
www.elsevier.com/locate/jss

The Journal of Systems and Software 79 (2006) 273–289
Comparing requirements analysis methods
for developing reusable component libraries

Alistair Sutcliffe a,*, George Papamargaritis b, Liping Zhao a

a Centre for HCI Design, School of Informatics, University of Manchester, P.O. Box 88, Manchester M60 1QD, UK
b BT Exact Technology, Orion Building MLB1/pp12, BT Adastral Park, Martlesham Heath, Ipswich IP5 3RE, UK

Received 5 May 2005; accepted 23 June 2005
Available online 15 August 2005
Abstract

Two approaches to requirements modelling are compared—the Domain Theory [Sutcliffe, A.G., 2002. The Domain Theory: Pat-
terns for Knowledge and Software Reuse. Lawrence Erlbaum Associates, Mahwah, NJ.] and Problem Frames [Jackson, M., 2001.
Problem Frames: Analysing and Structuring Software Development Problems, Pearson Education, Harlow.]—as a means of
domain analysis for creating a reusable library of software components for constructing telemedicine applications. Experience of
applying each approach as a domain analysis method to specify abstract components (object system models and Problem Frames)
is reported. The two approaches produced detailed specifications although at different levels of abstraction: problems frames were
better for monitoring, updating and data integrity requirements whereas the Domain Theory proved more useful for task support
and user interface requirements. The lessons learned from using model-based approaches to requirements specification, and their
merits for creating consistent specifications for reuse libraries, are discussed.
� 2005 Elsevier Inc. All rights reserved.

Keywords: Requirements specification; Reuse; Domain analysis; Generic models; Problem frames
1. Introduction

Few methods exist for requirements analysis and
specification of reusable software, in spite of over 20
years� interest in software reuse. The current practice
of developing application frameworks (Fayad and
Johnson, 2000), product lines, or families of reusable
software components is frequently not specified, so
development of new reuse libraries proceeds on an ad
hoc basis. Even when processes for developing reusable
components are given (e.g., Weiss and Lai, 1999;
Clements and Northrop, 2001) these supply little guid-
ance about the level of abstraction to adopt when
0164-1212/$ - see front matter � 2005 Elsevier Inc. All rights reserved.
doi:10.1016/j.jss.2005.06.027

* Corresponding author. Tel.: +44 0 161 200 3315/306 3315; fax: +44
0 161 306 3324.

E-mail addresses: a.g.sutcliffe@manchester.ac.uk (A. Sutcliffe),
george.papamargaritis@bt.com (G. Papamargaritis).
specifying reusable components. Domain analysis and
engineering analysis methods such as FODA (Simos
and Anthony, 1998; Vici et al., 1998) tend to be exten-
sions of ‘‘vanilla’’ systems analysis and approach
requirements specification simply as an exhaustive exer-
cise in identifying and cataloguing functions within a
particular domain. Little advice is given to help the soft-
ware engineer determine the granularity or abstraction
of components; furthermore, the scope of a domain is
left to the individual�s experience.

The Domain Theory (Sutcliffe and Maiden, 1998;
Sutcliffe, 2000, 2002) proposed a more systematic ap-
proach to deriving requirements specifications for reuse.
It provided a library of generic models and a design for
reuse process that have been applied to creating reus-
able libraries of components for information retrieval
applications (Sutcliffe and Carroll, 1999; Sutcliffe and
Dimitrova, 1999; Sutcliffe and Ennis, 2000). However,

mailto:a.g.sutcliffe@manchester.ac.uk
mailto:george.papamargaritis@bt.com

274 A. Sutcliffe et al. / The Journal of Systems and Software 79 (2006) 273–289
the process relied on expert knowledge of the applica-
tion area and the Domain Theory models to identify
many components. One motivation for this paper is to
subject the Domain Theory to further testing while also
developing an improved method of domain analysis and
component identification.

Problem Frames (Jackson, 2001) provide another set
of abstract models by which reusable specifications can
be developed. However, there are few reports of the
application of Problem Frames in practice (Bray,
2002), apart from a recent case study (Hall et al.,
2002). Problem Frames share a concern with the Do-
main Theory over the nature of dependencies between
the real world and the machine which is to be designed.
Tracing dependency may therefore provide a good start-
ing point for an analytic process by which components
might be discovered. A second motivation for this re-
search was to compare Jackson�s Problem Frames and
concept of investigating the boundaries between the
environment and designed components with the
Domain Theory requirements specification process.

The paper follows a case study application of the
Domain Theory and Problem Frames in a commercial
project to create a reuse library in the CSCW (computer
supported collaborative work) area. The paper is struc-
tured in four sections. First the Domain Theory and its
analytic process are described, followed by an intro-
duction to the case study domain. This is followed by
a report of the case study experience of applying the
Domain Theory process and Problem Frames, and the
resulting reuse library. Problem Frames and their appli-
cation are then described. The second author carried out
the case study as the user of the Domain Theory, while
the first author was the user of Problem Frames, so the
exercise carried out a limited test of the comprehensibil-
ity and utility of both theories with novice users. The
paper concludes with a section on the lessons learned
and a discussion of the research contributions.

1.1. Related work

Domain analysis methods are the conventional ap-
proach to developing reuse libraries (Weiss and Lai,
1999; Clements and Northrop, 2001) which advocate
functional decomposition and modelling product line
specification composed of common components and
variation points where specialisations will be introduced
during design by reuse. Jarzabek et al. (2003) employ use
cases to specify semi-generic requirements with customi-
sation scripts for reservation applications in a domain
analysis method. The approach to separating specifica-
tion of stable common parts of a system from the
changeable components was first introduced by Jackson
in his distinction between entities (stable core processes)
and functions in Jackson Systems Development (Jack-
son, 1983). However, domain analysis methods give
little advice on partitioning systems into components,
so reuse libraries with different component granularities
and boundaries can arise by application of the same
method to a single problem by different development
teams. To address the consistency of the components
problem, several reuse libraries have been posited at
the requirements specification level. For instance, con-
ceptual modelling patterns (Fowler, 1997) describe busi-
ness organisational structures with transaction patterns
for accounting applications (sales, money transfer).
Taxonomies of Generic Tasks have been described by
Zhou and Feiner (1998) who focus on tasks associated
with information visualisation such as comparing, eval-
uating, identifying and classifying objects; while Weh-
rend and Lewis� (1990) taxonomy covers generic
information processing tasks with mappings to suitable
visualisations. In knowledge engineering, Generic Tasks
have been proposed, such as diagnosis and analysis
(Breuker and Van Der Velde, 1994); however, these
tasks record problem-solving processes as templates
for building expert systems rather than specifying
requirements to support human activity.

In requirements engineering, reusable requirements
were described by Lam et al. (1997), who proposed a
process for generalising requirements by parameterisa-
tion, and abstraction of functions and data structures.
Generic functional requirements were specified as
semi-formal structured narratives with parameters that
could be specialised by adding constraints, objects, or
details of methods. Tool support for this approach
was developed that provided requirements documenta-
tion management with traceability between abstract
requirements and rationale justifying the need in the do-
main (Lam et al., 1997). The MRAM method (Mannion
et al., 1999) structures requirements for product families
using hierarchical decomposition techniques with heu-
ristics for identifying dependencies between require-
ments that indicate alternative designs and optional
requirements for different versions. The ERP (Enterprise
Resource Plans) literature describes reuse libraries in
some detail, and although methods for their application
in reuse are specified, little detail is given of the process
by which ERPs were created in the first place (Keller
and Teufel, 1998), although some clues to the origins
of the SAP library can be found in Scheer (1994). Mod-
els at the design level of abstraction have been proposed
by Shaw (1991), and architectures and components for
constructing generalised software architectures at the
system level by Harandi and Lee (1991); and in more
detail by Smith (1992), whose reusable components for
planning and scheduling algorithms were derived from
air traffic control domains. The object-oriented patterns
in the GOF library (Gamaa et al., 1995) provide solu-
tions for design problems with collections of objects;
for example, interfacing (Façade), handling polymor-
phism (Factory), encapsulation (Proxy), etc.

