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By employing established methods in multiple scattering new techniques are de-
veloped to predict and approximate wave propagation through finite and infinite ar-
rays of isotropic scatterers with quasiperiodic distributions. Recursive formulae are
derived that can be used to calculate rapidly the propagation through one- and two-
dimensional arrays with a one-dimensional Fibonacci chain distribution. These formu-
lae are applied, in addition to existing tools for two-dimensional multiple scattering, to
form comparisons between the propagation in one- and two-dimensional quasiperiodic
structures and their periodic approximations. The quasiperiodic distributions under
consideration are governed by the Fibonacci, the square Fibonacci and the Penrose
lattices. Finally, novel formulae are derived that allow the calculation of Bloch-type
waves, and their properties, in infinite periodic structures that can approximate the
properties of waves in large, or infinite, quasiperiodic media.

16



Declaration

No portion of the work referred to in the thesis has been

submitted in support of an application for another degree

or qualification of this or any other university or other

institute of learning.

17



Copyright Statement

i. The author of this thesis (including any appendices and/or schedules to this thesis)

owns certain copyright or related rights in it (the “Copyright”) and s/he has given

The University of Manchester certain rights to use such Copyright, including for

administrative purposes.

ii. Copies of this thesis, either in full or in extracts and whether in hard or electronic

copy, may be made only in accordance with the Copyright, Designs and Patents

Act 1988 (as amended) and regulations issued under it or, where appropriate, in

accordance with licensing agreements which the University has from time to time.

This page must form part of any such copies made.

iii. The ownership of certain Copyright, patents, designs, trade marks and other intel-

lectual property (the “Intellectual Property”) and any reproductions of copyright

works in the thesis, for example graphs and tables (“Reproductions”), which may

be described in this thesis, may not be owned by the author and may be owned by

third parties. Such Intellectual Property and Reproductions cannot and must not

be made available for use without the prior written permission of the owner(s) of

the relevant Intellectual Property and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication and com-

mercialisation of this thesis, the Copyright and any Intellectual Property and/or

Reproductions described in it may take place is available in the University IP Policy

(see http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=487), in any rele-

vant Thesis restriction declarations deposited in the University Library, The Univer-

sity Library’s regulations (see http://www.manchester.ac.uk/library/aboutus/regul-

ations) and in The University’s Policy on Presentation of Theses.

18



Acknowledgements

I would like to thank my supervisors, Professor David Abrahams and Dr William

Parnell, for their fantastic support, patience and encouragement throughout my time

at the University of Manchester. It has been an absolute privilege working with both

David and William, I have learnt so much from them and will continue to be inspired

by their work and their enthusiasm. I am also grateful to them and to the school of

mathematics for giving me the opportunity to attend many conferences and summer

schools during my PhD.

I am grateful to the Leverhulme Trust for their financial support of my PhD, and

the group at Sheffield University led by Professor Harm Askes and Dr Inna Gitman

with whom we have had several fruitful discussions throughout our collaboration. I

would like to thank the Knowledge Transfer Network and the Aeroacoustic research

team at Dyson Technology Ltd for the opportunity and the amazing experience of the

six month internship.

Finally, I would like to thanks my boyfriend, friends, family and peers for all their

parts in my journey; it would not have been the same without them.

19



Chapter 1

Introduction

Figure 1.1: Comparison of incident plane wave on arrays of small circular cylinders
with periodic, quasiperiodic and random distributions (left to right).

This thesis investigates the propagation of time-harmonic scalar waves in one-

dimensional (1D) and two-dimensional (2D) infinite domains with finite or infinite

arrays of isotropic scatterers with particular distributions. The main distributions of

interest are quasiperiodic, roughly defined as patterns that are ordered but not periodic,

and are inspired by the global desire to model the effects of structural disorder on wave

propagation. The concept of quasiperiodic can be illustrated via the function

f(z) = sin(Az) + sin(Bz). (1.1)

If the ratio A/B is rational, then the function is periodic. If the ratio A/B is irrational

then the function is aperiodic. However, the function does have successions of similar

“periods”. This can also be described as the function having “long-range order” but

not “short-range order”. That is, from afar the pattern looks to have some “period-

icity”, but upon closer inspection it can be seen that the pattern is non-repeating,
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as depicted in figure 1.2. This ordered yet aperiodic behaviour gives the function the

definition of quasiperiodic.

Figure 1.2: The quasiperiodic function f(z) = sin(Az) + sin(Bz) with A = 1 and

B = τ = 1+
√
5

2
.

The primary thrust of this thesis can be depicted quite simply, as in figure 1.1.

Illustrated here are three different distributions: periodic, quasiperiodic and random.

In this research these distributions are used to determine the position of circular cylin-

ders, infinite in the normal direction to the plane, which are treated as inclusions in a

2D acoustic wave scattering problem.

On the left of figure 1.1 is a well understood problem of wave propagation in

a periodic medium. Periodic scattering problems can be solved relatively easily in

finite and infinite scenarios. On the right however, is a poorly understood problem

of wave propagation in a random medium. Random media problems can be tackled

using a plethora of techniques, but require approximate approaches. Thus, divert your

attention to the centre image: wave propagation in a material which is not completely

random, but nor is it periodic, hence it is aperiodic. Such a distribution as depicted

here, is known as a quasiperiodic lattice. The quasiperiodic structure depicted does not

possess translational symmetry, but has long-range order. We hope to bridge the gap

between the well-known and the unknown of wave propagation in periodic and random

media by gaining an understanding of wave propagation in quasiperiodic media.

With such influential papers as those by Anderson [6] and Foldy [30], people are

under the impression that random microstructure within a material can cause acoustic
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wave localisation/decay. Anderson’s work shows how the interference of coherent, mul-

tiple scattered waves from randomly positioned inclusions can cause wave transmission

to completely stop. Similarly, Foldy’s use of ensemble averaging and the closure con-

dition often results in a complex effective wave number, i.e. exponential decay in the

wave field. Both papers are now widely cited with a lot of research still ongoing in

this area, so it has become a natural assumption that this attenuation within random

media will always occur. Numerous studies and experiments have supported this hy-

pothesis, but what about the counter examples? Is it possible to really have a complex

wavenumber?

In an attempt to comprehend this phenomenon, whilst fully appreciating the work

of Anderson and Foldy, we seek viable alternative methods that could aid understand-

ing of wave propagation in random media.

Quasiperiodic distributions have an “air” of randomness as they are aperiodic, al-

though they do have a deterministic distribution. For a distribution to be deterministic

it means that no randomness is involved in the development of the arrangement. Inves-

tigating such distributions will reveal how the transition from a periodic structure to

a quasiperiodic structure alters the transmitted wave field. The understanding gained

will provide insight into how introducing “randomness”/aperiodicity to a structure af-

fects the wave propagation without having to lose any information on the composition

through the normal approach for random media of averaging techniques.

Further analysis will be conducted in order to determine periodic or homogeneous

structures which have similar scattering properties to the quasiperiodic structures. By

accurately modelling quasiperiodicity with periodicity in structures, it will be demon-

strated how a “more random” structure does not necessarily cause wave decay, contrary

to the beliefs of many. It will also enable one to model a complicated quasiperiodic

distribution with one that is simpler to analyse.

A quasiperiodic distribution can also be thought of as a random perturbation

from a periodic structure. In fact, the statistics involved with the distribution of the

quasiperiodic lattice nodes are similar to that of a random lattice, and a quasiperi-

odic lattice can represent one realisation of a random lattice. This reiterates why

quasiperiodic structures will help in the quest to understand the properties of random

media.
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There is an additional motivation for considering wave scattering by inclusions

with quasiperiodic distributions, and that is due to the quasiperiodic atomic structure

of some materials known as quasicrystals, [66]. Quasicrystalline materials have been

shown to be increasingly useful in applications. Quasicrystalline coatings are being

widely used on a multitude of objects due to their hardness, low thermal and electrical

conductivity, low friction and high corrosion resistivity, [23]. Therefore, a material

with inclusions distributed in the same way as the atomic structure of a quasicrystal

may also have interesting characteristics and thus applications, making it a useful

structure to look at.

Analysis of large periodic arrays of scatterers is often approached by approximat-

ing the finite array as an infinite array and applying the effective properties of the

infinite array to the finite. Computations of effective properties of infinite structures

is possible for periodic structures and is often much less computationally expensive

than calculations for large finite arrays. However, the same analysis is not applica-

ble to aperiodic structures. Therefore, there is no analogous approach to determine

effective properties of infinite quasiperiodic or random structures without alternative

averaging methods. In this thesis we seek to determine finite periodic structures that

provide similar scattering properties to quasiperiodic structures. By establishing an

appropriate periodic representation of a finite quasiperiodic structure we can jus-

tify using the determined infinite periodic structure to model an infinite quasiperiodic

structure. In this thesis we conclude with a periodic representation that has not been

applied to quasiperiodic structures before in acoustics. We also develop a novel an-

alytic procedure for infinite periodic distributions with a period containing a finite

number of scatterers with arbitrary distributions, which can be applied to compute

the approximate effective properties of the infinite quasiperiodic structure.

Due to the link with quasicrystals [66] and because of the interest in the “phonon-

ics” of quasicrystals, the main quasiperiodic inclusion distribution we aim to consider

is the 2D Penrose tiling. However we will build up to this complicated structure with

simpler 1D and 2D quasiperiodic lattices, which provide extendible theories and moti-

vational results. We will first consider a 1D quasiperiodic structure determined by the

Fibonacci chain which is the 1D analogue of the Penrose tiling. This is then extended

to the 2D version, the square Fibonacci lattice, which is an arrangement of the 1D
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quasiperiodic Fibonacci chain in two perpendicular directions.

Throughout this thesis we will delve further into the motivation and background

briefly mentioned here. The full story is set with the previous influential works in

wave scattering by random, quasiperiodic and periodic materials and the history of

quasicrystals, their properties and applications, and how one would go about con-

structing such a quasiperiodic distribution. Only after this, will we be able to discuss

the new results for acoustic wave propagation through 1D and 2D quasiperiodic struc-

tures and provide solutions to appropriate periodic approximations that one could use

to model the aperiodic lattices.

Therefore, we begin in chapter 2 with the general background required for the the-

sis. Section 2.1 introduces quasicrystals, and how they provide motivation to consider

analogous quasiperiodic structures. It is necessary to then discuss the background

behind the geometry of these structures, and the complicated method behind their

construction. We will then also be able to introduce two different approaches to ap-

proximating the quasiperiodic lattices, through a periodic average structure (PAS) and

an approximant. The construction methods of the two periodic approximations are

then briefly discussed along with reviews of existing literature in the area. In section

2.2 a literature review of existing work within wave propagation in random, quasiperi-

odic and periodic structures is given. The method of multiple scattering theory in 1D

and 2D is discussed in sections 2.3 and 2.4 respectively, in particular for finite and

infinite arrays of isotropic scatterers.

With the background laid out, we will develop an algorithm in which one can

construct the 1D quasiperiodic lattice, the Fibonacci chain, in chapter 3. Then, by

introducing variations to this method, we develop algorithms to produce two peri-

odic approximations of the Fibonacci chain. The algorithms provided in this chapter

provide essential steps and mathematical formulae that are built upon later, when

developing the algorithms for more complicated 2D quasiperiodic structures. To our

knowledge, there are no other well-documented and rigorous algorithms for the con-

struction of quasiperiodic lattices via the projection method for mathematicians to

apply.

In chapter 4 we consider 1D time-harmonic wave propagation through the previ-

ously constructed 1D lattices, using point scatterers on a 1D string. In developing
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this theory we derive novel recursive formulae. The formulae are employed to con-

struct comparisons between the three finite distributions of scatterers, and thus find

suitable periodic lattices to approximate the Fibonacci chain. We derive a new for-

mula in which one can find an effective wavenumber for a finite arbitrarily distributed

array by modelling the array as a finite homogeneous section of string. The effective

wavenumber of infinite periodic structures is also derived in a novel approach which

can exploit prior knowledge of the wave propagation in a single finite period of the

infinite structure. Applying this technique to the periodic lattice that represents the

Fibonacci chain lattice enables the modelling of an infinite quasiperiodic lattice, which

would otherwise not be possible.

Chapter 5 applies the 1D quasiperiodic lattice and its approximations to a 2D

scenario. In this problem infinite circular cylinders with small radii are considered as

scatterers in an infinite space. Assuming incoming time-harmonic plane waves in the

plane perpendicular to the length of the cylinder allows this problem to be reduced

to a 2D slice of the 3D set up, considering circular scatterers on a plane. In this

chapter the specific scenario under consideration is an array finite in one direction

and infinite in another. Consider an infinite single row of cylinders with periodic

separation, then take a finite set of the rows, separated by spacings determined by the

1D Fibonacci chain. This arrangement of finite numbers of infinite periodic rows has

also been referred to as “tube bundles” in the literature [55]. Considering this set up

offers analysis involving the complications of 2D wave scattering, whilst keeping the

lattice structure relatively simple with just one direction of quasiperiodicity. In this

section we analyse the problem of one infinite periodic row from first principles, and

then extend the recursive formulae from the 1D analysis into 2D, to be able to solve

for a large number of rows with varying separation. As with the 1D analysis, once the

recursive formulation has been derived, we are able to draw comparisons between the

quasiperiodic and periodic structures. Analogously, effective properties of an infinite

periodic structure with arbitrary period can be derived by exploiting the formulations

derived for the finite period array.

Before it is possible to consider 2D wave propagation in a fully 2D quasiperiodic

lattice we must develop analogous algorithms to those in chapter 3 in order to construct

the 2D quasiperiodic lattices. We develop these algorithms in chapter 6, along with the



CHAPTER 1. INTRODUCTION 26

construction of the periodic average structure and approximant periodic lattices. We

construct two 2D quasiperiodic lattices: the square Fibonacci lattice and the Penrose

lattice. To construct the Penrose lattice we use the projection method from 5D,

which is widely used in crystallography, but here we attempt to describe the method

rigorously, and make the projection much more intuitive by using 4D space too.

In chapter 8 we determine the propagation properties of time-harmonic waves mul-

tiply scattered by a finite array of small circular cylinders distributed in a square

Fibonacci lattice using the multipole method. We will draw comparisons between the

scattering from this lattice and its approximations to determine an appropriate peri-

odic lattice that can be used to model the square Fibonacci lattice. Results are given

for the effective properties of this periodic lattice which models the effective properties

of an infinite square Fibonacci lattice.

In chapter 9 we come to the main focus of our research: multiple wave scattering

by the Penrose lattice. We again use the multipole method to determine the wave

propagation through a finite array. As with the previous chapter, comparisons are

made between the scattering from the Penrose lattice and its approximations to deter-

mine an appropriate periodic lattice that can be used to accurately model the Penrose

lattice. Results are given for the effective properties of this periodic lattice which

represents the effective properties of an infinite Penrose lattice.

In chapter 10 we summarise the achievements of this thesis, and discuss the future

options for continued research in this area.



Chapter 2

Background

The work in this thesis combines two different areas of research: scalar wave propaga-

tion in heterogeneous media and quasiperiodic structures. Both topics are substantial

in their content and existing literature, but the combination of the two is more limited.

In this background chapter general overviews of both topics are given with a focus on

the particular areas relating to the research presented in this thesis.

Providing a historical overview of wave propagation in random, periodic and quasiperi-

odic structures and a historical overview of quasiperiodic structures should aid the

illustration of the motivation of the thesis. These overviews along with descriptions of

some of the methods associated with multiple scattering theory provide the necessary

tools to advance to the work of the thesis in which the worlds of wave theory and

crystallography are combined.

2.1 Geometry

This section introduces the background to the quasiperiodic lattices investigated in

this thesis. Details of the discovery, geometry and construction of the quasiperiodic

structures and some related approximations are given.

2.1.1 Quasicrystals and the Penrose tiling

Quasiperiodic lattices are aperiodic but deterministic, where deterministic means that

the lattice is generated by a well-defined formula, without randomness. A lattice with

these characteristic therefore provides an intermediate structure between periodic and

27
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random. Quasiperiodic structures are not just fictitious media that we consider merely

due to these intermediate properties, they are also apparent in the atomic structures

of some quite fascinating materials. Such structures exist in what are known as qua-

sicrystals. Research in this area, considering associated properties and applications,

is rapidly expanding. Thus, we are motivated by both the mathematical and physical

aspects of quasiperiodicity.

We begin by reviewing the history and development of both quasicrystal and Pen-

rose tilings; research for which happened in parallel and came together somewhat by

chance.

The long standing definition of a crystal used to be a solid whose constituent atoms,

molecules, or ions, are arranged in an ordered pattern in all three spatial directions.

Importantly, these ordered patterns were defined to possess only two, three, four and

six-fold rotational symmetries in their diffraction patterns, where n-fold rotational

symmetry of an object means that a rotation of an angle 2π/n about a point (in 2D)

does not alter the object. Figure 2.1 shows some examples of point lattices (left) and

their diffraction patterns (right).

A diffraction pattern is a plot of the diffracted light intensity as a function of the

scattering angle. It was thought that the only possibility of the ability to diffract in

an ordered manner came from the existence of a large array of elements with periodic

spacing due to Bragg diffraction. This ability can also be described as long-range

order.

The definition stated that crystals have atomic structures with long-range periodic

order that can be described by a single atom or atomic cluster that repeats itself at

regular intervals.

One can determine the structure of the crystal from the diffraction pattern. More

detail of diffraction theory can be found in [66], but we will discuss it briefly here.

Denote the density of electrons in the crystal by the function f(r), r ∈ R
3. If the

atomic structure can be defined by some lattice Λ then

f(r) =
∑

l∈Λ
δ(r− l), (2.1)

where δ(x) is the Dirac delta function. The Fourier transform of the density function
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Figure 2.1: Three point lattices with square, rectangular and hexagonal arrangements
(left) and their diffraction patterns (right). Image from [66].
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is given by

F (q) =

∫ ∞

−∞
f(r)e−2πiq·rdr, (2.2)

which is equal to zero except when q ∈ Λ∗ the reciprocal lattice, defined such that

q · l = 2πn, q ∈ Λ∗, l ∈ Λ, n ∈ Z. (2.3)

Theorem 3.2 in [66] states that

F
(

∑

l∈Λ
δ(r− l)

)

=
∑

l∗∈Λ∗

δ(q− l∗), (2.4)

where F denotes the Fourier transform operator. This states that the diffraction

pattern of a point lattice (inferred from the right of the equation) is the reciprocal

point lattice (inferred from the left). Therefore, it is possible to use the data produced

in an x-ray diffraction experiment along with inverse Fourier transforms to deduce the

original atomic structure of the crystal.

The long standing definition of a tiling of n-dimensional (nD) space is an arrange-

ment of a finite set of tiles that fill the space completely, with full tessellation. A

non-periodic tiling is a tiling in which there is never translational symmetry in more

than (n − 1) linearly independent directions. For example, a non-periodic tiling in

1D cannot have translation symmetry and a non-periodic tiling in 2D must not have

translation symmetry in more than one direction. The tiles used to create such a tiling

are aperiodic tiles. The tiles can only be classed as aperiodic if they only produce

non-periodic tilings. Interest in non-periodic tilings began in the 1960’s with Wang

and Berger, [34]. Initially, the aim was to prove that such a set of tiles is possible, and

then to decrease the number of tiles used. Berger’s first set contained 20,426 tiles!

In the 1970s observations were made in the field of crystallography in which alloys

produced diffraction patterns with orders of rotational symmetry other than two, three,

four and six. Due to the long standing definition of crystals this work was disregarded.

Meanwhile, in 1974 Penrose managed to reduce the number of aperiodic tiles re-

quired to tile the 2D plane to just two, [62]. He found two sets of tiles, the fat and

thin rhombi and the kite and dart, depicted in figures 2.2 and 2.3, respectively.

The tiles defined by Penrose must be decorated in a particular manner and placed

to match these patterns accordingly, as depicted, so that they can only produce a

non-periodic tiling. The tiling constructed is non-periodic but it exhibits a five-fold
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Figure 2.2: The rhomb tiles with the lines on that force the tiles together aperiodically
and produce five sets of parallel lines called the Amman bars. Here, A = 1

2
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Figure 2.3: The kite and dart tiles, their angles, and one type of matching rule that
can be used. Here A = 2π/5, B = 4π/5, C = 2π/10 and D = 6π/5.

rotational symmetry, and has many more interesting properties, details of which are

given in [34]. Figure 2.4 depicts this five-fold rotational symmetry in a Penrose tiling

made of the rhombic tiles.
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Figure 2.4: Penrose tiling with the two rhomb tiles. Image from [1].

The Penrose tiling is non-periodic and so contains no translational symmetry. How-

ever, at a distance there looks to be some order in the tiling and there are repeating

patterns. This suggests some form of long-range order, in a different sense to the

definition given earlier. In fact Grunbaum and Shephard [34] show that for some cir-

cular region A, of diameter d, of a Penrose tiling, copies of A can be found within

a region p < τ 5d, for τ = 1+
√
5

2
is the golden ratio. They state that this is an over

estimation, and both Penrose and Ammann claim that the maximum distance p is

actually (1
2
+ τ)d. The fact that any finite patch A of tiling from the Penrose tiling

appears infinitely many times in every Penrose tiling is known as the Local Isomor-

phism Theorem, and is also discussed in [34]. It reveals the “near” periodicity of such

tilings.

In 1976 Ammann found a 3-D analogue to the Penrose Tiling that he thought could

potentially model viruses which grow in a non-periodic way [67], but did not publish

his work. (Further work has recently been conducted in this area with great success,

see [78] and references within for further details).

There exist a few methods to construct the Penrose tiling that are more “mathemat-

ical” than merely matching the patterns on the tiles a mentioned above. De Bruijn’s

1981 paper provides the tools needed [22]. Further approaches to the construction are

introduced later in this background chapter.
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Shechtman first observed quasicrystals in 1982, but this was received with disap-

proval and doubt from the scientific community. It was not until two years later that

he published his findings, [68]. Shechtman found an Aluminium-Manganese (Al-Mn)

alloy that was rapidly cooled after melting. The alloy produced a diffraction pattern

that had five-fold rotational symmetry, as depicted in figure 2.5.

Figure 2.5: Electron diffraction pattern of an icosahedral Al-Mn quasicrystal. Image
from [68].

The definition of the crystal along with an understanding of Bragg diffraction in

ordered media did not allow for a five-fold rotation symmetry. Therefore, Shechtman’s

conjecture, “we have thus a solid metallic phase with no translational order and with

long-range orientational order”, caused great controversy. He argued that the clear-

cut diffraction pattern shows that there does exist long-range order in the solid, but

due to this five-fold rotational symmetry it should not be periodic.

The quasicrystal reported by Shechtman was thermodynamically unstable, thus

when heated it formed a regular crystal. This meant that any further studies of

the structure were difficult. In 1987 the first stable quasicrystal was formed [77],

opening the doors to research in this area. Eventually, once large numbers of stable

quasicrystals could be produced for experimentation, people began to not only accept

the concept of the quasicrystal, but to also see its potential applications.

In 1991 the International Union of Crystallography changed the definition of the
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crystal. The definition is now separated in to two categories: those with crystallo-

graphic and non-crystallographic symmetries. The previous definition of the crystal

where there exists translational symmetry within the crystal lies in the crystallographic

category and quasicrystals lie in the non-crystallographic category.

Quasicrystals themselves have since evolved and are no longer restricted to just a

five-fold rotational symmetry. There are quasicrystals that are quasiperiodic in just

two of the three spatial directions called polygonal or dihedral quasicrystals. These

have one periodic direction perpendicular to the quasiperiodic layers, and can have

8, 10 or 12-fold symmetry (octagonal, decagonal or dodecagonal respectively). There

are also quasicrystals that are quasiperiodic in all three spatial directions. These have

5-fold symmetry and are called icosahedral quasicrystals.

By comparison of the diffraction pattern of quasicrystals with those of Penrose

tilings, it was recognised how the two parallel discoveries of the quasicrystal and the

Penrose tiling could be merged. The Penrose tiling became crucial in the development

of quasicrystals, by representing a cluster of atoms in the quasicrystal by each Penrose

rhomb. The vertices of tiles in the Penrose tiling, i.e. a Penrose lattice, can represent

the atomic structure of one layer of a quasicrystal.

The non-periodic arrangement of the atomic structure in quasicrystals gives rise to

many unusual properties, making it very different to conventional crystals. Jazbec’s

seminar [41] provides an instructive overview. One of the most useful properties of the

quasicrystal is its hardness. This can be understood easily if we consider the differ-

ence between the quasiperiodic and periodic crystals. In periodic structures the atomic

planes or layers can slide past one another when under strain. But in the quasiperiodic

structures these planes do not exist and so analogous sliding is not possible. Other

properties include low thermal conductivity, low electrical conductivity, reduced wet-

ting, a low friction coefficient, high corrosion resistance, a ductile-brittle transition and

superplasticity at high temperatures. Most of these properties are beneficial, but the

brittle behaviour currently restricts the mechanical applications to coatings. Exam-

ples of applications are the coating on frying pans and other cookware, cylinder liners

and piston coatings in motor-car engines, coatings on metallic parts for bone repair

and prostheses, thermal screens in rocket motors and aero-engines turbines, hydrogen

storage and a reflective layer within solar cells.
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In 2009 the first natural quasicrystal was found [15] creating further interest and

excitement in the field. Furthermore, in 2011, Shechtman’s discovery was eventually

rewarded and he was presented with a Nobel prize, [18].

With such a range of potential applications of quasicrystals and new interest in the

area due to recent developments, we pose the question, can analogous quasiperiodic

composite structures on a slightly larger scale, often referred to as the mesoscale, also

have interesting properties and applications? For example, properties such as high

hardness can be expected to still hold at a larger scale. With this motivation it would

also be beneficial to understand the wave propagation through such structures.

There are various methods of mathematical construction of Penrose tilings. In

this thesis the focus is on the projection method, which is discussed in sections 2.1.2

and 6. The projection method takes a selection of higher-dimensional lattice nodes

and projects them to the dimension of space of interest. The projected nodes form

the nodes of the quasiperiodic tiling, i.e. the vertices of the Penrose rhombi. For the

Penrose lattices the projection is made from a 5D periodic lattice, due to the 5D

reciprocal space, to a 2D plane. To produce other non-periodic tiling representations,

one must consider different higher-dimensional spaces from which the projection is

made. The dimension of this space reflects the rotational symmetry in the diffraction

pattern of the quasicrystal. The least such projection dimension can be found using

the Euler totient function φ(n) [66], where n is the order of the rotational symmetry.

The Euler totient function is the number of integers less than and relatively prime to

n, and be computed easily using the two properties

φ(pk) = pk−1(p− 1), p prime, k ∈ Z (2.5)

φ(n1n2) = φ(n1)φ(n2), n1, n2 ∈ Z. (2.6)

For example

φ(8) = φ(23) = 22(2− 1) = 4. (2.7)

Thus, the actual minimum dimension from which the Penrose tiling can be projected

from is φ(5) = φ(51) = 50(5− 1) = 4.

In this thesis the projection method for the Penrose tiling from 5D and 4D to 2D

will be discussed as this is the pattern we are most interested in. However, the method

and algorithm developed can be altered for other quasiperiodic lattices accordingly.
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The projection method is rather complicated, and few full algorithms have been

published ([82], [21]), so we begin by introducing the simpler 2D to 1D analogy, which

we will use in the 1D wave propagation problems. After this foundation has been laid,

it will be possible to discuss the projection method from five and 4D space.

2.1.2 Quasiperiodic lattices

In the previous section the concept of particular quasiperiodic lattices was introduced

along with our interest in them due to their links with quasicrystals. The Penrose

tiling gives the atomic positions of the first quasicrystal discovered [68] and is the 2D

quasiperiodic lattice and quasicrystal most discussed. As mentioned in the previous

section, the Penrose tiling can be constructed by projecting from a higher-dimensional

space of order five. The 5D space is impossible to visualise and therefore the method

can be difficult to apply. There is a lot of literature on the projection method, and

great outlines described e.g. [66], but few exact algorithms have been published. A

much easier projection to visualise is the 2D to 1D analogy of the Penrose tiling, also

discussed in [66], which can define the 1D analogy, the Fibonacci chain. Let us discuss

this 1D quasiperiodic lattice first to introduce the concept and notation.

The Fibonacci chain

The Fibonacci chain is a 1D aperiodic chain consisting of two different ‘tiles’/lengthscales,

L and S, or ‘large’ and ‘small’. These lengths are related by the golden ratio τ by

L = τS, (2.8)

where

τ =
1 +

√
5

2
. (2.9)

There are three common ways in which the Fibonacci chain can be constructed.

One of the simpler methods is called the superposition method. The superposition

method follows on from the logic of Fibonacci numbers. The nth Fibonacci number is

generated by summing the previous two Fibonacci numbers, i.e.

Fib(n) = Fib(n− 1) + Fib(n− 2), for Fib(1) = Fib(2) = 1. (2.10)
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The Fibonacci sequence is therefore of the form

1 1 2 3 5 8 13 21 · · · . (2.11)

The Fibonacci chain is generated in a similar manner. The nth Fibonacci chain is

given by ‘summing’ the two previous Fibonacci chains together. Define the first chain

which we will denote D1 to contain an S spacing. Define the second chain D2 to

contain an L spacing. The third Fibonacci chain D3 is obtained by appending the first

chain to the end of the second, L and S. This is then repeated: D4 is the sum of D3

and D2. Table 2.12 shows the Fibonacci chain pattern constructed in this manner.

n Dn

1 S

2 L

3 LS

4 LSL

5 LSLLS

6 LSLLSLSL

7 LSLLSLSLLSLLS

8 LSLLSLSLLSLLSLSLLSLSL

(2.12)

A depiction of this Fibonacci chain is shown in figure 2.6 with regards to point masses

on a string with separations between the masses determined by the Fibonacci chain.

D2

D3

D4

D5

D6

· · ·

Figure 2.6: Example of a section of of the Fibonacci chain, with long L (blue) and
short S (orange) spacings.

An alternative method of construction for the 1D Fibonacci chain is called the

substitution method [34]. For the substitution method define D1 to consist of one S
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spacing, and apply the following substitutions on each recursion:

L→ LS, S → L. (2.13)

Using this method the same Fibonacci chain described in table 2.12 is achieved.

The projection method is the final method available to construct the 1D Fibonacci

chain. This is the most complicated, but is the method that extends to higher dimen-

sions, and thus an extension of the construction algorithm will be possible to produce

the Penrose tiling. This method works by first taking a square 2D lattice. A selection

of lattice points is then taken which will be used in the projection. One approach to

the selection of these lattice points is by taking a strip of the lattice at some specified

irrational angle, and of a certain width, as depicted in figure 2.7 by the grey strip.

Every point within this strip is included and projected down to a 1D line parallel to

the strip boundaries to produce the Fibonacci chain.

à à à à à à à à à à à à à à à à à

e2

e1

d1

d2

θ

Figure 2.7: A depiction of the projection method from a 2D square lattice to the 1D
Fibonacci chain using two alternative approaches to the selection of lattice nodes: via
a strip (grey region); and via acceptance windows (red lines)

If the angle of the strip is altered to some rational angle, then it is not possible to

achieve a quasiperiodic lattice, as the lattice will repeat itself. If the strip is too wide

or too narrow, then it is not possible to achieve a fully quasiperiodic lattice of just two

related lengths. This method is discussed in many books as part of an introduction

to crystallography and the projection method, [66]. To construct the Fibonacci chain
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the angle θ at which we must take the strip is

tan θ =
1

τ
. (2.14)

The height of the strip must be of a size that allows only one unit square of the lattice

to lie within it. If we have one unit square which has two opposite diagonal lattice

points laying on the two boundaries of the strip then we can only take one, i.e. we

must have a ‘<’ constraint on one boundary rather than a ‘≤. A little trigonometry

reveals that the height of this strip must be

h =
τ 2√
1 + τ 2

, (2.15)

when we have a unit square lattice. A derivation of the angle and the height of the

strip can be seen in appendix A.1 and A.2, respectively.

An alternative method for the selection of N -dimensional (ND) lattice points for

a d-dimensional (dD) quasiperiodic lattice is via acceptance windows. Acceptance

windows are particular (N − d)D polytopes that are positioned on every ND lattice

node. A polytope is a geometric object with flat sides that can exist in any number of

dimensions. The ND lattice must be subtended from the dD space by the angle θ as

depicted by the angle between e1 and d1 in figure 2.7. In the 2D to 1D projection the

angle θ is given by equation (2.14). The selected lattice nodes are the nodes with an

associated acceptance window that intersects the dD space. In the 2D to 1D projection

the acceptance windows are derived to be lines, of length equal to the height of the

strip just described, that are positioned on every 2D lattice node, as depicted by the

red lines in figure 2.7. They are positioned in the same direction as the height of

the strip. The dD space in this instance is the 1D line along the horizontal. It can

be seen that the Fibonacci nodes (blue squares) are positioned where the acceptance

windows intersect the horizontal line. This is the approach taken in this thesis, and

is fully explained in section 3.1. It is mathematically easier than the strip to extend

into higher dimensions.

We have developed an exact algorithm for the construction of the 1D Fibonacci

chain using the projection method which is described in chapter 3.

In order to explain the extension to higher-dimensional projections for other quasiperi-

odic lattices, let us now define a few components of the 2D to 1D projection. Define



CHAPTER 2. BACKGROUND 40

the 1D line subtended from the 2D lattice at an angle θ, the parallel space. This is the

1D line that the selected lattice points are projected to. Define the space perpendicular

to this to be the perpendicular space.

The Penrose tiling

To construct 2D quasiperiodic lattices such as the Penrose tiling, an analogous projec-

tion method can be applied. In fact, the Penrose tiling is a 2D Fibonacci chain. For the

Penrose tiling begin with a 5D unit hypercubic lattice. As mentioned in the previous

section the minimal dimension from which the Penrose tiling can be projected from

is actually 4D, however, in that instance a hypercubic lattice can no longer be used,

a hyperrhombic lattice must be taken instead. Beginning with a 4D hyperrhombic

lattice would complicate the extension of the 2D to 1D Fibonacci chain construction

somewhat. However, using the minimum dimension of four has its advantages as it re-

duces the degrees of freedom of the entire problem by one, thus making the procedure

a little easier and reduces the computation time. We will later discuss the projection

from 4D, but as this is rarely used in practice, for this background introduction we

shall stick to the commonly used 5D projection.

The parallel space in this projection is a 2D plane subtended from the 5D lattice by

specific angles related to τ . The perpendicular space is a 3D hyperplane perpendicular

to the parallel space. The selection of the 5D lattice nodes is made via a 5D “strip” or

3D acceptance windows. Using the strip method to select the lattice nodes to project

results in a selection of the lattice nodes within the strip. Alternatively, using the

acceptance windows method, one selects the nodes for which its associated acceptance

window intersects the parallel space. The selected nodes in either method are the

same and are then projected to the parallel space to give the 2D quasiperiodic Penrose

lattice. As mentioned above, it is mathematically easier to apply the acceptance

window method to determine the lattice nodes for selection. The derivation of the 3D

acceptance windows will be given in chapter 6.

Alternative methods of construction for the 2D Penrose tiling exist. One example

was given in section 2.1.1 (e.g. figure 2.2) whereby marked tiles could be placed together

ensuring a continuation of the pattern. This is a more visual procedure which is harder

to define mathematically.
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Another example of a construction method for the Penrose tiling is via the penta-

grid method. De Bruijn introduced the pentagrid method for constructing a Penrose

rhombic tiling in 1981, [22]. In this method he defines five sets of parallel, equally

spaced lines, each at an angle of 2π/5 from each other. The five sets of lines are

normal to the five vectors

dj =





cos(2πi/5)

sin(2πi/5)



 , 1 ≤ j ≤ 5. (2.16)

Every line in each set is then given an integer index. Examples in figures 2.8a and

2.8b depict the labelling of one set of lines and the full family of lines, respectively.

The full family of lines is called the pentagrid.

(a) One (of five) set of lines with labelling. (b) Family of all five set of lines.

Figure 2.8: Formation of the pentagrid for the construction of the Penrose tiling.
Images from [8].

De Bruijn’s description ensures that no more than two lines can intersect at any

point by adding a shift γj on each set of lines 1 ≤ j ≤ 5. He defines this shifted

grid as a regular pentagrid. At each intersection of two lines there are four associated

surrounding polygons formed by the lines. It is possible to define a 5-tuple of integers

(m1,m2,m3,m4,m5) to each of these polygons that is determined by the integer index

(figure 2.8a) of each of the five sets of lines surrounding the polygon. This 5-tuple is

then used to define a lattice node of the Penrose tiling

xPen =
5
∑

j=1

mjdj, (2.17)
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where the basis dj is defined in equation (2.16). The computational difficulties in this

method lie with determining the intersection points and the associated four sets of

5-tuples of integers.

Investigations of the pentagrid method have not been continued in this thesis be-

cause the method is only applicable to the 2D Penrose tiling. Although that is the main

quasiperiodic structure of interest in this thesis, it would restrict further applications.

The pentagrid and the projection method are comparable in some ways. The pen-

tagrid lines in the 2D plane correspond to hyperplanes in 5D space. The hyperplanes

form shapes around the 5D lattice nodes in the form of the hypercubic Voronoi cell of

the higher-dimensional lattice, which is what is used to define the acceptance windows

in the projection method, [66]. The concept and formulae for the Voronoi cell for the

Penrose tiling and its relation to acceptance windows are discussed in chapter 6.

2.1.3 Periodic average structures

The concept of a periodic average structure (PAS) for a quasiperiodic lattice was first

discussed by Steurer and Haibach in 1999 [71]. Their aim was to find discrete periodic

structures comparable in some way to the quasiperiodic structures. They hoped that

the periodic structures could aid in the understanding of the geometry of quasicrystal

to crystal transformations. The periodic structures would also enable the derivation

of the physically most relevant Brillouin zones for the quasiperiodic structures.

The PAS is a periodic structure with period determined by the properties of the

quasiperiodic structure in question. Steurer and Haibach [71] define a PAS for the

1D Fibonacci chain, 2D Penrose tiling and 3D Ammann tiling. The method used to

derive such a lattice is based on a choice of a base set of reflections in the quasicrystal

diffraction pattern which is defined in the reciprocal space of the lattice. By basing

the structure of the periodic lattice on characteristics of the quasiperiodic structure,

the PAS aims to capture the main essence of the properties of the quasiperiodicity.

The PAS defined for the 1D Fibonacci chain has a period which can be defined by

the average spacing of the Fibonacci chain, d̄. The average spacing is determined by

the ratio of the length of the distribution over the number of spacings in the limit to
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infinity, i.e.

d̄ = lim
N→∞

Fib(N)S + Fib(N + 1)L

Fib(N) + Fib(N + 1)
. (2.18)

Applying the relationship L = τS gives

d̄ = lim
N→∞

S(1 + τFib(N + 1)/Fib(N))

1 + Fib(N + 1)/Fib(N)
. (2.19)

In the limit N → ∞, the ratio Fib(N + 1)/Fib(N) is well known to tend to τ the

golden ratio, [34]. Thus the average spacing tends to

d̄→ S
1 + τ 2

1 + τ
= (3− τ)S, (2.20)

using the well-known identity τ 2 = τ + 1.

For the 2D Penrose lattice the reciprocal lattice plane which contains the main

reflections of the diffraction pattern is spanned by [71]

d̄1
∗
= a∗

√
3− τ





cos π/10

− sin π/10



 , d̄2
∗
= a∗

√
3− τ





0

1



 , (2.21)

where a∗ is the length of the higher-dimensional reciprocal base vectors and is related

to the Penrose rhomb side length ar and will be discussed further in chapter 6. In the

work in this thesis we usually consider a unit higher-dimensional space and thus set

a∗ = 1. Using the formula for reciprocal lattice vectors (2.3) it can be shown that the

PAS lattice basis vectors can be defined by

d̄1 =
2√
5a∗





1

0



 , d̄2 =
2√
5a∗





sin π/10

cos π/10



 , (2.22)

One can see that the higher-dimensional approach is not necessary for the construction

of the PAS, however, Steurer and Haibach choose to follow this route because it can

allow further insight in to the meaning of PAS and quasicrystals. To create the PAS

from the higher-dimensional approach one must project the higher-dimensional lattice

down to the parallel plane. The derivation of these projections is described in sections

3.2 and 6.3.

The projection matrix used to project the higher-dimensional lattice nodes onto

the PAS lattice nodes can also be applied to the acceptance windows in the higher-

dimensional space. The boundaries of the projected acceptance windows give the

maximum distance each quasiperiodic lattice node can lie from the nodes of the PAS.
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Figure 2.9: Projection of the 2D square lattice nodes and acceptance windows to the
1D PAS nodes and occupancy windows. Image from [71].

Define the projected acceptance window the occupancy window. Figure 2.9 shows

an example of the projection of the acceptance windows for the 1D Fibonacci chain

from the 2D square lattice taken from [71]. The vertical lines on each of the 2D

lattice nodes denote the acceptance window. The horizontal thick black lines along

the parallel space show the occupancy windows. The PAS nodes lie at the centre of

the occupancy windows. The Fibonacci nodes are determined by the intersections of

the acceptance windows with the parallel space/horizontal line.

The larger the area of the projected acceptance window compared to the unit

cell of the PAS the further the quasiperiodic nodes can deviate from the PAS. If the
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deviations are large then the two lattices are expected to be quite dissimilar. The

1D Fibonacci chain and its PAS are one-to-one, i.e. for every PAS node there is an

associated Fibonacci chain node. However, the Penrose and Ammann tiling PASs are

not one-to-one. This results in some PAS nodes with no associated quasiperiodic node

nearby, and some with two neighbours!

There are some measurable quantities of the PAS in comparison to the quasiperi-

odic structure due to the projection of the acceptance windows. The quantities can

help gauge whether or not the PAS is statistically “close” to the quasiperiodic structure

or not. These quantities are the occupancy factor ρocc and the packing density ρpac.

The occupancy factor is the fraction of the occupancy windows containing a quasiperi-

odic lattice node. For the one-to-one Fibonacci chain PAS this is obviously ρocc = 1.

For the Penrose tiling the occupancy factor is shown [71] to be much lower ρocc = 0.85,

therefore 15% of the projected acceptance windows are empty. When the windows are

empty of quasiperiodic nodes the respective PAS nodes are classed as defects. The

packing density is a measure of how much of the total parallel plane the projected

atomic windows cover, obviously the larger the ρpac the further the quasiperiodic lat-

tice node could lie from the PAS lattice node, and thus the less accurate the PAS is.

The ideal PAS would have ρocc = 1 and ρpac = 0, the greater the deviation from this

the worse the PAS is as an approximation to the quasiperiodic lattice. For the 1D

Fibonacci chain ρpac =
1√
5
= 0.447 and for the 2D Penrose lattice ρpac =

3−τ
τ

= 0.342.

For the 1D PAS, there is a one-to-one relationship between the PAS and Fibonacci

nodes, but a relatively high variance of quasiperiodic node to periodic. With the

Penrose tiling, 15% of the PAS nodes are defects whilst there is a reasonable variance

of the quasiperiodic to periodic node. These statistics suggest the PAS for a Penrose

lattice may not be the most accurate of approximations. These stated measures are

derived in [71].

Within Steurer and his colleagues’ work they find some good PASs for other

quasiperiodic structures, the 8-fold 2D quasiperiodic lattice for instance. In 2007

Steurer applied the concept of the PAS of quasiperiodic structures to phononics with

a PhD student Sutter-Widmer [75]. Typically the study of scattering in quasicrystals

is restrained to photonics due to the atomic spacing of the crystals and the wavelength
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of light. Sutter-Widmer considers sound scattering through the quasiperiodic struc-

tures and how this compares to the scattering through their PASs. Some results from

these investigations will be discussed in section 2.2.3.

In this thesis investigations of PAS lattices as approximations of quasiperiodic

lattices are continued. It is of interest to investigate this PAS further from a more

analytical approach, to see if improvements can be made, and to compare to other

periodic approximations.

2.1.4 Approximants

An approximant to a quasiperiodic lattice is a periodic lattice that retains some of the

quasiperiodicity of the original lattice within its unit cell. The approximant lattice

can be derived by a slight alteration to the projection method used to construct the

quasiperiodic lattices discussed in section 2.1.2.

After the publication of the discovery of quasicrystals [68] it was experimentally

inaccessible to study the atomic structure of the then unstable quasicrystals. Inves-

tigations of alternative methods to understand this new phenomenon resulted in the

work published by Elser and Henley [25], who proposed approximant structures for

quasicrystals. Their aim was to find a structure closely related to that of the Al-Mn

quasicrystal, which would provide a simpler model of the quasicrystal structure. The

periodicity of the approximant structure agreed with the ideas of crystal growth via a

replicating cell.

In the construction of the approximant via the projection method, τ is approxi-

mated by a rational number. The rational number chosen is the ratio of consecutive

Fibonacci numbers,

τ ≈ τn =
Fib(n+ 1)

Fib(n)
. (2.23)

It is well known [34] that the ratio of consecutive Fibonacci numbers (2.23) tends to τ

as n→ ∞. The n chosen in the approximation also determines the size of the periodic

cell. The larger n the larger the size of the unit cell. As one would expect intuitively,

as n→ ∞ the resemblance of the approximant to the quasiperiodic lattice improves.

The basics of the method for the construction of the approximant for the 1D

Fibonacci chain are described as set out by Elser and Henley [25] to illustrate the

theory. In the construction of the 1D quasiperiodic Fibonacci chain from a 2D unit
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Figure 2.10: Comparison of the strip used in the projection method from 2D to 1D.
(a) shows a strip with a gradient m = τ creating the Fibonacci chain lattice. (b) has a
strip with gradient m′ = 2/1 creating a periodic approximant of the Fibonacci chain.
Image from [25].

square lattice as discussed in section 3.1, the perpendicular plane was positioned at

an irrational angle θ + π/2 from the 2D lattice, for θ defined in (2.14). For the

approximant, take a rational approximation of this angle using τ ≈ τn. The selection

of 2D lattice nodes will vary slightly due to this change. Projecting the selection of 2D

lattice nodes to the same parallel space as in the Fibonacci chain projection creates

an approximant lattice. The L and S tiles continue to be the two tiles in the structure

due to the continuation of the use of the parallel plane. However, the distribution of

the tiles changes, due to the alteration of the perpendicular space. The rationality of

its subtended angle forces a periodic arrangement of the tiles.

When using the strip approach to select the lattice nodes, the change in angle of the

perpendicular plane relates to change in gradient of the entire strip. The parallel plane

remains the same as with the quasiperiodic projection, and is no longer considered as

the boundary of the strip. Figure 2.10 shows the difference in the two strips for

the Fibonacci chain and the approximant with τ ≈ 2
1
. The formulation when using

acceptance windows to select the lattice nodes will be discussed in detail in section

6.4.

