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Abstract

Uniform interpolation and the dual task of forgetting restrict
the ontology to a specified subset of concept and role names.
This makes them useful tools for ontology analysis, ontol-
ogy evolution and information hiding. Most previous re-
search focused on uniform interpolation of TBoxes. How-
ever, especially for applications in privacy and information
hiding, it is essential that uniform interpolation methods can
deal with ABoxes as well. We present the first method that
can compute uniform interpolants of any ALC ontology with
ABoxes. ABoxes bring their own challenges when comput-
ing uniform interpolants, possibly requiring disjunctive state-
ments or nominals in the resulting ABox. Our method can
compute representations of uniform interpolants in ALCO.
An evaluation on realistic ontologies shows that these uni-
form interpolants can be practically computed, and can often
even be presented in pure ALC.

Introduction
Ontologies are knowledge bases that are used in diverse ap-
plications ranging from medicine, bio-informatics and soft-
ware development to the semantic web. They are used to de-
fine and store conceptual information about a domain of in-
terest, and are usually represented using a description logic.
Often, an ontology consists of a TBox and an ABox. The
TBox, containing terminological information, defines con-
cepts and relations. The ABox, containing factual informa-
tion, uses these defined concepts and relations to make as-
sertions about individuals.

Uniform interpolation allows for information that is irrel-
evant for a new context, or that should be hidden from cer-
tain users, to be removed from an ontology. This is done by
restricting the set of concept and relation symbols that occur
in the ontology, preserving all entailments of the original
ontology that are expressible in the restricted signature. An
alternative view of uniform interpolation is forgetting. The
aim of forgetting is to eliminate a set of concept and role
symbols from an ontology in such a way that all entailments
in the remaining signature are preserved.

Uniform interpolation has numerous applications, of
which we give some examples; more examples can be found
in Lutz and Wolter (2011) and Ludwig and Konev (2014).
Ontology Reuse. Often, only a subset of the vocabulary of
an existing ontology is relevant for a particular application.

Uniform interpolants can be used to extract small subsets
of existing ontologies to reuse them in specialized contexts.
Ontology Analysis. By computing a restricted view that
uses only a limited set of symbols of interest, hidden re-
lations between concepts and individuals are made explicit
(Konev, Walther, and Wolter 2009). Logical Difference.
Applying changes to an ontology can lead to undesired new
entailments regarding already defined concepts. The new
entailments in the common signature of two ontologies are
referred to as logical difference (Konev, Walther, and Wolter
2008). The logical difference can easily be computed by
checking for entailment of the axioms of the respective uni-
form interpolants (Ludwig and Konev 2014). Information
Hiding. In applications where ontologies are accessed by
multiple users, it is critical that confidential information is
sufficiently protected (Grau 2010). This can be solved by
sharing a uniform interpolant of the original ontology, where
confidential concepts and relations have been eliminated.

Given its importance for all these applications, uniform
interpolation has recently gained a lot of attention in the lit-
erature. First methods for simpler description logics such
as DL-Lite (Wang et al. 2010) and EL (Konev, Walther,
and Wolter 2009; Lutz, Seylan, and Wolter 2012; Nikitina
and Rudolph 2014), as well as for more expressive ones
such as ALC (Wang et al. 2014; Ludwig and Konev 2014;
Koopmann and Schmidt 2013c), ALCH (Koopmann and
Schmidt 2013a) and even SHQ (Koopmann and Schmidt
2014a) have been devised. However, none of the methods
for the more expressive description logics works without
limitations if ABoxes are involved.

Especially for privacy and information hiding applica-
tions, we believe support for ABoxes is important if uniform
interpolation is to be used effectively. In a lot of cases, con-
fidential information will be stored as facts in ABoxes or
databases used in connection with ontologies. For instance,
Grau (2010) mentions shared patient data records, for which
hiding information is indispensable in order to preserve the
privacy of the patients. So far no method is able to deal with
these situations properly, if the data are to be shared.

The first method for uniform interpolation in ALC, pre-
sented in Wang et al. (2009), already considers ontologies
with ABoxes. This method is based on computing the dis-
junctive normal form of its input, which makes it unpracti-
cal for large ontologies. Later methods for expressive de-



scription logics presented in Ludwig and Konev (2014)
and Koopmann and Schmidt (2013c; 2013a; 2014a) em-
ployed saturation based reasoning techniques to achieve
practicality, but only apply to TBoxes. Moreover, it turns
out that the original approach by Wang et al. (2009) cannot
compute the right uniform interpolant for all ABoxes. In or-
der to preserve all entailments in the desired signature of an
ontology with ABox, it is necessary to use a more expressive
description logic than ALC for the uniform interpolant.

Uniform interpolation and forgetting are tasks much more
difficult than standard reasoning tasks. Not all uniform in-
terpolants can be finitely represented using standard descrip-
tion logics, and it has been shown that the size of a uni-
form interpolant of a TBox can be triple exponential with
respect to the input TBox, if represented in ALC (Lutz and
Wolter 2011). For ALC TBoxes, finite representations can
be obtained by extending the underlying description logic
with fixpoint expressions (using ALCν), or by allowing ad-
ditional symbols in the uniform interpolant (Koopmann and
Schmidt 2013c). This is however not sufficient if ABoxes
are involved, as our results show. If we want to preserve all
entailments in the desired signature, we have to represent the
uniform interpolant in an extended language such as ALCν
with disjunctive ABoxes or ALCOν.

The method presented in this paper is based on a method
for ALCH TBoxes from Koopmann and Schmidt (2013a),
which is extended in non-trivial ways. First, we extend the
calculus with unification based reasoning. As a by-product,
we develop a decision procedure for ALCν ontologies with
disjunctive ABoxes. Second, in order to represent the re-
sult inALCO with classical ABoxes, we devise a method to
approximate disjunctive ALC ABoxes into classical ALCO
ABoxes in the same signature that preserve all classical
ALC entailments. This method is also of interest for ap-
plications other than uniform interpolation.

To summarize, the contributions of this work are the
following: (1) We define a new resolution-based decision
procedure for ALCν ontologies with disjunctive ABoxes.
(2) Based on this procedure, we define a method to compute
uniform interpolants of ALCν ontologies with disjunctive
ABoxes. This method is both able to forget concept and
role symbols. By using helper concepts, these uniform in-
terpolants can be represented in pure ALC with disjunctive
ABoxes. (3) We define a method for efficiently transform-
ing ALC ontologies with disjunctive ABoxes into classi-
cal ALCO ontologies that preserve all entailments in ALC.
(4) Based on these methods, we develop the first method that
is able to compute uniform interpolants of all ALC ontolo-
gies with ABoxes, and represent them asALCO ontologies.
(5) We evaluated the method on realistic ontologies, show-
ing that it is indeed practical, and that in most cases even
ALC is sufficient to represent uniform interpolants of ALC
ontologies with ABoxes.

Detailed proofs of all theorems can be found in the ap-
pendix. A preliminary version was presented at the 2014 De-
scription Logic Workshop (Koopmann and Schmidt 2014b).

