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The purpose of this thesis is to find out how successfully intensity mapping can be
used to measure the HI signal with upcoming interferometers. This technique is an
alternative to mapping the galaxy distribution with optical redshift surveys, using
the 21 cm neutral hydrogen line instead to trace the matter. It relies on detecting
the combined emission from galaxies rather than being able to detect individual
galaxies. In this thesis a bespoke intensity mapping instrument ‘Tianlai’ will
be compared with two interferometers not specifically designed for this purpose,
namely MeerKAT and ASKAP.

Several different power spectrum estimators are investigated, settling on a
cross-correlation estimator. Despite needing a correction factor F`, this estima-
tor has the lowest noise bias at high `. A theoretical HI angular power spectrum is
then used as the simulation input and the potential ability of each interferometer
to recover the power spectrum is analysed.

We find that integrated HI signal is able to be detected by all three interferom-
eters after 120 hours, with good detections being made after 1200 hours. At 800
MHz (z ∼ 0.8) ideal ‘Tianlai’ and ASKAP instruments require 15 and 20 point-
ings while MeerKAT requires 125 pointings. This gives peak SNR values, after
120 hours, of 36 and 30 for ‘Tianlai’ and ASKAP and 20 for MeerKAT. Moving to
higher frequencies (z ∼ 0.4) these SNR values increase to 47, 36 and 23 for ‘Tian-
lai’, ASKAP and MeerKAT respectively. As the observation time is increased, the
SNR values also increase for each instrument.

‘Tianlai’ performs best due to its many short baselines giving it improved sen-
sitivity to the angular scales of interest. Although ASKAP and MeerKAT both
have few short baselines, ASKAP’s PAFs give it a very large field-of-view, result-
ing in it out-performing MeerKAT and having similar potential to the bespoke
instrument ‘Tianlai’.

We conclude that all three instruments would be able to make a very good
detection of the integrated HI signal after 1200 hours in an ideal experiment so it
would be possible to design intensity mapping experiments for all three interfer-
ometers.

10



Declaration

No portion of the work referred to in the thesis has been

submitted in support of an application for another degree

or qualification of this or any other university or other

institute of learning.

11



Copyright Statement

i. The author of this thesis (including any appendices and/or schedules to this

thesis) owns certain copyright or related rights in it (the “Copyright”) and s/he

has given The University of Manchester certain rights to use such Copyright,

including for administrative purposes.

ii. Copies of this thesis, either in full or in extracts and whether in hard or electronic

copy, may be made only in accordance with the Copyright, Designs and Patents

Act 1988 (as amended) and regulations issued under it or, where appropriate,

in accordance with licensing agreements which the University has from time to

time. This page must form part of any such copies made.

iii. The ownership of certain Copyright, patents, designs, trade marks and other in-

tellectual property (the “Intellectual Property”) and any reproductions of copy-

right works in the thesis, for example graphs and tables (“Reproductions”),

which may be described in this thesis, may not be owned by the author and

may be owned by third parties. Such Intellectual Property and Reproductions

cannot and must not be made available for use without the prior written permis-

sion of the owner(s) of the relevant Intellectual Property and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication and

commercialisation of this thesis, the Copyright and any Intellectual Property

12



and/or Reproductions described in it may take place is available in the Univer-

sity IP Policy (see http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=487),

in any relevant Thesis restriction declarations deposited in the University Li-

brary, The University Library’s regulations (see http://www.manchester.ac.uk/library/ab-

outus/regulations) and in The University’s Policy on Presentation of Theses.

13



Acknowledgements

I would like to thank my supervisor Richard Battye for his help throughout. Many

thanks go to Clive Dickinson for constantly being around to answer questions

and help with various problems. I would also like to thank Minh Huynh of the

International Centre for Radio Astronomy Research for providing the ASKAP

configuration files.

14



Chapter 1

Introduction

1.1 Dark Energy

For years cosmologists around the world have been building up a description of

what is responsible for the accelerated expansion of the Universe (dark energy).

So far we know that it accounts for approximately 3/4 of the total energy density,

it does not seem to cluster, it causes space-time to stretch and must have a strong

negative pressure (also known as gravitationally repulsive) in order to cause the

acceleration (Huterer and Turner, 1999).

Dark energy can be thought of as the energy density of a vacuum as it is

the energy associated with the continuous production and annihilation of particle-

antiparticle pairs. This implies the dark energy density is constant in both space

and time so has become synonymous with the cosmological constant, Λ, with

w = −1, forming the standard model of cosmology, the ΛCDM model. Although

the cosmological constant seems to fit much of the observational data well it has

a few major problems.

One outstanding drawback is the fine-tuning problem which arises due to the

15



16 CHAPTER 1. INTRODUCTION

huge discrepancy between the size of the cosmological constant predicted by quan-

tum field theory (QFT) and that inferred cosmologically. QFT predicts a cosmo-

logical constant which is 120 orders of magnitude larger than what is observed

(Carroll and Press, 1992). A second problem is the coincidence problem which

arises due to the fact that the time at which dark energy becomes dominant hap-

pens to be the time we live in. The fact that the density of dark energy and

matter are coincidentally the same is strange since both densities evolve differ-

ently throughout the history of the Universe, implying the unlikely condition of an

infinitesimally small initial ratio between the two. A final problem arises due to

the inclusion of the cosmological constant in the standard model which gives rise

to solutions which, at low matter densities, have regions of discontinuities (Oztas

and Smith, 2006).

In an attempt to solve these problems, quintessence models were developed

which have an equation of state parameter w > −1 and can vary with time. w

just greater than −1 means that the dark energy density slowly decreases as the

universe expands. Radiation, pressureless matter and a quintessence scalar field,

ϕ, are the main components of the quintessence models. In these models, it is the

potential energy of the dynamic field ϕ which causes the accelerated expansion.

The quintessence field is very light and unlike the cosmological constant, it can vary

in both space and time. Over time, its average energy density and pressure slowly

decay, a feature which can help solve the tuning problem and rapid beginning of

cosmic acceleration (Caldwell et al., 1998; Steinhardt et al., 1999; Ferreira and

Joyce, 1998). The field is required to be light in order that it does not clump

together and begin to form structure like matter. Two main classes of quintessence

models have been developed; the first uses the idea of tracker fields (Steinhardt

et al., 1999) while the second is known as a scaling solution (Wetterich, 1988).

The former works on the basis that the fields track the background density by
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adapting their behaviour to match the scale factor, while the latter uses the idea

that the energy density ratio ρϕ/ρB remains constant, where ρB is the density of

the background.

The equation of state parameter provides a simple phenomenological descrip-

tion of dark energy. The equation of state relates the density and pressure of a

fluid and takes the form w = p/ρc2. Pressureless material or dust has w = 0, while

radiation or relativistic particles have w = 1/3. By combining the results from

4 different data sets, tight constraints on w can be imposed. The results come

from observations of high redshift type 1a supernovae, observations of the evolu-

tion of the galaxy cluster mass function with redshift, the Wilkinson Microwave

Anisotropy Probe (WMAP) and baryonic acoustic oscillations. This data has al-

lowed bounds to be placed on the equation of state parameter giving w = −1±0.2

(Turner and Huterer, 2007; Kowalski et al., 2008; Vikhlinin et al., 2009; Hicken

et al., 2009).

In recent years baryonic acoustic oscillations (BAOs) have become of increasing

interest to cosmologists as they provide a robust probe of dark energy. Dark

energy in the recent Universe (z < 1) can be studied using weak lensing while

supernovae can be used to study dark energy within redshifts 0 < z < 2. BAOs

have the advantage of being able to probe dark energy up to redshifts of z ∼ 3,

which is important in distinguishing between different dark energy models where

accelerated expansion may have begun at different times.

1.1.1 Probing Dark Energy

It is a well established idea in cosmology that dark energy is the driving force be-

hind the accelerating expansion of the Universe. The first evidence of dark energy

came in 1998 from supernovae observations (Riess et al., 1998; Perlmutter et al.,

1999) with further evidence being collected by many other studies e.g. Perlmutter



18 CHAPTER 1. INTRODUCTION

(2003); Kowalski et al. (2008). Data from the WMAP seven-year analysis esti-

mates the Universe is composed of 73% dark energy, 23% dark matter and 4.6%

baryonic matter. However, despite the dark energy density being measured to an

accuracy of a few percent, (Frieman et al., 2008), and relatively tight limits on w

now, little is known about the time evolution of w.

Dark energy affects the expansion rate, H(z), where z is the redshift, however

this quantity cannot be measured directly. Instead it must be inferred through

its effects on structure growth. Once H(z) is sufficiently constrained the following

equation can be solved to determine the equation of state parameter, w,

H2(z) = H0
2[Ωr(1 + z)4 + Ωm(1 + z)3 + Ωk(1 + z)2 + Ωdef(z)], (1.1.1)

where H0 is the Hubble constant, Ω (the dimensionless density parameter) rep-

resents the ratio of the mean observed density to that of a flat Universe with

subscripts ‘r’, ‘m’, ‘k’ and ‘de’ representing radiation, matter, curvature and dark

energy respectively. The function f(z) is determined by solving the dark energy

conservation of energy equation giving,

f(z) = exp

[
3

∫ z

0

[1 + w(z′)] dln(1 + z′)

]
. (1.1.2)

If w is constant, as in the case for the cosmological constant, f(z) = (1 + z)3(1+w).

The nature of dark energy is contained within w, therefore precise measurements

need to be made in order to distinguish between various dark energy models.

Since the Universe is expanding, it is not possible to measure proper distances

as objects are constantly moving away from each other. Instead we use measures

such as luminosity distance and angular diameter distance, both of which can

be measured using standard candles and rulers. Standard candles and standard

rulers are used to calibrate cosmic distances using objects with a known intrinsic



1.1. DARK ENERGY 19

luminosity or length. Luminosity distance, dL and angular diameter distance, dA

are given by

dL(z) = (1 + z)r(z), (1.1.3)

dA(z) =
r(z)

(1 + z)
, (1.1.4)

where r(z) is the comoving distance given by

r(z) = c

∫ z

0

dz′

H(z′)
. (1.1.5)

It is easy to see that measurements of dL and dA allow H(z) to be determined,

which can then be combined with equation 1.1.1 to determine w. Type 1a super-

novae make very good standard candles while baryonic acoustic oscillations make

good standard rulers (see chapter 1.2 later).

1.1.2 Structure Growth

Structures in the Universe originated from primordial density fluctuations at the

time of inflation. Over time these fluctuations grew under gravity eventually form-

ing the large scale structure that can be seen today. Since the initial fluctuations

are small and the background is effectively smooth, linear Newtonian perturbation

theory for a perfect fluid can be used to describe the evolution. By embedding the

fluid in an expanding background with comoving coordinates x = a(t)r, where a

is the scale factor and r is the comoving position, the expansion of the Universe

can be introduced. The growth equation governing the gravitational evolution of

matter perturbations in a perfect fluid can be derived from the continuity, Euler

and Poisson equations and expressed in terms of independent Fourier modes as

δ̈k + 2Hδ̇k = δk

(
4πGρ− c2

sk
2

a2

)
, (1.1.6)
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where δk = δρ/ρ is the density contrast, dots denote derivatives with respect to

time, k = 2π/λ is the wavenumber of a particular Fourier mode and cs =
√
∂P/∂ρ

is the sound speed, where P is the pressure of the fluid.

This growth equation can be interpreted as the balance between gravitational

instability causing growth (first term on the right) and the restriction to growth

by the fluid pressure (second term on the right). The cosmic expansion appears

in the growth equation as a Hubble drag term (the second term on the left). This

drag reduces exponential growth to power law growth, further opposing the growth

of perturbations. As the cosmic expansion is directly affected by dark energy, its

effect on structure growth is expected to be seen in this term.

The growth equation can be solved for various epochs with solutions for the

radiation, matter and dark energy dominated epochs shown below

δm ∝


constant radiation dominated,

t2/3 ∝ a matter dominated,

constant dark energy dominated.

(1.1.7)

It is therefore clear that dark energy ultimately forces an end to structure formation

due to the cosmic expansion outweighing any gravitational instability. Predictions

about how the form of the dark energy equation of state might affect the amount

of large scale structure as a function of redshift can then be made. For example, a

larger value of w for a given Ωde decreases the rate at which structure grows and so

requires larger initial perturbations throughout all redshifts to produce the same

large scale structure seen today. Therefore measuring the amount of structure seen

as a function of redshift and comparing results with different w models will allow

the nature of dark energy to be investigated.
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Weak gravitational lensing is also a good way to probe dark energy since infor-

mation regarding the distance-redshift relation and growth of structure are pro-

vided. Other possible probes include counts of galaxies and clusters, the Alcock-

Paczyński test applied to small scale galaxy correlations and the CMB , as de-

scribed in Blake and Glazebrook, 2003.

1.2 Baryonic Acoustic Oscillations

Baryonic acoustic oscillations (BAOs) are features imprinted in the distribution

of galaxies as a result of frozen sound waves present in the photon-baryon fluid

before recombination at z ∼ 1100. The young universe was much hotter and filled

with hydrogen plasma. As the Universe expanded it cooled; once it had cooled

sufficiently, protons and electrons formed neutral atoms and could no longer absorb

thermal radiation. Photons therefore travelled freely through space rather than

being scattered off the protons and electrons (a process known as decoupling),

which left behind a pattern of acoustic peaks in the CMB anisotropies and a series

of wiggles in the galaxy angular power spectrum (Eisenstein and Hu, 1988). Peaks

in the correlation function occur at comoving distance s ∼ 105h−1Mpc, which

is equivalent to peaks in the matter power spectrum at comoving wavenumbers

k = (n + 1/2)π/s for n = 2, 4, .... The position of these peaks is known to a

precision of order 1%, making them reliable standard rulers (Ansari et al., 2008).

As the wavelength of the BAO spectral peak was imprinted at a particular

comoving wavelength in the Universe, they have a fixed comoving angular size

and so can be used as a standard ruler (Peterson et al., 2006). The value of the

BAO wavelength (related to the sound horizon scale at recombination) depends on

H(z), Ωm and Ωb but not on the amount or nature of dark energy (Wyithe et al.,

2007). Measurements of H(z) and the angular diameter distance can therefore be
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used to probe how dark energy varies with time.

1.2.1 How BAOs Form

To see how a BAO forms, consider a point-like initial overdensity. The overdensity

is assumed to be adiabatic and present in all species (dark matter, baryons, photons

and neutrinos). The neutrinos are non-interacting so play no part in the formation

process. Since the baryons and photons are coupled at this time, the growing

matter perturbation causes the photon perturbation to grow meaning the region

is over-pressurized relative to its surroundings. In an attempt to equalise this, a

spherical sound wave is driven outwards through the baryon-photon fluid. The

dark matter perturbation is left to grow at the centre of the perturbation while

the sound waves travels out at the speed of sound. When the baryons and photons

decouple, the photons escape so the pressure and sound speed starts to drop. The

wave stops once the pressure and sound speed reach zero leaving behind a matter

overdensity in the centre surrounded by a baryon overdensity shell, where the

surrounding shell is the BAO. Up until recombination, the wave was travelling at

the speed of sound so its final radius is equal to the sound horizon scale at this

epoch, ≈ 150 Mpc (Eisenstein et al., 2007). This evolution of a BAO can be seen

in Fig. 1.1.

At late times galaxies form in the overdensities. As the universe evolves the

BAOs are imprinted from the matter distribution to the galaxy distribution, so

they can be measured today.

Fig. 1.2 shows the BAO signatures. The top plot shows a peak in the corre-

lation function of galaxies, which is a measure of the degree of clustering in the

spatial distribution of galaxies. The power spectrum is obtained by Fourier trans-

forming the correlation function. This peak indicates that there is a 1% chance of

finding galaxies within a particular comoving separation from each other.
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Figure 1.1: Snapshots of the evolution of the mass profile versus the radius of
an initially point-like density perturbation located at the origin. Perturbations are
fractional for that species and the perturbations for the relativistic species (photons
and neutrinos) have been divided by 4/3 so they are on the same scale. The black,
blue, red and green lines correspond to CDM, baryons, photons and neutrinos
respectively. Figure from Eisenstein et al. (2007)

The bottom plot of Fig. 1.2 shows the typical wiggles in the power spectrum.

The power spectrum observed today contains information about what the Universe

looks like and what has happened since last scattering. The features of the power

spectrum can be easily explained in terms of cosmological parameters.
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Figure 1.2: The top plot shows the correlation function of galaxies for various
cosmological models (Ωmh

2 = 0.12, 0.13, 0.14 for green, red and blue lines respec-
tively) and the peak at 100h−1 Mpc. The magenta line shows a pure CDM model
(Ωmh

2 = 0.105) which lacks the acoustic peak (Eisenstein et al., 2005). The plot
below shows the WMAP 5-year temperature angular power spectrum. Results from
other experiments are also included. The red curve represents the best fit CDM
model to the data. Figure from Freedman and Madore, 2010.

The first peak, close to ` = 200 is due to sound waves present at the time of last

scattering. The physical scale of the acoustic mode is well understood, meaning
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the angle we see only depends on the angular diameter distance to the surface of

last scattering. The amount by which light rays converge or diverge determines

the angular diameter distance. This means in a closed universe they will converge

and give a larger apparent angle, while an open universe will have diverging rays

and a smaller apparent angle. The geometry of the Universe can therefore be

determined from the position of the first peak.

The second peak is smaller than the first peak and can be explained in terms of

radiation pressure and massive baryons in a potential well. At the bottom of the

well, the maximum compression achieved by the baryons depends on the radiation

pressure and baryon mass. This will be larger for larger masses. The rarefaction

does not depend on mass meaning that if all quantities were fixed but the baryon

density was increased, the relative height of compression peaks (odd peaks) to

rarefaction peaks (even) would increase. It is therefore possible to deduce the

ratio of the baryon density to critical density using the ratio of the second to the

first peak. More baryons also reduce the frequency of oscillations at all scales

meaning that the first peak shifts to the right with a higher baryon mass.

Since the dark matter content of the Universe affects the way it expands, the

shape of the power spectrum seen today will depend on the dark matter fraction.

The amount of dark matter present affects the relative power of the even and odd

peaks to each other. An increase in the amount of dark matter would decrease

the power of the even peaks relative to the odd ones. The cosmological constant

affects the position of the first peak so changing this value would shift the peak to

the left or right.

Fig 1.3 illustrates how the power spectrum observed depends on the various

cosmological parameters that have been discussed.
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Figure 1.3: Sensitivity of CMB angular power spectrum to 4 different cosmological
parameters: curvature, dark energy, baryon density, matter density. Taken from
http://background.uchicago.edu/ whu/araa/node15.html

1.2.2 BAOs and the Dark Energy Equation of State

BAOs are usually detected in galaxy clustering and by mapping their 3D distribu-

tion in space the BAO scale can be found from the galaxy angular power spectrum,

where the power spectrum describes the amplitude of galaxy density fluctuations

as a function of angular separation. Measuring the BAO scale as a function of

redshift allows two useful parameters to be found. Measurement of the angular

scale of acoustic oscillations (i.e. apparent BAO size transverse to the line of sight)

allows the angular diameter distance, dA, to be determined at a particular redshift.

