
 
 

 

 

Characterisation of a Susceptibility 

Locus for Inflammatory Arthritis 

 

 

A thesis submitted to The University of Manchester for 

the degree of PhD  

In the Faculty of Medical and Human Sciences 

 

 

2014 

 

Kathryn Jean Audrey Steel 

 

School of Medicine 

 

 



1 
 

Table of Contents 

 

List of Figures ................................................................................................................................... 8 

List of Tables ................................................................................................................................... 10 

Abbreviations ................................................................................................................................. 11 

Abstract............................................................................................................................................. 15 

Acknowledgements ...................................................................................................................... 17 

1.1.1 Rheumatoid Arthritis ................................................................................................... 20 

1.1.2 Juvenile Idiopathic Arthritis ..................................................................................... 20 

1.1.3 Psoriatic Arthritis .......................................................................................................... 21 

1.2 Pathogenesis of Inflammatory Arthritis ....................................................................... 22 

1.2.1 Cellular Infiltrate ........................................................................................................... 25 

1.2.2 Autoantibodies ............................................................................................................... 26 

1.2.3 Cytokine Disequilibrium............................................................................................. 28 

1.2.4. Animal models and the pathogenesis of IA ........................................................ 30 

1.3 Aetiology of Inflammatory Arthritis ............................................................................... 31 

1.4 Identification of Disease Susceptibility Genes ........................................................... 35 

1.4.1 Case Control Studies .................................................................................................... 35 

1.4.2 Linkage Disequilibrium .............................................................................................. 37 

1.4.3 Genome Wide Association Studies ......................................................................... 38 

1.4.4 Meta-analysis .................................................................................................................. 41 

1.4.5 Population stratification ............................................................................................. 42 

1.4.6 Common Disease Common Variant Hypothesis ................................................ 44 

1.4.7 Missing Heritability ...................................................................................................... 45 

1.5 Identification of a Causal Variant .................................................................................... 48 

1.5.1 Imputation ....................................................................................................................... 49 

1.5.2 DNA Resequencing ....................................................................................................... 49 

1.5.3 Fine Mapping .................................................................................................................. 50 

1.6  From Genotype to Phenotype .......................................................................................... 51 

1.7 Genetics of inflammatory arthritis ................................................................................. 54 

1.7.1 RA Genetics ...................................................................................................................... 54 

1.7.1.1 The Major Histocompatibility Complex (MHC) ............................................. 55 

1.7.1.2 Non-MHC RA Loci ...................................................................................................... 56 

1.7.2 JIA genetics ........................................................................................................................... 59 

1.7.2.1 The Major Histocompatibility Complex (MHC) ............................................. 60 

1.7.2.2 Non-MHC JIA Loci ...................................................................................................... 61 

1.7.2.2.1 Candidate gene studies ........................................................................................ 61 

1.7.2.2.2 GWA studies ............................................................................................................. 61 



2 
 

1.7.3 PsA Genetics .................................................................................................................... 63 

1.7.3.1 The Major Histocompatibility Complex (MHC) ............................................. 63 

1.7.3.2 Non-MHC PsA loci ...................................................................................................... 64 

1.7.4  Overlap of Susceptibility Loci .................................................................................. 66 

1.7.4.1  The Concept of Shared Loci .................................................................................. 66 

1.8 Inflammatory arthritis overlapping regions ............................................................... 70 

1.8.1 PTPN22 .................................................................................................................................. 70 

1.8.2 STAT4 ................................................................................................................................ 71 

1.8.3 ATXN2/SH2B3................................................................................................................ 72 

1.8.4 TNFAIP3 ............................................................................................................................ 72 

1.8.5 TRAF1/C5 ........................................................................................................................ 73 

1.8.6 IL2RA ................................................................................................................................. 74 

1.8.7 IL2/IL21 ............................................................................................................................ 74 

1.9  Summary .................................................................................................................................. 75 

1.10 The Immunochip ................................................................................................................. 76 

1.11 Aims of study ........................................................................................................................ 78 

1.12 Objectives ............................................................................................................................... 78 

2.1.1 Inflammatory arthritis overlap ................................................................................ 80 

2.1.2 Subjects ............................................................................................................................. 80 

2.1.3 Illumina Infinium HD assay genotyping ............................................................... 81 

2.1.3.1 DNA quality control .................................................................................................. 84 

2.1.3.2 Amplification of DNA................................................................................................ 85 

2.1.3.3 Fragmentation and precipitation of DNA ......................................................... 85 

2.1.3.4 Resuspension of DNA and hybridisation to bead chip array .................... 85 

2.1.3.5 Washing of bead chip array ................................................................................... 86 

2.1.3.6 Single base extension and bead chip staining ................................................ 86 

2.1.3.7 Imaging of bead chip array on iScan system ................................................... 88 

2.1.4 Immunochip SNP and sample QC ............................................................................ 88 

2.1.4.1 Identity by descent analysis .................................................................................. 89 

2.1.4.2 Principal Components Analysis  .......................................................................... 89 

2.1.4.3 Hardy-Weinberg Equilibrium ............................................................................... 90 

2.1.4.4 Association analysis .................................................................................................. 91 

2.1.5 Power of each disease to detect genetic effects ................................................ 91 

2.1.6 Calculating the number of inflammatory arthritis overlapping regions . 92 

2.1.7 Identifying correlation between SNPs in overlapping regions ................... 92 

2.1.8 Selecting a functionally promising region for further analysis ................... 92 

2.1.9 Functional annotation ................................................................................................. 93 

2.2 Replication of overlapping associations ....................................................................... 94 



3 
 

2.2.1 SNP Assay Design .......................................................................................................... 95 

2.2.2 Subjects ............................................................................................................................. 96 

2.2.3 Genotyping using the Sequenom MassARRAY Platform ................................ 96 

2.2.3.1 Amplifying DNA for genotyping ........................................................................... 97 

2.2.3.2 Agarose gel electrophoresis .................................................................................. 99 

2.2.3.3 SAP Treatment ............................................................................................................ 99 

2.2.3.4 IPlex Reaction .......................................................................................................... 100 

2.2.3.5 Conditioning the iPlex reaction products — clean resin ......................... 102 

2.2.3.6 Dispensing sample onto the SpectroChip arrays ....................................... 103 

2.2.4 Calling SNP genotypes .............................................................................................. 103 

2.2.5 Sample and SNP QC ................................................................................................... 103 

2.2.6 Association testing ..................................................................................................... 104 

2.3 RUNX1 replication and fine mapping .......................................................................... 104 

2.3.1 Defining the region for fine mapping ................................................................. 104 

2.3.2. Calculation of coverage for the selected region on the Immunochip array
 ...................................................................................................................................................... 104 

2.3.3 Subjects .......................................................................................................................... 105 

2.3.4 Tag SNP selection and assay design .................................................................... 105 

2.3.5 Genotyping using the Sequenom MassARRAY system ................................ 105 

2.3.6 Calling SNP genotypes .............................................................................................. 105 

2.3.7 Sample and SNP QC ................................................................................................... 106 

2.3.8 Association testing ..................................................................................................... 106 

2.3.9 Identification of  multiple effects in the selected region ............................. 106 

2.4 Functional Analysis of the selected region ............................................................... 106 

2.4.1.1 Subjects....................................................................................................................... 107 

2.4.1.2 SNP genotyping using Taqman allelic discrimination assays ............... 108 

2.4.1.2.1 Extraction of DNA for genotyping ................................................................ 108 

2.4.1.2.2 Plating out of DNA for genotyping ............................................................... 109 

2.4.1.2.3 Preparing the reaction mastermix ............................................................... 109 

2.4.1.3. Calling of genotypes using the Quant studio RT-PCR software ........... 110 

2.3.1.4 Whole blood gene expression analysis .......................................................... 110 

2.3.1.5 Design of selected gene and endogenous controls gene expression 
assays ......................................................................................................................................... 112 

2.3.1.6 Subjects for gene expression analysis ............................................................ 112 

2.3.1.7 Total RNA quality control .................................................................................... 112 

2.3.1.8.1 Preparing the gel and gel dye mix ................................................................ 113 

2.3.1.8.2 Loading the gel dye mix .................................................................................... 114 

2.3.1.8.3 Loading the Nanomarker, RNA ladder and samples onto the chip . 114 

2.3.1.8.4 Running the Nanochip....................................................................................... 114 



4 
 

2.3.1.9 cDNA conversion using High-capacity cDNA Reverse Transcription Kit
 ...................................................................................................................................................... 114 

2.4.1.10 Gene expression analysis of selected gene and endogenous controls
 ...................................................................................................................................................... 115 

2.4.1.11 Whole blood eQTL analysis .............................................................................. 117 

2.4.2.1 Subjects....................................................................................................................... 118 

2.4.2.2 Genotyping of samples ......................................................................................... 118 

2.4.2.3 Sample collection for PBMC extraction .......................................................... 119 

2.4.2.4 Cell counts and viability checks ........................................................................ 120 

2.4.2.4.2 Trypan blue exclusion ....................................................................................... 122 

2.4.2.4.2.1 Assessing viability using Trypan Blue ..................................................... 122 

3.4.2.5 Cryopreservation and thawing of PBMCs ..................................................... 122 

3.4.2.5.1 Freezing of PBMC samples .............................................................................. 123 

3.4.2.5.2 Thawing of PBMC samples .............................................................................. 123 

2.4.2.6 Separation of PBMCs into T lymphocyte subsets ....................................... 124 

2.4.2.6.1 Positive selection ................................................................................................ 124 

2.4.2.6.2 Negative selection ............................................................................................... 124 

2.4.2.7 Assessment of cell viability and purity using flow cytometry .............. 126 

2.4.2.7.1 Using flow cytometry to analyse T lymphocyte subsets ...................... 126 

2.4.2.7.2 Staining of cells for flow cytometry ............................................................. 127 

2.4.2.7.3 Flow cytometry analysis .................................................................................. 128 

overlap....................................................................................................................................... 131 

2.4.2.8 Extracting total RNA from cell subset suspensions................................... 132 

2.4.2.9.1 RNA quality control using the Agilent bioanalyzer 2100 .................... 133 

2.4.2.10 DNase treatment of total RNA ......................................................................... 133 

2.4.2.11.1 Reverse transcription to synthesize First Strand cDNA .................... 136 

2.4.2.11.2 Second strand cDNA synthesis .................................................................... 137 

2.4.2.11.3 cDNA purification ............................................................................................. 138 

2.4.2.12 Illumina Gene Expression Direct Hybridization Assay ......................... 139 

2.4.2.12.1 Hybridization to the bead chip .................................................................... 140 

2.4.2.12.2 Washing beadchip ............................................................................................ 140 

2.4.2.13 Detecting differential signals on array ........................................................ 141 

2.4.2.14 Gene expression data normalisation ............................................................ 141 

2.4.2.15 Calculation of the signal to noise ratio across arrays ............................ 142 

2.4.2.16 Calculation of intensity signals across probes .......................................... 142 

2.4.2.17 Calculation of the proportion of probes expressed by each sample 142 

2.4.2.18  Matching probes to hg19 genome build..................................................... 143 

2.4.2.19 Identification of  sample outliers ................................................................... 143 

2.4.2.20  Principal components analysis ...................................................................... 143 



5 
 

2.4.2.21  Array weighting ................................................................................................... 143 

2.4.2.22 Cell specific eQTL analysis ................................................................................ 144 

3.0 Results ..................................................................................................................................... 146 

3.1 Inflammatory arthritis overlap ..................................................................................... 146 

3.1.1 Immunochip SNP and sample QC ......................................................................... 146 

3.1.2 Power of each cohort to detect genetic effects ............................................... 151 

3.1.3 Calculating the number of inflammatory arthritis overlapping regions
 ...................................................................................................................................................... 151 

3.1.4 Identification of  correlation between SNPs in overlapping regions ..... 157 

3.1.5 Selecting a functionally promising region for further analysis ................ 163 

3.1.6 RUNX1 functional annotation................................................................................ 163 

3.1.6.1 RUNX1 eQTL analysis............................................................................................ 164 

3.2 Replication of overlapping associations .................................................................... 170 

3.2.1 Selection of genetic regions for replication ..................................................... 170 

3.2.2 SNP assay design ........................................................................................................ 170 

3.2.3 Subjects .......................................................................................................................... 171 

3.2.4 Power calculations pre-QC ..................................................................................... 174 

3.2.5 Genotyping using the Sequenom MassARRAY platform ............................. 174 

3.2.6.1 Issues with DNA quality ....................................................................................... 176 

3.2.7 Sample and SNP QC ................................................................................................... 178 

3.2.8 Post-QC power calculations ................................................................................... 180 

3.2.9 Association testing ..................................................................................................... 180 

3.3 RUNX1 replication and fine mapping ......................................................................... 183 

3.3.1 Defining the region for fine mapping ................................................................. 183 

3.3.2 Calculating RUNX1 SNP coverage on the Immunochip array .................... 184 

3.3.3 Subjects .......................................................................................................................... 185 

3.3.4 Pre-QC power calculations ..................................................................................... 185 

3.3.5 Tag SNP selection and assay design .................................................................... 185 

3.3.6 Genotyping using the Sequenom MassARRAY system ................................ 187 

3.3.7 Calling SNP genotypes .............................................................................................. 187 

3.3.7.1 Issues with DNA quality ....................................................................................... 188 

3.3.8 Sample and SNP QC ................................................................................................... 189 

3.3.9 Post-QC power calculations ................................................................................... 191 

3.3.10 Association testing .................................................................................................. 191 

3.3.11 Identification of multiple effects in the RUNX1 region.............................. 197 

3.4 Functional analysis of the RUNX1 region .................................................................. 200 

3.4.1 eQTL analysis of the RUNX1 region in whole blood ...................................... 200 

3.4.1.1 Subjects....................................................................................................................... 200 

3.4.1.2 SNP genotyping using Taqman allelic discrimination assays ............... 201 



6 
 

3.4.1.3 Calling of genotypes using the Quant studio RT-PCR software ............ 201 

3.4.1.4 Design of RUNX1 and control gene expression assays ............................ 202 

3.4.1.5 Subjects for gene expression analysis ............................................................ 203 

3.4.1.6 Total RNA quality control .................................................................................... 203 

3.5.1.7 cDNA conversion of RNA samples.................................................................... 205 

3.4.1.8 Gene expression analysis of RUNX1 and endogenous controls ............ 205 

3.4.1.9 Whole blood eQTL analysis ................................................................................ 206 

3.4.2 eQTL analysis of the RUNX1 region  in T lymphocytes ................................ 208 

3.4.2.1 Subjects....................................................................................................................... 208 

3.4.2.2 Genotyping of samples ......................................................................................... 208 

3.4.2.3 Sample collection for PBMC extraction .......................................................... 209 

3.4.2.4 Cell count and viability checks .......................................................................... 209 

3.4.2.5 Cryopreservation and thawing of PBMCs ..................................................... 211 

3.4.2.6 Separation of PBMCs into T lymphocyte subsets ....................................... 211 

3.4.2.7 Assessment of viability and cell purity using flow cytometry .............. 213 

3.4.2.8 Purity of cell populations .................................................................................... 218 

3.4.2.9. Extracting total RNA from cell subset suspensions .................................. 222 

3.4.2.10 RNA quality control ............................................................................................. 222 

3.4.2.11 DNase treatment of Total RNA ....................................................................... 226 

3.4.2.12 RNA amplification using Illumina TotalPrep Amplification Kit ......... 226 

3.4.2.13 Illumina Gene Expression Direct Hybridization Assay ......................... 227 

3.4.2.14 Detecting differential signals on array ........................................................ 227 

3.4.2.15 Gene expression normalization and QC ...................................................... 227 

3.4.2.16 Calculation of the signal to noise ratio across arrays ............................ 228 

3.4.2.17 Calculation of the intensity signals across probes .................................. 229 

3.4.2.18 Calculation of the proportion of probes expressed by each sample 231 

3.4.2.19 Matching probes to hg19 transcripts ........................................................... 231 

3.4.2.20 Identification of sample outliers .................................................................... 231 

3.4.2.21 Principal components analysis ....................................................................... 232 

3.4.2.22 Array weighting .................................................................................................... 233 

3.4.2.23 Cell specific eQTL analysis ................................................................................ 234 

4.0 Discussion .............................................................................................................................. 240 

4.1 Summary of findings ......................................................................................................... 240 

4.2. Findings, strengths and weaknesses of the study ................................................. 241 

4.2.1 Immunochip overlap ................................................................................................. 241 

4.2.2 Immunochip replication .......................................................................................... 248 

4.2.3 RUNX1 fine mapping and replication ................................................................. 251 

4.2.4 Whole blood eQTL analysis .................................................................................... 253 



7 
 

4.2.5 eQTL analysis in T lymphocytes ........................................................................... 256 

4.3. Implications of study ........................................................................................................ 262 

4.3.1 Immunochip overlap ................................................................................................. 262 

4.3.2 Immunochip replication .......................................................................................... 264 

4.3.3 RUNX1 replication and fine mapping ................................................................. 265 

4.3.4 RUNX1 eQTL analysis in whole blood and T lymphocytes ........................ 266 

4.4 Future Work ......................................................................................................................... 268 

4.5 Conclusion ............................................................................................................................. 277 

5. Appendix ................................................................................................................................... 279 

5.1 Tempus spin RNA isolation kit Tempus Spin RNA Isolation Kit ...................... 279 

5.1.1 Processing of stabilized blood ............................................................................... 279 

5.1.2 Purification of RNA .................................................................................................... 279 

5.1.3 RNA QC ........................................................................................................................... 280 

5.1.3.1 RNA quality control using Nanodrop N-1000 ............................................. 280 

6.0 References ........................................................................................................................ 282 

 

Word count: 78,127 words  



8 
 

List of Figures  

Figure 1 - Joint inflammation in RA, JIA and PsA................................................................... 19 
Figure 2 - Hand x-rays of patients with RA, JIA and PsA .................................................... 25 
Figure 3 - Diagram of normal and disease affected joint (Strand et al. 2007). .......... 29 
Figure 4 – Induction of autoimmunity in rheumatic diseases ......................................... 33 
(Deane and El-Gabalawy 2014). .................................................................................................. 33 
Figure 5 - Summary of stages involved in identifying and characterising a disease-
associated locus. ................................................................................................................................. 34 
Figure 6 – SNP polymorphism ...................................................................................................... 36 
Figure 7 – Associations identified by GWA studies .............................................................. 40 
Figure 8– PCA analysis of Hapmap populations (Heath et al. 2008) ............................. 44 
Figure 9 - Overlapping regions prior to the Immunochip study ..................................... 69 
Figure 10 – Immune mediated diseases which contributed to the Immunochip ..... 77 
Figure 11 – Illumina workflow    .................................................................................................. 83 
Figure 12 – Formula to determine DNA sample concentration and purity ................ 84 
Figure 13– Sequenom assay workflow ..................................................................................... 97 
Figure 14 – Taqman allelic discrimination workflow ...................................................... 108 
Figure 15 – Taqman gene expression chemistry ................................................................ 111 
Figure 16– Ficoll separation layers ......................................................................................... 119 
Figure 17– CASY cell counter current exclusion ................................................................ 121 
Figure 18– Cell viability equation ............................................................................................ 122 
Figure 19– Gating for analysis of purity of CD4+ and CD8+ samples ......................... 130 
Figure 20– TotalPrep amplification workflow .................................................................... 135 
Figure 21– SNP QC for each disease ........................................................................................ 146 
Figure 22– Sample QC for each disease ................................................................................. 149 
Figure 23– Distribution of overlap between diseases ...................................................... 157 
Figure 24 – RUNX1 region association plots ........................................................................ 159 
Figure 25– IL2RA region association plots ........................................................................... 160 
Figure 26– rs9979383 region TF binding ............................................................................. 166 
Figure 27– rs8129030 region TF binding ............................................................................. 167 
Figure 28– SNP calls from Typer 4.0 ....................................................................................... 175 
Figure 29 – High quality DNA gel and genotyping ............................................................. 176 
Figure 30– Low quality DNA gel and genotyping ............................................................... 177 
Figure 31 – SNP and sample QC summary ............................................................................ 179 
Figure 32 – RUNX1 region selected for fine mapping ....................................................... 183 
Figure 33– Haploview tagger results for 51 SNPs ............................................................. 186 
Figure 34 – SNP calls from Typer 4.0 ...................................................................................... 187 
Figure 35– High quality DNA gel and genotyping .............................................................. 188 
Figure 36 – Low quality gel and genotyping ........................................................................ 189 
Figure 37 – Genotyping QC stage I and stage II .................................................................. 190 
Figure 38 – Locus zoom plot of the RUNX1 region ............................................................ 195 
Figure 39– Odds ratio forest plot ............................................................................................. 196 
Figure 40– Association plot when conditioned on rs9979383 showing no 
independent effects ....................................................................................................................... 199 
Figure 41– Genotype calls using Quant studio RT-PCR software ................................ 201 
Figure 42– ENSEMBL gene browser showing RUNX1 splice variants ....................... 203 
Figure 43– Electropherogram and gels from 2 healthy controls samples. .............. 204 
Figure 44 – Amplification plot for RUNX1 and housekeeping genes in whole blood
................................................................................................................................................................ 205 
Figure 45– QC summary for eQTL analysis .......................................................................... 206 
Figure 46– eQTL analysis of RUNX1 region in whole blood ........................................... 207 



9 
 

Figure 47– PBMC yield from healthy control bloods ........................................................ 210 
Figure 48– CD4+ lymphocyte yield.......................................................................................... 212 
Figure 49 CD8+ lymphocyte yield ............................................................................................ 213 
Figure 50– Plots showing viability of CD8+ and CD4+ lymphocytes.......................... 215 
Figure 51- CD8+ lymphocyte viability across all samples .............................................. 216 
Figure 52- CD4+ lymphocyte viability across all samples .............................................. 217 
Figure 53– Histogram plots showing CD8+ population purity ..................................... 218 
Figure 54– Plots showing CD4+ population purity using PE and Vioblue 
flourochromes .................................................................................................................................. 220 
Figure 55 – CD8+ lymphocyte purity ...................................................................................... 221 
Figure 56– CD4+ lymphocyte purity ....................................................................................... 222 
Figure 57– Bioanalyzer traces of 2 healthy control samples ......................................... 226 
Figure 58– Gene expression normalisation and QC .......................................................... 228 
Figure 59 –  Signal to noise ratios for 45 samples  ................................................... 229 
Figure 60– Average signal intensity in raw and normalized data ............................... 230 
Figure 61– MDS plot showing clustering by sample type ............................................... 232 
Figure 62– Contribution of principal components to sample variance ..................... 233 
Figure 63- QC summary for eQTL analysis ........................................................................... 235 
Figure 64– RUNX1 region eQTL analysis in CD8+ lymphocytes ................................... 237 
Figure 65– RUNX1 region eQTL analysis in CD4+ lymphocytes ................................... 238 

 

  



10 
 

List of Tables  

 

Table 1 – Summary of similarities and differences between RA, JIA and PsA ........... 23 
Table 2 – Total number of samples included in Immunochip analysis ........................ 81 
Table 3 – Beadchip xStain stages ................................................................................................. 87 
Table 4– PCR reaction mastermixes ........................................................................................... 98 
Table 5 – PCR reaction cycles ....................................................................................................... 99 
Table 6 – SAP enzyme mastermixes ........................................................................................ 100 
Table 7 – SAP reaction cycles ..................................................................................................... 100 
Table 8– iPlex reaction mastermixes ...................................................................................... 101 
Table 9 – iPlex reaction cycles ................................................................................................... 102 
Table 10 – Taqman genotyping reagents .............................................................................. 109 
Table 11 - Allelic discrimination assay reaction times .................................................... 110 
Table 12– cDNA conversion volumes ..................................................................................... 115 
Table 13– cDNA conversion thermo-cycling ....................................................................... 115 
Table 14–Gene expression reaction mastermix ................................................................. 116 
Table 15- Gene expression reaction thermo cycling conditions .................................. 116 
Table 16 - Antibody cocktails added to first group of samples (n=6) ........................ 128 
Table 17 - Antibody cocktails added to remaining group of samples (n=17) ......... 132 
Table 18– Reverse transcription mastermix ....................................................................... 136 
Table 19– Reverse transcription reaction times ................................................................ 136 
Table 20– Second strand transcription mastermix ........................................................... 137 
Table 21– Second strand transcription reaction times ................................................... 137 
Table 22– IVT transcription mastermix ................................................................................ 138 
Table 23 – IVT reaction times .................................................................................................... 139 
Table 24– Beadchip wash steps ................................................................................................ 141 
Table 25– Summary of total SNP and samples available for each disease post QC
................................................................................................................................................................ 150 
Table 26 – Power to detect genetic effects with OR = 1.2 ............................................... 151 
Table 27 – Regions associated with multiple types of Inflammatory Arthritis  ..... 153 
Table 28 – Correlation between index SNPs in overlapping regions ......................... 161 
Table 29– RUNX1 eQTL analysis ............................................................................................... 164 
Table 30– Demographics for 3879 cases and 2561 controls......................................... 171 
Table 31 –Immunochip regions selected for overlap replication ................................ 172 
Table 32– SNPs included on Immunochip overlap replication  ...................... 173 
Table 33 – Allelic association results from Overlap Replication  ................................. 181 
Table 34 – SNP capture of the RUNX1 region on the Immunochip array ................. 184 
Table 35 – SNP capture of the RUNX1 fine mapping region with 2 assays .............. 186 
Table 36 – Allelic association testing for RUNX1 fine mapping genotyping ............ 192 
Table 37– Association statistics for rs9979383 compared to the Immunochip Study
................................................................................................................................................................ 194 
Table 38– Conditional logistic regression results .............................................................. 197 
Table 39– Demographics for 75 subjects .............................................................................. 200 
Table 40- Genotypic distribution of genotype calls in healthy controls ................... 202 
Table 41– Demographics of 23 samples from the NRHV cohort .................................. 208 
Table 42– Genotype distribution for 23 healthy controls .............................................. 209 
Table 43- Characteristics of extracted RNA ......................................................................... 224 
Table 44– eQTL results for RUNX1 region ............................................................................ 236 

 

 



11 
 

Abbreviations 

A proliferation inducing ligand (APRIL) 

American College of Rheumatology (ACR) 

Ankylosing Spondylitis (AS). 

Anti-carbamylated antibodies (anti-CarP) 

Anti-citrullinated peptide antibodies (ACPA) 

Antigen presenting cells (APC) 

Anti-nuclear antibodies (ANAs) 

B lymphocyte stimulator (BLyS) 

Beta  actin (ACTNB) 

Bovine serum albumin (BSA), 

Celiac Disease (CD) 

Chromatin immunoprecipitation (ChIP) 

Chromatin immunoprecipitation resequencing (ChIP-seq) 

Chromosome conformation capture (3C)  

Common disease common variant hypothesis (CD/CV), 

Complement component 5 (C5) 

Complementary DNA (cDNA) 

Complementary RNA (cRNA) 

Copy number variations (CNVs) 

Crohn’s disease (CrD) 

Cross phenotype meta-analysis (CPMA) 

Cytotoxic T-Lymphocyte Antigen 4 (CTLA4) 

Dendritic cells (DCs) 

Dideoxynucleotide triphosphate (ddNTP).   

Disease modifying anti-rheumatic drugs (DMARDS) 

DNA resequencing (DNA-seq) 

Encyclopaedia of DNA elements (ENCODE) 

Ethylenediaminetetraacetic acid (EDTA) 

European league against rheumatism (EULAR) 

Expression quantitative trait locus (eQTL) 

False discovery rate (FDR) 

Fluorescence activated cell sorting (FACS) 

Foetal bovine serum (FBS) 



12 
 

Fragment crystallisable portion (Fc portion) 

Genome wide association studies (GWA studies) 

Genomic control (GC) 

Genotype database (GDB) 

Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) 

Hardy Weinberg Equilibrium (HWE). 

Human leukocyte antigen (HLA) 

Identity by descent (IBD) 

Immunoglobulin G (IgG) 

Inflammatory arthritis (IA) 

Interleukin 1 (IL-1)   

Interleukin 13 (IL13) 

Interleukin 18 (IL-18)   

Interleukin 2 (IL-2)   

Interleukin 2 receptor alpha (IL2RA) 

Interleukin 21 (IL-21)   

Interleukin 33 (IL-33)   

Interleukin 6 (IL-6)   

International League of Associations for Rheumatology (ILAR) 

Janus kinase-signal transducer and activator of transcription (JAK-STAT)# 

Juvenile chronic arthritis (JCA), 

Juvenile idiopathic arthritis (JIA) 

Linkage disequilibrium (LD) 

Magnetic activated cell sorting (MACS) 

Major histocompatibility complex (MHC) 

Matrix metalloproteinase (MMP) 

Minor allele frequency (MAF) 

Multiple Sclerosis (MS). 

Myotubularin-related protein 3 (MTMR3) 

National repository healthy volunteers (NRHV) 

Nod like receptors (NLRs) 

Non-steroidal anti-inflammatory drugs (NSAIDs) 

Nuclear factor kappa-light-chain-enhancer of activated B cells (NFKB) 

Odds ratio (OR) 



13 
 

Peptidyl deaminase (PAD) 

Peripheral blood mononuclear cell (PBMC) 

Phosphate buffer saline (PBS) 

Polymerase chain reaction (PCR) 

Principal components analysis (PCA) 

Protein tyrosine phosphatase 22 (PTPN22) 

Psoriasis Vulgaris (PsV) 

Psoriatic arthritis (PsA) 

Quality control (QC) 

Receptor activator of nuclear factor kappa-B ligand (RANKL) 

Retinol binding protein 5 (RBP5) 

Reverse transcription (RT) 

Rheumatoid arthritis (RA) 

Rheumatoid factor (RF) 

Ribosomal RNA (rRNA) 

RNA integrity number (RIN) 

RNA resequencing (RNA-seq) 

Runt related transcription factor 3 region (RUNX3) 

Sequence by synthesis (SBS) 

Shrimp alkaline phosphatase (SAP) 

Signal transducer and activator of transcription 2 (STAT2) 

Signal transducer and activator of transcription 4 (STAT4) 

Single nucleotide polymorphism (SNP) 

Systemic Lupus Erythematosus (SLE)  

Systemic sclerosis (Ssc) 

T regulatory cells (Tregs) 

The ataxin 2/SH2B adaptor protein 3 (ATXN2/SH2B3) 

TNF Receptor Associated Family (TRAF) 

Toll like receptors (TLRs) 

Transcription factor (TF) 

Transcription factor binding sites (TFBS) 

Tumour necrosis factor (TNF) 

Tumour necrosis factor associated factor 1 (TRAF1) 

Tumour necrosis factor, alpha-induced protein 3 (TNFAIP3) 



14 
 

Type 1 diabetes (T1D) 

Tyrosine kinase 2 (TYK2) 

United Kingdom Rheumatoid Arthritis Genetics Consortium (UKRAG) 

Utah residents with Northern and Western European ancestry (ceph/CEU) 

Wellcome Trust case control consortium (WTCCC) 
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Abstract 

The University of Manchester, Kathryn Jean Audrey Steel, PhD, 
Characterisation of a Susceptibility Locus for Inflammatory Arthritis, 2014. 

Inflammatory arthritis (IA) types such as rheumatoid arthritis (RA), juvenile 
idiopathic arthritis (JIA) and psoriatic arthritis (PsA) have been shown to exhibit 
common clinical features. As complex diseases, they have a known genetic 
component, some of which is known to be shared. The aim of this study was to 
assess the genetic overlap between 3 types of IA (RA, JIA and PsA) using genotype 
data generated on the Immunochip array and to select a biologically promising 
overlapping region for further genetic and functional investigation. 

Overlap analysis was performed using association data generated for a large 
cohort of inflammatory arthritis cases and shared controls (11,475 RA; 2816 JIA; 
929 PsA respectively). 50 genetic regions were identified as being associated with 
more than 1 type of IA (p<1x10-3), with several interesting similarities and 
differences observed between the diseases. As several of the overlapping regions 
detected represented novel disease associations, they required replication in an 
independent sample cohort. 12 variants were selected for replication in an 
independent RA cohort of 3879 cases and 2561 controls. Of these, 2 variants in the 
CTLA4 and MTMR3 regions were successfully replicated in RA at p<0.05.  

Bioinformatics analysis was performed for the 50 overlapping regions, with one 
particularly promising region, RUNX1, selected for further investigation. In this 
region, the same variant (rs9979383) is associated across the 3 diseases, with 
similar odds ratios (OR 0.8-0.9) observed in each disease. As this region 
represented both a novel IA association and had not been, densely genotyped on 
the Immunochip array, fine mapping was performed by genotyping 51 SNPS in 
3491 cases and 2359 controls. This resulted in replication of the association at 
rs9979383 (p=0.02) with no additional significant genetic effects detected; 
therefore, this variant was selected for further functional analysis.  

As rs9979383 lies ~280kb upstream of the RUNX1 gene, a cis-eQTL analysis was 
performed to identify if the variant acts by regulation of RUNX1 gene expression. 
This was performed in whole blood, CD4+ and CD8+ lymphocytes from 75 (and a 
subset of 23) healthy volunteers respectively. No significant eQTLs were detected 
between rs9979383 and RUNX1 in whole blood (p =0.9) or RUNX1/LOC100506403 
CD4+ and CD8+ lymphocytes (p=0.1).  
 
This study has provided insight into the genetic similarities and differences 
between different types of inflammatory arthritis, which can be applied to further 
investigations into disease susceptibility. Although no significant cis-eQTL was 
detected in any of these tissues with either RUNX1 or the nearby lnc-RNA 
LOC100506403, in cells from healthy volunteers under unstimulated conditions, 
these findings will direct future functional investigations into the role of this 
overlapping region in the susceptibility of IA. 
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1.0 Introduction  

1.1 Epidemiology of Inflammatory Arthritis 

 

Inflammatory arthritis (IA) describes a group of diseases which share common 

clinical features such as articular joint manifestations (Figure 1) and response to 

treatments such as disease modifying anti-rheumatic drugs (DMARDS) and 

biologic therapies.  Collectively, IA includes rheumatoid arthritis (RA), juvenile 

idiopathic arthritis and psoriatic arthritis (PsA) as well as other diseases but, 

throughout this thesis, the term will be restricted to encompass just the RA, JIA and 

PsA. As complex diseases, the presence of such common characteristics indicates 

that IA may also share aetiology via common genetic and environmental 

susceptibility factors. Identification of overlapping genetic factors would give a 

greater insight into the common pathways contributing to susceptibility. This in 

turn could be used to identify both biomarkers to improve disease classification 

and provide candidates which could be targeted by shared therapeutics. 

Essentially it would provide the opportunity for more targeted therapies and 

would reduce the need for the immunosuppressive treatments which are utilised 

currently to treat these diseases.  

 

Figure 1 - Joint inflammation in RA, JIA and PsA  
 

 

 

 

 

  

Figure 1 shows inflammation of the hand joints (L-R) in patients with RA, JIA 

and PsA (http://images.rheumatology.org/). Articular joint inflammation 

represents an overlapping clinical feature of these 3 types of IA.  

 

http://images.rheumatology.org/
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1.1.1 Rheumatoid Arthritis  

 

Rheumatoid arthritis (RA) is a chronic inflammatory disease initiated by a breach 

of immune tolerance and infiltration of autoimmune cells into self-tissue. 

Estimated to affect between 0.5% and 1% of the UK population, RA prevalence is 

approximately three times higher in women compared to men (Symmons et al. 

2002) . Primarily affecting the synovial joints, RA is also associated with risk of 

several extra-articular comorbidities including coronary heart disease and 

pulmonary fibrosis (Arts et al. 2014;Young et al. 2007),  with limitation of quality 

of life often representing the most debilitating feature of the disease. (Campbell et 

al. 2012). Like many autoimmune diseases, the heterogeneity of RA often makes 

accurate diagnosis and treatment challenging. Since 1958 several series of 

classification criteria have been generated by the American College of 

Rheumatology/European League against Rheumatism RA (ACR/EULAR). These 

were most recently updated in 2010 but the majority of patients have been 

classified using the earlier, 1987 ACR, criteria (Aletaha et al. 2010;Arnett et al. 

1988;Ropes M.W et al. 1958). In the early stages of RA anti-inflammatory non-

steroidal anti-inflammatory drugs (NSAIDs) and corticosteroids form the mainstay 

of treatment. In progressive and severe disease specific disease DMARDs and 

biologics are often used. Biologic treatments target specific molecules thought to 

be implicated in disease pathogenesis and include therapies which target the IL-6 

and TNF-α pathways or the B cell marker CD20 (Emery et al. 2010;Taylor and 

Feldmann 2009). Furthermore, several of these therapies can be used in 

combination, allowing treatment to be tailored in response to patient disease 

activity and progression. Biological therapies have revolutionised the treatment of 

RA and has shown that if further therapeutic advancements are to be made, a 

greater understanding of the pathways contributing to disease is crucial.   

 

1.1.2 Juvenile Idiopathic Arthritis  

 

Juvenile idiopathic arthritis (JIA), formerly called juvenile rheumatoid arthritis 

(JRA) or juvenile chronic arthritis (JCA), is the most common arthritic disease of 

childhood (Ravelli and Martini 2007), affecting 1 in 1000 children in the United 

Kingdom (UK)  (Symmons et al. 1996), with higher incidence reported in European 
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and North American populations (Adib et al. 2005). As JIA is a highly 

heterogeneous disease several classification criteria have been developed for 

phenotypic classification into more homogeneous subtypes. Currently 7 subtypes, 

defined by the International League of Associations for Rheumatology (ILAR) 

represent the most comprehensive and widely utilised guidelines (Petty et al. 

2004). Although a minority of disease subtypes are considered well-defined, 

disparities exists throughout, with a single group who do not fulfil any other group 

called “undifferentiated arthritis.” This is representative of the diverse pathology 

of JIA which can include several extra-articular manifestations including 

lymphadenopathy, hepatosplenomegaly and serositis. Like RA, JIA treatment has 

benefited significantly from the development of novel DMARDs and biologic 

therapies. Methotrexate is often considered the standard therapy for all JIA 

subtypes with particularly good responses seen in poly-articular disease subtypes 

(Cespedes-Cruz et al. 2008;Ruperto et al. 2004;Wallace et al. 2012) Furthermore 

response to TNF-α blockade through Etanercept and Adalimumab is variable 

amongst different subtypes (Giannini et al. 2009;Lovell et al. 2008;McErlane et al. 

2013;Ruperto et al. 2010) This heterogeneity suggests that like RA a multi-therapy 

approach may be required for effective treatment of this disease. 

 

1.1.3 Psoriatic Arthritis  

 

Psoriatic arthritis (PsA) is a heterogeneous disease, encompassing several clinical 

entities but most prominently articular and dermatological manifestations 

(Kavanaugh and Ritchlin 2006). Although typically seronegative for auto-

antibodies, PsA demonstrates significant clinical overlap with Psoriasis Vulgaris 

(PsV) and Ankylosing Spondylitis (AS). Furthermore 30-50% of PsV patients will 

develop arthritis compared to ~1% prevalence in the general population 

indicating common pathogenic pathways may exist between the diseases 

(Gladman et al. 2005). Additionally, articular disease presentations are often 

accompanied by cardiovascular disease risk and other systemic comorbidities 

(Han et al. 2006). It has also been shown that patients with PsA have significantly 

reduced quality of life compared to those with PsV alone (Rosen et al. 2012). 

Previously the heterogeneity of PsA has led to the generation of several 

contradictory classification criteria, resulting in restricted uniformity of disease 
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subsets (Dougados et al. 1991;Gladman et al. 1987;McGonagle et al. 1999;Moll and 

Wright 1973).  In 2010, a series of classification criteria for PsA (CASPAR) 

guidelines have been established, providing a concise series of diagnostic criteria 

with a high disease specificity of 98.7% (Taylor et al. 2006).  This has allowed for 

classification of disease into distinct clinical groups, increasing consistency of 

diagnosis and therefore the validity of research and reproducibility of clinical 

trials. PsA therapy often requires the use of one intervention which targets 

multiple aspects of disease or a combination of single target treatments which can 

effectively be used in combination. As with other types of IA, NSAIDs, DMARDs and 

biologic agents may be used to achieve symptomatic control of articular disease 

(Gossec et al. 2012;Smolen et al. 2014).  

 

1.2 Pathogenesis of Inflammatory Arthritis  

 

As with several autoimmune diseases RA, JIA and PsA share several aspects of their 

clinical presentation. The most prominent of these are articular manifestations, 

which are believed to be attributed to a series of inflammatory events resulting in 

joint specific damage and destruction. Examples of the joint space narrowing and 

destruction which occur as a consequence of this are shown in the hand x-rays in 

Figure 2. 

 

Of these three types of IA, the pathogenesis of RA has been most well 

characterised, as it is the most prevalent and well-studied. Once mechanisms of 

pathogenesis are identified in RA, many are reproduced in JIA and PsA, indicating 

that a significant overlap exists between the diseases. Therefore, the majority of 

the mechanisms discussed in this section have been identified in RA but many can 

be applied to JIA and PsA inclusively. A summary of these features is given in Table 

1.  



 
 

Table 1 – Summary of similarities and differences between RA, JIA and PsA 

  Clinical features  Immunological features    

  Articular  Additional   Lab markers  Age of onset  Sex bias Treatment  
Role of 

MHC  
Innate  Adaptive  Cytokines Refs 

Similarities 
between RA, 
JIA and PsA 

All 
Polyarticular, 

commonly 
affect 

multiple 
joints.  

Some overlap 
e.g. PsA-JIA 

and PsA 
share 

features such 
as psoriasis. 

RF+ p-JIA and 
RA may both 

feature 
rheumatoid 

nodules.  

Anaemia 
raised CRP 

and ESR often 
characteristics 

of 
inflammation 
across the 3 

types of IA. RF 
and ACPA 

autoantibodies 
found in RA 

and RF+ p-JIA. 
Less 

frequently 
ANAs found 
across o-JIA 

and RA.  

Some overlap 
between age 
on onset in 
PsA (30-55 

years) and RA 
(40-50 years 
female/70-80 

years male) 

Female 
gender 

bias in RA, 
o-JIA and 
RF+ p-JIA.  
No gender 
bias in RF- 
p-JIA, PsA-

JIA and 
PsA.  

All types of IA 
treated with 

Glucocorticoids, 
NSAIDs, 

DMARDS e.g. 
methotrexate, 
sulfasalazine, 
Biologics e.g. 
Etanercept, 
Abatacept, 
Rituximab.  

MHC Class 
I 

associated 
with RA, e-

JIA and 
PsA 

although 
different 
antigens 

(RA = 
HLA-B, e-
JIA = HLA-

B27 and 
PsA = 
HLA-

Cw6/HLA-
B27) Class 

II HLA-
DRB1] 

associated 
with RA 

and 
oJIA/pJIA. 

Macrophages 
(particularly 

M1 type) 
involved in 
RA and o-

JIA/p-JIA in 
producing 

inflammatory 
cytokines and 

inducible 
nitric oxide 
synthase. In 

s-JIA MAF key 
manifestation 

of disease. .  

Plasma B cell 
involvement in 
RA and p-JIA as 
production of 

ACPA, ANA and 
RF 

autoantibodies. 
Primarily CD4+ 

Th1 T cell 
infiltrate in RA 

and o-JIA/p-JIA.  
In both Tregs are 
present but are 

limited in 
function/capable 

of pro-
inflammatory 
activity. Th17 

cells important 
in RA, JIA and 

PsA.  

Produced by 
a variety of 

inflammatory 
cells. In some 

cases have 
been 

successfully 
targeted for 

therapy. 
Cytokines 
identified 
across all 
diseases 

include TNF-
a, IL1, IL6, IL-
12, and IL-23.  

(Aletaha et al. 
2010;Petty et 

al. 2004) 
I(Taylor et al. 

2006), 
(Raychaudhuri 

et al. 
2012),(Hinks 
et al. 2013) 
(Gladman et 

al. 2005)  
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  Clinical features  Immunological features    

  Articular  Additional   Lab markers  Age of onset  Sex bias Treatment  Role of MHC  Innate  Adaptive  Cytokines Refs 

Differences 
between RA, 
JIA and PsA  

Different 
number of 
joints and 
patterns 

observed. 
Differences in 

location, 
symmetry 

and severity 
of joint 

inflammation.  

JIA subgroups 
are often 

distinguishable 
by extra-
articular 

manifestations 
such as uveitis 

in o-JIA  and 
serositis in  s-

JIA with  
limited overlap 

observed. 

PsA and PsA-
JIA usually 

seronegative 
for RF, ACPA 

and ANAs. 
HLA-B27 

exclusive to 
e-JIA subtype 

not 
associated 
with other 
types of IA.  

Diagnosis of 
JIA is relies on 
manifestations 

occurring  
under16 years 

although 
symptoms can 
continue into 

adulthood. 

Male 
gender bias 
in  e-JIA not 

found in 
others.   

Treatment is 
dependent on 

disease and 
specific  

patients e.g.  
more likely to 

treat 
systemic JIA 

with 
Anakinra 

(anti-IL1R 
antagonist) 

and e-JIA 
with 

ustekinumab 
(IL-12 and IL-
23 inhibitor).  

Although 
same class of 
MHC, may be 
differences 

e.g. HLA-B in 
RA and HLA-

C in PsA.   

M2 
macrophages 

present in 
PsA 

synovium but 
not 

characterised 
in RA and JIA.   

No 
autoantibody 
production in 

PsA, 
indicating 

limited role 
for plasma B-

cells. 
Although RA 
and JIA carry 

CD4+ 
signature,  
distinctive 

role for CD8+ 
T cells 

identified in 
PsA as 

enriched in 
joints 

compared to 
RA.  

Although 
many 

similarities in 
cytokines 

present may 
be produced 
at different 
rates and 

have different 
consequences.  

(Menon et al. 
2014),  (Seibl 
et al. 2003), 

(Wenink et al. 
2012) 

(Trynka et al. 
2013) 

(Brennan et 
al. 1989) 

(Feldmann 
1996) 

(McInnes and 
Schett 2011)  

Table 1 is a summary of the clinical and immunological features in common and different between RA, JIA and PsA. RA = Rheumatoid arthritis, JIA = 

Juvenile idiopathic arthritis, PsA = Psoriatic arthritis, RF = rheumatoid factor, ACPA = anti-citrillunated protein antibodies, ANA = anti-nuclear 

antibodies, p-JIA = polyarticular juvenile idiopathic arthritis, o-JIA = oligoarticular juvenile idiopathic arthritis, s-JIA = systemic juvenile idiopathic 

arthritis, e-JIA = enthesitis related juvenile idiopathic arthritis, PsA-JIA = psoriatic juvenile idiopathic arthritis, HLA = human leukocyte antigen, MHC 

= Major histocompatibility complex, NSAID = non-steroidal anti-inflammatory drugs, DMARDS = disease modifying anti-inflammatory drugs, TNF = 

tumour necrosis factor.   



 
 

Overall, as a clinical syndrome RA is a chronic arthritis thought to be driven by a 

series of autoimmune inflammatory processes. Most characteristic of these is the 

establishment of chronic inflammation in the synovium, which normally occurs 

across multiple joint sites (polyarthritis) Figure 3. These synovial lesions are 

generated by influx and hyperplasia of a multitude of innate and adaptive immune 

cells into the synovium. This results in the dysregulation of the local joint structure 

and the promotion of tissue breakdown by local cells including synovial fibroblasts 

(Buckley et al. 2001;Buckley et al. 2004). Initially, single cell hypotheses were used 

to explain the contribution of each individual immune component to disease but 

more recently an integrative approach has been adopted, acknowledging that 

there are several interconnecting components contributing to the disease process. 

 
Figure 2 - Hand x-rays of patients with RA, JIA and PsA  
 

 

 

 

 

 

1.2.1 Cellular Infiltrate 

 

A key feature of inflamed RA, JIA and PsA synovium is the influx of a variety of 

inflammatory cells from both the innate and adaptive immune systems.  This is 

mediated by an increase in vascular angiogenesis initiated by the presence of 

inflammatory mediators and a reduction in lymphangiogenesis (Polzer et al. 

2008;Szekanecz and Koch 2008). Establishment of a hypoxic pro-inflammatory 

Figure 2 shows a hand x-ray (L-R) from an RA, JIA and PsA patient 

(http://images.rheumatology.org/). Joint space narrowing can be 

seen across all x-rays which is an overlapping feature of these 

diseases.  

http://images.rheumatology.org/
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environment in the synovium is facilitated by several innate immune mechanisms 

including activation of M1 macrophages and dendritic cells (DCs) via pattern 

recognition receptors such as extracellular toll like receptors (TLRs) and 

intracellular nod like receptors (NLRs) (Huang and Pope 2009).  The process is 

initiated by the presence of autologous and external antigens, which, to date, have 

not been identified. These antigen presenting cells (APC) cells are then responsible 

for the presentation of arthritis-associated antigens to T lymphocytes, activating 

the adaptive arm of the immune system (Ciechomska et al. 2014;Wilson et al. 

2012).  

 

The presence of  adaptive immune architecture, such as ectopic germinal centres, 

indicates a strong effector lymphocyte presence in the inflamed joint (Humby et al. 

2009). Both activated B cells (Doorenspleet et al. 2014;Edwards et al. 1999) and 

CD4/CD8 T cells (Murray et al. 1996;Van Boxel and Paget 1975) are characteristic 

of the inflamed synovium with the pro-inflammatory environment promoting 

distinct skewing towards a CD4+ Th1/Th17 phenotype with a particular role for 

Th17 cells identified across the diseases (Leipe et al. 2010;Omoyinmi et al. 2012). 

