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The Weibull distribution is a popular and widely used distribution in reliability
and in lifetime data analysis. Since 1958, the Weibull distribution has been modified
by many researchers to allow for non-monotonic hazard functions. Many modifications
of the Weibull distribution have achieved the above purpose. On the other hand, the
number of parameters has increased, the forms of the survival and hazard functions
have become more complicated and the estimation problems have risen.

This thesis provides an extensive review of some discrete and continuous versions
of the modifications of the Weibull distribution, which could serve as an important ref-
erence and encourage further modifications of the Weibull distribution. Four different
modifications of the Weibull distribution are proposed to address some of the above
problems using different techniques. First model, with five parameters, is constructed
by considering a two-component serial system with one component following a Weibull
distribution and another following a modified Weibull distribution. A new method has
been proposed to reduce the number of parameters of the new modified Weibull dis-
tribution from five to three parameters to simplify the distribution and address the
estimation problems. The reduced version has the same desirable properties of the
original distribution in spite of having two less parameters. It can be an alternative
distribution for all modifications of the Weibull distribution with bathtub shaped haz-
ard rate functions. To deal with unimodal shaped hazard rates, the third model with
four parameters, named as the exponentiated reduced modified Weibull distribution is
introduced. This model is flexible, has a nice physical interpretation and has the ability
to capture monotonically increasing, unimodal and bathtub shaped hazard rates. It
is a generalization of the reduced modified Weibull distribution. The proposed distri-
bution gives the best fit comparing to other modifications of the Weibull distribution
including those having similar properties. A three-parameter discrete distribution is
introduced based on the reduced distribution. It is one of only three discrete distri-
butions allowing for bathtub shaped hazard rate functions. Four real data sets have
applied to this distribution. The new distribution is shown to outperform at least three
other models including the ones allowing for bathtub shaped hazard rate functions.

The new models show flexibility and can be used to model different kinds of real
data sets better than other modified versions of Weibull distribution including those
having the same number of parameters. The mathematical properties and statistical
inferences of the new models are studied. Based on a simulation study the perfor-
mances of the MLEs of each model are assessed with respect to sample size n.

We find no evidence that the generalized modified Weibull distribution can provide
a better fit than the exponentiated Weibull distribution for data sets exhibiting the
modified unimodal hazard function.
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Chapter 1

Introduction and Background

1.1 Introduction

After an extensive review of modifications to the Weibull distribution, this thesis

contributes four new modifications to the Weibull distribution that can be used to

analyse different kinds of lifetime data sets with different shapes of hazard rate. This

chapter is a prefatory chapter to the thesis. Section 1.2 provides some historical

and background information of lifetime distributions, the hazard function (HF) and

their applications. The motivations of this thesis are presented in Section 1.3 and

the organisation of the thesis is described in Section 1.4. Large parts of this thesis

have been published in or submitted to journals for publication and some have been

presented in conferences, these are presented in Section 1.5.

1.2 Historical and Background Information

Statistical lifetime distributions (sometimes called ageing distributions) are widely

used in many different fields for modelling data sets. They have been applied to many

areas: reliability engineering such as machine life cycles, medical sciences such as the

survival times of patients after surgery or duration to recurrence of a kind of cancer

after surgical removal, computer sciences such as the failure rates of a software system,

insurance such as the durations without claims of customers policies, marketing such

as the lifetimes of customers, and social sciences such as duration of marriage till

divorce or duration that a graduate remains unemployed, among others. For more
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details about the above lifetime applications we refer to Lai and Xie (2006), Pham

(2006), Ohishi et al (2009), Lai (2012) and Bemmaor and Glady (2012).

If X is a lifetime random variable with f(x) being its probability density function

(PDF), F (x) being its cumulative distribution function (CDF), and S(x) being its

survival function (SF), then the hazard function (HF) h(x) is defined as the ratio of

f(x) to S(x)

h(x) =
f(x)

S(x)
, (1.1)

and h(x)△x represents the approximate probability of failure in the interval [x, x+△x),

cf. Lawless (1982).

The hazard rate function plays a fundamental role in lifetime modelling. A lifetime

distribution is said to have an increasing hazard rate if its HF h(x) is monotonically

increasing over time and to have a decreasing hazard rate if h(x) is monotonically

decreasing. If h(x) initially decreases, followed by an approximately constant period

(called useful life period), then followed by an increasing period, the distribution is

said to have a bathtub shape. The distribution is said to have a unimodal hazard

rate if its hazard rate function has a unique mode, also called an upside-down bathtub

shape. The different shapes of the hazard rate function can be investigated using the

first derivative of the hazard function as follows. The shape of the HF can be:

• Monotonically increasing (non-decreasing) shape if the values of the first deriva-

tive of h(x) respect to x is positive for all values of x.

• Monotonically decreasing (non-increasing) shape if the values of the first deriva-

tive of h(x) respect to x is negative for all values of x.

• Constant if the values of the first derivative of h(x) respect to x equals 0.

• Bathtub shaped if the values of the first derivative of h(x) respect to x are

negative for x ∈ (0, x0) and positive for x > x0 and the value x0 is a unique and

positive solution of h′(x0) = 0.

• Unimodal (upside-down bathtub) shaped if h′(x) > 0 for x ∈ (0, x0) and h
′(x) <

0 for x > x0 and the value x0 is a unique and positive solution of h′(x0) = 0
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• Unimodal followed by increasing (modified unimodal (bathtub) shaped) if the

HF first has a unimodal and then followed by increasing.

Figure 1.1 shows the monotonic shapes of the HF (left side) and some non-

monotonic shapes (right side)

Monotone HFs Non-monotonic HFs

Figure 1.1: Monotonic and non-monotonic hazard rate functions

The most popular lifetime distributions including the exponential, Weibull, gamma,

Rayleigh, Pareto and Gompertz have monotonic hazard rate functions, cf. Lawless

(1982). However, certain lifetime data (for example, human mortality, machine life cy-

cles and data from some biological and medical studies) require non-monotonic shapes

like the bathtub shape, the unimodal (upside-down bathtub) or modified unimodal

shape.

Human mortality is shown to have a bathtub shaped HF. Initially, the hazard rate

of the death (newborn babies) is very high level specially in the first six months after

birth, that is caused by deformities, heart dysfunctions or other infant diseases. Then,

the risk of level of death decreases rapidly until it reaches its lowest level and remains

approximately constant. At some point, during the ages between 30 and 40 the death

risk increases over time. The first period is called infant mortality, the second is called

useful life period (normal life period) and the third period is a wear out period. This

can be interpreted as the fate of the individual person during his life or it can be

interpreted as the hazard rates of three groups, first group includes the infants (about

0-6 months) with decreasing hazard rate, second group with approximately constant

hazard rate contains people below the ages between 30 and 40 and the third group with
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increasing hazard rate for the people above the ages between 30 and 40. The bathtub

shape can also be seen in the failures times of some electrical products, where the early

failures are caused by some manufactory defects, handling or types of storage. The

useful life period, when the products are used, have relatively constant failure rate,

and is the longest period among the three. At the end of the product life the wear out

period appears with increasing failure rate over time.

On the other hand, when the main reasons of the failures of products are caused

by fatigue and corrosion, the failure rates of those products will exhibit unimodal

shapes, cf. Lai and Xie (2006). In some medical situations, for example breast cancer,

the hazard rate has been shown to be unimodal or modified unimodal shape. The

hazard rate for breast cancer recurrence after surgical removal has been observed to

have unimodal shape, cf. Demicheli et al (2004). Initially, the hazard rate for breast

cancer recurrence begins with a low level, then increases gradually after a finite period

time after the surgical removal until reaching a peak before then decreasing. Another

example of the unimodal shape is the hazard of infection with some new viruses,

where it increases in the early viruses’ ages from low level till it reaches a peak and

then decreases.

The hazard rate of death of breast cancer patients represents a modified unimodal

shape (unimodal shape followed by increasing). It has a modified unimodal shape with

three phases, first increasing, then decreasing, then again increasing, which has nice

and useful interpretations, cf. Zajicek (2011). It can be interpreted as a description

of three groups of patients, first group is represented by the first phase that contains

the weak patients who die within the first three years, so the hazard rate of this

group is increasing, while the second phase represents the group with strong patients,

their bodies have became familiar with the disease and they are getting better. The

hazard rate of death of these patients is decreasing. In the third phase they become

weaker and their ability to cope with the disease declines, then the hazard rate of

death increases. Also, that can be interpreted in the case of the statuses of patient

with the disease. At first the patient has been surprised and dose not recognize the

appropriate ways to deal and cope with the disease, as a result the hazard rate will

be increasing. After while, the patient becomes more knowledgeable and her ability

to cope the disease increases, so the hazard rate of death decreases. Finally, as the
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age of the patient increases, the hazard rate increases again over the time, see Zajicek

(2011).

The Weibull distribution is one of the most important, desirable and widely used

lifetime distributions. It has been used in many different fields with many applications.

The CDF of the Weibull distribution is simple and has a closed form which gives a

simple expression of its survival and hazard functions. It is a flexible distribution that

can be used to fit different kinds of of lifetime data sets in different fields. Moreover,

it has a physical meaning and interpretations of its parameters.

The two-parameter Weibull distribution is specified by the cumulative distribution

function CDF

F (x) = 1− exp
(
−αxθ

)
, x > 0, (1.2)

where α > 0 and θ > 0 are the scale and shape parameters, respectively. The corre-

sponding probability density function PDF is

f(x) = αθxθ−1 exp
(
−αxθ

)
, x > 0. (1.3)

The corresponding hazard function HF is

h(x) = αθxθ−1, x > 0, (1.4)

which can be increasing, decreasing or constant depending on θ > 1, θ < 1 or θ = 1.

Unfortunately, it dose not exhibit any kind of non-monotonic hazard rate shape.

For many years, using different techniques, many researchers have developed vari-

ous modified forms of the Weibull distribution to achieve non-monotonic shapes. The

two-parameter flexible Weibull extension of Bebbington et al (2007) has a hazard

function that can be increasing, decreasing or bathtub shaped. Zhang and Xie (2011)

studied the characteristics and application of the truncated Weibull distribution which

has a bathtub shaped hazard function. A three-parameter model, called the exponen-

tiated Weibull distribution, was introduced by Mudholkar and Srivastave (1993). An-

other three-parameter model is by Marshall and Olkin (1997) and called the extended

Weibull distribution. Xie et al (2002) proposed a three-parameter modified Weibull

extension with a bathtub shaped hazard function. The modified Weibull (MW) dis-

tribution of Lai et al (2003) multiplies the Weibull cumulative hazard function αxθ by

eλx, which was later generalized to exponentiated form by Carrasco et al (2008).
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Recent studies of the modified Weibull include Jiang et al (2010), Soliman et al

(2012) and Upadhyaya and Gupta (2010). Among the four-parameter distributions,

the additive Weibull distribution (AddW) of Xie and Lai (1996) with cumulative dis-

tribution function CDF

F (x) = 1− e−αx
θ−βxγ , x ≥ 0,

has a bathtub-shaped hazard function consisting of twoWeibull hazards, one increasing

(θ > 1) and one decreasing (0 < γ < 1). The modified Weibull distribution of Sarhan

and Zaindin (SZMW) (2009) can be derived from the additive Weibull distribution by

setting θ = 1. A four-parameter beta Weibull distribution was proposed by Famoye

et al (2005). Five-parameter modified Weibull distributions include Phani’s modified

Weibull (1987) which generalizes the four-parameter Weibull distribution which was

proposed by Kies (1958), the Kumaraswamy Weibull by Cordeiro et al (2010) and the

beta modified Weibull (BMW) introduced by Silva et al (2010) and further studied

by Nadarajah et al (2011). The latest examples include the beta generalized Weibull

distribution by Singla, et al (2012), exponentiated generalized linear exponential dis-

tribution by Sarhan et al (2013), the generalized Gomprtz distribution by El-Gohary

et al (2013) and the exponentiated modified weibull extension distribution by Sarhan

and Apaloo (2013) which exhibits a bathtub-shaped pattern.

It has been pointed out by Nadrajah and Kotz (2005) that some of the modified

Weibull distributions can be obtained as special cases of Gurvich et al (1997)’s form

F (x) = 1− exp (−H(x)) , x ≥ 0, (1.5)

where H(x) is a monotonically increasing function of x. This is true for any lifetime

distribution F as H(x) = − log(1− F (x)) will be the cumulative hazard function.

Although some flexible distributions exist among these modifications with only

two or three parameters, such as the flexible Weibull extension of Bebbington et al

(2007), the MW distribution of Lai et al (2003) and the modified Weibull extension

of Xie et al (2002), the effective and flexible modified Weibull distributions have four

or five parameters. In contrast, although the distributions with four parameters or

more that exhibit a bathtub shaped hazard rate are useful and flexible, they are also

complex Nelson (1990) and cause estimation problems as a consequence of the number

of parameters, especially when the sample size is not large.
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If G(x) is a CDF, then a distribution with CDF, F (x) = G(x)θ, is called an

exponentiated distribution. Using this exponentiation, several lifetime distributions

have been generalized. Kundu and Gupta (1999) generalized the standard exponential

distribution to the generalized exponential (GE) distribution with CDF

F (x;α, θ) =
(
1− e−αx

)θ
for x > 0, where α > 0 and θ > 0. This distribution has been extensively studied by

several authors, see, for example, Gupta and Kundu (2001a, 2001b), Raqab (2004),

Gupta and Kundu (2007), and Kundu and Gupta (2008). Mudholkar and Srivas-

tava (1993) generalized the Weibull distribution to the exponentiated Weibull (EW)

distribution. The CDF of the EW distribution is

F (x;α, γ, θ) =
(
1− e−αx

γ)θ
(1.6)

for x > 0, where α > 0, γ > 0 and θ > 0. The exponentiated Pareto (EP) distribution

was proposed by Gupta et al. (1998), while the generalized Rayleigh (GR) distribution

was studied by Surles and Padgett (2001, 2005) and Kundu and Raqab (2005). The

CDF of the GR distribution is

F (x;α, θ) =
(
1− e−αx

2
)θ

for x > 0, where α > 0 and θ > 0.

Using the same technique, Nadarajah and Kotz (2006b) introduced the exponen-

tiated gamma (EGam) distribution, the exponentiated Gumbel (EGum) distribution

and the exponentiated Fréchet (EF) distribution. The generalized modified Weibull

(GMW) distribution of Carrasco et al. (2008) is an exponentiated distribution. Sarhan

and Kundu (2009) introduced a three-parameter distribution called the generalized

linear failure rate (GLFR) distribution with CDF

F (x) =
(
1− e−αx−βx

2
)θ

for x > 0, where α > 0, β > 0 and θ > 0.

Recently, different versions of exponentiated distributions have been introduced by

several authors: Sarhan and Apaloo (2013), El-Gohary et al. (2013) and Sarhan et al.

(2013) introduced the exponentiated modified Weibull extension (EMWEx) distribu-

tion, the generalized Gompertz (GG) distribution and the exponentiated generalized

linear exponential (EGLE) distribution, respectively.
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The unimodal or modified unimodal hazard rate function has many applications in

reliability and survival analysis as described earlier. The HFs of the GMW and EW

distributions can exhibit unimodal shapes. There are other distributions exhibiting

unimodal HFs: the inverse Weibull (IW) distribution, Kumaraswamy inverse Weibull

(KumIW) distribution due to Shahbaz et al. (2012), the beta inverse Weibull (BIW)

distribution due to Hanook et al. (2013), the generalized Weibull (GW) distribution

due to Mudholkar and Kollia (1994), the extended Weibull distribution due to Marshall

and Olkin (1997), and the beta Weibull distribution due to Famoye et al. (2005) among

others.

In reliability and lifetime analysis, when the failures (lifetimes) are truly discrete,

continuous models may not be appropriate. Discrete models will be consistent with

such data. Example of discrete data include: the number of rounds fired by a weapon

till the first failure; the number of deaths at a given place over a given period; the

number of cycles prior to the first failure when devices work in cycles; the number of

periods successfully completed without failure when devices are observed just once a

week, a month or a year. Sometimes continuous data are grouped as discrete because

the amount of data is huge or the individual observations are either unknown or their

ranges are more important than the values. During the last few decades, a large

number of continuous lifetime distributions has been proposed and some of them have

been extensively studied and modified. On the other hand, although the number of

discrete distributions has increased slightly during the last a few years, more studies

are needed in this area.

It is well known that the geometric distribution is the discrete analogue of the

exponential distribution, while the negative binomial distribution is the discrete ana-

logue of the gamma distribution. Nakagawa and Osaki (1975), Stein and Dattero

(1984) and Padgett and Spurrier (1985) proposed three different discrete versions of

the Weibull distribution which were further studied by Khan et al (1989) and Kulasek-

era (1994). A two-parameter discrete gamma distribution (DGD) was introduced by

Yang (1994). Chakraborty and Chakravarty (2012) recently discussed its parameter

estimation using different methods. Roy (2003) and Roy(2004) proposed the discrete

normal distribution (DND) and the discrete Rayleigh distribution (DRD). The discrete

Burr distribution (DBD) and the discrete Pareto distribution (DPD) were proposed by
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Krishna and Singh (2009). Lai and Wang (1995) introduced a finite range simple dis-

crete life distribution (SDD). Jazi et al. (2010) discretized the inverse Weibull (DIW)

distribution while Gomez-Deniz et al. (2011) introduced a new discrete distribution

with actuarial applications. A discrete analogue of the continuous modified Weibull

distribution of Lai et al (2003) (DMW) was introduced by Noughabi et al. (2011).

Recently, Bebbington et al. (2012), Al-Huniti and Al-Dayian (2012) and Bakouch et

al. (2014) introduced the discrete additive Weibull (DAddW), discrete Burr type III

(DB3) and discrete Lindley (DLD) distributions, respectively.

1.3 Research Motivations

The main purpose of the modification and extension forms of the Weibull distribution

is to describe and fit the data sets with non-monotonic hazard rate, such as the bath-

tub, unimodal and modified unimodal hazard rate. Many modifications of the Weibull

distribution have achieved the above purpose. On the other hand, unfortunately, the

number of parameters has increased, the forms of the survival and hazard functions

have been complicated and estimation problems have risen. Moreover, some of the

modifications do not have a closed form for their CDFs. As we have seen, the bath-

tub and the modified unimodal shapes have three phases: initially decreasing phase,

relatively constant phase and then an increasing phase for the bathtub shape and the

phases of the modified unimodal shape are initially increasing, then decreasing, then

increasing again. The main weakness of some modified Weibull distributions is that

they are unable to fit the last phase of the bathtub and the modified unimodal shapes,

which are essential parts, as well as the first and middle phases.

Extensive reviews of some of these modifications have been presented, for example,

see Rajarshi and Rajarshi (1988) and Murthy et al (2003). Pham and Lai (2007) and

Lai et al (2011) introduced a brief review about the Weibull models. Most of the

modifications of the Weibull distribution (both continuous and discrete) have been

introduced in the last five years or so. In contract, the most recent intensive review was

introduced before more than ten years. Also, most of them focused on the continuous

distribution more than the discrete ones. So, it is timely that a review is written of

the known modifications of the Weibull distribution. Chapter 2 provides an extensive
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review of the continuous and discrete modifications of the Weibull distributions. This

Chapter could serve as an important reference and encourage further modifications of

the Weibull distribution (and could be a useful reference complementing the book of

Murthy et al (2003)).

To address some of the previous problems that appeared with some modifications

of the Weibull, a new modification of the Weibull is provided in Chapter 3. The

new modification is based on the Weibull distribution and one of the most interesting

of its modifications. The new model is applied to two of the well known, popular

and widely used lifetime data sets. Usually, most researchers compared their new

modifications with its sub-models that have fewer parameters including the Weibull

distribution. As an expected result, the new modification provides a better fit than

its sub-models. They did not consider, or ignored, some other modifications that have

the same number of parameters, have some similar properties or those which have

the same purpose and are flexible enough to provide a good fit for this kind of data

sets. The author believes, that is unfair to compare a distribution with its sub-models

that have fewer parameters, it is just like when a football team with 11 players plays

against its incomplete reserve team with 9 players or less. The proposed distribution

in Chapter 3 will compare with its sub-models, other modifications of the Weibull

distribution and with one of the best modifications of the Weibull that has the same

number of parameters.

The majority of researches tend to increase the number of parameters to provide

a better fit without considering the complexity or the problems of estimation. Rarely,

researches tried to reduce the number of the parameters while maintaining the flexi-

bility and the ability to fit data so well. The main purpose of Chapter 4 is to simplify

the proposed model, that was introduced in the previous chapter, by reducing the

number of parameters to address these problems while maintaining mach of the same

flexibility and ability to fit data so well.

To cater to the need to model unimodal and modified unimodal shaped hazard rate

lifetime data and to address the inability of some modifications of the Weibull to fit

the third phase of the modified unimodal well, Chapter 5 introduces a four-parameter

generalization distribution that can accommodate monotonically increasing, unimodal,

modified unimodal and bathtub shaped hazard rate functions. The new distribution
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will be compared to other distributions including those having four parameters.

Many continuous Weibull distributions with bathtub shaped hazard rate functions

have been introduced and studied. However, only a few discrete distributions have

bathtub shaped hazard rate functions are introduced. The ones we are aware of are

the discrete modified Weibull and the discrete additive Weibull distributions. This is

the main motivation for Chapter 6 to introduce a new discrete distribution allowing

for bathtub shaped hazard rate functions.

In recent years, many modifications of the Weibull distribution have been proposed.

The author believes that there are some modified Weibull distributions with a small

number of parameters which have not received the attention they deserve. Also, there

are some modified Weibull distributions with a large number of parameters which

need to be revalued with respect to what they really contribute. Some of these mod-

ifications have a large number of parameters and so their real benefits over simpler

modifications are questionable. Chapter 7 shows that by considering the generalized

modified Weibull distribution of Carrasco et al. (2008), a widely cited paper, and the

exponentiated Weibull (EW) distribution of Mudholkar et al. (1995, 1996).

1.4 Organization of the thesis

This thesis contains eight chapters and proposes four new models, related to the

Weibull distribution and its modifications, to improve the fitting of different kinds

of lifetime data sets and to avoid some problems of some other modifications. This

thesis is organized as the following:

• An intensive review of discrete and continuous versions of the modifications of the

Weibull distribution is given in Chapter 2. This review includes the latest mod-

ifications that have been proposed in the last five years. The first part reviews

continuous modifications of the Weibull distribution, including their probability

density and hazard functions. The second part reviews discrete analogues of

the Weibull distribution and their modifications, the probability mass and the

hazard functions of those distributions are presented and their shapes are pre-

sented. Estimation methods, graphical tools for data analysis and goodness of

fit are discussed.
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• Chapter 3 introduces a new modification of the Weibull distribution, to be known

as new modified Weibull distribution (NMW). The sub-models of this new dis-

tribution are presented and the shapes of its probability density and hazard rate

functions are investigated. Two different methods to simulate a random sample

from this distribution are presented. Some of the mathematical properties of the

NMW are studied including moments, moment generating function and order

statistics. The estimation of its unknown parameters by maximum likelihood is

discussed. The new modified Weibull distribution is applied to several real data

sets and compared with some other modified Weibull distributions.

• Chapter 4 proposes a new simple method to reduce the number of parameters of

the new modified Weibull of Chapter 3 from five to three parameters. The result-

ing distribution is to called reduced new modified Weibull distribution (RNMW)

has been introduced. The shape of the hazard rate function is derived analyt-

ically. Some mathematical properties of the reduced model have been studied

and maximum likelihood estimation is discussed. Four applications of complete

and censored real data sets are used to compare the reduced version with the

NMW.

• Chapter 5 introduces a new model, referred to as exponentiated reduced modified

Weibull (ERMW), to fit the data with unimodal modified unimodal hazard rate.

First, the definition, interpretation and special cases of the proposed model are

presented. The shapes of the probability density and hazard rate function are

shown. We derive expressions for its mathematical properties and maximum

likelihood estimation. Using a simulation study the performance of the maximum

likelihood estimates (MLEs) with respect to biases and mean squared errors is

studied. Two applications with different hazard rate shapes are provided to show

how the proposed distribution work in practice using real data sets.

• Chapter 6 proposes a new discrete model with three parameters to be called the

new discrete modified Weibull distribution and noted as (DRMW). The new dis-

tribution has a bathtub or increasing hazard rate function. The definition of the

new discrete distribution is given and a series expansion for its survival function

is derived. The shapes of its probability mass function are shown and the shape
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of the hazard rate function are derived analytically. Some mathematical prop-

erties of the DRMW are studied including moments and order statistics. The

point and interval estimators of the unknown parameters of the DRMW distri-

bution are derived using the maximum likelihood method. Then, assessment of

the performance of the MLEs with respect to sample size n are presented using a

simulation study. The proposed distribution is applied to four applications with

a bathtub and increasing hazard rate and compared with other discrete modified

Weibull distributions.

• Chapter 7 uses two data sets with modified unimodal (unimodal followed by

increasing) hazard function for comparing the exponentiated Weibull and gener-

alized modified Weibull distributions. In a related issues, this chapter points out

some incorrect results with regard to the generalized Weibull distribution of Car-

rasco et al. (2008), in the applications to the Serum-reversal and Radiotherapy

data. The correct results are provided.

• Chapter 8 concludes the thesis and presents possible future work.

1.5 Publications and conferences

1. The intensive review that has been introduced in Chapter 2 was published in

Reliability Engineering & System Safety in April 2014. The article entitled “Mod-

ifications of the Weibull Distribution: A review”.

2. The main contribution in Chapter 3 was published in Reliability Engineering

& System Safety in March 2013. The title of this article is “A New Modified

Weibull Distribution”.

3. The main contribution that is presented in Chapter 4 has been accepted to

be published in Communications in Statistics-Theory and Methods. The final

version of the paper has been forwarded to the publisher for copy editing and

typesetting. The title of this paper is “A Reduced New Modified Weibull Distri-

bution”.
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Also, this work was presented as a talk in the 8th World Congress in Probability

and Statistics that was held in Istanbul, Turkey 2012.

4. The main results of Chapter 5 has been submitted to Communications in Statistics-

Theory and Methods and it is under consideration. The article is entitled “Ex-

ponentiated Reduced Modified Weibull Distribution”.

5. The new proposed discrete model in Chapter 6 has been published in IEEE

TRANSACTIONS ON RELIABILITY. It is titled as “A New Discrete Modified

Weibull Distribution”.

6. Chapter 7 has been submitted to IEEE TRANSACTIONS ON RELIABILITY

and now it is under consideration. It is titled as “Comparing The Exponentiated

and Generalized Modified Weibull Distributions”.



Chapter 2

Review of Modifications of the

Weibull Distribution

2.1 Introduction

The Weibull distribution was introduced by the Swedish physicist Waloddi Weibull

(Weibull, 1951). This work is one of the most widely cited papers. It has been

used in many different areas such as material science, reliability engineering, physics,

chemistry, medicine, psychology, pharmacy economics, quality control, maintenance

and replacement, inventory control, biology, forestry, geology, geography, astronomy

and other fields. A huge number of applications in the above areas have been listed

in Rinne (2008), Section 7.1, Tables 7.1-7.12. Murthy et al (2003) (Table 1.1 page

12) presented more than 40 applications of the Weibull distribution with references.

Moreover, as an extreme value distribution it has been used to model climate and

weather data such as rainfall (Revfeim, 1983), floods (Boes et al, 1989 and Heo et al,

2001) and wind speeds (Conradsen et al, 1984 and Carroll 2003).

The two-parameter Weibull distribution that is specified by the CDF in (1.2) has

been extensively modified using different methods by different authors and there is a

discrete version. The aim of this chapter is to provide a review of the modifications

of the Weibull distribution. The continuous modifications of the continuous Weibull

distribution are reviewed in Section 2.2. The discrete modifications of the discrete

Weibull distribution are reviewed in Section 2.3. Maximum likelihood estimation,

goodness of fit and information criteria are discussed in Section 2.4-2.7.
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2.2 Continuous modifications of the Weibull distri-

bution

In this section, some modifications of the continuous Weibull distribution are pre-

sented. Because of space limitations, we have not presented all of the known mod-

ifications of the continuous Weibull distribution. Some important modifications not

presented include those due to Elbatal (2011), Provost et al. (2011), Razaq and Memon

(2011), and Flaih et al. (2012b).

2.2.1 Inverse Weibull distribution

If Y = 1
X

and X follows the Weibull distribution, then Y has the inverse Weibull (IW)

distribution. The CDF, the PDF, and the HF of an IW distribution are

F (y;α, θ) = e−αy
−θ

, y > 0, (2.1)

f(y;α, θ) = αθy−θ−1e−αy
−θ

, y > 0

and

h(y;α, θ) = αθy−θ−1, y > 0,

where α, θ > 0. The HF of the IW distribution has a unimodal shape, see Figure 2.1.

This distribution is also called the reverse Weibull distribution (Simiu and Heckert,

1996), the complementary Weibull distribution (Drapella, 1993) and the reciprocal

Weibull distribution (Mudholkar and Kollia, 1994). Some properties of order statistics

of the IW distribution are derived in Razaq and Memon (2011).

A generalization of the IW distribution referred to as the Kumaraswamy IW, (Ku-

mIW), distribution was studied by Shahbaz et al. (2012). Its PDF and CDF are given

by

F (y) = 1−
[
1− e−ay

−θ
]b
, y > 0

and

f(y) = abθy−θ−1e−ay
−θ
[
1− e−ay

−θ
]b−1

, y > 0,
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(a) (b)

Figure 2.1: PDF and HF of the inverse Weibull distribution

where θ, a, b > 0, The particular case for a = b = 1 is the IW distribution.

A generalization of the IW distribution referred to as the beta inverse Weibull

(BIW) distribution was studied by Hanook et al. (2013). Its CDF and PDF are given

by

F (y) = I
e−y−θ (a, b), y > 0

and

f(y) =
θ

B(a, b)
y−(θ+1)e−ay

−θ
[
1− e−y

−θ
]b−1

, y > 0,

where θ, a, b > 0, B(a, b) denotes the beta function defined by

B(a, b) =

∫ 1

0

ta−1(1− t)b−1dt,

and Ix(a, b) denotes the incomplete beta function ratio defined by

Ix(a, b) =
1

B(a, b)

∫ x

0

ta−1(1− t)b−1dt.

The particular case for a = b = 1 is the IW distribution. The particular case of for

b = 1 is the exponentiated IW distribution due to Flaih et al. (2012a). Hanook et

al. (2013) showed that the BIW distribution can exhibit monotonic increasing and

unimodal HFs.

De Gusmao et al. (2011) claimed to have proposed another generalization of the IW

distribution. But it turns out to be a simple reparameterization of the IW distribution.

Sultan et al. (2007) proposed a mixture of two IW distributions.
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2.2.2 Log-Weibull distribution

Let X be a Weibull random variable with parameters α and θ. Then Y−a
b

= log (αXθ)

has the log-Weibull (LogW) distribution (extreme-value distribution Type I). It is due

to Gumbel (1958). Its CDF and PDF are

F (y; θ, a, b) = 1− exp
{
−e(

y−a
b )
}
, −∞ < y <∞

and

f(y; θ, a, b) =
1

b
e(

y−a
b ) exp

{
−e(

y−a
b )
}
, −∞ < y <∞,

where −∞ < a < ∞ and b > 0. This distribution is also called the type I extreme

value distribution. The HF of the LogW distribution is

h(y; θ, a, b) =
1

b
e(

y−a
b ),

an increasing function of y. The PDFs and the HFs of the LogW distribution for a = 0

and b = 1, 1.5, 3, 4.5 are shown in Figure 2.2.

