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Abstract—This paper presents a risk-based Probabilistic 

Small-disturbance Security Analysis (PSSA) methodology for use 

with power systems with uncertainties. This novel addition to ex-

isting Dynamic Security Assessment (DSA) techniques can be 

used to quantify the small-disturbance stability risks associated 

with forecasted operating conditions. This approach first estab-

lishes the probability density functions (pdfs) for the damping of 

the critical oscillatory electromechanical modes by modeling the 

stochastic variation of system uncertainties such as loading levels, 

intermittent generation sources, and power flows through Volt-

age Source Converter High Voltage Direct Current (VSC-

HVDC) lines. The produced pdfs are then be combined with se-

verity measures (either simple risk matrices or continuous 

functions) in order to quantify the risk of stability issues for the 

system associated with the forecasted operating scenario. Addi-

tionally, the PSSA is used to establish risk-based operational 

limits and the concept of a probabilistic security margin is intro-

duced to more accurately represent the probabilistic operation of 

uncertain power systems. The proposed techniques are demon-

strated using a multi-area meshed power system incorporating 

two VSC-HVDC systems, one of which is connected to a large 

wind farm.  

 
Index Terms—dynamic security assessment, electro-

mechanical modes, security margin, small-disturbance stability, 

uncertainty, VSC-HVDC. 

I.  INTRODUCTION 

HE drive for greater efficiency, economics and energy se-

curity is resulting in the desire for greater utilization of 

current power system assets. The increase seen in the number 

of intermittent renewable energy sources and new types of 

system load is introducing more uncertain system parameters 

which subsequently lead to more variable operating condi-

tions. The effects of these uncertainties must be thoroughly 

explored, and the risks introduced with respect to power sys-

tem stability should be quantified. 

Power system operators regularly perform security analysis 

to ensure that the network is not operated outside of tolerable 

limits. These limits can cover a wide variety of facets of pow-

er system operation, but typically focus on static phenomena 

such as line overloads, voltage limit excursions, and voltage 

stability margins [1]–[3]. In addition to these important fac-

tors, Dynamic Security Assessment (DSA) is required in order 
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to identify and mitigate for possible dynamic system problems 

which may otherwise lead to wide-spread issues and potential-

ly to system collapse.  

Transient stability security assessment has typically been 

focused on the fast detection and calculation of suitable restor-

ative control and protection schemes once the disturbance has 

occurred [4]–[6]. This is due to the fact that the consequences 

of large transient disturbances are extremely dependent on in-

cident-specific uncertainties – such as fault location, fault 

type, fault clearing time, and the operating point at the time of 

the incident. In general, these transient stability predictors use 

classification techniques to identify whether evolving system 

conditions recorded online with Phasor Measurement Units 

(PMUs) will lead to instability based on large sets of training 

data simulated offline [5], [6]. Considering system variability, 

analytical linearized techniques have been used to accurately 

determine the probability distributions of power system criti-

cal clearing times based on loading uncertainties [7].  

Small-disturbance stability relates to the ability of a power 

system to maintain stability following the small variations that 

naturally and continuously occur in practical power systems. 

As synchronous machines regain stability following disturb-

ances, oscillations are seen in their rotor speeds, resulting in 

power oscillations throughout the system. Low frequency in-

ter-area electromechanical oscillations are inherent in all large 

power systems [8], and in many cases the use of high genera-

tor exciter gains to improve the transient recovery of power 

systems has exacerbated small-disturbance stability concerns 

[9]. Unlike transient stability, small-disturbance stability is not 

dependent on the nature of the disturbance and can therefore 

be investigated using a probabilistic risk-based approach 

which accounts for system uncertainties. As complex condi-

tions evolve within power systems, it is possible for 

underlying oscillations to become poorly damped or even un-

stable which can lead to equipment disconnection and 

eventual system collapse. 

