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Abstract 
	  

Molecular	  interactions	  enable	  us	  to	  understand	  the	  complexity	  of	  the	  human	  living	  system	  

and	  how	  it	  can	  be	  exploited	  or	  malfunction	  to	  cause	  disease.	  The	  biomedical	  literature	  

presents	  detailed	  knowledge	  of	  molecular	  functions	  and	  therefore	  represents	  a	  valuable	  

reservoir	  of	  data	  for	  studying	  disease.	  However,	  extracting	  this	  data	  efficiently	  is	  difficult	  as	  

it	  is	  spread	  over	  millions	  of	  publications	  in	  text	  that	  is	  not	  machine-‐readable.	  In	  this	  thesis	  

we	  investigate	  how	  text	  mining	  can	  be	  used	  to	  automatically	  extract	  data	  for	  molecular	  

interactions	  and	  their	  context	  relevant	  to	  disease.	  We	  focus	  on	  two	  globally	  relevant	  classes	  

of	  diseases	  of	  which	  manifest	  from	  contrasting	  mechanisms:	  pain-‐related	  diseases	  and	  

diseases	  caused	  by	  pathogenic	  organisms.	  Using	  HIV-‐1	  as	  a	  case	  study,	  we	  first	  show	  that	  

text	  mining	  can	  be	  used	  to	  partially	  recreate	  a	  large,	  manually	  curated	  database	  of	  HIV-‐1-‐

human	  molecular	  interactions	  derived	  from	  the	  literature.	  We	  highlight	  both	  weaknesses	  in	  

the	  quality	  of	  the	  data	  produced	  by	  the	  text-‐mining	  approach	  and	  strengths	  in	  it	  being	  able	  

to	  extract	  this	  data	  rapidly,	  identifying	  instances	  missed	  in	  the	  manual	  curation	  and	  its	  

potential	  as	  a	  support	  tool.	  We	  then	  expand	  on	  this	  approach	  by	  showing	  how	  an	  entirely	  

new	  database	  of	  protein	  interactions	  relevant	  to	  pain	  can	  be	  created	  efficiently	  and	  

accurately	  using	  text	  mining	  to	  generate	  the	  data	  and	  manual	  curation	  to	  validate	  the	  data	  

quality.	  	  The	  following	  chapter	  then	  presents	  an	  analysis	  of	  1,002	  unique	  pain-‐related	  

protein-‐protein	  interactions	  derived	  from	  this	  database,	  showing	  that	  it	  is	  of	  greater	  

relevance	  to	  pain	  research	  than	  databases	  of	  pain	  interactions	  created	  from	  other	  common	  

starting	  points.	  We	  highlight	  its	  value	  by,	  for	  example,	  identifying	  new	  drug	  repurposing	  

opportunities	  and	  exploring	  differences	  in	  specific	  pain	  diseases	  using	  the	  contextual	  detail	  

afforded	  by	  the	  text	  mining.	  Finally,	  we	  expand	  further	  on	  our	  approach	  to	  extracting	  

molecular	  interactions	  from	  the	  literature,	  by	  showing	  how	  interactions	  between	  human	  

proteins	  and	  pathogens	  can	  be	  curated	  across	  pathogenic	  organisms.	  We	  demonstrate	  how	  

these	  techniques	  can	  be	  used	  to	  expand	  our	  knowledge	  of	  human	  pathogen	  related	  

interaction	  data	  already	  stored	  in	  public	  databases,	  by	  identifying	  42	  new	  HIV-‐1-‐human	  

molecular	  interactions,	  108	  new	  interactions	  between	  pathogen	  species	  and	  human	  

proteins	  and	  33	  new	  human	  proteins	  that	  were	  found	  to	  interact	  with	  pathogens.	  Together,	  

the	  results	  show	  that	  contexualised	  text	  mining,	  when	  supported	  by	  manual	  curation,	  can	  

be	  used	  to	  extract	  molecular	  interactions	  for	  contrasting	  disease	  types	  in	  an	  efficient	  and	  

accurate	  manner.	  	  
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CHAPTER 1 
 
General Introduction 
	  

1.1 Motivation 
	  

Text-mining (TM) refers to the process of deriving knowledge from unstructured 
text. Much like data mining, it seeks to find interesting patterns from large 
bodies of data, except the key difference is that textual data is represented as 
natural language, designed and executed for the purpose of reading by humans, 
whereas in data mining facts are represented in a machine-readable form as 
databases. This distinction is decisive as both text and data mining are 
implemented through computational techniques, meaning that if TM is to reveal 
any knowledge from a textual body it must first process this into a more 
systematic form so that the barriers between human language and computational 
interpretation can be transcended.  

Natural language processing (NLP) is often the term used to describe this 
process, and its origins can be traced back to 1950 in which Alan Turing 
proposed the ‘Turing test’ to gauge machine intelligence through natural 
language conversations1. While NLP’s uses extend beyond processing raw text, 
for example in speech recognition or natural language generation, the vast 
majority of its tasks are directly relevant to TM. Using aspects such as named 
entity recognition (NER), part-of-speech (POS) tagging and parse trees, words 
and their individual meanings and relationships to each other can be labeled to 
decode computational meaning from otherwise abstract sequences of characters. 
It is only from here that data mining to reveal any knowledge of interest can then 
commence. 

Because of the vast abundance of unstructured text used to communicate 
information in human society, TM has been applied across far-reaching 
disciplines, (e.g. in security, marketing and business intelligence), utilizing text 
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from a wide range of sources (e.g. online news outlets, social media, email, books 
etc.). This can facilitate knowledge acquisition for predicting complex 
phenomena, such as changes in stock prices2, 3 or the spread of flu4-6. However, 
while common TM methodologies are applied across the board, the contrasting 
ways in which language is communicated across different fields often mean 
tailored TM approaches are required. For example, in social media (e.g. Twitter 
or Facebook) the use of slang and undocumented abbreviations are frequent and 
any TM systems implemented will be developed to account for this unique style. 
Reapplying these specific systems elsewhere, such as in government reports or 
historical publications, will thus be less effective as the more formal language 
styles are likely to be largely incompatible with social media.   

Biomedical literature is no different with regards to the formality of language 
used, where the complex scientific writing style and use of unique concepts and 
terminology by trained researchers is designed to be read and understood by 
likeminded experts within their various sub-disciplines. This often presents a 
number of challenges in reading comprehension even for the intended scientific 
audience and for any successful biomedical TM system these must thus be 
overcome.  

Publishing one’s research is crucial for progress in biomedicine and presenting 
research from a study in the form of a journal style article for which other 
scientists can access represents something of an authentic end product to a 
scientific investigation7. This sharing of knowledge through publication is a 
fundamental cultural trait, so much so that career success (in science) hinges on 
the quality and quantity of these8, 9. As such, millions of articles have been 
published, many containing detailed descriptions of biological findings garnered 
through rigorous scientific study. Within this huge body of published knowledge 
there is thus useful data, which if unraveled and connected in a coherent and 
logical manner can be used to invoke new and compelling findings. 

In this thesis we explore how TM can be used to exploit the published literature 
as a rich source of biomedical knowledge. We investigate what alternative 
methodologies exist to using TM for exploiting this knowledge and how these 
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can be merged to benefit each other. The range of data types stored within the 
biomedical literature is multifarious, so instead our chief focus will be on 
extracting and analyzing molecular interactions and how they have been 
contextually defined for studying disease. Human disease remains a critical 
aspect of biomedical research and comprehending its mechanisms so that it may 
be prevented, remediated and eradicated is often the major goal. The molecular 
interactions involved are vital in understanding these mechanisms for it is often 
at the molecular level that their pathologies become truly apparent10, 11. However, 
as we will see, this often gives rise to increasing levels of complexity and the 
ability to make biological sense of this data becomes more difficult when 
comparing diseases originating from multiple different pathogeneses. We thus 
restrict our efforts to exploring diseases and their molecular interactions between 
two disease classes: diseases caused by human pathogens and pain-related 
diseases.  

The thesis introduction is structured to give an overview of human disease in 
general before exploring human-pathogen and pain related diseases more 
specifically. Following this we discuss how the published literature can be used 
to source knowledge related to these fields and in what ways TM can be of use. 
We then explore how any data acquired can be analysed and mined to draw 
interesting conclusions in the study of these diseases. 

1.2 Human disease 
	  

Human disease can be defined as a specific illness or disorder characterized by a 
recognizable set of signs and symptoms attributable to heredity, infection, 
behaviour, ageing or environment12. Heritable diseases, such as cystic fibrosis, 
are passed on genetically from parents to kin; pathogenic organisms, like human 
immunodeficiency virus 1 (HIV-1) and Escherichia coli, cause infectious diseases; 
while environmental factors, e.g. smoking and poor diet, can also result in 
disease. The science of remediating, diagnosing and preventing disease, known 
as medicine, has existed for millennia, and has improved substantially in the last 
century. Thereupon, global life expectancy has increased on average 68.5% 
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between 1900 and 199013 and it is projected to continue rising at a steady rate for 
decades to come14, 15.  
 
Part of this rise in medical practice has come through a transformation in our 
understanding of human biology, from basic knowledge of the organs and 
tissues that make up the human body to being able to study the molecules that 
form these higher-level structures. Since 1953, when Watson and Crick first 
reached the conclusion that the DNA molecule is formed of a three dimensional 
double helix16, we now have knowledge of the entire human genome consisting 
of an estimated 20-25 thousand (K) gene-coding proteins embedded in a genome 
of 4 billion bases17, 18. Each of these proteins then has their own role within 
various biological functions and together coordinate to make up complex living 
systems.  
 
By understanding the full complexity of the human system we can then use this 
knowledge to decipher how they can be modified to correct underlying defects, 
such as genetic abnormalities, or prevent them from being manipulated by 
pathogenic organisms, both of which can manifest disease. In this way, 
pharmacologic treatment options are often designed to inhibit or activate 
biological entities such as proteins, DNA and RNA, known to play an implicit 
role in the pathogenesis of a disease19, 20. For example, statins are an effective 
treatment for atherosclerosis and cardiovascular disease through their inhibition 
of the HGM-CoA reductase (Figure 1.1). Inhibition of this enzyme means the 
mevalonate pathway cannot function and this leads to an overall decrease in low 
density lipoprotein deposits in blood vessels - the major cause of these diseases21. 
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Figure 1.1 Mechanism of action of statins through their inhibition of HGM-CoA reductase.  
The inhibition of this singular coenzyme has multiple downstream affects. Boxes with grey 
backgrounds signify beneficial effects. Checkered boxes represent adverse effects. eNOS = 
endothelial nitric oxide synthase; HMG-CoA = 3-hydroxy-3-methylglutaryl coenzyme A; LPS = 
lipopolysaccharide; NAD(P)H = nicotinamide adenine dinucleotide phosphate; NFkB = nuclear 
factor kappa B; PI3 = phosphatidylinositol-3; PP = pyrophosphate; tRNA = transfer ribonucleic 
acid. Taken from Ramasubbu et al22. 
 
The full spectrum of human diseases is huge, ranging from the very rare, such as 
Dercum’s disease (adiposis dolorosa)23 or Fahr’s disease/syndrome (familial 
idiopathic basal ganglia calcification)24, to global pandemics like Malaria, HIV 
and tuberculosis25. The mechanisms behind different diseases are often 
contrasting, although various classes of diseases share common characteristics 
with each other. Cancer, for example, embodies over 100 related diseases and all 
are defined by their ability to cause abnormal cell growth with the potential to 
spread to outside regions of the body26. It is then within this shared feature that 
the individual pathogenesis of each disease can be studied for which unique 
medical solutions might be expanded across the full scope. For example, the 
upregulation of the hypoxia-inducible factor 1 (HIF-1) protein has been 
associated with increased mortality in cervical cancer, non-small-cell lung cancer, 
breast cancer, ovarian cancer etc., linked through its prominent role in the 
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transcription of genes involved in critical aspects of cancer biology. It thus 
represents a useful therapeutic target for multiple cancer-related diseases27, 28.  
 
This thesis seeks to investigate two broad disease classes of which understanding 
their mechanisms together might yield new insights into their overall biology 
and specific diseases within them. Firstly, we focus on human pathogens and 
their associated diseases. Human pathogens are all alike in that they produce 
infection in humans that can result in disease. To establish infection they or their 
products must interact with the human host at a molecular level and this 
separates them from other diseases whom the molecular mechanisms only 
involve human molecules. Secondly, we investigate pain and its related diseases. 
While pain is a natural part of the human defense strategy it can also persist in 
chronic disorders and understanding how these arise is important for the 
advance of therapeutics29.  

1.2.1 Human pathogens 
	  

A pathogen can be defined as a harmful agent causing infectious disease to its 
host. These include organisms from viruses, bacteria, fungi, helminthes, protozoa 
and prions, with around 1.4K individual species recognized as human 
pathogens30-32.  Diseases arising from pathogens are common in humans, 
resulting in significant contributions to reduced mortality and morbidity across 
the globe (Figure 1.2).  
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Figure 1.2 Global distribution of infectious disease.  
Image sourced from http://www.smartglobalhealth.org/issues/entry/infectious-diseases  

The role of the immune system in infection 

In order for infection to ensue, a pathogenic organism (or their products) usually 
enters the cytoplasm of a host cell. It is here that they can survive, replicate and 
mediate their actions33. The strategies for achieving this vary across different 
pathogens, although they must all first overcome the body’s natural defense 
mechanism, the immune system. 

The human immune system can be divided into two largely interdependent 
arms: adaptive immunity and innate immunity (Figure 1.3). Innate immunity 
acts as a first line of defense, where host cells recognize the molecular signatures 
of foreign bodies through pattern recognition receptors, triggering an arsenal of 
defense mechanisms, e.g. additional immune cell recruitment and production of 
pro-inflammatory cytokines. Adaptive immunity is slower (typically three days 
to two weeks) and best characterized by B cell (B lymphocyte) and T cell (T 
lymphocyte) recognition of molecules unique to that infectious pathogen, termed 
antigens. This facilitates more specific responses to a particular pathogen, e.g. 
through the production of antibodies or cytotoxic T cells, and the formation of 
memory T and B cells provides protection against future pathogens carrying the 
same antigenic signatures34. 



	   	   	   23	  

Figure 1.3 Innate immunity versus adaptive immunity.  
Image sourced from http://www.myvmc.com/anatomy/human-immune-system/ 

Viruses 

As pathogens, viruses are unique in that they are obligate intracellular parasites 
that cannot replicate independently35. There has been some debate as to whether 
they can be defined as living or otherwise36-39, but regardless can be infectious, 
consist of complexes of biomolecules and share numerous biological 
characteristics with other microorganisms. Throughout history, pathogenic 
viruses have had huge negative impacts on human mortality and morbidity, e.g. 
through smallpox40 or poliomyelitis41, and continue to cause disease from a wide 
range of contrasting viral subtypes, e.g. single stranded RNA retroviridae42 or 
double stranded DNA hepadnaviridae43. Figure 1.4 exhibits characteristics 
amongst viruses, with example species provided. 
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Figure 1.4 Characteristics among viruses.  
a Structural characteristics common to all viral subtypes. Image adapted from 
http://www.microbiologyonline.org.uk/about-microbiology/introducing-microbes/viruses  
b Examples of individual virion structures of pathogenic virues: Hepatitis B virus and HIV-1. 
Images sourced from http://wwwf.imperial.ac.uk/blog/studentblogs/bernadeta/2013/07/12/researching-hiv/ 
and http://www.virology.wisc.edu/virusworld/viruslist.php?virus=hpb  
c Cells infected by viral pathogens: Ebola virus and Herpes simplex 1. Images sourced from 
http://cen.chempics.org/ and http://sciencephotolibrary.tumblr.com/post/32194695446/herpes-virus-coloured-
scanning-electron 

a
Genetic material
Genetic material can 
consist of RNA or DNA 
(single or double-stranded). 
These can be circular (e.g. 
in polyomaviruses) or linear 
(e.g. in adenoviruses). 

Capsid
Forms a protective coat 
around genetic material. It 
consists of protein 
capsomeres encoded by 
the viral genome.

Envelope
Is an envelope of lipids and 
is not present in all viruses. 
It is derived from the host 
cell membranes (internal or 
external).

Surface proteins
Proteins are embedded in 
the outer membrane and 
facilitate the binding of the 
virus to host cells. 

b Hepatitis B 
virus virion
Causes hepatitis 
B. Has an outer 
lipid envelope, 
icosahedral 
nucleocapsid 
core and DNA 
encoded genetic 
material. Its virion 
diamater is just 
42 nm. 

HIV-1 virion
Infection can 
lead to AIDS. Is 
spherical, with 
diametre of 120 
nm. Its genetic 
material is 
single stranded 
RNA, encoding 
9 genes.

Herpes simplex 1 infection
Small, round herpes simplex virus 1 particles budding 
from epithelial cells.

Ebola virus infection
Filamentous ebola virus particles (green) budding 
from a VERO E6 kidney cell (blue). 

c
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The typical viral reproductive cycle in humans follows a path of host cell 
attachment, cellular entry, uncoating, replication, virion assembly and virion 
release44. Attachment occurs through interactions of viral surface proteins and 
cellular receptors, for example HIV-1 gp120 interacts with CD4 and a coreceptor 
(e.g. CCR5)45. Cellular entry is then most commonly achieved through use of 
existing entry mechanisms, such as clathrin-mediated endocytosis, phagocytosis 
or macropinocytosis33, or through fusion with the cellular membrane46. Once a 
virus has gained entry to the cytoplasm of a cell through one of these 
mechanisms, it then releases proteins from its capsid, in a process known as 
uncoating.  

Prophylactic vaccines are key in ameliorating or preventing the effects of viral 
infection. These have eradicated smallpox and drastically reduced the incidence 
of polio across the globe in what have been described as some of the greatest 
achievements of modern medicine47. Antiviral vaccines work by exposing an 
attenuated or inactivated form of a virus to stimulate the adaptive immune 
system to produce antibodies that recognize specific antigens of that virus – 
ultimately providing immunization against future infection. However, due to the 
variation within each viral species these are often limited to particular viral 
strains and subsequently are not always a suitable preventative measure. For 
example, HIV is highly heterologous, where amino acid sequences of Env (the 
gene responsible for cellular binding) vary by as much as 20% within a clade and 
35% between clades, and any immune response will have to be cross-reactive 
between these to be effective48. 

If preventative measures are not provided for a virus (whether a vaccine is 
available or not), antiviral drugs can be practical treatments for alleviating 
symptoms of viral infection. The strategies for these are either designed to target 
viral proteins or host cellular receptors. Antiviral drugs targeting viral proteins 
are typically more specific (akin to vaccines), and as a result are vulnerable to 
becoming ineffective due to the development of virus-drug resistance49. For 
example, the DNA polymerase of human cytomegalovirus is targeted by the 
drugs ganciclovir, foscarnet and cidofivor, but resistance develops following 
mutations in this gene50. While, antiviral drugs afflicting host proteins have 
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increased likelihood of toxicity, but have a broader activity spectrum and are less 
susceptible to drug-virus resistance49. This enables treatment of highly variable 
viruses, such as Maraviroc, which prevents HIV-1 entry by binding non-
competitively to the HIV-1 co-receptor CCR551. 

Bacteria 

The occurrence of bacteria (and viruses) in the human body as components of a 
complex microbial community is a natural occurrence, where their numbers 
vastly outweigh that of human host cells and are vital for aspects such as 
nutrition and even pathogen resistance52, 53. They can thus be seen as a double-
edged sword when they act as pathogens themselves by causing prevalent 
diseases such as Bubonic plague (by Yersinia pestis)54 or non-typhoid 
salmonellosis (by Salmonella enterica)55, 56. Bacterial infections can be conditional, 
e.g. in infections through open wounds34, and like viruses, can infect as obligate 
intracellular parasites57. Bacteria, as prokaryotes, are unicellular, their DNA is 
usually presented as a singular circular chromosome, they may contain plasmids 
(for DNA transfer)58 and reproduce mitotically through binary fission59.  

The strategies intra-cellular bacteria use to infect host cells are often as complex 
as those used by viruses and have developed numerous approaches to avoiding 
immune subversion.  For example, Mycobacterium tuberculosis and Legionella 
pneumophila are engulfed by phagosomes of the host, but prevent their 
maturation into phagolysosomes (which would otherwise digest them) to 
maintain a pH neutral environment for survival60.  

Most bacterial infections are typically treated with antibiotics, such as penicillin, 
gentamicin or erythromycin. These are often naturally occurring compounds 
produced by bacteria or fungi, which inhibit the growth of often a broad 
spectrum of other competing bacteria. They are therefore effective treatments 
against many bacterial pathogens, though when used inappropriately can lead to 
bacterial antibiotic resistance. Resistant bacteria pose a major threat to future 
medicine61, as the number of antibiotic treatments available is limited and 
alternative treatments are currently unavailable. There is therefore a huge 
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demand for new therapeutic treatments to provide other therapeutic options 
should our current treatments become ineffective.  

Fungi 

Pathogenic fungi, also termed mycoses, are a major burden to human health62. 
The majority of fungal infections occur in immunocompromised patients63, 64, e.g. 
by Candida or Cryptococcus species65. For example, Aspergillious sp. has been 
responsible for 10-15% of all deaths among transplant recipients66. Mycoses are 
often classified by their primary sites of colonization in the tissues and organs 
they infect, e.g. superficial fungal infections (outermost layers of the stratum 
corneum of the skin), dermatophyte infections (skin, hair, and nails), 
subcutaneous mycoses (subcutaneous tissues) and systemic mycoses (primarily 
the respiratory tract)67. Fungi differ from bacteria and viruses in that they are 
eukaryotes. Most grow in cylindrical structures, known as hyphae, and can 
become visible at the macroscopic level. They can reproduce both asexually and 
sexually, and spores ejected for colonization of new habitats, with mycelial cells, 
are a common cause of allergies in humans (e.g. allergic asthma, allergic sinusitis, 
hypersensitivity pneumonitis etc.)68. Treatment for fungal infections usually 
involves the use of antifungal agents such as imidazoles, triazoles and 
allylamines69.  

Helminthes 

Helminthes are large multicellular parasitic worms, of two major phyla: 
nematodes (roundworms) and platyhelminths (flatworms). Soil transmitted 
nematodes cause the human diseases ascariasis, trichuriasis and hookworm, and 
filarial nematodes are responsible for onchocerciasis, loiasis and dracunculiasis. 
Platyhelminth flukes result in schistosomiasis and food-borne trematodiases, and 
platyhelminth tapeworms cause cysticersosis70. Together, one or more of these 
are said to currently infect over 1 billion (B) people in developing regions of the 
world71-73. Unlike other pathogens, helminthes do not replicate within the human 
host and symptoms of infection are localized to a single, albeit large, invading 
entity and the toxins and eggs it produces70, 74. Infection often impacts on 
disability resulting in disease driven poverty traps, although helminths can 
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persist asymptomatically after invasion73. Preventing infection through health 
education or improved hygiene are common means of reducing helminth disease 
incidence and helminthic treatments such as praziquantel are also available75, 76. 

Protozoa 

The majority of pathogenic protozoa are mobile unicellular eukaryotes. Protozoa 
cause significant human diseases, such as malaria, leishmaniasis and African and 
American trypanosomiasis. Their prevalence is confined mainly to poorer global 
regions, although they can present in immunocompromised patients or as 
emerging diseases77-79. Antiprotozoal agents are used to treat infection, for 
example furazolidone, pentamidine and metronidazole80-82. 

Prions 

Prions comprise of a much smaller class of non-living pathogens, defined only 32 
years ago in the prion hypothesis83. While other hypotheses for their existence 
prevail84, 85, the ‘protein only’ hypothesis proposes that small infectious 
pathogens lacking in nucleic acid contain proteins that exist as conformational 
isoforms of their normal host proteins in the outer surface of neurons. These 
prion proteins are indistinguishable from their human protein counterparts in 
their amino acid sequences, but are structurally dissimilar86. In a prion infection, 
human proteins in neural regions are replaced by these and they propagate 
across neural structures causing irreparable damage87, 88. The nature of this causal 
agent is yet unclear, although this pathogenesis would fit the human pathogen 
that causes Creutzfeldt-Jacob disease89, as well as pathogens afflicting other 
animals90.  

1.2.2 Pain and its associated diseases 
	  

Pain in its normal function either acts as a protective physiological early warning 
system to avoid noxious stimuli or as an adaptive system to discourage physical 

contact and movement of an injured body region91	  (Figure	  1.5). Disease can arise 
when these types of pain become chronic (e.g. in inflammatory pain-related 
disorders), arise from abnormal function of the nervous system (i.e. in 
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neuropathic pain92) or when they are completely absent altogether (e.g. in 
congenital insensitivity to pain93). Chronic pain affects one third of Americans, 
up to 30% of Europeans and 14.5-33.9% of people in developing regions94, 95, 
causing significant distress and impairment to its sufferers96. It is thus a 
significant global health issue and warrants appropriate action to mediate its 
impact on society97.  

Neuropathic pain  

The International Association for the Study of Pain defines neuropathic pain as 
pain caused by a lesion or disease of the somatosentory nervous system98. 
Neuropathic pain presents centrally or peripherally depending on whether the 
central or peripheral nervous system has been damaged and both are 
maladaptive, conferring no evolutionary benefit like other nociceptive pain 
types95. Central neuropathic pain can result from spinal chord injury99, multiple 
scleorsis100 or after strokes101 among many other predispositions102. Peripheral 
pain can be caused by traumatic injury103, diabetes104 and HIV105 among others. 
The treatments available for neuropathic pain are diverse, and therapeutic 
options include the use of opioid antagonists, calcium channel ligands and 
trycyclic antidepressants. However, these are typically ineffective and unable to 
target the underlying mechanisms precisely, with only a 30% reduction in pain 
described as a clinically meaningful result102. At a molecular level, the research 
into neuropathic pain is extensive, although it is still not fully understood and 
further efforts are needed to help uncover these so that future pharmacologic 
design can exploit this knowledge.  
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Figure 1.5 Pain classifications 
(a)	  Nociceptive	  pain.	  This	  is	  designed	  to	  act	  as	  a	  physiological	  early	  warning	  system	  against	  noxious	  
stimuli.	  	  (b)	  Inflammatory	  pain.	  Discourages	  physical	  contact	  of	  an	  injured	  body	  region.	  (c)	  
Pathological	  pain,	  defined	  by	  two	  major	  pain	  types:	  neuropathic	  and	  dysfunctional	  pain,	  both	  
characterized	  by	  a	  malfunction	  of	  the	  somatosensory	  nervous	  system.	  Image	  provided	  by	  
http://pharmaceuticalintelligence.files.wordpress.com/2012/06/painclassfication.jpg	  
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Inflammatory pain 

Chronic inflammatory pain disorders result when inflammation persists over a 
long period of time, becoming exaggerated or inappropriate to the underlying 
tissue damage that caused it95. Notable causes include arthritic diseases (e.g. 
osteoarthritis and rheumatoid arthritis)106, Crohn’s disease107 and injuries (leading 
to chronic disorders such as tendinitis)108. Each disorder is complex in its own 
right109, and while chronic inflammatory pain can be treated with similar 
remedies to acute inflammatory pain, such as opioids and non steroidal anti-
inflammatory drugs95, these are not universally effective and pose potential 
significant aggravations to patient quality of life107, 110. As with neuropathic pain, 
new treatments are therefore in demand that reduce these side effects and again 
an improved understanding of the molecular mechanisms behind inflammatory 
pain will be beneficial for meeting this goal. 

1.3 The published literature: a wealth of data   
	  

William Black in his 1782 publication111 once pondered the value of medical 
publications raising concerns on the efficiency of handling and identification of 
knowledge from the ‘immense pile of books’ that existed through ‘a revolution of 
ages and empires’112. These timeless words still underpin the modern day issues 
of a knowledge explosion in the world of biomedical publishing, where 
researchers are largely dependent on using literature as the main vehicle in 
which to publish their research findings and to access the work of others113. In 
this section we will explore these problems in more detail and what solutions 
have been proposed.   

1.3.1 PubMed 
	  

In today’s digital age, the majority of all peer-reviewed biomedical journal 
articles are available for researchers to access online. One of the largest and most 
widely recognized stores of these citations is that of the National Library of 
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Medicine’s (NCBI) PubMed. Since its inception in 1996, PubMed now stores over 
25 million (M) citations, including over 21M abstracts and titles from MEDLINE 
and over 3M open access full text articles linked in PubMed Central (PMC). 
Between 2 and 4K new citations are added each week, including the addition of 
publications from as early as the 18th century, across over 5.6K worldwide 
journals114, 115. Figure 1.6 shows the growth of citations in PubMed since 1990.  

	  

Figure 1.6 Total literature citations in PubMed since 1990. 

 
The majority of citations in PubMed are presented with a title, an abstract and a 
link to a full-text source for that article. Other information, such as the 
contributing authors, their institutions, the journal and year published provide 
additional context. Furthermore, many articles are annotated with Medical 
Subject Headings (MeSH), which provide summary categories for indexing. 
Together, this data can be used for searching through citations to find relevant 
publications. 