(a) (b)

Figure 2.2: PDF and HF of the log-Weibull distribution

White (1969) derived expressions for the moments of a LogW random variable.

2.2.3 Reflected Weibull distribution

By considering the transformation Y = −X, where X is a Weibull random variable,

Cohen (1973) introduced the reflected Weibull (RefW) distribution. The CDF and



2.2 Continuous modifications of the Weibull distribution 49

the PDF of the RefW distribution are given by

F (y;α, θ) = e−α(−y)
θ

, −∞ < y < 0

and

f(y;α, θ) = αθ(−y)θ−1e−α(−y)
θ

, −∞ < y < 0,

where α, θ > 0. The HF of the RefW distribution is

h(y;α, θ) =
αθ(−y)θ−1e−α(−y)

θ

1− e−α(−y)θ
,

an increasing function of y. Figure 2.22 shows the PDF and the HF of the RefW

distribution.

(a) (b)

Figure 2.3: PDF and HF of the reflected Weibull distribution

2.2.4 Gamma Weibull distribution

A modification of the Weibull distribution due to Stacy (1962) uses the gamma dis-

tribution. It is a three-parameter generalized gamma distribution. Its PDF and CDF

are

f(x) =
θαk

Γ(k)
xkθ−1e−αx

θ

, x > 0

and

F (x) =
γ
(
k, αxθ

)
Γ(k)

, x > 0,
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where α, θ, k > 0 and γ(a, x) denotes the incomplete gamma function defined by

γ(a, x) =

∫ x

0

ta−1e−tdt.

The particular case for k = 1 gives the Weibull distribution. The particular case for

θ = 1 gives the gamma distribution. The particular case for k = r
θ
+1 is the weighted

Weibull distribution due to Tzavelas and Panagiotakos (2013).

Stacy and Mihram (1965) introduced a further generalization of the gamma distri-

bution by letting θ to take any real value. The PDF and the CDF of this distribution

are

f(x) =
|θ|αk

Γ(k)
xk|θ|−1e−αx

|θ|
, x > 0

and

F (x) =
γ
(
k, αx|θ|

)
Γ(k)

, x > 0,

where α, k > 0. The particular case for k = 1 is the Weibull distribution. Other

particular cases include the exponential, gamma, chi-squared and Rayleigh distribu-

tions. The latest studies about the generalized gamma distribution include Noufaily

and Jones (2013a) and Noufaily and Jones (2013b).

Harter (1967) obtained a four-parameter generalized gamma distribution by adding

a location parameter to the generalized gamma distribution of Stacy (1962). Its PDF

and CDF are

f(x) =
θαk

Γ(k)
(x− γ)kθ−1e−α(x−γ)

θ

, x > γ ≥ 0

and

F (x) =
γ
(
k, α(x− γ)θ

)
Γ(k)

, x > γ ≥ 0,

where α, θ, k > 0 and −∞ < γ <∞.

Cordeiro et al. (2011a) introduced the four-parameter exponentiated generalized

gamma distribution given by the PDF

f(x) =
λβ

αΓ(k)

(x
α

)βk−1

exp

[
−
(x
α

)β]{
γ1

(
k,
(x
α

)β)}λ−1

, x > 0,

where α, β, k, λ > 0, and γ1(a, x) is the incomplete gamma ratio defined by γ1(a, x) =

γ(a, x)/Γ(a). It allows for bathtub shaped, monotonically decreasing, monotonically

increasing, and upside down bathtub shaped HFs.
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Cordeiro et al. (2013a) introduced a five-parameter beta generalized gamma distri-

bution. In addition to the exponentiated generalized gamma distribution, it contains

many other distributions as particular cases. These include the gamma, chi-square,

exponential, Weibull, Rayleigh, Maxwell, folded normal, log-normal, exponentiated

gamma, exponentiated chi-square, exponentiated exponential, exponentiated Weibull,

exponentiated Rayleigh, exponentiated Maxwell, exponentiated folded normal, expo-

nentiated log-normal, beta gamma, beta chi-square, beta exponential, beta Weibull,

beta Rayleigh, beta Maxwell, beta folded normal and beta log-normal distributions.

Pascoa et al. (2011) introduced the five-parameter Kumaraswamy-generalized

gamma distribution given by the PDF

f(x) =
λψτ

αΓ(k)

(x
α

)τk−1

exp
[
−
(x
α

)τ]{
γ1

(
k,
(x
α

)τ)}λ−1
(
1−

{
γ1

(
k,
(x
α

)τ)}λ)ψ−1

,

where x, α, λ, k, ψ, τ > 0. It allows for constant, bathtub shaped, monotonically de-

creasing, monotonically increasing, and upside down bathtub shaped HFs.

Al-Saleh and Agarwal (2006) proposed an extended Weibull type distribution given

by the PDF

f(x) =
mcmxm−1e−(cx)m

Γδ(1, 1) [(cx)
m + 1]δ

x > 0,

where m, c > 0, −∞ < δ < ∞ and Γδ(m,n) denotes the generalized gamma function

defined by

Γδ(m,n) =

∫ ∞

0

xm−1e−x

(x+ n)δ
dx.

The corresponding CDF and HF are

F (x) = Γ(cx)m,δ(1, 1), x > 0

and

h(x) =
mcmxm−1e−(cx)m[

1− Γ(cx)m,δ(1, 1)
]
[(cx)m + 1]δ

x > 0,

where Γx,δ(j, 1) denotes the incomplete generalized gamma function defined by

Γx,δ(j, 1) =

∫ x

0

uj−1e−u

(u+ 1)δ
du.

The Weibull distribution is contained as the particular case for δ = 0. Al-Saleh and

Agarwal (2006) have shown that the HF can exhibit unimodal and bathtub shapes.
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2.2.5 Kies and Phani’s modified Weibull distributions

In some applications in the area of material science like strength of brittle materials

such as glass and fiber, the strength values are limited where the Weibull distribution

requires unlimited value. So, to address the limitation, Kies (1958) introduced a mod-

ification of the Weibull distribution by adding lower and upper limits to the random

variable. Its CDF is

F (x;α, β, a, b) = 1− exp

[
−α
(
x− a

b− x

)β]
,

where 0 < a ≤ x ≤ b < ∞ and α, β, γ > 0. The Kies’s distribution is limited because

it has just one shape parameter. To give more flexibility, Phani (1987) proposed a

distribution by adding another shape parameter β2. Its CDF is given by

F (x;α, β1, β2, a, b) = 1− exp

[
−α(x− a)β1

(b− x)β2

]
,

where 0 < a ≤ x ≤ b <∞ and α, β1, β2 > 0. The corresponding PDF and HF are

f (x;α, β1, β2, a, b) =
α(x− a)β1−1 [(bβ1 − aβ2) + (β2 − β1) x]

(b− x)β2+1
exp

{
α
(x− a)β1

(b− x)β2

}
and

h (x;α, β1, β2, a, b) =
α(x− a)β1−1 [(bβ1 − aβ2) + (β2 − β1)x]

(b− x)β2+1
,

where 0 < a ≤ x ≤ b < ∞. The HF has a bathtub shape when 0 < β1, β2 < 1 and

increases otherwise. Figures 2.5 and 2.4 show the PDF and the HF of the distributions

due to Kies and Phani.

2.2.6 Exponentiated Weibull distribution

A simple modification of the two-parameter Weibull distribution, called the exponen-

tiated Weibull, EW, distribution, was proposed by Mudholkar and Srivastava (1993)

and further studied by Mudholkar et al. (1995) and Mudholkar and Hutson (1996)

with applications to bus-motor failure data and flood data. They added a new shape

parameter λ to the Weibull distribution. The PDF and the CDF of the EW distribu-

tion are

f(x;α, θ, λ) = λαθxθ−1e−αx
θ
(
1− e−αx

θ
)λ−1

, x > 0



2.2 Continuous modifications of the Weibull distribution 53

(a) (b)

Figure 2.4: PDF and HF of Kies distribution

(a) (b)

Figure 2.5: PDF and HF of Phani distribution
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and

F (x;α, θ, λ) =
(
1− e−αx

θ
)λ
, x > 0, (2.2)

where α, θ, λ > 0, α is a scale parameter and θ and λ are shape parameters. The

particular case for λ = 1 is the Weibull distribution. The particular case for θ = 2

is the generalized Rayleigh distribution, GR, due to Surles and Padgett (2001). The

particular case for θ = 1 is generalized exponential distribution, GE, due to Kundu

and Gupta (1999). The particular cases for λ = 1 and θ = 1, 2 are the exponential

and Rayleigh distributions. The HF of the EW distribution is

h(x;α, θ, λ) = αθλxθ−1e−αx
θ
(
1− e−αx

θ
)−1

,

which is monotonically increasing when θ > 1 and θλ > 1, monotonically decreasing

when θ < 1 and θλ < 1, bathtub shaped when θ > 1 and θλ < 1 and unimodal shaped

when θ < 1 and θλ > 1. Figures 2.6 (a) and (b) show possible shapes of the PDF and

the HF of the EW distribution.

(a) (b)

Figure 2.6: PDF and HF of the exponentiated Weibull distribution

Pal et al. (2006) re-introduced the EW distribution in more details. Aryal and

Tsokos (2011) proposed an extension of the Weibull distribution and compare its fit

with the EW distribution. Unfortunately, however, its hazard function cannot exhibit

non-monotonic shapes.
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2.2.7 Generalized Weibull distribution

Mudholkar and Kollia (1994) extended theWeibull distribution to a generalizedWeibull

GW distribution by adding a new parameter to the quantile function. Mudholkar et al.

(1996) used this distribution to model two real survival data sets with bathtub shaped

and unimodal shaped failure rates. The quantile function of the GWF distribution is

Q(u) =

[
1− (1− u)λ

αλ

] 1
θ

,

where −∞ < λ < ∞. If λ → 0 we obtain the quantile function of the Weibull

distribution. The CDF of the GWF distribution is

F (x;α, θ, λ) = 1−
[
1− αλxθ

] 1
λ , x > 0,

where α, θ > 0 and −∞ < λ < ∞. The domain of the CDF is (0,∞) for λ ≤ 0 and

(0, (αλ)−
1
θ ) for λ > 0. The PDF of the GWF distribution is

f(x;α, θ, λ) = αθxθ−1
[
1− αλxθ

] 1
λ
−1

x > 0.

Its HF is

h(x;α, θ, λ) = αθxθ−1
[
1− αλxθ

]−1
x > 0.

The HF can take the following shapes:

• Increasing if θ ≥ 1 and λ > 0;

• Decreasing if θ ≤ 1 and λ ≤ 0;

• Bathtub shaped if θ < 1 and λ > 0;

• Unimodal shaped θ > 1 and λ < 0.

Figure 2.7 shows the different shapes of the PDF and the HF of the GWF distribution.

2.2.8 Additive Weibull distribution

Xie and Lai (1996) introduced the additive Weibull distribution, AddW, with bathtub

shaped HF obtained as the sum of two HFs of the Weibull distribution. The PDF,

the CDF and the HF of the AddW distribution are

f(x;α, β, θ, γ) =
(
αθxθ−1 + βγxγ−1

)
e−αx

θ−βxγ , x > 0,
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(a) (b)

Figure 2.7: PDF and HF of the exponentiated Weibull distribution

F (x;α, β, θ, γ) = 1− e−αx
θ−βxγ , x > 0 (2.3)

and

h(x;α, β, θ, γ) = αθxθ−1 + βγxγ−1, x > 0,

where α, β, θ > 0 and γ < 1. The HF increases when the shape parameters, θ and γ,

are greater than one. The HF decreases when the shape parameters are less than one.

The particular case for α = 0 or β = 0 is the Weibull distribution. The particular case

for γ = 2 is the linear failure rate distribution due to Bain (1974). The particular case

for θ = 1 and γ > 0 is the modified Weibull distribution of Sarhan and Zaindin (2009)

to be discussed later.

Some possible shapes of the HF and the PDF of the AddW distribution are shown

in Figure 2.8.

Bebbington et al. (2006) considered a particular case of the AddW distribution

with real data applications. A discrete analog of the AddW distribution is proposed

in Bebbington et al. (2012).

2.2.9 Extended Weibull distribution

Marshall and Olkin (1997) proposed a general method to modify any distribution

by adding a new parameter. Let Fw(·) denote the CDF of a two-parameter Weibull

distribution with scale parameter α and shape parameter θ. Using Marshall and

Olkin (1997)’s method, Zhang and Xie (2007) proposed an extended Weibull (ExW)
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(a) (b)

Figure 2.8: PDF and HF of the additive Weibull distribution

distribution specified by the CDF

F (x;α, θ, λ) =
Fw(x)

1− λFw(x)

=
1− e−αx

θ

1− λe−αxθ
, x > 0, (2.4)

where λ = 1 − λ and Fw(x) = 1 − Fw(x). The WG distribution of Barreto-Souza et

al. (2011) is a particular case of this distribution for 0 < λ < 1. The PDF and the

HF of the ExW distribution are

f(x;α, θ, λ) =
αθλxθ−1e−αx

θ[
1− λe−αxθ

]2 , x > 0 (2.5)

and

h(x;α, θ, λ) =
αθλxθ−1

1− λe−αxθ
x > 0. (2.6)

The HF in (2.6) increases when θ, λ ≥ 1, decreases when θ, λ ≤ 1, unimodal followed

by increasing when θ > 1 and decreasing followed by unimodal when θ < 1. The

different shapes of the PDF and the HF of the ExW distribution are shown in Figure

2.9.

Ghitany et al. (2005) suggested an extension of Marshall and Olkin (1997)’s

method for generating new distributions. For a given CDF Fw(·), they suggest defining

F (x;α, λ, β) =
αFw(x)

1− αFw(x)
,
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(a) (b)

Figure 2.9: PDF and HF of the extended Weibull distribution

where α > 0 and α = 1 − α. By taking Fw(·) to be a two-parameter Weibull CDF,

Ghitany et al. (2005) generalized (2.4), (2.5) and (2.6) to

F (x;α, λ, β) = 1− αe−(λx)β

1− αe−(λx)β
, x > 0,

f(x;α, λ, β) =
αβλ(λx)β−1e−(λx)β[

1− αe−(λx)β
]2 , x > 0

and

h(x;α, λ, β) =
βλ(λx)β−1

1− αe−(λx)β
, x > 0,

respectively, where α, β, λ > 0. Ghitany et al. (2005) established that the following

shapes are possible for the HF:

• Increasing if either α ≥ 1 and β ≥ 1 or α ≤ 1, β > 1 and β − 1− αe−1/β ≥ 0;

• Decreasing if either α ≤ 1 and β ≤ 1 or α ≥ 1, β < 1 and β − 1− αβe−1/β ≤ 0;

• Increasing followed by decreasing followed by increasing if α ≤ 1, β > 1 and

β − 1− αe−1/β < 0;

• Decreasing followed by increasing followed by decreasing if α ≥ 1, β < 1 and

β − 1− αβe−1/β > 0.

Particular cases of this distribution include Gompertz (1825)’s distribution for β = 1

and Chen (2000)’s distribution for λ = 1. Some possible shapes of the PDF and the

HF of Ghitany et al.’s distribution are shown in Figure 2.10.
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(a) (b)

Figure 2.10: PDF and HF of Ghitany et al.’s distribution

2.2.10 Power Lindley distribution

Ghitany et al. (2013) proposed the power Lindley (PL) distribution specified by the

CDF

F (x;α, β) = 1−
(
1 +

β

β + 1
xα
)
e−βx

α

, x > 0,

where α > 0 and β > 0. The corresponding PDF and HF are

f(x;α, β) =
αβ2

β + 1
(1 + xα)xα−1e−βx

α

, x > 0

and

h(x;α, β) =
(1 + xα)xα−1

β + 1 + βxα
, x > 0.

This distribution was obtained by power transformation of a Lindley random variable

(Lindley, 1958). It can also be obtained as a mixture of Weibull and generalized

gamma distributions. The Weibull distribution arises as the limiting case for β → 0.

Ghitany et al. (2013) established the following shapes for the PDF of the PL

distribution:

• Decreasing if either 0 < α ≤ 1/2 and β > 0 or 1/2 < α < 1 and β ≥{
1− 2

√
α(1− α)

}
/α or α = 1 and β ≥ 1;

• Unimodal if either α = 1 and 0 < β < 1 or α > 1 and β > 0;

• Decreasing followed by increasing followed by decreasing if 1/2 < α < 1 and

0 < β <
{
1− 2

√
α(1− α)

}
/α.
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Moreover, the following shapes were established for the HF:

• Decreasing if either 0 < α ≤ 1/2 and β > 0 or 1/2 < α < 1 and β ≥ (2α −

1)2/ {4α(1− α)};

• Increasing if either α ≥ 1 and β > 0;

• Decreasing followed by increasing followed by decreasing if 1/2 < α < 1 and

0 < β < (2α− 1)2/ {4α(1− α)}.

Some possible shapes of the PDF and the HF of the PL distribution are shown in

Figure 2.11.

(a) (b)

Figure 2.11: PDF and HF of the power Lindley distribution

2.2.11 Modified Weibull distribution

Lai et al. (2003) proposed a modification by multiplying the Weibull cumulative

HF, αxθ, by eλx. This three-parameter distribution is known as modified Weibull

distribution, MW. Lai et al. (2003) studied some of its properties and estimation by

maximum likelihood and Weibull probability plot methods. The CDF of the MW

distribution is

F (x; β, γ, λ) = 1− e−βx
γeλx , x > 0, (2.7)

where β > 0, γ, λ ≥ 0 and at most one of γ, λ is equal to zero. The particular case for

λ = 0 is the Weibull distribution. The particular case for γ = 0 is the type I extreme
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value distribution. The PDF of the MW distribution is

f(x; β, γ, λ) = β (γ + λx)xγ−1eλxe−βx
γeλx , x > 0. (2.8)

The corresponding HF is

h(x; β, γ, λ) = β (γ + λx)xγ−1eλx, x > 0. (2.9)

The PDF of the MW distribution can be decreasing, unimodal or decreasing followed

by unimodal. The HF can be increasing or bathtub shaped. Some possible shapes of

the PDF and the HF of the MW distribution are shown in Figure 2.12.

(a) (b)

Figure 2.12: PDF and HF of the modified Weibull distribution

The MW distribution is one of the most important modifications of the Weibull

distribution and also among the lifetime distributions. Many authors have proposed

generalizations of the MW distribution: the generalized modified Weibull distribution

due to Carrasco et al. (2008); the beta modified Weibull distribution due to Silva et

al. (2010); and the Kumaraswamy modified Weibull distribution due to Cordeiro et al.

(2014b). Many authors have also studied estimation issues of the MW distribution:

based on progressively type-II censored data, Ng (2005) and Jiang et al. (2010) studied

estimation of the parameters of the MW distribution using maximum likelihood and

least-squares methods; Carrasco et al. (2008) proposed a regression model called log-

regression modified Weibull model for lifetime data following the MW distribution and

affected by some explanatory variables; Preda et al. (2010) obtained Bayes estimators

of the MW distribution based on the Lindley approximation method; Soliman et al.
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(2012) obtained Bayesian estimators of the MW distribution for progressive censored

data by using Markov chain Monte Carlo (MCMC).

2.2.12 Generalized power Weibull distribution

A three-parameter distribution, called a generalized power Weibull (GPW) distribu-

tion, was proposed by Nikulin and Haghighi (2006). Its CDF and PDF are

F (x;α, θ, λ) = 1− exp
{
1−

(
1 + αxθ

) 1
λ

}
, x > 0

and

f(x;α, θ, λ) = αθλ−1xθ−1
(
1 + αxθ

) 1
λ
−1

exp
{
1−

(
1 + αxθ

) 1
λ

}
, x > 0,

where α, θ, λ > 0. The particular case for λ = 1 is the Weibull distribution. The HF

of the GPW distribution is

h(x;α, θ, λ) = αθλ−1xθ−1
(
1 + αxθ

) 1
λ
−1
, x > 0.

It has the following possible shapes:

• Increasing if θ ≥ 1 and θ > λ;

• Decreasing if θ ≤ 1 and θ < λ;

• Bathtub shaped if 0 < λ < θ < 1;

• Unimodal shaped λ > θ > 1.

Some possible shapes of the PDF and the HF of the GPW distribution are shown in

Figure 2.13.

2.2.13 Modified Weibull extension

The modified Weibull extension (MWEx) with bathtub shaped failure rate function

was proposed by Xie et al. (2002). The PDF and the CDF of this distribution are

f(x;α, θ, λ) = λα(
θ−1
θ )xθ−1eαx

θ

exp
[
λα− 1

θ

(
1− e−αx

θ
)]
, x > 0

and

F (x;α, θ, λ) = 1− exp
[
λα− 1

θ

(
1− e−αx

θ
)]
, x > 0,
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(a) (b)

Figure 2.13: PDF and HF of the generalized power Weibull distribution

where α, θ, λ > 0. The Weibull distribution can be obtained as a special case of this

distribution when α is so small that (1− e−αx
θ
) is approximately equal to −αxθ. The

particular case of the MWEx distribution for α = 1 is Chen (2000)’s distribution. The

HF of the MWEx distribution is

h(x;α, θ, λ) = λα(
θ−1
θ )xθ−1eαx

θ

,

which depends only on the shape parameter θ. The HF increases if θ ≥ 1 and is

bathtub shaped if θ < 1. Some possible shapes of the PDF and the HF of the MWEx

distribution are shown in Figure 2.14.

(a) (b)

Figure 2.14: PDF and HF of the modified Weibull extension

Sarhan and Apaloo (2013) generalized the MWEx distribution via exponentia-

tion and referred to the generalization as exponentiated modified Weibull extension,
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EMWEx. Sarhan and Apaloo’s distribution admits increasing and bathtub shaped

HFs. It can also be shown to have a bathtub shaped HF with long useful period. Fig-

ure 2.15 shows possible shapes of the PDF and the HF of the EMWEx distribution.

Much researches have been performed with respect to the MWEx distribution, see,

for example, Xie et al. (2002), Tang et al. (2003), Yong (2004), Nadarajah (2005),

Elshahat (2007), Gupta et al. (2008), and El-Fotouh and Nassar (2011).

(a) (b)

Figure 2.15: PDF and HF of the exponentiated modified Weibull extension

2.2.14 Beta Weibull distributions

The four-parameter beta Weibull (BW) distribution was proposed by Famoye et al.

(2005). Its PDF and CDF are

f(x; a, b, α, θ) =
1

B(a, b)
αθxθ−1

(
1− e−αx

θ
)a−1

e−αbx
θ

, x > 0

and

F (x; a, b, α, θ) = I
1−e−αxθ (a, b), x > 0,

where α, θ, a, b > 0. The particular case for a = b = 1 is the Weibull distribution.

Other particular cases include the beta exponential distribution due to Maynard (2003)

and Nadarajah and Kotz (2006a), the GE distribution due to Gupta and Kundu (1999)

and the EW distribution due to Mudhalkar and Srivastava (1993). The HF of the beta

Weibull distribution increases if θ ≥ 1 and aθ ≥ 1, decreases if θ ≤ 1 and aθ ≤ 1,

bathtub shaped if θ > 1 and aθ < 1 and unimodal shaped if θ < 1 and aθ > 1. The
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PDF and the HF of the BW distribution for some selected parameter values are shown

in Figure 2.16.

(a) (b)

Figure 2.16: PDF and HF of the beta Weibull distribution

The distribution of Famoye et al. (2005) was re-introduced by Cordeiro et al.

(2009) and Wahed et al. (2009) without acknowledging the original source. Lee et

al. (2007) applied the BW distribution to censored data sets. Cordeiro et al. (2011b)

derived a closed form expressions for the moments of a BW random variable. Cordeiro

et al. (2013c) derived further properties, including closed form expressions for moment

generating function, the behaviors of the extreme values, mean deviations, Bonferroni

curves and Lorenz curves. Ortega et al. (2013) introduced a regression model, the log-

beta Weibull regression model, to analyze lifetime data following the BW distribution.

Mahmoud and Mandouh (2012) studied parameter estimation of the BW distribution

for censored data.

The beta modified Weibull distribution, BMW, with five parameters was intro-

duced by Silva et al. (2010). The PDF and the CDF of this distribution are

f(x; a, b, β, γ, λ) =
1

B(a, b)

β (γ + λx) xγ−1eλx
(
1− e−βx

γeλx
)a−1

eβbxγeλx
, x > 0

and

F (x; a, b, β, γ, λ) = I
1−e−βxγeλx (a, b), x > 0,

where a, b, β, γ > 0 and λ ≥ 0. The particular case for a = b = 1 and λ = 0 is the

Weibull distribution. Other particular cases include the generalized modified Weibull
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distribution due to Carrasco et al. (2008) for b = 1, the MW distribution due to Lai

et al. (2003) for a = b = 1, the BW distribution due to Famoye et al. (2005) for

λ = 0, the EW distribution due to Mudholkar and Srivastava (1993) for b = 1 and

λ = 0, and others. The BMW distribution allows the following shapes for its HF:

increasing, decreasing, bathtub shape and unimodal shape. Figure 2.17 shows some

possible shapes of the PDF and the HF of the BMW distribution.

(a) (b)

Figure 2.17: PDF and HF of the beta modified Weibull distribution

A detailed account of mathematical properties of the BMW distribution was given

by Nadarajah et al. (2011). Closed form expressions were derived for moments,

moment generating function, asymptotic distributions of the extreme values, mean

deviations, Bonferroni and Lorenz curves, reliability and entropies. Procedures for

estimation were also derived by the methods of moments and maximum likelihood.

A five-parameter distribution called beta exponentiated Weibull (BEW) distribu-

tion was proposed independently by Alexander et al. (2012), Singla et al. (2012) and

Cordeiro et al. (2013b). This distribution generalizes many well known distributions

like the beta generalized exponential (BGE) distribution due to Barreto-Souza et al.

(2010), the GE distribution, the BW distribution, the EW distribution and the GR

distribution. The PDF and the CDF of the BEW distribution are

f(x; a, b, α, θ, λ) =
1

B(a, b)
αθλxθ−1

(
1− e−αx

θ
)aλ−1

{
1−

(
1− e−αx

θ
)λ}b−1

e−αx
θ
, x > 0

and

F (x; a, b, α, θ, λ) = I
(1−e−αxθ)

λ(a, b), x > 0,
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where a, b, α, β, λ > 0. The HF of the BEW distribution can be increasing, decreasing,

bathtub shaped or unimodal shaped, as illustrated in Figure 2.18.

(a) (b)

Figure 2.18: PDF and HF of the beta exponentiated Weibull distribution

A generalization of the BEW distribution is discussed in Cordeiro et al. (2014).

2.2.15 Odd Weibull distribution

Another modification of the Weibull distribution, referred to as the odd Weibull

(OddW) distribution, was presented by Cooray (2006). It has three parameters and

was obtained by considering the distribution of the odds of the Weibull and inverse

Weibull distributions. The CDF of the OddW distribution is

F (x;α, θ, λ) = 1−
[
1 +

(
eαx

θ − 1
)λ]−1

, x > 0,

where α > 0, θλ > 0, the shape parameters being θ and λ. The particular case

for λ = 1 is the Weibull distribution. The particular case for λ = −1 is the IW

distribution. The PDF and the HF of the OddW distribution are

f(x;α, θ, λ) = αθλxθ−1eαx
θ
(
eαx

θ − 1
)λ−1

[
1 +

(
eαx

θ − 1
)λ]−2

, x > 0

and

h(x;α, θ, λ) = αθλxθ−1eαx
θ
(
eαx

θ − 1
)λ−1

[
1 +

(
eαx

θ − 1
)λ]−1

, x > 0.

The HF can take the following shapes:

• Increasing if θ > 1 and θλ > 1;



2.2 Continuous modifications of the Weibull distribution 68

• Decreasing if θ < 1 and θλ < 1;

• Unimodal shaped if either θ, λ < 0 or θ < 1 and θλ ≥ 1;

• Bathtub shaped if θ > 1 and θλ ≤ 1.

Figures 2.19 (a) and (b) show possible shapes of the PDF and the HF of the OddW

distribution. Further studies about the OddW distribution can be found in Jiang et

al. (2008) and Cooray (2012).

(a) (b)

Figure 2.19: PDF and HF of the odd Weibull distribution

2.2.16 Flexible Weibull extension

With a simple HF that can be increasing, bathtub shaped or unimodal shaped, Beb-

bington et al. (2007) proposed an interesting distribution with just two parameters.

It is called the flexible Weibull extension (FlxWE). Its CDF, PDF and HF are

F (x;α, β) = 1− exp
[
−eαx−

β
x

]
, x > 0,

f(x;α, β) =

(
α +

β

x2

)
eαx−

β
x exp

[
−eαx−

β
x

]
, x > 0

and

h(x;α, β) =

(
α +

β

x2

)
eαx−

β
x , x > 0,

where α, β > 0. Some possible shapes of the PDF and the HF are illustrated in Figure

2.20.
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(a) (b)

Figure 2.20: PDF and HF of the flexible Weibull extension

2.2.17 Generalized modified Weibull distribution

As mentioned before, Carrasco et al. (2008) generalized the MW distribution of Lai

et al. (2003) by adding another shape parameter. We refered to the generalization as

the GMW distribution. Its CDF is

F (x; β, γ, λ, θ) =
(
1− e−βx

γeλx
)θ
, x > 0, (2.10)

where β, θ > 0, γ, λ ≥ 0 and at most one γ, λ is equal to zero. The GMW distribution

has one scale parameter, β, one acceleration parameter, λ, and two shape parameters, γ

and θ, giving it more flexibility. The particular case for λ = 0 and θ = 1 is the Weibull

distribution. The particular case for γ = 0 and θ = 1 is the type I extreme value

distribution. The particular case for θ = 1 is the MW distribution. The particular

case for λ = 0 is the EW distribution. The PDF and the HF of the GMW distribution

are

f(x; β, γ, λ, θ) = βθxγ−1 (γ + λx) eλx−βx
γeλx

[
1− e−βx

γeλx
]θ−1

, x > 0 (2.11)

and

h(x; β, γ, λ, θ) =
βθxγ−1 (γ + λx) eλx−βx

γeλx
[
1− e−βx

γeλx
]θ−1

1−
(
1− e−βxγeλx

)θ , x > 0.

The HF exhibits the following shapes:

• Increasing if either γ ≥ 1, θ < 1 and γθ > 1 or γ > 1 and θ > 1;
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• Decreasing if γ > 1, λ = 0 and γθ < 1;

• Bathtub shaped if either γ < 1 and γθ < 1 or γ ≥ 1, θ < 1 and γθ < 1;

• Unimodal shaped if γ < 1 and θ → ∞.

Figure 2.21 shows possible shapes of the PDF and the HF of the GMW distribution.

(a) (b)

Figure 2.21: PDF and HF of the generalized modified Weibull distribution

Ortega et al. (2011) developed a regression model where the lifetimes follow the

GMW distribution affected by some explanatory variables.

