
Software in Reproducible Research:
Advice and Best Practice collected from

experiences at the Collaborations Workshop
Shoaib Sufi1, Neil Chue Hong2, Simon Hettrick3, Mario Antonioletti2, Stephen Crouch3,

Alexander Hay3, Devasena Inupakutika3, Mike Jackson2, Aleksandra Pawlik1, Giacomo Peru2,
John Robinson3, Les Carr3, David De Roure4, Carole Goble1, and Mark Parsons2

School of Computer Science

University of Manchester
Oxford Road

Manchester, M13 9PL
United Kingdom

EPCC, School of Physics
University of Edinburgh
JCMB, Mayfield Road,
Edinburgh, EH9 3JZ

United Kingdom

Web and Internet Science
University of Southampton

Highfield Campus
 Southampton, SO17 1BJ

United Kingdom

Oxford e-Research Centre

University of Oxford
7 Keble Road

Oxford, OX1 3QG
United Kingdom

Corresponding Author Email Address: S.Sufi@software.ac.uk

ABSTRACT
The Collaborations Workshop 2014 (CW14) brought together
representatives from across the research community to discuss the
issues around software’s role in reproducible research. In this
paper we summarise the themes, practices and ideas raised at the
workshop. We also consider how the “unconference” format of
the CW14 helps in eliciting information and forming future
collaborations around aspects of reproducible research. In
particular, we describe three distinct areas of concern which
emerged from the event: collaboration readiness, capability
enhancement and advocacy.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification –
reliability, validation. D.2.5 [Software Engineering]: Testing and
Debugging – code inspections and walkthroughs. D.2.7 [Software
Engineering]: Distribution, Maintenance, and Enhancements –
documentation, restructuring, reverse engineering, and
reengineering, version control. D.2.8 [Software Engineering]:
Metrics – product metrics, software science. D.2.9 [Software
Engineering]: Management – copyrights, life cycle, programming
teams. D.2.13 [Software Engineering]: Reusable Software –
reusable libraries, reuse models.

General Terms
Management, Documentation, Design, Reliability, Human
Factors, Legal Aspects.

Keywords
Software sustainability, reproducible research, reproducibility,
Software Sustainability Institute, Collaborations Workshop.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than the author(s) must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from Permissions@acm.org.

TRUST'14, June 09-11 2014, Edinburgh, United Kingdom
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2951-4/14/06…$15.00.
http://dx.doi.org/10.1145/2618137.2618140

1. INTRODUCTION
A significant (and increasing) amount of research is
fundamentally reliant on results generated by software. Regardless
of this fact, software is infrequently subjected to the same
scientific rigour as is applied to more conventional experimental
apparatus. Consequently, the best practices required for
reproducibility are often overlooked with software-based research,
making it difficult if not impossible to reproduce and verify
results generated by software.

On 26-28 March 2014, the Collaborations Workshop (CW14), run
by the Software Sustainability Institute (SSI) [1] brought together
a group of representatives from across academia and industry:
researchers, software developers, project managers and funders.
The workshop was themed around the topic of “the role of
software in reproducible research” and allowed the experiences
and ideas of all attendees to be discussed and recorded so that the
combined expertise of the workshop attendees could be
summarised into a set of output: themes, best practice for software
reproducibility and ideas to help improve reproducibility.

For the event, we purposely did not provide a strict definition
reproducibility as this is still a developing term1.

2. OVERVIEW OF THE WORKSHOP
Ensuring that research is a complex, multi-faceted and sometimes
subjective problem. The CW14 used a format based around the
“unconference” model (itself based on Open Space Technology
techniques [2]) that enabled the 60+ attendees to all have a voice
in the discussion.

The CW14 employed a range of techniques to elicit information
from attendees and disseminate it across the workshop as a whole.
Lightning talks provide an opportunity to discuss an issue of
importance to the presenter, but are limited to two minutes,
making them an efficient use of the workshop’s limited time.
Such a short time also forces the presenter to focus only on the
main issue that concerns them. It also ensures that all participants

1 David De Roure’s talk at the 37th UKSG Annual Conference

have a basic understanding of each others’ work, experience and
position in relation to the topics.

Rather than setting an agenda in advance, with the organisers
ultimately dictating what will be discussed, in an unconference
topics are solicited from the attendees and consensus reached
during the event on what will be discussed next. This is not only a
flexible way of extracting the main issues from a large group of
people, it also ensures that the agenda represents the views and
interests of the attendees, which encourages their participation.
Once the agenda has been set, the attendees split into groups of up
to ten people to discuss the topics on offer. Each group is given an
hour to discuss the topic and draw out a summary and
recommendations. Once the hour is up, all groups meet and take it
in turns to present their findings back to all attendees.

Similarly, “collaborative ideas” sessions bring attendees together
in small groups with the focus on using their amassed skills to
identify and propose solutions to an issue related to
reproducibility. Finally, an associated “hackday” at the end of the
event was an opportunity for developers and researchers to
implement prototypes based on some of the ideas that came from
the rest of the event.