Description Logics
In this section, we recall the description logics ALC
and ALCO, and introduce ALCν with disjunctive ABoxes.
Let Nc, Nr, Ni and Nv be pairwise disjoint sets of con-
cept symbols, role symbols, individuals and concept vari-
ables. AnALC concept is an expression of the form A, ¬C,
CtD, CuD, ∃r.C, ∀r.C, whereA ∈ Nc, r ∈ Nr andC,D
are ALC concepts. An ALC TBox is a finite set of general
concept inclusion axioms (GCIs) of the form C v D, where
C, D are ALC concepts. A classical ALC ABox is a set of
concept assertions of the form C(a), and role assertions of
the form r(a, b), where C is any ALC concept, r ∈ Nr and
a, b ∈ Ni. We refer to GCIs, concept assertions and role
assertions collectively as axioms. A classicalALC ontology
is a tuple 〈T ,A〉, where T is an ALC TBox and A an ALC
ABox. The semantics of ALC is defined as usual (see, e.g.,
Baader and Nutt (2007)). We write O |= α, where O is an
ontology and α any GCI, concept assertion or role assertion,
to denote that α is true in every model of O.

A greatest fixpoint is a concept of the form νX.C[X],
where X ∈ Nv and C[X] is a concept in which X occurs
as a concept symbol, but only positively, e.g., under an even
number of negations. ALCν extendsALC with greatest fix-
points, which are only allowed to occur positively in concept
assertions and on the right hand side of GCIs. Due to this
condition, least fixpoints cannot be equivalently expressed
in ALCν. Intuitively, νX.C[X] represents the most general
concept Cν , with respect to the concept inclusion relation,
for which Cν ≡ C[Cν ] holds, where C[Cν ] is the result of
replacing X in C[X] by Cν . For a formal definition of the
semantics of fixpoint expressions, we refer to Calvanese, De
Giacomo, and Lenzerini (1999).

A disjunctiveALCν ABox is a classicalALCν ABox that
additionally contains disjunctive concept assertions of the
form C1(a1) ∨ . . . ∨Cn(an), where for 1 ≤ i ≤ n, ai ∈ Ni
and Ci is any ALCν concept. The semantics is as expected:
O |= C1(a1) ∨ . . . ∨ Cn(an) iff O |= Ci(ai) for some
i ∈ {1, . . . , n}. A general ALC (ALCν) ontology is a tuple
〈T ,A〉, where A is a disjunctive ABox.

The description logics ALCO and ALCOν extend re-
spectively ALC and ALCν with nominal concepts of the
form {a}, a ∈ Ni. They allow to reference specific individ-
uals in concepts and can be used in any combination with the
other operators. For the semantics of ALCO and ALCOν,
we again refer to Baader and Nutt (2007) and Calvanese, De
Giacomo, and Lenzerini (1999).

Uniform Interpolation
We now define ALC uniform interpolants formally. A sig-
nature is any subset S of Nc∪Nr. The signature sig(E) de-
notes the concept and role symbols occurring in E, where E
ranges over concepts, axioms and ontologies.
Definition 1. Let O be a classical ALC ontology and S a
signature. An ontology OS is an ALC uniform interpolant
of O for S iff the following conditions hold:

1. sig(OS) ⊆ S.
2. For any ALC axiom α with sig(α) ⊆ S, OS |= α

iff O |= α.



Note that we do not require an ALC uniform inter-
polant OS to be itself a classical ALC ontology. In par-
ticular, OS can also be an ALCOν ontology or an ALCν
ontology with disjunctive concept assertions.

Before we describe our method for computing ALC uni-
form interpolants, we start in a generalized setting, namely,
general ALCν uniform interpolants.
Definition 2. Let O be a general ALCν ontology and S a
signature. OS is a general ALCν uniform interpolant of O
for S, iff

1. sig(OS) ⊆ S and
2. For any ALCν axiom or disjunctive concept assertion α

with sig(α) ⊆ S, OS |= α iff O |= α.
It is easy to verify that the conditions in Definition 2 imply

those in Definition 1. The converse does not hold, since a
general ALCν uniform interpolant might entail disjunctive
concept assertions, which are not necessarily preserved by
classicalALC uniform interpolants. GeneralALCν uniform
interpolants have the nice property that they can always be
represented as general ALCν ontologies themselves:
Theorem 1. LetO be anyALCν ontology, and S any signa-
ture. Then there exists a finite general ALCν ontology OS ,
which is a uniform interpolant of O for S.

The validity of this theorem follows from the correctness
of the method that we describe in the next sections.

Normalized Ontologies
Our approach is based on a method for computing uniform
interpolants of ALCH TBoxes, introduced in Koopmann
and Schmidt (2013a). A key ingredient of this method is
that TBox axioms are represented in a certain normal form.
We extend this presentation with variables and constants in
order to incorporate ABox axioms.
Definition 3. Let Nd ⊆ Nc be a set of specific concept sym-
bols called definers. A concept literal is a concept of the
form A, ¬A, ∃r.D or ∀r.D, where A ∈ Nc, r ∈ Nr and
D ∈ Nd. An ontology O is in normal form if every axiom is
a role assertion, or a clause of one of these two forms, where
Li is a concept literal and ai ∈ Ni for 1 ≤ i ≤ n.

1. TBox clause: L1(x) ∨ . . . ∨ Ln(x)

2. ABox clause: L1(a1) ∨ . . . ∨ Ln(an)

We view clauses as sets of literals, that is, they do not have
duplicate literals and their order is not important. Further-
more, every clause is allowed to contain maximally one lit-
eral of the form ¬D(x) and no literal of the form ¬D(a),
where D ∈ Nd and a ∈ Ni.

A TBox clause L1(x)∨ . . .∨Ln(x) represents the equiv-
alent GCI > v L1 t . . . t Ln. The symbol x occurring
in TBox clauses is referred to as a variable. Observe that
one variable x is sufficient in our representation. We call
elements of the set Ni ∪ {x} terms.

Any generalALCν ontology can be transformed into nor-
mal form using the following rules, applied from left to
right, where Q ∈ {∀,∃}, D ∈ Nd is fresh, C[X] contains a
concept variable X , and C[D] denotes the result of replac-
ing X in C[X] by D.

1. C1 ∨ Qr.C2(t1) ⇔ C1 ∨ Qr.D(t1),¬D(x) ∨ C2(x)

2. C1 ∨ Qr.νX.C2[X](t1) ⇔ C1 ∨ Qr.D(t1),¬D(x) ∨
C2[D](x)

3. C1 ∨ νX.C2[X](t1)⇔ C1 ∨D(t1),¬D(x) ∨ C2[D](x)

These rules are justified by Ackermann’s Lemma (Acker-
mann 1935) and a generalization (Nonnengart and Szałas
1995), which show that the transformation preserves the
same models modulo interpretation of the definer concepts.
The transformation introduces only finitely many fresh de-
finers.

Any ontology in normal form can be converted back into
a general ALCν ontology without definers by applying the
rules in the other direction. This is ensured by the last condi-
tions in Definition 3. Whereas the transformations from left
to right can just be applied to concepts as they are, the trans-
formations from right to left require ¬D(x) to be the only
negative occurrence of the definer D in the ontology. This
is achieved by grouping TBox clauses containing the same
negative literal ¬D(x) into one TBox axiom ¬D(x) ∨ C.
This is possible since negative definer literals only occur in
TBox clauses, and since every TBox clause contains maxi-
mally one negative definer literal.