Measurement of the redshift scale of acoustic oscillations (i.e apparent BAO size
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parallel to the line of sight) allows the Hubble parameter, H(z), to be measured

which gives an indication of how much the BAO have grown since recombination

(Wyithe et al., 2007).

Angular diameter distance, dA, and Hubble parameter, H(z), can be written

respectively as

dA(z) =
r⊥

(1 + z)∆θ
, (1.2.1)

H(z) =
c∆z

r‖
, (1.2.2)

where ∆θ and ∆z are the BAO scale transverse to and along the line of sight and

r⊥ and r‖ are the initial size of the oscillations (∼150 Mpc) transverse to and along

the line of sight. With sufficient measurements of the angular diameter distance

and the Hubble parameter, the observed values can be compared with theoretical

values for different cosmological models, thus constraining w.

1.3 Using Hydrogen Intensity Mapping to De-

tect BAOs

Previously, detections of the BAO signal have used photometry or spectroscopy

in optical surveys to measure the clustering signal of large numbers of individual

galaxies (Cole et al., 2005; Eisenstein et al., 2005; Huetsi, 2006). This technique

required large observation times, high resolution and many corrections to data to

account for problems such as extinction. Hydrogen intensity mapping has been

proposed as a new, fast method to detect the BAO signal (Battye et al., 2004;

Peterson et al., 2006; Chang et al., 2008; Loeb and Wyithe, 2008).

Optical galaxy surveys assume galaxies trace the underlying matter distribu-

tion, which can then be used to map the 3D matter distribution. It is clear that

the more galaxies surveyed, the better the representation of the underlying matter
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will be as there will be less shot noise. A major limiting factor is therefore the

number of galaxies that a particular instrument is able to detect. At high redshift

the volume of the universe being surveyed increases but the number of galaxies

per unit volume decreases as the majority become too faint to detect. Flux lim-

ited photometric surveys mean there is a cutoff beyond which galaxies are hard

to detect. This will obviously limit the accuracy to which BAOs can be detected,

motivating the need for new techniques.

In order to obtain a measurement of the large scale structure (LSS) power

spectrum with small enough uncertainties (cosmic and sample variance) a large

volume of the universe should be sampled (typically a few Gpc). Large survey

depths (∆z≥1) are also required as constraints on dark energy parameters can only

be obtained when distance measurements are compared with dark energy models

as a function of redshift. Being able to map the matter distribution without having

to detect large numbers of individual galaxies would be be highly beneficial, and

this leads on to the idea of intensity mapping.

1.3.1 How Intensity Mapping Works

The idea is that intensity mapping will be able to detect the BAO signal of the

combined emission of galaxies. This gets rid of the need for high resolution and

long survey times, which are the main drawbacks for optical surveys. Neutral

hydrogen (HI) is chosen as a suitable tracer of matter as the majority of HI resides

in galaxies and its 21 cm transition line is the dominant spectral line at frequencies

less than 1420 MHz (Pritchard and Loeb, 2011).

The 21 cm line of hydrogen arises from the hyperfine splitting of the 1s ground

state due to the interaction between the magnetic moments of the proton and the

electron. The resulting two energy levels are separated by ∆E = 5.9 × 10−6 eV,

corresponding to a wavelength of 21.1 cm and a frequency of 1420 MHz. The 21 cm
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line produced from gas during the first billion years after the Big Bang redshifts to

radio frequencies 30-200 MHz which is particularly appealing for new generation

interferometers. New instruments are being built to detect the radio fluctuations in

the 21 cm background resulting from variations in the amount of neutral hydrogen.

The density field is traced by the 21 cm signal, giving information about the early

Universe in the form of a power spectrum (Pritchard and Loeb, 2011).

This transition is ideal for 3D surveying as not only is it an isolated transition,

but the observed frequency of a source can be directly translated into a redshift

(Ansari et al., 2011),

z(ν) =
ν21 − ν
ν

; ν(z) =
ν21

(1 + z)
, (1.3.1)

z(λ) =
λ− λ21

λ21

; λ(z) = λ21(1 + z). (1.3.2)

Using HI emission means only the variation in HI mass on large scales needs

to be measured rather than individual galaxies. Above the third BAO peak, non

linear evolution washes out the BAO structure completely meaning that the third

peak represents a minimum spatial scale that needs to be considered. The third

peak has a wavelength of 35h−1 Mpc, so a Nyquist sampled map needs a pixel

size of 18h−1 Mpc which, at z = 1.5, corresponds to an angular wavelength of 20

arcminutes. This would require a telescope of ∼100 m to resolve (Chang et al.,

2008). Intensity mapping is cheaper and requires less time to map large volumes

of the sky than optical surveys, as well as having the added benefit of operating

at lower resolutions. Intensity mapping provides a useful tool for studying large

scale structure at a variety of redshifts; the pre-ionization and reionization epoch

are being mapped at high redshift (z > 6) along with BAO studies at low redshift.
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1.3.2 HI Temperature Signal

Assuming the density parameter of HI, ΩHI, is known, the average brightness

temperature of the 21 cm signal can easily be calculated using (Pritchard and

Loeb, 2008; Barkana and Loeb, 2007)

Tb = 0.3

(
ΩHI

10−3

)(
Ωm + a3ΩΛ

0.29

)−1/2(
1 + z

2.5

)1/2

mK, (1.3.3)

where Ωm and ΩΛ are the matter and dark energy density parameters respectively.

The average sky brightness temperature due to the 21 cm signal Tb(z ∼ 1.5) = 330

µK which is three orders of magnitude smaller than the brightness of extragalactic

radio source emission, Trs ∼ 0.3 K (Ansari et al., 2008). However, as we shall see

later, these radio sources, along with emission from the CMB and Milky Way, have

smooth frequency distributions allowing them to be removed, in theory.

Non-uniformities in the distribution of matter result in fluctuations of the signal

about a mean value. Since the BAO signal is measured via the galaxy clustering,

most sky observations are of the variations of the HI temperature, given by

∆Tb ∼ Tbδ, (1.3.4)

where 1 + δ = ρg/ρg is the normalised neutral gas density (Chang et al., 2008). As

these fluctuations are expected to be linearly related to the fluctuations in matter,

the two power spectra are related,

PHI(k) = b2Pm(k), (1.3.5)

where the HI power spectrum is given by the Fourier transform of the brightness

temperature

PHI(k) = |T̂ (k)|2. (1.3.6)
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Variations of the 21 cm brightness temperature in the cosmic web on 18h−1

Mpc scales give rise to sky noise of the order 150 µK. Since the large-scale struc-

ture fluctuations are much larger than the fluctuations due to BAO, observations

of the sky should cover as large an area as possible in order that the BAO signal is

detected above the noise. In order to achieve large redshift domains, radio instru-

ments need a large field of view (field of view ≥ 10 deg2) and a large bandwidth

(∆ν ≥ 100 MHz) (Ansari et al., 2011). The sensitivity limit, Slim, of a single dish

radio instrument of collecting area, A, and system temperature, Tsys is given by

Slim =

√
2kBTsys

A
√
tint∆ν

, (1.3.7)

where tint is the total integration time and ∆ν is the detection frequency band-

width. When detection limits are compared with the expected 21 cm brightness

of compact sources, S21, given by (see for example Ansari et al. (2011))

S21 ' 0.021µJy
MHI

M�
×
(

1Mpc

dL(z)

)2

× 200kms−1

σν
(1 + z), (1.3.8)

it was found that instruments would require a collecting area of 106 m2 in order

to detect sources with HI mass of 1010 M� at z = 1.

1.4 Single Dish versus Interferometer

Intensity mapping can be done using both single dish telescopes and interfer-

ometers. The differences between using these methods will be looked at briefly,

providing the motivation for choosing interferometers for the work done in this

thesis.

The diffraction limited angular resolution for a telescope of diameter D can be
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written as

θ ∼ λ

D
, (1.4.1)

where it is clear that increasing the size of the aperture improves the angular res-

olution. For a single dish, θ is limited by the dish size while the resolution of

an interferometer is determined by it’s longest baseline (distance between compo-

nents), meaning much higher resolutions can be achieved.

Interferometers are more stable than single dish telescopes because they mea-

sure the correlation of signal between pairs of receivers. Over long periods of

time, uncorrelated signals average down to zero. This means that interferometers

are basically immune to fluctuations in the receiver gain and noise whereas single

dishes can be strongly affected by instrumental fluctuations (Emerson, 2002). In-

terferometers are also blind to the CMB background as they do not measure DC

signal, which is a big advantage over single dish experiments.

The synthesized beam and window function are both known to a high degree

of accuracy when using an interferometer as they are determined by the uv cov-

erage (which is known exactly) and the Fourier transform of the primary beam

(also known) respectively. Finally since an interferometer measures the observed

visibilities, a direct measurement of the power spectrum is made (related to the

square of the visibilities), see section 3 later for more details.

Interferometers do have some disadvantages, however, when compared to single

dish telescopes. Firstly, when measuring extended sources, we are interested in the

surface brightness sensitivity not the point source sensitivity. We have seen (see

eqn. 1.3.7) that the point source sensitivity of a single dish radio instrument is set

by it’s system temperature. This is the temperature equivalent to the total noise

from many contributions including the atmosphere, CMB, antenna temperature
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and receiver noise temperature. For an interferometer this equation becomes

Slim =

√
2kBTsys

A
√
N(N − 1)

√
tint∆ν

, (1.4.2)

where N is the number of antennas. As N increases,
√
N(N − 1) → N meaning

that the point source sensitivity of an interferometer tends towards that of a single

dish with the same total area as N antennas.

The brightness temperature sensitivity depends on the beam solid angle given

by Ω ∝ 1/D2 for a single dish of diameter D and Ω ∝ 1/b2 for an interferom-

eter with longest baseline b. The beam solid angle is therefore smaller for an

interferometer by (D/b)2. The filling factor is given by

f = N

(
D

b

)2

, (1.4.3)

which is related to the brightness temperature by

Tb =
fSλ2

2kBΩ
. (1.4.4)

For single dishes, f ≈ 1 which is the best that can be achieved highlighting the

point that it is the filling factor that is important, not the size of the dishes.

Interferometers trade brightness sensitivity for better resolution.

Another major drawback is that it is very difficult to measure the large angular

scales with an interferometer which are measured by the shortest baselines. If the

baselines are too short then shadowing occurs making scales larger than the pri-

mary beam very difficult to measure. Interferometers are typically more expensive

to build than single dishes due to the cost of the correlation electronics. Despite

this, the benefits of using interferometers to observe the HI signal outweigh the

few negatives and so interferometers shall be used for this thesis work.
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1.4.1 Optical versus Radio

Optical and radio wavelengths can be used to perform all sky galaxy surveys, each

with it’s own advantages and disadvantages, which will be looked at briefly. The

optical spectra of galaxies contains much more information than the radio spectra.

The optical spectra contains both absorption features and strong emission lines,

including Lyα and Hα (Abdalla et al., 2009). In contrast, the radio spectrum is

relatively featureless with the only strong line being the 21 cm line. Although

being a prominent feature, the HI signal is very weak so detections of BAOs have

mainly focussed on using the optical part of the spectrum with spectroscopy or

photometry.

As a result of the weak signal in the radio, large survey volumes are needed. A

ground based radio telescope with a large field of view will be able to cover most

of the sky area in relatively short times (Seo et al., 2010). This is because radio

telescopes rapidly increase their survey speed as the field of view increases. The

time needed to detect HI galaxies, tmap, follows the relation

tmap ∝
(
Aeff

Tsys

)2

FOV, (1.4.5)

compared to 1/tmap ∝ AeffFOV for optical telescopes (Abdalla et al., 2009). Future

radio surveys will have FOV ∝ 100 deg2 which is much larger than that achievable

with optical surveys.

Equation 1.4.1 shows that typically the diffraction limited resolution of a radio

telescope is not as good as that of an optical telescope. However, as shown above,

interferometers are used to improve the resolution. Radio interferometers with a

maximum baseline about 100 m give θ ∼ 15 arcmin (comoving scale about 10h−1

Mpc) at z ∼ 1. Most baselines would be about half as long, corresponding to

scales twice as large which is sufficient to observe the BAO peaks in the power
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spectrum (Chen, 2012).

Foreground sources, especially Galactic synchrotron, remain the main disad-

vantage to radio surveys as they strongly contaminate the HI signal. Despite this,

the different tracers used in optical surveys (luminous galaxies) and radio sur-

veys (neutral hydrogen) mean that new radio surveys should produce results that

compliment those from optical surveys.

1.5 This Thesis

The dark energy problem has been outlined previously in this Chapter along with

a popular new method, intensity mapping, that aims to help solve the problem.

Chapter 2 describes how to simulate various signals in the sky. The first part

describes how the HI signal is simulated and extracted from a catalogue of galaxies.

The Milli-Millennium and full Millennium simulations are compared. Methods

used to construct spectral line cubes to be used in simulations will also be discussed.

The second part of Chapter 2 looks briefly at the problem of foregrounds with

synchrotron emission and point sources are looked at in a bit more detail. Basic

simulations of both these foreground sources are discussed along with some popular

methods of removing foregrounds.

Chapter 3 desribes the principles of radio interferometery. Some proposed

HI intensity mapping experiments are described briefly before looking at some

other proposed interferometers, namely Tianlai, MeerKAT and ASKAP, in more

detail. The process of simulating interferometric observations is described and the

Millennium simulation is used as a preliminary comparison of the performance of

the three interferometers.

Chapter 4 explains how we are going to estimate the power spectrum from our

simulated data. There are several power spectrum estimators that can be used
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and these are investigated. Test simulations are done using noise only inputs, and

some simple power law inputs before choosing the optimal method to be used in

the rest of the thesis.

Chapter 5 describes the HI power spectrum that we will be using in our simu-

lations. Using the power spectrum estimator found in Chapter 4 we shall attempt

to recover the HI power spectrum and detect BAOs. The performance of the three

interferometers described in Chapter 3 will be compared and an optimal survey

strategy will be presented.

Chapter 6 summarises the main conclusions of this thesis and suggests some

further work.



Chapter 2

Simulating the HI Sky

Obreschkow et al. (2009) present a simulation of 21 cm emission using a galaxy

catalogue based on the Millennium simulation. The sky field has a comoving

diameter of 500h−1 Mpc, which is large enough to probe cosmic structure. The

overall simulation is made up of four steps in order to progress from the evolution

of cosmic structure to a simulation of the static sky.

The first step produced a catalogue of ∼ 3 × 107 evolving galaxies and was

made up of three individual simulation layers: (i) simulation of the dark matter

evolution; (ii) semi-analytic evolution of galaxy evolution of the dark matter skele-

ton; and (iii) splitting the neutral hydrogen mass associated with each galaxy into

HI and H2 via post-processing.

The second step involved transforming the simulation box into an observation

cone. Firstly, a chain of replicated simulation boxes was built along the line of sight

(see Fig. 2.1). These boxes were then populated with galaxies chosen from the

simulation box based on the lookback time seen by the observer. The simulation

used 64 discrete time steps so each galaxy in the simulation is described by the

properties at the closest timestep available. This will define spherical shells of

identical cosmic time, represented as dashed lines in Fig. 2.1. An observing cone

37
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was extracted from the chain of boxes, represented as the shaded region in Fig.

2.1.

Figure 2.1: A schematic illustration of the construction of a mock observing cone
(shaded region) from a chain of replicated simulation boxes (solid squares). The
observer, O, is surrounded by spherical shells containing galaxies from the same
time step, indicated by dashed lines. DC,max is the maximal comoving distance and
ϕ is the cone opening angle. Figure from Obreschkow et al. (2009).

From Fig. 2.1 it is clear that the cone opening angle, ϕ, is given by

ϕ = 2 arcsin
sbox

DC,max

, (2.0.1)

where sbox is the comoving side of the simulation box and DC,max is the maximal

comoving distance. The relationship between ϕ, sbox and zmax is shown in Fig. 2.2

where the cosmological parameters of the Millennium simulation have been used,

along with three different box lengths. For the Millennium simulation sbox = 500

h−1 Mpc (solid line), while the Milli-Millennium simulation has a box length of

sbox = 62.5 h−1 Mpc (dashed line). The Horizon-4π simulation is a dark matter

simulation with 10 times less mass resolution than the Millennium simulation

(Obreschkow et al., 2009) and sbox = 2 h−1 Gpc (dot-dashed line).

The remaining two steps in simulating 21 cm emission involved converting the

HI mass into HI-line luminosities using the well known relation (Obreschkow et al.,

2009),
LHI

L�
= 6.27× 10−9MHI

M�
, (2.0.2)
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Figure 2.2: Relationship between the maximal comoving distance or maximal red-
shift and the opening angle of the observing cone. Different lines correspond to the
box sizes of the Millennium (solid), Milli-Millennium (dashed) and the Horizon-4π
(dash-dotted) Simulations. Taken from Obreschkow et al. (2009).

and finally characterizing each line with a profile. This can then be analysed to

predict characteristics of the HI signal.

2.1 Extracting HI Signal

The mean HI brightness temperature can be calculated using eq. 1.3.3, but for

BAO surveys the fluctuations about the mean are of interest. A FORTRAN code

was written to extract the HI signal as it would be observed by a telescope beam.

Both the Milli- and full Millennium simulations were used initially and compared,

with the full Millennium simulation being chosen for further work.

The full Millennium simulation was the largest simulation of its kind, using

more than 10 billion particles to trace the evolution of the matter distribution in
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the universe1. The region simulated is over 2 billion light years across, contained

in a cube of sides 500h−1 Mpc. The Milli-Millennium simulation has a volume

1/512 that of the full simulation.

The basic idea of the code is to read in galaxy properties from a simulation

catalogue, namely position coordinates, redshift, HI mass, integrated HI flux and

HI line width. It was then possible to calculate the HI temperature from each

galaxy in a range ∆f observed by a telescope with beam full-width half max

θFWHM using

S =
2kBT

λ2
Ωpix, (2.1.1)

where S is the flux density, λ is the wavelength, T is brightness the temperature

and Ωpix is the pixel area, given by θFWHM × θFWHM. The signal was binned in

frequency and plotted as temperature vs. frequency with the analytical formula

for calculating the temperature was also been plotted for comparison. Fig. 2.3

shows the temperature fluctuations for the Milli- and full Millennium simulations

using θFWHM = 1◦ and ∆f = 10 MHz.

Fig. 2.3 illustrates that generally the temperature calculated using the flux

density follows that of the analytic formula. At low frequencies the temperature

seems to fall away sharply from the theoretical curve which is an artefact of the

observing cone (see Fig. 2.1). If the cone is extrapolated beyond the last simulation

box, the box size is no longer sufficient to fill the cone. This results in a lack

of galaxies at the edge of the cone, and this loss of galaxies causes a drop off

in the signal at high redshift (low frequency). The maximal available redshift

before galaxies start being lost is therefore determined by the opening angle of the

observing cone, illustrated by Fig. 2.2.

