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Handling missing data: analysis of a challenging data set using
multiple imputation
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Missing data is endemic in much educational research. However, practices such as
step-wise regression common in the educational research literature have been
shown to be dangerous when significant data are missing, and multiple
imputation (MI) is generally recommended by statisticians. In this paper, we
provide a review of these advances and their implications for educational
research. We illustrate the issues with an educational, longitudinal survey in
which missing data was significant, but for which we were able to collect much
of these missing data through subsequent data collection. We thus compare
methods, that is, step-wise regression (basically ignoring the missing data) and
MI models, with the model from the actual enhanced sample. The value of MI is
discussed and the risks involved in ignoring missing data are considered.
Implications for research practice are discussed.

Keywords: missing data; surveys; multiple imputation; regression; modelling

1. Introduction

Missing data is certainly not a new issue for educational research, particularly given the
constraints of designing and performing research in schools and other educational
establishments. Consider the situation when a researcher gets permission to administer
a questionnaire about bullying to the students during class time. On the agreed day of
administration various scenarios could take place: (A) some pupils may have been
absent at random without predictable reasons, (B) some pupils may have been absent
because they are representing their school in competitions (these pupils may be the
keenest and most engaged), and (C) some pupils did not respond to sensitive questions
(maybe they are more likely to be bullied or have special needs). All the above
scenarios will lead to missing data, but with different degrees of bias (i.e. errors due
to systematically favouring certain groups or outcomes) depending on the object of
the analysis. For example, if data are missing due to scenario B, the analysis will
under-represent the more highly attaining or engaged pupils. If data are missing due
to scenario C, those pupils with special educational needs will be under-represented,
causing any results to be significantly biased. In the real world, it is likely that data
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are missing due to multiple reasons with the above scenarios happening simultaneously
in any single project.

Missing data is a particular issue for longitudinal studies, especially when the
design involves transitions between phases of education when pupils tend to move
between institutions. This is a major issue in the wider social science literature,
which acknowledges that nearly all longitudinal studies suffer from significant attrition,
raising concerns about the characteristics of the dropouts compared to the remaining
subjects. This raises questions about the validity of inferences when applied to the
target population (Little 1988; Little and Rubin 1989; Schafer and Graham 2002;
Kim and Fuller 2004; Plewis 2007).

Even though the issues around missing data are well-documented, it is common
practice to ignore missing data and employ analytical techniques that simply delete
all cases that have some missing data on any of the variables considered in the analysis.
See, for example, Horton and Kleinman (2007) for a review of medical research reports,
and King et al. (2001, 49) who state that ‘approximately 94% (of analyses) use listwise
deletion1 to eliminate entire observations. [ . . . ] The result is a loss of valuable infor-
mation at best and severe selection bias at worst’.

In regression modelling, the use of step-wise selection methods2 is particularly
dangerous in the presence of missing data as the loss of information can be severe
and may not even be obvious to the analyst. A demonstration of this is provided
using the data presented in Table 1, where the variable ‘SCORE’ (a continuous vari-
able) is modelled using 3 candidate explanatory variables for 10 cases. It should be
noted here that this example is simply presented for illustration since in reality we
would not usually carry out such analyses on such small samples. In order to
compare successive models, a typical step-wise procedure first deletes any missing
data list-wise, leaving only the complete cases. Any case that has a missing data
point in any of the candidate variables is removed from the analysis, even when the
data may only be missing on a variable that is not included in the final model. This
can result in the loss of substantial amounts of information and introduce bias into
the selected models.

Table 1. An example data set for a regression model of ‘SCORE’.

Case SCORE GCSE AGE SES
Cases included in a step-

wise model
Cases that could have

been included

1 25 19 25 2 3 3

2 32 23 NA 5 3

3 45 NA 17 7
4 65 NA 16 3
5 49 42 16 3 3 3

6 71 28 15 NA 3

7 68 97 19 NA 3

8 67 72 18 5 3 3

9 59 66 18 2 3 3

10 69 65 17 7 3 3

Notes: NA denotes missing data point. A regression model of ‘SCORE’ is derived using a step-wise
procedure using ‘GCSE’, ‘AGE’, and ‘SES’ as potential explanatory variables (for simplicity, all variables
are considered as continuous). The model ‘SCORE � GCSE’ was selected using backward deletion on the
basis of estimates of significance for the individual variables (based on t-values). Using a backward
elimination step-wise procedure, this model was constructed from five cases. There are, however, eight
cases which could have been used to construct ‘the same model’.

2 M. Pampaka et al.
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Table 2 shows the ordinary least squares regression model ‘SCORE � GCSE’ that
was selected using a step-wise procedure and the ‘same model’ constructed using all
available data. The step-wise procedure resulted in a model estimated from a smaller
sample as cases 2, 6, and 7 are excluded. The exclusion of these cases introduced
bias in the analysis as these three cases all have relatively low General Certificate of
Secondary Education (GCSE) marks. The parameter estimates from the step-wise pro-
cedure are based on a sub-sample that does not reflect the sample particularly accu-
rately. The models provide very different impressions about the relationship between
SCORE and GCSE marks. It is important to note that very little warning may be
given about the amount of data discarded by the model selection procedure. The loss
of data is only evident in the following output by comparing the degrees of freedom
reported for the two models.3 This simple example highlights two common problems
in the analysis and reporting of results: the highly problematic step-wise regression,
and the sample size on which the models are calculated (which is rarely the same as
that reported with the description of the sample of the study). Both of these problems
are issues within popular analysis packages making it important for analysts to check
and report how a statistical package deals with model selection4 and also to make
sure that the selection process does not needlessly exclude data.

