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Let G be a finite permutation group acting on a finite set Ω. Then we denote by
σk(G,Ω) the number of G-orbits on the set Ωk, consisting of all k-subsets of Ω. In this
thesis we develop methods for calculating the values for σk(G,Ω) and produce formulae
for the cases that G is a doubly-transitive simple rank one Lie type group. That is
G ∼= PSL(2, q), Sz(q), PSU(3, q) or R(q). We also give reduced functions for the
calculation of the number of orbits of these groups when k = 3 and go on to consider
the numbers of orbits, when G is a finite abelian group in its regular representation.

We then consider orbit lengths and examine groups with “large”G-orbits on subsets

of size 3.
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Chapter 1

Introduction

When studying finite groups, it is clear that group actions are of great importance.

Exploring how a group acts on a structure, be it a vector space, Steiner system or some

other set can allow us to see links between the group and other areas of mathemat-

ics. In looking at these actions questions about orbit lengths and numbers of orbits

arise naturally, and as such have been studied extensively, with two of the most well

known results on the latter coming in the form of the Orbit Counting Lemma and the

Livingstone-Wagner Theorem.

Viewing groups through their actions allows us to write abstract groups or matrix

groups in terms of permutation groups, and we may use a faithful representation of

our group G acting on Ω as a subgroup of Sym(n) when |Ω| = n to answer some of the

questions we have mentioned. This affords us the opportunity of not having to wade

through abstract spaces and complex actions. A particular subset of finite groups of

interest to us are the doubly transitive finite groups whose classification formed part

of the Classification of Finite Simple groups. An excellent exposition of these groups

is given in Dixon and Mortimer [10], (or see Passman [23]). We choose four infinite

families of these finite simple groups and answer questions relating to the number

of orbits these groups have when we consider their permutation representations and

induced actions on k-subsets of their respective G-sets, we also consider bounds for

numbers of orbits for finite abelian groups acting in their regular representations.

Before we discuss our results further, we outline some notation and discuss our

main motivation. We begin by saying that G will usually, denote a finite permutation

group of degree n acting on a set Ω. Our primary motivation is due to Livingstone and

9



CHAPTER 1. INTRODUCTION 10

Wagner [16] who in 1965 published their paper titled “Transitivity of finite permuta-

tion groups on unordered sets”, in which they presented the following result relating

to group actions on k-sets. Throughout we will make use of the notation used in

Livingstone and Wagner’s paper, which we recall below.

Definition 1. Let G be a group acting on a set Ω of cardinality n. Then the number

of G-orbits on Ωk, the set of k-subsets of Ω, is denoted by σk(G,Ω). If σk(G,Ω) = 1

we say G is k-homogeneous.

Remark When G and Ω are understood, we may write σk.

Theorem 1.0.1. [Livingstone Wagner [16]]

If 2 ≤ k ≤ n
2
, then the number of group orbits on the set of k-subsets of n points is

at least as great as the number of orbits on the set of (k− 1)-subsets of n points. That

is,

σk ≥ σk−1.

This induced action has been the subject of numerous papers, including Nakashima

[21], who was able to make some generalisations of the original theorem by introducing

a comparison of the number of G-orbits on k-subsets with the number of G-orbits on

ordered (k−1)-tuples of Ω. This paper followed on from Mnukhin and Siemons [20] who

in 2004 presented a more general theorem relating to orbits on subsets, which contained

the Livingstone-Wagner Theorem as a special case, but also gave information about

orbit counts for simplicial complexes, sequences, graphs and amalgamation classes.

As a consequence of the Livingstone-Wagner Theorem, there arise questions about

the cases when σk = σk−1. These were tackled in 2009 by Bundy and Hart [3] in their

paper “The case of equality in the Livingstone-Wagner Theorem”, where they proved,

the following results.

Lemma 1.0.2. [Bundy and Hart [3]] Let H ≤ G ≤ Sn and 1 ≤ k < (n − 1)/2.

Then σk+1(G) − σk(G) ≤ σk+1(H) − σk(H). In particular, if σk+1(H) = σk(H), then

σk+1(G) = σk(G).

This means that equality in a subgroup implies equality in the group. This clearly

allows for equality at any point as Sn always maintains this equality condition. The

next result requires the following notation. Let G be a finite permutation group acting
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on a set Ω of cardinality n. Then if ∆ ⊆ Ω is a G-orbit denote the action of G on the

G-set ∆ by G∆.

Proposition 1.0.3. [Bundy and Hart [3]] Let G ≤ Sn and 1 ≤ k < (n − 1)/2 with

σk+1(G) = σk(G). Let ∆ be an orbit of G of length at least n − k. Then σl(G
∆) =

σl+1(G∆), for all k − (n− |∆|) ≤ l ≤ min(k, |∆| − k − 2).

If we have a case of equality, then we can take an orbit of length greater than n−k

and restrict the action of G to this set. This will then give us cases of equality for all

values of σl satisfying k − (n− |∆|) ≤ l ≤ min(k, |∆| − k − 2).

Considering the number of G-orbits on two sets and two actions, was the focus of a

1993 paper of Evans and Siemons [11] with obvious links to the above problems, their

main focus was on comparing the numbers of orbits of G and its subgroups H acting

on two different G-sets.

We will make prolific use of the classical result the Orbit Counting Theorem, which

we mentioned above and which appears in numerous places for example see [22]. Here

we present the result using Livingstone and Wagner’s notation.

Theorem 1.0.4. [Neumann [22]] Let G be a group and Ω a G-set, then if σ is the

number of G-orbits on Ω we have

σ(G,Ω) =
1

|G|
∑
g∈G

|fixΩ(g)|.

As we are concerned primarily with k-subsets of Ω we use

σk(G,Ω) =
1

|G|
∑
g∈G

|fixΩk(g)|.

This thesis can be split into two main parts, the first of which is concerned with

calculating values for σk(G,Ω), where G is a finite doubly-transitive simple group of

Lie rank one and the second being a look at lengths of orbits. We begin with Chapter

2, where we take a direct hands on approach to calculating the number of and lengths

of orbits for G ∼= PSL(2, q), q = 7, 11 acting on the q + 1 points of the projective

line. We do this by ascertaining the number of fixed points for the group elements and

then utilising the Orbit Counting Theorem to determine our solutions, the chapter

then concludes with a table giving the number of orbits and their lengths. These two

examples are small, and yet the calculation required is quite lengthy. For large values
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of q, computer power and memory can be easily exhausted by direct computation and

so we are unable, due to practicality, to directly calculate sequences of values for σk

for these groups. This process acts as a source of motivation for our third chapter.

In Chapter 3, we establish four main results for the values of σk(G,Ω). These results

come in the form of formulae, which can be implemented by a computer without the

need to construct the group G, and as such can be evaluated, without such large

demands on memory and time. The formulae themselves are quite ungainly to look

at, and so we include Magma code for the implementation of each. More formally the

main results in this chapter are formulae for σk(G,Ω), when G is a rank one simple

Lie-type group acting doubly-transitively on Ω. Thus if we set q = pa where p is a

prime and a ∈ N, then the possibilities for G are PSL(2, q) (q > 3), the 2-dimensional

projective special linear groups, Sz(q) (q = 22n+1 > 2), the Suzuki groups, PSU(3, q)

(q > 2), the 3-dimensional projective special unitary groups and R(q) (q = 32n+1 > 3),

the Ree groups. The corresponding sets Ω are the projective line (with |Ω| = q + 1),

the Suzuki oval (with |Ω| = q2 + 1), the isotropic 1-spaces of a 3-dimensional unitary

space (with |Ω| = q3 + 1) and the Steiner system S(2, q+ 1, q3 + 1) (with |Ω| = q3 + 1).

As stated in the introduction, we dedicate a portion of this thesis to calculation of

numbers of orbits of PSL(2, q), in its doubly transitive action on (q + 1) points. We

remark that a great deal of work has been done in solving this problem for this particu-

lar family of groups, notably Cameron, Maimani, Omidi and Tayfeh-Rezaie [5] in 2006

published “3-designs from PSL(2, q)”, where they present a method for calculation of

the number of orbits which requires the use of a table of formulae and summing over

the various subgroups of PSL(2, q). However, they only concerned themselves with the

case q ≡ 3(mod 4) as their main objective was to find 3-designs for which PSL(2, q)

acted as an automorphism group and so restricted their attention to when PSL(2, q)

is 3-homogeneous. Shortly afterwards in 2006 Cameron, Omidi and Tayfeh-Rezaie [6]

published a second paper, this time for the family PGL(2, q) with the same objective.

It was not until 2012, that Chen and Liu [8] successfully tackled the remaining cases,

that is when q ≡ 1(mod 4), where they again searched for 3-designs. In their paper,

however, they did not include any methods for counting the orbits in these instances.

After establishing our results for these families of groups, in Chapter 4 we show

applications of the formulae from Chapter 3. We give alternate proofs of some known
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results for PSL(2, q) and then go on to describe smaller, special cases of the formulae

for each of the families with the results reduced and simplified for the numbers of

orbits when k = 3.

Corollary 1.0.5 (Corollary of Theorem 3.2.1). Let σ3(PSL(2, q)), q = pa > 2, where

p is prime, a ∈ N, be the number of orbits on 3-subsets of the (q + 1) points on which

PSL(2, q) acts.

σ3(PSL(2, q)) =

2, if q ≡ 1 mod 4

1, if q ≡ 3 mod 4

.

Proposition 1.0.6. Let Ln = PSL(2, 2n) acting on the projective plane Ωn, and put

an = σ4(Ln,Ωn). Setting a1 = a2 = 1, for n ≥ 3 we have

an = an−1 + 2an−2.

Alternatively

an =
2n + (−1)n−1

3
.

Proposition 1.0.7. Let an = σ3(Sz(q)), q = 22n+1, be the number of orbits on 3-

subsets of the (q2 + 1) points on which Sz(q) acts. Then

an =
4n + 2

3
.

Proposition 1.0.8. Let an = σ3(PSU(3, q)), q = 3n be the number of orbits on

3-subsets of the (q3 + 1) isotropic points on which PSU(3, q) acts. Then

an =
3n + 3

2
.

Proposition 1.0.9. Let an = σ3(R(q)), q = 32n+1 be the number of orbits on 3-subsets

of the q3 + 1 points on which R(q) acts. Then

an =
(32n+1 + 3)2

6
.

In chapter 5 we calculate σk for finite abelian groups in their regular representations

and compare values for non-isomorphic groups of equal order. With our main result

being
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Corollary 1.0.10 (Corollary of Theorem 5.1.7). Let

H ∼= Zm1 × Zm2 × ...× Z(mn−1)(mn),

and let

G ∼= Zm1 × Zm2 × ...× Z(mn−1) × Z(mn),

where hcf(m1,m2, ...,mn) = mn.

Then σk(H) =

σk(G), for all k where (k,mi) = 1 for all i

≤ σk(G), for all k where (k,mi) 6= 1 for some i.

The secondary goal of this Thesis is to explore the relationship of G-orbit lengths

for k and (k+ 1)-subsets of Ω. The starting point for this aspect for our investigation

is the 1988 paper “On the relationship between the lengths of orbits on k-sets and

(k + 1)-sets” by Siemons and Wagner [27], where they discuss the relationship of the

length of the orbit of a k-subset of Ω with the length of orbit of any (k+1)-subset of Ω

containing it. We also note here that there is a paper discussing a bounding property

in this case by Mnukhin [19] titled “Some relations for the lengths of orbits on k-sets

and (k−1)-sets”. Our focus is on results for when G and its G-set are both finite, but

for the record, we remark there is a considerable literature concerning the infinite case;

for a small selection see Cameron [7]. This secondary goal is approached in Chapter

6 where we consider the case when G is a permutation group acting on n ≥ 8 points

where a 3-subset has a larger orbit than any 4-subset containing it. We are able to

show in Proposition 6.2.3 that if G is a primitive permutation group acting on a set Ω

of cardinality n ≥ 8 and if ∆ is a 3-subset of Ω such that |∆G| > |ΣG| for all 4-subsets

Σ containing ∆. Then ∆G is of maximal length of any orbit on 3-subsets. We then

go on to classify all such groups when there is only one orbit on 3-subsets, with the

following:

Theorem 1.0.11. Let G be a 3-homogeneous permutation group acting on a G-set,

Ω, of cardinality n ≥ 8. If the orbit on 3-subsets has length strictly greater than the

G-orbit of any 4-subset then G ∼= PSL(2, 7) or G ∼= PGL(2, 7).
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1.1 Notation

For the benefit of the reader we end this introduction by presenting a table of notation

which will be used going forward throughout this thesis. Where we reassign notation

for an alternate purpose, we will make it explicit at the time.

G A finite permutation group.
Ω A finite G-set.
n |Ω|.

Ωk The set of all k-subsets of Ω.
σk(G,Ω), σk(G), σk The number of G-orbits on Ωk.

G∆ The action of G restricted to G-set ∆ ⊂ Ωk for some k ∈ N.
PSL(2, q) Projective special linear group type A1.
Sz(q) Suzuki group type 2B2.

PSU(3, q) Projective special unitary group type 2A2.
R(q) Ree group of type 2G2.

S(a, c, b) Steiner system.
φ Euler’s φ function.
D(`) The set of divisors of ` ∈ N.
D∗(`) D(`) \ {1}

π = λ1λ2...λr A partition of n.
πg The cycle type of an element g ∈ G.
ηk The number of subsequences λi1 , λi2 , ..., λil

of λ1, ..., λr which form a partition of k.
O(m)(G) The number of elements in G with order m.

Table 1.1: Notation



Chapter 2

Calculating σk

This chapter contains detailed examples of calculating the values of σk for two partic-

ular groups in the family of PSL(2, q), the projective special linear groups over the

field Fq, where q is a power of a prime p. We lead with a brief discussion about these

groups and their actions on the projective line before moving on to our two specific

examples. We have chosen these two groups to tackle in detail as, apart from being

small enough to manage, they both have a particular property relating to lengths of

their orbits, which we highlight at the end of this chapter and discuss in greater detail

in Chapter 6.

2.1 Examples for σk for PSL(2, q)

2.1.1 The Projective Line over Fq

The projective line is the set of coordinate representatives on a line which can be used

to express all points in the two dimensional space.

We form these representatives by projecting all points along a line down to a single

point. This means we can deal with a single coordinate from the set rather than

considering all possible points in the 2-dimensional plane, effectively identifying scalar

multiples of our representative.

The projective line over Fq contains q + 1 points. The composition of these points

and their representatives for Fp for some prime p is as given in table 2.1. More generally

the points are (1, x) for x in the field and (0, 1).

16
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Code Span of
0 (1, 0)
1 (1, 1)
...

...
p− 1 (1, p− 1)
∞ (0, 1)

Table 2.1: Elements of Projective Line over Fp

We have a few well known facts regarding PSL(2, q) which can be found in Huppert

[13], and are collated in the following Lemma.

Lemma 2.1.1. For G ∼= PSL(2, q), q = pa, acting on the projective line Ω and letting

d = gcd(2, q − 1). we have

(i) |G| = q(q+1)(q−1)
d

.

(ii) G acts 2-transitively on Ω.

(iii) G contains cyclic subgroups H− = 〈h−〉 and H+ = 〈h+〉 where |H−| = q−1
d

and

|H+| = q+1
d

.

Let P ∈ SylpG, and set S = {P g, Hg
−, H

g
+ | g ∈ G}. Then every non-identity

element of G belongs to a unique subgroup in S.

(iv) h− has cycle type
(
q−1
d

)d
on Ω and h+ has cycle type

(
q+1
d

)d
on Ω. For 1 6= x ∈ P ,

x has cycle type pp
a−1

on Ω.

(v) The number of elements of order p is (q − 1)(q + 1).

(vi) [G : NG(H−)] = q(q+1)
2

and [G : NG(H+)] = q(q−1)
2

.

Proof. For parts (i)− (iv) see 8.1 Hilfssatz and for (iii), (iv) and (vi) consult 8.3, 8.4,

8.5 Satz of [13]. Part (v) is given in 8.2 Satz (b) and (c) of [13].

We will also make use of the fact the PSL(2, q) is 3-homogeneous if and only if

q ≡ 3 mod 4. This is another standard result and can be found in many texts for

example see [5], however we do not include a proof of it here as we derive a new proof

later in Corollary 4.1.3.
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2.2 PSL(2, 7)

We begin be defining explicitly all the images on the projective line in this case.

Code Representative Projective line points
0 〈(1, 0)〉 {(1, 0), (2, 0), (3, 0), (4, 0), (5, 0), (6, 0)}
1 〈(1, 1)〉 {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)}
2 〈(1, 2)〉 {(1, 2), (2, 4), (3, 6), (4, 1), (5, 3), (6, 5)}
3 〈(1, 3)〉 {(1, 3), (2, 6), (3, 2), (4, 5), (5, 1), (6, 4)}
4 〈(1, 4)〉 {(1, 4), (2, 1), (3, 5), (4, 2), (5, 6), (6, 3)}
5 〈(1, 5)〉 {(1, 5), (2, 3), (3, 1), (4, 6), (5, 4), (6, 2)}
6 〈(1, 6)〉 {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)}
∞ 〈(0, 1)〉 {(0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (0, 6)}

Table 2.2: Elements of Projective Line over F7

So we have the G-set

Ω = {〈(1, 0)〉 , 〈(1, 1)〉 , 〈(1, 2)〉 , 〈(1, 3)〉 , 〈(1, 4)〉 , 〈(1, 5)〉 , 〈(1, 6)〉 , 〈(0, 1)〉}

= {0, 1, 2, 3, 4, 5, 6,∞}.

By coding the elements we can easily determine the
(

8
3

)
= 56 unordered subsets which

make up Ω3.

We begin by constructing SL(2, 7) as a subgroup of the General Linear Group

GL(2, 7).

|GL(2, 7)| = (72 − 1)(72 − 7) = 1968,

Only taking the elements of GL(2, 7) with determinant 1, we have SL(2, 7).

|SL(2, 7)| = 336.

The elements of the centre (Z(SL(2, 7))) are the matrices ±I. The factor group

SL(2,7))
Z(SL(2,7))

is called PSL(2, 7) and this group acts upon the 8 points of Ω by multipli-

cation.

|PSL(2, 7)| = |SL(2, 7)|
|Z(SL(2, 7))|

=
336

2
= 168 = 23.3.7.

2.2.1 Number of Orbits when k = 3

As q ≡ 3 mod 4 we know that PSL(2, 7) is 3-homogeneous on 8 points and so σ1 =

σ2 = σ3 = 1.
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However we pursue a more practical approach to determine a more general solution,

but we also wish to deal with the two groups PSL(2, 7) and PSL(2, 11) in a more

detailed way to gain further understanding of them.

We start by letting G ∼= PSL(2, 7), we know that 3|168 and so by Cauchy’s The-

orem there exists a g ∈ G such that H = 〈g〉 and |H| = 3.

We know that G is 2 transitive on Ω and so for α, β ∈ Ω (α 6= β) the H orbit of

(α, β)H = {(α, β), (α′, β′), (α′′, β′′)},

if all these elements are all different from each other, then we have H fixing 2 of the

8 elements of Ω. That is |fixΩ(g)| ≥ 2, we know however that if |fixΩ(g)| > 2 then g

cannot have order 3 so |fixΩ(g)| = 2.

Choosing an element of order 2 we can see that all the involutions are in the

conjugates of subgroup H+ described in Lemma 2.1.1 meaning all such elements have

cycle type 24 and hence no element of order 2 can stabilize a 3 point set. We remark

also that no element of order 7 can stabilize a 3-subset.

We now know that StabG{α, β, γ} contains elements of order 3 but no element of

order 2 or 7 so |StabG{α, β, γ}| = 3. Then by the Orbit Stabilizer Theorem the length

of orbit is 168
3

= 56 =
(

8
3

)
, as required and PSL(2, 7) is 3-homogeneous.

2.2.2 Number of Orbits when k = 4

We know from the Livingstone-Wagner Theorem that we will have at least as many

orbits for 4 subsets as we had for 3, this is clear as for k = 3 we only obtained

one orbit, however if recall Ω4 denotes the set of all 4-subsets of Ω, we can see that

|Ω4| =
(

8
4

)
= 70 and as this is not a divisor of |G| we certainly cannot have a single

orbit.

If we let ∆1 = {α, β, γ, δ} with α, β, γ, δ ∈ Ω then we denote the orbit containing

∆1 by ∆G
1 . We wish to calculate |∆G

1 | and so we use the Orbit Stabilizer Theorem and

calculate |G∆1|.

Clearly ∆G
1 has length less than 70, so we can begin by writing a list of divisors of

|G| = 168 as potential orders of G∆1 noting that the order is necessarily greater than

2. This gives us the following possibilities

|G∆1| ∈ {56, 42, 28, 24, 21, 14, 12, 8, 7, 6, 4, 3}.
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Elements of order 7

An element of order 7 does not fix all 8 points of Ω and so cannot stabilize any 4-subset

of Ω. If G∆1 were a multiple of 7, then by Cayley’s Theorem it would contain such an

element, hence 7 - |G∆1|. So we have the following possibilities remaining,

|G∆1| ∈ {24, 12, 8, 6, 4, 3}.

Elements of order 3

Let g ∈ G have order 3. Then |fixΩ(g)| = 2 and so we know the cycle structure of g is

(α1, α2, α3)(α4, α5, α6)(α7)(α8) with αi ∈ Ω. Choosing g =

2 0

4 4

 we have that g can

be written as the permutation (1, 3,∞)(2, 5, 6)(0)(4).

Letting α = 2, β = 5, γ = 6, and δ = 0 in ∆1, we can see that g ∈ G∆1 and so we

have

|G∆1| ∈ {24, 12, 6, 3}.

Elements of order 2

As involutions in G transpose pairs of points in Ω we can write h =

2 3

3 5

 as the

permutation (1, 3)(0, 5)(4,∞)(2, 6) and we can see that h stabilizes ∆1 and so

|G∆1| ∈ {24, 12, 6}.

We now have some elements which we know are in the subgroup, Gα, and so we

can use these to generate further elements. Indeed 〈g, h〉 expressed as permutations

in Sym(Ω) subgroup is a subgroup with order 12, so

|G∆1| ∈ {24, 12}.

Sylow 2-subgroups

If |G∆1| = 24 then clearly Syl2G∆1 ⊂ Syl2G. However the Sylow 2-subgroups of

SL(2, 7) are generalised quarternion groups

〈
x, y|x8 = y4 = 1, y−1xy = x−1

〉
.
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However we have Sylow 2-subgroups of order 8 in PSL(2, 7) which are of the form〈
x, y|x4 = y2 = 1, y−1xy = x−1

〉
,

which is the group D8.

This group is transitive on Ω and as all Sylow 2-subgroups are conjugate we must

have that for all P ∈ Syl2G, P 6≤ G∆1 We must have it then that 8 - |G∆1| and so

|G∆1| = 12 and hence |∆G
1 | = 14.

A similar argument shows that for ∆2 = {2, 4, 5, 6} we have that |∆G
2 | = 14 also.

Calculating points in ∆G
1 and ∆G

2 shows these two orbits are disjoint.

If we take the point ∆3 = {0, 1, 2, 3} ∈ Ω4, it can be shown that none of the 56

elements of order 3 stabilize ∆3.

This means that |∆G
3 | ≤ 70 − 28 = 42, and also that 3 - |G∆3| so we have the

following choices,

|G∆3| ∈ {56, 28, 14, 8, 7, 4}.

We have seen that 7 and 8 cannot divide the order and so we have that

|G∆3| = 4.

This gives us that |∆G
3 | = 168

4
= 42.

Hence PSL(2, 7) has three orbits of length 14, 14 and 42 on Ω4.

2.3 PSL(2, 11)

Let G = PSL(2, 11) and as before we begin by outlining the representatives of the

corresponding projective line, here over F11.

We have that |PSL(2, 11)| = (112−1)(112−11)
2(11−1)

= 120×110
20

= 660 = 11 · 5 · 3 · 2 · 2

2.3.1 Number of orbits when k = 3

Note that |Ω3| =
(

12
3

)
= 220. Let ∆ be an element of Ω3.

Elements of order 11

An element of order 11 has cycle type 111 and so clearly cannot stabilize a point in

Ω3. So we must have, by Cauchy’s Theorem, that 11 - |G∆|.
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Code Rep Projective line points
0 〈(1, 0)〉 {(1, 0), (2, 0), (3, 0), (4, 0), (5, 0), (6, 0), (7, 0), (8, 0), (9, 0), (10, 0)}
1 〈(1, 1)〉 {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)(7, 7), (8, 8), (9, 9), (10, 10)}
2 〈(1, 2)〉 {(1, 2), (2, 4), (3, 6), (4, 8), (5, 10), (6, 1), (7, 3), (8, 5), (9, 7), (10, 9)}
3 〈(1, 3)〉 {(1, 3), (2, 6), (3, 9), (4, 1), (5, 4), (6, 7), (7, 10), (8, 2), (9, 5), (10, 8)}
4 〈(1, 4)〉 {(1, 4), (2, 8), (3, 1), (4, 5), (5, 9), (6, 2), (7, 6), (8, 10), (9, 3), (10, 7)}
5 〈(1, 5)〉 {(1, 5), (2, 10), (3, 4), (4, 9), (5, 3), (6, 8), (7, 2), (8, 7), (9, 1), (10, 6)}
6 〈(1, 6)〉 {(1, 6), (2, 1), (3, 7), (4, 2), (5, 8), (6, 3), (7, 9), (8, 4), (9, 10), (10, 5)}
7 〈(1, 7)〉 {(1, 7), (2, 3), (3, 10), (4, 6), (5, 2), (6, 9), (7, 5), (8, 1), (9, 8), (10, 4)}
8 〈(1, 8)〉 {(1, 8), (2, 5), (3, 2), (4, 10), (5, 7), (6, 4), (7, 1), (8, 9), (9, 6), (10, 3)}
9 〈(1, 9)〉 {(1, 9), (2, 7), (3, 5), (4, 3), (5, 1), (6, 10), (7, 8), (8, 6), (9, 4), (10, 2)}
10 〈(1, 10)〉 {(1, 10), (2, 9), (3, 8), (4, 7), (5, 6), (6, 5), (7, 4), (8, 3), (9, 2), (10, 1)}
∞ 〈(0, 1)〉 {(0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (0, 6), (0, 7), (0, 8), (0, 9), (0, 10)}

Table 2.3: Elements of Projective Line over F11

Elements of order 5

Let g ∈ G have order 5, then g contains two 5 cycles and fixes two points when acting

on Ω (this follows from Lemma 2.1.1) and clearly it cannot stabilize ∆ and hence

5 - |G∆|.

Elements of order 3

Clearly in the case of g having order 3 we must have g containing four 3-cycles.