A Small-disturbance Security Assessment (SSA) tool has 

been presented in [10] where advanced computational algo-

rithms are used to complete deterministic studies. It has been 

developed in order to determine operational guidelines which 

will alleviate power oscillation damping problems within 

power systems. However, the deterministic approach may fail 

to accurately represent the true system security levels as the 

increasing levels of uncertainty are not considered. The devel-

opment of a Probabilistic SSA (or PSSA) will allow these 

variations to be incorporated into the assessment and therefore 

ensure that the system risks are correctly quantified. 
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The area of risk-based small-disturbance stability analysis 

has received limited research effort with notable contributions 

towards probabilistic methods found [11]–[15]. In [11], the 

benefits of using a probabilistic approach to establish modal 

positions are outlined, however methods presented do not in-

clude further risk analysis. The work presented in [12] utilizes 

tetrachoric series in order to generate a probabilistic stability 

region for a power system. This work is limited in its assump-

tion that all electromechanical modes can be described by a 

multivariate normal distribution which does not hold for non-

linear power systems (as shown by the results presented in this 

paper). In [13]–[15], variations in the probability distributions 

of mode damping are investigated. However as with [11], the 

research does not evaluate risk in terms of both probability 

and severity, focusing purely on the probability of instability. 

The work within this field has focused upon the probabilistic 

techniques employed but has not completed risk analysis 

which considers the severity of the resultant conditions. Fur-

thermore, measures of small-disturbance stability risk have not 

been used to establish meaningful operational limits which can 

guide system operation. Some initial work in this area has 

been published by the authors in [16] in which it was shown 

that risk measures can be formulated to assess small-

disturbance stability issues. 

This paper builds upon the previously discussed research to 

present a novel risk-based Probabilistic Small-disturbance Se-

curity Assessment methodology, demonstrated using a large 

mixed AC/DC power system. The PSSA is used to quantify 

the risk associated with forecasted loading scenarios by con-

sidering both the stochastic uncertainty in precise loading 

values, intermittent energy sources and power flows through 

Voltage Source Converter High Voltage Direct Current (VSC-

HVDC) lines, and the severity of resultant power oscillations. 

Additionally, these proposed techniques are used for the first 

time to establish risk-based forecast power flow limits that 

will ensure that acceptable risk levels are not exceeded. The 

new concept of a Probabilistic Security Margin is introduced 

to represent the statistical nature of the standard security mar-

gin when accounting for system variability. Importantly, the 

methods and ideas presented within this work can be easily 

customized based upon the technical and regulatory frame-

work under which any power system is operated. 

II.  RISK-BASED PSSA METHODOLOGY 

The PSSA is completed by performing multiple linearisa-

tions of the power system whilst modeling the stochastic 

variation of the system uncertainties. These simulations are 

used to determine the probability density functions (pdfs) for 

the critical mode damping values on which the risk analysis is 

based. The proposed methodology can be summarized as fol-

lows: 

(i) Establish mathematical descriptions of the system uncer-

tainties (using historical or forecast data where available). 

(ii) Simulate a large number of operating scenarios and per-

form deterministic studies on these samples to calculate 

details about critical system oscillations. 

(iii) Determine the pdf for the critical mode damping from the 

collected data. 

(iv) Select a severity measure and use this to quantify the sys-

tem risk of small-disturbance instability. 

(v) If desired, use steps (i)–(iv) and a search algorithm to es-

tablish operational limits based on risk. 

A. Uncertainty Modeling 

The power system can be considered to consist of a set Γ of 
uncertain system parameters. Within this paper, this set in-

cludes the loading and load power factor at individual buses, 

power flows through VSC-HVDC lines, and the power output 

of intermittent renewable sources. It could also include the 

type of connected load (considering the dynamic response of 

the load) amongst other uncertainties. Where possible, histori-

cal data for the power system being studied can be analyzed to 

accurately reproduce the stochastic variation of each uncertain 

parameter   . If required, correlation between different 

parameters can be accounted for through suitable modelling of 

the uncertainty distributions (Gaussian or otherwise).  

The Monte Carlo process can be used to generate randomly 

selected operating points. Simulation and linearization of the 

power system model will provide the critical mode damping 

values at each of these operating points. From this data, the 

pdf for the critical mode damping can be determined. This pdf 

can subsequently be used in conjunction with measures of se-

verity in order to quantify the risk of small-disturbance 

stability issues.  

B. Quantifying Risk 

Risk is related to the probability of an event occurring, and 

the subsequent severity and consequences of the event [1], [2]. 

