neustupa J, Nēmcová Y. 2007. A geometric morphometric study of the 

variation in scales of Mallomonas striata (Synurophyceae, 

Heterokontophyta). Phycologia 46:123-130. 

Neustupa J, Skaloud P, Stastny J. 2010. The molecular phylogenetic and 

geometric morphometric evaluation of Micrasterias Crux-Melitensis/M-

Radians species complex. Journal of Phycology 46:703-714. 

Neustupa J, Šťastný J. 2006. The geometric morphometric study of Central 

European species of the genus Micrasterias (Zygnematophyceae, 

Viridiplantae). Preslia 78:253-263. 

O'Higgins P, Milne N. 2013. Applying geometric morphometrics to compare 

changes in size and shape arising from finite elements analyses. 

Hystrix. 

Orengo CA, Todd AE, Thornton JM. 1999. From protein structure to function. 

Current Opinion in Structural Biology 9:374-382. 

Perona JJ, Craik CS. 1995. Structural basis of substrate specificity in the 

serine proteases. Protein Science 4:337-360. 

Perona JJ, Craik CS. 1997. Evolutionary divergence of substrate specificity 

within the chymotrypsin-like serine protease fold. Journal of Biological 

Chemistry 272:29987-29990. 

Piras P, Colangelo P, Adams DC, Buscalioni A, Cubo J, Kotsakis T, Meloro C, 

Raia P. 2010. The Gavialis-Tomistoma debate: the contribution of skull 

ontogenetic allometry and growth trajectories to the study of 

crocodylian relationships. Evolution & Development 12:568-579. 



	
   147	
  

Polgár L. 2005. The catalytic triad of serine peptidases. Cellular and Molecular 

Life Sciences CMLS 62:2161-2172. 

Porter ML, Blasic JR, Bok MJ, Cameron EG, Pringle T, Cronin TW, Robinson PR. 

2012. Shedding new light on opsin evolution. Proceedings of the Royal 

Society B-Biological Sciences 279:3-14. 

Poulíčková A, Veselá J, Neustupa J, Škaloud P. 2010. Pseudocryptic diversity 

versus cosmopolitanism in diatoms: a case study on Navicula 

cryptocephala Kütz. (Bacillariophyceae) and morphologically similar 

taxa. Protist 161:353-369. 

Quan ML, Pinto DJP, Rossi KA, Sheriff S, Alexander RS, Amparo E, Kish K, 

Knabb RM, Luettgen JM, Morin P, et al. 2010. Phenyltriazolinones as 

potent factor Xa inhibitors. Bioorganic & Medical Chemistry Letters 

20:1373-1377. 

R Core Team. 2013. R: A language and environment for statistical computing. 

Vienna, Austria, R Foundation for Statistical Computing. 

Rawlings ND, Barrett AJ. 1993. Evolutionary families of peptidases. 

Biochemical Journal 290:205-218. 

Razeto A, Galunsky B, Kasche V, Wilson KS, Lamzin VS. High resolution 

structure of native bovine alpha-chymotrypsin. [To be Published]. 

Reiling KK, Krucinski J, Miercke LJ, Raymond WW, Caughey GH, Stroud RM. 

2003. Structure of human pro-chymase: a model for the activating 

transition of granule-associated proteases. Biochemistry 42:2616-

2624. 

Rhodes G. 2010. Crystallography made crystal clear: A guide for users of 

macromolecular models. Burlington: Elsevier Science. 

Rickert KW, Kelley P, Byrne NJ, Diehl RE, Hall DL, Montalvo AM, Reid JC, 

Shipman JM, Thomas BW, Munshi SK, et al. 2008. Structure of human 

prostasin, a target for the regulation of hypertension. Journal of 

Biological Chemistry 283:34864-34872. 



	
   148	
  

Roach JC, Wang K, Gan L, Hood L. 1997. The molecular evolution of the 

vertebrate trypsinogens. Journal of Molecular Evolution 45:640-652. 

Rohlf FJ. 2001. Comparative methods for the analysis of continuous variables: 

Geometric interpretations. Evolution 55:2143-2160. 