Choosing g =

2 2

4 10

 we can see that as a permutation on Ω,

g = (0, 1, 2)(3, 7, 9)(4, 6, 10)(5,∞, 8).

Hence we can define ∆ = {0, 1, 2} and so g ∈ G∆ and so 3
∣∣|G∆|.

Elements of order 2

An element of order 2 has cycle type 26 on Ω and so cannot stabilize a 3-subset. Hence

2 - |G∆|.

We have then that |G∆| = 3 and so |∆G| = 220 and PSL(2, 11) is 3-homogeneous

as expected.

2.3.2 Number of Orbits when k = 4

Let ∆1 = {α, β, γ, δ} where α, β, γ, δ ∈ Ω.
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Here we allow PSL(2, 11) to act on Ω4, where |Ω4| =
(

12
4

)
= 11880

24
= 495.

Elements of order 11, 5 or 3

We have seen the cycle structure of these elements and clearly no such element can

stabilize ∆1 and hence none of 3, 5, and 11 can divide |G∆1|.

Elements of order 2

Clearly 2 must divide the order of the stabilizer, otherwise then we would have the

contradiction that |∆G
1 | > |Ω4|.

If 4 divides the order of the stabilizer then G∆1 contains a Sylow 2-subgroup, P with

order 4, however PSL(2, 11) does not contain an element of order 4 by Lemma 2.1.1

and so P must be a Klien 4 group.

Taking the matrix representations of elements g =

 0 1

10 0

 and h =

1 8

8 10

,

we can see that g and h are commuting involutions in PSL(2, 11). Therefore they

generate a Sylow 2-subgroup of G.

Writing each as a permutation, we see that g = (0,∞)(1, 10)(2, 5)(3, 7)(4, 8)(6, 9)

and h = (0, 8)(1, 2)(3, 9)(4,∞)(5, 10)(6, 7) and so g and h stabilize the set ∆1 =

{0, 4, 8,∞}. Hence 4
∣∣|G∆1| and so |G∆1| = 4, giving |∆G

1 | = 660
4

= 165.

The above argument tells us that the size of the stabilizer for any element of Ω4

can only be either 2 or 4. It follows that we have only two possibilities for the orbit

lengths, that is 165 or 330. Hence, this leaves only two possible partitions of Ω4, that

is Ω4 is the disjoint union of two orbits of length 165 and 330, or Ω4 is the disjoint

union of three orbits all of length 165.

Using the Orbit-Counting Theorem (1.0.4) we have either

2|G| = 1320 =
∑
g∈G

|fixΩ4(g)| or 3|G| = 1980 =
∑
g∈G

|fixΩ4(g)|.

Now, by the above we know that the only elements of G to fix points in Ω4 are the

identity and involutions. The identity fixes all 495 points and any involution will fix(
6
2

)
= 15 subsets.

Using Lemma 2.1.1(iii) and (v) we can determine there are 55 involutions stabiliz-

ing the maximum number of subsets and so we have
∑

g∈G |fixΩ4(g)| = (55×15)+495 =
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1320. Moreover we have that PSL(2, 11) has precisely two orbits on 4-subsets, one of

length 165 and one of length 330.

2.3.3 Number of orbits when k = 5

Let ∆1 = {α, β, γ, δ, ε} where α, β, γ, δ, ε ∈ Ω.

Here we allow G = PSL(2, 11) to act on Ω5, where |Ω5| =
(

12
5

)
= 95040

120
= 792 =

23 · 32 · 11.

Elements of prime order

We have seen the cycle structures of the elements of order, 11, 3 and 2 and we can

clearly see that these group elements cannot stabilize ∆1.

We must have then that |G∆1| = 5, for some choice of ∆1 as elements of order 5

exist and trivially must fix two points in Ω5.

|∆G
1 | =

660

5
= 132

for some ∆1 ∈ Ω5.

Now we can calculate the number of elements of order 5. Using Sylow’s Theorems

we can quickly determine the number of Sylow 5-subgroups is either 6, 11 or 66. Now

each P ∈ Syl5(G) contains 4 non-identity elements. We know at that each will fix 2

points in Ω5, that is
∑

g∈P# |fixΩ(g)| = 8 but we have 132 points with such a stabilizer.

It follows that if the number of Sylow 5 subgroups is 6 or 11, then we could only have∑
P∈Syl5(G)

∑
g∈P#

|fixΩ(g)|

equal to 48 or 88 respectively. It must be then that PSL(2, 11) has 264 elements of

order 5, each stabilizing two 5 subsets. Therefore the number of 5-subsets that can be

stabilized by these elements is 528. As there are 792 choices for ∆, there must exist an

element which is not stabilized by any non identity element and hence has a regular

orbit of length |G| = 660. This gives us two orbits with sizes 660 + 132 = 792 and so

there are no more orbits.

We collate the results of this chapter in the following table, with the addition of cal-

culations for σ6(PSL(2, 11)) and σk(PSL(2, 13)) which were determined by Magma.
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k PSL(2, 7) PSL(2, 11) PSL(2, 13)
1 8 12 14
2 28 66 91
3 56 220 182, 182
4 14, 14, 42 165, 330 91, 91, 273, 546
5 132, 660 182, 182, 546, 546, 546
6 110, 110, 110, 132, 132, 330 91,91,91,546,546,546,1092
7 78,78,182,182,364,364,546,546,546,546

Table 2.4: Length of Orbits

As q increases the amount of time taken to calculate the number of orbits increases

dramatically and so relying on computer programmes to give an answer is necessary.

However due to the size of the group this is also a short term solution as computer

memory is quickly used when performing direct calculation on constructions of these

groups. We therefore pursue a formula which will allow us to find the value of σk given

only the values of q and k. This gives the motivation for the next chapter.

We notice from the results in Table 2.4 that the three groups PSL(2, 7), PSL(2, 11)

and PSL(2, 13) all have a k-subset of their respective G sets which have larger orbits

that any (k + 1)−subset containing it, this happens at respectively k = 3, 5, 6. This

is a characteristic discussed by Siemons and Wagner [27] in their 1988 paper “On the

relationship between the lengths of orbits on k-sets and (k+1)-sets”, where they discuss

the Livingstone Wagner Theorem and explore the notion that a similar relationship is

likely when considering lengths of orbits as opposed to the number of orbits.

They hypothesised that the property mentioned on orbit lengths is rare and went

on to classify groups where this occurred for k = 2.



Chapter 3

Finite simple groups of Lie Rank

one

It is well known which groups fall into the category of being rank 1 simple groups

of Lie type, these are classified via their Dynkin diagrams into one of four possible

families. Wilson gives each of these types an excellent introduction in “The Finite

Simple Groups” [37].

We begin this chapter with a lemma which will serve us well throughout our cal-

culations and will allow us to determine the number of elements of a given order in a

cyclic group.

3.1 Preliminary Results

Lemma 3.1.1. Let m,n ∈ N, m 6= 1, be such that m | n and let H ∼= Zn. If

p1, p2, ..., pr are the distinct prime divisors of m, then the number of elements in H of

order m is

φ(m) =
m

p1p2...pr
(p1 − 1)(p2 − 1)...(pr − 1).

Proof. Since H contains a unique cyclic subgroup H0 of order m, all elements of order

m in H will be contained in H0. The number of elements of order m in H0 is the

number of ` ∈ {1, 2, ...,m} which are coprime to m and this, by definition, is Euler’s

function, φ(m). The stated formula for φ(m) is given as Theorem 7.5 in [26].

Before stating our main results we must introduce some notation. For b, c ∈ N, we

26
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use (b, c) to denote the greatest common divisor of b and c. Put q = pa where p is a

prime and a ∈ N. For ` ∈ N we let

D(`) = {n ∈ N| n divides `}

and write D∗(`) = D(`)\{1}. Also due to Lemma 3.1.1 Euler’s phi function φ (see [26])

will feature in our results. Our final piece of notation concerns partitions. Let n ∈ N,

and let π = λ1λ2...λr where λ1 ≤ λ2 ≤ ... ≤ λr and
∑r

i=1 λi = n. Though we

will frequently use the more compressed notation π = µa1
1 µ

a2
2 ... where µ1 < µ2 < ...

(ai being the multiplicity of µi). For k ∈ N, ηk(π) is defined to be the number of

subsequences λi1 , λi2 , ..., λil of λ1, ..., λr which form a partition of k.

As an example consider π = 1 1 4 4 4 (= 1243 in compressed form), a partition of

n = 14. Then η5(π) = 6, η6(π) = 3, η7(π) = 0 and η8(π) = 3. Our interest in ηk(π) is

because of the following two simple lemmas.

Lemma 3.1.2. Suppose g ∈ Sym(Ω) where |Ω| = n, and let k ∈ N. If g has cycle

structure π on Ω (viewed as a partition of n), then g fixes ηk(π) k-subsets of Ω.

Lemma 3.1.3. Let π = µa1
1 µ

a2
2 ...µ

as
s be a partition of n (in compressed form). Then

ηk(π) =
∏

(k1,k2,...,ks)

(
a1

k1

)(
a2

k2

)
...

(
as
ks

)
,

running over all s-tuples (k1, k2, ..., ks) with ki ≥ 0 and µ1k1 + µ2k2...+ µsks = k.

We will freely identify a cycle type of an element with a partition of n. When we

wish to emphasise the element used we may write πg for g ∈ G.

3.2 Projective Special Linear Groups PSL(2, q)

The first family of doubly-transitive rank one simple groups of Lie type we are con-

cerned with are projective special linear groups, PSL(2, q), which are of type A1. We

now recall some of our notation for ease of reference.

We note that G acts upon Ω = PG(1, q), the projective line, and for k ∈ N we let

σk(G,Ω) denote the number of orbits G has upon Ωk, the set of all k element subsets

of Ω.
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Suppose that q = pa where p is a prime and a ∈ N. Let G = PSL(2, q), the two

dimensional projective special linear group over Fq. Set d to be the greatest common

divisor of 2 and q − 1. So d = 1 if q is even and d = 2 if q is odd.

We recall Lemma 2.1.1 below as it is used heavily in the proof of our next Theorem.

Lemma 2.1.2 For G ∼= PSL(2, q) acting on the projective line, Ω, we have

(i) |G| = q(q+1)(q−1)
d

where d = (2, q − 1).

(ii) G acts 2 transitively on Ω.

(iii) G contains cyclic subgroups H− = 〈h−〉 and H+ = 〈h+〉 where |H−| = q−1
d

and

|H+| = q+1
d

.

Let P ∈ SylpG, and set S = {P g, Hg
−, H

g
+ | g ∈ G}. Then every non-identity

element of G belongs to a unique subgroup in S.

(iv) h− has cycle type
(
q−1
d

)d
on Ω and h+ has cycle type

(
q+1
d

)d
on Ω. For 1 6= x ∈

P , x has cycle type pp
a−1

on Ω.

(v) The number of elements of order p is (q − 1)(q + 1).

(vi) [G : NG(H−)] = q(q+1)
2

and [G : NG(H+)] = q(q−1)
2

.

Theorem 3.2.1. Suppose that G ∼= PSL(2, q) (q > 3) acts upon the projective line

Ω, and let k ∈ N with k ≥ 3. Set d = (2, q − 1). Then

σk(G,Ω) =
d

q(q + 1)(q − 1)
ηk(1

q+1) +
d

q
ηk(1

1p
q
p )

+
d

2(q + 1)

∑
m∈D∗( q+1

d
)

φ(m)ηk

(
m

q+1
m

)
+

d

2(q − 1)

∑
m∈D∗( q−1

d
)

φ(m)ηk

(
12m

q−1
m

)
.

Remark Since G acts 2-transitively on Ω, σ1(G,Ω) = σ2(G,Ω) = 1.

Proof. Let Ωk be the set of all k-subsets of Ω. Suppose k ∈ N with k ≥ 3, and let

1 6= g ∈ G (∼= PSL(2, q)) be an element of order m. Then by Lemma 2.1.1 (iii) g
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must be contained (uniquely) in a conjugate of one of P , H− and H+. Since we seek

to determine |fixΩk(g)| we may suppose that g is contained in one of P , H− and H+.

First we consider the case when g ∈ H+. Since g is some power of h+, by

Lemma 2.1.1 (iv), g has cycle type m
q+1
m . By Lemmas 3.1.1 and 2.1.1 (vi) H+ contains

φ(m) elements of order m and there are q(q−1)
2

conjugates of H+, hence these elements

contribute

q(q − 1)

2

∑
m∈D∗( q+1

d
)

φ(m)ηk

(
m

q+1
m

)
to the sum

∑
g∈G |fixΩk(g)|. Now consider the case when g ∈ H−. As g is a power of

h−, by Lemma 2.1.1 (iv), g has cycle type 12m
q−1
m . Employing Lemmas 3.1.1 and 2.1.1

(vi) we obtain

q(q + 1)

2

∑
m∈D∗( q−1

d
)

φ(m)ηk

(
12m

q−1
m

)
,

in the sum
∑

g∈G |fixΩk(g)|. Similar considerations for g ∈ P , using Lemma 2.1.1, yield

(q − 1)(q + 1)ηk(1
1p

q
p ).

Combining the above with Lemmas 1.0.4 and 2.1.1 (i) we obtain the expression for

σk(G,Ω).

For the benefit of the reader we present here Magma code for this formula,

PSLsig:=procedure(q,k,~sigma);

Z:=Integers();d:=GreatestCommonDivisor(q-1,2);

P:=PrimeDivisors(q);p:=P[1];sig:=0;

I:=(d/(q*(q+1)*(q-1)))*Binomial(Z!(q+1),k);

CC:=[]; Append(~CC,[<(d/q),1>,<p,Z!(q/p)>,<1,1>]);

for m in Divisors(Z!((q+1)/d)) do if m ne 1 then

Append(~CC,[<(d/(2*(q+1))),EulerPhi(m)>,<m,Z!((q+1)/m)>]);

end if;end for;

for m in Divisors(Z!((q-1)/d)) do if m ne 1 then

Append(~CC,[<(d/(2*(q-1))),EulerPhi(m)>,<m,Z!((q-1)/m)>,<1,2>]);

end if;end for;



CHAPTER 3. FINITE SIMPLE GROUPS OF LIE RANK ONE 30

a:=0;

for i:=1 to #CC do Cg:=CC[i];S:={Z!(Cg[i][1]): i in [2..#Cg]};

RPg:=RestrictedPartitions(k,S);

for l:=1 to #RPg do p:=RPg[l];np:=1;

for j:=2 to #Cg do

pj:=#{m:m in [1..#p] |p[m] eq Cg[j][1]};

np:=np*Binomial(Cg[j][2],pj); end for;

a:=a + np*(Cg[1][1]*Cg[1][2]);end for;end for;

sigma:=a+I;end procedure;

This is repeated in the Appendix (along with the other formulae) for ease of refer-

ence.

We now move on from PSL(2, q) and look at applying our methods to the second

family of groups on our list.

3.3 Suzuki Groups Sz(q)

The second family of doubly-transitive rank one simple groups of Lie type we are

concerned with are the Suzuki groups, Sz(q), which are the first of our three families

of “twisted” type and are classified as 2B2.

Suppose q = 22n+1, n ∈ N. Let G = Sz(q), one of the family of Suzuki groups

which acts upon Ω, an ellipse in 3-dimensional projective space over GF (q) consisting

of q2 + 1 points. Let r be such that r2 = 2q, then the following Lemma comes from

Suzuki [33].

Lemma 3.3.1. (i) |G| = q2(q − 1)(q2 + 1).

(ii) Only the identity fixes three points.

(iii) G acts 2 transitively on Ω.

(iv) G contains cyclic subgroups H0 = 〈h0〉, H− = 〈h−〉 and H+ = 〈h+〉 where

|H0| = q − 1, |H−| = q − r + 1 and |H+| = q + r + 1.

Let P ∈ Syl2G, and set S = {P g, Hg
0 , H

g
−, H

g
+ | g ∈ G}. Then every non-identity

element of G belongs to a unique subgroup in S.



CHAPTER 3. FINITE SIMPLE GROUPS OF LIE RANK ONE 31

(v) |NG(H0)| = 2(q − 1), |NG(H−)| = 4(q − r + 1) and |NG(H+)| = 4(q + r + 1).

(vi) |NG(P )| = q2(q−1) and P contains q−1 elements of order 2 and q2−q elements

of order 4.

Theorem 3.3.2. Suppose G ∼= Sz(q) (q = 22n+1 > 2), n ∈ N, acts upon the Suzuki

oval Ω. Let r ∈ N be such that r2 = 2q, and let k ∈ N with k ≥ 3. Then

σ(G,Ω) =
1

q2(q − 1)(q2 + 1)
ηk(1

q2+1) +
1

q2
ηk(1

12
q2

2 )

+
1

q
ηk(1

14
q2

4 ) +
1

2(q − 1)

∑
m∈D∗(q−1)

φ(m)ηk(1
2m

q2−1
m )

+
1

4(q + r + 1)

∑
m∈D∗(q+r+1)

φ(m)ηk(m
q2+1
m )

+
1

4(q − r + 1)

∑
m∈D∗(q−r+1)

φ(m)ηk(m
q2+1
m ).

Proof. We establish the formula by considering the cycle types of all elements g ∈ G

and then calculating |fixΩk(g)| = η(πg) we substitute the values into Theorem 1.0.4 to

resolve our count.

Let Ωk denote the set of all k-element subsets of Ω. Suppose 3 ≤ k ≤ Ω
2
. Let

g ∈ G∗ have order m, then by Lemma 3.3.1 we have that g will belong to a unique

conjugate of one of P , H0, H− or H+. Since we wish to determine ηk(πg), where πg is

the cycle type of g, we may assume that g is contained in one of the given subgroups.

If g ∈ H+, then as g is some power of h+, g has cycle type m
q2+1
m , where m ∈

D(22n+1+r+1). This can be seen as only the identity fixes three points and |H+|
∣∣q2+1

(24n+2 + 1 = (22n+1 + 2n+1 + 1)(22n+1 − 2n+1 + 1)). We now have that such elements

together with their conjugates will contribute

1

4(q + r + 1)

∑
m∈D∗(q+r+1)

φ(m)ηk(m
q2+1
m )

to the total by Lemma 3.3.1. Similarly if g ∈ H− we have an identical argument that

g will have cycle type m
q2+1
m , where m ∈ D(22n+1 − r + 1), and so these elements and

their conjugates will contribute

1

4(q − r + 1)

∑
m∈D∗(q−r+1)

φ(m)ηk(m
q2+1
m )

to our count.
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Next we consider g ∈ H0, then g is a power of h0 which has odd order q − 1.

However as q − 1
∣∣q2 − 1 we necessarily must have two fixed point of Ω for each power

of h0. This implies the cycle type of g ∈ H0, where g has order m, is m
q2−1
m 12. Again

we use Lemma 3.3.1, to show that such elements together with their conjugates will

contribute
1

2(q − 1)

∑
m∈D∗(q−1)

φ(m)ηk(1
2m

q2−1
m )

to our count.

This leaves us with the possibility g ∈ P , and so will have order either 4 or 2, we

note that neither 4 nor 2 will divide 22n+1 +1 and so we must have elements with fixed

points. Clearly elements of order 4 will square to involutions and so this dictates they

can only have one fixed point in Ω and the remaining cycles must all be of length 4

giving us cycle type 4
q2

4 11, similarly if g has order 2, then it must have at least one

fixed point in Ω. However g cannot have 2 fixed points as 2 - q2 − 1, hence these

elements must have cycle type 2
q2

2 11.

Combining these with the number of such elements and the information in Lemma

3.3.1 these two types of elements will give a contribution of 1
q2ηk(1

12
q2

2 ) and 1
q
ηk(1

14
q2

4 )

to the count.

Finally we include the number of k-subsets fixed by the identity and divide this by

|G| to complete the proof.

Again we include the Magma code for implementing Theorem 3.3.2.

Suzsig:=procedure(q,k,~sigma);

Z:=Integers();R:=2*q;r:=SquareRoot(R);

sig:=0;

CC:=[]; I:=(1/(q^2*(q^2+1)*(q-1)))*Binomial(Z!(q^2+1),k);

Append(~CC,[<(1/q^2),1>,<2,Z!(q^2/2)>,<1,1>]);

Append(~CC,[<(1/q),1>,<4,Z!(q^2/4)>,<1,1>]);

for m in Divisors(Z!((q-1))) do if m ne 1 then

Append(~CC,[<(1/(2*(q-1))),EulerPhi(m)>,<m,Z!((q^2-1)/m)>,<1,2>]);

end if;end for;t1:=Z!(q+r+1);t2:=Z!(q-r+1);

for m in Divisors(Z!((q+r+1))) do if m ne 1 then

Append(~CC,[<1/(4*t1),EulerPhi(m)>,<m,Z!((q^2+1)/m)>]);
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end if;end for;

for m in Divisors(Z!((q-r+1))) do if m ne 1 then

Append(~CC,[<1/(4*t2),EulerPhi(m)>,<m,Z!((q^2+1)/m)>]);

end if;end for;

a:=0;

for i:=1 to #CC do Cg:=CC[i];S:={Z!(Cg[i][1]): i in [2..#Cg]};

RPg:=RestrictedPartitions(k,S);

for l:=1 to #RPg do p:=RPg[l];np:=1;

for j:=2 to #Cg do

pj:=#{m:m in [1..#p] |p[m] eq Cg[j][1]};

np:=np*Binomial(Cg[j][2],pj); end for;

a:=a + np*(Cg[1][1]*Cg[1][2]);end for;end for;

sigma:=a+I;end procedure;

3.4 Projective Special Unitary Groups PSU(3, q)

The third family of doubly-transitive rank one simple groups of Lie type we are con-

cerned with are the projective special unitary groups, PSU(3, q), which are the second

of our three families of “twisted” type and are classified as 2A2.

We commence this section with a short expository account of this family of groups

which can be found in Dixon and Mortimer [10] (or Wilson [37]). We let q = pa for

some prime p and a ∈ N. We also let K = Fq2 and V be the 3-dimensional vector

space over K. Letting τ be the automorphism of K such that ατ = αq for α ∈ K, we

have that τ 2 = 1.

We may use τ and a scalar product (·, ·) to define a Hermitian form φ : V ×V 7→ K,

α, β ∈ K and u, v ∈ V such that

φ(αu, βv) = αβq(u, v)

and

(u, v) = (v, u)q.

We may then define the unitary group GU(3, q) to be a subgroup of GL(3, q2) where for

g ∈ GL(3, q2) we have g ∈ GU(3, q) if and only if φ(u, v) = φ(ug, vg) for all u, v ∈ V .



CHAPTER 3. FINITE SIMPLE GROUPS OF LIE RANK ONE 34

Taking the induced action on 1-dimensional subspaces of V we have PGU(3, q),

with the intersection PGU(3, q) ∩ PSL(3, q2) being PSU(3, q). If we take our Her-

mitian form φ and consider the isotropic points, that is the vectors u ∈ V such that

φ(u, u) = 0, then by the definition of PSU(3, q) we have that these form an invariant

set, Ω, under the action of PSU(3, q).

There are q3 + 1 isotropic vectors in Ω and PSU(3, q) acts 2-transitively on them.

We also mention that these points may be used to form an S(2, q+1, q3 +1) Steiner

system on which PSU(3, q) acts as an automorphism group.

We present some facts about the group PSU(3, q) which have been compiled mainly

from Suzuki [34] and Huppert [13].

Lemma 3.4.1. Let q = pa > 2 where p is a prime and a ∈ N, and suppose G ∼=

PSU(3, q). Let P ∈ SylpG and set d = (q + 1, 3).

(i) |G| = q3 (q2−1)
d

(q3 + 1).

(ii) G acts 2-transitively on Ω, the set of isotropic 1-spaces of a unitary 3-space,

|Ω| = q3 + 1 and Gα = NG(P ) for some α ∈ Ω. Further for β ∈ Ω \ {α},

NG(P ) = PGα,β with Gα,β cyclic of order q2−1
d

and |CGα,β(Z(P ))| = (q+1)
d

.

(iii) P has class 2 with |Z(P )| = q. If p is odd, then P has exponent p and if p = 2

then P has exponent 4 with the set of involutions of P being Z(P )#.

Let ˆdenote the image of subgroups of SU(3, q) in PSU(3, q) (∼= G).

(iv) G has a maximal subgroup M isomorphic to ˆGU(2, q).

(v) M has a subgroup E0 of shape ˆ(q + 1)2 for which

NG(E0) ∼ ˆ(q + 1)2Sym(3) and any subgroup of G of shape ˆ(q + 1)2Sym(3) is

conjugate to NG(E0)

(vi) G has a cyclic subgroup C of order q2−q+1
d

for which NG(C) ∼ C.3 is a Frobenius

group.

Proof. For parts (i) to (iii) see Suzuki [33] and Huppert [13]. Part (iv) follows from

Mitchell [18] (or Bray, Holt, Roney-Dougal [2]). Also from either [2] or [18] G has one

conjugacy class of maximal subgroups of shape ˆ(q + 1)2Sym(3) (except when q = 5)
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and (vi) holds (except when q = 3, 5). Using the Atlas [9] for these exceptional cases

we obtain (v) and (vi).

The character table for PSU(3, q) was given by Simpson and Frame [28]. We are

able to collate the information relating to the conjugacy class structure of PSU(3, q)

into Table 3.1, however we maintain the notation they present there. In the table we

have ω3 = 1, ρq+1 = 1, σq−1 = ρ and τ q
2−q+1 = 1.

Label Canonical
Representation

C1

1 0 0
0 1 0
0 0 1


C2

1 0 0
1 1 0
0 0 1


C(l)

3

1 0 0
1 1 0
0 1 1


C(k)

4

ρ(k) 0 0
0 ρ(k) 0
0 0 ρ(−2k)


C(l)

5

ρ(k) 0 0
1 ρ(k) 0
0 0 ρ(−2k)


C ′6

1 0 0
0 ω 0
0 0 ω2


C(k,l,m)

6

ρ(k) 0 0
0 ρ(l) 0
0 0 ρ(m)


C(k)

7

ρ(k) 0 0
0 σ(−δk) 0
0 0 σ(−qk)


C(k)

8

τ (k) 0 0
0 τ δkg 0

0 0 τ kg
2


Table 3.1: Conjugacy class canonical representatives for PSU(3, q)
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Theorem 3.4.2. Suppose G ∼= U3(q) (q > 2) acts upon Ω, the set of isotropic points

of a 3-dimensional unitary space. Let k ∈ N with k ≥ 3, and set d = (3, q + 1) and

` = q+1
d

. Then

σk(G,Ω) =
d(ηk(π1) + µk)

q3(q3 + 1)(q2 − 1)
+

d

q(q + 1)(q2 − 1)

∑
m∈D∗(`)

φ(m)ηk(π
(m)
4 )

+
d

q(q + 1)(p− 1)

 ∑
m=pj

j∈D∗(`)

φ(m)ηk(π
(m)
5 )

+
dεk(E

∗
0 ,Ω)

6(q + 1)2

+
d

2(q2 − 1)

∑
m∈D( q

2−1
d

)

m6∈D(`)

φ(m)ηk(π
(m)
7 )

+
d(q + 1)

3(q3 + 1)

∑
m∈D∗( q2−q+1

d
)

φ(m)ηk(π
(m)
8 ).