At high frequencies Fig. 2.3 shows that temperature fluctuations are much

larger as a result of shot noise. Shot noise is the error that occurs when observing

1http://www.mpa-garching.mpg.de/galform/virgo/millennium/
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Figure 2.3: Temperature against frequency for Milli- and full Millennium simula-
tions with θFWHM = 1◦ and ∆f = 10 MHz with theoretical average signal curve for
comparison.

an incomplete view of the Universe. The comoving sky volume per unit solid angle

decreases with decreasing redshift. This means that fewer galaxies are contribut-

ing so high frequencies are not a good representation of how the overall universe

behaves. With such a low number of galaxies contributing to the HI signal, the

bin-to-bin fluctuation in temperature is large. At lower frequencies the universe is

represented better as more galaxies are contributing as the number of galaxies per

bin is high.

Fig. 2.3 shows that generally both simulations follow the same trend. At low

frequencies there are fewer fluctuations in the full simulation compared to the

Milli-Millennium simulation. This means there is less shot noise as the survey

volume was bigger so more galaxies will be contributing.

Both the telescope resolution and frequency bin size are variables in the code
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so it is possible to investigate what effect they have on the HI signal. Instead of

having a large θFWHM to make up the required area of sky, smaller pixels can be

used and built up to make the total larger area. For example a 6×6 box with each

pixel having a beam FWHM of 1/6 deg would give a total of 1 deg2. This was

achieved by reading in the catalogue as before but changing the centre position of

the beam and cycling through all the pixels, gradually building up the area of sky.

Although studying a 1 deg2 patch of sky is interesting because it allows general

trends to be seen, it is more useful to look at larger areas of the sky as this will

give a better picture of the properties of the universe as a whole and can be used

to look for HI signals later.

Using 12× 12 pixels with individual pixels 1/3 deg ×1/3 deg gives a total area

of 16 deg2. The results are illustrated in Fig. 2.4.

The main difference between Fig. 2.4 and Fig. 2.3 is that the fluctuations are

smaller throughout the frequency range because of the larger field of view. By

building up a series of smaller pixels, overall a larger portion of the sky is being

looked at and so the HI temperature signal is closer to the mean value.
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Figure 2.4: Temperature as a function of frequency for the full Millennium simu-
lation using a 12 × 12 box with a beam size of 1/3 deg (total sky area of 16 deg2)
and bin size of 10 MHz.

2.2 Generating Spectral Line Cubes

The main goal is to compute the power spectrum of HI. In order to do this, a

FITS cube containing the HI signal was made. The cube is made up of two spatial

dimensions and one in frequency. The FITS format was chosen as it is the preferred

astronomical data format for storing images and spectra. In order to construct the

cube, a catalogue of galaxies was read in from the full Millennium simulation from

which it was possible to calculate the temperature as a function of frequency using

the method described previously. At z = 1.5 the third BAO peak has an angular

size of approximately 20 arcminutes (Chang et al., 2008). We therefore need a

higher resolution than this so as to detect the peaks sufficiently. Since we are only

interested in the combined emission of galaxies rather than detecting individual
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galaxies we eliminate the need for very high resolution. For the purpose of this

work we chose θFWHM = 5′ and ∆f = 1 MHz. Our patch of sky is therefore made

up of 48×48 pixels with each pixel 5′×5′ giving a total area of 16 deg2. The cube

was then rescaled so that each side is comprised of 2n pixels to help with FFTs

later (see section 3.3). The cube was resized from 48×48 to 256×256 pixels by re-

binning the galaxies, giving a new pixel size of 1/64× 1/64 deg2 = 56.25′′× 56.25′′

and ∆f = 5 MHz. To obtain different channel widths, the galaxies were re-binned

in the frequency direction.

Figs. 2.5 and 2.6 show slices from FITS cubes at a variety of frequencies

using two different channel widths (∆f = 5 MHz and ∆f = 50 MHz), based on

the full Millennium simulation as described above. At the very high frequencies

galaxies can be seen clearly but there is no large scale structure visible. As the

slices get further away (lower frequencies) the large scale structure in HI starts

to become more prominent, until individual galaxies cannot be seen and the large

scale structure dominates the image. These cubes will be used as the input to

simulations done later in (see section 3.3).

2.3 Foregrounds

The observed sky brightness temperature, Tsky consists of several components and

can be written as

Tsky(ν, θ, φ) = TCMB(ν, θ, φ) + TGal(ν, θ, φ) + TERS(ν, θ, φ) + THI(ν, θ, φ), (2.3.1)

where TCMB is the cosmic microwave background, TGal is our Galaxy’s emission,

TERS is extragalactic emission from radio sources and THI is the 21 cm signal to

be detected. In the above notation ν denotes frequency dependence and θ, φ

denote dependence in space. Although radio telescopes have the sensitivity to
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Figure 2.5: Slices from the FITS cube made from the full Millennium simulation
using ∆f = 5 MHz at different frequencies: f = 583.6 MHz, 944.5 MHz, 1202.3
MHz and 1408.6 MHz. The images shown are a 4 × 4 deg2 area of sky with the
scale representing Jy/pixel.

detect a BAO signal, in reality the 21 cm signal is swamped by foregrounds which

can reach brightness temperatures larger than the 21 cm signal by 4 orders of

magnitude (McQuinn et al., 2006). At f = 1 GHz, the foreground contribution is

∼ 5 K while the 21 cm brightness temperature is ∼ 0.1 mK (Battye et al., 2013).
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Figure 2.6: Slices from the FITS cube made from the full Millennium simulation
using ∆f = 50 MHz at different frequencies: f = 583.6 MHz, 944.5 MHz, 1202.3
MHz and 1408.6 MHz. The images shown are a 4 × 4 deg2 area of sky with the
scale representing Jy/pixel.

2.3.1 Galactic Foregrounds

The Milky Way’s ISM consists of cold atomic and molecular clouds, a warm and

partially ionised inter-cloud medium and a hot ionised medium. Cosmic rays and

magnetic fields also make up part of the ISM, which is where diffuse Galactic emis-

sion comes from. This Galactic emission can be divided into different components
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Foreground T̄ δT
[mK] [mK]

Synchrotron 1700 67
Free-free 5.0 0.25

Radio sources (Poisson) - 5.5
Radio sources (clustered) - 47.6

Extragalactic sources (total) 205 48
CMB 2726 0.07

Thermal dust - ∼ 2× 10−6

Spinning dust - ∼ 2−3

RRL 0.05 3× 10−3

Total foregrounds ∼ 4600 ∼ 82
HI ∼ 0.1 ∼ 0.1

Table 2.1: Summary of foreground contributions, estimated by Battye et al. (2013).
Estimates were made at 1 GHz for an angular scale of ∼ 1◦ using a 10◦ wide strip
at declination 45◦ and Galactic latitudes < 30◦.

depending on the emission process: synchrotron radiation as a result of relativistic

electrons travelling through the magnetic field; free-free emission resulting from

the interacting of free electrons charged nuclei in warm ionised medium; thermal

emission from warm interstellar dust; spinning dust emission from rotating dust

grains; and line emission from atoms and molecules. The diffuse emission decreases

with Galactic latitude as most of it is concentrated in the Galactic plane.

Each foreground contribution can decomposed into a smooth component, T̄ ,

and a fluctuation, δT . A summary of the main foregrounds for HI intensity map-

ping and the size of their contribution is given in Table 2.1.

The intensity of the Galactic foregrounds reaches a minimum around 70 GHz

where there is a complex superposition of the various emission components, shown

in Fig. 2.7.
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Figure 2.7: Power spectra of diffuse Galactic foreground contributions over a range
of frequencies. Taken from Bennett et al. (2013)

2.3.1.1 Synchrotron Emission

We have seen that at the low frequencies that are relevant to BAO intensity map-

ping surveys (. 10 GHz), Galactic foregrounds are dominated by synchrotron

emission (Wang et al., 2010).

The strength of the magnetic field perpendicular to the line of sight (B⊥) and

the cosmic ray electron density (ne) determine the intensity of the synchrotron

emission. Assuming the cosmic ray distribution follows a power law, N(E) ∝ E−s,

the intensity of synchrotron emission at frequency ν can be written as

S(ν) = εs(ν)

∫
z

neB
(1+s)/2
⊥ dz, (2.3.2)
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A power law describing the synchrotron intensity can be written as

S(ν) = S(ν0)

(
ν

ν0

)βs
, (2.3.3)

where

βs = −(s+ 3)/2. (2.3.4)

A typical value for the cosmic ray spectrum s = 3, gives βs = −3.

It has been shown that inhomogeneous spatial distributions in the magnetic

field causes synchrotron emission to display visible substructures in the total in-

tensity map (e.g. Gaensler et al. (2001)). These features are much smaller than

those of the BAO meaning that the 3D 21 cm intensity signal should still stand

out once it has been subtracted.

Although the synchrotron spectrum is relatively smooth, the synchrotron sources

are not distributed uniformly and the slope can vary from source to source. The

amplitude of the 21 cm signal is exceeded by the pixel-to-pixel variation in sky

brightness by a factor of 1000.

To date, the most reliable estimate of the full-sky Galactic synchrotron emission

is the 408 MHz all-sky survey of Haslam et al. (1982). At frequencies this low, the

Galactic diffuse emission is dominated by synchrotron emission. The original map

has been reprojected on a HEALPix grid in Galactic coordinates with Nside = 512.

A Fourier filtering technique has also been applied to suppress residual stripes

and point sources. This map can be obtained from the LAMBDA website2 and is

shown in Fig. 2.8.

The angular resolution of the 408 MHz map is 0.85◦, which is worse than the

angular resolution of any interferometer that we will be using to simulate obser-

vations (see Section 3.2 later). It is therefore necessary to superimpose artificial

2http://lambda.gsfc.nasa.gov/
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Figure 2.8: Mollweide projection of the Haslam et al. (1982) template map at 408
MHz, in Galactic coordinates, used to model the synchrotron intensity. The top
map uses a linear colour scale while the bottom has been histogram equalised.

fluctuations at small angular scales on the original map. This will then provide a

realistic image of the total synchrotron emission across the sky at 408 MHz up to

the degree scale and an estimate of what it looks likes at the smaller scales.
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2.3.1.2 Extending the 408 MHz map

The method by which small scale fluctuations are added is described in Miville-

Deschênes et al. (2007) and Delabrouille et al. (2012) and is similar to the technique

used by Giardino et al. (2002). Firstly a Gaussian random field is generated at

the correct Nside with the following power spectrum;

C` = `γ[exp−`
2σ2

sim ]− Ctem
` , (2.3.5)

where σsim is the resolution in radians of the simulation, Ctem
` is the power spectrum

of the template map with resolution σtem = 56′, and γ = −2.7. The Gaussian

random field, Gss, is then normalised by the rms and the average is subtracted so

that fluctuations which are a fractional amount of the original are being added.

To modulate small-scale fluctuations by large scale intensity the template map is

exponentiated to the power β as shown in the following equation;

I ′tem = Item + αGssI
β
tem, (2.3.6)

where the PSM values α = 0.05 and β = 1.0 were chosen (see Delabrouille et al.

(2012)). This ensures that the power spectra of the small scales being added and

the large scales in the template are continuous with each other.

The small scale fluctuation sky map is then added to the 408 MHz map to

produce the final extended map. To see the effects of adding the small scale

fluctuations, identical sections of each map can be looked at more closely and the

differences seen in Fig. 2.9. It is clear that the large scales have been preserved

while fluctuations at small scales can be seen in the right plot.

Fig. 2.10 shows the comparison between the power spectra before and after

the map has been extended. It can be seen that the drop off in the original 408



52 CHAPTER 2. SIMULATING THE HI SKY

Figure 2.9: Left hand panel shows a section of the original Haslam 408 MHz map
and the right hand panel shows the same section but with small scales structure
added.

MHz power spectrum as a result of the beam has been corrected by the addition

of fluctuations on small angular scales, described by eq. 2.3.5.

By extrapolating the 408 MHz map the synchrotron emission can be estimated

at any frequency using,

TGsyn
ν (r) = TGsyn

408 (r)
( ν

408 MHz

)βs(r)

. (2.3.7)

It is clear from eq 2.3.7 that the extrapolation of the 408 MHz map relies on

estimates of the spectral index. As this can vary both spatially and with frequency,

there are a range of different models which can be implemented.
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Figure 2.10: Plot showing the power spectra of the original 408 MHz Haslam map
(solid black line) and the extended 408 MHz map with small scale fluctuations
added (dashed black line)

2.3.2 Extragalactic Foregrounds

2.3.2.1 Discrete Sources

Discrete sources consist of radio galaxies, quasars and other objects that manifest

themselves as point sources and contribute to the foreground. Contributions to

point source foregrounds come from randomly (Poisson) distributed sources and

clustered sources. Clustered sources have a non-trivial two-point correlation func-

tion while Poisson sources are uncorrelated. Many compilations of source counts

have been done over the past decade (e.g. Fomalont et al., 2002; Bondi et al., 2003;

Hopkins et al., 2003; Prandoni et al., 2006) and the effect these sources have on

observations can be predicted by modelling their differential source count, dN/dS

(number of sources per steradian per unit flux). The source counts are usually
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Euclidean-normalised, meaning they are divided by the count one would expect in

a static Euclidean universe, i.e. dN/dS ∝ S−2.5, (Vernstrom et al., 2011).

A variety of different fits to the source count data have been tried including a

third order polynomial in logS by Katgert et al. (1988), a sixth order polynomial

in logS by Hopkins et al. (2003), a simple power law in logS by Gervasi et al.

(2008) and a fifth order polynomial in logS by Vernstrom et al. (2011). Although

polynomials may be a simpler method of fitting than other functions, they remain

a good choice as they are still able to fit distinctive features in the data. For

example in Fig. 2.11 at low flux densities the source count flattens out, with a

possible upturn at very low flux densities. Vernstrom et al. (2011) found that a

fifth order polynomial was of high enough order to account for all the features

in the data while higher orders just lead to unnecessary extra parameters and no

significant improvement in the χ2 so this will be used for the remainder of the

section. The polynomial can be written as

log

(
S2.5dN/dS

N0

)
=

5∑
i=0

ai

[
log

(
S

S0

)]i
, (2.3.8)

where a0 = 2.593, a1 = 0.093, a2 = −0.0004, a3 = 0.249, a4 = 0.090, a5 = 0.009,

N0 = 1 Jy sr−1 and S0 = 1 Jy.

2.3.2.2 Modelling Point Sources

In order to model point sources, a catalogue of point sources first needs to be

generated. To do this eq. 2.3.8 was rearranged to give dN/dS and then integrated

over a desired range of Smin to Smax. This would give the total number of sources

per steradian, from which it is then possible to work out the number of sources in

any given area of sky. Once the total number of sources was known point sources

were randomly generated within the given area of sky where the fluxes of each



2.3. FOREGROUNDS 55

Figure 2.11: Differential source count data at 1.4 GHz, taken from Battye et al.
(2013). The thin solid line represents the best fit to the data, eq. 2.3.8.

position were distributed according to eq. 2.3.8. Fig. 2.12 shows the equation

that was used to generate the point sources within a particular area (solid black

line) and the data points represent the differential source count of the randomly

generated points. It was found that for a 4 × 4 deg2 area of sky with Smin = 0.1

mJy and Smax = 10 Jy the total number of sources was 14248.

The fluxes for each point source were generated at 1.4 GHz so in order to do

observations at different frequencies, the fluxes need to be scaled accordingly using

S(ν) = S0

( ν

1.4 GHz

)α
, (2.3.9)

where S(ν) and S0 represent the flux at frequency ν and at 1.4 GHz respectively,

and α is the average spectral index across the frequency range which takes the

value ≈ −0.7.
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Figure 2.12: Plot showing the source counts as a function of flux density at 1.4
GHz (�) and the fit that was used to generate them (solid black line).

2.3.3 Foregrounds Removal Methods

21 cm emission should exhibit both angular fluctuations and structure in redshift

space at high z. These are caused by spatial variations in hydrogen density, spin

temperature and ionization fraction. It was thought that these angular fluctuations

of the 21 cm signal could be exploited and work was done to investigate to what

extent the 21 cm fluctuations are impeded by noise from extragalactic foreground

radio sources.

It was found that the unresolved extragalactic radio sources are likely to give

rise to temperature fluctuations that far exceed the expected signal at all scales

and frequencies. In particular, extended cluster radio halos and relics contribute

the largest fraction. Di Matteo et al. (2004) have shown that the spatial clustering

of bright foreground sources dominates the angular fluctuations at scales θ & 1
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arcmin. However, if sources above flux levels S & 0.1 mJy (out to z ∼ 1 for diffuse

sources and z ∼ 2 for point sources) can be detected and removed then this excess

in fluctuations can be removed. This efficient source removal may therefore allow

the detection of 21 cm angular fluctuations at θ & 1 arcmin. Removal of sources

above S = 0.1 mJy also reduces foreground fluctuations to roughly the same level

as those of the 21 cm signal at scales θ . 1 arcmin meaning that subtraction of

foreground components in frequency space (by comparing maps closely spaced in

frequency) will allow the signal to be detected at small scales.

Many authors now make the assumptions that this flux cutting technique de-

veloped by Di Matteo et al. (2004) accurately removes bright sources. Since it has

been shown that the residuals from this bright source subtraction are below the

thermal noise, this is an acceptable assumption to make.

Foregrounds are expected to be correlated in the frequency direction while the

21 cm signal is expected to be uncorrelated, motivating removal methods which

focus on the frequency correlation. For example, Zaldarriaga et al. (2004) used

the cross-correlation of pairs of maps as a method of cleaning. If foregrounds

are perfectly correlated across frequencies then subtracting two maps from each

other would completely remove the foregrounds. Any reduction in the foreground

correlation means subtraction is not as effective.

Much work has been done to investigate the problem of foreground removal

and as a result there are many techniques to chose from, each with it’s advan-

tages and disadvantages. These methods roughly fall into two categories; ‘blind’

principle component analysis (PCA) based methods where no assumption about

the foregrounds is made; and parametric fitting methods where a particular form

is assumed for the foregrounds. Some of the popular foreground (FG) removal

methods are summarised in Table 2.2.
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So far, none of the foreground removal methods are perfect and residual errors

from these subtraction methods remain. These errors can be studied and the aver-

age fitting errors of these methods can be subtracted from the 3D power spectrum,

further reducing the contamination of the signal by residual foregrounds.

For example, errors in the bright source removal stage arise as a result of the

slight mis-estimation of the flux of each source. This leads to residual positive

and negative sources at the same place where the original source was subtracted,

leading to spurious power in the power spectrum. It would be impossible to work

out the error on each individual source but an average error for all of the sources can

be predicted and removed from the residual foreground contamination. Positive

and negative residuals will have the same power spectrum signature as the power

spectrum is related to the squared intensity.



Chapter 3

Radio Interferometry

Radio emission, at wavelengths between 10 m (ν =30 MHz) and 1 mm (ν =300

GHz), from astronomical objects can be studied using radio telescopes. They

can be used to measure spectroscopic features from spectral lines as well as broad-

bandwidth continuum radiation. Although the design of radio telescopes may vary

greatly, they all have two basic features: (i) large radio antenna and (ii) radio re-

ceiver to amplify and detect signals. A radio telescope’s sensitivity depends on the

antenna’s area and the sensitivity of the radio receiver. There are several factors

which limit the performance of a radio telescope: (i) reflecting surface may devi-

ate from ideal shape; (ii) thermal deformation causing expansion/contraction; and

(iii) deflections as a result of the gravitational forces changing when the antenna

position is changed. The receiver, which accepts the signal from the antenna and,

after processing, outputs an intelligible signal has its own problems associated with

it, noise being the main limitation. Noise can either be external from interfering

sources or internally generated in, for example, transmission lines and connectors

that connect the antenna to the first amplifier stage.