Retrieving relevant publications 

As a result, PubMed and indeed other biomedical citation websites (e.g. Google 
Scholar and ScienceDirect) are often seen as excellent starting points in the 
biomedical information retrieval (IR) process116, 117. For example, a researcher can 
search for articles related to ‘depression’ on PubMed and will have instant access 
to 310K citations (Aug, 2014). However, as with this example, a number of 
problems arise when the number of relevant publications from a search exceeds 
the researcher’s ability to read through the majority of relevant results. 
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Firstly, ‘depression’ is lexically ambiguous, where it can refer to a region of 
depression, the act of depressing, the state of being depressed or as perhaps 
intended, a condition of general emotional dejection and withdrawal. Biomedical 
terms are commonly like this118, with 11.7% of phrases in biomedical abstracts 
determined to be ambiguous relative to the Unified Medical Language 
Thesaurus (UMLS)119, 120. Consequently, the precision of search results can be 
reduced by ‘false positives’ often caused by ambiguous terms121, 122. 

It is seldom the case that a search term is not synonymous with other terms123, as 
is affirmed by the numerous biomedical thesauri (e.g., UMLS120, National Cancer 
Institute Thesaurus124, BioThesaurus125 etc.) and ontologies (Disease Ontology126, 
The Protein Ontology127, Gene Ontology (GO)128, etc.) that exist. Melancholia, 
unipolar disorder and depressive are some of the terms that can more directly 
refer to depression. While, indirect synonyms such as despondency, abjection 
and gloominess may also refer to the biomedical form of depression. Thus, to 
achieve the full scope of results available, the search mechanism must account 
for these and their own individual ambiguities. 

However, even without perfect recall in IR, researchers like in our example are 
presented with insurmountable numbers of citations to review. Dogen et al have 
demonstrated that over a third of PubMed searches retrieve more than 100 
citations129. With large numbers of citations it would be unnatural for any 
researcher to spend their time and effort scrutinizing each result with equal 
clarity. What is often a more convenient alternative is to adopt a limited selection 
process where only a handful of the total number of citations are reviewed. This 
is influenced primarily by the ordering of the results, where 80% of abstract 
views occur in the top 20 citations129. To compound this problem, Nourbakhsh et 
a 121 have demonstrated that users only found 67.6% of abstracts retrieved from 
the top 20 search results in PubMed to be useful.  

To improve the precision and recall of biomedical IR there are, however, more 
advanced biomedical search systems that exist. For example, RefMED130 allows 
users to rate the relevance of individual search results and then use this feedback 
to generate more personalized IR. In PolySearch131, publications can be searched 
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using user-defined patterns of queries selected from 50 different classes. 
GoPubMed132 and GO2PUB133 group search results together by highly related 
Gene Ontology (GO) and MeSH concepts to allow users to select the groups of 
documents of interest.  

While the existing publication search tools can be useful for researchers seeking 
background information on their topics of interest, it is often not possible to 
fulfill more complex requests. For example, a comprehensive list of protein-
protein interactions (PPIs) for a given disease under specific contexts will be 
difficult to obtain using even the most advanced search systems. Furthermore, 
the researcher will most likely wish for this information to be represented in a 
structured format to save time locating and extracting the data from the text.   

1.3.2 Manually curating literature into structured databases 
	  

To help address these issues in biomedical IR, the reorganization of the literature 
content into topic-specific structured databases has become a prominent feature 
in permitting researchers quick and targeted access to published data. Many of 
these focus primarily on storing the more valuable information from the text, 
such as PPIs (Table 1.1), often with added layers of context to aid the intended 
users. This allows a researcher to, for example, source an entire catalogue of 
protein interactions mediated by the phosphoprotein-binding domains134, which 
would otherwise be impractical using standard search websites.  
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Name Description 

IntAct135 454,515 binary interactions (Aug 2014) are provided by literature curation 
or user-submissions from 11 different databases.  

HHPID136 PPIs between HIV-1 and humans are selectively curated from the literature. 
Last updated June 2014. 

BioGRID137 749,912 protein and genetic interactions from major model organism species 
curated from 43,149 publications (v3.2.115). 

MPIDB138 24,295 microbial interactions curated from the literature or imported from 
external databases (2009-11-18 release).  

DD database139 Comprehensive PPI data on death domain superfamily proteins. 
MIPS140 Mammalian PPIs manually curated from the literature. 
CORUM141 Manually annotated PPIs specific to mammalian organisms.  
DIP142 Manually and computationally derived PPIs. 
HPRD143 Over 36,500 unique PPIs from 25,000 proteins. 
InnateDB144 23,779 interactions curated from 4,889 publications specific to the 

mammalian innate immune response.  
VirHostNet145 Virus-host PPIs from public databases and curated data from the literature. 

Table 1.1 Example protein-protein interaction databases manually curated from the literature. 

The curation of databases from the literature is typically performed manually by 
highly specialized curators, who read through individual articles and input any 
relevant data into specific databases. The process is usually accurate in extracting 
and inputting the data into databases correctly and moreover the quality can be 
monitored by the inter-annotator agreement, e.g. through using Cohen’s kappa 
coefficient146. This overall process often gives rise to high quality databases, 
however, the manual process is notoriously slow147, 148. For example, the HIV-1, 
Human Protein Interaction Database (HHPID) took 7 years to curate 2,589 
unique PPIs from 3,200 articles136, 149. To stay up-to-date it has since required 
updating and this is of course a regular facet of database curation from the 
literature. Manual curation is flawed in this sense, as keeping pace with the 
existing and ongoing growth of primary literature often remains a challenge too 
costly and unfeasible even for those biomedical topics in highest demand.  

Researcher-led curation 

One solution to biomedical data curation is to adopt a system whereby 
researchers themselves manually input any key data from their research into 
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associated databases as a part of the publication process150, 151. To facilitate this, 
many topic-specific databases are available (e.g. many of those in Table 1.1), 
although the onus of submitting data from publications often lies with the 
publisher and is exerted only as an assurance of quality and not conformity152. 
Moreover, even if researchers were to strictly adhere to submitting all data from 
their work to their relevant databases it would still leave the existing body of 
literature untouched, requiring appropriate annotation.  

In an extension to this paradigm, ‘crowdsourcing’ has been experimented with as 
a method of facilitating curation of the biomedical literature. Systems such as 
TagCurate, for disseminating biomedical annotations153, or Amazon Mechanical 
Turk, for validating mutations related to specific genes154, have mobilized 
communities of researchers to curate literature. However, while these have 
shown some success, they are often reliant on incentives for which are not easily 
provided and scaling these up to cover the entire published literature is 
unrealistic.   

1.3.3 Text-mining in biomedical literature 
 

As an alternative to manual curation, text-mining (TM) techniques have shown 
great promise in being able to extract and organize information from the 
literature into biological databases automatically. Despite its relatively short 
existence from the end of the 20th Century155-158, the growth and progression of 
TM in biomedicine has been quite remarkable. However, it is by no means a 
‘complete’ discipline and it has a number of challenges that compound its use. In 
this section we will explore the various ways in which TM has so far been 
instrumented to extract biomedical data from published articles, with particular 
reference to protein-protein interactions (PPIs). Some of these will have already 
been partially visited in relation to IR using article website search engines, 
although they will now be probed in greater detail. 
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Evaluating the performance of text-mining  

Before we examine the various ways in which TM can be used to extract 
biomedical data from the published literature we first discuss how it is 
commonly evaluated. TM software often produces incorrectly retrieved results, 
known as false positives (FPs), while correctly retrieved results are termed true 
positives (TPs).  Data can also be missed, called false negatives (FNs), and any 
remaining data not retrieved are designated true negatives (TNs). Measuring 
TPs, FPs, TNs, and FNs can be done manually by comparing the result set 
against the text from which they were extracted. However, it is more common to 
construct a corpus for which all of the correct mentions are annotated in the text 
beforehand, so that the results of the application can be automatically compared 
and validated.  ‘Gold standard’ corpora are often described as those constructed 
manually, whose annotations are of the highest quality and are thus less likely to 
be erroneous. However, ‘silver standard’ corpora can also be constructed 
automatically to sidestep the time-consuming and costly process of manual 
annotation, by using high quality data often provided by a composite set of 
annotation services159.  Once these figures have been calculated, it is then possible 
to evaluate the precision and recall of the results.  

 

Precision represents the portion of retrieved instances that are correct, while 
recall represents the portion of all possible correct results that are retrieved. 
Given precision and recall are commonly judged together to reflect the overall 
performance of the text-mining software, an overall measure of the two is also 
often required. The F-score (F) is most commonly applied here, as the harmonic 
mean of the precision (p) and recall (r). Precision and recall can be weighted 
equally, or either can be favored by adjusting β (1 when balanced equally). 
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Other overall measures of precision and recall have also been used. The area (A) 
under the interpolated precision/recall curve (AUC iP/R) has been used to 
measure the quality of result ranking, which tends to favour recall. It is defined 
as,  

 

where  represents the interpolated precision and is defined as 

 

In this evaluation, provided its recall is high and the TPs are ranked correctly, a 
system can achieve a high score despite having a large number of FPs and thus 
lower precision. For result ranking this can be a more favourable evaluation in 
contrast to the traditional F-measure, where the overall number of TPs can be 
lower but still produce a high F-score if the precision is high160. The Threshold 
Average Precision (TAP-k) metric has also been used to measure ranking in a 
similar manner, but is less biased towards high recall systems161, 162. 

When TNs are known and should be taken into account (precision and recall do 
not use these), accuracy and Mathew’s Correlation Coefficient (MCC)163 are 
useful alternative measures of performance. Accuracy is the measure of the 
combined specificity and sensitivity of the results. Specificity (the true negative 
rate) can be used to measure the proportion of results correctly not retrieved, 
while sensitivity (the true positive rate) is the same as recall160.  



	   	   	   39	  

 

The MCC score is similar to accuracy, but it can be more reliable in that it is 
unbiased by sets where the two classes have varying sizes. A score of -1 to 1 is 
afforded, where 1 represents a perfect result set, 0 an average or random result 
set and -1 an inverse classification of results160.  

 

Shared tasks 

Shared tasks have emerged as a crucial driver for the development of TM 
systems to automatically extract key entities and their relations. In these, well-
defined tasks are coordinated to allow participating teams to assess the 
performance of their systems against each other. For example, the BioCreative 
shared tasks have previously defined tasks for the extraction of genes/proteins, 
chemical entities and assisted curation among others160, 164-167. Other notable 
shared tasks include the BioNLP shared tasks168-170, focusing on initiatives such as 
event extraction and concept recognition, and the Drug-Drug Interaction 
Extraction (DDIExtraction) shared tasks171, 172, which sought systems for mining 
drug-drug interactions.  

Teams are commonly given development and test corpora to fine-tune their 
systems for the task. They then submit their final systems and these are 
evaluated against a new corpus and their results are ranked against each other. 
This allows for more fair assessments of the quality of TM software for any given 
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task, as well as providing comparisons of the performance of different types of 
approaches. Typically the results from different tasks vary widely. A ‘high’ result 
for precision and recall can therefore be largely a relative term within each task, 
although those that approach comparable levels of quality to human curation are 
generally considered excellent173.   

Tokenization 

Often the initial step in NLP involves breaking up the text into paragraphs, 
sentences, words, syllables and other meaningful elements, before other more 
sophisticated components are employed. This is often termed tokenization, and 
in TM it more frequently refers specifically to dividing text into words and 
sometimes sentences174. For other proceeding TM components this stage is 
imperative for matching entities and assigning semantic relations between words 
in textual zones.  

Tokenization strategies vary across biomedicine, often depending on the goals of 
the software175, and many challenges exist in order to achieve adequate results. 
For example, determining sentence splits in biomedicine is made difficult by the 
ambiguous use of periods, such as in abbreviations (Dr.), figure numbers (1.14) 
or in molecular nomenclature (Nav1.8). In word boundary determination the use 
of hyphens can complicate the process, where in some cases the words should be 
separated (e.g. text-mining) and in others they should be retained (e.g. down-
regulate). However, in comparison to more complex text-mining tasks 
tokenization is typically considered more simplistic176, 177, and generally the more 
rigorous systems in biomedicine produce high accuracy178. 

Part-of-speech tagging  

Once the individual words have been derived from a block of text it is useful to 
determine their lexical categories or POS tags. Basic lexical items, such as 
adjectives, verbs or nouns are common POS examples; although more than 80 
various classes have been described179. The process of POS tagging is complicated 
by words having multiple possible word classes, e.g. [example]. Thus, often to 
achieve accurate POS tags, POS taggers are optimally designed according to the 
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textual style. For biomedical text, example POS taggers include the GENIA 

tagger180 and the MedPOST tagger181,	  and	  are	  highly	  accurate	  (e.g.	  F	  score). 

Syntactic Parsing 

Syntactic parsing refers to the analysis of the syntactic structure of a sentence. At 
the sentence level, this can involve determining the relationships between 
phrases. For example, in the sentence ‘DNA amplification of p53 gene by PCR’ 
PCR relates to DNA amplification and not the p53 gene. However, resolving 
these syntactic structures are non-trivial through computational methods, mainly 
due to the variety of ambiguity involved179.  

Another method of parsing involves detecting the individual relationships 
between words, known as dependency parsing. In this form of parsing, 
dependency trees can be used to represent how each word relates to each other 
within a phrase (Figure 1.7).  

 
Figure 1.7 Dependency parse tree.  
The tree was created using the Stanford Lexicalised Parser. Words are represented as ellipses 
provided with their positions. Dependency types are represented by rectangles except for the 
root of the sentence at the top of the tree. Image adapted from Fundel et al (2007)182. 
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Named Entity Recognition 

Named entity recognition (NER) concerns identifying mentions of specific 
semantic types in text179. In biomedicine, NER has been applied to a huge range 
of entity classes, broadly to aspects such as diseases, chemicals, genes and 
proteins, and to more specific groupings such as cell lines and cell types (Table 
1.2). It is therefore a fundamental step in being able to extract and organize 
biomedical knowledge from the literature.  

Entity type Example systems Description Quality 
Chemicals ChemSpot183 and 

OSCAR184. 
Entities can be trivial names, 
drugs, abbreviations, molecular 
formulas and International Union 
of Pure and Applied Chemistry 
denotations.  

87.4% F-score in the 
BioCreative IV chemical 
entity recognition task185. 

Genes, 
proteins and 
RNA 
molecules. 

BANNER186, 
GenNorm187, 
Abgene188 and 
ABNER189. 

Protein, gene names and RNA 
molecules across all species can 
be extracted. 

87.2% F-score in the 
BioCreative II gene name 
recognition task190. 

Species LINNAEUS191 and 
SR4GN192 

Species name recognition, 
including official names, 
common names and others. 

LINNAEUS shows 94% recall 
and 97% precision against 
their own corpus191. 

Mutations MutationFinder193, 
tmVar194 and Open 
Mutation Miner195. 

Genetic variants (mutations) can 
be extracted. The possible range 
of these varies between systems. 

tmVar shows 91.4% F-score 
against their corpus and 
93.9% against another gold 
standard194. 

Pathways PathNER196 Biological pathway mention 
recognition. 

PathNER shows 84% F-score 
against GENIA derived gold 
standard corpus196. 

Diseases DNorm (utilizing 
BANNER186)197 

Disease name recognition 
utilizing MeSH and OMIM 
disease terms. 

DNorm shows 78.2% F-score 
against the NCBI disease 
corpus197. 

Cells CellFinder198, 199 Dictionary based matching of cell 
lines and cell types. 

Exact cell line matches 
showed 33-61% F-score; exact 
cell type matches showed 15-
86% F-score199. 

Table 1.2 Example biomedical NER applications  
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The precision and recall of these systems has varied markedly across different 
entity types. This can be attributed partly to the linguistic characteristics of the 
desired entities as a consequence of the predefined naming standards and their 
adherence by the biomedical community200. For example, in gene/protein 
recognition, there are millions of different official names, synonyms and symbols 
in use201, with new ones added all the time to databases like Entrez Gene202 and 
UniProt knowledgebase (UnitProtKB)203. These are often ambiguous and can 
have meaning in several other concepts204, such as the gene PCR (Gene ID: 
952244) whose gene symbol is also commonly used to refer to ‘polymerase chain 
reaction’. To compound this problem, researchers frequently invent their own 
protein terms in publications that do not follow the standard annotation 
guidelines, if any, and keeping track of these can be difficult186.  Thus, NER in 
biomedicine is a complex task and it has led to the development of a number of 
different approaches, many of which are used in tandem. 

In general, NER methods can be divided into three broad categories, 1) 
dictionary matching 2) rule-based and 3) machine-learning (ML) approaches. 
Dictionary-based approaches are where textual entities are matched to dictionary 
mentions. The successes of these are highly dependent on the plenitude of the 
dictionary and the ambiguity of the entities required. To achieve 100% precision 
and recall, every name for that entity class must be known and they must have 
only been mentioned in the context of that field in the form they appear in the 
dictionary. These are unlikely, but classes such as species names come close, with 
the system LINNAEUS demonstrating 94% recall and 97% precision for 
retrieving species name mentions191. The majority of NER tools, however, are not 
afforded the same privileges, with classes such as gene/protein recognition 
containing a much larger number of ambiguous terms and unaccounted 
dictionary entries205.  

One way to improve on dictionary-based matching is to combine these with rule-
based approaches, which employ rules to linguistic inputs. For example, a 
specific rule might be to filter out any protein matches if they are immediately 
followed by ‘disorder’, i.e. ‘the BMD disorder’ to reduce false positives. Thus, in 
order to be successful, a huge number of rules often must be coded and this is 



	   	   	   44	  

often difficult for the more ambiguous entity classes. Still, successful systems 
have been created such as Abgene, which has shown 66.7% recall and 85.7% 
precision for gene/protein tagging and has been described as one of the best of 
its type206.  

However, those NER systems that often perform best for matching difficult 
entity classes are those integrating ML approaches. ML approaches utilize 
training data and feature sets to perform classification of entities based on 
statistical confidence. Training data consists of a corpus of pre-annotated entities 
from a text. Features are then used to assign characteristics to these entities, 
generally including typographical aspects (e.g. ending with a number or not or 
having mixed cased characters), or features of the surrounding text (e.g. their 
part-of-speech (POS) tags)179. This data can then be used to create a model for 
which new text can be labeled for entities of that class based on its properties. If 
the features have been defined carefully, entities can then be matched 
predictively to a class according to the presence or absence of these features in 
text. BANNER, for example, utilizes an ML approach based on conditional 
random fields (CRFs), and performs particularly well for gene/protein tagging, 
with precision of 85.1% and recall of 79.1%186.  

As well as CRFs, many other discriminative models have also been applied to 
biomedical NER, such as support vector machines207, maximum entropy208 and 
semi-supervised learning models209. Furthermore, unsupervised methods that do 
not use training data have also demonstrated that they can be useful for tagging 
entity classes. For example, interaction terms have been identified using a 
pattern-clustering algorithm210. 

Entity normalization 

Once an entity from an entity class has been retrieved it is then often necessary to 
normalize this to a specific identifier of that entity, e.g. linking a gene name to its 
Entrez Gene ID. This is an important step for further data analysis as it removes 
any remaining ambiguity between entities of the same class. For example, the 
gene symbol ARP can refer to several different genes within humans and also 
across several different species.  
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Normalisation can be divided into two overall stages, 1) entity mapping and 2) 
disambiguation. In the first step, candidate database identifiers are linked to the 
entity match. These are usually assigned according to the similarity of that entity 
name to a potential database identifier211. For example, if the gene name ‘p53’ is 
denoted in the text, a system might map all gene records that have the term ‘p53’ 
associated with it. The matching of the database terms to the entity match can be 
done exactly or with approximate matching, e.g. minimum edit distance212, Jaro 
and Jaro-Winkler distance213 or Dice coefficient214. Approximate matching is 
particularly useful for matching terms when the associated lexicon is likely to be 
incomplete or the variability of names is high211.  

Once associated database records with the entity have been identified, the 
relevance of these to the mention in the text must be decided. In many entity 
classes each mention should only be mapped to a single record, such as its 
unique CHEMBL ID215 or disease ontology ID126. Thus, when there are multiple 
records, disambiguation must ensue. Hu et al demonstrate how contextual 
features of the surrounding text, such as GO annotations and species, can be 
used to assign the correct identifier211. Other gene/protein normalisation systems 
adopt similar approaches, e.g. GNAT216 and GenNorm187.  

As with NER, the difficulty of gene normalization varies according to entity 
class. Again, gene normalization, particularly when it is applied across all 
species, proves to be more problematic. This is perhaps exemplified in the shift 
towards result ranking and the use of TAP-k as a means of testing the 
performance of gene normalization in the more recent BioCreative tasks (see 
‘evaluating the performance of text mining’)162. In this regard, the expectation for 
achieving high enough precision and recall in gene normalisation automatically 
is low. For example, GenNorm one of the top performing gene normalization 
systems recently only demonstrated 38.1% precision and 26.9% recall against the 
BioCreative III corpus217. 

Relationships between entities 

To fully comprehend the meaning of entities denoted in the text, it is necessary to 
deduce the relationships between these. On a basic level, the frequent co-
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occurrence of entities in a body of text can often mean some form of relationship 
exists between them218, e.g. a cell and protein constantly featured in the same 
sentences. However, clarifying what this relationship is can be more troublesome 
and often requires other entities (e.g. biomolecular events) and linguistic features 
(e.g. verbs). Approaches such as pattern-based, ML, statistical analyses and 
formal inference can then use this information to predict the true relationship 
between entities218-220.  

One large area of focus for the biomedical TM community has been the 
extraction of biomedical events that can be linked to gene mentions. The BioNLP 
’09 shared task defined nine event types using the GENIA ontology (Table 1.3). 
Non-regulatory events have at least one gene/protein theme; binding events 
may have one or more. Regulatory events are special in that they can have one 
gene/protein theme or another biomedical event. Causal gene/proteins are an 
additional optional property of regulatory events. Together, these can be used as 
‘single events’ (e.g. gene expression of p53) or, when combined, can form ‘event 
chains’ (e.g. Muc16 negative regulation of phosphorylation of IL16). Event chains 
are useful as these can be used to represent molecular interactions and, albeit less 
frequently, interactions involving more than two participants.   

 

Table 1.3 Biomedical event types used in the BioNLP ’09 shared task. 
Taken from Kim et al (2011)168. 

The BioNLP shared tasks have attracted a myriad of competing teams and many 
of the systems developed are now available for use with varied perfomance168. 
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For example, The Turku Event Extraction System (TEES), shows precision and 
recall of 56.3% and 46.2% respectively221. 

Negation and speculation 

In linguistic terms, negation marks the absence of an entity or event222, e.g. ‘there 
was no up-regulation of CD4’. Speculation (also termed hedging223), marks the 
contemplation of an entity or event, e.g. ‘we hypothesize the presence of T cells’. 
These linguistic traits are common in biomedical text, with 12.7% and 19.4% of 
sentences reported to contain negation and speculation respectively224. Therefore 
determining their presence is an important layer of context in addition to 
matching other entities and events.  

Negation and speculation systems are often designed to detect cues, e.g. ‘not’, 
‘no’, or ‘without’, and scope - the words of the sentence the cues refer to. As with 
other TM tasks, detecting these have yielded a variety of approaches. Rule based 
approaches have been used to detect negation of PPIs225,  while ML approaches 
have been implemented to detect negation and speculation more generally222, 226.   

Linking text mining components for large-scale data extraction 

While it is useful to focus developments on individual TM tasks, such as those 
reviewed so far, to reach a complete understanding of a body of text often 
requires that many TM components must be linked together. For example the 
following sentence requires pre-processing (tokenization, POS-tagging etc.), 
various NER and entity normalization tools (i.e. protein, mutation, anatomy and 
disease), entity relationships (e.g. their events), speculation and negation 
detection: 

‘We speculate the BDNF Val66Met mutant up-regulated the expression of NGF in the 
hippocampus resulting in no increased risk of neuropathic pain’ 

To successfully perform all of these steps at once thus becomes more difficult as 
the chance of error increases substantially. Moreover, many of these steps are 
dependent on each other (Figure 1.7), i.e. pre-processing or the proteins linked to 
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the events – if one of these fails, the proceeding TM tasks then operate on 
erroneous data.  

However, two prominent systems that have demonstrated the utility of multiple 

TM components are BioContext227 and Evex DB217	  (as	  well	  as	  other	  frameworks,	  

such	  as	  GATE228	  and	  UIMA229). Both of these have released full-scale TM databases 
containing the results of multiple of TM systems run collectively on the whole of 
Medline and open access PMC. BioContext, released in 2012, contains 11.4M 
biomolecular events for 290K unique genes and proteins with added context 
from anatomical associations and any negation or speculation involved; all 
provided by numerous different software. One particularly useful aspect of this 
system was the use of different protein recognition and event linking tools, 
which when combined offered increased recall (gene/protein NER 92%, 79-84% 
otherwise) and when in agreement increased precision (event extraction 66%, 46-
50% otherwise) 227.  The more recently updated Evex DB is also centered on 
biomolecular events (>40M) for genes and proteins (>76M) and provides an 
expanded ontology of these217.	  

 

Figure 1.8 The BioContext system architecture. 
Each	  box	  represents	  a	  different	  tool	  used	  in	  BioContext.	  Each	  tool	  furthermore	  has	  its	  own	  individual	  
dependencies.	  Arrows	  represent	  the	  flow	  of	  data,	  while	  circles	  represent	  data	  merging	  and	  post-‐
processing.	  See	  Gerner	  et	  al	  (2014)	  for	  further	  details	  (image	  provided	  from	  here	  also)227.	  
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Full text versus abstracts and titles 

The way in which language is conveyed and stylized across a biomedical article 
varies across the title, abstract and the rest of the text. For instance, this can be 
through differences in sentence lengths, incidence and types of parenthesized 
text, and morphosyntactic and discourse features. These differences, not only 
present additional challenges for new TM software, but also, because many TM 
systems have traditionally been developed for use on abstracts and titles only, 
much of the existing state-of-the art is not optimally designed for full text use. 
For example, BANNER achieved 56.3% F score on abstracts and titles, whereas 
on full text this performance dropped 50.4%230. 

Part of the reason why TM systems were first developed for primary use on 
abstracts and titles was the lack of available full text to process. This has been a 
well-documented problem for text-miners231, where most publishers prevent 
access to computationally processing full text articles even if a subscription has 
been obtained. All the more, many articles that are open access and thus freely 
accessible to view are also restricted from TM. However, in recent years PMC has 
made available a special open access subset of articles, which can be used for TM. 
Furthermore, in 2014 Elsevier began allowing access for TM to its collection of 
over 11 million published articles232, following proposed changes in the European 
Commision’s Text and Data Mining Report (2014)233.  

1.3.4 Semi-automatic approaches to data extraction and curation 
	  

So far we have seen how manual curation can be used to accurately extract data 
from the published literature, but it is highly time-consuming and often 
impractical for large-scale data extraction. On the other hand, TM can be used to 
rapidly extract data from articles, although, as we shall see later in this thesis, its 
precision and recall are likely to be too low to conduct rigorous biological 
analyses, particularly for more complex tasks. Therefore, efforts have been made 
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to develop approaches that sit somewhere in the middle of the two, taking 
advantage of the speed of one and the accuracy of another. 

Often termed assisted curation, these approaches are built around guiding 
human curators to the desired data to simplify the curation process and prevent 
time wasted scanning irrelevant text (Table 1.4). Articles can be prioritized for 
curation using TM to calculate the likelihood of the text containing pertinent data 
for a task234. For example, basic article ranking for curating a murine database of 
PPIs might involve selecting all articles that contain murine-related terms (e.g. 
mouse, mice, Mus musculus etc.). However, more complex approaches have been 
implemented to rank articles based on the probability of containing a curatable 
interaction235.  

Name/task Description 

PCorral236 
 

Interactive mining of PPIs for curation, utilising TM in IR and PPI 
extraction. 

ODIN237, 238 Suggest entities in text derived from the OntoGene TM system in the 
ODIN interface. 

CvManGO239 Comparisons between literature-based and computationally 
predicted Gene Ontology annotations to identify genes whose 
annotations are need of review. 

CTD curation235 Documents ranked for curation based on gene, chemical and disease 
terms provided by TM. 

PathText240 TM components were integrated with a pathway visualizer and 
annotation tools to aid curation of metabolic and signaling 
pathways. 

MGI curation241 Documents triage and NER used to enhance curation of the MGI 
model organism database. 

Table 1.4 Semi-automatic approaches to data curation 

As well as providing document ranking, TM, when incorporated with data 
visualization platforms, can be used to suggest data mappings within the text. 
For example, the ODIN curation interface highlights relevant terms and any 
candidate relations are then specified on a separate panel. This allows a curator 
to validate whether the data has been extracted correctly, without having to map 
the data to its associated identifiers manually237, 238.  
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1.4 Analysing biological data 
	  

Once a biological dataset has been acquired, through whatever means, it is then 
necessary to statistically analyse its properties, quality and to transform it into a 
form for which useful patterns and knowledge can be unearthed. For large-scale 
biological datasets these techniques are vital in assessing the viability of the data 
for making and supporting biological hypotheses in studying disease. This 
section will explore how these can be applied specifically to molecular 
interaction datasets, particularly through the use of biological networks.  