This has been particularly important in PsA, as recent evidence supports a crucial 

role for the pathway in disease (Kirkham et al. 2014). In addition it has also been 

shown  CD8+IL17+ cells are also present in PsA, indicating that some differences in 

T lymphocyte profiles exist between the diseases (Menon et al. 2014) . T 

regulatory cells (Tregs) have also been shown to be present but may be 

functionally suppressed by the surrounding inflammatory milieu (Morgan et al. 

2005).  This has been particularly apparent in the JIA as a population of Treg cells 

have been identified in these joints which exhibit a dysregulated pro-inflammatory 

profile (Pesenacker et al. 2013),  indicating that both activation of effector cell 

types and suppression of regulatory mechanisms may be contributing to the 

establishment of autoimmunity. 

 

1.2.2 Autoantibodies 

 

The presence of autoantibodies in RA indicates a central role for B-lymphocytes in 

disease pathogenesis.  Additionally the presence of B cell survival factors such as a 
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proliferation inducing ligand (APRIL) and B lymphocyte stimulator (BLyS) have 

been shown to be associated with high autoantibody levels and have been 

identified as potential therapeutic targets for the treatment of RA (Daridon et al. 

2009).  Common autoantibodies found in RA include rheumatoid factor (RF), anti-

citrullinated peptide antibodies (ACPA) and the most recently identified anti-

carbamylated antibodies (anti-CarP) specific (Lee et al. 1992;Shi et al. 2011;Shi et 

al. 2013;van der Linden et al. 2009).). Rheumatoid factor is an IgG or IgM 

autoantibody raised against the fragment crystallisable portion (Fc portion) of 

immunoglobulin G (IgG) antibodies. Interactions between IgG and RF lead to 

formation of immune complexes, which are subsequently detected by surrounding 

immune surveillance leading to an inflammatory response. ACPA antibodies target 

citrulline epitopes which are generated post-translationally from arginine by 

peptidyl deaminase (PAD) enzymes. Finally, the presence of anti-CarP antibodies 

has recently been shown to be a predictor of joint destruction in ACPA- RA 

patients(Shi et al. 2013;Shi et al. 2014). These antibodies, which target homo-

citrulline residues converted by carbamylation, have been shown to present in 

38% of patients prior to their diagnosis of RA, indicating this may be a marker of 

the pre-articular non –clinical phase of RA;(Shi et al. 2014a). Very often 

seropositive RA is considered more progressive and poorer in outcome, with 

erosions and extra-articular rheumatoid nodules occurring earlier in disease 

(Mottonen et al. 1998). However, RF is found in a substantial minority of the 

healthy population, in other autoimmune diseases and transiently after infections 

suggesting that it may be a bystander product rather than disease causal. (Carson 

et al. 1978;Carson et al. 1987) 

 

RF is used diagnostically to identify disease but the features mentioned above 

make it neither particularly sensitive nor specific to RA. ACPA are also used as 

clinical markers of disease because, although less common than RF, they are more 

specific (van der Linden et al. 2009). These autoantibodies are generated against 

specific citrullinated epitopes, several of which have been identified, but are 

detected with an anti-cyclic citrullinated peptide antibody assay designed to 

capture a wide range of ACPAs. Although a useful tool, absence of autoantibodies 

does not exclude RA as a diagnosis with approximately 20% of cases testing 

seronegative, even in hospital based series, and higher percentages in community 
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settings. These seronegative patients often have a slightly different clinical 

presentation and have a better outcome than the seropositive group.  

The presence of autoantibodies has also been important in JIA diagnosis, with 

autoantibodies representing a defining factor in the classification into 7 disease 

subsets.  As with RA, both RF and ACPA are known to be present in a proportion of 

disease cases and it is thought they are generated by identical mechanisms.  

Furthermore anti-nuclear antibodies (ANAs) can be found in JIA patients, with 

some data suggesting that ANA seropositive patients represent an independent JIA 

disease group, which is currently not defined by the ILAR guidelines (Ravelli et al. 

2007).    

 

Overall, PsA is considered a seronegative spondyloarthropathy therefore; 

seronegativity can be used as a clinical diagnostic to differentiate it from RA.  

Despite this, emerging evidence suggests that the presence of ACPA may be an 

indicator of disease severity in a subset of PsA patients, indicating that 

autoantibodies can contribute to disease (Perez-Alamino et al. 2014).  

 

1.2.3 Cytokine Disequilibrium 

 

The incorporation and activation of inflammatory cells results in the establishment 

of an inflammatory cytokine milieu and the up-regulation of matrix 

metalloproteinase (MMP) enzymes, promoting bone matrix degradation. 

Prominent inflammatory cytokines include the interleukin 1 (IL-1) family 

members IL-1 (Dayer 2003), interleukin 18 (IL-18;(Maeno et al. 2002;McInnes et 

al. 2005) and interleukin 33 (IL-33; (Xu et al. 2008)  which can drive persistent 

inflammation through promotion of Th1 differentiation. Furthermore both 

interleukin 6 (IL-6(De et al. 1994;Hirano et al. 1988) and tumour necrosis factor 

alpha (TNF-α ;(Brennan et al. 1989) cytokines have key roles in promoting 

inflammation, further evident by their effectiveness as therapeutic targets in the 

clinic. This cytokine disequilibrium drives the promotion of joint destruction by 

site-specific cells such as synovial fibroblasts, osteoclasts and chondrocytes. Under 

these circumstances fibroblasts of the synovial membrane lose contact inhibition, 

developing a tumour like phenotype and promote the recruitment of inflammatory 
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leukocytes to the synovium (Buckley et al. 2004). The presence of TNF-α, IL-6 and 

IL-17 promotes the production of receptor activator of nuclear factor kappa-B 

ligand (RANKL), which induces osteoclast differentiation and subsequent cartilage 

and bone degradation characteristic of clinical disease (Gravallese et al. 2000). It 

has been shown in vitro that osteoclast inhibition can limit bone degradation but 

synovial inflammation still persists (Cohen et al. 2008). This chronic degradation 

process results in the exposure of neo-antigens which in turn can be presented to 

lymphocytes by synovial APCs, establishing a feedback loop of chronic 

inflammation. The mechanism described is specific for articular inflammation in 

disease but it is important to note that several immune mediated extra-articular 

pathologies are characteristic of inflammatory arthritides including serositis in JIA 

and psoriasis in PsA.  

Figure 3 - Diagram of normal and disease affected joint (Strand et al. 2007). 

 

 

 

 

  

Figure 3 is a representation of the different cell types involved in the 

pathogenesis of RA at the synovial joint site. Taken from Strand et al 

2007.  
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1.2.4. Animal models and the pathogenesis of IA 

 

Although many of the findings described in section 1.2 were identified using 

human derived tissue, the availability of animal models has been crucial in the 

development of hypotheses about the induction of RA pathogenesis. The advantage 

of animal models is that mechanisms, such as precise response to stimuli and 

response to potential therapies, can be monitored in specific tissues such as joints 

or lymph nodes, which are often challenging from human subjects. Studies can also 

be performed in a regulated environment in a large number of subjects which 

increases the reliability of the results obtained.  

 

Animal models are deliberately induced pathologies, which mimic the human 

disease of interest in a selected host animal, with the mouse or rat representing 

the most widely used species. The most commonly utilised mechanisms for 

generation of RA animal models are induced animal models such as collagen 

induced arthritis (CIA), zymosan induced and proteoglycan-induced arthritis 

(PGIA) or genetically altered spontaneous arthritis models such as TNF-α 

transgenic and K/B×N mouse model (Courtenay et al. 1980). Of these, the most 

widely studied are CIA and PGIA models. These involve the inoculation of 

genetically susceptible mice with type II collagen (CII) or in the case of PGIA, 

cartilage proteoglycan plus adjuvant. In both cases after 20-30 days, the inoculated 

mice develop polyarthritis, which can be used as a disease model organism for RA. 

These models resolve automatically after 30+ days but relapse can be induced, 

making them a good representation of the human pathology.    

 

Although several similarities between murine models and human disease have 

been identified, there are still many differential features between the two. Both 

human and mouse pathologies show an MHC class II restricted T response, with 

specific T cell responses to citrullinated proteins such as fibrinogen and aggrecan 

(Cordova et al. 2013;Misjak et al. 2013). Additionally ACPA and anti-class II 

collagen autoantibodies, which are believed to be a key factor in the seropositive 

human disease, have been found in CIA mouse models (Goldschmidt et al. 

1992;Kidd et al. 2008).  Overall, in both mice and humans a RA a strong T cell 

influence has been identified as a key meditator of pathogenesis. In both species, 



31 
 

this appears to be driven by Th1, Th17 and Treg cells with the notable absence of 

Th2 helper  cells (Wehrens et al. 2013).  

 

Although the similarities are vast, several distinct differences in T cell cytokine 

expression, polarization and plasticity have been identified between human 

disease and mouse models.  For example although Tregs are found in both human 

RA and mouse models, the suppression of Treg function observed in humans has 

not been identified in CIA or PGIA models (Wehrens et al. 2013). Furthermore, 

when stimulated with TNF-α, Treg populations were shown to have very different 

effects with Treg expansion observed in mice whilst Treg reduction was observed 

in humans (Ehrenstein et al. 2004;Valencia et al. 2006). This is further supported 

by the observation that therapies blocking T cell responses in the mouse are 

enough to completely resolve inflammation but is ineffective in humans. 

(Goldschmidt et al. 1992;  (Keystone 2003) This has also been observed in 

differential responses to the B cell inhibitor Rituximab, indicating therapeutic 

outcomes in mice cannot always be directly translated into humans (Hamel et al. 

2011) Despite this, mouse model remains a strong tool for understanding RA 

pathogenic mechanisms and are a good indication of what is driving human 

disease.  

 

1.3 Aetiology of Inflammatory Arthritis 

 

Currently it is accepted that induction of IA occurs due to a combination of several 

risk factors including genetic predisposition, environmental exposure and the 

presence of random stochastic events such as infection. These factors may not be 

apparent singularly but in combination may overcome a putative threshold 

triggering disease induction Figure 4. To date the exact timing and level of this 

threshold has not been determined but it is believed that a pre-articular phase 

where the disease mechanism is established occurs well before the clinical 

manifestations of disease.  

Like many immune mediated diseases, RA has a significant genetic component. 

This was first identified using twin studies, where disease concordance between 

monozygotic twins (15%)  was much higher compared to dizygotic twins (2.3%) 

(Silman et al. 1993). This has been complemented by several studies estimating 
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that genetic factors alone contribute ~50% to overall disease risk, which is 

attained by comparing disease prevalence in multiple populations (MacGregor et 

al. 2000;van der et al. 2009) This heritability can be described by a moderate 

sibling recurrence risk ratio (λs) of 2-17. λs is a statistical parameter describing the 

“prevalence of a disease amongst siblings compared to the general population,” 

and hypothetically can be used to estimate the contribution of genetic factors to 

disease (Seldin et al. 1999). In addition, the contribution of environmental factors 

both preceding and throughout disease is thought to have a significant impact on 

the induction and subsequent course of disease.  

 

Several environmental factors have been shown to be associated with induction 

and progression of RA including socioeconomic status, obesity, smoking and 

alcohol consumption (Kallberg et al. 2009). Additionally hormones are believed to 

also have an impact, as RA is more prevalent in females compared to males and 

oral contraceptives have been associated with the presence of RF antibodies which 

are present in 70% of RA patients (Cutolo and Straub 2008). Of the environmental 

factors described, cigarette smoking has been shown to be the strongest risk factor 

identified as this finding has been replicated in several independent cohorts. 

(Karlson et al. 1999;Symmons et al. 1997) Although it has been shown that the 

influence of smoking is strongest in ACPA+ disease, the specific mechanisms 

underlying the process of local citrullination have yet to be characterized 

(Klareskog et al. 2006). One potential hypothesis is that the presence of microbes 

such as Porphyromonas gingivalis (P.gingivalis) in the gums produce enzymes 

which are responsible for the citrullination of epitopes and triggers the production 

of ACPA antibodies, which drive disease (Quirke et al. 2014;Scher et al. 2014).  

 

JIA and PsA exhibit a similar risk profile to RA through integration of genetic and 

environmental risk factors. With a λs value of 15, genetics are thought to be highly 

important for JIA with an estimated 17% of risk coming from risk HLA-DR gene  

alleles  (Glass and Giannini 1999;Prahalad 2004). Furthermore, several JIA 

environmental risks have been investigated including maternal smoking and stress 

but no validated results have been obtained (Herrmann et al. 2000;Jaakkola and 

Gissler 2005) . Interestingly, PsA has the highest λs value of 30.8 but identification 

of environmental impact has been limited so far (Chandran et al. 2009) with only 
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obesity and smoking shown to be associated with disease (Love et al. 2012) .  

 

Figure 4 – Induction of autoimmunity in rheumatic diseases 

 (Deane and El-Gabalawy 2014).  

 

 

 

 

 

 

 

Overall, it is apparent that genetic factors contribute a substantial proportion of 

disease aetiology for IA, reinforcing the importance of genetic studies in 

understanding disease causation. Currently several methods are used to identify 

disease associated genes with consistent technological advancements and greater 

understanding of the genome driving evolution of this field. The associations can 

then be further interrogated to identify the functional consequence. This process is 

summarized in Figure 5 is described in detail in the following sections.  

Figure 4 shows a hypothesis for the induction of rheumatic diseases such 

as RA and SLE.  As all 3 types are IA discussed in this section are complex 

diseases, they are believed to be a contribution of genetic, environmental 

and stochastic factors. Taken from Deane and El-Gabalawy 2014.  
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Figure 5 - Summary of stages involved in identifying and characterising a 
disease-associated locus.  
 

 

 

 

 

 

 

 

  

Figure 5 shows a sequential series of stages for following up disease 

associations from GWA studies through to functional analysis.  
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1.4 Identification of Disease Susceptibility Genes  

 

Early genetic analysis of disease traits involved the investigation of co-occurrence 

of genetic markers and disease within affected families, known as linkage analysis. 

Such studies were limited by small sample sizes and therefore issues of power. 

Although linkage within the HLA-region was consistently observed, very few other 

regions showed reproducible findings in independent cohorts. Although a 

successful tool for identifying genes responsible for monogenic traits such as 

Huntington’s disease and some forms of breast cancer, this did not appear to be as 

successful in identifying genes associated with complex diseases such as RA 

(Holloway et al. 1998).  

 

Increasingly, genetic association studies have been adopted as the method of 

choice for the investigation of complex diseases such as RA, JIA and PsA. 

Association studies can be performed using a candidate gene case-control model 

but these have been largely superseded by genome wide association studies (GWA 

studies), which represent the most widely used technique to date.  

 

1.4.1 Case Control Studies  

 

Case control association studies are underpinned by the hypothesis that 

differences in genetic variation can be detected between disease cases and healthy 

controls, which are responsible for contributing to disease. This involves 

genotyping genetic markers in groups of unrelated cases and controls, with and 

without disease, respectively.  

 

In the past this was performed using DNA microsatellites but currently, the most 

commonly used genetic marker is the single nucleotide polymorphism (SNP) 

Figure 6. These genetic variations occur approximately every 200 base pairs 

throughout the genome and can be genotyped using a variety of platforms. The 

frequency and ease of detection makes SNPs ideal markers for investigating 

genetic variation in populations.   
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Figure 6 – SNP polymorphism  
 

 

 
 

 

 

 

 

SNPs commonly have 2 alleles, described as major and minor alleles according to 

their frequency in a population, but at some loci more alleles may be present 

(Crawford and Nickerson 2005) Figure 6. Case control association analyses use 

statistical methods to assess the differences in allele/genotype frequency between 

DNA samples from disease cases and healthy controls. The identification of SNPs 

whose allele frequencies occur at a statistically different frequency in cases 

compared to controls is considered a significant genetic association and therefore 

represents a potential candidate variant for disease causation. 

Case control studies can be performed using a candidate gene approach or by a 

hypothesis free genome wide association (GWA) study. Candidate gene studies 

involve the selection of a region for association testing based on previous 

knowledge of disease biology. A good candidate may be a region or variant which 

has been previously associated with a related disease, a component of a known 

disease pathway or a candidate identified by previous linkage analysis which 

requires further investigation.  This strategy often involves genotyping of between 

Figure 6 shows a single nucleotide polymorphism change in double stranded 

DNA. Taken from the integrated biobank of Luxembourg. (www.iblu.lu) 
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one and several hundred SNPs within these selected regions and has been a 

successful technique for the identification of several SNP associations with JIA and 

PsA, diseases which did not harness the power of GWA studies until recently.  

  

In contrast, GWA studies involve the genotyping of a much larger number of SNPs 

across the genome and do not focus on particular genetic regions or hypotheses. 

This approach is underpinned by the phenomenon of linkage disequilibrium (LD), 

which allows variation which is not physically genotyped to be captured using a 

tag-SNP approach, therefore increasing the chance that disease associations will be 

identified.  

 

1.4.2 Linkage Disequilibrium 

 

LD is a non-random observation that 2 or more alleles are inherited together more 

frequently than expected during random formation of haplotypes. Haplotypes are 

a set of closely linked alleles which are inherited together as a complete unit due to 

lack of recombination events between them. This phenomenon extends across the 

genome, with blocks of LD ranging from few base pairs to larger sections of 

chromosomes. This means that across the genome sections of variable LD can be 

present with regions of high LD considered “LD blocks,” with the presence of 

several correlated alleles. As LD is non-quantitative, there is no natural scale for 

measuring it; therefore, two ways of measuring this are used.   The D’ value reflects 

the recombination events which have occurred between two markers but is often 

affected by distance and frequency of SNPs, therefore the most informative 

measurement is the correlation, r2. The value is the correlation coefficient between 

two SNP markers squared and takes into account the power which is required to 

detect LD between markers. r2 is scored from 0-1, with 1 representing complete LD 

and therefore complete correlation between two or more SNP markers (Balding 

2006;Palmer and Cardon 2005). The value is a more accurate representation of LD 

as it is not based purely on distance between SNPs and takes into account blocks of 

LD which stretch across larger distances.  

 

The presence of LD is considered both a great advantage and disadvantage for 

association studies. LD across a region means that a single tag SNP can be used as a 
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proxy for all SNPs which lie in high LD with it (often r2>0.8). It allows information 

about allele frequencies to be gained for multiple SNPs without genotyping each 

individual SNP, therefore reducing the volume of genotyping required. In some 

populations, a selection of as few as 500,000 SNPs are capable of tagging over 10 

million variants and this has been the cornerstone of large GWA studies which 

have identified over 100 associations with RA alone . 

 

Conversely, the presence of LD may potentially complicate association results. As a 

single SNP may be responsible for several association signals being picked up with 

SNPs which are in high LD, it makes it challenging to identify which SNP represents 

the true causal variant. A causal variant represents the SNP in a disease-associated 

region which results in a functional change or regulation of a gene and which 

confers disease risk as a result. The lack of identification of true causal variants 

been a limitation of the GWA studies and has resulted in the utilisation of 

strategies designed to localise association signals such as those described in 

section 1.5 (Weiss and Clark 2002).   

 

1.4.3 Genome Wide Association Studies 

  

The field of complex disease genetics have been revolutionised by the 

development of GWA studies (Balding 2006;Klein et al. 2005) which have made 

association testing across the whole genome possible.  Crucially GWA studies 

require no prior hypothesis, candidate gene selection or previous knowledge 

regarding a genetic region .This makes it a good starting point for diseases in 

which genetic associations have not been detected using other techniques. Using 

similar statistical techniques to candidate gene studies, GWA studies are used to 

investigate differences in genotype or allele frequencies between cases and 

controls but they are performed on a genome wide scale. This is achieved by 

genotyping a large number of SNPs in a substantial number of unrelated cases and 

controls using high throughput SNP genotyping technology.  

 

Large sample sizes are used in GWA studies as they increase the power to detect 

minor differences in allele frequencies and, therefore, identify smaller genetic 

effects (Evans and Purcell 2012;Sham and Purcell 2014). The technique is aided by 
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a greater availability of large case/control cohorts as the result of international 

consortia such as the Wellcome Trust case control consortium (WTCCC), which 

was the source of the first comprehensive GWA study published in 2007 

(Wellcome Trust Case Control Consortium 2007). In addition, the mapping of a 

larger number of SNPs across the genome has allowed for a greater understanding 

of LD and provided the potential to tag as many SNPs as possible using high 

throughput SNP genotyping platforms. This  has been greatly aided by the 

establishment of the International Hap Map (http://hapmap.ncbi.nlm.nih.gov/) 

(The International HapMap Consortium 2003) and 1000 genomes projects 

(http://www.1000genomes.org/) (Abecasis et al. 2012;Durbin et al. 2010). These 

projects have involved the mapping and cataloguing of SNPs across the genome in 

several different populations. Whilst the Hapmap project was designed to map 

common variation and LD across the genome, the 1000 genomes project used next 

generation sequencing to identify low frequency SNPs present in only a small 

number of individuals.  Combined, these datasets provide a high-density map of 

common and low frequency variation in the human genome therefore increasing 

the chance of identifying genetic associations. To date thousands of genetic 

associations have been identified using GWA studies, and the findings identified up 

to 2013 are shown in Figure 7. 
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Figure 7 – Associations identified by GWA studies  

 

  

 

 

Although a great tool for discovering genetic associations across the genome, GWA 

studies do have their limitations. These include restrictions on throughput of SNP 

genotyping platforms, the availability of case and control samples to genotype and 

the risk of identifying spurious associations because of multiple testing. To resolve 

these, genotyping technologies are continuously evolving to genotype larger 

number of SNPs in larger sample sizes whilst keeping costs affordable. Illumina 

have currently developed an Infinium HD assay which can analyse up to 4.5 million 

SNPs per sample with the option of adding custom content to meet the specific 

needs of the user. In addition the establishment of an increasing number of 

international collaborations has allowed for increased sharing of case and control 

data, maintaining the samples sizes required for identification of novel 

associations. This is also supplemented by utilisation of meta-analysis techniques 

Figure 7 shows the variants associated with complex diseases from the genome 

GWAS catalogue. Reproduced from the NIH GWA study catalogue.  

(www.genome.gov/gwastudies/) 
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to achieve the largest sample sizes and therefore the greatest power.  

 

As GWA studies involve the testing of a large number of SNPs in an extensive 

number of samples, comparing allele frequencies at these levels requires a large 

number of statistical tests to be performed. As the number of statistical tests in an 

analyses increases, the chances of type I errors (false positive) arising as a 

consequence of multiple testing problems are increased.  To minimise the risk of 

reporting spurious associations, false discovery rate (FDR) is calculated or 

Bonferroni corrected p-values are often used, which adjust for the number of 

statistical tests that have been performed. As genetic studies in particular involve 

many simultaneous statistical tests, an association is usually only considered 

significant if it passes the genome wide association threshold, which is currently p 

<5x10-8. This is particularly important in large well-powered studies such as meta-

analyses of individual datasets, which include a particularly large number of 

statistical tests. The threshold was calculated on the basis that there are estimated 

to be one million independent SNPs in the genome and application of a Bonferroni 

correction results in the p-value used for claims of confirmed association 

(0.05/1,000,000). 

 

1.4.4 Meta-analysis 

 

Subsequent meta-analyses of GWA studies have been an essential technique in 

identification of additional disease susceptibility loci. Meta-analysis is the 

combination of results from multiple studies which have addressed similar 

research questions. In genetic association studies, this is often the combination of 

case control datasets assessing genetic components of the same disease. By 

increasing the number of case/control samples included in the statistical analysis, 

the power of studies is enhanced to detect smaller genetic effects. This is crucial in 

identifying loci which may be masked in smaller studies but may have a significant 

contribution to a disease trait. Several novel susceptibility loci have been identified 

from meta-analysis (Raychaudhuri et al. 2008;Stahl et al. 2010) including a recent 

example in which two novel RA susceptibility loci were characterized by 

combining results from large GWA study dataset with a smaller replication study 

to reach genome wide significance (McAllister et al. 2013). 
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Traditionally meta-analyses have involved combining datasets from GWA studies 

conducted on samples with identical ethnicity to minimise population 

stratification. Recently methods to combine GWA study datasets from different 

populations have been developed, allowing the combination of even more datasets 

and therefore a large increase in the power to detect genetic effects (Morris 2011). 

One particular success has been the identification of 40 novel RA loci in a meta-

analysis combining GWA study datasets from Caucasian and Asian populations 

(Okada et al. 2014b) . This is particularly interesting as analyses were previously 

restricted to samples from the same population, to avoid detecting spurious 

associations as a consequence of population stratification.  

 

1.4.5 Population stratification 

 

Population stratification describes the differences in allele frequencies which are 

detected in genetic studies as a consequence of population structure and not as a 

result of allele differences between cases and controls. As genetic association 

studies are underpinned by the hypothesis that differences in allele/genotype 

frequencies between cases and controls are responsible for disease susceptibility, 

it is important that this is avoided to prevent identification of spurious false 

associations.  

 

As differences in allele frequencies across different populations are determined by 

unavoidable evolutionary change, genetic studies in the past were restricted to 

analysis between cases and controls from the same population, limiting power. As 

power to detect genetic effects is a crucial factor in genetic studies, it is important 

that sample sizes are maximised in order to increase power. One way is to include 

samples in analyses which are from different populations but are believed to be of 

similar ancestry.  Although it is expected that underlying allele frequencies will be 

similar, it is important to assess the study population for any underlying 

substructure, which has been shown to be an issue for genetic studies in the past 

(Campbell et al. 2005).  

 

Several ways have been used previously to identify and account for substructure 
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including the genomic control (GC) and structured association approach, but these 

are subject to limitations. Currently the most widely used method for identifying 

population stratification is using Principal components analysis (PCA) (Price et al. 

2006;Zheng et al. 2005) . PCA involves the identification of principal components 

which account for the largest differences between allele frequencies in a sample 

set. These principal components can then be plotted against each other on a PCA 

plot to provide a visual representation of how similar samples are as shown in 

Figure 8. 

 

A common method used is to include samples of different ancestries from the 

Hapmap project in the PCA analysis, to see which population the tested samples 

share the greatest similarity with. The technique can then be used to identify and 

exclude population outliers who may skew analysis; furthermore, the principal 

components can be used as co-variates in analysis to adjust for the underlying 

variation in a sample set.  Further information about this technique can be found in 

section 2.1.4. 
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Figure 8– PCA analysis of Hapmap populations (Heath et al. 2008) 

 

 

 

 

 

 

 

1.4.6 Common Disease Common Variant Hypothesis 

 

The strategies used in the search for genetic risk factors make assumptions based 

on the common disease common variant hypothesis (CD/CV), which was proposed 

to explain the contribution of common alleles to disease susceptibility (Reich and 

Lander 2001). The hypothesis proposed that genetic components of common 

complex diseases are of common frequency and distribution across a population. If 

this observation is true, then it is expected that GWA studies would represent the 

ideal method of identifying genetic susceptibility SNPs. This observation has 

driven the design of many GWA studies which often use a tag-SNP approach to 

capture as much common variation across the genome as possible using high 

throughput SNP genotyping arrays (Wellcome Trust Case Control Consortium 

Figure 8 shows a PCA plot showing the clustering of different Hapmap and 

European populations. The x-axis represents the first principal component 

whilst the y-axis represents the second principal component generated in the 

analysis. Each dot represents a sample and the colour represents the population 

to which the sample belongs. Taken from Hou et al. Nature genetics 2014 (Hou 

et al. 2014).  
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2007). Common variation is usually considered to be any SNP which occurs at a 

frequency of greater than 5% and has moulded the way that SNP genotyping 

technologies have evolved over the past decade. In a number of diseases a large 

proportion of common SNPs have been genotyped in large sample cohorts, 

therefore it is expected that complete heritability of some diseases should have 

been identified already. Although a large number of disease associations have been 

identified, no complex disease susceptibility has been completely explained by 

common variation alone which indicates there are additional factors contributing 

to disease susceptibility.  

The CD/CV hypothesis does not take into account the contribution of low 

frequency variants, present in less than 5% of the population, to disease 

susceptibility. To address this many studies have moved towards searching for 

rarer variation throughout the genome. This has been reflected in novel 

genotyping technologies with Illumina developing both the Immunochip and 

Exome arrays, which have both been designed to capture low frequency variation 

across the genome. Although advantageous, the low frequency of these variants 

makes robust genotyping calling challenging using standard methods (Nievergelt 

et al. 2014). Furthermore, the power required to detect association with low 

frequency variants is much higher than common variants, therefore much larger 

sample sizes are required. Therefore, re-sequencing and fine mapping in a 

moderate number of cases and controls remain the most utilised methods for 

detecting low frequency variation. These are described in more detail in section 

1.5. As the majority of low frequency variation has not been characterised it is 

thought that this variation may be one of the major factors contributing to missing 

heritability of RA (Bodmer and Bonilla 2008;Reich and Lander 2001).  

 

1.4.7 Missing Heritability  

 

Although many valuable associations with common diseases have been identified 

to date, it is now becoming clear that these associations account for only a fraction 

of the total genetic contribution to disease. It is therefore important to identify the 

remaining missing heritability to gain a complete understanding of the genetic 

component of disease (Manolio et al. 2009). Several factors could account for this 

missing heritability including multiple genetic effects within a region, copy number 
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variations (CNVs) and the presence of low frequency variants. Furthermore, gene-

gene interactions and non-sequence epigenetic effects could also be contributing 

to disease susceptibility and has not been investigated by current studies.  

 

It has been shown in RA that multiple independent effects can occur within a 

genetic locus, with carriage of multiple variants conferring higher disease risk than 

any individual single SNP alone (Orozco et al. 2009). This may also be true for the 

carriage of combinations of susceptibility loci and indicates that analysing data on 

an individual SNP basis may not generate an accurate picture of disease risk 

(McClure et al. 2009). A recent study has also shown that including all SNPs from 

regions identified by GWA studies provides a greater estimate of the heritability at 

each locus compared to using GWA study index SNPs alone (Gusev et al. 2013).  

Additionally the developments of polygenic risk scores, which combine multiple 

genetic markers to generate a risk score for predicting disease  allows inclusion of 

markers which have not reached significance in studies, as hypothetically they may 

confer an effect when combined with other markers. The first successful 

application of the technique was performed in schizophrenia but has been shown 

to be applicable to RA risk and ACPA antibody levels, which are key pathogenic 

mediators of RA (Cui et al. 2014;Hamshere et al. 2011a;Hamshere et al. 

2011b;Stahl et al. 2012) .   

 

It is also thought that a proportion of missing heritability may lie in low frequency 

variation that has not been captured by previous common variant studies.  Low 

frequency variation represents the proportion of polymorphisms with a minor 

allele frequency (MAF) of less than 5% in populations. Compared to common 

variants, there are many more low frequency variants across the genome which 

may confer disease susceptibility. Capturing low frequency variation is much more 

challenging than common variation as it requires a much larger sample sizes, 

which are unattainable for some diseases. Additionally, technologies for detecting 

low frequency variations are in their infancy. Low frequency variation was not 

captured by the majority of SNP genotyping arrays until recently, with the advent 

of the Illumina exome chip. Additionally, although DNA resequencing represents 

the ideal technique for identifying all variation in a sample, it is both costly and 

notoriously low throughput, making it unsuitable for large sample sets required to 
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identify low frequency variation. Once data is generated for low frequency 

variation, it is also challenging to analyse as algorithms used to call SNP genotypes 

are often incapable of calling low frequency variants. Furthermore, in order to 

efficiently analyse data from these studies, methods which collapse rare variants 

into a single effect, such as burden testing, are used. These methods involve 

assessing the presence and absence of rare variants per individual sample. Some 

methods can also take into account the functional prediction of rare variants which 

can then be prioritized as the most likely causal variants (Liu et al. 2014).   A recent 

study utilised these methods to investigate low frequency variants in 25 RA 

susceptibility loci and found an accumulation of non-synonymous low frequency 

coding variants exclusive to RA cases in two loci (Diogo et al. 2013).  

 

Due to the associations observed in other common diseases such as psoriasis, it 

was thought that CNVs could potentially account for some of the missing 

heritability of RA (Zhang et al. 2009). Although many genotyping arrays include 

markers for CNVs, it is often challenging to analyse this data as, like microarray 

data for transcriptomic analysis, it requires both normalisation and specific 

association testing to assess whether gain or loss of DNA nucleotides has occurred.  

In 2010, a large study was set up to analyse CNVs in 8 common diseases including 

RA. Although several CNVs were shown to be present at much higher frequency in 

cases compared to controls, these were all within the HLA region and had 

previously been identified by SNP association studies (Craddock et al. 2010). 

Although a contribution of CNVs to missing heritability cannot be excluded, it is 

unlikely as this was a large and well designed to assess the contribution of CNVs to 

disease.  

 

Several other factors could potentially account for the unexplained heritability of 

RA which does not lie in the DNA sequence itself. These include gene-gene, gene-

environment (epistatic) interactions and epigenetic effects as a consequence of 

post translational modifications such as methylation. It has been shown that 

interactions occur between the HLA shared epitope and the PTPN22 genetic 

regions which contribute to RA susceptibility. Furthermore, evidence of 

interactions between environmental cigarette smoke and the shared epitope have 

also been shown (Kallberg et al. 2007;Morgan et al. 2009) .  Another mechanism 
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which could be affected by the environment is the presence of epigenetic post 

translational modifications of DNA such as DNA methylation. The presence of these 

modifications has become a recent topic of interest in relation to disease 

susceptibility as the presence of these epigenetic factors can contribute to gene 

expression changes and subsequent alterations to the immune response (Glant et 

al. 2014) . A recent study in RA has shown differential methylation in the HLA 

region to be a mediator of RA disease risk (Liu et al. 2013). This has also been 

shown in synovial fibroblasts, where hypomethylation, which is believed to 

regulate gene expression was identified in the CXCL12 promoter (Karouzakis et al. 

2011).  Although these studies are performed in limited sample sizes and are 

restricted by the fact that methylation is variable between cell types and 

responsive to environmental stimuli, they show that post-translational, 

modifications could potentially be responsible for a proportion of the missing 

heritability of RA. 

 

Overall, it is likely to be a combination of all the factors mentioned which is 

responsible for the missing heritability in RA. As technologies and analysis 

pipelines evolve it is expected that how much each contributes will be identified.  

Additionally due to LD across the genome, the variants which have been identified 

as being associated with disease may not always represent the true causal variant, 

therefore a crucial aim in the future is to utilise emerging techniques to identify the 

causal gene and causal variant in disease-associated loci.  

 

1.5 Identification of a Causal Variant 

 

Once a statistically significant association is detected, it is desirable first that the 

association is replicated in an independent population, even if it has reached 

genome wide significance in the original study. Secondly, as the outcome of an 

association study is often the identification of a tag-SNP which captures several 

SNPs in LD, the identification of a causal variant(s) is often challenging. 

Additionally there may be other SNPs which are in LD with the associated SNP, 

which have not been captured by previous genotyping projects. Therefore post 

replication, it is essential that investigation into the genetic architecture of the 
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associated locus is performed using techniques such as imputation, resequencing 

and fine mapping.  

 

1.5.1 Imputation  

 

 

Imputation involves the analysis of SNPs in a region which have not been directly 

genotyped in previous analyses. This is achieved by using LD patterns in a region 

to predict the genotype of an individual at a particular SNP, based on their 

genotype at other SNPs in high LD. This can be performed either regionally or at a 

genome wide level. The technique has greatly advanced in recent years due to the 

Hapmap, 1000 genomes and the development of more accurate imputation 

software. The Hapmap and 1000 genomes projects represent a freely accessible 

database of genetic variation based on genotyping and sequencing data from a 

large number of individuals(Abecasis et al. 2012;The International HapMap 

Consortium 2003) . The great advantage of imputation is that it does not require 

any additional physical genotyping, although for reliable imputation to be 

performed, regions are required to be genotyped fairly densely (Huang et al. 

2009). 

 

1.5.2 DNA Resequencing 

 

To gain the best chance of identifying a causal variant, it is essential that as many 

variants within an associated region are captured as possible. Resequencing 

involves the genotyping of complete sequences of genome using high throughput 

sequencing platforms. In the past high costs resulted in the testing being 

performed on a candidate gene basis using a small number of individuals. Recent 

advances in next generation sequencing technologies such as the development of 

the Illumina sequence by synthesis (SBS) technology have significantly reduced the 

cost of the method. This has increased accessibility to both capture and whole 

genome sequencing methodologies, allowing sequencing data to be generated on a 

large number of samples.  Comparison of sequence data between cases and 

controls has been a successful technique for a number of disease studies and has 
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resulted in identification of highly penetrant variants such as the PLB1 locus which 

contains a number of variants which are potentially associated with RA risk 

(Okada et al. 2014a) . Although promising, further studies will indicate how much 

value this technique holds for the identification of RA susceptibility loci.  

 

1.5.3 Fine Mapping 

 

Identification of a causal variant following an association study can be achieved by 

performing fine mapping analysis of a confirmed susceptibility region. Fine 

mapping uses high throughput genotyping technology to test a high density of 

SNPs within a region of interest. This involves the genotyping of an extensive panel 

of SNPs in an extensive set of cases and controls. A case control association study is 

then performed providing a detailed analysis of the genetic region. The advantage 

of fine mapping is that it provides additional information about a region and 

refines the peak of association. If this is performed in an independent cohort, this 

gives the opportunity to replicate existing associations and increases the chance of 

identifying a true causal variant which can then be carried forward for potential 

functional validation (section 1.6). Furthermore, it can be supplemented using 

statistical techniques such as conditional logistic regression, which can be used to 

determine whether independent effects exist within a genetic locus. For example, 3 

independent effects in the RA associated 6q23 TNFAIP3 genetic region were 

identified following fine mapping and conditional logistic regression analysis 

(Orozco et al. 2009).  

Recently an array was generated by Illumina and a consortium of investigators 

studying immune mediated diseases to fine map genetic regions which have 

previously been associated with immune mediated disease. This array provides 

dense SNP coverage of a large number of regions and is ideal for identifying both 

causal variants and novel loci. As the array was used in the current project, it is 

discussed in more detail in the following sections. 
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1.6  From Genotype to Phenotype  

 

For many of the susceptibility loci identified for complex diseases, the causal 

variant within an associated region has not yet been identified but studies are 

working towards this goal. In addition, as more techniques are developed there is a 

series of steps emerging to follow up these loci. Due to LD, fine mapping studies 

may identify a number of variants with equal genetic evidence for association but 

from which the causal variant cannot be distinguished. Functional studies are, 

therefore, critical in order to identify the likely causal variant(s) and to explore 

their biological role in disease causation (section 1.6).   Functional studies can be 

performed using bioinformatics data mining and then performing laboratory 

techniques to confirm these findings and uncover the biological consequence of 

disease associated variants. 

 

1.6.1 Bioinformatics  

 

Prior to the initiation of costly laboratory studies, bioinformatics data is often 

extracted to identify any existing functional information about a variant or region 

of interest. This is often performed on the GWA study lead SNP and all proxies 

(r2>0.9) to make sure that all SNPs correlated strongly by LD are included. A 

number of tools can be used to mine bioinformatics databases including 

ASSIMILATOR http://assimilator.mhs.manchester.ac.uk/cgi-bin/assimilator.pl; 

(Martin et al. 2011) and UCSC genome browser ( http://genome.ucsc.edu/;  

(Karolchik et al. 2004;Karolchik et al. 2014), which are web interfaces that source 

data from the Encyclopaedia of DNA elements (ENCODE) project (Bernstein et al. 

2012).  The ENCODE project is a collaborative project with the role of bringing 

together laboratory data to identify functional elements across the genome. This 

includes information on evolutionary selection, transcription factor TF binding 

motifs, RNA/chromatin regulation, enhancer/promoter characterisation and 

epigenetic regulation. The data is generated using a wide variety of laboratory 

techniques including whole transcriptome expression, exome arrays, and 

chromosome confirmation capture (3C/5C), ChIP-seq, DNase-seq and RNA-seq in 

http://assimilator.mhs.manchester.ac.uk/cgi-bin/assimilator.pl
http://genome.ucsc.edu/


52 
 

an extensive number of tissues. When this data is utilised it can provide a 

comprehensive functional prediction which can be seen in the large number of 

studies which have accessed the data.  

 

Although this wealth of information is valuable in predicting the function of 

associated variants, it is always desirable that a functional prediction is replicated 

using laboratory techniques. Some of the most commonly used techniques are 

described in section 1.6.2-1.6.3.  

 

1.6.2 Expression and eQTL analysis  

 

One potential function of a disease susceptibility variant may be to regulate the 

expression of gene transcripts. This is called an expression quantitative trait locus 

(eQTL) and can occur between closely positioned variants/genes (cis-eQTL) or at a 

longer range across the genome (trans-eQTL). To identify eQTLs gene expression 

levels are quantified and correlated with the carriage of a disease variant. Initially, 

due to ease of sample collection, the majority of eQTL studies were performed in 

whole blood. Recently it has been shown that many changes in gene expression 

occur at a cell specific level therefore investigation using a homogenous tissue of 

interest is desirable (Fairfax et al. 2012;Westra et al. 2013). Several public 

databases detailing previously identified eQTLs in a number of tissues are 

available to access online. These include the gene expression variation database 

(Genevar; http://www.sanger.ac.uk/resources/software/genevar/; (Yang et al. 

2010) which contains data for cis-eQTLs exclusively and the SNP and CNV 

annotation database (SCAN; http://www.scandb.org/newinterface/about.html; 

(Gamazon et al. 2013)) which contains date for both cis and trans-eQTLs. Both 

databases include data for a number of tissues including adipose, skin and 

lymphoblastoid cell lines allowing identification of eQTLs in specific tissues.   

 

Further advances in array technology and the quality of gene expression data have 

allowed a large number of independent eQTL studies to take place. Whole 

transcriptome arrays such as the humanht-12 v4 expression beadchip allow the 

generation of expression data for up to 47,000 transcripts, which can then be 

correlated with existing genotyping data to identify eQTLs in a specific tissue of 

http://www.sanger.ac.uk/resources/software/genevar/
http://www.scandb.org/newinterface/about.html
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interest. Combined with advances in cell isolation technologies this can be used to 

generate large volumes of data in specific cell populations not included in the 

existing databases.  

 

1.6.3 DNA interactions and chromatin structure  

 

When a variant lies in a region which interacts with a TF or an enhancer/promoter 

containing DNA sequence, it may have the ability to regulate cell function or gene 

expression. Due to 3 dimensional structure of the genome, this may occur between 

close ranges proximally or across a long range distally. Techniques such as 

chromosome conformation capture (3C) and Chromatin immunoprecipitation 

(ChIP) allow capturing of such interactions in their natural state within the cell. 

These can then be used to map relationships between proteins/DNA elements and 

the sequence containing the disease associated variant. The most common role for 

these techniques is to identify whether a SNP of interest lies within a region which 

can potentially bind an enhancer/promoter or a (TF) which can potentially 

dysregulate gene expression. Data from these techniques is used to populate the 

ENCODE project (section 1.6.1) but is often performed in a very small number of 

samples and therefore requires replication. 

 

Chromosome conformation capture allows capture of interactions between DNA 

elements using formaldehyde cross linking, digestion by restriction enzymes and 

ligation to form 3C libraries. The libraries can then be quantified by quantitative 

polymerase chain reaction (qPCR) or resequencing to identify the interaction 

levels between the DNA elements. Additional digestion and ligation stages can be 

added to the technique in the form of 4C and 5C. As the structural confirmation of 

each cell type is different, the technique is performed in specific homogeneous cell 

populations of interest.  

 

Chromatin immuno precipitation (ChIP) represents a similar technique which 

allows characterisation of interactions between proteins such as TFs and specific 

DNA sequences. This is achieved by allowing cross linking of protein-DNA 

interactions before shearing the DNA into small fragments. Specific antibodies are 

then used to select the proteins of interest and the attached DNA sequence is 
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purified. Resequencing can then be to use to identify the sequence of the bound 

DNA. As with 3C, this has to be performed in specific homogenous cell populations 

under controlled conditions. When the genotype of the cells is known, it can be 

used to show whether protein binding is affected by the presence of the disease 

associated variant.  

 

1.7 Genetics of inflammatory arthritis 

 

To date, multiple candidate gene and GWA studies have been published for IA. 

These are described in more detail below.  

 

1.7.1 RA Genetics  

 

The search for RA causal genes has spanned decades but the establishment of GWA 

studies has allowed for a rapid progression in the identification of disease 

associated genetic regions in recent years. As the power of genetic studies 

increases, progressively more gene regions have been confirmed as disease 

susceptibility loci.  In many cases, associated SNPs are not located within a gene 

and lie within intergenic regions. In this case, the closest biologically relevant gene 

is assigned. Currently 101 confirmed RA loci have been identified, as described in 

more detail below . These loci have shown statistically significant associations with 

RA and several have been subsequently replicated in an independent cohort. The 

majority of these loci have been identified since 2008, indicating the essential role 

that GWA studies have played in the identification of common disease heritability. 

As many studies exclusively use RA cases which are seropositive for RF or ACPA 

many of these disease associations are driven solely by seropositive RA but the 

collection of larger numbers of samples for the, less common, RF- and ACPA- RA 

cases will see an increase in the number of seronegative disease associations 

identified.   
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1.7.1.1 The Major Histocompatibility Complex (MHC) 

 

The major histocompatibility complex (MHC) has been the subject of genetic 

studies for over 40 years and was the first confirmed RA locus association to be 

replicated across multiple populations. To date numerous markers within this 

region have exhibited very high levels of association in multiple independent 

studies.  Located on chromosome 6p21, the human leukocyte antigen (HLA) locus 

is a complex region, extending over 3.6 Mb and is the most densely packed 

mammalian gene region housing over 200 genes (Newton et al. 2004).  

 

Structurally the region is divided into 3 segments, containing the class I, class II 

and class III gene regions. The class I segment houses the HLA-A, HLA-B and HLA-C 

genes which encode class I MHC molecules. These molecules are present on all 

nucleated cells and function to present intracellular proteins and potential 

antigens on the surface of the cell to CD8 T cells. The process is a critical 

component of the immune system for detecting intracellular pathogens such as 

bacteria and viruses. Further downstream of this region is the class II segment 

which houses the genes encoding the HLA-DR, HLA-DP and HLA-DQ molecules. 

Functionally these genes encode class α and β polypeptide chains, which assemble 

to form complete class II MHC molecules. These molecules are capable of 

presenting processed extracellular proteins on the surface of the cell and are 

essential in maintaining immune surveillance. Unlike class I molecules, class II 

MHC are only featured on specialised APCs such as macrophages and B cells, which 

are essential components of the adaptive immune repertoire. The presence of 

these molecules is essential to immunity as MHC Class II molecules uniquely 

interact with CD4 T cells via the T cell receptor. Structurally the class III genes are 

flanked by class I and class II genes yet have no antigen presentation role. Instead, 

they encode several cytokine and complement system molecules essential for 

chemotaxis and interactions between immune cells. Due to the crucial functional 

role of the MHC region, high variability between MHC molecules is critical and 

therefore a high degree of polymorphism is characteristic of genes in this region.  
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Subsequent to the primary HLA-DR4 association reported by serology in 1987 

several alleles within the HLA-DRB1 gene have been associated with RA (Stastny 

1976). The shared epitope hypothesis proposes that associated alleles encode for 

specific amino acid sequences which form specific protein structures in the third 

hyper-variable region of the antigen binding site (Gregersen et al. 1987). These 

structures have the ability to modify the antigen presentation properties of the 

class II molecule and therefore alter the immune response. The alleles associated 

with RA risk in various populations include DRB1*0401, DRB1*0404, DRB1*0405, 

DRB1*0408, DRB1*0101, DRB1*0102, DRB1*1001 and DRB1*1401 (Orozco et al. 

2006). It has been shown experimentally that DRB1*0405 is most prevalent in 

Asian populations, DRB1*0401 and DRB1*0404 are predominantly associated with 

Caucasians whilst the DRB1*0101 allele is associated with RA risk in Israeli Jews 

(Newton et al. 2004). In addition, several disease protective alleles have been 

identified in Caucasian populations including DRB1*0103, DRB1*0402, 

DRB1*0802 and DRB1*1302 (Milicic et al. 2002). Most recently analysis of 

imputed HLA data in a large dataset (5018 cases and 14974 controls) of sero-

positive RA cases and controls has shown 3 amino acid positions (11, 71 and 74) in 

HLA-DRB1 combined with a single position at HLA-B (position 9) and HLA-DPB1 

(position 9) to be responsible for the majority of RA susceptibility within the HLA 

region in Caucasian Europeans (Raychaudhuri et al. 2012). All these positions are 

located in peptide binding grooves which indicate that these RA risk alleles affect 

the ability of the MHC molecules to bind peptide epitopes.  

 

Overall, the genetic association at the HLA region is very complex, exhibiting 

multiple risk and protective effects. This region alone is estimated to contribute to 

approximately 30% of the genetic component of RA (Deighton et al. 1989), 

indicating that a significant portion of RA heritability occurs outside the HLA locus 

(Orozco et al. 2006).  

 

1.7.1.2 Non-MHC RA Loci 

 

The first comprehensive RA GWA study was published in 2007 by the Wellcome 

Trust Case Control Consortium (WTCCC) as part of a combined genetic analysis of 

7 common diseases (Wellcome Trust Case Control Consortium 2007) . Genotyping 
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of ~500,000 SNPs in 1860 RA cases and 2938 shared controls was undertaken 

resulting in detection of 3 independent associations at stringent significance 

thresholds in the MHC, PTPN22 and 7q32 regions. Replication of data obtained 

from this study has led to the confirmation of several associated genetic loci 

including TNFAIP3, KIF5A and TRAF1/C5 (Barton et al. 2008b;Plenge et al. 