Interferometers use the principle of aperture synthesis to mix signals from sev-

eral telescopes and produce an image. In the simplest interferometer with two
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elements, the rotation of the Earth causes signals to arrive alternatively in and

out of phase. This creates a variation of the path difference between the source

and the two interferometer components giving rise to interference fringes. This

path difference varies across the source, assuming the radio source has finite an-

gular size, meaning that the measured fringes depend on the radio ‘brightness’

distribution.

An interferometer measures 〈E1E
∗
2〉, where E1 and E2 are electric field vectors

measured by two antennas looking at the same point on the sky. The average of the

product of electric fields is just the intensity multiplied by a phase factor (White

et al., 1998). The phase factor is given by the path difference between the source

and the two antennas. We can then take the integral over the source/emitter plane

to give the Fourier transform of the observed intensity. Observed intensity is given

by the sky intensity times the beam.

The observable measured by an interferometer is called a visibility which is

proportional to the Fourier transform of the observed intensity. The observed

visibilities are samples of the uv-plane (Fourier plane) and given by the van Cittert

Zernike equation (Thompson et al., 1986):

V (u) ∝
∫
A(x)∆T (x)e2πiu.x dx, (3.0.1)

where ∆T is the temperature fluctuation, A(x) is the primary beam, x is a unit

vector, u is a spatial frequency and the conjugate variable to x, measured in

wavelengths. The omitted constant of proportionality converts from temperature

to intensity. Each pair of antennas measures a visibility at a particular point in

the uv-plane.

The value of u measured by a particular pair of antenna is determined by the

physical position of the antennas and the position of the beam on the observed
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sky (White et al., 1998). When movable antenna and the rotation of the earth are

combined, sufficient numbers of Fourier components can be sampled to produce

high resolution images of the sky. The visibilities lie on a series of curves in the

uv-plane called uv-tracks.

The size of the primary beam determines the field of view while the maximum

spacing between antennas determines the resolution (see eqn 1.4.1 in Section 1.4).

Sources larger than λ/dmin, where dmin is the minimum spacing between antennas,

are resolved out while sources smaller than λ/dmax, where dmax is the maximum

baseline, appear as point sources. The interferometer configuration is chosen to

match the maximum and minimum scales of the structure in the source that is

being observed. Generally the interferometer’s FOV is small so the sky can be

assumed flat using the small angle approximation.

As the power spectrum, C`, is basically a FT of the sky, interferometers almost

directly measure the power spectrum. Averaging the squared visibilities, |V (u)|2,

in shells of constant u provides an estimate of C` at ` = 2πu convolved with a

window function, which is determined by the FT of the primary beam (Dickinson,

2012). To obtain images from the interferometer data high speed computers are

used to perform fast Fourier transforms. The visibilities get inverted to produce

images of the sky convolved with the beam.

3.1 Current HI Intensity Mapping Experiments

There are several current telescopes already trying to do intensity mapping with

several others in the process of construction. This section will briefly outline a few

of them.

The Green Bank Telescope (GBT) is the world’s largest steerable radio tele-

scope. It has a diameter of 100m and a collecting area of ∼ 8000 m2. It has
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an angular resolution of ∼ 0.25◦ at z ∼ 0.8, when observing HI, which is suit-

able for intensity mapping. Chang et al. (2010) reported the first detection of

the cross-correlation between large scale structure and 21 cm intensity maps us-

ing GBT data with the DEEP2 galaxy survey with a measurement of ΩHIbHIr =

[0.66±0.18(stat.)]×10−3, where ΩHI is the HI fraction, bHI is the HI bias parameter,

and r is the galaxy-hydrogen correlation coefficient. Masui et al. (2013) improved

on the measurements by cross correlating new GBT intensity map data with the

WiggleZ survey. They achieved ΩHIbHIr = [0.43± 0.07(stat.)± 0.04(sys.)]× 10−3

which is the most precise constraint on the HI density fluctuations in the range

0.6 < z < 1. Switzer et al. (2013) also used GBT data to measure HI fluctuations

giving ΩHIbHI = [0.62+0.23
−0.15]× 10−3.

Another promising telescope is the Canadian Hydrogen Intensity Mapping Ex-

periment (CHIME). It will be a purpose built telescope to observe BAOs in the

redshift range 2.5 ≥ z ≥ 0.7 with a collecting area of 10,000 m2. The idea is that

CHIME will produce data many years before other instruments of comparable sen-

sitivity for a small fraction of the cost. A small scale prototype 1/10th the size of

CHIME is being built first which will be used to improve the final CHIME design,

details of which can be found in Bandura et al. (2014).

Finally, the BINGO experiment (Baryonic acoustic oscillations In Neutral Gas

Observations) is a new project to build a bespoke single dish radio telescope to

map neutral hydrogen in the range 0.13 < z < 0.48. The telescope will not have

any moving parts and consist of a primary mirror of 40 m and a smaller secondary

mirror. Battye et al. (2013) made sensitivity and uncertainty estimates for a year

of observing and found that it would be possible to measure BAOs at z ∼ 0.3 with

an accuracy of ∼ 2.4% and w to an accuracy of 16%.

The projected results from these experiments indicate that trying to measure

dark energy using intensity mapping is a promising technique.
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3.2 Interferometers of Interest

We have already seen that several 21 cm BAO instruments have been either pro-

posed or are under construction. The aim of this thesis is to investigate whether

it would be possible to use any of the up and coming radio interferometers for in-

tensity mapping experiments, even though they have not been designed with this

task in mind. The two interferometers being considered are the Australian Square

Kilometre Array Pathfinder (ASKAP) and MeerKAT.

ASKAP is a new radio telescope being commissioned at the Murchison Radio-

astronomy Observatory (MRO) in Western Australia designed to capture radio

images over large areas of the sky with unprecedented sensitivity. ASKAP saw first

light on 5 October 2012 and is the world’s fastest radio telescope, with a survey

speed greater than any other radio telescope. This combination of survey speed

and sensitivity will allow astronomers to answer questions about the early universe,

test predictions from general relativity and theories of cosmic magnetism1.

ASKAP will also be an important demonstrator for the Square Kilometre Array

(SKA) project, a future international radio telescope that is to be the largest and

most sensitive in the world. The MRO has been selected as the central site for

major SKA components. The wide field of view, large bandwidth, excellent uv -

coverage and very fast survey speed are some of the unique features that make

ASKAP an exceptional synoptic telescope1. The radio quiet site will also help to

make substantial advances in important areas of SKA science.

MeerKAT is a radio telescope under construction in South Africa. Once com-

plete it will be the largest and most sensitive radio telescope until SKA is up and

running. As well as being a technology demonstrator for the SKA, it will do re-

search into cosmic magnetism, galactic evolution, large-scale structure and dark

1http://www.atnf.csiro.au/projects/askap/index.html
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matter2.

Tianlai is a proposed interferometer built specifically for 21 cm intensity map-

ping for 0.3 < z < 3. It will be based on a dense interferometer idea using either

small parabolic antennas (about 5 m diameter) or a packed cylinder array (Chen,

2012).

Although not the primary aim of either MeerKAT or ASKAP, it would be

interesting to see whether these instruments could be used to detect baryonic

acoustic oscillations (BAOs) in the neutral HI signal through intensity mapping.

This thesis will focus on comparing how MeerKAT and ASKAP perform against

the more bespoke instrument, Tianlai.

Currently there is no specific Tianlai antenna configuration so we designed our

own Tianlai-like array configuration that is based on similar ideas and will therefore

give a good idea of what a Tianlai-like interferometer can do. Chen (2012) has

proposed that a compact array with maximum baseline of 100 m (corresponding

to a resolution of 14 arcmin at z ∼ 1) would be able to detect the BAOs so this is

the model we based our configuration on. We used 100 dishes each with a diameter

of 4 m. The dish positions were randomly generated within an area of diameter

100m, requiring a minimum separation of 1 m between the edges of the dishes.

The resulting array can be seen in top plot of Fig. 3.1.

The middle row of plots in Fig. 3.1 show the positions of the 64 MeerKAT

dishes, provided by Minh Huynh3. The left plot shows all the dishes while the

right plot shows just the dishes concentrated in the dark area on the left plot. It

is clear that most dishes are centred at the middle and very close to each other

with only a few dishes providing the longer baselines (small scales).

The ASKAP configuration, given by the bottom row of plots in Fig. 3.1, was

2http://www.ska.ac.za/meerkat/
3minh.huynh@uwa.edu.au
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Figure 3.1: Dish positions for Tianlai-like (top), MeerKAT (middle row) and
ASKAP (bottom) array configuration, given in metres. The zoomed in plots for
MeerKAT and ASKAP show the central dish positions more clearly.

also provided by Minh Huynh. A slightly older version can also be found online4.

It is made up of 36 dishes, each with a diameter of 12 m. Again, most of the

dishes are central and fairly close to each other. ASKAP’s 36 identical antennas

4http://www-astro.physics.ox.ac.uk/∼hrk/Array Simulator.html
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each have 1 deg2 beams. These independent beams will work together as a single

instrument to produce a 30 deg2 field of view at 1.4 GHz with a total collecting

area of ∼4000 m2. This is achieved using a phased array feed (PAF) mounted on

each antenna. PAFs are a new type of focal plane array being designed for the

Westerbork Synthesis Radio Telescope (WSRT) and ASKAP (Landon et al., 2009).

It consists of antennas that instead of working independently, act as sensors of the

sky’s electromagnetic field across the entire focal plane of the telescope. Each

of ASKAP’s PAF requires 188 individual receivers which are situated near the

antennas focus. The receiver outputs are coherently combined in a beamformer

to synthesize multiple simultaneous beams on the sky. Complete coverage of the

potential field of view is therefore possible without loss of sensitivity in each beam5.

The frequencies at which ASKAP is designed to operate range from 700 MHz to

1.8 GHz with a 300 MHz instantaneous bandwidth. The maximum baseline will be

approximately 6 km6. Instead of simulating 36 individual beams with a total field-

of-view of 30 deg2, the ASKAP PAFs will be approximated by one large primary

beam of 30 deg2. Although not strictly correct, this will be computationally quicker

and is a reasonable approximation to give an idea of what the instrument can do.

The aperture efficiency is defined as the ratio of the effective collecting area of a

dish to it’s total geometric area. The expected efficiency of the dishes in the three

arrays of interest are very similar, as can be seen in Table 3.1 where a summary

of the properties of each arrays is given.

It is clear from Fig. 3.1 that the three interferometers are very different. To

see how the different configurations effect the performance of the interferometer

and it’s potential for detecting BAOs, the uv-coverage for each array were plotted

and compared.

Fig 3.2 compares the uv -coverage for the three different array configurations.

5https://science.nrao.edu/science/Decadal%20Survey/tech/Fisher PhArrayFeed TEC RMS.pdf
6http://www.atnf.csiro.au/projects/askap/index.html
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Tianlai MeerKAT ASKAP

Number of Dishes 100 64 36
Dish Diameter (m) 4 13.5 12
Efficiency 0.7 0.7 0.8
Tsys (K) 30 30 50
Resolution 15′ at z = 1 6′′ − 80′′ optimised for 30′′

Field of View 9 deg2 1 deg2 30 deg2

Table 3.1: Summary of properties for the Tianlai-like, MeerKAT and ASKAP
array configurations.

a) Tianlai b) MeerKAT c) ASKAP

Figure 3.2: UV-coverage for each array configuration. The top row shows the uv
plane for MeerKAT and ASKAP whereas the bottom row shows the uv planes on
the same scale for each interferometer as the complete uv plane for Tianlai is
much smaller than the others. The plots were made for a 12 hour observation at
declinations of +30◦ for Tianlai and −30◦ for MeerKAT and ASKAP, based on
the site location of each interferometer.

The top images for MeerKAT and ASKAP shows the uv -plane while the lower

images show the uv -plane on the same scale as the Tianlai array. It is clear from

these images that Tianlai is best set up for potentially detecting BAOs through
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intensity mapping. This is because the more compact array gives a better filling

factor and the best uv -coverage over the large scales relevant to BAOs. Tianlai

also has the smallest dishes so it will have a bigger field of view than MeerKAT

and ASKAP would have (see Table 3.1). ASKAP gets round this by using the

PAFs as described previously. ASKAP and MeerKAT on the other hand have lots

of large baselines which will give good coverage at the very small scales but less

at the large scales that we are interested in, which can be seen by comparing the

lower uv -coverage plots. ASKAP in particular has especially poor coverage on the

larger scales indicating that it might be difficult to detect anything with it.

A histogram of the number of baselines at various angular scales was plotted

(see Fig. 3.3) for each of the three interferometers to illustrate more clearly the

differences between the array configurations.

Figure 3.3: Histogram of baselines for each of the three interferometers at 800 MHz
with the HI angular power spectrum plotted for comparison.

From the histogram in Fig. 3.3 it is clear that both MeerKAT and ASKAP have

most of their coverage at small angular scales (less than 1 arcmin). MeerKAT has
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a small cluster of baselines at scales around 5−10 arcmin while Tianlai’s baselines

give coverage on scales greater than 10 arcmin. The HI angular power spectrum

has been plotted and it can be seen that the BAO wiggles start at scales around

20 arcmins. These angular scales are covered best by Tianlai indicating that it

may be the best interferometer to observe BAO peaks.

3.3 Simulating Interferometric Observations

To simulate interferometer observations a Tcl script was written, initially by Clive

Dickinson and modified by myself. An example of this script can be found in

Appendix A. We also made extensive use of the Astronomical Image Processing

System (AIPS7) package. The first step made use of the AIPS task FITLD which

read in our model of the sky, in the form of a FITS cube (see section 2.2). The 3D

cube is then split up into individual channel maps in the frequency direction using

SUBIM. The simulated observations can now be done for each frequency slice.

The observed visibilities were simulated using the AIPS task UVCON, which

requires an array model. The properties of the array are read from an antenna file

and the uv-coverage of the interferometer is determined. The antenna file consists

of a list of antenna locations, antenna diameter, antenna temperature and aperture

efficiency. Other inputs required by the task UVCON include the total observation

time and the integration time per visibility. It is also possible to set the type

of primary beam model used in UVCON. For the work in this thesis the primary

beam was modelled as a Gaussian where the FWHM major and minor axes of

the primary beam are specified in degrees. At high redshifts (low frequencies) the

primary beam widens, resulting in a larger field-of-view. At 1000 MHz, the primary

beam is 40% larger than at 1420 MHz and 75% larger at 800 MHz. This effect was

7http://www.aoc.nrao.edu/aips/
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taken into account, otherwise large amounts of data are lost at high redshifts. The

visibilities are calculated for each channel from a fast Fourier transform (FFT) of

the model image. The uv-data channels are then combined into one big uv-data

set using the task UVGLU and a uv FITS data file is output. Gaussian noise is

calculated and added by UVCON based on the specified antenna characteristics and

integration times.

The task IMAGR can produce dirty or deconvolved images from the uv-data

using a FFT. A dirty image is a convolution of the sky brightness (true image)

with the dirty beam. The dirty beam (also known as the point spread function)

is the Fourier transform of the sampling function, and it’s shape is determined

by the uv-coverage. Any holes in the uv-coverage lead to side lobes in the dirty

beam. The synthesized beam is an elliptical Gaussian fitted to the dirty beam and

determines the resolution of the interferometer.

Different weighting schemes can be chosen for the simulation including natural

weighting (all visibility samples have equal weights), uniform weighting (each cell in

the uv-plane has equal weights) and robust weighting (compromise between natural

and uniform weighting). Natural weighting has the advantage of minimum noise

but often applies too much weight to points near the origin, creating significant

side lobes in the beam. On the other hand uniform weighting allows for a higher

resolution than natural weighting but tends to be more noisy. For our work a

natural weighting scheme was chosen.

Tapering can also be used to downweight high spatial frequencies. This can be

useful when the array configuration consists of many long baselines (corresponding

to very small scales) which are not of interest to us. Tapering is applied by multi-

plying by a Gaussian function in the uv-plane. This is equivalent to a convolution

by a Gaussian function in the image plane. Tapering gives lower point source

sensitivity but better brightness temperature sensitivity. For both the MeerKAT
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and ASKAP configurations a uv-taper of 5 kλ was used to throw away some of

the long baselines, giving a synthesized beam of about 6’.

3.3.1 Millennium Simulation Dirty Maps

In order to compare the performance of the interferometers and see the effect of the

array configurations more clearly, the Millennium FITS cube (see section 2.2) was

used as the input model in AIPS along with array configuration files for each of

Tianlai, ASKAP and MeerKAT. The dirty maps for each interferometer were then

compared and can be seen in Figs. 3.4, 3.5 and 3.6. Three different frequencies

were chosen (1000 MHz, 1200 MHz and 1400 MHz) which show individual galaxies

at the very high frequency and diffuse emission at the lower frequency.

Figs 3.4, 3.5 and 3.6 show slices from the output image cubes with each figure

showing results for a different frequency. The top row of images in each figure are

slices showing the output image that each interferometer would be able to see if

no noise was present, i.e. only the signal. This no noise simulation was done by

setting Tsys = 0 K in the array configuration file so as to only observe the signal

in the Millennium input cube. The next row down show the results of a 12 hour

observation but for most arrays and most frequencies this is not long enough to

start detecting any signal over the noise levels. In an attempt to reduce the noise

the observation can be done for a longer time. Instead of running the simulation

for longer, which would be more time intensive, the antenna temperature can be

reduced to simulate longer observation times since T 2
systobs = constant (see Section

1.4 where we saw Tsys = TA +TCMB + . . . ). This effectively corresponds to multiple

12 hour observations. The third, fourth and fifth rows in each figure show slices

from the simulated FITS cube for observation times of 120 hrs, 1200 hrs and 12000

hrs, and include the signal and the effect of noise from the array antennas.

Looking at Fig 3.4 first it is clear that Tianlai starts to detect diffuse emission
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after 1200 hours while MeerKAT only starts to detect anything after about 12000

hours. ASKAP also just about detects some of the diffuse emission around 12000

hours but it is not as clear as MeerKAT.

Moving to higher frequencies in Fig 3.5 Tianlai, again, performs the best out

of the three arrays, detecting signal by 120 hours. MeerKAT performs better than

ASKAP with signal being detected after 1200 hours while ASKAP only seems to

be able to detect galaxies and diffuse emission after 12000 hours.

Looking at the highest frequency in Fig 3.6 Tianlai is detecting galaxies after

only 12 hours. MeerKAT also just about detects galaxies after 12 hrs but better

results are achieved by 120 hours. ASKAP on the other hand definitely detects

galaxies by 1200 hours with some of the very bright objects being detected after

120 hours.

The reason for these differences in the dirty maps are to do with the arrange-

ment of antennas. Long baselines give a higher resolution which is better for

detecting individual galaxies. Short baselines mean a lower resolution which is

better for detecting diffuse emission. ‘Tianlai’ will therefore be better at detecting

the diffuse emission at lower frequencies than either MeerKAT or ASKAP, which

will be able to individual galaxies well at higher frequencies. This is shown in the

dirty maps.