2.2.18 Sarhan and Zaindin’s modified Weibull distribution

Sarhan and Zaindin (2009) introduced a three-parameter distribution, known as mod-

ified Weibull distribution, SZMW. This distribution is the same as the β distribution

of Bousquet et al. (2006). Its PDF and CDF are

f(x;α, β, γ) =
(
α + βγxγ−1

)
e−αx−βx

γ

, x > 0

and

F (x;α, β, γ) = 1− e−αx−βx
γ

, x > 0,

where α, β, γ > 0. This distribution can be obtained as a particular case of the AddW

distribution by setting one of its two shape parameters, θ and γ, in (2.3) to be one.
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The exponential, Rayleigh, linear failure rate and Weibull distributions are particular

cases of the SZMW distribution. The HF of the SZMW distribution is

h(x;α, β, γ) = α + βγxγ−1, x > 0.

Unfortunately, the HF cannot exhibit non-monotonic shapes like the bathtub shape

or the unimodal shape. It is monotonically increasing if γ > 1 and monotonically

decreasing if γ < 1, as shown in Figure 2.22. The same distribution had proposed in

(2006) by Bousquet et al., it called the β distribution, Bousquet et al. (2006).

The SZMW distribution was generalized by Zaindin and Sarhan (2011), allowing

the HF to exhibit increasing, decreasing, bathtub and unimodal shapes as well as

giving the PDF more flexibility, as shown in Figure 2.23. Further studies of the

SZMW distribution can be found in Zaindin and Sarhan (2009), Al-Hadhrami (2010),

Zaindin (2010) and Gasmi and Berzig (2011).

(a) (b)

Figure 2.22: PDF and HF of Sarhan and Zaindin’s modified Weibull distribution

2.2.19 Kumaraswamy Weibull distribution

Cordeiro et al. (2010) introduced the Kumaraswamy Weibull (KumW) distribution.

The KumW distribution has four parameters three of which are shape parameters,

adding great flexibility. The CDF, the PDF and the HF of the KumW distribution

are

F (x;α, θ, a, b) = 1−
[
1−

(
1− e−αx

θ
)a ]b

, x > 0,
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(a) (b)

Figure 2.23: PDF and HF of Sarhan and Zaindin’s generalized modified Weibull dis-
tribution

f(x;α, θ, a, b) = abαθxθ−1e−αx
θ
[
1− e−αx

θ
]a−1 [

1−
(
1− e−αx

θ
)a ]b−1

, x > 0

and

h(x;α, θ, a, b) =
abθxθ−1e−αx

θ
[
1− e−αx

θ
]a−1

1−
[
1− e−αxθ

]a , x > 0,

where α, θ, a, b > 0, the shape parameters being a, b and θ. The HF can be constant,

increasing, decreasing, bathtub shaped and unimodal shaped. Particular case of the

KumW distribution include the EW distribution due to Mudhalkar and Srivastava

(1993), the GE distribution due to Gupta and Kundu (1999), the GR distribution due

to Surles and Padgett (2001), the Kumaraswamy exponential (KumE) distribution, the

Kumaraswamy Rayleigh distribution (KumR), the Weibull distribution, the Rayleigh

distribution and the exponential distribution.

Lemonte et al. (2013) proposed the five-parameter exponentiated Kumaraswamy

Weibull (EKum) distribution given by the CDF

F (x) =
{
1−

[
1−

(
1− exp

(
−δxθ

))α]β}γ
, x > 0,

where α, β, γ, δ, θ > 0. This distribution contains the KumW distribution as the

particular case for γ = 1.
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(a) (b)

Figure 2.24: PDF and HF of Kumaraswamy Weibull distribution

2.2.20 Kumaraswamy modified Weibull distribution

Cordeiro et al. (2014b) proposed a modification of the Weibull distribution called

Kumaraswamy modified Weibull (KumMW) distribution. Its CDF, PDF and HF are

F (x;α, θ, λ, a, b) = 1−
{
1−

[
1− exp

(
−αxθeλx

)]a }b
, x > 0,

f(x;α, θ, λ, a, b) = abαxθ−1(θ + λx) exp
(
λx− αxθeλx

) [
1− exp

(
−αxθeλx

)]a−1{
1−

[
1− exp

(
−αxθeλx

)]a }b−1
, x > 0

and

h(x;α, θ, λ, a, b) =
abαxθ−1(θ + λx) exp

(
λx− αxθeλx

) [
1− exp

(
−αxθeλx

)]a−1

{1− [1− exp (−αxθeλx)]a }
, x > 0,

where α, θ, λ, a, b > 0. Particular cases include the GMW distribution, the MW dis-

tribution, the LogW distribution and the KumW distribution. As shown in Figure

2.25, the PDF of the KumMW distribution can be very flexible and its HF can be

increasing, decreasing, bathtub shaped and unimodal shaped.

Cordeiro et al. (2014b) provided a thorough study of the mathematical properties

of the KumMW distribution. They derived expressions for its moments, moment

generating function, order statistics, reliability, mean deviations, Bonferroni curve and

Lorenz curve as well as considered maximum likelihood estimation and a log-KumMW

regression model using censoring data.
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(a) (b)

Figure 2.25: PDF and HF of Kumaraswamy modified Weibull distribution

2.3 Discrete Weibull distributions

This section reviews discrete analogues of the Weibull distribution and their modifi-

cations including shapes of their probability mass functions, PMFs, and HFs.

2.3.1 Discrete Weibull distribution I

The first discrete analogue of the two-parameter continuous Weibull distribution was

introduced by Nakagawa and Osaki (1975). It was called type I discrete Weibull

(DW(I)) distribution. The survival function (SF), the PMF and the HF of the DW(I)

distribution are

S(x; q, θ) = qx
θ

,

p(x; q, θ) = qx
θ − q(x+1)θ ,

and

h(x; q, θ) = 1− q(x+1)θ−xθ

for x = 0, 1, . . ., 0 < q < 1 and θ > 0. The HF increases when θ > 1, decreases when

θ < 1 and constant when θ = 1. Figure 2.26 shows possible shapes of the PMF and

the HF.
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(a) (b)

Figure 2.26: PMF and HF of the discrete Weibull distribution I

2.3.2 Discrete Weibull distribution II

Stein and Dattero (1984) proposed another discrete Weibull distribution, later called

type II discrete Weibull (DW(II)) distribution, by considering lifetimes as the integer

part of the continuous Weibull distribution. The HF of the DW(II) distribution is

h(x;α, θ) =

 αθxθ−1, for x=1,2, . . . , m,

0, for x=0,

where hx ≤ 1 and m is a positive integer defined as

m =

 int
{
α−(θ−1)−1

}
, if θ > 1,

+∞, if θ ≤ 1.

The PMF and the HF of the DW(II) distribution are plotted for selected parameter

values in Figure 2.27.

2.3.3 Discrete Weibull distribution III

The third discrete version of the Weibull distribution was suggested by Padgett and

Spurrier (1985). It can exhibit increasing, decreasing and constant HFs. It is called

type III discrete Weibull (DW(III)) distribution and its HF is

h(x;α, θ) = 1− exp
{
−α(x+ 1)θ

}
, x = 0, 1, 2, . . . ,

where α > 0 and −∞ < θ <∞. The PMF is

p(x;α, θ) =
(
1− exp

{
−α(x+ 1)θ

})
e−α

∑x
j=1 j

θ

, x = 0, 1, 2, . . . .
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(a) (b)

Figure 2.27: PMF and HF of the discrete Weibull distribution II

The HF increases if θ > 0 and decreases if θ < 0. The distribution reduces to the

geometric distribution if θ = 1. Figures 2.28 (a) and (b) show the PMF and the HF

for selected parameter values.

(a) (b)

Figure 2.28: PMF and HF of the discrete Weibull distribution III

2.3.4 Discrete inverse Weibull distribution

Jazi et al. (2010) introduced the discrete inverse Weibull (DIW) distribution with two

parameters, by considering a characteristic property of the continuous inverse Weibull

distribution. The CDF and the PMF of the DIW distribution are

F (x; q, θ) = qx
−θ

, x = 1, 2, . . . ,
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and

p(x; q, θ) =

 q, if x = 1,

qx
−θ − q(x−1)−θ

, if x = 2, 3, . . . ,

where 0 < q < 1 and θ > 0. The standard HF defined by

h1(x; q, θ) =
Pr(X = x)

Pr(X ≥ x)

takes the form

h1(x; q, θ) =
qx

−θ − q(x−1)−θ

1− q(x−1)−θ , x = 1, 2, . . . .

The alternative HF defined by

h2(x; q, θ) = log

[
Pr(X > x− 1)

Pr(X > x)

]
(see equation (8) in Jazi et al. (2010)) takes the form

h2(x; q, θ) = log

(
1− q(x−1)−θ

1− qx−θ

)
, x = 1, 2, . . . .

If (1−q)−1 ≥
√

1− q2−θ , the alternative HF of the DIW distribution will be decreasing

and otherwise it will take a unimodal shape. Figure 2.29 shows the PMF and the

alternative HF for selected parameter values.

(a) (b)

Figure 2.29: PMF and HF of the discrete inverse Weibull distribution
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2.3.5 Discrete modified Weibull distribution

An interesting discrete distribution related to the Weibull distribution is the discrete

modified Weibull (DMW) distribution proposed by Nooghabi et al. (2011). This

distribution is the discrete analogue of the modified Weibull distribution of Lai et al.

(2003). The SF of the DMW distribution is

S(x; q, θ, c) = qx
θcx , x = 0, 1, 2, . . .

while its PMF and HF are

p(x; q, θ, c) = qx
θcx − q(x+1)θcx+1

, x = 0, 1, 2, . . . ,

and

h(x; q, θ, c) = 1− q(x+ 1)θcx+1 − xθcx,

where 0 < q < 1, θ > 0 and c ≥ 0. The PMF of the DMW distribution can take

different shapes: decreasing, unimodal or decreasing followed by unimodal. Its HF

increases when θ < 1 and c2b−1 < 1 and is bathtub shaped otherwise. The shapes of

the PMF and HF are shown in Figure 2.30 for selected parameter values.

(a) (b)

Figure 2.30: PMF and HF of the discrete modified Weibull distribution

2.3.6 Discrete additive Weibull distribution

Bebbington et al. (2012) introduced the discrete additive Weibull (DAddW) distribu-

tion with four parameters. The SF, the PMF and the HF of the DAddW distribution
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are

S (x; q1, q2, θ, γ) = qx
θ

1 q
xγ

2 , x = 0, 1, 2, . . . ,

p (x; q1, q2, θ, γ) = qx
θ

1 q
xγ

2 − q
(x+1)θ

1 q
(x+1)γ

2 ,

and

h (x; q1, q2, θ, γ) = 1− q
(x+1)θ−xθ
1 q

(x+1)γ−xγ
2 ,

where 0 < q1, q2 < 1 and θ, γ > 0. The HF increases if θ ≥ 1 and γ > 1 (θ > 1

and γ ≥ 1), decreases if θ ≤ 1 and γ < 1 (θ < and γ ≤ 1) and is bathtub shaped if

θ < 1 < γ (γ < 1 < θ). Figure 2.31 shows the different shapes of the PMF and the

HF.

(a) (b)

Figure 2.31: PMF and HF of the discrete additive Weibull distribution

2.4 Maximum likelihood estimation

Given a random sample x1, . . . , xn of n independent and identically distributed ob-

servations which coming from a lifetime distribution with PDF (PMF) f(x;ϕ), where

ϕ = (ϕ1, ϕ2, . . . , ϕk), the joint probability density (mass) function for the above sample

is given by

f(x1, . . . , xn|ϕ) =
n∏
i=1

f(xi;ϕ). (2.12)
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When x1, . . . , xn are observed the above joint probability density (mass) function

becomes a function in ϕ, which is the likelihood function, denoted L(ϕ) and given by

L(ϕ|x1, . . . , xn) =
n∏
i=1

f(xi;ϕ). (2.13)

It is more convenient in practice to deal with the logarithm of the likelihood func-

tion, the log-likelihood function, denoted as L and given by

L(ϕ|x1, . . . , xn) =
n∑
i=1

log f(xi;ϕ). (2.14)

The likelihood equations are obtained by setting the first partial derivatives of L

with respect to ϕ1, ϕ2, . . . , ϕk to zero; that are,

∂(L(ϕ|x1, . . . , xn))
∂ϕi

= 0, i = 1, 2, . . . , k. (2.15)

By solving the above system of nonlinear likelihood equations numerically for

ϕ1, ϕ2, . . . ϕk, we can obtain maximum likelihood estimators of ϕ1, ϕ2, . . . , ϕk. This

can be done using R (2013), Matlab and Mathcad, among other packages.

2.5 Goodness of Fit

There are different methods that can be used for testing whether a given random

sample x1, x2, ..., xn, of n observations, is coming from a specific distribution or for

comparing the underlying distribution with other distributions for fitting a given data

set. This section contains two different methods of goodness of fit. The first method

is the likelihood ratio test and the second one is the Kolmogorov-Smirnov test.

2.5.1 The Log-likelihood Ratio Test

The log-likelihood ratio test (LRT) is one of the popular tools that can be used to

compare two models where one of them is nested in the other one, and then determine

which one is more appropriate for a given data.

Suppose that a given random sample x1, . . . , xn with probability distribution

f(x;ϕ) and we are interested to test the following null and alternative hypotheses

H0 : ϕ ∈ Φ0

H1 : ϕ ∈ Φ1
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where Φ0 ⊂ Φ1, Φ0 is the parameter space of the reduced model and Φ1 is the parameter

space of the original (full) model. The log-likelihood ratio statistic (ω) is defined as

following

ω = −2 ln

(
L0(ϕ̂)

L1(ϕ̂)

)
(2.16)

where L0(ϕ̂) is the likelihood function of the reduced model, while L1(ϕ̂) is the likeli-

hood function of the original model. Under the H0, ω follows a chi square distribution

with (k1 − k0) degrees of freedom, where k1 and k0 are the number of parameters of

the original and reduced models respectively. The full model could be preferred if

ω > χ2
0.95,k1−k0 .

2.5.2 Kolmogorov−Smirnov test

Kolmogorov (1933) proposed the Kolmogorov−Smirnov test (K-S test) for testing

while a given random sample x1, x2, ..., xn belongs to a population with a specific

distribution. The K-S test calculates the distance between the empirical distribution

function of the given sample and the estimated cumulative distribution function of the

candidate distribution. The null and alternative hypotheses are H0: sample follow the

specific distribution versus H1 : H0 is false.

Let F (xi) denote the value of the cumulative distribution function of the candidate

distribution at xi and F̂ (xi) denote the value of the empirical distribution function at

xi. The value of the K-S test statistic is define by

K-S = max
{
|F (xi)− F̂ (xi)|, |F (xi)− F̂ (xi−1)|

}
,

where F̂ (xi) =
#{xj :xj≤xi}

n
.

The computed K-S statistic is then compared with the tabulated K-S at a signif-

icance level α to decide if the null hypothesis is not rejected. Moreover, if there are

more than one distribution to be compared, the distribution with smaller K-S value

will be more appropriate to fit the given sample.

2.6 Total time on test

Total time on test transformation, denoted as (TTT-transform), is a graphical tech-

nique to provide information about the shape of the hazard rate of a given data. It
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was proposed by Barlow and Doksum (1972) for statistical inference problems under

order restrictions. For modelling a data set, Barlow and Campo (1975) used this test

as a selection method. Aarset (1987) used the TTT-transform to test if a random

sample belongs to a life distribution with bathtub shaped hazard rate.

The TTT-transform of a distribution with a CDF F is defined as

H−1(p) =

∫ F−1(p)

0

S(u)du, 0 ≤ p ≤ 1.

The scaled TTT-transform of the distribution is

φF (p) =
H−1(p)

H−1(1)
.

The curve φF (p) versus 0 ≤ p ≤ 1 is called the scaled TTT-transform curve. It has

been proposed by Barlow and Campo (1975), using the scaled TTT-transform curve

that the shape of the hazard function of the distribution can be classified as one of

the following.

• If the scaled TTT-transform curve is concave above the 45◦ line, the hazard rate

is increasing.

• If the scaled TTT-transform curve is convex below the 45◦ line, then the hazard

rate is decreasing.

• If the scaled TTT-transform curve is first convex below the 45◦ line then concave

above the line the shape of the hazard rate is a bathtub shaped.

• The shape of the hazard rate will be unimodal shaped if the scaled TTT-

transform curve is first concave above the 45◦ line followed by convex below

the 45◦ line.

Figure 2.32 summarizes the different shapes of the scaled TTT-transform curve for

distributions with increasing, decreasing, bathtub and unimodal hazard rate functions.

For an ordered sample 0 = x0:n, x1:n, x2:n, ..., xn:n, the total time one test statistics

are given by

TTTi =
i∑

j=1

(n− j + 1) (xj:n − xj−1:n) , i = 1, 2, ..., n.
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Figure 2.32: Scaled TTT-transform curve for different distributions.

The empirical scaled TTT-transform is

TTT ∗
i =

TTTi
TTTn

,

where 0 ≤ TTTn ≤ 1. The TTT-plot can be provided by plotting i
n
against TTT ∗

i .

2.7 Information criterion

As a consequence of increasing the number of parameters, usually the fitting of the

data sets will be improved and of course the likelihood will be increased. A model

with too many parameters could be preferred in the comparison using the maximum

likelihood. Then, an information criterion can be used to make a comparison between

different statistical models which may have different numbers of parameters. The

measures Akaike information criterion (AIC), Bayesian information criterion (BIC),

corrected Akaike information criterion (AICc), and consistent Akaike information cri-

terion (CAIC) are widely used information criterion for selecting the appropriate model

among different others models. The Akaike information criterion due to Akaike (1974)

is defined by

AIC = −2L
(
ϕ̂;xi

)
+ 2k,

where x1, . . . , xn is the given random sample, ϕ̂ is the MLE of ϕ and k is the length

of the vector ϕ. The model which has smallest AIC could be the most appropriate
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model to fit the given data set.

When the sample size n is not large or if the number of parameters k is large,

the probability to select the model with many parameters will be increased using

AIC. Therefore, Hurvich and Tsai (1989) has proposed a corrected Akaike information

criterion AICc that is defined as

AICc = AIC +
2k(k + 1)

n− k − 1
, (2.17)

where k is the length of the vector ϕ and n is the sample size. When the sample size

n is too much larger than k, AICc converges to AIC. It is strongly recommended to

use AICc instead of AIC if the sample size is not large or the model has too many

parameters, (Burnham and Anderson, 2002).

Bozdogan (1987) provided consistent Akaike Information Criterion (CAIC), which

is defined by

CAIC = −2L+ k(ln(n) + 1); (2.18)

The Bayesian information criteria due to Schwarz (1978) is defined by

BIC = k lnn− 2L
(
ϕ̂;xi

)
, (2.19)

where k is the length of the vector ϕ and n is the sample size. It is also called Schwarz

Bayesian criterion (SBC) or (SBIC).

2.8 Summary

This chapter gave a comprehensive review of known discrete modifications and gen-

eralizations of the Weibull distribution, a comprehensive review of known continuous

modifications and generalizations of the Weibull distribution and some tools and meth-

ods that will be used for data analysis in the next chapters. The review part contains

over 100 references on modifications/generalizations of the Weibull distribution and

more than 55 percent of the cited references appeared in the last 5 years.



Chapter 3

New Modified Weibull Distribution

3.1 Introduction

In this chapter we propose a new lifetime distribution by considering a serial system

with one component following a Weibull distribution and another following a modi-

fied Weibull distribution. We shall refer to this distribution as New Modified Weibull

Distribution (NMW). It contains several popular lifetime distributions as special sub-

models. We study its mathematical properties including moments, moment generating

function and order statistics. The shapes of the probability density function and the

hazard function of the NMW, simulation methods and the estimation of parameters by

maximum likelihood are discussed. It will be demonstrated that the proposed distri-

bution fits two well-known data sets better than other modified Weibull distributions

including the latest beta modified Weibull distribution. The model can be simplified

by fixing one of the parameters whilst still providing a better fit than existing models.

Among the modifications of Weibull distributions, the additive Weibull distribution

of Xie and Lai (1996) has a bathtub-shaped hazard function

h(x) = αθxθ−1 + βγxγ−1, x > 0, (3.1)

as it combines two Weibull hazard functions, an increasing function αθxθ−1 with θ > 1

and a decreasing function βγxγ−1 with 0 < γ < 1. When θ = 1 and γ > 0 it be-

comes the modified Weibull distribution of Sarhan and Zaindin (2009) (SZMW) which

includes the linear failure rate distribution when γ = 2. The modified Weibull distri-

bution of Lai et al (2003) multiplies the Weibull cumulative hazard function αxβ by
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eλx. These modifications plus the beta modified Weibull distribution (BMW) proposed

by Silva et al (2010) are the most important modifications of the Weibull because they

are flexible and fit real data sets very well. Unfortunately, these distributions do not

fit the last phase of the bathtub shape as well as the first and the middle phases. In

this case the BMW fits this kind of the data well. This distribution was shown to

be the best lifetime distribution to fit a popular and widely used data sets such as

the Aarset data Aarset (1987), the voltage data of Meeker and Escobar (1998), the

Kumar (LHD) data of Kumar et al (1989) and Serum-reversal data of Silva (2004). A

disadvantage of the BMW is that its CDF does not have a closed form of expression

and its hazard rate function is quite complicated.

3.2 Definition

This section provides the definition of the new model. We define a new modified

Weibull distribution (NMW) by the following CDF

F (x) = 1− e−αx
θ−βxγeλx , x > 0, (3.2)

where the parameters α, β, θ, γ and λ are non-negative, with θ and γ being shape

parameters and α and β being scale parameters and λ is an acceleration parameter.

We propose a new lifetime distribution NMW which can fit all three parts of the

data very well and at the same time its hazard rate function is simple and its CDF

has a closed form. The survival function of this distribution is

S(x) = e−αx
θ−βxγeλx , (3.3)

and the hazard function is

h(x) = αθxθ−1 + β(γ + λx)xγ−1eλx, x > 0. (3.4)

This hazard function can be interpreted as that of a serial system with two inde-

pendent components, one of which follows the Weibull distribution with parameters α

and θ, and the other follows the modified Weibull distribution of Lai et al (2003) with

parameters β, γ and λ. This suggests that the distribution can be used when there

are two types of failure, as shown in examples later.
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The probability density function (PDF) is

f(x) =
(
αθxθ−1 + β(γ + λx)xγ−1eλx

)
e−αx

θ−βxγeλx , x > 0. (3.5)

It can be rewritten as

f(x) = [hW (x;α, θ) + hMW (x; β, γ, λ)]SW (x, α, θ)SMW (x; β, γ, λ), (3.6)

where SW , hW , SMW and hMW are survival and hazard functions of the Weibull and

modified Weibull distributions respectively, see equations 1.2, 1.4, 2.7 and 2.9.

Fig. 3.1 and 3.2 show the PDFs and the hazard functions for different parameter

values. It is clear that the PDF and the hazard function have many different shapes,

which allows this distribution to fit different types of lifetime data. The shapes of

these functions will be discussed in more details later.
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Figure 3.1: Probability density functions of the NMW.
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Figure 3.2: Hazard functions of the NMW.

3.3 Sub-models

This distribution includes some important sub models that are widely used in survival

analysis. In particular, from (3.2) the NMW becomes:

1. The AddW distribution

If λ = 0, the NMW distribution reduces to the additive Weibull distribution (Xie

et al, 2006) with CDF

F (x) = 1− e−αx
θ−βxγ .

2. The MW distribution

When α = θ = 0, we get the modified Weibull of Lai et al (2003) with the

following CDF

F (x) = 1− e−βx
γeλx .

3. The extreme-value distribution of Type I

The LogW (extreme-value distribution of Type I), Bain (1974), can be obtained

from the NMW by setting α = θ = γ = 0 to give

F (x) = 1− e−βe
λx

.

4. Linear failure rate distribution

Setting θ = 1, γ = 2 and λ = 0, the NMW distribution reduces to the linear
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failure rate distribution of Bain (1974) with CDF

F (x) = 1− e−αx−βx
2

.

5. The Weibull distribution:

If β = γ = λ = 0 or α = θ = λ = 0, we get the Weibull distribution with

parameter α and θ or β and γ respectively. Moreover, the exponential distribu-

tion with parameter α, β or (α + β) can be obtained by setting β = γ = λ = 0

and θ = 1, α = θ = λ = 0 and γ = 1 or θ = γ = 1 and λ = 0 respectively.

Also the Rayleigh distribution can be obtained if β = γ = λ = 0 and θ = 2,

α = θ = λ = 0 and γ = 2 or θ = γ = 2 and λ = 0.

Table 3.1 shows a list of models that can be derived from the NMW distribution.

Distribution α β θ γ λ

Additive Weibull - - - - 0

Modified Weibull 0 - 0 - -

S-Z modified Weibull - - 1 - 0

Linear failure rate - - 1 2 0

Extreme-value 0 - 0 0 -

Rayleigh - 0 2 0 0

Weibull - 0 - 0 0

Exponential - 0 1 0 0

Table 3.1: The sub-models of the NMW.

3.4 The Shape of the probability density function

In this section the shape of the probability density function of the NMW will be

discussed. In order to discuss the shapes of the pdf of the NMW, we first differentiate

f(x) with respect to x. The CDF and PDF of the NMW can be rewritten as

F (x) = 1− e−H(x), f(x) = h(x)e−H(x), (3.7)
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where h(x) is the hazard function (3.4) and H(x) = αxθ + βxγeλx is the cumulative

hazard.

Then

f ′(x) =
[
h′(x)− h2(x)

]
e−H(x)

= f(x)

[
h′(x)

h(x)
− h(x)

]
,

where

h′(x) = αθ(θ − 1)xθ−2 − βxγ−2((γ − 1)(γ + λx) + λx(1 + γ + λx))eλx.

The modes of the PDF of the NMW are the roots of the equation.

h′(x)− h2(x) = 0. (3.8)

So, the modes of f(x) at say x = x0 are the roots of (3.8). The mode corresponds

to a local maximum if h′(x) − h2(x) > 0 for all x < x0 and h′(x) − h2(x) < 0 for all

x > x0. The mode corresponds to a local minimum if h′(x)− h2(x) < 0 for all x < x0

and h′(x)− h2(x) > 0 for all x > x0.

As we can see it is difficult to determine the shapes of the PDF of the NMW from

(3.8), but as shown in Figure 3.1 the PDF of the NMW can be monotonically decreas-

ing, unimodal, initially decreasing then increasing-decreasing, unimodal or bimodal.

The different shapes of the PDF of the NMW can be discuss from (3.6) by using

the shapes of the MW and the Weibull distributions. From Lai et al (2003), the PDF

of the MW is monotonically decreasing if 0 < γ < 1 and β
γλ

is large, initially decreasing

then increasing-decreasing if 0 < γ < 1 and β
γλ

small or unimodal if γ > 1. It is well

known that the PDF of the Weibull distribution is monotonically decreasing if θ 6 1

and unimodal if θ > 1. The PDF of the NMW takes different shapes and Figure 3.3

and Figure 3.5 show the following cases:

• When θ, γ > 1, both the PDF of the MW and the PDF of the Weibull are

unimodal, then the PDF of the NMW is either unimodal, see Figure 3.3(a), or

if one of the them dominated in the beginning and the other in the middle then

the NMW can be bimodal with two different peaks, see Figure 3.4.

• When θ, γ < 1, the Weibull is decreasing and the MW decreasing or initially

decreasing then increasing-decreasing, then the NMW can be either decreasing



3.5 The shape of the hazard function 91

or initially decreasing then increasing-decreasing, see Figure 3.3 (b), Figure 3.5

(a) and 3.5 (b).

• As shown in Figure 3.3 (c), Figure 3.5 (c) and 3.5 (d), if θ > 1 and γ < 1, the

shape of the PDF of the NMW can be the same shape as in previous case where

the MW is unimodal or decreasing then increasing-decreasing and the Weibull

unimodal.

• If θ < 1 and γ > 1, the MW is unimodal and the Weibull is decreasing, then the

PDF of the NMW can be decreasing, or decreasing then increasing-decreasing,

see Figure 3.3 (d).

3.5 The shape of the hazard function

In order to discuss the shape of the hazard function of the NMW we will find the first

derivative of h(x),

h′(x) = αθ(θ − 1)xθ−2 + βxγ−2((γ − 1)(γ + λx) + λx(1 + γ + λx))eλx. (3.9)

The modes of h(x) at say x = x0 are the roots of the equation h′(x) = 0. The

mode corresponds to a local maximum if h′(x) > 0 for all x < x0 and h′(x) < 0 for

all x > x0. The mode corresponds to a local minimum if h′(x) < 0 for all x < x0

and h′(x) > 0 for all x > x0. The mode corresponds to a point of inflexion if either

h′(x) > 0 for all x ̸= x0 or h′(x) < 0 for all x ̸= x0.

The equation h′(x) = 0 cannot be solved analytically. The sign of h′(x) in (3.9)

can be determined by the values of θ and γ and whether if they are greater or less than

1. We discuss the shape of the hazard function of the NMW when θ, γ > 1, θ, γ < 1,

θ > 1 and γ < 1 or θ < 1 and γ > 1. Also, it can be figured out using the shapes of

the hazard function of the Weibull and the MW where

h(x) = [hW (x;α, θ) + hMW (x; β, γ, λ)] .

It is well known that hW (x;α, θ) is increasing when θ > 1 and decreasing when θ < 1

and hMW (x; β, γ, λ) is increasing when γ > 1 and bathtub shaped otherwise. Regard-

ing to Lai and Xie (2006), a distribution with a serial system of increasing hazard
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Figure 3.3: Probability density function of NMW: (a): θ, γ > 1, (b): θ, γ < 1,
(c): θ > 1, γ < 1, (d): θ < 1, γ > 1.
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Figure 3.4: Probability density function of NMW when θ, γ > 1.

rate components has an increasing hazard rate distribution. So if θ, γ ≥ 1, the hazard

function of the NMW will be increasing. Figure 3.6 (a)-(d) show the hazard functions

of the NMW when θ, γ > 1, θ, γ < 1, θ > 1 and γ < 1 and θ < 1 and γ > 1. It can

be seen that the hazard function of the NMW is increasing if θ, γ ≥ 1 and bathtub

shaped otherwise.

Many different applications in reliability and lifetime analysis require bathtub

shaped hazard rate functions with a long useful life period with the middle period

of the bathtub shape having a relatively constant hazard rate. For example, electric

machine life cycles and electronic devices, cf. Kuo and Zuo (2001). A few distributions

have this property, so does the NMW as shown in Figure 3.7.

3.6 Simulation from the NMW

The CDF of the NMW has a closed form which makes the simulation from this dis-

tribution easier. In this section two methods will be used to simulate from the NMW.

In order to simulate a random sample from this distribution, first 1000 random

numbers are generated from the uniform distribution with range (0, 1), these generated

random numbers are then transformed using the inverse CDF by solving the equation

F (x) = u numerically. Figure 3.8 shows exact probability density functions of the new

modified Weibull distribution and histograms of four simulated data sets. It is clear
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Figure 3.5: Probability density functions of NMW: (a): θ, γ > 1, (b): θ, γ < 1,
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Figure 3.6: Hazard function of NMW: (a): θ, γ > 1, (b): θ, γ < 1,
(c): θ > 1, γ < 1, (d): θ < 1, γ > 1.
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Figure 3.7: Hazard function of the NMW with a long useful life period.

that the simulated values are consistent with the new modified Weibull distribution.