Before we can introduce µk, εk and πi we require a system of notation associated

with pairs of natural numbers dividing ` (= q+1
d

). So let

(`1, `2) ∈ D(`)×D(`),

and let p1, .., pr be prime numbers such that `1 = pα1
1 p

α2
2 ...p

αr
r and `2 = pβ1

1 p
β2

2 ...p
βr
r

where for i = 1, ..., r at least one of the αi and βi is non-zero. If αi 6= βi, then define

γi = max{αi, βi}. Without loss of generality we shall assume that αi = βi for 1 ≤ i ≤ s

and αi 6= βi for s < i ≤ r. Set

`0 = pα1
1 p

α2
2 ...p

αs
s (= pβ1

1 p
β2

2 ...p
βs
s )

m1 = p
αs+1

s+1 p
αs+2

s+2 ...p
αr
r

m2 = p
βs+1

s+1 p
βs+2

s+2 ...p
βr
r .

Also set `∗ = p
γs+1

s+1 p
γs+2

s+2 ...p
γr
r and note that `1 = `0m1 and `2 = `0m2. We remark

that we do not exclude the possibilities `1 = `0 = `2 or `1 = m1 and `2 = m2. Put

`12 = lcm{`1, `2}. If `i = 1 then `0 = 1 = mi and if `1 = `2 = 1, then we set `∗ = 1.

Next, we give our partitions of (q3 + 1) which appear in Theorem 3.4.2.
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Definition 2. (i) π1 = 1q
3+1.

(ii) π2 = 11p
q3

p .

(iii) π3 = 114
q3

4 (only defined for p = 2).

(iv) π
(m)
4 = 1q+1m

q3−q
m where m ∈ D∗(`).

(v) π
(m)
5 = 11p

q
pm

q3−q
m where m = px and x ∈ D∗(`).

(vi) π
(`1,`2,n)
6 = `

q+1
`1

1 `
q+1
`2

2 n
q+1
n `

q3−3q−2
`12

12 where (`1, `2) ∈ D∗(`)×D∗(`) and

n = n∗`∗, n∗ ∈ D(`0).

(vii) π
(m)
7 = 12j

q−1
j m

q3−q
m where m ∈ D( q

2−1
d

), m 6∈ D(`), j = m
(m,`)

.

(viii) π8 = m
q3+1
m where m ∈ D∗(q2 − q + 1).

(ix) When 3i|q + 1 with i ∈ N,

3iπ
(`1,`2,n)
6 = (3i`1)

q+1

3i`1 (3i`2)
q+1

3i`2 (3in)
q+1

3in (3i`12)
q3−3q−2

3i`12

where (`1, `2) ∈ D(`)×D(`) and n = n∗`∗, n∗ ∈ D(`0).

The two terms µk and εk(E
∗
0 ,Ω) appearing in Theorem 3.4.2 σk(G,Ω) are now

defined.

Definition 3.

µk = (q3 + 1)(q3 − 1)ηk(π2)

if p 6= 2 and

µk = (q3 + 1)((q − 1)ηk(π2) + (q3 − q)ηk(π3))

if p = 2.

Definition 4. Let k ∈ N and continue to set ` = q+1
d
, (d = (q + 1, 3)).For (`1, `2) ∈

D(`)×D(`) we use the notation `0,m1,m2, `∗ as defined earlier, let 3a be the largest

power of 3 dividing q + 1.

(i) Let (`1, `2) ∈ D(`) × D(`), and n = `∗n∗ with n∗ ∈ D(`0) and n∗ = pδ11 p
δ2
2 ...p

δs
s .

If `0 = pα1
1 p

α2
2 ...p

αs
s , then we define

f(`1, `2, n) = φ(m1)φ(m2)φ(`0)
∏
αj=δj
1≤j≤s

p
αj−1
j (pj − 2)φ

 ∏
αj 6=δj
1≤j≤s

p
δj
j

 .
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(ii)

λ∗k(`, `) =
∑

(`1,`2)∈D∗(`)×D∗(`)

∑
16=n=`∗n∗
n∗∈D(`0)

f(`1, `2, n)ηk(π
(`1,`2,n)
6 ).

(iii) For `′ ∈ D∗(q + 1) and i ∈ N such that 3i|`′ set

λk(`
′, `′; i) =

∑
(`1,`2)∈D(`′)×D(`′)

∑
n=`∗n∗
n∗∈D(`0)

f(`1, `2, n)ηk(3
iπ

(`1,`2,n)
6 ).

(iv) εk(E
∗
0 ,Ω) = λ∗k(`, `) +

(
d−1

2

)
9a−1

(
λk(

q+1
3a
, q+1

3a
, a)
)
.

Definition 5. Let E0 be an abelian subgroup of G isomorphic to the direct product of

cyclic groups of order (q+1)
d

and (q+1) with NG(E0) ∼= (q+1)
d

(q+1).Sym(3). Subgroups

such as E0 exist by Lemma 3.4.1(v) Put E∗0 = (C6 ∪ C ′6) ∩ E0, and define

εk(E
∗
0 ,Ω) =

∑
g∈E∗0

|fixΩk(g)|.

Furthermore, when discussing a cyclic group H of order m ∈ N we will sometimes

use the shorthand notation of H ∼= m.

Remark Here εk(E
∗
0 ,Ω) is the contribution of E∗0 to the sum

∑
g∈G |fixΩk(g)|. This

will coincide with the counting formula given in the previous definition.

In order to the count fixed subsets, we need to ascertain cycle types of elements

in each of the 8 conjugacy class types described in [28] and shown in Table 3.1, we do

this in the following section.

3.4.1 Determining Fixed Subsets in PSU(3, q)

We begin by expanding on the information we have about the conjugacy class types

of PSU(3, q).

Lemma 3.4.3. The number of fixed points, number of classes of a given type and

the orders of the centralizers of conjugacy classes for each class of type C1, ..., C8 of

G ∼= PSU(3, q), are given in Table 3.2.
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Class Type Number of Classes Centralizer Order |fixΩ(g)|,
of each Type gG ∈ Ci

C1 1 |G| q3 + 1

C2 1 q3(q+1)
d

1
C3 d q2 1

C4 `− 1 q(q+1)(q2−1)
d

q + 1

C5 `− 1 q(q+1)
d

1

C6
q2−q+1−d

6d
(q+1)2

d
0

C ′6 0 if d = 1, 1 if d = 3 (q + 1)2 0

C7
q2−q−2

2d
q2−1
d

2

C8
q2−q+1−d

3d
q2−q+1

d
0

Table 3.2: Number of conjugacy classes of PSU(3, q)

Proof. From Table 2 in [28] we can extract details of the conjugacy classes of G =

PSU(3, q) as well as some supplementary information which we display in Table 3.2.

Note that d = (3, q + 1), ` = q+1
d

and Ω is as in Lemma 3.4.1 (ii).

We have used the same notation for the classes as in [28] except we have omitted

the superscripts used there as they are of no importance here. Because PSU(3, q) acts

2-transitively on Ω, by page 69 of [14] the permutation character must be χ1 +χq3 (as

in Table 2 of [28]) which then yields the final column of Table 3.2.

Lemma 3.4.4. The cycle type for elements in the classes of type Ci for i 6= 6 are given

in Table 3.3

Class Type Order of g Cycle type of g
C1 1 π1

C2 p π2

C3 4, (p = 2) π3

p, (p 6= 2) π2

C4 m, (m ∈ D∗(`)) π
(m)
4

C5 px, (x ∈ D∗(`)) π
(m)
5

C7 m = js, (j ∈ D ∗ (q − 1), π
(m)
7

s ∈ D(`))
C8 m, (m ∈ D∗(q2 − q + 1)) π8

Table 3.3: Cycle Types

Proof. Let X = gG be a conjugacy class of type Ci, i ∈ {1, ..., 8} \ {6}, and let
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P ∈ Sylp(G). If i = 1, then clearly g = 1. From the centralizer sizes in Table 3.2,

for i = 2 we must have X is the conjugacy class containing Z(P )#, this can be seen

from Lemma 3.4.1(ii), while classes of type C3 are the conjugacy classes of elements in

P \Z(P ). If p is odd, we note that P has class 2 and so the order of the centralizer of

x ∈ P \ Z(P ) is equal to the order of P/Z(P ) which is q2. Then by Lemma 3.4.1(iii)

the elements in classes of type C3 all have order p whence, as elements in classes of

types C2 and C3 fix just one element of Ω, their cycle type is π2. If p = 2, then for

i = 2, we also have cycle type π2 and for i = 3 as the non-central elements of P must

have order 4, due to the exponent, their cycle type must be π3.

From Lemma 3.4.1(iv) G possesses a maximal subgroup M ∼= ˆGU(2, q). Fur-

thermore Z(M) is cyclic of order ` = q+1
d

. It is straightforward to check that no two

elements in Z(M)# are G-conjugate, indeed by maximality of M we have NG(Z(M)) =

M . We note that |GU(2, q)| = q(q + 1)(q2 − 1), so we see, using the centralizer sizes

in Table 3.2, Z(M)# supplies representatives for all the conjugacy classes of type C4.

Choose h to be an element of order p in M (in fact h is G-conjugate to an element in

Z(P )). By the structure of M , for any h′ ∈ Z(M)#, |CG(hh′)| = q(q+1)
d

, (h ∈ Z(P )

and |Z(M)| = q+1
d

). Also for h′, h′′ ∈ Z(M)# with h′ 6= h′′ we see that hh′ and hh′′

are not G-conjugate. Otherwise,

(hh′)g = hh′′

hgh′g = hh′′

then taking the pth power of hgh′g and hh′′ (note that h′ and h′′ have orders not

divisible by p and hg commutes with h′g) we have

(hp)′g = (hp)′′

but h′′ and h′ are both in Z(M) when raised to their pth powers, so as they cannot

be G-conjugate, we must have that these powers are equal, but p - |Z(M)| and so

h′ = h′′, which is a contradiction. Therefore {hh′ | h′ ∈ Z(M)#} gives representatives

for all conjugacy classes of type C5. Now |fixΩ(g′)| = q + 1 for all g′ ∈ Z(M)#. So

for h′ ∈ Z(M)# of order m, h′ will have cycle type π
(m)
4 on Ω. Similarly for hh′,

h′ ∈ Z(M)# with h′ of order m, as |fixΩ(h)| = 1, we infer that hh′ has cycle type π
(m)
5 .

So we have dealt with classes of type C4 and C5.
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Next we look at classes of type C7. Since |fixΩ(g)| = 2, we may suppose g ∈ Gα,β

(∼= q2−1
d

), where α, β ∈ Ω, α 6= β. We may also suppose Z(M)(∼= q+1
d

) ≤ Gα,β where

M is a maximal subgroup of G isomorphic to ˆGU2(q). Since |fixΩ(g′)| = q + 1 for all

g′ ∈ Z(M)#, g ∈ Gα,β \ Z(M). Let g have order m and let j be the smallest natural

number such that gj ∈ Z(M). Then m = (m, `)j where j ∈ D∗(q − 1) (note that if

j = 1, then as Gα,β
∼= (q+1)

d
contains a unique subgroup Z(M) of order q+1

d
= `, would

would have that g ∈ Z(M) which we have already counted). So j = m
(m,`)

and hence g

has cycle type π
(m)
7 .

Finally we look at those of type C8. From Lemma 3.4.1(vi) G has a cyclic subgroup

C ∼= (q2−q+1)
d

with NG(C) ∼ C.3 being a Frobenius group. Now C# has (|C| − 1)/3

NG(C)-conjugacy classes and it can be seen that no two of these are G-conjugate.

Hence we have that the NG(C)-conjugacy class representatives of C# give us repre-

sentatives for all of the classes of type C8. So, as |fixΩ(h)| = 0 for all h ∈ C#, the

elements in C# have cycle type π8 on Ω, which completes the proof of Lemma 3.4.4.

We consider the cycle structures for C6 ∪ C ′6 separately in Lemma 3.4.7, we do this

due to the complexity and variety of these cycle types (see the example in Table 3.4).

Cycle Type of Number of Cycle Type of Number of
Conjugacy Class Classes Conjugacy Class Classes
Representative Representative

236489460 1 6121229820 2
236844730 2 6122414910 4
2361229820 2 612892414907 8
2362414910 4 891262414907 16

236324659628 2 939768 3
324659640 1 981819880 9
3241229820 2 98369940 18
3242414910 4 98724970 36

3244181229814 4 1262414910 8
324892414907 8 184369940 18

418844730 4 184724970 36
4182414910 8 362724970 72

4186121229814 4 3119304 1

Table 3.4: Cycle types for C6 ∪ C ′6 class types in U3(71)

As a result, these classes require more groundwork than those seen previously.
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Lemma 3.4.5. Suppose A ∼= Ze×Ze with A containing three subgroups Ai ∼= Ze with

i = 1, 2, 3, such that Ai ∩ Aj = 1 for i 6= j. Then there exists a1 ∈ A1, a2 ∈ A2 such

that A1 = 〈a1〉, A2 = 〈a2〉 and A3 = 〈a1a2〉 .

Proof. Since A1 ∩ A2 = 1 and A1
∼= Ze, A = A1A2. Let A3 = 〈c〉 . Then c = a1a2

where ai ∈ Ai, i = 1, 2. Suppose ai has order ei and, without loss, e1 ≤ e2. Then

ce1 = ae11 a
e1
2 = ae12 ∈ A2 ∩ A3 = 1. So e2 ≤ e1 and hence e1 = e2. Since c = a1a2 has

order e, we must have that e1 = e2 = e, so proving the lemma.

Hypothesis 3.4.6. Suppose that A0 is an abelian group containing a subgroup A with

[A0 : A] = 1 or 3. Also suppose that A has order e2 and contains three subgroups

A1, A2, A3 with Ai ∼= Ze (i = 1, 2, 3).

Further suppose that Ω is an A0-set such that

(i) for 1 6= g ∈ A0, fixΩ(g) = ∅ if g 6∈ A1 ∪A2 ∪A3 and fixΩ(g) = fixΩ(Ai) if g ∈ Ai;

(ii) fixΩ(Ai) ∩ fixΩ(Aj) = ∅ for 1 ≤ i 6= j ≤ 3; and

(iii) for i = 1, 2, 3, |fixΩ(Ai)| = q + 1.

Set Λi = fixΩ(Ai) for i = 1, 2, 3 and Λ = Ω \ (fixΩ(A1) ∪ fixΩ(A2) ∪ fixΩ(A3)) and

so, by (ii), Ω is the disjoint union

Λ1 ∪ Λ2 ∪ Λ3 ∪ Λ.

Moreover, by (i), A0 acts regularly on Λ and for i = 1, 2, 3, A0/Ai acts regularly on

Λi.

We shall encounter Hypothesis 3.4.6 both in a recursive setting and in the group

A0 = Zq+1×Z` (where ` = q+1
d
, d = (3, q+1)). For this A0 we have e = ` and A would

be the subgroup of A0 generated by the elements of A0 of order `, then [A0 : A] = d.

Lemma 3.4.7. Assume Hypothesis 3.4.6 holds and use the notation A0, A and Ai in

the hypothesis. Let (`1, `2) ∈ D(e)×D(e) with e ∈ D(`). The cycle structure on Ω of

the elements g = g1g2 ∈ A where gi ∈ Ai (i = 1, 2) with gi of order `i is

(`1)
q+1
`1 (`2)

q+1
`2 (n)

q+1
n (`12)

|Λ|
`12 ,
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where n = `∗n∗ with n∗ ∈ D(`0) and `12 = lcm(`1, `2). This cycle structure, as g1 and

g2 range over the elements of order (respectively) `1 and `2 occurs

φ(m1)φ(m2)φ(`0)
∏
αj=δj
1≤j≤s

p
αj−1
j (pj − 2)φ

 ∏
αj 6=δj
1≤j≤s

p
δj
j


times, where n∗ = pδ11 ...p

δs
s .

Proof. By Hypothesis 3.4.6 (i) and (ii) Ai ∩Aj = 1 for i 6= j. Hence, by Lemma 3.4.5

we may select a1 ∈ A1, a2 ∈ A2 so as to have A1 = 〈a1〉, A2 = 〈a2〉 and A3 = 〈a1a2〉 .

Additionally we may identify A with A1A2. Let g = g1g2 where gi ∈ Ai and gi has

order `i, i = 1, 2. The smallest k ∈ N such that gk ∈ A2 is clearly `1 and, likewise, the

smallest k ∈ N such that gk ∈ A1 is clearly `2. Hence, as A/A2 acts regularly on Λ2, g

in its action on Λ2 must be the product of disjoint cycles of length `1. Similarly g acts

upon Λ1 as a product of disjoint cycles each of length `2. Concerning the action of g

on Λ, as A0 acts regularly on Λ and `12 = lcm{`1, `2} is the order of g, Λ is a disjoint

union of |Λ|
`12

length cycles of g.

Since A3 = 〈a1a2〉 to find the lengths of g’s cycles on Λ3, we must determine the

smallest k ∈ N such that gk ∈ 〈a1a2〉. For i = 1, 2 let ki ∈ N with ki ≤ e be such that

gi = akii . So g = ak1
1 a

k2
2 and, we recall, `i = e/(e, ki) for i = 1, 2. Thus we seek the

smallest k ∈ N for which

gk = (ak1
1 a

k2
2 )k = ak1k

1 ak2k
2 = (a1a2)j

for some j, 0 ≤ j < e. This is the smallest k ∈ N such that k1k ≡ k2k mod e which is

k = e
(k1−k2,e)

.

Let C be a cyclic group isomorphic to Ze with generator c. Now for i = 1, 2

the order of cki is e
(e,ki)

= `i and the order of ck1(ck2)−1 is k. Thus to enumerate

the possibilities for k (recall (`1, `2) is a fixed ordered pair) we look at the order of

ck1(ck2)−1 as we run through the ordered pairs (ck1 , ck2) of elements of C of order,

respectively, `1 and `2. In doing this there no loss in supposing C = 〈c〉 has order

lcm{`1, `2}.

For i = 1, ..., r, let Pi ∈ Sylpi(C). Since the order of elements in C is the product

of their orders in the projections into Pi for i = 1, ..., r, we first consider the special

case when C = Pi 6= 1, for some i ∈ {1, ..., r}. So `1 = pαii and `2 = pβii .
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(3.4.7.1) If αi 6= βi, then for all choices of (ck1 , ck2), of which there are φ(pαii )φ(pβii ),

the order of ck1(ck2)−1 is pγii .

Recalling that by definition γi = max{αi, βi} we see that the order of ck1(ck2)−1 is

pγii as asserted.

Now we turn to the case when αi = βi. Here we have φ(pαii )2 possible choices for

(ck1 , ck2). Let C1 be the unique subgroup of C of order pαi−1
i (and note ck1 and ck2

are in C \ C1). Should ck1 and ck2 be in different C1 cosets of C, then ck1(ck2)−1 is

not in C1 whence ck1(ck2)−1 has order pαii . This will happen φ(pαii )pαi−1
i (pi− 2) times.

The number of ordered pairs (ck1 , ck2) for which ck1 and ck2 are in the same C1 coset

of C is φ(pαii )pαi−1
i . In this situation, for a fixed ck1 , ck1(ck2)−1 runs through all the

elements of C1 thus yielding φ(pαi−1
i ) of order pαi−1

i , φ(pαi−2
i ) of order pαi−2

i , and so

on. To summarize we have the following.

(3.4.7.2) Suppose αi = βi. Then for φ(pαii )pαi−1
i (pi − 2) of the ordered pairs

(ck1 , ck2) the order of ck1(ck2)−1 is pαii and, for j = 1, ..., αi, φ(pαii )φ(pαi−ji ) of the

ordered pairs (ck1 , ck2) the order of ck1(ck2)−1 is pαi−ji .

We now consider the general situation for `1 = pα1
1 p

α2
2 ...p

αr
r and `2 = pβ1

1 p
β2

1 ...p
βr
r .

Looking at all those i for which αi 6= βi (just for the moment considering the projections

onto Ps+1, ..., Pr) we obtain that ck1(ck2)−1 has order p
γs+1

s+1 ...p
γr
r = `∗ for

r∏
i=s+1

φ(pαii )φ(pβii ) = φ(m1)φ(m2)

pairs (ck1 , ck2) by (3.4.7.1) We now wish to enumerate the pairs (ck1 , ck2) for which

the order of ck1(ck2)−1 is n, where n = `∗n∗, n∗ ∈ D(`0) and n∗ = pδ11 p
δ2
2 ...p

δs
s . Using

(3.4.7.2) and by just considering the projections on P1, ..., Ps we see this occurs for∏
αi=δi

φ(pαii )pαi−1
i (pi − 2)

∏
αi 6=δi

φ(pαii )φ(pδii )

=
∏

1≤i≤s

φ(pαii )
∏
αi=δi

pαi−1
i (pi − 2)

∏
αi 6=δi

φ(pδii )

= φ(`0)
∏
αi=δi

pαi−1(pi − 2)φ

(∏
αi 6=δi

pδii

)
pairs. Combining this with the projection onto Ps+1, ..., Pr yields Lemma 3.4.7.

Lemma 3.4.8. Let E0 be an abelian subgroup of G isomorphic to the direct product of

two cyclic groups of order (q+1)
d

and (q + 1) with NG(E0) ∼ (q+1)
d

(q + 1).Sym(3). Also

let E be the subgroup of E0 generated by the elements of E0 of order ` = (q+1)
d
. Then
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(i) εk(E
∗
0 ,Ω) = λ∗k(`, `) if d = 1;

(ii) εk(E
∗
0 ,Ω) = λ∗k(`, `) + 2λk(`, `; 1) if d = 3 and 3 - |E|; and

(iii) εk(E
∗
0 ,Ω) = λ∗k(`, `) + (2)9s−1λk(

q+1
3s
, q+1

3s
; s) if d = 3, 3

∣∣|E| and 3s is the largest

power of 3 dividing q + 1.

Where λ∗k(`, `) is given in Definition 4.

Proof. By Lemma 3.4.1(iv),(v) G contains a subgroup M with M ∼ˆGU2(q) and

E0 ≤ M . From the structure of NG(E0) and ˆGU2(q), Z(M) ≤ E0 with Z(M) ∼=
q+1
d

(= `). Let h ∈ NG(E0) be an element of order 3. Because [NM(E0) : E0] = 2,

h 6∈ M = NG(Z(M)). In order to key in with the notation of Hypothesis 3.4.6,

principally as we shall employ Lemma 3.4.7, we set A0 = E0 and A = E. Further, we

set A1 = Z(M), A2 = Z(M)h and A3 = Z(M)h
2
. Since fixΩ(h) = fixΩ(Z(M)) for all

h ∈ Z(M)#, it follows that fixΩ(Ai) ∩ fixΩ(Aj) = ∅ for 1 ≤ i 6= j ≤ 3. We also have

|fixΩ(Ai)| = q + 1 and, by Table 3.2, fixΩ(g) = ∅ if g ∈ A0 \ (A1 ∪ A2 ∪ A3). Now A

is the subgroup of A0 generated by the elements of A0 of order ` and Ai ∼= `. So we

have Ai ≤ A, i = 1, 2, 3 and [A : A0] = d (= 1 and 3). Hence Hypothesis 3.4.6 holds

with e = `.

Suppose d = 1. Then A = A0. Using Lemma 3.4.7 and Definition 4(ii) we obtain

σk(E
∗
0 ,Ω) = λ∗k(`, `). (Note the condition in Definition 4(ii) on the outer sum that

(`1, `2) ∈ D∗(`) × D∗(`) and on the inner sum that n 6= 1 prevents the counting of

elements in C4.) So Lemma 3.4.8 holds in this case.

So we now investigate the case when d = 3. Hence [A0 : A] = 3. Let θ : A0 7→ A0

be defined by θ : g 7→ g3. Then, as A0 is abelian, θ is a homomorphism with imθ ≤ A

and kerθ = {x ∈ A0| order of x is 1 or 3}.

Further assume that 3 - |E| (so 3 - `). Then, as |A| = `2, 3 - |A|. Also we have

|kerθ| = 3 and therefore, by orders, imθ = A. For every g ∈ A0 \ A, the smallest

power of g contained in Ai (i = 1, 2, 3) will be three times the corresponding power

for h = g3 = θ(g). Now 3 - |A| means that θ restricted to A is a one-to-one map, and

so the inverse image of h contains two elements of A0 \A. Hence, using Lemma 3.4.7,

the elements of A0 \ A contribute 2λk(`, `, 1) to the sum
∑

g∈G |fixΩk(g)|. Thus, using

Lemma 3.4.7 again, σk(E
∗
0 ,Ω) = λ∗k(`, `) + 2λk(`, `; 1), as stated.
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The last case to be considered is when, as well as d = 3, we have 3
∣∣|E|. So 3|`.

As a consequence |kerθ| = 32 and thus [A : imθ] = 3. We seek to pinpoint imθ.

Now let A3
i denote the unique subgroup of Ai of index 3 (i = 1, 2, 3). Let B be the

subgroup of A generated by the elements of A of order `/3. Then [A : B] = 32 and, for

1 ≤ i < j ≤ 3, B = A3
iA

3
j . Also observe that imθ ≥ B. Set N = NG(A0), and recall

that N ∼ ( q+1
d

(q + 1)).Sym(3). Also the N -conjugacy class of A1 is {A1, A2, A3}.

Hence N normalizes B (= A3
iA

3
j , 1 ≤ i < j ≤ 3) and the N -conjugacy of A1B is

{A1B,A2B,A3B}. Moreover AiB 6= AjB for 1 ≤ i < j ≤ 3 (as A = AiAj). Evidently

imθ is a normal subgroup of N and therefore {imθ,A1B,A2B,A3B} comprise the four

subgroups of index 3 in A which contain B. Observe that the inverse image under θ of

B is A. Since, by Lemma 3.4.7, λ∗k(`, `) is the count for the contribution of elements in

A, we are looking to determine the contribution from the elements in A0 \A. Thus for

h ∈ imθ \B, θ−1({h}) ⊆ A0 \A with |θ−1({h})| = 9. For g ∈ θ−1({h}), h = g3 ∈ imθ

and so we must multiply the cycle lengths of h by 3 and their multiplicities by 9 to

count the contribution of θ−1({h}).