1.4.1 Systems biology 
	  

The aim of systems biology is to model and discover emergent properties of 
biology as a system through holistic top-down approaches. A major component 
of this discipline is the study of interactions between components of the 
biological system, such as proteins, and how these contribute to the overall 
function of that biological system. These interactions can be represented as 
networks and, as such, they represent a perfect way for visualizing molecular 
interaction data extracted from the literature.  

Network biology 

In a broad sense, a network can refer to any collection of objects for which they 
are connected by links. The flexibility of this definition has allowed for the use of 
networks in a wide range of settings, for example, from its first use in Euler’s 
topological maps of bridges in 1736242, to social networks and the connectivity of 
friend groups. By allowing data to be represented in this way, it offers 
opportunities for seeking trends from the full dataset, for which they can be 
derived through the application of graph theory. 

In graph theory, objects are termed nodes or vertices and their links are named 
edges. Two nodes connected by edges are called neighbors. The edges between 
neighbors can be directed or undirected, depending on whether one node points to 
another. Overall, the nodes and their edges together form a graph. Within a 
graph, we can measure individual properties of each node or look at the overall 



	   	   	   52	  

structure. For example, degree refers to the total number of edges a node 
possesses, while we can calculate the average degree of a network through 
taking the mean of these243. Hubs are nodes within networks that have a high-
degree relative to other nodes and networks containing a few of these among 
mainly low-degree proteins are said to be scale-free – termed so as the degree 
distribution is independent of scale. As well as scale-free formations, networks 
can also form hierarchical or random arrangements (Figure 1.8). We can also 
determine the betweenness centrality of a node, which measures the number of 
shortest paths from all nodes that pass through the node in question. Nodes with 
high betweenness centrality are often termed bottlenecks as they represent focal 
points for which information can be transferred through a network.  

 
Figure 1.9 Network properties 
a Scale free network. Red nodes represent hubs and dark blue nodes represent bottlenecks. b 
Hierarchical network. c Random network. 

 
When applied to protein interaction networks, graph theory can be useful for 
understanding the role of each protein in the overall system. For example, 
proteins that form hubs and bottlenecks have been shown to be key to the 
function of biological systems244. Furthermore, when visualized with programs 
such as Cytoscape245 or iGraph in R246, networks can be useful ways to present 

a b

c
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large-scale datasets in a more visually appealing and comprehensible form 
(Figure 1.9). 

Figure 1.10 Example protein interaction networks.  
a	  Protein-‐protien	  interaction	  network	  of	  human	  chromatin	  factors.	  From	  Huang	  et	  al	  (2013)247.	  	  

a

b
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b	  Drug-‐target	  network	  for	  drugs	  targeting	  human	  proteins.	  From	  Yildrim	  et	  al	  (2007)248.	  

 

Using Gene Ontology terms 

As well as using graph theory to provide analysis on the roles of proteins in 
biological systems, GO terms can be used to offer additional functional detail on 
collections of protein interactions. The GO provides an invaluable resource of 
annotations for genes on their biological processes, molecular functions and 
cellular components128, 249. These have been manually assigned from an ontology 
of over 40K biological concepts reported in experiments documented in over 
100K published biomedical articles. Each term is linked to other databases, such 
as Entrez Gene, for which we can then use to automatically assign to proteins 
(provided the proteins have been mapped to a common gene ID). This added 
functional detail can then enable us to understand more clearly the role of each 
protein within a system or the properties of the entire system itself. For example, 
a group of proteins all with the GO annotation ‘bone development’ are likely to 
be related through this concept.  

However, as an ontology, terms are represented hierarchically, and the numbers 
of genes each term is assigned to varies. For example, many genes are assigned to 
‘cytosol’, whereas only a handful are assigned to ‘cytosolic small ribosomal 
subunit’.  It is thus often important to calculate the enrichment values of GO 
terms when analyzing their novelty in gene sets, using tools such as DAVID250. 
Furthermore, when aiming to represent more generic GO-gene associations, GO 
slim terms can be used - embodying a select group of top-level terms (e.g. 
‘cytoplasm’ or ‘cell-cell signaling’). 

1.5 Research rationale 
	  

As discussed above, diseases relating to human pathogens and pain have a huge 
negative impact on global society and make interesting and useful disease classes 
to study in greater molecular detail. We have demonstrated that the published 
literature contains a wealth of data for achieving this purpose, however accessing 
it is impractical without computational assistance. The best way of extracting and 
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understanding data from the published literature comes through the use of TM, 
although it has been shown to be an imperfect method.  Our rationale for the 
research chapters undertaken in this thesis is therefore as follows: 

We first aimed to investigate the strengths and weaknesses of TM using a 
specific disease as a case study. We decided to use HIV-1 and explored recreating 
the HHPID. This database was constructed from a large collection of published 
articles and was curated manually, thus acting as ‘gold standard’ for comparison 
with results produced by TM. The results from this study showed that TM could 
recreate a large proportion of this database, as well as interactions that were not 
present and potentially missed by manual curation. However, the TM methods 
also produced false positives and false negatives and it was therefore suggested 
that TM would be best served as a support solution to manual curation. 

We next considered how an entirely new database of unique molecular 
interactions could be constructed for pain related diseases using TM. This 
presented new challenges, as firstly we had to identify publications for sourcing 
pain relevant interactions and secondly we had no way of knowing whether the 
data we had extracted was accurate. We therefore developed an approach to 
building a pain-specific corpus of literature and then expanded on our approach 
of grouping unique molecular interactions (proposed in Chapter 2) to create a 
novel way to curate TM data that was both highly efficient and accurate. The 
approach is detailed in Chapter 3. Furthermore, we showed how additional 
context could be added to molecular interactions to provide further detail on 
their roles within pain diseases. 

Chapter 4 then presents an analysis of an expanded dataset of pain-related PPIs 
derived from the procedure outlined in Chapter 3. In this chapter, our aim was to 
show that we had not only created an accurate dataset of PPIs that was relevant 
to pain, but that it was also useful for investigating the mechanisms of pain and 
its diseases in line with other research conducted on experimental data. We 
achieved this by comparing TM-derived data against pain-related gene 
expression and manually curated gene lists, showing TM data to be more 
relevant to pain than these. Furthermore we highlighted the value of the contexts 
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we had added by exploring pain in different diseases and anatomical regions, 
identified new drug repurposing opportunities and offered detailed insight into 
the underlying mechanisms behind pain. 

Now that we had demonstrated that we could create an entirely new database of 
molecular interactions between human proteins for disease research, our focus 
was to explore curating interactions where human proteins were the targets of 
multiple pathogen species. While there are differences in the pathogen proteins 
that interact with the human proteins it is ultimately their effect on the human 
proteins that leads to disease. We repeated our style of approach from Chapter 3 
to deriving TM data, and improved it by showing how the TM data could be 
enhanced for five viruses. We then curated TM derived host pathogen 
interactions against those present in public databases in three tasks. Task one 
revisited extracting HIV-1-human protein interactions by applying our method 
of curation to see how we could extend the HIV-1 protein interaction database. 
Tasks two and three showed how our method of curation could be extended to 
uncover new interactions between human proteins and pathogen species and to 
identify human proteins that had not been identified as interacting with any 
pathogen in public databases. These findings are presented in Chapter 5. 

Finally, in Chapter 6 we present a general discussion of the topics covered in 
Chapters 1-5. Here, we summarise our methodology and findings for extracting 
molecular interactions contextually for studying disease and outline any future 
directions, before concluding the thesis. 
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CHAPTER 2 
 
Towards semi-automated curation: 
recreating the hiv-1, human protein 
interaction database 
 
2.1 Abstract 
	  

Manual curation has long been used for extracting key information found within 
the primary literature for input into biological databases. The human 
immunodeficiency virus type 1 (HIV-1), human protein interaction database 
(HHPID), for example, contains 2589 manually extracted interactions, linked to 
14 312 mentions in 3090 articles. The advancement of text-mining (TM) 
techniques has offered a possibility to rapidly retrieve such data from large 
volumes of text to a high degree of accuracy. Here, we present a recreation of the 
HHPID using the current state of the art in TM. To retrieve interactions, we 
performed gene/protein named entity recognition (NER) and applied two 
molecular event extraction tools on all abstracts and titles cited in the HHPID. 
Our best NER scores for precision, recall and F-score were 87.5%, 90.0% and 
88.6%, respectively, while event extraction achieved 76.4%, 84.2% and 80.1%, 
respectively. We demonstrate that over 50% of the HHPID interactions can be 
recreated from abstracts and titles. Furthermore, from 49 available open-access 
full-text articles, we extracted a total of 237 unique HIV-1–human interactions, as 
opposed to 187 interactions recorded in the HHPID from the same articles. On 
average, we extracted 23 times more mentions of interactions and events from a 
full-text article than from an abstract and title, with a 6-fold increase in the 
number of unique interactions. We further demonstrated that more frequently 
occurring interactions extracted by TM are more likely to be true positives. 
Overall, the results demonstrate that TM was able to recover a large proportion 
of interactions, many of which were found within the HHPID, making TM a 
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useful assistant in the manual curation process. Finally, we also retrieved other 
types of interactions in the context of HIV-1 that are not currently present in the 
HHPID, thus, expanding the scope of this data set. All data is available at 
http://gnode1.mib.man.ac.uk/HIV1-text-mining. 

2.2 Introduction 
	  

The human immunodeficiency virus type 1 (HIV-1), human protein interaction 
database (HHPID) is a manually curated database containing 2589 distinct HIV-1 
to human protein interactions, linked to 14 312 mentions in 3090 Medline 
articles136, 149. Each of these documented interactions is potentially of value to 
researchers studying HIV-1, where improved treatment strategies are in urgent 
demand for a disease that reported 33.3 million confirmed positive cases in 2009, 
leading to 1.8 million acquired immune deficiency syndrome-related deaths a 
year251. As well as providing an instant resource to researchers seeking 
distinctive literature on specific HIV-1–human protein interactions, the HHPID 
has been used to construct detailed networks of the overall host–pathogen 
interactome252 and has been vital in RNAi studies with HIV data11, 253, 254. 

The curation of the HHPID took over 7 years to complete and, ideally, it requires 
on-going updating. While an update based on manual curation is imminent, 
spanning from 2007 to 2011, future updates would benefit from some form of 
assisted curation effort. In the original design process of the HHPID, 
approximately 100 000 relevant HIV-1 documents were identified through 
PubMed queries, before further review and filtering reduced this number to 
3200254. As of December 2011, a simple PubMed search for ‘HIV’ produces more 
than 233 000 results (including more than 64 000 new abstracts since 2007), 
highlighting the availability of a large body of potentially relevant literature for 
automated curation. Therefore, future updates to the HHPID will benefit from 
the ability to systematically process a much larger body of HIV-focused 
literature. 

Text-mining (TM) techniques have emerged as a potential support solution to the 
knowledge extraction problem, helping to keep pace with the existing and 
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ongoing expansion of primary literature. TM systems are designed to convert 
text data into manageable information and knowledge255. Within TM, there exists 
a range of techniques used to identify, extract, analyse and visualize data stored 
within text256. A large degree of focus within the field has been placed on 
accurately and exhaustively extracting molecular interactions (MIs) from 
biomedical text, supported by collaborative events such as the BioCreative and 
BioNLP shared tasks160, 169. These have led to the overall advancement of 
biomedical TM, making large-scale data extraction an immediate possibility257, 258. 
However, the quality of TM data has historically been scrutinized in comparison 
to manual curation, where aspects such as gene name ambiguity259 and 
conflicting event relationships260, have impeded its overall accuracy. 

Existing forms of assisted curation using TM approaches have benefitted the 
manual curation process by reducing the scale and complexity of information 
that curators have to process. For example, Wiegers et al.235 have demonstrated 
potential in ranking documents according to chemical, gene/protein and disease 
identifiers in text to augment the efficiency of manual curation of the 
Comparative Toxicogenomics Database. Another example comes from Kemper et 
al.240 who have integrated TM components with a pathway visualizer and 
annotation tools to aid curators in generating metabolic and signaling pathways 
more effectively. 

In this article, we explore the reconstruction of the HHPID using a suite of 
tailored state-of-the-art TM tools. The results and analyses demonstrate that TM 
is able to recover a large proportion of interactions found within the HHPID with 
reasonable recall and precision, in addition to expanding the scope of the 
database by identifying interactions between other types of entities. These 
techniques have demonstrated that future curation of the HHPID and indeed 
other MI databases can be assisted by TM helping speed up the curation process. 

2.3 Methods 
	  

Figure 2.1 summarizes our approach for recreating and evaluating the HHPID 
using text mining tools. The method has four main steps: (i) text retrieval (using 
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only citations from the HHPID), (ii) named-entity recognition (NER, finding 
mentions of molecules in text), (iii) molecular event extraction (finding any 
interactions that exist between entities) and (iv) various evaluations and 
comparisons of the results. 

Figure 2.1 Summary of the methodology.  
Our methodology is divided into four stages: (1) retrieval of all abstracts and titles, as well as 49 
open-access full texts from the 3090 citations in the HHPID, (2) proteins were extracted using an 
HIV-1/human tailored version of BANNER, (3) events were extracted using two event extraction 
tools (TEES and Eventmine) and (4) a comparison of the results retrieved by TM was made with 
the manually curated HHPID. 

2.3.1 Data 
	  

We limited our investigation to only those articles used in the HHPID to directly 
compare manual curation to TM. Of the 14 312 citations in the HHPID, we found 
3090 of these to have unique PubMed identifiers (PMIDs). Only 49 articles (1.6%) 
were available through PubMed Central (PMC) as full-text open access (OA) 
articles. While it would be preferable to use full text for the entire set of 3090 
citations, the limited availability of OA articles restricted our main analysis to 
using abstracts and titles. To illustrate the value of using full-text articles, we also 
performed a separate experiment using the 49 OA articles. 
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2.3.2 Named entity recognition and normalization 
	  

To extract proteins from the text, we used BANNER, which has been ranked as 
one of the top performing NER systems by the BioCreative shared task III160, 186. 
Since BANNER has been developed for use on NER across generic biomedical 
text, we decided to make adjustments to focus the tool on HIV-1 specific text so 
that we could enhance its overall performance261. To identify any specific 
BANNER performance weaknesses on the HIV-related literature, we first 
evaluated the performance on a corpus of 50 randomly selected abstracts and 
titles from the HHPID (referred to as ‘Train-HIV’). We evaluated these abstracts 
using the same evaluation approach as used in NER evaluation in the 
BioCreative III shared task using precision, recall and F-score160, 262. 

The initial evaluation of BANNER revealed commonly occurring types of false 
positives such as protein regions (e.g. ‘V3’) or event mentions (e.g. ‘superoxide 
release’), and false negatives such as hyphenated entities (e.g. ‘tat-induced’) or 
entities contained within brackets (e.g. ‘(SOD1)’). While false positives were 
difficult to distinguish computationally, we were able to reduce the number of 
false negatives by providing an additional training data set with HIV-1–human 
interaction-specific classes of false negatives annotated in text. Furthermore, we 
designed and implemented post-processing modules to work in unison with 
BANNER and reduce false negatives by applying dictionaries of HIV-1 and top 
occurring human-related gene names to match untagged proteins from the text. 
We then evaluated our modified version of BANNER on a new corpus of 50 
randomly selected abstracts and titles from the HHPID (referred to as ‘Test-
HIV’). The abstracts and titles were marked for all proteins, genes and RNA 
molecules by DGJ.  

In addition to recognition of gene names in text, we normalized our NER results 
to either HIV-1 or human genes using the Entrez Gene gene names, gene 
symbols and gene aliases263. While normalization has traditionally been made 
difficult by intra- and inter-species gene name ambiguity201, HIV-1’s small gene 
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set (nine genes) and the knowledge that each document was HIV-1 relevant, 
helped us to more confidently and accurately associate genes with HIV-1. Gene 
names that could not be normalized to an HIV-1 dictionary were, wherever 
possible, mapped to a human dictionary. If they were not matched to either an 
HIV-1 dictionary or a human dictionary, they were classified as ‘other’.  

2.3.3 Event extraction 
	  

We focus our investigation on specific types of events that represent interactions 
between proteins as defined by BioNLP’09169, 264. These interactions cover three 
types of protein metabolism (specifically, gene expression, transcription and 
protein catabolism), phosphorylation, localization, binding and regulatory events 
(regulation, positive regulation and negative regulation). Events are identified in 
text by using two event extraction tools, the Turku event extraction system 
(TEES)265 and Eventmine260. The tools have been designed to conform to the 
BioNLP task. Events of gene expression, transcription, protein catabolism, 
phosphorylation and localization types are all required to act on a single gene or 
protein, called a theme. Binding events can have one or two gene/protein 
themes. Regulatory events differ in that their theme may be either a 
gene/protein or another event. While not required, a regulatory event can also 
have a gene/protein or another event as its cause. This allows for the possibility 
of ‘event chains’ involving multiple gene/proteins in multiple events. For 
example, the sentence “Tat increased the expression of NF kappa B” mentions an 
event chain that includes ‘expression of NF kappa B’ and positive regulation of 
that event by ‘Tat’ (Figure 2.2). 
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Figure 2.2 Methods of event evaluation.  
The three events have been extracted from the sentence “Tat increased the expression of NF 
kappa B”. In this sentence ‘Tat’ and ‘NF kappa B’ represent proteins and ‘increased’ and 
‘expression’ represent events. In approximate evaluation, both events 1 and 2 would be counted 
as true positives, whereas only Event 1 would be considered a true positive in stringent event 
evaluation, as ‘Tat positive regulation (increased)’ is missing. Event 3 would be a false positive in 
both categories of evaluation, whereby ‘increased’ does not signify negative regulation. 

We applied the two event extraction systems to 3,090 titles and abstracts and 49 
full-text articles associated with HHPID, after these had been tagged by the HIV-
1/human tailored version of BANNER. We considered molecular events 
identified by either of the systems (union) or by both systems (intersection). 
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2.3.4 Event Evaluation 
	  

Molecular interactions represented in the HHPID are characterized by 70 
keywords that potentially indicate the type of interaction, many of which are 
potentially redundant (e.g. ‘binds’ and ‘complexes with’). To enable us to 
compare the event extraction results with interactions from the HHPID, we 
mapped 51 out of the 70 HHPID interaction keywords to the nine event types 
(see Supplementary File S1). The remaining 19 interaction keywords (such as 
‘glycosylates’) were designated as ‘other’ in the results. 

To assess the performance of the event extraction systems, we used our Test-HIV 
corpus of 50 abstracts and titles. Rather than evaluating single events as is 
commonplace in the BioNLP shared tasks169, we evaluated ‘event chains’ since 
these represent a more complete depiction of the full interaction and have been 
represented as such in the HHPID. Event chains were evaluated under two 
different sets of rules: (i) Stringent event evaluation required that any recorded 
event chain should be represented in its entirety, i.e. without any falsely reported 
information in order to be classified as a true positive. (ii) Approximate event 
evaluation differs in that each reported event chain should be represented 
without any falsely reported information, although it may still be classified as a 
true positive if some information is missing. This allows for event chains with 
missing themes or causes to still be classified as true positives provided the rest 
of the captured data is correct. Figure 2.2 provides some examples of event 
evaluation methods. 

2.3.5 Comparison of TM results to HHPID interactions 
	  

In order to ensure that any comparisons made between the TM results and the 
HHPID were fair, we firstly limited our analysis to only citations from the 
HHPID and interactions between HIV-1 and human molecules. When comparing 
interactions from the HHPID against TM, we used the Entrez gene IDs as 
specified in the database and cross-referenced TM entities with Entrez Gene HIV-
1 and human gene names, gene symbols and gene synonyms. 
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It was not possible to automatically evaluate all TM-extracted interactions 
against the HHPID due to incompatibility of the data format representations (e.g. 
unspecified triggers, textual positions and full text/abstract origin of interactions 
within the HHPID). Instead, a random sample of 50 abstracts and titles from the 
data set was chosen and interactions reported within the HHPID as originating 
from the set were compared against those extracted through TM. We only 
considered interactions from the HHPID that were present within the abstracts 
and titles and not the full text. In addition, interactions that could not be 
extracted by TM, since they did not conform to the nine event types, but were 
present in the HHPID (e.g. ‘acetlyation’ interactions), were ignored. 

A separate analysis was performed on the 49 PMC full-text OA articles that were 
cited in the HHPID. Following a similar procedure as above, we compared 
interactions retrieved from full text by TM against those retrieved from the same 
subset in the HHPID and those retrieved from only abstracts and titles by TM. 

2.4 Results  
	  

We report two types of results: the generic accuracy of text mining tools and 
accuracy specifically applied to the HHPID. 

2.4.1 Accuracy of Text Mining Tools 
	  

The performance of the original version of BANNER186 on our Test-HIV corpus 
showed precision, recall and F-score of 83.9%, 87.9% and 85.8%, respectively. 
When we used altered training data and combined BANNER with a post-
processing module, our precision, recall and F-score were all improved to 87.5%, 
90.0% and 88.6%, respectively, showing a marginal increase on the default 
BANNER configuration. 

Table 2.1 shows the precision, recall and F-score for the event extraction tools. 
Results are provided for TEES and Eventmine individually, their union (i.e. both 
tools) and their intersection (i.e. when both tools are in agreement). Eventmine 
performed better than TEES in both stringent and approximate matching, with 
the highest precision, recall and F-score in approximate matching: 79.9%, 73.7% 
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and 76.7%, respectively. When the results of both tools are merged in a union of 
events, recall and F-score are both notably higher in the stringent and 
approximate evaluations compared to individual tools and the precision is 
greater in the stringent evaluation. Our analysis showed that this was due to full 
event chains now being completely represented. However, the precision of the 
union is slightly lower (−3.5%) in the approximate matching. The highest 
precision is achieved in the intersection of the two tools (87.4%), although recall 
(46.2%) and F-score (60.4%) are considerably lower. We therefore decided to use 
the union of the two tools for further investigation. 

 Stringent evaluation Approximate evaluation 

 Precision Recall F Score Precision  Recall  F Score 

TEES 0.373 0.524 0.436 0.726 0.682 0.703 

Eventmine 0.460 0.622 0.529 0.799 0.737 0.767 

Union 0.537 0.786 0.638 0.764 0.842 0.801 

Intersection 0.663 0.392 0.493 0.874 0.462 0.604 

Table 2.1 Event extraction performance on the Test-HIV gold standard of 50 abstracts and titles 

2.4.2 Comparison of HIV-1–Human Interactions extracted by TM and the 
HHPID 
	  

Table 2.2 shows the total numbers of HIV-1-human molecular interactions for the 
HHPID and TM. We note that the TM results here are restricted to interactions 
between HIV-1 and human molecules only. The HHPID showed greater total 
numbers of interactions for all of the event types in comparison to TM. This is 
not surprising considering that the HHPID was derived from full text, whereas 
TM in this analysis was applied to abstracts and titles only. Table 2.3 further 
shows a comparison between the proteins involved in events (“participants”) 
with the highest frequency in HIV-1-human interactions in the HHPID and TM. 
Here we observed eight out of ten of the same proteins shared between the two 
datasets. 
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Interaction Type 
 Total HHIPD interactions  

(abstracts, titles & full text) 
Total TM interactions 

(abstracts and titles) 

Binding 5,534 1,967 
Protein catabolism 122 40 
Positive regulation 3,517 329 
Phosphorylation 223 33 
Localisation 565 37 
Transcription N/A 31 
Regulation 990 127 
Gene expression N/A 243 

Negative regulation 1,935 124 
Other 518 N/A 
Total 13,404 2,931 

Table 2.2 The number of HIV-1-human interaction mentions extracted from 3,090 citations: a 
comparison between the HHPID database and the TM results 

HHPID  TM 

Participant Total 
interactions 

 Participant Total 
interactions 

Env gp160 4,863   Cd4 1,290 
Tat 4,247  Tat 1,226 
CD4 1,188  Gp120 1,161 
Vif 1,005  Nef 531 
Nef 980  Env 353 
Gag 867  Vpr 230 
Vpr 790  Cxcr4 230 
Gag-Pol 541  Cccr5 228 
CXCR4 303  Rev 157 
CCR5 285  Vpu 65 
Total interactions 13,404  Total interactions 2,931 

Table 2.3 Top 10 most frequent participants in events as presented in the HHPID and as 
extracted by TM  

To estimate how much of the HHPID we have replicated through TM, we 
compared interactions taken from abstracts and titles in the HHPID against HIV-
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1–human TM interactions over a set of 50 randomly selected citations from the 
HHPID. We were able to match 22 TM interactions to interactions within the 
HHPID, while 20 interactions that were present in the abstracts and titles were 
either missed or not fully extracted by TM. Thus, we estimate TM has recreated 
over 50% of interactions derived from the 3090 abstracts and titles within the 
HHPID without considering any potential data from full text. The value of using 
full text in TM is explored later in our analysis. 

When we only considered frequently occurring unique HIV-1–human 
interactions, our results for TM were particularly encouraging. Table 2.4 shows 
the frequency of the top ten most commonly occurring HIV-1–human 
interactions extracted by TM. With our analysis restricted to unique interactions, 
TM achieves a similar number of total interactions (2069) in comparison to the 
HHPID (2589). All of the top 10 interactions retrieved automatically from text 
were true positives; however, only 7/10 were present within the HHPID. For 
example, ‘negative regulation of binding of gp120 to CD4’ is not present within 
the HHPID due to there being no regulation of binding interactions recorded 
within it. The ‘binding of gp120 to sCD4’ is not distinguished within the HHPID 
as an interaction, as CD4 is only recorded as ‘T-cell surface glycoprotein CD4 
isoform 1 precursor’ and neglects the ‘soluble recombinant’ prefix of the CD4 
nomenclature from the interaction. Instead, this information is presented within 
a reference sentence for the interaction in the HHPID and is unable to be filtered 
in a standard database query. 

TM Interaction Frequency True 
positive 

Present in 
HHPID 

Binding of Gp120 to CD4 207 Yes Yes 
Binding of Gp120 to CXCR4 32 Yes Yes 
Binding of Tat to Cyclin T1 30 Yes Yes 
Binding of Gp120 to CCR5  29 Yes Yes 
Negative regulation of binding of Gp120 to CD4 24 Yes No 
Binding of Vpu to CD4 19 Yes No 
Binding of Gp120 to sCD4 18 Yes No 
Binding of Nef to CD4  18 Yes Yes 
Vpu positive regulation of protein catabolism  of 
CD4 15 Yes Yes 
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Binding of Env to CD4 10 Yes Yes 
Total unique mentions 2,069 N/A 2,589 

Table 2.4 Top 10 most frequent HIV-1-human interactions retrieved through TM 

While these two instances of missing interactions from the HHPID can be 
accounted for by constraints in the way data in the HHPID is curated, there is no 
obvious reason as to why the ‘binding of Vpu to CD4’ is not present. We were 
able to confirm this interaction as a true positive from a number of references266-

268, all of which are present in the HHPID article set. We believe that—although 
binding of Vpu to CD4 has been documented as a direct interaction in a number 
of publications—the end result of this event is a down-regulation of CD4 and is 
documented in the HHPID as ‘Vpu degrades CD4’ and ‘Vpu downregulates 
CD4’—an interaction also qualified in the TM data set by ‘Vpu positive 
regulation of protein catabolism of CD4’. This discrepancy highlights issues for 
both the HHPID and TM. Here, it is evident that in the HHPID it is not 
completely clear from the interaction (when ignoring the reference sentence) that 
Vpu had bound to CD4 to cause its degradation. However, in TM, although both 
parts of the overall interaction (the binding and degradation) are represented in 
separate event chains, they cannot with the existing methodology be 
automatically linked together when spanning over one sentence. A combined 
TM and manual curation approach could help solve both of these problems, by 
using TM as a support to manual curation to provide additional descriptions for 
a candidate interaction. 

Given the high number of binding events, we further analysed the most frequent 
interaction participants involved in this type of interaction. In Table 2.5, we 
compare the binding participants between the HHPID and TM for the HIV-1 Tat 
gene, as this gene was amongst the most frequent participants in both data sets. 
We observed similar numbers of total unique mentions of participants between 
the two data sets (388 for TM and 323 for the HHPID). ‘Cyclin T1’, ‘p-tefb’, ‘tbp’ 
and ‘Cyct1’ (a Cyclin T1 alias) were present in the top ten participants of both 
data sets. We observed ‘Sp1’ (11 mentions), ‘Pkr ’ (4 mentions) and ‘Puralpha’ (3 
mentions) outside of the HHPID top ten, but within the top 10 in the TM results. 
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  Tat Binding HHPID    Tat Binding TM 

P-Tefb 57  Tar 51 
Cyclin T1 52  Cyclin T1 30 
TBP 22  Tar RNA 26 
CDK7 18  p-tefb 18 
CCNH 17  Tbp 15 
ITGAV 16  Sp1 13 
ITGB3 16  Pkr 11 
CREBBP 15  Pp1 11 
GTF2H3 14  Cyct1 9 
ERCC2 14  Puralpha 9 

  Total interactants 323  Total interactants 388 

Table 2.5 Top 10 most frequent binding participants with the HIV-1 Tat gene 

2.4.3 Other Types of Interactions Retrieved by TM 
	  

As well as retrieving HIV-1–human molecular interactions, TM retrieved events 
and participants that were involved in other types of interactions or event chains. 
For example, in Table 2.5, the top occurring binding participant for Tat in the TM 
data set, Tar, was not present in the HHPID as this is an RNA molecule and the 
HHPID only contains protein–protein interactions. 

