
CHO: A Benchmark Suite for OpenCL-based FPGA
Accelerators

University of Manchester Technical Report

GEOFFREY NDU, MIKEL LUJAN AND JAVIER NAVARIDAS

Manchester 2 May 2014

The Advanced Processors Technologies Research Group
School of Computer Science

The University of Manchester, Manchester, UK

UNIMAN-COMP-APT-TR-02-05-2014

1

CHO:A Benchmark Suite for OpenCL-based
FPGA Accelerators

Geoffrey Ndu, Mikel Lujan, Javier Navaridas
School of Computer Science

University of Manchester, Manchester, M13 9PL, UK
Email: geoffrey.ndu, mikel.lujan, javier.navaridas@manchester.ac.uk

F

Abstract—Programming FPGAs with OpenCL-based high-level synthe-
sis frameworks is gaining attention with a number of commercial and
research frameworks announced. However, there are no benchmarks for
evaluating these frameworks. To this end, we present CHO benchmark
suite an extension of CHStone, a commonly used C-based high-level
synthesis benchmark suite, for OpenCL. We characterise CHO at various
levels and use it to investigate compiling non-trivial software to FPGAs.

1 I N T R O D U C T I O N
Open Computing Language (OpenCL) [1] is an open
standard for platform-independent, general purpose par-
allel programming across CPUs, GPUs and accelerators.
OpenCL consists of an API for coordinating parallel
computation and a cross platform programming language
(subset of ISO C99 with extensions for parallelism). It
allows software to be written once and executed on
any device that supports OpenCL. Its execution model
consists of a host device which submits computational
intensive kernels to compute devices for execution.

Programming Field-Programmable Gate Arrays
(FPGAs) with OpenCL-based High-Level Synthesis
(HLS) frameworks is now becoming mainstream with
active support by the major FPGA vendors [2]. HLS is
the automatic conversion of an algorithmic description
into either a low-level Register Transfer Level (RTL)
description or a digital circuit [3]. RTL refers to the
low-level design abstraction that models a digital circuit
in terms of the flow of digital signals between registers
and the logical operations performed on those signals.
HLS allows a designer to work more productively
at a higher level of abstraction and achieve faster
time-to-market than using error prone and difficult
to debug RTL. Further, frameworks that use software
programming languages such as C, OpenCL open up the
power of FPGAs to software engineers (who outnumber
hardware engineers by an order of magnitude).

Benchmarking is an important technique for analysing
the performance of systems by studying the execution
of the benchmark applications that are chosen to be a
representation of the applications of interest. A good

HLS benchmark suite should allow HLS framework
developers to qualitatively evaluate new ideas as well
serve as a standard for benchmarking the diverse HLS
frameworks available. From our discussion with HLS
users (especially non-FPGA experts), who have to choose
from the myriad of HLS frameworks, the second objective
is equally important as the first.

In this paper, we introduce CHO: a suite of benchmark
applications for OpenCL-based HLS platforms that meets
the objectives set out above. CHO is an rewrite of the
C-based CHStone benchmark suite [4]. CHStone is the
commonly used HLS benchmark suite and consists of 12
applications from diverse application domains. Although
based largely on C, OpenCL differs in some aspects
from the standard C language. For example, OpenCL
has disjoint memory spaces and moving data from one
memory space to another need to be done explicitly.
Hence, moving from one language to the other is often
not straightforward.

This paper makes the following contributions:
• We present CHO an OpenCL port of the CHStone

HLS benchmark allowing for the benchmarking of
OpenCL-based HLS.

• We characterise CHO at various levels.
• We use CHO and a state-of-the-art OpenCL HLS

framework to evaluate compiling non-trivial pro-
grams to FPGA.

2 R E L AT E D W O R K
Benchmarking of HLS frameworks does not have a rich
history when compared to benchmarking of software plat-
forms and compilers. Early HLS framework developers
tend to use their own choice of applications for evaluation.
In the 90’s, the HLS community attempted to standard-
ize benchmarking by proposing the 1992 High-Level
Synthesis Workshop Benchmarks [5] and the 1995 High-
Level Synthesis Design Repository [6]. These benchmarks
covered a number different applications and application
domains but were mostly written in algorithmic VHDL.
VHDL is a type of Hardware Description Language

2

(HDL) (specialized language for encoding the structure,
design and operation of electronic circuits). However,
HLS frameworks has since moved from HDLs to high-
level software languages, mostly variants of C. These
benchmark suites have a few C-based applications but
they are mostly tiny (less than a 100 lines of code) Digital
Signal Processing (DSP) kernel loops [4]. Consequently,
these benchmarks are rarely used nowadays.

CHStone [4] is now the de-facto standard benchmark
suite used in the HLS community but it lacks support
for OpenCL. There are OpenCL benchmark suites used
in evaluating heterogeneous computing platforms such
as Valar [7], Rodina [8] and SHOC [9] but they are too
large and complex for FPGA synthesis and fitting.

Commercial and research OpenCL frameworks are
increasingly being developed [2]. Notable frameworks in-
clude OpenCL-to-Silicon framework [10] and Altera SDK
for OpenCL (AOCL) [11] (the first HLS to pass OpenCL
conformance tests [11]). To the best of our knowledge
none of the OpenCL frameworks were benchmarked with
any standard benchmark suite.