2007;Thomson et al. 2007).   

 

Subsequent meta-analysis of GWA study data has resulted in the discovery of a 

large number of RA susceptibility loci. This has been aided by increasing accuracy 

of imputation software, allowing analysis of variants which have not been directly 

genotyped. In 2010 a meta-analysis was performed on 5,539 RA cases and 20,169 

controls (plus 6,768 RA cases and 8,806 controls for replication), which identified 

7 novel RA disease associations in samples of European ancestry including 

variants near the IL6ST and SPRED2 genes (Stahl et al. 2010). More recently 8 

novel associations have been identified by meta-analysis of 4047 RA cases and 

16,891 controls (plus 5277 RA cases and 21,468 controls for replication) in 

samples of Japanese ancestry (Okada et al. 2012).  These included the PTPN2 

region which has also been associated in European populations, indicating a small 

amount of overlap exists. As analysis methods for meta-analysis grow more 

sophisticated, samples from different ancestries can be analysed together, greatly 

increasing the power of studies to detect genetic effects. These methods have been 

crucial in the recent identification of 42 novel RA susceptibility loci, which have 

been identified through a large trans-ethnic meta-analysis of 29,801 RA cases and 

73,758 controls from both European and Asian ancestry (Okada et al. 2014b). 

These studies show that increasing power through sample size is still an important 

method for identifying novel susceptibility loci. Once novel susceptibility loci are 

identified the region is often investigated further to identify the causal variant 

which is contributing to disease susceptibility. In RA this has been achieved using 

the Immunochip fine mapping array and further functional analysis. All studies 

mentioned in sections 1.7.1.3-1.7.1.4 were performed after or in parallel to the 

studies described in this thesis, therefore they were not available to inform the 

current study.  
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1.7.1.3 The Immunochip study  

 

Although GWA studies and meta-analyses are crucial tools in the identification of 

RA susceptibility loci, the limitations of genotyping arrays often mean that a region 

is covered by a small number of tag variants. LD patterns therefore make it 

challenging to identify the true causal variant within a region, so techniques such 

as resequencing and fine mapping are utilised. In 2009, the generation of the 

Immunochip fine mapping array allowed dense genotyping of previously identified 

RA susceptibility regions at a low cost per sample, allowing genotyping of a very 

large group of RA cases and healthy controls. This dense genotyping allowed 

haplotypic and conditional analysis to be performed with the aim of localising 

disease signals. In addition the genotyping of a large number of regions previously 

associated with other immune mediated diseases provided the opportunity to 

identify novel susceptibility loci and perform analysis of genetic overlap between 

different immune mediated diseases.  

 

Analysis of fine mapping data for 11,475 RA cases and 15,870 controls resulted in 

the localisation of association signals in 19 disease regions, allowing the 

identification of 19 potential causal variants (Eyre et al. 2012). Furthermore using 

conditional analysis, 6 regions were identified as harbouring multiple genetic 

effects which may contribute to disease. This included the TNFAIP3 region where 2 

independent risk effects were identified and the REL region where an independent 

risk and protective genetic effect have been identified. In addition 14 novel RA 

susceptibility regions were identified, with many strong biological candidates 

identified for future analysis, including several variants in exonic regions which 

are known to affect protein function. Since the initial Immunochip study, 

subsequent studies have used the Immunochip array to perform their own 

analysis, including a recent study which identified 8 new RA susceptibility loci in a 

trans-ethnic analysis of samples from European and Korean ancestry (Kim et al. 

2014). This indicates that the Immunochip is an excellent study design for 

identification of RA genetic susceptibility loci. 
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1.7.1.4 Identifying the functional role of RA associated variants 

 

Although a large number of RA susceptibility loci have been identified, the function 

of many of these associations has yet to be elucidated. It has been shown that many 

of the RA susceptibility genes are specifically expressed in primary CD4+ T 

lymphocytes indicating that this may be a key cell type in the pathogenesis of the 

disease (Trynka et al. 2013). Furthermore analysis of the identified associations 

can lead to the identification of several specific pathways underpinning disease. 

This includes crucial immune factors such as the IL2 and TNF pathways, whose 

components include several known RA susceptibility loci. Additionally this is 

supported by the successful use of biological treatments such as anti-TNF and 

rituximab (anti-CD20) in the treatment of RA, which, although has not explained 

the disease mechanism, indicates that these immune components contribute to the 

disease susceptibility and pathogenesis.  

As functional data becomes more accessible through bioinformatics data and 

advancement in techniques the picture will become clearer as to how these 

associations contribute to disease susceptibility and pathogenesis.  

 

1.7.2 JIA genetics  

 

To date several JIA loci have been identified using association studies but the 

heterogeneous nature of JIA and the fact that it is a relatively rare disease provides 

challenges in obtaining the large and thus appropriately powered, cohorts for 

analysis. As a result genetic studies are usually performed on the most common 

and more homogeneous subtypes: oligo articular and RF- polyarticular JIA, with 

rarer subtypes included in stratified analyses.  Until 2009, all genetic association 

studies in JIA were performed purely on a candidate gene basis with only 3 regions 

consistently associated with JIA at genome-wide significance (HLA, PTPN22 and 

PTPN2). More recently multiple small GWA studies have been performed resulting 

in the identification of 6 novel associations (Hinks et al. 2009a;Thompson et al. 

2012).  This has been supported by the establishment of international 

collaborations, providing the opportunity to increase sample sizes and therefore 

power to detect genetic effects. As sample sizes increase, we can expect more JIA 
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associations to be identified, giving a greater understanding of disease 

susceptibility. 

 

1.7.2.1 The Major Histocompatibility Complex (MHC) 

 

JIA is similar to RA in that Human leukocyte antigen (HLA) region provides the 

largest contribution to the genetic component of disease, with ~8-13% of 

heritability estimated to be explained by the HLA region (Hinks et al. 2013) .  Many 

HLA associations have been characterized for different subtypes in Caucasian 

populations. The oligoarticular subset of JIA has the most HLA-associations with 

both the class I allele HLA-A2 and the class II alleles HLA-DRB1*08, DRB1*11, 

DPB1*0201, DQA1*04 and DQB1*04 associated with disease susceptibility. 

Furthermore DRB1*04 and DRB1*07 alleles confer disease protection in this 

subtype. In the polyarticular subtypes HLA-DRB1*08, DQA1*04 and DPB1*03 

alleles are associated with RF- susceptibility whilst DRB1*04 and DRB1*07 is 

associated with protection. In addition HLA-DRB1*04 and DQA1*03 are associated 

with susceptibility in RF+ cases but DQA1*02 is associated with protection 

(Fernandez-Vina et al. 1994;Prahalad 2004;Thomson et al. 2002). Most recently, 

the Immunochip study, which investigated oligoarticular and RF- polyarticular 

disease, found that a SNP, which tagged the HLA-DRB1*0801–HLA-DQA1*0401–

HLA-DQB1*0402 haplotype, represented the strongest signal, conferring disease 

protection. In addition conditional analysis identified 14 independent SNPs 

showing disease associations in the region (Hinks et al. 2013) 
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1.7.2.2 Non-MHC JIA Loci 

 

1.7.2.2.1 Candidate gene studies  

 

 

Until recently, the number of non-MHC regions associated with JIA was limited, 

with regions often selected for candidate gene investigation based on associations 

in other immune-mediated diseases.  This method was successful in identifying 

variants within regions such as STAT4, TRAF1/C5 and IL2RA but, although 

associated with disease in multiple cohorts, they did not reach genome wide 

significance level (Albers et al. 2008;Behrens et al. 2008;Hinks et al. 

2009b;Prahalad et al. 2009). In addition, a polymorphism within the chemokine (c-

c motif) receptor (CCR5) gene (32 base pair deletion mutation) has also been 

associated with JIA in 3 independent cohorts (Hinks et al. 2010c;Prahalad 2006) . 

The deletion leads to a shift in the reading frame and production of a non-

functional receptor. Although this inability to respond to chemo-attractants would 

normally be detrimental, the association has been shown to be protective against 

JIA and other autoimmune diseases. This may be a result of suppression of 

inflammatory mediators which are responsible for disease processes.  

 

As with RA, the PTPN22 SNP rs2476601 was been shown to be associated with 

multiple subtypes of JIA, with the strongest associations detected in the 

polyarticular and oligoarticular subtypes (Cinek et al. 2007;Hinks et al. 2005;Viken 

et al. 2005). This still represents the largest non-MHC genetic effect identified to 

date.  

 

1.7.2.2.2 GWA studies  

 

To date, a limited number hypothesis free GWA studies have been performed in 

JIA, resulting in the identification of 6 novel JIA regions since 2009 (Hinks et al. 

2009a;Thompson et al. 2012).  The most recent and largest, testing 814 cases and 

3058 controls, identified 2 regions (CD80-KTELC1 and JMJD1C) to be significantly 

associated. The JMJD1C gene has been shown to remove methyl marks on histones 

in T and B lymphocytes, indicating a potential role in gene regulation (Thompson 

et al. 2012).  As with RA, the region often identified by GWA studies is a tag SNP 
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variant and therefore further fine mapping is required to identify the causal 

variant in a region. In JIA this has been achieved using the Immunochip fine 

mapping array and further functional analysis. Therefore, the study mentioned 

1.7.2.2.3 was performed after or in parallel to the studies described in this thesis; 

therefore they were not available to inform the current study. 

 

1.7.2.2.3 The Immunochip study 

 

The Immunochip study represents the largest and most comprehensive study of 

JIA genetics to date, with fine mapping data generated for 2816 oligo articular and 

RF- polyarticular JIA cases and 13056 controls (Hinks et al. 2013;Liu et al. 2008). 

The study successfully confirmed association with all previously known JIA loci at 

genome wide significance (HLA, PTPN22 and PTPN2) whilst identifying 14 novel 

JIA loci.  Several of these novel associations (IL2RA and STAT4) had previously 

shown association with JIA, but not at accepted genome wide significance 

thresholds. Therefore the Immunochip study represented the first well powered 

analysis of genetic susceptibility in oligo articular and RF- polyarticular JIA. 

Combined with the HLA findings described in section 1.7.2.1 the genetic 

associations in this study are believed to explain 19% of the heritability of JIA.  

 

As a result of fine mapping and bioinformatics analysis, the disease association 

signal was localised in 8 regions to a single gene. In both the IL2RA and IL2RB 

regions the signal was localised to these genes. Combined with the association 

signal at IL2/IL21, this indicates that the IL2 pathway is important in pathogenesis 

of JIA and will require further investigation through functional studies to identify 

the exact role in contributing to disease susceptibility.  

 

In total 17 genetic loci have now been associated with JIA at genome wide 

significance, with more showing suggestive significance (<1x10-6). As sample sizes 

expand it is expected that more associations will be identified and confirmed, thus  

explaining more of the heritability of this disease. Although the functional 

consequences of these associations have not been investigated, the availability of 

bioinformatics databases and functional techniques provides a promising future 

for uncovering the pathogenesis of this disease. 
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1.7.3 PsA Genetics  

 

To date a limited number of susceptibility regions have been identified for PsA. 

Although several GWAS have been performed using PsA cases, these have normally 

been in combination with PsV. As a result confounding of results is expected due to 

the genetic overlap between PsA and PsV. Currently 10 confirmed PsA loci have 

been identified. These loci have shown genome wide statistically significant 

associations with PsA and in many instances have been replicated in independent 

PsA cohorts.  

 

1.7.3.1 The Major Histocompatibility Complex (MHC) 

 

As with RA and JIA, The HLA region represents the locus with the greatest 

contribution to the genetic component of PsA. By contrast to RA and JIA, however, 

the strongest PsA association is with the class I gene segment HLA-C and not a 

class II segment. The allelic association which has been identified is with HLA-

Cw*06, which was initially identified in cases with type 1 psoriasis (age of onset of 

psoriasis < 40 years) and type 1 psoriasis with arthritis (Gladman et al. 2005). 

Since then this association has been replicated in multiple PsV and PsA cohorts 

(Huffmeier et al. 2010;Liu et al. 2008;Nair et al. 1997).  Although significant 

associations were obtained for PsA in the HLA-Cw*06, region, both p values and 

odds ratios indicate a greater effect in type 1 psoriasis cases than psoriasis with 

arthritis. This indicates that the HLA-Cw*06 allele may be associated with the skin 

rather than articular manifestations of PsA (Ho et al. 2008;Winchester et al. 2012).  

 

In addition a SNP association in the HLA-B27 region has been identified as a risk 

association for PsA but not PsV. The region has been previously associated with 

other seronegative spondyloarthropathies such as ankylosing spondylitis. The SNP 

rs116488202 has been shown to confer disease risk in 2 independent populations. 

The fact that this region is not associated with PsV indicates that, unlike HLA-CW6, 

it is involved specifically in the musculoskeletal manifestations of disease 

(Winchester et al. 2012). 
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1.7.3.2 Non-MHC PsA loci  

 

In addition to the associations identified in the MHC region, multiple regions have 

been association with PsA.  

 

Several SNPs in the interleukin 12B (IL12B) and interleukin 23 receptor (IL23R) 

regions have been associated with PsA and replicated in a UK, German and 

Canadian cohorts (Filer et al. 2008). As with HLA-C, both genes have shown 

increased association in type 1 psoriasis cases than PsA cases. A similar odds ratio 

for IL12B and IL23R in PsV and PsA cohorts indicates that the presence of articular 

disease does not have any significant effect on allele frequencies in cases and 

controls. This may also indicate the similar pathogenicity shared between skin 

lesions in PsV and PsA  Despite this, it has been observed clinically that patients 

treated with Ustekinemab, a monoclonal antibody which inhibits IL2B and IL23R 

through the shared p40 subunit show improvements in both joint and skin disease 

(Gottlieb et al. 2009). This indicates that although genetic components appeared to 

be shared between PsV and PsA, several factors are still to be explored to identify 

the pathways of articular pathogenesis in PsA.  

 

Additionally, a number of PsA associations represent interesting biological 

candidates which give some insight into the pathways responsible for disease. For 

example associations in the TRAF3 interacting protein 2 (TRAF3IP2) and 

interleukin 13 (IL13) regions encode proteins essential for B cell responses. 

TRAF3IP2 in particular encodes NFKB activator (ACT1), an immune signalling 

adaptor which has a role in negative regulation of B cell signalling via the NFKB 

pathway. Furthermore IL13 is a cytokine which is essential for B cell maturation 

and development and therefore risk variants in this region may result in an up 

regulation of the B lymphocyte response.  

 

Additionally several PsA susceptibility regions encode genes involved in the 

activation and differentiation of T lymphocytes. In particular associations in the 

signal transducer and activator of transcription 2 (STAT2) and tyrosine kinase 2 

(TYK2) regions are involved in the Janus kinase-signal transducer and activator of 
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transcription (JAK-STAT) pathway, acting as signal transducers to rely the message 

to activate the cell. In addition a risk association has been identified in the Runt 

related transcription factor 3 region (RUNX3), which encodes a transcription factor 

essential for activation and suppression of T lymphocyte enhancers and 

promoters. This has been shown to be particularly important in CD8+ T 

lymphocytes, which indicate that this cell type is important in PsA pathogenesis 

(Apel et al. 2013).  

 

Furthermore strong evidence of association has been detected at regions involved 

in the NFKB signalling cascade, essential for cytokine production and response. 

This includes the TNFAIP3 interacting protein 1 (TNIP1) locus, which interacts 

with the A20 product of TNFAIP3 to inhibit TNF induces NFKB expression 

(Huffmeier et al. 2009). In addition the association of the REL gene, a subunit of the 

NFKB pathway shows that this pathway looks to be crucial for the development of 

disease.  

 

The increase of sample sizes in PsA studies over time has shown that with 

increased power, more susceptibility loci can be identified for this disease. In the 

past, genetic studies in PsA have also been a subset of larger PsV studies, but a 

recent Immunochip study represents the first PsA exclusive GWA study in the 

largest PsA sample size investigated, to date. The Immunochip study was 

performed after or in parallel to the studies described in this thesis, therefore they 

were not available to inform the current study. 

 

1.7.3.3 The Immunochip study 

 

The PsA Immunochip study was performed in a large cohort for this disease, with 

analysis of 1962 cases and 8,923 healthy controls performed (Bowes et al. 

Manuscript in preparation).  In this study 8 regions which had been previously 

associated with PsV or PsA reached genome wide significance. Although the SNP 

identified was not always identical to that identified in PsV, the finding further 

confirms a significant genetic overlap between both diseases.  

 

Interestingly a further 2 novel regions were identified in the CSF2/P4HA2 and 
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DENND1B regions, at a suggestive level of p<1x10-6 .  These SNPS were then taken 

forward for replication in an independent cohort of 572 PsA cases and 888 

controls, the results of which were meta-analysed with the Immunochip results. 

Although the SNP in the CSF2/P4HA2 replicated and reached genome wide 

significance in the meta-analysis at p= 4.83x10-13, the SNP in the DENND1B did not 

reach significance. When examined in several independent PsV datasets, this SNP 

was found to reach suggestive significance at p=2.4x10-7. This indicates that this 

association in the Immunochip analysis was likely to be due to the large number of 

disease cases which will have psoriasis, and therefore genetic susceptibility to PsV.  

 

In order to localise the signal in the CSF2/P4HA2 region, imputation and 

bioinformatics mining of databases was performed to elucidate the most likely 

causal variant(s). Three SNPs in high LD with the associated SNP were identified as 

eQTLs with P4HA2, SLC22A4 and SLC22A5 genes. This was examined in a cell 

specific eQTL dataset generated from CD4+ and CD8+ T lymphocytes from 23 

healthy volunteers. Confirmation of the eQTL with SLC22A5 was achieved in the 

CD8+ T lymphocyte data at p=1.41x10-4 . This finding provides further evidence of 

the crucial role of CD8+ lymphocytes in conferring susceptibility to PsA (Bowes et 

al. Manuscript in preparation).  

 

1.7.4  Overlap of Susceptibility Loci  

 

1.7.4.1  The Concept of Shared Loci 

 

It has been previously observed that autoimmune and immune mediated diseases 

share characteristics of disease presentation and pathogenesis (Parkes et al. 2013). 

This may include predominantly female presentation and the presence of 

autoantibodies. As more disease associated loci have been identified using GWA 

studies it has become apparent that different diseases to some extent, share the 

same genetic susceptibility factors. Findings suggests that significant genetic 

overlap exists between immune mediated diseases such as RA, JIA, PsA, Type 1 

diabetes (T1D), Crohn’s disease (CrD), Celiac Disease (CD), Systemic Lupus 

Erythematosus (SLE) and Multiple Sclerosis (MS). It remains to be determined 

whether disease susceptibility is a result of the same alleles, disease specific alleles 
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or a combination. The overlap indicates that processes mediated by the products 

of these pan-autoimmune genes occur in several related diseases, highlighting the 

possibility of shared autoimmune pathways and networks but functional 

investigation is required for confirmation.  

 

In many cases the associated polymorphism in a region may be identical across 

each disease but often disparity exists and different polymorphisms in the same 

regions are identified. This could be the result of truly different associations or a 

result of LD masking the true causal SNP within a region. Furthermore associations 

in different diseases may be differential in risk, conferring susceptibility in one 

disease and protection in another. As these regions have mainly been identified by 

GWA studies, which mean that often the SNP identified is a tag SNP which captures 

several variants, further analysis is required to identify causal variants and 

generate a true correlation between diseases.  

 

1.7.4.2 Methods to identify genetic overlap  

 

Recently, the development of various statistical techniques to determine overlap 

between diseases has led to the identification of a number of shared genetic 

factors. As these were developed and first published when the analysis in the 

current study was already underway, they were not used but are something to be 

aware of. Often these techniques can be applied to previously generated genetic 

data and can be applied to large sample cohorts, therefore increasing power. One 

example is pan-meta- GWA studies, which involves meta-analysis of existing GWA 

study datasets from different diseases, which share some overlapping features and 

are therefore expected to share genetic factors.  This technique has been successful 

in the identification of three novel susceptibility loci for systemic sclerosis (Ssc) 

and SLE in a study which included 6835 combined Ssc and SLE cases versus 

healthy controls (Martin et al. 2013)  

 

 



68 
 

In 2011 Cotsapas et al. reported a method to assess genetic sharing across multiple 

diseases. This cross phenotype meta-analysis (CPMA) technique was applied to 

107 SNPs previously associated with 1 or more of seven immune mediated 

diseases including RA, T1D and MS (Cotsapas et al. 2011). It was estimated using 

this technique that 44% of the 107 SNPs tested were shared across more than 1 

disease, with a single region SH2B3, associated across the 7 diseases. Furthermore 

4 distinct gene clusters were identified, with different immune mediated disease 

showing specific relatedness to each other. The method assesses the expected 

distribution of the SNP p values in each disease, using a likelihood ratio test and is 

believed to be a more powerful way to identify overlap than normal meta-analysis.  

 

Although these techniques have been developed to assess the overlap between 

different diseases, candidate genes are often selected based on previous disease 

associations. This method has been pivotal in driving identification of numerous 

loci which are associated with multiple autoimmune and immune mediated 

diseases. This has included and to date has been the most popular method for 

identifying overlap between different types of IA. 

 

1.7.4.3 Overlap between different types of inflammatory arthritis   

 

As more associated polymorphisms for IA are identified, an overlap of 

susceptibility loci between the diseases has been emerging. As the current study 

involved the investigation of overlap using data generated in the Immunochip 

project, the following section will described the genetic associations/overlapping 

regions which were identified prior to the start of the current work.  

 

Overall prior to the Immunochip study, 7 genetic regions showed association with 

RA and JIA, with evidence for a single shared genetic association across RA, JIA and 

PsA Figure 9. These are described in more detail below.  
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Figure 9 - Overlapping regions prior to the Immunochip study  

 

  Figure 9 shows the number of regions associated with multiple types 

of IA, prior to this study (pre-2010). In total 7 regions were associated 

with more than 1 type of IA, with 6 regions associated across RA/JIA 

and 1 region associated across the 3 inclusively.   
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1.8 Inflammatory arthritis overlapping regions  

 

1.8.1 PTPN22 

 

Since the original report of association with T1D in 2004 , the protein tyrosine 

phosphatase 22 (PTPN22) gene has been identified as the second largest 

contribution to RA and JIA heritability, secondary to MHC. The casual variant 

rs2476601 has been shown to be associated with both RA and JIA across multiple 

Caucasian populations (Hinks et al. 2005;Pierer et al. 2006;Plenge et al. 

2005;Seldin et al. 2005;Viken et al. 2005) . In each study, allele frequencies 

indicate that this polymorphism is a risk variant and confers susceptibility to 

disease. PTPN22 represents a true pan-autoimmune locus as associations with the 

SNP have been replicated in a wealth of autoimmune disorders including CrD, MS, 

CD and SLE (Barrett et al. 2008;Todd et al. 2007;Wellcome Trust Case Control 

Consortium 2007).  

 

Located on chromosome 1q13, the variant represents a T to C base change 

resulting in an arginine to tryptophan amino acid change at position 620 in the 

polypeptide chain, called LYP-W620. Consequently this induces a change in motif 

of the tyrosine phosphatase LYP, an 110kDa intracellular protein which is a key 

component in maintenance of T cell activation (Vang et al. 2005). 

 

There have been several hypothesis generated to explain how this polymorphism 

alters induction of the immune response. One hypothesis is that this represents a 

gain of function mutation which results in a higher threshold for T cell stimulation 

and T cell hypo-responsiveness (Bottini et al. 2004). Crucially a key factor of 

immune tolerance is deletion of self-reactive T cells in the thymus. When the 

activation threshold is raised, this process will not work as efficiently, allowing 

self-reactive T cells to escape into the periphery. However, it has been recently 

shown in mice that this LYP-W620 does not cause any change in thymic output..  
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A more recent hypothesis proposed to explain the effect of LYP-W620 in RA is its 

role in neutrophils.  In a study of RA patients and healthy controls, neutrophils 

from individuals with LYP-W620 were increased in migration markers, Ca2+ 

release and reactive nitric oxide synthesis in both cases and controls. Neutrophils 

are known to be characteristically increased in the RA joint, indicating that it may 

be hyper activation of these cells which is responsible for maintaining 

pathogenesis (Bayley et al. 2014).   

 

1.8.2 STAT4 

 

The signal transducer and activator of transcription 4 (STAT4) regions was initially 

identified as susceptibility region for RA using linkage analysis (Remmers et al. 

2007). To date, in both RA and JIA, several associated SNPs which lie within the 

STAT4 gene have been identified by candidate gene and GWA studies. Initially the 

SNPs rs7574865, rs8179673 and rs11889341 were shown to be associated with 

RA (Barton et al. 2008a). These three polymorphisms have also shown association 

with JIA indicating that in both diseases, there appear to be multiple effects in the 

region (Prahalad et al. 2009). In particular rs7574865 has been shown to be 

associated with poor outcome in early RA patients indicating it may have an 

important role in the early stages of IA pathogenesis (Lamana et al. 2012). It is not 

known yet whether these diseases will confer the same or different effects with 

regards to pathogenesis.  

 

The functional product of STAT4 is a vital component of the JAK-STAT signalling 

pathway and therefore is crucial to haematopoietic cytokine signalling. The 

potential of this pathway as a target for therapeutics is already apparent with the 

development of therapies which target tyrosine kinases within the pathway 

currently underway (Weinblatt et al. 2013).  
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1.8.3 ATXN2/SH2B3 

 

 

The ataxin 2/SH2B adaptor protein 3 (ATXN2/SH2B3)  region was first associated 

with RA in a combined investigation of RA and CD susceptibility loci. Although it 

reached genome wide significance in this combined analysis, it only reached 

suggestive significance in a subsequent RA specific meta-analysis but continued to 

be a region of interest (Coenen et al. 2009;Stahl et al. 2010). Furthermore this 

region has shown suggestive association with JIA across US and UK cohorts, 

indicating this is potentially an overlapping region for IA (Hinks et al. 2012). 

 

The interesting features of these RA and JIA associations are that they are either 

with, or highly correlated by LD with the SNP rs3184504. This SNP is located in 

exon 3 of the SH2B3 gene and is responsible for an amino acid change at position 

R262W. As SH2B3 encodes the T cell adaptor protein Lnk this change could 

potentially cause dysregulation of T lymphocytes, which are known to be 

important in IA pathogenesis. Lnk has also been shown to regulate endothelial cell 

signalling in response to (Fitau et al. 2006). Carriers of the R262W polymorphism 

have also been shown to have strong NOD2 signalling responses, indicating that 

Lnk may be involved in defence against bacterial pathogens (Zhernakova et al. 

2009). 

 

1.8.4 TNFAIP3 

 

It has been shown that two variants (rs6920220 and rs13207033) within close 

proximity to the tumour necrosis factor, alpha-induced protein 3 (TNFAIP3) region 

have been associated with both RA and JIA (Prahalad et al. 2009;Wellcome Trust 

Case Control Consortium 2007).One SNP rs6920220 confers increased risk of 

developing RA and JIA whilst the SNP rs13207033 is protective, indicating 

differential effects may occur across different diseases in this region. In RA a third 

independently associated SNP, rs5029937, within an intron of TNFAIP3 has been 

identified. A study investigating the nature of these polymorphisms in RA has 
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shown that these three SNPs exhibit independent genetic effects. Furthermore it 

has been shown that the carriage of risk alleles rs6920220 and rs5029937 

combined with the absence of the protective polymorphism rs13207033 confers a 

greater risk of developing disease (Orozco et al. 2009).  

 

 

The TNFAIP3 gene encodes the enzyme A20, which is involved in the ubiquitin 

editing and negative feedback regulation of immune signalling cascades of the 

NFKB pathway. The pathway is essential for the transcription of pro-inflammatory 

cytokines and survival of effector cells during an immune response, therefore A20 

is an important feature in preventing autoimmunity (Baltimore 2011). 

Furthermore, expression of A20 by dendritic cells has been shown to regulate 

immune homeostasis and prevents spondyloarthritis in TNFAIP3 knockout mice 

(Hammer et al. 2011). This has also been found in myeloid cells as mice that do not 

have functioning A20 develop spontaneous polyarthritis. This is accompanied with 

an increase in inflammatory mediators such as IL-6 and increased osteoclast 

activation, which are characteristic of RA. Altered TNFAIP3 expression has been 

correlated with response to etanercept in RA patients. But the mechanism by 

which this occurs is not yet understood (Koczan et al. 2008).  

 

These findings indicate that TNFAIP3 represents a very interesting region, which 

due to its crucial role in immune homeostasis, should be investigated further to 

identify the mechanism through which it confers disease susceptibility.  

 

1.8.5 TRAF1/C5 

 

Several SNPs which are located between the tumour necrosis factor associated 

factor 1 (TRAF1) and complement component 5 (C5) genes have been shown to be 

associated with RA and JIA. Currently a single identical SNP rs3761847 has been 

associated in both RA and JIA cohorts (Albers et al. 2008;Behrens et al. 

2008;Plenge et al. 2007). This SNP lies in a region of high LD and therefore further 

analysis is required to identify the causal variant. The TRAF1 gene encodes a 

member of the TNF Receptor Associated Family (TRAF) which mediates signalling 
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transduction from a number of TNF receptors. The C5 gene encodes the fifth 

member of the inflammatory complement cascade and in its active form is a potent 

inflammatory mediator. Risk polymorphisms in this region could result in 

uncontrolled stimulation of TNFR and the complement cascade, generating 

inflammatory pathways such as that seen in both RA and JIA.   

 

1.8.6 IL2RA 

 

The interleukin 2 receptor alpha (IL2RA) region was primarily reported as a T1D 

association using a family based study (Vella et al. 2005). This was subsequently 

replicated and the association pinpointed to this locus using fine mapping analysis 

of the region (Lowe et al. 2007).   

 

A SNP in the IL2RA region has been identified as a shared locus in RA and JIA. This 

SNP rs2104286 appears to confer disease protection in both RA and JIA (Hinks et 

al. 2009b;Thomson et al. 2007). The same SNP has also been shown to confer 

protection in MS but risk in T1D (Hafler et al. 2007;Maier et al. 2009). Furthermore 

this region has also been associated with joint destruction and poorer disease 

outcomes in RA (Knevel et al. 2013).  

 

This region represents a strong functional candidate for analysis as the product of 

the gene IL2RA/CD25 is a subunit of the IL-2 receptor, which is essential for Treg 

induction. Alteration of the subunit could result in a non-functional receptor and 

therefore a reduction in T-regs, which are essential in maintaining peripheral 

tolerance. 

 

1.8.7 IL2/IL21 

 

The interleukin 2/interleukin 21 IL2/IL21 gene region represents a region which 

contains SNPs which have been shown to be associated with RA, JIA and PsA 

inclusively. In each study, a different SNP has been identified to be associated with 

each disease. This may be due to true differences in disease association or masking 

of true associations by LD within the region and limited capture on SNP 
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genotyping arrays.   

 

The SNP rs13119723 has been shown to confer disease susceptibility in RA 

(Zhernakova et al. 2007) and has previously shown risk in both ulcerative colitis 

and celiac disease (Glas et al. 2009;van Heel et al. 2007). In addition the SNP 

rs6822844 has been shown to be a protective allele in JIA cases (Hinks et al. 

2010a). In PsA cases, the SNP rs13151961 has been shown to be associated with 

disease protection (Liu et al. 2008). The SNPs do not appear to be correlated by LD 

which indicates they may represent different effects but this will require further 

analysis as the region is located in a block of strong LD so identification of effects is 

challenging. 

 

As the IL2/IL21 region also represents a genetic susceptibility region in SLE, a fine 

mapping study was performed in that disease to localise the signal. 45 tag-SNPs 

were directly genotyped and imputation performed in 4248 SLE cases and 3813 

healthy controls. The study was successful in localising the signal to 2 independent 

SNPs in the IL21 gene (Hughes et al. 2011). In order to confirm this for RA, JIA and 

PsA, testing of the SNPs would ideally be performed to determine whether the 

effects are identical or different between these diseases.  

 

The IL-2/IL21 region is an ideal candidate gene for investigation as it contains 2 

biologically interesting genes. The IL2 gene encodes a cytokine which is a survival 

factor for T cells and NK cells and is especially important for the generation of T 

regulatory cells, which are essential for maintenance of immune regulation. The 

IL21 gene encodes a cytokine which promotes the differentiation of Th17 T cells 

and B cells.  

 

1.9  Summary  

 

Until the start of the current study, candidate gene and GWA studies provided a 

wealth of information regarding genetic susceptibility to immune mediated 

diseases, including over 50 suggestive genetic associations with IA. Some of these 

associations were shared across more than one disease indicating the existence of 
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common pathways which underlie disease pathogenesis. Although this is an 

interesting finding, it was believed that greater overlap could be present and that 

to identify the true common pathways between these diseases, causal variants 

would have to be identified.   

 

As all the associations mentioned the section 1.8 were identified by candidate gene 

and GWA studies the majority have represented an association with a tag-SNP. Due 

to LD throughout the genome, it was believed that in the majority of cases this 

would not represent the true causal variant in the region.  To identify causal 

variants, fine mapping or resequencing of a region would have to be performed to 

increase the chance of localising the disease signals. As resequencing is costly and 

relatively low throughput this drove the establishment of the Immunochip 

consortium and therefore the generation of the Illumina Immunochip array 

(Cortes and Brown 2011).  

 

1.10 The Immunochip  

 

The Immunochip array was designed to address many of the constraints of 

previous genotyping arrays. Firstly the array is specifically designed to perform 

dense fine mapping of regions which have been previously associated with disease, 

with regions being selected by a consortium of 12 immune mediated diseases 

shown in Figure 10. 

 

For each disease associated region, all 1000 genomes variants within 0.1cM 

recombination blocks around the associated SNP were included on the array. This 

was supplemented by inclusion of a number potentially interesting candidate 

regions from each disease, providing dense SNP coverage across a large number of 

regions. Furthermore genome wide tag SNP coverage allowed identification of 

novel loci which had not been previously investigated in each disease. The multi-

disease nature of the study also allowed identification of loci which are associated 

across more than one disease, providing a greater understanding of the shared 

genetics of immune mediated disease.  (Cortes et al. 2011). It is this feature of the 

array which makes it ideal for identifying overlapping genetic susceptibility loci for 
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different types of IA.  

 

Figure 10 – Immune mediated diseases which contributed to the 
Immunochip 
 

 

 

 

 

  

Figure 10 details the 12 immune mediated diseases (including RA), 

which initially contributed to the Immunochip array. A photo of the 

array used is shown in the centre.  
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1.11 Aims of study  

 

The aim of this project is to identify the genetic overlap between the three 

different types of IA using data generated using the Immunochip array. A 

biologically promising region will then be selected for further analysis. Further 

genetic analysis will be performed to identify the likely causal variant in the region, 

followed by functional investigation using gene expression studies in relevant 

tissues. This will be used to determine the functional role of this region and 

therefore its contribution to the genetic susceptibility of IA.  

 

1.12 Objectives  

 

 To perform overlap analysis of IA using data generated on the 

Immunochip array.  

 

 To select a genetic region associated with more than one disease, 

which will be subjected to further analysis.  

 

  To perform further analysis of the selected region with the aim of 

the identifying true causal variants.  

 

  To identify a biological role for selected region using bioinformatics 

databases and laboratory techniques. 
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2.0 Methods 

 

2.1.1 Inflammatory arthritis overlap  

 

Inflammatory arthritis describes a group of diseases, which, although clinically 

distinct, share common clinical characteristics such as synovial joint inflammation 

and response to treatment.  

 

In this study identification of common genetic susceptibility factors for IA was 

performed by genotyping a large number of SNPs across the 3 diseases. A direct 

comparison of associated regions was then performed to identify overlapping 

regions.  This was greatly facilitated by the establishment of the multi-disease 

Immunochip consortium, which resulted in the generation of a custom genotyping 

array ideal for identifying overlap between multiple diseases.  

 

2.1.2 Subjects 

 

Samples from 3 types of IA (RA, polyarticular/oligoarticular JIA, and PsA) and 

healthy controls were genotyped using the Immunochip Illumina Infinium custom 

array in accordance with Illumina protocols 

(http://support.illumina.com/downloads/immunochip_product_files.ilmn). The 

majority of samples were genotyped at several sites, however I genotyped 500 IA 

samples at the Arthritis Research UK Centre for Genetics and Genomic.  

 

Table 2 shows details of the number and source of samples genotyped. A number 

of common controls were used by all diseases. All cohorts were comprised of 

individuals of European descent. Quality control and case control analysis were 

performed separately for each disease as described previously (Eyre et al. 

2010;Hinks et al. 2013).  .   

 

  

http://support.illumina.com/downloads/immunochip_product_files.ilmn
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Table 2 – Total number of samples included in Immunochip analysis 

 

Disease Cohort Cases Controls (Shared) 

RA UK 3870 8430 

 Swedish EIRA 2762 1940 

 US 2536 2134 

 Dutch 648 2004 

 Swedish UMEA 852 963 

 Spanish 807 399 

 TOTAL 11475 15870 (8430 shared) 

JIA UK 772 8530 

 US 1596 4048 

 German 448 478 

 TOTAL 2816 13056 (8530 shared) 

PsA UK 929 4537 

 TOTAL 929 4537 all shared 

 

 

 

2.1.3 Illumina Infinium HD assay genotyping  

 

The Illumina Infinium HD assay allows high throughput analysis of genetic 

variation in a population. This makes it ideal for large case control studies to 

discover genetic associations with disease.  Each assay involves 3-phase treatment 

of whole genome DNA before hybridisation to a bead chip array  

 

In the first phase, genomic DNA is denatured, neutralised and amplified overnight. 

It is then enzymatically fragmented. The use of end point fragmentation allows 

consistent fragmentation to occur whilst maintaining sample integrity.  

Table 2 shows the number of samples used in the Immunochip analysis. 

RA = Rheumatoid arthritis, JIA = Juvenile idiopathic arthritis, PsA = 

Psoriatic arthritis. 



82 
 

 Samples are then precipitated using iso-propanol and re-suspended before 

hybridisation to the beadchip array. Sample hybridisation to the array is achieved 

by annealing of fragmented sample to specific 50-mers attached to locus specific 

beads on the array.  Post hybridisation, arrays are cleaned to remove unhybridised 

DNA and sample loaded chips are stained using the x stain HD process. This 

method uses labelled nucleotides to extend the DNA by a single base extension 

before harnessing avidin and biotin technology to amplify the signal exponentially. 

The process incorporates detectable labels on the array for the genotype calls to be 

made accurately.  

 

Finally beadchip arrays are scanned and analysed using the iScan reader system. 

The system uses a laser to excite the fluorescence of the single base extension 

product which is visualised in high resolution to determine the presence of 

different alleles in samples at positions across the genome. 
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Figure 11 – Illumina workflow 
 
 

 
 

 

  

Figure 11 shows the workflow for the Illumina HD assay featuring the 

amplification, fragmentation, hybridisation and staining stages. Adapted from 

Infinium HD Assay Ultra Manual Workflow Rev. B 

(http://support.illumina.com/downloads/immunochip_product_support_files.ilm

n).  
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2.1.3.1 DNA quality control 

 

Whole blood DNA was extracted from 10ml blood using phenol chloroform 

extraction by technical teams at a number of sites described in Table 2.  

Post extraction DNA samples were stored at -20°C. Prior to genotyping, DNA 

samples were assessed for quantity and purity using the Nandrop-N1000 

spectrophotometer (Thermo Scientific).  This spectrophotometer uses UV light 

absorbance ranging from 200-350nm to quantify nucleic acids present in a sample 

and determine the presence of any contaminants. As maximum DNA absorption 

takes place at A260, absorption at this wavelength is analysed and converted to a 

quantifiable concentration of ng/μl using the Beer-Lambert Law. Absorption 

values are also obtained at A260 and A280, which are used to generate the 

260/280 ratio. As pure double stranded DNA has a 260/280 ratio of 1.8, the closer 

to this figure, the more likely it is that the sample is pure and free of contaminants. 

Deviations from this number are often caused by the absorbance of proteins at 

280nm, phenol at 260nm and thiocyanate salts at 230nm.  The formulas used to 

determine quantity and purity are shown below in Figure 12. Samples with an 

adequate concentration and a 260/280 ratio of ~1.8 were considered suitable for 

genotyping.  Suitable samples were diluted to working dilutions of 50ng/µl for 

genotyping. The following protocol is based on the Infinium HD Assay ultra manual 

protocol (Illumina 2009) with minor optimisations recorded. All reagents were 

provided by Illumina (San Diego, United States) unless otherwise stated.  

 

 

Figure 12 – Formula to determine DNA sample concentration and purity 

 

 

 

DNA quality =  
𝑨𝟐𝟔𝟎

𝑨𝟐𝟖𝟎
 

 

DNA concentration = 
𝟒𝟎

𝑨𝟐𝟔𝟎
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2.1.3.2 Amplification of DNA 

 

To prepare for genotyping, 4µl of 50ng/µl DNA was added to a 96 well semi deep 

well plate to give 200ng genomic DNA in total. To denature and neutralize samples, 

20µl MA1 reagent and 4µl 0.1M sodium hydroxide (Sigma Aldrich) was added to 

each sample well. After shaking at 1600rpm for 1 minute using the High Speed 

Microplate Shaker (WVR) samples were incubated for 10 minutes at 27oC in the 

hybridisation oven (Illumina). Post incubation, 34µl MA2 reagent and 34µl MSM 

reagent were added. Samples were shaken at 1600rpm for 1 minute and incubated 

overnight at 37°C for 20 hours in the hybridisation oven. 

 

2.1.3.3 Fragmentation and precipitation of DNA 

 

To enzymatically fragment DNA, 25µl FMS reagent was added to each sample well; 

plates were shaken at 1600 RPM for 1 minute and incubated at 37oC for 1 hour on 

a Hybex microsample incubator (Scigene). The use of end point fragmentation 

prevents over-fragmentation of DNA and maintains sample integrity. DNA 

precipitation was then performed by adding 50µl of PM1 reagent, shaking at 

1600rpm for 1 minute and incubating at 37oC for 5 minutes on a Hybex 

microsample incubator (Scigene). Post-incubation, 155µl of 2-isopropanol (Sigma 

Aldrich) was added and contents mixed thoroughly by a 10 times inversion. 

Samples were incubated at 4oC for 30 minutes before being centrifuged at 3000xg 

for 20 minutes at 4°C. Post centrifugation, the supernatant was decanted 

thoroughly and the remaining DNA pellet left to air dry at 27°C for 1 hour.  

 

2.1.3.4 Resuspension of DNA and hybridisation to bead chip array  

 

To resuspend the DNA pellet, 23µl RA1 reagent was added and samples incubated 

at 48°C for 1 hour in the hybridisation oven. Post incubation, samples were shaken 

at 1800rpm on the sample shaker to completely re-suspend the DNA pellet. 

Samples were then denatured for hybridisation by heating at 95°C for 20 minutes 
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on a Hybex microsample incubator (Scigene)  followed by cooling at 27oC for 30 

minutes. 20µl of each sample was then loaded onto the corresponding bead chip 

array and placed in humidified hybridisation chambers at 48oC for 16 hours in the 

hybridisation oven.  

 

2.1.3.5 Washing of bead chip array 

 

To remove unhybridised DNA from the surface of the chip, each chip was washed 

in PB1 reagent twice for 1 minute per wash. Each bead chip flow through assembly 

chamber was then assembled using the bead chip alignment fixture, plastic spacers 

and glass slides in preparation for single base extension and bead chip staining.  

 

2.1.3.6 Single base extension and bead chip staining  

 

The flow through assembly chambers were placed in the TE-flow rack chamber 

(Tecan) at 44oC for the single base extension stages described in Table 3. The TE-

flow rack chamber temperature was then adjusted to 37oC for the staining stages 

described in Table 3. The flow through assembly chambers were then dismantled 

and bead arrays washed in PB1 reagent for 5 minutes before coating in XC4 

reagent for 5 minutes.  
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Table 3 – Beadchip xStain stages  

 

Reagent added  Incubation Time 

(Minutes) 

Repeat  Staining Rack 

Temperature (°C) 

150µl RA1 0.5 (30 seconds) x5 44 

450µl XC1 10 NA 44 

450µl XC2 10 NA 44 

200µl TEM 15 NA 44 

450µl 

formamide/1mM 

EDTA 

1 x1 44 

None 5 NA 37 

450µl XC3 1 x1 37 

250µl STM  10  37 

450µl  XC3  1 x1 37 

None  5  37 

250µl ATM  10  37 

450µl  XC3  1 x1 37 

None  5  37 

250µl STM  10  37 

450µl  XC3  1 x1 37 

None  5  37 

250µl ATM  10  37 

450µl  XC3  1 x1 37 

None  5  37 

250µl STM  10  37 

450µl  XC3  1 x1 37 

None  5  37 

 

 

  

Table 3 shows the series of stains used  in the BeadChip xstain. The volume 

added, incubation time, number of repeats and incubation temperature is 

shown.  
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2.1.3.7 Imaging of bead chip array on iScan system  

Bead chip arrays were loaded into the iScan system using the iScan control 

software v.1.0. Decode content files (DMAP files) were downloaded using Illumina 

decode file client v.3.0.2 for each individual array and were combined with 

corresponding fluorescence data to perform genotype calls. All preliminary 

analysis was performed in Illumina GenomeStudio v.1.0 before being exported in 

PLINK v.1.07 format for further analysis (Purcell et al. 2007). 

 

2.1.4 Immunochip SNP and sample QC  

 

All QC was performed in house by Dr John Bowes (RA and PsA QC) and Dr Anne 

Hinks (JIA QC). Visual inspection of a number of genotype clusters determined the 

cluster separation score cut-off which was used. As a result different thresholds of 

98-99% were defined for each disease.  

 

For sample QC a call frequency threshold was set and samples with a lower success 

rate than this value were excluded from further analysis.  

Autosomal heterozygosity is used as an additional quality control to identify 

samples with an over- or under-abundance of autosomal heterozygous SNPs. Mean 

genotype heterozygosity (excluding X chromosome markers) across all samples 

was assessed and any samples showing higher or lower levels of  sample 

heterozygosity may be the result of genotyping error or sample contamination and 

were removed from further analysis. Mean heterozygosity across a study will 

depend on the population and SNP genotyping panel so needs to be calculated for 

each dataset and appropriate thresholds determined. Generally only a small 

number of individuals are removed with this QC step. 

 

As relatedness and population sub-structure are also major sources of confounding 

in case control studies, methods were adopted to remove inappropriate samples. 

These are described in the next section. 

 

  



89 
 

2.1.4.1 Identity by descent analysis  

 

To avoid over-representation of particular genotypes, all samples included in a 

case control analysis should be unrelated. Identity by descent (IBD) analysis 

measures how many alleles are shared at a genotyped position between two 

individuals. If two individuals share more DNA than is expected by chance, they are 

considered to be related.  IBD analysis was performed using the --genome 

command in PLINK v.1.07 to remove duplicates and first/second degree relatives. 

Both identity by descent (IBD) and principal component analysis (PCA) (section 

1.4.5) require the presence of independent genetic markers. To enable this 

analysis, the MHC and 17 additional high LD regions were excluded from these 

analyses. In addition SNPs were pruned for LD between markers using a sliding 

window approach based on r2=0.2. Values for shared IBD are obtained by 

performing genome wide pair-wise comparisons of genetic markers between 

samples. Duplicate samples and monozygotic twins have a shared IBD of 1. Siblings 

have a shared IBD of 0.5, half siblings a value of 0.25 and third degree relatives a 

value of up to 0.175. It is also possible to have false positive relatedness as a 

consequence of sample duplication or contamination between samples. Duplicates 

and related individuals were excluded from analysis to minimise the risk of 

confounding.   

 

2.1.4.2 Principal Components Analysis  

 

Confounding by population stratification is often the result of case and control 

mismatching in a genetic study. It can result in false positive genetic association 

with a disease. In a genetic association study you are looking for differences in 

genotype frequencies between cases and controls.  The genotype frequencies for 

SNPs vary across different populations, so unless you carefully match your case 

and control populations you may get artificial genotype differences due to different 

populations in the cases and controls. Principal components analysis (PCA) is a 

statistical model used to detect ancestry of samples using genetic markers which 

indicate variation between populations. The analysis calculates continuous axes of 

genetic variation (eigenvectors) or PCs that reduce the data to a small number of 
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dimensions, whilst describing as much of the variability between individuals as 

possible. The model is built using an LD pruned genome-wide dataset of 

independent SNPs, often using data from Hapmap samples of known ancestry. The 

model can then be applied to novel samples and individuals can be removed who 

appear to have an ancestry different from the rest of the dataset. In addition, the 

PCs can be used as covariates in the association analysis to account for more subtle 

gradients of ancestry in the dataset,  

 

PCA analysis was performed using EIGENSOFT V.4.2.(Patterson et al. 2006;Price et 

al. 2006)  To maximize homogeneity between samples, 5 PCA iterations were 

performed, outlying individuals were removed after each iteration, and the 

principal components from the 5th iteration were then used as covariates in the 

logistic regression analysis described in section 2.1.4.4. 

 

2.1.4.3 Hardy-Weinberg Equilibrium  

 

To identify any genotyping error that was not detected during previous QC, 

statistics were generated for each SNP by calculating the Hardy Weinberg 

Equilibrium (HWE). The principle can be used to predict frequencies of expected 

genotypes in a population and is based on the equation: (p2) + (2pq) + (q2) = 1. 