The probability of varying modal locations in the complex 

plane is determined through the use of the stochastic Monte 

Carlo sampling. The severity can be defined using a variety of 

techniques. Perhaps the most valuable approach is the use of 

economic risk assessment, as it facilitates the comparison of a 

wide variety of potential system risks on the same (financial) 

basis. However, there are many complexities surrounding the 

mitigation of stability issues and it is extremely difficult to ap-

portion the correct economic valuation to the wide variety of 

control and protection devices which should act to avoid the 

potentially cataclysmic effects of small-signal rotor angle in-

stability. 

Severity is therefore quantified through the use of a tech-

nical measure – the settling time for power system oscillations 

following a disturbance. This measure can be readily tailored 

by systems operators to suit particularly power systems and 

the regulations under which they are operated. 

1) Oscillation Settling Times 

The  system dynamic response can  be assumed to be of a 

second-order  as described by the critical (the least damped, 

lowest frequency) electromechanical mode .j     The 

oscillations due to higher frequency electromechanical modes, 

typically with higher damping as well, will quickly attenuate 

and the overall dynamics will be driven by the least damped 

mode. For these oscillations the settling time TS is dependent 

on the tolerance (tol.) and damping (σ) according to (1). Also 
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provided in (1) is the numerical equation if settling, for exam-

ple, to within a 5% tolerance of the maximum deviation is 

required.  

   ln . ln 0.05 3.00
S

tol
T

  


    (1) 

2) Risk Matrix 

The use of a risk matrix represents the most easily compre-

hendible approach to risk assessment – combining discrete 

probability ranges with discrete severity ranges (oscillation 

settling times). Such a matrix can be readily designed and 

adapted for application on any specific practical system. In 

[17], a five level risk-matrix based on fuzzy logic rules is used 

to determine a final risk index based on a set of individual in-

dices. The example risk matrix which has been utilized within 

this study to assess the risk of small-disturbance issues is pre-

sented in Fig. 1.  

A risk level will be determined for each range of oscillation 

settling times: unstable, >60 s, 20–60 s, and <20 s. The sys-

tem risk level will simply be the highest risk level seen across 

all groups. The severity and probability ranges presented are 

only illustrative and should be designed based on permissible 

oscillation levels for each specific power system. 

  Settling Time of Oscillations 

  Unstable >60 s 20–60 s <20 s 

P
ro

b
a

b
il

it
y
 

0% OK OK OK OK 

0–1% Moderate OK OK OK 

1–5% Severe Moderate OK OK 

5–20% Severe Moderate OK OK 

20–50% Severe Severe Moderate OK 

50–100% Severe Severe Moderate OK 

Fig. 1. Risk matrix for analysis of probabilistic small-disturbance security 

assessment results. 

3) Continuous Severity Functions 

It is also possible to define a continuous severity function 

S(σ), with the risk calculated simply using (2). In (2), P(σ) is 

the probability density function for the mode damping σ. 

Within this work, the trapezoidal method of numerical integra-

tion is used.  

   Risk P S d     (2) 

A number of severity functions have been investigated 

within this work, depicted in Fig. 2. These functions should be 

tailored (as a risk matrix would be) to weight specific portions 

of the modal damping pdfs as desired. Simulations are subse-

quently required in order to define numerical thresholds for 

acceptable risk levels based on regulatory requirements of sys-

tem operational performance.  

The three functions have been defined and investigated 

within this study. These are described by (3)–(5) and coeffi-

cients have been selected so that all are zero for 0.05   and 

have a severity of 1 at the instability boundary. The cutoff at 

0.05    is selected to coincide with the previously define 

risk matrix (Fig. 1) where severe risks are defined only by os-

cillations lasting longer than 60 s. As with all aspects of the 

methodology, these coefficients can be customized by the user 

to represent the desired severity characteristics – with larger 

values resulting in a greater weighting towards unstable cases. 

Stepped:   
0.25 for 0.05 0,

( )
1 0.

S





  
  

 (3) 

Linear:   ( ) 20( 0.05)S     for 0.05.    (4) 

Quadratic: 2( ) 400( 0.05)S     for   0.05.  (5) 

 
Fig. 2. Continuous severity functions for use with risk-based PSSA.  

