Monitoring performance of cardiac surgery: the SCTS governance programme

GL Hickey1; R Cosgriff2; B Bridgewater1,2,3

1Northwest Institute of Bio-Health Informatics; 2National Institute of Cardiovascular Outcomes Research; 3University Hospital of South Manchester

Part of this research was funded by Heart Research UK [Grant Number RG2583]
Background

Mortality data in adult cardiac surgery for named surgeons: retrospective examination of prospectively collected data on coronary artery surgery and aortic valve replacement

Ben Bridgewater on behalf of the adult cardiac surgeons of north west England

Publishing mortality rates by named hospital and consultant since 2001 and 2005 respectively
The flow of data

Surgeon
Imputed locally

Database manager
Validated locally

NICOR
Amalgamated nationally

Manchester University
Cleaned and analysed

Hospital audit leads
Validation

Manchester University
Cleaned and analysed

SCTS Executive
Notify members

World wide web
Publication

Healthcare provider
● 3166143

PublicaHon
● n = 378

Risk adjusted mortality rate
0%
5%
10%
15%

Number of procedures

World wide web

Data preprocessing

• The registry is cleaned:
 – transcriptional, numerical, temporal & clinical errors resolved
 – duplicate and non-cardiac records removed

• The data is filtered:
 – operations between 1st April 2008 & 31st March 2011
 – exclude transplantations; trauma; primary VADs
 – exclude minors (<18 years)
 – exclude private hospitals
 – exclude emergency & salvage procedures
Risk-adjustment

• Necessary to risk-adjust outcome measures
• Old models, e.g. logistic EuroSCORE, are miscalibrated
• Would lead to all units being identified as below the target
Risk-adjustment

• **Build a new model**
 – incomplete data
 – procedure specific?

• **Refit existing model**
 – does not fit contemporary cohort well

• **Recalibrate existing model**
 – only adjusts for single variable

• **Other options**...

Goodness-of-fit: Hosmer-Lemeshow $P = 0.56$

Discrimination: AUC = 0.78
Defining divergence

- Funnel plot methodology
- Confidence intervals used to classify ‘outliers’
- For consultant-level analysis we adjust for multiple comparisons (when making comparisons of many surgeons, high probability of identifying ≥1 ‘outlier’ due to chance)
- Standard errors are inflated due to observed over-dispersion (greater variability than expected by the binomial model)
One-sided 95% confidence limit adjusted for multiple comparisons.

Outliers above the ‘target’ categorised as yellow (low level) / amber (higher level) / red (alert)
Results: hospitals
Results: consultants
Conclusions

- Identifying ‘outlier’ healthcare providers is methodologically (and politically) challenging.
- Combining clinical and analytical expertise can reduce errors in classification.
- An ‘outlier’ does not necessarily imply poor practice; can be attributable to data quality or case mix.
- Future analyses to explore using more sophisticated statistical methodology.