Even though missing data is an important issue, it is rarely dealt with or even
acknowledged in educational research (for an exception to this, see Wayman 2003).
Whilst data imputation (particularly multiple imputation (MI)) is now generally
accepted by statisticians, non-specialist researchers have been slow to adopt it. Data
imputation makes an easy target for criticism, mainly because it involves adding simu-
lated data to a raw data set, which causes some suspicion that the data are being manipu-
lated in some way resulting in a sample that is not representative. In fact, imputation
does the opposite, by using what information is available to simulate the missing
data so as to minimize the bias in results due to ‘missingness’.

Our aim in this paper is to review some of the issues surrounding missing data and
imputation methods and demonstrate how missing data can be imputed using readily-
available software. Using a real data set which (i) had serious quantities of missing data

Table 2. Linear regression models for SCORE by GCSE (SCORE�GCSE) based on different
modelling procedures.

Model 1: Derived from step-wise regression based on five cases
Mode fit: F(1,3) ¼ 3.05, p , .001, R2 ¼ 0.94 (adjusted R2 ¼ 0.92)

Estimate (coefficient b) s.e. t-Value p

(Intercept) 12.3 6.6 1.9 .2
GCSE 0.8 0.1 6.7 ,.01

Model 2: Based on all eight available cases
Model fit: F(1,6) ¼ 3.05, p ¼ .13, R2 ¼ 0.34 (adjusted R2 ¼ 0.23)

Estimate (coefficient b) s.e. t-Value p

(Intercept) 33.8 13.3 2.5 .04
GCSE 0.5 0.3 1.7 .13

Notes: The use of a step-wise regression procedure has resulted in some loss of data. The amount of data
excluded is only evident in the difference between the degrees of freedom statistics for the two models (3
compared to 6 degrees of freedom).

International Journal of Research & Method in Education 3
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and (ii) was supplemented by subsequently acquiring a substantial proportion of these
missing data, we are able to evaluate the effects of ignoring missing data in a case study,
comparing models with those obtained by MI of those missing data.

2. On missing data and possible resolutions – a review

The importance and timeliness of the issue is highlighted in Wainer (2010) who looked
forward to the twenty-first century in regard to methodological and measurement
trends. Dealing with missing data appears as one of the six ‘necessary tools’ researchers
must have in order to be successful in tackling the problems ‘that loom in the near and
more distant future’ (Wainer 2010, 7). The topic is not new however: work on missing
data from the 1970s was brought together by Little and Rubin (1987).

2.1. Definitions of key concepts

A fundamental distinction regarding missing data is that between ‘unit’ and ‘item’ non-
response. Unit non-response refers to an individual (or case) being wholly missing, for
example, because they did not respond, or were not contacted for survey completion.
The resulting bias is usually considered as ‘selective’, implying that the answers of
non-respondents are different from those of the respondents in the sample, suggesting
sample bias: a famous example of this is the wildly inaccurate predictions based on tel-
ephone polling from the 1936 Literary Digest Poll (see Squire 1988), where a sample
was selected on the basis of telephone records; those who had telephones in 1936 were
quite different from those who did not. Item non-response, on the other hand, refers to
the failure of a respondent to give information on some variables of interest (e.g. par-
ticular items in the survey).

Missing data can then be classified according to the assumptions underlying the
‘missingness’ mechanisms, that is, the assumed mechanisms that are believed as
causing the data to be missing. Missing data mechanisms are described as falling
into one of the three categories briefly described below (Allison 2000), which some-
times are called ‘distributions of missingness’ (Schafer and Graham 2002).

. Missing completely at random (MCAR): the missingness is independent of the
observed and missing responses, that is, all cases have the same probability of
being missing. This is manifested with scenario A from the example in the intro-
duction, where pupils are missing from a sample because they may have been
away from school for unpredictable, random reasons.

. Missing at random (MAR): the missingness is conditionally independent of the
missing responses, given the observed responses; in other words, the probability
of missing data on a particular variable Y may depend on other observed variables
(but not on Y itself). An example of such missingness is scenario B from our
example, with some pupils missing because they have been away to represent
their school in competitions. Missingness in this case does not depend on the vari-
able of interest (i.e. bullying) but it could depend on other observed variables (e.g.
grades).

. Missing not at random (MNAR): missingness depends on both observed and
unobserved (missing) data, such as the case of scenario C with pupils not respond-
ing to sensitive questions about their special educational needs (which we assume
is also related to the outcome variable of interest).

4 M. Pampaka et al.
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It can be argued that the above names are not intuitive and could lead to confusion
(e.g. between MAR and MCAR which could be thought of as synonymous when in
reality they are not). However, the classification has stuck in the statistical terminology
and it is important in determining the possible resolutions of missing data problems, as
we will illustrate in the next section.