Another method can be used to simulate a random sample from the proposed

distribution. As shown this distribution can be used to describe a serial system of

two independent components, one of which follows the Weibull distribution and the

other one follows the MW. The simulation can be done using the following method.

Two random samples, Y1, Y2, ..., Yn and Z1, Z2, ..., Zn, are generated from the Weibull

with parameters α and θ and the MW with parameters β, γ and λ respectively, where

n=1000. Then, a random sample is given byXi = min{Yi, Zi}, i = 1, ..., n. The output

sample of this method, X1, X2, ..., Xn, follows the NMW with parameters α, β, γ, θ and

λ. Using the same selected parameters as in the previous method, four random samples

are generated, Figure 3.9 shows exact probability density functions of the new modified

Weibull distribution and histograms of four simulated data sets using this method.

3.7 The moments

This section derives the theoretical moments of the NMW. The following theorem

gives the non-central moments of the distribution.

Theorem 1. The non-central moments of the NMW are given by
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Figure 3.8: PDF of the NMW and the histograms of simulated data (Method 1,
n=1000) where
(a): α=0.05, β=5, γ=1.25, θ=2 and λ=0.05, (b): α=1.15, β=0.25, γ=5, θ=0.8
andλ=2, (c): α=1.5, β=3, γ=0.85, θ=2.5 and λ=0.5, (d): α=2.5, β=5, γ=9, θ=1.15
and λ=5.



3.7 The moments 98

X

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

1.
0

2.
0

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

1.
0

2.
0

(a)

X

D
en

si
ty

0.0 0.4 0.8 1.2
0.

0
0.

5
1.

0
1.

5
0.0 0.4 0.8 1.2

0.
0

0.
5

1.
0

1.
5 (b)

X

D
en

si
ty

0.0 0.2 0.4 0.6 0.8

0
1

2
3

4

0.0 0.2 0.4 0.6 0.8

0
1

2
3

4

(c)

X

D
en

si
ty

0.0 0.2 0.4 0.6

0.
0

1.
0

2.
0

0.0 0.2 0.4 0.6

0.
0

1.
0

2.
0 (d)

Figure 3.9: Probability density functions of the NMW and the histograms of simulated
data (Method 2, n=1000) where
(a):α=0.05, β=5, γ=1.25, θ=2 and λ=0.05, (b):α=1.15, β=0.25, γ=5, θ=0.8 andλ=2,
(c):α=1.5, β=3, γ=0.85, θ=2.5 and λ=0.5, (d):α=2.5, β=5, γ=9, θ=1.15 and λ=5.
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µ′
r =

r

θ

∞∑
n=0

∞∑
m=0

(−β)n(λn)m

n!m!
α−nγ+m+r

θ Γ

(
nγ +m+ r

θ

)
, (3.10)

for r = 1, 2, . . ., where Γ(·) is the gamma function.

Proof : Using the identities

∫ ∞

0

xβ−1e−αx
θ

dx = α−β/θ(1/θ)Γ(β/θ),

and ex =
∑∞

n=0 x
n/n!, the r-th order non-central moment of the new modified Weibull

distribution is

µ′
r =

∫ ∞

0

xrdF (x)

= −
∫ ∞

0

xrde−αx
θ−βxγeλx

=

∫ ∞

0

rxr−1e−αx
θ−βxγeλxdx

=

∫ ∞

0

rxr−1e−αx
θ

∞∑
n=0

(−βxγeλx)n

n!
dx

=

∫ ∞

0

rxr−1e−αx
θ

∞∑
n=0

(−β)nxnγ

n!

∞∑
m=0

(λnx)m

m!
dx

=

∫ ∞

0

rxr−1e−αx
θ

∞∑
n=0

∞∑
m=0

(−β)n(λn)mxnγ+m

n!m!
dx

=
∞∑
n=0

∞∑
m=0

(−β)n(λn)m

n!m!

∫ ∞

0

rxr−1xnγ+me−αx
θ

dx

=
r

θ

∞∑
n=0

∞∑
m=0

(−β)n(λn)m

n!m!
α−nγ+m+r

θ Γ

(
nγ +m+ r

θ

)
.

3.8 The moment generating function

The moment generating function of the NMW is provided in the next theorem.

Theorem 2. The moment generating function of the NMW is

MX(t) = 1 +
1

θ

∞∑
n,m,k=0

(−β)n(nλ)mtk+1

n!m!k!

[
α− γn+m+k+1

θ Γ

(
γn+m+ k + 1

θ

)]
, (3.11)
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where Γ(·) is the gamma function.

Proof : The moment generating function of the NMW is given by

MX(t) = E(etx)

=

∫ ∞

0

etxf(x)dx

=

∫ ∞

0

etxdF (x)

= 1 +

∫ ∞

0

tetxe−αx
θ−βxγeλxdx

= 1 +

∫ ∞

0

tetxe−αx
θ

∞∑
n,m=0

(−β)n(λn)mxnγ+m

n!m!
dx

= 1 +

∫ ∞

0

e−αx
θ

∞∑
n,m,k=0

(−β)n(λn)mtk+1xnγ+m+k

n!m!k!
dx

= 1 +
∞∑

n,m,k=0

(−β)n(nλ)mtk+1

n!m!k!
I,

where I =
∫∞
0
xγn+m+ke−αx

θ
dx.

Using gamma-integral formula, we have

I =
1

θα
γn+m+k+1

θ

Γ

(
γn+m+ k + 1

θ

)
,

then

MX(t) = 1 +
1

θ

∞∑
n,m,k=0

(−β)n(nλ)mtk+1

i!j!k!

[
α− γn+m+k+1

θ Γ

(
γn+m+ k + 1

θ

)]
.

3.9 Order statistics

It will also be useful to derive the pdf of the rth order statistic X(r) of a random sample

X1, . . . , Xn drawn from the NMW with parameters α, β, θ, γ and λ. From Arnold et

al. (2008), the PDF of X(r) is given by

fr:n (x) =
F (x)r−1(1− F (x))n−rf(x)

B(r, n− r + 1)
, (3.12)
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where B(., .) is the beta function.

From (3.7),

(1− F (x))n−r = e−(n−r)H(x), (3.13)

and

F (x)r−1 =
(
1− e−H(x)

)r−1
=

r−1∑
ℓ=0

(
r − 1

ℓ

)
(−1)ℓe−ℓH(x). (3.14)

Substituting (3.13) and (3.14) into (3.12), we get

fr:n (x) =
1

B (r, n− r + 1)

r−1∑
ℓ=0

(
r − 1

ℓ

)
(−1)ℓh(x)e−(n+ℓ+1−r)H(x),

= n

(
n− 1

r − 1

) r−1∑
ℓ=0

(
r − 1

ℓ

)
(−1)ℓh(x)e−(n+ℓ+1−r)H(x),

= n

(
n− 1

r − 1

) r−1∑
ℓ=0

(
r − 1

ℓ

)
(−1)ℓ

(
αθxθ−1 + β(γ + λx)xγ−1eλx

)
e−(n+ℓ+1−r)(αxθ+βxγeλx),

= n

(
n− 1

r − 1

) r−1∑
ℓ=0

(
r − 1

ℓ

)
(−1)ℓ

(n+ ℓ+ 1− r)
f(x; αℓ, βℓ, θ, γ, λ),

where f(x; αℓ, βℓ, θ, γ, λ) is the PDF of the NMWwith parameters αℓ = (n+ℓ+1−r)α,

βℓ = (n+ ℓ+ 1− r)β, θ, γ and λ.

Using (3.10), the kth non-central moment of the rth order statistic X(r) is

µ
′(r:n)
k =

nk

θ

(
n− 1

r − 1

) ∞∑
i=0

∞∑
j=0

r−1∑
ℓ=0

(
r − 1

ℓ

)
(−1)ℓ+iβi(iλ)j

(n+ ℓ+ 1− r)
iγ+j+k

θ
+1−iα

iγ+j+k
θ

Γ

(
iγ + j + k

θ

)
. (3.15)

3.10 Parameter estimation

Given a random sample x1, . . . , xn from the NMW with parameters (α, β, θ, γ, λ), the

usual method of estimation is by maximum likelihood, cf. Fisher (1922). Other pos-

sible approaches include Bayesian estimation using Lindley approximation ( Lindley,

(1980)) or MCMC, cf. Soliman at el (2012) and Upadhyay and Gupta (2010).

The log-likelihood function is given by

L =
n∑
i=1

ln
(
β(γ + λxi)x

γ−1
i eλxi + αθxθ−1

i

)
− α

n∑
i=1

xθi − β
n∑
i=1

xγi e
λxi .

(3.16)
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Setting the first partial derivatives of L with respect to α, β, θ, γ and λ to zero, the

likelihood equations are

n∑
i=1

θxθ−1
i

h(xi; α, β, γ, θ, λ)
−

n∑
i=1

xθi = 0, (3.17)

n∑
i=1

(γ + λxi)x
γ−1
i eλxi

h(xi; α, β, γ, θ, λ)
−

n∑
i=1

xγi e
λxi = 0, (3.18)

n∑
i=1

αxθ−1
i (1 + θ ln(xi))

h(xi; α, β, γ, θ, λ)
− α

n∑
i=1

xθi ln(xi) = 0, (3.19)

n∑
i=1

xγ−1
i eλxi((γ + λxi) ln(xi) + 1)

h(xi; α, β, γ, θ, λ)
−

n∑
i=1

xγi e
λxi ln(xi) = 0, (3.20)

n∑
i=1

(1 + γ + λxi)x
γ
i e
λxi

h(xi;α, β, γ, θ, λ)
−

n∑
i=1

xγ+1
i eλxi = 0. (3.21)

The maximum likelihood estimates can be obtained by solving the nonlinear equa-

tions numerically for α, β, θ, γ and λ. The relatively large number of parameters

can cause problems especially when the sample size is not large. A good set of initial

values is essential.

We have also obtained all the second partial derivatives of the log-likelihood func-

tion for the construction of the Fisher information matrix, so that standard errors of

the parameter estimates can be obtained in the usual way. These are in Appendix A.

3.11 Applications

In this section we provide results of fitting the NMW to two well-known data sets and

compare its goodness-of-fit with other modifiedWeibull distributions using Kolmogorov-

Smirnov, K-S statistic, as well as Akaike information criterion (Akaike, 1974), Bayesian

information criterion (Schwarz, 1978), corrected Akaike information criterion (Hurvich

and Tsai, 1989) and consistent Akaike information criterion due to Bozdogan (1987).
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3.11.1 Aarset data

The data below represent the lifetimes of 50 devices (in weeks) (Aarset, 1987).

.1 .2 1 1 1 1 1 2 3 6 7 11

12 18 18 18 18 18 21 32 36 40 45 46

47 50 55 60 63 63 67 67 67 67 72 75

79 82 82 83 84 84 84 85 85 85 85 86

Many authors have analysed this data set, including Mudholkar and Srivastava (1993),

Xie et al (2006), Lai et al (2003), Sarhan and Zaindin (2009), and Silva et al (2010).

The data are known to have a bathtub-shaped failure rate as shown by the scaled

TTT-Transform plot, which has a convex shape followed by a concave shape, see Fig

3.10.
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Figure 3.10: TTT-transform plot for the Aarst.

Table 3.2 gives MLEs of parameters of the NMW and sub-models with standard

errors in brackets. Goodness of fit statistics are in Table 3.3. We find that the NMW

distribution with the same number of parameters provides a better fit than the beta

modified Weiull distribution (BMW) which was the best in Silva et al (2010). The

BMW had the largest likelihood, and the smallest K-S, AIC, BIC, AICc and CAIC

values among those considered in that paper. It is clear in Figure 3.11c that the NMW

fits the left and right peaks in the histogram better and its survival function follows

the Kaplan-Meier estimate more closely, see Figure 3.11 (d).
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Table 3.2: MLEs of parameters and corresponding standard errors in brackets for the
Aarset data.

Model α̂ β̂ γ̂ θ̂ λ̂
NMW 0.071 7.015× 10−8 0.016 0.595 0.197

(0.031) (1.501× 10−7) (3.602) (0.128) (0.184)
BMW a = 0.198 0.0002 1.377 b = 0.165 0.054
Silva et al (2010) (0.046) (6.693× 10−5) (0.339) (0.083) (0.016)
MW 0.062 0.356 0.023
(α = 0, θ = 0) (0.027) (0.113) (4.845× 10−3)
AddW 1.133× 10−8 0.086 0.477 4.214
(λ = 0) (5.183× 10−8) (0.036) (0.102) (1.033)
SZMW 0.013 8.408× 10−9 4.224
(θ = 1, λ = 0) (2.819× 10−3) (4.204× 10−8) (1.140)

Table 3.3: Log-likelihood, K-S statistic, AIC, BIC, AICc and CAIC values of models
fitted to Aarst data for comparison with beta modified Weibull (Silva et al (2010)).

Model Log-lik K-S AIC BIC AICc CAIC
NMW -212.90 0.088 435.8 445.4 437.2 450.4
MW -227.16 0.129 460.3 466.0 460.8 469.1
AddW -221.51 0.127 451.0 458.7 451.9 462.7
SZMW -229.88 0.151 465.8 471.5 466.3 474.5
BMW -220.80 0.127 451.6 461.2 453.0 466.2
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Figure 3.11: For Aarst data: (a) hazard function (b) TTT-Transform plot (c) pdf and
(d) survival function using NMW plus sub models, and beta modified Weibull.
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3.11.2 Meeker and Escobar data

The data are failure and running times of a sample of 30 devices (Meeker and Escobar

(1998), p. 383). Two types of failures were observed for this data. It was shown by

Nadarajah et al (2011) to be best fit by the beta modified Weibull distribution.

The data have a bathtub shaped failure rate as its empirical TTT-plot has an

s-shape, see Figure 3.12. Again the NMW distribution (Table 3.4) provides a better

fit than the BMW, as can be seen from Table 3.5. Figures 3.13 (a) to (d) show the

hazard function, TTT-Transform plot, PDF and the survival function using NMW,

its sub models and the BMW distribution.

The NMW distribution has the largest likelihood, and the smallest K-S, AIC, BIC,

AICc and CAIC values comparing to the BMW and the all other modified Weibull

distributions which support that the NMW provides a better fit than all considered

distributions.
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Figure 3.12: TTT-transform plot for the Mekeer data.
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Table 3.4: MLEs of parameters and corresponding standard errors in brackets for the
Meeker and Escobar data (1998).

Model α̂ β̂ γ̂ θ̂ λ̂
NMW 0.024 5.991× 10−8 0.012 0.629 0.056

(0.019) (8.164× 10−8) (1.29) (0.15) (0.024)
BMW a = 0.068 4.9× 10−17 4.266 b = 0.099 0.0528
Silva et al (2010) (0.016) (6.693× 10−5) (0.011) (0.049) (0.002)
MW 0.018 0.454 7.133× 10−3

(α = 0, θ = 0) (0.018) (0.220) (2.113× 10−3)
AddW 1.320× 10−7 0.019 0.604 2.830
(λ = 0) (7.435× 10−7) (0.018) (0.197) (0.974)
SZMW 2.939× 10−3 1.497× 10−9 3.585
(θ = 1, λ = 0) (9.290× 10−4) (1.114× 10−8) (1.314)

Table 3.5: Log-likelihood, K-S statistic, AIC, BIC, AICc and CAIC values of models
fitted to Meeker and Escobar data (1998)

Model Log-lik K-S AIC BIC AICc CAIC
NMW -166.18 0.148 342.4 349.4 344.9 354.4
MW -178.06 0.182 362.1 366.3 363.1 369.3
AddW -178.11 0.191 364.2 369.8 365.8 373.8
SZMW -177.90 0.186 361.8 366.0 362.7 369.0
BMW -167.55 0.161 345.1 352.1 347.6 357.2
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Figure 3.13: For Meeker and Escobar data: (a) hazard function (b) TTT-Transform
plot (c) pdf and (d) survival function using NMW plus sub models, and beta modified
Weibull.
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3.12 Sub-model of the NMW with γ = 1

To simplify the statistical inference, it is always a good idea to reduce the number

of parameters of any distribution and investigate how that affects the ability of the

simplified model to fit the data. In this section we reduce the number of parameters

from five to four, by setting γ = 1. We test the reduced model (H0: γ = 1) against

the original model (Ha: γ ̸= 1). For each data set, Table 3.6 shows MLEs of the four

parameter NMW, the log-likelihood value under H0, likelihood ratio statistic, LRT

with P -value in brackets, AIC, K-S statistic with P -value in brackets .

The likelihood ratio statistics against the full model with five parameters are 1.31

(P -value = 0.252) and 2.45 (P -value=0.118) respectively on 1 d.f.. Therefore we

can choose the reduced model with 4 parameters. The likelihood and AIC value also

points to this model when the modified beta distribution is included in the comparison.

Figure 3.14 shows the reduced model is nearly as good as the full model for both data

sets.

Table 3.6: Results of fitting NMW with γ = 1 to both data sets.

Data α̂ β̂ θ̂ λ̂ Log-lik AIC LRT K-S
(P -value)

Aarset 0.092 2.2× 10−8 0.531 0.160 -213.56 435.1 1.31 0.105
(0.039) (2.1× 10−8) (0.104) (0.011) (0.252)

Meeker 0.017 3.5× 10−8 0.675 0.039 -167.40 342.8 2.45 0.153
(0.013) (4.2× 10−8) (0.141) (4.0× 10−3) (0.118)
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Figure 3.14: (a) and (b): fitted pdf and survival functions for Aarst data, (c) and (d):
those for Meeker and Escobar data, 5 parameters (solid lines) vs 4 parameters (dotted
lines).
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3.13 Summary

Chapter 3 introduced a new lifetime distribution by considering a serial system with

one component following a Weibull distribution and another following a modified

Weibull distribution. We studied its mathematical properties including moments and

order statistics. The estimation of parameters by maximum likelihood was discussed.

We demonstrated that the proposed distribution fits two well-known data sets better

than other modified Weibull distributions including the latest beta modified Weibull

distribution. The model can be simplified by fixing one of the parameters, whilst still

provides a better fit than existing models.



Chapter 4

Reduced New Modified Weibull

Distribution

4.1 Introduction

In chapter 3 we proposed a new modification of the Weibull distribution NMW which

generalises several commonly used distributions in reliability and lifetime data analysis.

This distribution has five parameters and we have studied some of its properties and

estimation of its parameters by using the maximum likelihood method and applied

it to real data sets. The NMW could be one of the most important distributions in

reliability and life testing due to its properties, its sub-models, its flexibility in fitting

real data sets and the interpretation of its survival and hazard functions. It has also

been shown to be the best lifetime distribution to date in terms of fitting data sets

such as the Aarset data of Aarset (1987) and the voltage data of Meeker and Escobar

(1998).

Although distributions with four or more parameters are flexible and exhibit bath-

tub shaped hazard rates, they are also complex (Nelson, (1990)) and cause estimation

problems as a consequence of the number of parameters, especially when the sample

size is not large. The main purpose of this chapter is to reduce the number of pa-

rameters of the NMW so as to address these problems while maintaining the same

flexibility and ability to fit data so well. We show this can be achieved by choosing

the shape parameters γ = θ = 1
2
. The new distribution will be called Reduced New

Modified Weibull Distribution and be denoted as RNMW.
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There are various tools to assess the flexibility of a given univariate distribution.

One commonly used tool is the skewness-kurtosis plot. Values of (skewness, kurtosis)

plotted on the (x, y) plane for all possible values of the parameters of the distribution

give what is referred to as the skewness-kurtosis plot. The area or the range covered

by the skewness-kurtosis plot is a measure of flexibility of the distribution. If we have

more than one distribution, the distribution with the widest range of skewness-kurtosis

will be more flexible than others. The skewness-kurtosis plot can be used to choose

which distribution is appropriate to fit a given data. Also the relationships between

distributions can be seen via a skewness-kurtosis plot, for example the exponential

distribution is located at the point of intersection of the gamma and Weibull distribu-

tions and it is well known as a special case of both distributions, see Cox (1984) and

Hartless and Leemis (1996).

We now show the flexibility of the particular case of the NMW, when θ = γ =

1
2
, by means of skewness-kurtosis plot. The skewness-kurtosis plot for the NMW

distribution is drawn on the left hand side of Figure 4.1. The values of (skewness,

kurtosis) were computed over θ = 0.1, 0.2, . . . , 5, γ = 0.1, 0.2, . . . , 5, θ = γ ̸= 1
2
, α =

0.1, 0.2, . . . , 2, β = 0.1, 0.2, . . . , 2 and λ = 0.1, 0.2, . . . , 2. The skewness-kurtosis plot

for the reduced distribution is drawn on the right hand side of Figure 4.1. The values

of (skewness, kurtosis) were computed over α = 0.1, 0.2, . . . , 2, β = 0.1, 0.2, . . . , 2 and

λ = 0.1, 0.2, . . . , 2.

We can see that the particular case θ = γ = 1
2
is a flexible member of the NMW

distribution. The range of kurtosis values is the widest for the case θ = γ = 1
2
. The

range of positive skewness values is also widest for the case θ = γ = 1
2
, but some

negative skewness values are not accommodated by this case.

The rest of this chapter is organized as follows. Sections 4.2-4.7 consider the math-

ematical properties of the RNMW, including its pdf, hazard function, moments, Renyi

entropy and the estimation of its reliability. The distribution of order statistics and

moments of data from this distribution are derived in section 4.8. Section 4.9 discusses

the maximum likelihood estimates of the unknown parameters. Four real data sets,

uncensored and censored, are analyzed in section 4.10. Section 4.11 summarizes the

chapter.
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(a) (b)

Figure 4.1: Kurtosis-skewness plot for the NMW distribution (left) and its reduced
version (right).

4.2 The reduced distribution

The variable X has a reduced new modified Weibull distribution if its CDF given by

F (x) = 1− e−α
√
x−β

√
xeλx , x > 0. (4.1)

where α, β and λ are non-negative, with α and β being scale parameters and λ an

acceleration parameter. This reduced version of the new modified Weibull (NMW)

distribution has a bathtub-shaped hazard function, as will be shown later, is called

reduced new modified Weibull and is denoted by RNMW.

From the CDF of the RNMW in (4.1), the corresponding survival function and

density function are

S(x) = e−α
√
x−β

√
xeλx , (4.2)

and

f(x) =
1

2
√
x

(
α + β(1 + 2λx)eλx

)
e−α

√
x−β

√
xeλx , x > 0, (4.3)

where α, β and λ > 0. Figure 4.2 shows that the reduced distribution is nearly as

flexible as the NMW distribution.
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Figure 4.2: Probability density function of the reduced distribution.

4.3 The hazard rate function

The hazard rate function of the RNMW distribution is

h(x) =
1

2
√
x

[
α+ β(1 + 2λx)eλx

]
, x > 0. (4.4)

To derive the shape of h(x), we obtain the first derivative of log {h(x)}:

d

dx
log {h(x)} = − 1

2x
+

βλ(2λx+ 3)eλx

α + β(2λx+ 1)eλx
. (4.5)

Setting this to zero, we have

− 1

2x
+

βλ(2λx+ 3)eλx

α + β(2λx+ 1)eλx
= 0. (4.6)

Let x0 denote the root of (4.6). Using the limit of (4.5) when x → 0 and x → ∞,

it can be deduced that d
dx

log {h(x)} < 0 for x ∈ (0, x0),
d
dx

log {h(x0)} = 0, and

d
dx

log {h(x)} > 0 for x > x0. So, h(x) initially decreases before increasing. Hence, we

have a bathtub shape. Where x0 denote the solution of (4.6); that is, the solution of

(
4βλx2 + 4βλx− β

)
eλx = α. (4.7)

The left hand side of (4.7) is eλx multiplied by the quadratic function 4βλx2+4βλx−β.

Then, x0 can be obtained from the vertical projection from the intersection point

between y = (4βλx2 + 4βλx− β) eλx and y = α, hence the value x0 is unique and

positive as shown in Figure 4.3.
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Figure 4.3: The hazard function of the RNMW and the root of d
dx

log {h(x0)} = 0.

Plots of the hazard rate function of the RNMW distribution are shown in Figure

4.4 (a). As mentioned in the previous chapter the bathtub shaped hazard function of

the NMW distribution has shown to have a long useful life period, and so does the

RNMW distribution, as Figure 4.4(b) shows.
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Figure 4.4: Hazard function of the RNMW distribution.
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4.4 The moments

The r-th moment of the RNMW is represented in this section.

Corollary 1. The non-central r-th moment of a random variable X that follows the

reduced distribution RNMW (α, β, λ) is given by

µ′
r = 2r

∞∑
n=0

∞∑
m=0

(−β)n(λn)m

n!m!

Γ (n+ 2(m+ r))

α(n+2(m+r))
, (4.8)

for r = 1, 2, . . ..

The first eight moments of the RNMW α = 2, β = 0.15 and λ = 7.4 × 10−4 are

obtained using (4.8) and the numerical integration. Table 4.1 shows that the results

of both of them, given to eight decimal places, are the same; but using (4.8) we

need just around 0.17 seconds for each moment to calculate while the moment using

numerical integration require more than 2.1 seconds. Matlab code is used to calculate

the moments of the proposed distribution.

r µ′
r Numerical Inte. Time(sec) µ′

r Using (4.8) Time(sec)
1 0.28475750 7.3 0.28475750 0.18
2 0.48630879 2.4 0.48630879 0.18
3 2.07478272 2.6 2.07478272 0.17
4 16.50652427 2.4 16.50652427 0.17
5 210.77542527 2.3 210.77542527 0.18
6 3941.05391664 2.2 3941.05391664 0.17
7 101406.81407589 2.2 101406.81407589 0.17
8 3433153.21006252 2.1 3433153.21006251 0.17

Table 4.1: The first 8-thmoments of the RNMW using (4.8) and numerical integration.

4.5 The moment generating function

The moment generating function of the RNMW is provided in the this section.

Theorem 3. If X is a random variable following the RNMW, then the moment gen-

erating function is given by

MX(t) = 1 + 2
∞∑

n,m,k=0

(−β)n(nλ)mtk+1

n!m!k!

[
Γ (n+ 2(m+ k) + 2)

αn+2(m+k)+2

]
. (4.9)
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Proof : The moment generating function is defied by

MX(t) = E(etx)

=

∫ ∞

0

etxf(x)dx

=

∫ ∞

0

etxdF (x)

= 1 +

∫ ∞

0

tetxe−α
√
x−β

√
xeλxdx

= 1 +
∞∑

n,m,k=0

(−β)n(nλ)mtk+1

n!m!k!
I, (4.10)

where I =
∫∞
0
x

n
2
+m+ke−α

√
xdx and using gamma-integral formula the moment gener-

ating function the RNMW is given by

MX(t) = 1 + 2
∞∑

n,m,k=0

(−β)n(nλ)mtk+1

n!m!k!

[
Γ (n+ 2(m+ k) + 2)

αn+2(m+k)+2

]
.

Using (4.9), the first four moments of the RNMW is

M ′
X(0) = µ′

1 = 2
∞∑

n,m=0

(−β)n(nλ)m

n!m!

[
Γ (n+ 2m+ 2)

αn+2m+2

]
,

M ′′
X(0) = µ′′

2 = 4
∞∑

n,m=0

(−β)n(nλ)m

n!m!

[
Γ (n+ 2m+ 4)

αn+2m+4

]
,

M
(3)
X (0) = µ

(3)
3 = 6

∞∑
n,m=0

(−β)n(nλ)m

n!m!

[
Γ (n+ 2m+ 6)

αn+2m+6

]
,

M
(4)
X (0) = µ

(4)
2 = 8

∞∑
n,m=0

(−β)n(nλ)m

n!m!

[
Γ (n+ 2m+ 8)

αn+2m+8

]
.

This is consistent with the formal of the moment in (4.8).

4.6 Renyi entropy

In information theory, if X is a random variable with density function f(x), the Renyi

entropy is a measure of the uncertainty of the random variable.

Theorem 4. For X RNMW (α, β, λ), the Renyi entropy is given by

H(p) =
1

1− p
log
(∑p

l=0

∑l
m=0

∑∞
i,j=0

(
p
l

)(
l
m

)
βl+iλm(−p)i(λ(l+i))j

2p−m−1i!j!
Γ(2(j+m)+i−p+2)

(pα)2(j+m−p+1)+i+l)

)
,

(4.11)

where Γ(·) is the gamma function.
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Proof : The Renyi entropy is given by

H(p) =
1

1− p
log

{∫ ∞

0

{f(x;α, β, λ)}p dx
}
. (4.12)

Using the Taylor and binomial expansions,

[f(x)]p =

{
1

2
√
x
(α + β(1 + 2λx)eλx)e−α

√
x−β

√
xeλx
}p

,

=

p∑
l=0

l∑
m=0

∞∑
i,j=0

(
p

l

)(
l

m

)
βl+iλm(−p)i(λ(l + i))j

(2p−mαl−p)i!j!
xj+m+ i−p

2 e−αp
√
x.

(4.13)

Substituting (4.13) into the integral part in (4.12), we have

∞∫
0

[f(x)]p dx =

∞∫
0

p∑
l=0

l∑
m=0

∞∑
i,j=0

(
p

l

)(
l

m

)
βl+iλm(−p)i(λ(l + i))j

(2p−mαl−p)i!j!
xj+m+ i−p

2 e−αp
√
xdx,

=

p∑
l=0

l∑
m=0

∞∑
i,j=0

(
p

l

)(
l

m

)
βl+iλm(−p)i(λ(l + i))j

(2p−mαl−p)i!j!
I,

where I =
∞∫
0

xj+m+ i−p
2 e−αp

√
xdx.

Using the Gamma integral∫ ∞

0

xb−1e−ax
c

dx = a−b/c(1/c)Γ(b/c),

I =
2Γ(2(j +m) + i− p+ 2)

(pα)2(j+m)+i−p+2)
.

So, the Renyi entropy is

H(p) =
1

1− p
log
(∑p

l=0

∑l
m=0

∑∞
i,j=0

(
p
l

)(
l
m

)
βl+iλm(−p)i(λ(l+i))j

2p−m−1i!j!
Γ(2(j+m)+i−p+2)

(pα)2(j+m−p+1)+i+l)

)
,

4.7 Reliability

The estimation of reliability is important in stress-strength models. IfX is the strength

of a component and Y is the stress, the component fails when Y>X. Then, the

estimation of the reliability of the component R is Pr(Y < X).

Theorem 5. If X and Y are independent random variables following the same distri-

bution RNMW (α, β, λ), then the estimation of reliability R is given by

R = 1−
∞∑
i=0

(−2β)i

i!

(
α
∑∞

j=0
(iλ)j

j!
Γ(2j+i+1)

(2α)2j+i+1 + β
∑∞

k=0
(λ(i+1))k

k!

(
Γ(2k+i+1)

(2α)2k+i+1 + 2λΓ(2(k+1)+i+1)

(2α)2(k+1)+i+1

))
.

(4.14)
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Proof : The reliability R can be written as

R =

∫ ∞

0

f(x)F (x)dx. (4.15)

Then,

R = 1−
∫ ∞

0

f(x)S(x)dx,

= 1−
∞∑
i=0

(−2 β)i

2(i!)