3 BA C K G R O U N D
3.1 FPGAs
An FPGA is essentially a sea of Look-Up Tables (LUTs).
A LUT is a small high-speed memory and is programmed
by loading a function’s truth table as shown in Figure 1.
Combining a LUT and a D flip-flop (a circuit with two
stable states and can be used to store state information)
results in what is often referred to as a logic cell. Several
logic cells together with special-purpose circuitry such as
an adder/subtractor carry chain form a logic block. Logic
blocks can be connected to other logic blocks through
a reconfigurable routing network making it possible
to implement complex functions. FPGAs also contain
other components such Block RAMs (BRAMs), DSP slices,
various communication interfaces (e.g. PCI Express) and
even processor cores. Figure 2 shows a typical high-end
FPGA.

Modern FPGAs can have up to 2 million logic cells
and 68 Mbits of BRAMs. Typically, FPGAs run at a much
lower clock frequency than CPUs and GPUs but can out-
perform them by implementing custom and often more
power efficient execution pipeline. [12], [13]. Figure 3
shows how a slower FPGA can outperform a CPU. The
figure compares the implementation of 32-bit integer bit
reversal [14] on an ARM 9 processor that requires about
38 instructions and 48 cycles, to an FPGA where the
same operation can be performed by simply reversing
the connections between two buffers. It is assumed that
CPU and the FPGA implementation operate at the same
frequency.

Despite the advantages offered by FPGAs their use is
still largely restricted to a narrow segment of hardware
programmers as programming often involves writing
complex RTL code. HLS raises the level of abstraction
(and productivity) by allowing algorithmic descriptions

a b c ab + c
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

(a) Truth table

1

0

0

1

0

1

1

1

1

0

2

3

4

5

6

7

8-to-1
MUX

l
s
b

f

a
b
c

SRAM Cells

(b) LUT implementation

Fig. 1. Implementing logic function f(a, b, c) = ab+ c

General puporse I/0s

General puporse I/0s

Logic Fabric

DSP Blocks

BRAMS

PCI Express

10G Ethernert

High-Speed
Serial Transceivers

Fig. 2. FPGA architecture

x = (x >>16) | (x <<16);
x = ((x >> 8) & 0x00ff00ff) | ((x << 8) & 0xff00ff00);
x = ((x >> 4) & 0x0f0f0f0f) | ((x << 4) & 0xf0f0f0f0);
x = ((x >> 2) & 0x33333333) | ((x << 2) & 0xcccccccc);
x = ((x >> 1) & 0x55555555) | ((x << 1) & 0xaaaaaaaa);

mov r3, r0
asr r2, r3, #16
lsl r3, r3, #16
orr r3, r2, r3
asr r2, r3, #8
bic r2, r2, #-16777216
bic r2, r2, #65280
lsl r3, r3, #8
bic r3, r3, #16711680
bic r3, r3, #255
orr r3, r2, r3
asr r2, r3, #4
mov r1, r2
...............
...............
...............
...............

Binary
Compilation

ProcessorProcessor

 Requires 48
cycles on ARM9

C Code for bit reversal

(a) ARM9 bit reversal

Hardware for bit reversal

Bit Reversed X Value

.

.

Original X Value

Processor FPGA

 Requires only 1 cycle
(speedup of 48x)

(b) FPGA bit reversal

Fig. 3. How FPGAs outperform CPUs and GPUs

3

Compute
Units

Global Memory

OpenCL Device

Compute
Units

Global Memory

OpenCL Device

Compute
Units

Global Memory

OpenCL Device

Compute
Units

Global Memory

OpenCL Device

Host
OpenCL Context

Command QueueCommand Queue Command Queue Command Queue

Fig. 4. OpenCL Platform Architecture

to be converted into RTL or even a digital circuit. Most
HLS frameworks are now C-based and often support only
a subset of the parent language.

3.2 OpenCL Architecture

An OpenCL computing platform consists of a CPU host
connected to one or more OpenCL devices as shown in
Figure 4. The part of an application targeting the devices
is called the kernel. A kernel is hardware agnostic and
should run on any device that supports the OpenCL
standard. Kernels are written in OpenCL C programming
language, a variant/subset of C-99.

The other part of an OpenCL application, the host,
executes on the CPU and submits commands to perform
the computations expressed in the kernels on a device.
A kernel instance is called a work-item and multiple
instances can be grouped into independent work-groups.

Two types of programming models are explicitly sup-
ported within OpenCL; the data parallel programming
model and the task parallel programming model. In the
task parallel programming model, a kernel is executed
using a single work-item within a work-group while
in the data parallel programming model multiple work-
items are employed with input data partitioned across
work-items.

The host defines a context for the execution of the
kernels. The context includes the following resources:
devices (devices to be used by the host), kernels (functions
to run on devices), program objects (program sources
and executables that implement the kernels) and memory
objects(memory objects visible to the host and devices
which contain values that can be operated on by the
kernel instances). The context is created and manipulated
by the host via OpenCL API.

Work-items have access to 4 disjoint memory regions:
global memory (read/write memory accessible by all
work-items), constant memory (read-only memory ac-
cessible to all work-items), local memory (read/write
memory local to a work-group) and private memory
(read/write memory private to a work-item)

kernel.cl

C frontend

Live-Value
Analysis

CFDG
Generation

Scheduling

RTL Generator

A
O

C
L

Fr
o
n
te

n
d
 C

o
m

p
ile

r

Verliog RTL
Backend/Synthesis Engine

QSYS/QUARTUS II

FP
G

A
 B

is
tr

e
a
m

Auto
Discovery C compiler

Host Libray

host.c

host.exe

Fig. 5. Altera OpenCL SDK (AOCL)

3.3 OpenCL HLS Compilers
A typical OpenCL HLS framework can be divided into
two parts, the front-end and the back-end. The front-end
converts the kernels to RTL code while the back-end com-
piles the RTL down to FPGA bitstream (the configuration
data that is loaded into the FPGA).