2.2. What can/should be done?

There are three recommendations as to what should be done about missing data in the
literature: (1) always report details of missing data; (2) adjust results for what is known
about the missing data, if possible; and (3) report the likely sensitivity of the reported
results to the distribution of missing observations. The first and the last of the above
points are self-explanatory and will be explored through our own research example.
Our emphasis here is on the various available adjustment methods.

Three general strategies for analysing incomplete data are summarized by Little and
Rubin (Little and Rubin 1987, 1989; Rubin 1987; Little 1988) and by others more
recently (e.g. Allison 2000; Zhang 2003; Ibrahim et al. 2005; Reiter and Raghunathan
2007; Durrant 2009): (a) direct analysis of the incomplete data, (b) weighting, and (c)
imputation.

The first, which is also referred to as ‘complete case method’, is considered the sim-
plest involving the analysis of the observations without accounting for missing data (in
effect what happens with step-wise regression methods and the illustrative example we
presented earlier, see Table 2). When missingness is completely random (MCAR), the
estimates produced with this method are unbiased.

Weighting, on the other hand, is considered as a traditional remedy for dealing with
missing data and unit non-response in particular (Little 1988): most nation-wide
surveys usually have already identifiable weights, and data can be considered
‘missing by design’ if sampling fractions differ from those of the population.
Weights can be used to adjust for non-response from available data within the existing
sampling frame or in the case of longitudinal surveys from another time point (wave).
However, there are limitations associated with the use of weights including the need for
complete/adequate data on contributing factors, inefficiency of the method when there
are extreme weights, and the need for many sets of weights. Even so, according to
Schafer and Graham (2002), weighting can eliminate bias due to differential responses
related to the variables used to model the response probabilities, but not for unused
variables.

Imputation methods involve replacing missing values by suitable estimates and then
applying standard complete-data methods to the filled-in data.

The main reason for imputing is to reduce bias due to missingness: ‘rather than
deleting cases that are subject to item-nonresponse, the sample size is maintained result-
ing in a potentially higher efficiency than for case deletion’ (Durrant 2009, 295).
Repeated MI is becoming the most popular procedure for handing missing data. It
allows the analyst to use techniques designed for complete data, while at the same
time providing a method for appropriately estimating the uncertainty due to the
missing data. The basic idea of MI as proposed by Rubin (1987, 1996) involves the fol-
lowing three steps:

Step 1 – Imputation: Impute missing values using an appropriate model that incorpor-
ates appropriate random variation. During this first step, sets of plausible values for

International Journal of Research & Method in Education 5
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missing observations are created that reflect uncertainty about the non-response model.
These sets of plausible values can then be used M times5 to ‘complete’ the missing
values and create M ‘completed’ data sets.

Step 2 – Analysis: Perform the desired analysis on each of these M data sets using stan-
dard complete-data methods.

Step 3 – Combination: During this final step, the results are combined, which allows
the uncertainty regarding the imputation to be taken into account. This procedure
involves the following estimations:

. average the values of the parameter estimates across the M samples to produce a
single-point estimate (i.e. û = (1/M )

∑M
m=1 û

(m)
);

. calculate their standard errors by (a) averaging the squared standard errors of the
M estimates, (b) calculating the variance of the M parameter estimates across
samples, and (c) combining the two quantities using an adjustment term (i.e. 1
+ 1/M). This step is necessary so as to incorporate the variability due to imputa-
tion (Allison 2000; Durrant 2009).

Fundamental to MI is the model, and hence the technique/algorithm used, for the impu-
tation of values. The non-statistically minded reader can skip the next section and jump to
the software which implement these algorithms and produce the desired imputations.

2.2.1. Algorithms for multiple imputation

Some authors (i.e. Schafer and Graham 2002) distinguish between MI and maximum-
likelihood (ML) estimation6 approaches for dealing with missing data. These are inter-
connected in our view, since ML is usually used for the estimation of the imputation
model. The essential element in any approach is the distribution of the observed data
as a function of the population distribution (complete data set) with respect to the
missing data (the statistically minded reader may look into the relevant functions for
P(Ycomplete; u)7 from Schafer and Graham 2002, 154). ML estimation is based on max-
imizing the (log of the) likelihood function mentioned earlier (i.e. the observed data as a
function of the population distribution with respect to the missing data): for most pro-
blems this is computed iteratively with the expectation–maximization (EM) algorithm;
the technique is very well established in statistical handbooks and its details go beyond
the scope of this paper. ML methods overall summarize a likelihood function averaged
over a predictive distribution for the missing values (Schafer 1999; Schafer and Graham
2002; Ibrahim et al. 2005). According to Horton and Kleinman (2007),

for each observation with missing data, multiple entries are created in an augmented
dataset for each possible value of the missing covariates, and a probability of observing
that value is estimated . . . the augmented complete-dataset is then used to fit the
regression model.