Now imθ contains B = A
(3)
i A

(3)
j (1 ≤ i 6= j ≤ 3) as a subgroup of index 3, and

clearly Ai ∩ imθ ≥ A
(3)
i , (1 ≤ i ≤ 3). If Ai ∩ imθ 6= A

(3)
i , then, as [Ai : A

(3)
i ] = 3, we

get Ai ≤ imθ. But then

imθ ≥ AiA
(3)
j = AiA

(3)
i A

(3)
j = AiB

whence imθ = AiB. This is impossible as imθ 6= AiB and so we conclude that

Ai ∩ imθ = A
(3)
i for 1 ≤ i ≤ 3. Hence we have that imθ satisfies Hypothesis 3.4.6

with B playing the role of A and Ai ∩ imθ (1 ≤ i ≤ 3) the role of the Ai. Further

B itself satisfies Hypothesis 3.4.6 with B playing the role also of A and the A
(3)
i

(1 ≤ i ≤ 3) the role of the Ai. We may repeat this process for imθ \ B (note s ≥ 2

in this case), each time we multiply cycle lengths by 3 and the multiplicity by 9.

Eventually we arrive at im(θs−1), containing a subgroup B∗ of index 3. Observe that

the count for im(θs−1) ∼= q+1
3s−1 × q+1

3s
is given by part (ii) (with ` = q+1

3s−1 ) and the count

for B∗ ∼= q+1
3s
× q+1

3s
with (` = q+1

3s
). Keeping track of changes in cycle length and

multiplicity we obtain

9s−1
(
λ∗k(

q + 1

3s
,
q + 1

3s
) + 2λk(

q + 1

3s
,
q + 1

3s
; s)− λ∗k(

q + 1

3s
,
q + 1

3s
)
)
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= 2.9s−1λk(
q + 1

3s
,
q + 1

3s
; s)

which is the contribution for A0 \ A. Consequently

σk(E
∗
0 ,Ω) = λ∗k(`, `) + 2.9s−1λk(

q + 1

3s
,
q + 1

3s
; s),

and the proof of Lemma 3.4.8 is complete.

We note that in Lemma 3.4.8 if a = 1 then parts (ii) and (iii) are equal and we use

this to combine the three equations for ε(E∗0 ,Ω) given in the statement of Lemma 3.4.8

into the single value given in Definition 4.

We are now in a position to prove Theorem 3.4.2.

Proof of Theorem 3.4.2. We proceed in much the same vein as in previous proofs of

such theorems, that is by counting the number of fixed subsets for g ∈ G and applying

Theorem 1.0.4. The first class type is the identity element contributing

d

q3(q3 + 1)(q2 − 1)
ηk(π1).

We next consider the elements in classes of type C2 and C3. These elements will

have cycle types, respectively, π2 and π3. Using Table 3.1 we are able to determine

their combined contribution, which is µk(q) as described above, this is then divided

by |G|.

The elements in classes of type C4 all have cycle type π
(m)
4 and we have seen in the

proof of Lemma 3.4.4 that we only need sum our elements over D∗(`), combining this

with the centralizer orders given in Table 3.2 we have a total contribution from these

elements of
d

q(q + 1)(q2 − 1)

∑
m∈D∗(`)

φ(m)ηk(π
(m)
4 ).

Elements in class type C5, have cycle type π
(m)
5 , and we again use the proof of

Lemma 3.4.4 to see that summing over the elements of D∗(`) is enough, again taking

the centralizer order from Table 3.2 we have

d

q(q + 1)

 ∑
m=pj

j∈D∗(`)

φ(j)ηk(π
(m)
5 )

 .

We now apply Lemma 3.4.8 to determine the value from the elements of class type

C6 (and C ′6). We take the centralizer orders from Table 3.2, this total is then divided
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by 6 to compensate for the Normalizer of these classes as shown in Lemma 3.4.1 and

discussed in the proof of Lemma 3.4.8. We are then able to reduce the formulae

for εk(E
∗
0 ,Ω) given in Lemma 3.4.8 into the reduced form to the expression given in

Definition 4(iv).

We note that the type C ′6 classes only arise when d = 3 (and then there is only one

conjugacy class of this type) and consists of elements of order 3 with no fixed points,

and is one third the size of the type C6 classes. When d = 3 we include this class along

with the other type C6 classes in εk(E
∗
0 ,Ω). It occurs as the case `1 = `2 = n = 3 and

appears f(3, 3, 3) = 2 times. As the size of this class is divided by 6, this corrects the

size of this class in our count.

Classes of type C7 have cycle type π
(m)
7 and are found in the subgroup isomorphic

to Z q2−1
d

. However, there are only q2−q−1
2d

such classes, as shown in Table 3.2. We

note that we are excluding from our count the q+1
d

elements in this subgroup which lay

inside classes C4, of which there are q+1
d

, this leaves us with q2−q−1
2d

class representatives.

Now using a result in Suzuki [34] we know that such elements are conjugate to their

qth power and so we have two representatives for each class, so we divide our count by

2, leaving us with a contribution of

1

2(q2 − 1)

∑
m=js

j∈D∗(q−1)

s∈D(`)

φ(m)ηk(π
(m,j)
7 ).

Finally we consider the contribution of C8, the representatives will have cycle type

π
(m)
8 and are normalized by an element of order 3, which we have seen in the proof of

Lemma 3.4.4. We then take our centralizer orders from Table 3.2 as our scalar and

upon division by 3, as we will have three representatives for each class, we have a final

contribution of
d(q + 1)

3(q3 + 1)

∑
m∈D∗( q2−q+1

d
)\{2}

φ(m)ηk(π
(m)
8 )

to the total.

By summing all these individual contributions we have the value of σk(G,Ω) as

stated.

Due to the length of the Magma implementation code we include it as an appendix
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only (see Appendix A.3).

3.5 The Small Ree Groups R(q)

We conclude this investigation of finite simple groups of Lie rank one by considering

the final family of doubly-transitive rank one simple groups of Lie type, those of type

2G2, the Ree groups R(q) where q = 32s+1 and |R(q)| = q3(q3 + 1)(q− 1). We consider

their action on k-subsets of Ω, where |Ω| = q3 + 1. This family of Ree groups act

2-transitively as an automorphism group for a Steiner system S(2, q + 1, q3 + 1). For

an introduction to these groups see Dixon and Mortimer [10].

Much of this section is compiled from results in Ward [36] and Rainbolt and

Sheth [24]. We also use the notation from Ward’s paper for the conjugacy class types.

In keeping with the previous results in this chapter we begin by outlining useful

facts regarding the structure of R(q).

Lemma 3.5.1. Let G be the small Ree Group R(q), q = 32s+1 > 3 acting on Ω of

cardinality q3 + 1 and q ≡ 3 mod 8. Then

(i) G has a total of q + 8 conjugacy classes.

(ii) the group G contains only one class of involutions, denoted be representative J .

We also have that CG(J) = 〈J〉 × PSL(2, q) and CG(J) is a maximal subgroup

of G.

(iii) there are two cyclic Hall subgroups M+ and M− with orders, respectively, q +

1 +
√

3q and q + 1 −
√

3q which have trivial intersection with their conjugates.

These have their class representatives denoted by W and V respectively. The

normalizers of these subgroups in G are M+×〈t+〉 and M−×〈t−〉 where t+, t−

are both elements of order 6.

(iv) G contains a cyclic subgroup 〈R〉 of order (q−1)
2

where 〈R〉 ≤ PSL(2, q) ≤ CG(J),

and Ra is conjugate to R−a and no other power.

(v) G contains a cyclic subgroup 〈S〉 of order (q+1)
4

where 〈S〉 ≤ PSL(2, q) ≤ CG(J),

and |NG(〈S〉)| = 6| 〈S〉 |, also S and S−1 are CG(J)-conjugate.
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(vi) G contains two non-conjugate elements T and T−1 which have order 3.

(vii) G contains three elements of order 9, which are not conjugate, Y, Y T, and Y T−1.

(viii) there exists a conjugacy class, X, of elements which are contained in the center

of a Sylow 3-subgroup of G. These elements have order 3.

Proof. (i) see Ward [36] (VI-8)[36].

(ii) see Ward [36] (Introduction), Rainbolt and Sheth [24] (p1264) and Wilson [37]

(p138).

(iii) see Ward [36] (Thm I and IV-1) and Wilson [37] (Thm 4.2).

(iv) see Ward [36] (Introduction), Rainbolt and Sheth [24] (p1263).

(v) see Ward [36] (Introduction and II-5) Rainbolt and Sheth [24] (p1263).

(vi) see Ward [36] Rainbolt and Sheth [24] (p1263).

(vii) see Ward [36] (III-11)

(viii) see Ward [36] (III-3).

Lemma 3.5.2. Let G ∼= R(q), q = 32s+1, q > 3, let G act on Ω of cardinality q3 + 1,

then G has 16 conjugacy class types, with the number of classes, order of centralizers

of each class and the number of fixed points of each type given in Table 3.5

Proof. For the class types and centralizer orders these are given in Ward [36]. The

number of classes of each type is given explicitly in Rainbolt and Sheth [24]. The

number of fixed points can be determined from the conjugacy class table presented in

[36], as G acts doubly-transitively on Ω, by Isaac [14] (p69) the permutation character

can be determined as the character sum ξ1 + ξ3 given in Ward [36].

We now outline the partitions of q3 + 1 which will be used in Theorem 3.5.4.

Definition 6. (i) π1(q) = 1q
3+1,

(ii) πJ(q) = 1q+12
q3−q

2 ,
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Class Type |fixGΩ| |CG(g)| Number of Classes
1 q3 + 1 |G| 1
J q + 1 q(q + 1)(q − 1) 1
X 1 q3 1
Y 1 3q 1
T 1 2q2 1
T−1 1 2q2 1
Y T 1 3q 1
Y T−1 1 3q 1
JT 1 2q 1
JT−1 1 2q 1

Ra 6= 1 2 q − 1 q−3
4

Sa 6= 1 0 q + 1 q−3
24

JRa 6= Ra 2 q − 1 q−3
4

JSa 6= Sa 0 q + 1 q−3
8

V 0 q + 1−
√

3q q−
√

3q
6

W 0 q + 1 +
√

3q q+
√

3q
6

Table 3.5: Number of Fixed points and Centralizer sizes for small Ree Groups

(iii) πX(q) = πT (q) = πT−1(q) = 113
q3

3 ,

(iv) πY (q) = πY T (q) = πY T−1(q)119
q3

9 ,

(v) π
(m)
Ra (q) = 12m

q3−1
m , m ∈ D∗( q−1

2
),

(vi) π
(m)
Sa (q) = m

q3+1
m , m ∈ D∗( q+1

4
),

(vii) π
(m)
JRa(q) = 12m

q−1
m 2m

q3−q
2m , m ∈ D∗( q−1

2
),

(viii) π
(m)
JSa(q) = m

q+1
m 2m

q3−q
2m , m ∈ D∗( q+1

4
),

(ix) πJT (q) = πJT−1 = 113
q
3 6

q3−q
6 ,

(x) π
(m)
V (q) = m

q3+1
m , m ∈ D∗(q + 1−

√
3q),

(xi) π
(m)
W (q) = m

q3+1
m , m ∈ D∗(q + 1 +

√
3q).

Proposition 3.5.3. Let H be a conjugacy class type of G ∼= R(q), q = 32s+1 > 3, as

denoted in Lemma 3.5.2, let G act doubly transitively on Ω, where |Ω| = q3 + 1. Then

for g ∈ H, g has cycle type πH(q) or when appropriate π
(m)
H (q), as defined above.

Proof. Let g ∈ G, then we consider g in each conjugacy class type in turn and deter-

mine the cycle type of g. Firstly let g be of type 1. Then g is the identity class and

so fixes all q3 + 1 points of Ω, and so g has cycle type π1(q).



CHAPTER 3. FINITE SIMPLE GROUPS OF LIE RANK ONE 52

For g ∈ G# it is clear that g lies in one of the remaining fifteen non-identity

conjugacy class types. As we have seen in Lemma 3.5.2 each class type is denoted by

some known subgroup identified in Lemma 3.5.1, which contains representatives of all

conjugacy classes of the given type, as we are only interested in cycle types we may

assume without loss that g is an element of the denoted subgroup.

Let g ∈ J , then g is an involution and fixes q + 1 points in Ω, hence g has cycle

type πJ(q).

If g is an element of type X, T or T−1, then by Lemma 3.5.1 g has order 3 and

by Lemma 3.5.2 fixes one point in Ω giving us cycle type πX . If g is of type Y , Y T

or Y T−1, then by Lemma 3.5.1 g is of order 9 and by Table 3.5 g fixes a single point.

Now if g contained any cycles of length three, then g3 would contain at least four

fixed points. This contradicts Table 3.5 which shows the only non-trivial element to

fix three points is an involution, hence g has cycle type πY (q).

Assume now that g is of type Ra 6= 1, then (by Lemma 3.5.1 and Table 3.5) g lies

in a cyclic subgroup of order (q−1)
2

and fixes two points. We note that for q ≡ 3 mod 8,

(q−1)
2

is odd. This implies that all cycles of length greater than one must be of equal

length, moreover g must have order m| (q−1)
2

, hence g has cycle type π
(m)
Ra (q).

Similarly if g is of type Sa 6= 1, then g lies in a cyclic subgroup of order (q+1)
4

, which

we note is odd for q ≡ 3 mod 8 and as g will fix no points of Ω (by Lemma 3.5.1 and

Table 3.5), g has cycle type π
(m)
Sa (q).

Next we consider when g is of type JRa 6= Ra or JSa 6= Sa, by Lemma 3.5.1, both

of these subgroups are contained in CG(J), and have orders, respectively, q − 1 and

(q+1)
2

. In the case g ∈ JRa \Ra, then g2 ∈ Ra, however, g has even order and so some

power of g will be an involution, and will have cycle type πJ . This restriction implies

that a generator for JRa (note this is a cyclic subgroup) must contain cycles of length

q − 1 and by Table 3.5 two fixed points, but also two cycles of length (q−1)
2

, therefore

g will have order 2m where m| (q−1)
2

(we phrase the order in this way to emphasize the

link to Ra), giving g cycle type π
(m)
JRa(q). An almost identical argument with g of type

JSa leads to g having cycle type π
(m)
JSa(q).

If g is of type JT or JT−1, then, as T and T−1 are centralized by some involution,

J (note that |CG(T )| is even), we apply a similar argument to that given above to

show g has cycle type πJT .
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Finally we assume that g is of type W (or V ), then by Lemmas 3.5.1 and 3.5.2 g is

contained in a cyclic subgroup of order q+1+
√

3q (or q+1−
√

3q) and fixes no points

of Ω. We also note that q + 1±
√

3q is odd and so g will have order m | q + 1 +
√

3q,

(or m | q+ 1−
√

3q) and so will have cycle type π
(m)
W (q), (or π

(m)
V (q)) as required, thus

proving the result.

Theorem 3.5.4. Suppose G ∼= R(q) the small Ree group acts as an automorphism

group for a Steiner system S(2, q + 1, q3 + 1). Let k ∈ N. Then

σk(G,Ω) =
1

q3(q3 + 1)(q − 1)
ηk(π1(q)) +

1

q3 − q
ηk(πJ(q))

+
(q + 1)

q3
ηk(πT (q)) +

1

q
ηk(πY (q)) +

1

q
ηk(πJT (q))

+
1

2(q − 1)

∑
m∈D∗( q−1

2
)

φ(m)ηk(π
(m)
Ra (q))

+
1

6(q + 1)

∑
m∈D∗( q+1

4
)

φ(m)ηk(π
(m)
Sa (q))

+
1

2(q − 1)

∑
m∈D∗( q−1

2
)

φ(m)ηk(π
(m)
JRa(q))

+
1

2(q + 1)

∑
m∈D∗( q+1

4
)

φ(m)ηk(π
(m)
JSa(q))

+
1

6(q + 1 +
√

3q)

∑
m∈D∗(q+1+

√
3q)

φ(m)ηk(π
(m)
W (q))

+
1

6(q + 1−
√

3q)

∑
m∈D∗(q+1−

√
3q)

φ(m)ηk(π
(m)
V (q)).

Proof. As in previous results of this type, we count the number of k-subsets fixed by

an element g ∈ G and substitute this information into Lemma 1.0.4. We note that

when we use centralizer orders, these are all found in Table 3.5.

Clearly, the identity class will contribute

1

q3(q3 + 1)(q − 1)
ηk(π1(q))

to the total. Similarly if g is an involution, then g will fix ηk(πJ)(q) k-subsets. As

there is only a single class of involutions, with centralizer order q(q + 1)(q − 1), these

contribute
1

(q3 − q)
ηk(πJ)(q).
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The next class type of g we consider are those of type X, T and T−1. As each

element in these classes has an identical cycle type we may count these together.

Each element will fix ηk(πT (q)) k-subsets, as the centralizers of these elements are,

respectively, q3, 2q2 and 2q2, summing these gives us a total contribution from these

three classes of elements of
(q + 1)

q3
ηk(πT (q)).

Similarly we can consider the class types Y , Y T and Y T−1 together, as these ele-

ments all have identical cycle type πY (q), hence such elements will each fix ηk(πY (q))

k-subsets. All of these elements have centralizers of order 3q, hence the total contri-

bution of these elements will be
1

q
ηk(πY (q)).

We now consider the contributions of classes of type JT and JT−1. As we have

seen, we can count these two classes together as each element will fix πJT (q) k-subsets.

As both of these classes have centralizers with orders 2q, we have a total contribution

of
1

q
ηk(πJT (q)).

So far, we have only dealt with those conjugacy class types which contain a single

conjugacy class. As the remaining class types are represented by cyclic subgroups of G,

we recall Lemma 3.1.1, which states that in a cyclic subgroup, H, if h ∈ H has order

m, then m
∣∣|H| and H contains φ(m) elements of order m. As we are now considering

representatives as elements of subgroups rather than single elements, as above, we need

also consider the normalizers of these subgroups to determine the number of distinct

classes we actually obtain from the elements of each subgroup.

We begin with class type Ra 6= 1. These classes have representatives in a cyclic

subgroup and the elements have orders m ∈ D∗( q−1
2

). Hence we have q−3
2

non-identity

class representatives, however Lemma 3.5.1(iv) tells us that inverses in this class are

conjugate, hence we have two representatives for all q−3
4

classes. Each representative

will contribute 1
q−1

ηk(π
(m)
Ra (q)) to the count, summing these and division by 2, to allow

for the over count gives us a total contribution from these classes of

1

2(q − 1)

∑
m∈D∗( q−1

2
)

φ(m)ηk(π
(m)
Ra )(q).
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Similarly for classes of type Sa 6= 1, these classes have representatives in a cyclic

subgroup of order q+1
4

, giving us q−3
4

non identity elements to consider, where each

class will contain elements of order m ∈ D∗( q+1
4

) and will contribute 1
q+1

ηk(π
(m)
Sa (q)) to

the count. However, by Lemma 3.5.1(v) we have that |NG(Sa)| = 6|Sa| meaning we

will have 6 representatives for each class of type Sa 6= 1 in the subgroup Sa, therefore

we divide our count by six and have accounted for all q−3
24

such classes. Summing our

count we see that we have a total contribution from the classes of

1

6(q + 1)

∑
m∈D∗( q+1

4
)

φ(m)ηk(π
(m)
Sa (q)).

For elements of classes of type JRa 6= Ra, this subgroup behaves as described in

the proof of Proposition 3.5.3. We note that |JRa| = 2|Ra| and so the elements we

wish to use as representative for the classes of this type are located in JRa \ {Ra∪J},

where there will be representatives for all q+3
4

classes of this type. This gives us a total

contribution of
1

2(q − 1)

∑
m∈D∗( q−1

2
)

φ(m)ηk(π
(m)
JRa(q)).

We note that these elements will have order 2m rather than m, however as (2,m) = 1

in this case, φ(2m) = φ(2)φ(m) = φ(m).

Dealing with classes of type JSa similarly we see that the elements in JSa\{Sa∪J}

will total q−3
4

, however, unlike elements in Sa these are not normalized by an element

of order 3, but inverses are still conjugate in this subgroup, therefore we divide our

total by 2 ensuring we have representatives for all the required q−3
8

classes. Hence we

have a total contribution of these classes of

1

2(q + 1)

∑
m∈D∗( q+1

4
)

φ(m)ηk(π
(m)
JSa(q)).

Finally we deal with classes of type W (and V ). These classes have representatives

in the cyclic subgroups M+ (and M−). The non-identity elements of these subgroups

giving us q+
√

3q (and q−
√

3q) class representatives, these elements will have orderm ∈

D∗(q+
√

3q+1) (and m ∈ D∗(q−
√

3q+1)) and so will fix ηk(π
(m)
W (q)) (and ηk(π

(m)
V (q)))

k-subsets. The normalizers of these two subgroups are given in Lemma 3.5.1 and so

we will have six representatives from each class. Hence by dividing by 6 and utilizing

the orders of the centralizers of these two subgroups given in Lemma 3.5.2 we have
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contributions of

1

6(q + 1 +
√

3q)

∑
m∈D∗(q+1+

√
3q)

φ(m)ηk(π
(m)
W (q))

for type W and

1

6(q + 1−
√

3q)

∑
m∈D∗(q+1−

√
3q)

φ(m)ηk(π
(m)
V (q))

for type V .

Summing all these contributions gives us σk(G,Ω).

Due to the length of the Magma implementation code we include it as an appendix

only. See Appendix A.4.

Remark We note that in the main results of this chapter we encounter cyclic groups

with element cycle types m
|Ω|
m . Clearly to determine the value of ηk for such elements

we lose nothing by restricting the values from Σm∈D(m) to Σm∈D((m,k)) and only consider

common divisors of m and k. Summing over the smaller set may reduce the length

of time required to compute the values. Indeed we will make use of this in the next

chapter.

We do however make note of the limitations of the Magma implementation pro-

vided as we calculate ηk using the built in command

RestrictedPartitions(a,S)

this command partitions value a using integers given in the set S. The values of a the

command can cope with is quite small, moreover this will cause error messages when

using the functions for large examples. Using Binomial methods, some of which are

described in the next chapter does allow the function to be used for larger values.



Chapter 4

Subsequent Results

This short chapter presents results which are derived from the formulae in Chapter 3,

as well as a supplementary formula for PGL(2, q) to sit alongside the PSL(2, q) result

already given. We use this opportunity to highlight some methods and approaches

to reducing the given formulae to more manageable states when looking at specific

instances, we discuss the results for numbers of orbits of the 2-transitive groups we

have considered when they act on 3-subsets and provide reduced functions for these

values. We recall the notation used previously of (a, b) to the greatest common divisor

of a, b ∈ N, as well asD(a) to denote the set of divisors of a ∈ N andD∗(a) = D(a)\{1}.

4.1 PSL(2, q)

Our first result is a restatement of Propositions 4.1.3 and 4.1.4.

Proposition 4.1.1. Let G = PSL(2, q) act on 3-subsets of Ω = PG(1, q), q = pa > 2,

where p is prime, a ∈ N. Then if σ3 is the number of orbits of G on the set Ω3 we have

σ3 =

2, if q ≡ 1 mod 4

1, otherwise.

Lemma 4.1.2. Let q = pa, where p is a prime greater than 3, a ∈ N. Then either

(3,
q + 1

2
) = 3 and (3,

q − 1

2
) = 1

or

(3,
q + 1

2
) = 1 and (3,

q − 1

2
) = 3.

57
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Proof. Let m = (3, q+1
2

) = 3, then q+1
2
≡ 0 mod 3 and q−1

2
= q+1

2
− 1 ≡ 2 mod 3.

Hence (3, q−1
2

) = 1.

Now let m = (3, q+1
2

) = 1, then

q + 1

2
≡ 1 or 2 mod 3,

q + 1 ≡ 1 or 2 mod 3,

q ≡ 0 or 1 mod 3, as p 6= 3.

q ≡ 1 mod 3.

Hence q−1
2
≡ 0 mod 3 and so (3, q−1

2
) = 3.

We make use of this in the establishment of an alternative combinatorial proof of

PSL(2, q) being 3-homogeneous if and only if q = pa where p is a prime congruent to

3 mod 4 and a is odd.

Proposition 4.1.3. Let G = PSL(2, q) act on 3-subsets of Ω = PG(1, q), q = pa > 2,

where p is prime, a ∈ N. Then if σ3 is the number of orbits of G on the set Ω3 we have

σ3 =

2, if q ≡ 1 mod 4

1, if q ≡ 3 mod 4

.

Proof. We prove this by dealing with the equation in Theorem 3.2.1 in five parts,

denoted using I, P, H+, Hi
− i = 0, 1, 2 (see Table 4.1). We will then sum the contri-

bution of each of these parts to give a total value for σ3. We also consider the case for

p = 3 separately.

First note that here d = 2 and k = 3, and we initially wish to write the formula

without the ηk notation. Using the proof of Theorem 3.2.1 and by defining l0 = 1,

l1 = 2 and l2 = 1, we are able to remove the ηk notation from the statement of Theorem

3.2.1 for clarity as this notation requires calculations to be performed.

We begin by replacing ηk(1
q+1) with

(
q+1
k

)
which is clear. Next we consider

ηk(1
1pq/p), this is the number of k-subsets fixed by an element of cycle type 11pq/p.

This value is determined by whether or not p|k or, due to the presence of a fixed point,

p|(k − 1), hence

ηk(1
1pq/p) =

1∑
i=0

∑
m∈D∗((k−i,p))

(
pa−1

k−i
p

)
.
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We deal with ηk

(
m

q+1
m

)
in a similar way as the number of k-subsets fixed by an element

of this cycle type would be
( q+1

m
k
m

)
. Finally we replace ηk(1

2m
q−1
m ) by the number of

k-subsets fixed by the given cycle type, which will be non zero if m|(k−i) for i = 0, 1, 2

due to the two fixed points. Hence we have ηk(1
2m

q−1
m ) =

∑2
i=0 liφ(m)

( q−1
m
k−i
m

)
.

σk(G,Ω) =
d

q(q + 1)(q − 1)

(
q + 1

k

)
+
d

q

1∑
i=0

∑
m∈D∗((k−i,p))

(
pa−1

k−i
p

)

+
d

2(q + 1)

∑
m∈D∗((k, q+1

d
))

φ(m)

( q+1
m
k
m

)

+
d

2(q − 1)

2∑
i=0

∑
m∈D∗((k−i, q−1

d
))

liφ(m)

( q−1
m
k−i
m

)
.

Let

I =
d

q(q + 1)(q − 1)

(
q + 1

k

)
substituting gives

I =
2

(q + 1)(q)(q − 1)

(
(q + 1)!

3!(q − 2)!

)
,

=
2

3!
,

=
1

3
,

for all q.

Let

P =
d

q

1∑
i=0

∑
m∈D∗((k−i,p))

(
pa−1

k−i
p

)
.