Figure 5 shows the structure of AOCL [15], the first
commercial OpenCL-based HLS framework. The front-
end leverages LLVM compiler infrastructure [16]. LLVM
is increasingly used as the front-end of C-based HLS
frameworks. The C-language front-end parses the kernel
into LLVM Intermediate Representation (IR). LLVM IR
uses simple RISC-like instructions augmented with high-
level information such as types and explicit control flow
graphs to represent programs (see Figure 6 and Figure 7).
Notice that the LLVM instructions in Figure 7 are simple
enough to translate directly into hardware operations
(e.g., a load from memory, or an arithmetic computation).
Hence, the rest of the front-end operates directly on the IR
[15]. Each basic block is analysed and a control data flow
graph is created for operations within a block. Each basic
block is a hardware module that takes inputs from either
the kernel arguments or another basic block, processes
the data according to the instructions within and then
produces output that is passed to other basic blocks. The
basic-blocks are connected together to produce a complete
circuit.

The scheduler attempts to minimize execution time as
well as area. Finally, the RTL generator converts the IR
instructions into Verlog RTL. The compiler automatically
generates interfaces for accessing the off-chip memory
(which serves as OpenCL’s global memory) and the PCI
Express (used by the host program to access the global
memory). The traditional hardware compilation tools
(synthesis tools) are used to synthesize the RTL code
for FPGA.

The host program can be compiled with any C/C++
compiler and linked against AOCL’s host library. This
library implements the OpenCL function calls that launch
the kernels on an FPGA. A module embedded inside the
FPGA, termed the Auto-Discovery module, allows the
host program to query the FPGA about the kernels it

4

holds. AOCL performs offline compilation only.
AOCL creates pipelined circuits to increase perfor-

mance and maps work-items to pipeline stages. Let us
assume that AOCL has created a three stage (load, add
and store) pipelined hardware for the kernel in Figure 6,
as shown in Figure 8. On the first clock cycle, work-item
0 is clocked into the load stage. The circuit begins by
fetching the first elements of data from arrays a and b.
On the second cycle, work-item 1 is clocked in while
work-item 0, which has completed its read from memory
and stored the results in the registers, moves to the second
stage of the pipeline. Processing completes when the
last work-item (work-item 7) exits from the last stage of
the pipeline. For work-groups with a single work-items
(i.e. kernels written in a task parallel fashion), AOCL
would attempt to pipeline loops within kernels, using
loop pipelining [17], to improve performance.

__kernel void vector_add(__global int *a, __global int *b,←↩
__global int *c)

{
int i = get_global_id(0);
c[i] = a[i] + b[1];

}

Fig. 6. Vector addition in OpenCL

entry:
%call = tail call i32 (i32, ...)* bitcast (i32 (...)* ←↩

@get_global_id to i32 (i32, ...)*)(i32 0) #2
%idxprom = sext i32 %call to i64
%arrayidx = getelementptr inbounds i32* %a, i64 %idxprom
%0 = load i32* %arrayidx, align 4, !tbaa !2
%arrayidx1 = getelementptr inbounds i32* %b, i64 1
%1 = load i32* %arrayidx1, align 4, !tbaa !2
%add = add nsw i32 %1, %0
%arrayidx3 = getelementptr inbounds i32* %c, i64 ←↩

%idxprom
store i32 %add, i32* %arrayidx3, align 4, !tbaa !2
ret void

Fig. 7. Vector addition in LLVM IR

4 C H O B E N C H M A R K S U I T E
4.1 Overview
CHO extends the popular C-based CHStone HLS bench-
mark suite providing a means of benchmarking present
and emerging OpenCL frameworks. The kernels in CHO
are implemented using OpenCL task parallel model (i.e.
one work-item per work-group) as it requires minimal
change to the overall structure of the original code.
Further, some of the programs are difficult to express
using the data parallel programming model.

CHO, as its progenitor, consists of 12 diverse applica-
tions as shown in Table 1. CHO targets OpenCL 1.0, the
minimum standard, allowing it to be compiled by any
OpenCL compliant compiler as OpenCL is designed to be
backward compatible. Like CHStone we don’t prescribe
a particular way of using CHO.

4 5 6 7

work-group

work-items

load load

0

1

2

3

store

add

Fig. 8. AOCL pipeline implementation

Porting CHStone to OpenCl required eliminating the
use of non-constant global variables as global variables
in OpenCL must be constants. We made extensive use of
structures (struct) to pass state from one function to
another. To improve performance we allocated variables
whenever possible in the private memory space as it is
by definition the fastest memory in OpenCL. To allow
compilers to perform memory optimization we added
restrict keyword to pointer arguments whenever pos-
sible. The restrict informs compilers that pointers that
share the same type do not alias.

Each application in CHO is a single kernel and has a
test-bench that is part of the host program. Each kernel
reads/writes its input/output data from/to the host side
(via PCIe and the global memory). Implementing the
test-bench on the host instead of encoding in the kernel
enables the study of how an OpenCL HLS compiler
would handle external I/O interfacing between the FPGA
and the host (assuming that is done automatically by
the framework). I/O interfacing and its bandwidth and
latency are critical components in FPGA design. Often
implementations need to be specialized based on achiev-
able external input and output bandwidth. We reused the
test-vectors from CHStone.