Overall, TM retrieved 5674 events involving only a single HIV-1 protein, 7364 
single human events, 437 HIV-1–HIV-1 interactions, 1265 human–human protein 
interactions and 243 interactions involving two or more participants (Table 2.6). 
Furthermore, we designated 8415 interactions as other, i.e. not involving an HIV-
1 or human protein. We note that it is likely that this number is much lower, 
given that our normalization methods were not sufficient in categorizing all of 
the participants into their appropriate species. 
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 Number of interactions with  

Interactant  One  
participant 

Two  
interactants 

More than two 
interactants 

Total 
interactions 

Cd4 1,924 1,290 62 3,276 
Tat 1,244 1,226 52 2,522 
Gp120 1,468 1,161 60 2,689 
Nef 914 531 18 1,463 
Env 621 353 13 987 
Vpr 301 230 6 537 
Cxcr4 357 230 15 602 
Cccr5 337 228 10 575 
Rev 278 157 3 438 
Vpu 184 65 5 254 
HIV-1 protein 5,674 N/A N/A 6,228 
Human protein 7,364 N/A N/A 7,464 
HIV-1 – Human N/A 2,931 N/A 2,931 
HIV-1 – HIV-1 N/A 437 N/A 437 
Human – Human N/A 1,265 N/A 1,265 
Other 5,560 2,855 N/A 8,415 
Total Event Chains 18,598 7,488 243 26,329 

Table 2.6 Top 10 most frequently occurring participants within event chains in the TM results.  
The table presents the number of interactions with one, two or more interactants. 

Some of the most frequently occurring interactions that were not present in the 
HHPID, due to the restrictions in its scope are shown in Table 2.7. We noted that 
the majority of TM interactions that were false positives for HIV-1–HIV-1 and 
human–human MIs were each involving self-interactions, and as such can be 
filtered out easily. However, while these particular self-interactions represented 
false positives, we should take into account in future work that self-interactions 
may sometimes represent true positives as well269. 
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Interaction Interaction category Frequency True positive 

Binding of Tat to Tar HIV-1 – HIV-1 51 Yes 
Binding of tat to tat HIV-1 – HIV-1 21 No 
Binding of gp120 to gp41 HIV-1 – HIV-1 9 Yes 
Binding of gp120 to gp120 HIV-1 – HIV-1 8 No 
Binding of Nef to Nef HIV-1 – HIV-1 7 No 
Binding of CD4 to CD4 Human - Human 22 No 
Binding of CD4 to CXCR4 Human – Human 21 Yes 
Binding of CD4 to CCR5 Human – Human 16 Yes 
Binding of CCR5 to CCR5 Human – Human 5 No 
Binding of CCR5 to CXCR4 Human – Human 5 No 
Gp120 positive regulation of 
binding of CD4 to CD95 More than 2 interactants 2 Yes 

HIV-1 Tat positive regulation 
of HIV-1 Tat positive 
regulation of protein 
catabolism of iKappab 

More than 2 interactants 1 No 

P73 negative regulation of 
binding of Tat to Cyclin T1 More than 2 interactants 1 Yes 

Negative regulation of NF 
Kappa B/rel causes negative 
regulation of tat positive 
regulation of HIV-1 LTR 

More than 2 interactants 1 Yes 

Binding of CD4 to Okt4 
antibody causes negative 
regulation of CD4 mobility 

More than 2 interactants 1 Yes 

Table 2.7 Top most frequent interactions retrieved by TM but not found in the HHPID 

Table 2.7 also shows that the HIV-1 trans-activation response element (TAR) is 
involved in Tat binding. It is interesting that this interaction was not present in 
the HHPID. Although a fundamental molecule involved in HIV-1’s biology270, 
this TAR interaction is not included within the HHPID as it is an RNA molecule 
and the HHPID is limited to proteins only. This is also the case for the HIV-1 
long-terminal repeat (LTR). To demonstrate the significance of TAR and LTR’s 
involvement within HIV-1 interactions, Table 2.8 shows their most frequently 
occurring interactions retrieved through TM and whether they are supported by 
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the literature. Out of the 15 interactions involving LTR and TAR, only two were 
false positives. 

Interaction Frequency True 
positive 

Binding of Tat to TAR  51 Yes 
Tat positive regulation of LTR 11 Yes 
Binding of Cyclin T1 to TAR  7 No 
Binding of RNA polymerase II to TAR 6 Yes 
Negative regulation of binding of tat to TAR  6 Yes 
Binding of CDK9 to TAR 3 No 
Binding of TRP - 185 to TAR   3 Yes 
Binding of Tat to Cyclin T1 positive regulation of binding of Tat to 
TAR 

3 Yes 

Tat positive regulation of transcription of LTR  3 Yes 
Binding of Tat to Vpr positive regulation of LTR  2 Yes 
Tat positive regulation of tat positive regulation of LTR  2 Yes 
Tat regulation of transcription LTR  2 Yes 
Binding of LTR to SP1  2 Yes 
Vpr positive regulation of LTR  2 Yes 
Ptb positive regulation of binding of RNA polymerase II to TAR  2 Yes 

Table 2.8 HIV-1 TAR and LTR most frequent interactions extracted by TM 

2.4.4 Full-text TM analysis 
	  

Table 2.9 shows most frequent interactions extracted from the 49 articles cited 
within the HHPID which were open access and available for text mining. We 
compared HIV-1–human interactions extracted from full text, abstracts and titles 
and those denoted within the HHPID for this set of articles. For the top 10 
interactions retrieved through TM applied on full text, we could only account for 
four in the HHPID, despite all 10 being true positives, indicating that potentially 
60% of top-ranked full-text TM interactions might be missing from the HHPID. 
In total, there were 237 unique HIV-1–human interactions extracted from the 49 
articles. This is 27% more than what is in the HHPID from the same subset, 
suggesting a potential gap in the interaction references in the HHPID. Although 
TM will have almost certainly reported some false positives (and false negatives 
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for that matter) within these, the absence of 6 out of 10 true positive interactions 
found by full-text TM suggests that manual curation is not as exhaustive as we 
may have come to expect. 

Interaction Full text TM 
frequency 

Abstracts & 
titles TM 
frequency 

HHPID 
frequency 

True 
Positive 

Binding of Vif to APOBEC3G 27 0 No TP 
Binding of DC-SIGN to gp120 22 0 Yes TP 
Binding of Nef to ABCA1 20 1 No TP 
Binding of gp120 to CD4 17 0 Yes TP 
Nef Positive regulation of Rac 16 2 No TP 
Binding of Tat to CDK2 15 1 No TP 
Binding of DOCK2 to Nef 14 0 Yes TP 
Binding of Nef to ELMO1 14 0 Yes TP 
Vif Positive regulation of protein 
catabolism of APOBEC3G 13 0 No TP 

Binding of gp120 to CXCR4 11 0 0 TP 
Total unique HIV-1-human 
interactions 237 39 187 N/A 

Total HIV-1-human interaction 
mentions 4,342 40 N/A N/A 

Other mentions (single events, 
HIV-1-HIV-1 interactions, etc.) 6,995 441 N/A N/A 

Total mentions 11,337 481 N/A N/A 

Table 2.9 Top 10 most frequent interactions retrieved from 49 OA full-text articles with TM 

A comparison of HIV-1–human interactions extracted from full-text to those 
extracted using only abstracts and titles revealed over a 6-fold increase in the 
number of unique interactions. Only three of the top 10 interactions from full-text 
TM were found in the abstracts and titles TM subset. Overall, TM on full text 
recorded an average of 231 interaction or single event mentions per article in 
contrast to just 10 in abstracts and titles, an increase of 23 times. These results 
provide a compelling justification for the use of full text as opposed to only 
abstracts and titles in TM. 
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2.5 Discussion 
	  

Our custom BANNER system was able to achieve precision, recall and F-score of 
88%, 90% and 89%, respectively using a modified, specially tailored training data 
set and a post-processing module utilizing a dictionary with HIV-1 and top 
occurring human genes. Although only marginally better than the original 
system, these scores demonstrated TM to be capable of extracting genes and gene 
products from HIV text to a useful level. An error analysis shows that commonly 
occurring false positives were acronyms such as cell line names (e.g. HeLa) or 
strain names (e.g. HIV-1 subtype B). 

For event evaluation, we chose to use a union of two event extraction tools, 
which—under our most strict method of evaluation—showed precision, recall 
and F-score of 54%, 79% and 64%, respectively. Our approximate form of event 
evaluation for our best system showed precision, recall and F score of 76%, 84% 
and 80%, respectively. These results indicate that a large proportion of false 
positives from our stringent evaluation were caused not through falsely reported 
information, but through incomplete event chains, such as missing interaction 
causes or binding partners. Here, there is potential to improve on the 
performance of event extraction through completing the event chains that have 
missing information. These findings support results from other event extraction 
studies and proposed solutions include tuning the confidence thresholds to 
improve recursive matching and to use confidence values of the predicted 
candidates as features in the proceeding modules260. However, generally the 
greatest challenge for event extraction tools comes from apprehending the 
various writing styles employed by different authors. False positive events were 
most persistently caused by complex grammatical sentences or just poor 
grammar, making it difficult for automated tools to ascertain their intended 
meaning. Figure 2.3 provides some examples of typical false positives. 

2.5.1 TM versus manual curation 
	  



	   	   	   76	  

We have successfully managed to recreate a large proportion of the interactions 
denoted within the HHPID using the current state of the art in TM. We have 
shown that TM tools are at least capable of precisely replicating over 50% of the 
interactions denoted within the HHPID from an evaluation sample of 50 
abstracts and titles. Considering the manual curation of the HHPID took 7 years 
to perform, our tools have proven to be markedly more efficient by replicating a 
large percentage of this data automatically in a matter of hours. 

 

 

Figure 2.3 Examples of falsely reported event chains. 
Events are extracted from the sentence “In parallel to the modulation of cell growth, gp 120 at 
low concentrations resulted in an increase in the expression of c-Myc, Max, and 14–3-3epsilon 
proteins and phosphorylation of ATP-dependent tyrosine kinases (Akt) at Ser (473)”. Taken from 
Ref. (20). Event 1 shows an example of an incomplete event chain, where gp120 is missing as the 
cause for positive regulation. In Event 2, there is falsely reported information in that 14-3-
3epsilon is expressed and not phosphorylated. 

 
Across the full list of citations within the HHPID, we have retrieved 2069 total 
unique HIV-1–human interaction mentions in comparison to 2589 unique 
HHPID interactions. Although some of these TM interactions probably represent 
false positives, this result is still extremely encouraging considering that curators 
of the HHPID had access to interactions from full text as well as abstracts and 
titles. From these HIV-1–human interactions, we found 7 of the top 10 binding 
interactants between Tat retrieved by TM to be present in the HHPID. Thus, we 
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feel that those interactions recovered using TM represent a strong demonstration 
of how manual curation could be supported by sophisticated TM. 

A top participant detected by TM for Tat binding that was not present in the 
HHPID was the HIV-1 TAR element. We found that the HHPID does not have 
any mentions of the HIV-1 TAR or any other RNA interactions involving HIV. It 
was not an objective of the HHPID to document these kinds of interactions, 
although, they are a potentially valuable resource to researchers studying HIV-1. 
To determine the role of TAR and another HIV-1 RNA molecule, the LTR, we 
highlighted interactions involving only these molecules (Table 2.8). Across the 15 
interactions that we examined, only two were false positives and thus, we feel 
TM have the potential to identify valuable information from HIV-specific text on 
HIV-1 interactions that are not currently present in the HHPID. Given the other 
types of interactions that could be extracted (interactions between HIV-1 
molecules, interactions between human molecules, interactions between two or 
more participants, etc.), TM tools could facilitate a semi-automated approach to 
the expansion of the scope of the HHPID database. 

From five interactions involving more than two participants that we examined 
(Table 2.7), we were able to find four true positives. The true positives for 
interactions involving more than two participants are especially beneficial as that 
they provide a more complete illustration of interactions in contrast to the 
HHPID. Figure 2.4 shows an example. 

 

 

Figure 2.4 TM interaction involving two or more participants.  
This event was extracted from the sentence “HIV-1 Tat can substantially enhance the capacity of 
NIK to induce IkappaB degradation”271. Here, we can see that the full interaction is identified by 
TM, across multiple participants and events. The HHPID documents this same interaction as ‘Tat 
enhances mitogen-activated protein kinase kinase kinase 14’, which is clearly a misrepresentation 
of the actual full interaction. 
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To consider the potential of full-text TM, we investigated the available OA 
articles cited in the HHPID. Interactions extracted from this subset highlighted 
that 6 of the top 10 interactions retrieved by full-text TM were missing, with 27% 
fewer unique interactions compared to the HHPID. These particular full-text 
articles referred to large numbers of gene and gene product mentions, 
contributing to some 11 337 interaction mentions as deduced by TM. While 
inaccuracies of TM cannot be ignored, these results do perhaps draw attention to 
limitations of manual curation, especially when dealing with more interaction-
saturated literature, e.g. in high-throughput studies which are likely to contain 
more interaction mentions. However, it should be noted that curators from the 
HHPID may have chosen to only document the most important interactions 
denoted within these papers, accounting for the lower numbers of interactions. 

In our subset of OA full-text articles, a comparison of TM using only abstracts 
and titles of the same articles exposed a significantly lower frequency of 
interaction mentions. On average, there were only 10 interaction mentions in 
abstracts and titles in contrast to 231 in full text. When only unique HIV-1–
human interaction mentions were considered, full text still showed a 6-fold 
increase in data, with seven of the top 10 full-text TM interactions not present in 
the abstracts and titles TM data set. Although it has already been demonstrated 
that full text contains more information272, only a small number of more than 233 
000 HIV-related articles are accessible through PMC OA, thus, limiting the full 
potential of full-text TM to provide a large-scale systematic approach to 
information extraction from the entire literature. 

One major weakness in our approach was the lack of an advanced normalization 
system able to fully categorize all of our retrieved participants into either HIV-1 
or human species types. The dictionary-based methods we used can potentially 
be improved by using more sophisticated normalization systems such as 
GNAT216, 273 or GeneTUKit273, 274, capable of normalizing generic protein matches 
to their Entrez Gene IDs. Better normalization of participants will enable us to 
more precisely identify the interactions that TM has retrieved. However, we will 
be careful to ensure that useful context in descriptive prefixes and suffixes of 
molecules, e.g. ‘mutant’, are not lost while normalizing, as this information can 
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potentially be useful to researchers in understanding what was originally 
documented. 

 

2.6 Conclusions 
	  

In this article, we explored the potential of a TM-driven approach to curation of 
the HHPID. The results and analyses demonstrate that TM is able to recover a 
large proportion of interactions found within the HHPID with a reasonable 
recall/precision ratio, in addition to potentially expanding the scope of the 
database by identifying interactions between other types of entities. In principle, 
TM methods are more likely to retrieve true positives that are more frequently 
recorded in the literature. With such a large body of citations available for HIV, 
we believe that in the future we will be able to apply confidence to interactions 
based on how frequently they were recorded, and thus provide better support to 
the curation process. 

Our analysis of full-text TM has revealed a convincing support for its usefulness, 
compared to solitary abstracts and titles. With such a dramatic difference in the 
frequencies of interaction mentions, we believe that in our future work we will 
be able to retrieve huge numbers of interactions if we have access to all full-text 
articles. A potential problem in full-text analysis in comparison to using only 
abstracts and titles will be to identify the ‘value’ and ‘novelty’ of an interaction, 
where aspects such as defining interactions as ‘referenced’ or ‘recorded’ will 
present new TM challenges. However, we believe neglecting such huge amounts 
of potentially valuable data would vastly hinder any future efforts to curate a 
more complete HIV-1–human protein interaction database. 

Overall, although it is unlikely that TM will ever be able to replicate the accuracy 
that manual curation can achieve in MI extraction, its main strength is in the 
speed at which it can generate data that can be used to, amongst other aspects, 
support the curation process. Our results have shown that TM can retrieve 
reasonably accurate results for MI extraction and therefore a TM-assisted manual 
curation approach could be most beneficial, in particular for the more frequent 
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interactions that can be checked first via references to the text. In the future, we 
intend to apply the current techniques with any improvements to the full list of 
HIV-1 citations in Medline and PMC, and make our results available to 
researchers online. The corpora generated are available on request. 
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CHAPTER 3 
 
Cataloguing the biomedical world of 
pain through semi-automated curation 
 

3.1 Abstract 
	  

The vast collection of biomedical literature and its continued expansion has 
presented a number of challenges to researchers who require structured findings 
to stay abreast of and analyze molecular mechanisms relevant to their domain of 
interest. By structuring literature content into topic-specific, machine-readable 
databases, the aggregate data from multiple articles can be used to infer trends 
that can be compared and contrasted to similar findings from topic-independent 
resources. Our study presents a generalized procedure for semi-automatically 
creating a custom topic-specific molecular interaction database through the use 
of text mining to assist manual curation. We apply the procedure to capture 
molecular events that underlie ‘pain’, a complex phenomenon with a large 
societal burden and unmet medical need. We describe how existing text mining 
solutions are used to build a pain-specific corpus, extract molecular events from 
it, add context to the extracted events, and assess their relevance. The pain-
specific corpus contains 765,692 documents from Medline and PubMed Central, 
from which we extracted 356,499 unique, normalized molecular events, with 
261,438 single protein events and 93,271 molecular interactions supplied by 
BioContext. Event chains are annotated with negation, speculation, anatomy, 
Gene Ontology terms, mutations, pain and disease relevance, which collectively 
provide detailed insight into how that event chain is associated with pain. The 
extracted relations are visualized in a wiki platform (wiki-pain.org) that enables 
efficient manual curation and exploration of the molecular mechanisms that 
underlie pain. Curation of 1,500 grouped event chains ranked by pain relevance 
revealed 613 accurately extracted unique molecular interactions that in the future 
can be used to study the underlying mechanisms involved in pain. Our approach 
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demonstrates that combining existing text mining tools with domain-specific 
terms and wiki-based visualization can facilitate rapid curation of molecular 
interactions to create a custom database.   

3.2 Introduction 
	  

One of the largest and most widely used resources of online biomedical literature 
is the National Library of Medicine’s PubMed275. PubMed now searches over 23 
million biomedical records and with other biomedical literature search engines 
(e.g. Google Scholar, Web of Science and Scopus) is a typical starting point in 
biomedical knowledge acquisition and information retrieval (IR)116, 117. For 
example, a researcher searching for ‘pain’ on PubMed will retrieve 521,141 
citations (March 6th 2013). This highlights the key problem that arises when the 
number of relevant unstructured documents from a topical search exceeds the 
limits of a researcher’s ability to read all (or many) of them. An alternative is to 
use manually curated resources. Topic-specific curated databases often arise 
because of unmet needs from existing resources, leading to curation of data not 
captured by more general sources. They often contain added context that aids the 
intended users134, 136, 139, 276. Extracting, normalizing and cataloging relevant 
concepts and facts from free text by dedicated curators make it possible to deal 
with otherwise unwieldy amounts of information. Accordingly, topic-specific 
databases that house these findings are rapidly accumulating at an increasing 
rate277. Creation of topic-specific databases is well documented278-280, and there are 
recurrent themes in the processes used to build high-quality resources.  
Document triage can be as simple as keyword searches281-283, but many of these 
sources have matured enough to shift to sophisticated document classification 
algorithms282, 284.   

In parallel, there is increasing focus on building tools to help defray the high cost 
of manual curation276.  There are few databases that are up-to-date with all 
available relevant information; funding for manual curation is the limiting factor, 
rather than finding papers to curate.  Assisted curation, e.g. through the process 
of applying text-mining (TM) tools to highlight curatable events, has been 
repeatedly shown to increase efficiency and reduce curatorial errors285.  
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In addition to using TM tools to highlight facts within a paper, they can also be 
used to highlight common facts across papers.  We recently reported the 
recreation of a database of human-HIV-1 protein interactions286 wherein we 
proposed a method to group identical interactions mentioned in multiple papers. 
To increase coverage of unique interactions, it is then only a matter of manually 
curating selected examples from each group of potentially equivalent interaction 
mentions. In this system, only one instance of a grouped text mined interaction is 
required to confirm it as a true positive, enabling rapid validation of molecular 
interactions derived from TM. Such an approach would acknowledge unique 
interactions as the primary target of knowledge capture rather than individual 
mentions, as these are often a very valuable feature used by researchers in 
inferring trends from the overall interactome11.  

In this study we explore whether TM tools can be used to create a full-scale 
disease-specific molecular interaction database from start to finish. Chronic 
neuropathic pain is an important public health problem which approximately 5-
8% of the European population suffers with287. Current treatment regimens are 
not universally adequate with only 30-50% of patients reporting an appreciable 
reduction in pain and improvement in their quality of life using the currently 
available analgesic drugs such as the gabapentinoids, opioids and selective 
serotonin reuptake inhibitors such as Carbamazepine288. In addition, the use of 
these drugs is often limited by unwanted side effects.  There is therefore a 
significant need for new therapeutics, which requires a better understanding of 
the mechanisms that mediate chronic pain so that new therapeutic mechanisms 
might be uncovered.  However, there are no existing extensively curated pain-
specific molecular interaction databases to facilitate this. 

To build a comprehensive pain-related molecular interaction database, we 
created a pain-specific corpus of biomedical documents using all abstracts and 
titles from PubMed and full text from open access PubMed Central (PMC). From 
this pain-relevant corpus, we extracted all molecular interactions using the 
existing BioContext database constructed from the state of the art in TM. We 
used existing contexts from this database and added further contexts, such as 
pain and disease relevancy to interactions, to increase their value to researchers. 
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Finally, we made available the interaction data retrieved to allow manual 
curation of the grouped results, with the ultimate aim of creating a highly 
accurate, pain-relevant molecular interaction database.  

3.3 Methods 
	  

 

Figure 3.1. Diagrammatic representation of methodology. 
Our methodology is divided into three main parts: (i) building a topic-specific corpus and 
evaluation of document scoring; (ii) data extraction (extracting molecular interactions and adding 
contexts) and their associated evaluations (iii) visualization and availability for manual curation 
of results. Each of these is described in detail within the methods section.  

3.3.1 (i) Building a topic-specific corpus 
	  

Dictionary generation and document retrieval 

The first step in generating a full-scale biomedical corpus of documents relevant 
to pain was to create a pain terms dictionary that could be used to match pain-
associated biomedical text. As a basis for the pain terms dictionary we added 
terms from an online glossary289, various pain review articles92, 290, 291 and an in-
house term set. Case-sensitive synonyms used in the literature supplemented 
long forms of pain terms. Ambiguous terms were excluded (e.g. acronyms and 
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terms commonly used in other fields), as these have been shown to increase false 
positive results in IR292, 293. 

Dictionary development was iterative, with two rounds of: dictionary term 
review; document retrieval; manual assessment of retrieved documents for 
absent or ambiguous terms; and dictionary modification. After an initial review 
of retrieved pain documents, we enhanced the pain terms dictionary to improve 
this procedure. Firstly, we added terms to the dictionary that we flagged as false 
negatives from the initial corpus evaluation. Secondly, we developed a support 
tool able to rank strings of tokens based on the proportion of stop words they 
contained and their size (in number of words). Using this tool we took the text 
from the top ranked 10,000 pain articles to create a list of potential phrases that 
might be associated with pain. We then manually went through the top terms in 
this list, adding 33 extra terms to our dictionary. The final dictionary contained 
583 terms and 3,144 synonyms.  

Each term in the dictionary was assigned one of 12 pain-related categories (e.g. 
pain type, disorder, pain drug, anatomy, condition, etc.; see supplementary file 1 
for details) to provide more contextual data later in our analysis. Furthermore, a 
specificity assignment was given to each term to reflect whether the term is 
specifically relevant to the biomedical research field of pain or if it is a more 
general term that could apply to other research areas, but still has a prominent 
relevance to pain research. For example, the term ‘neuropathic pain’ was 
categorized as a pain type and classified as ‘pain-specific’. On the other hand, the 
brain region locus caeruleus is not a term synonymous with pain, but it is relevant 
to pain as an anatomical region involved in the sensation; these are called “pain-
relevant”. In general, terms were classified as pain-specific (and assigned a 
weight of 2) if they were a type of pain disorder, a drug or surgical procedure 
used to treat pain, a gene with genetic association to pain, or a target of a pain 
drug.  Pain-relevant terms (weight of 1) tended to be anatomically or 
physiologically relevant concepts.  The terms and synonyms, including their 
categorization and pain specificity scores, were inspected by a biologist with 
pain expertise.  
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In order to match pain-specific terms from our dictionary to biomedical text we 
used LINNAEUS191, a named entity recognition tool able to match terms from a 
pre-defined dictionary to text. We note that only pain-specific terms were used 
for document retrieval. We implemented LINNAEUS’ in-built post-processing 
feature to resolve ambiguity in the results (i.e. terms that corresponded to more 
than one pain term identifier) and allow the capture of abbreviations associated 
with terms in the dictionary. We applied this to all abstracts, titles and MeSH 
terms in Medline (May 2012 release) and to full text in open access PMC (2011 
release) that were classified as review or research articles. From herein we refer 
to our final pain corpus as P1. 

Document relevance scoring 

To quantify the relevance of each retrieved document in the corpus, a document 
relevance scoring scheme was developed that makes use of both pain-specific 
and pain-relevant terms, as well as the position of each term’s mention in the 
document (i.e. title, abstract, MeSH or body). Each pain term matched in a 
document in P1 was given an individual score based on its textual position (2 if 
appearing in the title; 1 if appearing in the abstract and in associated MeSH 
description of the document; 0.25 otherwise) and the pain-specificity of the term 
(2 if pain-specific; 1 if pain-relevant). These individual scores are then used to 
determine an overall document relevancy score to pain by summing up the score 
of all pain terms: 

 

where  is a term’s pain-specificity weight,  is a term’s position weight and n 
is the number of pain terms in the document. We can similarly calculate pain 
category relevancy scores (by summing up the score of all pain terms mentioned 
for each category) and individual pain term relevancy scores (by using all 
mentions of a given pain term) in each document.  

Evaluations 



	   	   	   87	  

To evaluate the effectiveness of our document-scoring scheme we selected all 
documents from P1 containing the MeSH term ‘Pain’ and then compared the 
distribution of document scores for those that had ‘Pain’ as a major MeSH term 
and those that had ‘Pain’ as a minor MeSH term. We also evaluated individual 
pain terms matched within 50 documents that had been retrieved in P1. To 
ensure that we evaluated documents across our pain document scoring range, 
we randomly selected 10 that scored between 1-3 in pain relevancy, ten between 
3 and 10, ten between 10 and 25, ten between 25 and 50 and ten with a score of 50 
or greater. 

3.3.3 (ii) Data Extraction 
	  

Extracting molecular interactions  

In order to retrieve the molecular interactions from P1, we used the BioContext 
database227. The BioContext database was created from a pipeline of state of the 
art biomedical TM tools applied to the whole of Medline (May 2011 release) and 
OA PMC (May 2011 release). Each record in the BioContext database is 
organized into an event chain originating from a single sentence. Every event 
chain has a minimum of one and a maximum of three events that were extracted 
by a union of two event extraction tools260, 265. 

Events are categorized into nine types as defined by the GENIA ontology169, 294, 
covering protein metabolism (protein catabolism, gene expression and 
transcription), phosphorylation, localization, binding and regulatory events 
(positive regulation, negative regulation and regulation). Metabolic events, 
phosphorylation and localisation have a single gene, protein or RNA molecule(s) 
as their theme (subject), whereas binding events have one or more gene(s), 
protein(s) or RNA molecule(s) as their theme. Regulatory events are special in 
that their theme may be a gene, protein, RNA molecule or another event. They 
are also unique in that they may have a gene, protein, RNA molecule or another 
event as their cause. Event chains can thus be formed involving multiple 
molecules and events. For example, “CCK-induced expression of fos” would 
create an event chain of “CCK Positive Regulation (induced) of Gene Expression 
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of Fos”. A summary of the events and examples of the event chains that can be 
formed is provided in supplementary file 2. 

The genes, transcripts and proteins that form the themes and causes of each 
event were extracted using GNAT216, 273, 295 and GeneTUKit274. Where possible, 
each mention is then normalized to a species using LINNAEUS191 and further 
normalized to an Entrez Gene ID296 and finally a homologene ID297.  

We took all event chains from BioContext that were extracted from documents 
present in P1. We then grouped event chains together that contained the same 
sequence of proteins and events. For example, mentions of the event chain “Ros1 
Positive Regulation of NFKB1” extracted from multiple sentences and 
documents were grouped into a single record. Entrez Gene IDs were used to 
group proteins instead of gene symbols to prevent erroneous grouping caused 
by naming ambiguity.  