Rohlf FJ, Corti M. 2000. Use of two-block partial least-squares to study 

covariation in shape. Systematic Biology 49:740-753. 

Rose T, Di Cera E. 2002. Substrate recognition drives the evolution of serine 

proteases. The Journal of Biological Chemistry 277:19243-19246. 

Russell RB, Saqi MAS, Sayle RA, Bates PA, Sternberg JE. 1997. Recognition of 

analogous and homologous protein folds: analysis of sequence and 

structure conservation. Journal of Molecular Biology 269:423-439. 

Sanger TJ, Sherratt E, McGlothlin JW, Brodie ED, Losos JB, Abzhanov A. 2013. 

Convergent evolution of sexual dimorphism in skull shape using 

distinct developmental strategies. Evolution 67:2180-2193. 

Sichler K, Banner DW, D'Arcy A, Hopfner KP, Huber R, Bode W, Kresse GB, 

Kopetzki E, Brandstetter H. 2002. Crystal structures of uninhibited 

factor VIIa link its cofactor and substrate-assisted activation to specific 

interactions. Journal of Molecular Biology 322:591-603. 

Sidlauskas BL, Mol JH, Vari RP. 2011. Dealing with allometry in linear and 

geometric morphometrics: a taxonomic case study in the Leporinus 

cylindriformis group (Characiformes: Anostomidae) with description of 

a new species from Suriname. Zoological Journal of the Linnean 

Society 162:103-130. 

Siltberg-Liberles J, Grahnen JA, Liberles DA. 2011. The evolution of protein 

structures and structural ensembles under functional constraint. Genes 

2:748-762. 

Socolich M, Lockless SW, Russ WP, Lee H, Gardner KH, Ranganathan R. 2005. 

Evolutionary information for specifying a protein fold. Nature 437:512-

518. 



	
   149	
  

Sun J, Tang S, Xiong W, Cong P, Li T. 2012. DSP: a protein shape string and 

its profile prediction server. Nucleic Acids Research 40:W298-W302. 

Terayama R, Bando Y, Yamada M, Yoshida S. 2005. Involvement of neuropsin 

in the pathogenesis of experimental autoimmune encephalomyelitis. 

Glia 52:108-118. 

Theobald DL, Steindel PA. 2012. Optimal simultaneous superpositioning of 

multiple structures with missing data. Bioinformatics 28:1972-1979. 

Theobald DL, Wuttke DS. 2005. Divergent evolution within protein superfolds 

infered from profile-based phylogenetics. Journal of Molecular Biology 

354:722-737. 

Theobald DL, Wuttke DS. 2006a. Empirical Bayes hiearchical models for 

regularizing maximum likelihood estimation in the matrix Gaussian 

Procrustes problem. Proceedings of the National Academy of Sciences 

of the United States of America 103:18521-18527. 

Theobald DL, Wuttke DS. 2006b. THESEUS: maximum likelihood 

superpositioning and analysis of macromolecular structures. 

Bioinformatics 22:2171-2712. 

Theobald DL, Wuttke DS. 2008. Accurate structural correlations from 

maximum likelihood superpositions. Plos Computational Biology 4. 

Thornton JM, Todd AE, Milburn D, Borkakoti N, Orengo CA. 2000. From 

structure to function: approaches and limitations. Nature Structural 

Biology 7:991-994. 

Todd AE, Orengo CA, Thornton JM. 1999. Evolution of protein function, from a 

structural perspective. Current Opinion in Chemical Biology 3:548-556. 

Toyota E, Iyaguchi D, Sekizaki H, Tateyama M, Ng KKS. 2009. A structural 

comparison of three isoforms of anionic trypsin from chum salmon 

(Oncorhynchus keta). Acta Crystallographica Section D 65:717-723. 

Trifonov EN, Frenkel ZM. 2009. Evolution of protein modularity. Current 

Opinion in Structural Biology 19:335-340. 



	
   150	
  

Voje KL, Hansen TF, Egset CK, Bolstad GH, Pélabon C. 2014. Allometric 

constraints and the evolution of allometry. Evolution 68:866-885. 