It is of vital importance that the discussions and conclusions from
the workshop are made available to the research community at
large. Consequently, everything discussed at the workshop is
quickly added to the workshop website to ensure a permanent and
easily accessible record is maintained2.

3. THEMES ARISING FROM CW14
Overall, there were 14 discussion topics considered and 22
collaborative ideas generated at the CW14. Some topics were
strategic, some tactical and many practical. This reflected those
who were attending: many of them practitioners of research or
development who were keen to learn from others and from the
thought leaders in the area who provided keynote presentations.
They also had the ability to become voices within their own
communities to promote best practice in reproducible research.

From the many discussions and recommendations, three definite
themes emerged:

• Collaboration Readiness

• Capability Enhancement

• Advocacy

For each theme we examine the best practice collected and the
ideas for the future developed.

3.1 Collaboration Readiness
3.1.1 Best practice
A “shopping list” was created of tools and technologies based on
attendee suggestions that might have benefits to the development
of research software. These included GitHub3 for collaborating on
software development, Figshare4 for basic sharing of data, make

2 Agenda: http://www.software.ac.uk/collaborations-workshop-

2014-cw14-software-your-reproducible-research/cw14-agenda
3 Github: http://www.github.com/
4 Figshare: http://www.figshare.com/

for command-line automation of tasks and updating analysis
painlessly if underlying data had been updated, and notebook and
workflow systems such as IPython Notebook [4] and Galaxy [5]
to help re-play and reproduce analysis work.

It was also noted that the software used in research should adhere
to certain quality constraints that increase the confidence in the
software and increases its use. These include that it: should work;
should be documented well enough to describe the function of the
software, and enable others to produce comparable results; should
have a test suite; and that the source code should be available.
This echoes other work in this area such as the Five Stars of
Research Software [3], and Code as a Research Object5.

3.1.2 Ideas for the future
There was a large focus on quality of software and how this was a
proxy for reproducibility. This included suggestions of automated
and manual crowd-sourced annotation of software source code to
arrive at an understanding of how “good” the code was6. This in
turn gives an indication to others of how understandable, and
therefore trustable, a piece of code is.

Open Source Health Check7, the winner of the CW14 hackday
competition, assessed whether a software repository had readme
files, license files and continuous integration configuration files
and would alert the maintainers (by automatically creating an
issue) where these important pieces of documentation were
missing.

There were also ideas to connect the disparate sources of
information involved in research together - e.g. code, lab books,
software, data and parameters, figures and papers and proposals.
Work on Research Objects8 was one suggestion that might further
support reproducibility via these sources.

3.2 Capability Enhancement
3.2.1 Best practice
The attendees noted that electronic notebook systems such as
IPython Notebook and R Studio9 should be used as they bring an
openness to the process, tools, versions and data one is using;
however they are not a panacea and problems can still arise in
analysis (i.e. errors).

The use of virtual machines (VMs) to package reproducible
computational experiments was highlighted and best practice of
configuration such as the link between cores and virtual disks was
discussed. Getting the research community to do this, as well as
creating simpler interfaces for them, was seen as a key way of
engineering VM based systems that try to cater for reproducible

5 Code as a Research Object:

https://github.com/mozillascience/code-research-object
6 Hacker or Slacker: https://github.com/hogliux/hackerorslacker
7 Open Source Health Check:

https://github.com/OpenSourceHealthCheck/healthcheck
8 Research Objects: http://www.researchobject.org/
9 RStudio: http://www.rstudio.org/

research infrastructure and catalogues of reproducible research,
such as Recomputation.org10.

On the human side it was clear that developers who specialise in
helping researchers will always be needed as even with some
software development skills, the researchers focus is research and
the developers focus is building tools to aid the research.

Programming languages that support easy understandability,
better documentation, modularity, integration of test code,
versioning and access to codes written in other languages /
systems were favoured in terms of better supporting
reproducibility: some examples mentioned were F#’s ability to
encode the intent of types e.g. dimension types, and the Go-lang’s
in-built package management and enforced code style guide at
compile time. Community infrastructure (forums, libraries,
availability and support) were seen as key to the ‘features’ of a
language and its support for reproducibility; the implication being
that it itself would be sustained and thus not a fragile dependency.

3.2.2 Ideas for the future
Ideas included making tools easier to use for non-experts such as
visual versions of make which made it easier to re-run your
analysis if the dependencies changed, and to hide version control
systems and repositories behind the GUI tools used by researchers
(e.g. a genome annotation application where the “master” copy of
the data was available as a GitHub repository was suggested as a
collaborative idea).

The digitisation of chemical structure was given as example of
how written lab book based work could be made more digital and
therefore available, linkable, and usable in reproducible research.
The ability to turn spreadsheets into web service accessible data
sources was also suggested: this was seen as making them more
useful by allowing programmatic access.

3.3 Advocacy of Reproducible Research
3.3.1 Best practice
Training was seen as key. This included training in computational
competencies by way of Software Carpentry [6] for PhD and early
career researchers but also to educate current project leaders and
Principal Investigators into the advantages of reproducible
research. In addition Open Science training [7] and the advent of
Massive Open Online Courses (MOOCs)11 were seen as
mechanisms to help get researchers trained and informed. An
ongoing challenge is how to get training ingrained in research
culture, and show a more direct benefit towards reproducible
research. One suggestion for possible best practice was to get
learners to reproduce other people’s work as part of the training.