Example 1. Let O1 = {A v ∀r.(B u C), r(a, b), s(a, b),
¬(A u B)(b)}. The normal form of O1 is N1 =
{¬A(x) ∨ (∀r.D1)(x), ¬D1(x) ∨ B(x), ¬D1(x) ∨ C(x),
r(a, b), s(a, b) ¬A(b) ∨ ¬B(b)}.

The set of clauses N2 = {B(b) ∨ (∀r.D1)(a),
¬D1(x) ∨A(x), ¬D1(x) ∨ (∃r.D1)(x)}, D1 ∈ Nd,
is transformed into the general ALCν ontology O2 =
{B(b) ∨ (∀r.νX.(A u ∃r.X))(a)} without definers.

Our method for forgetting concept and role symbols
works on the normal form representation of the input ontol-
ogy. The definers are eliminated afterwards using the right
to left transformations above.

The Calculus
Uniform interpolants are computed by saturating an ontol-
ogy in normal form using the rules of the calculus shown in
Figure 1. Before we describe the rules, a few notions have
to be introduced.

Our normal form allows for a very simple form of unifi-
cation. In our setting, given two terms t1 and t2, the unifier
of t1 and t2 is a substitution that replaces t1 by t2, or vice
versa. Two terms t1 and t2 only have a unifier if t1 = x,
t2 = x or t1 = t2. For example, the terms a and b do not
have a unifier, and the unifier of a and x is σ = [x 7→ a].
Applied to a clause C = A(x)∨B(x), this unifier produces
the clause Cσ = A(a) ∨B(a).

To preserve the normal form, the calculus introduces new
definers dynamically. More specifically, given two defin-
ers D1 and D2, a definer D12 representing D1 u D2 is in-
troduced by adding the two clauses ¬D12(x) ∨ D1(x) and
¬D12(x) ∨ D2(x). These two clauses correspond to the
TBox axiom D12 v D1 u D2. New definers are only in-
troduced if necessary. By reusing already introduced defin-
ers, we maximally introduce 2n many new definers, where n



Resolution
C1 ∨A(t1) C2 ∨ ¬A(t2)

(C1 ∨ C2)σ

Role Propagation
C1 ∨ (∀r.D1)(t1) C2 ∨ (Qr.D2)(t2)

(C1 ∨ C2)σ ∨ Qr.D12(t1σ)

Existential Role Restriction Elimination
C ∨ (∃r.D)(t) ¬D(x)

C

Role Instantiation
C1 ∨ (∀r.D)(t1) r(t2, b)

C1σ ∨D(b)

where Q ∈ {∃,∀}, σ is the unifier of t1 and t2 if
it exists, D12 is a possibly new definer representing
D1 uD2 and C1 ∨ C2 contains maximally one literal
of the form ¬D(x) and no literal of the form ¬D(a).

Figure 1: The rules of the calculus.

is the number of definers in the normalized input. This re-
sults in a double exponential bound on the number of derived
clauses, and guarantees termination of our method.

The first three rules in Figure 1 are generalizations of the
rules used in Koopmann and Schmidt (2013a). Whereas
the original calculus has only rules for TBox clauses, we
extend them using unification to make them applicable for
cases where the premises contain one or more ABox clauses.
In addition, since an ABox can contain role assertions, we
need a rule that propagates information for universal role
restrictions ∀r.D along role assertions. This is achieved
by the role instantiation rule. Observe that, for a role as-
sertion r(a, b), the rule is only applicable to clauses of the
form C ∨ (∀r.D)(x) or C ∨ (∀r.D)(a).

The side conditions of the rules ensure that only clauses
in the normal form are derived. This way, we ensure that any
derived set of clauses can be transformed back into anALCν
ontology without definers. Clauses of the form ¬D(a) ∨ C
do not need to be derived, as is shown in the correctness
proofs in the appendix.

Example 2. Take the clause set N1 from Example 1. We
can apply role instantiation on ¬A(x) ∨ (∀r.D1)(x) and
r(a, b), using the unifier [x 7→ a], and infer the clause
¬A(a) ∨ D1(b). With the same unifier, we can apply res-
olution on D1(b) in this clause and derive ¬A(a) ∨ B(b)
and ¬A(a) ∨ C(b). Resolution on ¬A(a) ∨ B(b) and
¬A(b) ∨ ¬B(b) derives ¬A(a) ∨ ¬A(b), where the unifier
is [b 7→ b].

Theorem 2. For any generalALCν ontologyO,O is unsat-
isfiable iff the empty clause can be derived in finitely many
steps from its normal form representation using the rules of
the calculus.

Proof (sketch). Termination follows from the fact that, start-
ing from a set N of n ALC clauses, maximally O(22

n

)

many clauses can be derived. A derivation of the empty
clause embodies a direct contradiction. If the empty clause
cannot be derived, we can adapt the model construction used
in Koopmann and Schmidt (2013c) to build a model based
on the saturated set of clauses. Consequently,N has a model
and is satisfiable.

Uniform Interpolation in Normal Form
Let N be any ontology in normal form, S any signature,
and N ∗ the saturation of N using the rules of the calculus.
The clausal representation NS of the uniform interpolant
of N for S is the smallest set of clauses C ∈ N ∗ with
sig(C) ⊆ S ∪ Nd that satisfy at least one of the following
conditions:

1. C ∈ N .

2. C is the result of applying a rule on a literal that is not
in S ∪Nd.

3. C contains a definer D that occurs in another clause
in NS .

It can be shown that every entailment α of N with
sig(α) ⊆ S is also entailed by NS . Condition 1 ensures
that we keep all clauses that were in the desired signature
from the beginning. Condition 2 ensures that we preserve
all possible inferences in S that involve symbols outside S.
It is possible that these inferences are made possible by ap-
plications of the role propagation rule. If this is the case,NS
contains introduced definers. This is taken care of by Con-
dition 3, which ensures that NS is closed under introduced
definers. To be more specific, any existential or universal
restrictions that refer to these introduced definers, and any
clauses of the form ¬D12(x) ∨ C(x) that are necessary to
preserve the meaning of D12, belong to NS . This ensures
that all entailments in S are still preserved after the elimi-
nation of all definers using the normal form transformation
rules described in an earlier section.

Given any general ALCν ontology O and any signa-
ture S, this is how a general ALCν uniform interpolant OS
is computed: (1) O is transformed into a set N of clauses
in normal form. (2) For N , we compute the set NS defined
above using the rules of the calculus. (3) Finally, we elimi-
nate all definers by applying the normal form transformation
rules from right to left. We have the following theorem.

Theorem 3. Let O be any general ALCν ontology and S
any signature. The described method always terminates and
the returned ontology, OS , is a general ALCν uniform in-
terpolant of O for S. Furthermore, OS is in the worst case
of size O(22

n

), where n is the size of O.