Although maps are useful to give a general idea of what each interferometer

should be able to detect, using a power spectrum analysis is a cleaner, more quan-

titative method. This is because the angular information is binned in a statistical

manner that can be easily compared to theoretical models and simulations. The

power spectrum allows structure to be seen that is not very clear in the maps,

so a power spectrum analysis should be an improvement on the dirty maps. The

following Chapters will explore this method in more detail.
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a) Tianlai b) MeerKAT c) ASKAP

Figure 3.4: Dirty maps for each array at different observation times. The top
row shows dirty maps with no noise while the remaining rows show dirty maps
for observation times of 12 hrs, 120 hrs, 1200 hrs and 12000 hrs from second to
fifth row. All slices are at f = 1000 MHz with ∆f = 5 MHz, showing an area of
5.5×5.5 deg2. The scale is linear, with maximum and minimum values determined
by scanning the image, and in units of Jy/pixel.
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a) Tianlai b) MeerKAT c) ASKAP

Figure 3.5: Dirty maps for each array at different observation times. The top
row shows dirty maps with no noise while the remaining rows show dirty maps
for observation times of 12 hrs, 120 hrs, 1200 hrs and 12000 hrs from second to
fifth row. All slices are at f = 1200 MHz with ∆f = 5 MHz, showing an area of
5.5×5.5 deg2. The scale is linear, with maximum and minimum values determined
by scanning the image, and in units of Jy/pixel.
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a) Tianlai b) MeerKAT c) ASKAP

Figure 3.6: Dirty maps for each array at different observation times. The top
row shows dirty maps with no noise while the remaining rows show dirty maps
for observation times of 12 hrs, 120 hrs, 1200 hrs and 12000 hrs from second to
fifth row. All slices are at f = 1400 MHz with ∆f = 5 MHz, showing an area of
5.5×5.5 deg2. The scale is linear, with maximum and minimum values determined
by scanning the image, and in units of Jy/pixel.



Chapter 4

Power Spectrum Estimation

Temperature fluctuations are usually described as an expansion in spherical har-

monics
∆T (x)

T
=
∞∑
`=0

∑̀
m=−`

a`mY`m(x). (4.0.1)

The a`ms completely describe how the galaxies are distributed in spherical har-

monic space. The autocorrelation of the spherical harmonic expansion is used to

calculate the power spectrum, C`, which contains information about the preferred

correlation length. If the matter distribution is a realisation of a Gaussian random

field the mean is 〈a`m〉 = 0 and the variance is 〈a`ma∗`m〉 = C`. This gives an

estimator of the power spectrum in spherical harmonic space,

C` =
1

2`+ 1

∑̀
m=−`

|a`m|2. (4.0.2)

The power spectrum is related to the temperature fluctuations by

∆T 2
` =

`(`+ 1)C`
2π

, (4.0.3)

77
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where T 2
` is the temperature at a particular value of ` and is in units of (µK)2 and

` = 2π|u|.

When observing small patches of sky, it is more convenient to use Fourier

analysis giving
∆T (x)

T
=

∫
T̃ (u)e2πiu.x d2u, (4.0.4)

where T̃ is the Fourier transform of the temperature fluctuations and u, the spatial

frequency, is the variable conjugate to x, measured in wavelengths.

We can define the ensemble averaged power spectrum as (Hobson et al., 1995)

〈
T̃ (u)T̃ ∗(u′)

〉
= C(u)δ(u− u′), (4.0.5)

if the emission is statistically isotropic and uncorrelated.

We have seen that an interferometer measures the Fourier transform of the

product of the sky temperature fluctuations and the primary beam, A(x) (see

Chapter 3), and the visibilities are given by (see also eq. 3.0.1)

V (u) ∝
∫
A(x)

∆T (x)

T
e2πiu.x d2x. (4.0.6)

Substituting in eq. 4.0.4, it can be shown that the observed visibilities are given

by a convolution of the sky and the aperture:

V (u) ∝
∫

d2u′ T̃(u′)

∫
d2x̂A(x)e2πi(u′−u).x

∝
∫

d2u′ T̃(u′)Ã(u′ − u)

∝ (T̃ ∗ Ã)(u′) (4.0.7)



79

where Ã is the Fourier transform of the primary beam and

Ã(u) =

∫
d2xA(x)e−2πi(u.x). (4.0.8)

The squared visibility is usually measured and this, along with eq. 4.0.5, is used

to relate the power in the visibilities with the ensemble averaged power spectrum;

〈
|V (u)|2

〉
∝
∫

d2u′
∫

d2u′′
〈

T̃(u′)T̃∗(u′′)
〉

Ã(u− u′)Ã(u′ − u′′)

∝
∫

d2u′C(u′)|Ã(u− u′)|2

∝ C(u′)

∫
d2u′ |Ã(u− u′)|2, (4.0.9)

where the last line is a reasonable approximation if the power spectrum is smooth

and independent of u′.

The primary beam, A, is often modelled as a Gaussian, so this can be substi-

tuted in eq. 4.0.9 and then solved to produce the final relation;

Cobs(u) ∼
〈
|V (u)|2

〉
∝ C(u)

∫
d2u′ |Ã(u− u′)|2

≈ C(u)

∫
d2x |A(x)|2

≈ C(u)

∫ ∞
0

d2x (e
−x2

2σ2 )2

≈ πσ2C(u) (4.0.10)

This is an exact result when C(u′) is independent of u′. Modelling the beam as a

Gaussian gives

σ =
θFWHM√

8ln2
. (4.0.11)

By dividing the power spectrum obtained from the visibilities, Cobs, by the factor

πσ2 we should be able to recover the true power spectrum, C, that was used as
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the input.

The C`s are directly related to the visibilities (see also eq. 4.0.10) via

C` =

(
dB

dT

)−2 ∑
bin |V |2

N
, (4.0.12)

where the numerator is the sum of the squared visibilities in a bin and the de-

nominator is the number of visibilities in a bin. The factor at the front is used

to convert visibilities from Jansky, Jy, to Kelvin, K. Since we are working in the

Rayleigh-Jeans limit this is given by

dB

dT
=

2kB

λ2
. (4.0.13)

4.1 Error on Power Spectrum

There are several sources of statistical error on a measurement of the power spec-

trum. The overall error can be written as

∆C` ∼
√

2

2`+ 1
(C` +N`). (4.1.1)

The first term in eq. 4.1.1 is the cosmic variance due to the fact it is only

possible to observe one realisation of the Universe. From eq. 4.0.2 we can see

that there are (2` + 1) a`ms for each `, each having an expected autocorrelation

of C`. This means there are only a finite number of independent modes that can

be measured in a given cosmic volume. Cosmic variance is much bigger for small

` than large `. Another problem arises when small patches of sky are used to

measure C`, when the spherical harmonics cover the whole sphere (Gawiser and
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Silk, 2000). This limited sky coverage leads to sample variance given by

σ2
sv ∼

(
4π

Ω

)
σ2

cv, (4.1.2)

where Ω is the solid angle of sky observed (Scott et al., 1994). This causes errors at

low ` to be very large if just one field is being observed as only a few fluctuations

are being measured.

The second term, N` in eq. 4.1.1 is made up of shot noise and other sources of

error such as telescope noise.

Shot noise is a result of the imperfect sampling of fluctuations due the finite

number of galaxies in the given volume. It is equal to the survey area solid angle

divided by the number of observed galaxies within that area (Wolz et al., 2013).

The final source of error for radio interferometric observations is the thermal

noise. This can be expressed in terms of brightness temperature as (Thompson

et al., 1986)

σ2
th =

λ2Tsys

AeffΩ
√
N(N − 1)

√
∆νtint

, (4.1.3)

where Tsys is the system temperature, Aeff is the effective collecting area, Ω is the

beam solid angle, N is the number of antennas and tint is the integration time per

pixel.

4.2 Binning Visibilities

For interferometers, the total number of visibilities at each frequency can be very

large. It is therefore necessary to compress the data by binning the visibilities at

each observing frequency into cells in the uv -plane. As the main focus is estimating

the power spectrum rather than making accurate maps, the uv -plane can simply

be divided up into cells (pixels) of equal area with sides ∆u. Within each pixel the
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visibility is assumed to be constant. The value of the binned visibility, vk, in the

kth cell is usually associated with the position in the uv -plane uk corresponding

to the centre of the cell. The choice of ∆u is a compromise between accurately

representing the original data with the binned data (small ∆u) and speeding up

the calculation by using fewer data points (large ∆u).

The correlation length in the uv -plane is governed by the primary beam so the

cells should be of order this size so as not to lose too much information (sampling

theorem). Cells of size ∆u where then chosen according to

∆u = ∆v =
1

2Rc

, (4.2.1)

where Rc is defined as the radius at which the primary beam drops to 1% of its

peak value (Hobson et al., 1995). This is about three times the dispersion for a

Gaussian beam, where the dispersion is given by θFWHM/
√

8 ln 2.

4.2.1 Expected Power Spectrum and Variance

In order to compute the angular power spectrum, both an incoherent and a co-

herent addition of visibilities is needed. The relative contribution of incoherent

and coherent additions depends on the number of visibilities within each uv -cell

and the number of uv -cells within each `-bin. Both extreme cases (completely

incoherent or completely coherent) and the intermediate case will be looked at to

see how the binning affects the final power spectrum result.

Visibilities can be considered coherent over scales that are of similar size to

1/FOV in the uv -plane. The estimate for the angular power spectrum for mode `

is given by

C` =

∑
(uv)∈`

Nuv|Vuv|2∑
(uv)∈`

Nuv

, (4.2.2)
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where Nuv is the number of visibilities in a given uv-cell and the sum is over the

uv-cells contributing to that `-mode (Trott et al., 2012). The visibilities, Vuv, are

coherently combined (averaged) within each cell but the final estimate associating

uv-cells in `-modes is incoherent (the visibilities are combined after squaring).

An entirely coherent estimate of the power spectrum is where a single `-mode

consists of a single uv-cell (N` = Nuv). In this case the summations in eq. 4.2.2

are omitted giving,

C` = |Vuv|2, (4.2.3)

as the new power spectrum estimate. The mean and variance for complex Gaussian

white noise on each visibility can be computed giving,

C` ∼ N
(
σ2

N`

,
2σ4

N2
`

)
, (4.2.4)

where N` is the number of visibilities in a given `-mode (Trott et al., 2012). It is

clear from eq. 4.2.4 that as the number of visibilities increases the expected noise

power and variance decrease, however the ratio of expected noise to standard

deviation stays the same.

The opposite case is an entirely incoherent estimate where a single visibility

contributes to each uv-cell (Nuv = 1). The power spectrum estimate is now,

C` =

N∑̀
i=1

|Vi|2

N`

, (4.2.5)

giving,

C` ∼ N
(
σ2,

2σ4

N`

)
. (4.2.6)

A real experiment however will have a large number of visibilities coherently

combined with many uv-cells contributing to each `-mode, as described in eq.
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4.2.2. For example, consider an experiment with an equal number of visibilities in

each uv -cell and ten uv -cells contributing to each `-mode, N` = 10Nuv, the power

spectrum estimate would then be written as,

C` =

10∑
i=1

Nuv|Vuv|2∑10
i=1 Nuv

. (4.2.7)

From this we get the following estimates for the expected noise power and variance;

C` ∼ N
(
σ2

Nuv

,
2σ4

N`Nuv

)
. (4.2.8)

Some simple noise simulations were used to test eq. 4.2.1, which is theoretically

the optimum bin spacing in the uv -plane, and the results can be seen in Fig. 4.1.

Fig. 4.1 shows the recovered power spectrum for various bin widths. The

input power spectrum used was the Millennium simulation with some low levels of

noise added. To see the effects of the binning more clearly, both the Millennium

simulation without noise, and the noise only power spectrum have been calculated

using the incoherent estimator. These are represented on the plot by the solid black

and blue lines respectively. The noise only gets averaged down in the uv -cells when

the real and imaginary values are binned so making the cells bigger means that

the noise gets averaged down more, which is seen in Fig. 4.1. The figure shows

that ∆u = 1λ has started to average the noise down. The effect is not very big

because as ∆u gets smaller, the estimator tends towards the incoherent estimate of

the noise (solid blue line), which is what is seen. Using ∆u = 5λ has reduced the

noise levels quite dramatically but not enough to start seeing the signal through

the noise. ∆u = 20λ has reduced the noise levels even further but some signal

also seems to have been smoothed out at low `. This is illustrated by the fact

that the final power spectrum using ∆u = 20λ is lower than the Millennium signal
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Figure 4.1: Recovered power spectrum comparing the effect of different values of ∆u
on the Millennium simulation power spectrum with low levels of noise. The lower
and upper lines represent the signal only and noise only power spectra computed
using the incoherent estimator for comparison. T ∗sys = 0.94K was used in the noise
plots and all the power spectra were computed at f = 1000 MHz using ∆f = 5
MHz.

power spectrum (black line) up to ` = 1000. The power spectrum calculated using

∆u = 10λ seems to agree with the signal power spectrum closely up until ` ∼ 500

indicating that the noise has been sufficiently averaged down to start revealing the

signal. This suggests that using ∆u around 10λ is an optimum value to choose,

agreeing with eq. 4.2.1. Using T ∗sys = 0.94 K is equivalent to an observation time

of 12000 hours for a Tianlai-like array. The antenna temperature can be increased

in future simulations to simulate shorter observation times (see Section 3.3.1).

Fig. 4.2 shows the effect of the different estimators on power spectra consisting

of just the Millennium simulation signal (left plot) and for a noise only simulation
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Figure 4.2: Recovered power spectra estimates using the three different estimators
described by equations 4.2.5, 4.2.2 and 4.2.3. Left: Millennium simulation. Right:
Noise (Tsys = 3 K). The theoretical power spectra have been plotted for comparison
using equations 4.2.6, 4.2.8 and 4.2.4. All power spectra were calculated at f =
1000 MHz using ∆` = 100. For the mix of coherent and incoherent binning ∆u =
∆v = 10 was used.

(right plot). Using ∆u = 10λ greatly reduces the noise levels whilst producing a

signal power spectrum very similar to that found when using an entirely incoherent

estimator, implying this is a reasonable choice of ∆u. Although using the fully

coherent power spectrum averages down the noise even further, it is obvious that if

∆u gets too large then the signal is averaged out by binning and the signal power

spectrum is no longer an accurate representation of the input.

Increasing the effective system temperature, T ∗sys, increases the overall ampli-

tude of the noise significantly meaning that the signal cannot immediately be seen

in the power spectrum for noise plus signal, unlike the case in Fig. 4.1. In or-

der to recover the signal the noise needs to be subtracted. Fig. 4.2 showed that

the theoretical noise and recovered noise power spectra agreed well, allowing the

theoretical noise power spectra to be used in the noise subtraction later.
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4.3 Testing the Incoherent Estimator

It has been shown that the correct estimator for signal only is the incoherent

estimator, where a single visibility contributes to each uv -cell i.e. Nuv = 1 (see

section 4.2.1). As this will be used fairly frequently it is important to test that it

works for a range of test power spectrum before any real analysis is done using it.

We can use a variety of different power laws to see how well the incoherent

estimator works. This takes the general form

T 2
` = 100µK2

(
`

100

)n
, (4.3.1)

where n = ±0.5,±1.0 and ±2.0 will be the power spectra tested. A power spec-

trum with n = +2 is equivalent to white noise. A HEALPix (Górski et al., 2005)

subroutine, synfast, can then be used to simulate a sky temperature map using

a given set of C` values. The resulting temperature maps are shown in Figs. 4.3

and 4.4. From these maps, an area of 16 deg2 was chosen and a FITS cube was

created to be used by AIPS to produce a set of visibilities which in turn can be

used to compute the power spectrum (see Section 3.3 for more information). To

build up statistics, many Monte Carlo realisations of the sky were done.
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Figure 4.5: Recovered power spectra for a variety of input power laws using the
incoherent estimator. Results for positive power laws are on the left and negative
power laws are shown on the right, all centred at f = 1000 MHz using ∆f = 5
MHz.

During the power spectrum analysis, shown in Fig. 4.5, using the incoherent

estimator it was noticed that there was some significant bias for n < 0, getting
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worse the more negative the exponent. To see why, the uv maps of the AIPS data

were compared, shown in Fig. 4.6.

Figure 4.6: UV maps for n = +2 and n = −2 power laws shown in the left and
right plots respectively.

For a Gaussian random field we expect random Gaussian fluctuations with the

variance in rings which is seen in the left map in Fig. 4.6. The n = −2 map has

most of the power concentrated in two vertical and horizontal stripes. A power

spectrum with exponent n = −2 means that there is lots of power on large scales

so removing the largest modes should fix the problem. There is lots of power at

the edge of the map because the primary beam does not go to zero. A solution

would be to apodize the edge of the map with a cosine function which would force

it to go to zero at the edge.

The uv map and power spectrum in Fig. 4.7 show that a wide field of view

with a cosine taper has got rid of the two stripes of power that dominated the map

previously, giving a better recovery of the input power spectrum. The faint rings

visible in the uv map are below the noise levels of any practical interferometer

simulation so will not be a problem in future simulations.
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Figure 4.7: UV map (left) and recovered power spectrum (right) for −2.0 input
power law using the incoherent estimator, corrected using a cosine taper, centred
at f = 1000 MHz using ∆f = 5 MHz.

4.4 Bias Correction

For any array configuration being used it is unlikely that the power spectrum

produced from the visibilities will be exactly the same as the power spectrum that

is being observed. For noise only, the correct method is to use an entirely coherent

estimate of the power spectrum where a single `-mode consists of a single uv-cell

(N` = Nuv), as seen in eq. 4.2.3. For signal only an entirely incoherent estimate

is used where a single visibility contributes to each uv-cell (Nuv = 1), as seen in

eq. 4.2.5. The C` estimators used for signal only and noise only are therefore

different. We have seen that when a simulation combines both signal and noise

the estimator used needs to be a compromise between the two methods.

As a result of the compromise there is likely to be some noise bias intrinsic

to the model being used and preventing the signal from being recovered perfectly.

However, it should be possible to find a function, F`, for each `-mode to quantify

the bias for a particular model;

T obs
` = F`T

true
` +N true

` , (4.4.1)
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where T obs
` is the observed power spectrum, and T true

` and N true
` are the true signal

and noise power spectra respectively. F` can be found by observing a known input

signal with no noise (T ∗sys = 0 K) and dividing the observed output by the input.

F` will then tell us by how much we need to correct the observed output power

spectrum in order to reproduce what the original input was for the particular

model.

Figure 4.8: Calculating F` for a Tianlai-like array configuration. In the left plot,
the solid line represents the input power spectrum used, while the data points rep-
resent the recovered power spectrum using various estimators. The right plot shows
the output power spectrum once the F` correction has been applied. Power spectra
were computed at f = 1000 MHz using ∆f = 5 MHz.