Bayesian8 MI methods are increasingly popular: these are performed using a Bayesian
predictive distribution to generate the imputations (Nielsen 2003) and specifying prior
values for all the parameters (Ibrahim et al. 2005). According to Schafer and Graham
(2002), Bayesian methods bring together MI methods and ML methods:

6 M. Pampaka et al.
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[ . . . ] the attractive properties of likelihood carry over to the Bayesian method of MI,
because in the Bayesian paradigm we combine a likelihood function with a prior distri-
bution for the parameters. As the sample size grows, the likelihood dominates the
prior, and Bayesian and likelihood answers become similar. (154)

This combination is actually implemented in most recent computational packages, as is
the one we are using for this paper (i.e. Amelia II). As summarized by King et al. (2001)
regarding MI algorithms:

computing the observed data likelihood [ . . . ] and taking random draws from it, is com-
putationally infeasible with classical methods. Even maximizing the function takes inor-
dinately long with standard optimization routines. In response to such difficulties, the
Imputation-Posterior (IP) and Expectation-Maximization (EM) algorithms were devised
and subsequently applied to this problem. From the perspective of statisticians, IP is
now the gold standard of algorithms for multivariate normal multiple imputations, in
large part because it can be adapted to numerous specialized models. Unfortunately,
from the perspective of users, it is slow and hard to use. Because IP is based on
Markov Chain Monte Carlo (MCMC) methods, considerable expertise is needed to
judge convergence, and there is no agreement among experts about this except for
special cases. (54)

In response to the above difficulties, the same group developed a new algorithm, the
EMB algorithm, which combines the classic EM algorithm with a bootstrap approach
to take draws from the posterior distribution. This algorithm expands substantially the
range of computationally feasible data types and sizes for which MI can be used
(Honaker and King 2010; Honaker, King, and Blackwell 2011). It should be noted
that this was the algorithm used within Amelia for our data set. Other tools are pre-
sented next.

2.2.2. Tools for resolving the missing data problem

Various tools are available for performing (multiple) imputation. As a guide for the
interested reader we list some procedures available in R, but not exhaustively:
Amelia II (Honaker, King, and Blackwell 2011), arrayImpute (Lee, Yoon, and Park
2009), cat (for categorical-variable data sets with missing values) (Schafer 1997),
EMV (for the Estimation of Missing Values for a Data Matrix) (Gottardo 2004),
impute (Hastie et al. 2014), mi (Su et al. 2011), mice (Van Buuren and Groothuis-
Oudshoorn 2011), and Hmisc (Harrell 2008). Tools are also available within other
statistical packages, such as ICE in STATA, the SAS PROC MI, Missing Data
Library, and NORM for S-Plus and SOLAS. MI can also be performed with
MLwiN, and recently with SPSS (version 20, 2012). Horton and Kleinman (2007)
have recently applied imputation with Amelia II, Hmisc, mice, and other commercial
packages (i.e. ICE/Stata, Iveware, LogXact, SAS, and S-Plus) and found similar par-
ameter estimates for all analysis, as well as considerable reduction of the standard
error estimates when compared to the complete case estimators. A recent practical
tutorial about imputing missing data with Amelia II is also available (Hutcheson
and Pampaka 2012).

Having presented the available tools and techniques to resolve the potential problems
with missing data, we now turn to our own data to illustrate the aforementioned
theory with reference to a real practical example in which missing data was very
problematic.

International Journal of Research & Method in Education 7
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3. Our evaluation case study research design – methodology

The context for the analysis and results we present next is situated within our recent
work on students’ transitions into post-compulsory education. Our project has been
concerned with the problem of drop out from mathematics education in England, man-
ifested by the relatively small number of students being well prepared to continue their
studies from schools and colleges into mathematically demanding courses in Higher
Education (HE) institutions (see, e.g. ACME 2009). We have effectively joined the
efforts of others (e.g. Roberts 2002; Smith 2004; Sainsbury 2007) to inform policy
and practice, and consequently support a greater flow of students into HE to meet
the demands of the emerging national STEM (Science, Technology, Engineering,
Mathematics) agenda in the UK.

The aim of the project we report here was to understand how cultures of learning
and teaching can support learners in ways that deepen and extend participation in math-
ematically demanding courses in Further Education and HE. The focus was on those
students for whom pre-university mathematics qualifications (like ‘AS’ and ‘A2’ in
the UK context9) provide a barrier to progressing into mathematically demanding
courses. The project also contrasted the traditional mathematics programme with a
new ‘Use of Mathematics’ (UoM) programme in the UK at ‘AS’ level, that is, for stu-
dents usually aged 16–19 who have completed compulsory schooling and have chosen
to study some mathematics further. The traditional (ASTrad) programme is designed to
help students prepare for mathematically demanding courses in university (e.g. particu-
larly STEM). The UoM programme was designed to widen participation to include
those who may need to use mathematics in the future generally, but who may or
may not progress into very mathematical courses and who may not have very strong
previous mathematical backgrounds (Williams et al. 2008).

The project was a mixed method study. One part involved a survey of students
where responses to a questionnaire were recorded at multiple data points. This was
complemented with multiple case studies of students as they progressed through a
year of further education. The longitudinal design and the data collected at the two rel-
evant points for this paper are illustrated in Figure 1. Details about these variables can
be seen in our earlier work (Pampaka et al. 2011, 2012, 2013).

Figure 1. Survey design and data collection.

8 M. Pampaka et al.
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Of particular interest for this paper is the educational outcome ‘AS grade’ high-
lighted in the final data point of Figure 1. This variable was only requested from stu-
dents at the final data point (because this is when it would have been available) and
was the cause of much of the missing data, given the large attrition rates at this stage
of the study. Fortunately, many of these missing data points for ‘AS grade’ were
accessed at a later date by collecting data directly from the schools and the students
via additional telephone surveys. With this approach we have been able to fill in the
grades for 879 additional pupils.