Clearly for p 6= 3, (3, p) = (2, p) = 1. Hence P = 0. for all p 6= 3 and all a.

By applying Lemma 4.1.2 we can combine

H+ =
d

2(q + 1)

∑
m∈D∗((k, q+1

d
))

φ(m)

( q+1
m
k
m

)

and

Hi
− =

d

2(q − 1)

2∑
i=0

∑
m|(k−i, q−1

d
)m 6=1

liφ(m)

( q−1
m
k−i
m

)
for i = 0.
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Let p be such that (3, q+1
2

) = 1 then we have that (3, q−1
2

) = 3 and so

H+ = 0

and

H0
− =

2

2(q − 1)
(2)

( q−1
3
3
3

)
= (

q − 1

3
)(

2

q − 1
) =

2

3
.

Now let p be such that (3, q+1
2

) = 3 then we have that (3, q−1
2

) = 1 and so

H+ =
2

2(q + 1)
(2)

( q+1
3
3
3

)
= (

q + 1

3
)(

2

q + 1
) =

2

3
,

and

H0
− = 0.

Hence H+ + H0
− = 2

3
for all p 6= 3, all a.

For H2
−, as (1, q−1

2
) = 1 for all q, we have H2

− = 0.

For the case H1
− we first consider q = pa where a is even.

Let m = (2, q−1
2

), then m = 2 otherwise we have

q − 1

2
≡ 1 mod 2

q − 1

2
≡ 1 or 3 mod 4

q − 1 ≡ 2 mod 4

q ≡ 3 mod 4

which contradicts q being a square.

Now substituting m = 2 we have

H1
− =

2

2(q − 1)
(2)(1)

( q−1
2

1

)
= (

2

q − 1
)(
q − 1

2
) = 1.

for all even powers of p.

For odd powers of p where p ≡ 1 mod 4, we have that q ≡ 1 mod 4, hence m =

(2, q−1
2

) = 2, otherwise q−1
2
≡ 1 mod 2 and the above argument yields the contradiction

q ≡ 3 mod 4. Hence

H1
− =

2

2(q − 1)
(2)(1)

( q−1
2

1

)
= 1,

for p ≡ 1 mod 4 and a even.
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For odd powers of p where p ≡ 3 mod 4, we have that q ≡ 3 mod 4, hence m =

(2, q−1
2

) = 1, otherwise, by a similar argument to that above we get the contradiction

that q ≡ 1 mod 4. Substituting m = 1 gives

H1
− = 0

for odd powers of p where p ≡ 3 mod 4.

When p = 3 the arguments for I,H1
−,H

2
− hold true. However for P we have

2

q

(
pa−1

1

)
=

2pa−1

pa
=

2

3
.

Also we have that H+ + H0
− = 0 as (3, q+1

2
) = 1 and (3, q−1

2
) = 1, otherwise

(3, q+1
2

) ≡ 0 mod 3⇒ 3a ≡ 2 mod 3 or (3, q−1
2

) ≡ 0 mod 3⇒ 3a ≡ 1 mod 3.

Hence we have the following table of results for all cases.

I P H+ + H0
− H1

− H2
− σ3

p ≡ 1 mod 4 a even 1
3

0 2
3

1 0 2
a odd 1

3
0 2

3
1 0 2

p ≡ 3 mod 4 a even 1
3

0 2
3

1 0 2
a odd 1

3
0 2

3
0 0 1

p = 3 a even 1
3

0 2
3

1 0 2
a odd 1

3
2
3

0 0 0 1

Table 4.1: σ3 for q = pa

which proves the result.

Proposition 4.1.4. Let G = PSL(2, q) act on 3-subsets of Ω = PG(1, q), q = 2a,

where a > 1, a ∈ N. Then if σ3 is the number of orbits of G on the set Ω3 we have

σ3 = 1.

Proof. We prove this by substituting k = 3, q = 2a and d = 1 into the formula in

Theorem 3.2.1, we also note that φ(3) = 2. It is straightforward for us to determine

the values of η3 for the first two terms of the sequence, these become

1

q(q + 1)(q − 1)

(
q + 1

3

)
=

1

6
,

and
1

q

(q
2

)
=

1

2
.
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Now the final two terms depend on whether or not 3 divides (q + 1) or (q − 1), as

3 does not divide 2a = q we have that 3 must divide exactly one of (q + 1) or (q − 1).

So if we assume 3 divides (q + 1) then the final two terms become, respectively,

1

2(q + 1)
φ(3)

(
q + 1

3

)
=

1

3

and 0. Now if we assume 3 divides (q−1) then the final two terms become, respectively,

0 and
1

2(q − 1)
φ(3)

(
q − 1

3

)
=

1

3

giving us a total value in either case for σ3 of 1
6

+ 1
2

+ 1
3

= 1, as required.

We can also prove a result regarding the lengths of orbits of PSL(2, q) on subsets

of size three.

Proposition 4.1.5. Let G ∼= PSL(2, q) act on a G-set, Ω, of cardinality n. Then for

∆ ⊂ Ω of cardinality 3, we have |∆G| =


(
q+1

3

)
, if q ≡ 3 or 0 mod 4

1
2

(
q+1

3

)
, if q ≡ 1 mod 4

.

Proof. In the cases of q ≡ 3 mod 4 and q ≡ 0 mod 4 this is clear as there is only

one orbit in these instances, so assume that q ≡ 1 mod 4 We define a homomorphism

θ : G∆ → S3 and note that as only the identity element fixes three points of Ω

pointwise, the ker(θ) is trivial and so θ is injective and moreover |G∆|
∣∣6.

If |G∆| = 1 or 2 then we quickly have the contradiction that |∆G| >
(
q+1

3

)
, if

|G∆| = 3 then we have |∆G| =
(
q+1

3

)
contradicting Proposition 4.1.3. Hence |G∆| = 6

and so by the Orbit Stabilizer Theorem

|∆G| = q(q + 1)(q − 1)

2 · 6
=

1

2

q(q + 1)(q − 1)

6
=

1

2

(
q + 1

3

)
giving the result.

4.2 Sequences

The next results all follow the same theme, we prove the existence of certain interesting

sequences in the values of σk(G,Ω) for G ∼= PSL(2, q), Sz(q), PSU(3, q) and R(q).

As we have seen in the previous section, there is very little variety in what happens

to σ3(PSL(2, q)), so here we consider σ4 to be the first non-trivial case.
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Proposition 4.2.1. Let Ln = PSL(2, 2n) acting on the projective plane Ωn, and put

an = σ4(Ln,Ωn). Setting a1 = a2 = 1, for n ≥ 3 we have

an = an−1 + 2an−2.

Alternatively

an =
2n + (−1)n−1

3
.

Proof. We substitute d = 1, q = 2n, p = 2 and k = 4 into Theorem 3.2.1 and simplify.

Using the same statement of the formula as in the proof of Proposition 4.1.3, we can

see that
1

q(q + 1)(q − 1)

(
q + 1

4

)
=
q − 2

4!

and

d

q

1∑
i=0

∑
m∈D∗((k−i,p))

(
pa−1

k−i
p

)
=

1

2n

(
2n−1

2

)

=
2n−1 − 1

22
.

Now, as q + 1 is odd, it is clear that

d

2(q + 1)

∑
m∈D∗((k, q+1

d
))

φ(m)

( q+1
m
k
m

)
= 0

for our values.

This brings us to the final part of the formula, here we notice that 2 ≡ −1 mod

3, and so for 4-subsets to be fixed by such elements as we see here, we need m = 3

to be a possibility (note again that m = 4 or m = 2 cannot occur). We must then

split our consideration of this part of the formula to account for whether or not q is

an even power of 2. If not, then q − 1 6≡ 0 mod 3 and we have a total of 0 for this

part. However, if q is an even power of 2, we have

1

2(q − 1)
φ(3)(2)

( q−1
3

1

)
=

2

3
.

This gives us two cases for values of an,

an =
2n − 2

4!
+

2n−1 − 1

22
+

2

3

for n even and

an =
2n − 2

4!
+

2n−1 − 1

22
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for n odd.

Here we deal with the case when n is even. So substituting an−1 and an−2 into the

appropriate formulae above we have

an−1 =
2n−1 − 2

4!
+

2n−2 − 1

22

and

2an−2 =
2n−1 − 4

4!
+

2n−2 − 2

22
+

4

3
.

We can see that an = an−1 + 2an−2 in this case, as required. Similarly we can show

that the result holds for n odd. The second expression of an follows.

This recursive formula generates the sequence 1, 1, 3, 5, 11, 21, 43, 85, 341, ... known

as the Jacobsthal sequence [31].

Next, we follow the same process as above but for the Suzuki groups and obtain

another sequence.

Proposition 4.2.2. Let an = σ3(Sz(q)), q = 22n+1, be the number of orbits on 3-

subsets of the (q2 + 1) points on which Sz(q) acts. Then

an =
4n + 2

3
.

Proof. We substitute the values q = 22n+1, k = 3 and r = 2n+1 into Theorem 3.3.2

and reduce. We note that as 2 ≡ −1 mod 3, even powers of 2 ≡ 1 mod 3.

We begin by determining the values for ηk(1
q2+1) and ηk(1

12
q2

2 ). It is clear that,

respectively, these equal
(
q2+1

3

)
and q2

2
. It is also clear that ηk(1

14
q2

4 ) = 0 when k = 3.

For the remaining parts of the formula, m cannot equal 1, so for ηk(1
2m

q2−1
m ) to be

non-zero m would have to equal 2 or 3, as neither of these divide (q − 1), (q − 1 ≡ 1

mod 2 and q− 1 ≡ 1 mod 3), we have ηk(1
2m

q2−1
m ) = 0. For ηk(m

q2+1
m ) to be non-zero,

m would have to equal 3. Again this cannot happen as m ∈ D∗(q± r+ 1) and we can

see that q + 1 ≡ 0 mod 3 and 3 - r, hence the final two summations equal 0.



CHAPTER 4. SUBSEQUENT RESULTS 65

This gives us a total value for

an =
1

q2(q − 1)(q2 + 1)

(
q2 + 1

3

)
+

1

q2

(
q2

2

)
=

(q2 + 1)(q2)(q2 − 1)

6q2(q − 1)(q2 + 1)
+

1

2

=
q + 4

6

=
22n + 2

3
=

4n + 2

3
,

as required.

The first few terms of this sequence are 2, 6, 22, 86, 342 and 1366.

Next we highlight a sequence which occurs in the values of σ3(PSU(3, q)) using

Theorem 3.4.2.

Proposition 4.2.3. Let an = σ3(PSU(3, 3n)) be the number of orbits on 3-subsets of

the (33n + 1) isotropic points on which PSU(3, 3n) acts. Then

an =
3n + 3

2
.

Proof. We prove the result by substituting the values p = 3, q = 3n, k = 3 and d = 1

into the formula in Theorem 3.4.2.

Ignoring the coefficients for the moment, we wish to evaluate the contributions of

each class type individually. That is calculate the values of each summation in turn.

Clearly ηk(π1) =
(
q3+1

3

)
, and µk = (q3 + 1)(q3 − 1)(ηk(π2)) = (q3 + 1)(q3 − 1)( q

3

p
).

Now,
∑

m∈D∗(`) φ(m)ηk(π
(m)
4 ) is non zero for all values of m as each element will

have q+ 1 fixed points, hence each will fix
(
q+1

3

)
3-subsets. As

∑
φ(m) = `− 1 in this

instance, we have a q such elements. We also need consider the case m = 2, (q + 1 is

even) as then we can construct 3-subsets from one of the fixed points and a cycle of

length 2, this combines with the above to give a contribution to the total of

q

(
q + 1

3

)
+
q3 − q

2
(q + 1).

The value of ∑
m=pj

j∈D∗(`)

φ(m)ηk(π
(m)
5 )
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is slightly more subtle, we first note that the value of φ(m) = φ(pj) = φ(p)φ(j) =

2φ(j). These classes will all fix q
p

3-subsets. As the sum of the φ(j)s will total q, we

have a contribution of 2q q
p

(note that m cannot equal 2).

The value of εk(E
∗
0 ,Ω) is zero as these elements all have cycles of lengths greater

than 1 but dividing q + 1, which 3 clearly does not.

Similarly the count for ∑
m∈D∗( q2−q+1

d
)

φ(m)ηk(π
(m)
8 )

is zero, as again 3 is not a divisor of q2 − q + 1.

Finally, we address the value of∑
m∈D( q

2−1
d

)

m6∈D(`)

φ(m)ηk(π
(m)
7 ).

We redefine j = m
(m,`)

as j = q−1

( q
2−1
m

,q−1)
, (we can see that these are identical in this

case as d = 1 and so division of these two expressions gives the value 1). As for this

summation, we will only obtain non-zero values for ηk(π7) when the greatest common

divisor of ( q
2−1
m
, q − 1) = q−1

2
, we need understand this case and so take a generator

of the subgroup of order q2 − 1 and raise it to an appropriate power to obtain a cycle

type containing cycles of length 2. This is equivalent to choosing m dividing q2 − 1

such that the above condition on j is satisfied, and hence letting m = 2(q+ 1) gives us

an element of largest order in this subgroup with cycles of length 2. We denote such

an element by h (where h has cycle type π7(m) = (2(q + 1))
q3−q

2(q+1) 2
q−1

2 12) and know

that all elements which fix 3-subsets will appear in 〈h〉 , where | 〈h〉 | = 2(q + 1). As

the elements of 〈h〉 will have (q+ 1) fixed points for even powers of h we must exclude

these and only count the remaining (q + 1) relevant elements, each of which will fix

2 q−1
2

3-subsets. This gives us a total contribution of (q + 1)(q − 1) fixed subsets.

Now we have values for each summation, we place these directly into the formula
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as given and so

an =
1

q3(q3 + 1)(q2 − 1)

((
q3 + 1

3

)
+ (q3 + 1)(q3 − 1)(

q3

3
)

)
,

+
1

q3(q3 + 1)(q2 − 1)

(
(q4 − q3 + q2)(q

(
q + 1

3

)
+
q3 − q

2
(q + 1))

)
,

+
1

q(q + 1)(2)
2q
q

3
+

1

2(q2 − 1)
(q + 1)(q − 1).

After much simplification

an =
q3 − 1

6(q2 − 1)
+

q3 − 1

3(q2 − 1)
+

4q + 3

6(q + 1)
+

q

3(q + 1)
+

1

2
,

=
q2 + q + 1 + 2q2 + 2q + 2 + 4q + 3 + 2q + 3(q + 1)

6(q + 1)
,

=
3q2 + 12q + 9

6(q + 1)
,

=
q2 + 4q + 3

2(q + 1)
,

=
q + 3

2
,

as required.

The sequence an given in Proposition 4.2.3 is also associated to Sierpinski’s Tri-

angle, see [32]. In that case the sequence determines the number of points in the nth

iteration of the fractal, the first few terms in this sequence are 3, 6, 15, 42, 123, and

366.

Proposition 4.2.4. Let an = σ3(R(32n+1)) be the number of orbits on 3-subsets of the

q3 + 1 points on which R(q) acts. Then

an =
(32n+1 + 3)2

6
.

Proof. We substitute the value k = 3 into Theorem 3.5.4 and simplify. From the

definitions, we can easily determine that ηk will be non-zero only for cycle types π1,

πJ , πT and πJT . It follows then that we need only consider these four parts of the

formula and determine the η3 values. This is straightforward in these cases,
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η3(π1(q)) =

(
q3 + 1

3

)
,

η3(πJ(q)) =
q3 − q

2
(q + 1) +

(
q + 1

3

)
,

η3(πT (q)) =
q

3
,

η3(πJT (q)) =
q3

3
.

This gives us a value for σ3(R(q)) of

σ3(R(q)) =
q3(q3 + 1)(q3 − 1)

6q3(q3 + 1)(q − 1)
+

(q3 − q)(q + 1)

2(q3 − q)
+

q3 − q
q(q3 − q)

+
q(q + 1)

3q3
+

q

3q
,

which simplifies to

σ3(R(q)) =
q2 + 6q + 9

6
=

(q + 3)2

6
,

as required.

The first terms of this sequence are 150, 10086, 799350, 64589766 and 5230353750.

4.3 PGL(2, q) Formula

We end this chapter with a look at establishing a more general formula for σk(PGL(2, q)).

We replicate some of the methods used above whilst using a mixture of conjugacy

classes and conjugate subgroups to form our partition.

Lemma 4.3.1. Let G ∼= PGL(2, q) where q is a power of an odd prime, and let Ω be

the projective line over Fq so that |Ω| = q + 1. Then

(i) |G| = q(q + 1)(q − 1),

(ii) there are q2 − 1 elements of order p with cycle structure 11p
q
p on Ω,

(iii) there exists a unique conjugacy class of cyclic subgroups H+ such that |H+| = q+1

with non trivial elements having cycle structure m
q+1
m and NG(H+)/H+

∼= C2,

(iv) there exists a unique conjugacy class of cyclic subgroups H− such that |H−| = q−1

with non trivial elements having cycle structure 12,m
q−1
m and NG(H−)/H− ∼= C2,
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(v) G has q + 2 conjugacy classes,

(vi) Let P ∈ SylpG, and set S = {P g, Hg
−, H

g
+ | g ∈ G}. Then every non-identity

element of G belongs to a unique subgroup in S.

Proof. For (i) and (ii) see Huppert [13], for (iii) and (iv) see Huppert [13] and

Faber [12] for (v) see Macdonald [17]. We show (v) by counting the number of classes

contributed by the subgroups and noting that they sum to q + 2. It is clear that the

identity class and P# both contribute a single conjugacy class each. The subgroups

H+ and H− will contribute q−1
2

and q−3
2

classes from the elements of order greater than

2 respectively, with both cyclic subgroups contributing a further class of involutions

each. This gives us 4 + q−1
2

+ q−3
2

= q + 2 class representatives. We observe that the

differing number of fixed points of Ω for each of these subgroups ensures they pairwise

intersect trivially.

Theorem 4.3.2. Let G = PGL(2, q), where q = pa for odd prime p, act on k-subsets

of Ω = PG(1, q), the projective line with p and odd prime. Now let σk(G,Ω) denote

the number of orbits G has on the set Ωk.

σk(G,Ω) =
1

q(q + 1)(q − 1)
ηk(1

q+1) +
1

q
ηk(1

1p
q
p )

+
1

2(q + 1)

∑
m∈D∗((k,q+1))

φ(m)ηk

(
m

q+1
m

)
+

1

2(q − 1)

∑
m∈D∗(q−1)

φ(m)ηk

(
12m

q−1
m

)
.

Remark Since G acts 3-transitively on Ω, σ1(G,Ω) = σ2(G,Ω) = σ3(G,Ω) = 1.

Proof. This follows the proof of Theorem 3.2.1 almost identically.

This result is in line with our previous result for PSL(2, q), allowing us to use

the same formula for both families of groups, setting the variable d equal to 1 in

Theorem 3.2.1 when wishing to evaluate σk for PGL(2, q).



Chapter 5

Discussion of Number of Orbit

Tables

In the appendices, we include a number of tables of values for differing representations

of some finite groups. One of the more interesting sections is the orbit counts for finite

abelian groups, where we compare the values of σk for non-isomorphic finite abelian

groups of equal order, acting in their regular representations. We then go on to show

the lower bound for σk(G) for such groups is attained when G is cyclic.

5.1 Cyclic Groups

Many of the results in this Chapter rely upon being able to write finite abelian groups

as a product of cyclic groups where subsequent torsion coefficients divide the previous

ones. This is due to the Classification of finitely generated abelian groups, which we

repeat here.

Theorem 5.1.1. [Classification of finite abelian groups] Any finite abelian group G is

isomorphic to a direct product of cyclic groups

Zm1 × Zm2 ...× Zms ,

where m1|m2, m2|m3,..., ms−1|ms (m1 > 1). The values mi are called the torsion

coefficients of G.

For further details of this see for example [35].

We now state a result we used implicitly in Chapter 3.

70
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Proposition 5.1.2. Let G be a cyclic permutation group of order n acting regularly

on a set Ω of size n. Then for k ≤ n we have

σk =
1

n

∑
m∈D(n)

φ(m)ηk(m
n
m ).

Proof. We count the number of fixed points in the G-action on k-subsets of Ω for an

element of G with order m, this is given by ηk(m
n
m ) as any such element will have

cycle type m
n
m , by Lemma 3.1.1 there will be φ(m) such elements in G. Substitution

into Theorem 1.0.4, gives the result.

Proposition 5.1.3. Let G be a cyclic permutation group of order n acting regularly

on a set Ω of size n. Then for k ≤ n such that (n, k) = 1 we have all orbits are regular

and

σk =

(
n
k

)
n
.

Proof. As G is regular cyclic, we have that elements in G of order m will have cycle

structure m
n
m where m is a divisor of n, moreover for a k-subset to be stabilized by

some non-trivial group element there must exist m dividing k. Therefore we are only

concerned with elements of orders dividing (k, n) = 1. Hence no such k-subset can

have a non-trivial stabilizer.

Definition 7. Let G be a group. Then for m dividing |G| we denote the number of

elements of G with order m by Om(G).

Lemma 5.1.4. Let G be an abelian group of order n and let m be a divisor of n where

m = pa1
1 , ..., p

as
s , for distinct primes pi. Then

Om(G) =
s∏
i=1

Opiai (G).

Proof. For m = pa1
1 we clearly have that Om(G) = Op1

a1 (G).

Now assume the statement for all i ≤ t. We now count the number of elements of

order pa1
1 ...p

at+1

t+1 . As G is abelian such elements are of the form gh where g ∈ G and

has order pa1
1 ...p

at
t = m1 and h ∈ G with order p

at+1

t+1 = m2, note that m1 and m2 are

coprime ((gh)m1 = h and (gh)m2 = g). By induction there are Om1(G) choices for g

and Om2(G) choices for h giving us

Om2(G)×Om1(G) =
t+1∏
i=1

Opiai (G)

as required.
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Proposition 5.1.5. Let G ∼= Zn1 × Zn2, such that n2 | n1. Then denote n2 by its

product of prime factors, papa1
1 ...p

as
s for primes p and pi, ai ∈ N i = 1...s a ∈ N∪ {0}.

Then for a prime power px | n1 we have

Opx(G) =

φ(px)
∑a

i=0 φ(pai), if px - n2

φ(px)
(
φ(px) + 2

∑x−1
i=0 φ(pai)

)
, if px | n2

Proof. We begin by recalling the notation of D(s) to be the set of divisors of s ∈ N.

We need to enumerate the number of pairs of elements x ∈ Zn1 and y ∈ Zn2 with

orders denoted o(a, b) ∈ D = D(n1)×D(n2) with lowest common multiple of a and b

equal to px. We will use Lemma 3.1.1 to infer that for a pair of divisors o(a, b) ∈ D

there are φ(a)φ(b) choices for elements in G.

We first consider the case when px - n2, then we need to count the pairs in D with

lowest common multiple px. That is pairs of the form o(px, 1), o(px, p), ..., o(px, pa) of

which there are

φ(px)φ(p0) + ...+ φ(px)φ(pa) = φ(px)
a∑
i=0

φ(pi)

such elements in G.

Secondly we consider when px | n2, then we need pairs in D of the form

o(px, 1), o(px, p), ..., o(px, px), o(px−1, px), ..., o(p0, px)

of which there are

φ(px)φ(p0)+...+φ(px)φ(px)+φ(px−1)φ(px)+...+φ(p0)φ(px) = φ(px)

(
φ(px) + 2

x−1∑
i=0

φ(pi)

)
such elements.

Remark The above two results allow us to count the number of elements of a given

order in a direct product of two cyclic groups, but also we see that the orders and

number of elements with any such order is entirely defined by the number of elements

with prime power order.

Definition 8. Let G be a finite group. Then denote by OG the monotonic increasing

sequence (mi)
|G|
i=1 where mi is the order of element gi ∈ G where gi 6= gj for i 6= j and

1 ≤ i ≤ |G|. Then let PG be the subsequence of OG containing only those terms which

equal a prime power.
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Proposition 5.1.6. Let G ∼= Zn and H ∼= Zn1×Zn2 with n2 | n1 and n = n1n2. Then

we can define an one-to-one correspondence ρ : OG → OH such that ρ(gi) | gi for all

1 ≤ i ≤ n.

Proof. As the terms in the sequences OG and OH are element orders of abelian groups

we can apply Lemmas 5.1.4 and 5.1.5 to calculate the multiplicity of each value in

either sequence. As this is entirely defined by the terms of OG and OH which are

prime powers, we first define a map ρp : PG → PH on the subsequences of OG and OH

consisting of all values which are prime powers. Then by showing this is one to one we

can then extend ρp to ρ by ρ(pa1
1 ...p

as
s ) = ρp(p

a1
1 )...ρp(p

as
s ) where pi are distinct primes

dividing gi, ai ∈ N.

We define ρp as follows, let p be a prime dividing n and let pc be the largest power

of p dividing n2. Then for a prime power px | n we have

ρp(p
x) =



px, if p - n2

px/2, if x is even and x ≤ 2c

p(x+1)/2, if x is odd and x ≤ 2c

px−c if x > 2c.

We note that this covers all possible values of px in both PG and PH . Next we show

this is an injective mapping by demonstrating equality in the multiplicities. In the

first case we have p - n2, it follows then that for such a value all the elements of G

with the order px are contained in the unique cyclic subgroup of G with order px and

as such there are φ(px) such elements in G and hence there are φ(px) such terms in

PG. Similarly as p - n2 all such elements in H are contained in the cyclic subgroup

Zpx × 1 and so we have φ(px) such elements and hence terms in PH giving us a one to

one correspondence for these elements.

For the second and third cases we will let px = p2k and px = p2k−1 when x is

even and odd respectively. Now in order to show that ρp maintains a one to one

correspondence it is enough to show that

Op2k(G) + Op2k−1(G) = Opk(H) (5.1)

for pk | n2, this is due to both these values in PG being mapped to terms with equal

value in PH .
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As G is cyclic and by recalling that φ(pa) = pa−1(p − 1) we can easily determine

the left hand side of equation (5.1),

φ(p2k) + φ(p2k−1) = p2k−1(p− 1) + p2k−2(p− 1)

= p2k − p2k−1 + p2k−1 − p2k−2

= p2k − p2k−2.