A. Sutcliffe et al. / The Journal of Systems and Software 79 (2006) 273–289 275
Component-based development (Levi and Arsanjani,
2002) describes goal-oriented processes with responsibil-
ity allocation of services in conceptual architecture to
requirements. This method for domain analysis and
composing services was illustrated by creating a frame-
work for web e-commerce domains (e.g., sales,
brokerage).
2. Overview of the Domain Theory

This section gives a brief description of the Domain
Theory. For a more complete description of the theory,
the reuse library of models and processes, see Sutcliffe
(2002). The models pertinent to the case study in this
paper are illustrated when the case study is explained,
and given in the book�s appendix A. The theory pro-
poses a component-based ontology composed of fami-
lies of generic models describing transaction-oriented
problems, and generic tasks which describe human
goal-oriented activity. In object-oriented parlance, the
Domain Theory posits generic models organised in a
class hierarchy of object collaborations, i.e., it is a
collection of objects that transform initial states into a
single desired goal state.

The top levels of the tree have been pruned, because
models at such high levels of abstraction do not contain
sufficient knowledge to be informative. The OSM (Ob-
ject System Model) hierarchy starts at a meaningful level
with nine separate trees, or OSM families: Allocation
describes matching- and broking-style problems: Object
Containment models transaction processing problems,
such as sales order processing, loans, and inventory
management; Composition models assembly and manu-
Fig. 1. Object Sensing OSM with as
facture, with its inverse abstraction Decomposition that
describes disaggregation; Sensing monitors and detects
problems; Construction models manufacturing and pro-
cesses that change objects; Logistics models movement
of goods and messages; Agent Control is for command
and control applications; and Simulation represents
decision support and other interactive modelling
applications.

OSM families can be organised into groups according
to their interaction with entities in the system environ-
ment. System input arrives via an Object Sensing Model
that detects and interprets events in the world. These can
range from simple validation routines for data entry to
complex event monitoring and interpretation. Object
Inventory, Accounting Object Transfer, Object Return-
ing and Object Allocation all model transactions on con-
ceptual entities that correspond to real world entities as
they are sold, purchased, hired, serviced, etc. The output
from these models is management information. Another
group of OSMs, Object Construction, Composition and
Decomposition, model manufacturing systems and are
usually associated with an Agent Control OSM that
organises and plans the operations. The Object Logistics
family has a specific purpose in transporting objects
through space. Agent Control OSMs directly affect the
world through a device, while Object Simulation repre-
sents a modelled world to the user on a VDU or other
device.

In a similar manner to OSMs, Generalised Tasks
are organised in 11 families: Information Acquisition,
Analysis/modelling, Diagnosis, Information Retrieval,
Validation/testing, Progress tracking, Planning/schedul-
ing, Navigation, Judgement/decision-making, Explana-
tion/advising, and Matching. During the specification
sociated generic requirements.

276 A. Sutcliffe et al. / The Journal of Systems and Software 79 (2006) 273–289
process, Generalised Tasks are specialised to more con-
crete examples; for instance, the generalised model of
Diagnosis determines the cause of some malfunction in
a system, locating its cause and proposing remedial
treatment, whereas instantiations may vary from medi-
cal diagnosis of a patient�s illness to the technical diag-
nosis of a fault in a photocopier.

Design rationale and generic requirements are at-
tached to each model to provide reusable knowledge
that can be specialised into functional requirements in
the new application, and a checklist of issues that may
require in-depth analysis. An example of an OSM with
attached generic requirements and design rationale is
illustrated in Fig. 1.

The requirements problem draws attention to issues
that need to be resolved, e.g., detectability of events, such
as the properties of the hardware sensor device that cap-
tures events, the range of physical spectrum it is sensitive
to, how it is connected to the external world and the
software machine. Fidelity of detection draws attention
to calibrating sensors so they detect significant events
without false alarms, while sample frequency explains
the problem of how often the device needs to sample,
given the anticipated frequency distribution of environ-
mental events. The requirements problems are linked
either to generic requirements or design rationale that
provides trade-off advice related to the problem. So
fidelity of detection is linked to GR2, event filters that
propose a functional requirement to screen out un-
wanted noise; while rare events monitor (GR3) advises
on the trade-off of detecting rare events which may be
significant or so infrequent that they can be discounted.
3. Case study: Component engineering for collaborative

telemedicine applications

We illustrate the process of discovering appropriate
reusable components by a case study specification of a
reuse library for middleware components to support
CSCW applications with a telemedicine reuse library
built on top of it as an application layer. The case study
was part of a research project in BTexaCT Technologies
in the component-based service provision area (Rudkin
and Smith, 2000; Rudkin et al., 2001). The business
motivation was to create a reuse library for CSCW
applications, and also to create a reusable application
framework for telemedicine. Hence part of the reuse is
in the area of middleware network services and part be-
longs in an end-user application domain. The problem
was how to partition this problem space when the com-
ponents interacted, e.g., end-user interaction in the med-
ical domain may have implications for CSCW support.
The monitoring service consisted of a set of diagnostic
sensors (hardware components) and methods that inter-
preted critical patient properties (blood pressure, ECG
signals and temperature) supplied from the sensors.
Two scenarios of use were employed to motivate the
analysis as follows:

3.1. Scenario 1. Patient monitoring

Mr. Jones has chronic diabetes and kidney problems.
He is in a nursing home waiting for a transplant opera-
tion, but his condition needs to be monitored to ensure
that he takes insulin to correct fluctuations in his blood
sugar, and diuretic drugs for his kidney complaint. At
two-hourly intervals he has to place a small blood sam-
ple in a blood-sugar analyser. While he is in bed he is
connected to a heart-rate monitor that also detects his
GSR (Galvanic Skin Response), providing data on his
diuretic condition. When the monitoring system detects
any deviation from acceptable limits in his blood sugar,
blood osmotic pressure or heart rate, the resident nurse
is alerted to take appropriate action.

3.2. Scenario 2. Collaborative diagnosis

Three consultants are discussing Mr. Jones� case at
different locations. They can inspect X-rays of his kid-
neys and pancreas, MR scans of the same, recordings
of ECG electrocardiograms, and his history of blood
sugar and osmotic pressure readings over several
months. In addition there is a simulation of various drug
treatments which allows doctors to test different drug
combinations and observe the effects on blood sugar
and osmotic pressure over time. The doctors are con-
nected by a video conferencing system and can view
each other and/or the medical data; however, they can-
not view all of it at once, so they have to agree which
items are on a shared display. The consultants review
Mr. Jones� history, then view the MR and X-ray data
to decide whether a transplant is necessary in the near
future. Some disagreement on this point leads them to
investigate treatment options. They review a range of
drug treatment options before agreeing the appropriate
combination to test in the simulation. Once they have
viewed the simulation results they record a common
diagnosis and treatment plan.
4. Domain analysis method

The Domain Theory design process starts by identify-
ing the requirements of a new application in order to
match them to Generic Tasks and object models. The
process follows a walkthrough-style analysis and starts
by identifying any sub-systems in the application. These
may be suggested by geographical distribution, owner-
ship by different parts of the organisation, or by locating
who operates the system. A dual track approach is used
which first decomposes the application to discover

A. Sutcliffe et al. / The Journal of Systems and Software 79 (2006) 273–289 277
OSMs and Generalised Tasks, and secondly traces
dependencies between components following event
threads. Combination of the top-down and more bot-
tom-up event analysis identifies the appropriate set of
abstract models.