The issue of funding dedicated software developers was also a
focus. From the nuts and bolts of various funding models that one
can use on Research Councils UK and European Commission
funded projects to the justification needed and use of “pathways to
impact” for software, experience was shared. Providing examples
of successful grants for others to inspect, and naming appropriate
reviewers who are respected and independent but are known to
understand the need for developers being funded were suggested
as ways of improving practice in this area.

10 Recomputation.org: http://www.recomputation.org/
11 Wikipedia definition of MOOC:

http://en.wikipedia.org/wiki/Massive_open_online_course

The SSI have supported the creation of a title: “Research
Software Engineers” for those who are working to support
research. This term has been favoured due to its increasing
ubiquity, established meaning and nascent community12.

3.3.2 Ideas for the future
One of the telling phrases at the CW was “Reproduciliteracy”
which was proposed having material available to promote the
benefits of reproducible research to the communities of those
represented at the workshop. Supporting this was the idea of a
“Hacker News”13 for the Open Science community. As much is
written about reproducible research in blogs and on various sites,
some type of aggregator or digest highlighting the most important
recent discussions would enable interested people to keep up to
date efficiently.

There was also a focus on developing standards for citing
software. Traditionally this tends to be done by citing a paper
about the software but this approach was novel in that it cited the
software directly and produced a format which worked with
existing systems such as EndNote. Another idea was building
systems that help track how long software takes to develop such
that this can be used as evidence in funding proposals and to give
more credit for those who write software to support research.

One of the impressive ideas developed during the hackday was
updates to ScienceToolBox14, a tool which automatically trawls
through Google Scholar and GitHub to link developers with
software and that software with its citations: normally a manual
process. In the future, linking tools like this to products like
ImpactStory15 will help to show the contribution that developers
who write software make to research outcomes.

4. CONCLUSIONS
It is clear that collaboration readiness, capability enhancement and
advocacy are key themes in reproducible research. What has
become apparent is the large amount of work still to be done to
socialise these ideas in the various research domains. Only by
doing this can the collective community bring about the much
needed changes in norms so that the contributions of software and
data is properly recognised. Likewise, the best practice identified
in the CW14 will only become commonplace if we can show the
benefits.

The perennial problem of motivating researchers and those who
support them to put in the effort to make their work reproducible
is key: this requires a culture change, and culture changes take
time. However investing in education, systems of credit for
software, advocacy, training of researchers in computational
techniques and mandating of publishers to require code and data
deposition can be seen as ways forward. While we have many
good ideas for collaboration readiness and capability
enhancement, continued advocacy is needed to help bring about
the improvements which the community of software in research
know are needed to make research more reproducible.

12 Research Software Engineer community: http://www.rse.ac.uk/
13 Hacker News: https://news.ycombinator.com/
14 Science Toolbox: http://sciencetoolbox.org/
15 Impact Story: https://impactstory.org/

5. ACKNOWLEDGMENTS
The authors and the Collaborations Workshop 2014 event were
supported by the UK Engineering and Physical Sciences Research
Council (EPSRC) Grant EP/H043160/1 for the UK Software
Sustainability Institute. We also acknowledge the support of
Microsoft Research, GitHub and the Oxford e-Research Centre
who provided sponsorship of the Collaborations Workshop 2014.

6. REFERENCES
[1] Crouch, S., et al. 2013. The Software Sustainability Institute:

Changing Research Software Attitudes and Practices,
Computing in Science & Engineering, vol.15, no.6, pp.74-80.
DOI: 10.1109/MCSE.2013.133.

[2] Owen, H. 2008. Open Space Technology: A User’s Guide
(3rd ed.). Berrett-Koehler. ISBN: 978-1-57675-476-4.

[3] Chue Hong, N. 2013. Five Stars of Research Software. Blog
post accessed 5th May 2014 from

http://www.software.ac.uk/blog/2013-04-09-five-stars-
research-software

[4] Perez, F., Granger, B.E. 2007. IPython: A System for
Interactive Scientific Computing. Computing in Science &
Engineering, vol.9, no.3, pp.21-29. DOI:
10.1109/MCSE.2007.53.

[5] Sandve, G.K., Nekrutenko, A., Taylor, J., Hovig, E. 20XX.
Ten Simple Rules for Reproducible Computational Research.
PloS Computational Biology, vol. 9, no. 10, e1003285. DOI:
10.1371/journal.pcbi.1003285.

[6] Wilson, G. 2014. Software Carpentry: lessons learned.
F1000Research, vol. 3, no.62. DOI:
10.12688/f1000research.3-62.v1.

[7] Kershaw, S. 2013. Open Science Training Initiative: Post-
Pilot Report. Technical Report accessed 5th May 2014 from
http://opensciencetraining.com/OSTI-PostPilotReport.pdf