Watanabe A, Slice DE. 2014. The utility of cranial ontogeny for phylogenetic 

inference: a case study in crocodylians using geometric 

morphometrics. Journal of Evolutionary Biology 27:1078-1092. 

Wątorek W. 2003. Azurocidin - inactive serine proteinase homolog acting as a 

multifunctional inflammatory mediator. Acta Biochimica Polonica 

50:743-752. 

Williams SG, Lovell SC. 2009. The effect of sequence evolution on protein 

structural divergence. Molecular Biology and Evolution 26. 

Wlodawer A, Minor W, Dauter Z, Jaskolski M. 2008. Protein crystallography for 

non-crystallographers, or how to get the best (but not more) from 

published macromolecular structures. The FEBS journal 275:1-21. 

Wong KM, Suchard MA, Huelsenbeck JP. 2008. Alignment uncertainty and 

genomic analysis. Science 319:473-476. 

Word JM, Lovell SC, RIchardson JS, Richardson DC. 1999. Asparagine and 

glutamine: using hydrogen atom contacts in the choice of side-chain 

amide orientation. Journal of Molecular Biology 285:1735-1747. 

Yousef GM, Kopolovic AD, Elliott MB, Diamandis EP. 2003. Genomic overview 

of serine proteases. Biochemical and Biophysical Research 

Communications 305:28-36. 

Yousef GM, Obiezu CV, Luo LY, Magklara A, Borgoño CA, Kishi T, Memari N, 

Michael IP, Sidiropoulos M, Kurlender L, et al. 2005. Human tissue 

kallikreins: From gene structure to function and clinical applications. 

Advances in clinical chemistry 39:11-79. 

Zelditch ML, Swiderski DL, Sheets HD. 2012. Geometric morphometrics for 

biologists: a primer. San Diego, Academic Press. 



	
   151	
  

Zeng F, Li X, Teng M, Niu L. Crystal structure of AhV_TL-I, a glycosylated 

snake-venom thrombin-like enzyme from Agkistrodon halys. [To be 

Published]. 

 

 

	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  



	
   152	
  

	
  
5. GENERAL DISCUSSION 

5.1. Shape and phylogenetics 

 Shape data does not provide reliable phylogenetic estimates (chapter 

1). There are different factors that cause problems for the reliable estimations 

of phylogenies, starting with the evolutionary model. Shape is one part of the 

phenotype that is important in the evolution of the structures and has been 

frequently a target for natural selection at a microevolutionary level (Gómez, 

et al. 2006, Martínez-Abadías, et al. 2012). At a macroevolutionary level, 

stabilizing selection seems to be the prominent evolutionary model in nature 

(Estes and Arnold 2007, Hunt 2007, Haller and Hendry 2014). Stabilizing 

selection is one expected generator of convergence, given that it 'pulls' the 

different species in the shape space towards one specific point, the optimum 

(Hansen 1997, Butler and King 2004). This locates the species closer in the 

shape space and makes it easier for the random component of the evolution, 

inherent to any finite population, to shuffle the relative position of the species. 

Brownian motion is another model which has been found in paleontological 

data (Hunt 2007), although less frequently. This is the model expected to 

apply when populations evolve by genetic drift, as shown by quantative 

genetics theory (Lande 1979). It does not have any 'pulling' effect and the 

expected distance among lineages increases with time (Lynch 1989). 

Therefore, it is considered a favourable model for estimating phylogenies. 

However, this expected distance between different lineages has much 

variance and that fact can result in poor estimates (Stayton 2008).  

 Our simulations suggest that the estimates of phylogenetic reliability 

assuming an isotropic Brownian motion model of evolution are related to the 

shape dimensionality. Homoplasy is more likely when the dimensionality of 

the shape data is low (chapter 1). This is the case of some studies in 

geometric morphometrics where landmarks are sometimes difficult to find and 
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therefore low dimensionality (around 15 dimensions) is used (Cole, et al. 

2002, Cardini 2003, Guill, et al. 2003, Moraes, et al. 2004, Nagorsen and 

Cardini 2009). In principle, however, there is a good group of studies in which 

the reliability should be fairly good assuming isotropic variation, since it is not 

very uncommon to find more than one hundred dimensions in morphometric 

datasets (Marcus, et al. 2000, Cardini and Elton 2008, González-José, et al. 