To group event chains involving a binding event with two molecules we had to 
resolve instances where the order of the proteins varied across analogous event 
chains. For example, one event chain may be directed as, “Binding of CD44 and 
MMP9” whereas another may vary as such, “Binding of MMP9 and CD44”. 
Since the order of proteins in binding events does not infer any functional 
characteristic of the data (binding of CD44 and MMP9 is the same), classing these 
as separate unique event chains when grouping would be erroneous. Thus, we 
rearranged binding proteins numerically using Entrez Gene IDs when proteins 
were normalized or alphabetically otherwise.  

During the grouping of each event chain we recorded the total frequency of that 
event chain and the number of documents that each event chain was reported in. 
We also stored the number of molecules involved in each event chain. This 
enabled us to define molecular interactions as those event chains containing two 
proteins, genes or RNA molecules. Those containing only a single molecule are 
referred to as single events. TM confidence scores provided by BioContext for 
each grouped event chain were determined by taking the highest confidence 
score from the associated event chains used in the grouping. 
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Molecular interaction extraction evaluation 

The individual tools used in BioContext to create the event chains used in this 
study have already been extensively evaluated227. We used the results from the 
final manual curation step (see below) for direct evaluation of grouped molecular 
interactions.  

Pain relevant interactions extracted for this study should be enriched for proteins 
previously linked to pain. Therefore, we also undertook an enrichment analysis, 
comparing event chains retrieved from P1 with a set of interactions derived from 
a random set of documents for the presence of known pain associated proteins. 
The genes/proteins used as a gold standard pain set were taken from the Pain 
Genes DB298. This set contained 297 unique, manually curated genes. We 
measured how many unique and total mentions of genes were present in our 
event chains (both single events and molecular interactions). The generic set of 
event chains was formed from the same number of randomly selected Medline 
and PMC documents as P1, but which were not present in P1. Event chains from 
this random document set (referred to as R1) were then extracted from the 
BioContext database and grouped using the same procedure as used in 
constructing the event chains from P1. Unique and total mentions of pain genes 
present in R1 event chains were then determined. Fisher’s exact test was used to 
statistically evaluate whether P1 was enriched for pain genes in event chains in 
contrast to R1. 

Adding context to molecular interactions 

As well as the species context for proteins, BioContext also contains anatomy, 
negation and speculation context for each event chain. Anatomical mentions in 
the text (such as “peripheral nerve” or “spinal cord”) and cell-line mentions used 
as proxies for anatomical locations were extracted using GETM299. These 
anatomy mentions were, where possible, mapped to events to provide detail on 
the anatomical location of an event.  

Negation and speculation detection was provided for each event in BioContext 
using a modified version of Negmole300. Instances of negation (e.g., “Lep did not 
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bind to Obsty1”) and speculation (e.g., “Lep maybe binds to Obsty1”) are 
extracted and annotated on the resulting event chain (i.e., “[Negative] Binding of 
Lep and Obsty1” or “[Speculative] Binding of Lep and Obsty1”).  

We additionally provide four other contextual features: associated GO terms and 
mutations, and pain and disease relevance scores.  

GO terms128 and their overarching GO Slim terms301, 302 were added to normalized 
proteins where feasible to provide more functional information on proteins 
involved in each event chain. This was achieved using the publicly available 
Gene2Go mapping of Entrez Gene IDs to GO IDs available on the National 
Center for Biotechnology Information FTP service303.  

Point mutation context was added to proteins in event chains by using 
MutationFinder to match and normalise mutation instances in the text 193. 
MutationFinder was run only on sentences that were the source of each event 
chain in our pain set. However, since MutationFinder is unable to link mutations 
to any associated protein mentions in the text, we designed and implemented 
our own system to do this. We formulated a number of priority-ranked regular 
expressions to match commonly occurring textual patterns, e.g., “<protein> - 
<mutation>” or “<mutation> for the <protein>”. Our system also allowed 
individual proteins to match multiple mutations, e.g. “mutations <mutation A>, 
<mutation B> and <mutation C> for <protein>”. The regular expressions used 
are provided at wiki-pain.org/downloads. 

We designed a novel method to calculate the relevance of each pain term to an 
event chain in a document (note that this is distinct from the document relevance 
method described above). The score ranges from 5 to 100 and reflects the 
likelihood that a pain term is relevant to a given event chain.  The algorithm uses 
the document sections in which the pain term and the event chain are mentioned 
(i.e. title, abstract, MeSH and body), whether they co-occur in a sentence, and 
where appropriate the distance between the two and the order that each is 
presented. For example, a pain term mentioned in the same sentence as an event 
chain receives a score of between 75-100. Pain terms matched in different sections 
to a given event chain are given lower relevancy scores. We were then able to 
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produce an overall relevancy score to pain for an event chain using individual 
relevance scores of each pain term above 50 to that event chain and weighting by 
pain-term specificity. A more detailed description of the scoring calculation with 
examples is provided in supplementary file 3. 

The final context added to our event chains is disease relevancy. Pain, although 
often considered a disease in itself, is commonly related to symptoms of a whole 
host of other diseases. To allow researchers to explore these trends in relation to 
interactions, we matched disease terms from an in-house disease lexicon 
(containing 4,861 terms with 205,373 case-sensitive synonyms) to P1 using 
LINNAEUS191. We then adopted the same method used in the pain relevancy 
scoring to calculate the relevancy of each event chain to each disease term match 
and from these the overall disease relevancy of each grouped event chain 
(without the term weighting). 

Context evaluations 

We did not repeat the existing evaluations performed in BioContext227 for 
anatomy, negation and speculation contexts. Similarly, mutation detection and 
normalization had also been previously evaluated for MutationFinder193. 
However, to evaluate the mutation to protein linking method we selected 100 
event chains that matched at least one mutation in the original sentence used to 
extract the data. As well as noting true positives, false positives and false 
negatives we marked true negatives defined as those mutation mentions 
correctly left unlinked to a protein in an event chain. 

To assess the event chain relevancy scoring system to individual pain terms we 
randomly selected 100 linked event chains and pain terms that scored above 50 
and another 100 that scored below 50. A true positive was given if the term bared 
some notable relevance to the event chain in question, whether a direct or 
indirect association.  

Our disease relevancy evaluation first assessed the disease term matching 
performed by LINNAEUS in 50 randomly selected documents that had matched 
at least one disease term. As above for the pain relevancy evaluation, we selected 
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100 linked event chains and disease terms that scored over 50 and another 100 
that scored below 50 for disease term to event chain relevance evaluation.  

3.3.4 (iii) Availability and visualisation for manual curation 
	  

To visualize and make our data available to researchers, the MediaWiki (version 
1.19) framework was used, as this platform has been successfully utilized in 
other database representations304. The primary use of this system (available at 
wiki-pain.org) is to support curation of pain-related molecular interactions by 
providing an infrastructure for assessing data proposed by TM as described 
above. We built wiki-pain.org using the MediaWiki API to automatically upload 
pages constructed from our databases305. 

As a pilot, we performed manual curation on the top 1,500 grouped molecular 
interactions (ordered by overall pain relevancy scores) involving human, mouse 
or rat proteins and excluding self-interactions, marking each as either a true 
positive or false positive. The task was spread across three curators, 500 assigned 
to DJ, 500 to BS and a further 500 to 3 biologists.  

Traditional evaluations of events and their protein constituents have focused on 
selecting a set of articles and scanning the text for requisitioned data and 
comparing this against the data retrieved306. As grouped interactions can be 
formed from a number of different documents, to fully evaluate even a small 
number of these using a traditional evaluation would require masses of 
documents to be assessed. Thus, we chose to evaluate grouped event chains by 
selecting individual mentions of an event chain ordered by TM confidence and 
their associated sentences (and documents if needed for further verification) and 
used these to determine whether an overall grouped event chain was a true 
positive or a false positive. We required only one correct individual event chain 
of a group to determine it as an overall true positive. While this form of 
evaluation requires much less time spent reading each full article, we recognise 
that as a result we do not measure the frequency of false negative instances.  

We evaluated each individual event chain using the stringent form of evaluation 
as described previously286. This evaluation requires the full event chain including 
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all of its participants to have been extracted and normalized accurately to their 
correct species and Entrez Gene ID in order to be classed as a true positive.  

To assess the quality of our manual curation, we determined the inter- and intra- 
annotator agreement by one curator blindly re-curating 50 randomly selected 
molecular interactions previously curated by that curator (intra) and 50 
randomly selected molecular interactions previously curated by other curators 
(inter). Furthermore, to assess how many individual mentions a curator needed 
to curate in order to determine a grouped molecular interaction as a true 
positive, we sampled 100 random true positive grouped interactions that 
contained at least 5 mentions of that interaction from our curated data. We then 
assessed the proportion of individual mentions that were correct in each grouped 
molecular interaction.  

3.4 Results and Discussion 
	  

3.4.1 (i) Building a topic-specific corpus 
	  

Pain terms dictionary 

Figure 3.2 displays the final counts of pain-specific and pain-relevant terms and 
synonyms for the 12 categories of pain terms. In total there were 583 terms (235 
pain-specific and 348 pain-relevant) and 3,144 case-sensitive synonyms (1,506 
pain-specific and 1,638 pain-relevant). We note that there are high proportions of 
pain-specific ‘disorder’ and ‘pain type’ pain terms. This is perhaps due to the fact 
that the field of pain is more succinctly encapsulated in these categories. We 
note, that while in this study the pain terms dictionary created was sufficient for 
building an accurate corpus of pain documents, future recreations of our 
approach in other biomedical fields may be better suited to using existing 
ontologies and controlled vocabularies (such as, for example,  SNOWMED CT307). 
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Figure 3.2. Pain dictionary summary statistics.  
(A) represents the numbers of pain-specific and pain-relevant terms in the pain dictionary for 
each category of pain term. (B) shows the numbers of pain-specific and pain-relevant synonyms 
in the dictionary for each category of pain term.  

Document Retrieval 

The total number of matches in different document sections of pain-specific and 
pain-relevant terms for each pain term category is shown in Figure 3.3. There 
were matches of pain-specific and pain-relevant terms in all of the 12 categories 
with a large proportion coming from disorder terms. Altogether there were 
4,645,861 pain term matches, 2,548,287 pain-specific and 2,097,574 pain-relevant. 
Matches of pain-specific and pain-relevant terms were made across each type of 
document section in P1 with a large proportion being made in the abstracts. 
However, while this distribution of terms across different textual sections is 
representative of our corpus, we would expect that the proportion of terms 
found in the body of a document would be far greater had we had excess to full 
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text not available in our Medline dataset. For instance, if we exclude Medline 
documents from our sectional analysis, 91% of matches are found in the body. 

 

Figure 3.3. Pain term matches.  
Pain term matches from Medline (A) and open access PMC documents (B) in each type of 
document section across the 12 pain term categories are displayed. The overall percentage of 
pain-specific and pain-relevant terms from Medline and open access PMC documents are shown 
for each type of document section. “Body” represents full-text outside of abstracts and titles. 
MeSH refers to textual document tags used by PubMed articles in indexing.  

Table 3.1 displays the top 10 reported pain terms in P1, ordered by the number of 
documents that they were reported in. Nine out of ten terms were pain-specific 
and they accounted for roughly 25% of all matches. From our pain-specific 
matches there were 765,692 documents (732,826 Medline and 32,866 PMC) that 
matched at least one term. Of the 32,866 PMC open access documents that were 
part of P1, these composed roughly 17% of the entire PMC open access corpus in 
comparison to 7% of Medline from 732,826 documents. It is likely that this 
disparity was caused by a greater availability of text accessible for matching 
terms from our pain dictionary in full text documents. This perhaps indicates 
that many documents that are pain relevant in Medline have been missed, as we 
have not had access to terms located in associated full text. 
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Pain Term Category Pain Specific Frequency Documents 
Pain Disorder Yes 627,644 247,312 
Anaesthesia Pain type Yes 190,376 115,614 
Analgesic Drug class Yes 112,703 61,223 
Headache Disorder Yes 118,956 50,249 
Brain haemorrhage Disorder No 85,702 45,214 
Opioid Drug class Yes 77,921 33,486 
Morphine Drug Yes 119,985 33,337 
Analgesia Pain type Yes 64,777 31,982 
Palliative Treatment Yes 51,401 27,536 
Abdominal pains Pain type Yes 33,916 25,062 
Table 3.1 Top reported pain terms in P1.  
Pain term refers to the individual pain term and all it’s synonyms. Pain terms are pain-specific 
(yes) or pain-relevant (no). Pain term categories are defined in supplementary file 1. ‘Frequency’ 
refers to the total number of times that that term was mentioned. ‘Documents’ refers to the 
number of documents that that term was mentioned in. 

The overall pain document relevancy scores are summarized in Figure 3.4. The 
analysis of this scoring scheme showed that documents with the MeSH term 
‘Pain’ as a major term scored significantly higher than those that had ‘Pain’ as a 
minor MeSH term when using a Wilcoxon/Krustai-Wallis test (Z=-49.326 and 
p<0.001). Further information is provided in supplementary file 4. This initial 
evaluation shows that as well as being able to retrieve pain documents, we can 
also differentiate between these in terms of their overall relevance to pain using 
our scoring system. As well as this overall pain relevancy score, the pain 
category and individual pain term scores allow for exploration of specific aspects 
of pain. Indeed, our evaluation of the pain terms present in 50 reported pain 
documents showed 100% precision and 89.6% recall (see Table 3.7), highlighting 
that we have been able to extract individual pain concepts with high accuracy.  

However, we note from Figure 3.4 that documents where full text was used 
scored higher than articles with only abstracts and titles available, highlighting a 
potential issue in our scoring method when using documents of varying textual 
lengths. At present, our method partially addresses this by scoring terms 
matched in the body of an article with 0.25, in comparison to terms scored with 1 
in the abstract and 2 in the title. However, in future corpus generation the section 
weights could be adjusted to produce a score that does not bias full text articles 
into being scored higher.  
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Figure 3.4 Document pain relevancy scores.  
Pie charts represent the overall pain scores for Medline (abstracts and titles) and open access 
PMC documents. Pain relevancy ranges between 0-3, 3-10, 10-15, 25-50 and >50. 

3.4.2 (ii) Data extraction 
	  

Event chains 

In total there were 1,578,654 event chains from the BioContext database present 
in P1. After grouping these event chains, there were 356,499 unique event chains, 
with 261,438 single events, 93,271 containing two participants (i.e. molecular 
interactions) and 1,790 involving more than two participants. Table 3.2 shows the 
frequencies of single events, molecular interactions and interactions with more 
than two participants involving proteins normalized to humans, mice, rats and 
other species. Human, mouse and rat proteins incorporated 44% of unique single 
events and 37% of unique molecular interactions with the other proteins in event 
chains being normalized to 1,230 different species. As humans, mice and rats are 
the standard animal species studied in pain molecular research, these results 
show that there are large amounts of useful data available for curating a pain 
relevant molecular interaction database. 

Table 3.3 shows the number of grouped event chains involving events of protein 
metabolism, binding, localization, phosphorylation and regulation. We found 
large numbers of regulatory and binding events involved in all types of event 
chains and high numbers of gene expression events in single events.  
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Involving only Single Events 
Molecular 
Interactions  

More than 2 
Participants Total 

Human Proteins 45,731 14,568 262 60,561 
Mice Proteins 41,671 12,956 230 54,857 
Rat Proteins  26,736 7,369 132 34,237 
Other Proteins 147,300 58,378 1166 206,844 
Total 261,438 93,271 1790 356,499 
Table 3.2 Event chains from P1.  
Event chains are shown for those involving only human, mice, rat and other proteins as their 
cause and/or theme. Event chains are divided into single events, molecular interactions (i.e. 
those containing two participants) and event chains with more than two participants. Total 
numbers of events chains by number of participants and by proteins involved are displayed.  

Event Type Single Events 
Molecular 
Interactions  

More than 2 
Participants 

Binding 33,358 37,291 (37,315) 897 (919) 
Gene expression 78,255 12,223 (12,482) 95 
Transcription 12,158 1,238 10 
Localisation 27,329 5,355 (5,368) 50 
Phosphorylation 7,360 1,782 (1,784) 37 
Protein catabolism 5,296 467 6 
Positive regulation 69,846 (75,064) 32,222 (35,740) 1,174 (1,650) 
Negative regulation 52,754 (54,729) 13,698 (14,870) 541 (624) 
Regulation 41,137 (42,422) 19,271 (19,783) 468 (551) 
Table 3.3 Event types involved in event chains.  
Non-redundant frequencies of single events, molecular interactions (i.e. those containing two 
participants) and event chains containing more than two participants are displayed for each of 
the 9 categories of events used by the event extractors. The numbers in brackets represent the 
total number of occurrences of that event type where some events have duplicate (redundant) 
event types, e.g. ‘positive regulation of positive regulation of protein A’. 

In total there were 37,628 grouped event chains that were reported negatively at 
least once. 24,142 of these potentially represented contradictions with some 
mentions of a grouped event chain being reported negatively and others 
positively. Of those event chains that were reported more than once there were 
only 25% (369/1457) that were reported entirely negatively (Figure 3.5). A total 
of 31,275 (26,268 single events and 4,909 molecular interactions) grouped event 
chains were reported speculatively at least once. Of those event chains that had 
been reported more than once, 277/1207 molecular interactions and 382/20,931 
single events were reported entirely speculatively  
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Figure 3.5 Number of negated event chains.  
“Mixed” refers to event chains that have been mentioned both negatively and positively. “All 
negated” refers to the number of event chains that are only mentioned negatively. Proportions of 
mixed and negated data are shown for all molecular interactions and single events that have been 
mentioned more than once or more than five times.  

 

From the 356,499 grouped events chain, 172,294 were mapped to at least one 
anatomical region. Table 3.4 exhibits the top 10 anatomical regions (of 2,774 total) 
associated with event chains retrieved from P1; these made up about 27% of all 
anatomical mentions in our pain dataset. We note high numbers of immune 
anatomical structures, which is not unexpected with pain-related data 290.  
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Name Frequency 
Neurons 37,666 
Plasma 36,969 
Brain 31,775 
Blood 19,291 
T cells 16,092 
Liver 15,650 
Spinal Cord 14,453 
Macrophage 13,409 
Neuronal 12,368 
Nerve 11,355  
Total 761,990 
Table 3.4 Top 10 anatomical regions associated with event chains.  
Anatomy terms are extracted using GETM.  

From sentences used to extract event chains in P1 we were able to map 2,997 
mutations to proteins involved in single events and 721 mutations to proteins 
involved in molecular interactions.  

Table 3.5 provides an overview of the overall pain relevancy scores calculated for 
each unique event chain in our dataset involving human, mouse or rat proteins 
(the most commonly studied animal models in pain research) and excluding self-
interactions (e.g. “Binding of Tprv1 and Tprv1”). The mean overall pain 
relevancy score for these was 0.33, with a median of 0.15 and standard deviation 
of 0.64. There were 25,593 medium pain ranked (between 0 and 1 in overall pain-
relevancy) and 2,646 highly relevant (greater than 1 in overall pain relevancy) 
unique pain molecular interactions.  

Pain Relevancy 
Score 

Single Events Molecular 
Interactions  

More than 2 
participants 

Total 

Low (0) 22,623 9,240 191 32,054 
Medium 
(>0,<=1) 

62,640 25,593 520 88,753 

High (>1) 28,875 2,646 42 31,563 
Table 3.5 Overview of overall pain relevancy scores for unique event chains involving human, 
mouse or rat proteins and excluding self-interactions.  
We show the frequency of unique single events, molecular interactions (i.e. two participants) and 
event chains with more than two participants with a low (0), medium (>0,<=1) or high (>1) 
overall pain relevancy score.  

In total we matched 6,792,990 disease terms in 618,487 documents from P1, 
allowing 3,041,109 disease terms to be mapped to 1,402,560 event chains. Table 
3.6 displays the top diseases associated with P1 documents containing event 
chains. While generic classes of disease terms, such as ‘disease’, ‘injury’ and 
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‘inflammation’, featured in the top 10, there were also high numbers of 
‘diabetes’, ‘pain’, ‘depression’, ‘cancer’ and ‘HIV’ associated event chains. We 
note that these have a large neuropathic pain component. 

Disease Name Disease term 
mentions 

Disease 135,367 
Pain 122,233 
Cancer 117,041 
Inflammation 101,059 
Injury 59,237 
Infection 57,481 
Diabetes Mellitus 50,705 
Stress 41,056 
Depression 39,762 
AIDs or HIV infection 30,872 
Total  3,041,109 
Table 3.6 Top diseases associated with documents containing event data.  
Here we report the total number of disease term mentions in documents that contain at least one 
event chain. 

Data extraction evaluations 

Table 3.7 displays the results for all of the new evaluations of methods used in 
this study.  

Our mutation-to-protein linker (of co-occurring mentions in sentences) extension 
for MutationFinder showed precision of 97.3% and recall of 72% to give an F 
score of 82.7%. The mutation-to-protein linker also showed a 99.1% true negative 
rate to give an accuracy of 90.6%. Improvements to recall can be facilitated by 
extending our library of regular expressions. At present our tool is only able to 
normalize proteins to mutations that are both denoted in the same sentence; 
however, in our analysis we noted a large number of proteins associated with 
mutations that were defined outside of the sentence. This limitation, as well as 
the accuracy involved in extracting the original event chain and the mutation 
mention itself, is important to consider when using such data.
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Tool Data True 
Positives 

False 
Positives 

True 
Negatives 

False 
Negatives 

True 
Negative 
Rate 

Precision Recall Accuracy F Score 

Pain Terms 
(LINNAEUS) 

50 
Documents 

3,803 0 N/A 443 N/A 100 89.6 N/A 94.5 

Mutation to 
Protein Linker 

100 Event 
Chains 

36 1 109 14 99.1 97.3 72 90.60 82.7 

Pain 
Relevancy 
(>50 
confidence) 

100 Event 
Chains 

78 22 N/A N/A N/A 78 (92 
expected) 

N/A N/A N/A 

Pain 
Relevancy 
(<=50 
confidence) 

100 Event 
Chains 

39 61 N/A N/A N/A 39 (20 
expected) 

N/A N/A N/A 

Disease Terms 
(LINNAEUS) 

25 
Documents 

345 16 N/A 15 N/A 95.6 95.8 N/A 95.7 

Disease 
Relevancy 
(>50 
Confidence) 

100 Event 
Chains 

84 16 N/A N/A N/A 84 (88 
expected) 
 

N/A N/A N/A 

Disease 
Relevancy 
(<=50 
Confidence) 

100 Event 
Chains 

30 70 N/A N/A N/A 30 (13 
expected)  

N/A N/A N/A 

Table 3.7 Evaluations of TM software used.  
For each tool evaluated we display a summary of the data used in the evaluation (either documents or event chains), and the frequencies of true 
positives, false positives, false negatives and true negatives for each tool wherever possible. From the true positives, false positives, false negatives 
and true negatives we calculated the true negative rate, precision, recall, accuracy and F score of each tool where applicable. In pain and disease 
relevancy we also note the expected precision calculated from the average relevancy score of each term in the respective evaluation. 
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In the evaluation of pain terms relevant to event chains with scores above 50, we 
judged 78/100 as relevant. These results are lower than the predicted 92/100 
taken from the average relevancy score across the 100 event chains evaluated. We 
noted that ‘molecule’ and ‘family’ category pain terms were more likely to be 
irrelevant to an event chain when mentioned outside of the sentence the event 
chain was denoted in. By contrast, the evaluation of pain terms relevant to event 
chains with scores below 50 showed that 39/100 relevant pain term-event chain 
pairs, whereas the expected value was 20/100. The higher than expected number 
was mainly caused by ‘disorder’ pain terms that, although mentioned in distant 
sentences to the event chain, were still perceivably relevant.  

Judging from 25 documents, our disease term matching showed a precision, 
recall and F score of 96%. Our evaluation of the linking of these terms to event 
chains in which relevancy scores were above 50 showed 84/100 relevant disease 
term-event chain pairs. The average predicated relevance score across each 
linked disease term-event chain pair was 88, indicating that our high relevance 
predictions were fairly accurate. However, in the evaluation of relevancy of 
disease terms-event chain pairs with scores below 50 we found 30/100 disease 
terms to be relevant compared to the 13/100 predicted. As with our low pain 
relevancy evaluation findings, we found that disease terms could still be relevant 
to an event chain even if they were mentioned in paragraphs and sentences far 
away from the event chain in the text. These issues for both pain and disease 
relevancy can be resolved by adjusting each approach to more closely reflect the 
likelihood of actual disease or pain relevancy.  

Because we are using event chains directly from BioContext, we expect that event 
extraction precision and recall will be consistent with previously reported ones 
227, 286.  Indeed, benchmarking against a small manually curated gold standard of 
five full text documents reported similar precision, recall and F-score of 35%, 
58% and 44%, respectively. A detailed analysis is available in supplementary file 
5. A comparison of TM data against existing generic manually curated databases 
is difficult as there are no extensive pain-focused resources that can be used 
directly. Instead, we have explored the intersection between our TM results and 
iRefIndex, a large generic molecular interaction database containing interactions 
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from numerous species sourced from various individual manually curated 
databases 308. As expected, the overlap is not significant (only 21 interactions) 
given the difference in the criteria used to extract and represent the data between 
datasets. We have provided this analysis in supplementary file 6. 

To determine whether genes known to be related to pain were enriched in the P1 
extracted events, an enrichment analysis was performed (Table 3.8). In total 
280/297 genes in the Pain Genes DB were mentioned in at least one of our event 
chains. These genes were mentioned in 4.54% of event chains in P1, which was 
more than double the 2.14% found in R1. Fisher’s exact test confirmed P1 to be 
enriched for these genes with an odds ratio of 2.18 and a highly significant P 
value (<2.2e-16), suggesting that the overall dataset of molecular events 
recovered from our corpus are relevant to pain. 

Corpus Event chains 
mentioning a 
pain gene 

Event chains not 
mentioning a 
pain gene 

Total event 
chains 

% of event 
chains with a 
pain gene 

P1 71,685 1,506,969 1,578,654 4.54 
R1 47,998 2,196,618 2,244,616 2.14 
Table 3.8 Pain genes enrichment analysis.  
P1 represents the pain corpus and R1 represents the randomly generated generic corpus. We 
show frequencies of event chains mentioning a gene from the Pain Gene DB for each corpus and 
event chains not mentioning a gene from the Pain Gene DB. We also display total event chains for 
each corpus and the percentage of event chains that contain genes from the Pain Gene DB. 
Fisher’s exact test showed significant enrichment of pain genes within P1, having an odds ratio of 
2.177008 with a p value <2.2e-16. 

Of the 17 genes from the Pain Genes DB that were not mentioned in event chains 
from P1, 15 were mentioned in BioContext event chains extracted from Medline 
and PMC documents there were not in P1. To determine why these genes were 
found outside of P1, we selected five random articles that mentioned one of these 
genes in an event chain for each of the 15 genes (75 articles in total). Of the 75 
articles, they were all pain-irrelevant, with a small number mentioning pain-
relevant terms (e.g. GABA). Four of the genes did not have a correctly reported 
mention in the articles sampled, with the majority of the errors coming from 
erroneous gene name normalization (see ‘Manually curated data’).  
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3.4.3 (iii) Availability and visualisation for manual curation 
	  

Data availability 

We uploaded the data retrieved from our investigation onto wiki-pain.org. At 
the core of the wiki are the ‘INT’ pages (Figure 3.6) used to display each grouped 
event chain relevant to pain. Within each page summary, contextual data is 
displayed at the top, providing a concentric view of that event chain’s relevance 
to pain. Beneath the summary information are the sentences where the data was 
extracted from highlighting entities extracted using a color-coded key. Each 
sentence then has its own summary providing links back to its original source 
among other useful contexts that can be used for further investigation. 

The INT pages are named using INT IDs to enable linking across the site. Most 
INT links stem from summary tables created to help guide users to the most 
relevant information. For example, the entry page on the wiki contains summary 
tables of all interactions and single events in the database ordered by their 
overall relevance to pain. Other summary tables can be found on gene pages, 
journal pages, event type pages, disease term pages etc. linking interactions 
specific to page type e.g., on the G:60628 (CXCR4) page only event chains 
mentioning this gene are displayed. 
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Figure 3.6. Example of a typical molecular interaction in wiki-pain.org.  
We have removed the page borders that are typical of a Mediawiki interface and annotated each 
region of the page that we have designed and is novel. All ‘INT’ pages on wiki-pain.org follow 
the same framework including single events and event chains containing more than two 
participants. The specific page shown can be viewed by searching ‘INT106559’ on wiki-pain.org. 
 
Manually curated data 

The manual curation of the top 1,500 grouped molecular interactions showed 613 
true positives and 887 false positives. This means that grouped molecular 
interactions have a precision of 40.87% before they have been curated. However, 
if we set a cut-off of 50% for the TM confidence (coming from BioContext), our 
precision more than doubled to 84.17% (117 true positives and 22 false positives). 
We also found that unique interactions mentioned in more than one document 
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were more likely to be a true positive, with precision of 59.71% (252 true 
positives and 170 false positives) in comparison to 33.48% (361 true positives and 
717 false positives) mentioned in only one document. Therefore, for supporting 
curation, it makes sense to prioritize using high confidence interactions only. 