C. Risk-based Stability Limits 

There are many limits and restrictions on the operation of 

power systems which are typically established using determin-

istic worst-case scenarios. The use of probabilistic approaches 

to offline system operational studies allows risk-based stability 

limits to be defined. This will ensure that system assets are not 

constantly curtailed or underused to mitigate for extremely ra-

re system contingencies. 

Once an acceptable risk level is defined (using either a ma-

trix or numerical thresholds based on continuous severity 

functions), any optimization technique can be used to establish 

system limits. Within this work, a simple bisecting  iterative 

process is used to set limits on inter-area power transfer based 

on acceptable exposure to small-disturbance stability risks. 

Initial operating points are selected and evaluated in order to 

classify them based on the resulting system risk level, either 

acceptable or unacceptable. Once acceptable and unaccepta-

ble limits are established, the space is searched again at the 

midpoint between these limits. This new operating point is 

tested and classified as acceptable or unacceptable and the 

appropriate limit is redefined. This process of bisecting the 

search space is repeated until the limit is determined to an ap-

propriate resolution. 

 
Fig. 3. Illustration of reduction in probability of unstable oscillations 

when considering a forecast power flow P1<P0.  
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D. Probabilistic Security Margin 

The concept of probabilistic security margins expands on 

the use of risk-based limits to more accurately represent the 

effects of uncertainty on system operation. Security margins 

(SMs) are deterministic measures of a margin (usually addi-

tional loading or line power flow) that can be allowed before 

reaching an operational limit [18]. As these deterministic 

measures do not account for the true variability inherent in 

power system operation, they may result in operating scenari-

os within the forecast SM that exhibit a high probability of 

instability. By incorporating uncertainties into the system sim-

ulation it is possible to define the probability of small-

disturbance system stability associated with various margins. 

By way of an example, the 99% Probabilistic SM is defined as 

the allowable forecast margin within which 99% of operating 

points will be stable to small disturbances, given the modeled 

stochastic system variability. An illustration is presented in  

Fig. 3 and the concept is demonstrated in the sequel on a 

test system (both under normal operation and with a line out-

age contingency).  

III.  TEST SYSTEM 

The methods described within this paper are illustrated us-

ing a modified version of the 16 machine, 68 bus reduced 

order representation of the New England Test System and the 

New York Power System (NETS & NYPS). The network (in-

cluding modifications) is shown in Fig. 4. System analysis and 

simulations are all performed within the MATLAB/Simulink 

environment making use of modified MATPOWER [19] func-

tions to perform optimal power flows. 

A. AC System Details 

The generators are controlled as described in [20] with G1–
8 under slow DC excitation (IEEE-DC1A), and G9 equipped 

with a fast acting static exciter (IEEE-ST1A) and a Power 

System Stabilizer (PSS). The remaining generators (G10–16) 

are under constant manual excitation. All generators are repre-

sented by full sixth order models. System loads are modeled as 

constant impedance. Other load models can be used without 

any loss of generality of the proposed methodology. Full sys-

tem details, generator and exciter parameters are given in [20] 

with PSS settings for G9 taken from [9]. Additionally, genera-

tor G10 (with the NYPS area) has been de-rated from its 

standard nominal output of 500 MW to 250 MW. Dynamic 

parameter values have been adjusted to reflect this. 

B. VSC-HVDC System Details 

Two VSC-HVDC systems have been added to the network 

to support the most heavily loaded inter-area ties: AC Tie 4 

(line 18–50) and AC Tie 6 (line 40–41). Each converter station 

is modeled as an injection of active and reactive power [21]. 

As these studies are concerned with electromechanical oscilla-

tions with typical frequencies of 0.2–2.5 Hz, the fast dynamics 

associated with semiconductor device switching operations are 

neglected [21]. Converter station controllers are included as 

described in [22] and DC lines are modeled as presented in 

[23]. 

The first system (VSC–1) is a point-to-point VSC-HVDC 

line connected in parallel with AC Tie 4. The converter con-

nected to bus 18 (VSC–1–1) regulates the DC voltage. The 

converter connected at bus 50 (VSC–1–2) controls active pow-

er injected into the AC systems from the VSC-HVDC line. At 

both converters, reactive power injection is regulated at zero. 

This VSC-HVDC system is rated at 800 MW.  