{
α

∞∑
j=0

(iλ)j

j!
I1 + β

∞∑
k=0

(λ(i+ 1))k

k!
× (I2 + 2λI3)

}
,

where

I1 =

∫ ∞

0

x
i−1
2

+je−2α
√
xdx,

I2 =

∫ ∞

0

x
i−1
2

+ke−2α
√
xdx,

I3 =

∫ ∞

0

x
i−1
2

+k+1e−2α
√
xdx.

Using the Gamma integral,

I1 =
2Γ (2j + i+ 1)

(2α)2j+i+1 ,

I2 =
2Γ (2k + i+ 1)

(2α)2k+i+1
,

I3 =
2Γ (2k + i+ 3)

(2α)2k+i+3
,

then

R = 1−
∞∑
i=0

(−2β)i

i!

(
α
∑∞

j=0
(iλ)j

j!
Γ(2j+i+1)

(2α)2j+i+1 + β
∑∞

k=0
(λ(i+1))k

k!

(
Γ(2k+i+1)

(2α)2k+i+1 + 2λΓ(2(k+1)+i+1)

(2α)2(k+1)+i+1

))
.

4.8 Order statistics

This section discusses order statistics, which have many applications in reliability and

lifetime analysis. We derive the probability density function of the order statistic X(r),

and its moments, where X1, . . . , Xn are drawn fron the RNMW (α, β, λ).

If X1, X2, · · · , Xn are a random sample from the RNMW (α, β, λ) with CDF (4.1)

and pdf (4.3), and X(1) ≤ X(2) ≤ · · · ≤ X(n) are the order statistics from this sample,

then, from Arnold el at (2008), the pdf of the r-th statistic X(r) is given by
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From (3.12), (3.13) and (3.14), where h(x) is the hazard function (4.4) and H(x) =

α
√
x+ β

√
xeλx is the cumulative hazard. we get

fr:n (x) =
1

B (r, n− r + 1)

r−1∑
ℓ=0

(
r − 1

ℓ

)
(−1)ℓh(x)e−(n+ℓ+1−r)H(x),

= n

(
n− 1

r − 1

) r−1∑
ℓ=0

(
r − 1

ℓ

)
(−1)ℓh(x)e−(n+ℓ+1−r)H(x),

= n

(
n− 1

r − 1

) r−1∑
ℓ=0

(
r − 1

ℓ

)
(−1)ℓ

(
1

2
√
x
(α+ β(1 + 2λx)) eλx

)
×

e−(n+ℓ+1−r)(α
√
x+β

√
x),

= n

(
n− 1

r − 1

) r−1∑
ℓ=0

(
r − 1

ℓ

)
(−1)ℓ

(n+ ℓ+ 1− r)
f(x; αℓ, βℓ, λ),

where f(x; αℓ, βℓ, λ) is the PDF of the RNMW with parameters αℓ = (n+ ℓ+1− r)α,

βℓ = (n+ ℓ+ 1− r)β and λ.

Using (4.8), the kth non-central moment of the rth order statistic is then

µ
′(r:n)
k = 2nk

(
n− 1

r − 1

) ∞∑
i=0

∞∑
j=0

r−1∑
ℓ=0

(
r − 1

ℓ

)
(−1)ℓ+iβi(iλ)jΓ (i+ 2(j + k) + 1)

αi(α (n+ ℓ+ 1− r))2(j+k)+1
.

(4.16)

.

4.9 Parameter estimation

In this section, point and interval estimators of the unknown parameters of the RNMW

distribution are derived using the maximum likelihood method. We consider both

complete data and censored data, then assess the finite sample performance of the

MLEs with respect to sample size n.

4.9.1 Complete data

The PDF of the RNMW distribution can be rewritten as

f(x) = h (x;ϑ) e−α
√
x−β

√
xeλx

for x > 0, where h (x;ϑ) is the hazard rate function in (4.4) and ϑ = (α, β, λ) is a

vector of parameters.
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Let x1, . . . , xn denote a random sample of complete data from the RNMW distri-

bution. Then, the log-likelihood function is

L (ϑ) =
n∑
i=1

[
log (h (xi;ϑ))− α

√
xi − β

√
xie

λxi
]
.

The likelihood equations are obtained by setting the first partial derivatives of ℓ with

respect to α, β and λ to zero; that is,

n∑
i=1

1

h (xi;α, β, λ)
(
2
√
xi
) − n∑

i=1

√
xi = 0, (4.17)

n∑
i=1

(0.5 + λxi) e
λxi

h (xi;α, β, λ)
√
xi

−
n∑
i=1

eλxi
√
xi = 0, (4.18)

n∑
i=1

√
xi
(
3
2
+ λxi

)
eλxi

h (xi;α, β, λ)
−

n∑
i=1

eλxi
√
x3i = 0. (4.19)

4.9.2 Censored data

Here, we consider maximum likelihood estimation for censored data without replace-

ment. Let Xi and Ci denote the lifetime and the censoring time for tested individual i,

i = 1, . . . , n. Suppose Xi and Ci are independent random variables. The failure times

are xi = min(Xi, Ci), i = 1, . . . , n. Then, the log-likelihood function is

L (ϑ) =
d∑
i=1

log
[
h (xi;ϑ)− α

√
xi − β

√
xie

λxi
]
−
∑
i∈C

[
α
√
xi + β

√
xie

λxi
]
,

where d is the number of failures and C contains indices of the censored observations.

Setting the first partial derivatives of L (ϑ) with respect to α, β and λ to zero, the

likelihood equations are obtained as

d∑
i=1

{
1

h (xi;α, β, λ)
(
2
√
xi
) −√

xi

}
−
∑
i∈C

√
xi = 0, (4.20)

d∑
i=1

{
(0.5 + λxi) e

λxi

h (xi;α, β, λ)
√
xi

− eλxi
√
xi

}
−
∑
i∈C

√
xie

λxi = 0, (4.21)

d∑
i=1

{√
xi
(
3
2
+ λxi

)
eλxi

h (xi;α, β, λ)
− eλxi

√
x3i

}
−
∑
i∈C

eλxi
√
x3i = 0. (4.22)

By solving the systems of nonlinear likelihood equations, (4.17), (4.18), (4.19) and

(4.20), (4.21), (4.22), numerically for α, β and λ, we can obtain maximum likelihood

estimates for complete and censored data.
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In order to find the interval estimation of α, β and λ, the observed information

matrix is obtained since the expected information matrix is very complicated. The

observed information matrix J(ϑ) is

J(ϑ) = −


Lαα Lαβ Lαλ

Lββ Lβλ
Lλλ

 ,
where the elements of this matrix are given in Appendix B

Under conditions that are fulfilled for parameters in the interior of the param-

eter space but not on the boundary, the asymptotic distribution of
√
n
(
ϑ̂− ϑ

)
is

N3(0, I(ϑ)
−1), where I(ϑ) is the expected information matrix. This asymptotic behav-

ior is valid if I(ϑ) is replaced by J(ϑ̂), i.e., the observed information matrix evaluated

at ϑ̂. The asymptotic multivariate normal N3(0, J(ϑ̂)
−1) distribution can be used to

construct approximate confidence intervals and confidence regions for the individual

parameters.

4.9.3 Simulation study

Here, we assess the performance of the MLEs with respect to sample size n. The

assessment is based on a simulation study:

1. First, ten thousand samples of size n are generated from (4.1). We used the in-

version method to generate samples, which was done for the RNMW distribution

by solving

α
√
X + β

√
XeλX = − ln(1− U),

where U ∼ U(0, 1) is a uniform variate on the unit interval.

2. Obtain the MLEs for the ten thousand generated samples,
(
α̂i, β̂i, λ̂i

)
for i =

1, 2, . . . , 10000.

3. For the generated samples, compute the standard errors, say
(
sα̂i
, sβ̂i , sλ̂i

)
for

i = 1, 2, . . . , 10000. The standard errors are computed by using the observed

information matrices.
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4. The biases and mean squared errors of the MLEs can be computed as the fol-

lowing,

biash(n) =
1

10000

10000∑
i=1

(
ĥi − h

)
,

MSEh(n) =
1

10000

10000∑
i=1

(
ĥi − h

)2
for h = α, β, λ.

The above steps were repeated for n = 10, 11, . . . , 100 with α = 1, β = 1 and λ = 1,

then, we computed biash(n) and MSEh(n) for h = α, β, λ and n = 10, 11, . . . , 100.

Figure 4.5 shows the biases of the MLEs of (α, β, λ) versus n = 10, 11, . . . , 100

when (α, β, λ) = (0.1, 0.1, 0.1). It can be seen that the biases for the three parameters

are small and vary with respect to the samples sizes. The mean squared errors of the

MLEs of each parameters are shown in Figure 4.6, which are vary with respect to the

samples sizes. The broken line in Figure 4.5 indicates to the distance between the

biases and the zero. The broken line in Figure 4.6 indicates to the distance between

the mean squared errors and the zero.

From these figures the following observations can be made. The biases of the

MLEs of the parameters α and β are generally negative; the biases of the MLEs of the

parameter λ are generally positive; the biases of the MLEs of the parameter β are the

smallest; the biases of the MLEs of the parameter λ are the largest; the biases of the

MLEs of the parameters α and β increase to zero as n → ∞ where the biases for the

parameter λ decrease to zero as n→ ∞; the mean squared errors of the MLEs of the

parameter β are the smallest; the mean squared errors of the MLEs of the parameter α

are the the largest; the mean squared errors for the three parameters decrease to zero

as n→ ∞; The above observations are observed by choosing (α, β, λ) = (0.1, 0.1, 0.1).

A similar results were found for other choices.

4.10 Applications

This section provides four applications, two of them are for complete (uncensored) data

sets and the others are for censored data sets, to show how the RNMW distribution

can be applied in practice. It has been shown in chapter 3 that the NMW distribution
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Figure 4.5: Biases of the MLEs of (α, β, λ) versus n = 10, 11, . . . , 100 ((α, β, λ) =
(0.1, 0.1, 0.1)).
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Figure 4.6: Mean squared errors of the MLEs of (α, β, λ) versus n = 10, 11, . . . , 100
(α, β, λ) = (0.1, 0.1, 0.1).
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fits several data sets better than existing modifications of the Weibull distribution like

the BMW distribution, the AddW distribution, the MW distribution and the SZMW

distribution. So, we shall compare the fits of the RNMW and NMW distributions to see

if the former can perform as well as the NMW distribution. The Kolmogorov-Smirnov

test, AIC, BIC, AICc and CAIC are used to compare the candidate distributions. The

log-likelihood ratio test is used to compare the NMW and RNMW distributions by

testing the hypotheses: H0 : θ = γ = 1
2
versus H1 : H0 is false. The likelihood ratio

test statistic for testing H0 against H1 is ω = 2(LNMW −LRNMW ), which follows a χ2

distribution with two degrees of freedom under H0.

This section presents four real data applications. The sample size for the first data

set is fifty. The sample size for the second data set is forty four. The sample size for

the third data set is eighty two. The sample size for the fourth data set is one hundred

and forty eight. Hence, the biases for α̂, β̂ and λ̂ can be expected to be less than 0.003,

2× 10−4 and 0.003, respectively, for the first two data sets and to be less than 0.002,

1× 10−4 and 0.002, respectively, for the other two data sets. The mean squared errors

for α̂, β̂ and λ̂ can be expected to be less than 0.003, 5×10−6 and 3×10−4 respectively,

for first two data sets and be less than 0.002 5 × 10−6 and 2 × 10−4 respectively, for

the other two data sets.

4.10.1 Complete data

In this section, we show how the RNMW distribution can be applied in practice for

two complete (uncensored) real data sets.

Aarset data

The Aarset data (Aarset, 1987), consisting of lifetimes of fifty devices, which has

been presented in the previous chapter, exhibits a bathtub shaped hazard rate. Both

the NMW and RNMW distributions are now fitted to this data set. Table 4.2 gives

the MLEs of the parameters, the corresponding standard errors, AIC, BIC, AICc

and CAIC. Table 4.3 provides the K-S test statistics. Figures 4.7a and 4.7b show

the histogram of the data, PDFs of the fitted NMW and RNMW distributions, the

empirical survival function, and the survival functions of the fitted NMW and RNMW

distributions.
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Table 4.2: MLEs of parameters, standard errors, AIC, BIC, AICc and CAIC for Aarset
data.

Model α̂ β̂ γ̂ θ̂ λ̂ AIC BIC AICc CAIC
NMW 0.071 7.015× 10−8 0.016 0.595 0.197 435.8 445.4 437.2 450.4

(0.031) (1.501× 10−7) (3.602) (0.128) (0.184)
RNMW 0.102 3.644× 10−8 1

2
1
2

0.180 433.1 439.0 433.8 442.0
(0.019) (6.089× 10−8) − − (0.020)

Table 4.3: K-S statistics for models fitted to Aarset data.

Model K-S
NMW 0.088
RNMW 0.092

It is clear that both the NMW and RNMW distributions provide adequate fits.

Both have very small K-S values (0.088 and 0.092, respectively). The NMW distribu-

tion has the larger log-likelihood of -212.9. However, the RNMW distribution has the

smaller values for AIC, BIC, AICc and CAIC. The likelihood ratio test statistic for

testing H0 : θ = γ = 1
2
versus H1 : H0 is false takes the value 1.436 and the correspond-

ing p-value is 0.488, so there is no significant evidence to reject H0. Hence, the NMW

distribution does not improve significantly on the fit of the RNMW distribution.

The plots of the empirical TTT-transform, TTT-transforms of the fitted NMW

and RNMW distributions, the nonparametric hazard rate function, and the hazard

rate functions of the fitted NMW and RNMW distributions are shown in Figures 4.7c

and 4.7d. It is clear that the RNMW distribution provides as good a fit as the NMW

distribution.

The variance-covariance matrix for the estimated parameters of the RNMW may

be approximated as J−1,

J−1 =


5.203× 10−4 −3.697× 10−9 1.214× 10−3

−3.697× 10−9 9.078× 10−14 −2.994× 10−8

1.214× 10−3 −2.994× 10−8 9.882× 10−3

 .
So, approximate 95 percent confidence intervals for the parameters α, β and λ are

[0.064, 0.14], [0, 1.558× 10−7] and [0.219× 10−5, 0.142], respectively.
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Figure 4.7: For Aarst data: (a) Histogram and fitted PDFs; (b) Empirical and fitted
survival functions; (c) Empirical and fitted TTT-transforms; (c) Nonparametric and
fitted hazard rate functions.
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Table 4.4: MLEs of parameters, standard errors, AIC, BIC, AICc and CAIC for Kumar
data.

Model α̂ β̂ γ̂ θ̂ λ̂ AIC BIC AICc CAIC
NMW 0.034 4.588× 10−4 0.423 0.657 0.071 410.0 418.9 411.6 423.9

(0.022) (3.794× 10−3) (2.351) (0.18) (0.034)
RNMW 0.055 5.852× 10−4 1

2
1
2

0.065 406.9 412.2 407.5 415.2
(0.017) (6.523× 10−4) − − (0.012)

Kumar data

Kumar et al. (1989) presented data consisting of times between failures (TBF) in

days of load-haul-dump machines (LHD) used to pick up rock or waste. As shown in

Figure 4.8, the scaled TTT-Transform plot of this data has a convex shape followed

by a concave shape. That corresponds to a bathtub shaped hazard function for this

data set.
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Figure 4.8: TTT-transform plot for the Kumar.

Tables 4.4 and 4.5 show the MLEs of the parameters, corresponding standard

errors, AIC, BIC, AICc, CAIC and the K-S test statistic. Both distributions (NMW

and RNMW) provide adequate fits. The log-likelihood value is larger for the NMW

distribution. That for the RNMW distribution is only slightly smaller. The K-S

statistic is larger for the NMW distribution, and for the reduced model it is very small

at 0.055. However, the RNMW distribution has the smaller AIC, BIC, AICc and

CAIC values.
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Table 4.5: K-S statistics for models fitted to Kumar data.

Model K-S
NMW 0.068
RNMW 0.061

Figures 4.9 (a) and (d) show that both distributions fit the data adequately. How-

ever, the log-likelihood ratio statistic for testing H0 : θ = γ = 1
2
versus H1 : H0 is false

is ω = 0.895 with the corresponding p-value of 0.639. Hence, again there is no evidence

that the NMW distribution provides a better fit than the RNMW distribution.

The variance-covariance matrix for the estimated parameters of the RNMW may

be approximated as J−1,

J−1 =


2.839× 10−4 −3.968× 10−6 6.731× 10−5

−3.968× 10−6 4.254× 10−7 −7.836× 10−6

6.731× 10−5 −7.836× 10−6 1.498× 10−4

 .
So, approximate 95 percent confidence intervals for the parameters α, β and λ are

[0.022, 0.088], [0, 1.864× 10−3] and [0.041, 0.089], respectively.

4.10.2 Censored data

In this section, we show how the RNMW distribution can be applied in practice for

two real censored data sets, one of which is presented here for the first time.

Drug data

This data set was collected from a prison in the Middle East in 2011. It represents

a sample of eighty two prisoners convicted of using or selling drugs. They were all

released as part of a general amnesty for prisoners. We consider the time from release

to re-offending to be the failure time. Of the eighty two prisoners, sixty six were

arrested again for abuse or sale of drugs. After one hundred and eleven weeks, the

others were considered to be censored. Again, regarding to the TTT-transform plot

in Figure 4.10, the data has a bathtub shaped hazard rate.

Both the NMW and RNMW distributions were fitted to the data. Tables 4.6 and

4.7 show the MLEs of the parameters, corresponding standard errors, AIC, BIC, AICc,
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Figure 4.9: For Kumar data: (a) Histogram and fitted PDFs; (b) Empirical and fitted
survival functions; (c) Empirical and fitted TTT-transforms; (c) Nonparametric and
fitted hazard rate functions.
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Figure 4.10: TTT-transform plot for the drug data.

Table 4.6: MLEs of parameters, standard errors, AIC, BIC, AICc and CAIC for drug
data.

Model α̂ β̂ γ̂ θ̂ λ̂ AIC BIC AICc CAIC
NMW 0.019 2.954× 10−3 0.484 0.735 0.031 700.9 713.0 701.7 718.0

(9.426× 10−3) (3.656× 10−3) (0.504) (0.159) (0.019)
RNMW 0.038 5.863× 10−3 1

2
1
2

0.026 698.4 705.6 698.7 708.7
(0.017) (6.584× 10−3) − − (9.319× 10−3)

CAIC and the K-S test statistics. We see that the RNMW distribution has the smaller

AIC, BIC, AICc and CAIC values. The K-S statistic values for both distributions are

approximately equal to 0.055.

Figures 4.11 (a)-(d) show the histogram of the data, PDFs of the fitted NMW and

RNMW distributions, the empirical survival function, the survival functions of the

fitted NMW and RNMW distributions, the empirical TTT-transform, TTT-transforms

of the fitted NMW and RNMW distributions, the nonparametric hazard rate function,

and the hazard rate functions of the fitted NMW and RNMW distributions. We can

see that the RNMW distribution fits the data as well as the NMW distribution.

The log-likelihood ratio statistic for testing H0 : θ = γ = 1
2
versus H1 : H0 is false is

ω = 1.496 with the corresponding p-value of 0.473. Hence, again there is no evidence

that the NMW distribution provides a better fit than the RNMW distribution.

The variance-covariance matrix for the estimated parameters of the RNMW may
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Table 4.7: K-S statistics for models fitted to the drug data.

Model K-S
NMW 0.0550
RNMW 0.0553
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Figure 4.11: For drug data: (a) Empirical and fitted survival functions; (b) Nonpara-
metric and fitted hazard rate functions.

be approximated as J−1,

J−1 =


2.801× 10−4 −8.519× 10−5 1.138× 10−4

−8.519× 10−5 4.335× 10−5 −6.037× 10−5

1.138× 10−4 −6.037× 10−5 8.684× 10−5

 .
So, approximate 95 percent confidence intervals for the parameters α, β and λ are

[5.553× 10−3, 0.071], [0, 0.019] and [8.137× 10−3, 0.045], respectively.

Serum-reversal data

The Serum-reversal data consists of serum-reversal time in days of one hundred and

forty eight children contaminated with HIV from vertical transmission at the university

hospital of the Ribeiro Preto School of Medicine (Hospital das Clnicas da Faculdade

de Medicina de Ribeiro Preto) from 1986 to 2001, cf. Perdona (2006) and Silva (2004).

The scaled TTT-Transform plot for this data is shown in Figure 4.12, which takes

a convex shape followed by a concave shape. This corresponds to a bathtub shaped
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Table 4.8: MLEs of parameters, standard errors, AIC, BIC, AICc and CAIC for serum-
reversal data.

Model α̂ β̂ γ̂ θ̂ λ̂ AIC BIC AICc CAIC
NMW 1.74× 10−3 6.141× 10−4 0.542 0.438 0.015 783.8 798.8 784.4 803.8

(3.115× 10−3) (2.274× 10−3) (0.507) (0.763) (3.764× 10−3)
RNMW 1.799× 10−3 5.955× 10−4 1

2
1
2

0.014 780.1 789.1 780.3 792.1
(1.971× 10−3) (4.174× 10−4) − − (2.061× 10−3)

Table 4.9: K-S statistics for models fitted to serum-reversal data.

Model K-S
NMW 0.115
RNMW 0.107

HF.
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Figure 4.12: TTT-transform plot for the serum-reversal data.

Tables 4.8 and 4.9 show the MLEs of the parameters, corresponding standard

errors, AIC, BIC, AICc, CAIC and the K-S test statistics. We see that the RNMW

distribution has smaller values for AIC, BIC, AICc and CAIC. The K-S statistic is

only slightly larger for the NMW distribution.

Figures 4.13a-d show that both distributions fit the data adequately. However,

the log-likelihood ratio statistic for testing H0 : θ = γ = 1
2
versus H1 : H0 is false is

ω = 0.194 with the corresponding p-value of 0.908. Hence, again there is no evidence

that the NMW distribution provides a better fit than the RNMW distribution.

The variance-covariance matrix for the estimated parameters of the RNMW may
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Figure 4.13: For serum data: (a) Empirical and fitted survival functions; (b) Nonpara-
metric and fitted hazard rate functions.

be approximated as J−1,

J−1 =


3.886× 10−6 −4.245× 10−7 1.990× 10−6

−4.245× 10−7 1.742× 10−7 −8.445× 10−7

1.990× 10−6 −8.445× 10−7 4.246× 10−6

 .
So, approximate 95 percent confidence intervals for the parameters α, β and λ are

[0, 5.662× 10−3], [0, 1.414× 10−3] and [0.010, 0.080], respectively.

4.11 Summary

In this chapter, we reduced the number of parameters of the new modified Weibull

distribution introduced in chapter 3 from five to three parameters to simplify the distri-

bution. We studied the mathematical properties of the reduced distribution, including

the hazard function, moments, order statistics and Renyi entropy. The estimation of

the reliability P (X < Y ) was studied. The maximum likelihood estimation of the

parameters was discussed. Two applications of complete and censoring data were pre-

sented and it has shown that the reduced distribution fits the data as good as the

original new modified Weibull distribution, but better than its sub-models.



Chapter 5

Exponentiated Reduced Modified

Weibull Distribution

5.1 Introduction

Chapter 4 introduced a three-parameter modified Weibull distribution called the re-

duced new modified Weibull (RNMW) distribution. Its CDF, PDF and HF are given

in (4.1), (4.3) and (4.4) respectively.

The RNMW distribution can exhibit bathtub shaped HFs but not more other

complicated shapes. The aim of this chapter is to introduce a four-parameter gener-

alization that can accommodate monotonically increasing, bathtub shaped, unimodal

and modified unimodal HFs. The new distribution will be called the Exponentiated

Reduced Modified Weibull Distribution and abbreviated ERMW.

The contents of this chapter are organized as follows. The new distribution is

introduced in Section 5.2. Some special cases of the ERMW distribution are presented

in Section 5.3. The shapes of the PDF and the HF of the ERMW distribution are

studied in Section 5.4. The moments of the ERMW distribution are given in Section

5.5. Section 5.6 and 5.7 discuss order statistics and maximum likelihood estimates

of the unknown parameters of the ERMW distribution including a simulation study

to assess the performance of the MLEs. Two real data applications of the ERMW

distribution are given in Sections 5.8. One of these data sets has a bathtub shaped

HF and the other has a unimodal HF. Section 5.9 summaries the chapter.
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5.2 The ERMW distribution

Let X denote a random variable having the ERMW distribution. Its CDF is defined

by exponentiating the CDF of the RNMW distribution. That is, we take the CDF of

X as

F (x) =
[
1− e−α

√
x−β

√
xeλx
]θ
, x > 0 (5.1)

where α > 0, β > 0, λ > 0 and θ > 0. Here, α and β are scale parameters, λ is an

acceleration parameter and θ is a shape parameter. The corresponding PDF and HF

are

f(x) =
θ

2
√
x

[
α+ β(1 + 2λx)eλx

] [
1− e−α

√
x−β

√
xeλx
]θ−1

e−α
√
x−β

√
xeλx , x > 0 (5.2)

and

h(x) =
θ
[
α + β(1 + 2λx)eλx

] [
1− e−α

√
x−β

√
xeλx
]θ−1

e−α
√
x−β

√
xeλx

2
√
x

{
1−

[
1− e−α

√
x−β

√
xeλx
]θ} , x > 0 (5.3)

where α > 0, β > 0, λ > 0 and θ > 0.

If the parameter θ is a positive integer, the ERMW distribution can be interpreted

as the lifetime distribution of a parallel system of θ independent and identically dis-

tributed components, where each component is a serial system with two independent

components: one of which follows the Weibull distribution with parameters α and

1
2
, and the other follows the modified Weibull distribution of Lai et al. (2003) with

parameters β, 1
2
and λ.

Using the series expansion of (1− x)θ−1, we have(
1− e−α

√
x−β

√
xeλx
)θ−1

=
∞∑
j=0

(−1)jΓ(θ)

Γ(θ − j)j!
e−jα

√
x−jβ

√
xeλx , (5.4)

the PDF in (5.2) can be expressed as

f(x) =
∞∑
j=0

(−1)jΓ(θ + 1)

Γ(θ − j)(j + 1)!
fRNMW(x;αj+1, βj+1, λ), (5.5)

for x > 0, where ϕj+1 = (j + 1)ϕ and fRNMW(x;α, β, λ) is the PDF of the RNMW in

(4.3). So, the PDF of the ERMW distribution is a linear combination of the PDFs of

the RNMW distribution.
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The PDF in (5.2) can also be expressed as

f(x) = hRNMW (x) e−α
√
x−β

√
xeλx

(
1− e−α

√
x−β

√
xeλx
)θ−1

, (5.6)

for x > 0, where hRNMW(x) is the HF of the RNMW distribution in (4.4).

Figure 5.1 shows possible shapes of the PDF in (5.2). We can see that monotoni-

cally decreasing, unimodal and monotonically decreasing followed by unimodal shapes

are possible for the PDF. Monotonically decreasing shapes correspond to small values

of θ. Unimodal shapes correspond to large values of θ. The location and the magnitude

of the mode become larger as θ becomes larger.

Figure 5.2 shows possible shapes of the HF in (5.3). We can see that monotonically

increasing, bathtub, unimodal and modified unimodal shapes are possible for the HF.
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Figure 5.1: PDF of the ERMW distribution for selected α, β, λ and θ.

5.3 Special cases

The ERMW distribution includes as special cases distributions which are special cases

of several distributions widely used in survival analysis:
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Figure 5.2: The HF of the ERMW distribution.

1. The reduced generalized modified Weibull (RGMW) distribution:

If α = 0, the ERMW distribution reduces to the RGMW distribution specified

by the CDF

F (x) =
(
1− e−β

√
xeλx
)θ
,

a special case of the GMW distribution of Carrasco et al. (2008) when its

first shape parameter is equal to 1
2
. The RGMW distribution has just three

parameters. Its HF can be monotonically increasing, bathtub shaped, unimodal

or unimodal following by increasing. Not many distributions have this property,

especially with three parameters. Figure 5.3 shows possible shapes of the PDF

and the HF of the RGMW distribution.

2. The reduced exponentiated Weibull (REW) distribution:

When α = λ = 0 or β = λ = 0, the ERMW distribution reduces to the REW

distribution specified by the CDF

F (x) =
(
1− e−α

√
x
)θ
,

a special case of the EW distribution due to Mudholkar and Srivastava (1993).

The PDFs and the HFs of the REW distribution are shown in Figure 5.4.

3. The reduced Lai et al.’s modified Weibull (RMW) distribution:

For α = 0 and θ = 1, the ERMW distribution reduces to the RLMW distribution
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Figure 5.3: (a) The PDF of the RGMW distribution, (b) The HF of the RGMW
distribution.
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Figure 5.4: (a) The PDF of the REW distribution, (b) The HF of the REW distribu-
tion.
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specified by the CDF

F (x) = 1− e−β
√
xeλx ,

a special case of the MW distribution due to Lai et al. (2003).

4. The reduced Weibull (RW) distribution:

By setting β = λ = 0 and θ = 1, we can reduce the ERMW distribution to the

RW distribution specified by the CDF

F (x) = 1− e−α
√
x.

We can also get a RW distribution by setting λ = 0 and θ = 1.

5.4 Shape

Here, we discuss shapes of the PDF in (5.2) and the HF in (5.3).

The derivative of log f(x) with respect to x is

d log f(x)

dx
=

βλ(3 + 2λx)eλx

α+ β(1 + 2λx)eλx
+

(θ − 1)
[
α + β(1 + 2λx)eλx

]
2
√
x
(
eα

√
x+β

√
xeλx − 1

)
− 1

2x
− α

2
√
x
− β(1 + 2λx)eλx

2
√
x

.

So, the modes of f(x) at say x = x0 are the roots of
d log f(x)

dx
= 0. A mode corresponds

to a local maximum (see Figure 5.1) if d log f(x)
dx

> 0 for all x < x0 and d log f(x)
dx

< 0 for

all x > x0. A mode corresponds to a local minimum (see Figure 5.1) if d log f(x)
dx

< 0 for

all x < x0 and d log f(x)
dx

> 0 for all x > x0.

The derivative of log h(x) with respect to x is

d log h(x)

dx
=
d log f(x)

dx
+
θ
[
α + β(1 + 2λx)eλx

] (
1− e−α

√
x−β

√
xeλx
)θ−1

2
√
xeα

√
x+β

√
xeλx

[
1−

(
1− e−α

√
x−β

√
xeλx
)θ] .

So, the modes of h(x) at say x = x0 are the roots of
d log h(x)

dx
= 0. The mode corresponds

to a local maximum (see, for example, the top left plot in Figure 5.6) if d log h(x)
dx

> 0 for

all x < x0 and d log h(x)
dx

< 0 for all x > x0. The mode corresponds to a local minimum

(see, for example, Figure 5.5) if d log h(x)
dx

< 0 for all x < x0 and d log h(x)
dx

> 0 for all

x > x0. The mode corresponds to a point of inflexion (see, for example, the bottom
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Figure 5.5: The HF of the ERMW distribution as α changes.

right plot in Figure 5.6) if either d log h(x)
dx

> 0 for all x ̸= x0 or d log h(x)
dx

< 0 for all

x ̸= x0.