Example 3. Let O1 and N1 be is as in Example 1 and S =
{A,C, r, s}. We already computed all inferences for N1 in
Example 2. Following the above conditions, we have that the
clausal representation of the uniform interpolant of O1 for
S isNS1 = {¬A(x)∨ (∀r.D1)(x), ¬D1(x) ∨ C(x), r(a, b),
s(a, b), ¬A(a) ∨ ¬A(b)}. After eliminating the only de-
finerD1, we obtain a uniform interpolant ofO1 for S, which
is OS1 = {A v ∀r.C, r(a, b), s(a, b), ¬A(a) ∨ ¬A(b)}.



Representing the Result in ALCO
Since all classical ALC ontologies are also ALCν ontolo-
gies, the method can be used for computing a finite uni-
form interpolant of any ALC ontology, but in an extended
language, because these uniform interpolants may contain
greatest fixpoint concepts and disjunctive concept asser-
tions. These are not supported by standard description logic
reasoners or the web ontology standard language OWL. For
this reason, it is of interest to represent the uniform inter-
polant in a more common description logic.

If a definer can only be eliminated by introducing a fix-
point, we can omit this elimination and keep the correspond-
ing cyclic definer concept. As a result, we obtain an ontol-
ogy that is not completely in the desired signature, but pre-
serves all entailments we are interested in. The cyclic defin-
ers that stay in the ontology can be seen as helper concepts
that “simulate” the greatest fixpoints and make a finite rep-
resentation possible, despite cycles in the TBox. For appli-
cations that require the uniform interpolant to be completely
in the desired signature, e.g. logical difference, the fixpoint
can be approximated by bounded iterative unfolding, as de-
scribed in Koopmann and Schmidt (2013c).

Another problem is illustrated by the uniform inter-
polant OS1 computed in Example 3. Due to the clause
¬A(a) ∨ ¬A(b), and because a and b are connected by
the two role assertions r(a, b) and s(a, b), one can verify
that OS1 |= (¬A t ∃r.(¬A u E) t ∃s.(¬A u ¬E))(a), for
any ALC concept E. These cannot be captures by a finite
classical ALC ontology. However, in ALCO, we can cap-
ture them by the concept assertion (¬At∃r.(¬Au{b}))(a),
taking into account the role assertions r(a, b) and s(a, b) in
the uniform interpolant. (Another solution, using a tech-
nique from Areces et al. (2003), involves the introduction of
additional roles for each disjunction. But this approach un-
necessarily extends the signature of the uniform interpolant.)

If all individuals occurring in an ABox clause C are con-
nected to some root individual a via a chain of role asser-
tions, C can be represented as a classicalALCO concept as-
sertion on a in the same way as in the example. We call these
concept assertions ALCO convertible. If an ABox clause C
is notALCO convertible, we cannot expressC as a classical
concept assertion, but C might still contribute to the entail-
ment of other classical concept assertions. To compute a set
of clauses that can be fully translated into ALCO, and that
preserves all entailments which are classical ALC axioms,
we use our calculus in a similar way as for computing uni-
form interpolants. Let N be any set of clauses and N ∗ the
saturation of N . The set N conv is the smallest set of clauses
C ∈ N ∗ that are ALCO convertible and satisfy at least one
of the following conditions:

1. C ∈ N .
2. C is the conclusion of any rule application on a clause that

is not ALCO convertible.
N conv preserves all entailments of N that are representable
as classical ALC axioms. N conv can be transformed into
an ALCO ontology without definers, and all remaining dis-
junctive concept assertions can be represented as classical
concept assertions using nominals.

Theorem 4. Let N be any ontology in normal form. Then,
the described method for approximating disjunctive concept
assertions computes an ALC or ALCO ontology O with
classical ABox, and we have for any classicalALC axiom α
without definers that O |= α iff N |= α.

By combining this technique with our method for com-
puting general ALCν uniform interpolants, we can com-
pute ALC uniform interpolants in ALCOν with classical
ABoxes for anyALC input ontology. Furthermore, by keep-
ing definers that can only be eliminated using fixpoints, we
can represent all uniform interpolants as classical ALCO
ontologies.

Evaluation
To investigate practicality of our approach, we have im-
plemented a prototype using the OWL API1 and some of
the optimisations mentioned in Ludwig and Konev (2014)
and Koopmann and Schmidt (2013b). Experiments were
conducted on a set of ontologies taken from the NCBO Bio-
Portal2 and the Oxford Ontology3 repositories, which we
restricted to axioms fully expressible in ALC, where do-
main and range restrictions were interpreted as correspond-
ing ALC axioms. For a detailed description of these reposi-
tories, see Matentzoglu, Bail, and Parsia (2013). The experi-
ments have been performed on a desktop PC with Intel Core
i7 350GHz CPU and 8 GB RAM.

To obtain a set of ontologies that test the ABox process-
ing of our method and can be evaluated in reasonable time,
we selected ontologies according to the following criteria:
They (1) could be downloaded and parsed by the OWL API
without errors, (2) contain more ABox axioms than TBox
axioms, (3) are consistent, (4) contain at least 100 TBox ax-
ioms, (5) contain at least 80% TBox axioms that are inALC,
(6) contain at least one axiom that is in ALC but not in EL,
and (7) contain at most 40,000 axioms. The selected ontolo-
gies are listed in Table 1, which shows the number of TBox
axioms, ABox axioms, concept symbols and role symbols
for each ontology. CCON, CTX, ICPS, ICF and SSE were
taken from the NCBO BioPortal repository, whereas 00104,
00596, 00597 and 00773 were taken from the Oxford Ontol-
ogy repository.

For the experiments, our assumption has been that the
targeted applications require either uniform interpolants for
relatively big signatures (e.g., logical difference, informa-
tion hiding) or for relatively small signatures (e.g., ontology
analysis). We therefore generated for each ontology 350 sig-
natures which included any concept or role symbol with a
probability of 90% (forgetting about 10% of all symbols),
and 350 signatures which included any concept or role sym-
bol with a probability of 10% (forgetting about 90% of all
symbols). We then computed uniform interpolants for these
signatures represented as ALCO ontologies with classical
ABoxes. For each experimental run, the timeout was

The results are shown in Table 2 and 3, where we show the
number of timeouts, the average duration of each success-

1http://owlapi.sourceforge.net/
2http://bioportal.bioontology.org/
3http://www.cs.ox.ac.uk/isg/ontologies/



Ontology TBox ABox Concepts Roles
CCON 214 364 86 28
CTX 364 1,553 290 22
ICPS 953 4,254 432 135
ICF 1,991 17,223 1,596 41
SSE 267 2,323 243 18
00104 1,157 2,451 1,094 6
00596 2,257 2,658 2,023 19
00597 2,887 3,646 2,341 25
00773 581 2,334 244 83

Table 1: The input ontologies.