The left plot in Fig 4.8 illustrates the differences between two C` estimators

that can be used to calculate the power spectrum. The solid line represents the

input power spectrum that was used which has a constant T` = 100 µK2. The

diamonds show the resulting power spectrum using the completely incoherent es-

timator while the triangles show results for the mix of coherent and incoherent

estimators with ∆u = 10λ. It is clear that the correct binning method for signal

(entirely incoherent) reproduces the input power spectrum fairly well, while much

more signal is averaged down when a mix is used. We can divide the resulting

power spectrum for the mixed estimator by the input to give F` which will tell us

by how much we need to correct each `-bin in order to get back what we started
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with. To check that the F` found is correct, we can divide the output power spec-

trum by the correcting F` factor and we should be able to recover the input. The

result of this can be seen in right plot in Fig. 4.8 and illustrates that we can now

recover the input power spectrum correctly.

4.5 Autocorrelation versus Cross Correlation

4.5.1 Autocorrelation

It is now clear that in order to recover an accurate signal power spectrum, both

an estimate of the noise power spectrum and F` are needed. We have already seen

that

T true
` =

1

F`

(
T obs
` − < N est

` >
)
, (4.5.1)

where the theoretical noise power spectrum seen in Section 4.2.1 can be used for

N est
` . Instead of just subtracting off the noise power spectrum we can also correct

for the signal lost during binning to leave behind a more accurate recovery of the

signal power spectrum. The results of this are illustrated in the following plots.

Fig. 4.9 shows the results of two simulations with different noise levels. It is

clear in both plots that there is still some noise bias at high `. In order to check

that this bias is a result of the noise in the simulation rather than the code itself

some further investigation needs to be done. The noise levels in these plots are

relatively high and there are only 80 realisations. By increasing either the number

of noise realisations or decreasing the noise levels, the noise bias at high ` should

go away. This was investigated and the results of these simulations are shown

below.

Fig. 4.10 shows the results of increasing the number of realisations for a partic-

ular noise level. The top two images show the results obtained using two different
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Figure 4.9: Plots showing the power spectra results for a Tianlai-like array config-
uration for ` = 0 − 1000. Each power spectrum was centred at 1390 MHz using
∆f = 5 MHz. The left plot shows results for an observation time of 120 hrs and
the right is for 1200 hrs. In both plots, the solid line shows the power spectrum
that is computed when only signal is observed (T ∗sys = 0 K). The data points in
each plot represent the power spectrum of the signal that should be able to be seen
once noise has been subtracted and corrections applied.

sample sets of 80 realisations. As noise is random, there is an equal chance of the

recovered power spectrum having a bias above or below the input power spectrum.

By combining many noise realisations, the overall amplitude of the bias should de-

crease as positive and negative contributions should cancel out. This is seen in the

lower plot where all the realisations have been combined into one set.

Fig. 4.11 shows the results of decreasing the noise levels. The left and right

plots used T ∗sys = 0.3 K and T ∗sys = 0.094 K respectively. It can be seen clearly

that the noise bias has high ` has been reduced and is smallest for the observation

with the lowest noise.
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Figure 4.10: Recovered power spectra for a Tianlai-like array configuration. Each
power spectrum was centred at 1390 MHz using ∆f = 5 MHz. Both the top plots
show results for an observation time of 12000 hrs with the left and right plots
showing results for two separate sample sets. The lower plot shows the results of
these two batches combined. In all plots, the solid line shows the power spectrum
that is computed when only signal is observed (T ∗sys = 0 K). The data points in
each plot represent the power spectrum of the signal that should be able to be seen
once noise has been subtracted and corrections applied.
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Figure 4.11: Recovered power spectra for a Tianlai-like array configuration. Each
power spectrum was centred at 1390 MHz using ∆f = 5 MHz. The left plot shows
results for an observation time of 120000 hrs and the right is for 1200000 hrs.
In both plots, the solid line shows the power spectrum that is computed when only
signal is observed (T ∗sys = 0 K). The data points in each plot represent the power
spectrum of the signal that should be able to be seen once noise has been subtracted
and corrections applied.
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4.5.2 Cross Correlation

Previously, in order to calculate the power spectrum from a set of visibilities the

estimator has included a mix of incoherent and coherent binning of visibilities from

which a noise estimate was subtracted. This approach is known as autocorrelation.

However, it has been shown in Section 4.5.1 that there seems to be some noise bias

with this method. This is demonstrated in signal recovery plots where at high `

the power spectrum seems to have an upwards trend to it. This is likely to be due

to the noise being incorrectly estimated and therefore not subtracted perfectly.

The noise estimate is based on simulations so is not exact, leaving some residual

noise bias behind. In order to get rid of this a method is needed which doesn’t

rely on using the simulations to come up with a noise estimate and doesn’t rely

on subtracting a noise estimate from the signal power spectrum.

One way of getting round this problem is to use cross-correlation rather than

autocorrelation. A problem with autocorrelation is that the noise power spectrum

tends to add some signal and uncertainty to the overall power spectrum. Cross-

correlation solves this problem because the cross-correlation of random noise vis-

ibilities averages to zero which leaves only the uncertainty behind. This should

eliminate the problem of the noise bias in the power spectrum calculations.

Three different methods of cross correlating visibilities were investigated and

then from these three the most successful one was chosen to be used for further

work.

The first method is similar to the old method in that initially the visibilities

are binned into uv -cells. Instead of then averaging these visibilities within each

uv -cell, all the visibilities contributing to a particular uv -cell are cross correlated

with each other. Once this has been done, the values of the overall visibility for

each uv -cell are then combined in ` using the same method as before. The equation
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for this can be written as

C` =

∑
(uv)∈`

Nuv

 Nuv∑
i6=j

ViV
∗
j

N2
uv−Nuv


∑

(uv)∈`
Nuv

, (4.5.2)

where Vi and Vj are individual visibilities in uv -cells, Nuv is the number of visi-

bilities in a uv -cell, the internal sum is over the total number of visibilities in a

uv -cell and the outside sum is over uv -cells contributing to each `-bin.

An alternative method is very similar to the original autocorrelation method

in that the visibilities are binned and averaged within uv -cells. These averages are

then cross correlated with each other within `-modes, which can be written as

C` =

N∑
i 6=j

(Vuv,iV
∗
uv,j)

N2 −N
, (4.5.3)

where Vuv is the average visibility within a uv -cell, N is the number of uv -cells in

an `-mode and the sum is over the number of uv -cells contributing to a particular

`.

The last cross correlation estimator is similar to the incoherent estimator in

that the visibilities are not binned in the uv -plane at all, just in `. All the visibilities

in each ` are then cross correlated with each other giving

C` =

N∑̀
i 6=j

(ViV
∗
j )

N2
` −N`

, (4.5.4)

where Vi,j are individual visibilities in `, N` is the number of visibilities in each

`-mode and the sum is over the total number of visibilities in each `.
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Various noise only simulations were investigated using the various cross corre-

lation methods and the results are shown in the following plots.

Figure 4.12: Results of cross correlating visibilities within each uv-cell (see eq.
4.5.2) for the following noise levels: 30 K, 9 K, 3 K and 0.94 K. Each power
spectrum was calculated using ∆ f = 5 MHz at f = 1390 MHZ.

Figs. 4.12, 4.13 and 4.14 show the recovered power spectra for different levels

of noise, using different cross correlation estimators. Cross correlating visibilities

before averaging produces final power spectra that are consistent with zero, with

data points evenly distributed above and below the zero line which is expected for

random noise. The two methods of cross correlation after averaging and within

`-bins produces power spectra that appear to suffer from some noise bias at high `.

When cross correlation after averaging is used, the effect of the bias is reduced as

the noise levels are reduced. Bias appears to be present regardless of noise levels
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Figure 4.13: Results of cross correlating visibilities after they have been averaged
within each uv-cell (see eq. 4.5.3) for the following noise levels: 30 K, 9 K, 3 K
and 0.94 K. Each power spectrum was calculated using ∆ f = 5 MHz at f = 1390
MHZ.

for cross correlation within `-bins. It is therefore clear from these three plots that

cross correlating visibilities within uv -cells before averaging is the best choice of

estimator for noise simulations.

Although cross-correlation before averaging produced the best results for noise

only simulations, it is important to understand how the estimators will affect the

signal. Ideally, the cross correlation method won’t affect the signal so that only the

noise is averaged down with no compromise on signal. A constant power spectrum

of T 2
` = 100 µK2 will be briefly investigated.

Fig. 4.15 shows the results of the known input power spectrum T 2
` = 100 µK2
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Figure 4.14: Results of cross correlating visibilities within each ` bin (see eq. 4.5.4)
for the following noise levels: 30 K, 9 K, 3 K and 0.94 K. Each power spectrum
was calculated using ∆ f = 5 MHz at f = 1390 MHZ.

computed using different estimators. Estimators using cross correlation before and

after averaging have been plotted as well as the old autocorrelation and incoherent

method for comparison. The incoherent estimator recovers the input power spec-

trum most accurately, as expected as it has already been shown that this is the

correct method for signal. From the plot it can be seen that the estimators using

autocorrelation and cross correlation before averaging (eq. 4.5.2) produce very

similar results while cross correlating visibilities after averaging (eq. 4.5.3) results

in most of the signal being smoothed out. Although some signal is being averaged

down in most methods the estimator using cross correlation before averaging is

much better for noise only simulations as it does not suffer from a bias at high
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Figure 4.15: Power spectrum computed for ∆T 2
` = 100 µK2 with no noise using

different estimator methods. Each power spectrum was calculated using ∆ f = 5
MHz at f = 1000 MHZ.

`. It is therefore clear that for more realistic simulations which will include signal

and noise, this cross correlation method is the optimal power spectrum estimator.

Fig. 4.15 can also be used to calculate F` for a constant input power spectrum

using the cross correlation method, using the ratio of the power spectrum calcu-

lated using the cross correlation method and the known input power spectrum.

The following plots show the results of using F` to recover the input signal.

Fig. 4.16 shows the results of using F` to recover the input power spectrum

when different levels of noise have been added. Looking at the plots the results

for each noise simulation are consistent with the input power spectrum of 100 µK2

as the cross correlating of visibilities has averaged down the noise. There is some

scatter around the input value which is to be expected with random noise.
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Figure 4.16: Results of cross correlating visibilities within each uv-cell for a known
power spectrum ∆T 2

` = 100 µK2 and different levels of noise: 9 K, 3 K and 0.94
K. Each power spectrum was calculated using ∆f = 5 MHz at f = 1000 MHz.



Chapter 5

Measuring the HI Power

Spectrum

The previous Chapter investigated different C` estimators, concluding that the

best estimator was the cross-correlation of visibilities. This involved binning and

averaging visibilities within uv-cells and then cross-correlating the averages with

each other within `-bins. A drawback of this method was that it relied on a

correction factor F` being calculated to recover the power spectrum accurately,

and this factor depended on the input power spectrum. Despite this, the method

was chosen as it eliminated the problem of noise bias which was present with other

estimators.

Some initial analysis on the Millennium simulation was undertaken in Chapter

3 to see how each interferometer performed at different frequencies. We would

like to use the Millennium simulation again to see how well each interferometer

can recover the HI power spectrum, but a problem lies with calculating F`. The

exact power spectrum for the Millennium simulation is unknown meaning that

the F` needed to correct the recovered power spectrum is also unknown. As this

correction is an important step in recovering the power spectrum a suitable F`

105
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needs to be chosen. To get round this we can plot a theoretical HI angular power

spectrum and use this to find an F` that should most closely match that of the

Millennium simulation. This Chapter will focus on finding a suitable F` based on

theory, and then using this theoretical power spectrum as in input to compare how

well the interferometers can recover the HI power spectrum.

5.1 Input Power Spectrum

To model the 21 cm angular power spectrum we shall use the formula given by

Battye et al. (2013)

C` =
H0b

2

c

∫
E(z)

[
W (z)T̄ (z)D(z)

r(z)

]2

Pcdm

(
`+ 1

2

r(z)

)
dz, (5.1.1)

where E(z) = H(z)/H0, H(z) = H0(1 + z)
√

1 + Ω0z and D(z) is the growth

function with D(0) = 1. The projection of T̄ on the sky is defined by a kernel

W (z), which was chosen to be a top-hat in (Battye et al., 2013), giving

W (z) =

 1
zmax−zmin

if zmin ≤ z ≤ zmax,

0 otherwise.
(5.1.2)

The maximum and minimum bin frequencies define the maximum and minimum

redshifts of each bin so any weighting function could be used. The observed bright-

ness temperature (T̄ ) and comoving distance (r) are given by

T̄ (z) = 44µK
(1 + z)2

E(z)
, (5.1.3)

r(z) = c

∫ z

0

dz′

H(z′)
. (5.1.4)

Details about the growth function, D(z), and cold dark matter power spectrum,
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Pcdm, can be found in Appendix B.

As a quick test of the code written to compute the HI angular power spectrum,

figures 1 and 2 from Battye et al. (2013) were reproduced and can be seen below.

Figure 5.1: Left: 3D HI power spectrum at z = 0.28. Right: HI angular power
spectrum for two different frequency ranges 925-975 MHz (upper plot) and 800-
1100 MHz (lower plot), centred on the same frequency of 950 MHz.

The code can now be used to obtain the power spectrum for the frequency

range of interest and the F` can then be deduced.

5.2 Finding F` for the HI Angular Power Spec-

trum

The plots in Fig. 5.2 show the power spectra for the central frequencies f = 1000

MHz and f = 800 MHz, using ∆f = 5 MHz and no noise. In both plots the solid

line represents the theoretical power spectrum calculated using (Battye et al.,

2013). The data points show the power spectra recovered using several estimators;

the incoherent estimator (diamonds) and the cross-correlation estimator (trian-

gles). As we have seen before, it is necessary to find F` to correct the recovered

power spectrum using cross-correlation as this estimator averages down the signal

as well as the noise. As before, F` can be found by dividing the recovered cross-

correlation power spectra by the input power spectrum. The results of this are
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Figure 5.2: HI angular power spectrum for two frequencies; 1000 MHz (left) and
800 MHz (right). In each plot the solid line shows the power spectrum calculated
from theory using ∆f = 5 MHz. The data points represent the measured output
power spectra using different estimators.

shown in Fig. 5.3.

Figure 5.3: F` calculated for the HI power spectrum centred on f=1000 MHz (left)
and f=800 MHz (right) using ∆f = 5 MHz.

The F` for the HI angular power spectra are shown in Fig. 5.3. The general

shape of the F` function is the same for both central frequencies. For both cases,

as ` increases, F` tends to 1 meaning that the recovered power spectra are most

similar to the input at high ` and that the largest correction is needed at low `.

The HI power spectrum can be plotted for a variety of different 50 MHz bands.

The results of this are shown in Fig. 5.4.
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Figure 5.4: How the HI angular power spectrum changes over a range of frequencies
of 50 MHz bins. The frequencies plotted are 925-975, 1050-1100, 1150-1200, 1250-
1300, 1310-1360 and 1368-1417 MHz from the lower to upper plots.

It is clear that the HI power spectrum varies quite a lot over central frequencies

ranging from f = 950 MHz (lowest power spectrum) to f = 1392 MHz (upper

power spectrum). Fig. 5.4 highlights the need to find different F`s depending on

the frequency range under consideration.

5.3 Recovering the HI Angular Power Spectrum

The following section will present the results of several simulations using the Battye

et al. (2013) power spectrum as the input, with various noise levels for a Tianlai-

like array. The cross-correlation estimator along with suitable F`s were used to

recover the power spectrum the results of which can be seen in Fig. 5.5.

Fig. 5.5 demonstrates the reconstruction of the Battye et al. (2013) power

spectra using the cross-correlation estimator and the appropriate F` for these sim-

ulations. Two different noise simulations have been done at two different central

frequencies. The reconstructed power spectra generally agree with the input, with

higher precision achieved with lower noise levels.



110 CHAPTER 5. MEASURING THE HI POWER SPECTRUM

Figure 5.5: Recovered power spectra for a Tianlai-like configuration using Battye
et al. (2013) power spectrum and cross-correlation estimator, corrected with F`.
The top power spectra are centred on f = 1000 MHz while the bottom row are
centred on f = 800 MHz. The left and right plots show results for tobs = 12000 hrs
and 1200 hrs respectively. All power spectra were computed using ∆f = 5 MHz.

Fig. 5.6 confirms that recovered power spectrum agrees with the input, achiev-

ing higher precision than before with a longer observation time being used. These

results allow us to be confident in the code and method of recovering power spectra.
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Figure 5.6: Recovered power spectra for a Tianlai-like configuration using Battye
et al. (2013) power spectrum and cross-correlation estimator, corrected with F`.
The power spectrum is centred on f = 1000 MHz, showing results for tobs = 120000
hrs using ∆f = 5 MHz.

5.3.1 Changing Bin Widths

A conclusion of the Battye et al. (2013) paper was that the optimum frequency

bandwidth to look at was 50 MHz instead of 4.6875 MHz which was used in the

analysis above. It would therefore be interesting to do a similar analysis for a

wider frequency bin to see how the results changed.

There are several ways in which a frequency bandwidth of ∆f = 50 MHz can

be achieved using the data. The first is to simply change the width of each channel

so that one channel is increased from ∆f = 5 MHz to ∆f = 50 MHz. The second

involves combining the cross-correlation results of 11 individual channels of width

∆f = 5 MHz. Computationally, the second method would be much quicker. This

is because it only requires the cross-correlation of visibilities in ∆f = 5 MHz,

rather than cross-correlating all the visibilities in ∆f = 50 MHz. There are fewer

visibilities in a smaller channel width and so the cross-correlation step is much

quicker in the second method, even though it has to be done for each individual
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channel. Both methods, however, should be tested to see what difference they

have on the final result, illustrated by Fig. 5.7.

Figure 5.7: Power spectra computed using Battye et al. (2013) power spectrum as
input with no noise for different bin widths. Each power spectrum was calculated
at f = 1000 MHz.

From Fig. 5.7 it is evident that having wider channels results in greater signal

loss as ` decreases. Combining many smaller channels together produces a result

that is similar to the previous single channel case, which was expected. Although

the results are different, this can be corrected for with the F` that is found for each

case. It is therefore necessary to test how the two methods compare when trying

to recover the power spectrum once noise has been added.

The top two plots in Fig. 5.8 compare two different methods of achieving

∆f = 50 MHz and how well each method recovered the power spectrum. As both

cases seem to recover the power spectrum equally well, the method of combining

smaller channels and averaging will be used from now on as it is much less time

intensive and produces very similar results. The bottom plot of Fig. 5.8 illustrates

that as the noise levels are reduced even further, a more precise measurement of

the power spectrum is made which agrees well with the input.
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Figure 5.8: Recovered power spectra using Battye et al. (2013) power spectrum
with noise and cross correlation estimator, corrected with F` for ∆f = 50 MHz all
centred on f = 1000 MHz. Two methods of making ∆f = 50 MHz have been used.

5.3.2 Error Bar Estimation

A final check that the simulations are working correctly is to try and predict the

error bars on the simulations using an analytic formula. The uncertainty on each

visibility can be found directly from the simulation by fitting a Gaussian to a

histogram of visibilities and measuring the width. As only the real parts are being

plotted, the width represents σ/
√

2 rather than just σ. The uncertainty on the

visibilities for ‘Tianlai’ was found to be 9.09 × 10−3 Jy and 2.88 × 10−3 Jy for

simulations using tobs = 12000 hrs and tobs = 120000 hrs respectively, and the

plots illustrating this are shown in Fig. 5.9.