Overall, the 613 true positives included 487 different genes, with 161 human 
proteins, 170 mouse proteins and 156 rat proteins. These genes could be grouped 
into 351 homologues (by using their homologene IDs), indicating a variety of 
different types of proteins in the curated data and not simply those proteins 
synonymous between species. Table 3.9 shows the top 10 homologues ordered 
by frequency of unique molecular interactions that each is involved in. We also 
found 90/276 homologues and 61/297 of the previously identified pain relevant 
genes from the Pain Genes DB in our manually curated dataset. These results 
indicate that we have identified additional 261 homologous sets of genes that 
could potentially be associated with pain, including 426 specific genes.  

Analysis TPs 
before 

TPs 
after 

FPs 
before 

FPs 
after 

Agreed Disagreed P(A) P(E) K 

Intra 18 12 32 38 42 8 0.84 57.3 0.427 
Inter 27 22 23 28 45 5 0.9 49.5 0.802 
Overall 45 34 55 66 87 13 0.87 51.6 0.731 

Table 3.9 Manual curation evaluation.  
We evaluate the quality of our manual curation using an intra analysis (data quality is evaluated 
by the same curator), an inter analysis (data quality originally curated by a different curator is 
evaluated) and these two are combined to show an overall evaluation of our manual curation. We 
present the number of true positives (TPs) and false positives (FPs) in the original curation 
(before) and the new curation results (after). Results that were the same were marked as ‘Agreed’ 
and those that were different, ‘Disagreed’. The absolute agreement, P(A), was calculated from the 
proportion of agreement (agreed/disagreed). Cohen’s Kappa coefficient (K) was calculated from 
the proportion of agreement, corrected for expected agreement by chance (P(E)), such that K = 
((P(A) – P(E))/(1-P(E))). 

Of the false positives, we noted commonly occurring causes such as incorrect 
protein normalization to Entrez Gene IDs and event mismatches. We also noted a 
large number of false positives caused by abbreviations tagged as proteins that 
were in fact other types of entities (e.g. “long term potentiation (LTP)” that was 
erroneously normalized to the “LTP gene”). This problem can be resolved by 
better integration of biomedical entity tagging tools to filter out instances of data 
by pre- or post-processing that which had been previously defined as another 
entity type. 
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To determine how many of the true positive molecular interactions were present 
in existing manually curated databases, we checked protein pairs from our data 
against MiMi 309, a large online database incorporating multiple data sources 
(BIND 310, HPRD 143, IntAct 311 etc.)), through the MiMi API.  In total we retrieved 
59 protein pairs in MiMi from 505 present in our dataset, indicating that the 
majority of our true positive (curated) data has yet to have been incorporated 
into the existing curated databases. 

In the assessment of the proportion of individual mentions of a grouped event 
chain that were correct we removed 12 grouped interactions from the analysis 
that had previously been reported as true positives and after review were 
determined to be false positives. From the remaining 88 grouped interactions we 
found a total of 335 correctly identified individual mentions against 105 
incorrectly identified mentions, highlighting on average 3 true positives in the 
top five mentions of a grouped interaction. These results show that for grouped 
interactions a high proportion of the top five individual mentions are correct and 
therefore curators do not need to spend added time curating each and every 
individual mention when the overall grouped molecular interaction is a true 
positive.  

Having manually curated 4% of all extracted interactions, we sought to infer 
what proportion of the uncurated interactions were likely to be true positives. 
The TM confidence score for each interaction (deduced by BioContext) separates 
the true from false positives relatively well. The true and false positive 
interactions have a mean confidence score of 0.3 and 0.1 respectively and are 
significantly different (p<0.0001). We therefore fit a generalized linear model 
following a binomial distribution with a logit link function to the confidence 
scores from the curated data, so that we can assign a probability of being correct 
to the remaining 36,732 grouped interactions.  We found that interactions with a 
TM confidence score above 28% were likely to be true positives.  Using this 
measure, we can predict that 5,816 of the remaining interactions are more likely 
to be true positives than false positives (see supplementary file 7 for further 
details on these calculations). For this study, it took on average one working day 
for a curator to curate 250 molecular interactions. Therefore, we can assume that 



	   	   	   109	  

it would take one curator a further 23 days to review the remaining predicted 
true positive data (those with a TM score above 28%).  
 
Manual curation quality 

Table 3.10 shows the review of our manual curation quality. The intra agreement 
rate was 0.84, while the inter agreement rate was 0.9 to give an overall agreement 
rate of 0.87. Cohen’s Kappa coefficient 146 showed a moderate intra agreement 
rate of 0.43, a substantial inter annotator agreement rate of 0.80 and a substantial 
overall agreement rate of 0.73. Upon review of the curation results that were in 
disagreement, 7 of the 8 new curation results in the intra analysis were correct. 
Four were caused by incorrect normalization to protein IDs and one by incorrect 
protein tagging and it is likely that these were identified in the second attempt 
due to increased experience in curating pain related proteins. A further two were 
attributed to event mismatches. In the inter analysis, 5/5 of the new curation 
results were correct and the original curation errors were again due to erroneous 
protein normalization and also more complex interactions that were perhaps 
more difficult to curate correctly. While this assessment of our manual curation 
quality showed that our curated results were of a high standard, they also show 
that it is likely that some of the curated data that has not been reviewed is likely 
to be incorrect. Therefore, in order to be sure that the final curated results used in 
subsequent analyses are entirely accurate, it is important to perform multiple 
curations. 

Homologue ID Symbol Frequency 
1876 NGF 53 
37368 OPRM1 50 
723 POMC 45 
12920 TRPV1 44 
88337 CALCB 40 
4528 PENK 39 
502 IL6 27 
599 CRH 22 
496 TNF 19 
4537 PNOC 16 
Table 3.10 Top 10 homologues appearing in our manually curated data.  
These have been ranked by frequency of unique molecular interactions that each homologue is 
involved in in our manually curated data. Homologue ID refers to the ID used by NCBI 
homologene database (http://www.ncbi.nlm.nih.gov/homologene).  
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3.5 Conclusions 
	  

In this study we have demonstrated that a pain-specific contextual molecular 
interaction database can be created using TM to rapidly generate content and 
support manual curation to confirm its accuracy. The whole process of building 
the pain-relevant corpus, extracting and contextualizing the interactions and 
curating the data took just two months, which is in contrast to a typical fully 
manual procedure that may take years. We have used the existing state-of-the-art 
in TM methods to generate the core data used in our curation (e.g. corpus 
generation using LINNAEUS and event chains and context taken from 
BioContext). Therefore, the approach used in this study is not limited to the pain 
domain and would potentially suit many other biomedical fields that consider 
molecular interactions a focal point of the research. For example, the approach 
could be repeated for another topic by applying a relevant dictionary to generate 
a corpus in the same way as for pain and using this as a basis for data extraction 
and curation. To facilitate such instantiations of our approach in other fields we 
have therefore provided a full list of methods used in this study on wiki-
pain.org/downloads.  

As well as the existing TM methods and data used in this study we have also 
proposed a i) new method for scoring documents for their relevance to pain and 
any individual concepts; ii) new methods for determining the relevance of an 
event chain to pain or disease terms and iii) a novel sentence based mutation-
protein linking extension to MutationFinder. Furthermore, wiki-pain.org is the 
first extensive pain-specific molecular interaction database that researchers can 
use to explore context specific pain data extracted from the literature.  

In the future, we wish to continue curating the grouped molecular interactions 
for pain and to expand this curation process to each individual context to ensure 
that all of our data displayed is accurate. We then plan to investigate more 
closely the biological implications of the correctly distinguished data. For 
example, it would be interesting to compare and contrast the most connected and 
frequently occurring proteins between different pain-related disorders and 
anatomical regions. Furthermore, our procedure has been carefully designed so 
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that additional context can be built into our database and adding aspects such as 
chemical interactions will be considered.  
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CHAPTER 4 
 
The pain interactome: Connecting pain 
specific protein interactions 
4.1 Abstract 
	  

Understanding the molecular mechanisms associated with disease is a central 
goal of modern medical research. As such, many thousands of experiments have 
been published that detail individual molecular events that contribute to a 
disease. Here we use a semi-automated text mining approach to accurately and 
exhaustively curate the primary literature for chronic pain states.  In so doing, 
we create a comprehensive network of 1,002 contextualised protein-protein 
interactions (PPIs) specifically associated with pain. The PPIs form a highly 
interconnected and coherent structure, and the resulting network provides an 
alternative to those derived from connecting genes associated with pain using 
interactions that have not been shown to occur in a painful state. We exploit the 
contextual data associated with our interactions to analyse sub-networks specific 
to inflammatory and neuropathic pain, and to various anatomical regions. Here, 
we identify potential targets for further study and several drug-repurposing 
opportunities. Finally, the network provides a framework for the interpretation 
of new data within the field of pain. 

4.2 Introduction 
	  

Acute pain has evolved as a key physiological alert system for avoiding noxious 
stimuli and protecting damaged regions of the body by discouraging physical 
contact and movement91. This form of pain is crucial; in its absence, e.g. in those 
with congenital insensitivity to pain, we are more prone to damaging or non-
protective behaviors that can hinder our quality of life312, 313. Conversely, 
persistent or chronic pain can be similarly debilitating with those affected 
typically suffering psychological disturbance and significant activity 
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restrictions314. The incidence of chronic pain is widespread across the global 
population, with estimates in the adult general population of 12.7-29.9% in 
developed and 14.5-33.9% in developing nations94. Pharmacological therapeutics 
such as opioids, non-steroidal anti-inflammatory drugs (NSAIDs), such as COX-2 
inhibitors, are often prescribed as the standard treatment regimens for chronic 
pain sufferers96, 315, but while these and a huge range of other treatment options 
are available, their efficacy often proves at best modest and their use is limited by 
unwanted side effects316, 317. There is therefore an urgent need to better 
understand the molecular systems that mediate chronic pain and to use this 
knowledge to develop improved therapeutics. 

Pain researchers have published hundreds of thousands of articles, many of 
which detail knowledge of the molecular interactions involved in pain. However, 
digesting and utilizing this knowledge is impractical without the use of text 
mining. In our previous work318, we used state of the art computational methods 
to retrieve molecular interactions associated with pain from the primary 
literature: the whole of Medline and open access articles in PubMed Central 
(PMC). These data are catalogued at wiki-pain.org, which contains 93,271 
molecular interactions derived from 765,692 pain-related articles. Each 
interaction is annotated with detailed contextual information such as anatomy, 
associated point mutations and disease relevance. However, as fully-automated 
text-mining results can be error prone218,  we implemented a novel strategy to 
curate mentions of protein-protein interactions (PPIs) grouped from multiple 
publications to create the first pain-specific dataset of interactions. Through 
ongoing curation, this dataset now contains over 1,000 unique contextualised 
PPIs318.   

Here we explore the relevance and accuracy of our pain related PPIs using 
network and functional enrichment analyses and gene bias assessment methods. 
To emphasize the quality and effectiveness of this approach of sourcing 
interaction data we provide comparisons with pain related interaction networks 
derived from gene expression data, a manually curated list of pain genes and the 
known targets of pain drugs. Our results demonstrate that a semi-automated 
text-mined interaction network allows us to interpret the sum knowledge of the 
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biomedical domain of pain in an integrated manner, providing a more complete 
portrait than is possible from other common means of inferring disease 
networks. The network has immediate utility to researchers in the field as a 
framework for the interpretation of new findings and high-throughput ‘omic 
datasets. Importantly, this approach has a broad applicability to other diseases or 
syndromes to which a combination of text-mining and network biology might be 
applied. 

4.3 Methods 
	  

4.3.1 Data availability 
	  

The data generated in this study is available in supplementary tables 1-24.  

4.3.2 The curation procedure for PPIs 
	  

In a previous study detailing our text-mining methodology, we curated over 
1,500 unique PPIs involving mouse, rat and/or human proteins ranked by their 
overall relevance to pain318. Raw interactions were extracted from text 
automatically and displayed on wiki-pain.org to be verified by an expert. For a 
PPI to be considered accurate, the proteins, including underlying species and 
associated Entrez Gene IDs, and interactions had to have been extracted 
accurately in at least one instance when all mentions of that interaction were 
grouped together. We continued curating interactions in this study following 
these guidelines. We focused on those interactions that had a text mining 
confidence score above a threshold (28%) that was empirically determined to be 
a good indicator of true-positive interactions318. We grouped orthologous 
proteins from rats, mice and humans (using NCBI Homologene IDs) and 
simplified the interactions to either positive regulation, negative regulation, 
regulation or binding to remove superfluous data.  

PPIs for the neuropathic and inflammatory pain tasks were curated in the same 
way as with general pain associated interactions, with the addition of one more 
condition: each interaction had to have a specific association with the relevant 
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pain disorder, e.g. ‘activiation of c-Jun in DRGs induces VIP and NPY 
upregulation and contributes to the pathogenesis of neuropathic pain’319. Those 
interactions that were selected for curation had neuropathic or inflammatory 
pain relevance above 90%318 and, again, a text mining confidence threshold of 
28%. The involvement was noted as being either part of the mechanism of that 
disorder or having an inhibitory effect on it. We note that interactions were 
curated from literature published over decades and so any changes in the formal 
definition of these indications used may not have been accounted for.  

4.3.3 Network analysis 
	  

Networks were analyzed using iGraph for R246 and visualized using Cytoscape 
3.0245.  

Enrichment analysis of proteins was performed using Fisher’s exact test to 
determine proteins that had a statistically significant number of interactions in 
the sub-graph under study compared to the relevant main graph. This follows 
similar implementations of Fisher’s exact test as described in Poirel et al320 and 
Wuchty321. Enrichment was determined by calculating the number of interactions 
each protein features in the sub-graph (a) and those that it does not (c), as well as 
the number of interactions each protein features in, in a comparison main-graph 
(b) and those that it does not (d). The probability a protein is enriched is then 
determined using the hypergeometric distribution, such that  

 

The hypergeometric distribution assumes that proteins appearing in interactions 
in the main graph and sub-graph are equally likely and thus if p is below 0.05 we 
can reject this null hypothesis. iRefIndex (version 06062013) was used as a source 
of generic PPIs in order to construct a comparison main graph representative of 
the human interactome. iRefIndex is a large generic molecular interaction 
database containing interactions that have been sourced from numerous 

€ 
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manually curated databases308. Using only human proteins from this database, 
the network contains 14,818 nodes and 167,413 edges, with an average degree of 
22.6. 

4.3.4 Gene functional enrichment 
	  

To determine enriched GO terms, we used the DAVID functional annotation tool 
to assign genes with their affiliate terms and to order them by enrichment250.  

4.3.5 Pain category assignment 
	  

In order to determine which drugs are used to treat pain associated indications 
we manually assigned pain categories to all pharmacologically treatable 
indications. Indications were assigned to one of the four categories: i) ‘Pain 
specific’ are indications that are specifically associated with pain, (e.g., 
neuropathic pain and headaches); ii) ‘Typically painful’ are indications that are 
typically painful, where pain is consistently presented as a symptom of the 
disorder (e.g., endometriosis and arthritis); iii) ‘Can be painful’ are indications 
that can be painful, but can also manifest in a pain-free state (e.g. certain cancers 
and diabetes); and iv) ‘Typically non-painful’ are indications that are typically 
not associated with pain (e.g. alopecia and wrinkling skin), including mental 
illnesses (e.g. schizophrenia and depression). Protein targets of drugs were 
sourced from an in-house database and were then assigned a pain category using 
the most pain related indication. 

4.3.6 Anatomical categorization 
	  

To build pain networks specific to the brain, spinal chord, peripheral nervous 
system (PNS) and immune system, all interactions that had at least one mapping 
to an anatomical term derived from wiki-pain.org data were used. Anatomical 
terms were then mapped into one or more of the four anatomical regions or other 
(see Supplementary file 24 for mappings). Each network was then built for the 
four anatomical regions according to interactions that had an associated 
anatomical term. 
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4.3.7 Microarray analysis 
	  

We performed the tibial nerve transection (TNT) surgery322 on adult female rats 
(n = 8) alongside sham controls (n = 8). Rats were confirmed for tactile allodynia 
in response to mechanical pressure and both dorsal root ganglion (DRG) and 
spinal cord were harvested at 7 days post surgery. Gene expression analysis was 
performed using the Affymetrix Rat 230 2.0 chip.  After QC, data were RMA 
normalized and limma was used to identify differentially expressed genes versus 
sham, which were considered significant if their FDR corrected p value was <0.05 
and their fold change was >1.5. These experiments were approved and 
monitored by the local ethics committee. The data from this experiment are 
available in the ArrayExpress database (www.ebi.ac.uk/arrayexpress) under the 
accession number E-MTAB-2260. 

4.4 Results 
	  

4.4.1 The literature-derived pain PPI network  
	  

Using a semi-automated text-mining procedure318 we identified 1,002 unique 
PPIs associated with pain, involving 611 different proteins (Figure 4.1a and 
Supplementary table 1; see Methods). In total, there are 124 interactions classed 
as negative regulation, 403 as positive regulation, 180 as regulation (either 
positive or negative) and 295 as binding. When connected as a network, the PPIs 
form a highly interconnected and coherent structure with the largest component 
containing 481 (79%) of the 611 proteins (Figure 4.1b). The network has an 
average degree of 2.8, a clustering coefficient of 0.07 and a power law fits the 
node degree distribution with 0.993 correlation indicating it is scale-free, 
consistent with other molecular interaction networks323. The proteins in the 
network show a statistically significant enrichment for pain associated Gene 
Ontology (GO) biological processes (e.g., response to wounding and 
inflammatory response), cellular components (e.g., neuron projection and 
postsynaptic membrane) and molecular functions (e.g., ion channel activity and 
neurotrophin binding) (Supplementary table 2).  
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Figure 4.1 The pain interaction network.  
a, Workflow for creating a pain specific PPI network. b, The PPI network for all pain associated 
proteins derived from the curated data. Proteins enriched against iRefIndex (p<0.05) are 
highlighted in blue (3887 total, see Supplementary table 13). Inserts show the top 10 enriched 
proteins. Colored arrows refer to interaction type: blue corresponds to positive regulation, red to 
negative regulation, turquoise to regulation and yellow to binding (these edges are bi-
directional). 

Given that our interaction data is derived from the primary literature, there is 
potential for ascertainment bias in our network324. For example, we will only 
have data for proteins that have been studied in a pain context and the most 
central nodes to our network could be biased by the fact that they have been 
studied for the longest time. As expected (see 324), there is a positive linear trend 
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between the degree of a protein and the number of publications describing its 
interactions (Supplementary Figs 1, 2 and Supplementary table 3; Figure 4.2a), 
but there is no significant increase in the average number of documents per 
interaction observed as degree increases (rho = 0.08, Figure 4.2b). However, there 
is an inverse correlation between the date of a node’s first publication in our 
dataset and its degree (rho = -0.4, Figure 4.2c and Supplementary table 4).  

 
Figure 4.2 Bias in the pain interaction network.  
a Correlation between the number of publications and degree for nodes in our network showing 
a linear trend (rho = 0.83), b The average number of publications per interaction for a pain 
protein remains flat (rho = 0.08) suggesting most interactions are reported individually 
(Supplementary Figs 1 and 2; Supplementary table 3). c There is an inverse relationship between 
the date of first publication on a protein’s interactions and the protein’s degree (rho = -0.4) 
(Supplementary table 4). 

The first interactions in our network were published as early as 1975, with 25% of 
interactions published before the year 2000. Those published before 2000 include 
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the 17 highest degree proteins; supporting the assertion that degree correlates 
with length of study and knowledge of a protein’s perceived importance. We 
therefore need to be aware of the fact that – within literature derived networks – 
the longer and more thoroughly a protein has been studied, the more 
interactions it is likely reported to have.  

4.4.2 Comparative analyses between alternative pain protein datasets 
	  

To investigate the scope and relevance of our text-mined network to pain we 
compared it to networks derived from two other commonly used sources of 
disease-associated gene datasets, using generic interaction data from iRefIndex to 
determine known interactions between the proteins in these datasets (see 
Methods). It would be preferable to provide comparisons with datasets whose 
interactions are derived entirely from pain-specific experiments, but there are no 
such datasets currently available. Firstly, we generated gene expression data 
from dorsal root ganglion (DRG) and spinal cord in the rat TNT model of 
neuropathic pain (see Methods) to derive a set of pain associated differentially 
expressed genes.  Secondly, we utilized a list of pain associated proteins from the 
Pain Genes DB298 that have been manually curated from the literature. We 
reasoned that the gene expression data would not be prone to the same biases as 
literature-associated data (i.e., data derived from small-scale experiments), 
whereas the Pain Genes DB list is curated from the literature but is not 
dependent on text mining.  

From the gene expression experiment, we find 237 genes to be differentially 
regulated across both DRG and spinal cord tissue; also, there are 399 genes in the 
Pain Genes DB dataset (Supplementary tables 5 and 6). These are considerably 
fewer than the 611 proteins in the text-mining derived dataset. Using the generic 
interactions from iRefIndex to connect proteins in these datasets, it was only 
possible to make 67 connections between 63 proteins in the gene expression data 
(Supplementary Fig. 3a and Supplementary Table 7). Therefore, we expanded 
this dataset to include first order neighbors with high-betweeness, stipulating 
that they have interactions with at least two of the input genes, so acting as 
bridges to connect the network. As a consequence, 192 (81%) of the differentially 
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expressed genes are included in the network. The resulting networks from Pain 
Genes DB and gene expression contain, respectively, 272 and 901 nodes, 510 and 
12,318 edges, average degrees of 3.75 and 27.34, clustering coefficients of 0.115 
and 0.264, and power law correlations of 0.959 and 0.645 (Supplementary Figs. 3b 
and 4; Supplementary tables 8 and 9). These networks include relatively few of 
the proteins from our text-mined network; 125 (20%) and 137 (22%) respectively. 
We note in particular the high average degree of 27.34 in the gene expression 
network, while the Pain Genes DB and text-mined networks both have similar 
ratios of 3.75 and 2.8 respectively.  

These data indicate that our text-mined network has similar properties to a 
network derived from manual curation. The network derived from gene 
expression data has a far higher average degree and so presumably contains 
many more non-specific/non-relevant interactions despite the constraints we 
placed on introducing new nodes. Indeed, both the gene expression data 
(without first order neighbors) and the Pain Genes DB curated data show similar 
pain relevant enriched GO terms to the text-mined proteins (Supplementary 
tables 10 and 11). However, when analyzing only those bridge proteins that were 
added to the gene expression network there is much lower enrichment of pain 
related GO terms in comparison to the original gene expression gene list 
(Supplementary table 12), which would suggest that there is considerable noise 
introduced into this network. 

We next cross-referenced nodes in all three networks (text-mining derived, gene 
expression and Pain Genes DB) with known therapeutic targets of FDA 
approved drugs (see Methods), taking this as an additional measure of relevance 
to pain. In the text-mined network we find 181 targets for existing therapeutics, 
with 88 targets for anesthetics and pain specific indications (e.g., migraines, 
neuropathic pain, abdominal pain etc.) and 51 targets for typically painful 
indications (e.g., arthritis, endometriosis etc.) (Figure 4.3a and Supplementary 
table 13). Examples of pain specific targets in the text-mined network include 
OPRM1, the target of analgesics such as morphine 325 and key pro-inflammatory 
cytokines such as TNF that is targeted by numerous drugs for Rheumatoid 
Arthritis326. The Pain Genes DB and gene expression networks have fewer 
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therapeutic targets than the text-mined network, with 100 and 132 respectively 
(Supplementary tables 14 and 15). We also note that the gene expression network 
contains a much lower proportion of pain specific targets (36%) in comparison to 
the Pain Genes DB (66%) and the text-mined network (49%); see Figure 4.3b. 

There is a significant relationship between the enrichment (see Methods) of a 
node in the text-mined network and the likelihood of it being a drug target for a 
painful indication (Chi squared test for trends in proportions p=0.002, see Figure 
4.3b), which is not the case for either the Pain Genes DB (p=0.05) or gene 
expression networks (p=0.9). We see strong enrichment for targets of drugs 
currently in development for pain indications e.g. NGF (Tanezumab)327 and 
genes that have been earmarked as potential therapeutic options, e.g. BDNF328, 329. 
Moreover, the highly enriched IL6 and SST are currently targets for other 
indications (diabetes and prostate tumors) and thus their associated drugs may 
represent promising re-purposing opportunities to treat more typically painful 
and pain specific indications.   

4.4.3 Insights into the pathology of pain  
	  

We next explored the molecular biology of pain apparent from our network. 
There are a number of proteins in the pain network with a high degree, 
indicating the importance of these nodes to the structure of the network330.  As 
this pain network is a sub-graph of the much larger human interactome, we 
confirmed this connectivity by controlling for proteins that are highly connected 
in general and thus more likely to appear highly connected in our network. To 
do this, we developed a method to identify proteins with a significant 
enrichment of their known interactions within our pain network.  We again used 
iRefIndex as a source of generic interactions to facilitate this308, (see Methods).  
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Figure 4.3 Drug targets in the pain interaction network.  
a Drug targets are colour coded by the contribution of pain to their primary indication (see 
methods) as indicated in the key. The ten most enriched nodes are enlarged and moved into the 
centre for clarity. b Drug target profiles of each pain network. Proteins from each dataset are 
ranked by their enrichment p value and binned into quartiles (Q1-4). The numbers of associated 
drugs that target proteins in each quartile are then indicated. There is a significant relationship 
between the enrichment of a node in the text-mined network and the likelihood of it being a drug 
target for a pain specific indication (Chi squared test for trends in proportions p=0.002). 
However, neither the Pain Genes DB network, nor the gene expression data show the same 
significant trend (p = 0.05 & 0.9, respectively). 
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Of the most enriched proteins in the network (Figure 4.1b, 4.4a and 
Supplementary table 13), many are key to the pathology of pain, for example 
OPRM1331, TRPV1332, 333 and NGF334, 335. We find that enriched nodes have multiple 
regulatory roles, both up and down regulating numerous proteins (Figure 4a, b 
and Supplementary table 16). There are 8 enriched proteins that are more 
significantly regulated by others, e.g. OPRM1, TRPV1 and FOS, and 4 proteins 
that more significantly regulate others: NGF, GHRH, PNOC and LEP (Figure 4c). 
This is consistent with the known roles of NGF and nociceptin (PNOC) as 
mediators of pain signaling336, 337.  Interestingly, growth hormone (GH), but not 
growth hormone releasing hormone (GHRH) has been associated with the 
chronically painful condition fibromyalgia338. Further, recent evidence has 
suggested a role for leptin (LEP) in the modulation of pain339, 340.  Our data 
suggest that both GHRH and leptin might play a more prominent regulatory role 
in pain than has hitherto been appreciated. 

To demonstrate the utility of our contextualised interaction dataset, we chose to 
investigate inflammatory and neuropathic pain, two fundamental aetiologies 
that manifest chronic pain states290, 341.  In the construction of these sub-networks, 
we have also curated the overall effect of the interaction on the outcome of the 
pain type, i.e. an inhibitory or positive effect. There are 144 interactions 
associated with neuropathic pain in our dataset, with 122 found to be 
contributory to its pathology, 17 inhibitory and 5 denoted as both (Figure 4.5; 
Supplementary table 17). In comparison, 181 interactions are related to 
inflammatory pain, including 154 contributory interactions, 22 inhibitory 
interactions and 5 that have been documented as both (Figure 4.6; 
Supplementary table 18). 61% of the proteins from inflammatory pain form a 
coherent core graph, while there are two distinct sub graphs in the neuropathic 
pain network that together account for 73% of the proteins.  
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Figure 4.4 Protein regulation in the pain interaction network.  
a The top 10 most enriched genes in the pain network are shown with their regulation profiles 
broken down by incoming (is regulated, “I”) and outgoing (regulates others, “R”) interactions. 
Black denotes positive regulation, grey denotes negative regulation and white denotes other 
types of interaction. Undirected binding interactions are excluded. b The distribution of net 
regulation for all proteins in the pain network shows a normal distribution with long tails. This 
indicates that only a few proteins act as master regulators. c These master regulators were 
determined using the exact binomial test (Supplementary table 16). The proteins that are 
significantly more regulated than they are regulators and vice versa are shown; NGF is the most 
significant net regulator. 
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Figure 4.5 PPIs specific to neuropathic pain.  
a Neuropathic pain specific sub-network. Blue edges are those interactions that have been curated as increased in a neuropathic pain state, red 
edges decreased and pink edges are those that have been denoted as both. Dark red nodes are those that are enriched against the general pain 
network (Supplementary table 17).  
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Figure 4.6 PPIs specific to inflammatory pain.  
a Inflammatory pain specific sub-network. Blue edges are those interactions that have been curated as increased in a neuropathic pain state, red 
edges decreased and pink edges are those that have been denoted as both.  Dark red nodes are those that are enriched against the general pain 
network (Supplementary table 18).  
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The neuropathic and inflammatory pain networks contain 127 and 157 proteins 
respectively, with 80 featuring in both datasets.  This large overlap in proteins 
demonstrates that both forms of pain have underlying core pathology even if the 
initiation of pain is distinct. This is highlighted by the biological processes that 
the 80 proteins are highly enriched for, e.g. response to wounding (p=2.88x10-14) 
and sensory perception of pain (p=6.41x10-16) (Supplementary table 19).  
However, the proteins unique to the inflammatory and neuropathic pain datasets 
also reveal the more subtle differences between these disorders. For example, 
proteins unique to inflammatory pain show a much higher enrichment of 
inflammatory associated biological processes in comparison to proteins unique to 
neuropathic pain, such as inflammatory response (p=5.16x10-12 vs. p=3.54x10-4) 
and defense response (p=1.30x10-10 vs. p=6.03x10-05) (Supplementary table 19).  
The most enriched biological processes unique to the neuropathic pain dataset 
include regulation of membrane potential (p=4.41x10-5) and regulation of action 
potential (p=4.66x10-5). Moreover, there are 12 proteins in the intersection 
between the neuropathic pain dataset and the rat TNT gene expression dataset in 
comparison to just 3 from the intersection of the inflammatory pain dataset and 
the gene expression data. Odds ratio test confirms that proteins in the 
neuropathic pain network are more likely to feature in the gene expression 
dataset compared to proteins from the inflammatory pain network (odds 
ratio=5.36,z=2.55,p=0.01). Given that the gene expression dataset was derived 
from a neuropathic pain model, this would suggest that our neuropathic pain 
curated data is indeed more relevant to neuropathic than inflammatory pain. 