The following questions help to discover OSMs or
Generalised Tasks inherent in the system.

• Who or what are the agents that carry out activity
and tasks within the system? List the responsibilities
of the agents. Agent responsibility relationships point
to tasks. Doctors, consultants and nurses are the
principal agents in the system, with responsibilities
for monitoring the patients� health and diagnosing
illness, and deciding on treatments.

• Describe goal-oriented activities and the states they
produce once complete. Activities either attain or
maintain goal states. Most tasks have achievement
goals but monitoring tasks might have maintenance
goals. The system goals are to ensure that the patient
remains healthy, or at least that the treatment is suc-
cessful and the patient�s condition does not deterio-
rate. The goals indicate tasks of monitoring,
diagnosis and treatment.

• Describe the agents or objects acted on by the system,
and the nature of the state change they undergo. The
patient agent is changed by the system when treat-
ments are carried out. However, doctors and nurses
may act on patients in the real world, so the Agent
NatureNature of Changeof Change

disc

continuous

2D

movement

existence

3D

attribute
propertyattribute

value

space

movement
type

f
environm

discrete

continuous

Monitored ObjectMonitored Object

type of change

discrete

continuous

Fig. 2. Decision tree for discovering sub-c
Control OSM may be appropriate; alternatively, the
treatment may in some sense improve patients� health
so an Object Repair OSM could also be indicated.

• Describe the life histories of the objects changed by
the system and the nature of their change. A decision
tree guides object model identification (see Fig. 2). If
the composition of the object is changed in any way,
it belongs to the Object Construction family; other-
wise, any change in ownership is evaluated. If the
object life history leads to a permanent change then
Object Supply abstraction is indicated; however, if
ownership change is temporary then a loan (Object
Hiring) is appropriate; but if a relationship is formed
that could be a precursor of ownership change, then
Object Allocation models reservation, booking and
matching applications. Other possibilities for concep-
tual objects are movement across some physical space
in Object Messaging, or being represented to the
external world in Object Simulation. The patient
agent is physical and the initial state can be assumed
to be unsatisfactory, so Object Repair is indicated.
However, representations of the patient are also dis-
played to users (doctors, nurses) in the real world
so Object Simulation may be involved. If these con-
ceptual representations are changed in some way
the conceptual Object Construction is implicated.

• Define the boundaries of the real world that needs to
be modelled in the system. The system will interact
with the physical world through sensors and devices;
2D Object Movement Sensing,
e.g. ant changes direction

2D Continuous Movement,
e.g. ships at sea

Object Property Sensing,
e.g. colour in chemical reaction

Continuous Value Sensing,
e.g. heart beat monitoring

Continuous Value Sampling,
e.g. blood pressure monitoring

Create-Object Instance Monitoring,
e.g. any database update

Delete

rete

ree
ent

2D Constrained Object Movement
Sensing, e.g. trains in track sectors

3D Continuous, Constrained
e.g. air traffic control

Value Sample Sensing, e.g. periodic
check on group membership

3D Constrained Flexible,
e.g. manufacturing cells

lasses in the Object Sensing family.

278 A. Sutcliffe et al. / The Journal of Systems and Software 79 (2006) 273–289
however, many information systems simply process
conceptual representations of their physical counter-
parts. The telemedicine domain clearly has a physical
presence in the patient; however, it also needs a rep-
resentation of the patient that is shared between the
doctors, and this information has to be transported,
so an Object Messaging model is indicated with
Object Simulation and conceptual Object Construc-
tion because changes will be made to the model.

• Trace events from their origin in the system environ-
ment through the system components to their des-
tination, ending in either a data structure update or
an event being passed back to the system envi-
ronment. Event tracing flows from patients to
monitoring devices and displays; it also flows
between doctors and information displays during
consultation.

4.1. Domain analysis: Patient monitoring

Patient monitoring involves detecting events, so Ob-
ject Sensing models are required. Object Repair records
the treatment events that help the patient�s condition
and these events will originate from doctors or nurses.
Patients will be assigned to nurses/doctors, hence an Ob-
ject Allocation model will process input lists of patients
and medical staff. Devices connected to the patient to
administer drugs or other treatments indicate Agent
Control models. Information about the patient has to
be transmitted between doctors, indicating Object
Messaging.

Input events to most systems are processed by an Ob-
ject Sensing Model that detects events emanating from
the real world. In the telemedicine application there
are two possible sources: the patient who is being mon-
itored, and one or more doctors who will be diagnosing
problems and initiating treatments. Tracing the Object
Sensing tree sub-classes (see Fig. 2), the best fit is Ob-
ject/Agent property sensing since we wish to detect the
properties of the patient such as blood sugar, osmotic
pressure, heart rate, etc.

Sensing will be passive as the machine will be
responding to events created by the patient. Require-
ments problems indicated by the Object Property
Sensing Model are: fidelity of detecting events to avoid
false alarms; sampling rate and frequency of state
change in the world, to avoid missing rapid changes;
interpretation of events and the context of change;
and false events caused by oversensitive detecting
devices.

Interpreting events depends on the computer system
possessing a model of the observed phenomenon (i.e.,
the patient); however, the accuracy of event interpreta-
tion depends on the fidelity and detail contained in the
patient model. This creates further requirements for an
accurate and up-to-date model of the patient, which in
turn raises the question of how such a model is updated.
This indicates Object Sensing to capture the inputs and
Object Construction to update the model.

Generic requirements associated with the OSM are
imported into the specification and specialised as
follows:

1. Reliable event detector and interpreter: a non-func-
tional requirement which needs to be specialised as
a quantifiable target, e.g. the event sensor will detect
all patient events within 5 ms and report significant
changes with less that 0.001% errors.

2. Sampling rate control: user interface features to set
the monitoring interval for each variable.

3. Tuning sensing mechanism to eliminate false alarms:
controls on the hardware-software interface so device
event detection can be customised.

4. Interpreters/filters to eliminate false alarms: ability to
change ranges and pattern recognisers, e.g., heart
beat irregularities.

5. Log file for history analysis of events: raises the
question of how much data is stored and for how
long, thus implying a requirement for an archive
process.

Once incoming events have been detected and inter-
preted, the information needs to be distributed to one
or more medical staff who are responsible for the pa-
tient�s care. This implies an Object Messaging model
to transport messages to several destinations. In this
case the associated requirements problems are: band-
width and network constraints on throughput; detection
of network congestion; and messages that may get lost
or corrupted, indicating requirements to counteract
message delivery problems. Furthermore, information
within the message may be confidential and it certainly
needs to be secure, so this adds requirements for secure
transmission. The generic requirements list for this part
of the system is:

1. Access protocol for message transmission, e.g., token
ring, CSMA/CA (Carrier Sense, Multiple Access/
Collision Avoidance: the Ethernet protocol).

2. Adaptable route planning to avoid network
congestion.

3. Error recovery protocols (acknowledge, resend).
4. Message preparation and formatting (packet

protocols).
5. Message assembly.
6. Detecting message loss (packet headers, sequence

codes).

Many of these requirements may be beyond our
immediate control; however, we can specify a quality
of service that the network provider should supply.