To be able to fit a formula to the error bars, the error on the visibilities needs
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Figure 5.9: Histograms of the real part of the visibilities using the Battye et al.
(2013) power spectrum with tobs = 12000 hrs (left plot) and tobs = 120000 hrs
(right plot) for Tianlai-like array.

to be predicted accurately rather than obtained from the simulations themselves.

Hamilton et al. (2008) state that the error on the power spectrum can be written

as

∆C` =

√
1

N6=(`)

(
C` +

2σ2
V

Ω

)
, (5.3.1)

where Ω is the solid angle, N6=(`) is the number of modes in a given ` and σV is the

noise on the visibilities. The first term of equation 5.3.1 is related to the cosmic

variance while the second term is linked to the error on the visibilities. Hamilton

et al. (2008) define

σHIV =
2
√

2NETHIΩ√
Neq

√
Nt

, (5.3.2)

where NETHI is the noise equivalent temperature, Neq is the number of equivalent

baselines and Nt is the number of time samples. This comes from the radiometer

equation (see also Section 1.4) and can be used to work out how σHIV relates to the

width calculated from the histogram of visibilities. It was found that the histogram

width and eq. 5.3.2 are related by

σ =
√

2σHIV . (5.3.3)
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The correct value of σ can be substituted into equation 5.3.1 and the theoretical

error bars can be plotted.

Figure 5.10: Left: Plot showing theoretical error on power spectrum (dashed line)
with the actual values from the simulation (crosses). The power spectrum was
computed for tobs = 12000 hrs over 11 channels giving ∆f = 50 MHz, centred on
1000 MHz. Right: Plot showing how the density of visibilities varies over different
`-bins. Both plots are for a Tianlai-like configuration.

Fig. 5.10 shows that the predicted errors on the power spectrum do not agree

exactly with the actual errors found from the simulations (left plot). The main

cause of this is likely due to the N6=(`) factor in equation 5.3.1. This factor can be

thought of as the number of visibilities in a particular `-mode given by (Hamilton

et al., 2008)

N6=(`) = `∆`fsky, (5.3.4)

where ∆` is the bin width in ` and fsky is the fraction of sky looked at. It is

clear from the equation that Hamilton et al. (2008) assume a constant density

of visibilities in each `-bin. The right hand plot in Fig. 5.10 illustrates how the

density of visibilities changes for each `-bin. It is clear that for our simulations the

density gradually decreases across the `-bins.

In order to correct this it was first necessary to find out the total number of

visibilities in the simulation. It is then possible to work out a density such that

the visibilities are spread over the `-bins with density remaining constant. This
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constant density can then be compared with the actual density values and a ratio

of how much our densities changes compared to a constant value can be found.

This ratio can then be used to correct N6=(`) so that it now represents how the

density in our simulations changes.

Figure 5.11: Theoretical errors on the power spectrum (dashed line) corrected
using the changing density of visibilities plotted over the values obtained from
simulations. The power spectra were computed for tobs = 12000 hrs (left) and
tobs = 120000 hrs (right) over 11 channels giving ∆f = 50 MHz, centred on 1000
MHz. Both plots are for a Tianlai-like configuration.

Fig. 5.11 shows the new theoretical error on the power spectrum plotted over

the actual values from the simulations. This was done for two different observation

times. From the plot on the left it is clear that the correct N6=(`) has made a

difference and the theoretical curve agrees well with the results. The agreement

is also good for the other simulation indicating that this formula can be used to

predict the error on the power spectrum.

5.4 Results for Tianlai, MeerKAT and ASKAP

Dirty maps of the Battye et al. (2013) power spectrum for each array configura-

tion are shown in Figs. 5.12, 5.13 and 5.14. Each figure contains dirty maps with

no noise present, and dirty maps for three different observation times, containing
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noise. The different figures are centred on different frequencies so the performance

of the interferometers can be compared at different redshifts. At the lowest fre-

quency (Fig. 5.12) the Tianlai-like array is just starting to detect some signal in

the maps. After 12000 hours both the Tianlai-like array and ASKAP are detecting

some signal. The dirty images for MeerKAT do not indicate much signal is being

detected at this redshift (z ∼ 0.8).

At z ∼ 0.4 (Fig. 5.13) the maps indicate that both ‘Tianlai’ and ASKAP are

able to detect signal after 1200 hrs. The maps suggest that MeerKAT performs

the worst of the three interferometers with signal just being detected after 12000

hrs. Again, at z ∼ 0.2 (Fig. 5.14) the maps show that ‘Tianlai’ performs better

than the other two arrays.

The signal-to-noise ratios (SNRs) of each dirty map can be calculated by finding

the ratio of the rms signal in the dirty map to the noise. The SNRs should give us

an idea of how well each interferometer performs at each frequency and the values

can be found in Table 5.1.

Tianlai MeerKAT ASKAP
f1 f2 f3 f1 f2 f3 f1 f2 f3

120 hrs 6.4 7.4 7.3 2.3 2.9 3.4 6.2 7.0 6.5
1200 hrs 19.8 21.3 21.6 6.7 9.1 9.7 18.3 20.4 20.8
12000 hrs 63.9 64.6 72.7 22.9 29.9 35.2 54.9 62.3 67.8

Table 5.1: SNR values for Battye et al. (2013) dirty maps. f1 = 800 MHz, f2=1000
MHz, f3 = 1200 MHz.

From the SNR values in Table 5.1 and the dirty maps in Figs. 5.12, 5.13 and

5.14 it seems that all three interferometers should be able to detect some HI signal

at high frequencies (∼1200 MHz) in a reasonable amount of time (12000 hrs).

After just 1200 hours, both Tianlai and ASKAP have the potential to detect

some integrated HI signal in the maps, especially at high frequencies. To be able to

detect signal at the lower frequencies (1000 MHz and 800 MHz) longer observation
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times are required but both seem to have the ability to detect signal down to 800

MHz in 12000 hours. MeerKAT seems the least suitable out of the three options,

due to few it having few short baselines (see Fig. 3.1) and small field-of-view

(FOV). Although ASKAP was designed in a similar way to MeerKAT, it’s much

larger FOV seems to be advantageous, giving it similar potential to Tianlai, the

purposefully designed instrument.

Although the dirty maps give a good general idea of how much signal each

interferometer can detect, power spectrum analysis is a cleaner, more powerful

method. Since the power spectrum provides us with more information than we

can see from the maps we shall concentrate on f = 800 MHz and f = 1000 MHz,

corresponding to z ∼ 0.8 and z ∼ 0.4 respectively. This is because the dirty maps

at 1200 MHz indicate that all three arrays should be able to detect some sort of

signal after 12000 hrs so the power spectrum analysis will be more useful at the

lower frequencies where we have less information from the maps.
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a) Tianlai b) MeerKAT c) ASKAP

Figure 5.12: Dirty maps for each array at different observation times. The top
row shows dirty maps with no noise while the remaining rows show dirty maps
for observation time of 120 hrs, 1200 hrs and 12000 hrs from second to fifth row.
All maps are at f = 800 MHz (z ∼ 0.8) using ∆f = 5 MHz, showing an area of
5.5×5.5 deg2. The scale is linear, with maximum and minimum values determined
by scanning the image, and in units of Jy/pixel.
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a) Tianlai b) MeerKAT c) ASKAP

Figure 5.13: Dirty maps for each array at different observation times. The top
row shows dirty maps with no noise while the remaining rows show dirty maps
for observation time of 120 hrs, 1200 hrs and 12000 hrs from second to fifth row.
All maps are at f = 1000 MHz (z ∼ 0.4) using ∆f = 5 MHz, showing an area of
5.5×5.5 deg2. The scale is linear, with maximum and minimum values determined
by scanning the image, and in units of Jy/pixel.
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a) Tianlai b) MeerKAT c) ASKAP

Figure 5.14: Dirty maps for each array at different observation times. The top
row shows dirty maps with no noise while the remaining rows show dirty maps
for observation time of 120 hrs, 1200 hrs and 12000 hrs from second to fifth row.
All maps are at f = 1200 MHz (z ∼ 0.2) using ∆f = 5 MHz, showing an area of
5.5×5.5 deg2. The scale is linear, with maximum and minimum values determined
by scanning the image, and in units of Jy/pixel.
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5.4.1 Recovered HI Angular Power Spectrum

Figure 5.15: Recovered HI angular power spectra using Tianlai for several different
observation times: 120 hrs, 1200 hrs and 12000 hrs. The left plots are centred on
f = 800 MHz and the right plots are centred on f = 1000 MHz, all with ∆f = 50
MHz. Error bars represent instrumental noise only (no sample variance). Note
the varying vertical axis scale in the plots.
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Figure 5.16: Recovered HI angular power spectra using MeerKAT for several differ-
ent observation times: 120 hrs, 1200 hrs and 12000 hrs. The left plots are centred
on f = 800 MHz and the right plots are centred on f = 1000 MHz, all with ∆f = 50
MHz. Error bars represent instrumental noise only (no sample variance). Note
the varying vertical axis scale in the plots.
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Figure 5.17: Recovered HI angular power spectra using ASKAP for several different
observation times: 120 hrs, 1200 hrs and 12000 hrs. The left plots are centred on
f = 800 MHz and the right plots are centred on f = 1000 MHz, all with ∆f = 50
MHz. Error bars represent instrumental noise only (no sample variance). Note
the varying vertical axis scale in the plots.
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Figure 5.18: Recovered HI angular power spectra using Tianlai for several different
observation times: 120 hrs, 1200 hrs and 12000 hrs. The left plots are centred on f
= 800 MHz and the right plots are centred on f = 1000 MHz, all with ∆f = 50 MHz.
Error bars represent instrumental noise plus sample variance for one pointing only
(FOV = 9 deg2). Note the varying vertical axis scale in the plots.
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Figure 5.19: Recovered HI angular power spectra using MeerKAT for several dif-
ferent observation times: 120 hrs, 1200 hrs and 12000 hrs. The left plots are
centred on f = 800 MHz and the right plots are centred on f = 1000 MHz, all with
∆f = 50 MHz. Error bars represent instrumental noise plus sample variance for
one pointing only (FOV = 1 deg2). Note the varying vertical axis scale in the plots.
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Figure 5.20: Recovered HI angular power spectra using ASKAP for several different
observation times: 120 hrs, 1200 hrs and 12000 hrs. The left plots are centred on f
= 800 MHz and the right plots are centred on f = 1000 MHz, all with ∆f = 50 MHz.
Error bars represent instrumental noise plus sample variance for one pointing only
(FOV = 30 deg2). Note the varying vertical axis scale in the plots.
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Figs. 5.15, 5.16 and 5.17 show the results of the power spectrum analysis done

on the Battye et al. (2013) input. The analysis was done for each array for several

different observation times (120 hours, 1200 hours and 12000 hours, corresponding

to 5 days, 50 day and 500 days) and at two different central frequencies (800 MHz

and 1000 MHz) but only one pointing. Generally, signal detection in the power

spectrum looks better than in the dirty maps as the phase information has been

averaged. In these plots only the instrumental noise has been included so they

are not a realistic representation of how each interferometer will perform at each

frequency.

Figs. 5.18, 5.19 and 5.20 show the recovered HI angular power spectrum with

sample variance included. As the simulations were only done for one pointing the

sample variance is large making it difficult to make an accurate measurement of

the power spectrum. MeerKAT suffers most as it has the smallest field-of-view of

the three arrays. ASKAP has the largest field-of-view so it will be least affected by

sample variance, which is illustrated in the plots. The dominating sample variance

will also mean that, in practice, the signal-to-noise ratios are small. This leads to

the question of how many pointings are needed to get a good detection.

A quick method to optimise the survey strategy is to find how many pointings

would be needed so that the instrumental noise and sample variance are of a

similar size. We saw in Section 5.3.2 that is was possible to fit the instrumental

noise successfully with a theoretical formula which depended on quantities that are

variables in our simulation. We can therefore modify this error for many pointings

to find the optimum number.

As the number of pointings increases the sample variance decreases as a larger

portion of the sky is being surveyed. The instrumental noise, however, increases

with the number of pointings. This is because in order to keep the total observation

time constant (for a fair comparison of results), the time spent on each individual
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pointing will be less.

The signal-to-noise ratio (SNR) for the power spectrum is calculated by first

calculating the SNR values of each `-bin (which is just the signal over the error bar)

and then adding them in quadrature. As the sample variance and instrumental

noise change with the number of pointings, the SNR value will change too. It is

therefore possible to find the number of pointings which corresponds to the highest

SNR.

Fig. 5.21 shows how the signal-to-noise ratio (SNR) changes with the number of

pointings for the three arrays at different frequencies. It can be seen from the plots

that generally as the observation time increases, the SNR is higher for a certain

number of pointings, with the optimal SNR occurring at a slightly higher number

of pointings as the observation time is increased. As the number of pointings is

initially increased there is a peak in the SNR where the instrumental noise and

sample variance are of comparable sizes. Beyond this peak the instrumental noise

becomes the dominating error and the SNR decreases.

The top plots in Fig. 5.21 show the optimal number of pointings for ‘Tianlai’

at two frequencies. For observation times of 120 hours, the optimal number of

pointings is around 15 for both frequencies, corresponding to a sky survey area

of 135 deg2. Since this number of pointings also gives good SNR at the longer

observation times this would be the best choice as beyond 15 pointings the SNR

value drops sharply for 120 hours.

MeerKAT has slightly broader peaks in the SNR compared to ‘Tianlai’ so the

optimum number of pointings is less well defined. For 800 MHz and 1000 MHz the

optimal number of pointings is around 125 and 140, respectively, which gives a total

sky survey are of about 130 deg2. This is approximately where the peak SNR lies

for 120 hrs observation time and, again, gives good SNR for longer observations.

The lower plots in Fig. 5.21 show that ASKAP follows a similar trend to
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Figure 5.21: Plots illustrating how the SNR changes with number of pointings for
‘Tianlai’ (top plots), MeerKAT (middle plots) and ASKAP (bottom plots) for two
frequencies; 800 MHz on the left and 1000 MHz on the right.

‘Tianlai’ and has fairly well defined peaks. The peaks lie fairly close together so

we can take the optimum to be where the 120 hours peak lies, which corresponds

to 20 and 25 pointings for 800 MHz and 1000 MHz respectively. This would be
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the equivalent of a total of around 650 deg2.

Table 5.2 summarises the optimal number of pointings for each array at the

two different frequencies. We can see that a Tianlai-like configuration requires the

fewest number of pointings and MeerKAT the most. It was shown in Chapter

3 that ASKAP had the largest field-of-view (FOV) as a result of the PAFs and

MeerKAT had the smallest (see Table 3.1). Although MeerKAT and ASKAP were

both designed in a similar way, the larger FOV means fewer pointings are required

for a good detection of integrated HI signal, making ASKAP comparable with the

bespoke instrument.

Tianlai MeerKAT ASKAP
800 MHz 15 125 20
1000 MHz 15 140 25

Table 5.2: Approximate optimal number of pointings for Tianlai, MeerKAT and
ASKAP.

Tianlai MeerKAT ASKAP
800 MHz 1000 MHz 800 MHz 1000 MHz 800 MHz 1000 MHz

120 hours 36 47 20 23 30 36
1200 hours 55 72 37 40 46 60
12000 hours 75 92 55 62 78 82

Table 5.3: Approximate peak SNR achievable after optimal number of pointings for
Tianlai, MeerKAT and ASKAP.

Table 5.3 summarises the peak SNR achievable for each array’s optimal number

of pointings. It can be seen that as the observation times increases the peak SNR

value increases, as expected. ‘Tianlai’ had the highest SNR values out of the three

arrays while MeerKAT had the lowest. ASKAP has peak SNR values similar to

‘Tianlai’. The reason for these results is that a Tianlai-like configuration has more

short baselines giving it better sensitivity to the scales that are of interest to us.

MeerKAT and ASKAP both have lots of long baselines but ASKAP has a large
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field-of-view, giving it improved sensitivty over MeerKAT.

Although an instrument specifically designed to detect the HI signal seems to

perform best, it would be possible to do an HI intensity mapping experiment with

all three interferometers and detect signal in a reasonable amount of time.



Chapter 6

Conclusions and Future Work

This thesis studied the effectiveness of using intensity mapping to measure the

HI signal with upcoming interferometer arrays. HI intensity mapping is relatively

new, fast method used to detect baryonic acoustic oscillations (BAOs). It uses the

idea of detecting the HI signal from the combined emission of galaxies rather than

detecting individual galaxies, getting rid of the need for high resolution surveys.

Although several HI intensity mapping experiments are already being planned,

this thesis focused on comparing a bespoke BAO intensity mapping interferom-

eter ‘Tianlai’, with two interferometers under construction that have not been

specifically designed for this purpose, namely MeerKAT and ASKAP.

The HI signal was extracted from the Millennium simulation and then the

main task of finding a suitable power spectrum estimator was undertaken. This

estimator as then used to recover the HI angular power spectrum with the three

interferometers of interest.

Initially an autocorrelation estimator was used to try and recover the power

spectrum. This involved a mix of incoherent and coherent binning of visibilities

from which a noise estimate was subtracted. This method had a problem at

high ` with a large noise bias. This was due to the noise power spectrum being
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incorrectly estimated from simulations meaning the subtraction left residual noise

behind. An estimator was needed that did not rely on simulations to generate the

noise estimate or subtracting off the noise. It was found that the most suitable

power spectrum estimator used the cross-correlation of visibilities within uv-cells.

This was more successful because the cross-correlation of random noise visibilities

averages to zero. Although this estimator required a correction factor F`, it had

the lowest noise bias out of the estimators investigated.

Using this estimator the HI angular power spectrum was recovered using the

three interferometers. As the input power spectrum of the Millennium simulation

was unknown, it was not possible to find an F` specific to the input. A theoretical

HI angular power spectrum was instead used as the input to the simulations to

give an idea of how well each interferometer can potentially perform.

The power spectrum analysis was only done for one pointing meaning the

sample variance was very large, especially for MeerKAT as a result of it’s small

field-of-view. This meant that it was not clear from the power spectra which

interferometer could detect the HI signal most accurately. To solve this problem,

an optimal number of pointings was found for each array to give the best signal-

to-noise ratio (SNR) in a reasonable observing time.

It was found that a Tianlai-like array required the fewest number of pointings

(15 pointings) in order to detect some signal after 120 hours (∼ 5 days), and make

a good detection after 1200 hours (∼ 50 days). This is a result of the instrument

having improved sensitivity to the angular scales of interest due to large numbers

of short baselines. ASKAP was also able to make a good detection after 120

hours, requiring roughly 20 pointings. Despite ASKAP not having an ideal dish

configuration (many more long baselines and not many short ones), the PAFs give a

very large field-of-view resulting in ASKAP performing almost as well as ‘Tianlai’.

After 1200 hours, the final SNRs achievable with an optimal observing strategy
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and ideal instruments are approximately 60, 40 and 55 for ‘Tianlai’, MeerKAT

and ASKAP.

It was found that all three interferometers would be able to make a good

detection after 1200 hours so it would be possible to design an HI intensity mapping

experiment for all three interferometers.