Ontology Timeouts Duration TBox ABox
CCON 1.1% 14.1 sec. 89.1% 92.0%
CTX 4.0% 72.6 sec. 87.5% 153.5%
ICPS 21.1% 11.1 sec. 243.2% 81.0%
ICF 0.0% 13.0 sec. 86.6% 38.1%
SSE 0.0% 1.9 sec. 85.3% 99.5%
00104 0.0% 8.2 sec. 87.9% 97.8%
00596 0.0% 10.6 sec. 85.3% 89.4%
00597 6.6% 108.8 sec. 167.6% 91.1%
00773 0.0% 3.9 sec. 109.2% 104.2%

Table 2: Uniform interpolants for symbols selected with
90% probability.

ful run, and the percentage of the average number of TBox
and ABox axioms in the computed uniform interpolants in
comparison to those in the input ontologies. For the uni-
form interpolants that included any symbol with a proba-
bility with 90%, each ABox axiom contained on average
2.6 symbols, whereas each TBox axiom contained on aver-
age 8.5 symbols (counting concept symbols, role symbols,
individuals and operators). For the uniform interpolants that
included any symbol with a probability of 10%, each ABox
axiom contained on average 2.4 symbols and each TBox ax-
iom 13.5 symbols. As the table shows, many uniform in-
terpolants that included symbols with a probability of 10%
only had small TBoxes. This can be explained by the small
number of symbols present in these ontologies, which re-
stricts the number of axioms that can be expressed.

Most concept assertions used just one concept symbol,
whereas a few used simple concept disjunctions or role re-
strictions. On the other hand, the structure of the TBox ax-
ioms was affected more, especially in uniform interpolants
with small signatures. Whereas a lot of axioms had simple
forms such as A v B, A v ∃r.B or A tB t C v ⊥, some
would involve deep nestings of role restrictions. We also
noticed that more complex axioms sometimes contained re-
dundant information that was not detected by our prototype.
A typical example are patterns such as A u (¬A t C), that
could have been simplified using further resolution steps. In
general, the majority of axioms was still

Only uniform interpolants of the ontologies CCON,
00597 and 00773 contained cyclic definers. Of their uniform
interpolants, only 7.2% contained cyclic definers. Interest-

Ontology Timeouts Duration TBox ABox
CCON 0.0% 4.0 sec. 3.3% 62.5%
CTX 91.7% 607.1 sec. 3.5% 28.2%
ICPS 19.1% 28.2 sec. 68.4% 465.7%
ICF 0.0% 7.4 sec. 4.5% 11.2%
SSE 0.0% 23.4 sec. 3.3% 28.3%
00104 0.0% 2.4 sec. 3.7% 48.0%
00596 0.0% 10.4 sec. 3.5% 10.5%
00597 51.1% 705.5 sec. 179.8% 11.4%
00773 0.0% 24.9 sec. 29.1% 286.3%

Table 3: Uniform interpolants for symbols selected with
10% probability.

ingly, no uniform interpolant made use of nominals. The
reason is that the ontologies of our corpus only contained
few role assertions, and imposed a relatively simple struc-
ture. However, in 25.3% of cases we had to use our method
for eliminating disjunctive ABox statements, which always
succeeded without introducing nominals. Hence, eliminat-
ing all non ALCO convertible clauses quickly resulted in
clause sets fully representable in ALC.

As the tables show, the results varied considerably de-
pending on the structure of the ontology, and the size was
not the only determining factor. For example, CTX has
only 290 TBox axioms, but caused in 91.7% of the cases
timeouts when computing small uniform interpolants. Anal-
ysis of the signatures that caused timeouts showed that in
most cases just a small number of symbols was responsible,
whereas the majority of concepts could be eliminated very
quickly. In practical applications, one might therefore con-
sider to extend the desired signature by one or two symbols,
determined by some heuristics, if the computation turns out
to be too expensive and the application allows it.

Conclusion and Future Work

We have presented a new method for computing uniform
interpolants of ALC ontologies with ABoxes. Though the
problem is complex and theoretical results show the target
language needs to be slightly more expressive, our exper-
iments show that in most cases uniform interpolants can
be computed in reasonable time and do not fall outside the
boundary of ALC.

We are currently extending the approach to more expres-
sive description logics, allowing for role hierarchies, tran-
sitive roles, inverse roles or cardinality restrictions. Even
though our prototype already uses optimisations, further
optimisations would strengthen the approach further, espe-
cially for ontologies with large ABoxes, but also for com-
puting smaller axioms.
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Proofs of Theorems
Completeness of the Calculus
We begin by proving the refutational completeness of the
calculus for general ALCν ontologies. Using the normal
form transformation rules shown in the paper, we can rep-
resent any general ALCν ontology O as an equi-satisfiable
set N of clauses. In order to prove refutational complete-
ness, we have to show that, whenever an ontology is incon-
sistent, we can infer the empty clause from its normal form
presentation using the calculus. Or, if we cannot derive the
empty clause from the normal form representation of a gen-
eralALCν ontology, thenO is consistent, and we can find a
model for it.

Given a set of clauses N , we denote by N ∗ the result of
saturating this clause set using the calculus. Soundness and
refutational completeness of the TBox cases of the rules has
already been shown in (Koopmann and Schmidt 2013c). We
extend this proof by building on their results and adapting
the construction to include ABox clauses.

Koopmann and Schmidt describe a method to build a
model based on a saturated set of TBox clauses. Using
this construction, we can build a model of the set of TBox
clauses in N ∗. Denote this model by IT = 〈∆IT , ·IT 〉.
The model construction ensures that IT has the following
properties:

Property 1. Every TBox clause is satisfied: IT |= C iff
C ∈ N ∗ and C is a TBox clause.

Property 2. Every satisfiable definer is represented using
a domain element, that is, for every definer D occurring in
N ∗ for which ¬D(x) 6∈ N ∗, there is some xD ∈ ∆I

T
such

that xD ∈ DI
T

.

We show how we can extend this model IT to a model
I = 〈∆I , ·I〉 of the complete set N ∗, if ⊥ 6∈ N ∗. Our
construction is only based on ABox clauses. To ensure that
TBox clauses are satisfied as well, we extend the initial
clause set by instantiating all TBox clauses for every indi-
vidual.

N ∗2 = N ∗ ∪ {C[x 7→ a] |a ∈ Ni, C ∈ N ∗

and C is a TBox clause}

One can verify that N ∗2 is still saturated. Note that we
only unify two individual names if they are the same. The
same holds for variables, since there is only one variable in
our normal form. Accordingly, for every new pair of clauses
C1[x 7→ a], C2[x 7→ a] ∈ (N 2∗ \ N ∗) on which a rule is
applicable with the unifier σ = [a 7→ a], the same rule is ap-
plicable to C1 and C2 with σ = [x 7→ x]. Accordingly, N ∗
contains the conclusion C3. C3[x 7→ a] is the corresponding
conclusion on C1[x 7→ a] and C2[x 7→ a], and this clause is
included in N ∗2 by construction.

Due to the substitution, the clauses in N ∗2 may contain
negative definer literals of the form ¬D(a), and do there-
fore not conform to the conditions imposed on the normal
form in Definition 3. Note that resolvents with these clauses
on ¬D(a) are still present inN 2∗ as resolvents of the corre-
sponding TBox clause, using either a unifier σ = [x 7→ a] or

σ = [x 7→ x]. This is the main reason why it is not necessary
to derive clauses containing ¬D(a) directly by the calculus.

If we extend IT to an interpretation I that satisfies all
ABox clauses in N ∗2, I also satisfies all TBox clauses in
N ∗, due to the following property of interpretations.
Property 3. Let C be any TBox clause. If for all domain
elements x ∈ ∆T we have x ∈ CI , then I |= C.