4.2 CHO Kernels
The kernels in CHO are diverse, substantial, real world
applications. They have all been shown to map well
to FPGA using different languages, tools and technique
making them ideal for benchmarking HLS frameworks
targeted at FPGAs. Consequently, the suite is biased
towards “embedded computing” where FPGAs have
been used for decades for implementing algorithms. We
describe briefly, next, the applications in the suite.

dfadd: is an implementation of IEC/IEEE-standard
double-precision floating-point addition using

5

Domain Application Description Original Sources

Arithmetic

dfadd IEC/IEEE double-precession floating-point addition SoftFloat [18]
dfdiv IEC/IEEE double-precession floating-point division SoftFloat [18]
dfmul IEC/IEEE double-precession floating-point multiplication SoftFloat [18]
dfsin Double-precession floating-point sine function SoftFloat [18]

Media

adpcm Adaptive differential pulse code encoder & decoder SRTB [19]
gsm GSM residual pulse excitation/long term prediction coding MediaBench [20]
jpeg JPEG image decoder CHStone [4], PVRG [21]
motion Motion vector decoding for MPEG-2 AiLab [22]

Cryptography
aes Implementation of Advanced Encryption Standard AiLab [22]
blowfish Blowfish Encryption Algorithm MiBench [23]
sha Secure Hash Algorithm MiBench [23]

Miscellaneous MIPS Simplified MIPS processors CHO [4], SoftFloat [18]

TABLE 1
CHO Kernels

64-bit integers.
dfdiv: is an implementation of IEC/IEEE-standard

double-precision floating-point division using
64-bit integers.

dfmul: is an implementation of IEC/IEEE-standard
double-precision floating-point multiplication
using 64-bit integers.

dfsin: implements the sine function using 64-bit inte-
gers. It has several functions in common with
the previously listed kernels.

adpcm: is an implementation of ITU G.722 Adaptive
Differential Pulse-Code Modulation (ADPCM)
algorithm used in the encoding and decoding
audio signals. ADPCM is often used in Voice
over IP communications. The kernel includes
encoding and decoding functionalities.

gsm: is an implementation of Linear predictive cod-
ing, a method of encoding good quality speech
at a low bit rate.The kernel implements only
the lossy sound compression used in GSM (a
mobile communication protocol)

jpeg: is an implementation of the JPEG still picture
compression standards.

aes: implements the AES symmetric-key (the same
key is used for encrypting and decrypting
data) cyrpto-system. Encryption and decryp-
tion modules are implemented.

blowfish: is an implementation of the encryption func-
tion of blowfish. Blowfish is a symmetric-key
block cipher.

sha: implements the Secure Hash Algorithm, a cryp-
tographic hash function.

4.3 Functional Verification
We tested CHO to ensure that we correctly implemented
each kernel. First, we verified that the kernels can be
parsed by any standard-complaint OpenCL 1.0 front-

Device Type Driver/Compiler

Intel Core i5 CPU Intel OpenCL SDK 2013R3
Intel Core i5 CPU AMD APP SDK 2.9
Intel Xeon E3 CPU Intel OpenCL SDK 2013R3
Intel Xeon E3 CPU AMD APP SDK 2.9

TABLE 2
Functional Test Platforms

end. Since OpenCL-based HLS frameworks often rely
on LLVM for their font-end processing we used Clang’s
[24] OpenCL 1.0 parser for our tests. Clang is a compiler
front-end that converts C-based programming languages
into LLVM IR. Syntax checking of kernels is important as
OpenCL compilers are often varyingly lax in enforcing
syntax correctness.

We validated that the kernels are functionally correct
and produce the right results by compiling and running
all kernels on diverse OpenCL devices. The devices used
are shown in Table 2. All the kernels compiled and
produced the correct results on execution.

5 C H A R A C T E R I Z I N G C H O
We characterised CHO at the source-level, after conver-
sion into Abstract Syntax Tree (AST) and the IR-level,
after conversion to LLVM-IR.

5.1 Source-Level Characterization
We implemented a Clang plugin that walked each kernel’s
AST and classified every token. We run the plugin on the
AST produced by the Clang compiler. Table 3 is a sum-
mary of the source-level characteristics of the each kernel.
‘Dominant Type’ in the table refers the representative data
type in each kernel while ‘LoC’ refers to the lines of code

6

Kernel Dominant Type LoC Functions
Variables Statements Operators

Scalar Aggregate for if goto/break switch while Divide Multiply Add/Sub Compare Shift Assign Logic

adpcm 32-bit int 463 21 103 13 10 17 1 0 0 4 36 112 27 29 171 7
aes 32-bit int 667 10 42 25 16 24 31 6 0 14 95 98 41 184 389 209
blowfish 8-bit char 495 4 38 16 6 9 0 0 4 0 9 178 16 123 267 267
dfadd 64-bit int 352 81 2 18 1 43 6 0 0 0 0 29 46 21 104 34
dfdiv 64-bit int 280 19 96 1 1 31 0 0 2 2 4 33 45 30 100 31
dfmul 64-bit int 350 16 74 1 1 28 0 0 0 0 4 25 38 24 90 31
dfsin 64-bit int 611 31 178 1 1 74 6 0 3 2 7 54 91 45 188 65
gsm 32-bit int 310 12 45 7 17 16 0 0 1 0 47 168 57 23 211 11
jpeg 32-bit int 1061 31 204 30 34 58 11 1 11 3 52 135 92 44 342 21
mips 32-bit int 215 1 17 3 2 3 35 3 4 0 2 12 10 22 57 23
motion 32-bit int 436 13 59 15 7 21 0 0 4 2 6 40 28 16 84 7
sha 64-bit char 178 8 42 15 10 2 0 0 4 2 1 42 16 23 90 32

TABLE 3
Source-Level Characteristics

in the source excluding comments and empty lines. The
table shows that kernels are non-trivial implementations
with hundreds of lines of code, multiple functions plus
diverse statements and operators.