The second system (VSC–2) is a multi-terminal HVDC 

(MTDC) system consisting of three converter stations. VSC–
2–1, connected to bus 41, controls the active power flow from 

the G14 area into the VSC-MTDC system and is rated at 400 

MW. VSC–2–2 is connected to bus 40 and acts as a slack con-

 
Fig. 4. Modified NETS NYPS test network, including one point-to-point VSC-HVDC line and a three-terminal VSC-MTDC grid incorporating a 500 

MW wind farm. 
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verter, regulating the DC voltage. This converter is rated suffi-

ciently high to deliver all power to the AC system from the 

VSC-MTDC grid. The third converter (VSC–2–3) is connected 

to a large wind farm. Active power injected into the MTDC 

system is determined by the output of this wind farm, and re-

active power is supplied as required to support the renewable 

generation. VSC–2–3 is rated in order to support maximum 

active power transfer from the wind farm.  

C. Wind Farm System Details 

A large 500 MW wind farm (GWF) in connected to the test 

network through the VSC–2 MTDC system. For the PSSA 

studies performed it has been assumed that the power output 

from the wind farm will be constant during each individual 

investigated operating point (at which the system is linearized 

and small-disturbance analysis is completed). 

The converter to which the wind farm is connected (VSC–
2–3) operates using frequency–AC voltage control. It has been 

assumed that the converter is able to maintain a constant AC 

voltage such that all power produced by the wind farm is 

transferred to the VSC-MTDC system. This assumption is val-

id as long as the DC voltage does not deviate considerably. 

This simplification is acceptable as the work presented is fo-

cused on the small-disturbance rotor angle stability of the 

mixed AC/DC system, and not on the fast transient perfor-

mance of the VSC-HVDC systems. 

D. Operational Constraints 

An optimal power flow solution is used within this work to 

more accurately generate representative system operating 

points. All voltages are constrained within the range 0.9–1.1 

pu, with the exception of G14–16 which are set to 1.0 pu to rep-

resent the stiffness of these single machine equivalents of 

larger networks. Additionally, line constraints are placed on 

the AC tie-line infeeds from areas G14 and G16 to represent 

thermal line limits. These are equal to 800, 400, and 600 MVA 

for AC Ties 4–6 respectively.  

IV.  PSSA APPLICATION 

The probabilistic small-disturbance security assessment 

methods previously outlined have been performed on the test 

system in order to demonstrate the relevance and applicability 

of the proposed techniques.  

A. Stochastic Variation of System Operating Conditions 

The PSSA is completed by considering the stochastic varia-

tion of system conditions around their predicted values. For 

the investigated test system, there are a number of sources of 

uncertainty. For practical studies, historical data could be used 

in order to assess the level of uncertainty surrounding fore-

casted operating scenarios.  

1) Loading Uncertainty 

A small variation in system loading is considered to repre-

sent the possible forecast inaccuracy. Additionally, the 

probable correlation between the loading levels of various sys-

tem buses is also modeled. The network loads are categorized 

as industrial or residential based on their nominal power fac-

tors – all loads with a power factor lower than 0.9 are labeled 

industrial. The correlation coefficients ρ between different 

loads are as in [24] with 0.8   between residential loads, 

0.4   between industrial loads, and 0.2   between resi-

dential and industrial loads. 

Loads are modeled as being normally distributed with ac-

tive power mean nominal values, and small standard deviation 

(s.d.) equal to 5% at 3σγ. The correlation is modeled by sam-

pling from a multivariate normal distribution where the 

covariance between two loads x and y  cov( , )x y  is deter-

mined from the desired correlation coefficient  ( , )x y  and 

the s.d. of each load    as in (6). Load power factors are 

non-correlated with s.d. of 5% at 3σγ. 

     
1 2

2 2cov( , ) ,x y x y x y        (6) 

2) VSC-HVDC System Operation Uncertainty 

VSC-HVDC system power injection values are modeled 

based on a probability distribution obtained from the Murray-

link 220 MW VSC-HVDC line embedded within the National 

Electricity Market (NEM) of Australia. This interconnector is 

utilized as a regulated asset and is operated in parallel with the 

AC Heywood Interconnector. The data used to build the pdf 

for the VSC-HVDC power flow is sourced from [25] and rep-

resents a two month period from January to February 2012 

when there were no HVDC outages. Only periods where net 

flow (in both the Heywood and Murraylink interconnectors) is 

in the direction of South Australia to Victoria is considered. 