A. Sutcliffe et al. / The Journal of Systems and Software 79 (2006) 273–289 279
Once the information has been transported to a doc-
tor�s or nurse�s workstation it has to be displayed in a
comprehensible manner to the user. In Domain Theory
terms this points to an Object Simulation model which
represents patient monitoring information in the context
of the patient model, i.e., the danger zone for heart rate
is interpreted by reference to an individual patient model
to account for age, general health, etc. So far the domain
analysis has only traced one causal chain of events. The
telemedicine domain also needs to support the doctor�s
activity in analysing patients� problems from monitored
data, diagnosing any causes of change and carrying out
effective treatment.

4.2. Domain analysis: diagnostic support

This analysis uses the Domain Theory�s Generalised
Task models. A decision tree (see Fig. 3) guides the ana-
lyst towards appropriate Generalised Tasks, in this case
Diagnostic and Matching to control allocation of users
to collaboration sessions and control for access to
shared artefacts.

The generalised model of Diagnosis, derived
from Rasmussen (1986), contains sub-goals for monitor-
ing and interpreting events, before arriving at a causal
diagnosis for those events (see Fig. 4). The General-
ised Task specialises in models for causal diagnosis
with living things, designed artefacts and complex
systems.
pathol

n

commun

sense
making

understanding
current world

acting in
the world

gathering
information

need new

fin

mon
exis

model future

ordering future
world

fut

futuredecision
future

future

Relationship of
task and
real world

Fig. 3. Decision tree to iden
Requirements problems include: gathering informa-
tion for diagnosis when the signs might not be immedi-
ately accessible; structuring facts to create a model of
the problem; and determining the degree of automation,
which is dependent on the degree of predictability in the
domain.

Functional allocation in diagnosis may vary from
near-complete automation in deterministic domains
(e.g., electrical fault finding) to collaborative models in
less deterministic domains (e.g., medical diagnosis). In
the latter, the computer supplies information on the
faulty system, lists of potential faults, signs and symp-
toms, possible causes, with repair strategies for fault
types. Given the poor track record of medical diagnostic
expert systems, only partial support for the users� task is
advisable by pre-processing information, e.g. screening
out hypotheses that do not match known observations.
Functional requirements associated with partial auto-
mation are:

1. Pre-processors to sort and rank symptoms and
observed problems in order of severity, importance,
time, etc.

2. Question checklist dialogues to ensure full capture of
diagnostic information.

3. System model simulations to locate problems and
support diagnostic reasoning.

4. Expert system inference to diagnose possible causes
from observed signs.
Diagnosis

Analysis/Modelling

Validation

Explaining/Advising

Information Acquisition

Information Retrieval

Progress Tracking

Forecast

Planning/Scheduling

Matching

Decision

Control

Navigation

ogy

ew domain
testing
icating

 info.

d existing

itor
ting

ure state

 action

 relations

action

tify Generalised Tasks.

Diagnosis

Gather
facts

Confirm
cause

Form
hypotheses

Analyse
cause

Locate
problem

Carry out
repair

Plan
repair

Check
results are
consistent

Run test

Select
causal hypo-

thesis

Remedy
problem

Test
effectiveness

repair
sub-task* *

diagnostic
heuristics

& strategies

Fig. 4. Goal hierarchy for the Diagnosis task.

280 A. Sutcliffe et al. / The Journal of Systems and Software 79 (2006) 273–289
5. Interactive microworld system models with ‘‘what-
if?’’ testing facilities.

6. Automatic implementation of treatments for identi-
fied problems.

7. Suggestions for potential cures/treatments.
8. Facilities for follow-up tests to confirm diagnosis.
9. Guided assistance for treatment/repair strategies and

procedures.

The reusable knowledge associated with the task
model helps to elaborate the requirements specification
as well as indicating architectural components for sys-
tem models, simulations for check treatments, and advi-
sory sub-systems.

4.3. Domain analysis: CSCW layer

The collaboration sub-system needs to deliver mes-
sages to several users as well as controlling interaction
with shared objects. The goal of delivering messages
points towards an Object Messaging OSM. Apart from
transmission of ordinary messages (interaction requests,
audio/video communication among users), transmission
of real-time audio or video content may be necessary for
telemedicine purposes (e.g., cardiogram audio samples,
endoscope images, etc.). The system must ensure that
the appropriate communication quality and reliability
is associated with critical tasks (i.e., patient monitoring,
examination).

Following the event trace walkthrough, the first need
is for the system to register users to ensure only author-
ised users can gain access. The goal state in this problem
is for all the system usage requests to be identified and
authenticated, which points to an Object Allocation
model. Once users have been registered, the problem
of shared object control arises. The assumption is that
only one user can interact with a shared object at once,
hence a prioritisation process is necessary. An Object
Allocation model is employed for this purpose. A user
will be allocated control until it is relinquished or the
system enforces a timeout to ensure that access is dis-
tributed more democratically.

The composite architecture of both sub-systems is
illustrated in Fig. 5.

Space precludes exhaustive description of all the gen-
eric requirements, so we have selected an example of de-
sign rationale for allocation of access control in Object
Messaging systems which indicates trade-offs among
three options for shared object control (Fig. 6), as
follows:

1. System-based: if the client requests the floor, the sys-
tem assigns it to that client if the floor is free; if not,
then the client�s request is queued. As soon as the
floor becomes free because the previous owner
releases it, the system assigns it to the longest-waiting
client.

2. Manager-based: a user is given authority for the
resource allocation. The user-manager assigns the
floor to a participant or releases it on another
request. If the manager releases control it returns to
a system mode.

3. Token-based: in this case, the user who owns the
floor may choose the next owner of the floor. If the
current owner releases the floor then the control
switches to a system mode. A specialisation of this
option is round robin-based token control.

Generally one option would be chosen for implemen-
tation; however, to preserve flexibility when construct-
ing a reuse library we intended to provide the reuser
with the choice of all three options.

Allocator

reserve
allocate

Allocator System World

locations

PatientTransporter

transfer

Sensor

detect

Monitor

interpret

Patient

diagnose
update

Object

edit

User

request

Sender Receiver

Owner

manipulate

resource

information

Model,
information

1

2

3
used

by

move

lock
unlock

owned
by

patient
events

exists
in

Object Allocation:Object Allocation:
passwordpassword

Object Allocation:Object Allocation:
shared object controlshared object control

Object Messaging:Object Messaging:
communicationcommunication

ObjectObject
SensingSensing

authenticate

Fig. 5. Composite system architecture after the modelling phase, showing the CSCW and patient monitoring components with interfaces between
sub-systems: (1) logon authorisation; (2) shared object allocation; (3) patient monitoring data. The Diagnosis task and Object Construction OSMs
have been omitted for simplicity.

Shared
Floor

Control

Token
Holder

Manager
Controlled

Queue
Based

Equal
Sharing

Response
Time

Implementation
Cost

+

+

-

-

-

+

+

Design
issue

Options
Generic

requirements

Selection criteria
Non-functional requirements

Fig. 6. Design rationale for shared object control. Positive influences
are marked with a plus sign, negative or decreasing influences with a
minus sign; thus the manager-controlled option has a positive influence
on cost and response time.