 

In the equation, if p represents allele A and q represents allele a then it is expected 

that p + q = 1 in a population. Therefore the frequency of a homozygous genotype 

AA is p2, aa is q2 and 2pq is heterozygous Aa genotype. Under expected HWE these 

values will add up to 1. Deviations from these expected values in observed 

genotypes, so for example if you see more heterozygous genotypes than you would 

expect, can indicate genotyping error or association with disease; therefore this 

technique is usually performed in healthy controls exclusively. If a SNP deviates 

from HWE in controls then it should be excluded from further analysis.  

 

The dataset was tested for HWE using the --hwe command in PLINK v.1.07.  This 

was performed for cases and controls separately but only the results in controls 
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were used to exclude SNPs. The command performs a Chi2 genotypic test for each 

SNP, generating a p value indicating conformation or deviation from the expected 

HWE value. Once all association tests were performed, SNPs with a HWE p value of 

less than 0.001 in controls were considered deviant from HWE and excluded from 

further analysis.  

 

Following all the QC stages, a final dataset was built excluding all SNPs and 

samples that failed QC before analysis. 

 

2.1.4.4 Association analysis 

 

All association testing was performed in house by Dr John Bowes (RA and PsA) and 

Dr Anne Hinks (JIA). Association testing was performed separately from each 

disease using the logistic regression model. This model allows assessment of allele 

frequency differences between cases and controls, with option of using values 

generated in the PCA analysis as covariates. This allows the analysis to account for 

subtle differences in allele frequencies generated as a consequence of population 

differences, which may be picked interpreted as a spurious disease association 

otherwise.  

 

Logistic regression analysis was performed using the –-logistic command in PLINK 

V.1.0.7, using the principal components generated in section 2.1.4.2 as covariates.  

Results were generated under the additive genetic model and output of MAF in 

cases/controls, logistic  regression p values, odds ratios and 95% CI were used to 

perform the overlap analysis in section 2.1.  

 

2.1.5 Power of each disease to detect genetic effects 

 

Power to detect common genetic effects for the sample sizes available for each 

disease were calculated using the unmatched case-control model in QUANTO 

v.1.2.4. Results are expressed as the percentage power to detect an effect at a 

standard odds ratio (1.2) in both common minor allele frequency (MAF>0.05) and 

low frequency SNPs (MAF>0.01). 
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2.1.6 Calculating the number of inflammatory arthritis overlapping regions 

 

All SNPs which passed QC and had a MAF of greater than 0.01 were included in the 

analysis. Initially, additive model p values for these SNPs were extracted from the 

case control analysis for each individual disease and SNPs which reached p<10-3 in 

any individual disease selected for further analysis.  Association results for these 

particular SNPs from all 3 diseases were combined. Genetic regions were then 

analysed individually to determine regions that contained a variant(s) associated 

with more than 1 disease. Regions were defined by the proximity to genes from the 

NCBI36 gene build on a genome wide basis. In many cases this was defined by the 

fine mapping regions covered on the Immunochip, defined as covering all variation 

from the 1000 Genomes project (September 2009 release) (Abecasis et al. 2012) in 

0.1cM recombination blocks around the previous GWAS region lead marker. The 

level of significance of overlapping regions were designated as either genome wide 

(p<5x10-8) or suggestive (p<1x10-3), with the index SNP referring to the most 

associated SNP in each region for each disease. Association plots were generated 

regionally for each disease using LocusZoom  

(http://csg.sph.umich.edu/locuszoom/).  

 

2.1.7 Identifying correlation between SNPs in overlapping regions  

 

Although To identify correlation between associated SNPs in overlapping regions, 

the LD between index SNPs in each disease was calculated using the --ld function 

in PLINK v1.07. Highly correlated SNPs were defined as having an r2 > 0.8, 

moderately correlated had an r2 >0.4<0.8 and r2 <0.2 were considered weak/not 

correlated.   

 

2.1.8 Selecting a functionally promising region for further analysis 

 

Although association studies are a powerful tool for identifying genetic regions 

associated with IA, ideally the functional consequence of a genetic association 

should be determined using additional functional techniques. Therefore, to 

complement the Immunochip overlap analysis further functional investigation of a 
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biological promising overlapping region was performed. To decide which region 

was most suitable for further investigation a number of factors were considered. 

These included how many of the different types of IA the region was associated 

with, the size of the association p value for each disease and whether it is the 

same/highly correlated SNP that was associated with each disease.   

 

Once a promising region was selected, intense bioinformatics mining was 

performed to predict the function of the associated SNP and its proxies (r2>0.9) All 

proxies were obtained using the SNP annotation and proxy search database (SNAP 

(http://www.broadinstitute.org/mpg/snap/ldsearch.php)). Bioinformatics 

analysis performed included functional annotation, cis- and trans- expression 

quantitative trait loci eQTL analysis and transcription factor binding analysis. In 

addition a literature search was performed to identify any previous disease 

associations or any previously characterized biological role for the selected region.  

 

2.1.9 Functional annotation  

 

Functional annotation was performed using the relative location track on 

ASSIMILATOR (http://assimilator.mhs.manchester.ac.uk/cgi-

bin/assimilator_new.pl). This program uses data generated by the Encyclopaedia 

of DNA element s (Encode https://genome.ucsc.edu/ENCODE/) to inform 

functional prediction of disease associated SNPs. 

 

2.1.9.1 eQTL analysis 

  

To identify whether associated SNPs in regions of overlap between the different 

forms of IA correlate with gene expression levels, bioinformatics mining of eQTL 

databases was performed. As the presence of eQTLs is extremely variable between 

different tissues, data from a range of tissues were examined. Cis-eQTL analysis to 

identify gene regulation at close proximity was performed using Genevar gene 

expression variation database whilst trans-eQTL analysis to identify long range 

interactions was performed using the SNP and CNV database Scan DB 
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(http://www.scandb.org/newinterface/about.html) (Gamazon et al. 2010;Yang et 

al. 2010).  In each case a p value threshold of 1x10-3 was adopted as the criteria to 

define an eQTL of interest.  

 

2.1.9.2 Transcription factor binding analysis 

 

To identify whether associated SNPs in regions of overlap lie in regions which alter 

transcription factor binding, analysis of the UCSC genome browser data was 

performed (http://genome.ucsc.edu/) (Karolchik et al. 2014) . As with eQTL 

analysis, the presence of transcription factor binding sites (TFBS) is variable 

between different tissue types and between different transcription factors, 

therefore evidence of transcription factor binding was analysed across a large 

number of cell types/transcription factors. Any SNP with a score of greater than 

500 was considered a strong interaction whilst scores of <500 were considered to 

represent weak evidence for TF binding.  

 

2.1.9.3 Literature search 

 

To gain an insight into the potential biological role of an overlapping region, the 

gene names were entered as keyword search queries into NCBI PubMed 

(http://www.ncbi.nlm.nih.gov/pubmed). Publications were then mined for 

information about potential biological roles of the genes.  

 

2.2 Replication of overlapping associations 

 

As a number of the overlapping IA loci identified have not been previously 

associated with disease, replication in an independent cohort provides additional 

evidence that these are genuine associations and not due to type 1 error.  The 

Sequenom MassARRAY system is the ideal genotyping platform for replication 

studies. In contrast to the Illumina platform which allows genotyping of a large 

number of SNPs, this platform allows genotyping of a smaller number of SNPs in 

http://www.scandb.org/newinterface/about.html
http://genome.ucsc.edu/
http://www.ncbi.nlm.nih.gov/pubmed
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large sample cohorts.  

 

Overlapping regions, which are not included in the individual disease replication 

projects, were considered candidates for replication. In some cases SNPs were 

already being genotyped on other platforms or the signal had already been 

localised on Immunochip so did not require replication.  The SNPs were genotyped 

in an independent RA cohort, selected due to sample availability, as RA is the most 

prevalent of the 3 types of IA.  

 

2.2.1 SNP Assay Design 

 

Forward/Reverse amplification primers and extension primers were designed 

using the Sequenom MASS array iPlex assay design suite v.1 

(https://www.mysequenom.com/assaydesign).  

 

 In some cases SNPs assays could not be designed, due to high risk of non-specific 

primer binding or the formation of “primer dimers” which reduce the ability of the 

primers to bind the genetic region of interest, in the assay design. In that situation 

proxies, SNPs which are highly correlated with the index SNP, were used (r2=0.9 

and above).  Proxies were identified using the SNP annotation and proxy search 

database (SNAP: http://www.broadinstitute.org/mpg/snap/ldsearch.php) 

http://www.broadinstitute.org/mpg/snap/ldsearch.php
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2.2.2 Subjects  

 

DNA samples from 3879 RA cases and 2561 healthy controls from the United 

Kingdom Rheumatoid Arthritis Genetics Consortium (UKRAG) were included in the 

replication study.  All samples were collected with ethical committee approval 

(MREC 99/8/84) and all individuals provided informed consent.  

 

2.2.3 Genotyping using the Sequenom MassARRAY Platform 

 

Genotyping using the Sequenom MassARRAY iPlex assays is a 3-stage process to 

detect SNP polymorphisms in genomic DNA (Figure 13). Primarily, it uses 

specifically designed primers to amplify DNA surrounding variants of interest 

using a polymerase chain reaction (PCR). This is followed by an extension reaction 

which involves insertion of a single base at the site of the polymorphism. Following 

conditioning to remove contaminants, this can be used for allelic discrimination 

using MALDI-TOF mass spectrometry analysis. This mass spectrometry method 

also allows identification of unbound primers and contaminants which may reduce 

effectiveness of the assay.  
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Figure 13– Sequenom assay workflow  

 

  

 

 

 

2.2.3.1 Amplifying DNA for genotyping   

 

Prior to genotyping, 1.2µl of 20ng/µl genomic DNA and several water negative 

controls were plated into 384-well plates (Applied Biosystems) using the CyBio 

liquid robot to give ~20ng of DNA in total for each reaction (CyBio, Goeschwitzer 

Strasse, and Jena, Germany). Firstly DNA around the specific SNPs of interest was 

amplified by PCR. PCR is a 3 stage-reaction (denaturing, annealing and extension) 

which allows amplification of specific sequences of DNA. Forward and reverse 

primer pairs designed as described in section 2.2.1 were used to target specific 

Figure 13 details the workflow for the Sequenom genotyping system. 

Adapted from Sequenom iPlex gold:  Current Protocols in Human Genetics 

2.12.1-2.12.18, January 2009.  
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sequences of DNA (Metabion, Martinsried, Germany). Each primer was designed 

with a 10-mer tag attached to the 5’ end to allow determination of incorporated 

primers in the final analysis.  

 

PCR master mixes were generated using volumes shown in Table 4 and 4ul added 

to wells containing the DNA sample using the Beckman multimeck robot (Beckman 

Coulter, Fullerton, California, USA). PCR cycling was performed using the 8700 

thermo cycler (Applied Biosystems, CA, United States).  Details of PCR 

amplification program are shown in Table 5. As small volumes of reagents were 

used, an overhang was calculated to prevent loss of reagents due to small pipetting 

errors.  

 

Table 4– PCR reaction mastermixes  

Reagent Final 

concentration 

Volume 

(1rxn) 

Volume (384 

rxn*) 

H20 NA 1.580µl 888µl 

PCR buffer (10x) with MgCl2 1.25x 0.625µl 300µl 

MgCl2 (25mM) 1.625mM 0.325µl 156µl 

dNTP mix (25mM) 500µM 0.100µl 48µl 

Primer mix (500nM) 100nM each 1.00µl each 480µl each 

Genomic DNA (20ng/µl) ~20ng per 

reaction 

1.00µl 480µl 

Taq polymerase enzyme 

(5U/µl) 

0.5U/rxn 0.100µl 48µl 

 TOTAL 5.000µl 2400µl 

 

 

 

 

 

Table 4 details the constituents of the PCR mastermix used in the Sequenom iplex 

amplification stage. The concentration of each reagents and volume used is shown. 

*An overhang of 25% was included to account for sampling error. dNTP = 

deoxyribonucleotide, PCR = polymerase chain reaction.  
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Table 5 – PCR reaction cycles  

Stage Temperature (ºC) Time (minutes) 

1 94 15 

2 94 20 

3 56 30 

4 72 1 

Repeat stage 2 to 4 for 35 cycles 

5 72 3 

6 4 Forever 

 

 

 

2.2.3.2 Agarose gel electrophoresis 

 

To confirm successful amplification of the DNA, PCR products were run on a 2% 

agarose gel containing ethidium bromide.  1µl of each sample and negative 

controls were added and a DNA ladder was run alongside the samples to 

determine if the product was of the expected size.  As ethidium bromide fluoresces 

under UV light, this was used to visualize gels and determine if any contamination 

had occurred in the negative controls. 

 

2.2.3.3 SAP Treatment  

 

To dephosphorylate any dNTPs not used up in the PCR reaction, a shrimp alkaline 

phosphatase (SAP) treatment was performed. This prevents non-specific extension 

by free dNTPs in the extension reaction and therefore false peaks arising during 

the mass spectrometry analysis. SAP enzyme solution (Sequenom, Hamburg, 

Germany) was prepared as described in Table 6, before 2µl was added to all 

samples. Exact temperatures were required for the SAP reaction; therefore, 

samples were incubated in the 8700 thermo cycler (Applied Biosystems, CA, 

United States). Details of incubation are shown in Table 7.  

Table 5 shows the PCR reaction cycles used during the Sequenom iplex 

amplification stage. The temperature and timing of each cycle is shown.  
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Table 6 – SAP enzyme mastermixes  

Reagent  Volume (1rxn) Volume (*384 rxn) 

H20 1.330µl 638.4µl 

10xSAP buffer  0.170µl 81.6µl 

SAP enzyme (10U/µl) 0.500µl 240.0µl 

Total 2.000µl 960.0µl 

 

 

 

 

Table 7 – SAP reaction cycles  

Stage Temperature (ºC) Time (minutes) 

1 37 40 

2 85 5 

3 4 Forever 

 

 

 

2.2.3.4 IPlex Reaction  

 

The iPlex reaction involves a single base extension adjacent to the site of the SNP 

by an iPlex extension primer and a chain terminating dideoxynucleotide 

triphosphate (ddNTP).  This allows discrimination of the mass between alleles 

which can be detected by mass spectrometry.  

 

It has been shown that mass of a primer is inversely related to a reduction in signal 

to noise ratios during mass spectrometry. Low signal to noise ratios can make it 

challenging to call an allele based on mass and can result in inaccurate results. To 

Table 6 details the constituents of the SAP mastermix used in the Sequenom SAP 

treatment. The concentration of each reagents and volume used is shown. *An 

overhang of 25% was included to account for sampling error. SAP = shrimp 

alkaline phosphatase. 

 

Table 7 shows the reaction stages used in the SAP treatment stage. The 

temperature and timing of each stage is shown.  
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account for this, extension primers are split into groups depending on their mass 

and higher concentrations of primer are added to the high mass group; low mass 

primers were added at a concentration of 7μm whilst the high mass primers are 

added at a concentration of 14μm. This increase in concentration of high mass 

primers allows an increase in the signal to noise ratios and increases the accuracy 

of the genotyping.  

 

IPlex extension sample master mixes were combined as shown in Table 8 with the 

extension primers divided into  high mass and  low mass primers. 2µl of extension 

master mix was added to each sample well using the CyBio liquid dispenser 

(CyBio, Goeschwitzer Strasse, and Jena, Germany) and the iPlex reaction 

performed on the 8700 thermocycler (Applied Biosystems, CA, United States). 

Details of the iPlex reaction cycles are shown in Table 8. 

 

Table 8– iPlex reaction mastermixes  

Reagent  Final 

concentration  

Volume 

(1rxn) 

Volume (384 

rxn) 

H20 NA 0.755µl 362.40µl 

iPlex Buffer Plus 10x 0.222X 0.200µl 96.00µl 

iPlex Termination Mix 1X 0.200µl 96.00µl 

Primer mix (7µM 

low;14µM high) 

0.625µM;1.25µM 0.804µl 385.92µl 

iPlex Enzyme 1X 0.041µl 19.68µl 

 TOTAL 2.000µl 960.00µl 

 

 

 

  

Table 8 details the constituents of the iPlex mastermix used in the iPlex reaction 

stage. The final concentration of each reagent and volume used is shown.. *An 

overhang of 25% was included to account for sampling error.  
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Table 9 – iPlex reaction cycles  

Step Temperature (ºC) Time (minutes) 

1 94 30 seconds 

2 94 5 seconds 

3 52 5 seconds 

Repeat steps 3 to 4  for 4 cycles 

Repeat steps 2 to 4 for 39 cycles 

4 80 5 seconds 

5 72 3  

6 4 Forever 

 

 

 

2.2.3.5 Conditioning the iPlex reaction products — clean resin 

 

In order to optimise mass spectrometry analysis, the reaction products must be 

desalted using water and clean resin. This works by removing leftover magnesium 

salts from the iPlex reaction which could potentially interfere with the mass 

spectrometry reads giving inaccurate genotyping calls.  

 

To desalt the samples, 20µl of water was added to each sample well with 6µg of 

clean resin (Sequenom). Sample plates were sealed and placed on a rocking 

platform (VWR) for 30 minutes. Sample plates were then centrifuged at 3200xg for 

5 minutes to firmly collect resin in the bottom of the wells.  

 

Table 9 shows the reaction cycles used during the Sequenom iplex reaction stage. The 

temperature and timing of each cycle is shown.  
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2.2.3.6 Dispensing sample onto the SpectroChip arrays 

 

Samples were dispensed onto the 384-element SpectroChip bioarray using the 

MassARRAY Nanodispenser (Sequenom) using the 384 well dispensing program. 

Multiple washes with 100% ethanol and 0.1M sodium hydroxide (Sigma Aldrich) 

were performed between chip spotting to condition dispenser pins. Once 

completely spotted, chips were air dried in the Nanodispenser for 60 seconds and 

transferred to the MALDI-TOF mass spectrometer for analysis. 

 

2.2.4 Calling SNP genotypes  

 

Assays, plates and acquired spectra were linked using the Plate editor and Assay 

design suite 1.0 (Sequenom).  Once assay and samples were linked, genotyping 

calls were made using Typer 4.0 genotyping software. Each assay cluster was 

examined individually to identify any discrepancies in extension rate, peak area 

and call rate. Assays with high rates of failure (>90% samples failed) were 

removed from further analysis. Negative control samples were inspected to 

identify if any sample contamination or non-specific signals were being detected. 

All genotyping was uploaded to an in-house genotype database (GDB) for export in 

PLINK v.1.07 format for further analysis.  

 

2.2.5 Sample and SNP QC 

 

SNPs and samples which reached >90% genotyping call rate were included in the 

analysis. Allele frequencies in controls were assessed to ensure they conformed to 

Hardy-Weinberg equilibrium. SNPs which deviated from this (p<0.001) were 

removed from further analysis.  
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2.2.6 Association testing  

 

Allelic association testing was performed using PLINK v.1.07 and association plots 

visualized using LocusZoom (http://csg.sph.umich.edu/locuszoom/) (Pruim et al. 

2010).  

 

2.3 RUNX1 replication and fine mapping 

 

Unlike many loci on the Immunochip array, variation in the region selected for 

follow up was not well covered on the chip, therefore further fine mapping was 

required. Fine mapping is a genetic approach, which involves dense SNP 

genotyping of a region in order to capture as much variation as possible. This 

approach can be used to both localize an association signal in a region to a causal 

variant and identify whether multiple genetic effects exist in the region. Initially 

the percentage of variants captured in the region by Immunochip alone was 

calculated before dense SNP genotyping of the region was performed. 

 

2.3.1 Defining the region for fine mapping 

 

 

The region for fine mapping was defined using recombination rates obtained using 

Utah residents with Northern and Western European ancestry (CEU) 1000 

genomes (July 2010 release) in  Haploview v.4.2.  

  

2.3.2. Calculation of coverage for the selected region on the Immunochip 

array  

 

Coverage of the region on the Immunochip array was assessed using the Tagger 

function in Haploview v.4.2. All SNPs from the 1000 genomes (July 2010 release) 

located between recombination hotspots were included in analysis and coverage 

was based on all common (MAF>0.05) and low frequency (MAF>0.01) SNPs within 

this region tagged by LD of r2>0.8 and r2>0.9. 

http://csg.sph.umich.edu/locuszoom/
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2.3.3 Subjects  

 

3491 RA cases and 2359 healthy controls from the United Kingdom Rheumatoid 

Arthritis Genetics Consortium (UKRAG) were included in the study.  All samples 

were collected with ethical committee approval (MREC 99/8/84) and all 

individuals provided informed consent.  

 

2.3.4 Tag SNP selection and assay design  

 

Tag SNPs from the 1000 genomes Utah residents with Northern and Western 

European ancestry (CEU/ceph) July 2010 release were selected using the Tagger 

function in Haploview v.4.2. The coverage of these tag SNPs was then calculated for 

common (MAF>0.05) and low frequency (MAF>0.01) variants using LD thresholds 

of r2=0.8 and r2=0.9.  

 

Forward/Reverse amplification primers and extension primers were designed 

using the Sequenom MASS array iPlex assay design suite v.1 

(https://www.mysequenom.com/assaydesign) as described in section 2.2.1. 

 

2.3.5 Genotyping using the Sequenom MassARRAY system 

 

Genotyping was performed using the Sequenom MassARRAY system as described 

in section 2.2.3  

 

2.3.6 Calling SNP genotypes 

 

 

Assays, plates and acquired spectra were linked using Plate editor and Assay 

design suite 1.0 as described in section 2.2.4. 

 

 

https://www.mysequenom.com/assaydesign


106 
 

2.3.7 Sample and SNP QC 

 

SNPs and samples which reached >90% genotyping call rate were included in the 

analysis. Allele frequencies in controls were assessed to ensure they conformed to 

Hardy-Weinberg equilibrium. SNPs which deviated from this (p<0.001) were 

removed from further analysis.  

 

2.3.8 Association testing  

 

Allelic association testing was performed using PLINK v.1.07 and association plots 

visualized using LocusZoom (http://csg.sph.umich.edu/locuszoom/). 

 

2.3.9 Identification of  multiple effects in the selected region 

 

To identify if the region contained multiple genetic effects stepwise logistic 

regression was performed. All SNPs from the fine mapping were included in this 

analysis. Conditioning on the most significant, index SNP was performed using the 

--condition function in PLINK v.1.07.  SNPs which remained significant after 

conditioning (P<0.0001) were considered independent. Association plots were 

visualized using LocusZoom (http://csg.sph.umich.edu/locuszoom/). 

 

2.4 Functional Analysis of the selected region  

 

Once genetic analysis to identify potential causal variants and multiple effects has 

been performed, it is desirable that investigations are performed to identify the 

biological function of the gene and its product.  

 

 

 

http://csg.sph.umich.edu/locuszoom/
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2.4.1 eQTL analysis of the selected region in whole blood 

 

Functional investigations include gene expression and expression quantitative 

trait loci (eQTL) analysis. An eQTL is single base change in DNA which results in 

differential expression of a gene. This may occur between SNPs and genes which 

are proximal to each other (cis-eQTL) or may occur over much larger distances 

(trans-eQTL).  

 

eQTL analysis involves the genotyping of DNA and gene expression analysis of RNA 

from identical subjects. The values obtained can then be correlated to indicate 

whether the change in DNA affects the gene expression. This can be performed in 

tissue such as whole blood or at a cell specific level. In both cases, these analyses 

were performed in healthy controls  to allow investigation of gene regulation in 

study cohorts that are not affected by disease status or treatment, which may be 

the case for IA  patients and which could confound results.  

 

Analysis of eQTLs involves generation of both genotyping and gene expression 

data for the region in the healthy control cohort. Whole genome data was 

generated using the Human core exome genotyping array (Illumina) and a Taqman 

allelic discrimination assay (Applied Biosystems) whilst gene expression was 

quantified using a Taqman gene expression assay (Applied Biosystems).  

 

2.4.1.1 Subjects 

 

75 healthy volunteers from the national repository healthy volunteers (NRHV) 

study were included in the study.  All samples were collected with ethical 

committee approval (MREC 99/8/84) and all individuals provided informed 

consent. 10ml of whole blood was collected in Vacutainer Plus tubes containing 

EDTA (BD) to stabilize the sample at individual sites. Extracted DNA was stored in 

Manchester at -20°C prior to genotyping using a Taqman allelic discrimination 

assay (Applied Biosystems). In addition ~5ml of whole blood was collected in 

Tempus (Applied Biosystems) RNA collection tubes for RNA extraction.        
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2.4.1.2 SNP genotyping using Taqman allelic discrimination assays 

 

Taqman allelic discrimination assays use primer/probe pairs with specificity to 

different sequences to determine which allele is present at a particular position in 

the genome. As the probes are bound to specific fluorescent dyes, this can be 

detected by the presence of a fluorescent signalling. Matches and mismatches of 

probes and alleles are shown in Figure 14.  

 

Figure 14 – Taqman allelic discrimination workflow  
 

 

 

 

 

2.4.1.2.1 Extraction of DNA for genotyping  

 

Whole blood DNA was extracted from 10ml blood by phenol chloroform extraction 

by Joanne Barnes at the Arthritis Research UK Centre for Genetics and Genomics.  

DNA quantity and quality was not assessed prior to genotyping. Samples were 

diluted to working dilutions of 20ng/µl for genotyping.  

 

Prepare reaction mix 

PCR amplification  

 

Post-PCR plate read 

 

Figure 14 shows an overview of the Taqman genotyping protocol. This process has 3 

stages. Adapted from Taqman gene expression assays protocol (Life technologies) 

(http://tools.lifetechnologies.com/content/sfs/manuals/cms_041280.pdf) 
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2.4.1.2.2 Plating out of DNA for genotyping 

 

2.25µl of 5ng/µl DNA sample and negative controls (water only) were plated into 

Micro-amp optical 384-well plates (Invitrogen) using the CyBio liquid robot 

(CyBio, Goeschwitzer Strasse, and Jena, Germany). 

 

2.4.1.2.3 Preparing the reaction mastermix 

 

Firstly a SNP genotyping mastermix was generated using the reagents listed in 

Table 10 and thoroughly mixed. 2.75µl of mastermix was added to the sample 

containing wells and plates were vortexed at 1600rpm for 1 minute using the plate 

shaker (Illumina). Allelic discrimination was performed using the Quant Studio 

12K Flex real time PCR system (Applied Biosystems).  

 

Table 10 – Taqman genotyping reagents  

Reagent Volume (1rxn) Volume (96 rxn*) 

Taqman universal PCR mastermix (2x) 2.5µl 264µl 

20x SNP genotyping assay 0.25µl 26.4µl 

TOTAL 2.75µl 290.4µl 

  

 

 

 

2.4.1.2.4 Allelic discrimination analysis using Quant Studio 12K Flex real 

time PCR system 

 

Thermal cycling conditions for the 5μl allelic discrimination reaction are listed in 

Table 11. Genotype calls were performed using the Quantstudio 12k flex real time 

Table 10 details the constituents of the PCR mastermix used in the Taqman SNP 

genotyping. The concentration of each reagents and volume used is shown. *An 

overhang of 25% was included to account for sampling error. 
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PCR software (Applied Biosystems). 

 

Table 11 - Allelic discrimination assay reaction times 

Step Temperature (ºC) Time  

1 95 10 minutes 

2 92 15 seconds 

3 60 1 minute 

Repeat steps 2 to 4 for 39 cycles 

4 4 Forever 

 

 

2.4.1.3. Calling of genotypes using the Quant studio RT-PCR software 

 

Genotype calls were performed using the QuantStudio 12K Flex Real-Time PCR 

Software automatic calling algorithm. Negative controls were examined for signal 

and removed from further analysis.  

 

2.3.1.4 Whole blood gene expression analysis  

 

 

Gene expression was performed for a selected gene and 2 endogenous controls 

(GAPDH and ACTNB) using Taqman custom gene expression assays (Applied 

Biosystems). Endogenous controls are genes which are known to be expressed 

ubiquitously in cells and therefore can be used to normalize differences in RNA 

content between samples.  

 

Taqman gene expression analysis involve a 5’ nuclease reaction and are composed 

of specifically designed forward and reverse primers and a probe which is 

composed of a fluorescent reporter dye, a non-fluorescent quencher and a minor 

groove binder. Figure 15 shows the chemistry behind this process. The presence of 

Table  11 shows the reaction cycles used during the Sequenom iplex reaction 

stage. The temperature and timing of each cycle is shown.  

 

http://www.lifetechnologies.com/order/catalog/product/4472048?ICID=search-product
http://www.lifetechnologies.com/order/catalog/product/4472048?ICID=search-product


111 
 

the quencher means that no fluorescence is observed when probes are free in the 

reaction. During the PCR reaction, the probe binds at a position between the 

forward and reverse primer which are bound to a specific target.  When this occurs 

the quencher is cleaved from the reporter dye, resulting in fluorescence. This 

fluorescence can be quantified with each PCR cycle to determine the levels of gene 

expression within a sample. To ensure that accurate gene expression readings 

were obtained, assays for each sample and negative controls were performed in 

triplicate. 

 
 
Figure 15 – Taqman gene expression chemistry  
 

 

 

 

 

 

Figure 15 details the chemistry of Taqman gene expression assays. 

Adapted from Taqman gene expression assays protocol  (Life 

technologies); 

(http://tools.lifetechnologies.com/content/sfs/manuals/cms_041280.pdf

) 
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2.3.1.5 Design of selected gene and endogenous controls gene expression 

assays  

 

Information about splice variants were obtained from the ENSEMBL genome 

browser (ENSEMBL: http://www.ensembl.org/index.html) (Flicek et al. 2011). 

Taqman gene expression assays were designed using the Taqman assay search tool 

(Applied Biosystems; http://www.lifetechnologies.com/uk/en/home/life-

science/pcr/real-time-pcr/real-time-pcr-assays/taqman-gene-expression.html).  

 

2.3.1.6 Subjects for gene expression analysis 

 

Total RNA was extracted from the 75 subjects using the Tempus spin RNA isolation 

kit (Life technologies). Prior to extraction; samples were stored at -80°c using 

Tempus Blood RNA tubes (Applied Biosystems). Details of RNA extraction 

protocols used can be found in Section 5, Appendix A.  

 

2.3.1.7 Total RNA quality control  

 

Total RNA quantification was performed using the Nanodrop N-100 as described 

in Section 5, Appendix A. In addition each RNA sample was assessed using the 

Bioanalyzer 2100 (Agilent), which is an electrophoresis based system used to 

assess the quality and quantity of RNA.  To assess the quality, the RNA is run on a 

capillary gel and compared to a ladder of standard RNA sizes. Combined with 

quantification of 18s and 28s ribosomal subunits, this also allows the generation of 

an RNA integrity number (RIN) which indicates to what extent a sample has been 

subject to degradation. All reagents were sourced from Agilent unless otherwise 

stated.  

 

  

http://www.ensembl.org/index.html
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2.3.1.8 RNA quality control using the Agilent Bioanalyzer 2100 

 

Bioanalyzer 2100 (Agilent) uses microfluidics technology to assess RNA quantity 

and quality inclusively. This is achieved by mixing RNA samples with a sieved 

polymer and fluorescent dye on a Nanochip which is then placed into the 

Bioanalyzer instrument. When the chip is run on the Bioanalyzer an electrical 

current is generated and charged compounds such as RNA migrate, in a similar 

process to gel electrophoresis. The fluorescent dye intercalates with nucleic acids 

and therefore can be used to detect the presence of RNA in a sample. This is then 

compared to a ladder reference, allowing quantification of RNA in a sample. In 

addition the presence of 28S and 18S ribosomal RNA (rRNA) peaks indicates how 

intact a sample is and allows calculation of the RNA integrity score (RIN score).  

The RIN score is a measure of how intact an RNA structure and indicates whether a 

sample has undergone degradation. Prior to gene expression studies, the RIN score 

is used as a quality control assessment to ensure all samples are of sufficient 

quality. Usually a RIN score of greater than 9 is desirable but lower thresholds may 

be adopted for techniques less sensitive to RNA quality.  In addition a strong peak 

at 28S and 18S rRNA with no peaks in between indicates a good quality RNA 

sample.  All samples were assessed using these parameters.  

 

2.3.1.8.1 Preparing the gel and gel dye mix  

 

After equilibration to room temperature, 550µl of RNA 6000 Nano gel matrix 

(Agilent) was transferred into a spin filter and centrifuged at 1500xg for 10 

minutes. The gel was then separated into 65µl aliquots for use with individual 

Nanochips. 1µl of RNA 6000 Nano dye concentrate was then added to 65µl of 

filtered gel and vortexed thoroughly using the Bioanalyzer chip vortexer (IKA) to 

ensure complete mixing. Gel-dye mix was then centrifuged at 13000xg for 10 

minutes.  
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2.3.1.8.2 Loading the gel dye mix  

 

The RNA Nanochip was placed in the chip priming station (Agilent) and 9µl gel-dye 

mix added to corresponding reservoir in chip. The chip priming plunger was then 

pressed and held for 30 seconds until the gel was dispersed across the chip. 9µl 

gel-dye mix was then added to an additional 2 wells. 

 

2.3.1.8.3 Loading the Nanomarker, RNA ladder and samples onto the chip  

 

5µl of RNA 6000 Nano marker was added to the corresponding ladder well and 

each individual sample well. 1µl RNA ladder (Agilent) was then added to the 

corresponding well whilst samples were heat denatured at 70oC for 2 minutes 

using a 1.5ml Thermomixer R heat block (Sigma Aldrich). 1µl samples were then 

loaded into corresponding wells. The chip was vortexed at 2000rpm for 60 

seconds. 

 

2.3.1.8.4 Running the Nanochip 

 

The chip was inserted into the bioanalyzer instrument and analysis performed 

using 2100 expert software (Agilent). Both gel and electropherogram results were 

visually inspected to ensure RNA samples were pure and concentrated enough for 

further analysis. In the gel section it is expected that 2 clear bands are visible with 

no sign of degradation. In the electropherogram, two peaks are expected at 18s 

and 28s. Presence of any additional peaks may indicate sample contamination by 

DNA or proteins. 

 

2.3.1.9 cDNA conversion using High-capacity cDNA Reverse Transcription Kit  

 

 

Whole blood total RNA (RIN value >5) was normalized to 50ng/µl for cDNA 

conversion by the High-capacity cDNA Reverse Transcription Kit (Applied 

Biosystems). 10µl normalized RNA was added to a 96 well PCR plate (Starlab). 2X 

reverse transcription (RT) mastermix was prepared on ice using the volumes in 
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Table 11 and 10µl RT mastermix was added to each well containing sample. No 

template (H20 only) and no RT controls (all reagents except RT enzyme) were 

added as negative controls.  Plates were subjected to thermo cycling conditions 

listed in Table 13. 

 

Table 12– cDNA conversion volumes  

Reagent  Volume (1rxn) Volume (48rxn*) 

10xRT buffer  2µl 110.4µl 

25xdNTP Mix (100 mM) 0.8µl 44.16µl 

10x Random Primers  2µl 110.4µl 

Multiscribe Reverse Transcription 1µl 55.2µl 

Nuclease Free H20  4.2µl 231.84µl 

TOTAL 10µl 552µl 

 

 

 

Table 13– cDNA conversion thermo-cycling  

Step Temperature (ºC) Time  

1 25 10 minutes 

2 37 120 minutes 

3 85 5 minutes 

4 4 Forever 

 

 

 

 

2.4.1.10 Gene expression analysis of selected gene and endogenous controls 

 

 

4µl of 40ng/µl cDNA was added in triplicate to the wells of a 384 well optical PCR 

plate (Applied Biosystems). PCR reaction master mix was prepared on ice 

Table 13 shows the reaction cycles used during cDNA conversion. The temperature 

and timing of each cycle is shown.  

 

Table 12 details the constituents of the mastermix used in the cDNA conversion. 

The concentration of each reagents and volume used is shown. *An overhang of 

25% was included to account for sampling error. 
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according the volumes in Table 14 and 16µl mastermix was added to each well 

containing sample. No template (H20 only) and no RT controls (all reagents except 

RT enzyme) from the cDNA reaction were added as negative controls whilst 4µl 

genomic DNA was added to ensure that the assay did not bind non-specifically to 

genomic DNA. Plates were placed in the Quant studio 12k flex real time PCR 

system and were subjected to thermocycling conditions listed in  Table 15. Once 

the adequate number of reaction cycles was complete, ΔCT values were obtained 

using the Quantstudio 12k flex real time PCR software (Applied Biosystems). 

 

Table 14–Gene expression reaction mastermix 

Reagent  Volume 

(1rxn) 

Volume 

(144*rxns) 

20x Taqman gene expression assay 1µl 170.2µl 

2x Taqman gene expression 

mastermix 

10µl 1702µl 

cDNA template (40ng/ul) 4µl 680.8µl 

Nuclease free H20  5µl 851µl 

TOTAL 20µl 3404µl 

  

 

 

 

 

 

 

 

  

Table 14 details the constituents of the mastermix used in the gene 

expression reaction stage. The concentration of each reagents and volume 

used is shown. *An overhang of 25% was included to account for sampling 

error. 
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Table 15- Gene expression reaction thermo cycling conditions 

Step Temperature (ºC) Time  

1 50 2 minutes 

2 95 10 minutes 

3 95 15 seconds 

4 60 1 minute 

Repeat steps 3 to 4 for 39 cycles 

5 4 Forever 

 

 

 

2.4.1.11 Whole blood eQTL analysis  

 

To identify if associated variants represented an eQTL with a gene in whole blood, 

linear regression was performed in STATA v.11.2 using genotype at the associated 

SNP as a covariate in correlation with selected gene expression normalised to 

GAPDH and ACTNB endogenous controls.  

 

2.4.2 eQTL analysis of the selected gene  in T lymphocytes 

 

Although whole blood gene expression analysis is a good tool for identifying eQTLs 

across the genome, it represents an average of the differential gene expression of 

the many heterogeneous types of cells which make up peripheral blood. In some 

cases this may result in cell specific eQTLs being masked by signals from stronger 

and more abundant cell types in a sample.  In the case of RUNX1 eQTLs, these may 

only  be present in a particular subset of cells. Cell specific eQTL analysis involves 

using whole genome wide genotyping and transcription generated from a single 

homogenous cell population to identify cell specific regulation of genes across the 

genome.  

Table 15 shows the reaction cycles used during gene expression reaction stage. 

The temperature and timing of each cycle is shown.  
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T lymphocytes were chosen as the cell of interest in this project as they have been 

shown to be important cells in the pathogenesis of IA and therefore represent a 

good candidate cell type for cell specific eQTL analysis (Cope 2008).  Furthermore  

RUNX1 is a crucial mediator of T cell lineage commitment in CD8+ cells (Taniuchi 

et al. 2002)  and CD4+ skewing towards Th1 and Th17 characteristics (Komine et 

al. 2003;Lazarevic et al. 2011) making this a good candidate cell to find the 

consequence of a polymorphism in the RUNX1 region.  

 

By using a variety of genetic and immunological techniques, genome wide 

genotyping and cell specific whole transcription data were generated from the 

major T lymphocyte subsets, CD4+ and CD8+. This was performed in healthy 

controls, giving a representation of gene regulation across the genome in these 

highly important cell types. During this project whole genome eQTL data was 

generated for CD4+ and CD8+ lymphocytes but only data from the RUNX1 region 

will be presented here. 

 

2.4.2.1 Subjects   

 

23 healthy volunteers from the national repository healthy volunteers (NRHV) 

study were included in the study.  All samples were collected with ethical 

committee approval (MREC 99/8/84) and all individuals provided informed 

consent.  20mls peripheral whole blood was collected in Vacutainer Plus tubes 

containing EDTA (BD) to stabilize the sample by colleagues within the Arthritis 

Research UK Centre for Genetics and Genomics. A breakdown of the sample cohort 

information is given in Table 41. 

 

2.4.2.2 Genotyping of samples  

 

As the subjects used for this project were a subset of the healthy controls used 

previously, genotyping data for the associated SNP was obtained from the dataset 

generated in section 2.4.1. 
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2.4.2.3 Sample collection for PBMC extraction   

 

Within 2 hours of collection 20ml peripheral whole blood samples were diluted 

1:1.5 with 30mls ambient MACS running buffer (Miltenyi Biotec). MACS running 

buffer is a combination of phosphate buffer saline (PBS), bovine serum albumin 

(BSA), EDTA and 0.09% sodium azide giving a 7.2pH balanced solution. 25mls 

diluted peripheral blood was then layered on 15mls ambient Ficoll paque plus (GE 

healthcare) in sterile 50 ml Falcon tubes (Fisher scientific). Samples were 

centrifuged at 20°C at 400xg for 30 minutes with no brake and the peripheral 

blood mononuclear cell (PBMC) layer shown in Figure 16 was extracted using a 

sterile Pasteur pipette (Fisher scientific).  MACS running buffer was added to the 

cell suspension to bring the sample volume to 40mls and centrifuged for 10 

minutes at 300xg to wash the cell pellet. The supernatant was discarded and the 

cell pellet re-suspended in 10mls MACS running buffer. 10µl sample was removed 

and diluted 1:10 using MACS running buffer for cell counting. In addition 5µl was 

removed for a viability check. 30mls MACS running buffer was added and a final 

wash performed by centrifuging at 250xg for 15 minutes. A cell count was then 

performed using the Casy cell counter (Roche) whilst cell viability was then 

assessed using trypan blue (Life technologies).  

 

Figure 16– Ficoll separation layers 

 

 

Figure 16 shows the separation of whole blood layers during density grade 

centrifugation. In this study the layer labelled PBMCs was extracted for further 

analysis.  
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2.4.2.4 Cell counts and viability checks  

 

To determine the characteristics of the PBMC population obtained by Ficoll 

extraction, a full cell count and viability check was performed for each sample. This 

allows estimation of the total yield of cells obtained and whether they are suitably 

viable for further analysis. A high number of dead cells may be indicative of 

inadequate sample collection or poor sample handling which must be identified 

before further analysis. Both Casy cell counting and trypan blue exclusion were 

used to determine cell numbers and viability in each sample.  

  

2.4.2.4.1 The CASY Model TT cell counter  

 

Casy cell counting technology uses electrical current exclusion to determine the 

number and size of cells in a sample. This is achieved by suspending cells in 

isotonic buffer and passing each sample through a measuring pore which houses a 

low voltage electrical field. As the electrical current is passed through each sample, 

the integrity of the cell membrane determines the strength of the electrical signal 

which passes through to the other side. This is read and translated by the Casy cell 

counter to determine the number and size of cells present in the sample. Figure 17 

shows an overview of the current exclusion process.  

 

2.4.2.4.1.1  Determining cell counts using the CASY cell counter  

 

50μl of 1:10 cell suspension was added to 10ml Casy Ton (Gibco) in a Casy Cup 

(Gibco) for cell counting. Parameters were set at 6.5μm– 50μmfor counting of 

mammalian PBMCs. 180µl was sampled for each cell count and an average taken 

over 3 counts. Counts were given in cells/ml which was multiplied x100 to give the 

final volume in each sample.   
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Figure 17– CASY cell counter current exclusion  
 

 

 

 

 

 

 

 

  

Figure 17 shows how the CASY cell counter uses electrical current 

exclusion to assess the number and integrity of cells in a sample.  This is 

performed by passing an electrical current (shown as positive and 

negative charges) through a sample and assessing which signals pass 

through the cell. Adapted from CASY cell counter protocol (Roche): 

http://lifescience.roche.com/shop/products/cell-counter-and-analyzer. 
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2.4.2.4.2 Trypan blue exclusion 

 

Trypan blue exclusion involves staining of cells with a diazo dye and examining the 

cells under a phase contrast microscope. If a cell membrane is intact the dye is 

excluded and a cell is considered viable. If the dye is taken up and the cell is 

visualized as blue then a disruption of the cell membrane has occurred which 

indicates that the cell is not viable. 

 

2.4.2.4.2.1 Assessing viability using Trypan Blue  

 

 

For the viability check, 5µl cell suspension was diluted 1:1 with trypan blue (Life 

technologies) and visualized using a haemocytometer (Burker) under a phase 

contrast microscope (Olympus). Sample viability was determined using the 

equation below (Figure 18). If samples exhibited less than 95% viability they were 

excluded from further analysis.  

 

Figure 18– Cell viability equation  

 

 

 

𝐏𝐞𝐫𝐜𝐞𝐧𝐭𝐚𝐠𝐞 𝐨𝐟 𝐯𝐢𝐚𝐛𝐥𝐞 𝐜𝐞𝐥𝐥𝐬 =  
𝐍𝐮𝐦𝐛𝐞𝐫 𝐨𝐟 𝐝𝐞𝐚𝐝 𝐜𝐞𝐥𝐥𝐬

𝐓𝐨𝐭𝐚𝐥 𝐧𝐮𝐦𝐛𝐞𝐫 𝐨𝐟 𝐜𝐞𝐥𝐥𝐬
 × 𝟏𝟎𝟎 

 

 

 

 

3.4.2.5 Cryopreservation and thawing of PBMCs  

 

To allow feasible collection of the large number of samples included in this study, 

extracted PBMCs were cryopreserved. This involves storage of cells at sub-zero 

temperatures which prevents enzymatic and chemical activity that may cause 

Figure 18 shows the equation used to calculate the 

viability of each sample. 
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damage to cells stored at higher temperatures.  The cells can then be thawed when 

required for cell separation.  

 

3.4.2.5.1 Freezing of PBMC samples 

 

After assessment of yield and viability, samples were re-suspended in 1ml 

Recovery cell culture freezing medium (Gibco) per 5x106 cells and transferred to 

2ml Nunc Cryovials (Sigma Aldrich).  Recovery cell culture freezing medium 

contains PSB, dimethyl sulfoxide (DMSO) and Foetal bovine serum (FBS) which are 

important for maintaining cell viability during cryopreservation. DMSO is a solvent 

which dissolves water and therefore prevents the formation of water crystals, 

which may damage cell membranes during cryopreservation. FBS is a culture 

supplement which contains growth factors important for cell survival and growth. 

Samples were then transferred to a Mr. Frosty freezing pot (Nalgene) for gradual 

freezing at -80°c for 24 hours. The Mr. Frosty freezer pot contains isopropyl 

alcohol and therefore allows gradual freezing at a cooling rate of -10C/min. This 

rate of cooling minimizes the risk of inducing cell death by drastic temperature 

change.  Samples were then transferred to liquid nitrogen vapour phase (~-150°C). 

All samples were stored in liquid nitrogen for a maximum of 3 weeks before 

removal for thawing.  

 

3.4.2.5.2 Thawing of PBMC samples  

 

Thawing was performed by warming vials rapidly at 37oC in a Hybex multisample 

incubation system (Scigene) and gently transferring the cell suspension using a 

sterile pastette to a 50ml Falcon tube containing 30ml pre-warmed (37oC) MACS 

running buffer. Pre-warmed (37oC) MACS buffer was gradually added until the 

volume reached 40mls.  Samples were centrifuged at 1600xg for 7 minutes and the 

supernatant aspirated to remove dead cells and DMSO. 20ml MACS buffer was then 

added and both a cell count and viability check performed to determine post-

cryopreservation cell numbers and viability.  
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2.4.2.6 Separation of PBMCs into T lymphocyte subsets 

 

 

To obtain pure T lymphocyte subsets from each PBMC sample, a series of Miltenyi 

MACS cell separations were performed for each of the 23 samples. MACS 

technology involves using magnetic microbeads, conjugated to antibodies 

targeting cell markers, to isolate individual cell populations from mixed cell 

populations. This can be achieved by performing either positive or negative 

selection separation strategies. 

 

2.4.2.6.1 Positive selection  

 

 

Positive selection involves using magnetic microbeads, conjugated to an antibody 

targeting a marker expressed on the cell of interest. When incubated with a 

sample, these antibodies specifically bind each cell expressing that marker and 

magnetically extract the cells. Cells which do not express this marker remain 

unlabelled. The sample can then be passed through a separation column 

containing a magnetic field which retains the treated cells whilst all unlabelled 

cells pass through. Bound cells can then be eluted from the column as a positive 

fraction, whilst the unlabelled cells are collected as a negative fraction.  

 

This strategy allows isolation of a highly pure population of cells as the technique 

directly targets the cell marker of interest. It also allows multiple separations from 

the same sample as the negative fraction obtained can be extracted with beads 

targeting a different marker.  

 

2.4.2.6.2 Negative selection  

 

 

Negative selection involves using magnetic beads, conjugated with a cocktail of 

antibodies against a number of cell markers not expressed on the cell of interest. 

When incubated with samples, the antibodies magnetically label all other cells than 
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that which is being targeted. When passed through a column, these cells are 

retained whilst the cells of interest pass through, providing a pure cell population.  

This strategy allows isolation of an individual cell population, without binding the 

cell markers of interest directly. This is important if the marker is used in 

activation of the cell, which may result in aberrant stimulation of the cells. 

 

2.4.2.6.3 Selecting a strategy for T lymphocyte isolation  

 

As the aim of this study was to isolate highly pure populations of cells for gene 

expression analysis; a positive selection strategy was employed using CD4 Human 

microbeads and CD8 Human microbeads (Miltenyi). In addition a CD14+ selection 

was performed before the CD4+ selection using CD14 Human microbeads, to 

remove CD14+ monocytes which may express low levels of CD4 marker. This 

ensures that a pure CD4+ population was obtained. As the negative fractions 

obtained were not extracted with microbeads, this technique also allowed isolation 

of both CD4+ T helper and CD8+ cytotoxic T cells from each individual PBMC 

sample. 