6.1 Future Work

Although it is possible to detect the HI signal within a reasonable amount of time,

it was shown in Section 2.3 that foregrounds were going to be the biggest problem

as they mask the signal. The foregrounds are expected to be several orders of

magnitude greater than the signal, which is illustrated in Fig. 6.1.

Figure 6.1: Power spectra for synchrotron emission (diamonds) and HI signal
(solid black line), centred on f=1000 MHz.

Suitable foreground removal techniques are needed so that it would then be

possible to simulate a more realistic observation. Some initial work was done on

synchrotron emission and point sources, so these would be the natural choice of

foregrounds to focus on. As the 21 cm signal is uncorrelated in the frequency

direction, most foreground removal methods focus on the frequency correlation

of foregrounds, exploiting their smooth power spectra. It would be useful to try
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a ‘blind’ principle component analysis (PCA) based method on some foreground

simulations to show that they can be removed, with signal detected in an ideal

case. Once a method has been settled on, more realistic simulations can be done.

Our simulations so far have been for an ideal experiment. In reality there

will be systematic errors so this would be another area to investigate. The beam

has been modelled as a Gaussian throughout but this is not the case for real

experiments. Sidelobes will be present which, if large, can cause interference and

unwanted noise. The aim would be to model a more realistic beam shape with

the idea of reducing the sidelobes as much as possible. Other beam errors include

antenna pointing errors and beam cross polarization. Instrumental errors need

to be considered including antenna gain and antenna coupling errors along with

calibration erros such as phase and amplitude corrections.

Chapter 3 explained how the ASKAP phased array feeds (PAFs) had been

modelled as one large beam, rather than 36 individual beams. We have shown

that ASKAP has the potential to be a useful instrument regarding HI intensity

mapping so it would be a good idea to make a more accurate simulation using 36

individual beams.

It was concluded in Chapter 5 that a few hundred pointings would be needed

to give the best SNR values. It would be interesting to simulate this and see how

successful a potential experiment could be at detecting BAOs.

Finally, most of our work was done using a theoretical HI angular power spec-

trum. Chapter 2 explained how the Millennium simulation was used to create a

model of the sky but this was not used for the power spectrum analysis. With

suitable corrections applied, doing the power spectrum analysis using the Millen-

nium simulation should give a more realistic simulation than that obtained using

a theoretical sky input model.

The overall idea is to come up with a complete end-to-end simulation that



6.1. FUTURE WORK 137

accurately models the complete sky, successfully removes foregrounds and reduces

systematics. This thesis has focused on modelling the sky but more work needs to

be done regarding foreground removal and systematics.



Appendix A

AIPS Tcl Script

This section contains an example of the Tcl script that was written to simulate

interferometric observations. The first part of the script sets the parameters needed

for the main body of the script and sets the input/output file names. The sky

model and array configuration file are specified in this part. The main body of

the code consists of seven main sections which read in the sky model, simulate the

visibilities and write out the data as a file and an image.
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#!/usr/local/bin/tclsh

# Script to run UVCON for HI

# set the output filename

set fileid(OUTPUT) [open OBS.7MC w]

# Set parameters

# Which steps to run (1 = yes, 0 = no)

set do_fitld 1

set do_subim 1

set do_uvcon 1

set do_uvglu 1

set do_imagr 1

set do_clean 0

set do_output_uv 1

set do_output_im 1

# Filenames and in/out names

set infile_cube battyecube-40.fits

set infile_array TIANLAI.UVCON

set outfile_antloc ANTLOC.TXT

set infile_image MODEL

set uv_outname UVDATA

set temp_uv_name TEMPUV

set final_uv_outname FINALUV

set cube_outname CUBE

# Aparm for UVCON

set freqch1 0.3 ;# start freq in GHz

set freqch2 1.5 ;# end freq in GHz

set declination 30.

set min_ha -6. ;#min hour angle

set max_ha 6. ;#max hour angle

set min_el 20.
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set int_time 300 ;#integration time per visibility point, sec

set nchan 256 ;#no of freq channels. need to be a value 2**n

set chanwidth [expr (($freqch2 - $freqch1)*1000./$nchan)]

# Primary beam for UVCON

set constant_pbeam 0 ;# 1=yes, 0=no

set pb_ref_freq 1.42

set bmaj 3.0 ;# major axis of beam

set bmin 3.0

# IMAGR parameters

set im_outname "IMAGE"

set cellsize 8 ;# pixel separation in arcsec

set imsize 2048 ;# minimum desired size of the fields

set robust 5 ;# 5=natural weighting

set uvtaper1 0

set uvtaper2 0

set dotv -1

set niter 1000

# Output filenames

set uv_outfile finaluv.fits

set im_outfile finalcube.fits

# #################################################################

#---------------MAIN CODE -----------------------------------------

puts $fileid(OUTPUT) "$ This is an AIPS runfile to do spectral line simulations with UVCON"

if {$do_fitld == 1} {

# 1. LOAD IN FULL CUBE TO BEGIN WITH

puts $fileid(OUTPUT) "$ Step 1: Load in FITS cube of the signal (FITLD)..."

puts $fileid(OUTPUT) "restore 0"
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puts $fileid(OUTPUT) "task ’fitld’"

puts $fileid(OUTPUT) "datain ’$infile_cube "

puts $fileid(OUTPUT) "outna ’INCUBE’"

puts $fileid(OUTPUT) "go ; wait ; end"

puts $fileid(OUTPUT) " "

}

# 2. SEPARATE EACH FREQUENCY CHANNEL INTO SEPARATE CHANNEL MAPS

if {$do_subim == 1} {

puts $fileid(OUTPUT) "$ Step 2: Separating cube into channel maps (SUBIM)..."

for {set i 1} {$i <= $nchan} {incr i} {

puts $fileid(OUTPUT) "restore 0"

puts $fileid(OUTPUT) "task ’subim’"

puts $fileid(OUTPUT) "inna ’INCUBE’ "

puts $fileid(OUTPUT) "outna ’$infile_image’"

puts $fileid(OUTPUT) "blc(3)= $i" ; # bottom left corner third dim

puts $fileid(OUTPUT) "trc(3)= $i" ; # top right corner third dim

puts $fileid(OUTPUT) "outseq $i"

puts $fileid(OUTPUT) "go ; wait ; end"

puts $fileid(OUTPUT) " "

}

}

# 3. DO THE SIMULATION FOR EACH CHANNEL

# Loop over each channel and generate uv data from an array geometry given by INFILE

if {$do_uvcon == 1} {

puts $fileid(OUTPUT) "$ Step 3: Running UVCON for each channel..."

for {set i 1} {$i <= $nchan} {incr i} {

# Set frequency and primary beam

set freqch [ expr {$freqch1 + (($chanwidth*($i-1.))/1000.)} ] ; #/1000 to get in Mhz

if {$constant_pbeam == 1} {

set thisbmaj $bmaj

set thisbmin $bmin } else {
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set thisbmaj [ expr {$bmaj * $pb_ref_freq/$freqch} ]

set thisbmin [ expr {$bmin * $pb_ref_freq/$freqch} ]

}

puts $fileid(OUTPUT) "restore 0"

puts $fileid(OUTPUT) "task ’uvcon’"

puts $fileid(OUTPUT) "infi ’$infile_array "

puts $fileid(OUTPUT) "outfi ’’ "

puts $fileid(OUTPUT) "in2seq $i "

puts $fileid(OUTPUT) "in2na ’$infile_image’"

puts $fileid(OUTPUT) "outna ’$uv_outname’"

puts $fileid(OUTPUT) "outseq $i"

puts $fileid(OUTPUT) "nmaps 0"

puts $fileid(OUTPUT) "cmodel ’IMAG’"

puts $fileid(OUTPUT) "cmethod ’DFT’"

puts $fileid(OUTPUT) "aparm $freqch, 0, $declination, $min_ha, $max_ha, $min_el, $int_time, $chanwidth, 0, 0"

puts $fileid(OUTPUT) "bparm(6) 4"

puts $fileid(OUTPUT) "bmaj $thisbmaj"

puts $fileid(OUTPUT) "bmin $thisbmin"

puts $fileid(OUTPUT) "go ; wait; end "

puts $fileid(OUTPUT) " "

}

}

# 4. COMBINE UV DATA FOR EACH CHANNEL INTO ONE FILE

if {$do_uvglu == 1} {

puts $fileid(OUTPUT) "$ Step 4: Combining uv data channels into one big uv dataset..."

# Pairs no 1

set outseq 1;

for {set i 1} {$i <= $nchan} {incr i 2} {

puts $fileid(OUTPUT) "restore 0"

puts $fileid(OUTPUT) "task ’uvglu’"

puts $fileid(OUTPUT) "inseq $i "

puts $fileid(OUTPUT) "inna ’$uv_outname’"
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puts $fileid(OUTPUT) "in2seq [expr $i+1] "

puts $fileid(OUTPUT) "in2na ’$uv_outname’"

puts $fileid(OUTPUT) "outna ’$temp_uv_name’"

puts $fileid(OUTPUT) "outseq $outseq"

puts $fileid(OUTPUT) "go ; wait; end "

puts $fileid(OUTPUT) " "

if {$i < [ expr {$nchan -1} ]} { set outseq [incr outseq] }

}

set outseq [incr outseq]

# Additional pairs

set npairs [ expr $nchan/2 -1 ] ;#no pairs left to make after initial pairing

set inseq 1

set thispair 1

set nthispair [expr $nchan/4] ;#number of pairs to make after second pairing

set outseq [ expr $nchan/2 + 1] ;#output after pairing the first 2 of the second line

set j $nthispair/2 ;#no pairs should end up with after pairing level together

for {set i 1} {$i <=$npairs} {incr i} {

puts $fileid(OUTPUT) "restore 0"

puts $fileid(OUTPUT) "task ’uvglu’"

puts $fileid(OUTPUT) "inseq $inseq "

puts $fileid(OUTPUT) "inna ’$temp_uv_name’"

puts $fileid(OUTPUT) "in2seq [expr $inseq+1] "

puts $fileid(OUTPUT) "in2na ’$temp_uv_name’"

if {$i == $npairs} {puts $fileid(OUTPUT) "outna ’$final_uv_outname’"} else {puts $fileid(OUTPUT) "outna ’$temp_uv_name’"}

if {$i == $npairs} {puts $fileid(OUTPUT) "outseq 0"} else {puts $fileid(OUTPUT) "outseq $outseq"}

puts $fileid(OUTPUT) "go ; wait; end "

puts $fileid(OUTPUT) " "

set inseq [incr inseq 2]

set outseq [incr outseq]

set thispair [incr thispair]

if {$thispair == $nthispair} {

set j [ expr $j/2]

set thispair 0
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set nthispair [ expr {$nthispair/2} ]

}

}

}

# 5. Make maps (not CLEANed)

if {$do_imagr == 1} {

puts $fileid(OUTPUT) "$ Step 5: Make maps from the uv dataset (IMAGR)..."

puts $fileid(OUTPUT) "restore 0"

puts $fileid(OUTPUT) "task ’imagr’"

puts $fileid(OUTPUT) "inna ’$final_uv_outname’"

puts $fileid(OUTPUT) "outna ’$im_outname’"

puts $fileid(OUTPUT) "cellsize $cellsize $cellsize"

puts $fileid(OUTPUT) "imsize $imsize $imsize"

puts $fileid(OUTPUT) "robust $robust"

puts $fileid(OUTPUT) "uvtaper $uvtaper1 $uvtaper2"

puts $fileid(OUTPUT) "imsize $imsize $imsize"

puts $fileid(OUTPUT) "dotv $dotv"

if {$do_clean == 1} { puts $fileid(OUTPUT) "niter $niter" } else { puts $fileid(OUTPUT) "niter 0" }

puts $fileid(OUTPUT) "go ; wait; end "

puts $fileid(OUTPUT) " "

}

# 6. Output UV dataset

if {$do_output_uv == 1} {

puts $fileid(OUTPUT) "$ Step 6: Output UV dataset (FITTP)...."

puts $fileid(OUTPUT) "restore 0"

puts $fileid(OUTPUT) "task ’fittp’"

puts $fileid(OUTPUT) "inna ’$final_uv_outname’"

puts $fileid(OUTPUT) "incl ’UVGLU’"

puts $fileid(OUTPUT) "dataout ’$uv_outfile"

puts $fileid(OUTPUT) "go ; wait; end "

puts $fileid(OUTPUT) " "
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}

# 7. Output image cube dataset

if {$do_output_im == 1} {

puts $fileid(OUTPUT) "$ Step 6: Output Image cube dataset (FITTP)...."

puts $fileid(OUTPUT) "restore 0"

puts $fileid(OUTPUT) "task ’fittp’"

puts $fileid(OUTPUT) "inna ’$im_outname’"

if {$do_clean == 1} { puts $fileid(OUTPUT) "incl ’ICL001’" } else { puts $fileid(OUTPUT) "incl ’IIM001’"}

puts $fileid(OUTPUT) "dataout ’$im_outfile"

puts $fileid(OUTPUT) "go ; wait; end "

puts $fileid(OUTPUT) " "

}
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21 cm Angular Power Spectrum

This section defines the growth function, D(z), and cold dark matter power spec-

trum, Pcdm, used to calculate the 21 cm angular power spectrum from Battye et al.

(2013).

The growth function D(z) is given by (see Carroll and Press (1992), Eisenstein

and Hu (1988))

D(z) =
1

1 + z

(
5

2
Ω(z)

)(
Ω(z)4/7 − ΩΛ(z) +

(
1 +

Ω(z)

2

)(
1 +

ΩΛ(z)

70

))−1

,

(B.0.1)

where

Ω(z) =
Ω0(1 + z)3

ΩΛ + Ωk(1 + z)2 + Ω0(1 + z)3

ΩΛ(z) =
ΩΛ

ΩΛ + Ωk(1 + z)2 + Ω0(1 + z)3
. (B.0.2)

The matter power spectrum Pcdm(k) today (z = 0) can be calculated using

Pcdm(k) = AknsT 2(k), (B.0.3)
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where the power spectrum amplitude (A) is give by Bunn and White (1997)

A = 2π2δ2
H

(
c

H0

)3+ns

. (B.0.4)

The density perturbation at horizon crossing, δH , is related to the inflationary

amplitude of scalar perturbations and is given by

δH = 1.94×10−5Ω
(−0.785−0.05 ln Ω0)
0 e−0.95(ns−1)−0.169(ns−1)2 . (B.0.5)

The transfer function describes the process of initial fluctuations and is found

using a fitting formula in (Eisenstein and Hu, 1988). It can be written as a sum

of the baryon and cold dark matter contributions at the drag epoch

T (k) =
Ωb

Ω0

Tb(k) +
Ωc

Ω0

Tc(k). (B.0.6)

The transfer function can be solved analytically for both large and small scales.

The horizon at matter-radiation equality and the sound horizon at the drag epoch

define the transition between these two extreme scales. The fitting formula for the

transfer function therefore needs to approximate the full transfer function at all

scales because structure formation is studied at scales that lie within the transition

region.

In the absence of cold dark matter, the transfer function resembles a series of

declining peaks as a result of acoustic oscillations. These peaks can be written as

a product including a declining oscillatory term and an exponential Silk damping

term giving the overall baryonic transfer function as

Tb(k) =

[
T̃0(k, 1, 1)

1 + (ks/5.2)2
+

αb
1 + (βb/ks)3

e−(k/kSilk)1.4

]
j0(ks̃), (B.0.7)
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where the spherical Bessel function j0(ks̃) = (sinx)/x approaches unity above the

sound horizon and oscillates below it. Other terms in the equation are defined as

kSilk = 1.6(Ω0h
2)0.52(Ω0h

2)0.73[1 + (10.4Ω0h
2)−0.95)] Mpc−1, (B.0.8)

βb = 0.5 +
Ωb

Ω0

+

(
3− 2

Ωb

Ω0

)√
(17.2Ω0h2)2 + 1, (B.0.9)

s̃(k) =
s

[1 + (βnode/ks)3]1/3
, (B.0.10)

βnode = 8.41(Ω0h
2)0.435. (B.0.11)

The sound horizon is defined as the distance a wave can travel prior to the drag

epoch (zd)

s =
2

3keq

√
6

Req

ln

√
1 +Rd +

√
Rd +Req

1 +
√
Req

Mpc. (B.0.12)

The ratio of baryon to photon momentum density is given by

R = 31.5×103Ωbh
2Θ−4

2.7(1 + z)−1, (B.0.13)

so we have that Req = R(zeq) and Rd = R(zd) are the values of R at the matter-

radiation and drag epoch. The redshifts of these two epochs are

zeq = 2.5×104Ω0h
2Θ−4

2.7, (B.0.14)

zd = 1291
(Ω0h

2)0.251

1 + 0.659(Ω0h2)0.828
[1 + b1(Ωbh

2)b2 ], (B.0.15)

where

b1 = 0.313(Ω0h
2)−0.419[1 + 0.607(Ω0h

2)0.974],

b2 = 0.238(Ω0h
2)0.223.
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The scale of the particle horizon (keq) at matter-radiation equality is

keq = 7.46×10−2Ω0h
2Θ−2

2.7. (B.0.16)

Finally,

αb = 2.07keqs(1 +Rd)
−3/4G

(
1 + zeq

1 + zd

)
, (B.0.17)

where

G(y) = y

[
−6
√

1 + y + (2 + 3y) ln

(√
1 + y + 1√
1 + y − 1

)]
. (B.0.18)

For cold dark matter we can write

Tc(k) = fT̃0(k, 1, βc) + (1− f)T̃0(k, αc, βc), (B.0.19)

where the functions used in the above equation are fit using the formulae

f =
1

1 + (ks/5.4)4
, (B.0.20)

T̃0(k, αc, βc) =
ln(e + 1.8βcq)

ln(e + 1.8βcq) + Cq2
, (B.0.21)

C =
14.2

αc
+

386

1 + 69.9q1.08
, (B.0.22)

q =
k

13.41keq

, (B.0.23)

αc = a
−Ωb/Ω0

1 a
−(Ωb/Ω0)3

2 , (B.0.24)

a1 = (46.9Ω0h
2)0.670[1 + (32.1Ω0h

2)−0.532],

a2 = (12.0Ω0h
2)0.424[1 + (45.0Ω0h

2)−0.582],

β−1 = 1 + b1[(Ωc/Ω0)b2 − 1], (B.0.25)

b1 = 0.944[1 + (458Ω0h
2)−0.708]−1,

b2 = (0.395Ω0h
2)−0.0266.
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A list of other variables and their corresponding values used in the above fit

are shown in Table B.1.

Symbol Value

Ω0 0.27

ΩΛ 1− Ω0

Ωk 0

fbaryon = Ωb
Ω0

0.16

h 0.71

Tcmb 2.728

Θ2.7 Tcmb/2.7

ns 0.96

c 2.99× 106

H0 71

b 1

Table B.1: List of variables and values taken used in above equations.



Bibliography

Abdalla, F. B., Blake, C., and Rawlings, S. (2009). Forecasts for dark energy

measurements with future surveys. MNRAS, 401(2):743–758.

Ansari, R., Campagne, J. E., Colom, P., Le Goff, J. M., Magneville, C., Martin,
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