A. Sutcliffe et al. / The Journal of Systems and Software 79 (2006) 273–289 281
5. Problem Frames

Problem Frames were intended as a formal approach
to requirements specification rather than a method for
design for reuse so this case study applies Jackson�s the-
ory in a new way. Problem Frames (Jackson, 2001) are a
set of generic models that describe recurring software
engineering problems, although at a higher level of
abstraction than the Domain Theory. Jackson draws
attention to the connection between the designed system
and the real world in which it is or will be embedded. He
sees requirements engineering as the process of precise
specification of the dependencies between designed sys-
tems and the external world. Domains are divided into
three types: lexical domains, which are symbol systems
such as text, diagrams and models; causal domains that
model laws and predictable behaviours in the real world;
and biddable domains that exhibit behaviour but have
no guarantee of reliability, e.g., human users are bidda-
ble in the sense that they may or may not respond.
Applications are decomposed using five abstract Prob-
lem Frames, described by Jackson (2001) as follows.

5.1. Required Behaviour

‘‘There is some part of the physical world whose
behaviour is to be controlled so that it satisfies certain
conditions. The problem is to build a machine that will
impose that control.’’

There is no direct equivalent of this frame in the Do-
main Theory, as it refers to compliance with physical
laws or conditions that exist in the real world. Instead,
the Domain Theory specifies abstract models for

282 A. Sutcliffe et al. / The Journal of Systems and Software 79 (2006) 273–289
Required Behaviour in problem contexts of control,
construction, and transaction processing.

5.2. Commanded Behaviour

‘‘There is some part of the physical world whose
behaviour is to be controlled in accordance with com-
mands issued by the operator. The problem is to build
a machine that will accept the operator�s commands
and impose control accordingly.’’

The nearest analogue in the Domain Theory is the
Agent Control OSM, which models the behaviour of
the controller and controlled agent.

5.3. Information Display

‘‘There is some part of the physical world about
whose states and behaviour information is continuously
needed. The problem is to build a machine that will ob-
tain this information from the world and present it at
the required place in the required form.’’

Mapping to the Domain Theory for this frame in one
to many, as the problem is decomposed into Object
Sensing which obtains information about the physical
world, Object Messaging if the information has to be
transported to the required place, and then an Object
Simulation OSM to represent it in the required form.

5.4. Workpieces

‘‘A tool is needed to allow the user to create and edit
a certain class of computer processable text or graphic
objects, or similar structures, so that they can be subse-
quently copied, printed, analysed or used in other ways.
The problem is to build a machine that can act as this
tool.’’ Workpieces maps to a Conceptual Object Con-
struction OSM.

5.5. Transformation

‘‘There are some given computer readable input files
whose data must be transformed to give certain required
output files. The output data must be in a particular for-
mat and it must be derived from the input data accord-
ing to certain rules. The problem is to build a machine
that will produce the required outputs from the inputs.’’

This Problem Frame maps to several OSM trans-
action families that require data transformation, e.g.,
Object Inventory, Object Hiring, Object Allocation.

Each frame encapsulates objects in the real world,
objects in the required system, and connections between
them that formally model the assumptions made about
the system. For example, the Workpiece frame describes
the interaction between events and their effect on a
model held in the machine. Problem Frames have
‘‘frame concerns’’ which record issues that need to be
addressed in a class of problems, in a similar manner
to the Domain Theory�s requirements problems; in addi-
tion, more general concerns are described, such as issues
of overrun, initialisation, reliability, identity of individu-
als, and completeness. Problem Frames also indicate
requirements for correct behaviour; for example, in
Workpieces one frame concern draws attention to the
need to validate that commands are syntactically correct
and appropriate for a context, thereby preventing errors
such as trying to edit a record before it has been created.
A limited number of composite Problem Frames are de-
scribed: for instance, the Model View Controller generic
architecture can be mapped to Workpiece frames for
updating the model and the display, Commanded
Behaviour for user editing controls, and Required
Behaviour for maintaining consistency between the
model, edits and the view on the model. Composite
frames are associated with concerns such as precedence,
consistency between domain descriptions, interference
of interactions between frames, and scheduling of
machines that share a common domain.

5.6. Domain analysis using Problem Frames

Identification of Problem Frames relies on investigat-
ing the connection between the real world and designed
machine, and inquiring about the dependencies between
‘‘domain properties’’: facts and laws which are known to
be true in the real world, and specifications of the de-
signed machine that meet the stated system require-
ments. Problems are decomposed and mapped to
Problem Frames using the following heuristics (Jackson,
2001):

• Identifying the core problem. This is similar to the
essential system model (McMenamin and Palmer,
1984) or the entity model in JSD (Jackson, 1983),
and represents the objects involved in the process that
achieves the major system goal.

• Identifying the ancillary problems that surround the
core, especially information processing sub-problems.
These map to functions in JSD, also error handling
routines.

• Standard decomposition of sub-problems, using com-
binations of Problem Frames to build composite
frames, also investigating the dependency of static
or dynamic models on the physical world.

• Identifying concerns and difficulties. Frames can be
discovered from frame concerns.

• Different tempi: more than one temporal pace in an
application, where one part changes quickly while
the other changes over a longer period of time. This
suggests two dynamic and static model sub-problems.

• More than two moods. If the frame has more than
one indicative mood (domain properties, facts, laws)
and more than two optative statements (i.e., require-

A. Sutcliffe et al. / The Journal of Systems and Software 79 (2006) 273–289 283
ments which state the goal to be achieved and the
behaviour specification of the machine that achieves
the goals) then there are probably more frames in
the application.

• Complex domains or requirements. These usually
have several Problem Frames, although no criteria
for assessing complexity are stated by Jackson. Sub-
sets of heuristics are given for combinations of prob-
lems frames such as Required and Commanded
Behaviour.

• Modelling the user: a separate sub-problem.

Space precludes a more complete description of Jack-
son�s theory for which the reader is referred to Jackson
(2001).

5.7. Problem Frame analysis: patient monitoring

In Problem Frame terms, patient monitoring is a cau-
sal domain. The accuracy of event interpretation de-
pends on the fidelity and detail contained in the
patient model. An Information Display Problem Frame
models monitoring events in the external world, with a
Transformation frame interpreting them with reference
to the system�s internal model of the external entity
(i.e., the patient) and representing the events for the
users (nurses/doctors). The frame models the change
from analogue values to a representation of the patient�s
blood pressure, EEG, etc. The monitoring and interpret-
ing part of the patient sub-system is modelled by two
interconnected Problem Frames: Information Display
and Transformation. The Transformation frame con-
cern is the need to interpret data as quickly as possible
to make sure it is accurate, because if it is too slow,
Patient Model
Ranges, Threshold

Monitoring
machine

Senior
nurse

Designed
domain

Designed
machine

Patient
given domain

Requirements

settings
thresholds

ranges
thresholds
patient ID

KeyKey

ranges

software
algorithms

assumptions
data settings,
parameters
DBMS, files

external agent
or entity

dependencies
shared phenomena

requirements

Fig. 7. Information Display Problem Frame diagram for the patient monitor
not been illustrated.
the monitored world will have changed so the interpre-
tation of the patient�s state will be inaccurate. The
Domain Theory uses one OSM (Object Sensing) for
monitoring and one Generic Task for interpreting. Both
theories draw attention to the need to interpret external
events by reference to the system model of external
entities; however, the Domain Theory requirements
problems concern detecting events, whereas Problem
Frames tend to focus more on transformation of
representations.