In order to extend the interpretation function ·IT to sat-
isfy all ABox clauses in N ∗2, we first introduce an ordering
on ABox literals. The ordering ≺l is defined as any total
ordering on literals satisfying the following constraints.

• D ≺l ¬D ≺l A ≺l ¬A ≺l ∃r.D′ ≺l ∀r.D′′ for any
D,D′, D′′ ∈ Nd, A ∈ Nc and r ∈ Nr.

• If ¬D1(x) ∨D2(x) ∈ N ∗2, D1 ≺l D2, ∃r.D1 ≺l ∃r.D2

and ∀r.D2 ≺l ∀r.D1.

Let ≺i be any ordering between individual symbols. We
extend≺l to an ordering between ABox literals by L1(a) ≺l
L2(b), if a ≺i b, and L1(a) ≺l L2(a), if L1 ≺ L2. We say
a ABox literal L is maximal in an ABox clause C if for all
ABox literals L′ ∈ C \ {L} we have L′ ≺l L. ≺l is still
total, which means that every clause has a unique maximal
literal.

We define an ordering ≺c between ABox clauses as the
multiset extension (≺l)mul of ≺l, that is, C1 ≺c C2 holds iff
for every ABox literal L1 ∈ C1 we have L1 ≺l L2 for some
ABox literal L2 ∈ C2. The ordering allows to enumerate the
ABox clauses in N ∗2. In the following, Ci denotes the ith
ABox clause in N ∗2 following this ordering. This means,
i < k implies Ci ≺c Ck.

We now complete the model IT = 〈∆T , ·T 〉 of the TBox
clauses in N 2∗ to a model I = 〈∆I , ·I〉 of all clauses in
N ∗2. For the domain, we add one element xa for every
individual: ∆I = ∆I

T ∪ {xa | a ∈ Ni}. The interpretation
function ·I is defined incrementally as follows, where Ii =
〈∆I , ·Ii〉.

1. ·I0 is equal to ·IT , except that for every role r ∈ Nr:
rI0 = rI

T ∪ {(xa, xb) | r(a, b) ∈ N} and aI0 = xa for
all individuals a ∈ Ni.

2. If Ii |= Ci, then ·Ii+1 = ·Ii . Otherwise:

(a) If the maximal literal in Ci is A(a), A ∈ Nc, ·Ii+1 is
equal to ·Ii , except that AIi+1 = AIi ∪ {xa}.

(b) If the maximal literal in Ci is (∃r.D)(a) and xD ∈
∆I , ·Ii+1 is equal to ·Ii , except that rIi+1 = AIi ∪
{(xa, xD)}.

3. ·I = ·In , where n is the number of ABox clauses inN ∗2.

For Step 2b, observe that every definer D occurring in
N ∗2 has a corresponding domain element xD ∈ ∆I , except
if there is a clause ¬D(x) ∈ N ∗2 (Property 2). We first
prove the monotonicity of our model construction.
Lemma 1. For every ABox clause Ci, Ii+1 |= Ci implies
I |= Ci.

Proof. If Ii+1 |= Ci, there must be a literalL ∈ Ci such that
Ii+1 |= L. We distinguish the cases for L, and show that we



always have I |= L. (i) L is a positive literal of the form
A(a) or (∃r.D)(a). Since the model construction only adds
values to the interpretation function, but does not remove
any, I |= L holds. (ii) L is of the form ¬A(a). A(a) cannot
be a positive and maximal literal in any clauseCj larger than
Ci. Therefore, it is impossible that xa is added to AIj for
any index j larger than i, and we have I |= L. (iii) L is of
the form (∀r.D)(a). In every clause Cj with Ci ≺ Cj , the
maximal literal is also of the form (∀r′.D′)(a′). Therefore,
nothing is added to the interpretation function for any clause
Cj with j > i, and we have I |= L.

Lemma 2. For every ABox clause Ci, Ii+1 6|= Ci implies
I 6|= Ci.

Proof. Ii+1 6|= Ci can only be the case if the maximal lit-
eral L in Ci is of the form ¬A(a) or (∀r.D)(a), since the
other cases are taken care of by the model construction. We
distinguish both cases. (i) L is of the form ¬A(a). Then,
due to the ordering, all literals in Ci are of the form A′(a′)
or ¬A′(a′). The negation of none of these literals can be
maximal in any clause Cj with Ci ≺c Cj . Therefore, we
have I 6|= L for all L ∈ Ci, and also I 6|= Ci. (ii) L is of
the form (∀r.D)(a). Then, due to the ordering, the maximal
literal in every clause Cj with j > i is also a universal re-
striction. Clauses in which the maximal literal is a universal
restriction have no effect on the constructed model. There-
fore, we have Ii+1 = I, and since Ii+1 6|= Ci, we also have
I 6|= Ci.

We can now prove that I satisfies all ABox clauses Ci,
which establishes that I is a model of N .

Lemma 3. For every ABox clause Ci, we have I |= Ci.

Proof. The proof is by contradiction. Let Ci be the smallest
ABox clause according to ≺c such that I 6|= Ci. We dis-
tinguish the different cases for the maximal literal L in Ci,
whereCi = L∨C ′i. Remember that, due to our ordering and
the fact that clauses are sets, the maximal literal is always
unique, and L is strictly maximal in Ci. Since I 6|= Ci, we
also have I 6|= L.

1. L = A(a). Then Ii+1 |= Ci holds due to Step 2a of the
model construction, and I |= Ci due to Lemma 1, which
contradicts our assumption.

2. L = ¬A(a). Since I 6|= L, we then have xa ∈ AI .
xa ∈ AI , can only be the case due to Step 2a of the model
construction. This means there is a smaller clause Cj =
A(a) ∨ C ′j , where A(a) is maximal in Cj and Ij 6|= C ′j .
But then, due to the resolution rule, there is also the clause
Ck = (C ′j ∪ C ′i). We have k < j, since A(a) is maximal
in Cj , ¬A(a) is maximal in Ci, and, by definition, there
can be no literal betweenA(a) and ¬A(a) in the ordering.
Since Ii 6|= Ci and Ij 6|= Cj , we have that Ik+1 6|= Ck,
and due Lemma 2 also I 6|= Ck. But this contradicts our
initial assumption that Ci is the smallest clause with Ii 6|=
Ci.

3. L = (∃r.D)(a). If xD ∈ ∆I , Step 2b is applied. Con-
sequently, (xa, xD) ∈ rIi+1 . xD ∈ DI already holds for
the original model IT , which we only extended (Prop-
erty 2). Therefore, I |= L, which contradicts our as-
sumption. Assume xD 6∈ ∆I . xD 6∈ ∆I only holds if
¬D(x) ∈ N ∗2 (Property 2). But then, due to the exis-
tential role restriction elimination rule, there is also the
clause Cj = C ′i ∈ N ∗2. j < i, since (∃r.D)(a) is max-
imal in Ci, and hence larger than all literals in Cj , and
Ii+1 6|= Cj , since Ii+1 6|= C ′i. Due to Lemma 2, I 6|= Cj
holds. This contradicts our initial assumption that Ci is
the smallest clause with I 6|= Cj .