Hence there are p2k − p2k−2 terms in PG equal to either p2k or p2k−1. For the right

hand side of equation (5.1) we use Proposition 5.1.5 and so we have

Opk(H) = φ(pk)

(
φ(pk) + 2

k−1∑
i=0

φ(pi)

)
,

= φ(px)(φ(px) + 2(1 + (p− 1) + p(p− 1) + ...+ pk−1(p− 1))),

= φ(px)(φ(px) + 2 + 2((p− 1) + p(p− 1) + ...+ pk−1(p− 1))),

= φ(px)(φ(px) + 2 + 2

(
(p− 1)(pk−1 − 1)

(p− 1)

)
),

= φ(px)(φ(px) + 2 + 2(pk−1 − 1)),

= pk−1(p− 1)(pk−1(p− 1) + 2pk−1),

= p2k−2(p2 − 2p+ 1) + 2p2k−1 − 2p2k−2,

= p2k − 2p2k−1 + p2k−2 + 2p2k−1 − 2p2k−1,

= p2k − p2k−2.

Hence these terms are in a one to one correspondence also.

Finally we show that for px > p2c, we have Opx(G) = Opx−c(H). Starting with the

right side of the equation and using Proposition 5.1.5, whilst noting that as x > 2c we

have x− c > c and so px−c - n2, we have

Opx−c(H) = φ(px−c)
c∑
i=0

φ(pi),

= φ(px−c)(1 + (p− 1) + p(p− 1) + ...+ pc−1(p− 1)),

= φ(px−c)

(
(p− 1)(pc − 1)

(p− 1)

)
,

= px−c−1(p− 1)(1 + (pc − 1)),

= (px−c − px−c−1)(pc),

= px − px−1,

= px−1(p− 1) = φ(px) = Opx(G)
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as required. Hence ρp is a one to one correspondence and so by Proposition 5.1.4 ρ is

also.

Now as ρp is such that ρp(gi) | gi it follows that ρ(gi) | gi for all i also.

Remark We note that the mapping is such that ρ(m) = m if and only if gcd(m,n2) =

1 and ρ(m) | m otherwise. This can be seen from the definition of ρp given in the proof

of Proposition 5.1.6.

Example Let G ∼= Z48 and H ∼= Z12 × Z4. Then we have the following table

m (Order of g ∈ G) φ(m) = Om(G) ρ(m) Om(H)
1 1 1 1
2 1 2 3
3 2 3 2
4 2 2 12
6 2 6 6
8 4 4 24
12 4 6 0
16 8 4 0
24 8 12 0
48 16 12 0

With the above remark in mind we present the following Theorem.

Theorem 5.1.7. Let G = Zn and H = Zn1 ×Zn2 such that n2 | n1 and n = n1n2. Let

G and H act in their regular representations on n points. Then for k-subsets we have

σk(G)

= σk(H), for all k such that (n2, k) = 1

≤ σk(H), for all k such that (n2, k) 6= 1.

Proof. Let KG be the subsequence of OG containing all terms which divide gcd(k, n).

Then to count the number of G-orbits we need only calculate

nσk(G) =

|KG|∑
i=1

( n
gi
k
gi

)
.

Now if we compare KG to the subsequence of OH containing all terms dividing

gcd(k, n) then this subsequence equals ρ(KG), and so we have a subsequence of OH of

length |KG| containing only terms with the property that ρ(gi) | gi for all 1 ≤ i ≤ |KG|.
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Now for a given k, if gcd(k, n2) = 1 then for all i we have ρ(gi) = gi. Furthermore

this gives

nσk(G) =

|KG|∑
i=1

( n
gi
k
gi

)
=

|KG|∑
i=1

( n
ρ(gi)

k
ρ(gi)

)
= nσk(H).

However if gcd(k, n2) > 1 then there exists some gi | gcd(k, n) such that ρ(gi) ≤ (gi)

and so

nσk(G) =

|KG|∑
i=1

( n
gi
k
gi

)
≤
|KG|∑
i=1

( n
ρ(gi)

k
ρ(gi)

)
= nσk(H).

Corollary 5.1.8. Let

G ∼= Zm1 × Zm2 × ...× Z(mn−1)(mn),

and let

H ∼= Zm1 × Zm2 × ...× Z(mn−1) × Z(mn),

where hcf(m1,m2, ...,mn) = mn.

Then σk(G) =

σk(H), for all k where (k,mi) = 1 for all i

≤ σk(H), for all k where (k,mi) 6= 1 for some i.

Proof. We can apply the map ρ from Proposition 5.1.6 to the Z(mn−1)(mn) component

of G with image the Z(mn−1)×Z(mn) component of H. We can determine the orders of

elements of G by using the lowest common multiple of the n− 1-tuple of the element

orders from each product. We then construct a mapping from G to H by applying

the map ρn to these (n − 1)-tuples where ρn fixes all coordinate points i = 1...n − 2

and applies the mapping ρ from Proposition 5.1.6 to the (n − 1)th position to obtain

an n-tuple. It is clear then that we have a one to one mapping from the sequence of

element orders of G to the sequence of element orders of H where the order of ρn(g)

divides the order of g for all n− 1-tuples representing elements of G.

Theorem 5.1.9. Let G and H be groups of order n acting in their regular represen-

tations on k-subsets of group elements. If Om(G) denotes the number of elements of

G of order m then

σi(G) = σi(H) for all 1 ≤ i ≤ n ⇐⇒ Oj(G) = Oj(H) for all 1 ≤ j ≤ n.
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Proof. In the regular representation we have that only the identity fixes any single

point and every other element can be expressed as disjoint cycles of length equal to

the order of the element.

Clearly if Oj(G) = Oj(H) for all 1 ≤ j ≤ n then counting the number of fixed

points will be determined by the cycle types and hence the orders of the elements

of each group, as each group has an equal number of elements of a given order the

number of fixed k-sets will be equal, hence by the Orbit Stabilizer Theorem we have

σi(G) = σi(H) for all 1 ≤ i ≤ n.

If we have that σi(G) = σi(H) for all 1 ≤ i ≤ n then for ∆ ⊆ Ω, with g ∈ G

stabilizing ∆ with the order of g being such that 〈g〉 is not contained in any other

cyclic subgroup of G∆ then we must have that ∆ is the disjoint union of g-cycles and

so ∆ is stabilized by all g′ ∈ 〈g〉.

Now choose h ∈ G \ 〈g〉, if such an element exists, where h ∈ G{∆}, then no h-

cycle can intersect any g cycle in more than one point. Otherwise for some α and

β if αgx = β and αh = β then we have gx = h, contradicting our choice of h. It

follows then that ∆ can only be stabilized by cyclic subgroups with trivial pairwise

intersection. Hence for the count of fixed points to be equal for all i, we must have

that both G and H have a one to one correspondence between elements of a given

order, and so Oj(G) = Oj(H) for all 1 ≤ j ≤ n.

Remark This result does not imply isomorphism. For example the group of upper

triangular 3×3 unipotent matrices over Fp and the group Zp×Zp×Zp, will both have

one element of order 1 and p3 − 1 elements of order p. However these two groups are

not isomorphic.

5.2 Non-regular representation

After considering direct products of groups, it makes sense to return to our motivation

of the Livingstone-Wagner Theorem, and the question as to cases of equality. In this

section we show how we can create a group with arbitrary lengths of equality in the

Livingstone-Wagner Theorem and with a determined value of σ for these lengths. We

attack this by making use of specific induced actions of some intransitive groups.
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Let G1 and G2 be groups acting on the sets Ω1 and Ω2 respectively. Then define

Ω = Ω1 ∪ Ω2 and define an action from G = G1 × G2 on Ω, such that for α ∈ Ω,

(g, h) ∈ G we have α(g,h) = αg if α ∈ Ω1, and α(g,h) = αh if α ∈ Ω2.

Lemma 5.2.1. Let G = G1 × G2, for groups G1 and G2, where G1 and G2 act on

sets Ω1 and Ω2 respectively and G acts on Ω = Ω1 ∪ Ω2 as described above. Let σ1
i be

the number of G1-orbits on i-subsets on Ω1, and σ2
i be the number of G2-orbits on i

subsets of Ω2. Then if σk is the number of G-orbits on k-subsets of Ω, we have

σk =
k∑
i=0

σ1
i σ

2
k−i.

Proof. This follows from the k-sets being constructed from disjoint unions of G1 i-sets

and G2 (k − i)-sets.

Definition 9. We say the increasing sequence σn stutters from a to b for a, b ∈ N if

σa = σi for all a ≤ i ≤ b.

Proposition 5.2.2. Let G, G1, G2, Ω, Ω1 and Ω2 be as in Lemma 5.2.1. Suppose that

|Ω1| = m1, G1 is j-homogeneous for all values 1 ≤ j ≤ m1 and G2 is m2-homogeneous

for m1 ≤ m2 ∈ N. Then the sequence σi(G,Ω), 1 ≤ i ≤ |Ω| will stutter from m1 to m2

and have the value m1 + 1.

Proof. This follows from Lemma 5.2.1, we note that as G1 will have no orbits on

k-subsets for k > m1, the value of σ1
k will be zero for such k.

We give examples of Proposition 5.2.2 using Lemma 5.2.1 to evaluate σk. Letting

G1 and G2 be highly transitive (or homogeneous) we can build a sequence of values

for σk(G) which will stabilize at a given value.

Example We begin with letting G1 = A4 be the alternating group on 4 points and

G2 = A6 the alternating group on 6 points. Then Ω = {1, ..., 10}, with G1 acting

on {1, 2, 3, 4} and G2 acting on {5, 6, 7, 8, 9, 10}. Then G = G1 × G2 acts on Ω as

described above. Hence

σ1(G) = 1 + 1 = 2,

σ2(G) = 1 + (1× 1) + 1 = 3,

σ3(G) = 1 + (1× 1) + (1× 1) + 1 = 4,

σ4(G) = 1 + (1× 1) + (1× 1) + (1× 1) + 1 = 5,

σ5(G) = 0 + (1× 1) + (1× 1) + (1× 1) + (1× 1) + 1 = 5.
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We can show this in the general setting with the next example.

Example Letting G1 = Ai be the alternating group on i points and G2 = An the

alternating group on n points, for n large enough to produce the length of stutter you

require, we can generate a set of results for values of i.

i = σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9

1 2 2 2 2 2 2 2 2 2 · · ·
2 2 3 3 3 3 3 3 3 3 · · ·
3 2 3 4 4 4 4 4 4 4 · · ·
4 2 3 4 5 5 5 5 5 5 · · ·
5 2 3 4 5 6 6 6 6 6 · · ·
6 2 3 4 5 6 7 7 7 7 · · ·
7 2 3 4 5 6 7 8 8 8 · · ·
8 2 3 4 5 6 7 8 9 9 · · ·
9 2 3 4 5 6 7 8 9 10 · · ·
...

...
...

...
...

...
...

...
...

...
...

Table 5.1: Number of Orbits for G = Ai × An

Next we consider an example where G = PSL(2, 7)× PSL(2, 11).

Example We begin with letting G1 = PSL(2, 7) act on 8 points and G2 = PSL(2, 11)

act on 12 points. Then Ω = {1, ..., 20}, with G1 acting on {1, 2, 3, 4, 5, 6, 7, 8} and

G2 acting on {9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}. Then G = G1 × G2 acts on

Ω as described above. Hence using the results in Table 2.4 we have the following

σ1(G) = 1 + 1 = 2,

σ2(G) = 1 + (1× 1) + 1 = 3,

σ3(G) = 1 + (1× 1) + (1× 1) + 1 = 4,

σ4(G) = 3 + (1× 1) + (1× 1) + (1× 1) + 2 = 8,

σ5(G) = 3 + (3× 2) + (1× 1) + (1× 1) + (1× 2) + 2 = 15,

σ6(G) = 1 + (3× 1) + (3× 1) + (1× 1) + (1× 2) + (1× 2) + 6 = 18,

σ7(G) = 18,

σ8(G) = 22,

σ9(G) = 22,

σ10(G) = 30.



Chapter 6

Orbit Lengths

Here, we look at the lengths of G-orbits of a permutation group, G, acting on Ωk, the

set of k subsets of a G-set Ω. We take a general view of this initially and later in the

chapter we move towards a particular question, which was highlighted by Siemons and

Wagner [27] in 1988.

It would be preferable for there to be an analogous result to the Livingstone-Wagner

Theorem but relating to orbit lengths. Something along the lines of when we consider

the action on k-subsets, when we reach a value of k for which there appears a regular

orbit we always have a regular orbit for all values (k + i) < n/2, but we can see that

PSL(2, 11) is a counter example for k = 5. Even a result about the minimum length

of an orbit increasing does not hold, again we can cite PSL(2, 11) as a counterexample

(see Table 2.4).

6.1 General Results

We know from classical results that for a finite group G acting on Ω, the length of

any G-orbit of α ∈ Ω satisfies |αG| = |G|
|Gα| . There has been some work on calculating

the lengths of orbits when G acts on k-subsets of a G-set Ω. Specifically a search

for results linking the length of an orbit of a k-set ∆, with that of the length of the

orbit of a (k + 1)-set Σ containing ∆. Throughout this chapter we denote the setwise

stabilizer of ∆ in G by G∆, and the pointwise stabilizer of ∆ in G by G(∆).

In 1997 Mnukhin looked at bounding the possible lengths of orbits when you in-

crease the value of k and presented the following result in his paper titled “Some

80
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relations for the lengths of orbits on k-sets and (k − 1)-sets”.

Theorem 6.1.1. [Mnukhin [19]]

Let G be a permutation group on the set Ω and let Σ ⊆ Ω be a k-set, k ≥ 2. Then

there is a (k − 1)-subset, ∆ ⊂ Σ such that

|∆G| ≥ 2

k2
|ΣG|

k−1
k .

Although this is a bounding property it is not particularly strong, indeed the

example given in the paper demonstrates this.

Example For G ∼= PSL(2, 29), every 5-orbit of length 24360 contains a sub-orbit of

length greater than 280. We will compare this to a second lower bound established for

this case after Lemma 6.1.4.

We can add the following simple Lemma.

Lemma 6.1.2. Let G be a permutation group acting on a set Ω of cardinality n, and

let Σ be a k subset of Ω. Then denote the G-orbit of Σ by ΣG. Let ∆ be a (k−1)-subset

of Σ and denote its G-orbit by ∆G, then

|∆G| ≤ k|ΣG|,

for all 2 ≤ k ≤ n/2.

Proof. Let Σ = {α1, α2, ..., αk}, then for a fixed group element g ∈ G we have

Σg = {αg1, α
g
2, ..., α

g
k} = {β1, β2, ..., βk}, where βi ∈ Ω. Now let H be the subset of

G containing only elements of G which map Σ to Σg.

Take a (k − 1) element subset, ∆ ⊂ Σ where, without loss of generality, ∆ =

{α1, α2, ..., αk−1}. Then ∆h ⊂ Σg for all h ∈ H.

Clearly there are at most k possible images for ∆ under the action of elements in

H. As this holds for any image of Σ in ΣG we have the required inequality.

Corollary 6.1.3. Let G be a permutation group on the set Ω and let Σ ⊆ Ω be a k-set,

k ≥ 2. Then there is a (k − 1)-subset, ∆ ⊂ Σ such that

2

k2
|ΣG|

k−1
k ≤ |∆G| ≤ k|ΣG|.
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For example, if G is a permutation group acting on a set and it has only one orbit

of length 56 on 3-subsets, then every orbit of 4-subsets must be of length at least 14.

This example is obtained for G = PSL(2, 7) can be seen Table 2.4.

We will make use of the following simple Lemma.

Lemma 6.1.4. Let G be a permutation group acting on n points, let ΣG be an G-orbit

of a (k + 1)-subset and ∆G and G-orbit of a k-subset ∆ with Σ ⊃ ∆. Then letting

d = |{α ∈ Σ | Σ \ {α} ∈ ∆G}| and u = |{β ∈ Ω | ∆ ∪ {β} ∈ ΣG}| then

d|ΣG| = u|∆G|.

Proof. We form a graph with vertex set the elements of ΣG and ∆G, then we draw edge

(s, t) if and only if t ⊂ s. Then the number of edges is equal to d|ΣG| and u|∆G|.

We use PSL(2, 7) in its doubly-transitive action on 8 points (see Chapter 2) as an

example of this Lemma we draw the diagram below. Here the numbers on upward

arrows denote u and numbers on downward arrows denote d, the nodes represent

G-orbits and are labelled with an orbit representatives and the length of the orbit.

{1}G8

{1,2}G28

{1,2,3}G56

{1,2,3,4}G

14
{1,2,3,8}G

14
{1,2,3,5}G

42

2 7

3 6

1

4
14

3

4

We now revisit the example in Mnukhin’s paper and by applying Lemma 6.1.4 we

see that the minimum bound for the sub orbit length is actually 1015.
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In 1988 Siemons and Wagner [27] published an interesting paper which looked at

cases where the length of a k-subset orbit is longer than that the orbit of any (k + 1)

overset. They obtained some examples of groups where this phenomenon is observed

and classified all instances when k = 2.

Theorem 6.1.5. [Siemons and Wagner [27]]

Let G be a transitive permutation group of degree n > 4 acting on a set Ω. Suppose

there is some 2-element subset ∆ such that |∆G| > |ΣG| for every 3-element subset Σ

containing ∆. If G is primitive then G ∼= PSL(2, 5) acting on 6 points. Otherwise G

has three blocks of imprimitivity Ω1, Ω2 and Ω3 with |Ωi| a power of 2. Furthermore

∆G = {{α, β} | α ∈ Ωi 6= Ωj 3 β} and G has order 3 · |Ωi|2 · |G∆| with |G∆| ≤ 2.

They also presented a result which is more general

Theorem 6.1.6. [Siemons and Wagner [27]]

Let G be a transitive permutation group on a finite set Ω and let ∆ be a subset of Ω

of cardinality k such that |∆G| > |ΣG| for every subset Σ containing ∆ of cardinality

k + 1. Then

k + 1 ≥ |∆GΣ| > |ΣG∆ | ≥ 1.

Furthermore, if k ≥ 2 then either

(i) every 2-element subset of Ω is contained in some G image of ∆ or

(ii) G is imprimitive with blocks of imprimitivity Ω1, ...,Ωr (1 < |Ωi| < |Ω|) each

intersecting ∆ in at most 1 point such that every 2-element subset of the form

{αi, αj} with αi ∈ Ωi 6= Ωj 3 αj is contained in some G image of ∆.

It is suggested, by calculation, that this behaviour is rare and we can classify all

instances in primitive groups when the degree is less than 25.

Proposition 6.1.7. Let G be a primitive permutation group acting on a set of degree

n ≤ 25. Suppose that there exists a k-subset, ∆ ⊂ Ω such that |∆G| > |ΣG| for any

(k + 1)-subset Σ ⊂ Ω. Then G appears in Table 6.1.

Proof. This list was compiled by direct calculation in Magma on the 183 primitive

permutation groups of degree less than 25. The following code was used to check for

the Siemons Wagner property, out putting the primitive groups satisfying the criteria

and an example of such a k-subset.
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Group Degree k
PSL(2, 5) 6 2
PSL(2, 7) 8 3
PGL(2, 7) 8 3
PSL(2, 9) 10 4
Sym(6) 10 4

PSL(2, 11) 12 5
PGL(2, 11) 12 5
PSL(2, 13) 14 6
Alt(7) 15 6

ASL(2, 4) 16 6
Alt(7) n (Z2)4 16 7
PSL(2, 16) 17 5
PSL(3, 4) 21 6
M(22) 22 10
M(23) 23 10
M(24) 24 11

Table 6.1: Primitive permutation groups satisfying Siemons-Wagner property

Z:=Integers();

SizeofOrbsPRIMk:=procedure(G,k,~a);

S:={}; K:={}; D:={1..Degree(G)}; kD:=Subsets(D,k);a:={};

Omega:=GSet(G,kD); O:=Orbits(G,Omega);

for Orbs in O do T:=Random(Orbs);Include(~K,T);end for;

V:={};

for T in K do;N:=Z!(#G/#Stabilizer(G,T)); P:=D diff T; for b in P do;

Include(~V, #Stabilizer(G, T join{b}));

end for;S:=Min(V);L:= Z!(#G/S); if N gt L then Include(~a,<N,T>);

end if;end for;

end procedure;

Letting D be the degree.

for k in [3..Z!(Floor(D/2)-1)] do

for I:=1 to (Z!(NumberOfPrimitiveGroups(D)-2)) do

SizeofOrbsPRIMk(PrimitiveGroup(D, I),k,~T);

if #T ge 1 then <D,I,T>;end if;end for;end for;
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Remark We note that the database of primitive groups used in the Magma calcula-

tions was produced by Roney-Dougal in [25] and Sims [30].

Example Here we demonstrate the above Magma code checking primitive groups of

degrees between 6 and 10.

for D in [6..10] do

for> for k in [2..Z!(Floor(D/2)-1)] do

for|for> for I:=1 to (Z!(NumberOfPrimitiveGroups(D)-2))

do SizeofOrbsPRIMk(PrimitiveGroup(D, I),k,~T);

if #T ge 1 then <D,I,T>;

end if;end for;end for;end for;

<6, 1, {<15, { 1, 5 }>}>

<8, 4, {<56, { 4, 6, 7 }>}>

<8, 5, {<56, { 5, 6, 7 }>}>

<10, 3, {<180, { 1, 4, 5, 8 }>}>

<10, 4, {<180, { 3, 5, 9, 10 }>}>

6.2 Siemons-Wagner Property when k = 3

Taking our lead from Siemons and Wagner we consider the next value for k. That

is when we have a 3-subset, ∆, with orbit of greater length than the orbit of any

4-subset Σ containing ∆. We have seen examples of this in PSL(2, 7) and PGL(2, 7)

in Proposition 6.1.7, however, further calculation shows these are the only examples

of degree n ≤ 200. Furthermore we split Theorem 6.1.6 into two parts and here we

are only concerned with accounting for primitive groups satisfying condition (i) of

Theorem 6.1.6.

We present here, a list of results about the possible structure of such a group as

well as some information on the relative sizes of the orbits, including Proposition 6.2.3

which states that the orbit of ∆ is of greatest length amongst all the orbits on 3-subsets,

and conclude by classifying all examples where the group G is 3-homogeneous.

Definition 10. For this chapter we will say that a group G satisfies condition (?) if

G is a transitive permutation group of degree n ≥ 8, acting on a set Ω, and that there

exists a 3-subset ∆ such that |∆G| > |ΣG| for every 4-subset Σ containing ∆.
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Definition 11. Let G be a permutation group acting transitively on a set Ω. Let the

number of Gα-orbits on Ω equal t. Then we say G has rank t.

Lemma 6.2.1. Let G satisfy (?), denote the subset ∆ by {α, β, γ}. If G satisfies

condition (i) of 6.1.6 and G∆ is transitive on ∆ then G is 2-homogeneous and either

2-transitive or has rank 3.

Proof. By Theorem 6.1.6(i) every 2-subset of Ω can be mapped onto some 2-subset of

∆. As G∆ is transitive on the 2-subsets of ∆ we have that all 2-subsets of Ω are in a

single orbit.

As G∆ is transitive on ∆ we have that for all g ∈ G such that αg ∈ ∆, there exists

h ∈ G∆ such that (αg)h = α.

We know that every 2-subset of Ω is contained in some G-image of ∆, so we choose

a 2-subset {α, δ} for α, δ ∈ Ω α 6= δ and choose g ∈ G such that {α, δ}g ⊂ ∆.

As {α, δ}g = {αg, δg} we may now choose our h ∈ G∆ such that (αg)h = α and so

(δg)h ∈ {β, γ}. However, gh ∈ Gα and so Gα has at most two orbits on Ω \ {α}.

We use Lemma 6.2.1 to prove our first result about groups satisfying (?).

Theorem 6.2.2. Let G be a permutation group satisfying (?) and condition (i) of

6.1.6. If G∆ is transitive on ∆ then G is 2-transitive.

Proof. We begin by assuming G is not 2-transitive. By Proposition 6.2.1 we have that

Gα has exactly two orbits on Ω \ {α} for α ∈ Ω, hence, by a result by Sims [29] there

are exactly two G-orbits on ordered pairs (α, β) ∈ Ω×Ω with α 6= β. We then choose

any ordered pair from each of these orbits and denote them by (a, b) and (c, d). As

G is 2-homogeneous (by Proposition 6.2.1), we may map both of the sets {a, b} and

{c, d} to the set {α, β}, as these two ordered pairs are in distinct orbits we must have,

without loss, that (a, b)g1 = (α, β) and (c, d)g2 = (β, α). It follows then that any orbit

containing a pair (α, β) cannot contain (β, α) for any α, β ∈ Ω, α 6= β.

If the order of G is even then there will exist an element containing a product of

2-cycles, this element would then join the two orbits, as G is not 2-transitive we have

that |G| is odd.
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We now recall Theorem 6.1.6 which states

4 ≥ |∆GΣ| > |ΣG∆| ≥ 1,

as G is not 2-transitive it follows that G is not 3-homogeneous (3-homogeneous implies

2-transitivity see Livingstone and Wagner [16]) and so there exists a 3-subset P 6∈ ∆G.

As G is 2-homogeneous, we lose nothing by writing ∆ = {α, β, γ} and P = {α, β, δ}

and then we may take Σ = ∆ ∪ P = {α, β, γ, δ}.

As G has odd order we have that GΣ has odd order and so |∆GΣ| is odd, and so

equals 3 which implies that |PGΣ| = 1 and moreover that GΣ ≤ GP . As GΣ moves ∆

to the three 3-subsets of Σ which are not P , we must have that there exists an element

h ∈ GΣ which looks like (α, β, δ)(γ).... Also we have that G∆ is transitive on ∆ and

so must contain an element g ∈ G∆ which looks like (α, β, γ)(δ, ..., )....

From above we have an orbit containing the ordered pair (α, γ) and a second

orbit containing (γ, α). However, (α, γ)g
2

= (γ, β) but (γ, β)h
2

= (γ, α), which is a

contradiction, therefore G is 2-transitive.

Proof. Clearly we have that |G∆| < |GΣ|, so we have the two cases of either G∆ < GΣ

or (G∆ ∩GΣ) = H. If G∆ = H then we must have 2 ≤ [GΣ : H] ≤ 4, and H is a point

stabilizer in GΣ, then as GΣ is transitive on Σ we have [GΣ : H] = 4.

If we assume that H 6= G∆ then, as |G∆| < |GΣ|, we have 2 ≤ [G∆ : H] ≤ 3.

Proposition 6.2.3. Let G be a primitive permutation group acting on a set Ω of

cardinality n ≥ 8. Let ∆ be a 3-subset of Ω such that |∆G| > |ΣG| for all 4-subsets Σ

containing ∆. Then ∆G is of maximal length among G-orbits on 3-subsets.

Proof. If G is 3-homogeneous we are done, so assume there exists a 3-subset P which

is not in ∆G. We wish to show that |∆G| ≥ |PG|. Theorem 6.1.6 tells us that every 2-

subset of Ω appears in the image of ∆, hence without loss we can assume that |P∩∆| =

2 and so we can write ∆ = {1, 2, 3}, P = {1, 2, 4}. Choosing Σ = {1, 2, 3, 4}, we note

now GΣ is not transitive on Σ otherwise P ∈ ∆G, we also note that |ΣG| < |∆G|.