The patient monitoring and data display for nurses is
modelled by an Information Display frame (see Fig. 7).
Implicit in this frame is a patient model sub-system
(thresholds/settings) which is composed of a Workpiece
Problem Frame for updating the model either from user-
initiated edits or automatic updates collected by the
monitoring system (illustrated in Fig. 8). Many Infor-
mation Display frames will be necessary to model mon-
itoring of different sensor devices, e.g., (blood pressure,
temperature, ECG, etc.), and data from these frames
has to be integrated. Mapping data integration to Prob-
lem Frames is not direct; either a Connection frame or
more usefully a Transformation frame can be used.
The patient monitoring Information Display frame is
associated with an Identity frame concern, which draws
attention to the need to specify the integrity of model
updating to preserve the individual�s identity, hence an
update to Mr. Jones� blood pressure alert threshold en-
tered by the doctor has to be faithfully registered with
Mr. Jones� record in the Patient database. There is an-
other identity concern in the patient monitoring sub-sys-
tem which points out that the connection between the
individual patient, the hardware sensor, and the event
stream processed in the software machine all need to
Patients

s Monitor
patients

Nurses’
UI

Monitoring
devices

vital
signs

events
measures

notify
message

alert settings

alert

patient
information

Sub-problem

ing sub-system. The Transformation frame for event interpretation has

SharedControlling

Doctor

Model
editor

User/Patient
model

Display
requirements

Model
requirements

Display
handler

Information
display,

Patient data

Workpieces
problem frame

Information
Display

problem frame

updates

Patient

settings

alerts,
patient data

edit
requirements

Fig. 8. Problem diagram in the patient model sub-system. Not
illustrated are other instances of Information Display frames which
specify editing controls and feedback on the display.

284 A. Sutcliffe et al. / The Journal of Systems and Software 79 (2006) 273–289
be checked to ensure they monitor the same individual.
In Domain Theory terms this sub-system contains Ob-
ject Construction to build and update the model, and
Object Simulation to represent it. The Domain Theory
and Problem Frames propose similar abstractions and
draw attention to the similar problems expressed as
frame concerns or requirements issues (e.g., update
integrity problem in Workpieces).

Problem Frames are difficult to map in detail to
task-based activity. An Information frame models the
representation of the patient monitoring data, while
Commanded Behaviour frames can be applied to match-
ing symptoms to possible causes in diagnosis and then
matching the diagnosed causes to treatments (see
Fig. 9). In contrast, the diagnostic part of the applica-
tion is modelled in considerable detail by the Domain
Theory as a single Generalised Task and by three OSMs,
Doctor

Diagnosis
machine

Patient
model

Analysis
requirements

Diagnostic
rules

analysis request

symptoms

predictions

Fig. 9. Commanded Behaviour Problem diagram for the diagnosis
support sub-system. This frame is associated with an Information
Display frame for representing the results of the diagnosis.
which describe requirements for task support and infor-
mation requirements as well as drawing attention to
requirements trade-offs when automating diagnosis
according to the accuracy of information and determin-
ism of diagnostic rules.

5.8. Problem Frame analysis: CSCW sub-system

The CSCW component contains four sub-systems.
First is message passing, which involves encoding and
decoding packets, modelled respectively as a Transform
frame for encoding, followed by a Commanded Behav-
iour frame for addressing, and two Required Behaviour
frames, one for dispatching and controlling the routing,
and another for handling the communication protocol
acknowledgements. Error checking for lost packets adds
more Required Behaviour frames. Allocating users to
collaborative sessions by a logon facility suggests a
Commanded Behaviour to assigned valid users (see
Fig. 10). Control of shared access to a common artefact,
i.e., editing the patient model, is a Workpiece frame with
Commanded Behaviour to control access of users to ses-
sions; the same is true for viewing/editing the rights over
a shared artefact. Integrating Problem Frames with
shared phenomena (in this case, users) raises composi-
tion concerns of consistency, precedence, interference
and scheduling. For instance, a request to edit an arte-
fact from a user who has not joined the current session
is a nonsense. Specifying requirements to handle these
concerns necessitates modelling permissible event se-
quences at the state transition level, as well as handling
identity concerns for authorised users. Access rights will
ultimately depend on domain-specific requirements such
as constraints on the number of nurses and doctors who
can join a particular session. To handle these functions
the generic CSCW modules need parameterised controls
User

Allocation
machine

Registered
users

Logon
requirements

Session
allocation
machine

logon request

Authorised
users

artefact

Session
control

requirements

access requestusers

Fig. 10. Commanded Behaviour Problem Frames diagram in the
CSCW sub-system for allocating users to sessions, and controlled
access to shared artefacts.

A. Sutcliffe et al. / The Journal of Systems and Software 79 (2006) 273–289 285
and editors to set such parameters (more Workpiece
frames).

Message handling in the CSCW sub-system involves
several decompositions covered in Jackson�s book in
the packet-router problem. In the Domain Theory, the
CSCW is composed of message-passing OSMs. Turn-
taking for conversation management in CSCW is mod-
elled by another Commanded Behaviour Problem
Frame, or in the Domain Theory by an Object Alloca-
tion OSM, with an Associate Generic Task. Space pre-
cludes further description of specification; however, it
should be noted that the preceding description only cov-
ers the Problem Diagram level; the Jackson approach
progresses to more formal specification of requirements
for the designed system and assumptions about the
domain at the Problem Frame diagram level.
6. Lessons learned

6.1. Identifying abstractions

Problem Frames were identified using Jackson�s
problem decomposition heuristics and following depen-
dency links from event output from one frame to an-
other. The small number of Problem Frames made
identification relatively easy; for example the CSCW
problems involved access control and session allocation,
which strongly indicated Commanded Behaviour
frames. Similarly, information monitoring indicated
Information Display frames, and any need to change
representations of input events into output suggested a
Transformation frame. Editing operations and user-ini-
Table 1
Abstract models identified in case study sub-systems by the Domain Theory

Modules OSM

TeleMedicine

1. Patient monitor Object Sensing
2. Patient state interpreter Interpret & Judgement G

3. Diagnostic assistant Diagnosis GT
Object Simulation
Object Allocation

4. Patient model Object Construction
Object Simulation

5. Treatment control Agent Control
Object Repair

CSCW

6. Message passing Message Transfer

7. Shared access to object control Object Allocation
Object Construction—A

8. Common object display Object Simulation
Object Construction

9. Turn-taking access control Object Allocation
Object Construction
tiated changes to internal system models were easily
identified as Workpiece problems. Difficulties with
Problem Frames arose when connecting and integrating
them. The models rapidly grew into multi-frame repre-
sentations. Although some reduction in complexity
was possible by using frame context diagrams, there
was no escape from the need to specify detailed inter-
frame connections and formally model the dependencies
between the domain properties (indicative requirements)
and required system behaviour (optative requirements).

Domain Theory models were identified by several
strategies, such as following event dependencies, links
between models in the Domain Theory library, identifi-
cation heuristics and lexical identification using synonym
tables. Since the Domain Theory did not explicitly allo-
cate methods (i.e., tasks) to objects, some confusion
arose because of the redundancy between OSMs and
Generic and Generalised Tasks. For instance, Object
Allocation modelled the problem in an object-oriented
view, while Matching (Generalised Task) described a
process-oriented view. Some system components
mapped naturally to Generic Tasks, e.g., diagnosis and
interpreting event patterns, whereas others mapped more
easily to OSMs, such as Monitoring and Object Sensing.
Object Repair was not an obvious abstraction for the
diagnosis and treatment sub-system, and the multiple in-
stances of Object Allocation encountered the same diffi-
culty as the Commanded Behaviour Problem Frame:
namely, it was hard to integrate turn-taking control
and shared-object control in the CSCW layer.