 

2.4.2.6.4 Separation of PBMCs using Miltenyi MACS  

 

To prepare for microbead treatment, samples were centrifuged at 300xg for 10 

minutes at 4°C and the supernatant aspirated. The cell pellet was then 

resuspended in 160µl of chilled MACS running buffer, transferred to a 5ml test 

tube (BD) and placed in a MACS chill rack which had been previously chilled at 4°C 

overnight (Miltenyi). The chill rack was then placed on the Automacs pro separator 

(Miltenyi) and the “autolabelling,” program selected. CD8+ Human microbeads 

(Miltenyi) were then scanned using the 2D code reader, the “CD8+ posseld2” 

program selected and cell separation run started. Autolabelling involves complete 

automation addition of reagents, incubation and separation of cell subsets. 

Posseld2 is a double column program which passes the cell suspension through the 

magnetic field twice and is used when highly pure cell populations are required.  

Once cell separation was complete 50µl of the positive fraction (containing CD8+ 

cells) was removed for cell counting and the negative fraction (containing 
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remaining PBMCs) centrifuged at 300xg for 10 minutes at 4°C and the supernatant 

aspirated.  This process was then repeated for CD14+ and CD4+ positive selections, 

allowing harvesting of multiple cell types from an individual PBMC sample.  

 

2.4.2.7 Assessment of cell viability and purity using flow cytometry  

 

Although MACS separation is a reliable method for isolating pure cell populations, 

flow cytometry was used to determine the purity of the isolated CD4+ and CD8+ 

cells. Flow cytometry is a laser-based technique that involves passing a sample 

containing cells in a fluid stream through an electronic detection system.  This 

detection system directs a light laser through the stream, which can then be 

directly analysed by a number of  detectors sensitive to different types of scattered 

and fluorescent light (Fluorescent channels; FL). The scattered light is generated 

by the diffraction caused by the presence of cells in the sample whilst the 

fluorescence is generated by specific flourochromes, which are used to detect 

particular markers on cells.  This is achieved by treating samples with antibodies 

targeting specific cell markers conjugated to flourochromes. The use of different 

flourochromes, emitting different wavelengths of fluorescent light allows staining 

of cells with multiple antibodies targeting different markers. This allows extensive 

profiling of the composition of cells in a sample. In addition the data collected from 

the light scatter allows the size and granularity of cells in a sample to be 

determined which can indicate the type and physical state of cells present in the 

sample.  

 

2.4.2.7.1 Using flow cytometry to analyse T lymphocyte subsets  

 

In order to determine the purity of each CD4+ and CD8+ sample, a number of anti-

human antibody-flourochrome conjugates were used to label each sample for flow 

cytometry analysis  (Table 16). Initially for the CD8+ samples an anti-CD8-

Allophycocyanin (anti-CD8-APC) antibody was used for single staining whilst the 

CD4+ samples were double stained with an anti-CD3-APC and anti-CD4-R-

Phycoerythrin (anti-CD4-PE) antibody. For each antibody, a matched anti-mouse 

isotype control antibody was also included to compensate for any non-specific 

antibody binding, which may occur (Table 16). As an additional quality control 
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measure, a fixation and dead cell discrimination kit (Miltenyi) was used to 

determine the viability of the cells in each sample.  This could then be used to 

include only live cells in the purity analysis, as dead cells may non-specifically bind 

the antibody and therefore generate false positive results. As with trypan blue 

exclusion (section 2.4.2.4.2.1), the dead cell stain works on the principal that viable 

cells with intact cell membranes will exclude the dye whilst cells with a 

compromised cell membrane will take up the dye. As this particular dye emits 

fluorescence at 488nm-625nm, cells that take up the dye can be detected using 

flow cytometry.    

 

2.4.2.7.2 Staining of cells for flow cytometry 

 

100µl of 1x106/ml of each of the 46 separated samples was added to a 96 well 

round bottom plate (Corning) for flow cytometry analysis. 2µl dead cell 

discriminator (Miltenyi) was added to each sample and incubated on ice under a 

60w light source for 10 minutes. 10µl antibody solution (Miltenyi) was added to 

each sample as described in Table 16 and samples incubated at 4oC in the dark for 

15 minutes. Samples were then washed with 1ml MACS running buffer (Miltenyi) 

and centrifuged at 300xg for 5 minutes. This was repeated to ensure complete 

removal of unbound antibodies and the cell pellet resuspended in 300µl running 

buffer, 150µl fix solution and 5µl discriminator stop reagent (Miltenyi). Fixed 

samples were stored at 4°C overnight in the dark and transferred to the 5ml test 

tubes (BD) for flow cytometry analysis. 
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 Table 16 - Antibody cocktails added to first group of samples (n=6) 

Antibody Flourochrome 
conjugate 

Clone Dilution Fluorescence 
channel 

Anti-human 
CD8 

APC BW-135/80 Mouse 
IgG2a 

1:11 FL8 

Anti- 
human CD3 

APC BW-264/56 Mouse 
IgG2a 

1:11 FL8 

Anti- 
human CD4 

PE 
 

M-T466  
Mouse IgG1 

1:11 FL2 

Mouse 
IgG2a 
isotype 

APC S43.10 
Mouse  
IgG2a 

1:11 FL8 

Mouse IgG1 
isotype 

PE IS5-21F5  
Mouse IgG1 

1:11  
FL2 

 

 

 

 

 

 

2.4.2.7.3 Flow cytometry analysis  

 

Flow cytometry was performed using the Cyan ADP flow cytometer (Beckman 

Coulter), which has 9 fluorescence detection channels (FL). All flow cytometry 

capture and gating was performed by Michael Jackson at the University of 

Manchester FLS core flow facility.  Samples were analysed using the Cyan 

Hypercyte data collection program (Beckman Coulter) and plots exported. 

 

Viability of CD8+ and CD4+ samples was firstly assessed using un-gated data 

(Figure 50; R1 = CD8+; R4 = CD4). Viability was expressed as the percentage of 

cells, which did not take up the dead cell exclusion dye, compared to the total 

number of cells analysed. To assess purity in the separated CD4+ and CD8+ cell 

Table 16 includes details of the antibody staining cocktails used for the initial analysis of 6 

samples including Antibody target; Flourochrome conjugate used; clone of cells used to 

produce antibody; the dilution used to stain cells; Fluorescence channel corresponding to 

the flourochrome used. Abbreviations: APC = Allophycocyanin, PE = R-Phycoerythrin FL = 

fluorescence channel. 
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populations, gating was performed on live cells that did not take up the dead cell 

exclusion dye (R1; Figure 19). Forward vs. side scatter was then examined and 

gating performed to include intact cells and not cell debris, which exhibits a 

distinctively high forward scatter (R3; Figure 19).  Pulse width vs. forward scatter 

was then examined and gating performed on single cells, which did not appear as 

cell clumps with high pulse width (R2; Figure 19). This increased the likelihood 

that the cells being analysed were viable and results accurate. The purity of each 

CD8+ (R4; Figure 55) and CD3+CD4+ (R7; Figure 56 A-B) lymphocyte population 

was then examined. Purity was determined by the percentage of positive cells 

compared to the total cells analysed. All remaining sample was then suspended in 

1ml Trizol reagent (Ambion) and stored at -80°C for Trizol-chloroform total RNA 

extraction. 
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Figure 19– Gating for analysis of purity of CD4+ and CD8+ samples  

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 19 shows the 3 phase gating strategy used in the analysis of all CD8+ and 

CD4+ samples prior to analysis of purity A) Histogram of dead cell 

discrimination dye uptake showing cell count and uptake of dead cell dye.  Live 

cells which did not take up the dead cell stain (negative left peak) were gated on 

(R1) to exclude dead cells (right peak). B) Dot plot of the side scatter and 

forward scatter (SS and FS) representing size and granularity of cells. Gating 

was performed to exclude cells with noticeably high values of SS or FS, which 

indicate cell debris (R2) C) Dot plot of the pulse width against forward scatter. 

Gating was performed to exclude cells with high pulse width, which indicate 

clumps of cells (R3).  Further analysis was performed on cells within these gates 

only.  
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2.4.2.7.3.1 Issues with fluorescence overlap  

 

Once the analysis of the first set of 6 CD4+ samples was performed it became 

apparent that the dead cell discrimination dye, which uses channel FL3 channel on 

the flow cytometer was leaking into the nearby FL2 channel, which is used to 

detect the PE flourochrome. As CD4-PE was used to stain the CD4+ cells, 

compensation had to be performed to discriminate the PE signal from the dead cell 

stain signal. For the dead cell dye overlap in to the PE detector the compensation 

was 93.3% and for the PE overlap in to the dead cell marker detector the 

compensation was 22.6%. Once this issue was identified, a new anti-CD4 antibody 

conjugated to the flourochrome Vioblue (Miltenyi) was used to stain the 17 

subsequent CD4+ samples. All other antibody-flourochrome conjugates were not 

changed (Table 17). The Vioblue flourochrome uses the FL6 channel on this flow 

cytometer meaning the dead cell discrimination dye could not interfere and 

therefore no compensation was required for the remaining samples. Samples were 

analysed, gating performed and purity examined as described in the section 

2.4.2.7.3 (R11; Figure 19 C-D). All remaining sample was then suspended in 1ml 

Trizol reagent (Ambion) and stored at -80°C for Trizol-chloroform total RNA 

extraction.   
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Table 17 - Antibody cocktails added to remaining group of samples (n=17)  

Antibody Flourochrome 
conjugate 

Clone Dilution Fluorescence 
channel 

Anti-

human 

CD8 

APC BW-135/80 

Mouse IgG2a 

1:11 FL8 

Anti- 

human 

CD3 

APC BW-264/56 

Mouse IgG2a 

1:11 FL8 

Anti- 

human 

CD4 

Vioblue VIT4  

Mouse IgG2a 

1:11 FL6 

Mouse 

IgG2a 

isotype 

APC S43.10 

Mouse  

IgG2a 

1:11 FL8 

Mouse 

IgG2a 

isotype 

Vioblue S43.10 

Mouse IgG2a 

1:11 FL6 

 

 

 

 

 

 

2.4.2.8 Extracting total RNA from cell subset suspensions 

 

 

To extract total RNA from each cell suspension, cell lysates stored in Trizol at -

80oC. (Ambion) were defrosted, transferred to 2ml heavy phase lock gel tubes (5 

prime) and incubated at room temperature for 5 minutes. 200µl 1-Bromo-3-

chloropropane (BCP; Sigma Aldrich) was added and samples shaken vigorously for 

15 seconds before centrifuging at 12,000xg for 10 minutes at 4oC to separate 

sample into distinct organic and aqueous layers. The aqueous phase was removed 

carefully and transferred to a clean 1.5ml eppendorf (Starlab).  RNA was 

Table 17 details of the antibody staining cocktails used for the initial analysis of 6 

samples including Antibody target; Flourochrome conjugate used; clone of cells 

used to produce antibody; the dilution used to stain cells; Fluorescence channel 

corresponding to the flourochrome used. Abbreviations: APC = Allophycocyanin, 

PE = R-Phycoerythrin FL = fluorescence channel. 
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precipitated by adding 500µl isopropyl alcohol (Sigma Aldrich), 2µl glycoblue (Life 

Technologies) and incubating at room temperature for 30 minutes. During this 

time, the sample was carefully inverted to aid precipitation before centrifuging at 

12,000xg for 10 minutes at 4°C to pellet precipitated RNA. The supernatant was 

aspirated and the cell pellet washed twice in 1ml ice-cold ethanol. This was 

achieved by adding 1ml 75% ethanol, vortexing briefly and centrifuging at 7,500xg 

for 5 minutes at 4oC. All supernatant was removed carefully and the pellet allowed 

to dry at room temperature for 10 minutes. Each pellet was then dissolved in 40µl 

RNase free water and RNA concentration determined using the Nanodrop N-1000. 

 

2.4.2.9 RNA quality control 

 

2.4.2.9.1 RNA quality control using the Agilent bioanalyzer 2100 

 

Assessment of RNA quality and concentration was performed using the Nanodrop-

1000 (Fisher scientific) as described in Section 5, Appendix A.  

 

Total RNA concentration and RNA integrity number (RIN) values for each sample 

were determined using the Bioanalyzer 2100 gel system (Agilent) as described in 

section 2.3.18. All samples were normalized to 36.4ng/µl using RNase free water 

(Gibco) and 11µl aliquoted into 0.2ml Eppendorf’s (Starlabs) for Illumina total 

prep RNA amplification. 

 

2.4.2.10 DNase treatment of total RNA  

 

RNA samples were normalized to a 43µl volume by adding 3µl RNase free water 

(Gibco) and vortexing briefly. 5µl DNase I reaction buffer and 2µl DNase enzyme 

(Life technologies) were added and each sample incubated at 37oC for 30 minutes 

using an Eppendorf 1.5ml Thermomixer (Sigma Aldrich). 50µl RNase free water 

was added, each sample transferred to a 2ml phase lock gel tube (5 prime) and 

tubes incubated for 5 minutes at room temperature. To inactivate the DNase 

treatment 100µl acid phenol: chloroform with Isoamyl alcohol (pH 4.5; 25:24:1; 
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Sigma Aldrich) was added and shaken vigorously for 15 seconds to form an 

emulsion. Samples were centrifuged at 12,000xg for 10 minutes at 4oC and the 

aqueous phase transferred to a clean 1.5ml treatment (Starlabs). RNA was 

precipitated by adding 330µl 100% ethanol (Sigma Aldrich), 10µl 3M-ammonium 

acetate (Ambion), 1µl glycoblue (Life technologies) and incubating on ice for 30 

minutes. Samples were centrifuged at 12,000xg for 20 minutes at 4oC and the 

supernatant aspirated. The RNA pellet was then washed twice by adding 1ml ice-

cold 75% ethanol (Sigma Aldrich/Gibco) and centrifuging at 12,000xg for 5 

minutes.  All supernatant was then removed carefully and pellets allowed to air 

dry for 10 minutes before resuspending in 25µl RNase free water (Gibco).  

 

2.4.2.11 RNA amplification using Illumina TotalPrep Amplification Kit  

 

In order to have sufficiently large volumes of RNA for gene expression studies, 

RNA amplification is performed. The Illumina TotalPrep Amplification Kit 

(Ambion) is a series of reactions to synthesise large volumes of cRNA which are 

suitable for hybridization with Illumina whole transcription arrays (Figure 20). 

Initially the isolated RNA is reverse transcribed using a high yield reverse 

transcription enzyme and a T7 oligo (dT) primer to synthesise complementary 

DNA (cDNA) containing a T7 promoter sequence. This cDNA is then transcribed to 

a double stranded DNA (dsDNA) template using DNA polymerase and RNase H 

enzymes. This reaction allows the simultaneous generation of complementary 

second strand cDNA and degradation of template RNA. The cDNA template is then 

enzymatically cleaned to remove RNA, primers, salt and enzyme carryover from 

the previous reactions, which may inhibit transcription. Finally using the cDNA as 

a template, multiple copies of biotinylated complementary RNA (cRNA) are 

synthesized. The cRNA is then purified to remove unincorporated deoxynucleotide 

triphosphates (dNTPs), enzymes and salts from the synthesis reaction. The 

purified cRNA can then be hybridized to the Illumina HT-12v4 expression chip. All 

reagents were sourced from Ambion unless otherwise stated.  
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Figure 20– TotalPrep amplification workflow  

 

  

 

 

 

 

 

  

Figure 20 details the workflow for the Illumina total prep amplification kit.  

This technique involves 5 stages which prepare the RNA for hybridisation 

with the whole transcriptome array. Adapted from Illumina Total prep 

amplification protocol 

(http://tools.lifetechnologies.com/content/sfs/manuals/IL1791ME.pdf), 
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2.4.2.11.1 Reverse transcription to synthesize First Strand cDNA  

 

The RT mastermix was prepared at room temperature according to Table 18 and 

9µl of RT mastermix was added to each sterile 0.2ml eppendorf (Life Technologies) 

containing 11µl (400ng) of RNA sample prepared in section 3.4.2.8. Samples were 

then incubated according to Table 19 using a PTC-220 DNA Engine Dyad 

thermocycler (MJ Research). 

 

Table 18– Reverse transcription mastermix  

Reagent  Volume (1 rxn) Volume (24*rxns) 

T7 Oligo(dT) Primer 1µl 26.4µl 

10x First Strand Buffer  2µl 52.8µl 

dNTP mix  4µl 105.6µl 

RNase  1µl 26.4µl 

Arrayscript 1µl 26.4µl 

TOTAL  9µl 237.6µl 

 

 

 

 

Table 19– Reverse transcription reaction times  

cDNA reverse transcription thermal cycling   

Step Temperature (ºC) Time  

1 42 (50 heated lid) 2 hrs.  

2 4 Forever 

 

  

Table 18 details the constituents of the reverse transcription mastermix. The volume 

required of each reagent is shown. *An overhang of 10% was included to account for 

sampling error. 

 

Table 19 shows the reaction cycles used during the cDNA reverse transcription reaction 

stage. The temperature and timing of each cycle is shown.  
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2.4.2.11.2 Second strand cDNA synthesis  

 

Second strand mastermix was prepared on ice according to Table 20. 80µl of 

second strand mastermix was added to each sample and incubated for 2hrs 

according to Table 21 using a PTC-220 DNA Engine Dyad (MJ Research) 

 

Table 20– Second strand transcription mastermix 

Reagent Volume (1 rxn) Volume (24*rxns) 

Nuclease free H20 63µl 1663.2µl 

10x Second Strand Buffer  10µl 264µl 

dNTP mix  4µl 105.6µl 

DNA polymerase  2µl 52.8µl 

RNase H  1µl 26.4µl 

TOTAL  9µl 2112µl 

 

 

 

 

Table 21– Second strand transcription reaction times  

cDNA second strand transcription thermal cycling   

Step Temperature (ºC) Time  

1 16 (heated lid disabled) 2 hrs.  

2 4 Forever 

 

 

  

Table 21 shows the reaction cycles used during gene expression reaction stage. The 

temperature and timing of each cycle is shown.  

 

Table 20 details the constituents of the second strand transcription mastermix. The 

volume used of each reagent is shown. *An overhang of 10% was included to account for 

sampling error. 
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2.4.2.11.3 cDNA purification  

 

250µl cDNA binding buffer was added to each sample and transferred to the centre 

of a 1.5ml collection tube containing a cDNA filter cartridge. Each sample was 

centrifuged at 10,000xg for 1 minute at 27oC and the flow through discarded. 

500µl wash buffer (containing 100% ethanol; Sigma Aldrich) was added to each 

cDNA filter cartridge and centrifuged at 10,000xg for 1 minute at room 

temperature. The flow through was discarded and the cDNA filter cartridge 

centrifuged at 10,000xg for 1 minute at room temperature to remove trace 

amounts of wash buffer. The cDNA filter cartridge was then transferred to a new 

cDNA elution tube and 20µl of nuclease free water (preheated to 55oC) was added. 

The cDNA filter cartridge was incubated at room temperature for 2 minutes and 

centrifuged at 10,000xg for 1 minute at room temperature.  

 

2.4.2.11.4  In vitro transcription to synthesise cRNA  

 

In vitro transcription mastermix was prepared at room temperature according to 

Table 20. 7.5µl of IVT mastermix was added to each sample and incubated for 

14hrs according to Table 22 using a PTC-220 DNA Engine Dyad (MJ Research).  

 

 

Table 22– IVT transcription mastermix 

Reagent Volume (1 rxn) Volume (24*rxns) 

T7 10x reaction buffer 2.5µl 75µl 

T7 enzyme mix  2.5µl 75µl 

Biotin-NTP mix 2.5µl 75µl 

TOTAL  7.5µl 225µl 

  

 

 

Table 22 details the constituents of the IVT transcription mastermix. The volume used of 

each reagent is shown. *An overhang of 10% was included to account for sampling error. 
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Table 23 – IVT reaction times 

cRNA IVT thermal cycling   

Step Temperature (ºC) Time  

1 37 (105 heated lid) 14 hrs.  

2 4 Forever 

 

 

 

2.4.2.11.5 cRNA purification  

 

350µl cRNA binding buffer and 250µl 100% ethanol (Sigma Aldrich) was added 

and each sample pipetted 3 times to mix. Each sample was then transferred to the 

centre of a 1.5ml collection tube containing a cRNA filter cartridge. Each sample 

was centrifuged at 10,000xg for 1 minute at 27oC and the flow through discarded. 

650µl wash buffer (containing 100% ethanol; Sigma Aldrich) was added to each 

cRNA filter cartridge and centrifuged at 10,000xg for 1 minute at room 

temperature. The flow through was discarded and the cRNA filter cartridge 

centrifuged at 10,000xg for 1 minute at room temperature to remove trace 

amounts of wash buffer. The cRNA filter cartridge was then transferred to a new 

cDNA elution tube and 200µl of nuclease free water (preheated to 55oC) was 

added. The cRNA filter cartridge was then incubated at 55oC for 10 minutes and 

centrifuged at 10,000xg for 1.5 minutes at room temperature to elute cRNA into 

the collection tube. 

 

2.4.2.12 Illumina Gene Expression Direct Hybridization Assay 

 

 

Direct hybridization allows addition and detection of labelled cRNAs to a 

HumanHT-12 v4 Expression beadchip (Illumina) for analysis using the iScan 

reading system (Illumina). Each expression bead chip contains 50-mer sequence 

specific probes, which, by complementary binding to cRNA samples, allows 

Table 23 shows the reaction cycles used during the IVT transcription stage. The 

temperature and timing of each cycle is shown.  
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quantification of whole genome expression.  First, labelled high quality cRNA 

strands are hybridized to the bead chip overnight before washing to remove 

unbound cRNAs. Analytical probes are then bound to the hybridized bead chip 

which allows for differential detection of gene expression signatures in a sample. 

All reagents used in this process are obtained from Illumina unless otherwise 

stated. 

 

2.4.2.12.1 Hybridization to the bead chip  

 

To normalize samples, 5µl nuclease free water and 10µl HYB reagent were added 

to each sample. To humidify bead hybridization chambers, 200µl HCB was added 

to each of the buffer reservoirs. Bead chips were then placed in the hybridization 

chambers and 15µl of sample was added to the corresponding wells. Chips were 

then incubated in the Hybridization oven for 14 hours at 58°C with the rocker 

speed set at 5.  

 

2.4.2.12.2 Washing beadchip  

 

 

To ensure the removal of unbound sample and prepare samples for detection, a 

series of washes were performed at described in Table 24. The high temperature 

wash was performed using a Hybex microsample incubator (Scigene) whilst room 

temperature washes were performed using a Pyrex staining dish housed in an 

orbital shaker (Sigma Aldrich).  Finally, a block step was performed by loading 4ml 

Block E4 buffer into a wash tray. Each chip was then transferred to the loaded 

wash tray and placed on a rocking platform (VWR) at medium rocking speed for 10 

minutes.  
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Table 24– Beadchip wash steps  

Wash Reagent Time  Temperature 

High Temp Wash 1x High temp 

wash buffer 

(Diluted 1:10) 

10 minutes 55°C 

1st Room Temp 

Wash  

E1BC buffer 5 minutes 

(Shaken) 

Room temperature 

Ethanol Wash 100% ethanol  10 minutes  Room temperature 

2nd  Room Temp 

Wash  

E1BC buffer 5 minutes 

(Shaken) 

Room temperature 

 

 

 

2.4.2.13 Detecting differential signals on array  

 

 

To detect the differential signals generated by the analytical probes that have been 

hybridized to the chip, chips were transferred to a wash tray containing 4ml block 

E4 buffer containing Cy3-streptavidin (1µg/ml). Using wash tray lids to protect 

samples from light, chips were placed on a rocking platform for 10 minutes at 

medium speed. To remove unbound reagents, a third room temperature wash was 

performed by submerging chips in 250µl Wash E1BC buffer at room temperature 

for 5 minutes. Chips were then dried by centrifuging at 1,400 RPM for 4 minutes 

before being transferred to the iScan for imaging of the array. Once the arrays 

were scanned, files were generated detailing a number of sample and array 

metrics. These files were used to normalise and QC the gene expression data in a 

series of stages. 

 

2.4.2.14 Gene expression data normalisation  

 

 

To ensure an accurate representation of the data, all probes and samples 

underwent normalisation and QC collectively but final output featured gene 

Table 24 details the reagents used during the Beadchip wash stage.  
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expression data for 4 probes in the selected region, across 22 CD8+ and 22 CD4+ 

lymphocyte samples. Gene expression normalisation and quality control was 

performed by Dr Darren Plant at the Arthritis Research UK Centre for Genetics and 

Genomics. All analysis was performed using bead array, limma, 

illuminaHumanv4.db, corpcor and pcaMethods packages installed through R 

version 3.0.2 (Dunning et al. 2007;Sarembaud et al. 2007;Wettenhall and Smyth 

2004) unless otherwise stated.  

 

2.4.2.15 Calculation of the signal to noise ratio across arrays  

 

 

To identify how each array performed the signal to background noise ratio was 

calculated for 45 samples across all 4 arrays and visualised using a scatterplot. 

Generally, the expected value of signal to noise is 5-14 but a value of less than 2 

indicates a sample should be removed from further analysis.  

 

2.4.2.16 Calculation of intensity signals across probes  

 

 

The average signal intensity of both regular and negative control probes across all 

arrays was calculated from the raw array data. Background correction, NEQC 

quantile normalization and a log2 conversion was then performed using the values 

from the negative control probes, to account for differences between array 

performances. This was visualised using boxplots showing differences between 

raw and normalized data. 

 

2.4.2.17 Calculation of the proportion of probes expressed by each sample  

 

 

The proportion of expressed probes was calculated for the CD8+ and the 

CD4+samples. A t test was then performed to identify if the proportion of 

expressed probes was different for each cell type. The number of probes which 

were expressed in at least one sample was identified and probes which were not 
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expressed at all across all arrays were removed from further analysis.  

 

2.4.2.18  Matching probes to hg19 genome build 

 

 

To ensure that the array annotation is as accurate as possible, the remaining 

probes were mapped to hg19 genome build using the UCSC genome browser. 

Probes were scored as “Perfect, good, bad and no match,” depending on their 

mapping to transcripts. Unmatched and poor probes were removed from further 

analysis.  

 

2.4.2.19 Identification of  sample outliers   

 

 

To identify how similar the samples within the sample groups  (CD8+ and CD4+) 

were, multidimensional scaling plots (MDS plots)  were generated. If samples are 

within the same group (CD4+ or CD8+) it is expected that they will cluster 

together, whilst sample outliers should be removed from further analysis.  

 

2.4.2.20  Principal components analysis  

 

 

To identify factors which may be contributing to sample variance and therefore 

could contribute to batch effects, principal components analysis (PCA) was 

performed. Any principal component (PC) which contributed to more than 10% 

variance was considered significant and was adjusted for in subsequent analysis.  

 

2.4.2.21  Array weighting  

 

 

As the performance of specific arrays can be affected by variation in chemistry and 

sample quality; array weighting was performed to account for this. This process 

allows poorer quality arrays to be downgraded in the analysis but still used 

therefore increasing the overall power of the study. Array weights were 
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determined using the limma package in R version 3.0.2 and used in the generation 

of the final probe expression values. 

 

2.4.2.22 Cell specific eQTL analysis  

 

To identify if an associated variant represented an eQTL with a gene in T 

lymphocyte subsets, linear regression was performed in STATA v.11.2. Genotype 

data was obtained from the data generated in section 2.4.1.2. Gene expression data 

was extracted from probes which were less than 400kb from the gene of interest. 

Linear regression was performed using genotype at the SNP of interest as a 

covariate.  
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3.0 Results  
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3.0 Results  

 

3.1 Inflammatory arthritis overlap  

 

3.1.1 Immunochip SNP and sample QC 

 

All SNP and sample quality control (QC) was performed by Dr John Bowes, Dr Anne 

Hinks and Dr Joanna Cobb of the Arthritis Research UK Centre for Genetics and 

Genomics. Figure 21 is a summary of the number of SNPs removed at each stage of 

the QC for each disease. Figure 22 is a summary of the number of samples removed 

at each stage of the sample QC. The total number of SNPs and samples used in the 

association analysis is shown in Table 25.  

 

 Figure 21– SNP QC for each disease  
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Figure 21 shows the SNP QC stages used for RA, JIA and PsA. To ensure a 

robust dataset was obtained SNPs which did not reach the QC threshold 

in the following catagories were removed: SNPs on the y/mitochondrial 

chromosome; SNPs with a low cluster separation; non-polymorphic 

SNPs; duplicate SNPs on the array; SNPs with a low call rate; SNPs which 

deviated from HWE; SNPs with a low MAF. HWE = Hardy Weinberg 

Equilibrium, MAF = Minor allele frequency. 
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Figure 22– Sample QC for each disease  
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Table 25– Summary of total SNP and samples available for each disease post 

QC 

Disease SNPs Cases Controls 

RA 129,464 11,475 15,870 

JIA 123,003 2816 13,056 

PsA 131,970 929 4537 

 

 

  

Table 25 shows the number of SNPs, cases and controls which were available for 

analysis across RA, JIA and PsA. RA = Rheumatoid arthritis, JIA = Juvenile idiopathic 

arthritis, PsA = Psoriatic arthritis  

 

Figure 22 shows the sample QC stages used for RA, JIA and PsA. To 

ensure a robust dataset was obtained samples which did not reach 

the QC threshold in the following categories were removed: 

samples with a low call rate; samples with excessive autosomal 

heterozygosity; samples which failed IBD and samples identified as 

outliers using PCA. IBD = Identity by descent, PCA = Principal 

components analysis.  
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3.1.2 Power of each cohort to detect genetic effects  

 

To identify the power of each of the individual studies and, therefore, the 

likelihood to detect genuine genetic effects, power calculations were performed. 

Table 26 shows the power of each of the individual studies to detect common 

(MAF>0.05) and rare (MAF>0.01) genetic effects with ORs of 1.2. In RA in the 

likelihood to detect rare SNPs was moderate at 59% but for common variants is 

99%, indicating that this is a well powered study. In JIA the power to detect 

common variants is high (81%) but the study is underpowered when looking at 

rarer SNP (25%). In contrast, the PsA study is underpowered to detect both 

common and rare SNPs, with power of 37% and 11% respectively.  

 

Table 26 – Power to detect genetic effects with OR = 1.2 

Disease Rare (MAF>0.01) Common (MAF>0.05) 

RA 59% 99% 

JIA 25% 81% 

PsA 11% 37% 

 

 

 

 

3.1.3 Calculating the number of inflammatory arthritis overlapping regions 

 

Association testing was performed by Dr John Bowes, Dr Anne Hinks and Dr 

Joanna Cobb of the Arthritis research UK Centre for Genetics and Genomics. 

Overlap analysis was performed using each of the datasets generated.  

 

In total 50 genetic regions contained SNPs associated with more than type of IA 

(IA; p<1x10-3). Four of these regions reached genome wide significance (p<5x10-8) 

in more than 1 disease, with the remaining regions reaching suggestive 

Table 26 shows the power of each cohort to detect genetic effects at MAF of 1% 

and 5%. RA = Rheumatoid arthritis, JIA = Juvenile idiopathic arthritis, PsA = 

Psoriatic arthritis, MAF = minor allele frequency.  
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significance (p < 1x10-3). Table 27 shows the 50 regions and their respective index 

SNPs, p values and odds ratios across the diseases. In particular 14 regions shown 

in bold had a significance level of p <1x10-5 in more than 1 type of IA. Association 

plots for 2 of these regions are shown in Figure 24 and Figure 25. 

 

Many regions such as RUNX1, TYK2, IL6R, RASGRP1 and IRF8 are novel IA 

associations and will require replication in an independent cohort but for now 

provide an insight into the shared genetics of these diseases. 10 regions (TYK2, 

EOMES, CTLA4, RUNX1, IL2RA, PTPN2, IGSF3/CD2, RAB5B/ERBB2, IL2/IL21, and 

IL23R) were associated across the 3 diseases inclusively but the majority of genetic 

overlap was observed between RA and JIA; Figure 23 shows the distribution of 

overlapping regions between the diseases. There were a total of 31 regions shared 

between RA and JIA, suggesting that the greatest overlap is shared between these 

diseases.  In addition, 18 genetic regions were also associated with PsA and either 

RA or JIA indicating that overlap also exists between these diseases. 
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Table 27 – Regions associated with multiple types of Inflammatory Arthritis  

Region Chr RA SNP RA p RA OR JIA SNP JIA p JIA OR PsA SNP PsA p PsA OR 

PTPN22 1 rs2476601 1.6x10-67 
1.60 

rs6679677 3.19x10-

25 

1.59   
 

MMEL1 1 rs28532547 1.82x10-8 0.90 rs1001620 6.49x10-4 1.11    

IL6R 1 rs8192284 8.38x10-8 0.91 rs11265608 1.55x10-7 1.28    

PTPRC 1 rs2014863 1.66x10-5 1.08 rs61829344 1.69x10-4 0.81    

IGSF3/CD2 1 rs798000 2.36x10-5 1.08 rs12725472 9.85x10-4 1.12 rs77421743 0.0003201 1.83 

NCF2 1 rs17849502 2.75x10-5 1.18 rs7531089 6.61x10-4 1.11    

CD247 1 rs840016 0.0006422 0.94 rs2056626 6.84x10-5 0.88    

IL23R 1 rs12145984 0.0006482 0.92 rs17129835 1.82x10-4 1.12 rs56920441 3.86x10-8 1.35 

RUNX3 1    rs4648881 4.66x10-7 1.16 rs4649038 0.0002215 1.22 

LCE3B/LC

E3A 

1   
 

rs11205044 5.03x10-4 0.9 rs10888503 0.0008668 
0.83 

STAT4 2 rs7574865 2.47x10-9 1.13 rs10174238 1.2x10-13 1.29    

CTLA4 2 rs3087243 3.31x10-9 0.90 rs231725 1.53x10-5 1.15 rs11571312 3.51x10-5 1.34 

AFF3 2 rs11123811 7.63x10-9 1.11 rs7580200 2.36x10-6 1.15    

NAB1 2 rs10931468 9.13x10-7 1.14 rs10931468 1.07x10-6 1.23    
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SPRED2 2 rs6546146 1.61x10-5 0.92 rs268122 2.7x10-4 0.9    

DNASE1L3 3 rs35677470 8.97x10-7 1.17 rs35677470 2.48x10-5 1.25    

CCR9/CCR

2 Chemo 

3 rs17078454 3.78x10-6 
1.11 

rs62625034 3.16x10-7 0.77   
 

IL12A 3 rs4680536 1.19x10-5 0.92 rs2366643 4.63x10-4 0.9    

EOMES 3 rs9880772 0.0006779 
1.06 

rs9862284 6.22x10-4 1.11 rs733302 

 

0.000586 

 
1.92 

IL2/IL21 4 rs62323881 0.0005067 
1.12 

rs1479924 6.24x10-

11 

0.8 rs62324211 2.45x10-5 
 

ANKRD55 

/IL6ST 

5 rs10065637 6.01x10-16 
0.83 

rs10065637 7.69x10-

11 

0.77   
1.46 

SLC22A4 

/SLC22A5 

5   
 

rs4705862 1.02x10-8 0.84 rs2278398 8.84x10-5 
 

ERAP1/ER

AP2 

5   
 

rs27300 2.13x10-5 1.14 rs116764930 0.0002434 
1.23 

TNFAIP3 6 rs6920220 2.15x10-12 1.16 rs5029924 2.86x10-6 1.42   1.81 

BACH2 6 rs56258221 1.12x10-6 1.12 rs72928038 3.09x10-4 1.15    

PRDM1 6 rs7739286 0.0002004 0.92 rs12205855 5.91x10-5 1.23    

LRRC16A 6 rs742132 0.0003653 1.07 rs7740510 5.01x10-6 0.85    
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IKZF1 7 rs59538194 8.69x10-5 1.12 rs35295940 8.73x10-4 1.35    

AMPH/TA

RP 

7 rs10278233 0.0002378 
0.92 

   rs2392581 0.0008267 
 

BLK 8 rs4840565 4.15x10-7 1.10 rs62490933 9.86x10-4 0.81   0.84 

PVT1 8 rs13281279 0.0001462 0.93 rs13281279 1.51x10-4 0.89    

IL7 8 rs9298320 0.0006159 1.08    rs7822255 0.0005697  

TRAF1/C5 9 rs917770 8.01x10-6 0.92 rs4837811 1.69x10-4 1.13   1.21 

IL2RA 10 rs7073236 9.89x10-6 
1.08 

rs7909519 8.00x10-

10 

0.72   
 

TREH 11 rs11217040 3.31x10-6 0.90    rs10790255 0.0006756  

RAB5B/ER

BB3/STAT

2 

12 rs10876870 0.0001489 

0.93 

rs1614219 7.23x10-4 0.82 rs2020854 6.97x10-5 

0.80 

PTPN11 12 rs7299227 0.0008308 0.77 rs17630235 3.11x10-8 1.18   0.61 

COG6 13 rs7993214 4.98x10-5 0.93 rs7993214 1.61x10-7 0.84    

ZFP36L1 14 rs7146217 0.0007464 0.94 rs12434551 3.62x10-8 0.85    

RASGRP1 15 rs8043085 3.53x10-9 1.13 rs6495986 2.13x10-4 0.88    

IRF8 16 rs13330176 3.07x10-6 1.10 rs2280381 3.96x10-5 0.88    

CIITA 16 rs8056450 0.0005213 0.91 rs12598246 3.58x10-4 1.12    



155 
 

SMARCE1 17 rs723729 0.0008659 1.06    rs757412 3.96x10-5  

NOS2 17    rs34913965 1.51x10-6 0.85 rs4795067 0.0008984 1.37 

PTPN2 18 rs7241016 1x10-5 
1.11 

rs2847293 1.44x10-

12 

1.31 rs11302687 0.0001132 
1.20 

TYK2 19 rs34536443 3.40x10-13 
0.70 

rs34536443 1.00x10-

10 

0.56 rs12720356 0.0007397 
1.69 

RUNX1 21 rs9979383 8.06x10-7 0.91 rs9979383 1.05x10-7 0.85 rs99793 0.0006116 0.71 

IL2RB 22 rs9607418 5.65x10-6 1.09 rs2284033 1.55x10-8 0.84   0.83 

UBE2L3 22 rs2266959 7.11x10-6 1.10 rs2266959 7.30x10-9 1.24    

MTMR3 22 rs77378082 4.52x10-5 0.74 rs5763631 6.18x10-4 1.39    

Table 27 shows the association results of the 50 overlapping regions. For each region the associated SNP, p value and odds ratio 

are shown for each disease. RA = Rheumatoid arthritis, JIA = Juvenile idiopathic arthritis, PsA = Psoriatic arthritis, p = p value, OR = 

odds ratio  
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Figure 23– Distribution of overlap between diseases  

 

 

 

 

 

3.1.4 Identification of  correlation between SNPs in overlapping regions  

 

To identify whether different or identical SNPs in genetic region are associated 

with disease, LD between each index SNP was calculated for the 50 regions. In 

regions which are associated with 3 diseases, LD between each of the 3 SNPs was 

calculated. Table 28 shows the correlation between each of the index SNPs in the 

overlapping regions. In 14 regions the SNP associated was either identical or 

highly correlated (r2>0.8). Furthermore in all these regions, similar odds ratios 

were observed indicating this may be the same effect which is contributing to 

different diseases.  

  

PsA 

JIA RA 

10 

31 

4 5 

Figure 23 shows the regions associated with more than 1 type of IA. In 

total 50 regions are associated with more than 1 type of inflammatory 

arthritis with greatest genetic overlap present between RA and JIA. RA = 

rheumatoid arthritis, JIA = juvenile idiopathic arthritis, PsA = psoriatic 

arthritis.  
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Figure 24 shows an association plot for the RUNX1 region, in which an identical 

SNP is associated with each of the 3 diseases.  In 9 regions the SNPs associated 

with each disease are different but moderately correlated by LD (r2>0.4<0.8).  In 6 

regions (PTPN2, SPRED2, IL2/IL21, CD247, EOMES and ZFP36L1) the direction of 

effect is similar across the diseases but in 3 regions (CTLA4, CIITA and IL23R) the 

effect directions are different across diseases. In 32 regions there is limited or no 

LD observed between the SNPs (r2<0.4). Interestingly in many of these regions the 

risk allele is opposing across the associated diseases. This indicates that it may 

represent a different effect within the same genetic region which is contributing to 

disease susceptibility. Figure 25 shows the IL2RA region, as an example of a region 

in which a different SNP is associated with RA and JIA, with low correlation 

observed between the SNPs.  Notably in 5 regions (TYK2, CTLA4, PTPN2, IL2/IL21 

and CD247) which are associated across the 3 diseases the index SNPs in 2 

diseases are the same or highly correlated whilst the index SNP in the third disease 

shows no correlation. This may indicate that in some regions the effects are the 

same across some diseases but different in the others or that multiple effects exist 

within the region.  
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Figure 24 – RUNX1 region association plots  

 

 

 

 

 

 

 

 

  

Figure 24 shows association plots for the RUNX1 region for RA (top), JIA 

(bottom left) and PsA (bottom right). In each plot the x-axis represents the 

base position across the genome whilst the y-axis represents the –log10  of 

the p-value. In each plot a dot represents a SNP with the colour coding 

representing LD with the annotated index SNP. LD = linkage 

disequilibrium.  
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Figure 25– IL2RA region association plots  

  

 

 

 

 

 

 

 

 

IL2RA  RA Immunochip IL2RA  JIA Immunochip 

Figure 25 shows association plots for the IL2RA region for RA (left) and JIA (right).  

in each plot the x-axis represents the base position across the genome whilst the y-

axis represents the –log10  of the p-value. In each plot a dot represents a SNP with 

the colour coding representing LD with the annotated index SNP. LD = linkage 

disequilibrium. 
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Table 28 – Correlation between index SNPs in overlapping regions 

Same SNP/Highly correlated 

(r2>0.8) 

Different SNP/moderately correlated  

(r2>0.4<0.8) 

Different SNP/low correlation (r2<0.4) 

PTPN22 CTLA4 (RA/JIA) TNFAIP3 

ANKRD55/IL6ST PTPN2 (RA/JIA) CTLA4 (RA/PsA and JIA/PsA) 

TYK2 (RA and JIA) SPRED2 RASGRP1 

STAT4 IL2/IL21 (RA/PsA) MMEL1 

AFF3 CIITA IL6R 

RUNX1 CD247 BLK 

DNASE1L3 IL23R (RA/JIA) IRF8 

NAB1 EOMES (RA/JIA) TREH 

BACH2 ZFP36L1 CCR9/CCR2 Chemo 

UBE2L3  IL2RB 

IL12A   TRAF1/C5 

COG6  IL2RA 

PVT1   PTPN2 (RA/PsA and JIA/PsA) 

LCE3B/LCE3A  PTPRC 

    IGSF3/CD2 
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   NCF2 

    MTMR3 

   IKZF1 

TYK2 (RA/JIA and PsA) 

    RAB5B/ERBB3/STAT2 

   PRDM1 

    AMPH/TARP 

   LRRC16A 

    IL2/IL21 (RA/JIA and JIA/PsA) 

   IL23R (RA/PsA and JIA/PsA) 

    PTPN11 

   SMARCE1 

    RUNX3 

   SLC22A4/SLC22A5 

    ERAP1/ERAP2 

    NOS2 

  EOMES (RA and PsA/JIA and PsA) 

Table 28 shows the correlation between the SNPs in the 50 overlapping regions. RA = Rheumatoid arthritis, JIA = Juvenile 

idiopathic arthritis, PsA = Psoriatic arthritis.  
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3.1.5 Selecting a functionally promising region for further analysis 

 

To prioritize a promising overlapping region for further functional analysis a 

number of factors were considered including the number of types of IA a region 

was associated with, the p value size in each disease and whether the same/highly 

correlated SNP was associated with each disease.  This was performed to detect 

any associations, which appeared to be similar between the 3 diseases, and 

therefore would be good candidates for investigation common biological effects. 

 

Of the 50 overlapping regions identified in section 3.1.3, 9 were associated across 

the 3 diseases (TYK2, EOMES, CTLA4, RUNX1, IL2RA, PTPN2, CD2/IGSF3, ERBB2, 

IL2/IL21 and  IL23R). Of these 10 regions in only 2 (RUNX1 and TYK2) was the SNP 

identical or highly correlated by LD (r2>0.8) indicating that the same genetic effect 

may be associated with each disease.  When the strength of p values were 

considered the RUNX1 was the most associated. Furthermore the direction of 

effect is the same with rs9979383 conferring protection (OR = 0.83-0.9) across the 

3 diseases providing further evidence that this region represents a true 

overlapping disease association. 

To provide some evidence of the functional contribution of this SNP to disease 

susceptibility, focused bioinformatics analysis was performed using a variety of 

databases. In addition a literature search was performed to identify previous 

associations and potential biological functions of the RUNX1 region. To account for 

the fact that the index SNP rs9979383 may be correlated with a more functionally 

promising SNP, all bioinformatics analysis was performed on rs9979383 and a 

perfect (r2 = 1) proxy rs8129030.  

 

3.1.6 RUNX1 functional annotation  

 

The genomic region where rs9979383 and rs8129030 reside may be intergenic as 

they map ~300kb upstream of most isoforms of the RUNX1 gene itself but can also 

be considered intronic as they lie in intron 7 in the longest splice variant of RUNX1. 

They are also in close proximity to LOC100506403 which is a long non-coding RNA 

(lincRNA).  
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3.1.6.1 RUNX1 eQTL analysis  

 

When entered as a search query in the Genevar database, no significant cis-eQTL 

with rs9979383 or rs8129030 was found (p<1x10-3), although this was limited by 

poor coverage of the region on the genotyping and microarrays. When entered  

into the SCAN eQTL database, a trans-eQTL was identified between both 

rs8129030, rs9979383 and the retinol binding protein 5 (RBP5) gene on 

chromosome 12 in a Hapmap CEU cell line (p=3x10-5). Table 29 summarises these 

findings. RBP5 is involved in the intracellular transport of retinol (Vitamin A) 

which has been shown to be associated with bone fragility (Conaway et al. 2011).  

 

Table 29– RUNX1 eQTL analysis  

SNP ID Chromosome Position Gene Population p 

rs8129030 21 35634458 RBP5 CEU 6x10-5 

rs9979383 21 35637631 RBP5 CEU 3x10-5 

 

 

 

3.1.6.2 RUNX1 Transcription factor binding analysis 

 

To identify whether the rs9979383 or rs8129030 lie in regions which alter TF 

binding, these were entered as search queries in the UCSC genome browser. Figure 

26 shows the region surrounding rs9979383 as a track on the UCSC genome 

browser with histone modification and TFBS shown. It can be seen that rs9979383 

lies within a region which carries an enhancer associated histone methylation 

mark (H3K4Me1) in NHEK (keratinocyte cell line) and has been shown to interact 

with a number of TFs such as the p65 (RELA) w As a TF analysis could be 

performed to identify the contribution of the associated SNP to RUNX1 binding As 

a TF analysis could be performed to identify the contribution of the associated SNP 

to RUNX1 binding hich is an essential part of the  nuclear factor kappa-light-chain-

enhancer of activated B cells (NFKB) pathway. The findings indicate that the SNP 

Table 29 shows the eQTL analysis results from the SCAN eQTL database which 

contained a significant trans-eQTL with RBP5. P = p value, CEU = CEPH (Utah 

Residents with Northern and Western European Ancestry).  
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may lie in an enhancer region of the RUNX1 gene and may be a potential 

expression quantitative trait locus (eQTL) yet to be identified in the bioinformatics 

databases examined previously. 

 

Figure 27 shows the region surrounding rs8129030 as a track on the UCSC genome 

browser. Although this region does not carry the same histone marks as 

rs9979383, it does exhibit strong binding with the transcriptional repressor CTCF 

(CTCF), which is involved in regulating the 3D structure of chromatin in a number 

of cell lines (Rubio et al. 2008). As the studies which populate this database are 

performed in a small number of samples, further analysis is required to identify 

the presence of TFBS in more relevant cell types. 
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Figure 26– rs9979383 region TF binding   

 

 

Figure 26 is a UCSC genome browser plot showing the transcription factor potential of rs9979383. Tracks showing histone modifications, DNaseI 

hypersensitivity and transcription factor binding potential are shown with rs9979383 highlighted in black.  
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Figure 27– rs8129030 region TF binding  

 

Figure 27 is a UCSC genome browser plot showing the transcription factor potential of rs8129030. Tracks showing histone modifications, DNaseI 

hypersensitivity and transcription factor binding potential are shown with rs8129030 highlighted in black.  
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3.1.6.3 RUNX1 literature search  

 

To gain an insight into the potential biological role of a genetic association in this 

region Runt related transcription factor (RUNX1) and its alias acute myeloid 

leukaemia 1 (AML1) were entered as keyword search queries into NCBI PubMed 

(http://www.ncbi.nlm.nih.gov/pubmed). The literature search returned 2531 

publications for RUNX1 and 1850 for AML1. Publications were examined by eye 

with particular attention paid to those reporting the potential function of the 

product of RUNX1 and it’s involvement in the immune response. As it encodes a 

transcription factor (TF), RUNX1 has been shown to act on various genes involved 

in T lymphocyte generation, bone formation and has previously been implicated in 

other immune mediated diseases.  