This supplementary collection of much of the missing data from the study enabled
an evaluation to be made of the success of data imputation. We compare the results of
analyses conducted on the data which was initially available with the enhanced, sup-
plementary data and evaluate the success of the imputation technique for replacing
the missing data.

4. Analysis/results: modelling dropout from mathematics

We were particularly interested in modelling whether or not students dropped out of the
mathematics courses they were enrolled on (as derived from the original outcome vari-
able of ‘AS grade’). In the original study, this ‘drop-out’ variable was found to be
related to the type of course they were on, their previous GCSE10 results in mathemat-
ics, their disposition to study mathematics at a higher level, and their self-efficacy rating
(see Hutcheson, Pampaka, and Williams 2011 for a full description of the model selec-
tion procedure). The model reported for the full data was

Drop-out � Course + Disposition + GCSE-grade + Maths Self Efficacy

where Drop-out and Course are binary categorical variables, GCSE-grade is an ordered
categorical variable,11 and Disposition and Maths Self Efficacy are continuous.

The analysis reported here is restricted to the data and the model used in Hutcheson,
Pampaka and Williams (2011), which included the binary classifications of whether
students had ‘dropped out’ of the course that were retrieved after the initial study. In
this paper, we model dropout using the initial data (n ¼ 495) and compare the resulting
model to a model where the missing dropout scores are imputed (n ¼ 1374). An evalu-
ation of the accuracy of the imputation is made by comparing the models with the one
derived from the actual data that were recovered (n ¼ 1374). The only difference
between the imputed model and the one reported for the actual data is that the
former includes 879 imputed values for dropout, whilst the latter includes 879 values
for dropout that were retrieved after the initial study.

4.1. Modelling dropout using the initial data (n 5 495)

Using the 495 data points available at the end of the initial study resulted in the model
shown in Table 3.

This model is, however, likely to provide a biased picture of dropout, as the missing
data points are not likely to be ‘missing completely at random’. The non-random nature
of the missing data is confirmed by analyses (i.e. a logistic regression model of ‘miss-
ingness’) which show that those with higher GCSE grades are more likely to have been
included in the sample at the end of the initial study. The results of the logistic
regression for ‘missingness’ (i.e. a binary variable indicating that a student provided
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information at the end of study (1) or not (0), modelled with respect to the following
explanatory variables: Course, Disposition, GCSE-grade, and Maths Self Efficacy)
are shown in Table 4 and the effects of the explanatory variables are illustrated via
the effect plots in Figure 2 (Fox 1987; Fox and Hong 2009).

The logistic regression in Table 4 clearly shows the difference between GCSE
grades for those students for whom information about dropout is available at the end
of the initial study and those for whom it is not. The difference is particularly clear
in the case of the students with A∗ grades, as these students are more than three
times as likely (exp(1.17) ¼ 3.22 times) to provide information about dropout than
those with an intermediate-C grade (IntC).

Given these missingness patterns, the model in Table 3 is, therefore, likely to over-
estimate the effect of the high-achieving pupils.

4.2. Modelling dropout using imputed data

In order to address the likely bias in the sample of 495 cases, the 879 missing data
points were imputed. We selected the Amelia II package (Honaker, King and Blackwell
2011) which imputes missing data using MI and includes a number of options and diag-
nostics using a simple graphical interface, and is implemented in the R statistical

Table 3. A logistic regression model of ‘dropout’ using the 495 cases available at the end of the
initial study.

Explanatory variables Estimate s.e. z p

(Intercept) 1.24 0.32 3.88 ,.001
Course: UoM (ref:Trad) 21.15 0.26 24.45 ,.001
Disposition 20.09 0.05 21.88 .06
GCSE-grade (ref: IntC)

Higher C 20.44 0.57 20.077 .44
Intermediate B 20.46 0.32 21.42 .16
Higher B 20.67 0.34 21.95 .05
A 21.85 0.37 25.07 ,.001
A∗ 24.9 1.06 24.63 ,.001

Maths Self Efficacy 20.07 0.1 20.68 .49

Table 4. A logistic regression model of missingness on dropout variable.

Explanatory variables Estimate s.e. z p

Intercept 20.99 0.17 25.87 ,.001
Course UoM (ref:Trad) 0.11 0.14 0.81 .42
Disposition 20.01 0.03 20.27 .79
GCSE-grade (ref: IntC)

Higher C 20.6 0.3 21.99 .05
Intermediate B 20.04 0.18 20.22 .82
Higher B 0.01 0.19 0.08 .94
A 0.44 0.2 2.27 .02
A∗ 1.17 0.26 4.49 ,.001

Maths Self Efficacy 0.00 0.05 0.01 .99
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programme (R Core Team 2013). Amelia II assumes that the complete data are multi-
variate normal which is ‘often a crude approximation to the true distribution of the
data’; however, there is ‘evidence that this model works as well as other, more compli-
cated models even in the face of categorical or mixed data’ (Honaker, King, and Black-
well 2013, 4). Amelia II also makes the usual assumption in MI that the data are missing
at random (MAR), which means that the pattern of missingness only depends on the
observed data and not the unobserved. The model we presented in Table 4 and
Figure 2 shows that missingness depends on GCSE grades, which is an observed vari-
able. Finally, the missing data points in the current analysis are binary, making Amelia
an appropriate choice.