The concept can be extended into higher dimensions using the same idea, but
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Figure 2.11: Diffraction Pattern for two 3D lattice structures, where the intensity is
shown by the area of the circles. (a) is for an approximant of the 3D Penrose tiling,
(b) is for the 3D Penrose tiling itself. Image from [25].

approximating τ in the multiple directions of the perpendicular plane. Elser and

Henley [25] only discuss this extension in short for the 3D Penrose case.

The potential of this method as an accurate approximation of quasiperiodic lattices

is portrayed in figure 2.11 taken from [25]. The diffraction patterns are shown for a slice

of both the 3D Penrose tiling and an approximant. One can see how the approximant

captures the same highest intensity peaks as the Penrose as well as other less intense

characteristics..

With the progression of the theory behind the approximant, further work applied

the concept of the approximant and papers become more detailed in regard to the exact

construction. In 1988 Entin-Wohlman et al. [26] considered approximant lattices for

the 2D Penrose tiling and relate the two using the concept of defects. They also begin

by describing the 1D Fibonacci chain lattice approximant for ease. They show that

each n-approximant has a unit cell of Fib(n + 1) L segments and Fib(n) S segments,

so a total length containing Fib(n + 2) segments, for τ ≈ τn. They also show that in

1D there is one defect per unit cell of the approximant. In 2D Entin-Wohlman et al.

state that the minimal number of defects is one per unit cell, with explicit formulae
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given dependent on the n chosen in the approximant. The method they mainly employ

to extend into higher dimensions is the pentagrid method. The projection method is

employed in this thesis, so their approach using the pentagrid is not discussed further

here.

Lord et al. [49] and Subramaniam and Ramakrishnan [74] provide the work most

influential to the research involving approximant structures in this thesis. Both papers

employ the projection method to construct various quasiperiodic lattices and their

approximations. The papers also give insight into the form of the periodic cell of

the approximant. In the projection method they take the approach mentioned in

2.1.2 where the higher-dimensional hypercubic lattice is rotated through some oblique

angles related to τ , with [74] deriving such rotation matrices. For a dD quasiperiodic

lattice with N -fold rotational symmetry, they project from ND. The parallel space is

dD spanned by ei, 1 ≤ i ≤ d. The perpendicular space is (N − d)D spanned by ei,

d + 1 ≤ i ≤ N . In fact, both papers decompose the original rotation matrix of the

higher-dimensional lattice R into two sub matrices: A, containing the components in

the parallel space directions; and B, containing the components in the perpendicular

space directions,

R =





A

B



 . (2.24)

Thus A is a d×N matrix with column vectors ai and B is a (N − d)×N matrix with

column vectors bi, 1 ≤ i ≤ N .

When taking approximations of τ in the construction of the approximant, apply

only in the (N − d)D perpendicular space, i.e. the τ in the rows of B. Once the N − d

approximations of τ are defined, continue as before, projecting to the same parallel

space. This results in a dD approximant lattice which consists of periodic unit cells

which retain some quasiperiodicity and the same tiles as in the quasiperiodic lattice.

The periods of the approximant are determined by finding when the higher-dimensional

lattice nodes lie on the parallel space, rather than when any acceptance window in-

tersects the parallel space. Lattice nodes lie on the parallel space when there exists a

linear combination of the bi equal to zero,

n1b1 + · · ·+ nNbN = 0, ni ∈ Z. (2.25)
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The positions of these intersections on the parallel plane are

n1a1 + · · ·+ nNaN , (2.26)

and denote the vertices of the periodic cell of the approximant.

Linearly deforming the matrix B will allow the investigation of alternative periodic

cell shapes and sizes. The linear deformation is possible since linear transformations

of the perpendicular space do not affect the lattice produced in the parallel space, i.e.

if T is a non-singular matrix then

n1(Tb1) + · · ·+ nN(TbN) ∈ TWN (2.27)

if and only if

n1b1 + · · ·+ nNbN ∈ WN , (2.28)

where WN is the acceptance window in the ND space. Papers [49] and [74] both

investigate approximants for the Penrose tiling with periodic cells with basis vectors

in two perpendicular directions and at an angle of 2π/5 like a Penrose tile.

Although a lot of research was carried out with the approximant method at the

time of the discovery of quasicrystals to grasp the complexities of the quasicrystalline

structure, to our knowledge the structures have not been applied in many other con-

texts, and not at all in “phononics” or acoustics.

One application of the approximant structure in wave theory is in the work of

Florescu et al. [29], where they use approximants to find photonic bandgaps of qua-

sicrystals. This work is discussed further in section 2.2.3. Within this work the authors

focus on orthorhombic approximants and define the dimensions of such dependent on

the approximation of τ used. If τ ≈ τn = Fib(n+1)
Fib(n)

the authors state that the unit cell

has perpendicular side lengths of

Lx = 5 (Fib(n+ 1) + Fib(n)(τ − 1)) , (2.29)

Ly =
√
3− τ (Fib(n+ 1)τ + Fib(n)) , (2.30)

and

N = 10Fib(n+ 1)(Fib(n+ 1) + 2Fib(n)) (2.31)

is the number of vertices within one unit cell. Unfortunately, Florescu et al. give

no derivation of these formulae and in chapter 9 it is shown that the periods of the

approximant determined do not agree with the three quantities (2.29)-(2.31).
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The concept of a repeating cell containing information about the lattice has been

applied in wave propagation previously, but in application to random composites.

Willoughby et al. [84], [83], define representative volume elements (RVEs), containing

random distributions of scatterers, that can tessellate space to provide a model that

agrees well with previous approximate approaches. In the instance of the approximant,

there is the advantage of prior intuition for the period size and shape as a result of

the approximation of the projection method.
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2.2 Wave scattering

This section introduces the background to scalar wave propagation through distribu-

tions of scatterers. Details of some of the most influential works in the area are given.

Methods for multiple scattering are discussed that will be applied to particular struc-

tures throughout the investigations of this thesis. All investigations in this thesis are

for time-harmonic, or steady, waves and thus the time dependence e−iωt is assumed

throughout, where ω is angular frequency and t is time.

2.2.1 Wave scattering by random media

Analysis of wave propagation in random media is difficult due to the non-deterministic

scatterer positions. Therefore, analytic, numeric and experimental work continues as

people strive to gain a better understanding of the effects of randomness. It is of

paramount importance to achieve this understanding as wave scattering in random

media is ubiquitous. Most materials contain some aspect of randomness in their struc-

ture, and even a manufactured periodic structure will contain some random perturba-

tions due to error. The ability to accurately predict wave propagation through such

structures will allow great advances in technology. For example, in non-destructive

testing. Non-destructive testing requires an accurate model of the expected trans-

mitted and reflected wave field for a material. If the received wave field differs from

the expected then it is known that there is a fault in the material. Advances in the

modelling of the scattering properties of the host material will improve the diagnosis

of any faults within it.

Due to the non-deterministic nature of a random structure, little exact analysis of

the wave propagation can be conducted. Instead, many approximations or averages

must be applied. The approximations can be effective but the question arises, how can

one averaged wave field represent wave propagation through multiple different random

configurations of scatterers? Due to the high numbers of current investigations in the

area we refer the reader to [31] for a multidisciplinary review of many approaches to

1D wave propagation in randomly layered materials. This reference will provide the

interested reader with a broad introduction to the difficulties and solutions available

for propagation through random structures.
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In this chapter the focus is to provide an overview of the initial most influential

work in the area. The chapter discusses the concepts of Foldy’s averaging technique

and Anderson localisation. These two approaches were the first highly-regarded inves-

tigations of the prediction of wave propagation through random media and motivate

further exploration.

Foldy

The work of Foldy [30] is the first influential piece of research in the area of wave prop-

agation in random media. The paper, written in 1945, investigates multiple scattering

of waves by random distributions of isotropic scatterers, where isotropic scatterers

are inclusions that scatter the incident waves equally in all directions. The method

employed reduces the problem to a set of simultaneous linear algebraic equations.

The set of equations involve complex integrations that are not possible to solve in

general. Foldy introduces an alternative solution to the integrals through ensemble

averaging and application of a closure condition. This section introduces the method

and illustrates the theory for a 1D scattering problem.

Foldy begins by considering a steady-state scattering of waves of frequency ω, so

that the value of the scalar wave function at the point x(x in 1D) at time t can be

represented as U(x)e−iωt. In the absence of scatterers, U0(x) will satisfy the wave

equation ∇2U0 + k0U0 = 0, where k0 = ω
c0

and c0 is the wave speed in the scatterer-

free/host medium. The solution of the wave function U(x) in the neighbourhood of

the jth scatterer in 1D is of the form Aje
ik0|x−xj |. Continuing with the 1D analogue of

Foldy’s work, define the external field acting on the jth scatterer as

Uj(x) = U(x)− Aje
ik0|x−xj |. (2.32)

Characterise the scattering properties of the scatterers by the relationship

Aj = gjUj(xj), (2.33)

where gj an unknown scattering coefficient to be selected.

Define an incident wave U0(x), resulting in a wave function at x of the form

U(x) = U0(x) +
N
∑

j=1

AjE(x, xj), (2.34)
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where E(x, xj) = eik0|x−xj | in 1D. Combining equations (2.32) and (2.34) gives

Un(x) = U0(x) +
N
∑

j=1
j 6=n

AjE(x, xj). (2.35)

Substituting equation (2.33) in equations (2.34) and (2.35) results in Foldy’s funda-

mental equations for multiple scattering,

U(x) = U0(x) +
N
∑

j=1

gjUj(xj)E(x, xj), (2.36)

Un(xn) = U0(xn) +
N
∑

j=1
j 6=n

gjUj(xj)E(xn, xj). (2.37)

Foldy proposes the following approach in order to find an expression for the configu-

rational average of the field. The average of a physical quantity over the ensemble of

configurations is called the ensemble average and is denoted by enclosing the quantity

with angular brackets. For a function f(x) the ensemble average is mathematically

defined as

〈f(x)〉 =
∫

L

· · ·
∫

L

f(x; x1, . . . , xN)p(x1, . . . , xN)dx1 · · · dxN , (2.38)

where p(x1, . . . , xN) is the probability density function for the particular configuration

(i.e. scatterers at locations x1, . . . , xN) and L is the 1D line on which the scatterers

are positioned. Introducing a subscript notation 〈f〉j indicates that the integral over

the xj is omitted. In the 1D set up described in this section, 〈Uj(xj)〉j represents the
external field acting on the jth scatterer averaged over all possible configurations of

all of the other scatterers. All point masses are of the same mass and thus assumed to

have the same scattering properties. Identical scattering properties means that gj = g

in (2.33). A distribution of scatterers with uniform probability density function is also

assumed. In 1D the uniform distribution relates to a length 0 ≤ x ≤ L in which the

N scatterers lie with uniform likelihood. The probability density function for each

single scatterer with a continuous uniform distribution over this interval is therefore

p(xj) =
1
|L| for 1 ≤ j ≤ N . Taking the ensemble average of the field in equation (2.36),

accounting for the stated assumptions, gives

〈U(x)〉 = U0(x) +
N
∑

j=1

g

∫

L

〈Uj(xj)〉jE(x, xj)p(xj)dxj

= U0(x) +
Ng

|L|

∫

L

〈Uj(xj)〉jE(x, xj)dxj, (2.39)
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where the integration over the jth scatterer has been extracted. In order to evaluate

〈Uj(xj)〉j it is necessary to go to higher order ensemble average equations. However,

this yields unknown terms 〈Uj(xj)〉ij. Continuing, every extra order of ensemble av-

erage introduces an extra unknown. To overcome this problem Foldy introduced an

approximation (now called the Foldy closure condition),

〈Uj(xj)〉j = 〈U(xj)〉. (2.40)

The approximation (2.40) is the replacement of the external field acting on the jth

scatterer averaged over all configurations of the other scatterers by the average field

which would exist at the position of the jth scatterer when the scatterer is not present.

Applying the closure condition to the equation (2.39) results in the following integral

equation

〈U(x)〉 = U0(x) +
Ng

|L|

∫

L

〈U(xj)〉E(x, xj)dxj. (2.41)

This equation can be manipulated with an application of the operator

∇2 + k20, (2.42)

using the fact that (∇2 + k20)E(x, xj) = 2ik0δ(x− xj). It is shown that

(∇2 + k20)〈U(x)〉 = 0 +
Ng

|L|

∫

L

〈U(xj)〉2ik0δ(x− xj)dxj

=
Ng

|L| 〈U(x)〉2ik0. (2.43)

Let

k2 = k20 −
2ik0Ng

|L| , (2.44)

so that (2.43) can be written as

(∇2 + k2)〈U(x)〉 = 0. (2.45)

This suggests that the averaged field 〈U(x)〉 satisfies the wave equation in an averaged

continuous medium with effective wavenumber k. Finding the average value of the

wave function has been essentially reduced to solving a boundary value problem for

the wave equation, the boundary conditions for which are implied by the integral

equations themselves. In order to determine the form of the effective wavenumber in

equation (2.44) associated with a random distribution of isotropic scatterers the form

of the scattering coefficient g must be determined.
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The 1D problem discussed in this chapter can be considered to be an infinite string

with a distribution of point scatterers. With reference to [2], [60], [57], it can be shown

that such a set up is governed by the equation,

∂2U

∂x2
+ k20U(x) = −mω

2

T

∑

n

δ(x− xn)U(x), (2.46)

where m is the mass of each point scatterer, T is the string tension, k0 =
√

ρ0ω2

T
is the

wavenumber of the host string, and ρ0 is the density of the host string. An alternative

formulation of the wave field for a finite number of point scatterers with arbitrary

distribution can be given by employing Green’s functions for the host string. The 1D

Green’s function defined by the equation

(

∂2

∂x2
+ k20

)

G(|x− y|) = δ(x− y) (2.47)

is given by

G(|x− y|) = 1

2ik0
eik0|x−y|. (2.48)

Combining the Green’s function with equation (2.46) and using the sifting property

of the delta function results in the following equations,

U(x) = U0(x)−
Mǫ

2i

N
∑

j=1

eik0|x−xj |U(xj), (2.49)

U(xp)

(

1 +
Mǫ

2i

)

= U0(xp)−
Mǫ

2i

N
∑

j=1
j 6=p

eik0|xp−xj |U(xj), (2.50)

where M = m/m0 = m/(ρ0a), ǫ = ak0 and a = L/N is the average spacing between

the point scatterers. Comparison with equations (2.36) and (2.37) suggests that the

scattering coefficient g in Foldy’s work is of the form

g = − Mǫ

2i(1 +Mǫ/2i)
. (2.51)

Substitution into equation (2.44) for the wavenumber in Foldy’s method gives

k2 = k20 +
N

|L|
Mǫ

2i(1 +Mǫ/2i)
2ik0 (2.52)

= k20 +
1

a

Mǫ

1 +Mǫ/2i
k0 (2.53)

= k20

(

1 +
M

1 +Mǫ/2i

)

. (2.54)
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The effective wavenumber scaled on the host string wavenumber γ = k/k0, is therefore

defined by

γ2 =
k2

k20
= 1 +

M

1 +Mǫ/2i
. (2.55)

In the low frequency limit, ǫ = ak0 ≪ 0 (meaning the wavelengths are much longer

than the distances between the scatterers), this can be expanded to give

γ2 = 1 +M + i
M2

2
ǫ+O(ǫ2), (2.56)

or

γ =
√
1 +M + i

M2

4
√
1 +M

ǫ+O(ǫ2). (2.57)

Therefore, after following Foldy’s assumptions and using the ensemble average and the

closure condition, the resultant effective wavenumber is complex. A complex wavenum-

ber relates to a continual attenuation of the wave as it travels through the random

structure, despite the fact that energy is conserved. The concept of decay in the

wave field due to randomness in a structure is, although physically contradictory, well

believed. Further work that supports these ideas is that of Anderson.

The theory used in Foldy’s work is applied to small isotropic scatterers. In this

thesis the scatterers under consideration will be point scatterers on a string in 1D and

small circular cylinders in 2D with Dirichlet (sound-soft) boundary conditions. Both

of these scatterers behave as small isotropic scatterers in the same way as Foldy’s

scatterers. The work in 2D in this thesis can be extended to consider Neumann

(sound-hard) boundary conditions which would represent anisotropic and thus different

scatterers to those of Foldy [50].

Anderson

Anderson published a paper on the absence of diffusion in random lattices in 1958 [6].

The application under consideration in Anderson’s work is the behaviour of electrons

in random crystals, also considered in [7], [37] and [38]. The theory has since been

applied to electromagnetic waves and acoustic waves [28], [5], [27], [80], [69].

Anderson’s conclusion is that“at sufficiently low densities [of inclusion to host

material], transport does not take place; the exact wave functions are localised in a

small region of space.” In acoustics, transport is considered to be the propagation of

the waves. Through studies of a random lattice with spins, electrons or other particles
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at the nodes xj with energy Ej and interaction Vjk, Anderson shows that transport

ceases when

Vjk <
1

r3
for r → ∞, and V̄ < Vc, (2.58)

wherer is distance, V̄ is the average value of the interaction and Vc is a certain critical

value. It is shown that the amplitude of the wave function around a node decreases

rapidly with distance whilst the amplitude on the node remains finite.

In terms of acoustic wave propagation the theorem relates to the interference of

coherent waves (in phase) after the multiple scattering from a random distribution of

scatterers. The coherent scattering causes the transmission of the wave to decrease

exponentially, and to completely halt for a critical amount of disorder. This is a

behaviour which one would associate with incoherent wave (out of phase) scattering.

In a 1D set up the transmission coefficient T of an acoustic wave through a random

structure with localisation can be described by

|T | = lim
L→∞

e−γL, (2.59)

where γ is known as the Lyapunov exponent, [80]. The inverse of the exponent γ−1

is equivalent to the maximum localisation length in 1D and defines the characteristic

attenuation length of the random medium. The derivation of the exponent can be

achieved using transfer matrices in random matrix theory. The use of transfer matrices

is a common approach in many 1D wave propagation problems, thus making the theory

of Anderson localisation highly applicable in 1D acoustics.

There exists a comparative difference in the effects of localisation in quantum

mechanical and classical waves due to the governing equations for each [80]. Ander-

son’s work in spin waves or other quantum mechanical waves are described by the

Schrödinger equation rather than the Helmholtz equation (for acoustic or other clas-

sical waves). A comparison of the two equations leads to conclusions on the different

localisation behaviours. The 1D Schrödinger equation is given by

(

∂2

∂x2
− E

)

u(x, ω) = V (x)u(x, ω). (2.60)

The 1D wave equation is given by

(

∂2

∂x2
− 1

c2(x)

∂2

∂t2

)

u(x, t) = 0. (2.61)
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To express (2.61) in a similar manner to the Schrödinger equation take the Fourier

transform and decompose the velocity as

1

c2(x)
=

1

c20
(1− V (x)) , (2.62)

where c0 is the velocity of the wave in the host medium, to give

(

∂2

∂x2
+ k20

)

u(x, ω) = k20V (x)u(x, ω). (2.63)

Comparison of (2.63) with (2.60) highlights the dependence of the classical wave equa-

tion on k0, that is not apparent in the Schrödinger equation. In the Schrödinger

equation the potential provides a greater contribution to the system as the frequency

decreases. However, for acoustics, the contribution of V (x) decreases with frequency.

A low contribution of V (x) suggests that no localisation exists in the low frequency

limit for acoustics. This is intuitive, as for low frequency the wavelength is much longer

than the characteristic lengthscale in the disordered medium and hence the waves per-

ceive the medium as an average homogenous medium. In the case of spin waves, the

potential does not depend on the wavenumber but the energy of the system E. The

potential V (x) increases as E decreases. This implies that localisation is possible in

all frequency ranges of quantum mechanical waves.

The conclusion of decay in the wave field raises the same questions, as with Foldy’s

hypothesis, inherent on the loss of energy in the system. These questions motivate the

investigations of aperiodic structures in which the disorder is not completely random.

The structures under consideration in this thesis have quasiperiodic distributions which

are deterministic yet aperiodic. The deterministic nature allows the calculation of

the effects of some disorder on the wave propagation without the use of simplifying

assumptions or averaging.

2.2.2 Wave scattering by periodic media

Wave propagation in periodic media is generally more straightforward and easier to

model than quasiperiodic or random media. This is because of the simplifications

one can make due to the periodicity of the structure. For instance, when considering

an infinite lattice with a periodically repeating unit cell, the scattering in the whole

problem can be solved by restricting the geometry to just the unit cell, taking in
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to consideration periodic boundary conditions. This section will discuss the work of

Brillouin [17] and Bloch [16] which are both of paramount significance in the field. We

refer the reader to [42] (appendix B in particular) for one example that includes an

overview of waves in periodic media.

Work with periodicity is usually discussed in the form of periodic lattices due to

photonic crystals and their periodic atomic lattices. The work in this thesis considers

periodic and quasiperiodic structures with inclusions positioned on the lattice nodes,

so this lattice notation will be used.

In general, define any position on the lattice with r, and denote the period by R.

Define some periodic function on the lattice by f(r) which must satisfy

f(r) = f(r+R). (2.64)

Consider the periodic function f(r) to be composed of plane waves of varying wave

vector. Take the Fourier transform F (R∗), and redefine as

f(r) =

∫

F (R∗)eiR
∗·rd3R∗. (2.65)

This gives

f(r+R) =

∫

F (R∗)eiR
∗·reiR

∗·Rd3R∗. (2.66)

Equations (2.65) and (2.66) can only satisfy (2.64) if

F (R∗) = 0 or eiR
∗·R = 1. (2.67)

The former leads to trivial solutions, and hence the latter yields

R∗ ·R = 2πn, n ∈ Z, (2.68)

which defines the reciprocal lattice vectors R∗.

The periodic function can now be defined as a sum of plane waves with periodic

reciprocal lattice vector as the wave vector,

f(r) =
∑

R∗

f(R∗)eiR
∗·r. (2.69)

As one can see the direct lattice gives the periodicity of the medium, whilst the recip-

rocal lattice gives the periodicity of the waves propagating through the medium.
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It is possible to formulate expressions for the reciprocal basis vectors in a straight-

forward manner. In 3D, let the direct lattice R be spanned by d1, d2 and d3, and the

reciprocal lattice R∗ by d∗
1, d

∗
2 and d∗

3. Then equation (2.68) becomes

(l1d1 + l2d2 + l3d3) · (m1d
∗
1 +m2d

∗
2 +m3d

∗
3) = 2πn, (2.70)

for li,mi, n ∈ Z and i = 1, 2, 3, which can be satisfied if the reciprocal lattice basis

vector d∗
i is defined such that

di · d∗
j = 2πδij, (2.71)

where δij is the Kronecker delta.

Exploiting one of the qualities of the cross product

x · (x× y) = 0 ∀x,y, (2.72)

allows the reciprocal lattice basis vectors to be expressed as

d∗
1 =

2πd2 × d3

d1 · (d2 × d3)
, d∗

2 =
2πd3 × d1

d1 · (d2 × d3)
, d∗

3 =
2πd1 × d2

d1 · (d2 × d3)
, (2.73)

or

D∗ = 2π(DT )−1, (2.74)

where D and D∗ are 3× 3 matrices with the respective basis vectors as columns.

With the defined reciprocal lattice vectors the entire problem can be reduced to

one periodic cell. The expression for a plane wave satisfies

eik·R = ei(k+R∗)·R. (2.75)

By the definition of the reciprocal lattice, both sides of the equation relate to the

same mode. Thus the range of the wavenumber k can be restricted to a finite volume

in the reciprocal space in which one part of the volume cannot be reached from the

other by adding some linear commination in R∗. The finite volume is called the first

Brillouin zone. To construct the Brillouin zone around the origin of the reciprocal

lattice for example, one must construct perpendicular bisectors of every reciprocal

lattice vector from the origin. The intersection of all these bisectors encompass a

volume that includes the origin point and determines the restircted zone.

The simplest example to illustrate the construction of a Brillouin zone in 2D is

a square lattice. The direct lattice is spanned by d1 = ae1, d2 = ae2, therefore
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the reciprocal lattice is spanned by d∗
1 = 2π

a
e1, d

∗
2 = 2π

a
e2, which is square too. By

taking the perpendicular bisectors of neighbouring lattice vectors it is shown that the

Brillouin zone of a square lattice is a square itself, as depicted in figure 2.12.

Figure 2.12: Construction of a Brillouin zone for a 2D square reciprocal lattice. Dashed
lines (red) show the lines from the node to its neighbours, thin lines show the perpen-
dicular bisectors, thick lines show the perimeter of the Brillouin zone, a square.

If there is rotational, mirror or inversion symmetry in the direct lattice then this is

seen in the Brillouin zone too. The smallest region within the Brillouin zone for which

the k are not related is called the irreducible Brillouin zone. The irreducible Brillouin

zone for the square lattice can be seen in figure 2.13 in blue.

With this understanding of the periodicity in both the direct lattice spatially, and

in the reciprocal lattice with the frequency, Bloch’s theorem can be applied. The basic

idea behind Bloch’s theorem is that the wave propagation in each unit cell will be of

the same form with an additional phase shift, thus one can solve the problem in a

unit cell to get the solution for the infinite plane. For example, for acoustic problems

governed by the scalar wave equation

(

∇2 + k2
)

u(r) = 0. (2.76)

Periodicity within a structure with period R results in an expression for the field that

satisfies

u(r+R) = u(r)eiγ·R, (2.77)

where γ is the Bloch wave vector and is restricted to the irreducible Brillouin zone.
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Figure 2.13: Construction of the irreducible Brillouin zone for a 2D square lattice.
Dashed lines (red) show the lines from the node to its neighbours, thin lines show the
perpendicular bisectors, thick lines show the perimeter of the Brillouin zone, blue area
show the irreducible Brillouin zone.

The solution for the field u(r) for all r is determined whilst only considering r in

the reduced zone. How the solution is determined depends on the problem in hand.

Bloch’s theorem is applied to many scenarios within this thesis. We refer the reader

to sections 2.3.2 and 2.4.4 for examples that can be discussed once further background

has been given.

Section 2.3.2 discusses the derivation of the solution for an infinite periodic struc-

ture in 1D. The specific scenario is that of an infinite string with point scatterers that

are periodically distributed. The field in each period is of the form (2.77) with left

and right travelling waves related to other periodic cells by a phase shift.

Section 2.4.4 applies Bloch’s theorem to a 2D doubly periodic distribution of circu-

lar cylinders with rectangular periodic cell. In chapter 7 the formulation is simplified

by considering the small cylinder scenario, i.e. for 0 < ka ≪ 1. For this arrangement

the problem can be reduced to a single equation in which the effective wavenumber

can be determined in the particular domain of the reduced Brillouin zone.



CHAPTER 2. BACKGROUND 64

2.2.3 Wave scattering by quasiperiodic media

In this section some of the existing literature regarding wave propagation in quasiperi-

odic media is discussed. Investigations vary in the type of waves, variety of quasiperi-

odic structure, method, motivation and application. A brief overview is given, with

the main focus on work relating to that of this thesis.

After crystals with quasiperiodic atomic structures were discovered in 1984 (see

section 2.1.1) the concept of wave propagation through particular quasiperiodic struc-

tures was initiated. Most preliminary investigations considered the propagation of

light waves through such structures due to the dimensions of the crystals and the

wavelength of light.

The first paper that aroused interest in the area was that of Kohmoto et al. in

1987 [44]. In the search for localised states analogous to Anderson localisation, this

experimental investigation found interesting transmission properties of a 1D dielectric

layered medium where the layers were determined by the Fibonacci chain.

Another experimental investigation, this time in acoustics, provided further inspi-

ration. He and Maynard [36] considered a 2D Penrose lattice on which tuning forks

were positioned in the centre of each rhombus as depicted in figure 2.14. The exper-

iment relates to the 2D Schrödinger equation with a quasiperiodic potential. They

observe band gaps with width related to the golden ratio τ .

Inspired by the results of Kohmoto et al. and He and Maynard, numerous other

investigations to determine the band gaps of quasiperiodic media were conducted.

Hattori et al. [35] experimentally explore the propagation of light waves through a 1D

layered medium. Chan et al. [19] numerically determine the band gaps that arise due to

dielectric rods positioned with a 2D octagonal tiling. Bayindir et al. [10], [11] perform

experiments with dielectric rods positioned on the 2D Penrose tiling, extending their

work to investigate waveguides due to line defects.

The progression of wave propagation in 1D quasiperiodic structures mainly in-

corporated layered materials and the use of techniques such as the transfer matrix

method [81], [32], [43], [73], [20], [65]. These references cover a range of types of wave

propagation, including elastic, light and sound.

Research involving wave propagation in 2D quasiperiodic structures mainly con-

sists of scatterers positioned on the vertices of different quasiperiodic lattices. Some
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Figure 2.14: The set up for tunings forks with a Penrose lattice distribution. Image
from [52].

examples of contributions are given in [46], [76], [75], [61], [29] and [56].

The work of Lai et al. [46] investigates acoustic propagation through a 2D quasiperi-

odic structure with 12-fold symmetry. The similarities of this investigation and that

of this thesis is that the structure is a composite of aluminium cylinders in air and

the authors use multiple scattering theory to solve the wave equation in 2D. The goal

of their investigation was to predict the band gaps of infinite quasiperiodic structures

numerically using a large but finite structure. In section 2.4 it is shown how to deter-

mine the solution for the scattered field with N arbitrary positioned small cylinders

using the multipole method (a common method used in multiple scattering which will

be discussed later). The computation involves numerically inverting an N×N matrix.

For a large number of cylinders the matrix inversion can become computationally ex-

pensive and thus Lai et al. employ the sparse matrix canonical grid method (SPCGM).

The SPCGM is applied to reduce computation by simplifying the calculations of the

interactions between cylinders that have a large distance between them. The approach

taken in their investigation could be utilised for future extensions of the work in this

thesis.

Numerous investigations conducted by Steurer, his colleagues and his PhD student

Sutter-Widmer [73], [76], [75] provide a great inspiration for the work in this thesis.
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They consider the photonic and phononic band gap structures for a multitude of 1D

and 2D quasiperiodic structures. Sutter-Widmer suggests that this work is of inter-

est due to its “(peculiar)2 nature”, the “squared” as a result of the peculiarities of

both phononic crystals and quasicrystals! The mathematical method applied by these

authors to solve the 2D wave equation is the finite difference time domain (FDTD)

technique. The FDTD technique discretises the wave field in space and time and allows

a numerical stepwise approximation of the propagation of the wave. It provides a flex-

ible tool for the authors to compare the scattering of multiple quasiperiodic structures.

The goal of these investigations was to determine the pseudo-Brillouin zones of the

quasiperiodic structure as perturbation of the Brillouin zones of a periodic structure.

The periodic structures they choose to analyse are periodic average structures (PAS),

introduced in section 2.1.3. The period of the PAS is determined by the diffraction

pattern (or Fourier transform, as discussed in section 2.1.1) of the quasiperiodic lattice.

Sutter-Widmer finds that the PAS defined for the 2D Penrose tiling does not pro-

vide an accurate representation of the Penrose lattice when circular cylinders are posi-

tioned on the lattice nodes. Figure 2.15 is taken from [73] and shows the differences in

the two lattices and in the transmission in dB of the Penrose tiling (black) and its PAS

(red) for a range of frequencies. It can be seen that the PAS is not capturing the same

scattering properties as the Penrose tiling. In another paper however, Sutter-Widmer

[75] shows that for the Penrose tiling, the resemblance between the scattering from

the Penrose tiling and the PAS improves when the scatterer shape is changed to a

star-shaped cylinder.

In this thesis we continue the investigation of the PAS lattice of circular cylinders

as a periodic approximation of quasiperiodic lattices. We use the multipole method to

compute the scattered field from the different structures and form further comparisons.

Comparisons are also made between the quasiperiodic lattices and its approximant lat-

tice (see section 2.1.4) as an alternative periodic approximation. To our knowledge,

little research has been conducted in the field of wave propagation through approxi-

mant structures, and none to compare the quality of approximation between the PAS

and the approximant.

In 2009, Florescu et al. [29] investigated the electromagnetic band gap structure

of infinite periodic approximants. The authors compute the band gap structures for
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Figure 2.15: Section of Penrose tiling (black) and its rhombic PAS (red). The Fourier
spectrum of the Penrose tiling. Transmission through the Penrose tiling (black) and
its PAS (red). Image from [73].

infinite quasiperiodic structures using the plane-wave expansion (PWE) method. The

PWE assumes periodicity which is not a feature of a quasiperiodic lattice. To over-

come this hurdle Florescu et al. use sequences of increasingly accurate approximants

to represent the quasiperiodic structure. The approximants contain the periodicity

required whilst retaining information of the quasiperiodic lattice within the period.

Florescu et al. see a convergence of the bandgaps for increasing size of approximant

which suggests the approximants represent the fully quasiperiodic structure. They find

that certain constructions of dielectric materials with quasiperiodic distributions give

rise to reasonable sized band gaps. Although these band gaps are not as large as those
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for standard periodic crystal structures, they find that some are highly isotropic,i.e.

a stop band for the full irreducible Brillouin zone. These characteristics suggest that

quasiperiodic materials may offer advantages over traditional periodic materials in ap-

plications. Florescu et al. offer examples of applications for example isotropic thermal

radiation sources, where quasicrystals would provide more isotropic band gaps over

periodic crystals.

The concept of an approximant as a periodic approximation of a quasiperiodic

structure will be investigated in this thesis. The convergence of the bandgaps is con-

sidered as with Florescu et al. but finite lattices are also considered and direct com-

parisons of the scattered fields from approximant, PAS and quasiperiodic structures

are formed.

2.3 One-dimensional wave scattering: point scat-

terers on a string

Within this thesis wave propagation through quasiperiodic arrays of scatterers in both

1D and 2D is considered. This section introduces the reader to the particular 1D

scattering scenario under consideration: wave propagation along a 1D infinite string

with point scatterers with particular distributions. Wave propagation is analysed in

terms of the reflection and transmission of an incident wave from a finite distribution of

scatterers. In the instance of an infinite number of scatterers with periodic distribution,

the wave propagation is analysed in terms of pass and stop bands, i.e. frequency regimes

in which waves can and cannot propagate.

For the formulation of the 1D problem consider a string of infinite extent in the x-

direction, with density ρ and tension F . Along the 1D string distribute point scatterers

of mass m. Assuming that there is no loading force on the string, the problem is

governed by the homogeneous wave equation in 1D

∂2y

∂x2
=

1

c2
∂2y

∂t2
, (2.78)

where c =
√

F
ρ

is the wave velocity. See [33] for a derivation of the solution for

harmonic waves, considering an initial time behaviour of the form e−iωt,

y(x, t) = Ae−i(ωt−kx) + Be−i(ωt+kx), (2.79)
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where the A and B are arbitrary constants symbolising the amplitudes of the right

and left travelling waves, respectively, ω is the radial frequency of the wave, and k is

the wavenumber of the wave.

Before proceeding, it is convenient to first non-dimensionalise on the wavenumber

of the string by letting

X = kx, (2.80)

and omitting time harmonic dependence, y(x, t) = e−iωtY (X) for clarity. The solution

(2.79) is now of the form

Y (X) = AeiX + Be−iX . (2.81)

2.3.1 One point scatterer

To illustrate how solutions for the wave propagation through arbitrary distributions

of point scatterers in 1D are determined the method to analyse the wave scattering

by one point scatterer positioned at the origin is initially discussed. This may seem

trivial, but it is of great importance as it forms the basis of the analysis in 1D in this

thesis. The results gained from the investigations in this section are the reflection

and transmission coefficients across one discontinuity, R1 and T1 respectively. As the

progression is made to scenarios with numerous scatterers with arbitrary positions, the

reflection and transmission coefficients are determined recursively; thus, the results in

this section are fundamental to the rest of the work in 1D.

eiX T1e
iX

R1e
−iX

X = 0

Figure 2.16: The set up for a single point scatterer on an infinite string.

Assume that a wave of unit amplitude is incident on the scatterer from the left,

uinc = eiX . Use the form of the solution given in (2.81) to define the field to the left
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and the right of the point scatterer at X = 0,

Y (X) =







eiX +R1e
−iX X ≤ 0,

T1e
iX X ≥ 0,

(2.82)

i.e. to the left of the scatterer the wave is a composition of the incident and reflected

wave, and to the right the transmitted. The boundary conditions on the scatterer at

X = 0 are due to continuous displacement at the point scatterer, i.e.

eiX +R1e
−iX = T1e

iX , at X = 0, (2.83)

and a change in slope due to the forces, i.e.

dY (X → 0+)

dX
− dY (X → 0−)

dX
= −mω

2

Fk
Y (X = 0) (2.84)

= −MǫY (X = 0), (2.85)

where ǫ = kp and p are some arbitrary non-dimensional and dimensional lengthscales,

respectively, c = ω
k
and M = m

m0
= m

ρp
. Solving the simultaneous equations (2.83) and

(2.85) with (2.82), one finds that the reflection and transmission coefficients due to a

single point scatterer on a string are

R1 =
Mǫi

2−Mǫi
, T1 =

2

2−Mǫi
. (2.86)

The reflection and transmission coefficients R1 and T1 will be referred to throughout

the recursive work for multiple point scatterers in section 4.

One point scatterer positioned away from the origin

For a point scatterer positioned at X = A rather than the origin, then the formulation

of the problem is altered slightly. In fact, the solutions (2.86) must be multiplied by

a phase shift. The phase shift factor is due to the phase of the wave that is incident

on the point scatterer. The derivation of this phase difference will now be discussed.

Define the scatterer location as X̄ = A. Thus in terms of the previous scatterer

position X = 0, there is the relationship X = X̄ − A. The equations for the wave

behaviour are now of the form

Y (X̄) =







ei(X̄−A) +R1e
−i(X̄−A) X̄ ≤ A,

T1e
i(X̄−A) X̄ ≥ A.

(2.87)
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To make future calculations simpler it is best to have the incoming wave of unit

amplitude, therefore without loss of generality, multiply all in (2.87) by eiA giving

Y (X̄) =







eiX̄ +R1e
−iX̄e2iA X̄ ≤ A,

T1e
iX̄ X̄ ≥ A.

(2.88)

eiX T1e
iX

R1e
2iAe−iX

X = A

Figure 2.17: Modifications to the reflected and transmitted wave with a change in
position of the scatterer from X = 0 to X = A.

Similarly, consider the case when the scatterer is at X̄ = A but with an incident

left-travelling wave. The wave field for a left-travelling wave incident on a scatterer at

X = 0 is, by symmetry,

Y (X) =







T o1 e
−iX X ≤ 0,

e−iX +Ro
1e
iX X ≤ 0.

(2.89)

A superscript o notation has been used when the incident wave is coming from the

opposite direction, i.e. a left-travelling incident wave.

Analogous to the right-propagating case above, for a scatterer at X̄ = A, the field

can be expressed as

Y (X̄) =







T o1 e
−iX̄ X̄ ≤ A,

e−iX̄ +Ro
1e
iX̄e−2iA X̄ ≤ A.

(2.90)

The two scenarios of a scatterer at X = A and a right or left travelling incoming wave

are depicted in figures 2.17 and 2.18, respectively.

It can be seen, by comparison of the transmission and reflection coefficients deter-

mined in (2.82) and (2.89) for a point scatterer at X = 0 with those in (2.88) and

(2.90) for a scatterer at X = A, that the transmission coefficient remains the same

but the reflection coefficient must be multiplied by a phase factor e±2iA for incident

waves from the left and right respectively.
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e−iX

T o1 e
−iX

Ro
1e
iXe−2iA

X = A

Figure 2.18: Modifications to the reflected and transmitted wave with a change in
position of the scatterer and incident left travelling wave.

2.3.2 An infinite periodic array of point scatterers

The scenario of an infinite string with infinitely many point scatterers with a periodic

distribution is of great interest in 1D problems. This is because, with such a geometry

it is possible to employ Bloch’s theorem, as mentioned in section 2.2.2, to find an

effective wavenumber for the string and scatterers. The effective wavenumber can be

used to determine the pass and stop band frequencies which depend on the periodic

separation and mass of the point scatterers. Pass and stop band frequencies are the

frequencies at which waves are propagating or attenuating, i.e. wave propagation can

and cannot occur respectively. In 1D, when in a stop band, all the wave is reflected,

i.e. T = 0. These effective properties of the string and scatterers are then used in

many other geometries as a comparison.

X = ǫn X = ǫ(n+ 1)

eiǫ
∗nTei(X−ǫn)

eiǫ
∗nRe−i(X−ǫn)

Figure 2.19: Structure of a string with infinitely many scatterers and a unit cell.

The approach applied in this section is an extension from [58] for layered media

to point scatterers on a string. Consider an infinite string with point scatterers each

of mass m placed a distance p from each other, with string density (mass/length) ρ
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and tension F . Using the same non-dimensionalisation as in the one point scatterer

problem, solutions can be posed for each periodic cell of the form

Yn(X) =







un−1(X) ǫ(n− 1) ≤ X ≤ ǫn,

un(X) ǫn ≤ X ≤ ǫ(n+ 1),
(2.91)

=







eiǫ
∗(n−1)(Re−i(X−ǫ(n−1)) + Tei(X−ǫ(n−1))) ǫ(n− 1) ≤ X ≤ ǫn,

eiǫ
∗n(Re−i(X−ǫn) + Tei(X−ǫn)) ǫn ≤ X ≤ ǫ(n+ 1),

(2.92)

where ǫ = kp, and ǫ∗ = k∗p are defined as the non-dimensional host and effective

wavenumbers, respectively.

There are infinitely many boundary conditions of the same form as in the one point

scatterer problem

un−1(ǫn) = un(ǫn), (2.93)

∂un(ǫn)

∂X
− ∂un−1(ǫn)

∂X
= −Mǫun(ǫn). (2.94)

However, using the theories discussed in section 2.2.2, the general solution can be

found by determining the solution in one unit cell, as depicted in figure 2.19. This

gives the simultaneous equations

R(e−i(ǫ
∗+ǫ) − 1) = T (1− e−i(ǫ

∗−ǫ)), (2.95)

R(e−i(ǫ
∗+ǫ) − 1− iMǫ) = T (e−i(ǫ

∗−ǫ) − 1 + iMǫ). (2.96)

Upon solving for ǫ∗ it is found that

cos ǫ∗ = cos ǫ− Mǫ sin ǫ

2
. (2.97)

The effective wavenumber in relation to the host string is k∗

k
= ǫ∗

ǫ
.

When there is an imaginary component in the effective wavenumber this results

in decay in the wave, and thus the corresponding frequencies relate to a stop band.

Therefore, plotting the real and imaginary components of the effective wavenumber

will provide the pass and stop band frequencies. Figure 2.20 depicts this for an example

withM = 0.7. The imaginary component of ǫ∗ is zero except where the real component

is constant. Consequently, the (blue solid) plot of the real component shows the

propagating frequencies of the effective wavenumber and the (red dashed) plot of the
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Figure 2.20: The magnitude of the real (blue solid) and imaginary (red dashed) com-
ponents of ǫ∗ for infinitely many periodic point scatterers with M = 0.7.

imaginary component depicts the stop bands. As one can also see from this figure, the

size of the pass bands decrease as ǫ increases. The information gained with regards to

the pass and stop bands for wave propagation through infinitely many periodic point

scatterers can be used to draw comparisons with the finite case. Furthermore, it is

possible to compare the propagation properties to non-periodic distributions of point

scatterers. The comparison between the wave propagation through periodic structures

as opposed to non-periodic structures facilitates the understanding of how introducing

quasiperiodicity or randomness into a distribution of scatterers affects the stop and

pass bands.

An extension of the method illustrated in this section is made in section 4.5, where

point scatterers are distributed via the infinite periodic approximant. The approach

remains the same as in this section, but the individual quasiperiodic periods add more

complexity to the model.
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2.4 Two-dimensional wave scattering: small cylin-

ders in free space

This section introduces the reader to the particular 2D scattering scenario considered in

this thesis: wave propagation through a medium composed of 2D circular scatterers in

an acoustic region. The modelling of wave propagation in such a geometry is extensive

in the literature and employs multiple scattering theory.

One method used in multiple scattering theory is the multipole method, which

is especially effective for a finite array of circular scatterers. The multipole method

solves for the displacement by summing the scattered waves from each obstacle, giving

an exact solution as a system of simultaneous algebraic equations [50]. It is the 2D

generalisation of the 1D multiple scattering system posed in (2.49) and (2.50). This

section begins by considering cylinders with arbitrary radii a, but will be simplified by

making an assumption of a small radii, i.e. 0 < ka ≪ 1, for reasons explained later.

We will begin with analysis of the scattering from one cylinder to introduce notation

and ideas, then extend to two and N cylinders.

2.4.1 One cylinder

Consider a circular cylinder of radius a positioned with its cross sectional circular

centre at the origin in the (x, y) plane. An incident plane wave with angle of incidence

α from the horizontal is of the form

uinc = eik(x cosα+y sinα) = eikr cos(θ−α), (2.98)

where (r, θ) are the plane polar coordinates, such that x = r cos θ and y = r sin θ. The

generating function for Jn(z), the Bessel function of the first kind, is

e
1
2
z(t−t−1) =

∞
∑

n=−∞
tnJn(z). (2.99)

Taking t = iei(θ−α), one obtains the sum known as the Jacobi expansion, which can be

used to re-express the incident field in (2.98) as

uinc = eikr cos(θ−α) =
∞
∑

n=−∞
inJn(kr)e

in(θ−α) =
∞
∑

n=0

ǫni
nJn(kr) cosn(θ − α), (2.100)
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where ǫ is the Neumann factor

ǫn =







1, n = 0

2, n ≥ 1.
(2.101)

The 2D wave equation can rewritten in the time-independent form, omitting e−iωt for

brevity, of the homogeneous Helmholtz equation

(∇2 + k2)u = 0, (2.102)

which has separated solutions of the form

Jn(kr)e
±inθ, and Yn(kr)e

±inθ, (2.103)

with Yn(kr) the Bessel function of the second kind. The Bessel functions can be

combined as follows

(Jn(kr) + Yn(kr)) e
±inθ = H(1)

n (kr)e±inθ, (2.104)

where H
(1)
n (kr) is the Hankel function of the first kind of order n. The expression in

(2.104) satisfies the radiation condition at infinity (with the choice of time dependence)

and is of a separable form similar to the incident wave. Therefore it can be used to

pose a solution to the scattered field of the form

usc =
∞
∑

n=−∞
inBnH

(1)
n (kr)ein(θ−α) =

∞
∑

n=0

ǫni
nBnH

(1)
n (kr) cosn(θ − α), (2.105)

where the field is even about θ = α and the coefficients Bn are determined by applying

the boundary condition on the scatterer surface. The total field is now defined to be

the sum of the incident and scattered fields

u(r, θ) = uinc(r, θ) + usc(r, θ). (2.106)

Consider the cylinder to be ‘sound-soft’, i.e. Dirichlet boundary conditions on the

radius of the cylinder,

u = 0 on r = a. (2.107)

Applying the boundary conditions to (2.106), it is found that

u = uinc + usc =
∞
∑

n=0

ǫni
n
[

Jn(ka) + BnH
(1)
n (ka)

]

cosn(θ − α) = 0, (2.108)

⇒ Bn = − Jn(ka)

H
(1)
n (ka)

. (2.109)
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So for r ≥ a,

u(r, θ) =
∞
∑

n=0

ǫni
n

[

Jn(kr)−
Jn(ka)

H
(1)
n (ka)

H(1)
n (kr)

]

cosn(θ − α). (2.110)

If instead ‘sound-hard’ cylinders (Neumann boundary conditions) had been considered

∂u

∂r
= 0 on r = a, (2.111)

then the coefficients would have been of the form

Bn = − J ′
n(ka)

H
(1)′
n (ka)

. (2.112)

As mentioned in the introduction of this section, a simplification can be made by

letting the radius a of these cylinders be small in comparison to the wavelength. Thus

assume from now on that

0 < ka≪ 1. (2.113)

This simplifies the expression for the field in (2.110) since the coefficients Bn will tend

to some constant, as will be discussed now.