 

RUNX1 has been shown to be an important regulator for haematopoiesis, 

especially during embryonic development. In a mouse model knockout of RUNX1, 

the absence of RUNX1 is lethal as a consequence of a lack of foetal liver 

haematopoiesis (Okuda et al. 1996). When adult transgenic mice lacking RUNX1 

were generated, haematopoiesis was fully functional in the myeloid compartment 

but megakaryocyte and lymphocyte development was inhibited, indicating RUNX1 

is essential for these pathways in adulthood (Ichikawa et al. 2008). RUNX1 has 

been shown to be important in chondrogenesis by promoting cell maturation 

whilst regulating production of MMPs. RUNX1 expression has been shown to be 

dysregulated in osteoarthritis, indicating downregulation of RUNX1 could 

potentially result in joint hypertrophy characteristic of this disease (Yano et al. 

2013). 

 

RUNX1 appears to be particularly important for lymphocyte development, 

particularly in cell polarization. Binding sites for RUNX1 have been shown to 

essential for gene silencing in thymocytes, driving CD8+ lineage commitment  

(Taniuchi et al. 2002) whilst it has also been shown to activate Class I MHC 

expression in vivo (Howcroft et al. 2005). In CD4+ lymphocytes RUNX1 has been 

shown to repress GATA3 expression to skew cells away from the Th2 lineage 

http://www.ncbi.nlm.nih.gov/pubmed
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(Komine et al. 2003). It has been shown to form a complex with Th1 master 

regulation Tbet, which inhibits the RUNX1 mediated transcription of the gene 

encoding RORγt, preventing differentiation into Th17 cells (Lazarevic et al. 2011). 

RUNX1 knock down in CD4+ T lymphocytes in the mouse been shown to result in 

spontaneous autoimmune lung disease driven by IL17 and IL21, characteristic of 

Th17 cells (Lazarevic et al. 2011;Wong et al. 2012). In Treg cells RUNX1 also plays 

an important role, interacting with FoxP3+ to suppress transcription of 

inflammatory cytokines such as IL2 and IFNγ (Ono et al. 2007), highlighting the 

crucial role that RUNX1 plays in regulation of immune development. 

 

With respect to inflammatory disease RUNX1 binding sites have been previously 

associated with multiple autoimmune diseases including RA, PsV and SLE 

(Alarcon-Riquelme 2003).  Association within the RUNX1 region in 3 types of 

inflammatory arthritis is therefore an interesting observation (Eyre et al. 

2010;Hinks et al. 2013).   Bowes et al. Manuscript in preparation). Although the 

mechanism by which RUNX1 has not been characterized in these diseases it could 

be hypothesised that a role in lymphocyte or chondrocyte development could be 

implicated. As RUNX1 represents a TF capable of a number of roles across different 

cell types, it is therefore important that this TF is investigated further in a specific 

tissue of relevance.  

 

Collectively these observations this makes RUNX1 a strong candidate for further 

genetic and functional investigations. As the SNP is not located within the coding 

region of RUNX1, it is appropriate to first investigate whether the variant is 

directly affecting the RUNX1 gene. As this SNP is located upstream of RUNX1, it was 

hypothesised that it may affect transcription of the RUNX1 gene and therefore was 

subjected to eQTL gene expression studies described in section 2.5.  In particular 

experiments looking at eQTL analysis in T lymphocytes were designed due to the 

essential role of RUNX1 in CD4/CD8 lineage and the crucial involvement of T 

lymphocytes in inflammatory arthritis (described in Table 1).  
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3.2 Replication of overlapping associations  

 

3.2.1 Selection of genetic regions for replication  

 

To investigate whether newly identified overlapping associations represented true 

genetic associations, 7 regions from section 3.1 were selected for replication in an 

independent RA cohort using the Sequenom genotyping platform. Table 31 shows 

a summary of the association results for the 9 selected regions in the Immunochip 

project across the 3 diseases.  

 

Of the 7 regions selected, 4 regions (IGSF3/CD2, CD28/ICOS/CTLA4, EOMES and 

RAB5B/ERBB3/STAT2) were associated across the 3 types of IA, 2 regions (IL12A 

and MTMR3) were associated with RA and JIA and only a single region 

(LCE3B/LCE3A) was associated exclusively with JIA and PsA in the original 

comparison of Immunochip data.  

 

3.2.2 SNP assay design  

 

A multiplex assay of 12 SNPs was designed to include index SNPs from the 

different diseases across all 7 of the overlapping regions selected for replication. 

Table 32 shows the SNPs which were included from each region in the assay. In 

several cases the RA disease association had already been replicated in 

independent cohorts (and localised using the Immunochip), therefore did not 

require further replication. Additionally, in some cases the index SNP could not be 

tolerated within the Sequenom multiplex assay so a highly correlated proxy (r2 > 

0.9) was included instead. 

 

 

 

 

 



 

170 
 

3.2.3 Subjects   

 

Clinical and demographic features of the 3879 RA samples and 2561 controls 

genotyped from the United Kingdom Rheumatoid Arthritis genetics group 

(UKRAG) consortium are shown in Table 30. Although clinical features are listed, 

no stratified analysis was performed using these features.  

 

Table 30– Demographics for 3879 cases and 2561 controls. 

Age of onset n % cohort 

16-20 52 0.81 

20-29 184 2.86 

30-39 429 6.66 

40-49 611 9.49 

50-59 686 10.65 

60-69 556 8.63 

70-79 296 4.60 

80-89 3 0.05 

Unknown 3033 47.10 

Sex n % cohort 

Male 1593 24.74 

Female 3213 49.89 

Unknown 1044 16.21 

Table 30 shows the age and sex demographics of the cases and controls from the 

UKRAG cohort. The numbers of samples of percentage of cohort are shown in each 

case. N = number of samples.  
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Table 31 –Immunochip regions selected for overlap replication   

 

Region Chr RA SNP RA p RA OR JIA SNP JIA p JIA 
OR 

PsA SNP PsA p PsA 
OR 

IGSF3/CD2 1 rs798000 2.36E-05 1.08 rs12725472 0.000985 1.12 rs77421743 0.00032 1.83 

LCE3B/LCE3A 1    rs11205044 0.000503 0.9 rs10888503 0.000867 0.83 

CD28/ICOS/CTLA4 2 rs3087243 3.31E-09 0.90 rs231725 1.53E-05 1.15 rs11571312 3.51E-05 1.34 

IL12A 3 rs4680536 1.19E-05 0.92 rs2366643 0.000463 0.9 rs13065738 
 

0.05236 
 

1.11 
 

EOMES 3 rs9880772 0.000678 1.06 rs9862284 0.000622 1.11 rs733302 
 

0.000586 
 

1.92 
 

RAB5B/ERBB3/STAT2 12 rs10876870 0.000149 0.93 rs1614219 0.000723 0.82 rs2020854 6.97E-05 0.61 

MTMR3 22 rs77378082 4.52E-05 0.74 rs5763631 0.000618 1.39 rs74612035 
 

0.01673 
 

1.26 
 

Table 31 shows the regions selected for the Immunochip overlap replication. RA = Rheumatoid arthritis, JIA = Juvenile idiopathic arthritis, PsA = 

Psoriatic arthritis, p = p value, OR = odds ratio  
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Table 32– SNPs included on Immunochip overlap replication  

Region Chr SNP(s) genotyped 

IGSF3/CD2 1 rs10494164 (JIA proxy for rs798000)  rs77421743   

LCE3B/LCE3A 1 rs11205044 
    

CD28/ICOS/CTLA4 2 rs231725 
    

EOMES 3 rs11129295 (RA proxy for rs9880772) rs9862284   

IL12A 3 
rs587422 (RA and JIA proxy for 

rs4680536/rs2366643) 
    

RAB5B/ERBB3/STAT2 12 rs11171739 (RA proxy for rs10876870) 
rs67594137 (JIA proxy for 

rs1614219) 
rs74703593 (PsA proxy 

for rs2020854) 

MTMR3 22 rs5763631 
rs76317766  (RA proxy for 

rs77378082) 
  

 

 

Table 32 shows the 12 SNPs selected from the 7 regions in the overlap replication. The region, chromosome and SNPs genotyped are shown. Chr = 

chromosome, SNP = single nucleotide polymorphism.  
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3.2.4 Power calculations pre-QC  

 

Prior to genotyping, power calculations were performed to predict if sufficient 

sample size was available to detect genetic effects. For common SNPs (MAF>0.05)  

it was determined that a sample size of 3879 cases and 2561 controls with effect 

sizes of between 1.1-1.5, the study had 22%-99% power to detect these effects, 

respectively. Therefore, the sample size was sufficiently powerful to detect genetic 

effects with larger effect sizes (OR = 1.3-1.5) but was much less well powered to 

detect more modest genetic effects (OR = 1.1-1.2).  

 

3.2.5 Genotyping using the Sequenom MassARRAY platform  

 

3879 RA cases and 2562 healthy controls were genotyped using the Sequenom 

MassARRAY platform.  

 

3.2.6 Assigning SNP genotypes  

 

SNP genotypes were assigned using the Typer 4.0 genotyping software.  

Figure 28 shows examples from 2 SNPs from the multiplex assay and how 

genotypes were assigned. In each case homozygous major alleles are coloured 

blue, heterozygous samples are yellow and homozygous minor allele samples are 

coloured green. SNPs that could not be confidently assigned to a cluster, including 

negative controls, are coloured red. All SNPs were checked manually for accurate 

calling and deviation from HWE (p<0.001).  At this stage, two SNPs were excluded 

due to poor assay performance. 
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Figure 28– SNP calls from Typer 4.0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 28 shows Sequenom genotyping clusters defined using  Typer program. In the 

plots each sample is represented by a shape with blue and green representing 

homozygous genotypes and yellow representing heterozygous genotypes. The red 

shapes represent samples which could not be assigned a genotype for this SNP.  
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3.2.6.1 Issues with DNA quality 

 

Once genotype calling was performed using the Sequenom Typer 4.0 genotyping 

software, it was noted that some samples performed much better than others did 

with an unusually large number of samples failing completely. As quantification 

and QC data on this extensive sample cohort was not available prior to genotyping, 

gel electrophoresis data from the PCR products of each assay was examined. A 

random number of samples from across each plate were selected and gel 

electrophoresis performed for both assays. With strong amplification a series of 

bright bands are expected of uniform size with missing bands indicating failure to 

amplify or sample contamination. In Figure 29 good quality DNA samples are 

shown with strong bands present across the gel. This indicates that the PCR 

amplification of the DNA was successful and this is reflected in the high call rate for 

samples and low frequency of failing SNPs. In comparison in Figure 30 a low 

quality DNA plate is shown with a large number of weaker and missing bands. This 

is reflected in the lower call rates present in the genotyping with a larger number 

of failing SNPs compared to Figure 29. Loss of sample quality may be the 

consequence of a number of factors including  evaporation through faulty lids, long 

term storage in water or sample contamination. 

 

Figure 29 – High quality DNA gel and genotyping 
 

 

 

 

 

 

 

 

 

Figure 29 shows the high rate of successful genotyping when high quality DNA was 

used.  In the left hand plot the gel electrophoresis from the high quality DNA is shown, 

with uniform PCR products present in each well. In the right hand plot the proportion 

of SNP calls are shown for each SNP which are detailed on the x-axis.  For each SNP the 

proportion of homozygous calls are shown in blue/yellow, the heterozygous calls 

shown in green and the no calls shown in red. 
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Figure 30– Low quality DNA gel and genotyping  

 

 

 

 

 

 

 

 

 

  

Figure 30 shows the low rate of successful genotyping when low quality DNA was used.  

In the left hand plot the gel electrophoresis from the low quality DNA is shown, with  

less uniform and missing PCR products in each well. In the right hand plot the 

proportion of SNP calls are shown for each SNP, which are detailed on the x-axis.  For 

each SNP the proportion of homozygous calls are shown in blue/yellow, the 

heterozygous calls shown in green and the no calls shown in red. 
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3.2.7 Sample and SNP QC 

 

12 SNPs were genotyped in 3879 cases and 2561 controls in total. Due to the low 

DNA quality of some samples (See section 3.2.6), two stages of QC were employed. 

This was to achieve an accurate representation of the true genotyping quality and 

prevent skewing of results by completely failing samples. Initially in stage I, low 

quality DNA samples and SNP assays which completely failed genotyping (<50% 

call rate) were removed from analysis. In stage II, more stringent QC was 

performed on the remaining samples.  After SNP and sample QC, data for 9 SNPs 

genotyped in 2595 cases and 1636 controls were available for association analysis.  

Both QC stages I and stage II are summarized in Figure 37. 
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Figure 31 – SNP and sample QC summary 
 

 

 

 

  

Figure 31 shows a flowchart of the SNP and sample QC employed. In the first stage 

samples and SNPs which had very low call rates were removed. In the second stage 

samples and SNPs were removed using the following criteria: non-caucasian 

samples; low genotyping calls, deviation from HWE; low MAF. HWE = Hardy 

Weinberg Equilibrium; MAF = Minor allele frequency.   
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3.2.8 Post-QC power calculations  

 

Post sample QC, power calculations were performed to predict if sufficient sample 

size was available to detect genetic effects once a large number of samples were 

removed. For common SNPs (MAF>0.05) it was determined that a sample size of 

2595 cases and 1636 controls with effect sizes of between 1.1-1.5 had a power of 

16%-99% to detect these effects respectively. In this number of samples there was 

99% power to detect a large effect size of 1.5 but the loss of samples did result in a 

large reduction in power to detect modest effects.  

 

3.2.9 Association testing 

 

The allelic association results from the 9 SNPs are shown in Table 33.  The 2 SNPs 

in bold text (rs231725 and rs576361) represent those with an allelic association p 

value of less than 0.05. Although these SNPs were not the RA index SNPs from the 

Immunochip study, rs231725 was associated with RA in the Immunochip study 

(p=1.37x10-5) with an OR in the same direction but this could not be investigated 

for rs5763631 as this SNP was removed during the RA Immunochip QC described 

in Figure 21 .  The SNP rs231725 is an intergenic SNP which lies downstream of 

the Cytotoxic T-Lymphocyte Antigen 4 (CTLA4) gene whilst rs5763631 is an 

intronic SNP which lies within the Myotubularin-related protein 3 (MTMR3) gene.  

No other significant associations were identified although several SNPs show trend 

towards association (p<0.07), which with greater power might be identified at a 

significant level.  
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Table 33 – Allelic association results from Overlap Replication  

CHR SNP Position  Gene Freque

ncy 

cases 

Frequency 

controls 

P OR 95% CI 

1 rs77421743 117249473 IGSF3/CD2 0.01485 0.01743 0.3554 0.84 0.6017-1.2 

1 rs11205044 152593437 LCE3B/LCE3A 0.3491 0.3298 0.06827 1.09 0.9935-1.196 

2 rs231725 204740675 CD28/ICOS/CTLA4 0.3513 0.3188 0.0021 1.16 1.054-1.27 

3 rs9862284 27800325 EOMES 0.3634 0.3435 0.06297 1.09 0.9953-1.196 

3 rs587422 159729805 IL12A 0.4196 0.4159 0.7398 1.02 0.9289-1.109 

12 rs67594137 56374318 RAB5B/ERBB3/STA

T2 

0.08192 0.0842 0.711 0.97 0.8283-1.137 

12 rs74703593 56585248 RAB5B/ERBB3/STA

T2 

0.0453 0.0422 0.4996 1.08 0.8686-1.335 
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22 rs76317766 30312987 MTMR3  0.05558 0.05291 0.5983 1.05 0.8679-1.279 

22 rs5763631 30347633 MTMR3 0.0166 0.02509 0.00644 0.66 0.483-0.8902 

Table 33 shows the association results of the overlap replication. For each SNP, position, gene,  allele frequency in cases and controls,  

p value, odds ratio and 95% confidence interval are shown. p = p value, OR = odds ratio,  95% CI = 95% confidence interval.  
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3.3 RUNX1 replication and fine mapping 

3.3.1 Defining the region for fine mapping  

 

Although the RUNX1 region represented a novel overlapping region it was not 

included on the overlap replication as it was selected as a region for further 

genetic analysis. This was performed by fine mapping the region to identify all 

genetic effects within the region.  

 

As the overlapping SNP in the RUNX1 region (rs9979383) lies within two peaks of 

high recombination it is likely that the association in this region is located between 

these points. This region was selected for fine mapping and covered 150kb of 

chromosome 21 (35600kb-35750kb in hg18/NCBI36). Figure 32 shows an LD plot 

showing the extent of SNP LD around rs9979383 and the region selected for fine 

mapping.  

 

Figure 32 – RUNX1 region selected for fine mapping 

 

 

Figure 32 shows LD around the selected SNP rs9979383. The x-axis 

represents the base position on chromosome 21 whilst the y-axis 

represents the level of LD using r2. Based on this the region selected for 

fine mapping is shown by the vertical dotted line. LD = linkage 

disequilibrium. 
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3.3.2 Calculating RUNX1 SNP coverage on the Immunochip array 

 

 

The tag SNP coverage of the RUNX1 fine mapping region on the Immunochip array 

was calculated for both common (MAF > 0.05) and low frequency (MAF > 0.01) 

variants.  

 

Table 34 shows the total number of SNPs in the Utah residents with Northern and 

Western European ancestry (CEU) 1000 genomes (July 2010 release) within the 

RUNX1 fine mapping region and the calculated number and percentage of these 

variants captured on the Immunochip array at r2 = 0.8 and r2=0.9. At 6 and 7% the 

Immunochip array provided very low coverage of this region so further fine 

mapping was necessary to identify the true genetic effect in the region. 

 

Table 34 – SNP capture of the RUNX1 region on the Immunochip array 

MAF r2 Total SNPs SNPs on Immunochip 

array 

Coverage (%) 

>0.05 0.8 322 24 7 

>0.01 0.8 600 37 6 

>0.05 0.9 322 23 7 

>0.01 0.9 600 36 6 

 

 

 

 

 

 

 

  

Table 34 shows the coverage of the RUNX1 region on the Immunochip array. 

Coverage was calculated for  different MAFs and using different r2 values. MAF = 

minor allele frequency.  
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3.3.3 Subjects  

 

Clinical and demographic features of the 3491 RA samples and 2359 controls 

genotyped from the United Kingdom Rheumatoid Arthritis genetics group 

(UKRAG) were identical to those described in section 3.2.3.   

 

3.3.4 Pre-QC power calculations 

 

 Prior to genotyping, power calculations were performed to predict if sufficient 

sample size was available to detect genetic effects. For common (MAF>0.05) SNPs 

it was determined that a sample size of 3491 cases and 2359 controls had a power 

of 20%-99%  to detect effect sizes of between 1.1-1.5 . Therefore this sample size 

was sufficiently powerful for detecting genetic effects with larger effect sizes (OR = 

1.3-1.5) but was much less well powered to detect smaller genetic effects (OR = 

1.1-1.2) 

 

3.3.5 Tag SNP selection and assay design  

 

51 common (MAF >0.05) tag SNPs from CEU 1000 genomes (July 2010 release) 

were selected for genotyping using the Tagger function in Haploview v.4.2. Figure 

33 shows the output from the tagger function. Table 35 shows the total number of 

SNPs from the (CEU) 1000 genomes (July 2010 release) within the RUNX1 fine 

mapping region, the calculated number and percentage of these variants captured 

by the 51 SNPs at r2 = 0.8 and r2=0.9 and the percentage increase of coverage in 

comparison to the Immunochip Array.  

To include all 51 SNPs in the genotyping assay, 2 genotyping assays were designed. 

Assay 1 contained 30 SNPs and assay 2 contained 21 SNPs.  
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Table 35 – SNP capture of the RUNX1 fine mapping region with 2 assays  

MAF r2    Total SNPs in 

region  

SNPs on Assay  Coverage 

(%) 

Increase (%) 

>0.05  0.8 322 51 82 75 

>0.01 0.8 600 51 44 38 

>0.05  0.9 322 51 68 61 

>0.01 0.9 600 51 36 30 

 

 

 

Figure 33– Haploview tagger results for 51 SNPs  

 

 

 

 

 

  

Figure 33 shows the Haploview tagger results for the RUNX1 region. 

In the tests box (top left) all SNPs, which were tested, are listed  with 

a single SNP highlighted in blue. In the box below (bottom left) the 

SNPs correlated with this highlighted SNP (r2>0.8) are shown. In the 

right hand column a pairwise analysis of each of all the SNPs tested 

is shown, with the LD displayed in r2. 

Table 35 shows the coverage of the RUNX1 region with 2 assays. Coverage was 

calculated for different MAFs and using different r2 values. MAF = minor allele 

frequency.  
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3.3.6 Genotyping using the Sequenom MassARRAY system 

 

3491 RA cases and 2359 healthy controls were genotyped using the Sequenom 

MassARRAY platform.  

 

3.3.7 Calling SNP genotypes  

 

SNP genotypes were called using the Typer 4.0 genotyping software (Sequenom).  

Figure 34 shows the calling of SNP rs9979383 from assay 1 and rs13052307 from 

assay 2. In each case homozygous major alleles are coloured blue, heterozygous 

samples are yellow and homozygous minor allele samples are coloured green. 

SNPs that could not be accurately assigned to a cluster were coloured red. All SNPs 

were checked manually for accurate calling and deviation from HWE (p<0.001).  At 

this point 3 SNPs were excluded from further analysis due to poor assay 

performance. 

 

 

Figure 34 – SNP calls from Typer 4.0 

 

 

 

Figure 34 shows Sequenom genotyping clusters defined using  Typer program. In 

the plots each sample is represented by a shape with blue and green representing 

homozygous genotypes and yellow representing heterozygous genotypes.  The red 

shapes represent samples which could not be assigned a genotype for this SNP. 
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3.3.7.1 Issues with DNA quality  

 

Once genotype calling was performed using the Sequenom Typer 4.0 genotyping 

software, it was noted that some samples performed much better than others with 

an unusually large number of samples failing completely across both assays. As 

this genotyping was performed on identical samples to the Immunochip overlap 

replication (section 3.2.3), the PCR product gels and genotyping results were 

examined as before. Figure 35 and Figure 36 are examples of high quality and low 

quality DNA samples respectively.  

   

 
Figure 35– High quality DNA gel and genotyping   
 

 

 

 

Figure 35 shows the high rate of successful genotyping when high quality DNA was 

used.  In the left hand plot the gel electrophoresis from the high quality DNA is 

shown, with uniform PCR products present in each well. In the right hand plot the 

proportion of SNP calls are shown for each SNP which are detailed on the x-axis. For 

each SNP the proportion of homozygous calls are shown in blue/yellow, the 

heterozygous calls shown in green and the no calls shown in red.  
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Figure 36 – Low quality gel and genotyping  

 

 

 

 

 

3.3.8 Sample and SNP QC  

 

51 SNPs were genotyped in 2359 cases and 3491 controls in total. Due to the low 

DNA quality of some samples (section 3.2.6), 2 stages of QC were employed. This 

was to achieve an accurate representation of the true genotyping quality and 

prevent skewing of results by completely failing samples. Initially in stage I, low 

quality DNA samples and SNP assays which completely failed genotyping (<50% 

call rate) were removed from analysis. In stage II, more stringent QC was 

performed on the remaining samples.  After SNP and sample QC data for 42 SNPs 

Figure 36 shows the low rate of successful genotyping when low quality DNA was 

used.  In the left hand plot the gel electrophoresis from the low quality DNA is 

shown, with  less uniform and missing PCR products in each well. In the right hand 

plot the proportion of SNP calls are shown for each SNP, which are detailed on the x-

axis.  For each SNP the proportion of homozygous calls are shown in blue/yellow, the 

heterozygous calls shown in green and the no calls shown in red. 
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genotyped in 2359 cases and 1877 controls were available for association analysis.  

Both QC stages I and stage II are summarized in Figure 37.  

 

Figure 37 – Genotyping QC stage I and stage II 

 

 

 

 

  

Figure 37 shows a flowchart of the SNP and sample QC employed. In the first stage 

samples and SNPs which had very low call rates were removed. In the second stage 

samples and SNPs were removed using the following criteria: non-Caucasian samples; 

low genotyping calls, deviation from HWE; low MAF. HWE = Hardy Weinberg 

Equilibrium; MAF = Minor allele frequency.   
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3.3.9 Post-QC power calculations 

 

Post sample QC, power calculations were performed to predict if sufficient sample 

size was available to detect genetic effects once a large number of samples were 

removed. For common SNPs (MAF>0.05) it was determined that a sample size of 

2255 cases and 1877 controls had a power of 16%-99% to detect effect sizes of 

between 1.1-1.5, respectively.  

 

3.3.10 Association testing  

 

The allelic association results from the RUNX1 fine mapping genotyping are shown 

in Table 36. The index SNP from the Immunochip study rs9979383 is shown in 

bold and represents the most significantly associated SNP with an allelic p value of 

0.026. No other significant associations (p<0.05) were identified indicating that the 

association in this region is most likely localised to rs9979383 in RA. Figure 38 

shows a SNP association plot for the fine mapped region, with rs9979383 

annotated as the most associated SNP.  Table 37 shows the p values, odds ratios 

(ORs) and 95% confidence intervals (CI) for rs9979383 in the fine mapping study 

compared to the Immunochip results for RA, JIA and PsA. Figure 39 compares the 

OR of rs9979383 in this study with the OR from the RA, JIA and PsA Immunochip 

studies.  For this study the OR for rs9979383 is identical to that of the Immunochip 

study, strengthening the likelihood that the signal is localised to this SNP or one in 

high LD with it.   
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Table 36 – Allelic association testing for RUNX1 fine mapping genotyping   

SNP Pos  Frequency cases Frequency  controls P OR 95% CI 

rs56015451 36675655 0.4566 0.4662 0.386 0.9622 0.8819-1.05 

rs2242714 36677687 0.2358 0.2278 0.3957 1.046 0.9434-1.159 

rs75531812 36679979 0.07059 0.06592 0.4047 1.076 0.9053-1.28 

rs2834899 36685788 0.308 0.3058 0.8285 1.01 0.9197-1.11 

rs2242715 36688993 0.112 0.1062 0.4065 1.061 0.9229-1.219 

rs62218278 36690137 0.1048 0.1114 0.3393 0.9342 0.8124-1.074 

rs62218279 36690797 0.09321 0.09288 0.9597 1.004 0.8644-1.166 

rs73192990 36693635 0.1012 0.102 0.9122 0.992 0.8593-1.145 

rs2834909 36695176 0.4414 0.4295 0.2811 1.05 0.9612-1.146 

rs16993109 36698195 0.04037 0.04118 0.8541 0.9797 0.7869-1.22 

rs17192144 36702985 0.1752 0.1666 0.3017 1.063 0.9469-1.192 

rs2834913 36709666 0.2648 0.2593 0.5722 1.029 0.9319-1.136 

rs79770389 36709836 0.01713 0.01801 0.7611 0.95 0.6828-1.322 

rs8129030 36712588 0.3536 0.3738 0.05709 0.9162 0.8373-1.003 

rs2242720 36714156 0.26 0.2471 0.1791 1.071 0.9691-1.183 

rs9979383 36715761 0.3571 0.3809 0.02662 0.903 0.8251-0.9882 
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rs8132891 36720105 0.07571 0.07772 0.7321 0.972 0.8259-1.144 

rs67222034 36724842 0.07684 0.07834 0.7995 0.9792 0.8325-1.152 

rs975298 36726185 0.1533 0.1442 0.2482 1.075 0.9511-1.214 

rs13047746 36726967 0.04007 0.04064 0.8958 0.9854 0.7905-1.228 

rs2834918 36731196 0.1969 0.1905 0.4672 1.042 0.9331-1.163 

 

rs2834922 36738670 0.1148 0.1086 0.3835 1.064 0.9258-1.222 

rs61609238 36740965 0.1195 0.1123 0.3113 1.073 0.9365-1.228 

rs9982972 36744868 0.3676 0.3485 0.07131 1.087 0.9928-1.19 

rs4507181 36748497 0.4301 0.4508 0.0595 0.9194 0.8424-1.003 

rs13052047 36748863 0.476 0.4572 0.08984 1.078 0.9883-1.177 

rs118007465 36752815 0.05778 0.05818 0.9385 0.9927 0.8245-1.195 

rs2742146 36753728 0.4762 0.4872 0.3208 0.957 0.8775-1.044 

rs2898237 36763769 0.323 0.3372 0.1698 0.9375 0.855-1.028 

rs73197345 36770120 0.1371 0.1406 0.6455 0.971 0.8565-1.101 

rs7282740 36773278 0.1129 0.109 0.5769 1.04 0.9059-1.194 

rs73197348 36773339 0.07609 0.07752 0.8078 0.98 0.833-1.153 

rs7278477 36773939 0.4351 0.4253 0.3704 1.041 0.9536-1.136 
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rs2734865 36779287 0.2286 0.2305 0.8422 0.9896 0.8926-1.097 

rs57904952 36785648 0.08111 0.08378 0.6604 0.9653 0.8244-1.13 

rs6517295 36797477 0.1988 0.1954 0.6969 1.022 0.9158-1.141 

rs8128588 36802005 0.173 0.1653 0.3763 1.057 0.9349-1.195 

rs11088319 36803737 0.4113 0.3945 0.1216 1.072 0.9816-1.172 

rs2242738 36809021 0.2888 0.2998 0.2784 0.9486 0.8622-1.044 

rs2178832 36821898 0.4412 0.4552 0.203 0.9448 0.8657-1.031 

rs79493415 36824271 0.05501 0.05401 0.8423 1.02 0.8422-1.234 

 

 

 

Table 37– Association statistics for rs9979383 compared to the Immunochip Study  

Study  P OR  95% CI 

UKRAG  0.026 0.903 0.8251-0.9882 

RA I-chip 8.06x10-7 0.91 0.8323-0.9321 

JIA I-chip 1.05x10-7 0.85 0.8-0.93 

PsA I-chip 6.12x10-4 0.854 0.7727-0.9432 

Table 37 compares the association statistics for rs9979383 from the fine mapping study to the results from RA, JIA and PsA in the 

Immunochip study.  

 

Table 36 shows the association results of the overlap replication. For each SNP, position, gene,  allele frequency in cases and controls,  

p value, odds ratio and 95% confidence interval are shown. The SNP in bold represents the SNP which has a p<0.05. p = p value, OR = 

odds ratio,  95% CI = 95% confidence interval.  

 



 

194 
 

Figure 38 – Locus zoom plot of the RUNX1 region  

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 38 shows the association plot for the fine mapped RUNX1 region. The 

x-axis represents the base position on chromosome 21 whilst the y-axis 

represents the –log10 of the p value. Each SNP is represented by a dot with the 

most associated SNP annotated.  Colour coding of each SNP is determined by 

LD with the most associated SNP. SNP = single nucleotide polymorphism, LD = 

linkage disequilibrium.  
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Figure 39– Odds ratio forest plot  

  
Figure 39 is a forest plot representing an odds ratio comparison between the 

UKRAG, RA Immunochip, JIA Immunochip and PsA Immunochip studies for 

rs9979383.  In this plot the x-axis represents the odds ratio value. In each 

horizontal row the value of the odds ratio is represented by a dot whilst the 

bars represent the 95% confidence intervals.  
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3.3.11 Identification of multiple effects in the RUNX1 region 

 

Conditional logistic regression was performed to identify if rs9979383 was 

responsible for all genetic effects within the associated region.  When logistic 

regression was performed conditioning on rs997383 no additional significant 

associations (p<0.001) were identified (Table 36). The association plot in Figure 

40 shows the absence of any significant effects when conditioning on rs9979383.  

 

Table 38– Conditional logistic regression results  

SNP Position  P OR 95% CI 

rs56015451 36675655 0.2871 0.9526 0.871-1.042 

rs2242714 36677687 0.4238 1.044 0.9398-1.159 

rs75531812 36679979 0.3201 1.092 0.9179-1.3 

rs2834899 36685788 0.647 1.023 0.9294-1.125 

rs2242715 36688993 0.4434 1.056 0.9182-1.215 

rs62218278 36690137 0.213 0.9145 0.7944-1.053 

rs62218279 36690797 0.3984 1.072 0.9117-1.262 

rs73192990 36693635 0.4421 0.9432 0.8125-1.095 

rs2834909 36695176 0.7658 0.9832 0.8792-1.099 

rs16993109 36698195 0.52 0.9295 0.7438-1.161 

rs17192144 36702985 0.8113 1.015 0.8972-1.149 

rs2834913 36709666 0.6029 0.9713 0.8703-1.084 

rs79770389 36709836 0.5932 0.9178 0.6699-1.257 

rs8129030 36712588 NA NA NA-NA 

rs2242720 36714156 0.6463 1.026 0.9182-1.147 

rs9979383 36715761 NA NA NA-NA 

rs8132891 36720105 0.4075 0.9308 0.7856-1.103 

rs67222034 36724842 0.4166 0.933 0.7892-1.103 

rs975298 36726185 0.6294 1.032 0.9074-1.174 

rs13047746 36726967 0.6692 0.9519 0.7593-1.193 

rs2834918 36731196 0.9546 0.9965 0.8834-1.124 

rs2834922 36738670 0.8161 1.017 0.8808-1.175 
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rs61609238 36740965 0.7061 1.027 0.8924-1.183 

rs9982972 36744868 0.1864 1.071 0.9673-1.186 

rs4507181 36748497 0.3064 0.9429 0.8425-1.055 

rs13052047 36748863 0.2761 1.059 0.9554-1.173 

rs118007465 36752815 0.7317 0.967 0.7982-1.172 

rs2742146 36753728 0.9694 0.9979 0.896-1.111 

rs2898237 36763769 0.9702 0.9973 0.8641-1.151 

rs73197345 36770120 0.3343 0.9387 0.8254-1.067 

rs7282740 36773278 0.9109 1.008 0.8732-1.164 

rs73197348 36773339 0.5355 0.949 0.8043-1.12 

rs7278477 36773939 0.6017 1.025 0.935-1.123 

rs2734865 36779287 0.4602 0.9604 0.8628-1.069 

rs57904952 36785648 0.3945 0.9312 0.7903-1.097 

rs6517295 36797477 0.6826 1.024 0.9154-1.145 

rs8128588 36802005 0.8035 1.017 0.8926-1.158 

rs11088319 36803737 0.2813 1.053 0.9584-1.158 

rs2242738 36809021 0.06526 0.9081 0.8197-1.006 

rs2178832 36821898 0.2587 0.949 0.8666-1.039 

rs79493415 36824271 0.9994 1 0.8243-1.213 

rs7282237 36824423 0.2776 0.9504 0.867-1.042 

 

 

 

 

 

 

 

 

 

 

Table 38 shows the results from the conditional logistic regression 

analysis, when conditioning on rs9979383. For each SNP, the base 

position, p value, odds ratio and 95% confidence interval when 

conditioned on rs9979383 is shown.  
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Figure 40– Association plot when conditioned on rs9979383 showing no 

independent effects  

 

 

 

 

 

 

 

 

 

  

Figure 40 shows the association plot for the RUNX1 region when conditional analysis 

had been performed. The x-axis represents the base position on chromosome 21 

whilst the y-axis represents the –log10 of the p value when conditioned on 

rs9979383. Each SNP is represented by a dot.  

 



 

199 
 

3.4 Functional analysis of the RUNX1 region  

 

3.4.1 eQTL analysis of the RUNX1 region in whole blood  

 

3.4.1.1 Subjects  

 

 

Clinical and demographic features of the 75 healthy controls selected for eQTL 

analysis from the national repository healthy volunteers (NRHV) cohort are shown 

in Table 37.  All subjects provided both a matched blood DNA sample and blood 

RNA sample for analysis. Once extracted, all 75 DNA samples had a yield of greater 

than 25ng/µl required for Taqman genotyping.  

 

Table 39– Demographics for 75 subjects 

Age n % cohort 

20-29 6 8.00 

30-39 12 16.00 

40-49 18 24.00 

50-59 13 17.33 

60-69 15 20.00 

70-79 10 13.33 

80-89 1 1.33 

Sex n % Cohort 

Male 18 25.71 

Female 57 76 

 

 

 

 

 

 

Table 39 shows the age and sex demographics of the healthy controls from the NRHV 

cohort. The numbers of samples of percentage of cohort are shown in each case. N = 

number of samples.  
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3.4.1.2 SNP genotyping using Taqman allelic discrimination assays 

 

Genotyping was performed on 75 healthy controls using a Taqman allelic 

discrimination assay.  

 

3.4.1.3 Calling of genotypes using the Quant studio RT-PCR software 

 

Genotype calls for rs9979383 were performed using the QuantStudio™ 12K Flex 

Real-Time PCR Software. Figure 41 shows the SNP clustering of the samples into 3 

distinct groups. Of the 75 samples genotyped, 73 genotyped successfully for 

rs9979383 with Table 38 summarizing the genotypic distribution of the 73 

remaining samples. 

 

Figure 41– Genotype calls using Quant studio RT-PCR software 

 

 

 

Figure 41 shows the genotype calls using the Quant studio RT-PCR 

software. The x and y values represent values of fluorescence which 

are used by the software to make genotype calls. Homozygous 

genotyping calls are represented in red and blue, whilst 

heterozygous genotyping calls are represented in green.  

http://www.lifetechnologies.com/order/catalog/product/4472048?ICID=search-product
http://www.lifetechnologies.com/order/catalog/product/4472048?ICID=search-product
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Table 40- Genotypic distribution of genotype calls in healthy controls 

Genotype call n % cohort 

Homozygous C/C 10 13.70 

Heterozygous C/T 35 47.95 

Homozygous T/T 28 38.36 

3.4.1.4 Design of RUNX1 and control gene expression assays 

 

 

RUNX1 is a highly variable gene with 19 splice variants recorded in the Ensembl 

genome browser 72 as shown in Figure 41. As 14 of these variants share common 

exons 5-9 a gene expression assay was designed to capture these exons.  In 

addition Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and Beta actin 

were selected as endogenous controls due to a recommendation by the 

manufacturer and 2 assays were designed to capture expression of these genes. 

Total RNA was extracted from the 75 subjects as described in the Appendix. 

 

  

Table 40 shows the genotype distribution at rs9979383 in the NRHV cohort. n= 

number of subjects 
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Figure 42– ENSEMBL gene browser showing RUNX1 splice variants 

 

 

3.4.1.5 Subjects for gene expression analysis  

 

 

 

 

3.4.1.6 Total RNA quality control  

 

All samples were run on the Nanodrop N1000 and the Bioanalyzer to calculate 

total yield and RIN values. In total, 72 samples had a total yield of >1µg RNA and a 

RIN of greater than 5, therefore were suitable for cDNA conversion. Figure 43 

shows an example Electropherogram and gels from 2 of the healthy control 

samples.  The presence of strong 18s and 28s peaks on the Electropherogram (left) 

and two strong 18s and 28s bands on the gel (right) without the presence of 

Figure 42 shows the identified splice variants for RUNX1 according to ENSEMBL 

(http://www.ensembl.org/index.html). Each transcript is colour coded in relation 

to its function with protein coding transcripts in red and processed transcripts in 

blue.  

 

http://www.ensembl.org/index.html
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additional artefacts is indicative of a good quality RNA sample.  In both these cases 

the RIN of each sample was greater than 8.   

 

Figure 43– Electropherogram and gels from 2 healthy controls samples.  

 

 

 

   

 

 

 

Figure 43 shows the electropherogram peaks from 2 RNA samples. On the x-axis 

is the time in seconds from the initiation of the run whilst the y-axis represents 

the fluorescence units. The presence of defined 18S and 28S peaks combined 

with low background noise is used to determine integrity and concentration of 

RNA samples.  
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3.5.1.7 cDNA conversion of RNA samples  

 

72 samples of 50ng/µl concentration were successfully converted to cDNA for 

gene expression analysis.  

 

3.4.1.8 Gene expression analysis of RUNX1 and endogenous controls  

 

Gene expression analysis for RUNX1 and 2 endogenous controls (GAPDH and 

ACTNB) was performed for 72 samples in triplicate.  Figure 44 shows an 

amplification plot for these 3 genes showing that all 3 genes are expressed in cDNA 

from these whole blood samples.  Figure 44 is a summary of the QC performed and 

the number of samples, which were available for eQTL analysis.  In total 70 

samples with both genotype and gene expression data were available for analysis.  

 

Figure 44 – Amplification plot for RUNX1 and housekeeping genes in whole 
blood 
 

 

 

Figure 44 shows the amplification plot for RUNX1, GAPDH and ACTNB in 

whole blood, confirming expression of these genes in this tissue type. The x-

axis represents the number of PCR cycles that have occurred whilst the y-

axis represents the ΔRn fluorescent signal at each time point.  The ΔRn 

represents the magnitude of signal generated, which can be used to 

determine the quantity of PCR product in each sample.  
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Figure 45– QC summary for eQTL analysis 
  

 

 

 

 

3.4.1.9 Whole blood eQTL analysis  

 

In the 70 samples available for analysis, RUNX1 genotype and expression was 

successfully measured but when correlated with genotype at rs9979383, no 

significant eQTL was identified (p = 0.92).  

Figure 46 shows RUNX1 gene expression normalised to GAPDH and ACTNB 

stratified by genotype at rs9979383.  

 

 

3.4.1.10 Summary of eQTL analysis in whole blood 

 

These results show that there is no significant evidence for an eQTL between 

rs9979383 and RUNX1 in whole blood in healthy controls. This may be due to a 

lack of eQTL in the RUNX1 region, that rs9979383 correlates with expression of 

70 samples with both genotyping and gene expression data remaining  

3 RNA samples had a yield < 1µg or a RIN < 5  

2 DNA samples failed genotyping for rs9979383  

75 subjects were selected for analysis  

Figure 45 shows the QC stages employed for the eQTL analysis and the samples 

that passed each stage of QC.  These included removing samples, which failed 

genotyping, and samples, which had a low RIN value. Only samples that had RNA 

and DNA were taken forward for analysis. RIN = RNA integrity number.  
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another gene or that this eQTL is masked in whole blood and therefore requires 

further investigation using cell specific methods.  

 
Figure 46– eQTL analysis of RUNX1 region in whole blood 
 

 

 

 

 

 

 

 

 

 

  

Figure 46 shows the eQTL analysis between rs9979383 and RUNX1.  The x-axis 

represents the genotype groups: 0 indicates major allele homozygote; 1 

heterozygote and 2 indicates minor allele homozygote. The y-axis represents the 

relative RUNX1 expression (normalised to 2 endogenous controls).  
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3.4.2 eQTL analysis of the RUNX1 region  in T lymphocytes 

 

3.4.2.1 Subjects  

 

 

Clinical and demographic features of the 23 healthy controls selected for cell 

specific eQTL analysis from the National repository healthy volunteers (NRHV) 

cohort are shown in Table 41.  All subjects provided both a matched blood DNA 

sample and blood sample for cell specific expression analysis. Although sex and 

age was available for these samples, no stratified analysis was performed.  

 

Table 41– Demographics of 23 samples from the NRHV cohort 

Age n % cohort 

20-29 4 17.39 

30-39 5 21.74 

40-49 9 39.13 

50-59 5 21.74 

Sex n % cohort 

Male 8 34.78 

Female 15 65.22 

 

 

 

 

3.4.2.2 Genotyping of samples  

 

 

Genotypes for rs9979383 were obtained from the Taqman genotype data 

generated in section 3.4.1.  Complete genotypes for 23 of the samples were 

available for analysis.  Table 42 describes the genotype distribution for these 

samples.  

Table 41 shows the age and sex demographics of the healthy controls from the NRHV 

cohort. The numbers of samples of percentage of cohort are shown in each case. n = 

number of samples.  
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Table 42– Genotype distribution for 23 healthy controls  

Genotype call n % cohort 

Homozygous C/C 2 8.69 

Heterozygous C/T 11 47.83 

Homozygous T/T 9 39.13 

No genotype 1 4.35 

 

 

 

 

3.4.2.3 Sample collection for PBMC extraction  

 

For peripheral blood mononuclear cells (PBMCs) extractions 2x10ml EDTA tubes 

of peripheral blood were sampled from 23 subjects and PBMCs extracted. Due to 

the large number of blood samples required for this study, blood drawing was 

performed in sessions across 26 days with all extractions being performed within 

2 hours of blood sampling.  

 

3.4.2.4 Cell count and viability checks 

 

Cell counts and viability checks were performed for each of the 23 PBMC samples. 

Figure 47 shows the total PBMC yield from each sample. Samples which are 

highlighted in red had noticeably low blood volumes (less than 15ml total) so 

limited PBMC yields were expected from these samples. All samples had a PBMC 

yield of between 1.31x107 and 4.2x107 cells with an average yield of 2.43x107 

PBMCs per 20ml blood sample, indicating some variability in the number of PBMCs 

obtained from healthy controls.  All PBMC samples had a cell viability of greater 

than 90% and therefore were suitable for cell separation in section 3.4.2.6. 

 

 

 

Table 42 shows the genotype distribution at rs9979383 in the NRHV cohort. n= 

number of subjects 
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Figure 47– PBMC yield from healthy control bloods 
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Figure 47 shows the PBMC yield from each of the 23 samples. The x-axis represents 

the sample ID whilst the y-axis represents the yield of PBMCs (107). Low volume 

blood samples (less than 15mls) are highlighted in red. PBMC = peripheral blood 

mononuclear cell.  
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3.4.2.5 Cryopreservation and thawing of PBMCs  

 

As samples were collected in sampling sessions across 26 days, cryopreservation 

was utilised to maintain PBMC yield and viability for cell separation. All samples 

were cryopreserved for no more than 31 days and were thawed in batches of 6 

samples to minimise experimental variability between samples. Post-

cryopreservation, samples were immediately processed for cell separation to 

optimise yield and viability of cells. 

 

3.4.2.6 Separation of PBMCs into T lymphocyte subsets 

 

 

In order to obtain both CD4+ and CD8+ T lymphocytes from each sample a triple 

phase cell separation was performed using the positive selection strategy 

described in section 2.4.2.6.1. Separations were performed in groups of 6 samples 

in parallel to minimise batch effects. Primarily, CD8+ T lymphocytes were 

separated from each thawed PBMC sample. CD8+ lymphocytes were successfully 

separated from all 23 samples and a cell count performed. Figure 49 shows the 

CD8+ cell yield from each PBMC sample. The average cell count obtained was 

1.37x106 CD8+ cells per sample. 

 

Post CD8+ separation, a CD14+ separation was performed on the CD8- negative 

fraction whilst the CD8+ fraction was collected for flow cytometry and total RNA 

extracted. This was performed to remove CD14+ monocytes which may 

contaminate the CD4+ lymphocyte population during the final positive selection. 

This is due to their low expression of the CD4 marker. The CD14+ fraction was 

then discarded and a final CD4+ positive selection performed using the CD14- 

fraction. 

  

In the final separation CD4+ cells were obtained from all 23 samples and a cell 

count performed. Figure 48 shows the cell count for the CD4+ cells obtained from 

each sample. The average cell count obtained from each sample was 1.46x106 
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CD4+ cells. The CD4- fraction was discarded and the CD4+ fraction collected for 

flow cytometry and total RNA extraction.  

 
Figure 48– CD4+ lymphocyte yield 
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Figure 48 shows the CD4+ lymphocyte yield from each of the 23 samples. The x-

axis represents the sample ID whilst the y-axis represents the yield of CD8+ 

lymphocytes.  
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Figure 49 CD8+ lymphocyte yield  

 

 

 

 

 

3.4.2.7 Assessment of viability and cell purity using flow cytometry 

 

Post cell separation, flow cytometry was used to assess the purity of cell 

populations obtained and ensure they were homogenous enough for accurate gene 

expression analysis.  Furthermore, these techniques were used to assess the 

viability of the cells collected during the separation and ensure they were 

sufficiently viable for further analysis.   
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Figure 59 shows the CD4+ lymphocyte yield from each of the 23 samples. The x-

axis represents the sample ID whilst the y-axis represents the yield of CD8+ 

lymphocytes.  
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To assess the viability of the cell populations, a dead cell stain was used to 

discriminate between live and dead cells within the samples. The percentage of 

live cells in each sample was then calculated for each of the CD4+ and CD8+ 

populations from each healthy control sample. Viability could not be calculated for 

2 of the CD8+ samples and 6 of the CD4+ samples due to sample and reagent 

limitations so the performance of other samples were used as a indication of how 

efficient the separation technique used was. Figure 50 shows histogram peaks of 

the viability of CD8+ and CD4+ cell populations across selected healthy control 

samples.  Figure 50 A is a histogram peak showing the percentage of live and dead 

cells in a CD8+ sample with the x axis representing the uptake of the cell viability 

stain and the y axis representing the cell count. In the left hand peak, live cells that 

have an intact cell membrane are counted whilst in the right hand peak dead cells, 

which have taken up the viability dye, are counted (R1). Figure 50 B shows 

histogram peak representing the uptake of the dead cell stain in a CD4+ sample. As 

before the left hand peak represents cells that did not take up the dead cell stain 

whilst in the right hand peak the cells that took up the dead cell stain are counted 

(R4).  

 

Figure 51 and Figure 52 show the overall viability of CD8+ and CD4+ cell 

populations across the maximum number of samples.  In the CD8+ cells (Figure 

51) the average viability was 80% whilst in the CD4+ cells the average viability in 

the CD4+ cells was 67% (Figure 52). This is not unusual as the cells have been 

previously cryopreserved and have undergone a series of centrifugation steps in 

section 3.4.2.6. The CD4+ lymphocytes had a lower average viability than the CD8+ 

lymphocytes, which may be a result of the CD4+ separation being performed last.  