Some kernels perform multiplications and divisions
which are expensive. On FPGAs, division is the most
expensive operator to implement followed by multipli-
cation [25]. Modern FPGAs often have DSP blocks with
high-speed embedded multipliers making it possible to
multiply without using logic resources. However, there
are only a few of these on FPGAs which implies that
kernels that perform a lot of multiplications such as aes
may still have to implement some of the multipliers using
logic resources. All divisions must be implemented with
logic resources which may use-up logic resources if there
are many of them. Generally, these expensive functions
can be shared reducing the number required as well as
performance.

5.2 IR-Level Characterization
Since LLVM IR instructions are simple enough to directly
correspond to hardware operations characterizing at the
IR-level provides a more accurate and detailed picture
about how kernels may be mapped to FPGAs. For in-
stance, a single loop at the source-level may be simplified
and split into multiple loops at the IR-level.

For IR-level characterization, we implemented a
Clang/LLVM compiler that mimics the front-end of a
generic OpenCL HLS compiler. Our custom compiler first
translates OpenCL into LLVM IR and then applies trans-
formations and optimizations [26] that has been shown
to improve performance on FPGAs. These optimizations
are shown in Table 4.

Table 5 summarizes the IR-level characteristics of CHO
kernels. Notice that the number of loops has increased
moving from source-level to IR-level as a result of run-
ning simplifycfg. The compiler splits complex loops
into multiple simpler efficient loops. Figure 9 is a break-
down of the IR-level instructions by instruction types.
In the diagram, ‘Memory’ refers to load and store type

Optimization &
Transformation

Description

inline Bottom-up inlining of functions into callees
jump-threading Attempts to find distinct threads of control

flow running through a basic block
simplifycfg Removes dead code and merges basic-blocks
loop-rotate Simple loop rotation
gvn Removes fully and partially redundant in-

structions plus redundant load elimination
instcombine Combines instructions into fewer and simpler

instructions

TABLE 4
LLVM transformations and optimizations

Kernel Number
Basic Blocks

Number
Instructions

Number
Loops

adpcm 95 2240 19
aes 186 5685 23
blowfish 58 5441 10
dfadd 199 1421 1
dfdiv 115 1212 3
dfmul 90 846 1
dfsin 469 4216 2
gsm 149 1493 18
jpeg 661 10261 109
mips 46 472 3
motion 1743 15121 326
sha 79 1364 30

TABLE 5
IR-Level Characteristics

instructions plus address generating instructions while
‘Control’ refers to instructions, such as branch, that trans-
fer control from one part of a kernel to another. For some
kernels e.g. gsm the expensive operators, multiplication
and division, are still significant.

7

0

25

50

75

100

ad
pc

m

ae
s

bl
ow

fis
h

df
ad

d

df
di

v

df
m

ul

df
si

n

gs
m

jp
eg

m
ip

s

m
ot

io
n

sh
a

kernel

%

instructions class

Add/Sub

Compare

Control

Div/Mul

Logic

Memory

Others

Shift

Fig. 9. LLVM IR instruction classes

FPGA Altera 5SGXMA7H2F35C2
Form Factor Half-length Half-height PCIe Card
Host Interface 8-lane Gen3 PCIe
Memory 8GB DDR3 SDRAM

TABLE 6
P385-A7 FPGA accelerator card

6 S Y N T H E S I Z I N G C H O
In this section, we present the results of our attempts
at synthesizing kernels in the CHO benchmark suite
using AOCL, a state-of-the-art OpenCL HLS framework.
The main objective is to determine if we can synthesize
unmodified OpenCL kernel for FPGA. We have not
modified the kernels so they are the same as those that
run on the ‘software’ platforms in Table 2.

6.1 Target Compiler and Platform
We use AOCL 13.1.3.178 and target Nallatech P385-A7
FPGA accelerator card. The P385-A7 (its features are
described in table Table 6) is based on Altera’s Stratix
V GX-A7 FPGA.

AOCL supports augmenting OpenCL kernels by speci-
fying kernels attributes. The available attributes are listed
below.

• reqd_work_group_size: Specifies the required
work-group size allowing AOCL to allocate the
exact amount of FPGA resources needed to manage
work-items in a work-group.

• max_work_group_size: Defines the maximum
number of work-items that can be allocated within
a work-group.

• num_compute_units: Sets the number of com-
pute units to be instantiated to process the kernel.
AOCL distributes the work-groups within a ker-
nel across the specified number of compute units
increasing throughput. This may increase global

memory bandwidth contention among compute
units.