Referring to [4] (9.1.7-9.1.9), the limits for small arguments of the Bessel and Hankel

functions are given by

Jn(ka) ∼
(1
2
ka)n

Γ(n+ 1)
= O((ka)n), (2.114)

H
(1)
0 (ka) ∼ 1 +

2i

π
(γ − ln 2 + ln(ka)) = O(ln(ka)), (2.115)

H(1)
n (ka) ∼ (1

2
ka)n

Γ(n+ 1)
− i

1

π
Γ(n)

(

1

2
z

)−n
= O

(

1

(ka)n

)

, n 6= 0, (2.116)

where γ is Euler’s constant and Γ(n) is the gamma function. Substituting the limits

into equation (2.109) gives, for small ka,

Bn ∼ − Jn(ka)

H
(1)
n (ka)

∼ − (ka)n

1/(ka)n
= O((ka)2n), for n 6= 0, (2.117)

B0 ∼ − J0(ka)

H
(1)
0 (ka)

∼ − 1

1 + i 2
π
(γ − ln 2 + ln(ka))

= O

(

1

ln(ka)

)

. (2.118)

It can be seen that the term in equation (2.118) will be dominant in the limit ka→ 0,

and thus
∞
∑

n=−∞
Bn ∼ B0 ∼ − 1

1 + i 2
π
(γ − ln 2 + ln(ka))

, as ka→ 0. (2.119)
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Therefore, for a small cylinder radius, the scattered field in equation (2.105) has the

asymptotic form

usc ∼ − 1

1 + 2i
π
(γ − ln 2 + ln(ka))

H
(1)
0 (kr), ka→ 0. (2.120)

This form of the scattered field in fact shows that the cylinder acts as a monopole

source in this wave scattering problem. The expression for the scattered field from a

small cylinder (2.120) will be used to extend this work to scenarios with N cylinders.

A comparison of equations (2.105) and (2.120) shows that the assumption of small

scatterer radii simplifies the expression for the scattered field. An arbitrary sized

cylinder has a scattered field involving an infinite sum over the order of the Hankel

functions, whereas a small sound-soft cylinder produces a scattered field involving only

a single Hankel function of order zero. The reduction of the infinite sum decreases

computation time significantly. In this thesis, complexities are introduced through the

distributions of the scatterers, therefore it is beneficial to make the single scattering

problem as simple as possible. The case of an isotropic scatterer is also a realistic

and relevant case, and is the discussion of the work by Foldy, as discussed in section

2.2.1. In future, once a better understanding of the quasiperiodic distributions has

been formed, the work of this thesis can be extended to more general scatterer sizes

and shapes.

One may notice at this point that the assumptions made are like those of Foldy

[30], with a more thorough explanation behind the results. If sound-hard (Neumann)

boundary conditions had been assumed, it can be shown via (2.112) that both the

n = 0 and n = 1 order Hankel functions must be taken in the scattered field, at

leading order. Thus, the cylinders would have acted as both monopole and dipole

sources. This is something which Foldy does not mention.

2.4.2 Two cylinders

The approach to the calculation of the scattering from one cylinder is now extended to

the problem with just two cylinders. This will allow an introduction of the ideas behind

multiple scattering theory. Once the two cylinder problem has been fully explored,

expressions can be formulated for the total field for a finite number of cylinders, with

small radii.
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Figure 2.21: Set up of the two cylinders in which we want to consider wave scattering
from.

In the case of one cylindrical scatterer of arbitrary radius, a solution was posed

to the scattered field as in equation (2.105). For the case of two cylinders, a similar

solution can be posed by expressing the scattered field as an infinite sum of multipoles

at the centre of each circle.

usc =
∞
∑

n=−∞
C1
nH

(1)
n (kr1)e

in(θ1−α) +
∞
∑

n=−∞
C2
nH

(1)
n (kr2)e

in(θ2−α) (2.121)

=
2
∑

i=1

∞
∑

n=−∞
C i
nH

(1)
n (kri)e

in(θi−α), (2.122)

where ri, θi are the distance and angle of the ith cylinder from the observation point

(local polar coordinates from the centre 0i of each cylinder), and C i
n are the unknown

coefficients for each cylinder. See figure 2.21 for the configuration of this problem. In

this figure, Q is the arbitrary observation point, and 0 is the origin.

The same small radius assumption is now employed as in the previous section,

letting ka≪ 1. Equation (2.122) can be simplified using the reduction made previously

for small radius in equation (2.120). The scattered field for two small cylinders can

therefore be given simply by

usc ≈
2
∑

i=1

CiH
(1)
0 (kri), (2.123)

where Ci = C i
0 for brevity. To find the Ci apply the boundary conditions on each
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cylinder. Consider the sound-soft boundary conditions again,

u = 0, on ri = a, (2.124)

where again the incident field is a plane wave and given by

uinc = eikr cos(θ−α). (2.125)

Since we are considering the situation ka≪ 1, when applying the boundary conditions

at rj = a (i.e. r = |pj|+ a) the incident wave takes the limit

uinc(a) = eik(|pj |+a) cos(θ−α) → eik(pjx cosα+pjy sinα), as ka→ 0, (2.126)

where pj = (pjx, pjy) is the location of the jth cylinder. This limit can be used for uinc

when determining the Ci.

First, apply the boundary conditions at r1 = a,

C1H
(1)
0 (ka) + C2H

(1)
0 (kr2) = −uinc(a) = −eik(p1x cosα+p1y sinα). (2.127)

Simplify further by rewriting r2 as a function of r1 and b12, the distance between the

two cylinders,

r2 =|r2| = |b12 + r1|

=
[

(b12 cos β + r1 cos θ1)
2 + (b12 sin β + r1 sin θ1)

2
]1/2

, (2.128)

depicted figure 2.21. Considering kr2 when r1 = a and letting ka→ 0,

kr2 = k
[

(b12 cos β + a cos θ1)
2 + (b12 sin β + a sin θ1)

2
]1/2 → kb12, as ka→ 0.

(2.129)

An alternative derivation of this is shown in Appendix B.1 using Graf’s addition

theorem, for completeness.

By also considering the limit of H
(1)
0 (ka) for small ka, equation (2.127) becomes

C1(1 +
2i

π
(γ − ln 2 + ln(ka))) + C2H

(1)
0 (kb12) = −eik(p1x cosα+p1y sinα). (2.130)

Proceeding in the same way at the other boundary r2 = a gives the matrix equation




1 + 2i
π

(

γ − ln 2 + ln(ka) + π
2i

)

H
(1)
0 (kb12)

H
(1)
0 (kb12) 1 + 2i

π

(

γ − ln 2 + ln(ka) + π
2i

)









C1

C2





=−





eik(p1x cosα+p1y sinα)

eik(p2x cosα+p2y sinα)



 . (2.131)
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The matrix equation can easily be solved to determine the coefficients C1 and C2. The

total field is then given by

u(r, θ) ≈ uinc(r, θ) + C1H
(1)
0 (kr1) + C2H

(1)
0 (kr2). (2.132)

Note here that the limit used in equation (2.129) due to the small radii allows the

simplification of the expression of the field at one boundary independently of r. If the

small radii limit was not taken then it is no longer possible to do the same simple step.

In this situation one must use Graf’s addition theorem in order to express the field in a

global coordinate system rather than two (or more for the finite case) local coordinate

systems. Graf’s addition theorem is applied in appendix B.1, which demonstrates this

approach.

2.4.3 N cylinders

This section discusses the formulation of the wave field scattered by a finite distribution

of small cylinders. Extensions of the concepts discussed for one and two cylinders in

the previous two subsections are made.

Consider an incident wave of the form in equation (2.125). The scattered field

extends to being a sum over the N cylinders,

usc ≈
N
∑

i=1

CiH
(1)
0 (kri), (2.133)

for small cylinder radii. Applying sound-soft boundary conditions on the cylinders.

At rj = a, for j = 1, . . . , N we find,

CjH
(1)
0 (ka) +

N
∑

i=1
i 6=j

CiH
(1)
0 (kri) = −eik(pjx cosα+pjy sinα), (2.134)

⇒Cj

(

1 +
2i

π

(

γ − ln 2 + ln(ka) +
π

2i

)

)

+
N
∑

i=1
i 6=j

CiH
(1)
0 (kbij) = −eik(pjx cosα+pjy sinα)

(2.135)

where pj = (pjx, pjy) is the position of the jth cylinder as before and bij is the distance

between the ith and jth cylinders. Considering (2.135) for j = 1, . . . , N determines a

matrix equation as an extension from two to N cylinders of the form

HC = −E, (2.136)
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where

Hij =







1 + 2i
π
(γ − ln 2 + ln(ka)) , i = j,

H
(1)
0 (kbij) = H

(1)
0 (kbji), i 6= j,

(2.137)

C =











C1

...

CN











, E =











eik(p1x cosα+p1y sinα)

...

eik(pNx cosα+pNy sinα)











. (2.138)

The total field is again the sum of the incident and scattered fields,

u(r, θ) ≈ uinc(r, θ) +
N
∑

i=1

CiH
(1)
0 (kri). (2.139)

For a large (but finite) number of scatterers the matrix H can easily be inverted

numerically to find the coefficients Ci.

The matrix equation (2.136) is applicable for arbitrary finite distributions of small

circular cylinders and will be used in all future investigations of wave propagation in

finite arrays of cylinders in this thesis.

2.4.4 An infinite doubly-periodic array of cylinders

Wave propagation in 2D doubly-periodic infinite arrays of cylinders can be analysed

in a similar manner to the approach used in section 2.3.2 for 1D. Bloch’s theorem is

applied to reduce the problem to one period of the array, or one irreducible Brillouin

zone, and frequencies for the propagating modes can be determined.

Define a rectangular lattice with period d in the x-direction and λd in the y-

direction, as depicted in figure 2.22. Non-dimensionalise lengthscales with respect to

the wavenumber of the host free space wavenumber k, determining the parameters

η = ak ≪ 1, cylinder radius, (2.140)

D = dk, spacing lengthscale, (2.141)

pst = D(s, λt), location of (s, t)th cylinder, (2.142)

θst = arg(x− pst), angle of vector from (s, t)th cylinder (2.143)

to observation point.
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Figure 2.22: Set up of a doubly periodic array of circular cylinders.

For arbitrary sized circular cylinders, pose an eigensolution to the 2D Helmholtz equa-

tion in this set up of the form

u(x) =
∞
∑

s=−∞

∞
∑

t=−∞

∞
∑

n=−∞
Cst
n H

(1)
n (|x− pst|)einθst , (2.144)

where the coefficients Cst
n are unknown. Due to the periodicity inherent in the geom-

etry, Bloch’s theorem can be applied to the unknown coefficients

Cst
n = Cne

iγ(s cos θ+λt sin θ), (2.145)

where γ = |γ| = |dγ̂|, where γ and γ̂ are the non-dimensional and dimensional effective

wavenumber, respectively.

As discussed in section 2.2.2 the effective wavenumber can be restricted to the

frequencies within the irreducible Brillouin zone of the reciprocal space. Define the

2D direct lattice on which the circular scatterers lie by Λ. The lattice points rst ∈ Λ

are defined by

rst = sde1 + tλde2. (2.146)
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Therefore the reciprocal lattice Λ∗ contains reciprocal lattice points

r∗st = s
2π

d
e1 + t

2π

λd
e2. (2.147)

Restricting γ̂ to the triangular irreducible Brillouin zone of the reciprocal lattice (sim-

ilar to that of figure 2.13), it is possible to represent the entire frequency space by

γ̂st = γ̂ + r∗st, or γst = γ + r∗std. (2.148)

The Bloch condition results in a simplification of the posed eigensolution of the

form

u(x) =
∞
∑

n=−∞
CnH

(1)
n (|x|)einθ (2.149)

+
∞
∑

s=−∞

∞
∑

t=−∞
(s,t) 6=(0,0)

∞
∑

n=−∞
Cne

iγ(s cos θ+λt sin θ)H(1)
n (|x− pst|)einθst . (2.150)

In this solution for the field in the 2D doubly-periodic array of scatterers there are

three infinite sums inherent. Thus in this form, (2.150) is not computable exactly. The

current main approaches to solving such a system are numerical, however some analytic

approaches to determine a comparable computable expression have been made. Ho-

mogenisation is one technique, e.g. [59], that assumes kd ≪ 1 and a/d ≪ 1. Krynkin

and McIver [45] [53] employ the method of matched asymptotic expansions to deter-

mine the field with restrictions ka≪ 1 and a/d≪ 1. Martin and Maurel [51] introduce

integral representations of the Hankel function to reduce the system of equations with

the assumptions ka≪ 1 and k ≃ γst. In this thesis we propose an alternative approach

that only requires the small radius assumption ka ≪ 1. This is discussed in detail in

chapter 7.



Chapter 3

Construction algorithm for a

one-dimensional quasiperiodic

lattice and its periodic

approximations

This chapter describes the projection method for the construction of a 1D quasiperiodic

lattice known as a Fibonacci chain. The construction of two periodic lattices that ap-

proximate the quasiperiodicity within the Fibonacci chain is also discussed. Although

numerous techniques for the construction of such lattices were discussed in section

2.1, this chapter concentrates on the method of projection from higher dimensions.

The projection method is a rather complicated method to use in order to generate

the 1D Fibonacci chain. However it is the ideal method for the construction of the

approximant and to construct higher-dimensional quasiperiodic and approximant lat-

tices. The projection method for the 2D Penrose lattice that is discussed in chapter 6

is difficult to visualise. By employing the projection method for the 1D analogue we

introduce the reader to the method in a more manageable and intuitive way. The 2D

to 1D projection method is described in full in this chapter, with numerous diagrams

to assist the descriptions of the algorithms. When we extend to the projection from

5D and 4D to 2D in chapter 6 for the Penrose tiling, the method is analogous and so

this chapter will provide the foundations required.

In the presentation of the background of the construction of quasiperiodic lattices

85
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in section 2.1 it was shown that the projection method is a popular method. However,

we have found that the literature does not provide a thorough explanation with enough

of the required formulae for one to implement the method in a straightforward manner.

Many of the references give only a brief discussion of the concept of the projection,

or partially discuss the mathematics, or assume prior knowledge. The content of this

chapter provides a stand-alone explanation of the method. The algorithm includes all

relevant equations enabling mathematicians to apply this crystallographic method.

For a more experienced reader in this research area, a few differences in the ap-

proach used here to that in the literature may be noticed. The mathematical formu-

lation of the projection differs from that in most references given in section 2.1, as

it is based on the node positions in higher-dimensional space, rather than unit cells

and their areas. The approach used to determine the selection of higher-dimensional

lattice nodes for projection also differs from some of the literature. The definition of

the acceptance windows is based upon a “decoration” of every lattice node with the

window, whereas in the literature a common approach is to use a “strip”. The two

variations are equivalent in their outcomes but are mathematically different and are

visualised differently. Figure 3.1 depicts both the acceptance windows (red lines) and

the (grey) strip. The strip method is the one most applied in the literature, e.g. figure

2.7 taken from [39].

3.1 Fibonacci chain

The Fibonacci chain is a quasiperiodic structure in 1D that consists of two lengthscales

L and S, where L = τS and τ = 1+
√
5

2
is the golden mean. We introduced this

structure in section 2.1.2 and briefly mentioned the three main construction methods:

superposition, substitution and projection. In order to be able to extend the work

from 1D structures to more complicated 2D quasiperiodic structures we will use the

projection method. This method can be explained and visualised for the 1D chain

which will make the extension to higher dimensions more straightforward.

In section 2.1.2 it was shown that the 1D quasiperiodic lattice can be created by

projecting a 2D square lattice Λ to a 1D line. Only a selection M of the 2D lattice

nodes Λ, which we denote by ΛM, should be projected. The selection of pointsm ∈ M,
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e2
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d1

d2

θ

Figure 3.1: Depicting the projection method from a 2D square lattice to the 1D
Fibonacci chain. We find the positions of the Fibonacci chain (blue squares along
the horizonal) wherever we have an intersection of the acceptance windows (red lines)
with the parallel space (horizontal line). Alternatively any 2D nodes that lie within
the (grey) strip are projected to the parallel space.

where m = (m1,m2) ∈ Z
2, is determined via a set of acceptance windows which will

be defined later in this section.

To construct the 1D Fibonacci chain it is necessary to project from a 2D square

lattice to a 1D line. The 2D lattice must be rotated at some angle θ with respect

to the 1D line. Define the 1D line to be the parallel plane, terminology which will

translate to the higher-dimensional case. The 2D lattice nodes (black dots), parallel

plane (black horizontal) and acceptance windows (red lines) are depicted in figure 3.1,

generating the 1D Fibonacci chain (blue squares). To generate the Fibonacci chain,

the 2D lattice must be inclined at an irrational angle θ from the parallel plane, where

tan θ =
1

τ
. (3.1)

Any other irrational angle would result in other aperiodic 1D lattices, but only this

choice of θ results in the Fibonacci chain. One approach is to define the parallel plane

to be the horizontal line spanned by e1 =
(

1 0
)T

and then have the 2D square lattice

rotated by θ in relation to the parallel plane. A square 2D unit lattice spanned by

d1 =
1√
2 + τ





1

−τ



 , d2 =
1√
2 + τ





τ

1



 , (3.2)
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satisfies all of these constraints. Define the “plane” perpendicular to the parallel plane

as the perpendicular plane. Again, in 2D these “planes” are in fact lines, but the

terminology is defined with the extension to higher dimensions in mind. In this set up

the perpendicular plane is the line spanned by e2 =
(

0 1
)T

.

The acceptance window used to determine the selection of 2D lattice nodes to be

projected is a set of identical polytopes that are centred on each node. If the acceptance

window intersects the parallel plane then that node is selected to be projected down

to produce a Fibonacci node. The form of the polytope is determined by a projection

of the so called “Voronoi cell” of the higher-dimensional lattice to the perpendicular

space. The dimension of the polytope depends on the dimension of the perpendicular

space. In the projection from 2D to 1D the acceptance window is a set of straight lines,

of particular length, perpendicular to the parallel plane. We must define the Voronoi

cell before we can formulate an expression for the acceptance window.

A Voronoi cell is the cell formed around a chosen lattice node by taking the per-

pendicular bisectors of every line from the the node to its neighbours in an analogous

way to the Brillouin zone construction in section 2.2.2. The smallest such cell formed

by the perpendicular bisectors is the Voronoi cell. The Voronoi cell associated with

the unit square lattice case is very simple, as we show in figure 3.2, and is simply the

unit square itself. The vertices of the unit square Voronoi cell associated with the

Figure 3.2: Construction of a Voronoi cell for a 2D square lattice. Dashed lines (red)
show the lines from the node to its neighbours, thin lines show the perpendicular
bisectors, thick lines show the Voronoi cell, a unit square.
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lattice node at the origin can be defined by the position vectors

V2 =
2
∑

i=1

nidi =
1√
2 + τ





n1 + τn2

n2 − τn1



 , (3.3)

where n1, n2 ∈ {−1/2, 1/2}.
To form the acceptance window the Voronoi cell is projected to the perpendicular

space e2. The projected nodes are given by the e2 component of (3.3),

V⊥
2 =

1√
2 + τ





0

n2 − τn1



 . (3.4)

With the choice of n1, n2 ∈ {−1/2, 1/2}, this gives four points in a line. In general,

the acceptance window associated with a higher-dimensional projection method is of

the same dimension as the perpendicular space, and so is determined by the maximum

area bounded by the projected Voronoi cell nodes. In the 2D to 1D projection method

the projected Voronoi cell nodes are along one line, thus the “area” in this instance is

the distance between the nodes. Two set of ni give the maximum distance, (n1, n2) =

(−1/2, 1/2) and (n1, n2) = (1/2,−1/2), i.e. n2 − τn1 = ±(1 + τ)/2. These correspond

to the lower and upper points respectively. Denote the acceptance window associated

with the origin node in 2D by W2. The acceptance window for the origin 2D lattice

node is given by

W2 = a
1 + τ

2
√
2 + τ

e2, for a ∈ (−1, 1]. (3.5)

Note the open and closed intervals for a implying the window is exclusive and inclusive

of the end points of the acceptance window, respectively. This is so that there is no

overlapping of acceptance windows which would yield the inclusion of too many lattice

nodes in ΛM.

The acceptance window defined in equation (3.5) is replicated on every 2D lattice

node to give the full acceptance window of the 2D system which we call A2, and is

defined as

A2 = {m1d1 +m2d2 +W2, m1,m2 ∈ Z} . (3.6)

The acceptance windows are depicted in figure 3.1 by the red lines. The grey strip

shows the alternative method for the selection of nodes. It is a strip of equivalent

height to the acceptance windows. We concentrate on the acceptance window method

as it is mathematically easier to implement in higher dimensions.
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The final stage of the projection method is to determine which acceptance windows

intersect with the parallel space. The acceptance window is used to select its associated

lattice node as a node to be projected if and only if the window intersects the parallel

plane. That is if a node with position m1d1 + m2d2 has an associated acceptance

window that intersects the parallel plane then (m1, m2) ∈ M and the lattice node is

a part of the set

ΛM = m1d1 +m2d2, (m1,m2) ∈ M, (3.7)

of selected lattice nodes for projection. To compute ΛM determine the (m1,m2) for

which the e2 component of A2 in equation (3.6) is zero, i.e. determine the (m1,m2)

such that

1√
2 + τ

(

−τm1 +m2 + a
1 + τ

2

)

= 0, for any a ∈ (−1, 1]. (3.8)

This equation can be simplified to the following

−1 + τ

2
< τm1 −m2 ≤

1 + τ

2
. (3.9)

Once the set M of (m1,m2) that satisfy (3.9) has been determined it is possible to

define the Fibonacci chain lattice points. Project the lattice points in ΛM (3.7) to the

parallel plane,

xFib =
1√
2 + τ

(m1 + τm2) e1, (m1,m2) ∈ M, (3.10)

Equation (3.10) gives the Fibonacci chain lattice positions along the parallel plane e1.

The blue squares along the parallel plane in figure 3.1 depict a section of the Fibonacci

chain lattice nodes.

In summary the projection method algorithm for the Fibonacci chain is as follows

• Construct a 2D square unit lattice subtended by the angle θ from the horizontal,

defined in (3.2)

• Project a Voronoi cell to the perpendicular space to find the acceptance window

associated with the origin node W2, defined in (3.5)

• Decorate every lattice node with the acceptance window to give the full set A2,

defined in (3.6)
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• Find the integer pairs (m1,m2) ∈ M which allow the intersection of A2 with the

parallel plane to determine the selection of lattice nodes ΛM = m1d1 +m2d2 to

be projected, defined in (3.9)

• Project this set of lattice nodes ΛM to the parallel plane to determine the Fi-

bonacci chain lattice nodes xFib, (3.10).

This algorithm is inexpensive to run and large sections of the Fibonacci chain can be

generated quickly.

We will later extend this method into higher dimensions in order to construct a

2D quasiperiodic lattice. It will no longer be possible to visualise every aspect of the

algorithm; nevertheless, with the figures, definitions and step by step algorithm set

out in this section, the extension is relatively straightforward.

3.2 Periodic average structure

The periodic average structure (PAS) is a periodic approximation of the quasiperiodic

lattice with a period specifically chosen to represent its properties. As derived in

section 2.1.3, in the 1D case the period d̄ is chosen to be the average spacing of the

Fibonacci chain and is given by

d̄ = (3− τ)S, (3.11)

where S is the length of the small spacing in the Fibonacci chain. This lattice can

be constructed simply with d̄ = d̄e1 as the basis vector of the 1D space. However,

if we take advantage of the 2D space used in the higher-dimensional construction of

the Fibonacci chain, we can gain further information that relates the PAS to the

Fibonacci chain. This can aid in the understanding of how similar the two lattices are.

The method was briefly discussed in section 2.1.3.

Consider a projection of the 2D square lattice nodes Λ defined earlier to the 1D

PAS nodes nd̄, n ∈ Z. The projection matrix chosen can also be used to project the

acceptance windows A2, derived in the previous section (3.6). The projection of the

acceptance windows results in discrete lengths in the 1D space around the PAS nodes

which signify the maximum distance that the Fibonacci chain nodes can lie from the
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PAS nodes. The smaller the area of this projected acceptance window, which we shall

call the occupancy window, the more similar the lattices are.

Let us determine the projection matrix Π required to project the 2D lattice nodes

to the 1D PAS. The projection matrix defined can then be applied to the acceptance

windows. We wish to define a projection matrix Π such that

Π · (m1d1 +m2d2) = nd̄, m1,m2, n ∈ Z. (3.12)

By the definition of the 2D square lattice we know that di · dj = δij, thus we can

choose Π = α(d1 + d2), α ∈ R, and we require

α(d1 + d2) · (m1d1 +m2d2) = α(m1 +m2). (3.13)

If we allow α(m1 +m2) = nd̄ we achieve a one-to-one relationship between the PAS

and Fibonacci lattice nodes. Hence, let α = d̄ and so the projection matrix, from (3.2)

to (3.11) is

Π = d̄(d1 + d2) (3.14)

=
S√
2 + τ





(3− τ)(1 + τ)

(3− τ)(−τ + 1)



 (3.15)

=
S√
2 + τ





3 + 2τ − τ 2

−4τ + 3 + τ 2



 (3.16)

=
S√
2 + τ





2 + τ

4− 3τ



 (3.17)

= S
√
2 + τ





1

3− 2τ



 , (3.18)

where we note the use of the identity τ 2 = τ + 1.

Applying the projection matrix Π to the acceptance window associated with the

origin node defined in equation (3.5), gives us the occupancy window in the 1D parallel

space, Π ·W2 = O1, where

O1 = a

(

1− τ

2

)

S, a ∈ (−1, 1], (3.19)

which has length S(τ−1) and is directed along e1. This occupancy window is replicated

on every PAS node for the full set.
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Two measurements for the variation of the PAS compared to the quasiperiodic

lattice nodes were discussed in section 2.1.3. The packing density is defined as the

ratio of the occupancy window area per unit cell of the PAS. For the 1D PAS this is

ρpac =
S(τ − 1)

S(3− τ)
=

1√
5
= 0.447. (3.20)

The occupancy factor, which is defined as the fraction of the occupancy windows that

contain a quasiperiodic lattice node, is ρocc = 1 since we could choose a one-to-one

projection.

3.3 Approximant

The approximant is a periodic lattice with a finite period that contains some infor-

mation of the quasiperiodic lattice it aims to represent. As discussed in section 3.1,

the projection method is used to construct the approximant to quasiperiodic lattices.

The method is the same except that τ is approximated by a chosen rational number,

altering the projection slightly. We proceed by approximating τ by a rational num-

ber in the perpendicular space component only. By taking τ ≈ τn = Fib(n+1)
Fib(n)

,

which converges to τ as n → ∞, we slightly alter the acceptance windows within the

projection and thus produce a modification of the quasiperiodic chain. The 2D lattice

is skewed due to the approximation. Therefore the perpendicular space is subtended

at a rational angle from the parallel plane rather than an irrational angle as with the

quasiperiodic construction. The projection method with the rational angle yields a

periodic lattice along the (original) parallel plane. The periodic cell thus contains a

finite section of the quasiperiodic lattice. Since the parallel space and the components

of the square lattice in this direction are kept the same (i.e. τ is not approximated in

the e1 plane, see (3.21) below), then the lattice constructed consists of the same L and

S spacings as the Fibonacci chain.

Define the approximant constructed with the approximation τn as the n-approximant.

For the 1D n-approximant, the period is of length Fib(n + 2). As one would expect

intuitively, the larger the n chosen in the approximation of τ , the better the approxi-

mation and the better the accuracy of the periodic approximant. The limit of n→ ∞,

the n-approximant describes the Fibonacci chain itself.
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Begin by defining the approximant square lattice vectors, comparing to those used

in the quasiperiodic projection (3.2),

d̃1 =





1√
2+τ

−τn√
2+τn



 , d̃2 =





τ√
2+τ

1√
2+τn



 . (3.21)

As noted above, we have only approximated τ in the e2 component of the basis vectors.

This is to ensure an approximation is made, but that the resultant tiling still comprises

the same shaped tiles as the quasiperiodic projection method. This was discussed in

section 2.1.4 in particular with the matrix R in equation (2.24). The parallel and

perpendicular spaces are still spanned by e1 and e2 respectively.

The next step is to define the lattice nodes of the approximant Voronoi cell. This

is not the Voronoi cell of the approximant skewed 2D lattice but an approximant of

the Voronoi cell of the square 2D lattice. That is, we consider a unit cell of the skewed

2D lattice. Taking the skewed unit cell rather than the Voronoi cell may seem to be a

crude approximation of the original procedure carried out, but we believe it is in fact

the correct approach to construct the approximant. Although analogous, it is easier

to justify for the 5D to 2D projection in chapter 6 via the pentragrid description, and

so will be discussed further there.

Comparison of the equation for the Voronoi cell nodes with the square lattice (3.3)

with the approximation τ ≈ τn gives the approximant Voronoi nodes as

2
∑

i=1

nid̃i =





n1+τn2√
2+τ

n2−n1τn√
2+τn



 , (3.22)

where ni ∈ {−1/2, 1/2}.
The acceptance window for the approximant W̃2, in comparison to (3.5), is given

by

W̃2 = a
1 + τn

2
√
2 + τn

e2, a ∈ (−1, 1]. (3.23)

Decorating the lattice nodes with the acceptance window as with the quasiperiodic

projection (3.6) we define the full acceptance window for the Fibonacci chain approx-

imant

Ã2 =
{

m̃1d̃1 + m̃2d̃2 + W̃2, (m̃1, m̃2) ∈ Z

}

, (3.24)

as depicted in figure 3.3 by the red lines for varying n in the approximation of τ ≈ τn.

As before, to determine the selection of lattice nodes to be projected, i.e. Λ̃M̃, we
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∞-approximant (Fibonacci chain) 1-approximant

2-approximant 3-approximant

Figure 3.3: Depicting the projection method from the 2D square lattice to the 1D
Fibonacci chain as compared with the approximant 2D lattice to varying approximants.
We find the positions of the lattice nodes wherever we have an intersection of the
acceptance windows (red lines) with the parallel space (horizontal). The lattice nodes
are shown by the squares along the horizontal and the orange nodes depict the periods
of the approximants.

must find the points at which the acceptance windows intersect the parallel space, or

when the e2 component of equation (3.24) is equal to zero. The reduced intersection

equation is

−1 + τn
2

< m̃1τn − m̃2 ≤
1 + τn

2
, (3.25)

from which we are able to determine the allowable integer pairs (m̃1, m̃2) ∈ M̃.

The lattice nodes along e1 can be found by projecting the lattice points in Λ̃M̃ to
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the parallel plane, and are given by the same formulation as the quasiperiodic case,

(3.10),

xapprox =
1√
2 + τ

(m̃1 + τm̃2), (m̃1, m̃2) ∈ M̃. (3.26)

The blue squares along the horizontal parallel plane in figure 3.3 show the pro-

jections of the lattice nodes Λ̃M̃ and the resulting finite sections of the approximant

Fibonacci chain lattice nodes. Different approximations of τ are considered by increas-

ing n. It can be seen how the period, depicted by the orange squares, increases for

increasing n.

In summary the projection method algorithm for the Fibonacci chain approximant

is as follows

• Construct a skewed 2D lattice with the approximation τ ≈ τn in the e2 compo-

nent, defined in (3.21)

• Project an approximant Voronoi cell to the perpendicular space to find the ac-

ceptance window associated with the origin node W̃2, defined in (3.23)

• Decorate every lattice node with the acceptance window to give the full set Ã2,

defined in (3.24)

• Find the integer pairs (m̃1, m̃2) ∈ M̃ which allow the intersection of Ã2 with

the parallel plane in order to determine the selection of the lattice nodes Λ̃M̃ =

m̃1d̃1 + m̃2d̃2 to be projected; these are defined in (3.25)

• Project this set of lattice nodes Λ̃M̃ to the parallel plane to determine the Fi-

bonacci chain approximant lattice nodes xapprox, defined in (3.26).

As with the construction of the 1D quasiperiodic lattice, the construction of the

1D approximant can be extended to higher dimensions using a similar algorithm. As

such, these explanations of the construction of the 1D lattices will be important later.

3.4 Conclusions

In this chapter a rigorous algorithm for the construction of the 1D Fibonacci chain via

the projection method has been derived. The algorithm and accompanying explana-

tions and diagrams aim to provide a reader without a prior knowledge of quasiperiodic
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structures, the projection method or crystallography with a tool to construct the Fi-

bonacci lattice oneself. The algorithms to produce the PAS and the approximant for

the Fibonacci chain were also thoroughly discussed.

The two periodic approximations of the 1D quasiperiodic lattice have different

resemblances to the Fibonacci chain and are constructed in dissimilar ways. A com-

parison between the three lattices can be seen in the example in figure 3.4.

Figure 3.4: Fibonacci chain lattice vertices (blue), 1-approximant vertices (green) and
PAS vertices (red).

Further comparisons between the three lattices will be drawn in the acoustic scat-

tering properties of the lattices and is discussed in chapter 4.



Chapter 4

One-dimensional wave scattering

by a Fibonacci chain structure

4.1 Problem statement

In section 2.3.1 the solution to the 1D scattering problem of wave propagation along a

stretched string with a single point scatterer (a mass, or “bead”) located at an arbitrary

position was derived. These solutions can now be extended to the scenario of multiple

point scatterers whose locations are determined by the 1D lattices as described in

chapter 3. In this problem there are only two directions of propagation. Therefore,

the scattering is expressed in terms of reflection and transmission of the incident wave

by the scatterers.

Some preliminary details that will aid the construction of fast recursive formulae

for the reflection and transmission coefficients for multiple point scatterers are first

discussed, considering the multiple scattering of two point scatterers. The method

applied for the two scatterer scenario can then be easily extended to cases with a finite

number of point scatterers with an arbitrary (randomly generated or quasiperiodic)

distribution. The main distribution of interest is the 1D Fibonacci chain. For this

distribution a recursive formulation of the transmission and reflection coefficients is

defined which allows an exponential increase in number of scatterers per recursion.

98
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4.1.1 Two point scatterers

The multiple scattering from two point scatterers can be considered by decomposing

into two sub-problems. Each of the sub-problems considers the scattering from a single

scatterer, as solved in section 2.3.1. The two sub-problems must then be coupled to

account for the effects on one another. The breakdown is depicted in the schematic in

figure 4.1, along with how they are coupled.

eiX

eiX

R2e
−iX

R2e
−iX

T2e
iX

T2e
iX

R̂e−iX R̂e−iX

R̂e−iX

T̂ e−iXT̂ e−iX

T̂ e−iX
(a)

(b) (c)

Figure 4.1: Decomposition of the two scatterer problem.

We wish to determine the reflection and transmission coefficients resulting from the

scattering due to two point scatterers, R2 and T2, respectively. First consider problem

(b) from figure 4.1 of a point scatterer at X = 0. The solution for R2 is obtained by

summing the resultant reflection due to the right travelling wave of unit amplitude

(i.e. R1e
−iX) and the transmission due to the left travelling wave of amplitude R̂ (i.e.

R̂T1e
−iX), to find that

R2 = R1 + T1R̂, (4.1)

where R1 and T1 were derived in (2.86). Similarly, the amplitude of the transmission

from the first scatterer is given by

T̂ = T1 +R1R̂, (4.2)

obtained by equating the transmission from the right travelling wave of unit amplitude

and the reflection from the left travelling wave of amplitude R̂.

The amplitude determined in equation (4.2) is the incoming wave in problem (c)

from figure 4.1. Considering the phase shift due to the second point scatterer being

at X = A (A some arbitrary length) as discussed in section 2.3.1, we find that the

reflection at the second scatterer is

R̂ = T̂R1e
2iA = (T1 +R1R̂)R1e

2iA, (4.3)
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and the overall transmission through the two scatterers is

T2 = (T1 +R1R̂)T1. (4.4)

Rearranging equation (4.3) gives

R̂ =
T1R1e

2iA

1−R2
1e

2iA
. (4.5)

Substitution into (4.1) and (4.4) and simplifying, it is found that the reflection and

transmission coefficients for the scattering by two point scatterers with a separation

A are

R2 = R1 +
T 2
1R1e

2iA

1−R2
1e

2iA
, T2 =

T 2
1

1−R2
1e

2iA
. (4.6)

This method can now be extended to a finite arbitrary number N of scatterers.

4.1.2 N point scatterers

eiX

eiX
RNe

−iX

RNe
−iX

TNe
iX

TNe
iX

(a)

(b) (c)

Figure 4.2: Decomposition of the N point scatterer problem.

The above method can be applied to arbitrary numbers and distributions of point

scatterers, as depicted in figure 4.2. The figure illustrates how an arbitrary distribution

of point scatterers can be decomposed into two smaller sub-problems. If the reflection

and transmission of the two sub-problems, (b) and (c), are known, then it is possible

to couple the two solutions to find the reflection and transmission associated with (a).

A difficulty here is that the smaller problems will now have an incoming wave from

the left (of any amplitude) and from the right, and are no longer positioned at the

origin. This is where the distribution being non-periodic makes the problem slightly

more involved; it is necessary to determine the reflection and transmission coefficients

for both incoming right and left travelling waves. This was discussed in 2.3.1, and a

superscript o notation is used to denote the ‘opposite’ problem, i.e. an incident left

travelling wave. Changes in incoming amplitudes and phase shifts must also be taken

into consideration.
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With the solutions to the one point scatterer problem, (2.86), it has been shown

how to apply these to the two point scatterers. This method can be extended to three

scatterers and so on. It is therefore possible to find the N th reflection and transmission

coefficients RN and TN for large N remarkably quickly for a 1D distribution of point

scatterers.

As in section 4.1.1, first consider the n scatterer problem in (b) with the first

scatterer at X = X1 = 0. This scatterer has an incident right travelling wave of

unit amplitude and an incident left travelling wave to the nth scatterer, due to the p

scatterer problem, of unknown amplitude L. After finding expressions for the resultant

left and right propagating waves of problem (a), consider the p scatterer problem in

(c) with first scatterer at X = Xn+1. Working through as in section 4.1.1 one can

simply show that the solutions for the N = n+ p point scatterer problem are

RN = Rn +
T onTnRpe

2iXn+1

1−Ro
nRpe2iXn+1

, (4.7)

TN =
TnTp

1−Ro
nRpe2iXn+1

, (4.8)

Ro
N = Ro

pe
−2iXn+1 +

T opTpR
o
n

1−Ro
nRpe2iXn+1

, (4.9)

T oN =
T onT

o
p

1−Ro
nRpe2iXn+1

, (4.10)

where the superscript o denotes the ‘opposite’ problem, of an incoming left travelling

wave. These formulae allow the computation of the reflection and transmission co-

efficients for arbitrarily positioned point scatterers, dependent on prior knowledge of

a certain breakdown of the problem. These formulae are very general, and are ap-

plied later in section 4.3 for more a specific quasiperiodic geometry, which will allow

the recursive formulae to be computed extremely rapidly for a large number of point

scatterers.

4.2 Distributions of scatterers modelled as a ho-

mogeneous medium

For multiple scattering from a finite number of point scatterers on a string one can

find an effective wavenumber for the wave passing through the length of scatterers
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and string by comparison with a string which has a homogeneous inclusion section of

some length of a different density to the host string as depicted in figure 4.3. For

eiX
T̂ eiβX

R̂e−iβX

T1e
iX

R1e
−iX

X = 0 X = A

Figure 4.3: Infinite host string with inclusion of length A of different density.

this problem, consider an infinite string with density ρ2 for 0 ≤ x ≤ a and density ρ1

elsewhere. Non-dimensionalise the horizontal lengthscale by letting

X = k1x, (4.11)

and so

k2x = βX, (4.12)

β =
k2
k1
, (4.13)

where k1 and k2 are the wavenumbers of the host and inclusion strings, respectively.

The non-dimensionalised string displacement has the form

Y (X) =



















Y1(X) = eiX +R1e
−iX X ≤ 0

Y2(X) = T̂ eiβX + R̂e−iβX 0 ≤ X ≤ A

Y3(X) = T1e
iX A ≤ X

(4.14)

where A = k1a.

At the points where the density changes, the string must have continuous displace-

ment and slope, giving the boundary conditions

Y1(0) = Y2(0), (4.15)

Y ′
1(0) = Y ′

2(0), (4.16)

Y2(A) = Y3(A), (4.17)

Y ′
2(A) = Y ′

3(A). (4.18)

The dashed notation here denotes differentiation with respect toX. After some algebra
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the boundary conditions lead to the simultaneous equations

1 +R1 = T̂ + R̂, (4.19)

1−R1 = βT̂ − βR̂, (4.20)

T̂ eiAβ + R̂e−iAβ = T1e
iA, (4.21)

βT̂ eiAβ − βR̂e−iAβ = T1e
iA, (4.22)

which can be solved to give

R1 =
(1− β2)(1− e2iAβ)

(1 + β)2 − (1− β)2e2iAβ
, (4.23)

T̂ =
2(1 + β)

(1 + β)2 − (1− β)2e2iAβ
, (4.24)

R̂ =
2(β − 1)e2iAβ

(1 + β)2 − (1− β)2e2iAβ
, (4.25)

T1 =
4βeiA(β−1)

(1 + β)2 − (1− β)2e2iAβ
. (4.26)

Figure 4.4 shows the computed results for the transmission and reflection from either

2 3 4 5

0.2

0.4

0.6

0.8

1.0

β

|T1|

|R1|

Figure 4.4: Transmission and reflection due to an inclusion of string of length A = 2.

end of the inclusion string for a particular parameter set.

The solutions for R and T from a finite point scatterer problem can be compared

with equations (4.23) and (4.26) to determine the effective wavenumber β for the point

scatterer problem and will now be discussed.

Equation (4.23) can be rearranged neatly to give β as a function of R1. Firstly,

rearrange to give

e2iAβ =
R1(1 + β)2 − (1− β2)

R1(1− β)2 − (1− β2)
. (4.27)



CHAPTER 4. 1D WAVE SCATTERING: FIBONACCI CHAIN 104

Then, assuming β is real (i.e. no attenuation in either string), it is known that

e2iAβe2iAβ̄ = 1, (4.28)

where z̄ denotes the complex conjugate of z.

After a little algebra it can be shown that

β2 =
ℜ(R1)− |R1|2
ℜ(R1) + |R1|2

. (4.29)

It is also possible to determine the effective length of the homogeneous inclusion by

finding the argument of equation (4.27),

A =
1

2β
arg

(

R(1 + β)2 − (1− β2)

R(1− β)2 − (1− β2)

)

+
nπ

β
(4.30)

since e2iAβ has a period of 2nπ, n ∈ Z.

Thus, by comparing two different 1D wave propagation problems, interesting equa-

tions for the effective properties of a finite point scatterer geometry have been de-

termined, (4.29) and (4.30). Therefore, the computed reflection coefficient from an

N -point scatterer problem can be applied to generate an effective wavenumber and an

effective length for a homogeneous medium. Replacing the point scatterer distribution

with this effective medium retains its reflection and transmission coefficients. We are

now in the beneficial position of having a homogeneous material which can model a

complicated aperiodic 1D structure. This formulae can be applied for any distribution

of point scatterers without limitations.

4.3 Recursive formulation for wave scattering by

point scatterers with a Fibonacci chain distri-

bution

Understanding wave propagation in quasiperiodic media will aid in bridging the gap

between theory in periodic and random media. In this chapter a 1D quasiperiodic

lattice called the Fibonacci chain, as described in chapter 3, is investigated. In section

4.1.2 the formulation of the solutions for the reflection and transmission coefficients for

a finite number of point scatterers was derived in a recursive manner. The recursive
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methodology can be extended to consider a finite set of scatterers with a quasiperiodic

distribution. The quasiperiodic Fibonacci chain allows simplifications of the formulae

and thus solutions can be produced for large numbers (e.g. billions) of scatterers ex-

tremely rapidly. The simplifications made are due to the deterministic nature of the

Fibonacci chain, and how it can be constructed using the superposition of the two

previous chains. This deterministic property does not exist in fully random media, so

although the recursive methodology can be applied, it will be computationally slower

than that of the aperiodic Fibonacci chain.

With reference to figure 4.5, denote Dn as the nth distribution of the point scat-

terers via the Fibonacci chain. Thus D1 and D2 are distributions with one scatterer

set at a distance S and L from the origin, respectively. D3 is the superposition of D1

to the end of D2, i.e. two point scatterers positioned at X = L and X = L+ S. This

continues, so the Dn is just a superposition of the Dn−2 to the end of the Dn−1.

... X = 0

N = 1

N = 2

N = 3

N = 4

N = 5

S

L

LS

LSL

LSLLS

Figure 4.5: Fibonacci chain spacing of the point scatterers.

This chain can also be generated via alternative methods as described in chapter

3, but using the construction described above one can easily see how the Dn problem

can be solved recursively using the solutions to the two previous problems.

As in section 4.1.2 it is necessary to formulate solutions for the opposite problems.