At this point the cells would have passed through the column several times and 

would have undergone several centrifugation steps, which would have increased 

the risk of damage to the cell membranes. 
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Figure 50– Plots showing viability of CD8+ and CD4+ lymphocytes  
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 50 shows the viability of cells in 2 lymphocyte samples treated with dead cell 

viability stain. The x axis represents fluorescence due to uptake of the dead cell stain whilst 

the y axis represents the cell count A) Histogram of a selected CD8+ lymphocyte sample, 

with the right hand peak representing dead cells which took up the dead cell stain (R1) 

whilst the left hand peak represents viable cells which did not take up the stain. B) 

Histogram of a selected CD4+ lymphocyte sample, with the right hand peak representing 

dead cells which took up the dead cell stain (R4) whilst the left hand peak represents viable 

cells which did not take up the stain. 
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Figure 51- CD8+ lymphocyte viability across all samples  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 51 shows a bar chart of CD8+ lymphocyte viability from 21 of the 23 samples 

with the x-axis representing the sample name whilst the y-axis represents the 

percentage of cells that were viable in each sample. Viability was expressed as the 

percentage of cells, which did not take up the dead cell stain, compared to the total 

number of cells analysed. 
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Figure 52- CD4+ lymphocyte viability across all samples  
 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 52 shows a bar chart of CD4+ lymphocyte viability from 17 of the 23 

samples with the x-axis representing the sample name whilst the y-axis represents 

the percentage of cells that were viable in each sample. Viability was expressed as 

the percentage of cells, which did not take up the dead cell stain, compared to the 

total number of cells analysed. 
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3.4.2.8 Purity of cell populations  

 

To assess the purity of the total cell populations obtained during the cell 

separations, the expression of CD8+ or CD3+CD4+ was examined. This was then 

calculated as a percentage of the total number of cells counted to give an overall 

sample purity. Figure 53 and show some examples of the flow cytometry scatter 

plots and histograms obtained from the analysis of the cells across selected healthy 

control samples.  Figure 53 A + B shows the flow cytometry output for 2 of the 

CD8+ lymphocyte samples. This is shown as a single stain histogram with the x-

axis representing increasing levels of CD8-APC expression and the y-axis 

representing the cell count. Prior to this analysis cells were gated as described in 

section x.  In the right hand peak a threshold has been set (R4) to capture the 

number of cells, which are positive for CD8-APC expression. The purity of the cell 

population was then calculated using the number of cells expressing  CD8 

compared to the number of cells analysed in total.  

 

Figure 53– Histogram plots showing CD8+ population purity  
  

 

 

 

 

 

Figure 53 shows the expression of CD8-APC across 2 samples which have been gated as 

previously described in section 2.4.2.7.3. A-B) Histograms showing the expression of CD8-

APC in the x axis and the cell count in the y axis. The right hand peak (R4) represents the cells, 

which are positive for CD8-APC whilst the presence of a peak in the left hand side would 

represent cells, which did not express CD8-APC.  
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Figure 54 represents an example of the flow cytometry output from 2 of the CD4+ 

lymphocyte samples double stained with CD3-APC/CD4-PE  (Figure 54 A+B) and 2 

different samples double stained with CD3-APC/CD4-VioBlue (Figure 54  A+B).  As 

these were double stained, this is shown as a dot plot with each dot representing a 

single cell. The x-axis represents increasing levels of CD3 expression whilst the y-

axis represents increasing levels of CD4 expression, with the position of each dot 

indicating the co-expression levels of these. In both sets a quadrant threshold was 

set determining positivity for both CD3 and CD4, which are characteristic of 

CD3+CD4+ T lymphocytes (PE = R6, Vioblue = R11). The number of cells in this 

quadrant was then used to calculate the purity of the CD4+, which is the number of 

cells expressing CD3 and CD4 compared to the total number of cells analysed.  

Across all the CD4+ plots (Figure 54; A-D) a low number of CD3+CD4- can be 

detected in the CD3+CD4- quadrant (A+B=R5; C+D=R10). These may represent 

CD3+CD8+ cells not removed by the CD8+ positive selection or the presence of 

CD3+CD4- accessory cells which are involved in lymphoid development and B cell 

responses (Lane et al. 2005).  As this population consists of very few cells, it is 

unlikely they have an aberrant effect on the results.  
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Figure 54– Plots showing CD4+ population purity using PE and Vioblue 
flourochromes  
 

 

 

 

 

 

 

 

 

Figure 54 shows the expression of CD3 and CD4 on cells, which have been gated, as 

previously described in section 2.4.2.7.3. A+B) Dot plots of 2 CD4+ samples from the 

first 6 samples stained with CD3-APC and CD4-PE. The x-axis represents expression of 

CD4-PE whilst the y-axis represents expression of CD3-APC.  The position of each dot 

is a representation of the co-expression levels of CD3 and CD4, with each dot 

representing a single cell. A quadrant threshold was generated for positivity for both 

CD3 and CD4 (R6). This was used to calculate the purity of each sample. C+D) Dot 

plots of 2 CD4+ samples from the first 6 samples stained with CD3-APC and CD4-

VioBlue. The x-axis represents expression of CD4-VioBlue whilst the y-axis represents 

expression of CD3-APC.  The position of each dot is a representation of the co-

expression levels of CD3 and CD4, with each dot representing a single cell. A quadrant 

threshold was generated for positivity for both CD3 and CD4 (R11). This was used to 

calculate the purity of each sample.  
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In Figure 55 and Figure 56 the purity of CD8+ and CD4+ populations across all 

samples is shown using bar charts. In these plots the x-axis represents the sample 

ID whilst the y-axis represents the purity of the samples. This was calculated using 

the number of cells expressing CD8 or CD3-CD4 and calculating as a percentage of 

the total cells analysed. The average purity in the CD8+ populations (Figure 55) 

was 99.4% whilst the average purity in the CD4+ cells (Figure 56) was 95.31%.  In 

both cases these represent very pure cell populations with minimum 

contamination by other cell types. The decrease in purity of CD4+ cell populations 

compared to CD8+ may be a result of the CD4+ cells being separated in the final 

separation as described previously.  As a result all CD8+ and CD4+ samples were 

considered of sufficient purity for total RNA extraction and gene expression 

analysis.  

 

Figure 55 – CD8+ lymphocyte purity  
 

 

 

 

 

 

 

Figure 55 shows a bar chart of CD8+ lymphocyte purity across all samples, with the 

x-axis representing the sample name whilst the y-axis represents the samples purity. 

Purity was calculated using the number of cells expressing CD8 and calculating as a 

percentage of the total cells analysed. 
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Figure 56– CD4+ lymphocyte purity 
 

 

 

 

 

 

 

3.4.2.9. Extracting total RNA from cell subset suspensions 

 

 

46 total RNA samples (23 CD8+ and 23 CD4+) were successfully extracted from the 

cell suspensions.  

 

3.4.2.10 RNA quality control  

 

 

Total RNA was extracted from the 46 cell suspensions (23 CD8+ and 23 CD4+ 

samples). All samples were run on the Nanodrop N1000 and the Bioanalyzer to 

Figure 56 shows a bar chart of CD4+ lymphocyte purity across all samples, with the 

x-axis representing the sample name whilst the y-axis represents the samples purity. 

Purity was calculated using the number of cells expressing CD3-CD4 and calculating 

as a percentage of the total cells analysed. 
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calculate total yield and RIN values. Table 43 shows the total RNA yield for each 

sample, the 260/280 ratio, the 260/230 ratio and RIN value for each sample. All 

samples had a total yield of greater than 400ng required for gene expression 

analysis. 44 of the samples had a RIN of greater than 5, therefore were suitable for 

cRNA conversion in section 3.4.2.11. Samples, which did not meet these 

parameters, are highlighted in red.  NRHV128_CD8 sample had a RIN of 4.1 so was 

considered low quality but was still converted to cRNA whilst NRHV012_CD4 had a 

RIN, which could not be calculated and was removed from further analysis.  It was 

noted that the 260/230 ratios in the samples were much lower than expected for 

RNA (normally ~2).  It was determined that this was due to the low quantity of 

RNA being analysed combined with the presence of minute amounts of Trizol 

carryover from the RNA extraction. Although noted it was not expected that this 

would affect the performance of the gene expression analysis as the carryover was 

minimal.  Figure 57 shows an example Electropherogram from 2 of the healthy 

control samples. During the electropherogram, the presence of 18s and 28s 

ribosomal RNAs are measured, with the x axis representing time and the y axis 

representing the quantity of these subunits. The presence of strong 18s and 28s 

peaks on the Electropherogram without the presence of additional artefacts is 

indicative of a good quality RNA sample.  In both these cases the RIN of each 

sample was greater than 8. 
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Table 43- Characteristics of extracted RNA  

Sample ID CD4+ RNA yield 260/230 260/280 CD4+ RIN CD8+ RNA yield 260/230 260/280 CD8+ RIN 

NRHV001 1532ng 1.39 1.76 6 1239ng 1.36 1.74 6.2 

NRHV005 1840ng 1.48 1.78 8.5 2438ng 1.55 1.81 8.5 

NRHV006 1838ng 1.72 1.82 5 1669ng 1.71 1.78 5.2 

NRHV007 1345ng 1.59 1.92 8.2 1940ng 1.69 1.79 8.8 

NRHV012 993ng 1.09 1.71 N/A  1395g 1.48 1.73 8.2 

NRHV015 2382ng 1.71 1.821 5.1 1865ng 1.6 1.74 7.9 

NRHV062 1027ng 1.22 1.74 6 1492ng 1.37 1.73 6.3 

NRHV064 877ng  1.19 1.72 8.5 746ng 1.1 1.8 8.5 

NRHV065 4200ng 2.01 1.91 7.6 2440ng 1.71 1.78 9.3 

NRHV066 537ng 1.24 1.69 8.2 1392ng 1.87 1.64 8.9 

NRHV121 2575ng 1.75 1.78 8.8 3292ng 1.87 1.82 8.9 

NRHV124 2243ng 1.74 1.78 7.7 2775ng 1.74 1.78 7.2 

NRHV126 2607ng 1.7 1.8 8.4 1965ng 1.5 1.85 8.2 

NRHV127 3970ng 1.86 1.88 8.7 2580ng 1.75 1.78 8.1 

NRHV128 720ng 1.11 1.68 8.4 532ng 1.09 1.72 4.1 

NRHV134 1183ng  1.51 1.78 7.1 1300ng 1.44 1.75 8.5 

NRHV140 573ng 1.31 1.76 8 2325ng 1.83 1.87 8.7 

NRHV143 1238ng 1.53 1.74 8 1728ng 1.6 1.74 8.4 

NRHV144 2560ng 1.58 1.86 8 3118ng 1.64 1.75 8.4 

NRHV153 2135ng 1.7 1.83 8.3 1698ng 1.72 1.78 9 
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NRHV154 2144ng 1.55 1.9 7.7 3118ng 1.79 1.73 8.5 

NRHV156 988ng 1.28 1.77 7.8 1390ng 1.51 1.72 8.3 

NRHV158 1236ng 1.13 1.73 8.1 2170ng 1.66 1.79 8.5 

Table 43 shows the RNA yield from each of the CD8 and CD4 samples. Details of RNA yield, 260/230 ratio, 260/280 ratio,  and RIN are given 

for each cell type. RIN = RNA integrity number,  
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Figure 57– Bioanalyzer traces of 2 healthy control samples  
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3.4.2.11 DNase treatment of Total RNA  

 

 

45 samples (23 CD8+ and 22 CD4+) were treated with a DNase treatment to 

remove any genomic DNA contamination.   

 

3.4.2.12 RNA amplification using Illumina TotalPrep Amplification Kit 

 

 

400ng of total RNA from 45 samples (23 CD8+ and 22 CD4+) was successfully 

converted to cRNA for gene expression analysis.  

Figure 57 shows the electropherogram peaks from 2 CD4+ (left) and 2 CD8+ (right) 

RNA samples. On the x-axis is the time in seconds from the initiation of the run whilst 

the y-axis represents the fluorescence units. The presence of defined 18S and 28S peaks 

combined with low background noise is used to determine integrity and concentration 

of RNA samples.  
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3.4.2.13 Illumina Gene Expression Direct Hybridization Assay 

 

750ng of cRNA from 45 samples (23 CD8+ and 22 CD4+) were successfully 

hybridised to the Illumina HumanHT expression array for gene expression 

analysis.  

 

3.4.2.14 Detecting differential signals on array  

 

 

Array metric data for 45 (23 CD8+ and 22 CD4+) samples across 47,000 probes 

was successfully generated. 1 CD4+ sample did not scan successfully and therefore 

had to be removed from further analysis.  

 

3.4.2.15 Gene expression normalization and QC  

 

 

Once the arrays were scanned, files were generated detailing a number of sample 

and array metrics. These files were used to normalise and QC the gene expression 

data in a series of stages. Figure 58 details each normalisation and QC stage 

employed and the number of samples/array probes that were removed at each 

stage.  
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Figure 58– Gene expression normalisation and QC 
 

 

 

 

 

 

 

 

 

3.4.2.16 Calculation of the signal to noise ratio across arrays 

 

Signal to noise ratios were calculated for all 45 samples across all arrays. Figure 59 

shows the signal to noise ratio for each sample, with all samples achieving a ratio 

of more than 2, although some are notably lower than expected.  

 

 

 

Data available for 4 probes across 44 samples (22 CD8+ and 22 CD4+) 

Gene expression values for 4 probes <400kb from RUNX1 extracted 

Arrays weighted to account for differences in signal:noise ratio 

1 CD8+ sample removed due to lack of clustering with all other samples  

9970 probes removed which did not map well to genes from hg19 gene build 

8940 probes removed as not expressed in any sample (either CD8+ or CD4+) 

Data normalised to account for differences in signal:noise ratio across all arrays 

 

Gene expression data for 45 (23 CD8+ and 22 CD4+) samples across 47,000 probes  

 

Figure 58 shows the normalisation and QC workflow for the gene expression array 

data. Data was first normalised to account for inter-sample differences in signal to 

noise ratios.  Samples and probes were removed based on the following sequential 

criteria: probes which were not expressed in any sample; probes which did not map 

well  to the hg19 gene build; samples which did not cluster neatly on the MDS plot. 

Each array was then weighted based on it’s performance and the probes in the 

RUNX1 region extracted for analysis. hg = human genome, MDS = multidimensional 

scaling.  
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Figure 59 –  Signal to noise ratios for 45 samples  
 

 

 

 

 

3.4.2.17 Calculation of the intensity signals across probes   

 

Average signal intensities were calculated for regular and negative control probes 

across all arrays. Figure 58 shows the log2 intensity signal of regular and negative 

control probes across all arrays. Background correction was then performed on 

the regular probes using the values obtained from the negative control probes 

before NEQC quantile normalization and log2 transformation. Figure 58 shows the 

neqc normalised log2 intensities across all arrays for regular probes.  

 

Figure 59 shows the signal to noise ratio calculated for all 45 samples. 

In this plot each sample/array is represented by a dot with the x-axis 

representing the array ID whilst the y-axis represents the ratio is signal 

to noise for each. The higher the dot on the y-axis the higher the 

signal:noise ratio.  
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Figure 60– Average signal intensity in raw and normalized data  

 

 

 

 

 

 

 

Figure 60 shows the average signal intensity in raw and normalized data. In 

each plot the x-axis represents the sample ID whilst in they-axis the log2 

signal is shown.  In the top plots the un-normalized data for the regular (L) 

and negative control (R) probes is shown. In the bottom plot the normalized 

data is shown.  
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3.4.2.18 Calculation of the proportion of probes expressed by each sample 

 

 

The average proportion of probes expressed by the CD8+ and CD4+ samples was 

calculated successfully. In CD8+ cells the proportion of genes expressed was 0.46 

whilst in CD4+ cells it was 0.47, indicating that slightly more of the probes are 

expressed in CD4+ cells. When compared, it was found that these proportions were 

not significantly different between cell types (p=0.3). Additionally 8940 probes 

were not expressed in any sample and therefore were removed from further 

analysis. 

 

3.4.2.19 Matching probes to hg19 transcripts 

 

 

In total 28404 probes mapped either good or perfectly to transcripts from hg19. 

All others were removed from further analysis.  

 

3.4.2.20 Identification of sample outliers  

 

To assess how similar the samples within sample groups were, MDS plots were 

generated. Figure 59 shows the MDS plots showing clustering by sample group, 

showing that with the exception of a single CD8+ sample, the samples cluster 

tightly with others of the same sample group.  The CD8+ sample was removed 

from further analysis, as it may result in skewing of the results.  
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Figure 61– MDS plot showing clustering by sample type  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.4.2.21 Principal components analysis 

 

To identify factors which may be contributing to sample variance and therefore 

could contribute to batch effects, PCA was performed. Figure 62 shows the 

contribution of each PC to variance within the dataset. In total there were 2 PCs 

contributing to more than 10% of sample variance, which were both identified as 

being sample grouping. This indicates that the difference in CD8+ and CD4+ 

samples represents more than 10% of variance in the dataset and therefore these 

samples should be analysed separately.  

Figure 61 shows an MDS plot which indicates sample outliers in data 

based on similarities between probe expression. In this plot 1 outlier 

was detected and the remaining samples clustered well into CD4+ and 

CD8+ groups indicating they represent different cell types.  
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Figure 62– Contribution of principal components to sample variance  

 

 

 

 

3.4.2.22 Array weighting  

 

Array weighting was performed successfully for the remaining 44 samples.  

 

  

Figure 62 shows the contribution of the top 2 principal components 

generated in the PCA analysis. In this plot is can be seen that 2 principal 

components are contributing significantly to data structure. These were 

identified as both being cell type. 
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3.4.2.23 Cell specific eQTL analysis 

 

 

In the 22 CD8+ and 22 CD4+ samples available for analysis, gene expression values 

for the 4 probes in the RUNX1 region were successfully calculated. Of these probes 

2 mapped to the RUNX1 gene whilst 2 were mapped to the non-coding RNA 

LOC100506403 which is located 300kb upstream of the RUNX1 region. Figure 61 

shows a QC summary for the eQTL analysis when combining gene expression and 

genotype data from section 3.4.2.1.  

 

When correlated with genotype at rs9979383, no significant correlations were 

found with expression with any of the 4 probes (all p >0.05). Table 42 shows the p 

value obtained by linear regression, showing no significant results (p<0.05) across 

the probes.  For the result shown in bold, there does seem to be a trend towards 

significance (p=0.1). This may be the result of limited power as only 1 sample in 

this cohort had 2 copies of the minor allele at rs9979383.  This will require further 

investigation in a larger cohort.  Figure 62 and Figure 63 show the expression for 

each of the individual probes stratified by genotype at rs9979393.   
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Figure 63- QC summary for eQTL analysis 

 

 

 

 

 

 

 

 

  

Genotype and gene expression data available for 44 samples (22 CD8+ and 22 CD4+) 

1 CD8+ sample removed during gene expression QC 

1 CD4+ RNA sample failed RNA quality qc (RIN could not be determined) 

1 sample failed genotyping for rs9979383  

23 subjects selected for analysis  

Figure 63 shows the QC stages employed for the cell specific eQTL analysis.  Samples 

were removed sequentially based on the following parameters: failure to genotype; 

low RIN; failure to pass gene expression QC. Only samples which had both 

genotyping and gene expression data could be analysed. RIN = RNA intergrity 

number.   
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Table 44– eQTL results for RUNX1 region  

Cell type Probe target P  

CD8 RUNX1 0.933 

CD8 RUNX1 0.745 

CD8 LOC100506403 0.747 

CD8 LOC100506403 0.838 

CD4 RUNX1 0.58 

CD4 RUNX1 0.1 

CD4 LOC100506403 0.492 

CD4 LOC100506403 0.552 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 44 shows eQTL analysis results in the RUNX1 region in both CD8 and CD4 

lymphocytes. Across the columns cell type, the probe target and p value are shown. 

Although no significant eQTLs were identified in this data, there was a trend 

towards significance between rs9979383 and RUNX1 in CD4 lymphocytes. This is 

highlighted in bold.  
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Figure 64– RUNX1 region eQTL analysis in CD8+ lymphocytes  
 

  

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
  

Figure 64 shows the eQTL results for the RUNX1 region in CD8 lymphocytes. 

In each plot the x-axis represents number of copies of the minor allele at 

rs9979383 whilst in the y-axis represents gene expression of the 

corresponding gene  in the RUNX1 region. A+B)  RUNX1 gene expression in 

CD8+ lymphocytes correlated with genotype at rs9979383. C-D) 

LOC100506403 gene expression in CD8+ lymphocytes correlated with 

genotype at rs9979383. 
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Figure 65– RUNX1 region eQTL analysis in CD4+ lymphocytes 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 65 shows the eQTL results for the RUNX1 region in CD4 lymphocytes. 

In each plot the x-axis represents number of copies of the minor allele at 

rs9979383 whilst in the y-axis represents gene expression of the 

corresponding gene in the RUNX1 region. A+B)  RUNX1 gene expression in 

CD4+ lymphocytes correlated with genotype at rs9979383. C-D) 

LOC100506403 gene expression in CD4+ lymphocytes correlated with 

genotype at rs9979383. 
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4.0 Discussion 
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4.0 Discussion  

4.1 Summary of findings  

 

The aim of this study was to assess the genetic overlap between the 3 types of IA 

(RA, JIA and PsA) using genotype data generated on the Immunochip array and to 

select a biologically promising overlapping region for further genetic and 

functional investigation using a variety of techniques.  

 

50 genetic regions have now been identified as common to more than 1 type of IA 

(p<1x10-3). Many of these overlapping regions represented novel disease 

associations and therefore required replication in an independent sample cohort. 

Of the 12 variants selected for the replication study, 2 variants have now been 

successfully replicated in a modestly sized independent RA cohort at p<0.05.  

 

Bioinformatics analysis of the 50 overlapping regions indicated that many regions 

represent strong biological candidates. One particularly promising region, RUNX1, 

was selected for further investigation.  In this region, the same variant 

(rs9979383) is associated across the 3 diseases, with similar odds ratios (0.8-0.9) 

observed in each disease. Fine mapping of this region in an independent RA cohort 

was performed, which resulted in replication of the association at p=0.02. No 

additional significant genetic effects were detected indicating the association 

signal is localized to this variant (or variants in high LD with it), at least in RA.  

 

As rs9979383 lies ~280kb upstream of the RUNX1 gene, a cis-eQTL analysis was 

performed to identify if the variant acts by regulation of RUNX1 gene expression. 

This was performed in whole blood, CD4+ and CD8+ lymphocytes from healthy 

volunteers. Whole blood was selected due to sample availability and the T 

lymphocyte subsets were selected due to their importance in RA and PsA 

pathogenesis, respectively (Menon et al. 2014;Trynka et al. 2013). Although no 

significant cis-eQTL was detected in any of these tissues with either RUNX1 or the 

nearby lnc-RNA LOC100506403, in cells from healthy volunteers under 

unstimulated conditions, further work is required to determine whether an eQTL 

exists when cell subsets are stimulated, as would be expected in inflammatory 



 

240 
 

conditions. These findings will direct future functional investigations into the role 

of this overlapping region in the susceptibility of IA.  

 

4.2. Findings, strengths and weaknesses of the study  

 

4.2.1 Immunochip overlap 

 

 

My work is underpinned by the observation that immune mediated diseases often 

share common genetic factors. This has been shown for a number of immune 

mediated diseases such as RA, T1D, IBD and SLE, which have been shown to share 

multiple overlapping regions (Cotsapas and Hafler 2013;Eyre et al. 2010;Orozco et 

al. 2011). As RA, JIA and PsA are in some aspects clinically similar, for example 

they collectively involve articular disease and are often treated with similar anti-

inflammatory therapies, it is also expected that some of their genetic component 

will also be shared.  

 

Prior to my study, GWA and candidate gene genetic studies had identified over 50 

genetic regions associated with a single type of IA but only 7 of these were 

identified as being associated with more than 1 type of IA, with only 1 region 

(IL2/IL21) being implicated across all 3 diseases (Hinks et al. 2010a;Stahl et al. 

2010).  At the start of my project, a large number of samples from patients with the 

3 types of IA and healthy control samples were being genotyped on the 

Immunochip array for disease-specific genetic susceptibility studies.  

 

The Immunochip array, which was used to genotype the samples included in my 

analysis, represents the ideal platform for identifying genetic overlap between 

diseases. This is because the content of the array was designed by a consortium of 

investigators studying 12 immune mediated diseases and the aim was to fine-map 

regions previously associated with immune mediated disease (Cortes and Brown 

2011). The fact that the array could be tested in multiple immune diseases meant 

that the cost of the chip was much less than the cost of GWAS arrays at the time; in 

turn, this meant that investigators could test larger numbers of samples in multiple 

diseases, thereby increasing the power to detect modest effects. The array includes 
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many genes in essential immune pathways and hypothetically, these may also be 

associated with IA, so it enabled identification of association to novel regions. In 

many regions, there was dense coverage of genetic variants allowing fine mapping 

to be performed. This allows association signals to be refined and supports the 

identification of causal variants and putative multiple genetic effects within a 

region. The Immunochip provided a unique opportunity to genotype samples for 3 

types of IA and perform overlap analysis in a large sample cohort. Although this 

was an effective strategy for many regions, it should be noted that not all regions 

on the Immunochip array were fine mapped. For example in the RUNX1 region, 

only 7% of common variants from the 1000 genomes (July 2010 release; 

MAF>0.05) were captured, meaning that in order to identify causal variants and 

multiple genetic effects, further independent fine mapping studies were required.  

 

Once association testing was performed for each disease separately, the results 

were compared to identify genetic regions associated with more than 1 type of IA. 

In total 50 genetic regions were associated with more than 1 disease at an 

association p value of less than 1x10-3. Of these, 14 regions showed association 

with more than 1 disease at p <1x10-5.  These p value thresholds were selected in 

order to detect all suggestive overlapping genetic effects, as the JIA and PsA 

cohorts had much lower power than the RA cohort due to the lower number of 

samples tested. Although several regions identified had been previously associated 

with 1 or more types of IA, several regions including RUNX1, IL6R and RASGRP1 

represented novel associations for 1 or more of the diseases. As novel associations, 

these regions were prioritized for replication in an independent cohort. The 

identification of novel overlapping regions in my study provides evidence that 

genetic overlap exists between these diseases, which is becoming apparent, as 

sample sizes get larger and power increases.  

 

In total 10 regions were associated across the 3 diseases, which is a substantial 

increase from the pre-study findings, in which only 1 region was associated across 

the 3 diseases. Ideally, further analysis will be required to identify whether these 

overlapping regions fall into distinctive gene pathways but for now these findings 

provide novel insight into the genetic overlap between these 3 types of IA.   
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It was also observed that RA and JIA had the greatest genetic overlap overall with 

31 of the 50 regions associated across the both diseases, which indicates they may 

share a considerable genetic component. Although an interesting finding and likely 

to be plausible, it is also important to consider the effect of differential power on 

the overlap results. With a large sample size available for RA, it is more likely 

smaller genetic effects were detected, which may not be detected in the lower 

powered JIA and PsA cohorts. This is often an issue with genetic association 

studies which lack power to detect genetic effects (de Bakker et al. 2005). It is 

therefore important that, as sample sizes increase, the question about the extent of 

shared genetic susceptibility between the 3 types of IA is revisited to identify 

whether this represents the true genetic overlap between the diseases.   

 

The key strength of this study is that it represents the largest analysis of overlap 

between different types of IA to date, with genotyping data accessible for over 

30,000 samples collectively. The availability of these samples was a major strength 

of this study and was only possible through the extensive international 

collaborations of the Arthritis Research UK Centre for Genetics and Genomics in 

Manchester. Despite this, the majority of the cases contributing to this number 

were derived from the RA cohort, which had 11,475 cases, compared to the JIA and 

PsA cohorts, which had 2816 and 929 PsA cases, respectively. This is reflected in 

the power calculations in section 2.1.5 which showed that the RA cohort had much 

greater power than the JIA and PsA cohorts and therefore was more likely to 

detect genetic effects. This factor has to be taken in account when examining the 

overlap between these diseases, as a well-powered study is much more likely to 

detect genetic associations. In addition, genuine genetic effects in the JIA and PsA 

cohorts may be missed as a consequence of lower power (type II error, false 

negative) in this analysis. An additional strength in this study was the large 

number of control samples, further increasing the power to detect genetic effects. 

This is advantageous but it is worth noting that in each individual disease 

association test, some of the controls were shared. It could be argued, therefore, 

that some associations may be driven due to deviance from expected allele 

frequencies in the controls, which may appear as an association (type 1 error, false 

positive). If this were the case then associations would be detected across all 

datasets and therefore considered overlapping in nature. Using shared or 
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overlapping controls is a standard procedure to increase power for GWA studies 

(Wellcome Trust Case Control Consortium 2007) and large-scale genetic studies, 

such as Immunochip. The collaborative nature of Immunochip meant that 

genotyping of shared controls was more cost-effective option. Stringent QC 

procedures are needed and in situations where there is uncertainty, replication in 

additional cohorts can give reassurance that the original observed associations 

were not due to type 1 error.  

 

Once the 50 overlapping regions were identified, the LD between SNPs in the 

region was assessed to determine whether association at overlapping regions was 

conferred by identical or different genetic variants. In 31 regions, there was 

limited or no LD observed between the associated SNPs in comparisons between 

diseases (r2<0.4). In many cases, the observed ORs were also opposing between 

diseases, suggesting that the overlapping region harbours differential genetic 

effects in each disease. One example of this is in the IL2RA and IL2RB regions 

where each of the index SNPs in the three types of IA show no or limited 

correlation by LD (r2<0.4). In addition, the direction of effects is differential 

between RA and JIA with all RA index variants showing a risk effect for the minor 

allele (OR>1) whilst the JIA index SNPs appear to be protective (OR<1). This could 

consequently result in several potential outcomes including, first that the SNPs are 

regulating two different genes in the same region. Secondly, it is possible that the 

SNPs are both affecting the same gene but having an opposite effect on the gene, 

possibly through either upregulation or downregulation of gene expression. It is a 

particularly interesting finding as the regions contain genes of the IL2 cytokine 

pathway. The pathway is crucial for the activation and growth of immune cells, 

especially T lymphocytes (Cantrell and Smith 1984). Both CD4+ and CD8+ T 

lymphocytes have been shown to be important in IA pathogenesis (Berner et al. 

2000) and, therefore, further investigation is required to identify how these 

differential effects between diseases contribute to disease susceptibility. 

In 14 regions the SNP associated was either identical or highly correlated (r2>0.8), 

whilst in 9 regions the SNPs associated with each disease are different but 

moderately correlated by LD (r2>0.4<0.8).  In many cases the direction of effects 

observed was similar between diseases and therefore might represent the same 
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genetic effect or the presence of multiple genetic effects in a region. One 

particularly interesting region is the RUNX1 region in which the index SNP is 

identical across RA, JIA and PsA. Furthermore a similar OR of 0.83-0.9 was 

observed across the diseases, which makes this a particularly interesting 

association when exploring shared genetic susceptibility to IA. Given the fact that 

shared controls were used, however, replication of the association in an 

independent data set (including an independent set of controls) was essential to 

confirm that the association had not simply been observed because of an 

erroneous estimate of allele frequencies in the control population studied. 

 

A key strength of my work, therefore, is that a separate replication in an 

independent cohort of RA cases and controls was undertaken, confirming 

association at the locus with a similar effect size to that observed in the original RA 

cohort. A limitation of the study is that independent JIA and PsA cases and further 

independent controls were not available to confirm the association in these 

diseases. However, the findings provided confidence that the original associations 

had not arisen due to type 1 error.   

The analysis performed in this study was sufficient to obtain both an overview of 

the regions associated with more than 1 type of IA and select a promising region 

for follow up. Despite this, there are many more complex statistical techniques, 

which could be employed to detect further genetic overlap. For example, a pan-

meta study analysis could be performed by combining all the IA (RA, JIA and PsA) 

cases and analysing against all healthy controls. This method would provide the 

greatest power and should hypothetically strengthen any common associations. 

The technique, however, does not account for different variants within the same 

region exhibiting different effects. For example associations in the IL2RA and 

IL2RB regions may not be detected if this method was utilized; therefore it is 

potentially not suitable for the current data. Another method, which could be 

employed, is cross phenotype meta-analysis, which has been previously used to 

identify overlap between 8 immune mediated traits (Cotsapas et al. 2011). This 

technique would be ideal for identifying different clusters of genes, which are 

associated commonly, and differentially with different types of IA. In future 

studies, such techniques are likely to be used to assess genetic overlap in more 
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detail.  

 

Once RUNX1 was selected as the region for overlap using a number of parameters, 

bioinformatics analysis was performed for rs9979383 (and its complete proxy, 

r2=1, rs8129030). Further evidence was then identified to support it as a strong 

choice for further investigation. The variants associated with IA are located in a 

long non-coding RNA (lncRNA) on chromosome 21, upstream of the RUNX1 gene. 

These variants are also located in a region of open chromatin, which moderately 

binds the p65 (REL) transcription factor, an essential component of the NFKB 

pathway, in lymphoblastoid cell lines treated with TNF (Karolchik et al. 2014). 

 

Furthermore eQTL analysis using the SCAN database (http://www.scandb.org; 

(Nicolae et al. 2010) indicated that the variants correlated with increased 

expression of the RBP5 gene on chromosome 12 and therefore could represent a 

long-range trans-eQTL. The bioinformatics analysis therefore provided a wide 

variety of hypothetical functional consequences for the overlapping region, which 

could be explored experimentally.  

Once a literature search was performed it was identified that RUNX1 is a member 

of the RUNX1 family of transcription factors, which also includes RUNX2 and 

RUNX3. These regions have also been associated with immune mediated disease 

(Alarcon-Riquelme 2003). RUNX1 itself is highly expressed across a number of 

cells and has a large number of transcripts (Levanon et al. 2001). The principal 

function of RUNX1 is the regulation of a number of genes crucial for processes such 

as haematopoiesis, lymphocyte differentiation and chondrogenesis (Ichikawa et al. 

2008) making it a strong candidate for follow up in an inflammatory arthritis 

setting.  

In particular RUNX1 has been shown to be important in chondrogenesis by 

promoting cell maturation whilst regulating production of MMPs in the joint. 

RUNX1 expression has been shown to be dysregulated in osteoarthritis, indicating 

downregulation of RUNX1 could potentially result in joint hypertrophy 

characteristic of this disease (Yano et al. 2013). Alteration of this mechanism is 

currently being investigated as a potential drug target. Furthermore early results 

indicate that dysregulation of RUNX1 expression may be linked to differential DNA 

http://www.scandb.org/
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methylation between OA patients and healthy controls (Jeffries et al, personal 

communication). 

RUNX1 also appears to be particularly important for lymphocyte cell development, 

which have been shown to be essential mediators in driving inflammation. By 

driving cell polarization, RUNX1 has been shown to regulate differentiation of both 

CD4+ and CD8+ lymphocytes inclusively (Komine et al. 2003;Lazarevic et al. 2011).  

In Treg cells RUNX1 also plays an important role, interacting with FoxP3+ to 

suppress transcription of inflammatory cytokines such as IL2 and IFNγ (Ono et al. 

2007) which means it could potentially be a key player in IA pathogenesis. 

 

RUNX1 binding sites have been shown to be associated with several autoimmune 

diseases including RA, PsV and SLE (Alarcon-Riquelme 2003). This observes that it 

is associated with more than 1 type of inflammatory arthritis particularly 

interesting. In addition SNPs in this region have been shown to interact with a 

number of IA susceptibility loci such as AFF3 and IL2RA . Collectively these findings 

made RUNX1 a strong choice for follow up using further genetic and functional 

techniques.  

The availability of these databases allowed data to be collated on eQTL studies in 

different cell types, gene splicing and TF binding potential of regions which housed 

overlapping variants. Although an excellent resource, it is worth noting that the 

databases are not always extensively populated and may not include sufficient 

data for a region. The RUNX1 region is not extensively covered by genotyping and 

expression arrays and is often not selected for ChIP and 3C experiments. That 

means that searches may be returned as null when really they have just not been 

performed yet.  In the data which is actually available, experiments are often 

performed in specific cell subsets, which may not be applicable to specific diseases, 

and in very small sizes, which may not have been replicated in more than one 

sample. In the functional data which was obtained for RUNX1, both trans-eQTL and 

TF binding evidence was obtained. Although providing a good functional 

prediction of the region, lack of reliability in trans-eQTL studies mean that a 

finding has to be independently replicated before being confirmed (Westra et al. 

2013). Furthermore the low number of replicates and variability in antibody 

binding used in ChIP experiments mean that these results also need to be 

replicated independently before they can be considered genuine functional 
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predictors.  

 

Overall for this overlap study, the utility of Immunochip data, cohort control sizes, 

extensive genome coverage and availability of functional data were the main 

strengths for identifying genetic overlap between different types of IA. Limitations 

including low power in the more modestly sized JIA/PsA cohorts, the use of basic 

methods to define overlap and incomplete bioinformatics data within the region 

have been identified and potential solutions to these will be addressed in more 

detail in section 4.4.  

 

4.2.2 Immunochip replication  

 

Once a novel association is identified by a GWA or candidate gene study, it is 

desirable that is replicated in an independent cohort to provide further evidence 

that it is a true association. This method has been successful in confirming many 

susceptibility loci for IA including STAT4 and IL2RA (Kurreeman et al. 2009;Orozco 

et al. 2008). As many of the 50 overlapping regions identified in this study 

contained variants which had not been previously associated with IA, a replication 

study was performed in an independent RA cohort. 7 overlapping regions were 

selected for replication based on their significance; however some regions were 

excluded, as they were being genotyped in additional studies, taking place within 

the department at the time. Duplicating genotyping of SNPs would represent an 

unnecessary waste of cost and resources. The index SNPs from each disease for the 

7 regions selected were used to design a multiplex Sequenom assay, which allows 

multiple SNPs to be genotyped simultaneously in each sample. The method 

involves designing specific PCR and single base extension primers for each SNP, 

which have to be tolerated together as a SNP multiplex. In several cases the SNPs 

selected could not be tolerated together in a multiplex so high LD proxies (r2>0.9) 

had to be included instead. Although SNPs were selected to capture the 7 

overlapping regions, genotyping only the index SNP from each disease meant that 

only a limited amount of variation was captured in each region. Ideally a number of 

tag SNP variants would be genotyped in each region, allowing analysis to identify 

multiple effects in each region; however, this is a costly option, which may not be 

justified as many of the associations were not strongly associated in the 
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Immunochip analysis and the power to replicate the associations in the smaller RA 

replication cohort available was limited. Further fine mapping could be performed 

once the SNP association was replicated. 

In total 12 SNPs from 7 overlapping regions were included in the multiplex assay.  

RA samples were chosen as the replication cohort as it is the most common of the 3 

diseases and has been studied most extensively; therefore, it is the disease with 

the largest number of independent samples available for genotyping. Initially a 

total of 3879 cases and 2561 controls were selected for genotyping, which 

provided sufficient power to detect common SNPs (MAF>0.05) with larger effect 

sizes (OR >1.3).  

Once genotyping was performed and SNP calls were assigned, it was observed that 

there was a low call rate and high assay failure across several sample plates. It was 

hypothesized the most likely source of this was low DNA concentration and/or 

quality. When low concentration or quality DNA is present, the PCR amplification 

and single base extension reactions in the Sequenom MassARRAY genotyping 

protocol do not work efficiently. This can lead to incorrect or null genotype calls, 

resulting in low call rates. However, as each set of PCR and single base extension 

primers are designed uniquely for each SNP, there may be differences in assay 

efficiency. This may result in some assays being able to tolerate low quality DNA 

whilst others cannot. As DNA QC was not performed for the samples prior to 

genotyping the results from the gel electrophoresis performed after the initial PCR 

reaction were consulted for each SNP. This was performed across a number of 

plates and the results compared to the genotype calls for the same plate. In plates, 

which had a large number of ‘no call’ samples or poorly defined clusters, it was 

found that there was a correlation with the presence of weak or absent PCR 

product bands on the agarose gel. Furthermore these sample plates had a higher 

prevalence of complete assay failures. In contrast samples with high call rates and 

minimum assay failure correlated with the presence of bright bands on the agarose 

gel. It was concluded that the large number of low call rates across the sample 

plates was due to the presence of low quality and concentration samples on those 

plates, which were removed from subsequent analysis. Hence, a strength of the 

study is the stringent QC that was performed so that only robust SNP assays were 

included in the final analysis, reducing the risk of false positive findings.  
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The availability of an independent cohort of RA cases and healthy controls, which 

were not genotyped as part of the Immunochip study, is a major strength of this 

study. However, the loss of many samples due to low quality DNA meant that the 

final number of samples used in the study was much lower than expected. This 

resulted in a decrease in the power to detect genetic effects. Low DNA quality may 

have been a consequence of poor extraction, storage or handling of samples. As the 

samples were extracted at a number of different sites and were stored long term 

without QC, it is challenging to determine which factor was responsible. To 

account for these issues stringent QC was performed and post quality control 

association testing was performed on genotyping data from 9 SNPs in 2595 cases 

and 1636 controls. This resulted in a significant decrease in power to detect even 

the larger effect sizes described previously.  Despite limited power, association 

with 2 SNPs in the CTLA4 and MTMR3 regions was replicated in the independent 

RA cohort at a p<0.05, although it should be noted that no correction for multiple 

testing of 9 SNPs was applied. As the aim of this study was to replicate overlapping 

regions, a further limitation is that only samples from RA were tested. In future 

association with the region will need to be replicated in independent JIA and PsA 

cohorts to provide evidence that true disease overlap exists.  

 

Interestingly, for both the CTLA4 and MTMR3 regions it was the JIA index SNP from 

the Immunochip study, which was most significantly associated in this RA cohort. 

In the CTLA4 region, this may be because this was the only SNP which was 

genotyped in this independent RA cohort and if the RA SNP was genotyped it may 

have shown stronger association but in the MTMR3 region both were genotyped. 

This provides further evidence that the effects may be the same between these 

diseases despite different index SNPs being identified in the Immunochip study. 

 

Although the RUNX1 region represented a novel association for RA, JIA and PsA, it 

was not included in the Immunochip replication study described in this section 

due to a number of factors. Through bioinformatics and literature searching, this 

region was selected as a strong functional candidate and therefore was selected for 

further genetic analysis. As this region had low SNP coverage on the Immunochip 
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array, it was decided that both replication and fine mapping of the region would be 

performed.  

 

4.2.3 RUNX1 fine mapping and replication  

 

Although a large number of regions were extensively fine-mapped on the 

Immunochip array, the RUNX1 region itself was not well covered. The Immunochip 

array capture of common variation (MAF>0.05) from the 1000 genomes (July 2010 

release) in the RUNX1 region was calculated to be 7% using an r2>0.8. This 

represents very low tag SNP coverage; therefore it could not be determined from 

the Immunochip alone that the index SNP rs9979383 was the strongest or the only 

associated genetic effect in the region. In order to replicate the association in an 

independent cohort and provide sufficient coverage of this region, a combined fine 

mapping and replication study was performed. Fine mapping is a method, which 

uses dense SNP genotyping to capture as much variation in a region as possible. 

The aim is to allow localization of association signals and identify if there are 

multiple genetic effects within a region. It can be performed on a region-specific 

basis or across multiple regions, such as the strategy taken in the Immunochip 

project, where many regions did have a dense SNP coverage. Fine mapping itself 

has been very successful in localizing association signals and identifying multiple 

effects such as those identified in the STAT4 and TNFAIP3 region (Orozco et al. 

2009;Remmers et al. 2007). An advantage of my study is that it allowed region-

specific fine mapping to be performed in an independent RA cohort. This allowed 

variation in the region, which was not included on the Immunochip array, to be 

captured and analysis to be undertaken to explore whether multiple effects existed 

in the region. 

 

As the index SNP rs9979383 lies between 2 peaks of high recombination, it was 

hypothesised that the causal variant was also likely to be located between these 2 

points. In order to capture as much variation as possible, a tag SNP approach was 

adopted. In total 2 multiplex genotyping assays including 51 SNPs were designed, 

capturing 75% of the total common variation (MAF>0.05) at the locus. One 

limitation, therefore, is that not all known variation was captured but the 
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percentage coverage represented a major improvement from that included on the 

Immunochip array.  

 

 As with the Immunochip overlap replication, the cohort selected for this study was 

an independent RA cohort, which had not been genotyped on the Immunochip. 

Initially the 51 SNPs were genotyped in 3491 RA cases and 2359 controls but, as 

with the Immunochip overlap replication, issues with DNA quantity and quality 

resulted in a large number of failing samples. In total genotype data was available 

for 42 SNPs in 2359 cases and 1877 controls which resulted in limited power to 

detect common associations with smaller effect sizes (OR<1.3). Furthermore 

although the study was designed to replicate rs9979383 in an independent RA 

cohort, it has yet to be replicated in JIA and PsA cohorts, which is necessary to 

confirm it as a true overlapping locus. 

 

Association with the Immunochip index SNP rs9979383 was replicated at p=0.02. 

Although this is a much less significant p value than the Immunochip study, the 

sample size tested (and hence the power) was much lower. Furthermore, no 

correction for multiple testing has been applied so the association may be the 

result of type I error (false positive). However, the OR for this study was almost 

identical to that of the RA Immunochip study at OR=0.9, which provides support 

that it may represent a true genetic association.  Although rs9979383 is the most 

promising candidate for a causal variant in this region, it cannot be excluded that 

the causal variant lies in the uncaptured variation, due to incomplete coverage. To 

capture all variation, additional genotyping of SNPs or target DNA sequencing of 

the region will be required, which is discussed in more detail in section 4.4. 

 

To identify if there were multiple genetic effects, conditional logistic regression 

was performed conditioning on the lead SNP. Once conditioning was performed, 

no other SNPs remained significantly associated, indicating that no other genetic 

effects were present in the region. This may be a true reflection on the genetic 

architecture of the region but it is worth noting that the sample size used in this 

study was modest and thus power was limited to detect additional effects and a 
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larger sample size may identify multiple genetic effects.  

 

As rs9979383 lies ~270kb upstream of the RUNX1 gene itself and was identified as 

having a histone modification profile indicative of an enhancer region, it was 

hypothesized that it may affect expression of genes in the RUNX1 region. To 

investigate this, online eQTL databases were consulted but due to poor coverage of 

the RUNX1 region on arrays, minimal data was found. With this is mind, an eQTL 

study was designed to assess whether the variant acted as a cis-eQTL in a variety 

of relevant tissues.  

 

4.2.4 Whole blood eQTL analysis 

 

 

An eQTL is a single base change in DNA, which results in an alteration of 

expression of a nearby gene. This may occur at close range affecting a nearby gene 

(cis-eQTL) or long range across the genome (trans-eQTL). In several studies eQTLs 

have been shown to be important to disease susceptibility, through their alteration 

of gene expression (Anon 2013;Yang et al. 2010) . In order to perform an eQTL 

study, both genotype and gene expression values must be obtained for a sample. 

The availability of samples from the NHRV study to perform both genotyping and 

gene expression represented a major strength of the current study. 

 

In order to identify whether rs9979383 altered expression of the RUNX1 gene, a 

cis-eQTL study was performed using whole blood from healthy volunteers. This 

involved the collection of 2 peripheral blood samples; 1 for DNA extraction and 

another for total RNA. Whole blood is often selected as the tissue of choice for 

expression studies as it is the easiest to access and store long term (Emilsson et al. 

2008;Westra et al. 2013). These advantages allow the collection of large numbers 

of samples for analysis, which would not be possible with other less accessible 

tissues. Given that eQTL SNPs have large effects on expression levels, smaller 

sample sizes are often able demonstrate significant effects and therefore this 

sample size was potentially sufficient to detect this eQTL (Hunt et al. 

2008;Stranger et al. 2007).   
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Healthy volunteers were chosen for this study rather than disease cases. This is 

because patients with these diseases are often on medication and may have 

comorbidities that could interfere with the interpretation of findings.  The initial 

hypothesis was that the functional consequence of genetic variation at rs9979383 

was regulation of the RUNX1 gene, so initially; a Taqman allelic discrimination 

assay and a Taqman gene expression assay were designed. As 19 splice variants of 

the RUNX1 gene have been identified, to date, a gene expression assay was 

designed to capture as many of these isoforms as possible. By targeting exons 5 

and 6, the assay captured 14 of the 19 splice variants.  Limitations are, first that 

not all isoforms were captured and, second, relative expression of the different 

isoforms could not be tested because the assay cannot discriminate between 

different splice variants. It has been shown recently that gene splicing holds an 

important role in disease susceptibility and therefore capture of all splice variants 

is desirable (Wang et al. 2012). Although designing more Taqman gene expression 

assays would be one solution, the most practical approach would be to perform 

RNA re-sequencing of the region in samples of different genotypes at rs9979383. 

Such an experiment would be able to determine whether the genotype has any 

effect on the levels of RUNX1 splice variants and is described in detail in section 

4.4.  

 

A strength of the study was the use of two endogenous controls, GAPDH and 

ACTNB, for RUNX1 normalization, as they were recommended by the 

manufacturer. Endogenous controls are desirable for Taqman gene expression 

assays as they allow normalization of gene expression values to account for 

differential expression values between samples as a result of both the technology 

and the differential expression between cells.  This is particularly important as 

whole blood represents a very heterogeneous tissue and therefore expression 

values may differ between samples with different cell composition. The use of an 

averaged value from two controls provides an extra level of quality assurance. 