The property of a long useful lifetime period, exhibited by the bathtub shaped HF

seen in the NMW and RNMW distributions, which are presented in Chapter 3 and

Chapter 4, also holds for the ERMW distribution, see Figure 5.5 (a).

Figure 5.5 (a) shows how the bathtub shaped HF of the ERMW distribution is

affected by the parameters β, λ and α. The curve of open red circles is the bathtub

shaped HF when α = 0.2, β = 5 × 10−4, λ = 0.005, θ = 0.5. The blue curves in this

figure are the HF at the same values of α, β and λ, while α increases from 0.25 to 0.49 in

steps of 0.03. Increasing the value of this parameter has the effect of scaling the bathtub

shape slightly up. The green dash curves and the pink dot curves are, respectively,

the HF when β = 8× 10−4, 9× 10−4, . . . , 16× 10−4 and λ = 0.0065, 0.0067, . . . , 0.0081.

Increasing the value of these parameters has the effect of shortening the useful life

period. That is, increasing the value of β and λ reduces the survival time of the

system.

Figure 5.5 (b) shows the role of the shape parameter θ and how it turns the HF

from being bathtub shaped to unimodal and to increasing. The HF is bathtub shaped

when θ ≤ 2. It is unimodal when θ > 2. The HF increases for large values of θ.

Figures 5.6 (a), (b), (c), (d) show how the unimodal HFs of the ERMW distribution

are affected by the parameters β, λ, θ and α. (Here, by unimodal HF we mean HF

taking a unimodal shape followed by a monotonic increasing shape.) The curve of open
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Figure 5.6: The HF of the ERMW distribution as θ changes.

red circles in Figure 5.6 (a) is a unimodal HF of the ERMW distribution. Increasing

the value of α has the effect of scaling the unimodal shape. A slight increase of β and

λ has the effect giving an earlier start for the monotonic increasing part of the HF.

That is, the survival time of the system decreases as β and λ increase slightly. A sharp

increase of β and λ has the effect of turning the unimodal HF into an increasing HF,

see Figures 5.6 (c) and 5.6 (d). Increasing values of θ have the effect of changing the

HF from being bathtub shaped to unimodal to increasing, see Figure 5.6 (b).
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5.5 Moments

Let X denote an ERMW random variable. Using (5.5), the rth raw moment of X say

µ
′
r can be expressed as

µ
′

r =
∞∑
j=0

(−1)jΓ(θ + 1)

(j + 1)!Γ(θ − j)
µ

′

r,RNMW(αj+1,βj+1,λ)
(5.7)

for r ≥ 1, where µ
′

r,RNMW(α,β,λ) denotes the rth raw moment of a random variable

having the RNMW distribution with parameters (α, β, λ). Using (5.7) and expressions

for µ
′

r,RNMW(α,β,λ) given in (4.8), one can obtain expressions for the mean, variance,

skewness and kurtosis of X.
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Figure 5.7: Mean, variance, skewness and kurtosis of the ERMW distribution versus
θ for selected λ and α = β = 1.

Figures 5.7 and 5.8 show how the mean, variance, skewness and the kurtosis of the

ERMW distribution vary with respect to λ and θ for α = β = 1. We can observe

the following from the figures: mean is a monotonic increasing function of θ and a

monotonic decreasing function of λ; variance is a monotonic increasing function of θ

and a monotonic decreasing function of λ; skewness is a monotonic decreasing function

of θ and a monotonic decreasing function of λ; kurtosis is a monotonic decreasing

function of θ and a monotonic decreasing function of λ.
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Figure 5.8: Mean, variance, skewness and kurtosis of the ERMW distribution versus
λ for selected θ and α = β = 1.

5.6 Order statistics

This section discusses the order statistic, which have many applications in reliability

and lifetime analysis. We derive the probability density functions of the order statistics

X(r), and its moments, for the ERMW distribution.

If X1, X2, · · · , Xn are a random sample from the ERMW with CDF (5.1) and pdf

(5.2), and X(1) ≤ X(2) ≤ · · · ≤ X(n) are the order statistics from this sample, then,

from Arnold el at (2008), using (3.12) the pdf of the r-th statistic X(r) is given by

fr:n (x) =
1

B (r, n− r + 1)

n−r∑
ℓ=0

(
n− r

ℓ

)
(−1)ℓf(x)F (x)ℓ+r−1,

= n

(
n− 1

r − 1

) n−r∑
ℓ=0

(
n− r

ℓ

)
(−1)ℓ

(ℓ+ r)
f(x; α, β, λ, θℓ+r),

where B(., .) is the beta function and f(x; α, β, λ, θℓ+r) is the pdf of the ERMW

with parameters α, β, λ and (ℓ+ r)θ.

Using (5.7), the kth non-central moment of the rth order statistic is then
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µ
′(r:n)
k = n

(
n− 1

r − 1

) n−r∑
ℓ=0

∞∑
j=0

(
n− r

ℓ

)
(−1)ℓ+jΓ(θℓ+r)µ

′

k,RNMW(αj+1,βj+1,λ)

(ℓ+ r)(j + 1)!Γ(θℓ+r − j)
, (5.8)

where µ
′

k,RNMW(α,β,λ) denotes the kth raw moment of a random variable having the

RNMW distribution given in (4.8) and θℓ+r = (ℓ+ r)θ.

5.7 Estimation

Suppose x1, x2, . . . , xn is a random sample from the ERMW distribution with unknown

parameters (α, β, λ, θ). Section 5.7.1 estimates these parameters by the method of

maximum likelihood. Section 5.7.2 assesses the finite sample performance of the MLEs

with respect to sample size n.

5.7.1 Maximum likelihood estimation

Given the data x1, . . . , xn, the log-likelihood function of (α, β, λ, θ) is

L (α, β, λ, θ) = n log(θ) +
n∑
i=1

[
log (hRNMW (xi))− α

√
xi − β

√
xie

λxi
]

+(θ − 1)
n∑
i=1

log
[
1− e−α

√
xi−β

√
xie

λxi
]
.

By setting the first partial derivatives of L with respect to α, β, λ and θ to zero, we

obtain the normal equations

n∑
i=1

1

hRNMW (xi;α, β, λ)
(
2
√
xi
) − n∑

i=1

√
xi +

n∑
i=1

(θ − 1)
√
xi

eα
√
xi+β

√
xieλxi − 1

= 0, (5.9)

n∑
i=1

(0.5 + λxi) e
λxi

hRNMW (xi;α, β, λ)
√
xi

−
n∑
i=1

eλxi
√
xi +

n∑
i=1

(θ − 1)
√
xie

λxi

eα
√
xi+β

√
xieλxi − 1

= 0,(5.10)

β
n∑
i=1

√
xi
(
3
2
+ λxi

)
eλxi

hRNMW (xi;α, β, λ)
− β

n∑
i=1

eλxi
√
x3i +

n∑
i=1

(θ − 1)
√
x3i e

λxi

eα
√
xi+β

√
xieλxi − 1

= 0,(5.11)

n

θ
+

n∑
i=1

log
[
1− e−α

√
xi−β

√
xie

λxi
]
= 0. (5.12)

The MLEs can be obtained by solving the nonlinear equations, (5.9)-(5.12), numeri-

cally for α, β, λ and θ.

To obtain confidence intervals for α, β, λ and θ, we use the observed information

matrix since the expected information matrix is very complicated and the MLEs of
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the unknown parameters cannot be obtained analytically. The observed information

matrix J(ϑ) is

J(ϑ) = −


Lαα Lαβ Lαλ Lαθ

Lββ Lβλ Lβθ
Lλλ Lλθ

Lθθ

 .

where ϑ = (α, β, λ, θ) and the explicit expressions for the elements of this matrix

are given in the appendix C.

Under conditions that are fulfilled for parameters in the interior of the param-

eter space but not on the boundary, the asymptotic distribution of
√
n
(
ϑ̂− ϑ

)
is

N4(0, I(ϑ)
−1), where I(ϑ) is the expected information matrix. This asymptotic behav-

ior is valid if I(ϑ) is replaced by J(ϑ̂), i.e., the observed information matrix evaluated

at ϑ̂. The asymptotic multivariate normal N4(0, J(ϑ̂)
−1) distribution can be used to

construct approximate confidence intervals and confidence regions for the individual

parameters.

5.7.2 Simulation study

Here, we assess the performance of the MLEs with respect to sample size n. The

assessment is based on a simulation study:

1. First, ten thousand samples of size n are generated from (5.1). Using the inver-

sion method samples were generated, that was done for the ERMW distribution

by solving (
1− e−α

√
X−β

√
XeλX

)θ
= U,

where U ∼ U(0, 1) is a uniform variate on the unit interval.

2. Obtain the MLEs for the ten thousand generated samples, say
(
α̂i, β̂i, λ̂i, θ̂i

)
for

i = 1, 2, . . . , 10000.

3. For the generated samples, compute the standard errors of the MLEs, say(
sα̂i
, sβ̂i , sλ̂i , sθ̂i

)
for i = 1, 2, . . . , 10000. The standard errors computed by using

the observed information matrices.
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4. The biases and mean squared errors of the MLEs can be computed as the fol-

lowing,

biash(n) =
1

10000

10000∑
i=1

(
ĥi − h

)
,

MSEh(n) =
1

10000

10000∑
i=1

(
ĥi − h

)2
,

for h = α, β, λ, θ.

The above steps were repeated n = 10, 11, . . . , 100 with α = 1, β = 1, λ = 1 and

θ = 1, so computing biash(n) and MSEh(n) for h = α, β, λ, θ and n = 10, 11, . . . , 100.

Figure 5.9 shows the biases of the MLEs of (α, β, λ, θ) versus n = 10, 11, . . . , 100,

and it can be seen that the biases for the four parameters are small and vary with

respect to the samples sizes. The mean squared errors of the MLEs of each parameters

are shown in Figure 5.10, which are vary with respect to the samples sizes. The broken

line in Figure 5.9 indicates to the distance between the biases and the zero. The broken

line in Figure 5.10 indicates to the distance between the mean squared errors and the

zero.
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Figure 5.9: Biases of the MLEs of (α, β, λ, θ) = (1, 1, 1, 1) versus n = 10, 11, . . . , 100.
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Figure 5.10: Mean squared errors of the MLEs of (α, β, λ, θ) = (1, 1, 1, 1) versus n =
10, 11, . . . , 100.

From these figures the following observations can be made. The biases of the

MLEs of the parameters α, λ and θ are generally positive; the biases of the MLEs

of the parameter β are generally negative; among the four biases, the biases of the

MLEs of the parameter α are the smallest; the biases of the MLEs of the parameter

λ are the largest; the biases of the MLEs of the parameters α, λ and θ decrease

to zero as n → ∞; the biases of the MLEs of the parameter β increase to zero as

n → ∞; the mean squared errors for the parameter β are the smallest; the mean

squared errors for the parameter λ are the largest; the mean squared errors for all

four parameters decrease to zero as n → ∞; The above observations are observed by

choosing (α, β, λ, θ) = (1, 1, 1, 1). A similar results were found for other choices.

5.8 Applications

This section uses two well-known data sets to show how the proposed distribution can

be applied in practice to provide good fits. The HF of the first data set is modified
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unimodal shape. That of the second data set is bathtub shaped. The proposed distri-

bution will be compared to the four-parameter GMW distribution, the three-parameter

RGMW distribution, the two-parameter REW distribution and the three-parameter

EW distribution.

The sample size for the first data set is seventy two. The sample size for the second

data set is forty four.

Hence, the biases for α̂, β̂, λ̂ and θ̂ can be expected to be less than 0.01, 0.02, 0.02

and 0.02, respectively, for both data sets. The mean squared errors for α̂, β̂, λ̂ and

θ̂ can be expected to be less than 0.005, 0.003, 0.02 and 0.005, respectively, for both

data sets. Hence, the point estimates given in Section 5.8 can be considered accurate

enough for both data sets.

The likelihood ratio test will be used to compare the GMW distribution against

the RGMW distribution by testing the hypotheses H0 : γ = 1
2
versus H1 : H0 is false.

Under the null hypothesis, the likelihood ratio test statistic ω = 2 (LGMW − LRGMW)

has an asymptotic χ2 distribution with one degree of freedom. The EW distribution

will be compared against the REW distribution by testing the hypotheses H0 : γ = 1
2

versus H1 : H0 is false. Under the null hypothesis, the likelihood ration test statistic

ω = 2 (LEW − LREW) has an asymptotic χ2 distribution with one degree of freedom.

5.8.1 Infected pigs data

The data in Table 5.1 are survival times (in days) of seventy two pigs infected by

virulent tubercle bacilli (Greenwich, 1992). The TTT plot in Figure 5.11 shows a

concave shape and then a convex shape followed by a concave shape. This corresponds

to the HF being modified unimodal shape. Hence, the ERMW distribution is suitable

for this data, see Section 5.2.

Table 5.1: Infected pigs data (in days).

43 45 53 56 56 57 58 66 67 73 74 79 80 80 81 81
81 82 83 83 84 88 89 91 91 92 92 97 99 99 100 100
101 102 102 102 103 104 107 108 109 113 114 118 121 123 126 128
137 138 139 144 145 147 156 162 174 178 179 184 191 198 211 214
243 249 329 380 403 511 522 598
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Figure 5.11: TTT-transform plot for the infected pigs data.

Table 5.2 shows the MLEs of the parameters, their standard errors, AIC values,

BIC values, AICc values and CAIC values for the fitted ERMW, GMW, RGMW,

REW and EW distributions.

The ERMW distribution has the smallest negative log-likelihood of 399.898. The

negative log-likelihood of the GMW distribution is 400.350. The REW distribution

has the smallest values for the AIC, the BIC the AICc and the CAIC. Given these

observations, one could be tempted to say that the REW distribution provides the

best fit.

Table 5.3 shows the K-S test statistics for the fitted distributions. The values of

K-S statistics are nearly the same for all fitted distributions. All of them are about

0.11.

Figure 5.12 (a) shows the histogram of the data and the estimated PDFs. Figure

5.12 (b) shows empirical survival function of the data and the estimated ones. Figure

5.12 (d) shows the nonparametric HF of the data and the estimated HFs.

Figures 5.12a and 5.12b show that all of the distributions provide good fits. Figure

5.12d shows that all of the distributions provide good fits to the first and middle parts

of the nonparametric HF. But the GMW, RGMW, REW and the EW distributions do

not appear to capture the last part of the nonparametric HF well. Only the ERMW

distribution appears to provide a good fit to the last part of the nonparametric HF.

Since the differences in the likelihood and the differences in the AIC, BIC, AICc and

CAIC measures are small among the fitted distributions, we conclude that the ERMW
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Table 5.2: MLEs of parameters, standard errors, AIC, BIC, AICc and CAIC for the
distributions fitted to the infected pigs data set.

Model α̂ β̂ γ̂ λ̂ θ̂ AIC BIC AICc CAIC
ERMW 0.412 6.396× 10−8 − 0.022 57.562 807.8 816.9 808.4 820.9

(0.042) (7.109× 10−7) − (0.019) (22.924)
RGMW 0 0.422 − 1.108× 10−8 63.403 807.2 814.0 807.5 817.0

− (0.108) − 4.885× 10−4 (50.557)
REW 0.423 0 − 0 36.517 805.2 809.7 805.3 811.7

0.042 − − − (25.683)
GMW − 0.496 0.470 4.639× 10−9 69.877 808.7 817.8 809.3 821.8

− (0.247) (0.008) 4.573× 10−4 (50.012)
EW − 0.471 0.478 0 65.135 806.9 813.7 807.2 816.7

− (0.254) 0.081 − (49.625)

Table 5.3: K-S statistics for the distributions fitted to the infected pigs data set.

Model K-S
ERMW 0.112
RGMW 0.110
REW 0.111
GMW 0.114
EW 0.110

distribution gives the best fit. The ERMW distribution is the only one that captures

the nonparametric HF well in all three parts.

The variance-covariance matrix for the fitted ERMW distribution may be approx-

imated as J−1,

J−1 =


1.739× 10−3 −4.108× 10−10 4.366× 10−6 0.913

−4.108× 10−10 5.054× 10−13 −1.351× 10−8 −2.119× 10−7

4.366× 10−6 −1.351× 10−8 3.655× 10−4 2.195× 10−3

0.913 −2.119× 10−7 2.195× 10−3 525.529

 .

So, approximate ninety five percent confidence intervals for the parameters α, β, λ

and θ are [0.331, 0.494], [0, 1.457× 10−6], [0, 0.06] and [12, 102], respectively.

Finally, we give results of likelihood ratio tests. The log-likelihood ratio statistic

for testing H0 : γ = 1
2
in (2.10) versus H1 : H0 (testing the GMW against the RGMW)

is false is ω = 0.445 and the corresponding p-value is 0.505. So, there is no evidence

to reject the null hypothesis at any reasonable level of significance. Therefore, the

RGMW distribution can be chosen as an alternative to the GMW distribution for

modeling the data set.
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Figure 5.12: For infected pigs data: (a) Histogram and fitted PDFs; (b) Empirical and
fitted survival functions; (c) Empirical and fitted TTT-transforms; (d) Nonparametric
and fitted HFs.
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The log-likelihood ratio statistic for testing H0 : γ = 1
2
in (1.6) versus H1 : H0

(testing the EW against the REW) is false is ω = 0.294 and the corresponding p-

value is 0.588. So, the null hypothesis could not be rejected. Therefore, the REW

distribution can be chosen as an alternative to the EW distribution for modeling the

data set.

5.8.2 Kumar data

Kumar et al. (1989) presented data consisting of times between failures (TBF) in days

of load-haul-dump machines (LHD) used to pick up rock or waste. The TTT plot in

Figure 5.13 shows a convex shape followed by a concave shape. This corresponds to

a bathtub shaped HF. Hence, the ERMW, GMW, RGMW and the EW distributions

are appropriate for modeling this data. The REW distribution is not appropriate as

it does not exhibit a bathtub shaped HF.
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Figure 5.13: TTT-transform plot for Kumar data.

Tables 5.4 and 5.5 show the MLEs of the parameters, their standard errors, AIC

values, BIC values, AICc values, CAIC values and K-S test statistics for the fitted

ERMW, GMW, RGMW, REW and EW distributions.

The ERMW distribution has the smallest negative log-likelihood of -199.882, the

smallest AIC value, the smallest BIC value, the smallest AIC value, the smallest CAIC

value and the smallest K-S test statistic. So, the ERMW distribution provides the best

fit with respect to these criteria. This observation is confirmed by the diagnostic plots

in Figure 5.14.
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Table 5.4: MLEs of parameters, standard errors, AIC, BIC AICc and CAIC for the
distributions fitted to Kumar data.

Model α̂ β̂ γ̂ λ̂ θ̂ AIC BIC AICc CAIC
ERMW 0.099 4.86× 10−4 − 0.067 1.476 407.8 414.9 408.8 418.9

(0.049) (7.593× 10−4) − (0.017) (0.034)
RGMW 0 2.919× 10−3 − 0.046 0.521 414.9 420.3 415.5 423.3

− (6.530× 10−3) − 0.023 (0.270)
REW 0.292 0 − 0 3.686 450.6 454.1 450.9 456.1

0.041 (0) − − (0.880)
GMW − 4.590× 10−6 1.578 0.060 0.266 412.7 419.8 413.7 423.8

− (7.693× 10−6) 0.463 0.019 (0.061)
EW − 1.984× 10−7 3.460 0 0.310 423.9 429.3 424.5 432.3

− (3.158× 10−7) 0.347 − (0.061)

Table 5.5: K-S statistics for the distributions fitted to Kumar data.

Model K-S
ERMW 0.069
RGMW 0.094
REW 0.234
GMW 0.090
EW 0.175

The variance-covariance matrix for the fitted ERMW distribution may be approx-

imated as J−1,

J−1 =


2.43× 10−3 −1.575× 10−5 3.267× 10−4 0.023

−1.575× 10−5 5.766× 10−7 −1.264× 10−5 −1.043× 10−4

3.267× 10−4 −1.264× 10−5 2.83× 10−4 2.176× 10−3

0.023 −1.043× 10−4 2.176× 10−3 0.282

 .

So, approximate ninety five percent confidence intervals for the parameters α, β, λ

and θ are [2.075× 10−3, 0.195], [0, 1.974× 10−3], [0.034, 0.100] and [0.436, 2.516], re-

spectively.

Finally, we give results of likelihood ratio tests. The log-likelihood ratio statistic

for testing H0 : γ = 1
2
in (2.10) versus H1 : H0 (testing the GMW against the RGMW)

is false is ω = 4.227 and the corresponding p-value is 0.04. So, there is evidence that

the null hypothesis can be rejected at the five percent significance level. Therefore,

the RGMW distribution cannot be chosen as an alternative to the GMW distribution

for modeling the data set.

As reported before, the REW distribution does not exhibit bathtub shaped HFs.
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Figure 5.14: For Kumar data: (a) Histogram and fitted PDFs; (b) Empirical and fitted
survival functions; (c) Empirical and fitted TTT-transforms; (d) Nonparametric and
fitted HFs.
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The following result of the likelihood ratio test is an outcome of this inability. The log-

likelihood ratio statistic for testing H0 : γ = 1
2
in (1.6) versus H1 : H0 (testing the EW

against the REW) is false is ω = 28.631 and the corresponding p-value is 8.759×10−8.

So, the null hypothesis can be rejected at any level of significance greater than or equal

8.759× 10−8.

5.9 Summary

A new four-parameter distribution named the exponentiated reduced modified Weibull

distribution has been introduced. It is a generalization of the reduced modified Weibull

distribution of Chapter 4. The proposed distribution has the ability to capture mono-

tonically increasing, unimodal and bathtub shaped hazard rates. We derived expres-

sions for its mathematical properties and maximum likelihood estimation. We con-

ducted a simulation study to assess the finite sample performance of the latter. Finally,

we show that the proposed distribution gives the best fit for two well-known data sets

(when compared to other distributions including those having four parameters).



Chapter 6

A New Discrete Modified Weibull

Distribution

6.1 Introduction

In this chapter a three-parameter discrete distribution is introduced. It is based on a

recent modification of the continuous Weibull distribution that is presented in Chapter

4. It is one of very few discrete distributions allowing for bathtub shaped hazard rate

functions. We study some of its mathematical properties, discuss estimation by the

method of maximum likelihood, and describe applications to four real data sets. The

new distribution is shown to outperform at least three other models including the ones

allowing for bathtub shaped hazard rate functions.

The new discrete distribution is based on a five-parameter modification of the con-

tinuous Weibull distribution proposed in Chapter 3. The five-parameter distribution

is flexible, has a bathtub shaped hazard rate function and fits data better than many

other modifications of the Weibull distribution. Chapter 4 developed a three-parameter

version retaining much flexibility of the five-parameter modification.

This chapter proposes a discrete analogue of the three-parameter version. We

shall refer to it as the Discrete reduced modified Weibull distribution and denoted as

DRMW.

We shall show that the discrete reduced modified Weibull distribution allows for

bathtub shaped hazard functions. We shall also show it fits data better than all of the

known discrete distributions allowing for bathtub shaped hazard functions.
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The contents of this chapter are organized as follows. The new distribution is in-

troduced in Section 6.2. Its hazard function and shape are established in Section 6.3.

Series expansions for its survival function, probability mass function and moments are

given in Sections 6.4 and 6.5. The Order statistics and the extreme value behavior

of the new distribution are established in Section 6.6 and 6.7. Estimation of its pa-

rameters by the method of maximum likelihood is presented in Section 6.8. Then,

applications to four real data sets are described in Section 6.9. Finally, the chapter is

summarized in Section 6.10.

6.2 The new distribution

6.2.1 Discrete reduced modified Weibull distribution

By retaining the survival function in (4.2) to integer valued x and setting q = exp{−α},

b = β/α and c = exp{λ}, we can write the survival and the cumulative distribution

functions of the DRMW distribution as

S(x) = q
√
x(1+bcx)

and

F (x) = 1− q
√
x(1+bcx), x = 0, 1, . . . (6.1)

where 0 < q < 1, b > 0 and c ≥ 1.

The particular case of the DRMW distribution with b = 0 is the discrete Weibull

distribution DW due to Nakagawa and Osaki (1975). The DW distribution has an

attractive physical feature: if X1, . . . , Xn are independent and identical DW random

variables then min (X1, . . . , Xn) is also a DW random variable. If X1, . . . , Xn are

the failure times of n independent and identical components of a series system then

min (X1, . . . , Xn) will denote the failure time of the system.

The probability mass function (PMF) of the DRMW distribution is

P (x) = q
√
x(1+bcx) − q

√
x+1(1+bcx+1)

for x = 0, 1, . . ..
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As shown in Figure 6.1, the DRMW distribution is a flexible distribution. Its PMF

can take one of the following shapes: i) a unimodal shape; ii) a monotonic deceasing

shape; iii) a decreasing shape followed by an increasing shape followed by a decreasing

shape.
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Figure 6.1: PMFs of the DRMW distribution.

6.3 The hazard rate function

The hazard function of the DRMW distribution is

h(x) = 1− q
√
x+1(1+bcx+1)−

√
x(1+bcx)

for x = 0, 1, . . .. Theorem 1 discuses the shape of the hazard function of the DRMW

distribution.

Theorem 6. The hazard function of the DRMW distribution is increasing if bc(c −
√
2) >

√
2− 1 and has bathtub shape otherwise.
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Proof : Define

ψ(x, c, b) = bcxg(x, c) + k(x)

for x = 0, 1, . . ., where

g(x, c) = c2
√
x+ 2− 2c

√
x+ 1 +

√
x,

and

k(x) =
√
x+ 2− 2

√
x+ 1 +

√
x.

It is clear that k(x) is an increasing negative valued function. Its minimum value

is
√
2− 2 at x = 0. When x is large k(x) −→ 0. Now, consider g(x, c) = c2

√
x+ 2−

2c
√
x+ 1 +

√
x and define ∆x(c) as

∆x(c) = g(x, c)− g(x− 1, c)

for x = 1, 2, . . .. Then

∆x(c) = c2δ2(x)− 2cδ1(x) + δ0(x), (6.2)

where

δ0(x) =
√
x−

√
x− 1,

δ1(x) =
√
x+ 1−

√
x,

δ2(x) =
√
x+ 2−

√
x+ 1.

By differentiating ∆x(c) with respect to c,

∂

∂c
∆x(c) = 2cδ2(x)− 2δ1(x). (6.3)

Setting (6.3) to zero and solving for, we obtain

c0 =
δ1(x)

δ2(x)
. (6.4)

By substituting (6.4) into (6.2),

∆x(c0) = δ0(x)−
δ21(x)

δ2(x)

=
δ21(x)

δ2(x)

( δ0(x)
δ1(x)

δ1(x)
δ2(x)

− 1

)
.
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Since δ0(x)
δ1(x)

> δ1(x)
δ2(x)

, we have ∆x(c0) > 0. The value c0 is the minimum of ∆x(c), so

∆x(c) > 0 for x = 1, 2, . . ..

So, g(x, c) is an increasing and positive function for x = 1, 2, . . . and g(0, c) > 0

if c >
√
2. The function ψ(x, c, b) > 0 for all x if bc

(
c−

√
2
)
>

√
2 − 1 (in other

words, if bctg(0, c) + k(0) > 0). If bc
(
c−

√
2
)
<

√
2 − 1 there an exist x0 such that

ψ(x, c, b) < 0 for x = 0, 1, 2, . . . , x0 and ψ(x, c, b) > 0 for x = x0 + 1, x0 + 2, . . .. Now,

define v(x) as

v(x) = 1− h(x),

then

v(x+ 1)

v(x)
= qψ(x,c,b).

The proof is complete.

Figures 6.2 (a)-6.2 (c) show possible bathtub shaped hazard rates while Figure 6.2d

shows possible increasing hazard rates. Figure 6.3 shows that the DRMW distribution

has a long useful life period which is desirable in lifetime data analysis.

6.4 A series expansion

Here, we derive a series expansion for the survival function, and hence for the proba-

bility mass function.

Using the series expansion for the exponential, we can write

S(x) = q
√
x(1+bcx)

= q
√
x(1+b exp(x ln c))

= q
√
x
(
1+b

∑∞
i=0

xi lni c
i!

)

= exp

(
ln(q)

√
x

(
1 + b

∞∑
i=0

xi lni c

i!

))

=
∞∑
k=0

lnk(q)x
k
2

k!

(
1 + b

∞∑
i=0

xi lni c

i!

)k

=
∞∑
k=0

lnk(q)x
k
2

k!

k∑
ℓ=0

(
k

ℓ

)
bℓ

(
∞∑
i=0

xi lni c

i!

)ℓ

. (6.5)
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Figure 6.2: Hazard rate functions of the DRMW distribution.
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Figure 6.3: Hazard rate functions of the DRMW distribution with long useful life
period.
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Now using the partial exponential Bell polynomial, Brk(x) (see Comtet, 1974), defined

by (
∞∑
r=1

xrt
r/r!

)k

/k! =
∞∑
r=k

Brk(x)t
r/r!

for x = (x1, x2, . . .), we can rewrite (6.5) as

S(x) =
∞∑
k=0

lnk(q)xk/2

k!

k∑
ℓ=0

(
k

ℓ

)
bℓℓ!

∞∑
m=ℓ

Bml (ln c, ln c, . . .)
xm

m!

=
∞∑
k=0

k∑
ℓ=0

∞∑
m=ℓ

lnk(q)bℓBml (ln c, ln c, . . .)

(k − ℓ)!m!
xm+ k

2 . (6.6)

The representation in (6.6) can be used to derive similar expansions for the probability

mass function as the following

p(x) =
∞∑
k=0

k∑
ℓ=0

∞∑
m=ℓ

lnk(q)bℓBml (ln c, ln c, . . .)

(k − ℓ)!m!
x

k
2
+m

−
∞∑
k=0

k∑
ℓ=0

∞∑
m=ℓ

lnk(q)bℓBml (ln c, ln c, . . .)

(k − ℓ)!m!
(x+ 1)

k
2
+m . (6.7)

Using the binomial expansion for non-integer powers:

(A+B)p =
∞∑
d=0

c(p, d)Ap−dBp,

where c(p, d) = p(p−1)(p−2)···(p−d+1)
d!

, one can rewrite (6.7) as

p(x) =
∞∑
k=0

k∑
ℓ=0

∞∑
m=ℓ

lnk(q)bℓBml (ln c, ln c, . . .)

(k − ℓ)!m!
x

k
2
+m

−
∞∑
k=0

k∑
ℓ=0

∞∑
m=ℓ

∞∑
p=0

c(k
2
+m, p) lnk(q)bℓBml (ln c, ln c, . . .)

(k − ℓ)!m!
x

k
2
+m−p.

6.5 The moments

If X is a discrete reduced modified Weibull distribution random variable, then the r-th

moment of X is given by

E(Xr) =
∞∑
k=0

k∑
ℓ=0

∞∑
m=ℓ

∞∑
x=0

lnk(q)bℓBml (ln c, ln c, . . .)

(k − ℓ)!m!
x

k
2
+m+r −

∞∑
k=0

k∑
ℓ=0

∞∑
m=ℓ

∞∑
p=0

∞∑
x=0

c(k
2
+m, p) lnk(q)bℓBml (ln c, ln c, . . .)