The set up used here can be seen in figure 4.6. Let the Do
1 and Do

2 problems both be

a scatterer at X = 0. Then the Do
n problem is formed by bringing the Do

n−2 problem

to the left of the Do
n−1 problem.
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... X = 0

X = −S

X = −L

X = −(L+ S)

X = −(2L+ S)

X = −(3L+ 2S)

N = 1

N = 2

N = 3

N = 4

N = 5

S

L

LS

LSL

LSLLS

Figure 4.6: Spacing of the point scatterers for the opposite Fibonacci chain problem.

The D1 and D2 problems are simply one point scatterer problems, and from 2.3.1

it is known that the transmission and reflection coefficients are given by

T1 = T2 = T o1 = T o2 =
2

2−Mǫi
,

R1 = e2iS
Mǫi

2−Mǫi
,

R2 = e2iL
Mǫi

2−Mǫi
,

Ro
1 = Ro

2 =
Mǫi

2−Mǫi
, (4.31)

where M = m
m0

= m
ρ0ǫ/k

and ǫ = (3 − τ)S is the non-dimensional average spacing of

the Fibonacci chain, as derived in section 2.1. The D3 and Do
3 problems are just two

point scatterer problems so can be solved as in section 4.1.1 giving

T3 =
T1T2

1−R1Ro
2

,

R3 = R2 +
R1T2T

o
2 e

2iL

1−R1Ro
2

= R2 +
R1T3T

o
2 e

2iL

T1
,

T o3 =
T o1T

o
2

1−R1Ro
2

,

Ro
3 = Ro

1 +
T1R

o
2T

o
3 e

2iS

T o2
. (4.32)

Continuing for increasing N , decomposing the problem into sub-problems and using
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the technique from section 4.1.2 it can be shown that

T4 =
T2T3

1−R2Ro
3

,

R4 = R3 +
R2T4T

o
3 e

2i(L+S)

T2
,

T o4 =
T o2T

o
3

1−R2Ro
3,

Ro
4 = Ro

2 +
T2R

o
3T

o
4 e

2iL

T o3
, (4.33)

and

T5 =
T3T4

1−R3Ro
4

,

R5 = R4 +
R3T5T

o
4 e

2i(2L+S)

T3
,

T o5 =
T o3T

o
4

1−R3Ro
4

,

Ro
5 = Ro

3 +
T3R

o
4T

o
5 e

2i(L+S)

T o4
. (4.34)

It is possible to see a pattern forming, from N ≥ 3.

Taking equations (4.31) as the initial formulae, the following relation is obtained

for N ≥ 3,

TN = TN−2TN−1

1−RN−2R
o
N−1

, (4.35)

T oN =
T oN−2T

o
N−1

1−RN−2R
o
N−1

, (4.36)

RN = RN−1 +
RN−2TNT

o
N−1e

2i(q(N−1))S

TN−2
, (4.37)

Ro
N = Ro

N−2 +
TN−2R

o
N−1T

o
Ne

2i(q(N−2))S

T o
N−1

, (4.38)

where

q(N)S = (Fib(N − 1)τ + Fib(N − 2))S (4.39)

is the end point of the Nth distribution for N ≥ 3. This formulae for the reflection and

transmission coefficients can be proved by induction and is accomplished in appendix

A.3.

The recursive method can be applied to any distribution of scatterers. It has

been applied to the Fibonacci distribution in this section, due to the aims of this

thesis, but also due to its speed in calculating the solutions for large distributions.

One benefit of this quasiperiodic distribution is that the number of scatterers in each
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system grows exponentially on each recursion; one can calculate the reflection and

transmission coefficients for a distribution containing Fib(N) point scatterers with only

N recursions. Nevertheless, for other distributions this method can be applied. For

example, a distribution with fully random spacings. Because of the non-deterministic

nature of a random lattice only one scatterer can be added on each recursion. This

example is illustrated in appendix C.2. The method can also be applied to variations

in the masses M of the point scatterers or in the density of the string. Quasiperiodic

and random variation in the mass of point scatterers is discussed briefly in appendix

C.3 and C.4.

4.4 Comparison of wave scattering by a Fibonacci

chain structure and its periodic approximations

In this section the transmission properties associated with the quasiperiodic Fibonacci

chain are compared to those associated with two periodic structures: the periodic aver-

age structure (PAS) and the approximant, described in sections 3.2 and 3.3. The goal

is to determine the periodic structure that best represents the propagation properties

of the Fibonacci chain. A representative periodic structure may therefore be justifiable

as a model of a complicated quasiperiodic structure. It will then be possible to apply

the analytical tools discussed in section 2.3.2 to determine effective properties of an

infinite periodic structure that could represent an infinite quasiperiodic structure.

Figure 4.7 shows the transmission coefficient for wave propagation through 21 point

scatterers distributed according to the three methods above, Fibonacci chain (blue

solid), PAS (red dashed) and approximant (green dotted), plotted as functions of

increasing mass M . Note here that this is for 21 point scatterers, i.e. Fib(8), and not

Fib(21).

The approximant structure used here is the lowest approximation, τ ≈ τ1 =
Fib(2)
Fib(1)

=

1
1
= 1. It can be seen that for small M the three different distributions have similar

transmission properties, i.e. they all allow most of the wave to be transmitted. This is

intuitive as for lower masses the scattering from the point masses is weak and hence

its modification to the propagating wave is weak.

One can see that for point scatterers of mass M & 1.4 the PAS transmission
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Figure 4.7: Comparison of the transmission through 21 point scatterers (i.e. Fib(8))
with Fibonacci chain (blue solid), period average structure (red dashed) and approx-
imant (green dotted) distributions, for increasing mass of the point scatterers. The
approximant used here is τ ≈ τ1 =

1
1
= 1.

deviates significantly from the Fibonacci transmission for the majority of scatterers,

except a range around 4.2 < M < 4.7, all depending on the required tolerance of the

model. This suggests that this approximation is only appropriate as a representation

of the Fibonacci chain for particular ranges of mass of the point scatterers, for 21

scatterers.

For the 1-approximant it is seen that as the mass of the point scatterers increases

the similarities between the transmission of the approximant and the Fibonacci chain

decrease. Thus, such a basic approximant is not a good model of the Fibonacci chain

for larger mass size. One could expect such results when using such an approximation

of τ ; the golden ratio is τ = 1.61803398875 . . . , which is not well represented by this

chosen approximation (τ = 1)!

Figure 4.8 shows how the transmission properties of the approximant change as

the approximation of τ is improved. The approximant modelled here uses τ ≈ τ3 =

Fib(4)
Fib(3)

= 3
2
, which is much closer to τ than the previous approximant. The size of the

periodic cell of the approximant is increased to Fib(5) = 5 spacings, thus the unit cell
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Figure 4.8: Comparison of the transmission through 21 point scatterers with Fibonacci
chain (blue solid), period average structure (red dashed) and approximant (green dot-
ted) distribution, for increasing mass of the point scatterers. The approximant used
here is τ ≈ τ3 =

3
2
.

of the approximant which is acting as a representative volume element (RVE, discussed

in [83], [84]) of the Fibonacci chain captures the quasiperiodicity better. In figure 4.8

there is a slight improvement in capturing the transmission properties of the Fibonacci

chain with the improvement of the approximant.

We can continue to improve the approximation of τ in the approximant construc-

tion and see how the transmission properties compare. Although, obviously there is

a limit to finding the best RVE without having an exact quasiperiodic chain for the

number of scatterers under consideration! That is, in the examples so far, distributions

of only 21 point scatterers have been considered, thus the RVE is required to be of a

smaller size than 21 (i.e. less that Fib(8)).

In figure 4.9 the approximation of τ ≈ τ4 =
Fib(5)
Fib(4)

= 5
3
has been used, and there is a

significant improvement in agreement. For a period of just Fib(6) = 8 point scatterers,

the transmission properties of the Fibonacci chain are being captured within a wider

range of point mass sizes.

To reiterate this finding, figure 4.10 shows how the transmission coefficients vary for
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Figure 4.9: Comparison of the transmission through 21 point scatterers with Fibonacci
chain (blue solid), period average structure (red dashed) and approximant (green dot-
ted) distribution, for increasing mass of the point scatterers. The approximant used
here is τ ≈ τ4 =

5
3
.

the three different distributions with a particular massM = 2.3 and increasing number

of scatterers. The choice of M is arbitrary but has been selected so that it is large

enough to avoid the initial range of masses where there is accurate agreement between

all distributions. This choice of M demonstrates the potential of the approximant,

however it must be noted that this is just one example. It can be seen that for

a periodic cell of length Fib(6) = 8 spacings, the approximant provides an accurate

RVE for as many as 60 scatterers. The PAS continues to allow almost full transmission

as the number of scatterers in the array is increased, whereas the Fibonacci chain and

the approximant distributions offer a gradual loss in transmission.

It is plain to see from this section that for an appropriate choice of period of

the approximant in relation to the sample size, the approximant provides a much

better periodic representation of the quasiperiodic Fibonacci chain than the PAS. By

capturing an essence of the quasiperiodicity within the periodic cell of the approximant

we are able to “mimic” the scattering properties of a fully quasiperiodic distribution in

1D exceptionally well. Thus, the question we now wish to answer is how to determine
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Figure 4.10: Comparison of the transmission through point scatterers of massM = 2.3
with Fibonacci chain (blue circle), period average structure (red square) and approx-
imant (green diamond) distribution, for increasing number of point scatterers. The
approximant used here is τ ≈ τ4 =

5
3
.

the RVE needed to model various lengths of Fibonacci chain for certain parameters?

Or, what is the smallest approximant cell size, or simplest rational approximation of

τ that can be used?

Figure 4.11 shows how the transmission coefficients vary for other lengths of point

scatterer distributions, continuing with the 4-approximant, τ ≈ τ4. Distributions of

Fib(7), Fib(8), Fib(9) and Fib(10) scatterers are considered, and the approximant unit

cell contains Fib(6) scatterers.

For Fib(7) scatterers the approximant gives exactly the same transmission coeffi-

cient as the Fibonacci chain. This is actually due to the distributions being identical

in this length, even though the period of the approximant is less.

The approximant always provides the best match to the quasiperiodic distribution

at the origin as discussed in section 3. So as the number of scatterers is increased,

more mismatches between the two lattices are expected, and thus more discrepancies

in the transmission. We can see that for a chain with Fib(9) and Fib(10) scatterers, the

approximant manages to capture the Fibonacci chain scattering properties remarkably
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(a) 13 scatterers.
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(b) 21 scatterers.
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(c) 34 scatterers.
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(d) 55 scatterers.

Figure 4.11: Comparison of the transmission through increasing Fibonacci numbers
of point scatterers with Fibonacci chain (blue solid), period average structure (red
dashed) and approximant (green dotted) distribution, for increasing mass of the point
scatterers. The approximant used here is τ ≈ τ4 =

5
3
.

well until a critical mass M∗. This suggests that an n-approximant of with Fib(n+2)

scatterers could be an appropriate RVE for a Fibonacci chain distribution of Fib(n+6)

scatterers. However, to capture the scattering properties for larger masses a chain with

Fib(n+ 4) scatterers would be well represented.

To test this hypothesis, refer to figure 4.12 where we illustrate the transmission of

the three different lattices for increasing total lengths of distributions again, but now

with an improved approximant of τ ≈ τ5 =
Fib(6)
Fib(5)

= 8
5
. As before, it can be seen that

the scattering properties of the Fibonacci chain are mimicked with the approximant

for the mass range 0 ≤M ≤ 5 and for total lengths of Fib(5 + 4). For lengths greater

than this it is seen that general characteristics of the Fibonacci transmission such

as the drops in transmission through the approximant are captured, but the higher

transmission behaviour for larger M is not.

Increasing the accuracy of the approximation of τ further to n = 6 i.e. τ ≈ τ6 =

Fib(7)
Fib(6)

= 13
8
, giving an approximant periodic cell with Fib(8) = 21 scatterers, it can
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(a) 21 scatterers.
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(b) 34 scatterers.
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(c) 55 scatterers.
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(d) 89 scatterers.

Figure 4.12: Comparison of the transmission through increasing Fibonacci numbers
of point scatterers with Fibonacci chain (blue solid), period average structure (red
dashed) and approximant (green dotted) distribution, for increasing mass of the point
scatterers. The approximant used here is τ ≈ τ5 =

8
5
.

be seen that again a Fibonacci distribution of Fib(n+ 4) =Fib(10) = 55 scatterers is

very accurately modelled by the approximant, see figure 4.13. What is remarkable

about this approximant however is that as the number of scatterers is increased, as

before there are discrepancies between the high transmission properties, but now the

approximant has almost identical “near” stop bands to the Fibonacci distribution!

The capability of mimicking the low transmission coefficients was mentioned for the

previous approximant, but has been reinforced here. Figure 4.14 shows the stop band

replication for a chain of length Fib(15) = 610 as an example. For a chain with so

many more scatterers than the approximant periodic cell, to be able to capture such

properties suggests that an excellent RVE has been obtained.

It can be understood that the approximant becomes less accurate as a model for

the Fibonacci chain as the number of scatterers is increased since the approximant is

most accurate near the origin of the x-position of the scatterers, due to the projection

method applied in the previous chapter. At the origin the quasiperiodicity of the
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Figure 4.13: Comparison of the transmission through 55 point scatterers with Fi-
bonacci chain (blue solid), period average structure (red dashed) and approximant
(green dotted) distribution, for increasing mass of the point scatterers. The approxi-
mant used here is τ ≈ τ6 =

13
8
.

approximant unit cell matches with the quasiperiodicity of the Fibonacci chain, but

further from the origin more discrepancies are expected. Therefore one unit cell of

the approximant should mimic the scattering properties of the Fibonacci chain more

accurately nearer the origin. The accuracy of the approximant unit cell compared to

an equivalent length of Fibonacci chain can be gauged by taking an average of the

transmission amplitude over various Fibonacci chain sections with one approximant

unit cell length.

Define the transmission coefficient from a distribution of point scatterers with the

Fibonacci chain within an approximant unit cell at the origin T0, a translation of one

cell along T1, and so on, so that m translations of the unit cell away from the origin

gives us the transmission for a length of Fibonacci chain within a unit cell called Tm.
The average amplitude can then be given by

T̄ =

∑mmax
m=mmin

Tm
mmax −mmin + 1

. (4.40)

Figure 4.15 depicts comparisons of the average transmission of the Fibonacci chain
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Figure 4.14: Comparison of the transmission through 610 point scatterers with Fi-
bonacci chain (blue solid), period average structure (red dashed) and approximant
(green dotted) distribution, for increasing mass of the point scatterers. The approxi-
mant used here is τ ≈ τ6 =

13
8
.

over three unit cells with the transmission for the approximant.
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(a) Average taken over m for 0 ≤ m ≤ 2.
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(b) Average taken over m for
26 ≤ m ≤ 28.

Figure 4.15: Comparison of the average transmission through point scatterers with
Fibonacci chain (blue dashed) and the transmission approximant (green dotted) dis-
tribution, for increasing mass M of the point scatterers, where the average over 3
varying cells of the Fibonacci chain has been taken. The approximant used here is
τ ≈ 13

8
.

The left hand plot is for three cells from the origin, i.e. 0 ≤ m ≤ 2, the right for

three further away from the origin at 26 ≤ m ≤ 28. We have averaged over three



CHAPTER 4. 1D WAVE SCATTERING: FIBONACCI CHAIN 117

cells as it was seen that the n = 6 approximant replicated the transmission of the

Fibonacci chain well for a chain of 55 scatterers, three approximant unit cells contain

63 scatterers just over this length, so we expect good results for these.

The reason for the choice of the upper limit to be the 29th cell from the origin is that

this gives is almost 610 point scatterers, which is the chain considered in figure 4.14

(in fact there are 29×Fib(8) = 29× 21 = 609 scatterers). It can be seen, as expected,

that closer to the origin the average transmission from the Fibonacci chain is better

approximated by the approximant than further away. However, the approximation for

26 ≤ m ≤ 28 should not be discounted as this still provides an excellent insight.

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

M

|T |

Figure 4.16: Comparison of the average transmission through point scatterers with
Fibonacci chain (blue dashed) and the transmission approximant (green dotted) dis-
tribution, for increasing mass of the point scatterers, where the average over 29 varying
cells of the Fibonacci chain for 0 ≤ m ≤ 28 has been taken. The approximant used
here is τ ≈ τ6 =

13
8
.

If the average over a larger number of unit cells is taken, a better average of the

Fibonacci chain transmission will be achieved. Figure 4.16 depicts the average taken

over 29 unit cells, with 0 ≤ m ≤ 28. It is seen that the decrease in accuracy is not too

great from the right hand plot in figure 4.15, suggesting that an average taken over

just three cells manages to capture a good representation of the Fibonacci chain, and
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thus it is not necessary to average over so many cells.

4.5 Wave scattering by an infinite approximant struc-

ture

X = (n− 1)p X = np X = (n+ 1)p X = (n+ 2)p

Aeiγnpe−inpeiX Aeiγ(n+1)pe−i(n+1)peiX

Beiγnpeinpe−iX Beiγ(n+1)pei(n+1)pe−iX

Figure 4.17: Infinite periodic lattice, with period of arbitrary approximant structure.

Now that it has been demonstrated that periodic structures in the form of an

approximant provide good representations of the Fibonacci chain, consider the effective

properties of such infinite periodic structures. As the quasiperiodic chain does not

contain periodicity itself, Bloch wave analysis is not applicable. The infinite periodic

approximant however should provide approximate effective properties of the infinite

quasiperiodic chain which can be determined via Bloch wave analysis.

Although the computation of transmission and reflection coefficients for 1D quasiperi-

odic distributions of scatterers is rapid, the benefit of the computation of effective

properties is that it provides simple formulae for overall properties of this, and other,

quasiperiodic chains. The main motivation for this infinite periodic representation

is for the extension into higher dimensions. Multiple scattering in 2D is much more

complex than in 1D and thus more computationally intensive. The extension of the

method used here into 2D will enable the rapid prediction of overall properties of a
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2D quasiperiodic distribution of scatterers.

In figure 4.17 the breakdown of an infinite approximant lattice is depicted; one unit

cell of the chosen approximant repeated infinitely many times. The figure also depicts

the posed Bloch wave solution, in a manner similar to that of section 2.3.2, which is

of the form,

un(X) =Aeiγnpe−inpeiX + Beiγnpeinpe−iX , np− d < X ≤ np, (4.41)

un+1(X) =Aeiγ(n+1)pe−i(n+1)peiX

+ Beiγ(n+1)pei(n+1)pe−iX , (n+ 1)p− d < X ≤ (n+ 1)p, (4.42)

where d is the distance between the last point scatterer in the cell and the end of the

cell, i.e. the last scatterer in the (n− 1) cell and the first scatterer in the n cell.

This infinite periodic problem can be analysed with a different approach to that

used in 2.3.2, by exploiting prior knowledge of the properties of the individual period.

For instance, if there are m point scatterers within the periodic cell of length pm then

it is possible to formulate expressions for the transmission and reflection properties,

Tm, Rm, T
o
m and Ro

m, using the recursive methods previously employed in this chapter.

The outgoing Bloch wave solutions of the period can then be redefined as sums of

the transmitted and reflected waves due to the two incident waves on the problem,

analogously to 4.1.1. That is, the transmitted wave to the right of the cell is given by

Aeiγ(n+1)pme−i(n+1)pm = Aeiγnpme−inpmTm +Beiγ(n+1)pmei(n+1)pmRo
m, (4.43)

and the reflected wave to the left of the cell is given by

Beiγnpmeinpm = Aeiγnpme−inpmRm + Beiγ(n+1)pmei(n+1)pmT om. (4.44)

Rearranging results in a matrix equation of the form

M





A

B



 =





Tm − eipm(γ−1) Ro
me

ipm(γ+1)

Rm T ome
ipm(γ+1) − 1









A

B



 = 0. (4.45)

Setting the determinant of M to zero,

det(M) = TmT
o
me

ipm(γ+1) − Tm − T ome
2ipmγ + eipm(γ−1) −RmR

o
me

ipm(γ+1) (4.46)

= −T ome2ipmγ +
(

TmT
o
me

ipm + e−ipm −RmR
o
me

ipm
)

eiγ − Tm (4.47)

= 0, (4.48)
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gives an equation to solve for the unknown Bloch wave vector γ. This can be rearranged

as

eipmγ =
1

2T om

(

TmT
o
me

ipm + e−ipm −RmR
o
me

ipm

±
√

(TmT ome
ipm + e−ipm −RmRo

me
ipm)2 − 4TmT om

)

(4.49)

=± χm, (4.50)

which leads to the result

γ± =
−i log(±χm)

pm
, (4.51)

for which a choice of the positive or negative root must be made to determine the

desired γ. Therefore it is possible to compute the effective wavenumber for an infinite

periodic 1D lattice with periodic cell containing an arbitrary number and distribution

of scatterers, with this simple equation (4.51). Exploiting prior knowledge of the

microscale (the transmission and reflection coefficients for the periodic cell) has enabled

a rapid computation of the effective properties on the macroscale. This approach

enables solutions without the need to consider the two boundary conditions on each

point scatterer within the period as in section 2.3.2 which would be computationally

expensive for large cells. With this approach the number of simultaneous equations is

always two, regardless of the period size!

For the n-approximant with the approximation τ ≈ τn = Fib(n+1)
Fib(n)

, there are

m =Fib(n+ 2) point scatterers with a period of length

pm = Fib(n+ 1)L+ Fib(n)S, (4.52)

and thus the calculations are straightforward.

Figure 4.18 depicts the imaginary component of the effective wavenumber γ for

different approximant lattices as a function of the average spacing

ǫ =
Fib(n+ 1)L+ Fib(n)S

Fib(n+ 2)
. (4.53)

When there is an imaginary component of γ there is decay in the wave field and thus it

is a stop band. In the diagram for the 6-approximant a numerical error occurs in the

imaginary component, which can be neglected in this instance as it is only of interest

to determine the frequencies of the stop bands and not the value of the imaginary
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Figure 4.18: Comparison of the stop bands for varying infinite approximant lattices
with M = 0.7.

component of γ. It is possible to see that the location of the stop bands converge

as the accuracy of the approximant is increased. For example, figure 4.19 shows the

position of the first stop band in terms of ǫ the average spacing as n is increased in the

approximant, and rapid convergence can be seen. This implies that as n is increased

and thus the resemblance of the approximant to the Fibonacci chain increases, accurate

approximations of the effective properties of an infinite 1D quasiperiodic lattice are

achieved. An approximant constructed with an approximation as low as n = 6 gives

the converged position of the first stop band of the Fibonacci chain.

In 1D we have the benefit of being able to run computations for large numbers

of scatterers rapidly. Therefore, it is possible to compare the band structure of the
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Figure 4.19: Comparison of the first stop band position for varying infinite approxi-
mant lattices with M = 0.7.

infinite approximant to a large Fibonacci chain. Figure 4.20 depicts the transmis-

sion coefficient for a Fibonacci distribution of Fib(55)=139583862445 scatterers for

increasing ǫ, the non-dimensional average spacing scaled on the wavenumber. Excel-

lent agreement with the infinite approximant results in figures 4.18 and 4.19 can be

seen, further validating this approximation.

0.0 0.2 0.4 0.6 0.8
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0.4
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ǫ

|TFib(45)|

Figure 4.20: Transmission coefficient for a Fibonacci distribution of Fib(55) scatter-
ers (red) compared to the infinite 6-approximant stop-band positions (blue), with
M = 0.7.
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4.6 Conclusions

This section has set out the motivation and ideas behind this thesis by considering

a relatively simple 1D problem. Firstly, it was discussed how to solve the 1D wave

scattering problem of waves along an infinite string with discrete point scatterers,

i.e. masses or beads. Then fast recursive formulae were derived that determined the

transmission and reflection of the wave propagation along arbitrary 1D point-scatterer

distributions. With this methodology it is possible to formulate the transmission and

reflection coefficients for different point scatterer distributions, allowing the compari-

son of the scattering properties of each.

1D wave propagation along infinite strings is well understood and discussed by Graff

[33], for example. In this section we have extended his work to show how to analyse 1D

wave propagation problems for point scatterers on strings with periodic, quasiperiodic

and random distributions. The recursive formulation works by solving each scattering

problem as the superposition of the solutions of two smaller sub-distributions. Working

in such a way allows the formulation of results remarkably quickly, especially with the

Fibonacci distribution whereby the number of point scatterers is increased by Fib(n)

for the nth recursion. This means the distribution size is growing exponentially and

it is possible to formulate the transmission properties for an extremely large number

of point scatterers at great speed and efficiency.

With this new rapid formulation for the transmission and reflection coefficients it

was shown how a comparison of a finite point scatterer distribution to a homogeneous

inclusion of string of a different density can be drawn, and thus novel formulae for an

effective wavenumber of a distribution of point scatterers was derived. This enabled

the modelling of complicated distributions of point scatterers by a simple homogeneous

string of particular density.

Comparisons of the transmission properties of the finite quasiperiodic Fibonacci

distribution to periodic distributions were drawn. It was found that the periodic

average structure, as described in section 3.2 only acts as a good approximation for

relatively small values of mass M = m/m0 of the point scatterers. Whereas, for

approximants taken with an appropriate approximation of the golden ratio τ provide

a much better model, even at larger M . The Fibonacci chain can be modelled well by
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particular approximants, and thus we have determined a periodic distribution, which

is easier to analyse.

It was shown that approximants determined by the approximation τ ≈ τn =

Fib(n+1)
Fib(n)

which have a unit cell containing Fib(n + 2) point scatterers have capabil-

ities of mimicking the full scattering properties of Fibonacci chain distributions of

point scatterers with Fib(n + 4) scatterers in total. Furthermore, “near” stop band

properties were replicated for larger distributions than this, especially so with n as

small as 6.

Rapid formulations were derived that determine the effective wavenumber of the

infinite periodic approximant, exploiting knowledge of the transmission and reflection

properties of the individual periods. This method can be applied to arbitrary repeating

cells of any length and point scatterer distribution. It was shown that the position of

the first cut off point converges as the accuracy of the approximant is increased, and

thus an infinite Fibonacci chain lattice can be modelled with an approximant lattice.

Again it was found that n = 6 gives an approximant which is a valid representation

of the Fibonacci chain. These results were validated further by comparison to the

transmission properties for a large Fibonacci distribution of scatterers.

In 1D it may seem redundant to find periodic models for the Fibonacci chain seeing

as the recursive formulae for the Fibonacci chain works so fast, and thus it is easy

and inexpensive to compute the scattering properties of extremely large quasiperiodic

lattices. However, it has been demonstrated, in the 1D case, that the methodology of

the construction of the periodic lattices, and their scattering properties, can be used

effectively. This can now be extended into 2D or higher dimensions.

The work discussed in this chapter is easily extended to arbitrary distributions of

point scatterers, and to other types of scatterers in 1D, some of this work is shown

in appendix C. The formulae derived provide a novel insight into wave propagation

through quasiperiodic media in 1D, and can be easily applied in many other situations.



Chapter 5

Two-dimensional wave scattering

by a Fibonacci chain structure

The present section enables consideration of 1D quasiperiodicity within 2D multiple

scattering. We consider infinite rows of small circular cylinders with all axes per-

pendicular to a 2D plane. Within each infinite row the scatterers are periodically

separated, denoted the in-row spacing. The quasiperiodicity is introduced through the

separation between each of the rows, denoted the row spacing.

5.1 Problem Statement

Consider an infinite row of circular cylinders distributed periodically along a line. We

take propagation in the 2D plane perpendicular to the axes of the cylinders. As-

sume that the cylinders have small radii, as in section 2.4, allowing a simplification

of the solution. We can then introduce quasiperiodic and random distributions by

considering arrangements in which we have N infinite rows of periodically distributed

cylinders, with quasiperiodic or random spacings between the rows. Similar problems

have been considered before, with finite numbers of infinite periodic rows [13], [12],

[55], [85]. However, none have considered the case of quasiperiodic distributions of

rows. The previous works are designed to model rows of cylinders as tube bundles or

ice floes. Tube bundles exist in devices such as heat exchange mechanisms in large

industrial plants. The motivation for the understanding of wave propagation through

such structures is for non-destructive testing of the device.

125
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In this section the method applied will be discussed from first principles, without

reference to these papers, as the notation and methods vary. Working in this way will

allow the extension of the recursive method used in the 1D problems in chapter 4 to

2D.

5.1.1 One row

· · ·· · ·· · ·

y

x

r rm

P

2d
a

α

θ
θm

x = 2dm

Figure 5.1: Set up for an infinite periodic row of cylinders with incident wave.

Begin by analysing the wave scattering properties for one row with an incident

plane wave as depicted in figure 5.1. This problem has been considered by many

before and is classed as a diffraction grating problem due to the effects of the periodic

row on the scattered field. The first to investigate the scattering properties of the

infinite periodic row of cylinders was Twersky, [79]. Many investigations followed in

an attempt to evaluate the resultant infinite sum in the expression of the scattered

field. One example is Linton’s efficient evaluation [48] using integral representations

and the Poisson summation formula. In this section we investigate the scattering from

small cylinders and can therefore simplify the expression of the scattered field. We

will discuss the method from first principles, due to this difference. It is desired to

find the transmitted and reflected waves from this row so that it is possible to work

recursively using the same method as in 1D, in chapter 4.

Consider an infinite row of small cylinders of radii a along a horizontal line with

in-row spacing 2d. Assume an incident field in the form of a plane wave of incident

angle α, uinc(r, θ) = eikr cos(θ−α). Note that the following analysis is also applicable

with an incident field in the form of a superposition of plane waves with different

angles of incidence, and will be discussed later when considering multiple rows. The

total field, which is a sum of the incident and scattered fields from the infinite number
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of small circular cylindrical scatterers, is of the form

u(r, θ) = uinc(r, θ) +
∞
∑

m=−∞
bmH

(1)
0 (krm), (5.1)

where

rm =
[

(x− 2dm)2 + y2
]1/2

, (5.2)

due to the horizontal arrangement, and bm are the unknown coefficients.

Due to the periodicity in the x-direction of the forcing and the geometry, it is possible

to employ Bloch’s theorem to apply a periodicity condition to the coefficients bm.

Assume that

bm = e2imkd cosαB, (5.3)

where k is the wavenumber. Substitution of the Bloch condition into equation (5.1)

gives

u(r, θ) = uinc(r, θ) + Be2itkd cosαH
(1)
0 (krt) +B

∞
∑

m=−∞
m 6=t

e2imkd cosαH
(1)
0 (krm). (5.4)

Applying the sound-soft boundary condition on the tth cylinder, as in section 2.4.3,

gives

0 = uinc(r = 2dt, θ = 0) + Be2itkd cosαC + B
∞
∑

m=−∞
m 6=t

e2imkd cosαH
(1)
0 (k2d|t−m|), (5.5)

where C is the complex expansion of H
(1)
0 (ka) for ka→ 0, given by

C =
2i

π

(

γ − ln 2 + ln(ka) +
π

2i

)

. (5.6)

After some algebra and letting m− t = n, the unknown B is determined as

B =
−uinc(2dt, 0)e−2itkd cosα

C + S+
0 (2kd, cosα) + S−

0 (2kd, cosα)
, (5.7)

where S±
0 are forms of Schlömilch series given by

S±
0 (2kd, cosα) =

∞
∑

n=1

e±2ikdn cosαH
(1)
0 (2kdn). (5.8)

For a single incident plane wave with angle of incidence α, the incident field can be

written uinc = eikr cos(θ−α). Therefore, in this instance, B can simplified to

B =
−1

C + S+
0 (2kd, cosα) + S−

0 (2kd, cosα)
. (5.9)
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In the form (5.8) S±
0 can be solved via truncation of the infinite sum or by using ideas

of Linton [48] to improve the convergence. Instead, evaluate these sums by expressing

H
(1)
0 (2kdn) in integral form, [4] (9.1.25), and using contour integration.

S+
0 (2kd, cosα) =

∞
∑

n=1

e2ikdn cosαH
(1)
0 (2kdn) (5.10)

=
∞
∑

n=1

e2ikdn cosα 1

πi

∫ ∞+πi

−∞
e2kdn sinh tdt. (5.11)

Introduce a convergence parameter in the sum, i.e.

S+
0 (2kd, cosα) =

∞
∑

n=1

e2ikdn cosα 1

πi

∫ ∞+πi

−∞
e2kdn sinh tdte−ǫn, (5.12)

where |ǫ| ≪ 1. The convergence parameter allows for an assumption of the convergence

of the sum, and thus the possibility of interchanging the summation and integration.

It can then be shown that

S+
0 (2kd, cosα) =

1

πi

∫ ∞+πi

−∞

∞
∑

n=1

e2kdn(i cosα+sinh t)−ǫndt, (5.13)

and evaluating the sum gives

S+
0 (2kd, cosα) =

1

πi

∫ ∞+πi

−∞

e2ikd cosα+2kd sinh t−ǫ

1− e2ikd cosα+2kd sinh t−ǫdt. (5.14)

In order to evaluate this integral we must find the poles and ensure that the contour

does not pass through any. The poles of the integrand are when

1− e2ikd cosα+2kd sinh t−ǫ = 0. (5.15)

That is,

e2inπ = e2ikd cosα+2kd sinh t−ǫ ⇒ nπi = ikd cosα + kd sinh t− ǫ/2 (5.16)

⇒ sinh t =
(nπ − kd cosα)i+ ǫ/2

kd
. (5.17)

See appendix B.2 for the full analysis of the pole positions.

Deform the contour of integration slightly from the step function to avoid the

poles on the imaginary axis, figure 5.2 shows an example of the contour (red) and the

poles (blue) for some specific choice parameters. The contour may have to be altered

depending on the incident angle, wavenumber and separation used. Here note the
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Figure 5.2: Plot of the contour of integration for S+
0 , and the poles. The parameters

used here are α = π/4, k = 2 and 2d = 1.

contour of integration is from −∞ to ∞ + πi, so the contour in figure 5.2 must be

followed from left to right.

To evaluate S−
0 , follow the same method. It is found that

S−
0 (2kd, cosα) =

1

πi

∫ ∞+πi

−∞

e−2ikd cosα+2kd sinh t−ǫ

1− e−2ikd cosα+2kd sinh t−ǫdt, (5.18)

and the positions of the poles are given by

sinh t =
(nπ + kd cosα)i

kd
+ ǫ. (5.19)

As long as it is ensured that the contours do not intersect any poles, the integrals can be

evaluated rapidly by simply performing some numerical integration on Mathematica.

Again, see appendix B.2 for the full analysis of the pole positions.

Now that the exact solution for the coefficient B has been found, the equation for

the total field, (5.1), must be solved. It is now of the form

u(r, θ) = uinc(r, θ) + B

∞
∑

m=−∞
e2imkd cosαH

(1)
0 (krm), (5.20)

where rm is given by equation (5.2), B is given by equation (5.7), and S±
0 are given

by numerically integrating equations (5.14) and (5.18). The difficulty left to face is

evaluating the infinite sum on the right hand side,

∞
∑

m=−∞
e2imkd cosαH

(1)
0 (krm). (5.21)

This is much more difficult to simplify as the argument has multidirectional dependence

rm, not just x dependence as before.
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Begin by writing H
(1)
0 (krm) in integral form, with x and y explicit, [3] (Appendix

A),

H
(1)
0 (kr) =

1

πi

∫ ∞

−∞
e−kγ(s)|y|+iksx

ds

γ(s)
, (5.22)

where γ(s) =
√
s2 − 1, and s is some arbitrary integration variable. We must evaluate

for argument krm rather than kr, so take the x and y length components of rm, i.e.

H
(1)
0 (krm) =

1

πi

∫ ∞

−∞
e−kγ(s)|y|+iks(x−2dm) ds

γ(s)
. (5.23)

Apply the substitution

s = cosh(t), x = r cos(θ), y = r sin(θ), (5.24)

thus

ds = sinh(t)dt (5.25)

and

γ = − sinh(t). (5.26)

Equation (5.26) was chosen in order to ensure that γ(s = 0) = −i as required. For

further details on the branch-cuts of γ and the contour path taken to avoid the branch-

cuts see [3].

The limits of integration are now from ∞+ πi to −∞. Now, when substituting in

to the exponent, care must be taken with the |y| term. The arrangement of scatterers

is symmetric about the x-axis, and since the scatterers are isotropic, the scattered field

will be symmetric about the x-axis too, i.e.

usc(r, θ) = usc(r, 2π − θ). (5.27)

so it is possible to limit the range of r and θ to

r > 0, 0 ≤ θ < π, (5.28)

and thus

|y| = |r sin θ| = r sin θ. (5.29)

If it is required to calculate the field below the array, equation (5.27) should be applied.
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After substitution the exponent becomes

−kγ(s)|y|+ iks(x− 2dm) =k sinh(t)r sin(θ) + ik cosh(t)r cos(θ)

− ik cosh(t)2dm (5.30)

=kr(−i sinh(t) sinh(iθ) + i cosh(t) cosh(iθ))

− 2ikdm cosh(t) (5.31)

=kri cosh(iθ − t)− 2ikdm cosh(t) (5.32)

=kr sinh(iθ − t+ iπ/2)− 2ikdm cosh(t). (5.33)

Substitution into equation 5.23 gives

H
(1)
0 (krm) = − 1

πi

∫ −∞

∞+πi

ekr sinh(iθ−t+iπ/2)−2ikdm cosh(t)dt. (5.34)

To simplify this, use the substitution

t− iθ − iπ/2 = u− iπ. (5.35)

After some algebra the exponent (5.33) now becomes,

kr sinh(iθ − t+ iπ/2)− 2ikdm cosh(t) (5.36)

= −kr sinh(u− iπ)− 2ikdm cosh(u− iπ/2 + iθ) (5.37)

= −kr (−i cosh(u) sin(π) + sinh(u) cos(π))

− 2ikdm (−i sinh(u+ iθ) sin(π/2) + cosh(u+ iθ) cos(π/2)) (5.38)

= kr sinh(u)− 2kdm sinh(u+ iθ). (5.39)

Therefore the integral representation of the Hankel function can now be expressed by

H
(1)
0 (krm) = − 1

πi

∫ −∞+iπ/2−iθ

∞+3iπ/2−iθ
ekr sinh(u)−2kdm sinh(u+iθ)du (5.40)

=
1

πi

∫ ∞+3iπ/2−iθ

−∞+iπ/2−iθ
ekr sinh(u)−2kdm sinh(u+iθ)du. (5.41)

To ensure that this integral exists it is necessary to check the integrand does not

diverge at the extremes of our limits of integration. It can be easily checked that the

ekr sinh(u) term decays, but the e−2kdm sinh(u+iθ) term decays only if we define

cosh u = −
√

1 + sinh2 u. (5.42)
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Now that H
(1)
0 (krm) is expressed in a compact form, return to evaluating the infinite

sum (5.21).

Begin by introducing a convergence parameter in the sum, i.e.

∞
∑

m=−∞
e2imkd cosαH

(1)
0 (krm)e

−ǫ|m|, (5.43)

so that it is possible to later make some assumptions about the convergence of the

sum, and thus the possibility of interchanging the summation and integration. Using

the integral form for H
(1)
0 (krm) defined in (5.41), it can be shown that

∞
∑

m=−∞
e2imkd cosαH

(1)
0 (krm)e

−ǫ|m|

=
∞
∑

m=−∞
e2imkd cosα

1

πi

∫ ∞+3iπ/2−iθ

−∞+iπ/2−iθ
ekr sinh(u)−2kdm sinh(u+iθ)e−ǫ|m|du (5.44)

=
1

πi

∫ ∞+3iπ/2−iθ

−∞+iπ/2−iθ
ekr sinh(u)

∞
∑

m=−∞
e2imkd cosαe−2kdm sinh(u+iθ)e−ǫ|m|du (5.45)

=
1

πi

∫ ∞+3iπ/2−iθ

−∞+iπ/2−iθ
ekr sinh(u)

{ ∞
∑

m=0

e(2kd(i cosα−sinh(u+iθ))−ǫ)m

+
∞
∑

m=1

e(−2kd(i cosα−sinh(u+iθ))−ǫ)m

}

du. (5.46)

Reducing the sums gives,

∞
∑

m=−∞
e2imkd cosαH

(1)
0 (krm)e

−ǫ|m|

=
1

πi

∫ ∞+3iπ/2−iθ

−∞+iπ/2−iθ
ekr sinh(u)

{

1

1− e2kd(i cosα−sinh(u+iθ))−ǫ (5.47)

+
e−2kd(i cosα−sinh(u+iθ))−ǫ

1− e−2kd(i cosα−sinh(u+iθ))−ǫ

}

du (5.48)

=
1

πi
(I1 + I2) , (5.49)

where

I1 =

∫ ∞+3iπ/2−iθ

−∞+iπ/2−iθ
ekr sinh(u)

1

1− e2kd(i cosα−sinh(u+iθ))−ǫdu (5.50)

and

I2 =

∫ ∞+3iπ/2−iθ

−∞+iπ/2−iθ
ekr sinh(u)

e−2kd(i cosα−sinh(u+iθ))−ǫ

1− e−2kd(i cosα−sinh(u+iθ))−ǫdu. (5.51)

Remembering that we are only considering small ǫ , if ǫ = 0 then I1 = −I2 and thus

the two integrals cancel out. Therefore in order to find the solution to (5.49), we must
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consider the sum of the residues of the two integrals only. The pole positions must be

found as for S±
0 .

For I1 the poles are given by

sinh(u+ iθ) =
(

cosα− nπ

kd

)

i− ǫ

kd
, (5.52)

which is similar to the equations we get for S±
0 in appendix B.2, except here

sinh(u+ iθ) = sinh(v) = Ai− ǫ. (5.53)

In comparison to equation (B.6), here we are subtracting ǫ and A is defined by

A = cosα− nπ

kd
. (5.54)

With these slight differences, follow an analogous method to that of appendix B.2, to

find that for case 1 (|A| < 1 and taking the top of the ± or ∓) the poles are given by

v ≈ −ǫ+ (A+ 2mπ) i, (5.55)

i.e. a finite number of poles to the left of the imaginary axis. For case 2 (|A| < 1 and

taking the bottom of the ± or ∓)

v ≈ ǫ+ ((2m+ 1)π − A) i, (5.56)

a finite number of poles to the right of the imaginary axis. But v ≈ ǫ + mπi and

v ≈ ǫ + (2m + 1)πi for A = 0. For case 3(a) (A > 1 and taking the top of the ± or

∓) it is found that

v ≈ ln [2A] +
(π

2
+ 2mπ +

ǫ

A

)

i, (5.57)

just above the line iπ/2+2mπi to iπ/2+2mπi+∞. Case 3(b) (A < −1 and taking

the top of the ± or ∓) gives, for A = −Ā,

v ≈ ln
[

2Ā
]

+

(

3π

2
+ 2mπ − ǫ

Ā

)

i, (5.58)

just below the line 3iπ/2+2mπi to 3iπ/2+2mπi+∞. Case 4(a) (A > 1 and taking

the bottom of the ± or ∓) gives

v ≈ − ln [2A] +
(π

2
+ 2mπ − ǫ

A

)

i, (5.59)
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just below the line iπ/2+2mπi to iπ/2+2mπi−∞. Case 4(b) (A < −1 and taking

the bottom of the ± or ∓) gives

v ≈ − ln
[

2Ā
]

+
(

−π
2
+ 2mπ +

ǫ

Ā

)

i, (5.60)

just above the line −iπ/2 + 2mπi to −iπ/2 + 2mπi−∞.

The approach to finding the poles for I2 is very similar as for I1. The poles of I2 are

given by the expression

sinh(v) = sinh(u+ iθ) =
(

cosα +
nπ

kd

)

i+ ǫ = Ai+ ǫ, (5.61)

which is the same formulation as for S±
0 in appendix B.2 but with a different definition

for A.

Figures 5.3 and 5.4 show the positions of the poles for I1 and I2 respectively,

showing that it is possible to deform the contour path for I1 up and to the left slightly,

and down and to the right for I2 without crossing any of the poles. Re-express I2 as

-4 -2 2 4

-Π

Π

Re(v)

Im(v)

Figure 5.3: Plot of the contour of integration for I1, and the poles. The parameters
used here are α = π/4, k = 2, 2d = 1 and ǫ = 0.1.

I2 = −
∫ −∞+iπ/2−iθ

∞+3iπ/2−iθ
ekr sinh(u)

e−2kd(i cosα−sinh(u+iθ))−ǫ

1− e−2kd(i cosα−sinh(u+iθ))−ǫdu. (5.62)

Sum the two integrals together and form a closed loop with the contour paths, letting

ǫ → 0. See figure 5.5 to depict this. Close the loop at ±∞ which is justifiable since

the residues become negligible at these point, this will be discussed further in section

5.1.1. Now I1 + I2 can be found simply using Cauchy’s residue theorem

I1 + I2 = −2πi×
∑

Residues, (5.63)

and so

u(r, θ) = uinc(r, θ)− 2B
∑

Residues, (5.64)
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-4 -2 2 4

-Π

Π

Re(v)

Im(v)

Figure 5.4: Plot of the contour of integration for I2, and the poles. The parameters
used here are α = π/4, k = 2, 2d = 1 and ǫ = 0.1.

-4 -2 2 4

-Π

Π

Re(v)

Im(v)

Figure 5.5: Plot of the contour of integration for I1+I2, and the poles. The parameters
used here are α = π/4, k = 2, 2d = 1.

where the family of residues arise from the poles within the contour shown in figure

5.5.

Convergence of the Sums of Residues

It is well known that if a function f can be expressed as a quotient of two functions

f(z) =
g(z)

h(z)
, (5.65)

with h(c) = 0, and h′(c) 6= 0, for simple poles at c, then the residue at these points c,

are given by

Res(f, c) =
g(c)

h′(c)
. (5.66)

Inspection of the equation for I1, (5.50), shows for f1(u), the integrand of I1, that

g1(u) = ekr sinhu, (5.67)

h1(u) = 1− e2kd(i cosα−sinh(u+iθ)), (5.68)

h′1(u) = 2kd cosh(u+ iθ)e2kd(i cosα−sinh(u+iθ)). (5.69)
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Since the exponential in equation (5.69) is equal to 1 at the poles un,

Res(f1, un) =
ekr sinhun

2kd cosh(un + iθ)
. (5.70)

Similarly, the residues for I2 are given by

Res(f2, un) =
ekr sinhun

2kd cosh(un + iθ)
. (5.71)

To prove the convergence of the sums, consider the general equation for the residues

given by

sinh vn = Ai, (5.72)

for A = cosα + nπ
kd
. First evaluate the numerator of the residue,

sinh un = sinh(vn − iθ) (5.73)

= sinh vn cosh(−iθ) + cosh vn sinh(−iθ) (5.74)

= Ai cos θ − i cosh vn sin θ. (5.75)

Using the definition of cosh vn derived earlier in equation (5.42) this becomes

sinh un = i(A cos θ +
√
1− A2 sin θ) (5.76)

= Ai cos θ −
√
A2 − 1 sin θ. (5.77)

Thus the numerator can be rewritten as

ekr sinhun = eikrA cos θe−kr
√
A2−1 sin θ, (5.78)

which includes an oscillatory term and a decaying term for |A| → ∞ and 0 < sin θ < 1,

and the denominator is

2kd cosh(un + iθ) = 2kd cosh vn = −2kdi
√
A2 − 1. (5.79)

Therefore

Res(f1, un) = Res(f2, un) =
eikrA cos θe−kr

√
A2−1 sin θ

−2kdi
√
A2 − 1

, (5.80)

which is converging at an exponential rate. This justifies our ability to close the loop

of I1 + I2 at ±∞, as the residues will be negligible for large |A|.
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What we find in fact is that the only residues that contribute significantly to this

infinite sum are the ones for which

|A| =
∣

∣

∣
cosα +

nπ

kd

∣

∣

∣
< 1. (5.81)

These residues represent the propagating modes of the scattering. For |A| > 1, the

modes are evanescent, they decay rapidly, and will thus will have no effect on the

field at a sufficient distance away from the array. Due to the exponential decay, this

distance does not have to be great. As can be seen in figure 5.6, the evanescent modes

give almost no contribution to the scattered field at a distance just above r = 1 away

from the array (with k = 5).