The missing values for dropout were imputed using a number of variables available
in the full data set. In addition to using information about Course, Disposition, GCSE-
grade, and Maths Self Efficacy to model the missing data, information about EMA (i.e.
whether the student was holding Educational Maintenance Allowance), ethnicity,
gender, Language (whether the student’s first language was English), LPN (i.e.
whether the student was from Low Participation Neighbourhood), uniFAM (whether
the student was not first generation at HE), and HEFCE (an ordered categorical variable

Figure 2. Effect plots of a logistic regression model of missingness on dropout variable. The
graphs show the size of the effect of the explanatory variables on the response variable Y (i.e. the
probability of providing information, thus not missing). The Y range is set to be the same for all
graphs in order for the relative effects to be comparable.
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denoting socio-economic status) were also included.12 Although relatively few imputa-
tions are often required (3–10, see Rubin 1987), it is recommended that more imputa-
tions are used when there are substantial amounts of missing data. For this analysis, we
erred on the side of caution and used 100 imputed data sets.

Amelia imputed 100 separate data sets, each of which could have been used to model
dropout. In order to get parameter estimates for the overall imputed model, models com-
puted on the individual data sets were combined. The combined estimates and standard
errors for the imputed model were then obtained using the Zelig library (Owen et al.
2013) from the R package. The overall statistics for the imputed models computed
using Zelig are shown in Table 5, with the software instructions provided in Appendix.

The conclusions for the model based on the imputed data are broadly the same as for
the model with missing data (n ¼ 495), with Course and GCSE-grade both showing
significance. Disposition and Self Efficacy are non-significant in both models. The
main difference between the models is found in the standard error estimates for the
GCSE grades (the regression coefficients for the models are broadly similar across
the two models) with the imputed data model allowing for a greater differentiation
of ‘GCSE-grade’, with significant differences demonstrated between more categories
compared to the initial model (the Higher B and Intermediate B groups are now signifi-
cantly different to the reference category).

4.3. Modelling dropout using the retrieved data (n 5 1374)

An evaluation of the success of the imputation can be obtained by comparing the results
with that from a model computed on the actual data. A model of dropout using all avail-
able data (i.e. including the 879 data points retrieved after the initial study) results in the
model shown in Table 6 (this is the same model reported in Hutcheson, Pampaka, and
Williams 2011).

4.4. Comparing all models

It is useful at this point to compare the results from all three models (Table 7).
The estimates from all models provide similar pictures of the relationships in the

data (all estimates are in the same direction). Even though the imputed model is not
‘equivalent’ to the model using the full data, the most noticeable finding is that the stan-
dard errors for the imputed model are lower than they are for the model with missing
data and closer to the standard errors evident in the model on the actual data that were

Table 5. A logistic regression model of ‘dropout’ using imputed data (n ¼ 1374).

Explanatory variables Estimate s.e. t-stat p

Intercept 1.16 0.26 4.53 ,.001
Course UoM (ref:Trad) 20.87 0.22 23.96 ,.001
Disposition 20.08 0.04 21.89 .06
GCSE-grade (ref: IntC)

Higher C 20.36 0.34 21.05 .29
Intermediate B 20.64 0.23 22.73 .007
Higher B 20.95 0.26 23.66 .0003
A 21.55 0.259 25.32 ,.001
A∗ 22.74 0.46 25.96 ,.001

Maths Self Efficacy 20.06 0.08 20.71 .48
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subsequently retrieved (particularly with respect to GCSE grades). In particular, com-
pared to the model with missing data (n ¼ 495), the imputed model allows a more accu-
rate picture of the relationship between dropout and the GCSE-grade categories,
showing the effect of the lower grades of GCSE on dropout more clearly.

Whilst this has not substantially affected the conclusions that were drawn from this
study, the reduced bias may have been influential if the study had not in fact collected
all this extra data, and we would expect it to be important in smaller studies where
such effect sizes are declared insignificant. In any case, the imputed model provides a
closer approximation to the full/retrieved data set than does the initial model on the 495
data points.

5. Discussion and conclusions

Our aim with this paper was to revisit and review the topic of dealing with non-response
in the context of educational research, drawing from our recent work in widening

Table 6. A logistic regression model of ‘dropout’ using the full/retrieved data (n ¼ 1374).

Explanatory variables Estimate s.e. z p

(Intercept) 1.62 0.2 7.99 ,.001
Course UoM (ref:Trad) 21.29 0.16 28.11 ,.001
Disposition 20.13 0.03 24.56 ,.001
GCSE-grade (ref: IntC)

Higher C 20.26 0.30 20.89 .38
Intermediate B 20.88 0.2 24.39 ,.001
Higher B 21.02 0.21 24.86 ,.001
A 22.25 0.24 29.56 ,.001
A∗ 23.83 0.5 27.65 ,.001

Maths Self Efficacy 20.18 0.06 23.20 ,.01

Table 7. Parameter estimates for the three models.