2008, Piras, et al. 2010, von Cramon-Taubadel and Smith 2012). The problem 

is that even in the cases in which the dimensionality is very high, 

morphological integration can significantly decrease the reliability of the 

phylogenies (chapter 1). 

 Morphological integration plays an important role in the explanation of 

the shape diversification of the species (Olson and Miller 1958, Cheverud 

1996, Wagner and Altenberg 1996, Monteiro, et al. 2005, Young and Badyaev 

2006, Hallgrímsson, et al. 2009, Klingenberg 2013, Armbruster, et al. 2014, 

Goswami, et al. 2014). The covariation between different parts of a structure 

is known as integration and it can be seen as a concentration of the variation 

in the shape space during the evolution of the species (Wagner 1984, Young 

2006), or in other words, the fact that evolution happens more frequently in 

specific directions of the shape space than in others. If integration is 

extremely high the shape space approaches to a univariate space, where the 

phylogenetic reliability has been theoretically shown to be very poor (chapter 

1) (Lynch 1989). Although extreme, some morphometric empirical datasets 

approach to that situation (Klingenberg, et al. 2012). Indeed, the degree of 

integration is usually strong in empirical studies (chapter 2), so the intuition 

about integration as a source of convergence is justified (Losos 2011). 

Integration is a widespread force in nature (Olson and Miller 1958, Cheverud 

1996, Wagner and Altenberg 1996, Marroig and Cheverud 2001, Bookstein, et 

al. 2003, Monteiro, et al. 2005, Young and Badyaev 2006, Lockwood 2007, 

Klingenberg 2008, Hallgrímsson, et al. 2009, Gonzalez, et al. 2011, 
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Klingenberg 2013, Armbruster, et al. 2014, Goswami, et al. 2014), frequent in 

both anatomical and molecular structures (chapter 2). 

 This thesis contributes then not only with a theoretical suggestion 

about the reliability of estimating phylogenies using shape data. It also shows 

with solid evidence that the conditions of evolutionary models (Hunt 2007) 

and strength of integration (chapter 2) assumed in the theoretical part of the 

work are met in empirical data. That gives decisive information about why 

geometric morphometrics data is not suitable for phylogenetic reconstruction.  

5.2. Integration and evolution 

 The biological origins of integration are very diverse: functional and 

environmental pressures affecting the genetic architecture (pleiotropy, linkage 

disequilibrium) or developmental processes are the most common of them 

(Klingenberg 2014). The biological role of integration has been suggested to 

be the maintenance of specific features that are essential in the shape during 

evolution (Klingenberg 2008). Under this perspective the limitation of the 

occupancy in some directions of the shape specific would reveal the presence 

of essential features for survival and reproduction in these areas. Integration 

would also cause the reorganization of the whole shape of one structure when 

selection affects just a limited part of it (Albertson, et al. 2003, Martínez-

Abadías, et al. 2012), although whether this reorganization follows the 

direction of selection or not is controversial (Marroig, et al. 2009, Goswami, et 

al. 2014).  

 Anisotropic variation has important implications for the evolution of the 

species in the shape space. The directions of the shape space in which more 

evolutionary variation is concentrated are seen as directions of the shape 

space in which evolution is 'easier'. These directions are known as lines of 

least resistance (Schluter 1996, Renaud, et al. 2006). The implications of 

these patterns of variation over evolution are heavily conditioned by their 
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orientation and total variance (chapter 2). The total variance under Brownian 

motion is related to the potential for evolution (Felsenstein 2004). On 

average, the distance from the starting point of the evolution increases with 

the variance (chapter 1). The species with more total variance have more 

opportunity for evolution. In some species under artificial selection, an 

abnormally huge total variance can be found (Drake and Klingenberg 2010). 