1 2 3 40.0

0.2

0.4

0.6

0.8

1.0

r

|usc|

Propagating

All

Figure 5.6: Scattered field for an infinite periodic array with k = 5, a = 0.001, d = 1,
α = π/4 and θ = π/4. The blue curve shows the scattered field when we only consider
the propagating plane waves for which |A| < 1, the red curve is the scattered field
when taking into consideration the evanescent modes too.

Because the evanescent modes decay so quickly it is justifiable to represent the

field as a sum of propagating plane waves, when “far” from the row. With these finite

sums, it is possible to express the field in terms of transmission and reflection. The

transmission will include the propagating modes through the row. The reflected field

will include the propagating modes directed back from the row. With this it will be

possible to extend this work to multiple rows.

Reflection and transmission

It has been demonstrated that the reflection and transmission coefficients from an

infinite row of periodically spaced small circular cylinders can be approximated as
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finite sums of propagating modes. Each of these modes represents a propagating plane

wave travelling at a particular angle from the horizontal. The angles at which these

propagating waves travel can be recovered from the “wave-like” term of the residues,

(5.78):

ekr sinhum = eikr(Am cos θ+i
√
A2
m−1 sin θ)

= eikr(cosψm cos θ+sinψm sin θ)

= eikr cos(θ−ψm), (5.82)

where

|Am| = | cosψm| =
∣

∣

∣
cosα +

mπ

kd

∣

∣

∣
< 1, m ∈ Z. (5.83)

This is now of the form of a plane wave propagating at an angle 0 < ψm < π from the

horizontal, giving the transmitted scattering angles. Since the row is symmetric about

y = 0, the reflected scattering angles are given by 2π−ψm, where the angle is defined

to always be taken clockwise from the x-axis, to the direction of travel. Express plane

waves travelling in the negative y-direction by

eikr cos(θ−(2π−α)) = eikr cos(θ+α). (5.84)

There exist a finite number of m that satisfy (5.83). Define the smallest such m by m−

and the largest bym+ so thatm ∈ m = {m−, . . . ,m+}, and the number of transmitted

(and reflected) is given by the number of elements in m. In previous sections r and

θ were restricted such that r > 0 and 0 < θ < π, so the equation for the total field

(5.64) was valid above the array, i.e. the transmitted field,

u(r, θ) = uinc(r, θ) + usc(r, θ) (5.85)

= uinc(r, θ)− 2B
∑

Residues (5.86)

= uinc(r, θ) + 2B

m+
∑

m=m−

eikr cos(θ−ψm)

2kdi
√

A2
m − 1

, (5.87)

using the equation for the residues (5.80), equation (5.82), and rewriting A as Am to

show that it is a function of m. The form of B was given in equation (5.9) for an

incident plane wave.

It is possible to associate α, the angle of incidence of the plane wave, with A0, and
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say α = ψ0, allowing a simplification to equation (5.87),

u(r, θ) =

m+
∑

m=m−

(

δ0m +
B

kdi
√

A2
m − 1

)

eikr cos(θ−ψm). (5.88)

From this expression extract the form of the transmission coefficients to be

tm = δ0m +
B

kdi
√

A2
m − 1

, (5.89)

for each of the propagating angles ψm.

A more general expression can be given for the transmission coefficients with an

incident field comprising of a sum of plane waves. Any choice of number and angle

of incidence of the plane waves can be chosen. However, in the following we restrict

the analysis to consider an incident field which is a superposition of plane waves

propagating at a set of angles determined by (5.83) for any arbitrary ψ0. That is,

define the incident wave to be of the form

uinc(r, θ) =

m+
∑

n=m−

Cne
ikr cos(θ−ψn), (5.90)

then the total field is just a sum of all the total fields for each incident angle. That is,

u(r, θ) =

m+
∑

n=m−

Cn

(

eikr cos(θ−ψn) + Bn

∞
∑

m=−∞
e2imkd cosψnH

(1)
0 (krm)

)

, (5.91)

where B is now written as Bn as it depends on the incident angle ψn,

Bn =
−1

C + S+
0 (2kd, cosψn) + S−

0 (2kd, cosψn)
. (5.92)

The total field can be rewritten as for one scattering angle,

u(r, θ) =

m+
∑

n=m−

Cn

(

eikr cos(θ−ψn) +
Bn

kd

m+
∑

m=m−

eikr cos(θ−ψm)

√

1− A2
m

)

, (5.93)

where we note that each incident angle ψn for n ∈ m = {m−, . . . ,m+} scatters plane

waves at each ψm for m ∈ m, see appendix B.3 for the proof of this. Therefore, the

transmission coefficients for multiple incident plane waves are given by

tm = Cm +

m+
∑

n=m−

CnBn

kd
√

1− cos2 ψm
, (5.94)

and the reflection coefficients are

rm =

m+
∑

n=m−

CnBn

kd
√

1− cos2 ψm
. (5.95)
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It is also possible to write these reflection and transmission coefficients in terms of

matrices, which will make computations easier when extending to work with larger

numbers of rows. For instance, let

t =
(

tm−
· · · tm+

)

, (5.96)

then

t =
(

Cm−
· · · Cm+

)













IM +
1

kd













Bm
−√

1−cosψm
−

· · · Bm
−√

1−cosψm+

...
. . .

...
Bm+√

1−cosψm
−

· · · Bm+√
1−cosψm+

























(5.97)

= C (IM + γ) , (5.98)

where M is the number of scattering/incident angles and IM is the M ×M identity

matrix. Similarly, the reflection coefficient vector can be expressed as

r = Cγ. (5.99)

With these transmission and reflection coefficients it is now possible to extend the

method and notation developed for one array, to multiple arrays.

5.2 Recursive formulation for wave scattering by

infinite rows of scatterers with a Fibonacci chain

distribution

With the solutions for the reflection and transmission for the single row it is possible

to solve for the interaction between N rows via a composition of these solutions, as in

1D in section 4. We want to extend the work we did in 1D with the Fibonacci chain

into 2D. This can be achieved by introducing a variation in row spacings between the

infinite rows of cylinders, which is determined via the Fibonacci chain, as in figure 5.7.

With the T and R found in section 5.1.1, the method will not differ from that used in

1D.
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· · ·
· · ·

· · ·

· · · · · ·

· · ·

· · ·
· · ·

· · · · · ·

...

L

L

L

S

S

θθ

r

θ̂
r̂

Figure 5.7: Set up for N infinite periodic rows of cylinders with separations determined
via the Fibonacci chain, with incident wave of some form.

5.2.1 Phase difference

The work in the previous section was for a row along the horizontal at y = 0. This

section will require the consideration of rows along various y positions. For Fibonacci

chain separations between the rows, the y positions of the rows will be given by

y = q(N)S = (Fib(N − 1)τ + Fib(N − 2))S, (5.100)

as in the 1D case.

The calculations for one row must be adapted, to an arbitrary position. Previously

the field was determined in terms of r and θ, the observation point, in relation to the

origin. Now, define new parameters r̂ and θ̂, which give the same observation point

but in relation to an array along y = q(N)S for arbitrary N , i.e.

r̂ cos θ̂ = r cos θ (5.101)

r̂ sin θ̂ = r sin θ − q(N)S, (5.102)

as depicted in figure 5.7. The solution must be determined for a row at y = q(N)S in

terms of r̂ and θ̂.

It is possible to rewrite plane waves as functions of r̂ and θ̂, as plane waves as functions

of r and θ. Define a plane wave travelling in the positive y-direction at angle α by pT

and in the negative y-direction by pR. Therefore

pT (r̂, θ̂) = eikr̂ cos(θ̂−α), (5.103)
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then upon expanding, it is found that

pT (r̂, θ̂) = eikr̂(cos θ̂ cosα+sin θ̂ sinα) (5.104)

= eikr(cos θ cosα+sin θ sinα)e−ikq(N)S sinα (5.105)

= e−ikq(N)S sinαpT (r, θ). (5.106)

Similarly,

pR(r̂, θ̂) = eikr̂ cos(θ̂+α) = eikq(N)S sinαpR(r, θ). (5.107)

Equations (5.106) and (5.107) show that plane waves incident at any line y = q(N)S

can be expressed as just a phase shift multiplied by the form of plane waves incident

at the line y = 0. Therefore it is very easy to make an adjustment, involving a phase

shift, to the work in the previous section.

As an example, assume a sum of plane waves incident from below on an array at

y = L of the form

uinc(r, θ) =

m+
∑

m=m−

Cme
ikr cos(θ−ψm), (5.108)

where m ∈ m = {m−, . . . ,m=} are the integers that satisfy equation (5.83) for some

arbitrary ψ0. The incident wave that the array will see, in terms of r̂ and θ̂, is

uinc(r, θ) =

m+
∑

m=m−

Cme
ikL sinψmeikr̂ cos(θ̂−ψm). (5.109)

Therefore, the total field will be of the form, similar to equation (5.93),

u(r, θ) =

m+
∑

n=m−

Cne
ikL sinψn

(

eikr̂ cos(θ̂−ψn) +
Bn

kd

m+
∑

m=m−

eikr̂ cos(θ̂−ψm)

√

1− A2
m

)

. (5.110)

Rewriting in terms of the original coordinate system, it is found that

u(r, θ) =

m+
∑

n=m−

Cn

(

eikr cos(θ−ψn) +
eikL sinψnBn

kd

m+
∑

m=m−

e−ikL sinψmeikr cos(θ−ψm)

√

1− A2
m

)

.

(5.111)

Thus the transmission and reflection coefficients for an array along y = L are given by

tm = Cm +

∑m+

n=m−

CnBne
ikL(sinψn−sinψm)

kd
√

1− cos2 ψm
, (5.112)

rm =

∑m+

n=m−

CnBne
ikL(sinψn−sinψm)

kd
√

1− cos2 ψm
, (5.113)
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or in matrix form

t(L) = C (IM + ΓT (L)) , (5.114)

r(L) = CΓR(L), (5.115)

where

ΓT (L) =
1

kd













e
ikL(sinψm

−
−sinψm

−
)
Bm

−√
1−cos2 ψm

−

· · · e
ikL(sinψm

−
−sinψm+)

Bm
−√

1−cos2 ψm+

...
. . .

...

e
ikL(sinψm+−sinψm

−
)
Bm+√

1−cos2 ψm
−

· · · e
ikL(sinψm+−sinψm+)

Bm+√
1−cos2 ψm+













, (5.116)

and

ΓR(L) =
1

kd













e
ikL(sinψm

−
+sinψm

−
)
Bm

−√
1−cos2 ψm

−

· · · e
ikL(sinψm

−
+sinψm+)

Bm
−√

1−cos2 ψm+

...
. . .

...

e
ikL(sinψm++sinψm

−
)
Bm+√

1−cos2 ψm
−

· · · e
ikL(sinψm++sinψm+)

Bm+√
1−cos2 ψm+













, (5.117)

using ideas from equations (5.106) and (5.107).

Also, it is useful to note at this point that the case for an incoming wave from

above,

uinc(r, θ) =

m+
∑

m=m−

Cme
ikr cos(θ+ψm) =

m+
∑

m=m−

Cme
−ikd sinψmuinc(r̂, θ̂). (5.118)

In a similar manner to that discussed earlier, equation (5.118) gives the transmission

below the row of the form

to(L) = C (IM + ΓTo(L)) , (5.119)

ro(L) = CΓRo(L), (5.120)

where

ΓTo(L) =
1

kd













e
ikL(− sinψm

−
+sinψm

−
)
Bm

−√
1−cos2 ψm

−

· · · e
ikL(− sinψm

−
+sinψm+)

Bm
−√

1−cos2 ψm+

...
. . .

...

e
ikL(− sinψm++sinψm

−
)
Bm+√

1−cos2 ψm
−

· · · e
ikL(− sinψm++sinψm+)

Bm+√
1−cos2 ψm+













, (5.121)

and

ΓRo(L) =
1

kd













e
ikL(− sinψm

−
−sinψm

−
)
Bm

−√
1−cos2 ψm

−

· · · e
ikL(− sinψm

−
−sinψm+)

Bm
−√

1−cos2 ψm+

...
. . .

...

e
ikL(− sinψm+−sinψm

−
)
Bm+√

1−cos2 ψm
−

· · · e
ikL(− sinψm+−sinψm+)

Bm+√
1−cos2 ψm+













. (5.122)
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In this section we have derived equations for the reflection and transmission of

an incident field of a sum of plane waves by a horizontal row of periodic cylinders

along a line arbitrarily positioned along the y-axis. These equations can be applied to

recursively determine the solutions for the transmission and reflection for N infinite

periodic arrays with row separations determined by the 1D Fibonacci chain.

Denote DN as the Nth distribution of the rows, with Fib(N) rows in total. The

end position of the Fib(N)th row, is at y = q(N)S as defined in equation (5.100). As

with the 1D recursive formulation in section 3.1, the recursive solution is built upon

the solutions of the two previous scattering problems (consisting of N − 1 and N − 2

rows).

5.2.2 One infinite row

Begin with one infinite row, D1, located at y = S. Note that S has to be large enough

to comply with the wide spacing approximation. That is, for particular parameters k

and d, S must be of a distance great enough to ensure that the evanescent modes have

decayed.

The solutions for D1 are just a phase shift multiplying the original one array

problem solved in section 5.1.1. Define an incident wave of the form

uinc =

m+
∑

m=m−

Cme
ikr cos(θ−ψm), (5.123)

where it is noted that for a single incident plane wave at angle α = ψ0,

Cm = δ0m, (5.124)

the Kronecker delta function.

Using equation (5.114) it can be seen that the transmission coefficients are given

by

T1 = Ct1(S) (5.125)

= C (IM + ΓT (S)) , (5.126)

and the reflection coefficients by

R1 = Cr1(S) (5.127)

= CΓR(S). (5.128)
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The definitions of ΓT (S) and ΓR(S) are given in equations (5.116) and (5.117), re-

spectively.

When considering the Fibonacci chain in 1D, it was necessary to also consider the

opposite problem, in which there is an incident wave from the opposite direction, due

to the non-periodicity of the Fibonacci chain. We must do this again in 2D, where the

opposite problem will be an incident wave from above. The solution to the opposite

problem will be denoted with a superscript o. Using equations (5.119) and (5.120),

the opposite transmission and reflection coefficients for D1 are

To
1 = Cto1(S) (5.129)

= C (IM + ΓTo(S)) , (5.130)

Ro
1 = Cro1(S) (5.131)

= CΓRo(S). (5.132)

5.2.3 Two infinite rows

The set up for D2 is one array again, but positioned at y = L = τS. The solutions

will be very similar, just with a difference in phase shift:

T2 = Ct2(L) (5.133)

= C (IM + ΓT (L)) , (5.134)

R2 = Cr2(L) (5.135)

= CΓR(L), (5.136)

To
2 = Cto2(L) (5.137)

= C (IM + ΓTo(L)) , (5.138)

Ro
2 = Cro2(L) (5.139)

= CΓRo(L). (5.140)

5.2.4 Three infinite rows

For the third set up D3 there are two arrays. One array is positioned at y = L, like

in D2. The second is positioned along y = L + S, a distance S away from the first.

This second array is as for D1. Therefore, as in the 1D recursive formulation, it is
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possible to express the solution to D3 in terms of the two previous problems D2 and

D1. This is much more complicated than the 1D case, due to the multiple scattering

angles, the phase shift, and the change in coordinate systems, so we will explain this

problem step by step.

...

......

...

y

x

y = L

y = L+ S

t3

r3

t r

ψ0

Figure 5.8: Set up for 2 infinite periodic rows of cylinders.

First, consider the D2 case, but with the incoming plane wave as before and an

incoming set of plane waves from above, as a result of the reflection from the second

array. For the purpose of figure 5.8 we have depicted the superposition of plane waves

travelling in each direction at each stage by the vectors of the amplitudes of each of

the waves. For example, the plane waves travelling in the negative y-direction between

the two rows, depicted as r =
(

rm−
. . . rm+

)

, can be expressed by

m+
∑

m=m−

rme
ikr cos(θ+ψm), (5.141)

where the rm are unknown. As a result, and from prior knowledge of the D2 solutions,

the reflection at the first array is a sum of the reflection of the original incident wave

from below (of amplitudes given in the vector C) and the transmission of the unknown

waves from above, i.e.

r3(L) = Cr2(L) + rto2(L), (5.142)

and t is of the form

t = Ct2(L) + rro2(L). (5.143)
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Now consider the D1 problem, but with an incident wave of amplitude t (5.143). It

can be shown that t3 is of the form

t3(L) = tt1(L+ S) = (Ct2(L) + rro2(L)) t1(L+ S), (5.144)

and an alternative equation for r is also gained,

r = tr1(L+ S) = (Ct2(L) + rro2(L)) r1(L+ S). (5.145)

Rearranging equation (5.145), we find that

r = (Ct2(L)r1(L+ S)) (IM − ro2(L)r1(L+ S))−1 , (5.146)

where IM is the M ×M identity matrix and M is the length of m = {m−, . . . ,m+}.
Therefore, by substituting in equations (5.144) and (5.142), it is found that

T3 = Ct3(L) (5.147)

= Ct2(L)
(

IM + r1(L+ S) (IM − ro2(L)r1(L+ S))−1 ro2(L)
)

t1(L+ S), (5.148)

R3 = Cr3(L) (5.149)

= C
(

r2(L) + t2(L)r1(L+ S) (IM − ro2(L)r1(L+ S))−1 to2(L)
)

. (5.150)

For the opposite problem, consider the same set up of the arrays but with an

incoming wave from above. Working through in a similar manner the transmission

and reflection coefficients are given by the expressions

To
3 = Cto3(L+ S) (5.151)

= Cto1(L+ S)
(

IM + ro2(L) (IM − r1(L+ S)ro2(L))
−1 r1(L+ S)

)

to2(L), (5.152)

Ro
3 = Cro3(L+ S) (5.153)

= C
(

ro1(L+ S) + to1(L+ S)ro2(L) (IM − r1(L+ S)ro2(L))
−1 t1(L+ S)

)

. (5.154)

Note here that the position of the first array the incident waves see is taken as the

argument of the transmission and reflection coefficients. Therefore, to3 and ro3 depend

on (L+ S) in this instance.

It is possible to continue in this way, by finding the unknown amplitude of the

reflected wave between the two sets of rows, for any N .
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5.2.5 N infinite rows

Working through for larger N and spotting the pattern, or by proving by induction

as for 1D, it can be shown that the transmission and reflection for the DN problem,

N ≥ 4, with Fib(N) rows of periodic cylinders can be given by

TN =CtN(L)

=CtN−1(L)

(

IM+

rN−2(L+ q(N − 1)S)
(

IM − roN−1(q(N − 1)S)rN−2(L+ q(N − 1)S)
)−1

× roN−1(q(N − 1)S)

)

tN−2(L+ q(N − 1)S), (5.155)

RN =CrN(L)

=C

(

rN−1(L)+

tN−1(L)rN−2(L+ q(N − 1)S)
(

IM − roN−1(q(N − 1)S)rN−2

× (L+ q(N − 1)S)
)−1

toN−1(q(N − 1)S)

)

, (5.156)

To
N =CtoN(q(N)S)

=CtoN−2(q(N)S)

(

IM+

roN−1(q(N − 1)S)
(

IM − rN−2(q(N − 1)S + L)roN−1(q(N − 1)S)
)−1

× rN−2(q(N − 1)S + L)

)

toN−1(q(N − 1)S), (5.157)

Ro
N =CroN(q(N)S)

=C

(

roN−2(q(N)S)+

toN−2(q(N)S)roN−1(q(N − 1)S)
(

IM − rN−2(q(N − 1)S + L)

× roN−1(q(N − 1)S)
)−1

tN−2(q(N − 1)S + L)

)

, (5.158)

where q(N) is defined in (5.100). The proof by induction will not be discussed here

as it is analogous to the 1D case. The general formulae in this form does not hold for

N = 3 because of the initial position S in the D1 problem. The general formulae for

the N th iteration is written in a form that assumes the first array is always at y = L for

DN and the two previous scattering problems DN−1 and DN−2, which is only the case

for N ≥ 4. The recursive formulae defined allow the computation of the transmission
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and reflection coefficients for a large number of rows with quasiperiodic separations

rather rapidly.

5.3 Comparison of wave scattering by a Fibonacci

chain structure and its periodic approximations

In this section the scattered fields from multiple infinite-length rows of circular cylin-

ders are compared. The spacings between the rows are determined by the Fibonacci

chain and two periodic approximations, namely the PAS and approximant. A compar-

ison is drawn between the amplitudes of the scattered propagating plane waves from

each array.

For the results given in this section the parameters k = 5, d = 0.5 and a = 0.001

are chosen. The angle of incidence α and the number of rows n are varied. In order

to comply with the wide spacing approximation between the rows the value S = 2 has

been chosen for the small spacing of the Fibonacci chain. The wavenumber k = 5 was

chosen so that the assumption 0 < ka ≪ 1 holds and so that the wavelength of the

incident wave is less than the spacing between the rows. Having a wavelength smaller

than the spacing ensures that the wave will be affected by the different spacings and

thus will allow a fair comparison of the results between the three different distributions

of rows.

Figure 5.9 shows the transmission coefficients for a set of up to twenty-one infi-

nite rows with separations determined by the Fibonacci chain (blue), PAS (red) and

2-approximant (green). An incident angle of α = π/4 was taken, resulting in the

propagation of two plane waves between each row. The two modes of propagation in

this case are m = −1 and m = 0, satisfying equation (5.83). The 2-approximant has

a period of length Fib(4) = 3, thus the first three rows in the 2-approximant and the

Fibonacci distribution are identical. This is reflected in the transmission coefficients

for 1 − 3 rows. For greater numbers of rows, it can be seen that the transmission

coefficients for both of the propagating modes through the 2-approximant distribution

begin to deviate from those of the Fibonacci chain. The amplitudes of the transmis-

sion coefficients for the 2-approximant in general do reasonably well at approximating

those of the Fibonacci chain, but the results diverge as the number of rows increases.
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Figure 5.9: Transmission through n infinite-length periodic rows of cylinders with
separation determined by the Fibonacci chain (blue), PAS (red) and 2-approximant
(green), for a unit incident plane wave at angle α = π/4 to the horizontal.

For rows with a distribution determined by the PAS the amplitudes again tend to de-

viate significantly from the amplitudes found for the Fibonacci chain distribution. For

8− 16 rows the difference is especially poor for the m = 0 mode. There are instances

where the PAS does provide a better representation of the Fibonacci chain than the

2-approximant, e.g. for 17 rows, but this tends to be the exception.

Improving the accuracy of the approximation τ ≈ τn used in the construction of the

approximant produces a distribution with a larger periodic cell containing a section of

the Fibonacci chain. Although, it can be seen in figure 5.10 that the 3-approximant,

using τ ≈ τ3 = Fib(4)/Fib(3) = 3/2, does not provide a much better representation

of the Fibonacci chain than the 2-approximant. The accuracy of the m = −1 mode

amplitude is increased for larger n compared to the 2-approximant, but is reduced for

the m = 0 mode.

Increasing n to 4 in the approximant, the positions of the first twenty-one rows in
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Figure 5.10: Transmission through n infinite-length periodic rows of cylinders with
separation determined by the Fibonacci chain (blue), PAS (red) and 3-approximant
(green), for a unit incident plane wave at angle α = π/4 to the horizontal.

the Fibonacci chain and the 4-approximant are identical and thus as are the transmis-

sion coefficients. This is the case even though the period length of the 4-approximant

is Fib(6) = 8.

Instead consider sections of the three distributions within the approximant periodic

cell size, analogous to section 4.4. For the 4-approximant with unit cell of length 8,

consider multiple sections of the Fibonacci chain of length 8. The approximant will

contain the same arrangement of rows independent of the selection, since it is periodic.

However, the arrangement of the rows determined by the Fibonacci chain and the PAS

will alter. To gauge whether or not the approximant provides a good representation

of the Fibonacci chain in the 2D multiple scattering through rows of cylinders, the

transmission properties of the approximant through one unit cell of the approximant

are compared to the average transmission properties of the Fibonacci chain and the

PAS for multiple different sections.
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For the 4-approximant, ten different sections of the Fibonacci chain and the PAS

of length eight are taken. The average properties are plotted in figure 5.11. It can
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Figure 5.11: Average transmission through n infinite-length periodic rows of cylinders
with separation determined by the Fibonacci chain (blue), PAS (red) and transmission
through the 4-approximant (green), for a unit incident plane wave at angle α = π/4
to the horizontal.

be seen that neither the amplitude of the transmission through the 4-approximant

unit array nor the average amplitude of transmission through the PAS provide an

accurate representation of the average transmission through the Fibonacci chain. For

the m = −1 mode the PAS provides a very accurate representation for the first five

rows, but thereafter does not, although it is closer than the 4-approximant. For the

m = 0 mode the transmission through rows distributed with the 4-approximant and

the average through the PAS distribution are very similar, and are not quite accurate

with respect to the Fibonacci chain. The amplitude for n = 8 is of greatest interest as

it is the transmission out of the end of the arrays. For both modes, neither the PAS

or the 4-approximant estimate the transmission amplitude well.

The same procedure is carried out for the 5-approximant with a unit cell of length
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Fib(7) = 13. Figure 5.12 shows the comparisons of the transmission coefficients for

increasing number of arrays. In this instance it is seen that the PAS does not provide
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Figure 5.12: Average transmission through n infinite-length periodic rows of cylinders
with separation determined by the Fibonacci chain (blue), PAS (red) and transmission
through the 5-approximant (green), for a unit incident plane wave at angle α = π/4
to the horizontal.

a good approximation of the Fibonacci chain. However, the amplitude of transmission

through 13 rows of cylinders with a distribution determined by the 5-approximant are

very similar to the average amplitude of transmission through the Fibonacci chain.

For the m = −1 mode the amplitude of transmission for 13 rows is almost identical

between the two cases.

In general this section has shown that the PAS can only provide a good represen-

tation of the Fibonacci chain in terms of the distribution of rows of cylinders for low

numbers of rows. However, the approximant can provide a much better representa-

tion and for much larger numbers of rows. In particular the transmission through a

5-approximant periodic unit cell is very similar to that of the average transmission

through multiple sections of the Fibonacci chain.
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The examples given in this section were for a particular set of parameters and two

propagating angles. Further work can be carried out to ensure the same behaviour is

found for different parameters and more or less propagating modes. The accuracy of

the n-approximant can be continued to be improved by increasing n; thus, for different

parameter choices, higher n-approximants could be used.

Another example for the same parameter set but with k = 3π is modelled. In this

instance there are three propagating modes. Figure 5.13 shows that the 5-approximant

still provides a good representation of the Fibonacci chain when there are more prop-

agating modes. Comparing to the PAS, the 5-approximant provides a much better

representation, especially for the m = 0 mode.
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Figure 5.13: Average transmission through n infinite periodic rows of cylinders with
separation determined by the Fibonacci chain (blue), PAS (red) and transmission
through the 5-approximant (green), for an incident unit plane wave at angle α = π/4
from the horizontal and k = 3π.

Having shown that the approximant can provide a good representation of the Fi-

bonacci chain in terms of the distribution of tube bundles, the next step is to investi-

gate the propagation of waves through an infinite periodic approximant. The effective
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properties derived for the approximant can provide approximate effective properties

of an infinite array of rows with a distribution determined by the Fibonacci chain.

5.4 Wave scattering by an infinite approximant struc-

ture

Wave propagation through an infinite number of rows can be calculated when there

is periodicity inherent in the geometry, using ideas discussed in section 2.2.2. This

section investigates the effective wave propagation through an infinite number of rows

of cylinders with a periodic distribution. The formulations used here are similar to

those used for the 1D periodic approximation in section 4.5. A combination of the

previously resolved solutions for the transmission and reflection coefficients for a finite

number of rows with Bloch’s theorem allows a computation of the effective wavenumber

of the infinite periodic array where each period contains the finite array of rows. For

a scenario of an infinite number of rows with the same spacing D between each row,

then the simple formulation of the transmission and reflection coefficients (5.126) and

(5.128) for one row are used. For a scenario of an infinite approximant, where the

period contains N quasiperiodically distributed rows, then the recursive formulation

of the transmission and reflection coefficients (5.155) and (5.156) should be used.

Similar work is discussed in [55], [24], [63] and [64] for the former case. This section

discusses the formulation for the latter in full detail and continuing with the notation

set out so far in this chapter. The theory discussed can be applied to any situation

including the former case, or for a periodic cell of arbitrary distribution.

Consider an infinite periodic approximant array, whereby each row consists of an

infinite number of small circular cylinders with periodic in-row separation (i.e. horizon-

tal) 2d as with the previous work. The N -approximant has a periodic cell described in

section 3.3 with a period of length q(N)S = Fib(N+1)L+Fib(N)S. An example of an

approximant unit cell is given in figure 5.14. Assume a wide spacing between each row

and thus propose a Bloch wave solution for the propagating modes m− ≤ m ≤ m+,

Tme
iγyq(N)Sn = Tme

iγyq(N)S(n+1), Rme
iγyq(N)Sn = Rme

iγyq(N)S(n+1), (5.159)

where γy is the Bloch wave vector in the y-direction. Without loss of generality consider
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Figure 5.14: Single period of the approximant, with proposed Bloch wave solution.

the periodic cell at the origin and take n = 0. Expressing in matrix form the Bloch

condition can be written

T = TE, R = RE, for E = eiγyq(N)SIM. (5.160)

Using the known solutions for transmission and reflection from the finite approximant

cell it is possible to show that

TE = TtN(L) +REroN(q(N)S), (5.161)

R = TrN(L) +REtoN(q(N)S). (5.162)

This can be rearranged to give the matrix equation

(

T R
)





tN(L) −rN (L)

0 IM



 =
(

T R
)

E





IM 0

−roN(q(N)S) toN(q(N)S)



 . (5.163)

Equation (5.163) can be re-expressed in the form B− λBI = 0,





tN(L) −rN(L)

0 IM









IM 0

−roN(q(N)S) toN(q(N)S)





−1

− eiγyq(N)SI = 0, (5.164)

and thus a solution for eiγyq(N)S can be determined by finding the eigenvalues λB of

the matrix

B =





tN(L) −rN(L)

0 IM









IM 0

−roN (q(N)S) toN(q(N)S)





−1

. (5.165)
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Hence the effective wavenumbers for theN -approximant array of “tube bundles”/infinite-

length rows are given by

γy =
logλB

iq(N)S
. (5.166)

The eigenvalues can be computed numerically using Matlab or a similar package.

The similarity between the effective wavenumbers for an N -approximant distri-

bution of infinite-length rows (5.166) and 1D point masses (4.51) can be seen. The

difference is the computation of the eigenvalues in the 2D case which is more compli-

cated due to the multi-dimensional matrix system.

It should be noticed that the dimension of the matrix B (5.165) depends on the

number of propagating modes between each period. From the work with a finite

number of rows of scatterers it is known that the scattering angles depend on the

angle of incidence of the incoming plane wave (5.83). Using an approach suggested my

Peter and Meylan [64], one can consider “incident” waves which propagate along the

irreducible Brillouin zone edge of interest. That is, for an incident wave of the form

uinc = eikr cos(θ−ψ0), (5.167)

with k the host wavenumber, a Bloch condition was posed of the form

eim2dk cosψ0 . (5.168)

By setting

k cosψ0 = γx, (5.169)

the effective wavenumber in the x-direction, choices of ψ0 can be made for particular

γx on edges of the Brillouin zone. The irreducible Brillouin zone was discussed in

section 2.2.2 and is depicted in figure 5.15, with node positions given by

0 = (0, 0), A = (π/(2d), 0), B = (π/(2d), π/(q(N)S)), (5.170)

for the rectangular unit cell in physical space.

We illustrate an example band diagram for the 2-approximant in figure 5.16. It can

be seen that there is a full stop band for initial wavenumbers. This is a characteristic

noted for small sound-soft scatterers and is discussed further in the next chapter.

The approach employed here to find the band structure of the approximant can be



CHAPTER 5. 2D WAVE SCATTERING: FIBONACCI CHAIN 158

0 A

B

Figure 5.15: The irreducible Brillouin zone for a 2D square periodic lattice (blue
shaded).
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Figure 5.16: The full band diagram for a 2-approximant with d = 1/2, L = 1 and
a = 0.001.

compared to the results achieved using an alternative method discussed in the next

chapter for more general 2D periodic lattices.



CHAPTER 5. 2D WAVE SCATTERING: FIBONACCI CHAIN 159

0.2

0.4

0.6

0.8

1

1.2

0
0 AB

k

Figure 5.17: Partial band diagram for a 2-approximant with d = 1/2, L = 1 and
a = 0.001.

To justify further the use of the approximant as a model for large or infinite arrays

of rows with Fibonacci chain spacing we show the cut-on of the first mode for the

3-approximant in figure 5.17. It can be seen that for both approximants the cut-on

wavenumber k0 is similar, in fact k0 = 0.6609 . . . for the 2-approximant and k0 =

0.7248 . . . for the 3-approximant. The closeness in these results suggests that the

approximant can predict the first mode of propagation for an infinite Fibonacci chain

array of rows for low n in the n-approximant.

5.5 Conclusions

In this chapter we extended the methods applied in 1D to a 2D quasiperiodic array of

scatterers with quasiperiodicity in one direction. It was shown how the transmission

and reflection properties of finite arrays of infinite rows can be determined recursively,

analogous to the 1D case. The analysis to derive the coefficients of the transmitted
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and reflected plane waves from one row is similar to that of existing literature but is

applied specifically to small scatterers, making a simplification in the expressions.

By comparing the amplitudes of the transmitted plane waves for arrays of rows with

Fibonacci chain separations to arrays of rows with PAS and approximant separations

it was demonstrated that the approximant can provide a much better representation of

the Fibonacci chain than the PAS. For relatively low n in the n-approximant, the dif-

ference between the amplitudes related to the Fibonacci chain and the n-approximant

were minimal. Since the approximant proved to be a good representation of the Fi-

bonacci chain in the case of finite numbers of rows, we investigated Bloch-type waves

and their properties in an infinite approximant array of rows. The analysis of the

infinite problem involved an extension of the theory applied for the 1D infinite ap-

proximant in section 4.5 and the work of Peter and Meylan [64].



Chapter 6

Construction algorithm for

two-dimensional quasiperiodic

lattices and their periodic

approximations

The construction methods for two different 2D quasiperiodic lattices are discussed in

this chapter. The first lattice under consideration is called the square Fibonacci lattice.

It is a 2D extension of the 1D Fibonacci chain discussed in chapter 3, and is depicted

in figure 6.1. The second lattice under consideration is called the Penrose lattice. It

is a more complicated lattice than the square Fibonacci lattice. The Penrose lattice

incorporates 2D quasiperiodicity and has a resemblance to a 2D random distribution.

To construct the Penrose lattice it is necessary to extend the 2D to 1D projection

method, applied in chapter 3, to higher dimensions. The 2D Penrose lattice can be

projected from a 5D or 4D space, both of which will be discussed in this chapter. As

with the 1D case in chapter 3, the construction of two periodic approximations for

each quasiperiodic lattice will be discussed.

6.1 Square Fibonacci lattice

The square Fibonacci (SF) lattice is a 2D quasiperiodic lattice, where the quasiperiod-

icity is apparent in just two orthogonal directions. The lattice nodes are determined

161
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by the 1D Fibonacci chain in the two perpendicular directions. The two lengthscales

L and S of the 1D Fibonacci chain relate to node separation in two directions in the

2D SF lattice. Figure 6.1 depicts the generation of the SF lattice. Lattice nodes are

positioned at each intersection of the two perpendicular lines.

L S L L L LS S
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L

L
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.

.

.   .   .

.

Figure 6.1: Set up of the square Fibonacci lattice.

In figure 6.1 it can be seen that the lattice contains three types of polygons: two

squares of dimensions L× L and S × S and a rectangle of dimensions L× S.

The SF lattice has been investigated before in [47]. Lifschitz studies the geometry

and scalings of the lattice along with its diffraction pattern. He puts a case forward for

future research in the area due to its relation to quasicrystals and photonic crystals.

To our knowledge there has been no consideration of this lattice in acoustics before.

In (3.10) from section 3.1 the lattice positions of the Fibonacci chain were defined

as

xi =
1√
2 + τ

(mi
1 + τmi

2), mi = (mi
1,m

i
2) ∈ M, (6.1)

where the superscript i notation has been introduced to denote the position of the ith

lattice node. The set M is determined by following the algorithm in section 3.1 and

satisfying the inequality (3.9), i.e.

−1 + τ

2
< τm1 −m2 ≤

1 + τ

2
. (6.2)

The lattice positions in the square Fibonacci (SF) lattice are therefore given by

xm,nSF = xme1 + xne2, m, n ∈ Z. (6.3)
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One aim of this thesis is to compare the SF lattice to the two periodic approxima-

tions, analogous to the 1D quasiperiodic structures in chapter 4. The periodic average

structure and the approximant of the Fibonacci chain shall be considered. Again, the

lattices are constructed by applying the 1D lattice in two perpendicular directions.

The PAS 1D nodes are given by

xm,nPAS = (3− τ)S(me1 + ne2), (6.4)

where (3 − τ)S is the average spacing of the Fibonacci chain, as derived in section

2.1.3.

In section 3.2 an occupancy window was defined for the PAS nodes, (3.19), of

length S(τ − 1). The occupancy window determined the distance that the Fibonacci

lattice nodes could deviate from the PAS lattice nodes. The same occupancy window

can be applied to the SF in two directions, resulting in a square occupancy window

of edge length S(τ − 1) centred at the PAS nodes. If the 2D occupancy window is

defined by O2 = (O2x, O2y), then the x and y components of the occupancy window

are given by

O2x = O2y = a

(

τ − 1

2

)

S, a ∈ (−1, 1]. (6.5)

Figure 6.2 shows how close an approximation the PAS is to the SF lattice. The re-
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Figure 6.2: Square Fibonacci lattice vertices (blue), the PAS vertices (red) and the
maximum range from the PAS vertices (red squares).

semblance suggests that solving this periodic scattering problem could give reasonably

similar results to the multiple scattering from the SF lattice.
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As with the 1D Fibonacci chain and its PAS, the 2D SF Fibonacci chain and

its PAS are one-to-one; each PAS vertex has only one SF vertex associated with it.

Therefore the occupancy factor is ρocc = 1. The packing density which measures the

ratio of area of occupancy window to periodic cell is given by

ρpac =
S2(τ − 1)2

S2(3− τ)2
=

1

5
. (6.6)

A packing density as low as this along with a unit occupancy factor suggests that the

PAS is a good representation of the SF lattice.

Using the concept of the PAS lattice and the occupancy windows defining the

maximum distance that the SF nodes can lie from the PAS nodes, one can attempt to

represent the SF lattice as a PAS lattice plus some random perturbation. The random

perturbation can be restricted within the occupancy windows. For example, define a

perturbation from the PAS lattice xm,npPAS such that

xm,npPAS = rm,nPAS + ǫmn, where ǫmn = (ǫm, ǫn) and ǫm, ǫn ∈ U
(

−S τ − 1

2
, S
τ − 1

2

)

,

(6.7)

where U [a, b] denotes a uniform distribution between a and b. One random generation

is depicted in figure 6.3. It can be seen that in some instances the additional per-
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Figure 6.3: Square Fibonacci lattice vertices (blue), the PAS vertices (red) and the
vertices that have been randomly perturbed from the PAS lattice (green).

turbation increases the accuracy of the approximation lattice node to the SF lattice

nodes. However, due to the randomness of the perturbation, there are also instances
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where the perturbation is further away from the SF node than the PAS. If work was to

continue in this approach it may be beneficial to consider the statistics of the PAS and

the SF lattice distributions, and to reduce their differences. With more of an under-

standing of the occupancy window and distribution of SF nodes within them it could

be possible to consider a different random distribution to the uniform distribution for

the perturbation.

To construct the approximant lattice for the SF lattice again apply the 1D version

in two perpendicular directions. In section 3.3 it was shown that the lattice nodes

of the 1D approximant to the Fibonacci chain are given by the same equation (6.1).

However the mi will differ due to the difference in the algorithm. Denote the mi for

the approximant with a tilde, m̃i. The inequality used to determine the m̃i for the

approximant was shown to be

−
1 + Fib(n+1)

Fib(n)

2
< m̃1

Fib(n+ 1)

Fib(n)
− m̃2 ≤

1 + Fib(n+1)
Fib(n)

2
. (6.8)

The set of lattice nodes for the approximant is similar to the SF lattice and is given

by

xm,napprox = x̃me1 + x̃ne2, m, n ∈ Z, (6.9)

where

x̃i =
1√
2 + τ

(m̃i
1 + τm̃i

2). (6.10)

The two periodic approximations of the 2D SF lattice have similarities to the

SF lattice, but in distinct ways. A comparison between the approximations, i.e. the

approximant and the PAS, to the SF chain can be seen in figure 6.4. Near the origin

the approximant and SF lattice nodes are in the same positions and thus the blue SF

nodes cannot be seen.

6.2 The Penrose lattice

The Penrose lattice is a lattice that results from positioning lattice nodes on the

vertices of the two tiles used in the 2D Penrose tiling. The Penrose lattice is the

most famous quasiperiodic lattice discussed due to its links with quasicrystals and the

Penrose tiling, two discoveries of paramount importance. The history of the Penrose

tiling and quasicrystals was discussed in chapter 2.1. In this section, the construction
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Figure 6.4: Square Fibonacci lattice vertices (blue), the associated PAS vertices (red)
and the 2-approximant vertices (green).

of the Penrose tiling via the projection method is explained. As discussed in section

2.1, the Penrose tiling can be constructed by a projection from either 5D or 4D space.

It is not possible to visualise the projection processes in these high dimensions, and so

throughout this section the reader will be reminded of the analogous projection of the

Fibonacci chain from 2D to 1D space discussed in section 3.1. Thus, the algorithms

and figures given in section 3.1 should provide the basis needed to understand and

apply the Penrose lattice projection.

The projection from 5D to 2D is analogous to the 2D to 1D projection as the

unit cell is a hypercube, comparable to the square. As mentioned in the discussion

of the background of the Penrose tiling, it is also possible to project from 4D space.

However, the lattice in 4D is no longer hypercubic, it is hyperrhombic. This makes the

extension more difficult, as determining the acceptance window via the Voronoi cell is

much more complicated. Therefore in this chapter we begin with a 5D space in which

we can determine the Voronoi cell and the acceptance window more simply. We choose

to then project to the 4D space in order to reduce the dimensions and complexities

inherent by one degree of freedom. We then use the 4D space and resultant projected

acceptance windows, to project to 2D to construct the Penrose lattice.
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The five-dimensional lattice

We begin with a 5D hypercubic lattice analogous to the 2D square lattice in section

3.1, and define the parallel space to be the 2D plane spanned by ei for i = 1, 2. The

perpendicular space is thus the 3D hyperspace spanned by ei for i = 1, 2, 3. The

hypercubic lattice must be rotated at some angle related to τ and the inherent 5-fold

rotational symmetry of the Penrose lattice. The basis vectors

di =

√

2

5























cos 2πi/5

sin 2πi/5

cos 4πi/5

sin 4πi/5

1/
√
2























, i = 1, . . . , 5, (6.11)

for the 5D hypercubic lattice satisfy all requirements. This basis, or rotation with

respect to the parallel plane, is used in all literature and references given in section

2.1. For further insight into the definition of the basis vectors see appendix B.4. The

basis vectors relate to τ the golden ratio through the following identities

cos 2π/5 = −σ/2, sin 2π/5 = +
√

1− cos2 2π/5 = τβ/2, (6.12)

cos 4π/5 = −τ/2, sin 4π/5 = +
√

1− cos2 4π/5 = β/2, (6.13)

cos 6π/5 = −τ/2, sin 6π/5 = −
√

1− cos2 6π/5 = −β/2, (6.14)

cos 8π/5 = −σ/2, sin 8π/5 = −
√

1− cos2 8π/5 = −τβ/2, (6.15)

where

σ =
1−

√
5

2
= 1− τ = −1

τ
, (6.16)

β =
√
3− τ . (6.17)

The set of 5D hypercubic lattice nodes, denoted by Λ5, is therefore given by

Λ5 =

{

5
∑

i=1

pidi | pi ∈ Z

}

. (6.18)

The next step in the algorithm for the projection method, as summarised at the

end of section 3.1, is to determine the acceptance window in 5D. To do this it is first

necessary to determine the Voronoi cell nodes in 5D, V5, [66]. The Voronoi cell of a
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hypercubic lattice is a hypercube itself, analogous to the 2D square case discussed in

chapter 3. The Voronoi hypercube in 5D has 25 = 32 vertex points given by

V5 =
5
∑

i=1

nidi, where ni ∈ {−1/2, 1/2}. (6.19)

To define the acceptance window nodes project the Voronoi cell nodes to the perpen-

dicular space, i.e. take the ei, i = 1, 2, 3, components of (6.19),

V⊥
5 =

√

2

5























0

0
∑5

i=1 ni cos 4πi/5
∑5

i=1 ni sin 4πi/5

1/
√
2
∑5

i=1 ni























. (6.20)

The e5-component of these vectors can take six values,

1√
5

5
∑

i=1

ni ∈
1

2
√
5
{−5,−3,−1, 1, 3, 5}. (6.21)

The six values relate to the projection of the 5D hypercube vertices to six different

parallel planes in the perpendicular space.