We now consider the possible structure of GΣ as a subgroup of Sym(4), we also

have that

4 ≥ |∆GΣ| > |ΣG∆| ≥ 1,
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so we have |∆GΣ| > 1.

Using Lemma 6.1.4 and |ΣG| as a fixed value we must have that 3 ≥ |∆GΣ| ≥ 2. If

|∆GΣ| = 3 then three of the four 3-subsets of Σ lie in ∆G and so

3|ΣG| = u|∆G|,

where u < 3. Applying Lemma 6.1.4 again gives us |ΣG| = x|PG| for some x ≥ 1. It

is clear from substitution that we have |PG| ≤ |ΣG| < |∆G|.

Similarly if |∆GΣ| = 2, then 2|ΣG| = u|∆G|, however by assumption it must be that

u = 1. Moreover d|ΣG| = x|PG| where 1 ≤ d ≤ 2 and x ≥ 1. Again by substitution

we have

|∆G|
2

= |ΣG|

d

2
|∆G| = x|PG|

|∆G| =
2x

d
|PG|,

where 2x ≥ d and so |∆G| ≥ |PG| as required.

As is clear for a primitive group satisfying (?) we have σ2 ≤ 3 (all 2-subsets of Ω

are conjugate to one of 3 possible 2-subsets of ∆) and so we next consider the case

when σ2(G) = 3.

Proposition 6.2.4. Let G be a primitive permutation group acting on a set Ω of

cardinality n ≥ 8. Let ∆ be a 3-subset of Ω such that |∆G| > |ΣG| for all 4-subsets Σ

containing ∆, suppose σ2(G) = 3 and there exists a second orbit PG on 3-subsets with

length equal to |∆G|. Then G∆ = G(Σ) and G∆ fixes at least 4 points of Ω.

Proof. We begin by choosing a 3-subset P which is not in ∆G, but |PG| = |∆G|. We

may also assume that |P ∩∆| = 2, by Theorem 6.1.6. Hence we denote ∆ = {1, 2, 3},

P = {1, 2, 4} and Σ = {1, 2, 3, 4}. Note that |PG| > |ΣG| and so we have |PGΣ| >

|ΣGP | ≥ 1 and |∆GΣ| > |ΣG∆ | ≥ 1, and so as P 6∈ ∆G we have |PGΣ| = |∆GΣ| = 2 and

so |ΣGP | = |ΣG∆| = 1. It follows that GΣ ⊇ G∆ ∪ GP , and by the inequality of their

sizes we have GΣ > G∆ and GΣ > GP .

Clearly GΣ 6= G∆∪GP , and furthermore we have an element g ∈ GΣ\(G∆∪GP ). If

g = g|Σ contains a cycle of length 4 on Σ, then GΣ is transitive and P ∈ ∆G, however
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we observe that g can have no fixed points in Σ as we only have two possibilities for

the orbits of P and ∆ under the action of GΣ, namely

(i) ∆GΣ = {{1, 2, 3}, {1, 3, 4}} and PGΣ = {{1, 2, 4}, {2, 3, 4}} or

(ii) ∆GΣ = {{1, 2, 3}, {2, 3, 4}} and PGΣ = {{1, 2, 4}, {1, 3, 4}} .

Therefore g has order 2 on Σ and so has cycle type 22. We lose no generality by

assuming the orbits under g are those shown in (i). This restricts our options for a

suitable element of Sym(4) to g = (1, 3)(2, 4) as g cannot stabilize {1, 4} or {1, 2}.

It follows from Lemma 6.1.4 that |∆G| = 2|ΣG| = |PG| and as G∆ and GP are both

subgroups of GΣ we have that they both have index 2 in GΣ. If G∆ = GP then these

groups fix all 4 points of Σ. (Otherwise they contain the transposition h = (1, 2)(3)(4),

which would be make GΣ transitive on Σ by the existence of g above).

So assuming that these two subgroups are not equal, then there exists an element

p ∈ GP \ G∆ such that gp ∈ G∆. This leaves us with the options for p to be either

(1, 4, 2) or (2, 4), we note that if p = (1, 4, 2) then 〈g, p〉 < GΣ is transitive, and so

p = (2, 4). Repeating this argument for t ∈ G∆ \GP we have that t = (1, 3).

With this information we can construct the two possible structures for GΣ as a

subgroup of Sym(4). That is either

Case 1 GΣ = {(1), (1, 3)(2, 4)} and so G∆ = GP = {(1)} = G(Σ) the pointwise

stabilizer of Σ, or

Case 2 GΣ = {(1), (1, 3), (2, 4), (1, 3)(2, 4)} with G∆ = {(1), (1, 3)} and GP =

{(1), (2, 4)}.

We eliminate Case 2 by considering the three orbits on 2-subsets. We know that

these orbits can be denoted by {1, 2}G, {1, 3}G and {2, 3}G. Taking the three subsets

of ∆g above we see that {3, 4} ∈ {1, 2}G and {1, 4} ∈ {2, 3}G. We also have that for

non-identity h in G∆ {3, 4}h = {1, 4} and so {1, 2} ∈ {2, 3}G giving σ2 ≤ 2 which is a

contradiction.

We are still some way from being able to say that a primitive group satisfying (?)

is 3-homogeneous, but we have made some progress under other restrictions. Knowing

that the orbit containing the 3-subset of interest is the largest, we assess the case when

it is the only orbit on 3-subsets.
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Theorem 6.2.5. Let G be a 3-homogeneous permutation group acting on a G-set, Ω,

of cardinality n ≥ 8. If the orbit on 3-subsets of Ω has length strictly greater than the

G-orbit of any 4-subset of Ω then G ∼= PSL(2, 7) or G ∼= PGL(2, 7).

Proof. As G is 3-homogeneous we note that any group hoping to have the property we

are searching for cannot have any regular orbits on 4-subsets and furthermore cannot

be 4-homogeneous.

We begin by compiling a list of possible candidates from two results from Kan-

tor [15] and Cameron [4] giving us M11, M22, AGL(1, 8), AΓL(1, 8), AΓL(1, 32) and

PSL(2, q) and a family of groups PSL(2, q) ≤ G ≤ PΓL(2, q), where q ≡ 3 mod 4.

Initially we can compute the groupsM11, M22, AGL(1, 8), AΓL(1, 8) andAΓL(1, 32)

and see that these do not satisfy the condition of having such a 3-subset of their re-

spective G-sets.

We now eliminate the possibilities for q in the remaining families of groups. We

first note that as all the groups which remain have PSL(2, q) as their respective socles

then as the G-sets of the over groups are the same as for their socles, we need only show

that PSL(2, q) does not satisfy the condition of having all 4-subsets with stabilizers

of order greater than 2. This is due to the size of the orbit on 3-subsets being as large

as possible but less than |G|
2

and so any over group cannot increase the length of this

3-orbit but can fuse two or more 4-orbits.

We do this by considering a specific subset of the projective line on which these

groups act. We represent the span of vector in the usual way (see Table 2.1).

We begin by letting ω be a generator for the multiplicative field of q elements, that

is ωq−1 = 1. We choose Σ = {0, 1,∞, ωa} where ωa 6∈ {−1, 2, 2−1} and, ω2a−ωa+1 6= 0.

We can now make use of a result in [1] where we have that for such a set the size

of the stabilizer in PGL(2, q) is 4. We now show that this set must have a stabilizer

in PSL(2, q) with order less than 4 by giving an element of PGL(2, q)Σ which is not

in PSL(2, q).

A =

 1 ωa

−1 −1

 .
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It is easy to see that A will act on Σ with the cycles (0, ωa)(1,∞) and so A ∈

PGL(2, q)Σ. However, the determinant of A is equal to ωa − 1 however, ωa 6= 2 by

choice and so A 6∈ PSL(2, q) as required. Hence the stabilizer of Σ in PSL(2, q) must

have order 1 or 2 and so the PSL(2, q) orbit of Σ is greater than the total number of

3-subsets of Ω and hence such groups cannot have a large enough 3 orbit to satisfy

our condition.

This has now reduced our problem to finding fields for which no such element ωa

exists. We also note that we are interested in q ≥ 7. In fact q = 7 is the only such

field in our range without such an element as a simple counting argument shows that

any field with more than 8 elements must satisfy this requirement.

Finally we note that PSL(2, 7) < PGL(2, 7) = PΓL(2, 7) and that Proposi-

tion 6.1.7 shows both of these groups satisfy the condition.

We continue with the assumption that our group G satisfying (?) is 2-transitive,

but not 3-homogeneous, all such groups are known and we can find a classification in

[4] and we have that G must contain one of the following groups T as its socle.

Group (T ) Degree Notes
PSL(2, q) q + 1 q ≡ 1 mod 4
PSU(3, q) q3 + 1
PSL(d, q) (qd − 1)/(q − 1) d > 2
Suz(q) q2 + 1
R(q) q3 + 1

PSp(2d, 2) 22d−1 + 2d−1 d > 2
PSp(2d, 2) 22d−1 − 2d−1 d > 2
PSL(2, 11) 11
PSL(2, 8) 28
Alt(7) 15
HS 176
Co3 276

Table 6.2: 2-transitive, not 3-homogeneous group socles

Proposition 6.2.6. Let G be a 2-transitive permutation group satisfying (?). If T =

Soc(G) then T is not PSL(2, 11), PSL(2, 8), Alt(7), HS or Co3 as described in

Table 6.2.

Proof. As G will be primitive and we have the given degree of G in the representation
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in Table 6.2, we may us representations given in the Magma database of primitive

groups.

Firstly we let T ∼= PSL(2, 11) and G will act on 11 points. We can obtain this

representation of T and see that T will have two orbits on 3-subsets, which we denote

∆G
1 and ∆G

2 , we see that without loss these T -orbits have length 110 and 55 respec-

tively. We know that G could fuse these, but would then be 3-homogeneous which is

a contradiction. By Proposition 6.2.3, we need only consider a 3-subset in ∆G
1 , and

we can let ∆1 = {1, 2, 3}, however, letting Σ = {1, 2, 3, 4} we have that |ΣT | > |∆T
1 |

and so G cannot have socle PSL(2, 11) on 11 points.

If T ∼= PSL(2, 8) and G has degree 28, we know that G will be contained in the

primitive groups of degree 28, checking these we see that none of these groups satisfy

(?).

We use the Magma database and choose T ∼= Alt(7) on 15 points, (Primitive-

Group(15,3)), we deal with this group similarly as the PSL(2, 11) case above. Here

we again have that T has two orbits on 3-subsets which we denote ∆G
1 and ∆G

2 , we

see that without loss these T -orbits have length 420 and 35 respectively. We know

that G could fuse these, but would then be 3-homogeneous which is a contradic-

tion. By Proposition 6.2.3, we need only consider a 3-subset in ∆G
1 , and we can let

∆1 = {1, 2, 3}, however, letting Σ = {1, 2, 3, 4} we have that |ΣT | > |∆T
1 | and so G

cannot have socle Alt(7) on 15 points.

Again we use the same method to eliminate T ∼= Co3 as a possibility, we are able

to see that there are two orbits on 3-subsets, with the longest orbit having length

2049300. We then proceed as before and by careful choice of representatives, show

T ∼= Co3 cannot be a socle of G.

Finally we eliminate any G which contains socle T ∼= HS. Taking the permutation

representation on 176 points from the online Atlas of finite groups, we see that T has

three orbits on 3-subsets of Ω = {1...176}, we denote these by representatives ∆1, ∆2

and ∆3 which have T -orbit lengths respectively 462000, 369600 and 61600. Now If G

satisfies (?) then we know from Proposition 6.2.3 that the possible orbit lengths of G

on 3-subsets which could contain an appropriate 3-subset will be the longest orbit.

The possible longest G-orbits will be |∆T
1 | = 462000, |∆T

1 ∪∆T
2 | = 831600 or |∆T

1 ∪

∆T
3 | = 523600. Each of these will contain the 3-subset ∆1. Using the representation we
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have we determine that ∆1 = {1, 2, 6} satisfies the conditions, however, Σ = {1, 2, 3, 6}

has T -orbit length 1108800 and so is longer than any G-orbit on 3-subsets containing

∆1. This excludes T ∼= HS as a possible socle of G.

It was hoped that the initial results would allow us to infer that such a G would

be 3-homogeneous, however this has not been the case so far, and we are left with the

following open conjecture.

Conjecture 6.2.7. Let G be a primitive permutation group acting on a G-set, Ω, of

cardinality n ≥ 8. If there exists a 3-subset ∆ ⊂ Ω such that |∆G| > |ΣG| for any

4-subset Σ containing ∆, then G ∼= PSL(2, 7) or G ∼= PGL(2, 7).

We have been pretty vocal on the case when G is primitive, as there are so few

examples of such groups that we have found which satisfy the Livingstone Wagner

property. However, imprimitive examples are much more common. We restrict our

attention to a few imprimitive transitive groups, in all three of the following examples

we keep ∆ = {1, 2, 3}.

Example 1 is a subgroup of Sym(8) where

G1
∼= 〈(4, 6), (1, 2, 5, 3)(4, 8)(6, 7), (1, 8)(4, 6), (3, 4, 6), (1, 7, 8), (2, 3)(4, 6),

(2, 4)(3, 6), (1, 5)(7, 8), (1, 7)(5, 8)〉.

Here |G1| = 1152 and |∆G1| = 48. This group satisfies the condition that every

2-subset appears in some G1-image of ∆. The system of imprimitivity for G1 is the

set

{{1, 5, 7, 8}, {2, 3, 4, 6}} .

The σk values are σ1 = 1, σ2 = 2, σ3 = 2 and σ4 = 3.

It is also clear that there exists a 4-subset for which no G1-image contains ∆ as a

subset (the system of imprimitivity is a single orbit) also we have G1∆ is not transitive

on ∆.

Example 2 is a subgroup of Sym(9) where

G2
∼= 〈(4, 7)(5, 9)(6, 1), (8, 9, 5)(2, 7, 4)(3, 1, 6), (4, 5, 6)(7, 1, 9), (8, 3, 2)(7, 1, 9)〉.
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Here |G2| = 54 and |∆G2| = 54. This group satisfies the condition that every

2-subset appears in some G2-image of ∆. The system of imprimitivity for G2 is the

set

{{1, 7, 9}, {2, 3, 8}, {4, 5, 6}}.

The σk values are σ1 = 1, σ2 = 2, σ3 = 5 and σ4 = 5. In this case ∆ appears as

a subset of a point in each G2-orbit of subsets of size 4. Here we have G2∆ is not

transitive on ∆.

Example 3 is a subgroup of Sym(16) where

G3
∼= 〈(1, 12)(7, 3)(11, 8)(4, 2)(5, 10)(6, 9)(13, 15)(14, 16),

(1, 8, 6, 14)(7, 2, 5, 13)(11, 9, 16, 12)(4, 10, 15, 3),

(1, 14)(7, 13)(11, 12)(4, 3)(5, 2)(6, 8)(9, 16)(10, 15),

(1, 6)(7, 5)(11, 15)(4, 16)(2, 14)(8, 13)(9, 12)(10, 3),

(1, 16)(7, 15)(11, 6)(4, 5)(2, 3)(8, 12)(9, 14)(10, 13),

(7, 8)(9, 10)(3, 12)(13, 14),

(11, 4)(9, 10)(3, 12)(15, 16),

(1, 7)(11, 4)(5, 6)(2, 8)(9, 10)(3, 12)(13, 14)(15, 16)〉.

Here |G3| = 256 and |∆G3| = 256. This group does not satisfy the condition of every

2-subset being contained in some G3-image of ∆. The σk values for G3 are σ1 = 1, σ2 =

6, σ3 = 11, σ4 = 35, σ5 = 48, σ6 = 91, σ7 = 100 and σ8 = 132. Here we have three sys-

tems of imprimitivity {{1, 5}, {2, 14}, {3, 9}, {4, 16}, {6, 7}, {8, 13}, {10, 12}, {11, 15}},

{{3, 9, 10, 12}, {1, 5, 6, 7}, {4, 11, 15, 16}, {2, 8, 13, 14}}

and {{1, 3, 5, 6, 7, 9, 10, 12}, {2, 4, 8, 11, 13, 14, 15, 16}}.

It is also clear that there exists a 4-subset for which no G3-image contains ∆ as a

subset (the system of imprimitivity is a single orbit). Again we have that the stabilizer

in G3 is not transitive on ∆.

What these examples suggest in relation to our conjecture is that if we are to

progress towards a proof of it we need to use primitivity to imply such a group is 3-

homogeneous, as we have examples of imprimitive groups, G1 and G2 above, where ev-

ery 2-subset appears in some G-image of our chosen ∆. The equivalent 2-homogeneous
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condition was achieved in the original paper by Siemons and Wagner by joining all

pairs of points via an equivalence relation. However, so far we have been unable to do

a similar thing for triples of points.

6.3 Further Work

Going forward from this thesis, we see that we have formulae for the rank one doubly

transitive groups, it would be of interest to further these to compile equivalent results

for all doubly transitive groups, and it may be possible to classify these from the orbit

numbers on 3-sets.

Another avenue would be prove or disprove Conjecture 6.2.7, and if it is proven,

possibly go on to determine if the list in Proposition 6.1.7 is a complete list of all

primitive groups with the Siemons Wagner property. Certainly calculation with the

list of primitive groups in the Magma database suggests these groups are rare.
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Appendix A

Magma Code

A.1 PSL(2, q)

PSLsig:=procedure(q,k,~sigma);

Z:=Integers();d:=GreatestCommonDivisor(q-1,2);

P:=PrimeDivisors(q);p:=P[1];sig:=0;

I:=(d/(q*(q+1)*(q-1)))*Binomial(Z!(q+1),k);

CC:=[]; Append(~CC,[<(d/q),1>,<p,Z!(q/p)>,<1,1>]);

for m in Divisors(Z!((q+1)/d)) do if m ne 1 then

Append(~CC,[<(d/(2*(q+1))),EulerPhi(m)>,<m,Z!((q+1)/m)>]);

end if;end for;

for m in Divisors(Z!((q-1)/d)) do if m ne 1 then

Append(~CC,[<(d/(2*(q-1))),EulerPhi(m)>,<m,Z!((q-1)/m)>,<1,2>]);

end if;end for;

a:=0;

for i:=1 to #CC do Cg:=CC[i];S:={Z!(Cg[i][1]): i in [2..#Cg]};

RPg:=RestrictedPartitions(k,S);

for l:=1 to #RPg do p:=RPg[l];np:=1;

for j:=2 to #Cg do

pj:=#{m:m in [1..#p] |p[m] eq Cg[j][1]};

np:=np*Binomial(Cg[j][2],pj); end for;

a:=a + np*(Cg[1][1]*Cg[1][2]);end for;end for;

sigma:=a+I;end procedure;

100
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A.2 Sz(q)

Suzsig:=procedure(q,k,~sigma);

Z:=Integers();R:=2*q;r:=SquareRoot(R);sig:=0;

CC:=[]; I:=(1/(q^2*(q^2+1)*(q-1)))*Binomial(Z!(q^2+1),k);

Append(~CC,[<(1/q^2),1>,<2,Z!(q^2/2)>,<1,1>]);

Append(~CC,[<(1/q),1>,<4,Z!(q^2/4)>,<1,1>]);

for m in Divisors(Z!((q-1))) do if m ne 1 then

Append(~CC,[<(1/(2*(q-1))),EulerPhi(m)>,<m,Z!((q^2-1)/m)>,<1,2>]);

end if;end for;t1:=Z!(q+r+1);t2:=Z!(q-r+1);

for m in Divisors(Z!((q+r+1))) do if m ne 1 then

Append(~CC,[<1/(4*t1),EulerPhi(m)>,<m,Z!((q^2+1)/m)>]);

end if;end for;

for m in Divisors(Z!((q-r+1))) do if m ne 1 then

Append(~CC,[<1/(4*t2),EulerPhi(m)>,<m,Z!((q^2+1)/m)>]);

end if;end for;a:=0;

for i:=1 to #CC do Cg:=CC[i];S:={Z!(Cg[i][1]): i in [2..#Cg]};

RPg:=RestrictedPartitions(k,S);

for l:=1 to #RPg do p:=RPg[l];np:=1;for j:=2 to #Cg do

pj:=#{m:m in [1..#p] |p[m] eq Cg[j][1]};

np:=np*Binomial(Cg[j][2],pj); end for;

a:=a + np*(Cg[1][1]*Cg[1][2]);end for;end for;

sigma:=a+I;end procedure;
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A.3 PSU(3, q)

Z:=Integers();

muk:=function(q,k);

p:=Factorisation(q)[1,1];sig:=0;CC:=[];

if p eq 2 then

Append(~CC,[<Z!((q^3+1)*(q-1)),1>,

<p,Z!((q^3)/p)>,<1,1>]);

Append(~CC,[<Z!((q^3+1)*(q^3-q)),1>,

<4,Z!((q^3)/4)>,<1,1>]);end if;if p ne 2 then

Append(~CC,[<Z!((q^3+1)*(q^3-1)),1>,

<p,Z!((q^3)/p)>,<1,1>]);end if; a:=0;

for i:=1 to #CC do Cg:=CC[i];

S:={Z!(Cg[i][1]): i in [2..#Cg]};

RPg:=RestrictedPartitions(k,S);

for l:=1 to #RPg do p:=RPg[l];np:=1;

for j:=2 to #Cg do

pj:=#{m:m in [1..#p] |p[m] eq Cg[j][1]};

np:=np*Binomial(Cg[j][2],pj); end for;

a:=a + np*(Cg[1][1]*Cg[1][2]);end for;end for;

return a;end function;

Pro:=function(A,B);CH:=[];

for i:=1 to #A do;for j:=1 to #B do;

if A[i] eq B[j] then Append (~CH,A[i]);

end if; end for; end for;

return CH; end function;

NotPro:=function(A,B);CH:=[];

for i:=1 to #A do; if not A[i] in B then

Append (~CH,A[i]);end if; end for;



APPENDIX A. MAGMA CODE 103

return CH; end function;

etak:=function(k,T); ng:=0;PI:=T[1];

for i:=1 to #PI do

RPg:=RestrictedPartitions(k,{PI[i][1]:

i in [1..#PI]});end for;

for l:=1 to #RPg do p:=RPg[l];np:=1;

for j:=1 to #PI do

pj:=#{m:m in [1..#p] |p[m] eq PI[j][1]};

np:=np*Binomial(Z!(PI[j][2]),pj); end for;

ng:=ng + np;end for; sigma:=ng;

return sigma;end function;

eff:=function(l1,l2,n,q);np:=1;

p:=Factorisation(q)[1,1];l0:=1; pr:=1;np:=1;

T:=Pro(Factorisation(l1),Factorisation(l2));

if#T eq 1 then Append(~T,<1,1>);end if;

for i in [1..#T] do l0:=l0*(T[i][1]^T[i][2]); end for;

m1:=Z!(l1/l0); m2:=Z!(l2/l0);

lstar:=LCM(m1,m2);nstar:=(n/lstar);if nstar in Z then

Aj:=Factorization(l0); Dj:=Factorization(Z!nstar);

P:=Pro(Aj,Dj); NP:=NotPro(Dj,Aj);

if #NP ne 0 then for s:=1 to #NP do;

np:=np*NP[s][1]^(Z!(NP[s][2]));end for;end if;

if #P ne 0 then for t:=1 to #P do;

pr:=pr*(P[t][1])^(Z!(P[t][2]-1))

*(EulerPhi(Z!(np)))*(Z!(P[t][1]-2));end for;end if;

if #P eq 0 then pr:=EulerPhi(np); end if;end if;

if not n/lstar in Z then nstar:= 1;pr:=0; end if;

return EulerPhi(m1)*EulerPhi(m2)*EulerPhi(l0)*pr;

end function;
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CyTy:=procedure(T,~T1);

for i:=1 to #T do for j in [2..#T[i]] do for k in {1..j-1} do;

v1:=T[i][j][1]; if v1 eq T[i][k][1] then

v2:=T[i][j][2]+T[i][k][2];T[i][k][2]:=v2;

Exclude(~T[i],T[i][j]);break j;

end if;end for; end for;end for;T1:=T; end procedure;

CySt:=procedure(T,~CC);

CyTy(T,~T1);CyTy(T1,~T2);CyTy(T2,~T3); CC:=T3; end procedure;

PI6:=function(l1,l2,n,q);CK:=[]; t:=q^3-3*q-2;

l12:=LCM(l1,l2);

Append(~CK,

[<l1,Z!((q+1)/l1)>,<l2,Z!((q+1)/l2)>,<n,Z!((q+1)/n)>,

<l12,Z!(t/l12)>]);

CySt(CK,~CK);return CK;end function;

PI36:=function(PI,t);

X:=[[]]; for i:=1 to #PI[1] do

Append(~X[1],<t*PI[1][i][1],PI[1][i][2]/t>); end for;

return X; end function;

lambdak:=function(q,k);sum:=0;

d:=GCD(q+1,3);l:=Z!((q+1)/d);

D:=Divisors(l);Exclude(~D,1);

DD:=CartesianProduct(D,D);

for x in DD do; l1:=x[1];l2:=x[2];

p:=Factorisation(q)[1,1];l0:=1; pr:=1;np:=1;

T:=Pro(Factorisation(l1),Factorisation(l2));

if #T eq 1 then Append(~T,<1,1>);end if;

for i in [1..#T] do l0:=l0*(T[i][1]^T[i][2]); end for;

m1:=Z!(l1/l0);m2:=Z!(l2/l0);

lstar:=LCM(m1,m2);Dlo:=Divisors(l0);
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for nstar in Dlo do n:=nstar*lstar;

if n ne 1 then CT:=PI6(l1,l2,n,q);

sum:=sum +(eff(l1,l2,n,q)*etak(k,CT));

end if; end for; end for;return sum;

end function;

g:=function(q,k);

sum:=0;sum1:=0;S:=[];SS:=[];DD:={};t:=1;

d:=GCD(q+1,3);l:=Z!((q+1)/d);

X:=Factorization(Z!(q+1));

if X[1][1] eq 3 then t:=X[1][1]^(X[1][2]);

elif X[2][1] eq 3 then t:=X[2][1]^(X[2][2]); end if;

a:=Factorization(t)[1][2];

D:=Divisors((Z!((q+1)/t)));C:=CartesianProduct(D,D);

for a in C do Include(~DD,a); end for;for x in DD do;

l1:=x[1];l2:=x[2];if LCM(l1,l2) in D then

T:=Pro(Factorization(l1),Factorization(l2));

if #T eq 0 then Append(~T,<1,1>);end if;

l0:=1;for i in [1..#T] do l0:=l0*(T[i][1]^T[i][2]);end for;

m1:=Z!(l1/l0);m2:=Z!(l2/l0);

lstar:=LCM(m1,m2);Dlo:=Divisors(l0);

for nstar in Dlo do n:=nstar*lstar;