However, no association of the variant with RUNX1 gene expression was detected 

in whole blood. This finding has several possible interpretations.  Firstly, this may 

indicate that the variant does not represent an eQTL and acts in a different way to 

contribute to IA susceptibility. Some of these potential roles are discussed in more 
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detail in section 4.4.  Secondly, the variant may be affecting another gene in the 

region or across the genome as a trans-eQTL. Finally, the heterogeneous cell 

composition of whole blood means that weaker eQTL signals from low frequency 

cell types are masked by the most prevalent cell types. This is particularly an issue 

in whole blood, due to its heterogeneous cellular composition. To determine 

whether this is the case a cell specific eQTL study can be performed such as that 

described in the next section.  

 

One of the strengths of the study is the sample size tested, 70, which is regarded as 

reasonable for this type of work. However, the study was limited by the 

distribution of different genotypes between the samples, with only 1 sample being 

homozygous for the minor allele. This lack of distribution was unexpected, as 

rs9979383 had been shown to have a MAF of 30% in the 1000 genomes CEU 

population, the majority of whom are healthy individuals (July 2010 release).  This 

means that a lack of significant correlation with genotype may be a consequence of 

limited sample size and therefore collection of more samples is required to 

investigate this further. Using healthy controls in this study allowed investigation 

of the role of an overlapping variant in regulating RUNX1. By using healthy controls 

the effect of the variant can be examined without interference by disease 

mechanisms or treatment. On the other hand it would have been desirable to 

examine this affect in the disease cases, as an eQTL might only be present as a 

consequence of disease or response to treatment. Therefore this analysis should be 

repeated using case samples in the future.  

 

As RUNX1 represented the most likely candidate gene in the region to be affected 

by rs9979383, it was the gene selected for this eQTL analysis. Therefore other 

genes in the region were not tested. It may be the case that rs9979383 is not 

altering gene expression of RUNX1 but is actually influencing expression of another 

gene through a cis or trans-eQTL. In particular, it would be interesting to 

investigate the trans-eQTL with the RBP5 identified through the bioinformatics 

analysis in section 3.1.6.1. It may also be that this SNP does not represent an eQTL 

and is contributing to disease susceptibility via another mechanism. Further 

investigation to address this is described in section 4.4.   
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Using whole blood as the tissue of choice in this study has both its strengths and 

weaknesses. Whole blood is one of the most easily accessed tissues, with only a 

small volume required to obtain DNA and RNA. However, whole blood is also a 

very heterogeneous tissue, containing a large number of very different cell 

populations. These populations all vary in gene expression and frequency, 

therefore gene expression signatures from low frequency populations are often 

masked by the other more frequent cell types.  The presence of globin transcripts 

present in whole blood can also contribute to low detection of gene expression by 

techniques such as Taqman gene expression assays (Wright et al. 2008). In recent 

years it has become apparent that the most effective method for analysis eQTLs is 

using highly pure single cell populations . The method allows determination of 

gene expression in a group of more homogenous cells, which can then be 

correlated with genotype from whole blood.  

 

4.2.5 eQTL analysis in T lymphocytes 

 

To investigate whether rs9979383 regulates expression of RUNX1 in a population 

of T lymphocytes, a cell specific eQTL study was performed using samples from 23 

healthy volunteers. To determine gene expression in the RUNX1 region in CD4+ 

and CD8+ lymphocytes, a series of cell separations followed by gene expression 

analysis using a whole transcriptome array was performed. T lymphocytes were 

selected for analysis as a consequence of their involvement in IA pathogenesis. 

CD4+ T lymphocytes have been shown to be a critical cell type in RA, as analysis of 

cell specific chromatin marks in RA susceptibility regions have been shown to be 

enriched in this cell type (Trynka et al. 2013). More recently, it has been shown 

that the frequency of CD8+ T lymphocytes is increased in the synovial joint of PsA 

patients compared to RA, indicating that these cells have a role to play in disease 

pathogenesis (Menon et al. 2014).  Furthermore RUNX1 has been shown to be an 

important transcription factor in T lymphocyte lineage differentiation which 

makes it an excellent cell choice for this functional experiment (Komine et al. 

2003) . It has also been shown that RUNX1 is important for chondrogenesis and 

cartilage production during OA pathogenesis (Blanco and Ruiz-Romero 2013; Yano 

2013).  The region has been shown to be differentially methylated in chondrocytes 
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from OA and non-OA tissues, indicating that the region may play a role in disease 

pathogenesis at a tissue specific level (Jeffries et al, personal communication). As 

OA also involves articular disease, it is possible that the finding may also be true in 

IA.  

 

One of the major strengths of the experiment performed is that primary cells were 

tested rather than immortalized cell lines. Although cell lines are useful for 

providing a large, completely homogenous cell population, they have been altered 

in such a way that the gene expression profiling from these cells may not reliably 

represent a primary human cell (Komine et al. 2003;Putz et al. 2012) .  Cell lines 

are often only derived from a single donor, which makes performing large high-

powered studies challenging.  

 

A strength of the study was the high viability and numbers of PBMCs obtained. To 

allow for collection of the 23 samples tested and to minimize sample batch effects, 

samples were cryopreserved in liquid nitrogen vapour phase prior to separation. 

The technique is widely used to allow collection of a large number of cell samples 

but studies into the effect of cryopreservation on differential gene expression in 

PBMCs have yielded very inconsistent results (Chen et al. 2010). Although this is 

an issue to be considered, all samples were cryopreserved for a short time (<28 

days total) and therefore were expected not be extensively affected by the process. 

To assess the effect of cryopreservation on the viability of the cells, a viability 

check was performed post-separation using flow cytometry.  

 

Post-cryopreservation, CD4+ and CD8+ lymphocytes were separated from each 

PBMC sample using Miltenyi MACS magnetic cell separation. MACS separation was 

selected over FACS sorting and other magnetic separation methods, as it 

represented the best quality method for a number of reasons. Firstly, as this 

strategy uses an automated separator, 6 samples could be separated 

simultaneously therefore allowing large numbers of samples to be processed 

together, which in turn minimized the risk of batch effects being generated during 

the process. It also allowed the separation of several subsets of cells from the same 

blood sample. Although FACS would allow sorting of multiple populations from the 

same sample, this would have used a much larger quantity of antibody and would 
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take a much longer time as each sample needs to be processed individually at a 

slow rate, potentially adding to batch effects. Therefore MACS was selected to 

ensure the separation of high purity cells across a large sample size quickly and 

easily without excessive costs.   

 

The use of automated magnetic separation allowed the option of either positive or 

negative selection strategies to be considered. Positive selection involves the direct 

targeting of a specific population of cells with antibodies conjugated to a magnetic 

bead. These can then be removed using a magnetic field, resulting in a highly pure 

homogenous cell population. In contrast, negative selection involves the targeting 

of every other cell population, except the population of interest, with a 

magnetically conjugated antibody. When these are passed through a magnetic 

field, all non-targeted cells are removed, leaving the cell population of interest. 

Positive selection generally results in significantly higher purity of cell populations 

than negative selection but there is an important factor to consider. Although the 

antibodies used to target cells during positive selection are designed to avoid 

aberrant activation of cells, cell markers such as CD4+ and CD8+ are often involved 

in cell stimulation. This means that when an antibody binds the marker it may 

result in changes to the cell. This in turn could potentially result in changes in the 

cell transcriptome which could potentially affect the results of a study. To date 

limited data has been produced showing that this is a concern, though it is 

certainly something worthy of consideration. The most important factor in 

deciding between these strategies was the ability to separate different cell 

populations from the same sample. This is only possible with positive selection as, 

during negative selection all other cells are removed from the sample and cannot 

be recovered. As the aim in this study was to separate both CD4+ and CD8+ T 

lymphocytes from the same sample, positive selection was, therefore used.  

 

The choice of a positive selection strategy was also supported by the need for high 

purity cell populations when analysing the transcriptome of a homogenous 

population of cells. If contaminating cells were present, this could result in 

inaccurate gene expression levels being detected. Furthermore positive selection 

allowed a double column strategy to be used in which the cells were passed 
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through 2 magnetic fields, therefore providing a greater chance of a highly pure 

cell population. Consequently choosing this strategy resulted in very high average 

purities of 99.4% for CD8+ lymphocytes and 95.31% for CD4+ lymphocytes, which 

are sufficient for gene expression analysis. Although an insignificant amount of 

contamination was observed in the CD8+ lymphocyte populations (0.06%), slightly 

more was detected in the CD4+ lymphocytes (4.69%). This is likely to be due the 

fact that the CD4+ separation represented the third cycle in the technique, 

meaning that the cells had passed through the magnetic field and undergone 

centrifugation several times resulting in more damage than in the first cycle. This 

was supported by the findings in the viability screening,  as the CD8+ population 

had an average viability of 80% compared to the CD4+ population at 67%.  The 

drop in purity may also be due to a small number of monocytes, which were not 

removed by the CD14+ selection being picked up in the CD4+ separation, due to 

their low expression of the CD4 marker (Kazazi et al. 1989) . Overall, this small 

contamination was not considered a significant issue as any alteration of the gene 

expression signature caused by the contaminating cells would be masked by the 

high number of cells of interest.  As all the samples obtained were highly pure, all 

were processed for RNA extraction and subsequent whole transcriptome gene 

expression analysis.  

 

Once RNA was extracted from all samples, QC was performed using the Agilent 

Bioanalyzer and Nanodrop N-1000 to assess the concentration and calculate the 

RIN values for each sample. Post QC, it was noted that several of the samples had 

lower 260/230 ratios than expected. This appears to be due to minor Trizol 

carryover from the RNA extraction protocol as it absorbs at 230nm on the 

bioanalyzeN-1000 absorbance spectrum.  Normally this small contamination 

would not be detected but the small quantities of RNA obtained from small cell 

populations mean that it becomes apparent. Although minor contamination is not 

likely to alter gene expression detection, a DNase treatment, which included an 

acid chloroform re-extraction and several clean up stages, was selected to optimize 

the purity of the sample, without compromising integrity. The DNase treatment 

was performed as RNA contamination by genomic DNA has been shown to actively 

alter gene expression analysis and therefore should be addressed during sample 

processing (Naderi et al. 2004).  Once all samples had been processed, 45 (23 CD8+ 
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and 22 CD4+) were converted to cRNA for analysis using the Illumina Human HT 

expression array.  

 

Once all 45 samples were analysed using this array, quality control and 

normalization was performed. Normalisation is essential for whole transcriptome 

data as it is required to account for differences in samples and probes across the 

array so that comparison of gene expression values can be made across samples 

and probes. One of the strengths of the study was the extensive QC that was 

undertaken during analysis. This included, checking the signal to noise ratios for 

each sample and using this as a covariate in subsequent analysis; ensuring that the 

number of probes expressed was not significantly different between the CD8+ and 

CD4+ samples; ensuring that  all probes included in analysis correlated with a 

transcript and removing those that did not; performing MDS analysis to identify 

sample outliers and performing PCA analysis.  The PCA analysis reassuringly 

showed that the sample characteristic accounting for most of the variance between 

samples was cell type.  

 

 Once normalization and QC was complete, the gene expression data for all probes 

mapping within 400kb of the RUNX1 gene were selected for eQTL analysis. This 

included data for 2 probes mapping to the RUNX1 gene and 2 probes mapping to 

LOC100506403, a lnc-RNA which is upstream of RUNX1. To assess whether 

rs9979383 represented an eQTL, gene expression at these 4 probes was correlated 

with genotype using linear regression. Of the 23 selected for analysis, 22 had 

genotypes for rs9979383 which were generated in the previous whole blood eQTL 

study. As with the whole blood analysis, no significant eQTL was detected between 

genotype and any of the probes, with the smallest p value being observed with 

RUNX1 in CD4+ cells (p=0.1). Again as these samples represented a subset of the 

samples used in the whole blood analysis, there was limited distribution of sample 

genotypes, with only 1 sample representing double carriage of the minor allele.  

Although the results represent a more convincing trend to that seen in the whole 

blood analysis, this does not provide enough evidence that rs9979383 represents 

an eQTL and therefore further analysis is required such as that described in 

section 4.4. 
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At 23 healthy volunteers, the sample size used in this study is significantly smaller 

than consortium driven eQTL projects such as the Immvar project (Towfique et al, 

personal communication). Due to the lack of large scale expression projects it is 

challenging to tell at exactly what point the study will be well powered enough to 

detect a genetic effect. As seen in the whole blood analysis, the study was also 

limited by lack of genotype distribution, as only 1 sample was used which carried 

the double minor allele. If this sample size was to be increased to include more 

samples from the heterozygous and double minor allele groups, it would have 

greater power to detect genetic eQTL effects. As this variant has a 30% frequency 

in the healthy population, this is potentially a strategy to consider.  

 

CD8+ and CD4+ T lymphocyte subsets were selected as cells of interest in this 

study, due to their involvement in RA and PsA, respectively.  Although a very 

hypothesis driven decision at the time, new evidence indicates that RUNX1 may be 

acting as a mediator of inflammation via its effect on chondrogenesis in the 

damaged joint (Blanco and Ruiz-Romero 2013). This may be one of the reasons 

that an eQTL has not been detected in CD8+ and CD4+ cells as they are derived 

from PBMCs whilst this effect may only occur exclusively in the joints of patients. It 

would be desirable that chondrocytes are also included as a cell type of interest, in 

any further work.  

 

To ensure that a large number of primary cells from donors could be collected 

during this study, cryopreservation techniques were adopted. Although this is a 

standardized technique across the primary cell field, some papers have shown that 

long-term cryopreservation can affect the overall gene expression profile of 

PBMCs. It was ensured in this study that samples were not stored in liquid 

nitrogen vapour phase for more than 26 days, therefore minimizing the risk of 

changes in gene expression. To fully assess whether this had an effect, a study 

comparing the effects of short-term cryopreservation in these samples would have 

to be performed.  

 

Once the cells, were separated total RNA was extracted using Trizol chloroform, 

followed by a DNase treatment to remove genomic DNA. Overall this technique 
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resulted in the extraction of good quality RNA overall which could be used for gene 

expression analysis. For the test, the Illumina Human HT whole transcriptome 

array was used. This array contains probes for 47,000 gene transcripts at a 

genome wide level.  Array technology is greatly advantageous as a large volume of 

data can be generated from each sample, though it does come with some issues. 

Despite having extensive coverage of the genome, the array does not always 

account for the large number of transcripts a gene may have. For example, the 

RUNX1 gene investigated has 19 identified transcripts but the array is only capable 

of capturing 2. This means that others may not be detected, which may be 

regulated by an eQTL effect. In order to capture all variants a Taqman gene 

expression assay or RNA resequencing must be performed as described in section 

4.4.  

 

4.3. Implications of study  

 

4.3.1 Immunochip overlap  

 

 

Overall, the findings in this study have led to a greater understanding of the genetic 

overlap between different types of IA. In the Immunochip overlap analysis 50 

genetic regions, were identified as being associated with more than one type of IA 

at p<1x10-3, which is a significant addition to previous knowledge which had 

identified just 7 regions. Many of these regions also represented novel IA 

associations and therefore signify a leap in knowledge for these diseases.  32 of 

these 50 overlapping regions were associated with both RA and JIA inclusively, 

indicating that the greatest genetic overlap appears to be between these 2 

diseases. This is further supported by the identification of overlap between these 

diseases in other independent studies (Hinks et al. 2010b;Hinks et al. 2012). 

Despite this it is also worth keeping in mind that this study was performed using 

samples from different subsets of RA and JIA and that further analysis stratified by 

disease subset will be required to fully explore this.  Nonetheless, the results 

indicate that common pathways contribute to these diseases, which if identified 

could be used to re-classify diseases according to the primary pathway involved, 

direct the use of current therapies and identify targets against which to develop 
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drugs that could be used to treat all three types of IA. The development of these 

multi disease therapies could potentially target a common pathway, which may 

avoid the blanket immunosuppressive effects which are an issue for current IA 

therapies.   

 

When the most associated/index variants within the 50 overlapping regions were 

compared between different diseases, extensive similarities and differences were 

identified, indicating that genetic overlap is not always clear-cut. In 14 regions the 

SNP was found to be identical or highly correlated by LD (r2>0.8). This included 

regions such as the PTPN22, UBE2L3 and TYK2 regions. In many cases the index 

SNP associated with more than 1 type of IA is also identical to SNPs which are 

associated with other immune mediated diseases. For example in the TYK2 region, 

the SNP which is associated with RA and JIA (rs3453663) is also associated with 

MS and PsV (Beecham et al. 2013;Tsoi et al. 2012) .  Another example is in the 

PTPN22 region, in which the same SNP rs6679677 is associated with RA, JIA, and 

T1D (Barrett et al. 2009). This indicates that these diseases share common 

genetics and therefore potentially pathways which contribute to pathogenesis. 

Further investigation is required to identify the pathway in which these variants 

contribute to and learn more about the common processes driving these diseases.  

 

In contrast, in the majority of regions (31 regions), the index SNPs were 

completely different between diseases and were not correlated by LD (r2<0.4).  

This is perhaps the most interesting finding as it shows that although a particular 

region is implicated in disease pathogenesis, there may be different effects present 

in the region which could be potentially responsible for the differences between 

the diseases. Alternatively, these different variants could be very independent but 

act on the same redundant pathway and therefore produce identical effects. Two 

regions which are associated with more than 1 type of IA but contain variants 

which are not correlated are the IL2RA and IL2RB regions. In the IL2RB region, 

completely different variants are associated with RA compared to JIA. Furthermore 

the direction of the genetic effects appears different, with the minor allele of the 

RA SNP conferring disease risk, whilst the minor allele of the JIA SNP confers 

disease protection. A similar situation has been observed in the IL2RA region, 

where two uncorrelated SNPs within the same region confer different directions of 
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effect in each disease.  It has since been shown through conditional analysis that 2 

independent genetic effects exist for JIA, whilst in RA there is only 1 (Eyre et al. 

2010;Hinks et al. 2013).   . When subjected to further analysis, it appears that 

secondary genetic effect in the region in JIA is identical to that identified in RA, 

which indicates there is in fact a shared association within this region.  This is a 

particularly interesting finding as IL2RA and IL2RB genes both encode subunits of 

the IL2 cytokine receptor. The receptor is essential for the activation and 

proliferation of T lymphocytes and other essential immune cells. The finding 

shows that although the association in these regions appeared to be very different 

in the initial analysis, undetected overlap may be found by further investigation of 

the genetic architecture within the region.  

 

In total 9 regions were found to be associated with all 3 types of IA which is an 

exciting finding, as only 1 pan-IA region had been identified prior to this study. 

Although this could represent very different associations within the same genetic 

region, these regions are of particular interest as they indicate that the same genes 

could be driving the 3 diseases. Furthermore, several of these regions have been 

associated with other immune mediated diseases, indicating that these variants 

may be causing a significant dysregulation of the immune system which is capable 

of manifesting itself as very different pathologies.  In two regions (RUNX1 and 

TYK2), an identical or highly correlated SNP was found to be associated with all 3 

types of IA studied but only in the RUNX1 region was the SNP found to be exactly 

the same between diseases.  This unique region was selected for further 

investigation as the positioning of the SNP and the previously characterized 

functional role of the gene made this an excellent candidate to be contributing the 

IA pathogenesis. It also represented a completely novel association for all 3 

diseases and therefore further analysis of the region was required.  

 

4.3.2 Immunochip replication 

 

 

The SNPs which were replicated in this study were located in the CTLA4 and 

MTMR3 regions which are particularly interesting themselves. The CTLA4 region 

has been associated with RA in a number of different cohorts and has been 
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suggestively associated with JIA . It has also been associated with a number of 

immune mediated diseases such as T1D and ATD (Barrett et al. 2009;Cooper et al. 

2012). Therefore, this study adds to the existing body of evidence that the gene is 

associated with disease susceptibility to RA and JIA  (Fairfax et al. 2012).  On the 

other hand MTMR3 had not previously been associated with any type of IA, 

although it has been associated with both T1D and IBD (Hoefkens et al. 2013) This 

therefore represents a novel and exciting region which should be subjected to 

further investigation in the future.  

 

Although it was disappointing that none of the SNPs included in this study was 

associated at a genome wide significant level with RA, they did show a trend 

towards association which is promising. The most likely explanation for this is the 

lower power as a consequence of sample size which was unavoidable in this case. 

This analysis ideally this should be repeated in larger JIA and PsA cohorts which 

could potentially be collected through collaboration with other investigators. This 

is discussed in more detail in the section 4.4.  

 

4.3.3 RUNX1 replication and fine mapping  

 

 

The SNP rs9979383 replicated successfully at p=0.02, which in a study of this size 

is an acceptable indication of association. Furthermore with an odds ratio of 0.903 

in this cohort, this was identical to the odds ratio of 0.91 seen in the RA 

Immunochip cohort. This provides further evidence that the association may 

represent a true RA susceptibility variant. Unfortunately this could not also be 

confirmed for JIA and PsA, due to lack of sample availability. In future this panel of 

SNPs should be genotyped in JIA and PsA samples in order to replicate it in these 

disease cohorts but is subject to limitations as described previously.  

 

To identify if any additional effects were present within the region, conditional 

analysis was performed. By conditioning on rs9979383, the aim was to identify all 

SNPs which are strongly correlated with rs9979383 and therefore detect if any 

additional independent effects exist within this region.  This strategy has been 

essential in identifying regions which contain multiple genetic effects such as the 

STAT4, TNFAIP3 and PTPN2 regions which are all IA susceptibility regions. No 
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additional effects were identified however the limited power of the study is worth 

considering. This leads to the idea that rs9979383 (or markers in linkage 

disequilibrium with it) represents the true causal variant within the region but this 

will not be confirmed until complete coverage of variance in the region is captured.  

Regardless, the study shows that fine mapping is an effective strategy for capturing 

a large proportion of the genetic variants in a region as possible.  

 

Given that the most associated variant in the region, rs9979383 is located 

approximately 280kb upstream of the RUNX1 gene and is located in a region with a 

histone H3K4Me1 mark of an enhancer, it was hypothesized that it may regulate 

gene expression by a cis-eQTL effect. This was further supported by evidence that 

the RUNX1 gene has 2 promoters, distal and proximal, which means that this SNP 

could potentially lie directly in the distal promoter (Sroczynska et al. 2009) and 

therefore effect the regulation of the RUNX1 gene. 

 

4.3.4 RUNX1 eQTL analysis in whole blood and T lymphocytes 

 

Although the current study did not identify an eQTL with rs9979383 and RUNX1 in 

whole blood or T lymphocyte subsets this has been a valuable contribution to the 

RUNX1 story and has shaped the studies which will be performed in this region in 

the future. Furthermore although it looks likely that this SNP or its proxies may not 

represent an eQTL in these tissues, this may have been a consequence of several 

limiting factors. Firstly as the studies were only performed in 75 and 23 healthy 

volunteers respectively, the power to detect an eQTL effect may not have been 

adequate. Since then a number of larger eQTL studies have been initiated by 

international consortiums such as the Immvar consortium, with data anticipated to 

be released very soon (Towfique et al, unpublished). Although limited in size it was 

expected that any larger cell-specific eQTL effects would be picked up in this 

sample size and since then several interesting eQTLs have been picked up using 

this dataset, indicating there was sufficient power to detect genetic effects (Bowes 

et.al, Manuscript in preparation). For example, a SNP mapping the 5q 

chromosomal region associated with PsA has been shown to be an eQTL with the 



 

266 
 

SLC22A5 gene in CD8+ T cells. 

 

Although the cell-specific eQTL study was designed to investigate cell types of 

importance in IA, as whole blood represents a very heterogeneous tissue, an eQTL 

may be present in a cell type which was not captured in this study. This is 

particularly important as the study was performed in blood whereas RUNX1 has 

been shown be important for chondrogenesis; therefore, an eQTL may only be 

observed in joint tissue (Wang et al. 2013b). Other cell types such as B cells have 

been shown to be particularly important in RA and JIA as both effector cells and 

producers of autoantibodies (Mauri and Bosma 2012;Prakken et al. 2011). Most 

recently a particular FcRL4-expressing set of B cells have been shown to be 

present in the RA synovial joint and therefore signify a cell type which should be 

investigate in a future eQTL study (Yeo et al. 2014) . Another possibility is that 

although the CD4+ and CD8+ T lymphocyte compartments were investigated in 

this study, a signal may be present in a low frequency subset of these cells such as 

T regulatory (Treg ) or naïve T cells. Again, as with the whole blood study this may 

lead to signals being masked in a heterogeneous cell population and therefore a 

more refined study is required to investigate this further.  

 

Another very important issue with this study is that it was performed in both 

healthy controls and using unstimulated primary cells. This means that eQTL 

signals which are a consequence of the inflammatory process driving IA would not 

be picked up. In a recent study comparing cis-eQTLs in interferon gamma 

stimulated (IFNγ) and unstimulated monocytes, a large proportion of the eQTLs 

identified were exclusive to the stimulated cells indicating that in disease studies it 

may be essential to stimulate cells with an inflammatory mediator such as IFNγ or 

TNF-α (Fairfax et al. 2014). 

 

Although the RUNX1 gene seemed like the most likely candidate for an eQTL effect, 

it may be the case that it is a totally different gene which is regulated by 

rs9979383. This will require further investigation through gene expression studies 

which capture all the genes in the surrounding region, with LOC100506403 long 

coding-RNA (lncRNA) representing a particularly interesting candidate for future 

investigation. lnc-RNA’s represent non-protein coding transcripts which are 
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greater than 200 nucleotides, making them significantly longer than other non-

coding variation (Perkel 2013). Although they represent a novel type of variation 

identified in recent years, they are believed to regulate gene expression and 

splicing, which can consequently confer susceptibility to disease.  

 

Most importantly this study only examined the presence of a cis-eQTL between 

rs9979383 and RUNX1/LOC10050640; however the SNP may be conferring disease 

susceptibility by a different mechanism. By examination of studies in other 

diseases a likely candidate mechanism for this SNP is either a differential effect on 

gene splice variation or TF binding. Investigation of this effect requires application 

of further functional techniques which are described in the following section.  

 

4.4 Future Work  

 

This study has assessed the genetic overlap between 3 times of IA. To take this 

work forward it would be desirable to repeat this analysis in a much larger sample 

size to increase the power to detect smaller genetic effects. As RA had the largest 

sample size of the 3 diseases, it is crucially important that more samples are added 

to the JIA and PsA cohorts, which are significantly less well powered in the current 

analysis.  This may be challenging as these represent rarer diseases for which 

sample cohorts have not been collected for as long as RA but  already as the result 

of international collaborations,  samples are becoming available. Since my analysis 

additional genotyping has been performed in additional JIA and PsA cases, for 

which data is currently available.  

 

Although the strategy used in this study was successful in identifying genetic 

overlap, the application of more powerful statistical methods to assess overlap 

may reveal more regions in the future.  These include cross phenotype meta-

analysis and pan-meta GWA study techniques described in section 1.7.4.2. By 

combining the cases for the 3 diseases, an IA cohort of nearly 20,000 samples 

would be generated, which would provide extensive power to detect shared 

genetic effects. Indeed, another researcher in the department is already exploring 

this approach (personal communication). Analysis will be performed using a 
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simple case-control model to identify which regions remain significant and 

therefore represent the most likely to be true overlapping regions. Limitations 

include the fact that as the RA cases form the largest numbers, the known RA 

associated regions may drive associations observed. Furthermore, different SNP 

associations in the different diseases may be acting on the same gene but this will 

not be detected using a simple case-control approach. Nonetheless, the approach 

does provide the greatest power to detect associations that may not reach 

statistical significance in individual data sets but are associated with IA in general 

if the same SNPs are responsible across diseases. 

 

As a number of different RA and JIA subtypes exist, it would be ideal to perform 

further subtype specific analysis. It has been shown previously that some 

associations are only observed in specific disease subtypes; for example the AFF3 

and CD28 regions are associated with ACPA+ but not ACPA- RA whilst the IL23R 

region is associated with juvenile psoriatic arthritis but no other JIA subtypes 

(Hinks et al. 2011;Viatte et al. 2012) Therefore, future analysis would include a 

more detailed exploration of which JIA subtypes are genetically more similar to 

PsA or to ACPA positive / negative RA. 

 

The current analysis of overlap identified a number of regions with suggestive 

evidence for association with more than one type of IA. However, only the RUNX1 

region was investigated further in my study. If further convincing evidence of true 

association is found for the other regions of overlap identified, it will be important 

that further studies, to functionally characterise the effect of the associated 

variants, are performed so that the fundamental pathways underpinning IA are 

identified. Two particularly interesting regions which should be prioritized for 

follow up are the IL2RA and IL2RB regions. These regions appear to exhibit 

different associations in RA and JIA and, therefore, might provide more 

information about the mechanism which makes the diseases two separate clinical 

entities. Firstly, it would be essential to use fine mapping, sequencing and 

haplotype analysis to identify the true causal variant in the regions. As association 

with both regions has already been replicated in several independent cohorts for 

both RA and JIA, they represent regions for which functional analysis could be 
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undertaken immediately. By contrast, several of the overlap regions identified 

represent novel associations (e.g. RUNX1, MTMR3, and EOMES) and, therefore, the 

association should be replicated in independent disease cohorts before any 

functional work is undertaken. 

 

The aim of the Immunochip replication was to provide further evidence that 9 of 

the 50 overlapping regions identified were associated with RA using an 

independent disease cohort. If this study was to be enhanced it would be essential 

that it was performed in a larger sample size, as the current study was 

underpowered to detect moderate genetic effects. It is also necessary to replicate 

these associations in JIA and PsA. As described previously, this may be challenging 

due to the lower prevalence of disease and limited sample cohorts which are 

available. Furthermore, as only the index SNP from each disease was selected for 

replication, it did not provide sufficient representation of the genetic variation in 

any of the regions. As the SNP tested is unlikely to represent the causal variant, 

because of the low prior probability that a causal SNP would be included on an 

array, associations may be observed because of the LD with a causal SNP. In the 

lower powered replication cohort, if the SNP was not strongly correlated with the 

causal SNP but in modest LD, then the chances of replication are reduced.  

Therefore in future it will be desirable to genotype several tag SNPs in each region, 

to maximize the chance of detecting the causal variant. Genotyping in an 

independent RA cohort did reveal replicated association of variants in 2 

overlapping regions at a p<0.05 (CTLA4 and MTMR3) but, in order to explore 

further, the results will be combined with the Immunochip data in a meta-analysis, 

as this will provide results from the greatest number of samples and therefore will 

maximise the power.  

 

One region which did provide further convincing evidence of association was the 

RUNX1 region, which was associated at p=0.02 in an independent RA cohort. It is 

essential that the association is now tested in independent JIA and PsA cohort to 

confirm that the region truly represents a pan-IA locus. Given that the association 

observed in the RA replication cohort remained with the same SNP associated in 

the original RA Immunochip cohort, rs9979383, it may be possible to just test that 



 

270 
 

variant in the independent JIA and PsA samples, rather than performing fine 

mapping as was done for RA. If this is the case, this data could then be combined 

with the Immunochip data to provide an even greater powered analysis to 

estimate the true effect size.  

 

Although at 75% of common (MAF<0.05) variation, the tag SNP coverage of the 

region in the RUNX1 fine mapping was significantly higher than that in the 

Immunochip analysis, it is essential that complete coverage of the region is 

achieved in future. This means that all variants within the region will be captured 

and therefore it is more likely that the SNP identified either tags or is the causal 

variant within that region. Although 75% of variation was captured using the 

Sequenom MassARRAY SNP genotyping of 51 SNPs, it was calculated that to 

capture 100% of variation, 202 additional SNPs would have to be genotyped, just 

to account for common variation in the region, without taking into account any low 

frequency variation (MAF<0.05) which may be present in the region and therefore 

contributing to disease susceptibility. As many arrays such as the Immunochip, do 

not appear to capture this type of variation particularly well, it may be 

advantageous to perform imputation or sequence the DNA instead. DNA 

sequencing involves the determination of the complete sequence of DNA and can 

be performed at a regional or genome wide level with several next generation 

sequencing platforms now available. Both approaches have been used successfully 

in other immune mediated diseases to determine differences in variation between 

individuals, which may be indicators of disease susceptibility (Nejentsev et al. 

2009;Rivas et al. 2011) . The technique can also be used to increase the likelihood 

of identifying a causal variant as a complete analysis of complete variation within a 

region can be performed. This has been shown to be effective in a recent study 

targeting the IKBKE and IFIH1 regions which had previously been associated with 

SLE. In this case, DNA resequencing was utilised to successfully identify the most 

likely causal variants within these regions and help formation of a hypothesis to 

explain the regions’ functional contribution to disease susceptibility (Wang et al. 

2013a) . As the variants identified in that study represented low frequency 

variants, they may not have been identified by GWA studies alone, highlighting the 

importance of resequencing to identifying novel associations.  
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Additionally DNA resequencing is used in a number of experiments as a means of 

determining the sequence of end products such as in ChIP experiments where it is 

used to determine the sequence bound to the TFs under investigation. This has 

been successful in identifying the genes which are regulated by IRF5 and STAT4 in 

SLE (Wang et al. 2013a). DNA sequencing of the RUNX1 region in RA, JIA and PsA 

cases plus healthy controls would allow an analysis comparing the sequences to be 

performed, which could be used to determine the most likely causal variant in the 

region. This variant can then be prioritised for further functional studies. Although 

DNA resequencing is a great resource for identifying causal variants, identifying 

low frequency variants and sequencing ChIP end products, it does have its 

disadvantages. For sequencing to be performed, a large volume of good quality 

DNA is required, which may not be possible in many cases. Furthermore, in order 

to be effective a large number of samples are required to be sequenced. As this 

technique is both very low throughput and expensive this can mean that 

experiments take up an extensive volume of time and cost, though arguably the 

data quantity and quality obtained makes it a worthwhile investment.  

 

As the most likely causal variant in the RUNX1 region identified to date, rs9979383 

was selected as a candidate for functional studies. When assessed 

bioinformatically the presence of the H3K4Me1 histone methylation mark 

combined with the position of the SNP meant that this SNP was hypothesized to lie 

in a RUNX1 regulatory region. Therefore a series of eQTL studies were designed to 

assess the effect of rs9979383 on gene expression in the region.  

 

In the RUNX1 whole blood eQTL, analysis was performed correlating rs9979383 

genotype with RUNX1 gene expression in 70 healthy controls using a Taqman gene 

expression assay designed to capture the majority of the known RUNX1 splice 

transcripts. In the future this experiment should be repeated in a larger number of 

samples, as the eQTL effect may not have been identified as a consequence of 

limited power. Furthermore as rs9979383 was found to be associated with RA, JIA 

and PsA, the study should be extended to include DNA and RNA samples from 

cases with each of these 3 diseases. As explained previously due to low prevalence 

of JIA and PsA combined with ethical implications of taking samples from children, 

many studies have not collected the numbers of RNA samples early stage of studies 
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required for a well-powered study.  

 

The study design itself involved the genotyping of rs9979383 and a gene 

expression assay to capture 15 of the 19 known splice variants for RUNX1. As only 

rs9979383 was genotyped this experiment did not take into account additional 

variation in the region. Furthermore although the gene expression assay was 

designed to capture as many RUNX1 splice variants as possible for a single assay, 

not all transcript variation was captured. The nature of Taqman gene expression 

assays also means that the technology cannot discriminate between splice 

variants; therefore if the SNP is regulating one of the less common transcripts, it 

could be masked by the presence of the common transcripts.   To explore this in 

the future, the experiment would have to be repeated either using multiple gene 

expression assays specifically designed for the 19 variants, using a whole 

transcriptome array as used in the current study or by RNA resequencing. Of these, 

RNA resequencing is the only one likely to capture all transcripts in a region. 

 

RNA resequencing is similar to DNA sequencing, except it is used to sequence 

mRNA which is produced when genes are transcribed in the cell. Again it can be 

used to explore specific genomic regions or at a whole transcriptome level (Costa 

et al. 2013) . Unlike microarray technology, RNA resequencing does not require 

transcripts to be mapped to a genome build.  This means it can be used to identify 

novel genes, splice variants and can be used to detect allele specific expression. 

Furthermore the technique can be used to detect non-coding RNAs and micro-RNA, 

which are thought to contribute to the development of many diseases including IA 

(Ceribelli et al. 2011a;Ceribelli et al. 2011b). Overall RNA resequencing is believed 

to be subject to much less background noise than microarrays, therefore 

potentially can produce more accurate findings (Wang et al. 2009). 

 

RNA resequencing could be used to follow up this study as it would allow all splice 

transcripts to be detected and different splice variants to be discriminated from 

each other. The technique could then be used to determine which splice transcripts 

are produced when different alleles / genotypes of rs9979383 are present and 

therefore if this SNP regulates expression in the RUNX1 region. Currently a study is 

underway within the department to perform RNA resequencing of the RUNX1 
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region in RA cases with differential genotype at rs9979383. These results may 

provide definitive confirmation of whether rs9979383 does regulate expression of 

RUNX1 through differential gene splicing or not. The data could also be combined 

with DNA sequencing data in the region to provide an insight into complete DNA 

and transcript variation in the region in a small group of RA cases.  

 

Although RNA resequencing is likely to be the most utilised method for 

investigating gene expression in future, the technology is in its infancy and can 

therefore be particularly low throughput whilst being very costly.  Furthermore it 

requires very high quality high concentration total RNA samples, which for many 

studies might be challenging to obtain.  

As with the RUNX1 whole blood eQTL study, the RUNX1 eQTL study in T 

lymphocytes could be followed up with a number of strategies to investigate how 

rs9979383 contributes to disease susceptibility. As this study was only performed 

in 23 healthy volunteers and therefore was limited by a lack of genotype 

distribution at rs9979383, it is desirable to perform this study in a larger number 

of samples to achieve sufficient genotype distribution. Additionally as any 

potential eQTL may only be present in IA disease cases, it is important that this 

study is also repeated in RA, JIA and PsA cases. This may be challenging as for 

separation strategies to be employed, fresh blood samples are required. As IA 

patients only visit a clinician a couple of times a year, this limits the number of 

samples which can be taken and may restrict any potential future studies. Another 

factor which should be considered is the activation status. In a recent paper 

monocytes treated with IFN-γ had a very different eQTL profile compared to 

unstimulated cells (Fairfax et al. 2014). This means that the lack of eQTL in this 

study could potentially be the result of the resting state of the cell. Further 

investigation is required, by repeating the process in this study in cells which have 

been treated with inflammatory mediators such as IFN-γ or TNF-α. 

 

At the time this study was initiated, work by Raychaudhuri et al. exploring the 

overlap of RA associations with epigenetic marks in different cell subsets had 

indicated that CD4+ EM T cells were likely to be the key cell type responsible for 

RA (Trynka et al. 2013). A similar approach in PsA by John Bowes had identified 

CD8+ T cells as the key cell type for PsA (Bowes et al, personal communication). 
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Hence, these two immune cell types were prioritised for cell-specific eQTL 

analysis. Since then evidence suggests that RUNX1 may be regulating 

chondrogenesis in OA at a joint specific level.  This may also be the case for IA 

types and therefore it would be ideal to repeat the eQTL study in chondrocytes 

derived from joints of IA patients. However, there are very few opportunities to 

sample joint tissue from patients and it is ethically not acceptable to sample 

healthy volunteers. Cartilage can be harvested from patients with IA at the time of 

joint replacement but that tissue may not be representative of the situation in 

early arthritis when inflammation is more active. If these samples cannot be 

obtained, chondrocytes could also be derived from primary cell blood monocytes 

but this may potentially produce a gene expression profile different to those seen 

in joint chondrocytes.  

 

In order to collect enough peripheral blood for multiple cell separations, PBMC 

cryopreservation techniques were utilized. Although it was not known whether 

this has a major effect on the gene expression profile of the separated cells, it is a 

widely used technique across other studies, although not always mentioned in 

publications. To assess the effect of cryopreservation, the gene expression profiles 

of the CD8+ and CD4+ samples were plotted on an MDS plot to identify any 

aberrant differences in expression between samples (). Although the profiles of the 

CD8+ and CD4+samples looked significantly different, all samples within the same 

group clustered very strongly together, indicating that, although the samples were 

cryopreserved for different times, it did not have any large effects on the gene 

expression profiles. Although this is a strong indicator that cryopreservation is 

suitable for use in future studies within the department, it is desirable that a 

comprehensive study be performed comparing the gene expression profiles of 

cryopreserved and non-cryopreserved cells. This is described in more detail in 

section 4.4. 

 

The methods used in this study to determine genotype and gene expression could 

also be improved. As described previously only genotype data from rs9979383 

was analysed, therefore all other SNPs in the region were not taken into account. 

This is important as they could potentially be an eQTL but have not been picked up 
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in this study. Since completion of the whole blood eQTL study, the samples have 

been genotyped on the Illumina core exome array which includes a number of tag 

SNPs in the RUNX1 region. In that study, a genotyping array approach was chosen 

due to a number of factors. Genotyping arrays are fairly high throughput and have 

a defined analysis pipeline for interpretation of data. This allowed generation of a 

large volume of high throughput genetic data from 23 samples at low cost across a 

short period of time. Further work will involve correlating these SNPs with 

expression in the region, to determine the presence of any eQTLs. However, unless 

the eQTL SNP was more strongly associated with IA, it would not explain how the 

associated variant for IA acts.  

 

Although a “whole transcriptome,” array was used in this study, it did not contain 

probes which captured all 19 splice variants of RUNX1 described previously. To 

address this in future studies, a gene expression assay would have to be designed 

to capture all splice transcripts or RNA resequencing would have to be performed. 

Although this has not been performed using RNA from individual cell types in our 

department, the development of single cell gene expression techniques such as the 

Nanostring  technology  will allow this to be performed using a small amount of 

sample, allowing for discrimination of different splice variants. The approach 

would be ideal for following up the current study due to availability of leftover 

RNA, which has been extracted but is available for further testing.   

 

Although an eQTL was not found in the RUNX1 region in whole blood, CD8+ or 

CD4+ T lymphocytes this may mean that rs9979383 confers disease susceptibility 

in the RUNX1 region by a completely different mechanism. One possibility is that 

the region in which rs9979383 is located represents a TFBS or DNA binding site. 

The presence of the SNP could change the sequence in such a way that binding 

cannot occur. This mechanism can be investigated using 3C or ChIP analysis as 

described in section 1.6.3 and would allow determination of which sequence or 

transcription factor binding is altered in the presence of the different SNP alleles. 

The analysis could be performed in a number of cell lines such as immortal T 

lymphocyte or chondrocyte cells with known genotype, making it much easier to 

obtain genetic material than the primary cell strategy used in this study.  
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Another potential role of the rs9979383 is the epigenetic regulation within the 

RUNX1 region. Epigenetic regulation can result in changes to how transcription 

factors bind or how genes are transcribed. This is particularly interesting with 

regards to DNA methylation, as DNA within the RUNX1 region has been shown to 

be differentially methylated in OA and non-OA joint tissue (Jeffries et al, personal 

communication). Further investigation of this potential mechanism of action would 

involve assessing methylation in DNA samples with differential genotypes at 

rs9979383, and examining the changes in methylation levels across the region. The 

experiment should ideally be performed in a cell specific study, as methylation has 

been shown to be differential between different cell types (Reinius et al. 2012). 

This could be achieved on a small scale using Pyrosequencing or as part of a larger 

study using an Illumina whole genome methylation array. The arrays have probes 

to detect over 485,000 methylation sites across the genome and could ideally be 

combined with gene expression data to give a comprehensive insight into gene 

regulation in the RUNX1 region.  

 

4.5 Conclusion  

 

This study has provided a comprehensive profile of the genetic overlap between 

different types of IA. Using data generated using the Immunochip array, 50 regions 

were identified as being associated with more than 1 type of IA at p<1x10-3. In 

many regions these genetic effects appeared to be shared between diseases, with 

either an identical or a highly correlated SNP associated with each disease. In 

contrast, in a number of regions the SNP appeared to completely different, with 

either low or no LD detected between the SNPs associated with each disease. Many 

interesting findings were identified in this study; with the IL2 pathway genes, 

IL2RA and IL2RB showing very different effects between diseases whilst in the 

RUNX1 region an identical SNP was associated across RA, JIA and PsA collectively.   

 

Two novel disease associations were replicated in an independent RA cohort, 

confirming association with the CTLA4 and MTMR3 genes. These associations will 

require further follow up in JIA and PsA cohorts, to be confirmed as true 

overlapping associations.  
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Association with a third novel locus, the RUNX1 region, was also replicated in an 

independent RA cohort. Fine-mapping revealed that the original SNP remained the 

most associated in the replication study, indicating that the SNP, or one in high LD 

with it, is likely to be the causal variant.  

 

The SNP, rs9979383 maps ~280kb upstream of the RUNX1 gene and appears to 

have the H3K4Me1 histone methylation, which is usually indicative of enhancers. 

However, initial studies to investigate whether it is involved in gene regulation 

showed no significant eQTLs in whole blood, CD8+ or CD4+ lymphocytes, in 

unstimulated samples from healthy control volunteers.  

 

Overall this study provides an insight into the genetic similarities and differences 

between RA, JIA and PsA, which is crucial in learning more about the susceptibility 

and pathogenesis of these diseases. It also shows how a pipeline can be generated 

to follow up genetic loci associated with disease for subsequent replication of 

association and characterisation of SNP function. Although no eQTLs were 

detected in the RUNX1 region in this study, these findings have guided future 

investigations in this region, which will be essential in identifying how this region 

is contributing to disease across these 3 types of IA.  
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5. Appendix 

 

5.1 Tempus spin RNA isolation kit Tempus Spin RNA Isolation Kit  

 

 

The Tempus Spin RNA Isolation Kit (Applied Biosystems) is for extraction using 

Tempus RNA Blood Tubes. These tubes contain stabilizing reagent (Applied 

Biosystems) which is activated upon shaking with whole blood for 10 seconds. 

This reagent induces immediate cell lysis, inactivation of RNases and selective 

precipitation of RNA whilst genomic DNA and proteins remain in solution. 

Collected whole blood can be stored for 5 days at 27°C, 4 days at 4°C or indefinitely 

at -20/-80°C. The RNA spin isolation kit is for the purification of total RNA from 3 

ml whole blood. The protocol involves two stages: processing of stabilized blood 

and purification of RNA.  All stages are performed where possible on ice.  

 

5.1.1 Processing of stabilized blood 

 

 

The sample was transferred to a 50ml conical tube and 3ml phosphate buffered 

saline (PBS) was added. The sample was mixed by vortexing for 30 seconds and 

centrifuged 3000xg at 4°C for 30 minutes. The supernatant was discarded and 

excess supernatant removed by inverting on absorbent paper for 2 minutes. 400μl 

RNA Purification Suspension Solution was added and vortexed briefly to mix 

contents.  

 

5.1.2 Purification of RNA 

 

 

The glass fibre purification filter cartridge (Ambion) was inserted into a waste 

collection tube (Ambion). Pre-treatment of the membrane was performed by 

adding 100μl of RNA Purification Wash Solution 1 (Applied Biosystems). The 

sample (approx. 400μl) was transferred to the filter and centrifuged for 16,000xg 

for 1 minute. The filter cartridge was removed and the supernatant discarded. The 
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filter was re-inserted into the waste tube, 500μl RNA Purification Wash Solution 2 

(Applied Biosystems) added and centrifuged at 16,000xg for 1 minute.  

A DNase treatment was performed by adding 100μl Absolute RNA Wash Solution 

(Applied Biosystems) and incubating for 15 minutes at room temperature. 500μl 

Wash Solution 2 (Applied Biosystems) was added, incubated for 5 minutes at room 

temperature and centrifuged at 16,000xg for 30 seconds. The filter cartridge was 

removed and the supernatant discarded. The filter was re-inserted into the waste 

tube, 500μl Wash Solution 2 added and centrifuged at 16,000xg for 30 seconds. 

The filter cartridge was removed and the supernatant discarded. The filter was re-

inserted into the waste tube and centrifuged at 16,000xg for 30 seconds to dry the 

membrane.  

The filter cartridge was transferred to a new collection tube. 100μl Nucleic Acid 

Purification Elution Solution (Applied Biosystems) was added, incubated at 70°C 

for 2 minutes and centrifuged at 16,000xg for 30 seconds. The collected RNA was 

re-added and centrifuged at 16,000xg for 2 minutes to ensure optimum elution of 

RNA. The filter cartridge was discarded and the top 90μl of elute transferred to a 

new collection tube. The samples were then transferred to ice for quality control 

analysis.  

 

5.1.3 RNA QC  

 

 

Quality control was performed on isolated RNA to assess both the quantity and the 

quality of RNA obtained using the two different protocols.  

 

5.1.3.1 RNA quality control using Nanodrop N-1000  

 

 

Quality of RNA obtained by both methods was analysed using a Nanodrop ND-

1000 (Thermo Scientific).  This spectrophotometer uses UV light absorbance 

ranging (approx. 200-350nm) to quantify nucleic acids present in a sample and 

determine the presence of any contaminants. As maximum RNA absorption takes 
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place at A280, absorption at this wavelength is analysed and converted to a 

quantifiable concentration of ng/μl using the Beer-Lambert Law.  

Absorption values are also obtained at A230 and A260, which are used to generate 

260/230 and 260/280 ratios. These ratios can be used to determine the purity of 

RNA obtained. Pure RNA has a 260/230 ratio of 2 and a 260/280 ratio of 2.1 but 

values ranging 1.8-2.1 are acceptable. Large deviations from expected values 

indicate sample contamination. Possible contaminants include DNA, protein and 

any reagents used during extraction such as ethanol or guanidine isothiocyanate. 

After each extraction the yield and quality of RNA obtained was assessed using the 

Nanodrop ND-1000.  Values for concentration, 260/280 and 260/230 ratios were 

recorded to ensure all samples values were within an acceptable range. This 

ensures that the RNA is suitable for use in downstream processes and is not 

affected by sample contamination.  
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