On inspection of the six sets of coordinates on the six planes of x5, as shown in figure

6.5, it can be seen that the 5D hypercube points project to a 3D polyhedron, defined

in (6.20), which contains regular 2D pentagons in four planes and single points in two

planes. There are two planes with ten possible combinations of n = (n1, · · · , n5). The

ten nodes actually form one smaller pentagon inside a larger one. See figures 6.5 and

6.6 where this is illustrated to assist the reader. The four pentagons are all situated

along a line between the two points in the other two planes, and are perpendicular

to the line. For the cases where there are 10 nodes in the x5-plane, and thus two

pentagons, it is necessary to determine the nodes associated with the largest pentagon.

The acceptance window is governed by the maximum area of the projected Voronoi

cell, as with the 2D to 1D projection method.

Denote the 5-tuple of ni that gives the largest area in the plane x5 = 1√
5

p
2
by np.
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Figure 6.5: Voronoi cell nodes projected to the 3D perpendicular space.

It can be shown that the following 5-tuples can be determined for each plane

n−5 =− 1

2
(1, 1, 1, 1, 1) , (6.22)

n−3 =− 1

2
{1, 1, 1, 1,−1} , (6.23)

n−1 =
1

2
{(1,−1, 1,−1,−1), (1,−1,−1, 1,−1), (−1, 1,−1, 1,−1),

(−1, 1,−1,−1, 1), (−1,−1, 1,−1, 1)} (6.24)

n1 =
1

2
{(−1, 1,−1, 1, 1), (−1, 1, 1,−1, 1), (1,−1, 1,−1, 1), (1,−1, 1, 1,−1),

(1, 1,−1, 1,−1)} (6.25)

n3 =
1

2
{1, 1, 1, 1,−1} , (6.26)

n5 =
1

2
(1, 1, 1, 1, 1) , (6.27)

where the notation {a1, · · · , aN} denotes the set of N -tuples that contains all permu-

tations of ai, 1 ≤ i ≤ N , for ai a single element, e.g. {−1, 1} = {(−1, 1), (1,−1)}. The
5-tuples for n±1 contain the five of the ten combinations that result in the pentagon

with the largest area.

The circumradii Rp of the four pentagons are

R3 = R−3 =

√

2

5
, R1 = R−1 =

√

2

5
τ. (6.28)

At this point one can define the acceptance windows in 3D using the lattice nodes

of the four pentagons and two points in the six different planes. However, it transpires
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Figure 6.6: 2D cross sections of the projected 5D Voronoi cell to the 3D perpendicular
space.

that we can simplify matters by projecting the 5D space into 4D and the 3D acceptance

windows into 2D. The benefit of using this 4D lattice rather than the 5D is that

four is the minimal dimension required to project to 2D space with 5-fold symmetry

(determined by the Euler totient function as described in section 2.1.1), so we can

disregard the extra unnecessary dimension. As previously mentioned, finding the

Voronoi cell of this 4D lattice is not trivial, thus it is most efficient to project the 5D

lattice to the 4D lattice, and thus project the acceptance window too. The reduction in

dimension of the acceptance windows reduces the degrees of freedom when finding the

intersections of acceptance windows with the parallel plane, making it computationally
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less expensive in the long run.

The four-dimensional lattice

The basis vectors in 4D must retain the inherent 5-fold symmetry of the Penrose tiling.

In appendix B.5 the derivation of particular basis vectors applicable to the projection

of the Penrose tiling is given, i.e.

fi =
2

5

















cos 2πi/5− 1

sin 2πi/5

cos 4πi/5− 1

sin 4πi/5

















, i = 1, . . . , 5, (6.29)

where it is noted that the basis vector (f)5 = 0 is not required but is defined for ease

of comparison with the five basis vectors of the 5D lattice. This set of basis vectors is

also used in [71]. The resultant set of 4D lattice nodes is therefore given by the set Λ,

where

Λ =

{

4
∑

i=1

pifi | pi ∈ Z

}

. (6.30)

The parallel plane is spanned by ei for i = 1, 2 and the perpendicular plane by ei for

i = 3, 4.

The best way to proceed is to determine a projection matrix that takes the 5D

lattice to the 4D lattice. To do this we define such a matrix Π that projects the 5D

basis vectors to the 4D basis vectors, i.e.

Πdi = fi. (6.31)

We begin by considering the projection of the sum of the basis vectors. It is known

that

5
∑

i=1

di =

√

2

5























∑5
i=1 cos 2πi/5

∑5
i=1 sin 2πi/5

∑5
i=1 cos 4πi/5

∑5
i=1 sin 4πi/5

5/
√
2























=























0

0

0

0
√
5























(6.32)
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and

4
∑

i=1

fi =
2

5

















−4 +
∑4

i=1 cos 2πi/5
∑4

i=1 sin 2πi/5

−4 +
∑4

i=1 cos 4πi/5
∑4

i=1 sin 4πi/5

















= −2

















1

0

1

0

















. (6.33)

So it is necessary to find a 4× 5 matrix Π such that

Π























0

0

0

0
√
5























= −2

















1

0

1

0

















. (6.34)

Thus, the matrix Π requires the following components

Π15 = Π35 = − 2√
5
= −

√

2

5

√
2, (6.35)

and we further choose

Π25 = Π45 = 0. (6.36)

The remaining components can be chosen as
√

2
5
I4, where I4 is the 4×4 identity matrix,

so that all other points are mapped to the 4D part of themselves. The projection matrix

can therefore be defined by

Π =

√

2

5

















1 0 0 0 −
√
2

0 1 0 0 0

0 0 1 0 −
√
2

0 0 0 1 0

















. (6.37)

It can be checked that this projection does indeed take the 5D to the 4D basis,

Πdi =

√

2

5

















1 0 0 0 −
√
2

0 1 0 0 0

0 0 1 0 −
√
2

0 0 0 1 0

















√

2

5























cos 2πi/5

sin 2πi/5

cos 4πi/5

sin 4πi/5

1/
√
2























=
2

5

















cos 2πi/5− 1

sin 2πi/5

cos 4πi/5− 1

sin 4πi/5

















= fi,

(6.38)
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for i = 1, . . . , 4, and Πd5 = 0.

The projection matrix Π defined in (6.37) can be applied to the acceptance window

nodes in 5D, i.e. V⊥
5 in (6.20), to take them to 4D space.

V⊥
4 = ΠV⊥

5 =

√

2

5

















1 0 0 0 −
√
2

0 1 0 0 0

0 0 1 0 −
√
2

0 0 0 1 0

















√

2

5























0

0
∑5

i=1 ni cos 4πi/5
∑5

i=1 ni sin 4πi/5

1√
2

∑5
i=1 ni























(6.39)

=
2

5

















−∑5
i=1 ni

0
∑5

i=1 ni cos 4πi/5−
∑5

i=1 ni
∑5

i=1 ni sin 4πi/5

















. (6.40)

By comparison with the acceptance window nodes in 5D, namely V⊥
5 in equation

(6.20), it can be seen that in the (x3, x4)-plane the same pentagons are produced with

an additional shift in the x3 direction, dependent on p = 2
∑5

i=1 ni. The size of the

pentagon has also been scaled by a factor of
√

2
5
. That is, the circumradii of the

pentagons in the 4D space rp are given by

rp =

√

2

5
Rp. (6.41)

The 5-tuples of ni selected for each plane in the 5D case can be applied to the 4D

projected Voronoi cell to determine the largest area, and thus the acceptance window.

The whole 5D Voronoi cell has now been projected to the 2D perpendicular plane

in 4D space and therefore forms discrete 2D shapes. Figure 6.7 shows the nodes of the

projection. In 5D the nodes V⊥
5 corresponded to a polyhedron that could be described

in six planes. In 4D the nodes V⊥
4 correspond to six discrete polygons in the same

(x3, x4)-plane. As in 5D, four of the polygons are regular pentagons, and the other

two are single nodes at (x3, x4) = (±1, 0).

As in the 2D to 1D projection, it is now necessary to define acceptance windows

W4 that describe the area within these pentagons. Due to the reflective symmetry

of the pentagons in the x3-axis, the geometry can be simplified to a half pentagon.
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(c) Pentagon surface related to
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i=1 ni = −1.
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(d) Pentagon surface related to
p = 2

∑5
i=1 ni = −3.

Figure 6.7: Projection of the 5D Voronoi cell to the 2D perpendicular space, i.e. the
(x3, x4)-plane.

The area can be separated into two regions of x3 which are bounded in the x4-plane

by the x3-axis and the pentagon edge in each region. We denote these two regions by

j = 1, 2. Figure 6.8 depicts this decomposition.

For each p = 2
∑5

i=1 ni an acceptance window w4(p) should be defined so that

W4 =
⋃

p∈{−5,−3,−1,1,3,5}
w4(p). (6.42)

It was shown earlier that on the planes relating to p = ±5 there exists a single node
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x3

j = 1 j = 2

Figure 6.8: Pentagon in the (x3, x4)-plane. Required area for acceptance window
definition is shaded. The shaded region is separated into two with different bounds in
the x4 plane.

of the acceptance window. Therefore,

w4(±5) = ∓(e1 + e3), (6.43)

since
∑5

i=1 cos 4πi/5 =
∑5

i=1 sin 4πi/5 = 0. In order to formulate expressions for the

pentagonal shapes let us define the necessary vertex coordinates for the pentagons.

From the vertex coordinates it is possible to define an equation for the lines that form

the pentagon edges. Figure 6.9 shows the two possible arrangements of pentagons. The

vertices defined by the letters A to F can be shown to have the (x3, x4) coordinates

A = (rp cos 4π/5− p/5, rp sin 4π/5), (6.44)

B = (rp cos 2π/5− p/5, rp sin 2π/5), (6.45)

C = (rp − p/5, 0), (6.46)

D = (−rp − p/5, 0), (6.47)

E = (−rp cos 2π/5− p/5, rp sin 2π/5), (6.48)

F = (−rp cos 4π/5− p/5, rp sin 4π/5), (6.49)

where rp is the radius of the p pentagon, defined in equation (6.41).

Using the expression for a line through two points (x1, y1) and (x2, y2) in 2D space

y − y1 = m(x − x1) where m = y1−y2
x1−x2 , expressions for the four lines AB, BC, DE

and EF can be formulated. From the expressions for the pentagon edges, the area of
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p/5

(a) Pentagon vertex coordinates, re-
lated to p = 1,−3.

x3
D

E
F

p/5

(b) Pentagon vertex coordinates, re-
lated to p = −1, 3.

Figure 6.9: Vertex coordinates for the pentagonal acceptance windows in the (x3, x4)
plane.

the pentagon can be defined. For a pentagon with orientation as in figure 6.9a the

acceptance window can be defined as the union of the two regions j = 1, 2 (as shaded

in figure 6.8), as

w4(p) =
2
⋃

j=1

w4(p)j =
2
⋃

j=1

















−p/5
0

x3(p)j

x4(p)j

















, (6.50)

where for p = 1,−3,

x3(p)1 ∈ [rp cos(4π/5)− p/5, rp cos(2π/5)− p/5], (6.51)

|x4(p)1| ≤
sin(2π/5)− sin(4π/5)

cos(2π/5)− cos(4π/5)
(x3(p)1 − rp cos(4π/5) + p/5) + rp sin(4π/5),

(6.52)

x3(p)2 ∈ [rp cos(2π/5)− p/5,−p/5 + rp], (6.53)

|x4(p)2| ≤
− sin(2π/5)

1− cos(2π/5)
(x3(p)2 − rp + p/5). (6.54)
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For pentagons of the opposite orientation, i.e. for p = −1, 3, we have

x3(p)1 ∈ [−p/5− rp cos(2π/5),−p/5− rp cos(4π/5)], (6.55)

|x4(p)1| ≤ − sin(2π/5)− sin(4π/5)

cos(2π/5)− cos(4π/5)
(x3(p)1 + rp cos(4π/5) + p/5) + rp sin(4π/5),

(6.56)

x3(p)2 ∈ [−rp − p/5,−p/5− rp cos(2π/5)], (6.57)

|x4(p)2| ≤
sin(2π/5)

1− cos(2π/5)
(x3(p)2 + rp + p/5). (6.58)

The acceptance window defined in equation (6.42) is replicated on every lattice

node to give us the full acceptance window of the 4D system A4.

A4 =

{

4
∑

i=1

mifi +W4, mi ∈ Z

}

. (6.59)

We find that there is an overlap of the w4(5) and w4(−5) nodes when decorating

every lattice node. Therefore it is only necessary to consider p ∈ {−3,−1, 1, 3, 5} in

A4, without loss of generality.

The final stage of the projection method is to determine which acceptance windows

intersect the parallel space. That is, whenever the e3 and e4 components of A4 in

equation (6.59) are zero,




2
5

∑4
i=1mi(cos(4πi/5)− 1) + x3(p)j

2
5

∑4
i=1mi sin(4πi/5) + x4(p)j



 =





0

0



 , p ∈ {−3,−1, 1, 3, 5}, j = 1, 2.

(6.60)

This results in the choice of mp = (m1,m2,m3,m4), determining the selection of 4D

lattice nodes Λmp
for each value of p, such that

2

5

4
∑

i=1

mi(1−cos(4πi/5)+ ǫ) = x3(p)j, and − 2

5

4
∑

i=1

mi sin(4πi/5) = x4(p)j. (6.61)

A small parameter ǫ≪ 1 has been introduced in the e3 component. This is to address

issues with the inequalities and duplication of points. In the projection of the Fibonacci

chain in section 3.1 it was necessary to introduce differing inequalities (3.5), to avoid

duplication of points. Due to the multiple dimensions in the acceptance window in

this instance it is easier to introduce a small non-integer shift in the window.

By substituting equation (6.61) into equations for x3(p)j and x4(p)j for each p ∈
{−3,−1, 1, 3, 5} and j = 1, 2 given in (6.51)-(6.58) we obtain the inequalities on the 4-

tuple of integers mp that yield intersection of the acceptance windows with the parallel
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plane. The expression for the case p = 5 is given by





2
5

∑4
i=1mi(cos(4πi/5)− 1) + ǫ+ 1

2
5

∑4
i=1mi sin(4πi/5)



 =





0

0



 . (6.62)

In the 2D to 1D projection method, them that gave an intersection also determined

which lattice nodes were to be projected to the parallel plane. In the 5D and 4D to

2D projection method the 5-tuple m will also denote which lattice nodes of the 5D

hypercubic lattice should be selected to be projected. However, the e1 component of

the 4D acceptance window includes some information from the 5D acceptance window

and therefore must not be neglected. The information in the e1 component is related

to the p defined by each pentagonal acceptance window and so it is necessary to treat

the mp for each p differently. The set m =
⋃

p∈{−3,−1,1,3,5} mp gives the selection of

lattice nodes required for the construction of the Penrose lattice, and the Penrose

lattice nodes are given by

xPen =

(

2

5

4
∑

i=1

mi(cos 2πi/5− 1)− p

5

)

e1 +

(

2

5

4
∑

i=1

mi sin 2πi/5

)

e2, (6.63)

for mi ∈ mp and p ∈ {−3,−1, 1, 3, 5}, where the −p
5
term in the e1 component is the

contribution from the 5D space that must not be neglected.

An example of a section of the Penrose lattice determined using the given method is

shown in figure 6.10. It can be seen how the nodes can be joined to give a representation

of a section of Penrose tiling.

Using the algorithm described in this chapter and an initial unit hypercubic lattice,

it is found that that the Penrose rhombi has an edge length of ar =
2
5
. This disagrees

with the expression given by Steurer and Haibach [71] by a factor of τ 2, due to scaling

inherent in their method, which will be discussed in further detail in the proceeding

section.

In summary, and analagous to the 2D to 1D projection in section 3.1, the projection

method algorithm for the Penrose lattice is as follows

• Construct a 5D hypercubic unit lattice, suitably orientated as defined in (6.11)

• Project a Voronoi cell to the perpendicular space to find the acceptance window

nodes V⊥
5 , defined in (6.20)



CHAPTER 6. 2D LATTICE CONSTRUCTIONS 179

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

Figure 6.10: Penrose tiling vertices and an example of some of the tiles. This is in the
e1, e2 plane.

• Apply a transformation matrix (6.37) to the 5D lattice and the 3D acceptance

window to project to a 4D lattice (6.29) with 2D acceptance windows associated

with the origin node, W4, defined in (6.42)

• Decorate every lattice node with the acceptance window to give the full set A4,

defined in (6.59)

• Find the vectors (m1,m2,m3,m4) ∈ M which allow the intersection of A4 with

the parallel plane, defined in (6.61)

• The intersection points on the parallel plane determine the Penrose lattice nodes

xPen, defined in (6.63).

6.3 Periodic average structure

The periodic average structure (PAS) is a periodic approximation of the quasiperiodic

lattice with a period specifically chosen to represent its properties. In fact, as discussed

in section 2.1.3, the method used to derive such a lattice is based on a choice of a

base set of reflections in the Penrose lattice diffraction pattern which is defined in

the reciprocal space of the lattice via the Fourier transform. The reciprocal lattice

vectors spanning the plane containing the main reflections of the diffraction pattern
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were defined in equation (2.21). This gave rise to a PAS basis defined by

d̄1 =
2√
5a∗





1

0



 , d̄2 =
2√
5a∗





sin π/10

cos π/10



 , (6.64)

where a∗ is related the Penrose rhomb edge length ar and will be discussed further

below.

In section 3.2 the PAS for the 1D Fibonacci chain was introduced. It was shown

that employing the higher-dimensional space, used in the construction of the Fibonacci

chain, in the construction of the PAS provides further insight into the comparisons be-

tween the quasiperiodic lattice and its PAS. This comparison could be drawn through

the lattice parameters of the quasiperiodic and periodic lattices and also through the

occupancy window. The occupancy window is the projection of the acceptance win-

dow, and represents the maximum distance a quasiperiodic lattice node can lie from its

associated PAS lattice node. The same concept can be applied to the Penrose lattice

and its PAS, and will be discussed in this section.

It is necessary to project the 4D lattice nodes of the higher-dimensional space to

the 2D lattice nodes of the PAS. There are infinitely many projections for this. One

can also project the discrete 2D acceptance windows to the 2D plane spanned by e1

and e2 to determine the occupancy windows. We follow a projection used by Steurer

and Haibach [71]. First project along the diagonal between the origin and
∑4

i=1 fi of

the 4D unit cell, so that the four pentagon centres project to the single origin of the

cell. Then a projection can be performed that maps the 4D lattice points to the 2D

lattice points. It can be shown that the projection

P =
1

a∗





1 0 −1 −τ(3− τ)1/2

0 1 0 −τ



 (6.65)

satisfies both these requirements. The projection matrix P gives P (
∑4

i=1 fi) = 0 and
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the projection of the 4D basis vectors

P (f1) =





0

0



 , (6.66)

P (f2) =
2

a∗
√
5





sin π/10

cos π/10



 = d̄2, (6.67)

P (f3) =
2

a∗
√
5





−(1 + sin π/10)

− cos π/10



 = −(d̄1 + d̄2), (6.68)

P (f4) =
2

a∗
√
5





1

0



 = d̄1. (6.69)

The same projection matrix P (6.65) is now applied to the acceptance windows in

the 4D space (6.59), analogous to the Fibonacci chain PAS in section 3.2. However,

before this projection is applied we must consider whether or not this is the best

projection for the current higher-dimensional space and acceptance windows. Steurer

et al. [70], [72] discuss the scalings that can be applied to the acceptance window prior

to projection to result in the optimal occupancy window and PAS for the Penrose

tiling. They express the desire to achieve acceptance windows and higher-dimensional

lattices that upon projection give occupancy windows and PAS nodes that are the most

similar to the Penrose lattice. That is, a PAS with lattice parameters comparable to

the Penrose rhomb edge length ar, and occupancy windows that have occupancy factor

ρocc as close to one and packing density ρpac as close to zero as possible (the occupancy

factor and packing density were defined in the section 2.1.3). This is discussed in most

detail for an octagonal structure in [70].

Applying the projection to the current acceptance window derived in the previous

section, where a∗ = 1, results in a PAS lattice given by (6.64) with basis vectors

of length |d̄i| = 2/
√
5 which is not similar to the edge length of the Penrose lattice

ar = 2/5. Instead apply a scaling to the acceptance window in perpendicular space. A

scaling of the perpendicular space does not affect the lattice produced on the parallel

space, apart from an inflation or deflation, as discussed by many [70], [49]. Applying

a scaling of 1/τ 2 to the acceptance windows results in pentagonal acceptance windows

encompassed by circles of radii

λ1 = λ4 =
2

5τ 2
, λ2 = λ3 =

2

5τ
, (6.70)
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compared to equation (6.41). Having smaller acceptance windows in the 4D space

results in a more dispersed selection of 4D lattice nodes to project, and thus an inflated

Penrose lattice. In fact, in this instance the Penrose lattice is inflated by a factor τ 2

[70]. Therefore the Penrose rhombi now have edge lengths ar = 2τ 2/5, and so

a∗ =
2τ 2

5ar
, (6.71)

agreeing with [71]. This provides similar lattice parameters in the Penrose lattice and

the PAS.

Applying the projection (6.65) to the scaled acceptance windows gives occupancy

windows in the 2D plane with nodes

P

(

1

τ 2
V⊥

4

)

=





1 0 −1 −τ(3− τ)1/2

0 1 0 −τ





1

τ 2
2

5

















−
∑5

i=1 ni

0
∑5

i=1 ni cos 4πi/5−
∑5

i=1 ni
∑5

i=1 ni sin 4πi/5

















(6.72)

=
2

5τ 2





−∑5
i=1 ni

(

cos 4πi/5 + τ(3− τ)1/2 sin 4πi/5
)

−τ∑5
i=1 ni sin 4πi/5



 . (6.73)

The occupancy windows are of the form of “stretched” pentagons centred at each of

the PAS nodes. Figure 6.11 shows these shapes centred at the origin for example, and

the ellipse shape which encloses them.

A comparison of the lattice nodes of the Penrose lattice (blue) and PAS (red) is

shown in figure 6.12. In this figure we have superimposed a selection of the occupancy

windows (red ellipses) to demonstrate the deviation of the Penrose nodes from the

PAS. The occupancy windows have been represented by the largest ellipse in which the

occupancy windows lie. It can be seen that some of the ellipses do not contain a (blue)

Penrose node, and some contain two nodes. In fact, Steurer and Haibach [71] proved

the proportion of these instances exactly. They showed that the frequency of singly

occupied ellipses is 0.7236, of doubly occupied ellipses is 0.0652 and of unoccupied

0.2112. The packing density, relating the area of the unit cell of the PAS to the area

of the occupancy window, is given by ρpac = 0.447.

By gaining a better understanding of the probability and distribution of the oc-

cupancy windows containing one, two or no Penrose nodes, and the distribution of
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Figure 6.11: Vertices of the occupancy windows and the corresponding ellipse in which
it lies, in the e1, e2 plane.

these nodes within the occupancy window, some interesting analysis of a perturbed

PAS could be carried out in order to offer an alternative representation of the Penrose

lattice.

6.4 Approximant

The approximant lattice for the Penrose tiling is a periodic lattice with a repeating

unit cell that contains a section of quasiperiodicity from the Penrose tiling itself. The

approximant was introduced in some detail in section 2.1.4 for both the Fibonacci

chain and the Penrose tiling. The full formulae and algorithm for the construction

of the Fibonacci chain approximant were given in section 3.3. In this chapter the

method is applied to the 2D Penrose tiling when projecting from 4D space. The

algorithm requires less computation than a similar algorithm determined by Lord et
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Figure 6.12: The Penrose tiling vertices (blue), the PAS vertices (red) and the range
at which the Penrose vertices can lie from the PAS vertices (red ellipses).

al. [49] who choose to project from 5D and thus have a more complicated acceptance

window. The algorithm for the construction of an approximant is described along with

how the lattice differs from that of the Penrose tiling. The derivation of the unit cell

of different approximants is also discussed.

Analogous to the Fibonacci chain approximant, the Penrose approximant is con-

structed by approximating τ in the perpendicular space components of the 4D space.

This approximation is slightly more involved than with the 1D approximant as more

than one approximation of τ can be made, i.e.

τ ≈ τNi =
Fib(Ni + 1)

Fib(Ni)
, (6.74)

for i = 1, 2, the two dimensions of the perpendicular space.

Another complication is how the reciprocal of tau σ = − 1
τ
is approximated. We
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specify two schemes of approximation, scheme I

σINi = −1

τ
≈ − 1

τNi
, (6.75)

and scheme II

σIINi = −1

τ
= 1− τ ≈ 1− τNi . (6.76)

Denote the (N1, N2)
I/II-approximant as the approximant constructed with τ ≈ τN1 in

the e3 component, τ ≈ τN2 in the e4 component and using scheme I/II. We note

here that for increasing Ni, the two schemes converge. In fact, substitution of the

approximation (6.74) into the two choices for σ, equations (6.75) and (6.76), gives

σINi ≈ − Fib(Ni)

Fib(Ni) + 1
, (6.77)

and

σIINi ≈ 1− Fib(Ni + 1)

Fib(Ni)
=

Fib(Ni)− Fib(Ni + 1)

Fib(Ni)
= −Fib(Ni − 1)

Fib(Ni)
. (6.78)

Therefore, the two approximations are related such that

σINi = σIINi−1, (6.79)

which converge to the same limit −1/τ for increasing Ni.

Approximating the perpendicular space components of the basis vectors for the

Penrose tiling projection (6.29), using the identities (6.12)-(6.15), the approximations

yield approximant basis vectors defined by

f̃1 =
1

5

















2(cos 2π/5− 1)

2 sin 2π/5

−τN1 − 2
√
3− τN2

















, f̃2 =
1

5

















2(cos 4π/5)− 1)

sin 4π/5

−σN1 − 2

−τN2

√
3− τN2

















,

f̃3 =
1

5

















2(cos 6π/5− 1)

2 sin 6π/5

−σN1 − 2

τN2

√
3− τN2

















, f̃4 =
1

5

















2(cos 8π/5− 1)

2 sin 8π/5

−τN1 − 2

−√
3− τN2

















. (6.80)

The parallel space components are left exact, as with the 1D Fibonacci chain approx-

imant, this ensures that the lattice produced still only consists of the thin and thick

Penrose rhombi.
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The next step is to define the lattice nodes of the approximant acceptance window.

This is done by approximating the perpendicular space components of the nodes V⊥
4

(6.40), as

Ṽ⊥
4 =

1

5

















−2
∑5

i=1 ni

0

−τN1(n1 + n4)− σN1(n2 + n3)− 2
∑4

i=1 ni
√
3− τN2 ((n1 − n4) + τN2(n3 − n2))

















. (6.81)

With the 1D analogy it was discussed that a unit cell of the skewed 2D lattice was taken

rather than the Voronoi cell of the lattice in the procedure of defining the acceptance

window, as it is for the quasiperiodic projection. We believe this is in fact the correct

procedure, and that the term “Voronoi cell” is used in crystallography just because it

happens that taking a unit cell around a lattice node in a square/hypercubic lattice

is equivalent to a Voronoi cell. This hypothesis can be demonstrated when comparing

the projection method to the pentagrid method, [66]. As described in the introduction

in section 2.1.2, the five sets of lines in the pentagrid correspond to hyperplanes in the

5D space. The polygons formed by the lines in the pentagrid are used to determine the

Penrose lattice points. These polygons relate to hypercubes around the nodes in 5D

space, which are used to define the acceptance windows to then determine the Penrose

lattice points. The approximation used in the perpendicular space in the projection

method can equivalently be made in the pentagrid method via an approximation of

the angles of three sets of the lines. This would cause changes in the shapes of the

polygons formed in the pentagrid, which in turn relates to a different polytope around

the nodes in 5D space. The polytope is a unit cell of the skewed higher-dimensional

lattice. Therefore a unit cell of the skewed lattice should be taken around the lattice

nodes, rather than the Voronoi cell, to be projected to the perpendicular space to

define the acceptance windows.

Since the approximations of τ can be different in the two directions (e3, e4), the

acceptance windows no longer form regular pentagons in the (x3, x4)-plane. Instead the

pentagons are irregular. Therefore the formulation of the area of acceptance windows

is not a simple case of approximating τ in the set of inequalities defined for the area

of pentagons in section 6.2, (6.51)-(6.58). However, the method for defining the area

remains analogous.
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x3

A(p)

B(p)

C(p)

(a) Pentagon vertex coordinates, for
p = 1,−3.

x3
A(p)

B(p)
C(p)

(b) Pentagon vertex coordinates, for
p = −1, 3.

Figure 6.13: Vertex coordinates for the irregular pentagonal acceptance windows in
the (x3, x4) plane.

The necessary vertices of the irregular pentagons for each p ∈ {−3,−1, 1, 3} in the

(x3, x4)-plane, as shown in figure 6.13, are given by

A(−3) =
1

5





2 + σN1

√
3− τN2



 , B(−3) =
1

5





2 + τN1

τN2

√
3− τN2



 ,

C(−3) =
1

5





4 + τN1 + σN1

0



 , (6.82)

A(−1) =
1

5





−τN1 + σN1

0



 , B(−1) =
1

5





0

(τN2 + 1)
√
3− τN2



 ,

C(−1) =
1

5





2 + τN1

τN2

√
3− τN2



 , (6.83)

A(1) =
1

5





−2− τN1

τN2

√
3− τN2



 , B(1) =
1

5





0

(τN2 + 1)
√
3− τN2



 ,

C(1) =
1

5





τN1 − σN1

0



 , (6.84)

A(3) =
1

5





−4− τN1 − σN1

0



 , B(3) =
1

5





−2− τN1

τN2

√
3− τN2



 ,

C(3) =
1

5





−2− σN1

√
3− τN2



 . (6.85)

The coordinates have been determined for each p using the set of n = (n1, · · · , n5)
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determined in (6.22)-(6.27).

The areas of the acceptance windows are defined in the same manner as for the

Penrose lattice (6.51)-(6.58), and are given by the inequalities

x̃3(p)1 ∈ [A(p)x3 , B(p)x3 ], (6.86)

|x̃4(p)1| ≤
B(p)x4 − A(p)x4
B(p)x3 − A(p)x3

(x̃3(p)1 −B(p)x3) + B(p)x4 , (6.87)

x̃3(p)2 ∈ [B(p)x3 , C(p)x3 ], (6.88)

|x̃4(p)2| ≤
C(p)x4 − B(p)x4
C(p)x3 − B(p)x3

(x̃3(p)1 − C(p)x3) + C(p)x4 , (6.89)

where the subscript x3 and x4 denote the x3 and x4 components of the polygon vertex

coordinates, respectively.

The acceptance window for the approximant is defined as for the Penrose lattice

(6.42); i.e.

W̃4 =
⋃

p∈{−3,−1,1,3,5}
w̃4(p), (6.90)

where

w̃4(5) = −

















1

0

1
5
(4 + τN1 + σN1)

0

















(6.91)

and

w̃4(p) =
2
⋃

j=1

w̃4(p)j =
2
⋃

j=1

















−p/5
0

x̃3(p)j

x̃4(p)j

















. (6.92)

The acceptance window defined in equation (6.90) is replicated on every lattice node

to give us the full acceptance window of the 4D system Ã4.

Ã4 =

{

4
∑

i=1

mif̃i + W̃4, mi ∈ Z

}

. (6.93)

Analogous to the Penrose projection, it is now necessary to determine the points at

which the acceptance windows intersect the parallel space (6.61),

1

5

(

2
4
∑

i=1

m̃i + τN1(m̃1 + m̃4) + σN1(m̃2 + m̃3)

)

+ ǫ = x̃3(p)j, and (6.94)

− 1

5

√

3− τN2 ((m̃1 − m̃4)− τN2(m̃2 − m̃3)) = x̃4(p)j, m̃i ∈ Z. (6.95)
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Substitution of equations (6.94) and (6.95) into equations (6.86)-(6.89) determines the

required inequalities that must be solved to determine the 4-tuple of integers m̃p.

The Penrose approximant lattice nodes are therefore given by

xapprox =

(

2

5

4
∑

i=1

m̃i(cos 2πi/5− 1)− p

5

)

e1 +

(

2

5

4
∑

i=1

m̃i sin 2πi/5

)

e2, (6.96)

for m̃p = (m̃1, . . . , m̃4) and p ∈ {−3,−1, 1, 3, 5}.
In summary the algorithm for the projection method for the Penrose lattice ap-

proximant is as follows

• Construct a 4D lattice approximating the 4D hyperrhombohedral lattice that

approximates τ in the perpendicular space, defined in (6.80)

• Approximate the perpendicular space components of the acceptance window

nodes Ṽ4
⊥
, defined in (6.81)

• Decorate every lattice node with the acceptance window to give the full set Ã4,

defined in (6.93)

• Find the set of integers m̃p = (m̃1, m̃2, m̃3, m̃4) ∈ M̃ which allows the intersec-

tion of Ã4 with the parallel plane, defined in (6.94)-(6.95)

• The intersection points on the parallel plane determine the Penrose approximant

lattice nodes xapprox, defined in (6.96).

In the background discussion of the approximant in section 2.1.4 it was shown how

to determine the period of the approximant. The periods of the approximant are given

when higher-dimensional lattice nodes lie on the parallel space. The nodes lie on the

parallel space when the perpendicular space components of the node coordinates equal

zero, i.e.

2
4
∑

j=1

qj + τN1(q1 + q4) + σN1(q2 + q3) = 0 and

√

3− τN2 ((q1 − q4)− τN2(q2 − q3)) = 0, (6.97)

for qi ∈ Z. The set of 4-tuples q = (q1, q2, q3, q4) that satisfy (6.97) form a set Q. The

associated nodes of the periodic cell are given by the parallel space components of the
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selected lattice nodes
∑4

i=1 qif̃i ∈ ΛQ, and

xperiod =
2

5





∑4
i=1 qi (cos 2πi/5− 1)
∑4

i=1 qi sin 2πi/5



 . (6.98)

The shape and size of the periodic cell depends on N1, N2 and the scheme used in

the (N1, N2)
I/II-approximant. Altering the approximation or the scheme affects the

equality (6.97) that must be solved, and thus alters the set Q.

As mentioned in the background discussion of the approximant, the concept of

choosing the periodic cell shape of the approximant has been investigated previously

in [74] and [49]. For a 2D parallel space, two linear combinations of the parallel space

basis vectors (parallel space components of the 4D basis vectors) can be selected to

determine the periodic directions in the approximant. The same linear combination

should then be applied to the perpendicular space components. However the linear

combination of the perpendicular space basis vectors must be equal to zero (6.97).

A linear transform can be applied to the perpendicular basis vectors to ensure that

this equality is met. Applying linear transforms to the perpendicular space does not

affect the lattice produced in the parallel space, making this method possible. An

example of this procedure is discussed in some detail in [74] for an approximant with an

orthorhombic unit cell from a 5D projection. It is shown that for the same approximant

tiling multiple different periodic cells can be defined. For the work in this thesis

the original perpendicular basis vectors will be kept. This is because we are mostly

interested in the overall tiling produced rather than the period itself. For large regions

of the tiling the period will become irrelevant. Thus we concentrate on the variations

of the approximant tiling itself rather than specifying particular periods.

Figure 6.14 shows an example of a (1, 2)I-approximant lattice (green) compared to

the Penrose lattice (blue). The nodes of the period of the approximant are shown by

purple crosses.

6.5 Conclusions

In this chapter we first extended the construction of the 1D Fibonacci chain and its

approximations to create the 2D square Fibonacci lattice and approximations with

ease. We also developed a rigorous algorithm for the construction of the 2D Penrose
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(a) (1, 2)I -approximant (green) and
periodic cell nodes (purple).

-4 -2 2 4

-4
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2

4

(b) (1, 2)I -approximant (green) and
Penrose lattice nodes (blue).

Figure 6.14: (1, 2)I-approximant lattice nodes compared to the Penrose lattice nodes.

lattice via the projection method. The algorithm and accompanying explanations and

diagrams aim to provide a reader without a prior knowledge of quasiperiodic structures,

the projection method or crystallography, with a tool to construct the Penrose lattice

oneself. The algorithms to produce the PAS and the approximant for the Penrose

lattice were also thoroughly discussed.

Comparisons between the quasiperiodic lattices and their approximations will be

drawn by the acoustic scattering properties of the lattices and is discussed in chapters

8 and 9 for the square Fibonacci (SF) and Penrose lattices respectively.



Chapter 7

Wave scattering by

two-dimensional infinite periodic

arrays of scatterers

In this chapter the novel approach determining analytic expressions for the effective

wave propagation through infinite periodic arrays of small circular cylinders is dis-

cussed. Initially, the scenario of a doubly-periodic rectangular lattice, as introduced

in section 2.4.4, is considered. The approach taken differs from that exploited by oth-

ers in the existing literature and lifts restrictions on the period lengthscales. With

the techniques and notation provided in the doubly-periodic scenario, the extension

is made to orthorhombic periodic lattices in which the periodic cell can contain mul-

tiple arbitrarily-positioned scatterers. The motivation for modelling such a periodic

lattice is to enable the prediction of wave propagation through a 2D, infinite, periodic

approximant array of small circular scatterers, analogous to the 1D approximant in

section 4.5. The approximant lattices for the square Fibonacci and Penrose lattices

were discussed previously in chapter 6.

7.1 Doubly-periodic lattice

To begin, we continue from the work introduced in section 2.4.4, for wave propagation

in a doubly-periodic lattice, and the notation and parameters remain the same. The

lattice is rectangular and has period d and λd in the x and y directions respectively,

192
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referring to figure 7.1.

...

...

· · ·· · ·

d

λd

x

y

Figure 7.1: Set up of a doubly periodic array of circular cylinders.

For circular cylinders of arbitrary radius a, an eigensolution of the 2D Helmholtz

equation can be posed of the form

u(x) =
∞
∑

n=−∞
CnH

(1)
n (|x|)einθ (7.1)

+
∞
∑

s=−∞

∞
∑

t=−∞
(s,t) 6=(0,0)

∞
∑

n=−∞
Cne

iγ(s cos θ+λt sin θ)H(1)
n (|x− pst|)einθst , (7.2)

where pst = D(s, λt), D = kd and γ = |γ| is the non-dimensional effective wavenumber

scaled on the lengthscale d. Applying the restriction 0 < ka ≪ 1 for small cylinders,

as with the work in section 2.4, yields a reduction in the infinite sum over all orders

of the Hankel function. This assumption simplifies the expression in (7.2), at leading

order in ka, to

u(x) = CH
(1)
0 (|x|) +

∞
∑

s=−∞

∞
∑

t=−∞
(s,t) 6=(0,0)

Ceiγ(s cos θ+λt sin θ)H
(1)
0 (|x− pst|), (7.3)
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where C replaces the former coefficient C0.

Apply sound-soft/Dirichlet boundary conditions on each of the cylinders. Take the

(0, 0)th cylinder at the origin, without loss of generality,

u(η) = 0 = H
(1)
0 (η) +

∞
∑

s=−∞

∞
∑

t=−∞
(s,t) 6=(0,0)

eiγ(s cos θ+λt sin θ)H
(1)
0 (|pst|), (7.4)

by letting η = ka→ 0.

In section 5.1.1 the integral representation of the Hankel function was applied,

where the x and y components of the argument are expressed independently. The

same integral representation should be applied here,

H
(1)
0 (|pst|) = H

(1)
0 (D

√
s2 + λ2t2) = − i

π

∫ ∞

−∞
e−β(α)|s|D+iαDλt dα

β(α)
, (7.5)

for

β(α) =







−i
√
1− α2, |α| ≤ 1,

√
α2 − 1, |α| > 1.

(7.6)

Substitution of the integral representation (7.5) into equation (7.4) results in

H
(1)
0 (η) =

∞
∑

s=−∞

∞
∑

t=−∞
(s,t) 6=(0,0)

eiγ(s cos θ+λt sin θ)
i

π

∫ ∞

−∞
e−β(α)|s|D+iαDλt dα

β(α)
. (7.7)

Assuming convergence of the sum, this is equivalent to

H
(1)
0 (η) =

i

π

∫ ∞

−∞

1

β

∞
∑

s=−∞

∞
∑

t=−∞
(s,t) 6=(0,0)

eiγs cos θeiγλt sin θe−β(α)|s|DeiαDλtdα, (7.8)

and decompose the sum as shown:

H
(1)
0 (η) =

i

π

∫ ∞

−∞

1

β

{

− 1 +
∞
∑

s=−∞
eisγ cos θ−βD|s|

+
∞
∑

t=−∞
t 6=0

eiλtγ sin θ+iαDλt
∞
∑

s=−∞
eisγ cos θ−βD|s|

}

dα. (7.9)
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The infinite sum over s can expanded as follows

∞
∑

s=−∞
eisγ cos θ−βD|s| =

−1
∑

s=−∞
eisγ cos θ−βD|s| +

∞
∑

s=0

eisγ cos θ−βD|s| (7.10)

=
∞
∑

s=1

e−isγ cos θ−βDs +
∞
∑

s=0

eisγ cos θ−βDs (7.11)

=
e−iγ cos θ−βD

1− e−iγ cos θ−βD
+

1

1− eiγ cos θ−βD
(7.12)

=
eβD − e−βD

eβD + e−βD − 2 cos(γ cos θ)
(7.13)

=
sinh(βD)

cosh(βD)− cos(γ cos θ)
, (7.14)

assuming convergence for all α on the integration contour. Substitution of the expan-

sion (7.14) into equation (7.9) gives

H
(1)
0 (η) =

i

π

∫ ∞

−∞

1

β

{

− 1 +
sinh(βD)

cosh(βD)− cos(γ cos θ)

+
∞
∑

t=−∞
t 6=0

eiλtγ sin θ+iαDλt
sinh(βD)

cosh(βD)− cos(γ cos θ)

}

dα (7.15)

=
i

π

∫ ∞

−∞

1

β

(

sinh(βD)

cosh(βD)− cos(γ cos θ)
− 1

)

dα

+
i

π

∞
∑

t=−∞
t 6=0

eiλtγ sin θ
∫ ∞

−∞

eiαDλt

β

sinh(βD)

cosh(βD)− cos(γ cos θ)
dα. (7.16)

The first integral in equation (7.16) can be manipulated to ensure convergence,

i

π

∫ ∞

−∞

1

β

(

sinh(βD)

cosh(βD)− cos(γ cos θ)
− 1

)

dα

=
i

π

∫ ∞

−∞

1

β

(

sinh(βD)

cosh(βD)− cos(γ cos θ)
− sinh(βD)

cosh(βD)
+

sinh(βD)

cosh(βD)
− 1

)

dα (7.17)

=
i

π

∫ ∞

−∞

1

β

(

sinh(βD)

cosh(βD)− cos(γ cos θ)
− sinh(βD)

cosh(βD)

)

dα

+
i

π

∫ ∞

−∞

1

β

(

sinh(βD)

cosh(βD)
− 1

)

dα (7.18)

=
i

π

∫ ∞

−∞

sinh(βD)

β cosh(βD)

(

cos(γ cos θ)

cosh(βD)− cos(γ cos θ)

)

dα− i

π

∫ ∞

−∞

e−βD

β cosh(βD)
dα (7.19)

=I1(γ, θ) + I2. (7.20)

Both I1(γ, θ) and I2 can be integrated numerically taking care to take the contour

above the branch-point at α = −1 and below the branch-point at α = 1, as depicted
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in figure 7.2, where these are the branch-points of β(α). (Note, in fact, that I1 does

not contain any branch-cuts.) The integral I1(γ, θ) has additional poles at

-1 1

Figure 7.2: Deformation of contour for I1(γ, θ) and I2.

cosh(βD) = cos(γ cos θ) ⇒ βm =







− i
D
(γ cos θ + 2mπ), m > −γ cos θ

2π
,

i
D
(γ cos θ + 2mπ), m < −γ cos θ

2π
,

(7.21)

⇒ α±
m = ±

√

1 + β2
m =







± 1
D

√

D2 − (γ cos θ + 2mπ)2, (γ cos θ + 2mπ)2 < D2,

± i
D

√

(γ cos θ + 2mπ)2 −D2, (γ cos θ + 2mπ)2 > D2,

(7.22)

for m ∈ Z, but these are also avoided by the above deformation.

The second integral in equation (7.16) requires some more thought, although the

positions of the poles are the same as for I1(γ, θ), (7.22). The integrand is branch-cut

free and so can be evaluated using a “D-contour” and Jordan’s Lemma. Whether or

not the ‘D’ deformation is made in the positive or negative imaginary direction of the

α-plane depends on the sign of t in the infinite sum. For t ≥ 0 it is necessary to deform

up and thus the positive poles α+
m must be accounted for. For t < 0 it is necessary

to deform down and thus the negative poles α−
m must be accounted for. Applying the

Cauchy residue theorem, as discussed in section 5.1.1, it is easily shown that

∫ ∞

−∞

eiαDλt

β

sinh(βD)

cosh(βD)− cos(γ cos θ)
dα =







2πi
∑∞

m=−∞
eiα

+
mDλt

α+
mD

t ≥ 0

−2πi
∑∞

m=−∞
eiα

−

mDλt

α−

mD
t < 0

(7.23)

= 2πi
∞
∑

m=−∞

eiα
+
mDλ|t|

α+
mD

, t ∈ Z. (7.24)

Therefore the second term in (7.16) can be expressed as

i

π

∞
∑

t=−∞
t 6=0

eiλtγ sin θ
∫ ∞

−∞

eiαDλt

β

sinh(βD)

cosh(βD)− cos(γ cos θ)
dα

= −2
∞
∑

t=−∞
t 6=0

eiλtγ sin θ
∞
∑

m=−∞

eiα
+
mDλ|t|

α+
mD

(7.25)

= −2
∞
∑

m=−∞

1

α+
mD

( ∞
∑

t=1

eiλ(γ sin θ+Dα
+
m)t +

−1
∑

t=−∞
eiλ(γ sin θ−Dα

+
m)t

)

(7.26)
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= −2
∞
∑

m=−∞

1

α+
mD

( ∞
∑

t=1

eiλ(γ sin θ+Dα
+
m)t +

∞
∑

t=1

e−iλ(γ sin θ−Dα
+
m)t

)

(7.27)

= −2
∞
∑

m=−∞

1

α+
mD

(

eiλ(γ sin θ+Dα
+
m)

1− eiλ(γ sin θ+Dα
+
m)

+
e−iλ(γ sin θ−Dα

+
m)

1− e−iλ(γ sin θ−Dα
+
m)

)

(7.28)

= −2
∞
∑

m=−∞

1

α+
mD

(

cos(λγ sin θ)− eiDλα
+
m

cos(Dλα+
m)− cos(λγ sin θ)

)

(7.29)

= Σ1(γ, θ). (7.30)

Since α+
m ∼ im as m→ ±∞ the summand in Σ1 tends to zero exponentially, and thus

Σ1 is rapidly convergent.