CT:=PI36(PI6(l1,l2,n,q),t);

Append(~S,(eff(l1,l2,n,q)*etak(k,CT)));

end for;end if;end for;for i:=1 to #S do

Append(~SS,S[i]);end for;

for i:=1 to #SS do sum:= sum+SS[i];end for;

return (sum)*9^(a-1)*2;

end function;

eps:=function(q,k);x:=0;

d:=GCD(q+1,3);l:=Z!((q+1)/d);
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if d eq 1 then x:=lambdak(q,k);end if;

if d eq 3 then x:=lambdak(q,k)+g(q,k);end if;

return x; end function;

PSUsig:=procedure(q,k,~sigma);

Z:=Integers();d:=Gcd(q+1,3);

p:=Factorisation(q)[1,1];sig:=0;CC:=[];ell:=Z!((q+1)/d);

D:=Divisors(ell);

I:=(d/(q^3*(q^3+1)*(q^2-1)))*(Binomial(Z!(q^3+1),k)+muk(q,k));

J:=(d/(6*(q+1)^2))*eps(q,k);for m in D do if m ne 1 then

Append(~CC,[<d/(q*(q+1)*(q^2-1)),EulerPhi(m)>,

<m,Z!((q^3-q)/m)>,<1,Z!(q+1)>]);end if;end for;

for j in D do m:=Z!(p*j);if j ne 1 then

Append(~CC,[<d/(q*(q+1)*(p-1)),EulerPhi(m)>,<p,Z!(q/p)>,

<m,Z!((q^3-q)/m)>,<1,1>]);end if; end for;

for m in Divisors(Z!((q^2-1)/d)) do if m in D eq false then;

j:=Z!((m/Gcd(m,ell)));if j eq m then

Append(~CC,[<d/(2*(q^2-1)),EulerPhi(m)>,

<m,Z!((q^3-1)/m)>,<1,2>]); elif j ne m then

Append(~CC,[<d/(2*(q^2-1)),EulerPhi(m)>,<j,Z!((q-1)/j)>,

<m,Z!((q^3-q)/m)>,<1,2>]);end if;end if; end for;

for m in Divisors(Z!((q^2-q+1)/d)) do if m ne 1 then

Append(~CC,[<d*(q+1)/(3*(q^3+1)),EulerPhi(m)>,

<m,Z!((q^3+1)/m)>]);

end if; end for;a:=0;

for i:=1 to #CC do Cg:=CC[i];S:={Z!(Cg[i][1]): i in [2..#Cg]};

RPg:=RestrictedPartitions(k,S);

for l:=1 to #RPg do p:=RPg[l];np:=1;for j:=2 to #Cg do

pj:=#{m:m in [1..#p] |p[m] eq Cg[j][1]};

np:=np*Binomial(Cg[j][2],pj); end for;

a:=a + np*(Cg[1][1]*Cg[1][2]);end for;end for;

sigma:=a+I+J;end procedure;
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A.4 R(q)

Z:=Integers();

E:=function(q);

p:=(q mod 8);

return Z!(p-4);

end function;

DM:=function(m);

return Z!(GCD(m,2)); end function;

etak:=function(k,T); ng:=0;PI:=T[1];

for i:=1 to #PI do

RPg:=RestrictedPartitions(k,{PI[i][1]: i in [1..#PI]});end for;

for l:=1 to #RPg do p:=RPg[l];np:=1;

for j:=1 to #PI do

pj:=#{m:m in [1..#p] |p[m] eq PI[j][1]};

np:=np*Binomial(Z!(PI[j][2]),pj); end for;

ng:=ng + np;end for;

sigma:=ng;

return sigma;

end function;

etakphi2:=function(k,PI); ng:=0;sig:=0;

for i:=1 to #PI do Cg:=PI[i];

RPg:=RestrictedPartitions(k,{Cg[i][1]: i in [2..#Cg]});

ng:=0;

for l:=1 to #RPg do p:=RPg[l];np:=1;

for j:=2 to #Cg do

pj:=#{m:m in [1..#p] |p[m] eq Cg[j][1]};

np:=np*Binomial(Cg[j][2],pj);



APPENDIX A. MAGMA CODE 108

end for;

ng:=(ng + np);

end for;

sig:=sig + ng*Cg[1][1];

end for;

sigma:=sig;return sigma;end function;

CyTy:=procedure(T,~T1);

for i:=1 to #T do for j in [2..#T[i]] do for k in {1..j-1} do;

v1:=T[i][j][1];

if v1 eq T[i][k][1] then v2:=T[i][j][2]+T[i][k][2];

T[i][k][2]:=v2;

Exclude(~T[i],T[i][j]);break j;end if;end for; end for;end for;

T1:=T; end procedure;

CySt:=procedure(T,~CC);

CyTy(T,~T1);CyTy(T1,~T2);CyTy(T2,~T3); CC:=T3;

end procedure;

PIJ:=function(q);

PI:=[[<2,Z!((q^3-q)/2)>,<1,Z!(q+1)>]];

return PI;

end function;

PIRa:=function(q);e:=E(q);

D:=Divisors(Z!((q+e)/2)); Exclude(~D,1);Exclude(~D,2);

CT:=[]; for m in D do;

Append(~CT,[<EulerPhi(m),1>,<1,2>,<m,Z!((q^3-1)/(m))>]);

end for;return CT; end function;

PISa:=function(q);e:=E(q);

D:=Divisors(Z!((q-e)/4)); Exclude(~D,1);

CT:=[]; for m in D do;
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Append(~CT,[<EulerPhi(m),1>,<m,Z!((q^3-q)/(m))>,

<Z!(m/DM(m)),Z!(DM(m)*(q+1)/m)>]);

end for;CySt(CT,~CT);return CT; end function;

PIT:=function(q);

PI:=[[<3,Z!((q^3)/3)>,<1,1>]];

return PI;

end function;

PIJRa:=function(q);e:=E(q);

D:=Divisors(Z!((q+e)/2)); Exclude(~D,1);

CT:=[]; for m in D do;

Append(~CT,[<EulerPhi(m),1>,<Z!(2*m),Z!((q^3-q)/(2*m))>,

<Z!(m),Z!((q-1)/m)>,<1,2>]);

end for;CySt(CT,~CT);return CT; end function;

PIJSa:=function(q);e:=E(q);

D:=Divisors(Z!((q-e)/4)); Exclude(~D,1);

CT:=[]; for m in D do;

Append(~CT,[<EulerPhi(m),1>,<Z!(2*m),Z!((q^3-q)/(2*m))>,

<Z!(m),Z!((q+1)/m)>]);

end for;CySt(CT,~CT);return CT; end function;

PIJT:=function(q);

PI:=[[<6,Z!((q^3-q)/6)>,<3,Z!(q/3)>,<1,1>]];

return PI;

end function;

PIY:=function(q);

PI:=[[<9,Z!((q^3)/9)>,<1,1>]];

return PI;

end function;
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PIX:=function(q);

PI:=[[<3,Z!((q^3)/3)>,<1,1>]];

return PI;

end function;

PIW:=function(q);M:=Sqrt(Z!(3*q));

D:=Divisors(Z!(q+1+M)); Exclude(~D,1);

CT:=[]; for m in D do;

Append(~CT,[<EulerPhi(m),1>,<m,Z!((q^3+1)/(m))>]);

end for;return CT;

end function;

PIV:=function(q);M:=Sqrt(Z!(3*q));

D:=Divisors(Z!(q+1-M)); Exclude(~D,1);

CT:=[]; for m in D do;

Append(~CT,[<EulerPhi(m),1>,<m,Z!((q^3+1)/(m))>]);

end for;return CT;

end function;

ID:=function(q,k);

return Binomial(q^3+1,k);

end function;

ClJ:=function(q,k);

x:=etak(k,PIJ(q));

return q^2*(q^2-q+1)*x; end function;

ClRa:=function(q,k);

x:=etakphi2(k,PIRa(q));

return (q^6+q^3)*x/2;

end function;



APPENDIX A. MAGMA CODE 111

ClSa:=function(q,k);

x:=etakphi2(k,PISa(q));

return (q^3*(q-1)*(q^2-q+1)*x)/6;

end function;

ClT:=function(q,k);

x:=etak(k,PIT(q));

return q*(q-1)*(q^3+1)*x; end function;

ClJRa:=function(q,k);

x:=etakphi2(k,PIJRa(q));

return (q^6+q^3)*x/2;

end function;

ClJSa:=function(q,k);

x:=etakphi2(k,PIJSa(q));

return q^3*(q-1)*(q^2-q+1)*x/2;

end function;

ClJT:=function(q,k);

x:=etak(k,PIJT(q));

return q^2*(q-1)*(q^3+1)*x;

end function;

ClW:=function(q,k);

x:=etakphi2(k,PIW(q));

return (q^3)*(q^3+1)*(q-1)*x/((q+1+Z!(Sqrt(Z!(3*q))))*6);

end function;

ClV:=function(q,k);

x:=etakphi2(k,PIV(q));
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return (q^3)*(q^3+1)*(q-1)*x/((q+1-(Z!(Sqrt(Z!(3*q)))))*6);

end function;

ClY:=function(q,k);

x:=etak(k,PIY(q));

return q^2*(q-1)*(q^3+1)*x;

end function;

ClX:=function(q,k);

x:=etak(k,PIX(q));

return (q-1)*(q^3+1)*x;

end function;

procedure SigmaRee(q,k,~sigma);

x:=ID(q,k)+ClJ(q,k)+ClRa(q,k)+ClSa(q,k)+ClT(q,k)+ClJRa(q,k)

+ClJSa(q,k)+ClJT(q,k)+ClW(q,k)+ClV(q,k)+ClY(q,k)+ClX(q,k);

sigma:=x/((q^3)*(q^3+1)*(q-1));

end procedure;
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Number of Orbit Tables

We present here a list of finite groups and their values σk when considered in regular

representations. For the abelian groups we let (α1, α2, ..., αn) denote Zα1×Zα2 ...×Zαn .

(2) (3) (4) (2, 2) (5) (6) (7)

k σ
1 1

k σ
1 1
2 1

k σ
1 1
2 2

k σ
1 1
2 3

k σ
1 1
2 2
3 2

k σ
1 1
2 3
3 4

k σ
1 1
2 3
3 5

(8) (4, 2) (2, 2, 2) (9) (3, 3) (10)

k σ
1 1
2 4
3 7
4 10

k σ
1 1
2 5
3 7
4 12

k σ
1 1
2 7
3 7
4 14

k σ
1 1
2 4
3 10
4 14

k σ
1 1
2 4
3 12
4 14

k σ
1 1
2 5
3 12
4 22
5 26

(11) (12) (6, 2) (13) (14) (15)

k σ
1 1
2 5
3 15
4 30
5 42

k σ
1 1
2 6
3 19
4 43
5 66
6 80

k σ
1 1
2 7
3 19
4 45
5 66
6 84

k σ
1 1
2 6
3 22
4 55
5 99
6 132

k σ
1 1
2 7
3 26
4 73
5 143
6 217
7 246

k σ
1 1
2 7
3 31
4 91
5 201
6 335
7 429

113
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(16) (8, 2) (4, 4) (4, 2, 2) (2, 2, 2, 2)
k σ
1 1
2 8
3 35
4 116
5 273
6 504
7 715
8 810

k σ
1 1
2 9
3 35
4 120
5 273
6 511
7 715
8 820

k σ
1 1
2 9
3 35
4 122
5 273
6 511
7 715
8 822

k σ
1 1
2 11
3 35
4 128
5 273
6 525
7 715
8 838

k σ
1 1
2 15
3 35
4 140
5 273
6 553
7 715
8 870

(17) (18) (6, 3) (19) (20)

k σ
1 1
2 8
3 40
4 140
5 364
6 728
7 1144
8 1430

k σ
1 1
2 9
3 46
4 172
5 476
6 1038
7 1768
8 2438
9 2704

k σ
1 1
2 9
3 48
4 172
5 476
6 1044
7 1768
8 2438
9 2710

k σ
1 1
2 9
3 51
4 204
5 612
6 1428
7 2652
8 3978
9 4862

k σ
1 1
2 10
3 57
4 245
5 776
6 1944
7 3876
8 6310
9 8398
10 9252

(10, 2) (21) (22) (23) (24)

k σ
1 1
2 11
3 57
4 249
5 776
6 1956
7 3876
8 6330
9 8398
10 9278

k σ
1 1
2 10
3 64
4 285
5 969
6 2586
7 5538
8 9690
9 14000
10 16796

k σ
1 1
2 11
3 70
4 335
5 1197
6 3399
7 7752
8 14550
9 22610
10 29414
11 32066

k σ
1 1
2 11
3 77
4 385
5 1463
6 4389
7 10659
8 21318
9 35530
10 49742
11 58786

k σ
1 1
2 12
3 85
4 446
5 1771
6 5620
7 14421
8 30667
9 54484
10 81752
11 104006
12 112720
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(64) (32, 2) (16,4)
k σ
1 1
2 32
3 651
4 9936
5 119133
6 1171552
7 9706503
8 69159400
9 430321633
10 2366772128
11 11618684091
12 51315868912
13 205263418941
14 747745364448
15 2492484372855
16 7633233556276
17 21552658988805
18 56276387797920
19 136248095712855
20 306558216362064
21 642312451217745
22 1255428883941600
23 2292522306124995
24 3916392276491800
25 6266227636741653
26 9399341460540192
27 13228702788676823
28 17480785835260912
29 21700285855317153
30 25317000173376096
31 27767032438524099
32 28634752211620266

k σ
1 1
2 33
3 651
4 9952
5 119133
6 1171707
7 9706503
8 69160528
9 430321633
10 2366778421
11 11618684091
12 51315897248
13 205263418941
14 747745469631
15 2492484372855
16 7633233885032
17 21552658988805
18 56276388674445
19 136248095712855
20 306558218378208
21 642312451217745
22 1255428887973615
23 2292522306124995
24 3916392283548080
25 6266227636741653
26 9399341471395617
27 13228702788676823
28 17480785849993632
29 21700285855317153
30 25317000191054931
31 27767032438524099
32 28634752230404436

k σ
1 1
2 33
3 651
4 9954
5 119133
6 1171707
7 9706503
8 69160544
9 430321633
10 2366778421
11 11618684091
12 51315897318
13 205263418941
14 747745469631
15 2492484372855
16 7633233885264
17 21552658988805
18 56276388674445
19 136248095712855
20 306558218378754
21 642312451217745
22 1255428887973615
23 2292522306124995
24 3916392283549088
25 6266227636741653
26 9399341471395617
27 13228702788676823
28 17480785849995062
29 21700285855317153
30 25317000191054931
31 27767032438524099
32 28634752230406054
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(8, 8) (16, 2, 2) (8, 4, 2)

k σ
1 1
2 33
3 651
4 9954
5 119133
6 1171707
7 9706503
8 69160548
9 430321633
10 2366778421
11 11618684091
12 51315897318
13 205263418941
14 747745469631
15 2492484372855
16 7633233885276
17 21552658988805
18 56276388674445
19 136248095712855
20 306558218378754
21 642312451217745
22 1255428887973615
23 2292522306124995
24 3916392283549116
25 6266227636741653
26 9399341471395617
27 13228702788676823
28 17480785849995062
29 21700285855317153
30 25317000191054931
31 27767032438524099
32 28634752230406086

k σ
1 1
2 35
3 651
4 9984
5 119133
6 1172017
7 9706503
8 69162784
9 430321633
10 2366791007
11 11618684091
12 51315953920
13 205263418941
14 747745679997
15 2492484372855
16 7633234542544
17 21552658988805
18 56276390427495
19 136248095712855
20 306558222410496
21 642312451217745
22 1255428896037645
23 2292522306124995
24 3916392297660640
25 6266227636741653
26 9399341493106467
27 13228702788676823
28 17480785879459072
29 21700285855317153
30 25317000226412601
31 27767032438524099
32 28634752267972774

k σ
1 1
2 35
3 651
4 9988
5 119133
6 1172017
7 9706503
8 69162816
9 430321633
10 2366791007
11 11618684091
12 51315954060
13 205263418941
14 747745679997
15 2492484372855
16 7633234543004
17 21552658988805
18 56276390427495
19 136248095712855
20 306558222411588
21 642312451217745
22 1255428896037645
23 2292522306124995
24 3916392297662656
25 6266227636741653
26 9399341493106467
27 13228702788676823
28 17480785879461932
29 21700285855317153
30 25317000226412601
31 27767032438524099
32 28634752267976006
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(4, 4, 4) (8, 2, 2, 2) (4, 4, 2, 2)

k σ
1 1
2 35
3 651
4 9996
5 119133
6 1172017
7 9706503
8 69162872
9 430321633
10 2366791007
11 11618684091
12 51315954340
13 205263418941
14 747745679997
15 2492484372855
16 7633234543900
17 21552658988805
18 56276390427495
19 136248095712855
20 306558222413772
21 642312451217745
22 1255428896037645
23 2292522306124995
24 3916392297666632
25 6266227636741653
26 9399341493106467
27 13228702788676823
28 17480785879467652
29 21700285855317153
30 25317000226412601
31 27767032438524099
32 28634752267982406

k σ
1 1
2 39
3 651
4 10048
5 119133
6 1172637
7 9706503
8 69167296
9 430321633
10 2366816179
11 11618684091
12 51316067264
13 205263418941
14 747746100729
15 2492484372855
16 7633235857564
17 21552658988805
18 56276393933595
19 136248095712855
20 306558230475072
21 642312451217745
22 1255428912165705
23 2292522306124995
24 3916392325885760
25 6266227636741653
26 9399341536528167
27 13228702788676823
28 17480785938389952
29 21700285855317153
30 25317000297127941
31 27767032438524099
32 28634752343109446

k σ
1 1
2 39
3 651
4 10056
5 119133
6 1172637
7 9706503
8 69167352
9 430321633
10 2366816179
11 11618684091
12 51316067544
13 205263418941
14 747746100729
15 2492484372855
16 7633235858460
17 21552658988805
18 56276393933595
19 136248095712855
20 306558230477256
21 642312451217745
22 1255428912165705
23 2292522306124995
24 3916392325889736
25 6266227636741653
26 9399341536528167
27 13228702788676823
28 17480785938395672
29 21700285855317153
30 25317000297127941
31 27767032438524099
32 28634752343115846
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(4, 2, 2, 2, 2) (2, 2, 2, 2, 2, 2)
k σ
1 1
2 47
3 651
4 10176
5 119133
6 1173877
7 9706503
8 69176312
9 430321633
10 2366866523
11 11618684091
12 51316293952
13 205263418941
14 747746942193
15 2492484372855
16 7633238487580
17 21552658988805
18 56276400945795
19 136248095712855
20 306558246604224
21 642312451217745
22 1255428944421825
23 2292522306124995
24 3916392382335944
25 6266227636741653
26 9399341623371567
27 13228702788676823
28 17480786056251712
29 21700285855317153
30 25317000438558621
31 27767032438524099
32 28634752493382726

k σ
1 1
2 63
3 651
4 10416
5 119133
6 1176357
7 9706503
8 69194232
9 430321633
10 2366967211
11 11618684091
12 51316746768
13 205263418941
14 747748625121
15 2492484372855
16 7633243745820
17 21552658988805
18 56276414970195
19 136248095712855
20 306558278858160
21 642312451217745
22 1255429008934065
23 2292522306124995
24 3916392495228360
25 6266227636741653
26 9399341797058367
27 13228702788676823
28 17480786291963792
29 21700285855317153
30 25317000721419981
31 27767032438524099
32 28634752793916486



Appendix C

Dihedral Groups

In this section we will denote the Dihedral group Dn in its degree s representation as

D(n, s).

D(4, 4) D(4, 8) D(5, 5) D(5, 10) D(6, 6) D(6, 12)

k σ
1 1
2 2

k σ
1 1
2 6
3 7
4 13

k σ
1 1
2 2

k σ
1 1
2 7
3 12
4 26
5 26

k σ
1 1
2 3
3 3

k σ
1 1
2 9
3 19
4 50
5 66
6 90

D(7, 7) D(7, 14) D(8, 8) D(8, 16) D(9, 9) D(9, 18)

k σ
1 1
2 3
3 4

k σ
1 1
2 10
3 26
4 82
5 143
6 232
7 246

k σ
1 1
2 4
3 5
4 8

k σ
1 1
2 12
3 35
4 130
5 273
6 532
7 715
8 845

k σ
1 1
2 4
3 7
4 10

k σ
1 1
2 13
3 46
4 188
5 476
6 1075
7 1768
8 2494
9 2704
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D(10, 10) D(10, 20) D(11, 11) D(11, 22) D(12, 12) D(12, 24)

k σ
1 1
2 5
3 8
4 16
5 16

k σ
1 1
2 15
3 57
4 267
5 776
6 2004
7 3876
8 6414
9 8398
10 9378

k σ
1 1
2 5
3 10
4 20
5 26

k σ
1 1
2 16
3 70
4 360
5 1197
6 3474
7 7752
8 14700
9 22610
10 29624
11 32066

k σ
1 1
2 6
3 12
4 29
5 38
6 50

k σ
1 1
2 18
3 85
4 479
5 1771
6 5730
7 14421
8 30914
9 54484
10 82148
11 104006
12 113182



Appendix D

PSL(2, q), Sz(q) and R(q)

Is this section we give tables for values of σk for PSL(2, q).

PSL(2, 2) PSL(2, 4) PSL(2, 8) PSL(2, 16)

k σ
1 1

k σ
1 1
2 1
3 1

k σ
1 1
2 1
3 1
4 1

k σ
1 1
2 1
3 1
4 3
5 4
6 8
7 10
8 11
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PSL(2, 32) PSL(2, 64)

k σ
1 1
2 1
3 1
4 5
5 11
6 53
7 148
8 481
9 1240
10 2964
11 6049
12 11099
13 17759
14 25370
15 32054
16 36045

k σ
1 1
2 1
3 1
4 11
5 40
6 396
7 2741
8 19825
9 122557
10 686242
11 3418419
12 15382884
13 62671071
14 232777653
15 791317807
16 2472867747
17 7127366718
18 19006311249
19 47014965768
20 108134418184
21 231715458345
22 463430916690
23 866412564390
24 1516221987675
25 2486601803061
26 3825541228710
27 5525779362487
28 7499271994953
29 9568034643928
30 11481641572756
31 12963142575416
32 13773338980081
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PSL(2, 3) PSL(2, 9) PSL(2, 27) PSL(2, 81)

k σ
1 1
2 1

k σ
1 1
2 1
3 2
4 3
5 4

k σ
1 1
2 1
3 1
4 6
5 10
6 54
7 124
8 352
9 709
10 1413
11 2185
12 3212
13 3820
14 4208

k σ
1 1
2 1
3 2
4 18
5 124
6 1462
7 14566
8 135423
9 1105394
10 8061545
11 52721076
12 311892300
13 1679211364
14 8275918844
15 37516692764
16 157100387263
17 609916428107
18 2202473433337
19 7418849947652
20 23369369792992
21 68995262085052
22 191305025566124
23 499056543144016
24 1226847291938554
25 2846285627835338
26 6239933790333132
27 12942084742595510
28 25421952022430098
29 47337427663548448
30 83629455307070090
31 140281666642156042
32 223573905896345978
33 338748341886591892
34 488196139407869156
35 669526133664350820
36 874103563025840264
37 1086723348320185108
38 1286909227975019584
39 1451897590368099280
40 1560789909481571850
41 1598857956053790920
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Sz(23) Sz(25)

k σk
1 1
2 1
3 2
4 33
5 296
6 2914
7 23989
8 173915
9 1098340
10 6150614
11 30740406
12 138331897
13 563924722
14 2094577290
15 7121436602
16 22254489349
17 64144982995
18 171053287380
19 423131170290
20 973201692356

k σk
1 1
2 1
3 6
4 1541
5 287096
6 48803566
7 7101265092
8 903635983977
9 102110556557351
10 10374432546124066
11 957277159310463642
12 80889919961734264109
13 6303191453654698278859
14 455630696507039612200642
15 30709508944460592186709766
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R(33)
k σ
1 1
2 1
3 150
4 623428
5 2443427220
6 8013812054828
7 22527945403688618
8 55410297162241208130
9 121139222946638748437249
10 238341421146416900578628805
11 426284465421245865981069875960
12 698857857352679015395725631050206
13 1057533213064761543708353010645439432
14 1485909702442637449308943952926050590344
15 1948522923136445241713624204756132257133808
16 2395343585948171341200892851003703409298422692

R(35)

k σ
1 1
2 1
3 10086
4 35451376171
5 101732489116660938
6 243291602002140809300534
7 498709622069916682355879330498
8 894491874353579317137971564879410236
9 1426108272879119350164648441872191700624000
10 2046308357060692276443120452694708725741372940222
11 2669297262910132116733634230369778232460229273272786165

R(37)

k σ
1 1
2 1
3 799350
4 2085602656334218
5 4363225346047096148780784
6 7606813034408617115798632828683512
7 11367135864437748315468243303817564595497220
8 14863031997538094899892178817542358502230565404935708
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A(n) and S(n)

126



APPENDIX E. A(N) AND S(N) 127

A4 A5

k σ
1 1
2 7
3 21
4 45
5 66
6 86

k σ
1 1
2 37
3 577
4 8236
5 91030
6 835476
7 6436782
8 42650532
9 246386091
10 1256602779
11 5711668755
12 23322797475
13 86114390460
14 289098819780
15 886568158468
16 2493474394140
17 6453694644705
18 15417163018725
19 34080036632565
20 69864082608210
21 133074428781570
22 235904682814710
23 389755540347810
24 600873146368170
25 865257299572455
26 1164769471671687
27 1466746704458899
28 1728665795116244
29 1907493251046152
30 1971076398255692
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S4 S5

k σ
1 1
2 16
3 87
4 469
5 1771
6 5700
7 14421
8 30834
9 54498
10 82016
11 104006
12 113048

k σ
1 1
2 72
3 2347
4 68831
5 1588155
6 30446808
7 495729741
8 7002284291
9 87138273898
10 967235959860
11 9672348219898
12 87857173443656
13 729890277209226
14 5578447199130288
15 39421026305381698
16 258700485661397901
17 1582638261961640247
18 9056207835416513832
19 48617536784119860921
20 245518560775512424479
21 1169136003618123572265
22 5261112016352937951960
23 22416912069373527176835
24 90601686280676218399110
25 347910475316677141792980
26 1271211352119704447939424
27 4425698781450038330666308
28 14699642381248383747739468
29 46633348243948925575439764
30 141454489673322823155388692