To identify the key molecules within the two pain types, we repeated our 
method to reveal enriched proteins against the human interactome and, in 
addition, against the main pain network. This revealed 116 and 135 proteins 
where the majority of their interactions were present in the neuropathic and 
inflammatory pain sub-networks, respectively, compared to the generic human 
interactome (Supplementary tables 20 and 21).  There were 12 and 15 proteins 
enriched in each sub-network compared to our main pain network. Of these, 
only NGF, SCN10A (NaV1.8), BDNF and EPHB1 (ephrin receptor) feature in 
both the neuropathic and inflammatory pain datasets. The neurotrophic NGF 
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and BDNF329 as well as ephrin342 play a key role in neuronal growth and axonal 
guidance and have been linked to multiple pain aetiologies.  There are nine 
genes that encode alpha subunits of voltage gated sodium channels, many of 
which have been linked to multiple types of pain343. It is therefore surprising that 
only NaV1.8 is identified here. This raises an interesting perspective on our data, 
which does not seek to identify general gene-disease functional associations but 
rather to uncover which proteins are highly interacting within a diseased state 
compared to a normal state. Based on this measure, whilst other ion channels are 
important to pain, NaV1.8 appears to be the only sodium channel whose 
interactome spans multiple pain aetiologies.  

There are 8 enriched proteins that are specific to the neuropathic pain network 
and 11 to the inflammatory pain network. Of the proteins specific for 
neuropathic pain, GRIN2B and NOS1 are already targeted for pain specific 
indications. MAPK14 and IL6 are targets for other indications and so might 
represent drug re-purposing opportunities for neuropathic pain specific 
disorders.  In addition, DLG2, CX3CR1, P2RX4 and VGF appear to be promising 
leads for the specific investigation of neuropathic pain344-346.  Similarly, IL10, 
PTGER2 and IL4 are existing targets for inflammatory pain associated disorders 
(e.g. rheumatoid arthritis), while TRPV1 is targeted by analgesics (e.g. Propofol347 
and capsaicin348).  LEP, Nkx1-1, PDZD2, NTRK1, IL8, MAPK1 and CSNK2A2 
would also appear to be specifically important to inflammatory pain. NTRK1 
(TrkA) is the receptor for NGF, which we previously saw to be enriched in both 
types of pain.  That NGF’s receptor is only enriched in the inflammatory pain 
dataset (although it is present in the neuropathic pain network) emphasizes the 
need to apply caution when interpreting such data as complete. The curated 
data, while extensive, is not complete and indeed the body of published work 
itself does not detail the full pain interactome.  

Finally, to illustrate further the possibilities associated with our data, we 
repeated the same style of analysis but this time creating networks for different 
anatomical regions.  From the 1,002 PPIs, we used the anatomy context in wiki-
pain.org to determine 607 interactions that could be mapped to at least one or 
more of the following pain relevant anatomical associations: brain, spinal cord,  



	   	   	   130	  

PNS, immune system and other (Supplementary table 22). We determined 245, 
204, 162, and 92 interactions associated with the brain, spinal cord, PNS and 
immune system, with 211, 190, 152 and 106 proteins in each respectively 
(Supplementary Figs. 5-8). We used our enrichment analysis to identify proteins 
more highly connected in each of the anatomical regions compared to the general 
pain network (Supplementary table 23). We find NGF and BDNF to be key to the 
network in multiple anatomical locations, being enriched in the brain, spinal 
cord and PNS networks. PENK, OPRL1, GHRH were specifically enriched in the 
brain, FOS in the spinal cord, while CALCA, TRPV1, RUNX1, RUNX3, NTRK2, 
TNFRSF1A and GDNF were only enriched in the PNS networks. There are also 
20 proteins enriched in immune related anatomical regions, e.g., CCL5 and IL8. 
These data allow us to explore the anatomical interplay that contributes to the 
development of pain, in particular the interplay between the peripheral and 
central nervous systems.  In addition, this also aids drug development by 
informing the necessary central or peripheral distribution of a drug candidate. 

4.5 DISCUSSION 
	  

We have shown that our large semi-automated text-mining derived network is 
relevant to pain and forms a more complete representation of the molecular 
mechanisms underlying the disease than is possible using other common starting 
points. We identify several drug re-purposing opportunities and use our 
enrichment method to identify novel mediators of pain.  In particular, we show 
that NaV1.8 is a key ion channel for both neuropathic and inflammatory pain. 
Further, as we are able to extract specific context with each interaction, we can 
create and explore networks specific to individual pain indications or anatomical 
regions.  Recent studies have undertaken meta-analyses of gene expression data 
from pain models349, 350 or have described resources that enable the network 
visualisation of known pain genes by incorporating PPIs from non-diseased 
contexts350. Our method, using disease specific interactions identified from the 
pain relevant literature, offers a considerable advance in specificity and 
relevance. 
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Text mining has long been heralded as the practical solution to efficiently 
retrieving data denoted in the ever expanding body of published biomedical 
literature218, but poor precision and recall has restricted its wider use in 
delivering reliable data256. Instead, the majority of data derived from free text that 
is subsequently used in biological analyses is identified and extracted by manual 
curation, a process that is costly, time-consuming and often unable to offer more 
exhaustive coverage286. As a method of extracting and characterizing key proteins 
and interactions that are denoted in the literature, our study offers a strong case 
for a semi-automated approach that uses text mining to rapidly generate the data 
and manual curation of the results to achieve high precision. While the protein 
interaction data we have retrieved and curated in this study is not complete, the 
datasets have proven sufficiently broad, accurate and relevant enough to make 
compelling biological findings.  

The results in this study represent the most extensive summary of all the 
published research conducted on pain-associated proteins. The power of such an 
approach comes from integrating the data at the network level, which allows 
novel hypotheses to be drawn in the context of the global picture. Further, the 
network can be used as a framework to provide context to the interpretation of 
datasets generated by researchers within the field. This is increasingly 
recognized as a successful approach to the study of disease biology351. It is 
foreseeable therefore that a similar approach to data retrieval and analysis could 
be applied to a huge range of biomedical disorders under various different 
contexts in order to provide networks and targets for further study.  
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CHAPTER 5 
 
Expanding the human pathogen 
interactome with text mining 
 

5.1 Abstract 
	  

Disease,	  through	  infection	  by	  pathogens,	  has	  a	  huge	  negative	  impact	  on	  human	  

morbidity	  and	  mortality	  worldwide.	  While	  human	  pathogens	  originate	  from	  a	  wide	  

range	  of	  different	  taxonomic	  groupings,	  for	  example	  viruses,	  bacteria,	  fungi	  etc.,	  they	  

commonly	  share	  similarities	  in	  the	  human	  proteins	  they	  target,	  which	  ultimately	  

leads	  to	  disease.	  There	  is	  therefore	  increasing	  focus	  on	  discerning	  these	  interactions	  

between	  pathogen	  and	  human	  proteins	  and	  many	  of	  these	  are	  already	  stored	  in	  

public	  databases.	  However,	  the	  literature	  contains	  many	  more	  interactions	  that	  are	  

unaccounted	  and	  strewn	  over	  millions	  of	  publications.	  In	  this	  study	  we	  thus	  used	  

text-‐mining	  to	  capture	  these,	  using	  enhanced	  data	  from	  the	  text-‐mining	  databases	  

BioContext	  and	  Evex	  DB	  to	  find	  over	  25.5	  thousand	  new	  unique	  host-‐pathogen	  

protein	  interactions	  involving	  223	  pathogens.	  As	  text-‐mining	  can	  produce	  false	  

positives,	  we	  curated	  this	  data	  in	  three	  tasks	  to	  demonstrate	  how	  large	  amounts	  of	  

data	  can	  be	  rapidly	  validated	  to	  identify	  new	  interactions	  between	  human	  proteins	  

and	  pathogens.	  Although	  the	  text-‐mining	  data	  demonstrated	  particularly	  low	  

precision	  in	  the	  curation,	  we	  were	  still	  able	  to	  find	  42	  new	  HIV-‐1-‐human	  protein	  

interactions,	  108	  new	  interactions	  between	  human	  proteins	  and	  pathogen	  species	  

and	  33	  human	  proteins	  that	  had	  not	  been	  known	  targets	  of	  any	  pathogen	  species	  

before.	  These	  results	  highlight	  the	  value	  of	  the	  literature	  as	  a	  reservoir	  of	  

uncatalgued	  host-‐pathogen	  interaction	  data	  and	  the	  method	  of	  curation	  we	  offer	  

provides	  a	  way	  of	  rapidly	  discerning	  this	  data	  in	  an	  accurate	  and	  efficient	  manner.	  
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5.2 Introduction 
	  

Human pathogens that cause infectious disease originate from a range of 
microorganisms, including viruses, bacteria, fungi, helminthes, protozoa and 
prions. Together, they accounted for roughly 19% of deaths352 and 35% of the 
disability-adjusted life years lost353 worldwide between 1990 and 2010. They 
range from global pandemics, e.g. human immunodeficiency virus (HIV)/ 
acquired immunodeficiency syndrome (AIDS), malaria and tuberculosis, to 
isolated outbreaks, such as with haemorrhagic fever caused by the ebola virus354.  

For many pathogenic diseases, the route to infection begins with invasion of the 
host cell. Thus, uncovering the specific protein-protein interactions (PPIs) that 
are involved in this process has been imperative for the advance of modern 
therapeutics. For example, viral gp41 and human coreceptor CCR5 are targets for 
FDA-approved enfuvirtide and maraviroc respectively, used to treat HIV-1355. 
Many pathogens have been studied in this way, and their PPIs have been 
documented widely across the literature and public databases145, 356-359. However, 
this knowledge often remains disconnected, preventing biomedical researchers 
from being able to answer more fundamental questions on the nature of 
pathogenicity.  

Recent studies have begun to address this issue. For example, Dyer et al 
integrated seven publically available databases of 190 pathogen strains, 
producing 10,477 human-pathogen PPIs for analysis.  Smith et al were able to 
identify possible repurposed drug targets though large-scale analysis of 
microarray datasets between multiple respiratory viruses360. Pichlmair et al 
experimentally determined new common signaling pathways and cellular 
processes between 30 viral species361. However, no study has yet fully utilized 
the largest source of all human pathogen PPIs available, the published literature. 

The key issues with exploiting knowledge published in the literature stem from 
the inability to accurately and efficiently extract and convert it into a machine-
readable structure. Existing databases of host-pathogen interactions are 
predominantly manually curated145, 356, 358, 359, a slow and costly process318. While 
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text mining methods have been specifically developed for automating this entire 
process362, the results need to be precise for further biological analysis, and given 
that they are often inaccurate, its use has been limited mainly to article 
prioritization so far363. However, novel semi-automated approaches to extracting 
PPIs in HIV-1286 and pain318 have shown that generating accurate data rapidly can 
be achieved by text-mining when it is organized and grouped into a format that 
allows manual curation to operate as a quality control step.  

In this study our aim was to establish whether a semi-automated approach to 
extracting PPIs from the literature could be used to expand our knowledge of 
PPIs across all human pathogens in existing public databases. After identifying 
1,419 pathogens known to infect humans, we found 13.6K host-pathogen PPIs 
already present in public databases. We used text-mining data to determine 
26.5K HP-PPIs, of which 25.5K were not already present in public databases. 
From the newly identified HP-PPIs, we adopted three different approaches to 
validating the quality of this data for further analysis. First, we curated all PPIs 
involving both HIV-1 and human proteins finding 42 new interactions not in the 
already extensively curated HIV-1, human protein interaction database (HHPID). 
Second, we expanded the existing knowledge of the range pathogens known to 
interact with commonly targeted human proteins by a further 108 interactions 
between human proteins and pathogen species. Third, we curated PPIs involving 
human proteins that had not previously been associated with any pathogen, 
finding 33 new human proteins that interact with pathogens. 

5.3 Methods 
	  

5.3.1 Identifying human pathogens 
	  

A systematic literature survey in 2001 listed 1,415 pathogens capable of causing 
disease in humans under natural transmission conditions30. Updates to this in 
200532 and 200731 showed only 1,407 and 1,399 species respectively, changes due 
to certain species being reclassified. However, only 177 and 87 pathogen species 
were listed in each. Using these three sources of pathogen names, we mapped 
each pathogen to 1,224 unique NCBI taxonomic identifiers where possible, 
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leaving a further 195 pathogens that could not be mapped (1,419 pathogens in 
total). Taxonomic groupings into bacteria, viruses, helminthes, protozoa, prions 
and fungi were retained, with the addition of genus to NCBI mapped pathogens.  

5.4.2 Building a human pathogen corpus 
	  

With the species names for the 1,419 pathogens identified, we added 3,810 NCBI 
taxonomic DB pathogen mapped synonyms, as well as 25,730 sub-species names 
and synonyms for all of these. We also linked diseases associated with pathogens 
by mapping 371 diseases to 180 pathogens listed as causal agents in the Disease 
Ontology126. For example, HIV-1 is the causal agent of AIDS. Linked diseases like 
this contributed a further 1,070 terms associated with the pathogens. Regular 
expressions were then used to add any case-sensitive variants to the terms (e.g. 
uppercase and lowercase), as well as additional species terms (e.g. S Cerevisiae) 
for non-viral pathogens and terms not originating from common names or 
acronyms.  In total we determined 38,284 unique pathogen-associated terms with 
161,753 case-sensitive variations of these (supplementary table 5).  

Using this pathogen term list, we matched these to all abstracts and titles in 
Medline (2014 version), including MeSH terms, and open access PMC full-text 
(2014 version) using LINNAEUS191. We also used LINNAEUS to capture any 
abbreviations and implemented a separate post-processing system to resolve 
ambiguity between pathogen terms associated with more than one species.  

Additionally, we matched general pathogen related terms, e.g. pathogenic, 
infection, outbreak etc., to enable us to distinguish more effectively between 
pathogens studied as pathogens and pathogens studied in another context. For 
example, S. Cerevisiae is a well studied fungus, however it is only rarely 
pathogenic364, 365 and is an organism associated more prominently with other 
areas of research, such as an experimental organism for revealing eukaryotic 
gene function366. We considered specific pathogens that co-occurred with general 
pathogen terms as more likely to be studying the pathogenicity of a pathogen. 
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5.4.3 Collecting existing text-mining data 
	  

BioContext227, released in 2012, and Evex DB367, updated in 2013217, are two 
databases containing the results of text-mining software employed on the whole 
of Medline and PMC open access full-text. These contain biomedical events for 
proteins that when combined in chains can be used to infer PPIs286, 318, 368. Gene, 
protein and RNA molecules were matched in both Evex DB and BioContext by 
BANNER186. Protein normalisation to NCBI Homologene IDs, Species IDs and 
Entrez Gene IDs was then performed by GenNorm187 and Evex in Evex DB and 
GNAT216 and GeneTUKit274 in BioContext. Events for these entities were 
generated with TEES (version 2)217 in Evex DB and TEES (version 1)265 and 
EventMine260 in BioContext.  

We extracted all data from each database that had been derived from documents 
in our pathogen corpus. For merging of the two databases we then converted 
Evex DB into event chains, as represented in the BioContext format, and 
organised the events into a single table, containing >15.7M event chains. As with 
a previous study318, we then removed superfluous events and grouped the 
individual event chains into unique event chains. This produced >4.4M unique 
event chains, of which >1.6M involved two participants and could be considered 
PPIs.  

5.4.4 Enhancing text-mining data 
	  

While the text-mining data from BioContext and Evex DB was derived from the 
current ‘state of the art’, the software had been designed for generic usage and 
not for specifically extracting pathogen related PPIs. Furthermore, many of the 
proteins involved in the event chains were not mapped to Entrez Gene IDs 
making it difficult to determine their relevance to human pathogens. We 
therefore sought to improve the pathogen protein normalization aspect of the 
text-mining data, focusing specifically on HIV-1, hepatitis B virus (HBV), 
influenza A virus (IAV), hepatitis C virus (HCV) and herpes simplex virus 1 
(HSV-1), whose genomes are small and thus more practical to facilitate 
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improvements. Moreover, these viruses all have a significant burden on human 
mortality and morbidity and thus represent priorities for further research into 
their molecular mechanims. 

To enhance PPI extraction for the five viruses we expanded the dictionary of 
terms associated with each pathogen protein on Entrez Gene, using 
publications369, 370 and various websites (e.g. Wikipedia) to create more thorough 
representations of their potential mentions in the literature. New gene records, 
not represented on Entrez Gene at the species level, were created for IAV and 
HCV to ensure that all of their proteins were catalogued appropriately, as well as 
removing any redundant records.  We then re-normalised entities matched in 
Evex DB and BioContext, implementing a novel normalization tool with the 
expanded pathogen term sets. The tool utilised species mentions from the 
surrounding text to predict whether mentions from each pathogen term set had 
been correctly assigned. This enabled us to map an additional 153,998 event 
chains to unique proteins for HIV-1 (85 874), HBV (41 361), HCV (9 993), IAV (11 
558) and HSV-1 (5 469). We then measured the precison of the pathogen protein 
normalization (and not other aspects of the text-mining data) by randomly 
selecting 100 event chains containing the newly normalized pathogen proteins 
for each of the 5 viruses. HIV-1, HBV, HCV, IAV and HSV-1 showed 93%, 97%, 
92%, 99% and 99% precision respectively (96% overall). The majority of false 
positives were caused by incorrect species association with the proteins. 

Finally, using the modified 1.6M event chains that could be considered PPIs we 
filtered any remaining event chains containing protein mentions that were not 
normalized to an Entrez Gene ID. The remaining PPIs were then classified as 
host-pathogen (HP) PPIs or pathogen-pathogen (PP) PPIs depending on the 
proteins involved. HP-PPIs were then further reduced to only those containing 
host proteins that were human or had a conserved human homologue.  

5.4.5 Integrating Host-Pathogen PPI Databases 
	  

We extracted all PPIs involving human pathogens from the Pathogen Interaction 
Gateway371, the human-HIV-1 protein interaction database136, VirHostNet145, 
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MIMI 309 and BioGRID137.  Proteins were all mapped to Entrez Gene IDs (using ID 
conversions if they did not have an Entrez Gene ID already) and Homologene 
IDs were added where possible. We note that some UniprotKb IDs did not have 
an Entrez Gene ID mapping and could therefore not be used in this study. As 
with the text-mining data, proteins that were not human or did not have a 
human orthologue were removed. Duplicate PPIs that contained the same 
interactants were filtered out.  

To determine whether these PPIs were present in the text mining data we cross-
referenced the Entrez Gene IDs of the interactants in each PPI between each 
dataset. To provide this comparison we only used PPIs from the text mining 
dataset that contained two Entrez Gene normalized participants with at least one 
protein normalized to a human pathogen.  

5.4.6 Curating text mining results 
 

We curated text mining data for three different tasks/use cases: 

1) To identify new protein interactions between human proteins and HIV-1 
proteins 

2) To identify new interactions between human proteins and pathogen 
species 

3) To identify new interactions between human proteins and pathogens in 
general 

In task one, the goal was to decipher whether an HIV-1 protein had been 
documented to have an interaction of any kind with a human protein that had 
not already been catalogued in the public databases. To do this we visualised all 
individual event chains and any useful relevant data (e.g. sentences, publication 
link, gene names etc.) corresponding to a unique interaction between an HIV-1 
protein and human protein onto a single web page. This mimicked a previous 
approach for curating unique PPIs related to pain diseases286. A correct HIV-1-
human PPI had to have each protein name mapped to their correct Entrez gene 
ID and have a clear direct or indirect interaction of whatever kind. We also 
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marked any interactions that had been documented negatively or speculatively. 
We required only one instance of a unique PPI to have been annotated correctly 
for the overall PPI to be considered correct. 

In task two we seeked to curate interactions between human proteins, known to 
interact with at least one pathogen in public databases, and other pathogen 
species that did not have a catalogued interaction with that protein. PPIs were 
curated in the same way as task one, except that in this task a correct instance 
could be between a human protein and any protein of a specified pathogen 
species. The human protein-pathogen species interactions we selected for 
curation were those that had a text-mining confidence greater than 0.3. In a 
previous study we had shown this level to be a good indicator of correctly 
annotated PPIs286. We also filtered any interactions between HIV-1 as these had 
already been curated in task one. 

Task three was similar to task one in that we were seeking interactions between 
specific human proteins. However, in task three we aimed to identify human 
proteins targeted by any pathogen, where the human proteins had no 
interactions with pathogens present in public databases. Therefore, in this task a 
correctly identified interaction was between a human protein and any protein 
from any pathogen species. As with task two, we filtered out any interactions 
involving HIV-1 proteins and selected interactions for curation that had a text-
mining confidence above 0.3. We also selected interactions by ranking human 
proteins by the number of their pathogen associated Gene Ontology (GO) terms. 
Pathogen-associated GO terms were determined by selecting all human proteins 
from public databases that have been shown to interact with pathogens. Using 
DAVID250, we then determined enriched GO terms, which we considered to be 
pathogen-associated GO terms. The enrichment p value was then used to 
provide multiple thresholds for which each GO term was used to rank human 
proteins. For example, in rank one we used all GO terms with a p value <0.1. 
Ranks two and three used p value of p < 1E5 and p < 1E10 respectively. 

5.2 RESULTS 
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5.2.1 Sourcing Text Mining Data 
	  

Figure 5.1 summarises the metholodology used to retrieve pathogen related PPIs 
with text-mining, as well as the data retrieved with each step.  

Figure 5.1 Text-mining methodology to retrieving pathogen related PPIs. 
Our text-mining methodology consisted of a building a human pathogen corpus and b extracting 
pathogen related PPIs associated with this corpus.  

 
We first identified 1,419 species that are considered pathogenic to humans, 
finding 2.3M associated publications with 1,362 species of these mentioned. Table 
5.1 shows the top 20 pathogens ranked by total number of associated 
publications, as well as their first recorded publication. After filtering out likely 
non-pathogen specific studies, we find HIV-1, E coli, IVA, M tuberculosis and S 
aureus the most studied pathogens.  

We next used the existing text-mining databases, BioContext227 and Evex DB217, 367, 
as sources of biomolecular events from the pathogen related publications for 
which we could infer pathogen related PPIs. Furthermore, to improve the quality 
of these databases we had modified the mapping of pathogen proteins to their 
Entrez Gene IDs for HIV-1, HBV, HCV, IAV and HSV-1 (see Methods). In total, 
we found 26,497 unique HP-PPIs and 27,056 unique PP-PPIs across 223 
pathogens (table 2). The enhancements to the PPI data for HIV-1, HBV, HCV, 
IAV and HSV-1 yielded an additional 2,964 HP-PPIs and 76 PP-PPIs. For 
example, HIV-1 had 114 unique HP-PPIs in the original BioContext and Evex DB 
databases, but after the enhancements now has unique 2,193 HP-PPIs.  
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Pathogen Genus Class First 
Publication 

Total 
Publications 

Pathogen 
Specific 

Publications 
Human immunodeficiency virus 1 Lentivirus VIRUS 1983 328,694 191,278 
Escherichia coli Escherichia BACTERIA 1896 352,188 79,859 
Influenza A virus Influenzavirus A VIRUS 1890 83,939 55,392 
Mycobacterium tuberculosis Mycobacterium BACTERIA 1867 178,542 55,125 
Staphylococcus aureus Staphylococcus BACTERIA 1896 92,422 48,004 
Hepatitis B virus Orthohepadnavirus VIRUS 1946 79,298 41,379 
Hepatitis C virus Hepacivirus VIRUS 1968 57,656 39,282 
Saccharomyces cerevisiae Saccharomyces FUNGI 1929 208,482 30,036 
Pseudomonas aeruginosa Pseudomonas BACTERIA 1894 54,372 26,560 
Human Herpesvirus 1 Simplexvirus VIRUS 1925 43,515 26,113 
Helicobacter pylori Helicobacter BACTERIA 1986 38,928 24,685 
Human Herpesvirus 4 Lymphocryptovirus BACTERIA 1900 32,907 19,894 
Plasmodium falciparum Plasmodium PROTOZOA 1916 35,492 17,956 
Streptococcus pneumoniae Streptococcus BACTERIA 1948 29,881 17,264 
Human papillomavirus N/A VIRUS 1950 28,406 16,462 
Candida albicans Candida FUNGI 1948 32,985 16,225 
Toxoplasma gondii Toxoplasma PROTOZOA 1940 23,377 12,569 
Chlamydia trachomatis Chlamydia BACTERIA 1930 19,148 11,511 
Haemophilus influenzae Haemophilus BACTERIA 1926 21,212 11,427 
Measles virus Morbillivirus VIRUS 1880 24,800 11,148 

Table 5.1 Top 20 most studied human pathogens.  
Pathogens are ordered by their number of associated pathogenic publications. Pathogenic publications are those that mention a specific human 
pathogen in combination with a pathogenic related term, e.g. ‘infection’. Total numbers of publications associated with each pathogen are also 
shown, as well as the first pathogen publication found.
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Name HP-PPIs PP-PPIs Total PPIs 
Saccharomyces cerevisiae 9170 21348 30518 
Escherichia coli 5574 2345 7919 
Human Immunodeficiency Virus 1 2193 (114)  45 (39) 2238 (153) 
Staphylococcus aureus 548 169 717 
Mycobacterium tuberculosis 389 281 670 
Bacillus subtilis 308 338 646 
Pseudomonas aeruginosa 309 284 593 
Candida albicans 298 191 489 
Plasmodium falciparum 330 122 452 
Salmonella choleraesuis 355 72 427 
Influenza A virus 305 (36) 35 (6) 340 (42) 
Hepatitis B virus 321 (0) 10 (0) 331 (0) 
Helicobacter pylori 248 62 310 
Streptococcus pyogenes 252 44 296 
Human Herpesvirus 4 230 65 295 
Enterococcus faecium 260 21 281 
Yersinia enterocolitica 158 112 270 
Hepatitis C virus 247 (0) 20 (0) 267 (0) 
Human Herpesvirus 5 177 78 255 
Neisseria gonorrhoeae 247 4 251 
Human Herpesvirus 1 58 (56) 125 (44) 183 (100) 
Table 5.2 Top 20 pathogens ordered by HP-PPIs from text-mining.  
Numbers in brackets refer to counts before modifying BioContext and Evex DB. HSV-1, which is 
outside of the top 20, is also included.  See Supplementary Table 1 for the full list of 220 
pathogens.  