Explanatory
variables

Model with missing
data (n ¼ 495)

Model with imputed
data

Model using full data (n
¼ 1374)

est, (s.e.), p est, (s.e.), p est, (s.e.), p

Course UoM
(ref:Trad)

21.15, (0.26), ,.001 20.87, (0.22), ,.001 21.29, (0.16), ,.001

Disposition 20.09, (0.05), .06 20.08, (0.04), .06 20.13, (0.03), ,.001
GCSE-grade

(ref: IntC)
Higher C 20.44, (0.57), .44 20.36, (0.34), .29 20.26, (0.29), .38
Intermediate
B

20.46, (0.32), .16 20.64, (0.23), .007 20.88, (0.20), ,.001

Higher B 20.67, (0.34), .05 20.95, (0.26), ,.001 21.02, (0.21), ,.001
A 21.85, (0.37), ,.001 21.55, (0.26), ,.001 22.25, (0.24), ,.001
A∗ 24.90, (1.06), ,.001 22.74, (0.46), ,.001 23.83, (0.50), ,.001

Maths Self
Efficacy

20.07, (0.1), .49 20.06, (0.08), .48 20.18, (0.06), ,.01
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participation in mathematics education. In addition, we wanted to assess the accuracy of
MI using an example where models from imputed data could be compared with models
derived from actual data.

First, we argued, as the literature in social statistics suggests, that ignoring missing
data can have serious consequences in educational research contexts. Missing data are
effectively ignored when using ‘complete case’ analyses and the automated use of step-
wise selection procedures often exacerbates this as cases can easily be excluded on the
basis of data missing from variables not even part of a final model. Ignoring missing
data causes problems when the data are not missing completely at random, as is
likely for most missing data in educational research. We then demonstrated a procedure
for how to deal with missing data with MI applied to our own (problematic) data set,
which we could also verify given additional data acquired at a later stage. This pro-
cedure can be used by any (educational) researcher facing similar missing data pro-
blems and is summarized here for guidance (we also provide more technical details
of these steps, apart from the former, as applied to our own analysis in Appendix):

(1) identify missing data (with descriptive statistics);
(2) investigate missing data patterns (e.g. by modelling missingness we find that

students with lower grades are more likely to be missing);
(3) define variables in the data set which may be related to missing values to be

used for the imputation model (as resulted from modelling missingness);
(4) impute missing data to give ‘m’ complete data sets;
(5) run the models of interest using the ‘m’ imputed data sets;
(6) combine the ‘m’ models’ parameters;
(7) report the final model (as you would have done for any regression model).

In our own data set, the models did not in fact change much as a result of imputing
missing data, but we were able to show that imputation improved the models and
caused differences to the significance of the effects of some of the important variables.
The results from our study demonstrated that the initial data sample which included a
substantial amount of missing data was likely to be biased, as a regression model using
this data set was quite different from the one based on a more complete data set that
included information subsequently collected.

Imputing the missing data proved to be a useful exercise, as it ‘improved’ the
model, particularly with respect to the parameters for GCSE-grade, but it is important
to note that it did not entirely recreate the structure of the full data set, as Disposition
and Maths Self Efficacy remained non-significant. This, however, is not that surprising
given these variables were insignificant in the original sample of 495, and it could also
be due to the self-report nature of these variables in comparison to more robust GCSE
grades. The failure to reconstruct the results from the full data set is not so much a
failure of the MI technique, but a consequence of the initial model (where Disposition
and Maths Self Efficacy were not significant). The information available to impute the
missing dropout data points was not sufficient to accurately recreate the actual relation-
ships between these variables. Incorporating additional information in the imputation
process might have rectified this to some extent.13

The results of the MI are encouraging, particularly as the amount of missing data
was relatively large (over 60% for dropout) and also missing on a ‘simple’ binary vari-
able. It is also worth noting that the model evaluated is one which shows a high degree
of imprecision (Nagelkerke’s pseudo-R2 ¼ 0.237 for the full data set). There is,
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therefore, likely to also be substantial imprecision in the imputed data. This empirical
study demonstrates that even with this very difficult data set, MI still proved to be
useful.

The imputation process was a useful exercise in understanding the data and the pat-
terns of missingness. In this study, the model based on imputed data was broadly
similar to the model based on the original data (n ¼ 495). This finding does not dimin-
ish the usefulness of the analysis, as it reinforces the evidence that the missing data may
not have heavily biased this model. In cases where there is more substantial bias, larger
discrepancies between the imputed and non-imputed models may be expected. For the
current data, even though the missing data were not particularly influential, the imputa-
tion was still advantageous.

The most important conclusion from this paper is that missing data can have adverse
effects on analyses and imputation methods should be considered when this is an issue.
This study shows the value of MI even when imputing large amounts of missing data
points for a binary outcome variable. It is encouraging that tools now exist to enable
MI to be applied relatively simply using easy-to-access software (see Hutcheson and
Pampaka, 2012, for a review). Thus, MI techniques are now within the grasp of most edu-
cational researchers and should be used routinely in the analysis of educational data.
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Notes
1. List-wise deletion is one traditional statistical method for handling missing data, which

entails an entire record being excluded from analysis if any single item/question value is
missing. An alternative approach is pairwise deletion, when the case is excluded only
from analyses involving variables that have missing values.

2. Selection methods here refer to the procedures followed for the selection of explanatory
variables in regression modelling. In step-wise selection methods, the choice of predic-
tive/explanatory variables is carried out by an automatic procedure. The most widely
used step-wise methods are backward elimination (i.e. start with all possible variables
and continue by excluding iteratively the less significant) and forward selection (i.e. start-
ing with no explanatory variables and adding iteratively the most significant).