(k − ℓ)!m!
x

k
2
+m+r−p.

(6.8)



6.6 Order statistics 166

Using (6.6) the r − th moment of X can be rewriten as

E(Xr) =
∞∑
x=1

(xr − (x− 1)r)s(x),

=
∞∑
k=0

k∑
ℓ=0

∞∑
m=ℓ

∞∑
x=1

lnk(q)bℓBml (ln c, ln c, . . .)

(k − ℓ)!m!
×(

xm+ k
2
+r −

r∑
n=0

(
r

n

)
(−1)r−nxn

)
. (6.9)

The first four moments of the DRMW are

E(x) =
∞∑
k=0

k∑
ℓ=0

∞∑
m=ℓ

∞∑
x=1

lnk(q)bℓBml (ln c, ln c, . . .)

(k − ℓ)!m!
xm+ k

2 ,

E(x2) =
∞∑
k=0

k∑
ℓ=0

∞∑
m=ℓ

∞∑
x=1

lnk(q)bℓBml (ln c, ln c, . . .)

(k − ℓ)!m!
xm+ k

2 (2x− 1),

E(x3) =
∞∑
k=0

k∑
ℓ=0

∞∑
m=ℓ

∞∑
x=1

lnk(q)bℓBml (ln c, ln c, . . .)

(k − ℓ)!m!
xm+ k

2 (3x2 − 3x+ 1),

E(x4) =
∞∑
k=0

k∑
ℓ=0

∞∑
m=ℓ

∞∑
x=1

lnk(q)bℓBml (ln c, ln c, . . .)

(k − ℓ)!m!
xm+ k

2 (4x3 − 6x2 + 4x− 1).

6.6 Order statistics

In this section provides the probability mass function, the cumulative distribution

function and the moment of the i-th order statistics Xi:n.

Suppose thatX1, X2, . . . , Xn are a random sample sizs n from the proposed discrete

distribution, then the obtained order statistics from this sample areX1:n, X2:n . . . , Xn:n.
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The PMF of the i-th order statistics Xi:n is given by

P (Xi:n = x) =
n!

(i− 1)!(n− i)!

∫ F (x)

F (x−1)

ui−1(1− u)n−idu,

=
n!

(i− 1)!(n− i)!

n−i∑
j=0

(
n− i

j

)
(−1)j

∫ F (x)

F (x−1)

ui+j−1du,

=
n!

(i− 1)!(n− i)!

n−i∑
j=0

(
n− i

j

)
(−1)j

(i+ j)
×[(

1− q
√
x(1+bcx)

)i+j
−
(
1− q

√
x−1(1+bcx−1)

)i+j]
=

n!

(i− 1)!(n− i)!

n−i∑
j=0

(
n− i

j

)
(−1)j

(i+ j)
×[ ∑∞

k=0

∑k
ℓ=0

∑∞
m=ℓ

∑i+j
s=0

(i+j
s )(−1)s lnk(q)skbℓBml(ln c,ln c,...)

(k−ℓ)!m!
xm+ k

2−∑∞
k=0

∑k
ℓ=0

∑∞
m=ℓ

∑i+j
s=0

(i+j
s )(−1)s lnk(q)skbℓBml(ln c,ln c,...)

(k−ℓ)!m!
(x− 1)m+ k

2

]

=
n!

(i− 1)!(n− i)!

n−i∑
j=0

(
n− i

j

)
(−1)j

(i+ j)
×[ ∑∞

k=0

∑k
ℓ=0

∑∞
m=ℓ

∑i+j
s=0

(i+j
s )(−1)s lnk(q)skbℓBml(ln c,ln c,...)

(k−ℓ)!m!
xm+ k

2−∑∞
k=0

∑k
ℓ=0

∑∞
m=ℓ

∑i+j
s=0

∑∞
p=0

(i+j
s )(−1)s+p lnk(q)skbℓBml(ln c,ln c,...)

(k−ℓ)!m!
xm+ k

2
−p

]
(6.10)

and the CDF of the i− th order statistics Xi:n is

P (Xi:n ≤ x) =
n!

(i− 1)!(n− i)!

∫ F (x)

0

ui−1(1− u)n−idu,

=
n!

(i− 1)!(n− i)!

n−i∑
j=0

(
n− i

j

)
(−1)j

∫ F (x)

0

ui+j−1du,

=
n!

(i− 1)!(n− i)!

n−i∑
j=0

(
n− i

j

)
(−1)j

(i+ j)
×[

∞∑
k=0

k∑
ℓ=0

∞∑
m=ℓ

i+j∑
s=0

(
i+ j

s

)
(−1)s lnk(q)skbℓBml (ln c, ln c, . . .)

(k − ℓ)!m!
xm+ k

2

]
,

=
n!

(i− 1)!(n− i)!

n−i∑
j=0

∞∑
k=0

k∑
ℓ=0

∞∑
m=ℓ

i+j∑
s=0

(
n− i

j

)(
i+ j

s

)
(−1)j+s

(i+ j)
×

lnk(q)skbℓBml (ln c, ln c, . . .)

(k − ℓ)!m!
xm+ k

2 . (6.11)

Then, from (6.10) the r − th moment of the i− th order statistics Xi:n is obtained as
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E(Xr) =
n!

(i− 1)!(n− i)!

n−i∑
j=0

(
n− i

j

)
(−1)j

(i+ j)
×[ ∑i+j

s=0

∑∞
k=0

∑k
ℓ=0

∑∞
m=ℓ

∑∞
x=0

(i+j
s )(−1)s lnk(q)skbℓBml(ln c,ln c,...)

(k−ℓ)!m!
xm+ k

2
+r−∑i+j

s=0

∑∞
k=0

∑k
ℓ=0

∑∞
m=ℓ

∑∞
p=0

∑∞
x=0

(i+j
s )(−1)s+p lnk(q)skbℓBml(ln c,ln c,...)

(k−ℓ)!m!
xm+ k

2
+r−p

]
. (6.12)

6.7 Extreme value behavior

Suppose X1, . . . , Xn is a random sample from the DRMW distribution. If X =

(X1 + · · ·+Xn)/n denotes the mean of the random sample then by the usual central

limit theorem
√
n(X − E(X))/

√
V ar(X) approaches the standard normal distribu-

tion as n → ∞ under suitable conditions. Sometimes one would be interested in the

asymptotes of the extreme valuesMn = max(X1, . . . , Xn) and mn = min(X1, . . . , Xn).

By Corollary 2.4.1 in Galambos (1987), (Mn − bn)/an admits a non-degenerate

limit for suitable constants an > 0, bn ∈ R if and only if

P (x)

S(x)
→ 0

as x→ ∞. For the DRMW distribution,

lim
x→∞

P (x)

S(x)
= lim

x→∞

{
1− q

√
x+1(1+bcx+1)−

√
x(1+bcx)

}
= lim

x→∞

{
1− q

{√
x+1
x

1+bcx+1

1+bcx
−1

}√
x(1+bcx)

}

=


1, if c < 1,

−∞, if c > 1,

0, if c = 1.

Hence, (Mn − bn)/an admits a non-degenerate limit only if c = 1.

If c = 1 then S(x) = q(1+b)
√
x. Note that

lim
x→∞

S (x+ xg(t))

S(x)
= lim

x→∞

q(1+b)
√
t+xg(t)

q(1+b)
√
t

= lim
x→∞

q
(1+b)

√
t

[√
1+x

g(t)
t

−1

]

= lim
x→∞

q
(1+b)

√
tg(t)x

2
√

t

= exp(−x)
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if g(t) = −2
√
t/{(1+ b) ln q}. It follows by Chapter 1 in Leadbetter et al. (1987) that

the DRMW distribution for c = 1 belongs to the max domain of attraction of the

Gumbel extreme value distribution with

lim
n→∞

Pr {an (Mn − bn) ≤ x} = exp {− exp(−x)}

for an = −2
√
S−1(1/n)/{(1 + b) ln q} and bn = S−1(1/n), where S−1(·) denotes the

inverse function of S(·).

6.8 Estimation

Suppose x1, x2, . . . , xn is a random sample from the DRMW distribution with un-

known parameters (q, b, c). Section 6.8.1 estimates these parameters by the method

of maximum likelihood. Section 6.8.2 assesses the finite sample performance of the

MLEs with respect to biases and mean squared errors.

6.8.1 Maximum likelihood estimation

The point and interval estimators of the unknown parameters of the DRMW distri-

bution are derived using the maximum likelihood method.

Let x1, . . . , xn be a random sample from the DRMW distribution. Let ϕ =

(ϕ1, ϕ2, ϕ3) = (q, b, c) denote the vector of unknown parameters. The log-likelihood

function is

L (ϕ;xi) =
n∑
i=1

ln
(
q
√
xi(1+bc

xi ) − q
√
xi+1(1+bcxi+1)

)
.

Now define

Di(ϕ) = qAxi (b,c) − qAxi+1(b,c)

for i = 1, 2, . . . , n, where Axi(b, c) =
√
xi(1 + bcxi). So, the log-likelihood function

L(ϕ;xi) can be rewritten as

L (ϕ;xi) =
n∑
i=1

lnDi(ϕ).

The first order partial derivatives of L(ϕ;xi) with respect to the three parameters are

Lϕj =
n∑
i=1

D
(i)
ϕj

Di(ϕ)



6.8 Estimation 170

for j = 1, 2, 3, where D
(i)
ϕj

is the first order partial derivative of Di(ϕ) with respect to

ϕj, j = 1, 2, 3 and

D(i)
q = Axi(b, c)q

Axi (b,c)−1 − Axi+1(b, c)q
Axi+1(b,c)−1,

D
(i)
b = ln(q)

[
A(b)
xi
qAxi (b,c) − A

(b)
xi+1q

Axi+1(b,c)
]
,

D(i)
c = ln(q)

[
A(c)
xi
qAxi (b,c) − A

(c)
xi+1q

Axi+1(b,c)
]
,

where A
(b)
xi = cxi

√
xi and A

(c)
xi = cxi−1 3

√
xi are the first order partial derivatives of

Axi(b, c) with respect to b and c, respectively.

The log-likelihood equations are

0 =
n∑
i=1

D
(i)
ϕj

Di(ϕ)
(6.13)

for j = 1, 2, 3.

By solving the above system of three nonlinear equations, we can obtain maximum

likelihood estimators (MLEs) of q, b and c. It is clear that the system cannot be solved

in closed form.

To obtain confidence intervals for q, b and c, we use the observed information

matrix since the expected information matrix is very complicated and the MLEs of

the unknown parameters cannot be obtained analytically.

The observed information matrix J(ϑ) is

J(ϑ) = −


Lqq Lqb Lqc

Lbb Lbc
Lcc

 .
where ϑ = (q, b, c) and the elements of this matrix are given in Appendix D.

If q̂, b̂ and ĉ are the MLEs of q, b and c, respectively, then under conditions that are

fulfilled for parameters in the interior of the parameter space but not on the boundary,
√
n
(
q̂ − q, b̂− b, ĉ− c

)
converges in distribution to a trivariate normal random vector

with zero means and covariance matrix, I−1, where I(ϑ) is the expected information

matrix. For asymptotic normality, certain regularity conditions must be satisfied, see,

for example, Ferguson (1996).
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6.8.2 Simulation study

In this subsection, we assess the performance of the MLEs with respect to sample size

n. The assessment is based on a simulation study:

1. First, ten thousand samples of size n are generated from (6.1). The inversion

method used to generate samples, that was done for the DRMW distribution by

solving

√
X
(
1 + bcX

)
ln q = ln(1− U),

where U ∼ U(0, 1) is a uniform variate on the unit interval.

2. Obtain the MLEs for the ten thousand generated samples,
(
q̂i, b̂i, ĉi

)
for i =

1, 2, . . . , 10000.

3. Compute the standard errors of the MLEs for the ten thousand samples, say(
sq̂i , sb̂i , sĉi

)
for i = 1, 2, . . . , 10000. The standard errors computed by using the

observed information matrices.

4. The biases and mean squared errors of the MLEs can be computed as the fol-

lowing,

biash(n) =
1

10000

10000∑
i=1

(
ĥi − h

)
,

MSEh(n) =
1

10000

10000∑
i=1

(
ĥi − h

)2
for h = q, b, c.

The above steps were repeated n = 10, 11, . . . , 100 with q = exp(−1), b = 1 and

c = exp(1), so computing biash(n) and MSEh(n) for h = q, b, c and n = 10, 11, . . . , 100.

Figure 6.4 shows the biases of the MLEs of (q, b, c) versus n = 10, 11, . . . , 100, and

it can be seen that the biases for the four parameters are small and vary with respect

to the samples sizes. The mean squared errors of the MLEs of each parameters are

shown in Figure 6.5, which are vary with respect to the samples sizes. The broken line

in Figure 6.4 indicates to the distance between the biases and the zero. The broken

line in Figure 6.5 indicates to the distance between the mean squared errors and the

zero.
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Figure 6.4: Biases of the MLEs of (q, b, c) versus n = 10, 11, . . . , 100.
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Figure 6.5: Mean squared errors of the MLEs of (q, b, c) versus n = 10, 11, . . . , 100.
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From these figures the following observations can be observed: the biases of the

MLEs of the parameters q and c are generally positive; the biases of the MLEs of the

parameter b are generally negative; the biases of the MLEs of the parameter q are the

smallest; the biases of the MLEs of the parameter c are the largest; the biases for the

parameters q and c decrease to zero as n→ ∞; the biases for the parameterb increase

to zero as n → ∞; the mean squared errors of the MLEs of the parameter b are the

smallest; the mean squared errors of the MLEs of the parameter c are the largest; the

mean squared errors for all three parameter decrease to zero as n → ∞; The above

observations are observed by choosing (q, b, c) = (exp(−1), 1, exp(1)). A similar results

were found for other choices.

6.9 Applications

In this section, we illustrate the flexibility of the proposed distribution using four real

data sets. Three of these data sets are complete. The sample size for the first data set

is fifty. The sample size for the second data set is eighteen. The sample size for the

third data set is forty three. The sample size for the fourth data set is one hundred

and ninety two.

Hence, the biases for q̂, b̂ and ĉ can be expected to be less than 0.004, 0.04 and

0.04, respectively, for all of the data sets. The mean squared errors for q̂, b̂ and ĉ can

be expected to be less than 0.01, 0.0004 and 0.05, respectively, for all of the data sets.

The fourth one is censored. The fit of the proposed distribution will be compared

with the DMW, DAddW and DW distributions, see Table 6.1. Note that the DMW

and DAddW distributions are the known discrete distributions allowing for bathtub

shaped hazard rate functions.

Table 6.1: The survival functions of the DMW, DAddW and DW distributions.

Model S(x)

DMW qx
θcx

DAddW qx
θ+bxγ

DW qx
θ

We will see that the proposed distribution gives the best fit for each data set in
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that it gives the smallest values for AIC, BIC, AICc and CAIC. We will also see that

the proposed distribution gives the best fit for each data set in terms of the estimated

PMF, the estimated hazard rate function, the estimated survival function, and the

estimated Total Time on Test TTT-transform.

6.9.1 Complete data

Three real data sets (complete and uncensored) are considered in this section. Two

of them have bathtub shaped hazard rate functions. The other one has an increasing

hazard rate function.

Discrete Aarset data

The data are integer parts of the lifetimes of fifty devices, see section 3.11.1. The

data are listed in Table 6.2. Figure 6.6 shows that the TTT-plot provides a convex

shape followed by a concave shape which inducts that the hazard rate function of this

data exhibits a bathtub-shape. Noughabi et al. (2011) have shown that the DMW

distribution provides a good fit for this data.

Table 6.2: Aarset data (in weeks).

Time of failure 0 1 2 3 6 7 11 12 18 21 32 36 40 45 46
No of failure 2 5 1 1 1 1 1 1 5 1 1 1 1 1 1

Time of failure 47 50 55 60 63 67 72 75 79 82 83 84 85 86
No of failure 1 1 1 1 2 4 1 1 1 2 1 3 5 2

Table 6.3: MLEs of parameters for the discrete Aarset data, standard errors in brack-
ets, and the measures AIC, BIC, AICc and CAIC.

Model q̂ b̂ ĉ θ̂ γ̂ AIC BIC AICc CAIC
DRMW 0.9137 6.8149× 10−5 1.1273 - - 439.8 445.5 440.3 448.5

(0.017) (1.377× 10−4) (0.026) - -
DMW 0.9403 - 1.0241 0.3450 - 464.2 469.9 464.7 472.9

(0.026) - (0.005) (0.126) -
DAddW 0.9216 6.0091× 10−5 - 0.4541 2.8387 464.4 472.0 465.3 476.1

(0.034) (2.181× 10−4) - (0.119) (0.807)
DW 0.9805 - - 1.0234 - 487.2 491.0 487.5 493.0

(0.011) - - (0.131) -
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Figure 6.6: TTT-transform plot for the Aarst Discret.

The AIC, BIC, AICc and CAIC given in Table 6.3 are smallest for the DRMW

distribution with AIC = 439.8, BIC = 445.5, AICc = 440.3 and CAIC = 448.5.

The estimated PMF, the estimated hazard rate function, the estimated survival

function, and the estimated TTT-transform shown in Figure 6.7 are closest to the

empirical versions for the DRMW distribution.

The approximate 95 percent confidence intervals for q, b and c are [0.881, 0.946],

[0, 3.38× 10−4] and [1.076, 1.178], respectively.

Electronic devices

The bathtub shaped hazard rate function is required in many applications like failure

of electronic components. In this example, times to failure of eighteen electronic

devices Wang (2000) are used to show how the proposed distribution can be applied

in practice. The data are listed in Table 6.4. The TTT-plot of this data exhibits a

convex shape followed by a concave shape and that corresponds to a bathtub shaped

hazard function, see Figure 6.8.

Table 6.4: Lifetimes of eighteen electronic devices (in days).

5 11 21 31 46 75 98 122 145
165 196 224 245 293 321 330 350 420

The AIC, BIC, AICc and CAIC given in Table 6.5 are smallest for the DRMW

distribution with AIC = 223.9, BIC = 226.5, CAIc = 225.6 and CAIC = 229.5.
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Figure 6.7: For the discrete Aarset data: (a) The histogram and the estimated PMFs;
(b) The empirical and estimated hazard rate functions; (c) The empirical and esti-
mated survival functions; (d) The empirical and fitted scaled TTT-transform plots.

Table 6.5: MLEs of parameters for data in Table 6.4, standard errors in brackets, and
the measures AIC, BIC, AICc and CAIC.

Model q̂ b̂ ĉ θ̂ γ̂ AIC BIC AICc CAIC
DRMW 0.9658 0.1237 1.0086 - - 223.9 226.5 225.6 229.5

(0.019) (0.236) (3.804× 10−3) - -
DMW 0.9465 - 1.0055 0.3194 - 225.6 228.3 227.3 231.3

(0.063) - (1.905× 10−3) (0.254) -
DAddW 0.9771 4.015× 10−3 - 0.5208 1.677 227.9 231.4 230.9 235.4

(0.027) (0.0187) - (0.34638) (0.764)
DW 0.9912 - - 0.9222 - 226.1 227.9 226.9 229.9

(9.257× 10−3) - - (0.189) -
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Figure 6.8: TTT-transform plot for the Discret 18.

The estimated PMF, the estimated hazard rate function, the estimated survival

function, and the estimated TTT-transform shown in Figure 6.9 are closest to the

empirical versions for the DRMW distribution.

The approximate 95 percent confidence intervals for q, b and c are [0.928, 1],

[0, 0.587] and [1.001, 1.016], respectively.

Leukemia data

The data set for this example is collected from the Ministry of Health Hospital in Saudi

Arabia by Abouammoh et al. (1994). The data are lifetimes in days of forty three

blood patients who had leukemia, see Table 6.6. The data set exhibits an increasing

hazard rate. As the TTT-transform plot, in Figure 6.10, is concave then the data has

an increasing hazard rate.

Table 6.6: The leukemia data.

115 181 255 418 441 461 516 739 743 789 807
865 924 983 1025 1062 1063 1165 1191 1222 1222 1251
1277 1290 1357 1369 1408 1455 1478 1549 1578 1578 1599
1603 1605 1696 1735 1799 1815 1852 1899 1925 1965

The AIC, BIC, AICc and CAIC given in Table 6.7 are smallest for the DRMW

distribution with AIC = 658.0, BIC = 663.2, CAIc= 658.6 and CAIC = 666.2.

The estimated PMF, the estimated hazard rate function, the estimated survival
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Figure 6.9: For the electronic devices data: (a) The histogram and the estimated
PMFs; (b) The empirical and estimated hazard rate functions; (c) The empirical and
estimated survival functions; (d) The empirical and fitted scaled TTT-transform plots.

Table 6.7: MLEs of parameters for leukemia data, standard errors in brackets, and
the measures AIC, BIC, AICc and CAIC.

Model q̂ b̂ ĉ θ̂ γ̂ AIC BIC AICc CAIC
DRMW 0.9966 0.2189 1.0024 - - 658.0 663.2 658.6 666.2

(0.003) (0.217) (4.116× 10−4) - -
DMW 0.9729 - 1.0024 0.0118 - 660.0 665.3 660.3 668.3

(0.031) - (3.915× 10−4) (0.203) -
DAddW 0.9981 1.127× 10−5 - 0.1680 2.4581 667.1 674.2 668.2 678.2

(0.012) (7.978× 10−5) - (0.311) (0.300)
DW 0.9999 - - 1.3545 - 690.7 694.3 691.0 696.3

(2.984× 10−5) - - (0.072) -



6.9 Applications 179

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
ca

le
d

 T
T

T
−

T
ra

n
sf

o
rm

X

Figure 6.10: TTT-transform plot for the Leukamia.

function, and the estimated TTT-transform shown in Figure 6.11 are closest to the

empirical versions for the DRMW distribution.

The approximate 95 percent confidence intervals for q, b and c are [0.992, 1], [0, 0.75]

and [1.002, 1.003], respectively.

6.9.2 Censored data

Here, we show how the proposed distribution can be applied in practice for censored

(real) data sets. We use an original data presented here for the first time. The data

relates to one hundred and ninety two prisoners who were imprisoned because of using

or selling drugs. All of the prisoners were released at the same time. About seven

tenths of them re-offended. The data set contains the times in months from release

to re-imprisonment for the same crime or related one. The prisoners who did not

re-offend were considered as censored.

The AIC, BIC, AICc and CAIC given in Table 6.8 are smallest for the DRMW

distribution with AIC = 1353.9, BIC = 1363.6, CAIc= 1354.0 and CAIC = 1366.6.

The estimated hazard rate function and the estimated survival function shown in

Figure 6.12 are closest to the empirical versions for the DRMW distribution.

The approximate 95 percent confidence intervals for q, b and c are [0.882, 0.924],

[0, 0.018] and [1.021, 1.116], respectively.
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Figure 6.11: For leukemia data: (a) The histogram and the estimated PMFs; (b)
The empirical and estimated hazard rate functions; (c) The empirical and estimated
survival functions; (d) The empirical and fitted scaled TTT-transform plots.

Table 6.8: MLEs of parameters for the drug data, standard errors in brackets, and the
measures AIC, BIC, AICc and CAIC.

Model q̂ b̂ ĉ θ̂ γ̂ AIC BIC AICc CAIC
DRMW 0.9029 0.0042 1.0689 - - 1353.9 1363.6 1354.0 1366.6

(0.011) (7.352× 103) (0.024) - -
DMW 0.9410 - 1.0040 0.6445 - 1357.1 1366.8 1357.2 1369.8

(0.015) - (2.867× 10−3) (0.087) -
DAddW 0.9372 2.8364× 10−4 - 0.6348 2.2669 1357.3 1370.3 1357.5 1374.3

(0.015) (1.085× 10−3) - (0.07547) (0.913)
DW 0.9498 - - 0.7456 - 1359.2 1369.0 1357.2 1372.0

(0.012) - - (0.057) -
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Figure 6.12: For drug data: (a) Fitted survival functions using the DRMW and other
models; (b) Nonparametric and fitted hazard rate functions using the DRMW and
other models.

6.10 Summary

A three-parameter discrete distribution is introduced in this chapter based on a recent

modification of the continuous Weibull distribution which introduced in chapter 4.

It is one of only three discrete distributions allowing for bathtub shaped hazard rate

functions. We study some of its mathematical properties, discuss estimation by the

method of maximum likelihood, and describe applications to four real data sets. The

new distribution is shown to outperform at least three other models including the ones

allowing for bathtub shaped hazard rate functions.



Chapter 7

Comparing the exponentiated and

generalized modified Weibull

distributions

7.1 Introduction

Among the various extensions and modified forms of the Weibull distribution (1951),

the modified Weibull MW distribution of Lai et al. (2003) is one of the most important

modifications of the Weibull distribution. It multiplies the Weibull cumulative hazard

function αxβ by eλx. This distribution was later generalized to exponentiated form by

Carrasco et al. (2008) by adding another shape parameter. Carrasco et al. (2008)’s

modification is called the generalized modified Weibull GMW distribution.

To be consistent with paper of Carrasco et al. (2008), recalled the CDF of the

GMW distribution (2) in Carrasco et al. (2008)

F (x) =
(
1− e−αx

γeλx
)β

(7.1)

for x > 0, α > 0, γ ≥ 0, λ ≥ 0 and β > 0.

The sub-models of the GMW and the shapes of its HF are represented in Section

2.2.17. It is important to note for latter reasons that CDF, SF, PDF and HF of the

GMW are not valid functions if λ < 0. For example, the CDF is not a monotonic

increasing function of x if λ < 0. The PDF can take negative values if λ < 0. Also

the HF can take negative values if λ < 0.
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Figure 7.1: TTT-transform plot for the radiotherapy data.

Carrasco et al. (2008) applied the GMW distribution to two well-known censored

data sets and compared its goodness-of-fit with its sub-models. The first data set is

the serum-reversal data of Silva (2004) and Perdoná (2006). The TTT-plot for this

data is shown in Figure 4.12, which takes a convex shape followed by a concave shape.

This corresponds to a bathtub shaped HF.

The second data is a radiotherapy data. The TTT-plot for this data is shown

in Figure 7.1, which takes a concave shape followed by a convex shape followed by

a concave shape. Then, the HF of this data is modified unimodel shape (unimodal

followed by increasing). Carrasco et al. (2008) mention that this corresponds to a

unimodal HF. There are some other mistakes in the results of both applications in

Carrasco et al. (2008).

According to Liddle (2004), usually, that will improve the fitting of the data and

the maximised likelihood will increase. Sometimes, the new added parameter that

is restricted to be positive dose not improve the maximum likelihood function, some

models that are proposed by adding a new positive parameter dose not improve the

maximum likelihood function. The generalized modified Weibull distribution of Car-

rasco et al. (2008) has this problem for some modified unimodal data sets. Also, it

dose not provide a better fit than the the exponentiated Weibull distribution using

this kind of data sets despite the exponentiated Weibull distribution is sub-model of

the GMW.
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This chapter shows that no evidence that the generalized modified Weibull distri-

bution can provide a better fit than the exponentiated Weibull distribution for data

sets exhibiting the modified unimodal hazard function (the radiotherapy data and the

infected pigs data that used in Chapter 5). Also, it shows the incorrect results of the

paper of Carrasco et al. (2008) and presents the correct results.

7.2 Applications

This section uses three well-known data sets. The first data set has a bathtub shaped

HF and the last data sets has a modified unimodal shaped HF. We will show that the

GMW distribution can not provide better fits than the EW distribution for data sets

exhibiting modified unimodal HFs. We will also point out incorrect results on the first

two data sets presented in Carrasco et al. (2008). The fits are compared using the

following measures: K-S statistic, AIC, BIC, CAIC and AICc.

7.2.1 Serum-reversal data

Table 1 in Carrasco et al. (2008) shows the maximum likelihood estimates (MLEs) of

the parameters of the GMW distribution and its sub-models (MW, EW, EE, Weibull

and GR distributions) for the serum-reversal data. All these results appear correct.

It is clear that the GMW distribution presents a very good fit for this data with

respect to AIC, BIC and CAIC values. We computed the Kolmogorov-Smirnov (K-S)

statistic, the distance between the empirical CDF and the fitted CDF, for the GMW

distribution and its sub-models. Again, the GMW distribution has the smallest K-S

statistic with the value 0.117, whilst the K-S statistics for the MW, EW, EE, Weibull

and GR distributions are 0.155, 0.169, 0.259, 0.182 and 0.247, respectively. The HF

for the fitted GMW distribution is plotted in Figure 4c of Carrasco et al. (2008). This

figure appears incorrect because it is well known that the HF must be nonnegative

everywhere. It appears Carrasco et al. (2008) plotted the HF for the fitted GMW

distribution using λ = −0.023, an invalid value for λ, see Section 1. The MLE of λ

reported in Table 1 of Carrasco et al. (2008) is 0.023. The HF for the fitted GMW

distribution when λ = −0.023 is plotted in Figure 7.2a, just to show that Figure 4c in

Carrasco et al. (2008) was plotted using this negative value. Figure 7.2b presents the
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nonparametric HF of the data and the HF for the fitted GMW distribution using the

MLEs in Table 1 of Carrasco et al. (2008).
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Figure 7.2: For the serum-reversal data: (a) HF presented in Carrasco et al. (2008),
(b) Nonparametric HF and the HF for the fitted GMW distribution using estimates
in Table 1 of Carrasco et al. (2008).

7.2.2 Radiotherapy data

The fitted MLEs for this data are presented in Table 2 of Carrasco et al. (2008).

Unfortunately, the MLEs for the GMW and MW distributions and the corresponding

AIC, BIC and CAIC measures appear incorrect. We now explain the mistakes.

Modified Weibull distribution

The MLEs of the parameters of the MW distribution reported in Table 2 of Carrasco

et al. (2008) are α̂ = 0.001, γ̂ = 1.245 and λ̂ = 0.001. But the reported values of

AIC = 594.4, BIC = 600.1 and CAIC = 594.9 appear to have been computed using

λ = −0.001 (an invalid value for λ). These values appear so close to the values of

AIC, BIC and CAIC reported in Table 2 of Carrasco et al. (2008) for the GMW

distribution. But the shape of the HF of the MW distribution can not be unimodal,

so it is surprising that the MW and GMW distributions fit equally well for a data set

exhibiting a unimodal HF.
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For the MLEs of the MW distribution reported in Table 2 of Carrasco et al. (2008),

the log-likelihood is −442.45. The log-likelihood is about −294.2 when λ̂ ≈ 0.001.

We computed the MLEs of the MW distribution and the corresponding measures

AIC, BIC and CAIC. Table 1 shows the MLEs of the MW distribution reported by

Carrasco et al. (2008) (when λ̂ = −0.001 and when λ̂ = 0.001), the MLEs we obtained

(the corresponding standard errors in brackets) and the values of AIC, BIC and CAIC

we obtained. The SFs for the fitted MW distribution using the MLEs in Table 2 of

Carrasco et al. (2008) are shown in Figure 7.3a (red solid line for λ̂ = −0.001 and

blue dashed line for λ̂ = 0.001). The corresponding HFs are plotted in Figure 7.3c

(red solid line for λ̂ = −0.001 and blue open circles for λ̂ = 0.001). Figures 7.3b and

7.3d show the SF and the HF for the MW distribution we fitted.