A summary of the modules identified from both the
Domain Theory and Problem Frames analysis is given
in Table 1.
and Problem Frames approaches

Problem Frame

Information Display
Ts Transformation

Required Behaviour
Transformation
Information Display
Commanded Behaviour
Workpiece
Information Display
Commanded Behaviour

Transform—encoding
Command—dispatch
Workpiece (model)

gent Control Commanded Behaviour—Allocate
Workpiece
Information Display
Workpiece
Information Display

286 A. Sutcliffe et al. / The Journal of Systems and Software 79 (2006) 273–289
Fifteen OSMs were necessary for the core application
but adding user interfaces for editing the registered users
database and three Object Sensing Models for other
monitoring devices took the total to 19 plus 3 Generic
Tasks. The core model needed 17 Problem Frames; how-
ever, each interactive user interface is modelled by at
least two or three Information Display frames, and
more Information Display instances were required for
modelling monitoring devices, bringing the total to 23
which would be increased when more monitoring de-
vices were attached. Both the Domain Theory and Prob-
lem Frames contributed requirements and insights into
the specification of the patient monitoring and nurse
alert functions, e.g., identity concern and fidelity of
event capture Generic Requirement. Both approaches
were weak on integration of several data sources. Prob-
lem Frames modelled the diagnostic support component
as Transformation and Commanded Behaviour for
treatment, but gave little guidance about the functional
requirements. The Domain Theory�s generalised task
models provided more specification detail, as well as
guidance on functional allocation. However, both theo-
ries provided little advice about the user interface
requirements, e.g., alert function modality, message
format, etc. for the nurses or doctors.

In the CSCW layer both theories provided reusable
requirements and specification advice for the shared
artefact and session control components, but were less
forthcoming on the generic dialogue control and presen-
tation layer. Problem Frames dealt with these issues in
the composite Model View Controller frame and indi-
rectly addressed CSCW concerns of shared viewpoints
and constructing different presentations on one shared
object for each user (Rodden, 1991) by Interaction and
Consistency frame concerns.

6.2. Lessons learned: reusing knowledge

Once the abstractions had been identified, both theo-
ries guided the software engineer towards identifying
important problems inherent in the application domain.
Problem Frames do so partly by encouraging more for-
mal specification of the dependencies between the real
world domain properties and machine requirements
and partly through frame concerns that draw attention
to typical pitfalls in specification. The Domain Theory
presents advice explicitly in the form of requirements
problems that point to pitfalls, associated with generic
requirements that present solutions as functional
requirements.

Frame concerns were useful in pointing out several
potential pitfalls, such as the need to specify identity
of individuals (in patient records, patient monitoring
data); in update integrity of patient data, accuracy and
recency of data; and in synchronisation of control in
CSCW conversation and access to shared artefacts
(e.g., the individual who edits can also talk about the
edits). However, composite frame concerns are not at-
tached to particular Problem Frames so reuse of this
knowledge was almost a separate process from specifica-
tion. Informal inspection of dependencies between
Problem Frames uncovered some potential flaws in
specification in handling error conditions, such as lost
connections between individuals and maintaining con-
versational threads for recovery.

Problem Frames partitioned the system into more,
lower-level components, while drawing attention to sev-
eral specification problems as frame concerns for update
integrity, access to shared data, synchronising queues
and controlling execution sequences. Identification of
Problem Frames was more difficult because Jackson�s
method relies on examples and a few heuristics to help
the user discover appropriate abstractions. Further-
more, the detailed level of specification implied by Prob-
lem Frames made for a complex specification requiring a
large number of interfaces between individual frames.
This specification proved to be time consuming. The
value in Problem Frame analysis lay in identification
of frame concerns which pointed out aspects of the spec-
ification that required detailed design to ensure correct
system behaviour. Problem Frames also encouraged
formalisation of the dependencies between domain
properties, requirements and specifications. However, a
complete formal specification was not attempted, first
because of the effort required and secondly because
interfaces between frames on which formalism depended
were difficult to define precisely. In particular this prob-
lem arose in biddable domains involving the human-
computer interface where unpredictable user behaviour
was difficult to anticipate.

Both theories helped to develop component specifica-
tions; however, the reuse library needed to be designed
and implemented as software components. Domain
Theory models and Problem Frames were mapped as
object-oriented (OO) patterns (Gamaa et al., 1995);
however, this exercise showed only a weak dependency
between the requirements specification models and OO
patterns. For instance, Object Sensing mapped to the
Observer patterns which provides an object collabora-
tion design for monitoring, but other patterns such as
use of Façade for hiding different implementation varia-
tions, Factory for flexible implementation of different
methods (such as the shared access protocols) and Proxy
to control client server communication in the CSCW
layer, had few dependencies with requirements models.

6.3. Comparison of the approaches

The Domain Theory and Problem Frames both pro-
vide improved analytic techniques compared to stan-
dard domain analysis methods because they draw
attention to the nature of abstractions inherent in all

Table 2
Summary of comparison between the Domain Theory and Problem Frame approaches

Feature Domain Theory Problem Frames

Generic models provided 12 families, 56 OSM models, 12 Generalised
and 22 Generic Tasks

5 Problem Frames

Source of models Elicited from experts + theoretical analysis Theoretical analysis
Analysis process Identify abstraction, reuse generic models

and associated requirements
Use Problem Frames to reason about requirements
dependencies and constraints

Analysis heuristics No, but implicit in OSM and task model families Frame concerns
Formal specification No, UML modelling language Possible FOL expression of dependencies and constraints

A. Sutcliffe et al. / The Journal of Systems and Software 79 (2006) 273–289 287
applications at a deep level. They also provide more pro-
cess guidance and heuristics than Fowler�s conceptual
patterns. However, the two approaches function at dif-
ferent levels of abstraction. The differences between
the approaches are summarised in Table 2.

The Domain Theory provides a more comprehensive
library of reusable models, and this drives the analysis
approach in which abstractions in the domain are iden-
tified by matching to generic models; the models and
reusable requirements can then be used to structure
the component library. In contrast, Problems Frames
is a reasoning-intensive approach where the models
(frames) act as cognitive probes to promote reasoning
about the dependencies between the domain and the
specified solution. The focus is on understanding the
dependencies between the real world and the designed
machine (indicative and optative requirements in Jack-
son terminology), then specifying the solution to deal
with the constraints and desired system behaviour.
Frame concerns draw attention to general specification
issues and more formal specification is possible. How-
ever, the number of problem types addressed by Jack-
son�s method is restricted; for instance, active software
agents, or problems of spatial movement and planning
are not dealt with directly. In contrast, the Domain The-
ory level of abstraction is closer to specific types of prob-
lems, e.g., OSM families are given for active agents
(Agent Control) and spatial problems (Object Logistics).
7. Discussion

Development of reusable software will necessitate
advances beyond the current generation of domain
analysis methods. These provide process guidance for
problem decomposition and indexing of reusable com-
ponents, but little else. The contribution of this paper
has been to apply two theories to design for reuse and
evaluate their potential for improving domain analysis
and specification of reuse libraries.

The Domain Theory (Sutcliffe, 2002) and Problem
Frames (Jackson, 2001) contributed in different ways.
The Domain Theory provides a library of generalised
models that act as templates for conceptual modelling.
These abstractions proved reasonably easy to identify
using decision trees and heuristics. The generic problems
pointed to issues that required further analysis; however,
the Domain Theory did not provide detailed problem
analysis advice, whereas frame concerns did draw atten-
tion to specification issues more precisely. The generic
requirements and functional allocation advice in the
Domain Theory were more useful for developing the
requirements specification, e.g., in the diagnosis sub-
system where generalised task models advised on func-
tional allocation. Problem Frames, in contrast, were less
useful for specification of task support functions. To an
extent the approaches are complementary; the Domain
Theory is a knowledge-intensive approach providing
many reusable abstractions to guide thought, whereas
Problem Frames provide few abstractions but more
analysis guidance. The danger of the Domain Theory
approach is that the models could be reused ‘‘as is’’
without much thought; however, the models are more
accessible. The converse may be true of Problems
Frames; since the models and approach are less accessi-
ble, more reasoning may be applied.