These species would have especially big opportunity for adaptation. However, 

the direction in which the species evolve in the shape space does not depend 

on integration. In the extreme, two species (with completely integrated 

phenotypes) would drift in a multidimensional phenotypic space along one line 

each, but these lines (the trajectories of each species) can have a similar 

orientation or a completely different one (perpendicular) (chapter 2). In both 

cases, the species phenotypes are completely integrated. Therefore, two 

species drifting can approach or move away from each other in the 

phenotypic space in presence of strong integration depending on the 

orientation of their lines of least resistance. In presence of complete 

integration and perpendicular orientations the species would move away from 

each other (chapter 2). In presence of complete integration and similar 

orientations the species would approach. The similarity among integration 

orientations in different species in nature is something controversial and that 

ultimately refers to what we know about the evolution of integration. This 

thesis has studied the patterns of integration as a stable feature during the 

evolutionary diversification. This is based on the fact that close related 

species would share similar genetic and developmental features and therefore 

the patterns of integration would be similar. However, there is little evidence 

about how general this supposition is.  
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5.3. Shape and proteins 

 The evolution of the proteins has some differences with the evolution 

of anatomical structures. The standard model of evolution in these molecules 

implies the duplication of the proteins and the subfunctionalization of the new 

molecules (Lynch 2000). This loss of function and expression in the new 

proteins could relax their shape integration. There were reasons to think that 

proteins could have shown a low degree of integration, also because the 

dimensionality is huge (chapter 3) and therefore there are more sources of 

variation to 'compensate' the functional demands of certain parts of the 

structure in charge of specific functions. Indeed, when we compare the 

decreasing in variation of each PC of the independent contrasts of shape in 

this structure with this decreasing in some anatomical structures, the 

integration found in these structures is relatively low (chapter 2). However, 

they still present an exponential decrease of variation (chapter 2), which has 

been shown to promote convergence relatively highly (chapter 1).  

 Convergence is found in protein shape, something that is caused by 

functional demands (chapter 3) (Todd, et al. 1999, Thornton, et al. 2000, 

Goldstein 2008, Dessailly, et al. 2009, Goldstein and Pollock 2012). Although 

natural selection is probably behind some this convergence in the structure of 

the proteins (Siltberg-Liberles, et al. 2011), integration can also enhance it 

(chapter 3). Differences in size, mediated by differences in the folding, are 

behind some of this integration (chapter 3).  

 The last chapter of this thesis provides a new perspective on the study 

of the evolution of the proteins as well as on the application of geometric 

morphometrics. The results suggest a similar situation to that obtained in 

some anatomical features, e.g. in some anatomical structures as skulls in 

which there are some parts of them especially linked to function, like 

mandible (Figueirido, et al. 2013). Integration is then certainly present in 

these structures. However, the difference between the evolution of these 
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molecules and the evolution of anatomical structures (e.g. their evolution 

mediated by duplications or abrupt changes in size) suggest that there may 

be different patterns in the evolution of integration and the evolution of 

allometry (chapters 3). More work specifically looking at these features with 

better sample sizes is needed to disentangle their role in the evolution of 

protein shape. 

5.4. Future work 

 There are conflicting hypotheses about how the patterns of integration 

evolve, resulting in assumptions in our work that are of importance for the 

results, e.g. orientation of the main axes of variation (chapter 1 & chapter 2). 

As in the results of Goswami et al. (2014), our results also remark 'the 

importance of considering the exact pattern of trait covariances in predicting 

long-term trait evolution' (p. 6). More work is needed in this area, so more 

reliable assumptions can be made. In the case that the evolution of 

integration varies much among different families of species, the probability of 

convergence for different clades could be estimated. That would bring 

interesting cases from the biological point of view, so they can explain 

different pressures that can shape covariance matrices, e.g. through 

functional demands (chapter 3), may be acting.  

 The extensive research in the integration patterns in proteins would 

bring much information about the differences between the patterns of 

integration in anatomical and molecular structures. Protein structures are 

divided in discrete parts (the amino acids) and their effect over the 

integration patterns can be analysed, so experimentation in the relationship 

between integration and modularity can be set up. Along with tests for the 

different modularity and integration methods (Klingenberg 2013) and the 

study of the link with different biological processes like folding or interaction 

between proteins, the research in this area could bring many possibilities. 
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