Note from Table 1 that the GMW distribution we fitted is actually a EW distri-

bution since the MLE of λ is zero (that is, the likelihood for the GMW distribution

for the given data appears largest when λ = 0). Also the MW distribution we fitted

is actually a Weibull distribution since the MLE of λ is zero (that is, the likelihood

for the MW distribution for the given data appears largest when λ = 0). So, the

added parameter λ does not improve the fit of the GW distribution or the fit of the

Weibull distribution. This can happen sometimes when the parameter is restricted to

be positive (Liddle, 2004).

Generalized modified Weibull distribution

According to Table 2 in Carrasco et al. (2008), the MLE of λ is 0.0002. But Figures

5b and 5c in Carrasco et al. (2008) appear to have used λ̂ = −0.0002 (an invalid value

for λ) to plot the SF and the HF for the fitted GMW distribution. Furthermore, the

reported AIC, BIC and CAIC measures appear to have used the same negative value.

Figure 7.4a shows the SF for the fitted GMW distribution using the MLEs in Table

2 of Carrasco et al. (2008) (red solid line for λ̂ = −0.0002 and blue dashed line for

λ̂ = 0.0002). The corresponding HFs are plotted in Figure 7.4c (red solid line for

λ̂ = −0.0002 and blue open circles for λ̂ = 0.0002). The SF and the HF for the fitted

GMW distribution with λ̂ = −0.0002 (in red solid line and blue open circles) appear

to be the same as Figures 5b and 5c in Carrasco et al. (2008).

We computed the MLEs of the GMW distribution and the corresponding measures
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Figure 7.3: For radiotherapy data: (a) SF presented in Carrasco et al. (2008), (b) Our
SF, (c) HF presented in Carrasco et al. (2008), (d) Our HF using the MW.
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Figure 7.4: For the radiotherapy data: (a) SF presented in Carrasco et al. (2008), (b)
Our SF, (c) HF presented in Carrasco et al. (2008), (d) Our HF using the GMW.



7.2 Applications 189

Table 7.1: MLEs of parameters, standard errors, AIC, BIC, AICc and CAIC for
radiotherapy data.

Model β̂ γ̂ λ̂ α̂ AIC BIC AICc CAIC K-S
GMW of 6.326 0.483 −0.0002 0.168 593.3 601.0 594.1 605.0 0.114

Carrasco et al. (2008) 6.326 0.483 0.0002 0.168 611.5 619.3 612.4 623.2 0.170
(2.662) (0.297) (0.0001) (0.049) – – – – –

Our GMW 18.036 0.294 0.000 0.647 594.1 601.8 595.0 605.8 0.119
(32.480) (0.165) (1.593× 10−4) (0.934) – – – – –

MW of 1 1.245 −0.001 0.001 594.4 600.1 594.9 603.1 0.130
Carrasco et al. (2008) 1 1.245 0.001 0.001 890.9 896.7 891.4 899.7 0.259

– (0.181) (0.0002) (0.0001) – – – – –
Our MW 1 0.930 0.000 3.577× 10−3 599.8 605.6 600.3 608.63 0.143

– (0.171) (1.277× 10−4) (3.345× 10−2) – – – – –

AIC, BIC and CAIC. Table 1 shows the MLEs of the GMW distribution computed

by Carrasco et al. (2008) (when λ̂ = −0.0002 and when λ̂ = 0.0002), the MLEs we

obtained (the corresponding standard errors in brackets) and the values of AIC, BIC

and CAIC we obtained. The SF and the HF for the GMW distribution we fitted are

plotted in Figures 7.4b and 7.4d.

7.2.3 Infected pigs data

As shown before, the infected pigs data that presented in Table 5.1 is shown to have

modified unimodal shaped.

Table 7.2 shows the MLEs of the parameters, their standard errors, AIC values,

BIC values, AICc values and CAIC values for the fitted GMW and EW distributions.

Table 7.3 shows the K-S test statistics for the two fitted distributions.

The negative log-likelihood for the fitted GMW distribution is 400.350. The neg-

ative log-likelihood for the fitted EW distribution is 400.427. AIC values, BIC values,

AICc values and CAIC values for the fitted GMW and EW distributions are 808.7,

817.8, 809.2, 821.8 and 806.9, 813.7, 807.2, 816.7, respectively. The values of the K-S

statistic for the two distributions are 0.114 and 0.11.

The EW distribution has the smallest values for the AIC, the BIC the AICc, the

CAIC and the K-S. The GMW distribution has the larger log-likelihood. But the

likelihood ratio test statistic for testing H0 : λ = 0 versus H1 : H0 is false is 0.154 and

the corresponding p-value is 0.695, so there is no evidence to reject H0. Hence, the

GMW distribution does not improve significantly on the fit of the EW distribution.

Figure 7.5 (a) shows the histogram of the data and the fitted PDFs. Figure 7.5
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Table 7.2: MLEs of parameters, standard errors, AIC, BIC, AICc and CAIC for the
distributions fitted to the infected pigs data set.

Model α̂ β̂ γ̂ λ̂ θ̂ AIC BIC AICc CAIC
GMW − 0.496 0.470 4.639× 10−9 69.877 808.7 817.8 809.3 821.8

− (0.247) (0.008) 4.573× 10−4 (50.012)
EW − 0.471 0.478 0 65.135 806.9 813.7 807.2 816.7

− (0.254) 0.081 − (49.625)

Table 7.3: K-S statistics for the distributions fitted to the infected pigs data set.

Model K-S
GMW 0.114
EW 0.110

(b) shows the empirical SF of the data and the fitted ones. Figure 7.5 (d) shows the

nonparametric HF of the data and the fitted HFs.

Figures 7.5a and 7.5b show that both distributions provide good fits. Figure 7.5d

shows that both distributions provide good fits to the first and middle parts of the

nonparametric HF. But neither of the distributions appear to capture the last part of

the nonparametric HF well.



7.2 Applications 191

x

f(x
)

0 100 200 300 400 500 600

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8
0.

01
0

GMW
EW

100 200 300 400 500 600
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0
x

S(
x)

Kaplan−Meier
GMW
EW

(a) (b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
ca

le
d 

T
T

T
−

T
ra

ns
fo

rm

X

 

 

Empirical
GMW
EW

100 200 300 400 500 600

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

X

h(
x)

Nonpar
GMW
EW

(c) (d)

Figure 7.5: For infected pigs data: (a) Histogram and fitted PDFs; (b) Empirical and
fitted SFs; (c) Empirical and fitted TTT-transforms; (d) Nonparametric and fitted
HFs.



7.3 Summary 192

7.3 Summary

This chapter finds no evidence that the generalized modified Weibull distribution can

provide a better fit than the exponentiated Weibull distribution for data sets exhibiting

the modified unimodal hazard function. Also, it pointed out some of the incorrect re-

sults of the published paper of the GMW that proposed by Carrasco et al. (2008), and

published by Computational Statistics and Data Analysis. The Figure of estimated

hazard of Serum-reversal data set using GMW is incorrect because it is plotted using

negative value of λ which should be restricted to positive value. In the radiotherapy

data set, although Carrasco et al. (2008) reported positive value for the parameter

λ, they used a negative value to plot the fitted SF and HF for the GMW and MW.

Also, the AIC, BIC and AICc are calculated using the same negative value. The cor-

rect results and figures are presented with the estimated hazard rate function for the

serum-reversal data. The added parameter λ to the Weibull distribution by Lai et al.

(2003) did not improve the maximum likelihood function of the radiotherapy data for

EW and the Weibull as sub-models of the GMW and MW respectively.



Chapter 8

Conclusion, discussion and future

work

8.1 Conclusion

Chapter 2 reviewed known discrete and continuous modifications of the two-parameter

Weibull distribution. For each modification, we have given expressions for the CDF,

the PMF or the PDF and the HF. We have also discussed their shapes.

A new distribution, based on the Weibull and the modified Weibull distributions,

has been proposed and its properties studied. The idea is to combine two components

in a serial system, so that the hazard function is either increasing or more impor-

tantly, bathtub shaped. By using a modified Weibull component, the distribution has

flexibility to model the second peak in a distribution. We have shown that the new

modified Weibull distribution fits certain well-known data sets better than existing

modifications of the Weibull distribution. Reducing the number of parameters to four

by fixing one of the parameters still provides a better fit than existing models.

The new modified Weibull distribution introduced in Chapter 3 has been simplified

with its five parameters reduced to three. The simplified distribution has been referred

to as the RNMW distribution. We have studied several analytical properties of the

reduced distribution and shown that it is a tractable distribution. We have also shown

that the reduced distribution provides excellent fits to four real data sets: two of them

are complete data sets and the other two are censored. By means of the likelihood

ratio test, we have shown that the fit of the NMW distribution is not significantly
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better than that of the RNMW distribution. So, the RNMW distribution retains the

same flexibility of the NMW distribution and yet the estimation for the former is much

easier.

In chapter 6, We have generalized the reduced distribution, that presented in chap-

ter 4, by exponentiation to accommodate unimodal and modified unimodal hazard

function. The generalized distribution is referred to as the ERMW distribution. It

includes as special cases several distributions like the RGMW, REW, RW, RLMW and

RW distributions. We have discussed maximum likelihood estimation of the exponen-

tiated distribution and presented two real data applications. One of the data sets

has a unimodal HRF and the other has a bathtub shaped HRF. The exponentiated

distribution was shown to give the best fit for both data sets.

We have introduced a three-parameter modification of the discrete Weibull distri-

bution. We have shown that this distribution exhibits bathtub shaped hazard rates.

There are only two other discrete distributions that exhibit bathtub shaped hazard

rates. The flexibility of the proposed modification is illustrated using four real data

sets: three of them complete and the other censored. For each data set, the proposed

modification was shown to give better fit than several other competitors including the

two known discrete distributions exhibiting bathtub shaped hazard rates.

Finally, we showed that the added parameter λ of the GMW distribution over the

EW distribution did not improve the maximum likelihood function for the radiother-

apy data. Also, the GMW distribution did not provide a better fit than the EW

distribution for the infected pigs data. Both data sets have modified unimodal shaped

HFs. Based on this, there is no evidence that the GMW distribution can provide a

better fit than the EW distribution for data sets exhibiting modified unimodal HFs.

We have pointed out some incorrect results in Carrasco et al. (2008). The fitted HF

for the serum-reversal data set using the GMW distribution is incorrect because it is

plotted using a negative value of λ. For the radiotherapy data set, although Carrasco

et al. (2008) reported a positive value for λ, they used a negative value to plot the

fitted SF and HF. Also, the AIC, the BIC, the AICc and the CAIC were calculated

using the same negative value.
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8.2 Discussion and future work

Some important questions with respect to the review part are: Which of the modifi-

cations is the “best” for a given data set? How do we select the “best” modification?

Two common tools for selection among the modifications are the Weibull Probability

Plot (WPP) and the Inverse Weibull Probability Plot (IWPP).

Let t1, t2, . . . , tn denote a real data set. Let t(1) ≤ t(2) ≤ · · · ≤ t(n) denote the sorted

values in ascending order. Then, the WPP (for n not small) is a plot of

yi = log

[
− log

(
1− i

n+ 1

)]
versus

xi = log
(
t(i)
)

for i = 1, 2, . . . , n. The WPP for n small is a plot of

yi = log

[
− log

(
1− i− 0.3

n+ 0.4

)]
versus

xi = log
(
t(i)
)

for i = 1, 2, . . . , n.

The IWPP for n not small is a plot of

yi = log

[
− log

(
i

n+ 1

)]
versus

xi = log
(
t(i)
)

for i = 1, 2, . . . , n. The IWPP for n small is a plot of

yi = log

[
− log

(
i− 0.3

n+ 0.4

)]
versus

xi = log
(
t(i)
)

for i = 1, 2, . . . , n.
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If the data are censored or grouped then appropriate changes should be made to

the WPP and the IWPP. Sometimes changes are made to the plots depending on

whether n is small, medium or large (Section 4.2, Murthy et al., 2004). For details,

we refer the readers to King (1971), Lawless (1982), Nelson (1982), and Meeker and

Escobar (1998).

The WPP and the IWPP can exhibit a variety of shapes, including straight line,

concave, concave with left asymptote vertical, convex, convex with right asymptote

vertical, S shaped with parallel asymptotes, S shaped with vertical asymptotes, bell

shaped and multiple inflection points, see Table 6 in Murthy et al. (2004).

Table 7 in Murthy et al. (2004) and Table 2 in Zhang and Dwight (2013) show how

an appropriate modification can be chosen based on the shapes of the WPP and the

IWPP. For example, a straight line in the WPP would mean appropriateness of the

two-parameter Weibull distribution in (1.2). A convex shape of the WPP would mean

appropriateness of the modified Weibull distribution in (2.7) due to Lai et al. (2003).

An S shape of the WPP with vertical asymptotes would mean appropriateness of Kies

(1958)’s modified Weibull distribution in (2.2). A concave shape of the WPP for θ < 1

and a convex shape of the WPP for θ > 1 would mean appropriateness of the extended

Weibull distribution in (2.4) due to Zhang and Xie (2007). A convex shape of the WPP

for λ < 1 and a concave shape of the WPP for λ > 1 would mean appropriateness of the

exponentiated Weibull distribution in (2.2) due to Mudholkar and Srivastava (1993).

An S shape of the WPP with parallel asymptotes would mean appropriateness of a

mixture of two two-parameter Weibull distributions with the same shape parameter.

A WPP with multiple inflection points would mean appropriateness of a mixture of

two two-parameter Weibull distributions with different shape parameters. A straight

line in the IWPP would mean appropriateness of the inverse Weibull distribution in

(2.1). An S shape of the IWPP with parallel asymptotes would mean appropriateness

of a mixture of two two-parameter inverse Weibull distributions with the same shape

parameter. An IWPP with multiple inflection points would mean appropriateness

of a mixture of two two-parameter inverse Weibull distributions with different shape

parameters. For more on how a modification can be chosen based on the shapes of

the WPP and the IWPP, we refer the readers to Jiang and Murthy (1995), Jiang et

al. (2001a, 2001b), and Murthy et al. (2003).
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It is possible that the WPP and the IWPP would imply appropriateness more

than one modification. In this case, discrimination among the modifications can be

based on the difference between the fitted and empirical estimates of the x-intercept

of the WPP (Section 6.1, Murthy et al., 2004), the difference between the fitted and

empirical estimates of the y-intercept of the WPP (Section 6.1, Murthy et al., 2004),

the bootstrap and jackknife approaches as described in Section 6.2.1 of Murthy et

al. (2004), the analysis of physics of failure as described in Section 4.1 of Zhang and

Dwight (2013), the shape of the PDF, the shape of the PMF or the shape of the

HF. The discrimination can also be performed using criteria like the sum of squares

of residuals, the Akaike information criterion (Akaike, 1974), the Bayesian informa-

tion criterion (Schwarz, 1978), the Hannan-Quinn information criterion (Hannan and

Quinn, 1979) and the consistent Akaike information criterion (Hurvich and Tsai, 1989).

The modification with smaller values of these criteria should be preferred.

A future work is to discuss possible applications of these modifications especially to

reliability engineering. Other possible future works are to: i) develop tools other than

the WPP and the IWPP for choosing among the modifications of the Weibull distri-

bution; ii) provide a review of known modifications of other distributions commonly

used in reliability, including the binomial, geometric, exponential, hypoexponential,

hyperexponential, Gompertz-Makeham, Birnbaum-Saunders, gamma, Erlang, normal,

lognormal, loglogistic, Pareto, Gumbel, Fréchet, and extreme value distributions; iii)

provide a review of bivariate and multivariate versions of distributions commonly used

in reliability; iv) provide a review of component mixture, one- or two-sided censored,

truncated and transformed distributions commonly used in reliability; v) provide a re-

view of reliability block diagram-based lifetime, fault tree-based lifetime and standby

lifetime distributions commonly used in reliability.

The NMW distribution is a kind of competing risks model by considering two

different distributions. In this case we can defined a new family of the competing risk

models to be known as Modified Weibull Competing Risks Model.

Definition 8.2.1. Modified Weibull competing risks model: Suppose X1, X2, . . . , Xr

are independent random variables with a cumulative distribution functions Fi(x), i =

1, 2 . . . , r, where Fi(x) are either the Weibull distribution or one of its modifications

or related distributions. If Z = min(X1, . . . , Xr) then,
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the cumulative distribution functions of Z is given by

F (x) = 1−
r∏
i=0

[1− Fi(x)] , (8.1)

the probability density function is given by

f(x) =
r∑
i=0

[hi(x)]
r∏
i=0

Si(x), (8.2)

where Si(x) = 1− Fi(x) for i = 1, 2 . . . , r, is the survival function,

the the hazard function is given by

h(x) =
r∑
i=0

[hi(x)] . (8.3)

If r = 2, the above definition includes the NMW distribution, that was presented

in chapter 3, and several other known distribution such as:

1. The linear failure rate distribution:

The LFR involving exponential and Rayleigh distributions and its CDF is given

by,

F (x) = 1− e−αx−βx
2

, x > 0 (8.4)

2. The additive Weibull model (AddW) of Xie and Lai (1996):

That involves two Weibull distributions, with the following CDFk,

F (x) = 1− e−αx
θ−βxγ , x > 0 (8.5)

3. The β distribution of Bousquet et al. (2006):

The β distribution includes the exponential and the Weibull distributions,

F (x) = 1− e−αx−βx
γ

, x > 0 (8.6)

Sarhan and Zaindin (2009) introduced a three-parameter distribution called as

modified Weibull (SZMW) distribution. It is the same as the β distribution of

Bousquet et al. (2006).

A future work is to study the modified Weibull competing risks model further.
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The reduced distribution has an exclusive bathtub shaped hazard rate function.

Other hazard rates can be obtained from the NMW distribution. For example, setting

γ = θ = 2 we obtain

h(x) = 2αx+ β(2 + λx)xeλx,

for x > 0, which is an increasing function of x, see Figure 8.1. Also, a bivariate version

of the reduced distribution can be obtained.
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Figure 8.1: Hazard rate functions of the reduced distribution.

Future work includes MCMC methods with censored data, regression problems

with covariates and parameter reduction. The drug data can be used in the regression

problems. Alternative data which can be used as a lifetime data is that of telecom

company data. One of largest mobile telecommunication network company in the

Middle East is Saudi Telecom Company (STC). The mobile towers systems can be

either serial or parallel systems. Our new lifetime models can be used to describe to

fit failures times of the the serial system.

Progressively censored data is a type of censored data where after d1 failures n1

subjects are removed from the study then after d2 failures n2 removed from the study,

until the end of the study. Based on progressively censored data the maximum likeli-

hood estimates of parameters of the modified Weibull distributions can be computed

using EM algorithm and Newton-Raphson algorithm.

A simulation study could be conducted in order to identify the appropriate operat-

ing conditions of the proposed modifications in terms of the sample size and proportion
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of censoring for example. We could also compare the proposed models and alternative

ones on simulated data.

Sometimes extrapolation is more important than finding a best fitting model for

the range of the data. So, investigation could also be done to see if the proposed

distributions can provide reliable extrapolations.
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Appendix for chapter 3

The log-likelihood function of the NMW (α, β, θ, γ, λ) can be written as

L(ϑ) =
n∑
i=1

[
ln (h(xi;ϑ))− αxθi − βxγi e

λx
]
,

where h(xi;ϑ) is the hazard rate function (3.4) of the NMW and ϑ = (α, β, θ, γ, λ) is

the vector of parameters. The second partial derivatives are as follows

Lαα = −
n∑
i=1

(
hα(xi;ϑ)

h(xi;ϑ)

)2

,

Lαβ = −
n∑
i=1

hα(xi;ϑ)hβ(xi;ϑ)

(h(xi;ϑ))
2 ,

Lαθ =
n∑
i=1

(
h(xi;ϑ)hαθ(xi;ϑ)− hα(xi;ϑ)hθ(xi;ϑ)

(h(xi;ϑ))
2 − xθi ln(xi)

)
,

Lαγ = −
n∑
i=1

hα(xi;ϑ)hγ(xi;ϑ)

(h(xi;ϑ))
2 ,

Lαλ = −
n∑
i=1

hα(xi;ϑ)hλ(xi;ϑ)

(h(xi;ϑ))
2 ,

Lββ = −
n∑
i=1

(
hβγ(xi;ϑ)

h(xi;ϑ)

)2

,

Lβθ = −
n∑
i=1

hβ(xi;ϑ)hθ(xi;ϑ)

(h(xi;ϑ))
2 ,

Lβγ =
n∑
i=1

(
h(xi;ϑ)hβγ(xi;ϑ)− hβ(xi;ϑ)hγ(xi;ϑ)

(h(xi;ϑ))
2 − xγi e

λxi ln(xi)

)
,
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Lβλ =
n∑
i=1

(
h(xi;ϑ)hβλ(xi;ϑ)− hβ(xi;ϑ)hλ(xi;ϕ)

(h(xi;ϑ))
2 − xγ+1

i eλxi
)
,

Lθθ =
n∑
i=1

(
h(xi;ϑ)hθθ(xi;ϑ)− (hθ(xi;ϑ))

2

(h(xi;ϑ))
2 − αxθi ln

2(xi)

)
,

Lθγ = −
n∑
i=1

hθ(xi;ϑ)hγ(xi;ϑ)

(h(xi;ϑ))
2 ,

Lθλ = −
n∑
i=1

hθ(xi;ϑ)hλ(xi;ϑ)

(h(xi;ϑ))
2 ,

Lγγ =
n∑
i=1

(
h(xi;ϑ)hγγ(xi;ϑ)− (hγ(xi;ϑ))

2

(h(xi;ϑ))
2 − βxγi e

λxi ln2(xi)

)
,

Lγλ =
n∑
i=1

(
h(xi;ϑ)hγλ(xi;ϑ)− hγ(xi;ϑ)hλ(xi;ϑ)

(h(xi;ϑ))
2 − βxγ+1

i eλxi ln2(xi)

)
,

Lλλ =
d∑
i=1

(
h(xi;ϑ)hλλ(xi;ϑ)− (hλ(xi;ϑ))

2

(h(xi;ϑ))
2 − βxγ+2

i eλxi

)
,

where

hαθ(xi;ϑ) = xθ−1
i (1 + θ ln(xi)),

hβγ(xi;ϑ) = xγ−1
i (1 + (γ + λxi) ln(xi)) e

λxi ,

hβλ(xi;ϑ) = xγi (1 + γ + λxi) ln(xi)) e
λxi ,

hθθ(xi;ϑ) = αxθ−1
i (2 + θ ln(xi)) ln(xi),

hγγ(xi;ϑ) = βxγ−1
i (2 + (γ + λxi) ln(xi)) ln(xi)e

λxi ,

hγλ(xi;ϑ) = βxγi (1 + (1 + γ + λxi) ln(xi)) e
λxi ,

hλλ(xi;ϑ) = βxγ+1
i (2 + γ + λxi) ln(xi)) e

λxi ,

hα(xi;ϑ) = θxθ−1
i ,

hβ(xi;ϑ) = xγ−1
i (γ + λxi) ln(xi)e

λxi ,

hθ(xi;ϑ) = αhαθ(xi;ϑ),

hγ(xi;ϑ) = βhβγ(xi;ϑ),

hλ(xi;ϑ) = βhβλ(xi;ϑ).
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Appendix for chapter 4

The observed information matrix for complete data

The elements of the observed information matrix J(ϑ) for the RNMW (α, β, λ) for

complete data are

Lαα = −
d∑
i=1

[
hα (xi;ϑ)

h (xi;ϑ)

]2
,

Lαβ = −
d∑
i=1

hα (xi;ϑ)hβ (xi;ϑ)

h (xi;ϑ)
2 ,

Lαλ = −
d∑
i=1

hα (xi;ϑ)hλ (xi;ϑ)

h (xi;ϑ)
2 ,

Lββ = −
d∑
i=1

[
hβ (xi;ϑ)

h (xi;ϑ)

]2
,

Lβλ = −
d∑
i=1

h (xi;ϑ)hβλ (xi;ϑ)− hβ (xi;ϑ)hλ
(
xi;ϕ

)
h (xi;ϑ)

2 ,

Lλλ =
d∑
i=1

[
h (xi;ϑ)hλλ (xi;ϑ)− hλ (xi;ϑ)

2

h (xi;ϑ)
2 − β

√
x5i e

λxi

]
,
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where

hα (xi;ϑ) =
1

2
√
xi
,

hβ (xi;ϑ) =
(0.5 + λxi) e

λxi

√
xi

,

hλ (xi;ϑ) = β
√
xi

(
3

2
+ λxi

)
eλxi ,

hβλ (xi;ϑ) =
√
xi

(
3

2
+ λxi

)
eλxi ,

hλλ (xi;ϑ) = β
√
xi

(
5

2
+ λxi

)
eλxi .

The observed information matrix for complete data

censored data

The elements of the observed information matrix J(ϑ) for the RNMW (α, β, λ) for

censored data are

Lαα = −
d∑
i=1

[
hα (xi;ϑ)

h (xi;ϑ)

]2
,

Lαβ = −
d∑
i=1

hα (xi;ϑ)hβ (xi;ϑ)

h (xi;ϑ)
2 ,

Lαλ = −
d∑
i=1

hα (xi;ϑ)hλ (xi;ϑ)

h (xi;ϑ)
2 ,

Lββ = −
d∑
i=1

[
hβ (xi;ϑ)

h (xi;ϑ)

]2
,

Lβλ = −
d∑
i=1

h (xi;ϑ)hβλ (xi;ϑ)− hβ (xi;ϑ)hλ
(
xi;ϕ

)
h (xi;ϑ)

2 −
∑
i∈C

√
x3i e

λxi ,

Lλλ =
d∑
i=1

[
h (xi;ϑ)hλλ (xi;ϑ)− hλ (xi;ϑ)

2

h (xi;ϑ)
2 − β

√
x5i e

λxi

]
−β
∑
i∈C

√
x5i e

λxi ,
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where

hα (xi;ϑ) =
1

2
√
xi
,

hβ (xi;ϑ) =
(0.5 + λxi) e

λxi

√
xi

,

hλ (xi;ϑ) = β
√
xi

(
3

2
+ λxi

)
eλxi ,

hβλ (xi;ϑ) =
√
xi

(
3

2
+ λxi

)
eλxi ,

hλλ (xi;ϑ) = β
√
x3i

(
5

2
+ λxi

)
eλxi .



Appendix C

Appendix for chapter 5

The observed information matrix

The elements of the observed information matrix J(ϑ) in Section 5.7.1 are

Lαα = −
n∑
i=1

[
hα (xi;ϑ)

h (xi;ϑ)

]2
+ (1− θ)

n∑
i=1

xie
α
√
xi+β

√
xie

λxi(
eα

√
xi+β

√
xieλxi − 1)

2 ,

Lαβ = −
n∑
i=1

hα (xi;ϑ)hβ (xi;ϑ)

h (xi;ϑ)
2 + (1− θ)

n∑
i=1

xie
α
√
xi+β

√
xie

λxi+λxi(
eα

√
xi+β

√
xieλxi − 1)

2 ,

Lαλ = −
n∑
i=1

hα (xi;ϑ)hλ (xi;ϑ)

h (xi;ϑ)
2 + (1− θ)

n∑
i=1

βx2i e
α
√
xi+β

√
xie

λxi+λxi(
eα

√
xi+β

√
xieλxi − 1)

2 ,

Lαθ =
n∑
i=1

√
xi

eα
√
xi+β

√
xieλxi − 1

,

Lββ = −
n∑
i=1

[
hβ (xi;ϑ)

h (xi;ϑ)

]2
+ (1− θ)

n∑
i=1

xie
α
√
xi+β

√
xie

λxi+2λxi(
eα

√
xi+β

√
xieλxi − 1)

2 ,

Lβλ = −
n∑
i=1

h (xi;ϑ)hβλ (xi;ϑ)− hβ (xi;ϑ)hλ
(
xi;ϕ

)
h (xi;ϑ)

2 −
n∑
i=1

xie
λxi

+(θ − 1)
n∑
i=1

√
x3i e

λxi

{(
1− β

√
xie

λxi
)
eα

√
xi+β

√
xie

λxi − 1
}

(
eα

√
xi+β

√
xieλxi − 1)

2 ,

Lβθ =
n∑
i=1

√
xie

λxi

eα
√
xi+β

√
xieλxi − 1

,
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Lλλ =
n∑
i=1

[
h (xi;ϑ)hλλ (xi;ϑ)− hλ (xi;ϑ)

2

h (xi;ϑ)
2 − β

√
x5i e

λxi

]

+(θ − 1)
n∑
i=1

√
x5i e

λxi

{(
1− β

√
xie

λxi
)
eα

√
xi+β

√
xie

λxi − 1
}

(
eα

√
xi+β

√
xieλxi − 1)

2 ,

Lλθ =
n∑
i=1

√
x3i e

λxi

eα
√
xi+β

√
xieλxi − 1

,

Lθθ = − n

θ2
,

where

hα (xi;ϑ) =
1

2
√
xi
,

hβ (xi;ϑ) =
(0.5 + λxi) e

λxi

√
xi

,

hλ (xi;ϑ) = β
√
xi

(
3

2
+ λxi

)
eλxi ,

hβλ (xi;ϑ) =
√
xi

(
3

2
+ λxi

)
eλxi ,

hλλ (xi;ϑ) = β
√
xi

(
5

2
+ λxi

)
eλxi ,

and h (xi;ϑ) is the HRF of the RNMW distribution.
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Appendix for chapter 6

The observed information matrix

The elements of the observed information matrix J(ϑ) for the DRMW are

D(i)
qq = q−2

[
Axi(b, c) (Axi(b, c)− 1) qAxi (b,c) − Axi+1(b, c)(Axi+1(b, c)− 1)qAxi+1(b,c)

]
,

D
(i)
qb = q−1

[
A(b)
xi

[1 + Axi(b, c) ln(q)] q
Axi (b,c) − A

(b)
xi+1 [1 + Axi+1(b, c) ln(q)] q

Axi+1(b,c)
]
,

D(i)
qc = q−1

[
A(c)
xi

[1 + Axi(b, c) ln(q)] q
Axi (b,c) − A

(c)
xi+1 [1 + Axi+1(b, c) ln(q)] q

Axi+1(b,c)
]
,

D
(i)
bb = ln2(q)

[(
A(b)
xi

)2
qAxi (b,c) −

(
A

(b)
xi+1

)2
qAxi+1(b,c)

]
,

D
(i)
bc = ln(q)

[(
A(bc)
xi

+ A(b)
xi
A(c)
xi

ln(q)
)
qAxi (b,c) −

(
A

(bc)
xi+1 + A

(b)
xi+1A

(c)
xi+1 ln(q)

)
qAxi+1(b,c)

]
,

D(i)
cc = ln(q)

[(
A(cc)
xi

+
(
A(c)
xi

)2
ln(q)

)
qAxi (b,c) −

(
A

(cc)
xi+1 +

(
A

(c)
xi+1

)2
ln(q)

)
qAxi+1(b,c)

]
,

where A
(ϕpϕk)
xi is the second order partial derivative of Axi(b, c) with respect to ϕp and

ϕk for p, k = 2, 3. Also, A
(bc)
xi = 3

√
xic

xi−1 and A
(cc)
xi = b(xi − 1) 3

√
xic

xi−2.