This data source has been selected as it is representative of 

the configuration within the test system – where the VSC-

HVDC lines operate in parallel with existing AC ties. The pdf 

for the VSC-HVDC power flow is presented in Fig. 5 where it 

can be seen that the link is rarely operated at near-rated power 

and median HVDC power flow through the line is just 0.25 

pu. Operational power reference set-points for VSC–1–2 and 

VSC–2–1 are sampled from this distribution. (Note: For many 

power systems though, bidirectional power flow through 

HVDC line will need to be modelled. In this test system how-

ever, the NYPS region is always a net importer of power and 

so VSC-HVDC export from NYPS would simply result in un-

desirable loop flows.) 

 
Fig. 5. Pdf of VSC-HVDC power flow based on usage data from the Mur-

raylink 220 MW line in the NEM.  

3) Wind Farm Generation Uncertainty 

Electrical power output from the wind farm (GWF) is de-

termined by the wind speed v. Within this work, v is a random 

variable sampled from a Weibull probability distribution, as 

described by (7). 
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     1

for 0,

0 0.

kk
vk v e v

f v

v


 

   
 

 (7) 

In (7), k is the shape parameter and φ is the scale parame-

ter (commonly signified by λ but called φ here to avoid 

confusion). In this study, values for these parameters were 

sourced from [26] with 2.2k   and 11.1  . The wind farm 

consists of 100 Areva M5000 5 MW turbines [27]. The total 

power produced is calculated by selecting a wind speed from 

the given distribution, determining a single turbine’s output 
according to its power curve, and then scaling the individual 

turbine output to the capacity of the whole wind farm. More 

accurate calculation of wind farm output is possible  though 

this would not affect the methodology presented, only the final 

numerical results. 

B. Risk for a Forecasted Operating Scenario 

The proposed probabilistic security analysis is completed 

for two forecasted loading scenarios. 5000 Monte Carlo (MC) 

simulations are used in each case to evaluate the system risk 

based on the stochastic variation around the given operating 

point. If desired, MC variance reduction techniques can be ex-

ploited to attempt to reduce the number of simulations 

required, and stopping rules such as those presented in [11] 

can be used. The variance reduction techniques however, were 

not used in this case as the number of simulations was not 

considered to be excessive for this type of off-line analysis. 

The scenarios considered represent (i) a 2% increase, and (ii) a 

5% increase in NYPS area loading. Due to the generation and 

line constraints, almost the entirety of this power is delivered 

from the NETS area – resulting in increased NETSNYPS 

power flow. . 

 
Fig. 6. Distribution of low frequency modes due to stochastic variations 

for the 2% NYPS increase forecasted loading scenario.  

 

The system displays four low frequency (<1 Hz) oscillatory 

electromechanical modes with damping factors below 5%. All 

other electromechanical modes are adequately damped. The 

distribution of the low frequency modes for the 2% NYPS in-

crease case is presented in Fig. 6. It is clearly evident from 

this plot that Mode 1 (the lowest frequency mode) is the criti-

cal mode with respect to system small-disturbance stability 

and therefore this mode will form the focus of the remainder 

of the analysis presented. 

The pdf for the damping (real part σ) of Mode 1 for the 

forecasted NYPS loading increases can be produced from 

modal distributions using a kernel density estimate [28]. In 

order to determine the risk surrounding this forecasted scenar-

io, the severity must be also defined. As previously outlined, a 

technical measure of severity relating unstable or persistent 

poorly damped power oscillations is used within this work. 

This can be assessed using a discrete risk matrix such as Fig. 

1, or using continuous severity functions   S  , Fig. 2.  

1) Risk Matrix 

The matrix developed previously has been used to assess 

the risk of small-disturbance stability issues for the two fore-

casted scenarios. The resulting pdfs of Mode 1 damping 

shown in Fig. 7 have been colored to represent the risk matrix 

levels of OK, Moderate, and Severe. 

It is clear that the system is exposed to greater risk at the 

5% increase forecast loading scenario, when the system risk 

level is Severe. For the 2% increase in NYPS loading, the total 

risk level is Moderate with low probabilities of instability or 

persistent oscillations with settling times greater than 60 s. 