Substitution of equations (7.20) and (7.30) into equation (7.16) results in the fol-

lowing analytic expression for γ,

H
(1)
0 (η) = I1(γ, θ) + I2 + Σ1(γ, θ). (7.31)

The above expression can easily be computed for various parameters to determine γ

given particular θ. The real γ which satisfy equation (7.31) represent the propagating

effective wavenumbers for particular frequencies and periods in D = kd.

7.2 Approximant lattice

λd

d

Figure 7.3: Periodic unit cell containing nodes of the (2, 2)I-approximant structure.

This section extends the approach taken to determine effective wave propagation

properties for a doubly-periodic lattice, where each periodic cell contains a single

scatterer, to an infinite, periodic structure where each cell contains N scatterers of ar-

bitrary position. The theory is applied to the infinite, periodic approximant structure,

but it is applicable to any distribution within the cell. The assumption of small radii,

ka≪ 1, is still taken for mathematical convenience.
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Figure 7.3 depicts an example of a unit cell of a (2, 2)I-approximant, discussed

in detail in chapter 6. Define the non-dimensional period lengthscales D and λD in

the x and y directions, as with the doubly-periodic scenario. The N scatterers in the

periodic unit cell have non-dimensional locations bj = k(xj, yj), 1 ≤ j ≤ N , and thus

the position of the jth scatterer in the (s, t)th cell is given by

pjst = pst + bj = D(s, λt) + bj . (7.32)

Pose an eigensolution to the 2D Helmholtz equation of a similar form to that of

the doubly-periodic lattice (7.3), except that there exists an additional sum over the

finite number of scatterers in the periodic cell,

u(x) =
∞
∑

s=−∞

∞
∑

t=−∞

N
∑

j=1

Cj
stH

(1)
0 (|x− pjst|). (7.33)

Apply an analogous Bloch condition to the unknown coefficients as with the doubly-

periodic case (2.145)

Cj
st = Cjeiγ(s cos θ+λt sin θ), (7.34)

resulting in

u(x) =
∞
∑

s=−∞

∞
∑

t=−∞

N
∑

j=1

Cjeiγ(s cos θ+λt sin θ)H
(1)
0 (|x− pjst|) (7.35)

=Cℓ






H

(1)
0 (|x− bℓ|) +

∞
∑

s=−∞

∞
∑

t=−∞
(s,t) 6=(0,0)

H
(1)
0 (|x− pℓst|)eiγ(s cos θ+λt sin θ)







+
N
∑

j=1
j 6=ℓ

Cj

∞
∑

s=−∞

∞
∑

t=−∞
H

(1)
0 (|x− pjst|)eiγ(s cos θ+λt sin θ). (7.36)

With the solution posed in this form (7.36), apply the sound-soft boundary conditions

on the ℓth cylinder in the (0, 0)th periodic cell, i.e. at x = bℓ + η,

0 =Cℓ






H

(1)
0 (η) +

∞
∑

s=−∞

∞
∑

t=−∞
(s,t) 6=(0,0)

H
(1)
0 (|pst|)eiγ(s cos θ+λt sin θ)







+
N
∑

j=1
j 6=ℓ

Cj

∞
∑

s=−∞

∞
∑

t=−∞
H

(1)
0 (|bjℓ − pst|)eiγ(s cos θ+λt sin θ), (7.37)
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where bℓj is the non-dimensional separation between the ℓth and jth scatterers,

bℓj = bℓ − bj = k(xℓ − xj, yℓ − yj) = D(xℓj, yℓj), (7.38)

with xℓj =
1

d
(xℓ − xj), yℓj =

1

λd
(yℓ − yj), (7.39)

and pst is defined in equation (7.32) and only depends on the period (s, t). Note here

that because of the scaling on xℓj and yℓj,

−1 ≤ xℓj , yℓj ≤ 1. (7.40)

In an analogous manner to the multipole method for a finite array of scatters in

section 2.4.3, the boundary conditions can be applied to all the scatterers in the (0, 0)th

cell 1 ≤ j ≤ N , to determine a matrix equation of the form

HC = 0, (7.41)

where C is an N × 1 vector containing the unknown coefficients Cj and the matrix H

has components

Hℓℓ = H
(1)
0 (η) +

∞
∑

s=−∞

∞
∑

t=−∞
(s,t) 6=(0,0)

H
(1)
0 (|pst|)eiγ(s cos θ+λt sin θ), (7.42)

Hℓj =
∞
∑

s=−∞

∞
∑

t=−∞
H

(1)
0 (|bℓj − pst|)eiγ(s cos θ+λt sin θ), ℓ 6= j. (7.43)

Note that the diagonal entries of the matrix H relate to the field on the ℓth scatterer in

the (0, 0)th cell to the scattered field due to the ℓth scatterers in every other cell. This

is exactly the same as the doubly-periodic case, and the equality between equations

(7.4) and (7.42) can be seen. Therefore, using the procedure laid out in the previous

section, it can be seen that

Hℓℓ = H
(1)
0 (η)− I1(γ, θ)− I2 − Σ1(γ, θ). (7.44)

The off-diagonal entries of the matrix H relate to the field at the ℓth scatterer in each

cell to all other scatterers in that cell. The approach to manipulate this expression

(7.43) is an extension to that in the previous section 7.1 and will be discussed now.

Employ the integral representation of the Hankel function used previously (7.5) in

the expression for the off-diagonal matrix entries Hℓj . The argument of the Hankel

function in this expression is

|bℓj − pst| = D
√

(xℓj − s)2 + λ2(yℓj − t)2, (7.45)
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and therefore

Hℓj =
∞
∑

s=−∞

∞
∑

t=−∞

(

− i

π

∫ ∞

−∞

1

β
eiαDλ(t−y

ℓj)−βD|s−xℓj |dα

)

eiγ(s cos θ+λt sin θ) (7.46)

= − i

π

∫ ∞

−∞

1

β

∞
∑

t=−∞
eiαDλ(t−y

ℓj)eiλtγ sin θ
∞
∑

s=−∞
eisγ cos θe−βD|s−xℓj |dα. (7.47)

The evaluation of the infinite sum over s is similar to that in equation (7.14), but the

−1 ≤ xℓj ≤ 1 term must be taken into consideration. The sum can be represented as

∞
∑

s=−∞
eisγ cos θe−βD|s−xℓj |

=
−1
∑

s=−∞
eisγ cos θe−βD|s−xℓj | + e−βD|xℓj | +

∞
∑

s=1

eisγ cos θe−βD|s−xℓj | (7.48)

=
∞
∑

s=1

e−(iγ cos θ+βD)se−βDx
ℓj

+ e−βD|xℓj | +
∞
∑

s=1

e(iγ cos θ−βD)seβDx
ℓj

(7.49)

=
e−iγ cos θ−βD

1− e−iγ cos θ−βD
e−βDx

ℓj

+ e−βD|xℓj | +
eiγ cos θ−βD

1− eiγ cos θ−βD
eβDx

ℓj

. (7.50)

For xℓj > 0 this can be simplified to

∞
∑

s=−∞
eisγ cos θe−βD|s−xℓj | =

1

1− e−iγ cos θ−βD
e−βDx

ℓj

+
eiγ cos θ−βD

1− eiγ cos θ−βD
eβDx

ℓj

(7.51)

=
1

1− e−iγ cos θ−βD
e−βDx

ℓj − 1

1− e−iγ cos θ+βD
eβDx

ℓj

. (7.52)

Similarly, for xℓj < 0 the summation is simplified to

∞
∑

s=−∞
eisγ cos θe−βD|s−xℓj | =

e−iγ cos θ−βD

1− e−iγ cos θ−βD
e−βDx

ℓj

+
1

1− eiγ cos θ−βD
eβDx

ℓj

(7.53)

= − 1

1− eiγ cos θ+βD
e−βDx

ℓj

+
1

1− eiγ cos θ−βD
eβDx

ℓj

. (7.54)

Thus, for all xℓj this can be expressed as

∞
∑

s=−∞
eisγ cos θe−βD|s−xℓj | =

e−βD|xℓj |

1− e−isgn(xℓj)γ cos θ−βD
− eβD|xℓj |

1− e−isgn(xℓj)γ cos θ+βD
(7.55)

=
sinh(βD|xℓj|)eisgn(xℓj)γ cos θ + sinh(βD(1− |xℓj|))

cosh(βD)− cos(γ cos θ)
, (7.56)

where

sgn(x) =







−1 x ≤ 0

1 x > 0
(7.57)



CHAPTER 7. 2D INFINITE PERIODIC ARRAYS 201

Substitution of (7.56) into equation (7.47) results in the following modification

Hℓj =− i

π

∫ ∞

−∞

1

β

∞
∑

t=−∞
eiαDλ(t−y

ℓj)eiλtγ sin θ

×
(

sinh(βD|xℓj|)eisgn(xℓj)γ cos θ + sinh(βD(1− |xℓj|))
cosh(βD)− cos(γ cos θ)

)

dα. (7.58)

Evaluation of the integral in (7.58) can be done in an analogous manner to the previous

section, using a ‘D-contour’. Comparing equation (7.58) to the analogous integral in

the doubly-periodic problem (7.16), it can be seen that the positions of the poles α±
m

remain the same, and are given by (7.22).

For t ≥ 1 and thus t − yℓj ≥ 0, it is necessary to deform the D-contour up into

the positive imaginary half-plane thus picking up the contribution from the positive

poles α+
m. For t ≤ −1 and thus t − yℓj ≤ 0, it is necessary to deform down and

pick up contributions from the negative poles α−
m. When t = 0, the direction of the

deformation will depend on the sign of yℓj. That is, for yℓj > 0 deform down, and for

yℓj < 0 deform up.

Applying the Cauchy residue theorem to (7.58) it can be shown that for yℓj > 0,

Hℓj =2
∞
∑

m=−∞

{

sinh(βmD|xℓj|)eisgn(xℓj)γ cos θ + sinh(βmD(1− |xℓj|))
D sinh(Dβm)

}

×
{ ∞
∑

t=1

1

α+
m

eiα
+
mDλ(t−yℓj)eiλtγ sin θ −

0
∑

t=−∞

1

α−
m

eiα
−

mDλ(t−yℓj)eiλtγ sin θ

}

. (7.59)

The expression in the first braces can be simplified further using the definition of βm

in (7.21) as follows

sinh(βmD|xℓj|)eisgn(xℓj)γ cos θ + sinh(βmD(1− |xℓj|))
D sinh(Dβm)

=
1

D sinh(Dβm)

{

sinh(βmD|xℓj|)
(

cos(γ cos θ) + isgn(xℓj) sin(γ cos θ)
)

+sinh(βmD) cosh(βmDx
ℓj)− cosh(βmD) sinh(βmD|xℓj|)

}

(7.60)

=
i sinh(βmDx

ℓj) sin(γ cos θ) + sinh(βmD) cosh(βmDx
ℓj)

D sinh(βmD)
(7.61)

=
1

D

(−i sin(|γ cos θ + 2mπ|xℓj) sin(γ cos θ)
−i sin(|γ cos θ + 2mπ|) i+ cos(|γ cos θ + 2mπ|xℓj)

)

(7.62)

=
eix

ℓj |γ cos θ+2mπ|

D
. (7.63)
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The summations over t in the final braces on the second line of equation (7.59) can be

simplified as follows

∞
∑

t=1

1

α+
m

eiα
+
mDλ(t−yℓj)eiλtγ sin θ −

0
∑

t=−∞

1

α−
m

eiα
−

mDλ(t−yℓj)eiλtγ sin θ (7.64)

=
1

α+
m

{ ∞
∑

t=1

eiα
+
mDλ(t−yℓj)eiλtγ sin θ +

0
∑

t=−∞
e−iα

+
mDλ(t−yℓj)eiλtγ sin θ

}

(7.65)

=
1

α+
m

{ ∞
∑

t=1

e−iα
+
mDλy

ℓj

eiλ(γ sin θ+Dα
+
m)t +

∞
∑

t=0

eiα
+
mDλy

ℓj

e−iλ(γ sin θ−Dα
+
m)t

}

(7.66)

=
1

α+
m

{

e−iα
+
mDλy

ℓj eiλ(γ sin θ+Dα
+
m)

1− eiλ(γ sin θ+Dα
+
m)

+ eiα
+
mDλy

ℓj 1

1− e−iλ(γ sin θ−Dα
+
m)

}

(7.67)

= − i

α+
m

{

eiλγ sin θ sin(Dλα+
my

ℓj) + sin(Dλα+
m(1− yℓj))

cos(Dλα+
m)− cos(λγ sin θ)

}

. (7.68)

Substitution into equation (7.59) gives the off-diagonal matrix entries of the form, for

yℓj > 0,

Hℓj = −2i
∞
∑

m=−∞

eix
ℓj |γ cos θ+2mπ|

Dα+
m

(

eiλγ sin θ sin(Dλα+
my

ℓj) + sin(Dλα+
m(1− yℓj))

cos(Dλα+
m)− cos(λγ sin θ)

)

.

(7.69)

Analogously, it can be shown that for the case yℓj < 0,

Hℓj = 2i
∞
∑

m=−∞

eix
ℓj |γ cos θ+2mπ|

Dα+
m

(

e−iλγ sin θ sin(Dλα+
my

ℓj)− sin(Dλα+
m(1 + yℓj))

cos(Dλα+
m)− cos(λγ sin θ)

)

.

(7.70)

By comparing the equations for Hℓj for yℓj ≶ 0, (7.69) and (7.70), it is possible to

define the off-diagonal matrix elements for all yℓj 6= 0,

Hℓj =2i
∞
∑

m=−∞

eix
ℓj |γ cos θ+2mπ|

Dα+
m

×
(

−sgn(yℓj)esgn(y
ℓj)iλγ sin θ sin(Dλα+

my
ℓj)− sin(Dλα+

m(1− |yℓj|)
cos(Dλα+

m)− cos(λγ sin θ)

)

(7.71)

=Σ2(γ, θ). (7.72)

The convergence of the sum is exponential for increasing |m| and yℓj 6= 0. For cases

when yℓj = 0, an alternative approach is best taken.
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First, separate the t = 0 term in the infinite sum over t in equation (7.58) to give

Hℓj =− i

π

∫ ∞

−∞

1

β






e−iαDλy

ℓj

+
∞
∑

t=−∞
t 6=0

eiαDλ(t−y
ℓj)eiλtγ sin θ







×
(

sinh(βD|xℓj|)eisgn(xℓj)γ cos θ + sinh(βD(1− |xℓj|))
cosh(βD)− cos(γ cos θ)

)

dα (7.73)

=− i

π

∫ ∞

−∞

e−iαDλy
ℓj

β

(

sinh(βD|xℓj|)eisgn(xℓj)γ cos θ + sinh(βD(1− |xℓj|))
cosh(βD)− cos(γ cos θ)

)

dα

− i

π

∫ ∞

−∞

1

β

∞
∑

t=−∞
t 6=0

eiαDλ(t−y
ℓj)eiλtγ sin θ

×
(

sinh(βD|xℓj|)eisgn(xℓj)γ cos θ + sinh(βD(1− |xℓj|))
cosh(βD)− cos(γ cos θ)

)

dα (7.74)

=I3(γ, θ) + Σ3(γ, θ). (7.75)

The first integral in (7.75), I3(γ, θ), can be evaluated numerically avoiding the poles

as shown previously, using a contour path similar to that depicted in 7.2. The second

term Σ3(γ, θ) can be evaluated using a “D-contour” as already discussed. Applying

the Cauchy residue theorem to Σ3(γ, θ) in (7.75) it can be shown that

Σ3(γ, θ) =− i

π

∫ ∞

−∞

1

β

∞
∑

t=−∞
t 6=0

eiαDλ(t−y
ℓj)eiλtγ sin θ

×
(

sinh(βD|xℓj|)eisgn(xℓj)γ cos θ + sinh(βD(1− |xℓj|))
cosh(βD)− cos(γ cos θ)

)

dα (7.76)

=2
∞
∑

m=−∞

{

sinh(βmD|xℓj|)eisgn(xℓj)γ cos θ + sinh(βmD(1− |xℓj|))
D sinh(Dβm)

}

×
{ ∞
∑

t=1

1

α+
m

eiα
+
mDλ(t−yℓj)eiλtγ sin θ −

−1
∑

t=−∞

1

α−
m

eiα
−

mDλ(t−yℓj)eiλtγ sin θ

}

(7.77)

=2
∞
∑

m=−∞

eix
ℓj |γ cos θ+2mπ|

D

×
{ ∞
∑

t=1

1

α+
m

eiα
+
mDλ(t−yℓj)eiλtγ sin θ −

−1
∑

t=−∞

1

α−
m

eiα
−

mDλ(t−yℓj)eiλtγ sin θ

}

. (7.78)
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The summations over t in equation (7.78) can be simplified as follows

∞
∑

t=1

1

α+
m

eiα
+
mDλ(t−yℓj)eiλtγ sin θ −

−1
∑

t=−∞

1

α−
m

eiα
−

mDλ(t−yℓj)eiλtγ sin θ (7.79)

=
1

α+
m

{ ∞
∑

t=1

eiα
+
mDλ(t−yℓj)eiλtγ sin θ +

−1
∑

t=−∞
e−iα

+
mDλ(t−yℓj)eiλtγ sin θ

}

(7.80)

=
1

α+
m

{ ∞
∑

t=1

e−iα
+
mDλy

ℓj

eiλ(γ sin θ+Dα
+
m)t +

∞
∑

t=1

eiα
+
mDλy

ℓj

e−iλ(γ sin θ−Dα
+
m)t

}

(7.81)

=
1

α+
m

{

e−iα
+
mDλy

ℓj eiλ(γ sin θ+Dα
+
m)

1− eiλ(γ sin θ+Dα
+
m)

+ eiα
+
mDλy

ℓj e−iλ(γ sin θ−Dα
+
m)

1− e−iλ(γ sin θ−Dα
+
m)

}

(7.82)

=
1

α+
m

{

cos(λγ sin θ −Dλα+
my

ℓj)− eiDλα
+
m cos(Dλα+

my
ℓj)

cos(Dλα+
m)− cos(λγ sin θ)

}

. (7.83)

Substitution into equation (7.78) gives an expression of the form,

Σ3(γ, θ) = 2
∞
∑

m=−∞

eix
ℓj |γ cos θ+2mπ|

Dα+
m

{

cos(λγ sin θ −Dλα+
my

ℓj)− eiDλα
+
m cos(Dλα+

my
ℓj)

cos(Dλα+
m)− cos(λγ sin θ)

}

.

(7.84)

The expression in (7.84) has been derived to enable evaluation of the off-diagonals for

yℓj = 0. In fact this expression can be used for all yℓj, but is not applicable to the case

xℓj = 0. Therefore, it is suggested that expression (7.72) should be applied for yℓj 6= 0

and all xℓj, and expression (7.75) should be applied for yℓj = 0 and xℓj 6= 0. In an

instance yℓj = xℓj = 0 then ℓ = j and it is not necessary to calculate an off diagonal

entry. Therefore, express (7.84) for yℓj = 0

Σ3(γ, θ) = 2
∞
∑

m=−∞

eix
ℓj |γ cos θ+2mπ|

Dα+
m

{

cos(λγ sin θ)− eiDλα
+
m

cos(Dλα+
m)− cos(λγ sin θ)

}

. (7.85)

The convergence of the sum is exponential for increasing |m|, therefore it is possible to
truncate at modest order in order to obtain an accurate evaluation. The combination of

the truncated sum (7.85) and the numerically integrated I3(γ, θ) provides the required

off-diagonal matrix elements of H for instances when yℓj = 0.

The matrix equation (7.41) can be solved with the expressions derived for the

matrix entries, (7.44) and (7.72) or (7.75). Effective wavenumbers γ can be determined

for prescribed parameters by satisfying

det (H(γ, θ)) = 0. (7.86)
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7.3 Conclusions

In this chapter novel analytic expressions to determine the effective properties of wave

propagation through infinite doubly-periodic structures have been derived.

In section 7.1, a doubly-periodic lattice is considered, where there is one repeated

lattice node. The expression for the effective wavenumber (7.31) involves easily com-

putable integrals and a summation. In section 7.2, an infinite orthorhombic periodic

structure is considered, where the periodic cell contains N arbitrarily positioned lat-

tice nodes. The expression for the effective wavenumber (7.86) involves calculating the

determinant of a matrix whose entries involve computable integrals and summations.

We demonstrate the methods applied in this chapter by calculating the full band

structure for a square doubly-periodic lattice. The second method can be applied to

this structure by positing four nodes in each period cell, i.e. nodes at (0, 0), (0, 1),

(1, 0) and (1, 1), with a period d = 2 and λ = 1. Figure 7.5 depicts the band diagram

for the irreducible Brillouin zone as depicted in figure 7.4 with node positions

0 = (0, 0), A = (π, 0), B = (π, π). (7.87)

0 A

B

Figure 7.4: The irreducible Brillouin zone for a 2D square periodic lattice (blue
shaded).

The calculations for figure 7.5 have been conducted with a small radius of a = 0.05,

and period d = 1. It can be seen that there exists a complete band gap initially, which
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0 A BB

k

Figure 7.5: The full band diagram for a 2D square periodic lattice with d = 1 and
a = 0.05. Solutions achieved using the method of this chapter (blue crosses) and the
PWE (black solid line). The black dashed line shows the solution for a scatter-free
medium.

is of reasonable size. This characteristic for doubly-periodic arrays of small, sound-

soft, circular cylinders has been observed previously [45], and in a slightly different

application of pinned thin elastic plates [54], and our results agree well. We have also

validated the method outlined in this chapter by comparing to the results achieved

using the numerical approximation of the problem via the plane wave expansion (PWE)

method, shown by the solid lines in figure 7.5, [9]. Barnwell took particular limits of

material parameters in his model that attempt to numerically model the small sound-

soft scatterer regime. The accuracy of Barnwell’s method can be improved by taking

greater limits and including more plane waves in the computation. However, this

becomes computationally very expensive. For the purpose of this thesis and validation

of our results, we take the solutions achieved with the PWE and 1012 = 10201 plane

waves to demonstrate the effectiveness of our method. Figure 7.5 also depicts the

bands for a scatter-free region (dashed lines).

The approach employed restricts the set up to small ka≪ 1, but employs no other
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assumptions. The theory for the approximant structure is actually applicable to any

orthorhombic periodic structure with an arbitrary distribution of scatterers in the peri-

odic cell. In this thesis, the dispersion relations are applied to approximant structures

for the 2D square Fibonacci and Penrose lattices, in chapters 8 and 9 respectively.



Chapter 8

Two-dimensional wave scattering

by a square Fibonacci structure

8.1 Problem statement

The analysis of 2D multiple scattering for small circular scatterers using the multipole

method was discussed in section 2.4. Using this method each sound-soft scatterer,

which was assumed to have small radius a such that 0 < ka≪ 1, was shown to act as

a monopole source. It is possible to calculate the total scattered field as a sum of these

sources with unknown amplitudes dependent on the interactions of all the scatterers in

the system. The amplitudes can be determined by applying the sound-soft boundary

conditions to each scatterer in turn, resulting in a matrix equation of the form (2.136).

The matrix contains information of the location of each scatterer in terms of every

other scatterer.

The square Fibonacci (SF) lattice was introduced in chapter 6 as an extension of

the 1D Fibonacci chain to two perpendicular directions. Two periodic lattices which

will be used to compare to the SF lattice were also introduced; the periodic average

structure (PAS) and the approximant. These were also simply constructed using the

1D PAS and approximant in two perpendicular directions.

Now that the scatterer positions for the three different lattices are known, they can

be used along with the equations derived via the multipole method to compare the

scattering properties of each. It was observed in 1D how the periodic lattices compared

to the Fibonacci chain, now we wish to see if the same conclusions are drawn when

208
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extending into 2D.

In 1D the acoustic wave scattering due to the inclusions was restricted to two direc-

tions. This made comparisons of the results relatively simple, as just the transmission

could be analysed. In 2D the scattering is omnidirectional in the entire 2D plane.

Therefore, a simple value such as a transmission coefficient can not be defined.

In order to compare the scattered fields between the three lattices in 2D we will

analyse the scattered fields for varying positions in the 2D plane. Consider a polar

coordinate system (r, θ), then it is possible to compare the fields for varying r and/or

θ.

Figure 8.1a depicts the set up of an array of scatterers centred at the origin with

the polar coordinates defined, where r = |r|. Figures 8.1b and 8.1c depict two different

observation (red) lines for analysis of the scattered field. The former is for a fixed angle

and varying distance r. The latter is for a fixed distance r from the lattice and varying

angle θ.

r

θ

(a) Definition of polar coor-
dinates with respect to the
inclusions.

r

θ = π
2

(b) Line of observation for
specified θ = π

2 and varying
r.

r

(c) Line of observation for
specified r and varying θ.

Figure 8.1: Array of inclusions centred at the origin with polar coordinates defined.
Red lines depicts the observation lines for analysis of the scattered field.

Considering both the observation lines (red) in figure 8.1 for different distributions

of scatterers and different frequencies of waves should allow a fair comparison to be

drawn.

It is desired to see the effects of acoustic wave scattering of wavelengths that are

small enough to “see” the scatterers and their distribution. Therefore the results

computed are for a wavelength λ such that it is of similar scale to s and ℓ, where s

and ℓ are the dimensional short and long spacings in the Fibonacci chain. Setting
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s = 1 and k = 2π
λ

= 5 satisfies these restraints. The radii of the cylinders is set to

a = 0.001, satisfying the small scatterer assumption 0 < ka ≪ 1. We arbitrarily

choose an incident plane wave of unit amplitude propagating at an angle α = π/2

from the horizontal.

8.2 Comparison of wave scattering by a square Fi-

bonacci structure and its periodic approxima-

tions

In this section the acoustic scattering properties of the quasiperiodic SF chain are

compared to those of its PAS and approximant. We want to find an appropriate

periodic structure to mimic the propagation properties of the SF chain. By doing

this, we will enable modelling of a complicated quasiperiodic structure by a periodic

structure. We can then use the method applicable to infinite 2D periodic structures

to find effective material properties that can represent an infinite 2D SF distribution

of scatterers.

Figure 8.2 shows the lattice positions for 21 × 21 arrays of point masses with

the three different distributions. Note here that this is for 21 point masses and

not Fib(21). The approximant has been constructed with the n = 1-approximation,

τ ≈ τ1 =
Fib(2)
Fib(1)

= 1. It can be seen that the approximant looks to give an inaccurate

representation of the SF lattice, and does not occupy as much space as the SF and

PAS lattices.

A comparison of the scattered field from the three different arrays can be seen in

figures 8.3, 8.4 and 8.5. Figure 8.3 is a plot of the absolute value of the scattered field

for at an observation point with θ = π/2 and r increasing. It can be seen that outside

the array (r > W/2 where W is the width of the approximant array) the scattered

fields becomes less oscillatory. From this we can justify the analysis of the scattered

fields to be taken at some r in the far field, and consider the effect of the angle of

observation. We choose r = 2W as an appropriate distance.

In figure 8.4 we have taken r = 2W and considered the value of the scattered field

for all θ. It can be seen that the scattering is predominantly in the same direction as the
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Figure 8.2: Lattice nodes for the SF (blue circle), PAS (red plus) and 1-approximant
(green cross) lattices.

angle of incidence α = π/2. In this figure the amplitude of the scattered field is plotted

for all three lattices. Whilst this plot is interesting as it shows the scattering pattern

from the arrays, it is difficult to compare the three scattered patterns. Therefore,

in figure 8.5 a plot of the absolute error is given. Where we define the error as the

difference between the amplitude of the scattered field from the SF lattice and the

amplitudes from the two approximations. It can be seen in this figure that neither

approximation provide a good representation of the scattering due to the SF lattice.

The 1-approximant has slightly less error around the dominant angle π/2, but is still

quite significant.

As in the 1D comparisons in section 4, we can improve the accuracy of the ap-

proximation of τ used in the approximant to attempt to improve the accuracy of the

scattered field.

Consider the 3-approximant, i.e. τ ≈ τ3 = Fib(4)
Fib(3)

= 3
2
. In 1D this proved to be a

better approximation, see section 4.4. The lattice positions for the three lattices can
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Figure 8.3: Scattered amplitude for θ = π
2
and varying r for the SF (blue), PAS (red)

and 1-approximant (green) 21× 21 lattices.

be seen in figure 8.6. The improvement between the n = 1 and n = 3 approximant

lattices compared to the SF can easily be seen.

Figure 8.7 shows the error is the approximation of the SF scattered amplitude at

r = 2W for the two different approximate lattices. The error in the PAS approximation

is the same as the previous example as both the SF and PAS lattice are the same.

The 3-approximant is showing to provide a much better representation, with very low

error.

We can continue to increase the accuracy of the approximant to determine whether

the approximant continues to provide a good representation of the SF. We can also

consider arrays of varying sizes. For n = 4, i.e. τ ≈ τ4 =
Fib(5)
Fib(4)

= 5
3
, the scattered fields

are calculated for arrays of 21×21, 34×34 and 55×55 scatterers. Figures 8.8 and 8.9

display the results for the 34× 34 and 55× 55 arrays. The lattice nodes positions for

the 21×21 arrays of SF chain and 4-approximant are identical, and thus the scattered

fields are too. For arrays with 34× 34 scatterers, figure 8.8 demonstrates a similar
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Figure 8.4: Scattered amplitude for r = 2W and varying θ for the SF (blue), PAS
(red) and 1-approximant (green) 21× 21 lattices.

result to the previous example: the 4-approximant has a significantly lower error than

the PAS at the majority of angles of observation.

For an array size of 55×55 scatterers the scattering from the lattices changes from

that of a 34×34 array, see figure 8.9. In fact, in this sized array, the PAS demonstrates

smaller errors in the comparison of scattered amplitude from the PAS. However, the 5-

approximant still demonstrates a consistent ability at providing a good representation

of the SF lattice. Note the smaller scale in this figure, as the errors have decreased.

It is of interest to continue to increase the accuracy of the approximant to see if the

results continue to improve. However for larger n in the approximation of τ , the larger

the approximant unit cell becomes. Therefore to ensure we are comparing different

arrays of the SF and the approximant, the sample size must also continue to increase.

This becomes computationally expensive. For example a 55 × 55 array of scatterers

consists of 3025 scatterers. The multipole method accounts for the interaction between

each and every scatterer and requires a numerical computation of the inverse of a
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Figure 8.5: Absolute error in the scattered amplitude for the PAS (red) and 1-
approximant (green) 21 × 21 lattices compared to the SF lattice, for r = 2W and
varying θ.

3025× 3025 matrix, (2.136). This can take a long time.

One idea for future research would be to consider the strength of the interactions

between scatterers. For scatterers at opposite sides of the array the interactions may

be weak. Weak interactions could be considered to be negligible and thus it could

be possible to make the matrix less dense. Another approach could be to use the

sparse-matrix canonical grid method [46] as discussed in section 2.2.3.

For now we will continue to increase the approximant accuracy and consider varying

sections of the SF lattice within one approximant unit lattice space, as we did in 1D

in section 4.4.

Figure 8.10 shows the three arrays discretised into unit cells of the 5-approximant.

The approximant lattice nodes are identical in each unit cell. The SF and PAS lat-

tices will vary in different cells. Therefore we wish to analyse the average scattering

properties of individual cells of the SF and PAS lattice nodes. It can be seen in figure
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Figure 8.6: Node positions of the SF (blue), PAS (red) and 3-approximant (green)
21× 21 lattices.

8.10 that the PAS lattice nodes hardly vary in each unit cell, thus the variation in the

scattered fields of each unit cell are expected to be minimal.

We compute the scattered field for each of the unit cells depicted in figure 8.10,

centring each at the origin. By taking the average amplitude for the SF and PAS

lattices over the nine cells depicted we see how an average scattered field for the SF

lattice compares to the average PAS and 5-approximant. Note here each unit cell is a

13×13 array since the period of the n-approximant for the Fibonacci chain has length

Fib(n+2). Figure 8.11 shows how accurate the approximant is in comparison to the

average SF chain within an approximant unit cell. The 5-approximant has marginal

error at the majority of observation angles, whereas the PAS has three regions in which

is provides a bad representation of the SF lattice.

Within each unit cell the lattice positions of the SF vary as it is not periodic.

Therefore the scattering properties of each unit cell will vary. For unit cells further

from the origin the SF nodes become more dissimilar to the approximant. To ensure
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Figure 8.7: Absolute error in the scattered amplitude for the PAS (red) and 3-
approximant (green) 21 × 21 lattices compared to the SF lattice, for r = 2W and
varying θ.

that the average scattered field over the nine unit cells in figure 8.10 provides an

accurate representation any arbitrary unit cell, checks were completed to ensure that

a unit cell taken far from the origin produced similar scattering patterns.

In summary it has been demonstrated that the approximant provides a better rep-

resentation of the SF lattice than the PAS in terms of acoustic scattering from arrays

of sound soft scatterers. There is no restriction on the angle at which the approxi-

mant provides a good representation. The similarity of amplitude of scattered field the

approximant produces can continue to be improved dependent on the requirements.

As the approximant lattice has shown to provide a good representation of the SF

lattice it is now of interest to apply the theory for 2D periodic structures to the infinite

2D approximant.
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Figure 8.8: Absolute error in the scattered amplitude for the PAS (red) and 4-
approximant (green) 34 × 34 lattices compared to the SF lattice, for r = 2W and
varying θ.

8.3 Wave scattering by an infinite approximant struc-

ture

In chapter 7 an expression to determine the effective wave propagation through a 2D

array of small circular scatterers with distribution determined by the infinite periodic

approximant lattice was derived. This enables the construction of a band diagram for

the effective wave propagation, which portrays the pass and stop bands of the infinite

approximant.

It was shown in the previous section that a finite array of scatterers with a SF

approximant distribution provides similar scattering results to a finite array of scat-

terers with a SF distribution. Therefore by determining the effective properties of

the infinite periodic approximant, it is possible to provide an estimate of the effective

properties of the infinite aperiodic SF lattice. Because of the aperiodicity inherent in
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Figure 8.9: Absolute error in the scattered amplitude for the PAS (red) and 4-
approximant (green) 55 × 55 lattices compared to the SF lattice, for r = 2W and
varying θ.

Figure 8.10: Lattice nodes for the SF (blue), PAS (red) and 5-approximant (green)
lattices. The array has been discretised into the unit cell of the approximant.



CHAPTER 8. 2D WAVE SCATTERING: SQUARE FIBONACCI LATTICE 219

  0.2

  0.4

  0.6

30

210

60

240

90

270

120

300

150

330

180 0

Figure 8.11: Absolute error in the scattered amplitude for the 5-approximant (green)
and averaged PAS (red) lattices compared to the averaged SF lattices within an ap-
proximant unit cell, for r = 2W and varying θ.

the SF lattice, such properties are currently unobtainable by other means.

When calculating the effective properties of a 2D infinite and periodic lattice it is

common practice to only evaluate along the edges of the irreducible Brillouin zone,

as discussed in section 2.2.2 and 7.3. For an infinite lattice with square periodic cell,

as in the SF lattice, the irreducible Brillouin zone is as discussed in the previous

chapter, depicted in figure 7.4. Define the irreducible Brillouin zone to be in the non-

dimensional frequency space and so it has components γ cos θ = γx and γ sin θ = γy in

the e1 and e2 directions, respectively. The coordinates of the vertices of the irreducible

Brillouin zone in figure 7.4 are given by

0 = (0, 0), A = (π, 0), B = (π, π). (8.1)

As an example we show a section of the band diagram for varying n in the n-

approximant. We consider the diagonal region along 0B in the irreducible Brillouin

zone, i.e. 0 ≤ γ ≤
√
2π and θ = π/4. We disregard high non-dimensional host
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frequencies D = kd so that we can concentrate on the positions of the first bands. A

small scatter of radius a = 0.001 is chosen. Figure 8.12 depicts the unit cell of the

n-approximant for n = 1, 2.
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(a) 1-approximant.
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(b) 2-approximant.

Figure 8.12: Unit cell of the n-approximant.

We can apply these units cell node positions in the analysis conducted in chapter 7,

to calculate the dimensional host wavenumber k at which waves can propagate along

the diagonal 0B. Figure 8.13 depicts the discrete nodes for which there exists values

of k that allows for propagation of particular dimensional effective wavenumbers γ̂. In

our calculations we input θ and steps of γ = kγ̂ into equation (7.86) to determine the

allowed D = kd. To refine the image produced one can decrease the step increment

size for γ. For the plots shown in 8.13, 20 steps were taken to give a clear image whilst

keeping the computation time down. The band-diagram for the 1-approximant in

8.13a for the chosen frequency range shows three propagating modes. As we saw for

the doubly-periodic lattice in figure 7.5 in the previous chapter, there is a stop band

for the initial wavenumbers until just above k = 1.5. The band diagram for the 2-

approximant 8.13b is more complex. Six modes of propagation can be seen, which can

overlap. However, the cut-on wavenumber for the first pass band in this direction is

similar to that of the 1-approximant, at just below k = 1.5. The more complicated

mode behaviour for increasing n in the approximant is analogous to a trait we saw in

the 1D case in figure 4.18.

We determine the cut-on wavenumber of n-approximants for greater n to validate

that this is a continuing characteristic. Figure 8.14 illustrates the cut-on frequency k0
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Figure 8.13: Partial band diagram along 0B of the irreducible Brillouin zone, for the
n-approximant.
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for different n-approximants for n = 1, . . . , 5. It can be seen that the cut-on wavenum-

ber converges as n increases. In fact, a low value of n = 4 seems to find the converged

cut-on wavenumber of the approximants. This suggests that a 4-approximant can

represent the pass and stop band behaviour of an infinite SF lattice.
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Figure 8.14: Cut-on wavenumber k0 for increasing n in the n-approximant.

8.4 Conclusions

In this chapter we have applied the multipole method to evaluate the scattered fields

from the SF lattice and its PAS and approximant. It was deduced that the PAS

could not provide an accurate representation of the SF lattice for all angles of ob-

servation. However, the n-approximant proved to be a much better approximation,

and for surprisingly low n. It was shown that the scattered field from arrays of the

approximant and SF lattices were similar, as well as the scattering from a unit cell of

the n-approximant compared to that of various sections of the SF lattice.

In view of the fact that the finite approximant could provide an appropriate approx-

imation of the SF lattice, we considered the scenario of an infinite approximant lattice

as an approximation of an infinite SF lattice. It was possible to calculate the effective

wave propagation properties of the infinite approximant using the novel analysis set

out in chapter 7. By considering an example direction of effective propagation and

range of frequency it was demonstrated that the wavenumber associated with the cut

on of the first pass band converged for increasing n in the n-approximant. Therefore,

combined with the results for the finite approximant, we can postulate that using an

infinite approximant as an approximation of an infinite SF lattice is a justified model.



Chapter 9

Two-dimensional wave scattering

by a Penrose structure

9.1 Problem statement

This section presents the results for the multiple scattering from arrays of small circular

cylinders with distributions determined by the 2D Penrose lattice, its periodic average

structure (PAS) and its approximant. Comparisons are drawn between the three

scattered fields for different selections of lattice nodes and different approximants.

The construction of the three lattices is discussed in chapter 6. The (N1, N2)
I/II-

approximant can be altered by varying the scheme used (I or II) and the approximation

of τ in two different dimensions, τN1 and τN2 . In this chapter scheme I is considered,

since it was shown in (6.79) that the two schemes are related. As mentioned in

section 2.2.3, previous studies have used the PAS to compare the wave scattering

properties of the periodic lattice to the quasiperiodic lattice. In this section we provide

further insight into these differences and also provide comparisons between the periodic

approximant. It is shown that the approximant provides the better representation

of the Penrose lattice and thus further analysis is completed to calculate effective

properties of the infinite periodic approximant lattice.

The results in this section are determined in the same manner as in chapter 8 using

the multipole method for a finite array of small circular scatterers. Measurements of

the scattered field from the arrays of scatterers is restricted to a line of observation of

constant distance 2W (W the width of the array in the e1 direction) away from the

223
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array and varying angle θ as in figure 8.1c. It was shown in chapter 8 that this was

an appropriate measurement to take.

It is desirable to see the effects of acoustic wave scattering when the wavelength

of the incident wave is small enough to “see” the scatterer distribution. Therefore the

results computed are for a wavelength λ such that λ = ar =
2
5
, where ar is the edge

length of the rhombi in the Penrose lattice. Since λ = 2π
k
, this results in a wavenumber

k = 5π. The radii of the cylinders is set to a = 0.001, satisfying the small scatterer

assumption 0 < ka≪ 1. An incident plane wave at angle α = π/2 is assumed.

9.2 Comparison of wave scattering by a Penrose

structure and its periodic approximations

Consider a section of the the 2D plane containing the lattice nodes of the three different

lattices. For an initial comparison, consider a circular region A of scatterers where

A = {(x, y) : x2 + y2 ≤ R2} and R is the radius of the circle. In the results for the

SF lattice a square section of the 2D plane was always taken. The choice of a square

region for that lattice was made because of the square dimensions of the lattice itself.

For the Penrose tiling there is no particular preferred shape in which the lattice fills,

so we arbitrarily choose a circular region to work with the polar plot of the scattered

field presented.

Figure 9.1 depicts the lattice nodes for the Penrose lattice (blue), the PAS (red)

and the (1, 2)I-approximant in a circular region with R = 4. A polar plot of the

scattered field from the arrays shown in figure 9.1 is given in figure 9.2. It can be

seen that the scattering from the Penrose lattice is most dominant at angles around

θ = π/2 and θ = 3π/2. Both the PAS and the (1, 2)I-approximant mimic this dominant

scattering characteristic around θ = π/2, although the PAS over estimates. The PAS

also fails to represent the Penrose lattice for scattering at θ = 3π/2, where the (1, 2)I-

approximant succeeds. The error (i.e. difference between the scattered amplitude

from the Penrose lattice to the amplitudes due to the two approximations) is plotted

in figure 9.3 to illustrate the differences more clearly. In this figure the quality of the

(1, 2)I-approximant as a representation of the Penrose lattice is obvious.

To investigate whether the scattering tendencies of the approximations continue in
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Figure 9.1: Lattice nodes for the Penrose (blue circle), PAS (red plus) and (1, 2)I-
approximant (green cross) lattices.

this manner, consider another approximant with larger N1 and/or N2, i.e. a greater

resemblance to the Penrose lattice. We also consider a larger circular region with

R = 5. Figures 9.4 and 9.5 show the lattice nodes and error in scattered amplitude for

an array of scatterers with a distribution determined by the Penrose lattice (blue), PAS

lattice (red) and the (2, 2)I-approximant lattice (green), respectively. In comparison

to figure 9.1, it can be seen that the Penrose and PAS nodes have the same positions,

but the approximant nodes have varied slightly, and show more of a resemblance to

the Penrose lattice. The error between the scattered pattern from the Penrose lattice

and the PAS lattice is similar to that of the previous example, except it actually

increases in error at the dominant angle θ = π/2. The (2, 2)I-approximant provides

a better representation, but is not as accurate around θ = 3π/2. There is room for

improvement of the accuracy, but for an approximant with N1 and N2 so low, this

approximant appears to provide an excellent approximation to scattering from the

Penrose lattice.
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Figure 9.2: Scattered field amplitude from the Penrose (blue), PAS (red) and (1, 2)I-
approximant (green) arrays for varying θ.

To further investigate the properties of the (2, 2)I-approximant consider the scat-

tering from the periodic unit lattice of the approximant, as in chapter 8. The period of

the approximant is determined by solving equation (6.97). For the (2, 2)I-approximant

the period is a rectangular cell with edges of length in the x and y direction given by

Lx = 2
5
(7 + 11τ) and Ly = 2

5

√
3− τ(1 + 2τ) and 152 lattice nodes. Note that these

figures disagree with the statement of Florescu et al. [29], discussed in section 2.1.4.

The Ly determined here is a factor 2/5 of the LFy stated by Florescu, which is to

be expected due to the scaling applied in this thesis. However, their formulae lead

to an edge length in the x direction of LFx = 5(1 + τ) and only 80 lattice nodes.

Unfortunately, Florescu et al. only state these formulae and give no derivation.

We continue to work with the period defined in this thesis. Figure 9.6 shows a

section of the lattice nodes of the (2, 2)I-approximant (green) and the lattice nodes of

the period (purple crosses). The repetition of the approximant nodes can be seen in

each period, giving visual confirmation of the method applied in this thesis.
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Figure 9.3: Absolute error in the scattered amplitude for the PAS (red) and (1, 2)I-
approximant (green) lattices compared to the Penrose lattice, for a circle region of
radius R = 4 for r = 2W and varying θ.

The approximant lattice nodes are identical in each periodic cell, however the

Penrose and PAS lattice nodes vary between cells. This is because the Penrose lattice

is aperiodic and the PAS has a different period to the approximant. As in chapter

8, consider the multiple scattering associated with a number of different periodic cell

configurations and thus a number of arrangements of the Penrose and PAS nodes.

Figure 9.7 shows the lattice node positions for six different periods.

It was visually observed that the scattered fields associated with the Penrose or the

PAS structures are similar for different periods, and thus we represent the scattered

field for each lattice in a period cell by the average over six cells. Figure 9.8 presents

the error between the average scattered field amplitude for the Penrose lattice and the

two approximations: the (2, 2)I-approximant (green) and the average over six cells for

the PAS (red) lattice. It can be seen that the scattered field from the PAS bears little

resemblance to that from the Penrose array at certain angles, and therefore cannot
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Figure 9.4: Lattice nodes for the Penrose (blue circle), PAS (red plus) and (2, 2)I-
approximant (green cross) lattices.

represent the Penrose lattice for all directions of propagation. The (2, 2)I-approximant

provides a very good approximation, with marginal error at all angles. As in the

previous chapter, unit cells far from the origin were also considered to validate that

the average field for the Penrose lattice was well-represented by the average taken

over the six cells in figure 9.8. For the purposes of this thesis, the (2, 2)I-approximant

provides strong support to the notion that the approximant can provide an excellent

periodic representation of the Penrose lattice in the case of multiple scattering for

small circular scatterers.

9.3 Wave scattering by an infinite approximant struc-

ture

In chapter 7 an expression to determine the effective wave propagation through a 2D

array of small circular scatterers with distribution determined by the infinite periodic
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Figure 9.5: Absolute error in the scattered amplitude for the PAS (red) and (2, 2)I-
approximant (green) lattices compared to the Penrose lattice, for a circle region of
radius R = 5 for r = 2W and varying θ.

approximant lattice was derived. This enables the construction of a band diagram

for the effective wave propagation, which portrays the pass and stop bands of infinite

approximants.