• num_simd_work_items: This is similar to the
attribute above but involves only replicating the
datapath in a single instruction multiple data
(SIMD) fashion. For AOCL to implement a SIMD
datapath, the value of num_simd_work_items
must evenly divides the value specified for
reqd_work_group_size.

• max_share_resources: Limits the number of
times an operator e.g. multiplier can be reused
without reducing computational throughput.

• num_share_resources: Sets the number of times
an operator can be reused.

• max_unroll_loops: Limits the number of times
AOCL can unroll each loop in a kernel. This can
be overridden for individual loops using #pragma
unroll.

• local_mem_size: Defines the size of local mem-
ory allocated to pointer argument with local speci-
fier. The default is 16 kB.

• task: Specifies that the kernel executes in a task
parallel fashion.

AOCL applies what is termed resource-driven
optimizations to kernels when the O3 flag is
used. This essentially identifies a set of values for
num_compute_units, num_simd_work_items,
max_share_resources, num_share_resources
and max_unroll_loops that maximizes performance
without exceeding resource usage threshold. The default
resource usage threshold is 85% but can be changed
using the U flag.

Table 7 shows the features of Altera Stratix V GX-A7. In
the table, Adaptive Logic Modules refers to Altera’s
logic blocks. Each block has 8 inputs with a Adaptive
Look-Up Table (ALUT) (Altera name for LUTs), 2 adders
and 4 registers. Variable Precision Multipliers
are the embedded, high-speed, variable precession mul-
tipliers. They can perform 9-bit, 18-bit, 27-bit and 36-bit
word lengths operations. These multipliers are part of
a larger structure called DSP block. Stratix V devices
contain dedicated memory blocks (Block RAMs), each
20-Kb in size, called M20K blocks. The number of blocks
and the total number of RAM bits available from all M20K
blocks are given in the table.

6.2 Sythesis Results

We were unable to synthesize and run every kernel in
the CHO for various reasons. For some of the kernels,
the LLVM front-end crashed with a stack dump while for
others the front-end stopped after an internal compiler
error. A few of the Verilog RTL generated couldn’t
be synthesized by Quartus, the back-end of AOCL. A
summary of our attempts at synthesizing the kernels is
presented as Table 8. In the table, 3 means that a kernel
was successfully synthesised.

8

Adaptive Logic Modules (K) 235
Registers (K) 939
M20K Memory Blocks 2,560
M20K Memory (MBits) 50
Variable Precision Multipliers (18x18) 512
Variable Precision Multipliers (27x27) 256
DSP Blocks 256
Fabric clock (MHz) 800

TABLE 7
Starix V GX-A7 features

Kernel Synthesizable Notes

adpcm 7 Frontend error
aes 7 Frontend crash
blowfish 3

dfadd 3

dfdiv 7 Frontend crash
dfmul 3

dfsin 7 Frontend crash
gsm 3

jpeg 7 Frontend error
mips 7 Backend error
motion 7 Frontend crash
sha 7 Backend error

TABLE 8
Summary of Synthesis

The kernels were compiled using the O3 flag and
setting the task attribute. Table 9 show the OpenCL
attributes used while Table 10 presents the synthesis
results. Note that the OpenCL attributes in Table 9 were
set automatically by the AOCL.

In Table 10, ‘Loops’ refers to the number of loops
at the LLVM-IR level while ‘Pipelined Loops’ refers to
the number of those loops that AOCL managed to fully
pipeline i.e. loops without Loop-Carried Dependencies
(LCD) [17]. AOCL attempts to pipeline [27] (overlapping
computations for different loop iterations in time and
space) all loops so as to have a fully pipelined hardware
structure. Some of the loops may have LCD which
requires AOCL to generate extra hardware to account
for these memory dependencies reducing throughput.
Therefore, rewriting loops (following Altera’s recommen-
dations [28]) to minimize LCD is a good approach to
improving performance. Pipelining in the presence of
LCD is an active research area and techniques developed
in this area could be beneficial to future HLS frameworks.

LCD is particularly a problem for blowfish where 3 of
its loops each causes, on the average, a 567 cycles pipeline
stall (i.e. successive iterations launched every 567 cycles)
The cumulative effect of this is a significant degradation
of performance as shown in the next section. Note that
information about loops are available from the AOCL

Kernel Attributes Settings

blowfish max_unroll_loops(2)
num_compute_units(2)
num_share_resources(1)
max_share_resources(8)

dfadd max_unroll_loops(1)
num_compute_units(3)
num_share_resources(1)
max_share_resources(8)

dfmul max_unroll_loops(40)
num_compute_units(1)
num_share_resources(1)
max_share_resources(8)

gsm max_unroll_loops(2)
num_compute_units(1)
num_share_resources(1)
max_share_resources(8)

TABLE 9
OpenCL attributes

A
LM D
S

P

LA
B

M
20

K
M

bi
ts

ALM

DSP

LAB

M20K

Mbits

ALM

D
SPLA

BM
20K

M
bi

tsA
LM

D
SP

LAB
M20K

Mbits

10%
20%

40%

80%

blowfish

dfadd

dfmul
gs

m

resources

unused

used

Fig. 10. Percentage resource utilization

during compilation.
Notice that the number of loops in Table 5 and Table 10

don’t exactly correspond. This is because our custom
compiler and AOCL may not be using the same set of
optimizations and versions. Further, AOCL completely
unrolls some of the loops as could be inferred from dfmul.