3. The same applies with popular packages such as SPSS where the only way to infer about
the sample size used for each model is to check the degrees of freedom in the ANOVA
table.
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4. Some statistical packages automatically delete all cases list-wise (SPSS, for example),
while others (e.g. the ‘step()’ procedure implemented in R (R Development Core team
2013)) do not allow step-wise regression to be easily applied in the presence of missing
data – when the sample size changes as a result of variables being added or removed,
the procedure halts.

5. It has been shown by Rubin in 1987 that the relative efficiency of an estimate based on m
imputations to one based on an infinite number of them approximates the inverse of (1+l/
m), with l the rate of missing information. Based on this, it is also reported that there is no
practical benefit in using more than 5–10 imputations (Schafer 1999; Schafer and Graham
2002).

6. ML estimation is a statistical method for estimating population parameters (i.e. mean and
variance) from sample data that selects as estimates those parameter values maximizing the
probability of obtaining the observed data (http://www.merriam-webster.com/dictionary/
maximum%20likelihood).

7. From a statistical point of view P(Ycomplete; u) has two possible interpretations, which guide
the choice of estimation methods for dealing with missing data:

† when regarded as the repeated-sampling distribution for Ycomplete, it describes the prob-
ability of obtaining any specific data set among all the possible data sets that could arise
over hypothetical repetitions of the sampling procedure and data collection;

† when considered as a likelihood function for theta (unknown parameter), the realized
value of Ycomplete is substituted into P and the resulting function for theta summarizes
the data’s evidence about parameters.

8. Bayesian statistical methods assign probabilities or distributions to events or parameters
(e.g. a population mean) based on experience or best guesses (more formally defined as
prior distributions) and then apply Bayes’ theorem to revise the probabilities and distri-
butions after considering the data, thus resulting in what is formally defined as posterior
distribution.

9. In England, it is compulsory to study mathematics up until the age of 16. Post-16 students
can opt to take four advanced-subsidiary subjects (AS levels) of their choice, which are
then typically refined to advanced-level (A-level or A2) subjects at the age of 17.

10. GCSE qualifications are usually taken at the end of compulsory education in a range of
subjects. Students typically take about 8–10 of these in a range of subjects that must
include English and mathematics.

11. GCSE-grade was treated as categorical variable in the model in the usual way: the lower
grade was chosen as the reference category and the other categories were treated as
dummy variables.

12. Although not part of the regression model

it is often useful to add more information to the imputation model than will be present
when the analysis is run. Since imputation is predictive, any variables that would
increase predictive power should be included in the model, even if including them
would produce bias in estimating a causal effect or collinearity would preclude deter-
mining which variables had a relationship with the dependent variable. (Honaker, King
and Blackwell 2013)

13. It is important to collect data that may aid the imputation process even if these data are not
part of the final model.
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Appendix. Technical details for performing MI
We present here more details of the steps followed during our implementation of the MI pro-
cedure summarized in the conclusion of the paper. The first descriptive analysis step as well
as the final step of reporting the result is omitted. The steps presented here can be implemented
with free open-access software that can be installed on any platform.

Step 2: Investigate missing data patterns.
Step 3: Identify variables related to the missing values.

The analysis that identified imbalances in the distribution of missing data was a logit regression
model of missing values for the dropout variable. The R package was used for this analysis. The
code below shows a logit model of missingness based on the explanatory variables:
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glm(missingDATA� Course+ Disposition+ GCSEgrade+ SelfEfficacy,
family¼binomial(logit))

Step 4: Impute missing data to give ‘m’ complete data sets.
The missing data are then imputed using the R library ‘Amelia’ (version 1.7.2; Honaker, King,
and Blackwell 2013). The code to achieve this is shown below, although imputations can also be
obtained through a graphical interface, which some users may find simpler (see Hutcheson and
Pampaka 2012):

imp.datasets ,- amelia(Dataset, m¼100,

noms¼c("DROPout", "Course", "Gender", "Language",

"EMA", "Ethnicity", "LPN", "uniFAM"),

ords¼"GCSEgrade")

The command above instructs amelia to impute 100 data sets (m ¼ 100) using nominal (noms)
and ordinal (ords) variables and save these to the object ‘imp.datasets’. The ‘imp.datasets’ object
holds 100 data sets containing the imputed values, each of which can be viewed or analysed sep-
arately using the command:

imputed.datasets$imputations[[i]]

For example, the third imputed data set is saved as imputed.datasets$imputations[[3]].

Step 5: Run the models of interest using the ‘m’ imputed data sets.
Step 6: Combine the model’s parameters.

The logit regression model of dropout (our response variable of interest) can be applied to each
of the imputed data sets, which results in 100 different models for the imputed data. These 100
models need to be combined to provide single parameter estimates across all the imputed data.
An easy method for this is to use the R library ‘Zelig’ (Owen et al. 2013). Zelig first computes
models for each individual imputed data set and saves analyses to the object ‘Zelig.model.imp’:

Zelig.model.imp ,- zelig(DROPout � Course + Disposition +

GCSEgrade + SelfEfficacy,

model ¼ "logit",

data ¼ imputed.datasets$imputations)

which can then be shown/printed out using the command:

summary(Zelig.model.imp, subset ¼ 1:100)
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