It was shown in the previous section that a finite array of scatterers with a peri-

odic approximant distribution provides similar scattering results to a finite array of

scatterers with a Penrose tiling distribution. Therefore by determining the effective

properties of the infinite periodic approximant, it is possible to provide an estimate

of the effective properties of the infinite (or very large finite) Penrose lattice. Be-

cause of the aperiodicity inherent in the Penrose lattice, such properties are currently

unobtainable by other means.

We define the irreducible Brillouin zone to be in the non-dimensional frequency

space and so it has components γ cos θ = γx and γ sin θ = γy in the e1 and e2 directions,

respectively, where γ = γ(cos θ, sin θ) is the non-dimensional effective wavenumber as
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Figure 9.6: Lattice nodes for the (2, 2)I-approximant (green) lattices and the periodic
cell (purple cross).

Figure 9.7: Lattice nodes for the Penrose (blue), PAS (red) and (2, 2)I-approximant
(green) lattices. The array has been discretised into the unit cell of the approximant.

discussed in chapter 7. The coordinates of the vertices of the irreducible Brillouin

zone, as in figure 7.4, are given by

0 = (0, 0), A = (π, 0), B = (π, π/λ), (9.1)

for the rectangular cell in physical space.

As an example we consider two approximants of the Penrose tiling: the (1, 1)I-

approximant and the (1, 2)I-approximant. The notation (n1, n2)
I/II refers to approx-

imation made in the construction of the approximant and was discussed in detail in

chapter 6. The unit cells of these two lattices are depicted in figure 9.9. The unit
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Figure 9.8: Absolute error in the scattered amplitude for the (2, 2)I–approximant
(green) and averaged PAS (red) lattices compared to the averaged Penrose lattices
within an approximant unit cell, for r = 2W and varying θ.

cells contain many more points than the SF lattice examples given in the previous

chapter in figure 8.12, and thus the computation times for the band structures are

much longer. In the two examples here the cells contain 40 and 48 nodes, respectively.
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(a) (1, 1)I -approximant.
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(b) (1, 2)I -approximant.

Figure 9.9: Unit cell of the (N1, N2)
I-approximant.
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Figure 9.10: Partial band diagram along 0B of the irreducible Brillouin zone, for the
(n1, n2)

I-approximant.
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We have considered the partial band along the 0B section in the irreducible band

diagram due to some interesting band structures that occur, see figure 9.10. It can be

seen that, analogous to the SF examples, the first band cuts on at similar wavenum-

bers k0 for γ = 0: k0 = 1.6504 . . . for the (1, 1)I-approximant and k0 = 1.6462 . . .

for the (1, 2)I-approximant. This re-emphasises the justification for taking the infinite

approximant as an approximation of the infinite Penrose tiling. What we then see

in these partial band diagrams is a negative gradient in the first band. The negative

gradient is subtle for the (1, 1)I-approximant in figure 9.10a but more obvious for the

(1, 2)I-approximant in figure 9.10b. A negative gradient dk/dγ relates to negative

group velocity (see [14]) which means that, at these frequencies, the energy is propa-

gating in the opposite direction to the wave crests. The negative gradient also means

that the cut-on wavenumber k0 determined for γ = 0 is not the cut-on wave num-

ber for the first band over the entire region; this should be determined by taking the

value of k at the minimum of the curve. The two band diagrams depicted here, along

0B in the irreducible Brillouin zone, represent wave propagation in slightly different

directions (θ = arctan(1/λ)) because of the variation in λ. Therefore, computing and

comparing the positions of the minimum in the partial-band 0B, if at positions other

than γ ≈ 0, would not be beneficial in the validation of the approximant.

9.4 Conclusions

In conclusion, in this chapter it has been demonstrated that the approximant continues

to provide a good representation of the quasiperiodic lattice as it has for previous

investigation in chapters 4, 5 and 8. By considering different finite selections of the

Penrose, PAS and approximant lattices it was shown that the PAS provided bad

approximations of the scattering pattern at multiple angles, whereas the approximant

could represent the Penrose lattice for arbitrary observation points. The (N1, N2)
I-

approximant demonstrated good accuracy for values as low as N1 = 1, N2 = 2.

The partial band structure of the infinite approximant was also analysed using

the methodology described in chapter 7. Two examples of the different approximants

demonstrated similar cut-on wavenumbers for γ = 0, and negative group velocity for

certain values of γ.



Chapter 10

Conclusions

10.1 Summary

This thesis has explored the time-harmonic acoustic multiple scattering from arrange-

ments of small scatterers with quasiperiodic distributions. The motivation for which

was to investigate the effects on the wave propagation due to aperiodicity in the struc-

ture. Quasiperiodic distributions were chosen over fully random distributions due to

their deterministic nature and interesting physical properties.

The background, set out in chapter 2, introduced the concepts behind quasiperi-

odic media and discussed the existing influential literature in wave propagation in

periodic, random and quasiperiodic media. The review demonstrated the existing es-

tablished approaches for analysis of periodic media and the questions raised regarding

the approximations of random media. It was shown that some existing investiga-

tions of quasiperiodic media in acoustics have been made but were incomplete. It

was indicated that further analytic investigations of quasiperiodic media was required

in order to gain a better understanding of the effects of its aperiodicity. In partic-

ular, the desire to determine periodic approximations of the quasiperiodic structures

was demonstrated. The periodic approximations addressed in this thesis were the

periodic average structure (PAS) and the approximant. The PAS has been investi-

gated previously in acoustics with a mixture of successful and unsuccessful results.

The approximant structure had mainly had prior consideration in terms of the atomic

structure of a quasicrystal and had not been applied to acoustic multiple scattering.

The construction of the quasiperiodic lattices and their approximations is discussed

234
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in numerous works, but the mathematical community lacks a mathematically rigorous

and well-documented algorithm. It was one of the main intentions of this thesis to

provide such a tool that could enable further mathematical investigations in the field

of quasiperiodic media. In chapter 3, a comprehensive step-by-step algorithm for the

construction of the 1D Fibonacci chain and its approximations was developed. The

full mathematical formulae for each step of the algorithm were derived using specific

notations, making it feasible to extend the algorithm to alternative quasiperiodic struc-

tures. The chapter also included visualisations of the steps taken in order to ensure

full comprehension of the method. The visual approach is also referred to later when

extending into higher dimensions for the construction of 2D quasiperiodic lattices,

where the initial dimension of space is five and thus cannot be easily comprehended

by graphical means.

Chapter 4 discussed the analytic approach to the multiple scattering in 1D for a

propagating wave along an infinite string with distributions of point scatterers. When

the distribution of scatterers is the finite Fibonacci chain, an initial benefit of the

deterministic nature of quasiperiodic lattices is demonstrated. The deterministic and

recursive nature of finite lengths of the 1D Fibonacci chain allows a recursive formu-

lation of the transmission and reflection coefficients to be derived. The formulae we

have derived allow the calculation of the reflection and transmission coefficients for

Fib(n) point scatterers with only n iterations. The Fibonacci numbers are exponen-

tial in growth, therefore the computations are rapid for extremely large numbers of

point scatterers.

A novel formulation of the effective wavenumber for a finite array of scatterers

of arbitrary distribution was derived, exploiting the prior knowledge of the reflection

and transmission coefficients determined via the recursive formulae. This allowed the

modelling of arrays of scatterers on a string as a finite length of homogeneous string

of a particular density.

Employing the recursive formulae for the three different distributions of scatter-

ers (Fibonacci, PAS and approximant) allowed comparisons to be drawn between the

scattering properties of each. It was demonstrated that the PAS failed to capture the

essence of the scattering from the Fibonacci distribution of scatterers, but the approx-

imant was much more successful. In particular, it was shown that n-approximants
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determined by the approximation τ ≈ τn = Fib(n+1)
Fib(n)

which have a unit cell containing

Fib(n + 2) point scatterers, have capabilities of accurately mimicking the full scat-

tering properties of Fibonacci chain distributions of point scatterers with Fib(n + 4)

scatterers in total. Furthermore, the “near” stop band properties were replicated for

larger distributions than this, especially with n as small as 6.

The results in chapter 4 motivated the analysis of 1D infinite periodic structures

in which the basic unit cell contains a finite number of point scatterers with arbitrary

position. The novel analytic solution derived enabled the calculation of effective prop-

erties of an infinite approximant which can be applied to approximate the properties

of an infinite Fibonacci chain of point scatterers. Since the Fibonacci chain is ape-

riodic, no previous method has been available to predict such effective properties. It

was shown that the first cut-off frequency for the infinite n-approximant converges as

n increases, providing further evidence that the approximant is an appropriate lattice

to employ as an approximation of the Fibonacci lattice.

Chapter 5 sought to extend the method and conclusions of chapter 4 by applying

the 1D distributions to a 2D scenario. We considered infinite rows of small circular

cylinders with periodic in-row spacing and quasiperiodic separation between the rows.

It was demonstrated that by taking a 1D Fibonacci chain as the separation between

the rows, then the same methodology could be applied to derive recursive formulae

for the transmission and reflection coefficients in 2D. The transmission and reflection

coefficients in this instance are the coefficients of propagating plane waves at partic-

ular scattering angles, thus the total scattered field is a sum of these plane waves.

The derivation of these angles and propagating modes in chapter 5 is similar to that

of previous existing literature in the field but with the simplification of a small ra-

dius of cylinder, which allows for an alternative form of solution. Similarly to the 1D

scenario, comparative results for the scattering from the three different distributions

demonstrated that the PAS was not a particularly good periodic representation of the

Fibonacci chain but the approximant could be, even for multiple modes of propaga-

tion. We again derived analytic expressions to determine the effective properties of

an infinite periodic distribution of rows of cylinders, where each period could contain

an arbitrary distributions of the rows. The expression exploits prior knowledge of the

transmission and reflection properties of the finite period gained from the recursive
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formulae, as in 1D. The expression in 2D is of a similar form to that in 1D but is

multi-dimensional, dependent on the array length parameters and the direction of ef-

fective wave propagation under consideration. This novel expression to determine the

effective properties of an infinite periodic array was applied to the approximant of the

Fibonacci chain in order to predict effective properties of the infinite Fibonacci chain

in this 2D set up.

Chapter 6 extends the algorithm developed in chapter 3 to construct 2D quasiperi-

odic lattices. Firstly, we showed that by applying the derived formulae for the 1D

lattice nodes of the Fibonacci chain and its approximations in two perpendicular di-

rections, we can construct the 2D square Fibonacci (SF) lattice and its approximations

fairly simply. Then, we developed a thorough step-by-step algorithm to construct a

2D Penrose lattice from 5D space. The 5D to 2D construction relies on the under-

standing and visualisations outlined in chapter 3, but still provides the full formulae

and derivations for the 5D case. In order to clarify the approach and make it more

intuitive, we choose to introduce a 4D space, an approach not often taken in the liter-

ature. This is the minimum dimension that the Penrose lattice can be projected from,

and reduces the order of complexity. It also reduces the acceptance windows from

being a complicated 3D polyhedron to simpler 2D polygons, making the visualisation

of the intersection with the parallel plane much simpler.

In chapter 7 we developed novel analytic expressions to determine the effective

properties of 2D wave propagation through 2D infinite doubly-periodic arrays of small

circular scatterers. The expressions can be applied to arbitrary distributions of scat-

terers in the unit cell, but were sought with the intention of predicting effective prop-

agation of acoustic waves in an infinite 2D approximant structure. As with chapters

4 and 5, the calculation of the effective properties exploits prior knowledge of wave

propagation through a finite period and Bloch’s theorem.

We compared the scattering properties of the SF lattice and its approximations in

chapter 8 using the multipole method for finite arrays of small scatterers. It was shown

that the PAS only captured scattering properties of the SF lattice at certain (and

few) observation angles. The n-approximant however, was able to capture scattering

properties of the SF lattice for all observation angles, and continued to improve in

accuracy as we increased n.
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Similarly, we compared the scattering properties of the Penrose lattice and its

approximations in chapter 9. We again found that the PAS only produced accurate

scattered fields at particular angles, whereas the (n1, n2)
I/II-approximant captured

the full scattering behaviour of the 2D fully quasiperiodic Penrose lattice with good

accuracy. As with all other comparisons throughout the thesis, it was shown how the

accuracy of the (n1, n2)
I/II-approximant increased as n1 and/or n2 was increased.

Through existing and novel analytic techniques we have been able to predict the

wave scattering due to multiple quasiperiodic structures and their approximations. We

have shown that, contrary to previous investigations in approximations of quasiperi-

odicity, the PAS generally failed to provide a good representation of the quasiperiodic

structure in question. However, the approximant was able to capture the full proper-

ties of the scattering from quasiperiodic structures, even for low values of n, or n1 and

n2 in the approximation of τ ≈ τn = Fib(n+1)
Fib(n)

. This suggests that a small degree of

quasiperiodicity within an approximant period can contain enough information of the

full quasiperiodicity in a large array. With this in mind, we can justify the approxima-

tion of the effective wave propagation through an infinite quasiperiodic structure by

the effective properties of the infinite approximant determined by our novel analytic

expressions. In 1D we could further validate this approximation by comparing the

approximant band structure to the transmission through an extremely large number

(billions!) of point scatterers with a Fibonacci chain distribution, depicted in figure

4.20. The infinite approximant introduces an alternative outlook on acoustic wave

propagation through some aperiodic structures, as they can in fact be modelled by

periodic structures. With the ability of expressing the band structure of an infinite

quasiperiodic medium by the band structure gained through analysis of the approx-

imant, we demonstrate the occurrence of pass and stop frequency bands and lack of

localisation as usually construed.

10.2 Future work

The conclusions of this thesis provide us with new insight into the scattering properties

of quasiperiodic structures. However, we must be aware that the analysis in the thesis

is restricted to small isotropic scatterers. It would be highly instructive to extend the
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analysis to scenarios of more complex behaviours of scatterers to determine if the same

conclusions can still be made.

For instance, further investigations should be made to consider small scatterers with

sound-hard rather than sound-soft boundary conditions on the radius. As discussed

in section 2.4, when applying the multipole method to determine the scattering from

a finite array of scatterers, applying sound-hard or Neumann boundary conditions

∂u

∂r

∣

∣

∣

∣

r=a

= 0 (10.1)

results in coefficients that depend on the derivatives of the Bessel and Hankel functions

(2.112). For small scatterers this results in the sound-hard scatterers that act as

combined monopole and dipole sources, rather than just monopole sources for sound-

soft. Therefore, all the analysis in this this thesis could be extended to the scenario

of small sound-hard scatterers by considering scattering from each cylinder by an

expression of the form

C0H
(1)
0 (kr) + C−1H

(1)
−1 (kr)e

−i(θ−α) + C1H
(1)
1 (kr)ei(θ−α), (10.2)

where (r, θ) is the location of the observation point, expressed in polar coordinates.

Alternatively, one could extend the analysis of this thesis to consider instances of

circular scatterers of arbitrary size. This results in more complicated expressions for

the scattered field involving an infinite sum of Hankel functions over every integer

order, since it is no longer the case that only the 0th order of Hankel and Bessel

functions provide significant contributions.

Further extensions of the work in this thesis could include the consideration of al-

ternative quasiperiodic structures. This could involve quasiperiodic structures in 2D of

different order of rotational symmetry, as considered in some of the literature discussed

in section 2.2.3, e.g. [75]. For certain 2D quasiperiodic lattices, Sutter-Widmer found

that the PAS could provide a good representation of the quasiperiodic structure, thus

it would be of interest to investigate how the approximant would compare in these

instances.

Extensions could also be made into three dimensions. The construction algorithms

outlined in chapters 3 and 6 should be extended for the 6D to 3D construction of

the 3D Penrose lattice [40]. This would involve a 6D hypercubic lattice, 3D parallel
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and perpendicular spaces and 3D acceptance windows. The approximant and PAS

lattices can be constructed in a similar manner in order to draw analogous comparisons.

Multiple scattering from spheres in 3D space can be approached in a similar way to

that of 2D multiple scattering, but employing spherical rather than cylindrical waves

[50].

As well as the direct extensions of the work in this thesis, such as those just men-

tioned, there are also various concepts touched upon that could be investigated in

further detail. Firstly, attempts to draw further comparisons between the quasiperi-

odic structures and their approximations could be made. As a supplement to the

comparisons of the scattered fields one could endeavour to determine some statisti-

cal measures of the deviations of the quasiperiodic structure from its approximations.

With the PAS this notion was discussed via the occupancy windows and the occu-

pancy factor and packing density. With the time constraints of this research, it has

not been possible to employ the statistical measures of the PAS and relate these to

the quality of “fit” between the scattered fields. Nor has it been possible to provide

similar properties for the approximant. With the approximant we have been able to

demonstrate that an increase in the approximation of τ leads to a better fit between

the quasiperiodic and approximant scattered fields, but not relate this to the deviation

of its lattice positions from those of the quasiperiodic lattices. Related to this statisti-

cal measure of deviation, one could look to analyse periodic lattices with some added

random perturbation and use these as approximations to the quasiperiodic structures.

Allowing some random perturbation of lattice node location within a defined range

could improve, or reduce, the quality of the approximations fit to the quasiperiodic

structure, an investigation of which could be extremely instructive. If it was found

that the perturbed lattice provided a better approximation of the quasiperiodic lattice,

analysis of an infinite periodic lattice with some small random perturbation could be

carried out to determine the effective wave propagation properties. Papers such as

[60] or [51] propose approaches to this analysis.

In this thesis we analysed orthorhombic infinite periodic lattices in order to de-

termine the effective properties of an infinite approximant structure. The analysis

applied in chapter 7 could be employed to any arbitrary orthorhombic period, but

also has the potential to be extended to consider instances in which the period cell



CHAPTER 10. CONCLUSIONS 241

is not orthorhombic. This would require a slightly different form of Bloch condition

and potentially an alternative form of integral representation of the Hankel function

that was used in equation (5.41). In our investigations of the approximant we found

that the periodic cell was always orthorhombic. However, periodic cells of other forms

are possible, as discussed in section 2.1.4. Lord et al [49] and Subramaniam et al

[49] investigated periodic cells with basis vectors subtended at angles of 2π/5 as for

a Penrose tile, as well as orthorhombic. For infinite approximant lattices, the cell

shape should not affect the effective properties, and thus was not discussed in more

detail in our investigations. However, in future investigations it would be of interest

to determine whether varying the shape of the periodic cell would produce different

results and conclusions when comparing finite arrays of scatterers.

When predicting the wave propagation through the 1D Fibonacci chain in 1D

or 2D multiple scattering it was possible to rapidly determine the transmission due

to the recursive nature of the Fibonacci chain. However for the more complex 2D

quasiperiodic structures this is no longer possible and the numerical calculation of the

scattering is much more expensive. It would be of interest in the future to consider

weak interactions between scatterers that are far apart. If it is possible to neglect

their interactions it would result in a more sparse matrix in equation (2.136), reducing

computation time significantly. A similar approach was taken in [46] using a sparse-

matrix and canonical grid method. Further improvements of the codes written in both

Mathematica and Matlab for the computations in this thesis could also be made. This

would enable them to run much faster should further investigations be conducted.

Finally, one further extension of the work in this thesis would be to relate the

results with quasiperiodic media back to the original motivation of random media. It

would be of interest to draw comparisons between the multiple scattering in random

media and quasiperiodic. This would show whether the aperiodicity in quasiperiodic

media results in similar scattering behaviour to that for random media, and thus

whether or not understanding quasiperiodic media can provide new insight into the

scattering properties of random media. The randomness could be fully random, or be

considered as random perturbations from periodicity as mentioned above. It would

also be extremely beneficial to apply the infinite periodic analysis, where the periodic

cell can contain any arbitrary distribution of scatterers, to random media. That is,
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can a repeating unit cell containing a random distribution of scatterers represent an

infinite fully random structure? If so, what would be a reasonable size of unit cell

as an RVE? The determination of the cell will not be as straightforward as for the

quasiperiodic lattices, and so this potentially valuable concept topic will require a

thorough investigation.
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Appendix A

Proofs in one dimension

A.1 Projection method - angle of parallel plane

In the projection method for a 1D Fibonacci chain from a 2D square lattice the angle

θ at which the 2D lattice is subtended from the parallel space determines the 1D

pattern produced. For the Fibonacci chain with lengths L and S, where L = τS, for

the golden ratio τ an angle θ such that tan θ = 1/τ is used. In this section a visual

and geometrical derivation of the relationship between the angle θ and the properties

of the 1D lattice is given. Figure A.1 depicts the geometry for the spacings L and S

1

1

L

S

θ

θ

Figure A.1: Geometry of the 2D projection method in order to find the relation be-
tween L and S.

on the parallel space which is subtended at angle θ from the horizontal. The 2D unit

square lattice is spanned by e1 and e2.

Using trigonometry, in the triangle with an edge of length L, it can be determined

251
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that

cos θ =
L

1
= L, (A.1)

and in the second triangle with an edge of length S,

sin θ =
S

1
= S. (A.2)

Using these relations and the fact that θ is chosen such that tan θ = 1
τ
, it is possible

to show that

tan θ =
S

L
=

1

τ
. (A.3)

Rearranging gives the resulting relationship between S and L as

L = τS, (A.4)

as required.

A.2 Projection method - width of strip

In sections 2.1.2 and 3.1 it was discussed how the selection of the 2D lattice nodes

to project to the 1D Fibonacci lattice could be made in two ways. Firstly, using

the concept of an acceptance window, which is the method employed in this thesis.

Secondly, using a strip that cuts through the 2D lattice. In this section the derivation

of the width of the strip to be used in the 2D to 1D projection method is given. The

proof is given with no necessary knowledge of the acceptance window, but the results

agree.

The value of the width of the strip that is needed to project the 1D Fibonacci

chain comes from the geometry of the problem. Set the parallel space line to be at a

slope of 1
τ
going through the origin to be the bottom of the strip. The upper line of

the strip is set to run parallel to this and through the opposite diagonal lattice point

of the origin square. With this set up it is possible to determine the required width of

the strip from the visual geometrical set up, see figure A.2.

From the second part of the figure, using basic trigonometry and the fact that

1 + 1
τ
= 1 + τ − 1 = τ , it can be shown that

cos θ =
h

τ
. (A.5)
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1

h
h

τ

τ

τ

θ

θ

θ

Figure A.2: Geometry of the 2D projection method in order to find the width of the
strip.

Since tan θ = 1
τ
, the cosine of θ can be expressed as

cos θ =
τ√

1 + τ 2
. (A.6)

Combining (A.5) and (A.6) gives the result

h =
τ 2√
1 + τ 2

, (A.7)

for the height of the strip

A.3 Inductive proof of the recursive formulation

for wave propagation in a one-dimensional Fi-

bonacci lattice

In this section an inductive proof is given for the recursive formulation used in section

4.3 for the transmission and reflection coefficients of a wave propagating along an

infinite string with Fib(N) point scatterers with a Fibonacci chain distribution. The

Nth distribution of Fib(N) scatterers is broken down into two subproblems: the (N −
1)th distribution of Fib(N−1) scatterers and the (N−2)th distribution of Fib(N−2)

scatterers. This is methodology applied in section 4.1.2. Figure A.3 depicts the set up

and the break down.

First, it is necessary to provide a proof of the formula for the end position of the
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eiX

RNe
−iX

Reix

Le−ix

TNe
ix

X = L X = q(N − 1)S X = q(N − 1)S + L X = q(N)

N scatterers

N − 1 scatterers N − 2 scatterers

Figure A.3: Breakdown of the point masses for the Fibonacci chain problem.

Fibonacci Chain Problem, N ≥ 3:

q(N)S = (Fib(N − 1)τ + Fib(N − 2))S. (A.8)

Inductively, begin with the base case, N = 3. It is known for N = 3 the chain is given

by the two spacings LS, giving q(3) = L+ S. Check this with the formula (A.8):

q(3)S = (Fib(2)τ + Fib(1))S (A.9)

= (1τ + 1)S (A.10)

= L+ S (A.11)

as required.

The inductive step is to assume true for N = n − 1, N = n − 2. Now consider

N = n. The chain for n is given by adding the n− 2 problem to the end of the n− 1

problem, so

q(n) = q(n− 1) + q(n− 2) (A.12)

= (Fib(n− 2)τ + Fib(n− 3))S + (Fib(n− 3)τ + Fib(n− 4))S (A.13)

= ([Fib(n− 2) + Fib(n− 3)]τ + [Fib(n− 3) + Fib(n− 4)])S (A.14)

= (Fib(n− 1)τ + Fib(n− 2)S, (A.15)
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completing the proof for the formulation of the end point.

It is now possible to complete a proof by induction for the transmission and reflec-

tion coefficients given in equations (4.35) and (4.37).

The base case is for N = 3 again, so plugging N = 3 into these equations gives

T3 =
T1T2

1−R1Ro
2

,

rR3 = R2 +
R1T3T

o
2 e

2iL

T1
, (A.16)

which is the solution gained when working through the problem step by step in section

4.3.

The inductive step is to assume true for N = n−2 and N = n−1. Then, following

previous techniques applied in section 4.1.2, see figure A.3, we get that

Rn = Rn−1 + LT on−1, (A.17)

R = Tn−1 + LRo
n−1e

−2iq(n−1)S, (A.18)

Tn = RTn−2, (A.19)

L = RRn−2e
2iq(n−1)S, (A.20)

which, on rearranging gives the Rn and Tn expected.
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Proofs in two dimensions

B.1 Simplification of Graf’s addition theorem for

small scatterers

In section 2.4 the scattered field from two cylinders is determined using the multipole

method. Evaluating the sound-soft boundary conditions on one cylinder at r1 = a

gives equation (2.127). The method requires one to rewrite the H
(1)
0 (kr2) component

in terms of a different local coordinate system rather than the global one in relation

to the origin. An alternative and more complete method to rewrite this expression

than that used in section 2.4 is by using Graf’s addition theorem (GAT) [4]. This

transforms the current coordinate system to a local one and is used when there is not

a small radii assumption. Using GAT gives

H
(1)
0 (kr2) =

∞
∑

n=−∞
H(1)
n (kb)Jn(k(r1)e

in(π−θ2−β), (B.1)

refer to figure 2.21 for the notation.

It was shown in (2.114) that for ka → 0, the only order of Bessel function which

gives a significant value is order zero since

J0(ka) → 1, (B.2)

Jn(ka) → 0, n 6= 0. (B.3)

Thus it is no longer necessary to take the sum over all value of n, only the order n = 0

needs to be considered, i.e. equation B.1 becomes

H
(1)
0 (kr2) ≈ H

(1)
0 (kb)J0(ka) → H

(1)
0 (kb). (B.4)

256
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The same approximation can be applied when considering greater numbers of cylinders.

When evaluating the boundary conditions on the ith cylinder, it can be analogously

shown that

H
(1)
0 (krj) → H

(1)
0 (kbij), for kri = ka→ 0. (B.5)

B.2 Position of poles for the integral form of the

Schlömilch series

In section 5.1.1 it is necessary to determine the positions of the poles of the integral

forms of the Schlömilch series S±
0 to ensure they do not lie on the contour, or in the

path of any contour deformation. For S±
0 (5.14) and (5.18), the poles are given by

sinh t =
i

kd
(nπ ∓ kd cosα) +

ǫ

kd
= Ai+ ǫ, (B.6)

for

A =
nπ

kd
∓ cosα (B.7)

and just renaming the convergence parameter ǫ = ǫ
kd
. Write sinh t in terms of expo-

nentials to find

et − e−t

2
= Ai+ ǫ (B.8)

⇒e2t − 2(Ai+ ǫ)et − 1 = 0 (B.9)

⇒et = Ai+ ǫ±
√

(Ai+ ǫ)2 + 1. (B.10)

This expression can be expanded and simplified using the assumption that ǫ≪ 1,

et = Ai+ ǫ±
√
1− A2 + 2Aǫi (B.11)

= Ai+ ǫ±
√
1− A2

√

1 +
2Aǫi

1− A2
(B.12)

≈ Ai+ ǫ±
√
1− A2

(

1 +
Aǫi

1− A2

)

(B.13)

≈ Ai±
√
1− A2 + ǫ

(

1± Ai√
1− A2

)

. (B.14)
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Taking logs gives

t ≈ ln

[

Ai±
√
1− A2 + ǫ

(

1± Ai√
1− A2

)]

+ 2mπi (B.15)

= ln

[

(Ai±
√
1− A2)

(

1 +
ǫ

Ai±
√
1− A2

(

1± Ai√
1− A2

))]

+ 2mπi (B.16)

= ln
[

Ai±
√
1− A2

]

+ ln

[

1 +
ǫ√

1− A2

√
1− A2 ± Ai

Ai±
√
1− A2

]

+ 2mπi (B.17)

= ln
[

Ai±
√
1− A2

]

+ ln

[

1± ǫ√
1− A2

]

+ 2mπi (B.18)

≈ ln
[

Ai±
√
1− A2

]

± ǫ√
1− A2

+ 2mπi. (B.19)

Now to understand the location of the poles from these equations, consider the different

cases,

1. |A| < 1 and taking the top of the ±, i.e. taking the ‘plus’,

2. |A| < 1 and taking the ‘minus’,

3. |A| > 1 and taking the ‘plus’,

4. |A| > 1 and taking the ‘minus’.

Begin with case 1. For small |A| the square root term can be expanded,

√
1− A2 ≈ 1− A2

2
. (B.20)

And thus the log term can be expanded too,

ln
[

Ai+
√
1− A2

]

≈ ln

[

Ai+ 1− A2

2

]

(B.21)

≈
(

Ai− A2

2

)

− 1

2

(

Ai− A2

2

)2

(B.22)

≈ Ai. (B.23)

Therefore, for case 1 the pole positions are given by

t ≈ (A+ 2mπ)i+ ǫ. (B.24)

Which means, for small ǫ the poles deviate from the imaginary axis slightly to the

right, around even numbers of πi.
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Case 2 is very similar, the pole positions are given by

t ≈ ln

[

Ai− 1 +
A2

2

]

(B.25)

= (2m+ 1)πi+ ln

[

Ai+ 1− A2

2

]

(B.26)

≈ (2m+ 1)πi− Ai. (B.27)

The pole positions for case 2 relate to a finite number of poles just to the left of the

imaginary axis, around odd numbers of πi. Care must be taken not to cross these poles

when deforming the contour. However, because of the region that the contour lies in,

only the case when m = 0 must be considered and, depending on the parameters

chosen for k, d and α there will be a finite number of poles to worry about which

satisfy |A| < 1.

For case 3, |A| > 1 and thus 1− A2 < 0. Let

√
1− A2 =

√

−(A2 − 1) = i
√
A2 − 1. (B.28)

For |A| very large
√
1− A2 → iA, (B.29)

and thus

ln
[

Ai+
√
1− A2

]

→ ln [2Ai] = ln [2A] + iπ/2. (B.30)

So, for case 3, the poles are positioned at

t ≈ ln [2A] + i
(π

2
− ǫ

A
+ 2mπ

)

. (B.31)

Care must be taken here with the sign of A, so the two cases

(a) A > 1,

(b) A < −1,

must be considered separately. Case 3 (a) is straight forward, the log can be

evaluated, and the poles are positioned just below the line from iπ/2 + 2mπi to

iπ/2 + 2mπi+∞. Case 3 (b) needs a little more work. Let

A = −Ā, Ā > 1, (B.32)
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then

ln [2A] = ln
[

−2Ā
]

= iπ + ln
[

2Ā
]

. (B.33)

So the poles for case 3 (b) are given by

t ≈ ln
[

2Ā
]

+ i

(

3π

2
+
ǫ

Ā
+ 2mπ

)

, (B.34)

and so are situated just above the line from 3iπ/2 + 2mπi to 3iπ/2 + 2mπi+∞.

Case 4 requires a bit more thought to begin with than case 3; higher order

expansions of the expression in the log should be taken to avoid the singularity at ln 0,

√
1− A2 =

√

A2

(

1

A2
− 1

)

= A

√

1

A2
− 1 (B.35)

= Ai

√

1− 1

A2
≈ Ai

(

1− 1

2A2

)

(B.36)

= Ai− i

2A
. (B.37)

This results in

ln
[

Ai−
√
1− A2

]

≈ ln

[

i

2A

]

(B.38)

=
iπ

2
− ln [2A] . (B.39)

Therefore the poles are positioned at

t ≈ − ln [2A] +
(π

2
+
ǫ

A
+ 2mπ

)

i (B.40)

for case 4 (a), and

t ≈ − ln
[

2Ā
]

+
(

−π
2
− ǫ

Ā
+ 2mπ

)

i (B.41)

for case 4 (b), which are just below the lines from iπ/2 + 2mπi−∞ to iπ/2 + 2mπi

and −iπ/2 + 2mπi−∞ to −iπ/2 + 2mπi respectively.

B.3 Scattering angles for infinite rows of cylinders

with constant periodic separation

In section 5.1.1 it was shown that the transmission of an incident plane wave through

an infinite periodic row of cylinders could be defined by a set of propagating plane

waves at a finite number of angles ψm. For an angle of incidence α, the ψm satisfy

| cosψm| =
∣

∣

∣
cosα +

mπ

kd

∣

∣

∣
< 1, m ∈ Z. (B.42)
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Say, for a certain α, k and d the integers m which satisfy equation (B.42) and

determine the scattering angles ψm, are denoted m1, ...,mM . Consider what happens

when one of these plane waves is incident on the next array, i.e. there is an incident

plane wave at an angle ψmi , 1 ≤ i ≤M . Then the scattering angles from this are

| cosφn| = | cosψmi +
nπ

kd
| (B.43)

= | cosα +
(mi + n)π

kd
| < 1. (B.44)

This is comparable to equation (B.42), and thus we know that mi+n ∈ {m1, ...,mM},
and so the scattering angles, φn are just the same set as the ψm. The same result

would be reached for all 1 ≤ i ≤M in ψmi .

Therefore when each row has the same periodic spacing between the cylinders, the

transmitted propagating plane waves propagate at the same set of scattering angles

between each row.

B.4 Five-dimensional hypercubic lattice basis vec-

tors for the projection of the Penrose tiling

In order to employ the projection method to construct the Penrose tiling, a quasiperi-

odic lattice with 5-fold symmetry, an appropriate 5D lattice must be defined. First, it

is necessary to define isometries and representative matrices. Senechal [66] discusses

such concepts, and mentions that Engel was the first to prove such higher dimensional

representatives in 1986.

Firstly, an isometry φ of the space E
n can be defined as any transformation that

preserves the distances between points in the space. The isometry can be used to define

any transformations in space, i.e. the rotational symmetry of a lattice. Isometries can

be easily visualised and written down in two or even three dimensions but until Engel’s

descriptions it was much harder in higher dimensions. For the 5D space required to

project to the Penrose tiling, any linear isometry can be represented by a 5×5 reducible
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matrix of the form

A =

















A1

A2

. . .

Am

















, (B.45)

where each Aj is either 1, −1 or a 2× 2 rotation matrix of the form




cos θ − sin θ

sin θ cos θ



 , (B.46)

and all other entries are zero.

For the 5-fold symmetry required for the Penrose lattice it is necessary to have two

Aj’s that are of the form (B.46) with θ = 2π/5 and 4π/5, and the third simply being

1. The components give a 5× 5 matrix,

Γ5(5) =























cos 2π/5 − sin 2π/5 0 0 0

sin 2π/5 cos 2π/5 0 0 0

0 0 cos 4π/5 − sin 4π/5 0

0 0 sin 4π/5 cos 4π/5 0

0 0 0 0 1























=





Γ
||
5 0

0 Γ⊥
5



 .

(B.47)

These three Aj matrices are irreducible and represent three subspaces of E5: two 2D

planes with rotations of angle 2πi/5 and 4πi/5, 1 ≤ i ≤ 5; and a 1D representative

space along the 5-fold axis. Γ
||
5 represents the 2D space with the rotation 2πi/5, and

Γ⊥
5 represents the other 2D space with the rotation 4πi/5 and the 1D space.

The angles 2π/5 and 4π/5 are determined from the fifth roots of unity,

1, ξ, ξ2, ξ4, ξ4, ξj = ej2πi/5, (B.48)

see [66] and [74].

Senechal shows that from this it it is possible to deduce a reciprocal and a direct

basis for a 5D hypercubic lattice with the required 5-fold symmetry built in,

d∗
i =

√

2

5























cos 2πi/5

sin 2πi/5

cos 4πi/5

sin 4πi/5

1/
√
2























, 1 ≤ i ≤ 5, (B.49)
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di =

√

2

5























cos 2πi/5

sin 2πi/5

cos 4πi/5

sin 4πi/5

1/
√
2























, 1 ≤ i ≤ 5. (B.50)

Here the definition for the relationship between reciprocal and direct basis vectors

d∗
i · dj = δij, (B.51)

is applied, and the fact that an orthogonal bases is required.

B.5 Four-dimensional hyperrhombic lattice basis vec-

tors for the projection of the Penrose tiling

The 4D lattice for the projection of the Penrose tiling can be formed in a similar way

to the 5D lattice in section B.4, using the higher dimension description of an isometry

(B.45). In this instance, only the two 2D spaces with rotations related to 2π/5 are

required,

Γ4(5) =

















cos 2π/5 − sin 2π/5 0 0

sin 2π/5 cos 2π/5 0 0

0 0 cos 4π/5 − sin 4π/5

0 0 sin 4π/5 cos 4π/5

















=





Γ
||
4 0

0 Γ⊥
4



 . (B.52)

Γ
||
4 represents the 2D space with the rotation 2πi/5, and Γ⊥

4 represents the 2D space

with the rotation 4πi/5.

The reciprocal and direct basis vectors can therefore be given by

f∗i =

















cos 2πi/5

sin 2πi/5

cos 4πi/5

sin 4πi/5

















, 1 ≤ i ≤ 4, (B.53)
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and

fi =
2

5

















cos 2πi/5− 1

sin 2πi/5

cos 4πi/5− 1

sin 4πi/5

















, 1 ≤ i ≤ 4. (B.54)



Appendix C

One-dimensional wave scattering

The recursive method for finding the reflection and transmission coefficients for distri-

butions of point scatterers on an infinite string, as described in section 4, can easily be

extended to other distributions. In this appendix some examples of other applications

are given.

C.1 Periodically distributed point scatterers

Consider an infinite string with density ρ, tension F and a finite number of point

scatterers with a periodic distribution. Recursive formulae for the transmission and

reflection coefficients for Fib(N) point scatterers with periodic distribution can be

derived in a similar manner to that of section 4.3. This enables a rapid computation

of the coefficients as the number of scatterers with each recursion is increased by

Fib(N), of exponential growth. Denote the Nth scenario by DN . For D1 and D2,

let the string have one point scatterer on. The DN problem will have Fib(N) point

scatterers and can be composed of the DN−1 and DN − 2 problems. It is possible to

find RN and TN in terms of RN−1 and TN−1 very quickly.

In section 2.3.1 it was shown that for one point scatterer the reflection and trans-

mission coefficients are given by

R1 = R2 =
Mǫi

2−Mǫi
, (C.1)

T1 = T2 =
2

2−Mǫi
, (C.2)

where ǫ = kp, the non-dimensional spacing. Then using the same technique as in

265
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N=1

N=2

N=3

N=4

N=5

etc. X=0

Figure C.1: Fibonacci sequence of the point scatterers as N increases.

section 4.1.1, letting the scatterers be at X = 0 and X = ǫ,

T3 =
T2T1

1−R2R1e2iǫ
, (C.3)

R3 =
R2 + (T 2

2 e
2iǫ −R2

2)R1e
2iǫ

1−R2R1e2iǫ
. (C.4)

For D4 there are three scatterers at X = 0, X = ǫ and X = 2ǫ, which, on decomposing

into D3 followed by the D2 case on the right, and considering the phase changes, gives

T4 =
T3T2

1−R3R2e2iǫ
, (C.5)

R4 =
R3 + (T 2

3 e
4iǫ −R2

3)R2e
2iǫ

1−R3R2e2iǫ
. (C.6)

Continuing like this the pattern emerges for N > 2, N ∈ Z,

TN =
TN−1TN−2

1−RN−1RN−2e2iǫ
, (C.7)

RN =
RN−1 + (T 2

N−1e
2iǫ −R2

3e
2iǫF ib(N))R2

1−RN−1RN−2e2iǫ
, (C.8)

=
RN−1(1−RN−2RN−1e

2iǫ) +RN−2T
2
N−1e

2iǫF ib(N)

1−RN−1RN−2e2iǫ
, (C.9)

= RN−2 +
RN−2TN−1TNe

2iǫF ib(N)

TN−2

, (C.10)

which can be proved by induction.
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C.2 Randomly distributed point scatterers

Consider an infinite string with a finite number of point scatterers with random separa-

tions. The computation of the reflection and transmission coefficients for N randomly

distributed scatterers takes longer than for a deterministic distribution of scatterers

as only one scatterer can be added per recursion, however, it can still work fast.

Determine the spacing Sn between two point scatterers by selecting at random a

variable with Uniform distribution in some range. As more scatterers are introduced,

scale all the spacings so that the entire distribution of scatterers always lies within a

certain length A. Once the position of all the point scatterers are determined, e.g.

in figure C.2, then calculate RN and TN recursively using the general formulae given

in section 4.1.2. Figure C.3 shows the transmission coefficients for different random

distributions as the number of scatterers is increased. This shows what a variation

in transmission one can get due to the randomness. Such results are as expected due

to the physical differences in the distributions, shown in figure C.2. As the number

of scatterers is increased, the transmission coefficients converge, due to set length of

the distribution; as more scatterers are introduced the wave will be less likely to be

able to ‘see’ the spacing variations. For smaller numbers of scatterers, when there

is a great variation in the transmission coefficients, it would be difficult to find a

periodic distribution, or an average transmission coefficient which would represent all

the different distributions. It is possible to determine the effective wavenumber for

realisations of random distributions using the formula (4.29). Figure C.4 shows an

example of this.

C.3 Periodically distributed point scatterers with

varying mass

The Fibonacci chain can be introduced to a distribution of point scatterers on an

infinite string through the mass of the scatterers. Consider a finite number of point

scatterers distributed periodically with spacing ǫ. Let the masses of the scatterers vary

according to the Fibonacci chain, with large and small masses ML and MS. Taking

the Fibonacci chain as described in chapter 3, for the initial scenario D1, consider a
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0.0 0.5 1.0 1.5 2.0

Figure C.2: 5 different distributions of 30 point scatterers on a string section of length
2.

20 40 60 80 100

0.85

0.90

0.95

1.00

|TN |

N

Figure C.3: Transmission coefficients for different random distributions, for M = 0.7,
S ∈ U [0, 2], A = 2.

scatterer of mass MS at X = 0, for D2 consider a scatterer of mass ML = τMS at

X = 0, for D3 scatterers of mass ML at X = 0 and MS at X = ǫ, etc.
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50 100 150 200

1.0

1.2

1.4

1.6

1.8

β

N

Figure C.4: Effective wavenumber against N , for M = 0.7, S ∈ U [0, 2], A = 2.

Working through analogously to previous problems, it is found that

T1 = T o1 = 2
2−MSǫi

,

R1 = Ro
1 =

MSǫi
2−MSǫi

,

T2 = T o2 = 2
2−MLǫi

,

R2 = Ro
2 =

MLǫi
2−MLǫi

, (C.11)

TN = TN−2TN−1

1−RN−2R
o
N−1e

2iǫ ,

RN = RN−1 +
RN−2T

o
N−1TNe

2iǫF ib(N−1)

TN−2
, (C.12)

T oN =
T oN−2T

o
N−1

1−RN−2R
o
N−1e

2iǫ ,

Ro
N = Ro

N−2 +
RoN−1TN−2T

o
Ne

2iǫF ib(N−2)

T o
N−1

. (C.13)

Figure C.5 shows an example of the transmission coefficients for two scenarios: one

of constant mass, thus each scatterer is identical; and one of varying mass, where the

relationship ML = τMS has been applied.
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0.4

0.6

0.8

1.0
|TN |

N

Constant

Fibonacci

Figure C.5: Transmission for Fib(N) periodic point scatterers with constant mass (red)

and for varying mass (blue) using the Fibonacci chain with τ = 1+
√
5

2
, the golden ratio.

A L S

Figure C.6: Infinite string with sections of different density and separation determined
by the Fibonacci chain.

C.4 Fibonacci(N) density changes

Consider an infinite host string of density ρ1, with sections of length A of density ρ2.

Let these different density sections be separated with a spacing determined by the

Fibonacci chain. This problem can be solved using the same recursive method applied

in other 1D problems in this thesis. The reflection and transmission coefficients gained

for N ≥ 4 are

T1 = 4βeiA(β−1)

(1+β)2−(1−β)2e2iAβ , (C.14)

R1 = e2iS (1−β2)(1−e2iAβ)
(1+β)2−(1−β)2e2iAβ , (C.15)

T2 = 4βeiA(β−1)

(1+β)2−(1−β)2e2iAβ , (C.16)

R2 = e2iL (1−β2)(1−e2iAβ)
(1+β)2−(1−β)2e2iAβ , (C.17)

T3 = T1T2
1−R1Ro2e

2iS , (C.18)

R3 = R2 +
R1T o2 T3e

2i(L+A+S)

TN−2
, (C.19)

TN = TN−2TN−1

1−RN−2R
o
N−1e

2iL , (C.20)

RN = RN−1 +
RN−2T

o
N−1TNe

2i(r(N−1)+L)

TN−2
, (C.21)
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where r(N) = Fib(N − 1)L+Fib(N − 2)S+Fib(N)A and β = k2/k1, the ratio of the

wavenumbers in the inclusion and host strings.

For an incident wave from the right, the reflection and transmission coefficients are

given by

T o1 = 4βeiA(β−1)

(1+β)2−(1−β)2e2iAβ , (C.22)

Ro
1 = (1−β2)(1−e2iAβ)

(1+β)2−(1−β)2e2iAβ , (C.23)

T o2 = 4βeiA(β−1)

(1+β)2−(1−β)2e2iAβ , (C.24)

Ro
2 = (1−β2)(1−e2iAβ)

(1+β)2−(1−β)2e2iAβ , (C.25)

T o3 =
T o1 T

o
2

1−R1Ro2e
2iS , (C.26)

Ro
3 = Ro

1 +
T1Ro2T

o
3 e

2i(A+S)

T o
N−2

, (C.27)

T oN =
T oN−2T

o
N−1

1−RN−2R
o
N−1e

2iL , (C.28)

Ro
N = Ro

N−2 +
TN−2R

o
N−1T

o
Ne

2ir(N−2)

T o
N−1

. (C.29)