Figure 10 shows the percentage resource usage in terms
on ALMs, LABs, DSP blocks, M20K blocks, total number
of memory bits (Mbits in the figure). It gives a rough
indication of the "complexity" of each implementation on
the FPGA.

6.3 Performance
Figure 11 compares the execution time of the successfully
synthesized kernels on the FPGA platform and on a CPU
platform. The details of the CPU platform is shown as
Table 11. Note that OpenCL is not performance portable
and that we didn’t manually optimize the kernels for
FPGA. Compilation for the CPU was done offline to

9

Kernel fmax (MHz) ALMs LABs ALUTs Registers M20K Memory Bits DSP Blocks Synthesis
Time

(Hours:Mins)

Loops Pipelined
Loops

blowfish 200 147 981 19 724 151 907 270 884 1567 7 946 172 0 03:00 11 7
dfadd 246 65 857 9415 70 991 107 176 468 1 731 152 0 01:15 1 1
dfmul 207 93 927 13 935 96 103 16 752 443 2 050 512 160 01:30 0 0
gsm 263 93 298 12 914 98 391 161 772 407 162 868 116 01:36 11 9

TABLE 10
Synthesis results

blowfish dfadd dfmul

0

5

10

15

0.0

0.1

0.2

0.000

0.025

0.050

0.075

0.100

cpu fpga cpu fpga cpu fpga
opencl device

ex
ec

ut
io

n
tim

e
(m

s)

variable

kernel

pcie

Fig. 11. Comparing performance

CPU Intel Xeon CPU E31245 @ 3.30GHz
Memory Size 16 GB DDR3
OpenCL SDK Intel OpenCL SDK 2013R3

TABLE 11
CPU platform features

match AOCL. AOCL presently doesn’t support out-of-
order execution i.e. the execution of multiple tasks in
parallel therefore performance measurements was done
with a single task executing on the CPU and the FPGA.
We verified that results produced by the FPGA match
exactly with the ones from the CPU. We couldn’t get gsm
to run to completion so it doesn’t appear in Figure 11.

FPGA outperforms the CPU, without the overhead of
PCIe data transfer, except for blowfish where the FPGA
is slower than the CPU, by an order of magnitude. As
mentioned earlier, blowfish suffers from having loops
that are significantly affected by LCD.

7 C O N C L U S I O N

In this paper, we presented CHO, an OpenCL port of the
commonly used CHStone HLS benchmark. CHO aims
are to enable HLS framework developers to qualitatively
evaluate new ideas as well as enable the benchmarking
of the increasing number of OpenCL HLS frameworks.

We characterised CHO at the OpenCL source-level and
at the LLVM IR-level. We showed that kernels in the
benchmark suite are substantial. IR-level characterization
provides more detailed information as the LLVM IR
instructions are simple enough to directly correspond to
hardware operations.

We attempted to synthesize all the kernels in CHO
using AOCL but only managed to produce FPGA bit-
streams for 4 out of the 12 kernels. Synthesis failed
for a number various reasons ranging from front-end
crash to the failure of Quartus, the back-end of AOCL,
to synthesize Verilog RTL produced by front-end. We
recognize that AOCL is relatively new and like other
compilers could improve with time. We showed that
when compilation works it is straightforward to compile
unmodified OpenCL kernels down to FPGA.

There are a number of possible directions for future
work.

• The programs in CHStone, which we ported to
OpenCL, are skewed towards "embedded comput-
ing" where FPGAs has been used for decades. We
are looking at introducing programs from other
areas, such databases, that have been shown to have
efficient FPGA implementations.

• CHO employs, exclusively, OpenCL’s task parallel
programming model. However, an OpenCL-based
HLS framework may compile the two programming
models (slightly) differently as is the case in AOCL.
We are looking at introducing kernels into CHO
that can be mapped efficiently onto the data parallel
programming model of OpenCL.

8 S O F T WA R E D OW N L OA D

CHO is publicly available at http://it302.github.io/cho.

AC K N OW L E D G E M E N T

The authors would like to thank...

R E F E R E N C E S

[1] The OpenCL Specification Version: 1.0, Khronos OpenCL Working
Group, Std., June 2009.

http://it302.github.io/cho

10

[2] K. Morris, “HLS versus OpenCL Xilinx and Altera Square
Off on the Future,” Electronic Engineering Journal, March
2013. [Online]. Available: http://www.eejournal.com/archives/
articles/20130312-highlevel

[3] P. Coussy et al., “An Introduction to High-Level Synthesis,” Design
Test of Computers, IEEE, vol. 26, no. 4, pp. 8–17, July 2009.

[4] Y. Hara et al., “Proposal and quantitative analysis of the chstone
benchmark program suite for practical c-based high-level synthe-
sis,” Journal of Information Processing, vol. 17, pp. 242–254, 2009.

[5] N. Dutt, “Benchmarks for the 1992 High Level Synthesis
Workshop,” 1992. [Online]. Available: http://www.cbl.ncsu.edu:
16080/benchmarks/HLSynth92/GUIDELINES

[6] P. Panda and N. Dutt, “1995 high level synthesis design repository,”
in System Synthesis, 1995., Proceedings of the Eighth International
Symposium on, Sep 1995, pp. 170–174.

[7] P. Mistry et al., “Valar: A Benchmark Suite to Study the Dynamic
Behavior of Heterogeneous Systems,” in Proceedings of the 6th
Workshop on General Purpose Processor Using Graphics Processing
Units, ser. GPGPU-6. New York, NY, USA: ACM, 2013, pp. 54–
65.