4. L = (∀r.D)(a). This means, we have an edge (xa, x
′) ∈

rI such that x′ 6∈ DI . (xa, x
′) ∈ rI can be the case for

to two reasons.
(a) There is a role assertion r(a, b) ∈ N ∗2 and x′ = xb.

But then the role assertion instantiation rule applies be-
tween r(a, b) and Ci, and the clause Cj = C ′i ∨ D(b)
is inferred. Since I 6|= Ci, we also have I 6|= C ′i,
and since xb 6∈ DI , we have I 6|= Cj . But in the or-
dering D(b) is smaller than (∀r.D)(a), and therefore
Cj ≺c Ci holds. This contradicts our initial assump-
tion that Ci is the smallest clause that is not satisfied by
the model.

(b) There is a clause Cj = (∃r.D′)(a) ∨ C ′j , where
(∃r.D′)(a) is maximal, Ij 6|= Cj , and ¬D′(x) ∨
D(x) 6∈ N ∗2. (¬D′(x) ∨ D(x) ∈ N ∗2 would im-
ply xD′ ∈ DI due to Properties 1 and 2.) Due
to the role propagation rule, we also have the clause
Ck = C ′i ∨ C ′j ∨ (∃r.D′′)(a), together with the two
clauses ¬D′′(x) ∨ D(x) and ¬D′′(x) ∨ D′(x). Since
(∃r.D′′)(a) ≺l (∀r.D)(a) and C ′j ≺ Ci, Ck is smaller
than Ci. We also have that I 6|= C ′i and I 6|= C ′j . There
are two possibilities.

i. If k < j, (∃r.D′′)(a) must be maximal in Ck,
since Ij 6|= C ′j and Ik+1 |= Ck. Due to Step 2b
of the model construction, we then have Ij |=
(∃r.D′′)(a), and also Ij |= (∃r.D′)(a). But then
Ij |= (∃r.D′)(a) ∨ C ′j , which contradicts that Ij 6|=
Cj .

ii. j < k. This means there are literals in Ck that
are larger than all literals in Cj . This implies, since
(∃r.D′′)(a) is smaller than all literals in Cj , that
(∃r.D′′)(a) is not maximal in Ck. If (∃r.D′′)(a)
is not maximal in Ck, Step 2b of the model con-
struction does not lead to Ik+1 |= (∃r.D′′)(a), and
since also I 6|= C ′j and I 6|= C ′i, we also have that
Ik+1 6|= (C ′j ∪ C ′i). But then, due to Lemma 2, no
literal in Ck can be satisfied in I, which contradicts
our initial assumption that Ci is the smallest clause
not satisfied by I.

This establishes that I is a model of the ABox part of
N ∗2. Due to Property 3, we also have I |= C for all TBox
clauses C ∈ N ∗2, and therefore I is a model of N ∗2. This
implies I |= N ∗, because N ∗ ⊆ N ∗2. Since our calculus



is sound, N ∗ is a conservative extension of N , so we can
restrict I to a model of N by removing the introduced de-
finers. This brings us the following lemma, and enables us
to establish Theorem 2.

Lemma 4. LetN ∗ be any set of clauses saturated using the
calculus. If N ∗ does not contain the empty clause, we can
build a model for it.

Theorem 2 (Decision Procedure for GeneralALCν Ontolo-
gies). For any generalALCν ontologyO,O is unsatisfiable
iff the empty clause can be derived in finitely many steps
from its normal form representation using the rules of the
calculus.

Proof. Since only finitely many definer symbols are intro-
duced and clauses are represented as sets, the number of
clauses that can be derived is bounded. This establishes ter-
mination of the calculus. The soundness of the rules can
be argued in the same way as in (Koopmann and Schmidt
2013c). Hence, if ⊥ ∈ N ∗, N must be unsatisfiable. On
the other hand, if ⊥ 6∈ N ∗, we can build a model for N
(Lemma 4). Using our normal form transformation, we
can transform any general ALCν ontology into an equi-
satisfiable set of clauses. Therefore, the calculus forms a
sound and refutationally complete decision procedure for
satisfiability of general ALCν ontologies.

In fact, we can even formulate a stronger theorem, which
comes in handy for the next section. Observe that for the
proof of Lemma 3, we only considered derivations on the
maximal literal in each clause. For the refutational com-
pleteness of our calculus, it is therefore sufficient to apply
rules only on the maximal literals in each clause. Denote the
calculus obeying these restrictions by Res≺. We have the
following theorem.

Theorem 5. Res≺ is sound and refutationally complete, and
provides a decision procedure for satisfiability of general
ALCν ontologies.

Correctness of the Uniform Interpolation Method
For Theorem 3, we have to show that for any axiom or
disjunctive concept assertion α with sig(α) ⊆ S , we have
OS |= α iff O |= α, where O is any general ALCν ontol-
ogy, S any signature, andOS is computed using our method
to compute the generalALCν uniform interpolant. The cor-
responding clause sets are denoted by N and NS . The nor-
mal form transformations preserve all entailments modulo
definer concepts. We can therefore safely assume that each
ontology and its corresponding normal form share the same
entailments, given these entailments do not contain definers.

Since NS is a subset of the saturated set N ∗, we have
for every axiom α ∈ OS : O |= α. Consequently, we have
O |= OS , and this establishes the first implication we have
to prove, namely that if OS |= α, then O |= α. What re-
mains to show is the other direction, namely that if O |= α
and sig(α) ⊆ S, then OS |= α.

If α is a role assertion, this follows trivially, since in
ALCν, for any role assertion r(a, b) and consistent on-
tology O, we have O |= r(a, b) iff r(a, b) ∈ O. As-

sume α is a GCI, a concept assertion or a disjunctive con-
cept assertion. Observe that for any ontology O, we have
O |= C v D iff O ∪ {(C u ¬D)(a∗)}|= ⊥, where a∗
is a new individual not occurring in O, O |= C(a) iff
O ∪ {¬C(a)}|= ⊥, and O |= C1(a1) ∨ . . . ∨ Cn(an) iff
O ∪ {¬C1(a1), . . . ,¬Cn(an)} |= ⊥. It is therefore suf-
ficient to show that, for any set C of concept assertions
C with sig(C) ⊆ S, we have that if O ∪ C |= ⊥, then
OS ∪ C |= ⊥. LetM be the normal form of C. We show
that if N ∪M |= ⊥, then NS ∪M |= ⊥.
M is a set of clauses generated independently of N for

a set of concept assertions C with sig(C) ⊆ S. Because of
this, it has the following properties.

1. For every clause C ∈M, sig(C) ⊆ S ∪Nd.

2. Every TBox clause inM is of the form ¬D(x)∨C, where
D does not occur in N or NS .

Since Res≺, the calculus refined with an ordering, is refu-
tationally sound and complete, we can use it to show that
N ∪M |= ⊥ implies NS ∪M |= ⊥. Assume the ordering
≺l on literals used by Res≺ is refined so that the following
conditions all hold:

• A ≺l ¬A ≺l B ≺l ¬B, for all A,B ∈ Nc with A ∈ S
and B 6∈ S.