With NYPS loading increased by 5%, the probability of insta-

bility has increased to severe levels and the risk matrix 

provides a quick tool to assess if predefined limits have been 

exceeded. There may be circumstances where greater distinc-

tion is required (between multiple moderate scenarios for 

instance). In these instances, either further information must 

be provided (such as the calculated probabilities for different 

severity bands), or more complex severity functions must be 

used to inform comparative assessments. 

(a) 

 

(b) 

 
Fig. 7. Pdf for critical Mode 1 damping for (a) the 2% NYPS increase, and 

(b) the 5% NYPS increase scenarios (colored to represent risk levels).  

2) Severity Functions 

The severity functions outlined previously have been used 

to evaluate the risk measure for the forecasted loading scenar-

io. The risk values produced using these functions should only 

be compared by considering the values for different scenarios 

produced by individual severity functions and not inter-

function comparisons. Plots of    P S   for each severity 

function are presented in Fig. 8 for the 5% increase scenario. 

It is clear that the quadratic function gives far greater 

weighting to the unstable region of the plot (when 0)  . 

The calculated values of risk according to (2) are given in 
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Table 1, where it can be seen that all functions result in a clear 

increase in risk when the NYPS loading level is increased 

from 2 to 5%. Severity functions can be defined and parame-

terized to weight different parts of the modal damping pdfs. 

Function selection may influence the perceived level of risk, 

particularly the change in risk between different scenarios. 

These functions should therefore be carefully designed accord-

ing to the specifications of individual operators to provide the 

desired distinction between different operational scenarios.  

 
Fig. 8. Evaluation of P(σ)×S(σ) for each continuous severity function for 

the 5% increase in NYPS loading scenario. 

 

Once numerical limits have been established through sys-

tem studies, the use of continuous severity functions allows 

more detailed comparisons of risk levels between varying sys-

tem contingencies and operating scenarios. This is 

demonstrated in the following section.  

TABLE 1 

RISK VALUES FOR LOADING SCENARIOS USING DIFFERENT SEVERITY 

FUNCTIONS 

Scenario 
Risk Values 

Stepped Linear Quadratic 

2% NYPS increase 0.005 0.005 0.004 

5% NYPS increase 0.068 0.110 0.155 

C. Risk-based Stability Limit 

A risk-based limit on power flow from NETSNYPS is set 

using an iterative divide and conquer technique and multiple 

PSSAs. This is initially performed for the system with stand-

ard topology, using the matrix from Fig. 1 to define the risk 

level. The power flow limit is calculated to a precision of 1 

MW with a maximum permissible risk level of moderate.  

The results from the iterative procedure are shown in Fig. 

9. It can be seen that the limiting factor is the probability of 

instability P(unst.) which is not permitted to exceed 1%. From 

these results is can be established that a maximum forecast 

power flow from NETSNYPS of 1130 MW will ensure that 

the system risk level does not exceed moderate.  

 
Fig. 9. Iterative process with all lines in service and a maximum allowable 

risk level of moderate.  

 

The risk-based security limit is determined once more, for 

the contingency when line 1–30 is out of service. It is desired 

that the system will not be exposed to risks of small-

disturbance instability that are greater than when all lines are 

in service. This procedure is completed by using an alterna-

tive, stepped, severity function (for illustrative purposes) and 

the risk measure is evaluated with all lines in service for the 

maximum flow scenario calculated in the previous example 

(1130 MW from NETSNYPS). This provides a limiting sys-

tem risk value of 0.0249.  

The results from this second iterative approach are shown 

in Fig. 10. The power flow limit for the line 1–30 out contin-

gency is 1019 MW. It is clear that with line 1–30 out of 

service a lower limit on NETSNYPS power flow is required 

to maintain the same total system risk level (as measured us-

ing the stepped severity function).  

 
Fig. 10. Iterative process for the line 1-30 out contingency with a maxi-

mum allowable stepped risk value of 0.0249. 