[8] S. Che et al., “A characterization of the rodinia benchmark suite
with comparison to contemporary cmp workloads,” in Workload
Characterization (IISWC), 2010 IEEE International Symposium on, Dec
2010, pp. 1–11.

[9] A. Danalis et al., “The Scalable Heterogeneous Computing (SHOC)
Benchmark Suite,” in Proceedings of the 3rd Workshop on General-
Purpose Computation on Graphics Processing Units, ser. GPGPU ’10,
New York, NY, USA, 2010, pp. 63–74.

[10] M. Owaida et al., “Synthesis of platform architectures from opencl
programs,” in Field-Programmable Custom Computing Machines
(FCCM), 2011 IEEE 19th Annual International Symposium on, May
2011, pp. 186–193.

[11] “Altera SDK for OpenCL: Programming Guide,” Dec. 2013.

[12] D. Koch and J. Torresen, “FPGASort: A high performance sorting
architecture exploiting run-time reconfiguration on FPGAs for
large problem sorting,” in Proceedings of the 19th ACMSIGDA
international symposium on Field programmable gate arrays. ACM,
2011, pp. 45–54.

[13] D. B. Thomas, L. Howes, and W. Luk, “A comparison of cpus,
gpus, fpgas, and massively parallel processor arrays for random
number generation,” in Proceedings of the ACM/SIGDA Interna-
tional Symposium on Field Programmable Gate Arrays, ser. FPGA ’09.
ACM, 2009, pp. 63–72.

[14] H. G. Dietz, The Aggregate Magic Algorithms, Aggregate.Org
online technical report, University of Kentucky Std. [Online].
Available: http://aggregate.org/MAGIC/

[15] T. Czajkowski et al., “From opencl to high-performance hardware
on fpgas,” in Field Programmable Logic and Applications (FPL), 2012
22nd International Conference on, Aug 2012, pp. 531–534.

[16] C. Lattner and V. Adve, “LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation,” in Proceedings of the
2004 International Symposium on Code Generation and Optimization
(CGO’04), Palo Alto, California, Mar 2004.

[17] V. H. Allan et al., “Software pipelining,” ACM Comput. Surv.,
vol. 27, no. 3, pp. 367–432, Sep. 1995. [Online]. Available:
http://doi.acm.org/10.1145/212094.212131

[18] J. R. Hauser, “Softfloat release 2b general documentation,” 2007.
[Online]. Available: http://www.jhauser.us/arithmetic/SoftFloat.
html

[19] SNU Real-Time Benchmarks. [Online]. Available: http://archi.
snu.ac.kr/realtime/benchmark

[20] L. Chunho, M. Potkonjak, and W. Mangione-Smith, “Mediabench:
a tool for evaluating and synthesizing multimedia and communi-
cations systems,” in Microarchitecture, 1997. Proceedings., Thirtieth

Annual IEEE/ACM International Symposium on, Dec 1997, pp. 330–
335.

[21] A. C. Hung, “PVRG-JPEG CODEC 1.1,” Stanford University, Tech.
Rep., 1993.

[22] “Ailab.” [Online]. Available: http://www-ailab.elcom.nitech.ac.jp
[23] M. Guthaus et al., “Mibench: A free, commercially representative

embedded benchmark suite,” in Workload Characterization, 2001.
WWC-4. 2001 IEEE International Workshop on, Dec 2001, pp. 3–14.

[24] “Clang.” [Online]. Available: http://clang.llvm.org
[25] J. Liu, M. Chang, and C.-K. Cheng, “An iterative division algo-

rithm for fpgas,” in Proceedings of the 2006 ACM/SIGDA 14th
International Symposium on Field Programmable Gate Arrays, ser.
FPGA ’06. New York, NY, USA: ACM, 2006, pp. 83–89.

[26] Q. Huang et al., “The effect of compiler optimizations on high-
level synthesis for fpgas,” in Field-Programmable Custom Computing
Machines (FCCM), 2013 IEEE 21st Annual International Symposium
on, April 2013, pp. 89–96.

[27] D. D. Gajski et al., Embedded System Design: Modeling, Synthesis
and Verification. Springer, 2009.

[28] “Altera SDK for OpenCL: Optimization Guide,” Dec. 2013.

http://www.eejournal.com/archives/articles/20130312-highlevel
http://www.eejournal.com/archives/articles/20130312-highlevel
http://www.cbl.ncsu.edu:16080/benchmarks/HLSynth92/GUIDELINES
http://www.cbl.ncsu.edu:16080/benchmarks/HLSynth92/GUIDELINES
http://aggregate.org/MAGIC/
http://doi.acm.org/10.1145/212094.212131
http://www.jhauser.us/arithmetic/SoftFloat.html
http://www.jhauser.us/arithmetic/SoftFloat.html
http://archi.snu.ac.kr/realtime/benchmark
http://archi.snu.ac.kr/realtime/benchmark
http://www-ailab.elcom.nitech.ac.jp
http://clang.llvm.org

	Introduction
	Related Work
	Background
	FPGAs
	OpenCL Architecture
	OpenCL HLS Compilers

	CHO Benchmark Suite
	Overview
	CHO Kernels
	Functional Verification

	Characterizing CHO
	Source-Level Characterization
	IR-Level Characterization

	Synthesizing CHO
	Target Compiler and Platform
	Sythesis Results
	Performance

	Conclusion
	Software Download
	References