• ∃r.D ≺l ∃s.D, for all r, s ∈ Nr with r ∈ S and s 6∈ S.

• ∀r.D ≺l ∀s.D, for all r, s ∈ Nr with r ∈ S and s 6∈ S.

Assume N ∪ M |= ⊥. Then there is a sequence π of
inferences using Res≺ that derives the empty clause ⊥ from
N ∪M. On any clause C that contains a literal (∀r.D)(t) or
a literal (∃r.D)(t) with r 6∈ S , we can only apply either the
role propagation or the role instantiation rule, and we can
only apply it on a clause that also contains either a literal
of the form (∀r′.D′)(t) or a literal of the form (∃r′.D′)(t),
where r′ 6∈ S. No such clause exists inM, and therefore we
can only apply an inference between C and a clause that is
derivable from N . All these inferences are already included
in NS by construction.

Now assume we have a clause C that contains a literal L
of the formA(t) or ¬A(t) withA 6∈ S. If resolution is appli-
cable on C, then again only with clauses where the maximal
literal is of the form A′(t′) or ¬A′(t′) with A′ 6∈ S. As-
sume the maximal literal in C is a role restriction Qr.D with
r ∈ S. Then, due to our ordering, resolution on L is not pos-
sible. We can divide the literals in C into two parts C1 and
C2, where every literal inC1 is of the formA′(t′) or¬A′(t′),
and every literal in C2 is of the form Qr′.D. Assume that if
we ignore the ordering, resolution on C with L(t′) would be
possible, where L(t′) is maximal in C1. Denote the conclu-
sion of such a rule application by C ′1 ∨ C2. If C is involved
in π, that is the derivation of the empty clause fromN ∪M,
then it must be possible to derive from C, possibly after a
sequence of steps, a clause C ′ that does not contain any role
restrictions. Since role restrictions have precedence in our
ordering, C ′ is of the form C1 ∨ C ′′. We can now apply
resolution on L(t′), and the conclusion is C ′1 ∨ C ′′. Hence,
we obtain the same clause that we obtain if we would first
resolve on L(t′).



Accordingly, we can rearrange any sequence π of infer-
ences that ends with the empty clause in such a way, that we
first apply the rules only on literals L with sig(L) 6∈ S, and
afterwards apply rules on literals L with sig(L) ∈ S . Let π′
be such a rearranged sequence of inference steps, and let π1
be the inferences on literals L with sig(L) 6∈ S , that have
been performed first, and π2 the remaining inferences. All
inferences in π1 only involve clauses in N , since M does
not contain any clauses that have a literalLwith sig(L) 6∈ S.
These inferences have already been performed when com-
puting NS . All inferences in π2 only involve clauses that
only contain symbols from S. Hence, they can also be per-
formed starting from clauses in NS . We obtain that if we
can derive the empty clause from N ∪M, then we can also
derive it from NS ∪M.

Hence, we have that N ∪M |= ⊥ iff NS ∪M |= ⊥. In
other words, for any axiom or disjunctive concept assertion
α with sig(α) ⊆ S, we have N |= α iff NS |= α. This
establishes O |= α iff OS |= α, and that OS is the general
ALCν uniform interpolant of O for S.

Theorem 3. Let O be any general ALCν ontology and S
any signature. The described method always terminates and
the returned ontology OS is the general ALCν uniform in-
terpolant of O for S.

Having this theorem, and because the result of our pro-
cedure is a general ALCν ontology, we establish the first
theorem of the paper.

Theorem 1. Let O be any ALCν ontology, and S any sig-
nature. Then there exists a finite general ALCν ontology
OS which is a uniform interpolant of O for S.

Correctness of the Approximation Method
Theorem 4. Let N be any set of clauses. Then, the de-
scribed method for approximating disjunctive concept as-
sertions computes anALC orALCO ontology O with clas-
sical ABox, and we have for any ALC axiom α that O |= α
iff N |= α.

Proof. Since our normal form transformation preserves all
entailments modulo definers, we can again work on the nor-
mal form representation of each involved ontology. Denote
by N the input clause set, and by N conv the approximated
clause set that only containsALCO convertible clauses. Let
α be any ALC axiom. We show that N |= α iff N conv |= α.

We assume without loss of generality thatN is consistent.
Since N conv consists only of clauses inferred from N , we
have that N conv |= α implies N |= α. We therefore only
have to show that N |= α implies N conv |= α. Assume
N |= α. If α is a TBox axiom, since the approximating
reduction only touches ABox clauses, N conv |= α holds.
The same is true if α is a role assertion. Accordingly, we
assume that α is a concept assertion C(a).
N |= C(a) iffN ∪{¬C(a)} |= ⊥. LetM be the normal

form representation of C(a). We show that N ∪M |= ⊥
implies N conv ∪M |= ⊥.M has the following properties:

1. Every TBox clause inM is of the form ¬D(x)∨C, where
D does not occur in N or NS .

2. Every ABox clause only contains the individual a occur-
ring in C(a).

Despite the second property, it is possible that clauses in
M contribute to the derivation of ABox clauses containing
more than one individual. This is due to the role instan-
tiation rule. More precisely, if M contains a clause of the
form (∀r.D)(a)∨C, andN contains a role assertion r(a, b),
D(b)∨C is derived. Inferences of this sort are however only
possible through role assertions containing a. We say an in-
dividual b is connected to a if there is a chain of role as-
sertions r0(a, a1), r1(a1, a2), . . . , rn(an, b). Let Na

i denote
all individuals in N that are connected to a. We refine the
ordering ≺i used by Res≺ such that for each pair of individ-
uals a1, a2 with a1 ∈ Na

i and a2 6∈ Na
i , we have a1 ≺i a2.

With this ordering, Res≺ gives precedence to ABox literals
that contain an individual that is not connected to a.
ALCO convertible clauses are formally the clauses in

which each individual is connected to some root individual.
Therefore, every ABox clause that only contains individu-
als in Na

i is by definition ALCO convertible, with a being
the root individual. Every clause C that is not ALCO con-
vertible must therefore contain at least one literal L(a′) with
a′ 6∈ Na

i , which is maximal in C. Therefore, the only ABox
clauses with which a rule application on a non ALCO con-
vertible clause is possible, are ABox clauses in N . Also,
all TBox clauses inM contain at least one negative definer
literal. Due to the side conditions of the rules, no inference
between such a clause and an ABox clause is possible, un-
less the ABox clause contains a positive definer literal of the
form D(a), since the conclusion would otherwise contain
an ABox literal of the form ¬D(a). SinceM does not share
any definer symbols with N , this means that no rule appli-
cation is possible on a non ALCO convertible clauses and a
clause fromM. Hence, if the empty clause can be derived
from N ∪M, and if the derivation involves a clause C that
is not ALCO convertible, then this derivation also involves
a clause C ′ that can be derived from C using only clauses in
N . But these clauses are all included inN conv. Hence, if we
can derive the empty clause from N ∪M, then we can also
derive it fromN conv∪M. We establish that for any classical
ALC axiom α, we have N |= α iff N conv |= α. Hence, we
have for any ALC axiom α that O |= α iff N |= α.