D. Probabilistic Security Margin 

The determination of risk-based stability limits will ensure 

that acceptable risk levels are not exceeded during normal sys-

tem operation. There may be however, instances when it is not 

possible to avoid exceeding these limits (such as during con-

tingencies or extreme system loading events). In such cases 

awareness of the extent to which the probabilistic security 

margin is exceeded would alert system operators to the angu-

lar instability that the system may be exposed to. This would 

therefore guide their actions towards reducing the risk. 

The relationship between P (stab.) and the security margin 

has been calculated for the system with all lines in service and 

also for the line 1–30 out contingency. These are shown in 

Fig. 11 where the security margin is calculated relative to the 

base power flow from NETSNYPS at the nominal operating 

point (786 MW).  

 
Fig. 11. Relationship between P(stab.) and security margin. 

 

It can be seen that P (stab.) is higher for a given NETS 

NYPS flow when all lines are in service. By way of illustra-

tion, the 95% Probabilistic Security Margin can be calculated 

from the plots as 478 MW with all lines in service and 403 

MW when line 1-30 is out of service. This margin represents 
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the allowable increase in NETS NYPS flow before P (stab.) 

decreases below 95%. It should be noted that the deterministic 

value calculated without considering the system uncertainties 

suggests a security margin of 890 MW with all lines in ser-

vice. As shown in Fig. 11, however, at this point P (stab.) is 

equal to just 58.2% when system variability is considered. 

This emphasizes importance of probabilistic analysis. 

Knowledge of the different probabilistic security margins 

for various contingencies (or ideally the complete relationship 

between P (stab.) and security margin as in Fig. 11) would re-

duce risks when operating under outage contingency 

conditions. It would enable system control engineers to assess 

a variety of possible control actions in terms of the risks they 

introduce and therefore allow more informed decisions. 

The probabilistic security margin has been determined and 

explored in this study in a single dimension (NETSNYPS 

power flow) to illustrate the concept. This represents the sim-

plest dimensional projection of otherwise multi-dimensional 

margin. In practical implementations it may be required to 

calculate the margin as a function of multiple uncertain pa-

rameters using, for example, operational search space 

characterization such as employed in [29], [30]. This would 

result in a multi-dimensional hyperplane margin which could 

be flattened (or projected) to any desired parameter for illus-

tration (graphical representation) and further application. 

Irrespectively of the number of parameters used to define this 

hyperplane margin, the visualization of the margin would be 

dimensionally limited due to the restriction of graphical repre-

sentation. 

V.  CONCLUSIONS 

The risk-based probabilistic small-disturbance security as-

sessment methodology proposed within this paper is a novel 

extension of current dynamic security assessment (DSA) tech-

niques. It has been used successfully with a number of 

technical severity measures based on oscillation settling time 

or instability within the work presented. The combination of 

probabilistic small-disturbance security analysis with risk 

analysis, particularly with readily understandable risk matri-

ces, can be used to provide guidance to systems operators 

about potentially problematic scenarios which may emerge.  

The PSSA has also been used to determine risk-based inter-

area forecast power flow limits for the first time. By combin-

ing the PSSA with an iterative process and a risk-based 

threshold, constraints have been established which ensure ac-

ceptable risk levels are not exceeded. The risk threshold can 

be described using any severity measure and has been demon-

strated within this work using both a risk matrix and a 

continuous function. It has been shown that contingency-

specific limits can be determined which maintain the total sys-

tem risk level for any given operational topology. 

Furthermore, a new probabilistic security margin has been de-

fined and illustrated within this work to more accurately 

represent the variable nature of power systems and the uncer-

tainty surrounding forecast operating scenarios.  

This work has demonstrated the importance of probabilistic 

security analysis and risk assessment assessing the small-

disturbance stability of power systems. There would be great 

benefits to be gained by completing such analyses online for 

projected operating points, guiding systems operation. The 

techniques proposed however are computationally intensive 

and, when using a purely numerical (MC) approach, may not 

be possible for online application. The use of efficient sam-

pling techniques, such as the probabilistic collocation method 

[31] or the point estimate method [32], or analytical tech-

niques such as [7], may enable sufficient computational 

savings to allow online application. If such methods are used, 

the accuracy of the results must be thoroughly verified.  

Finally, the presented risk-based analysis could also pro-

vide a framework for robust assessment of damping 

controllers and facilitate risk-based controller design to reduce 

the risk of small-disturbance instability. 
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