5.2.2 Comparisons of text-mined and public database PPIs 
	  

Using publically available PPI databases we determined 13,331 HP-PPIs and 
259,213 PP-PPIs (236,373 from S Cerevisiae). HIV-1 has considerably more unique 
HP-PPIs recorded than other pathogens, with 6,774. Y pestis next has 2,762 
unique HP-PPIs, followed by S Cerevisiae, F tularensis and B anthracis, with 1033, 
961 and 747 respectively. We then integrated this data with the PPIs derived 
from text mining (Table 5.3 and Supplementary Table 1).  
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Name 

TM 
HP-
PPIs 

PDB 
HP-
PPIs 

TM 
PP-
PPIs 

PDB 
PP-
PPIs 

TM 
PPIs 

PDB 
PPIs 

TM in 
PDB 
HP-
PPIs 

TM in 
PDB 
PP-
PPIs 

TM in 
all 
PDB 
PPIs 

New 
TM 
HP-
PPIs 

New 
TM 
PP-
PPIs 

New 
TM 
PPIs 

All 
HP-
PPIs 

All 
PP-
PPis 

All 
PPIs 

Saccharomyces cerevisiae 9170 1033 21348 236373 30518 237406 58 9875 9933 9112 11473 20585 10145 247846 257991 
Human Immunodeficiency 
Virus 1 2193 6475 45 16 2238 6491 880 16 896 1313 29 1342 7788 45 7833 
Escherichia coli 5574 35 2345 5612 7919 5647 1 43 44 5573 2302 7875 5608 7914 13522 
Yersinia pestis 149 2762 68 0 217 2762 0 0 0 149 68 217 2911 68 2979 
Francisella tularensis 38 961 14 0 52 961 0 0 0 38 14 52 999 14 1013 
Bacillus anthracis 29 746 7 3 36 749 0 0 0 29 7 36 775 10 785 
Human Herpesvirus 4 230 425 65 24 295 449 8 3 11 222 62 284 647 86 733 
Influenza A virus 304 294 35 44 339 338 0 0 0 304 35 339 598 79 677 
Staphylococcus aureus 548 2 169 1 717 3 0 0 0 548 169 717 550 170 720 
Mycobacterium tuberculosis 389 0 281 373 670 373 0 6 6 389 275 664 389 648 1037 
Total (across all pathogens) 26496 13331 27056 259213 53552 272544 961 9995 10956 25535 17061 42596 38866 276274 315140 

Table 5.3 Pathogen-related PPIs from text-mining and public databases 
Only the top 10 pathogens are shown (see Supplementary Table 2 for full list). Columns are provided for text-mining (TM) and public databases 
(PDBs) and their host-pathogen (HP) and pathogen-pathogen (PP) protein-protein interactions (PPIs). We also show those HP-PPIs that have been 
found by TM not in PDBs and also the total PPIs between TM and PDBs.
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The text-mining data contains 961 unique HP-PPIs from the public DB data, with 
880 of these originating from HIV-1. This shows that the text-mining data only 
represents 7.21% of the HP-PPIs present in publically available DBs. This is likely 
due to a combination of poor accuracy in the text-mining data, where HP-PPIs 
have either been missed or incorrectly annotated, and that many of the PPIs in 
the public databases may not have been individually described in the text used. 
Furthermore, much of the full text from the published literature was not openly 
available to TM and if provided would have most likely improved the 
percentage of public DB PPIs retreived. Conversely, a further 25 535 unique HP-
PPIs were present in the text-mining data and not the publically available 
databases. These included 9,112, 5,573, 1,332, 548 and 389 unique HP-PPIs from S 
cerevisiae, E coli, HIV-1, S aureus and M tuberculosis respectively, among 223 
pathogens with new data.  

Table 5.4 shows the top human proteins targeted by pathogens (see 
Supplementary Table 2 for full list), with the public DB data, text-mining data 
and their union and intersect all detailed separately. There are 9 035 human 
proteins that interact with pathogen proteins, with 5 635 from public DB data 
and 6 283 from text-mining data. From the text-mining data, 2 883 human 
proteins feature in public DB HP-PPIs, although many are between human 
proteins and pathogen species not present in the public DB data. For example, 
NFKB1 has been shown to interact with 6 different pathogens in public DB data, 
whereas a further 37 are observed in the text-mining data. Moreover, in the text-
mining data there are 3,364 human proteins that interact with pathogens that do 
not have any recorded interactors in the public data.  
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Protein Name 

TM 
pathogens 
that 
interact 

Unique 
TM 
Pathogens 

PDB 
pathogens 
that 
interact 

Unique 
PDB 
Pathogens 

All  
Unique 
pathogens 
that 
interact 

NFKB1 40 37 6 3 43 
TNF 42 40 2 0 42 
GOPC 39 37 2 0 39 
TTF2 35 34 1 0 35 
MAPK1 35 34 1 0 35 
IL8 34 33 1 0 34 
SOLH 33 33 0 0 33 
ACTR6 30 30 0 0 30 
HIVEP1 27 26 2 1 28 
TLR2 27 26 1 0 27 
TLR4 26 25 2 1 27 
FN1 26 24 3 1 27 
IFNG 26 25 1 0 26 
IL2 26 25 1 0 26 
CAT 24 23 3 2 26 
CD4 26 25 1 0 26 
IFNA1 25 24 1 0 25 
MAPK14 25 22 3 0 25 
MUC7 24 23 1 0 24 

Table 5.4 Proteins targeted by pathogens 
The top human proteins that interact with pathogen species are shown. We show data separately 
from text-mining (TM) and public databases (PDB), highlighting unique pathogen species 
interactions for each and the total number of unique pathogen interactions across both datasets. 

5.2.3 Curating Text Mining Data 
	  

In past studies318, 368 our approach to curating PPIs from text-mining data has 
been to organize all individual events for a unique PPI from numerous 
publications onto a single web page, for which the data can then be validated 
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together to determine whether that unique PPI has been correctly extracted. This 
approach was designed primarily for validating interactions between human (or 
animal model) proteins in a particular class of disease. To see if this approach 
could be extended more broadly to curating interactions between human 
proteins and various pathogens we focused on three tasks/use cases, outlined 
here and in further detail in the Methods above. 

1) Extending the HHPID  

A large proportion of the HP-PPIs not present in public databases are from  
HIV-1 (1,313). We would perhaps expect this number to be much lower, if 
accurate, as the HIV-1 human protein interaction database (HHPID) has already 
been extensively curated from the literature, including access to full texts that are 
not openly accessible to text-mining. Therefore, it is of interest to determine if the 
HHPID is truly representative of the PPIs denoted in the literature and if useful 
data may have been missed.  

We curated each HIV-1 associated PPI, assessing whether an HIV-1 protein had 
been documented to have an interaction of any kind with a human protein.  
Overall, we were only able to find 42 new HP-PPIs related to HIV-1, with an 
additional 12 reported negatively and 5 reported speculatively. Many of these 
new interactions were documented in the 1990s and these publications were 
unlikely to have been selected for curation in the HHPID.  

However, while the new PPIs we have uncovered for HIV-1 with humans are no 
doubt useful, the remaining 95.5% of the HP-PPIs retrieved by TM not in the 
HHPID were incorrectly annotated. If we combine these figures with the 880  
HP-PPIs from text-mining that were present in the HHPID, the overall precision 
for extracting HIV-1 HP-PPIs is 42.8% (939 are correct and 1 280 are incorrect). 
During the curation, we noted common causes of error such as names mapped to 
human Entrez Gene IDs that were not proteins or events that had been 
incorrectly assigned between proteins. For example, terms such as ‘Fig’ or ‘HIV’ 
itself were assigned to human protein IDs. These types of matches shared similar 
features with gene names and could potentially be resolved by a post-processing 
system.  
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2) Identifying additional pathogens that interact with commonly targeted 
human proteins 

The intersection between HP-PPIs from text-mining and public databases 
revealed 2,670 human proteins that have interactions with various pathogens 
catalogued in public databases, but also with other pathogen species only 
identified by text-mining. To determine whether these pathogens had been 
correctly indentified as additional interactors, we selected high confidence HP-
PPIs for 302 interactions between human proteins and new pathogen species. A 
pathogen was considered to interact with a human protein if at least one of its 
proteins had been documented to interact with it. This approach enabled us to 
find 108 new interactions between pathogens and commonly targeted human 
proteins (35.8% precision). 51 of these were direct physical interactions, while the 
remainder were indirect interactions.  

3) Identifying new human protein targets for pathogens 

To validate interactions between the 3,364 human proteins that had no reported 
interactions with any pathogens in the public databases, we selected human 
proteins for curation in two different ways. Firstly, we selected human proteins 
that had at least one high confidence text-mining interaction between it and a 
pathogen protein from any pathogen species. Secondly, we asked if enriched GO 
terms from human proteins that have been shown to interact with pathogens in 
public databases are a useful indicator of correctly identified human proteins 
interacting with pathogens from text-mining not in public databases. To test this 
we ranked candidate human proteins by their number of corresponding enriched 
GO terms from other known human protein pathogen targets, setting various 
thresholds of enrichment p values for the inclusion of each GO term (see 
Methods).  

Table 5.5 shows the results for curating newly recognised human proteins 
targeted by pathogens in each of these ranking methods. In total these methods 
were able identify 33 new human proteins targeted by pathogens (21 direct 
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interactions and 12 indirect interactions). Human proteins ranked by number of 
enriched GO terms all had particularly low precision with no more than 12% of 
human proteins correctly identified as pathogen targets in each ranking. Those 
interactions between human proteins and pathogens from high confidence text-
mining data showed slightly better precision at 17.2% and filtering proteins from 
these that had no enriched pathogen-associated GO terms had no significant 
effect on this score. We therefore concluded that the most effective way of 
identifying human proteins from text-mining for curation was by using text-
mining confidence alone. 

Protein ranking Human Proteins 
curated 

True positives 

GO enriched (p < 0.1) 50 5 (10%) 
GO enriched (p < 1E5) 50 6 (12%) 
GO enriched (p < 1E10) 50 4 (8%) 
Text-mining confidence (>0.3) 163 28 (17.2%) 
GO enriched (p <0.1) and text-mining confidence (>0.3) 144 24 (16.7%) 
GO enriched (p <1E5) and text-mining confidence (>0.3) 128 21 (16.4%) 
GO enriched (p <1E10) and text-mining confidence 
(>0.3) 

110 18 (18%) 

Table 5.5 Ranking methods for curating unknown human targets for pathogens.  
A true positive is a correctly annotated interaction between a human protein and any pathogen 
protein.  

5.3 Discussion 
	  

In this study we set to out to determine how text-mining data can be utilized to 
expand our knowledge of interactions between pathogens and human proteins 
in public databases. It is clear that from the 1,419 pathogen species known to 
infect humans the PPIs relevant to these are only well represented for a few 
species (e.g. HIV-1 and Y pestis). Thus, to study how pathogenesis varies at a 
molecular level across all these pathogens many more PPIs need to be 
determined before accurate comparisons can be made.  

While the published literature might not be the solution to uncovering all this 
knowledge, we have shown that it contains many PPIs that are not present in 
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public databases, finding 25.5K new HP-PPIs for 223 pathogens in 2.3M 
pathogen-relevant publications from text-mining data. However, we 
demonstrated that this data is not useful unless validated, as it contains 
significant numbers of incorrectly annotated PPIs. For example, the curation task 
producing the best precision equaled only 35.8% despite it involving high-
confidence text-mining data and proteins already known to be targeted by 
pathogens.  

The fact that the precision of the text-mining data was so low is perhaps 
surprising, given that in previous studies we had shown that PPIs derived from 
BioContext, used again in this study with Evex DB, showed precision of 84.2% 
when using high-confidence data318. However, one notable difference between 
this study and previous ones was that in this study we were seeking PPIs 
between two different species. This could make it more difficult to map proteins 
to their correct gene IDs, increasing the number of candidate IDs, particularly 
when the protein names are conserved across multiple species. Moreover, we 
demonstrated how the protein to ID mapping for pathogen proteins could be 
improved substantially when using more tailored approaches to normalisation. 
This had enabled us to uncover nearly 3K new HP-PPIs for five common viruses 
and it is foreseeable that tailored approaches to protein normalization like these 
could be as effective in other pathogens, particularly for those with smaller 
genomes, and thus with less protein names to decipher.  

Conversely, while the text-mining data contained large numbers of incorrectly 
annotated interactions, our curation methods showed that these can be filtered 
out in an efficient manner. We showed that even for a host-pathogen PPI 
database that has been extensively curated from the literature, new PPIs can be 
found, that we can expand the range of pathogens known to interact with human 
protein targets and that new human protein targets for pathogens can be 
unearthed.  To uncover more likely correctly identified new human protein 
targets for pathogens from text-mining we experimented with using GO terms to 
rank proteins more closely aligned with other known human protein targets, 
although text-mining confidence still proved a more useful ranking method.  
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In future work it is therefore viable to continue curating the new PPI data 
identified from text mining to further expand on the existing knowledge stored 
in public databases. To facilitate this, the text-mining data produced in this study 
is readily available for this task; however, in parallel, we will investigate further 
how text-mining data can be specifically improved for retrieving pathogen 
related PPIs. This could be through improving the quality of existing text-mining 
databases using tailored approaches to protein normalisation, as we have shown 
is useful in this study, or through creating entirely new datasets from text-
mining, implementing tailored approaches to matching proteins, such as that 
used in Jamieson et al (2012)286.  
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CHAPTER 6 
 
Discussion and Conclusion 
 
In this thesis we have investigated how molecular interactions, derived from TM, 
can be utilized for more rigorous biological analyses in studying disease. We 
limited our investigation to studying two contrasting, but critically important 
classes of disease: pain-related interactions and host-pathogen interactions. In 
order to be able to analyse molecular interactions for these diseases we have 
followed a set TM approach of first identifying relevant literature, next extracting 
molecular interactions and their contexts, and finally validating this data through 
efficient large-scale curation. In each step we have introduced new methods, 
improved existing software and made available useful data for which other 
complementary research might be conducted. We will now discuss the merits 
and failings of these and what might be done to improve these in future research.   

6.1 Building a disease specific corpus 
	  

If one is familiar with biomedical TM research, and this thesis is no different, a 
publication or presentation of such findings will very commonly begin by 
outlining the unprecedented number and growth of publications in biomedicine. 
This cliché is necessary to underline the messages that yes, these are 
insurmountable without computational assistance and no, this state of affairs is 
unlikely to change in the near future. For extracting molecular interactions 
specific to pain and pathogens, our solution to this has been to process 
publications limited to their fields by first building lists of relevant terms and 
then assessing their relevance to a publication.  

Building lists of relevant terms was relatively straightforward. Indeed, we have 
been able to take advantage of the efforts of other researchers in utilizing species 
names for pathogens or have, for example, consulted with pain biologists to aid 
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with the creation of a new controlled vocabulary of 583 pain-related terms (see 
Chapter 3). We have then been able to supplement these efforts by using basic 
computational techniques, such as regular expressions for expanding these to 
cover a wider range of denotations, or more complex methods, such as ranking 
n-grams to identify new candidate terms.  

Once we had created sufficiently broad lists of terms these were then matched 
directly to text in published articles (albeit through the utility of LINNAEUS191). 
Pathogen species terms are relatively unambiguous and are unlikely to be 
matched in error, whereas for pain terms we ensured only unambiguous terms 
were used to determine pain-relevant publications by assigning pain specificity 
scores to each term. This approach enabled us to create a corpus of 766K 
documents for pain, which we had empirically proven to be pain-relevant, while 
for pathogens we were able to associate 2.3M publications. These corpora were 
then vital starting points for deriving molecular interactions and other context 
specific to these fields.  

However, for this approach to building corpora to be successful in other 
biomedical fields, like all NER, it is largely dependent on the ambiguity and 
breadth of the terms needed to assign relevant documents. For example, 
discerning relevant documents to a large family of genes might require a more 
advanced entity mapping solution similar to those for matching more generic 
entity types. Although for specific classes of disease, as for pain and pathogens, 
these methods are well suited to corpus building. 

As well as being able to match publications for the overall fields of pain and 
pathogens, in Chapter 3 we experimented with ranking publications for their 
overall relevance to pain and the individual terms (and their categories) 
matched. We have shown that by utilizing the pain specificity scores we had 
given to each term, combined with where they were matched in a document 
(title, abstract etc.) that we could empirically predict how relevant a publication 
was to pain, a pain category or pain term. While these rankings were not needed 
for subsequent TM data or curation in this thesis, they may well prove useful in 
other areas where document triage within a corpus is more necessary.  
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6.2 Molecular interactions and their contexts 
	  

Rather than use software designed more specifically for extracting molecular 
interactions (e.g. He (2009)372) we had instead opted to use chains of biomolecular 
events, whom when containing two molecular participants resembled MIs. This 
choice was motivated by a need to understand more closely how individual 
proteins, genes and RNA molecules had been documented to interact, thereby 
affording us greater detail when coming to understand their biology in the 
complete system. Furthermore, the BioNLP shared tasks had provided a 
backdrop of high quality software available for achieving this goal.  

Our first challenge in utilizing chains of biomolecular events had been how to 
evaluate them. Prior to our study presented in Chapter two, biomolecular events 
had only been evaluated as single entities and while useful for assessing the 
quality of each individual element of an overall chain an approach that evaluated 
the full linked chains was necessary. The ‘stringent’ and ‘approximate’ methods 
of evaluation we developed solved this issue and enabled accurate assessment of 
how well suited biomolecular events were for extracting molecular interactions.  

In Chapter two, we first experimented with using these by linking them to 
molecule mentions in HIV-1 text. The mentions were derived from using a 
customized version of BANNER, with modified training data and post-
processing, we had developed to improve precision and recall for matching HIV-
1 genes, proteins and RNA molecules. However, while these did provide 
improvements to the performance of BANNER for this task, in Chapter 6 where 
we revisited matching HIV-1 proteins, it was more convenient to utilize existing 
TM data from BioContext and Evex DB217, 367 that also employed more 
sophisticated normalization – particularly key for disambiguating human protein 
mentions. 

By reusing these existing datasets (and also in Chapters three and four with 
BioContext), we were able to make use of data from previous TM research that 
had taken considerable efforts to produce. Indeed, it is perhaps disappointing 
that this practice is not more common. Since the publication of BioContext in 
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2012, with the exception of two publications from this thesis, it has been cited 10 
times with only one of these studies making use of the data for biological 
analysis (see Wu et al (2013)196). For a database containing contextual biomedical 
events for the whole of Medline and PMC this should represent a goldmine for 
any biologist seeking to study the molecular mechanisms behind disease or to 
provide a ready dataset for integrating with new data types.  

The data types we had enriched BioContext within this thesis were mutations 
linked to proteins and pain and disease relevance. Associating pain and disease 
relevance were two important innovations as they allowed MIs to be ranked for 
curation, providing a prediction of their relevance to a particular field. These 
predictions were fairly accurate in confirming an association, although no 
attempts were made to automatically qualify what these might be, as other 
initiatives have tried to170. However, the major advantage of our method was that 
these associations were made at the document level, enabling us to capture any 
associations between very distant candidates – a method more fitting for our 
purpose.  

Can TM produce accurate MI data for immediate large-scale biological analysis? 
We believe in the majority of cases the answer to this is no, although it does 
depend on the type of MIs and the level of detail that is required. From a 
standalone perspective a MI, with its interaction type, proteins normalized to the 
correct species and gene IDs, and any negation or speculation indicated, will 
most commonly be incomplete or incorrectly annotated by TM. Our evaluations 
and others from BioContext and Evex DB have supported this assertion.  

Conversely, from a biological perspective it is not always necessary to ensure 
absolute precision and recall for MI extraction. Our aims throughout this thesis 
had been to extract unique molecular interactions for a particular disease-type. 
This meant that we could use multiple instances of a unique MI to qualify its 
existence, relying on only one of these to be correct. Then, using the TM 
confidence for each instance it is possible to predict automatically how likely a 
molecular interaction is to be correct. In Chapter three we showed that by doing 
this for human, mice and rat MIs relevant to pain we could find 85% of these to 
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have been correctly extracted. Furthermore, achieving high recall of MIs becomes 
easier as MIs mentioned multiple times in different denotations increases the 
chances of TM capturing this knowledge correctly. 

On the other hand, for this approach to be successful it is reliant on the TM data 
displaying a reasonable level of precision and recall to begin with. To this end, 
we found that the quality of generic TM data varied widely between MIs sourced 
for pain and those for pathogens. Pathogens PPIs from BioContext and Evex DB 
did not display high levels of precision comparable to pain and it is likely that 
many interactions were missed or incorrectly annotated. We had only recreated a 
tiny fraction (7.21%) of the pathogen interactions documented in public 
databases from this data and given the text available we would have expected 
this to be much higher.  

However, in Chapter 5 we did show that by using a tailored approach to 
normalizing pathogen proteins in five viruses that we could dramatically 
improve the coverage of generic TM data for sourcing pathogen-related PPIs. 
Moreover, we suspect that if this approach was combined with the type of 
approach used to match HIV-1 proteins in Chapter 2 that we could increase this 
coverage even further. The issue in extracting host-pathogen interactions, we 
believe, is not in the matching and normalizing of proteins from species with 
small genomes (e.g. viruses like HIV-1), but for matching and normalising 
proteins from larger genomes (e.g. human proteins) and correctly ascertaining 
the events that determine the interactions between them. These are both difficult 
aspects to improve on as normalizing proteins becomes more problematic when 
dealing with larger numbers of proteins names (through the ambiguity of the 
terms and the breadth of terms required) and biomolecular events have to 
account for often complexly defined relationships.  

6.3 Curating large scale molecular interaction datasets 
	  

To bridge the gap between producing MIs automatically and being able to 
examine them with confidence to infer insights into biological function and 
disease biology, we have designed and developed a new style of curating data 
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that, rather than reviewing data from individual publications, validated unique 
interactions mentioned across the entire literature. This approach to curation was 
extremely efficient, as once a single instance of a unique MI had been confirmed 
as correct, other instances of it were no longer needed for review.  Up to 250 
unique MIs a day could be curated in this way by a single person and when 
compared against manual curation tasks this finally gave TM a key role in 
providing the speed of data acquisition it had always promised and the accuracy 
it had heretofore lacked. While this approach to validating MIs did not ensure 
every single reported instance of a unique MI was correct, it had brought TM in 
line with the research goals of a major pharmaceutical company by providing 
data that could be used to conduct meaningful biological analysis. 

We showed that this style of curation was not just useful for curating disease-
related interactions between proteins, but also between host proteins and 
pathogen species and pathogens in general. Moreover, work outside of this thesis 
has been initiated in curating the expression of proteins in specific diseases for 
biomarker discovery and also for gaining insights into the overall roles of 
particular proteins across different diseases373. Provided each entity and its 
relations have been well defined by TM, there are few limits to how many data 
types stored in the literature might be suitable for this style of curation.  

To visualize the data from TM for each curation task we had used an off-the-shelf 
solution in the Mediawiki framework and its APIs, to create static wiki pages.  
The most extensive wiki we had built in this thesis was wiki-pain.org, which 
served both as a platform for researchers to view summary information on PPIs 
and as a curation interface to provide all the necessary information to validate a 
PPI. While we believe this served both of these purposes well, a system that 
might encourage any visiting researchers into aiding with the curation might be 
of use (akin to other crowd sourcing systems). Indeed, this was a project that was 
recently initiated in a master’s thesis at this University, but will require further 
work for it to reach its potential.  
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6.4 Harnessing MIs from TM for further use 
	  

There are three general methods for sourcing MIs in disease research: newly 
derived experimental data, those from former studies stored in public databases 
(e.g. iRefIndex, MiMi, IntAct etc.) and databases curated from the peer-reviewed 
literature. Each of these has their own strengths and weaknesses. Experimental 
data is often limited by the cost and time conducting the experiments, but allows 
flexibility in the kinds of data and level of detail that can be obtained. Public 
databases have the advantage of containing relatively large amounts of readily 
available data, but these often lack context for understanding the role of MIs in 
more detail. While databases curated from the literature can contain this context, 
but take large efforts to curate and are often expensive to access as a result (e.g. 
products from companies like Ingenuity and Biobase). 

Now that we could curtail the problems with large-scale curation by TM we have 
shown that it is possible to build a new database of PPIs representative of an 
entire disease, as we did for pain (Chapters 3 and 4). The PPI database we built 
for pain had not only shown that it was highly relevant to this topic, but also that 
it was more representative than ones crafted from gene expression or manually 
curated gene lists, both connected by generic interactions from public databases. 
We suspect that this is due to the fact that interactions sourced from TM had 
come predominantly from experiments detailing interactions that occurred in 
pain states, whereas the generic interactions used to connect the pain gene lists 
may not have occurred in these.    

Could we have obtained a list of PPIs only relevant to pain experimentally? This 
would be possible, though as we have mentioned it would have taken significant 
time and effort even for a pharmaceutical institution like Pfizer whom this 
project had been conducted in collaboration with. Here we see a key value 
proposition for TM. In being able to efficiently reconstruct existing knowledge 
contextually as we have, this style of approach has the ability to provide feasible 
solutions to otherwise unrealistic goals.  
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The value of the pain interactome we had constructed was obvious. By 
overlaying all existing drug target data onto enriched proteins in our network 
and applying pain categories to their relatedness to treat pain indications we had 
found a way of identifying new drug repurposing opportunities and targets for 
which novel drugs might be developed. Since these have been identified, further 
work has been conducted within Pfizer on their potential for further 
developments. We believe that many other diseases like those in pain could be 
studied in this way to deliver new therapeutic opportunities. 

6.5 Future directions 
	  

Immediately, it is possible to continue curating interactions from the pain and 
pathogen studies. Further analysis of the current pain interactome is also 
possible, particularly through using the contexts, i.e. any of the pain-disease 
associations, anatomy etc., to provide further insights into pain diseases. This is 
likewise possible with the pathogens data, although we believe further 
improvements to the quality of the TM data and the addition of useful contexts 
(e.g. cell-types, disease stage etc.) would be advisable before any efforts to 
conduct a pan-pathogen style analysis are made.  

Similar projects to those in this thesis have also been penned. For example, we 
have begun building a database of ion channel and solute carrier interactions, as 
these proteins are involved in many disorders for which new pharmacologic 
treatments are in need. Moreover, it is hoped our approach to curating unique 
knowledge will enable us to curate many other data types (e.g. for chemicals, 
diseases etc.) in a similar manner to how we have curated molecular interactions 
in this thesis.  

A major vision of TM is to one-day offer complete confidence in the knowledge 
that the data outputted is as complete a representation of that that was described 
in the literature as possible – representing a true depiction of the scientific 
consensus and dissent. We believe that there are two major barriers that must be 
overcome for this aim to be met. 
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Firstly, TM must be able to demonstrate that it is capable of extracting this 
information, accounting for the unique writing styles and idiosyncrasies of 
scientists that form a global community of a huge range of sub-disciplines. Most 
TM approaches attempt to solve this by simplifying the ways in which this 
knowledge is conveyed. For example, core data concepts such as proteins, 
chemicals and diseases are removed from their ambiguous denotations and 
mapped to single IDs, while more descriptive terms, such as those used to 
signify negation or speculation are reduced to binary concepts. While these 
techniques are adequate in summarizing often complexly described scientific 
findings, they also leave behind vital context that the reader intended to convey.  

How will this be resolved in the future? Initiatives such as the open biological 
expression language (BEL) project are attempting to by providing a framework 
and computable language for curating knowledge that aims to allow causal and 
correlative relationships and their context to be captured as they were originally 
described in the scientific literature. This community-wide effort between 
industry and academia holds promise, although it is in its infancy and it remains 
to be seen how well it will be developed to cover the more obscure scientific 
findings and whether it can represent quantitative data as well as qualitative 
findings.  

However, even if languages like BEL are capable of representing all scientific 
findings in the literature it is unlikely that TM will ever be able to perfectly 
match all text to it. While advances are continually made to the quality of TM 
software and data outputted, scientific language is constantly evolving, and with 
the persistent introduction of new concepts and data types it is only likely to get 
more difficult. It may well be then that the best solution to ensuring that all 
future published data is computable is to fundamentally alter the culture in 
which knowledge is published in science.  For example rather than allowing 
researchers to submit manuscripts written in their own linguistic styles, they 
would have to conform to a more standardized computable format. This could 
either replace the existing publication system or sit alongside it, allowing journal 
articles to still be produced for human consumption. Although, for these changes 
to occur they would most likely be gradual, would rely on the publishers to 
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enforce them (and these often have their own agendas) and would still not 
address the huge existing body of literature. To this end, we expect TM will 
always be necessary for conveying knowledge computationally. 

At present, we believe a second major barrier to knowledge extraction from 
literature is having full access to all published literature in full text. This has been 
a persistent problem for biomedical text-miners over the years, where only 
abstracts and a small subset of open access articles have been available for use. It 
is clear that key biological data and knowledge is stored in full text and if access 
is granted to manually view that text then the same privileges should be 
extended to text-miners for automatically extracting information. However, with 
the recent change in UK law233, it is hoped that publishers will now comply with 
providing such access, and it would be a welcome amendment in other countries 
too. 

Greater access to full text is, however, likely to create new challenges. The 
processing demands are likely to dramatically increase and this will mean text-
miners will have to take greater care in developing TM systems able to cope with 
these227. Furthermore, TM applied on full text is often more erroneous compared 
with TM applied on abstracts and titles and the novelty of the data retrieved is 
likely to vary more where work is referenced230, 374. Although these challenges 
would be welcome in exchange for more potential data and aspects such as 
applying TM confidence scores could help filter out data likely to be incorrect. 

6.6 Conclusion 
	  

This thesis has shown that TM, when used with our approach to manual 
curation, can efficiently build accurate contextual databases of molecular 
interactions that are extremely useful for studying diseases. While the approach 
to data extraction does not ensure that all data published in the literature is 
captured, it is practical for assessing large-scale datasets, widely applicable 
across many disease domains and allows biologists to analyse TM data with 
confidence to make new and compelling findings. Using this approach we have 
contributed a new database of pain-specific molecular interactions, of which we 
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have confirmed 1,002 and provided detailed analyses and hypotheses that other 
researchers can now investigate further. In pathogen molecular interaction 
extraction, we found that TM software performed best for extracting molecular 
interactions when it had been tailored to the individual task and species, and we 
therefore encourage future studies to follow suit rather than designing software 
to extract general data more diffusely. By following on from our initial work in 
expanding the pathogen interactome it is possible that we will be able to 
continue to complement knowledge of the existing pathogen interactome with 
data provided by TM, where TM acts as both a support tool for databases 
already extensively curated (e.g. the HHPID) and a way of rapidly building new 
databases of pathogen interactions that are not already curated.  
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