Few other methods have addressed the problem of
identifying a reusable set of abstractions for use in
requirements specification. Reusable software architec-
tures have been produced for system families in flexible
manufacturing (Gomaa, 1995), but these are more do-
main specialised; for instance, Automatic Guided Vehi-
cle components would be decomposed from the Domain
Theory viewpoint into a collaboration of Object Sens-
ing, Agent Control and Object Logistics abstractions.
Design-level abstractions are well known from the
GOF (Gang of Four) Object Oriented design patterns
(Gamaa et al., 1995), and some design patterns map di-
rectly to Domain Theory models, such as Observer de-
sign pattern to Object Sensing models (Papamargaritis
and Sutcliffe, 2004). However, most GOF patterns re-
flect design rather than requirements concerns. The
KAOS language and GRAIL tool (Van Lamsweerde
and Letier, 2000; Van Lamsweerde, 2001) have been
used to create generic models, for instance in hospital
reservation systems. KAOS does not propose a compre-
hensive set of reusable generic models; instead it gives a
general process for formal specification of requirements
and constraints using a goal decomposition method.
However, Van Lamsweerde has specified generic types

288 A. Sutcliffe et al. / The Journal of Systems and Software 79 (2006) 273–289
of goals and obstacles building on the Inquiry Cycle
concepts of attainment and maintenance goals. These
can be seen as precursors of generic models. A large
number of product lines have been proposed but each
author creates new families on an ad hoc basis, with lit-
tle generality beyond the scope of the original domain
analysis. The case study we have reported is, we believe,
the first attempt to develop reusable software at more
than one level of abstraction so it can be reused more
flexibly. Clearly we will have to wait for evidence of re-
use of the telemedicine library to evaluate the utility of
applying the Domain Theory and Problem Frames to
design for reuse.
Acknowledgements

The authors wish to thank BTexaCT Technologies
who supported GP�s research, and Chris Voudouris
who provided access to the Telemedicine domain.
AGS would like to thank Michael Jackson for answers
to several queries on Problem Frames; however, any er-
rors in the specification are the author�s responsibility.
References

Bray, I.K., 2002. Expertise: An Introduction to Requirements Engi-
neering. Addison-Wesley, Reading, MA.

Breuker, J., Van Der Velde, W., 1994. CommonKADS Library for
Modelling. IOS Press, Amsterdam.

Clements, P., Northrop, L.M., 2001. Software Product Lines: Practices
and Patterns. Addison-Wesley, Reading, MA.

Fayad, M.E., Johnson, R.E., 2000. Domain-Specific Application
Frameworks: Frameworks Experience by Industry. Wiley, New
York.

Fowler, M., 1997. Analysis Patterns: Reusable Object Models.
Addison-Wesley, Reading, MA.

Gamaa, E., Helm, R., Johnson, R., Vlissides, J., 1995. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley,
Reading, MA.

Gomaa, H., 1995. Reusable software requirements and architectures
for families of systems. Journal of Systems and Software 28, 189–
202.

Hall, J.G., Jackson, M.J., Laney, R.C., Nusibeh, B., Rananotti, L.,
2002. Relating software requirements and architectures using
problem frames. In: Greenspan, S., Saddiqui, J., Pohl, K. (Eds.),
Proceedings of RE 02, 1st International Conference on Require-
ments Engineering. IEEE Computer Society Press, Los Alamos,
CA, pp. 137–145.

Harandi, M.T., Lee, M.Y., 1991. Acquiring software design schemas: a
machine learning perspective. In: Proceedings of the 6th Confer-
ence on Knowledge Based Software Engineering (Syracuse NY).
IEEE Computer Society Press, Los Alamos, CA, pp. 239–
250.

Jackson, M., 1983. Systems Development. Prentice Hall, London.
Jackson, M., 2001. Problem Frames: Analysing and Structuring

Software Development Problems. Pearson Education, Harlow.
Jarzabek, S., Ong, W.C., Zhang, H., 2003. Handling variant require-

ments in domain modeling. Journal of Systems and Software 68 (3),
171–182.
Keller, G., Teufel, T., 1998. SAP/R3 Process Oriented Implementa-
tion. Addison-Wesley, Longman, Reading, MA.

Lam, W., McDermid, J.A., Vickers, A.J., 1997. Ten steps towards
systematic requirements reuse. In: Proceedings ISRE �97: 3rd IEEE
International Symposium on Requirements Engineering (Annapo-
lis MD). IEEE Computer Society Press, Los Alamitos CA, pp. 6–
15.

Levi, K., Arsanjani, A., 2002. A goal-driven approach to enterprise
component identification and specification. Communications of the
ACM 45 (10), 45–52.

Mannion, M., Kaindl, H., Weadon, J., 1999. Reusing single system
requirements from application family requirements. In: Proceed-
ings of the International Conference on Software Engineering,
ICSE 99. IEEE Computer Society Press, Los Alamitos CA.

McMenamin, S.M., Palmer, J.F., 1984. Essential Systems Analysis.
Yourdon Press, Englewood Cliffs, NJ.

Papamargaritis, G., Sutcliffe, A.G., 2004. Applying the domain theory
to design for reuse. BT Technology Journal 22 (2), 104–115.

Rasmussen, J., 1986. Information Processing in Human Computer
Interaction: An Approach to Cognitive Engineering. North
Holland, Amsterdam.

Rodden, T., 1991. A survey of CSCW systems. Interacting with
Computers 3 (3), 319–353.

Rudkin, S., Alan, S., Papamargaritis, G., 2001. COMPOSE: A
Component-Based Service Provision Architecture. BTexact Tech-
nologies, Martlesham.

Rudkin, S., Smith, A. 2000. A scheme for component-based service
deployment. In: Proceedings: Conference on Universal Service
Markets, Munich.

Scheer, A.W., 1994. Enterprise-Wide Data Modelling. Springer-
Verlag, Berlin.

Shaw, M., 1991. Heterogeneous design idioms for software architec-
ture. In: Proceedings 6th International Workshop on Software
Specification and Design. IEEE Computer Society Press, Los
Alamitos, CA, pp. 158–165.

Simos, M., Anthony, J., 1998. Weaving the model Web: a multi-
modeling approach to concepts and features in domain engineer-
ing. In: Devanbu, P., Poulin, J. (Eds.), Proceedings of the Fifth
International Conference on Software Reuse (Victoria BC). IEEE
Computer Society Press, Los Alamitos, CA, pp. 94–102.

Smith, D.R., 1992. Track assignment in an airtraffic control system: a
rational reconstruction of system design. In: Proceedings of the
KBSE 92, Knowledge Based Software Engineering. IEEE Com-
puter Society Press, Los Alamitos, CA, pp. 60–68.

Sutcliffe, A.G., 2000. Domain analysis for software reuse. Journal of
Systems and Software 50 (3), 175–199.

Sutcliffe, A.G., 2002. The Domain Theory: Patterns for Knowledge
and Software Reuse. Lawrence Erlbaum Associates, Mahwah, NJ.

Sutcliffe, A.G., Carroll, J.M., 1999. Designing claims for reuse in
interactive systems design. International Journal of Human–
Computer Studies 50 (3), 213–241.

Sutcliffe, A.G., Dimitrova, M.T., 1999. Patterns, claims and multi-
media. In: Sasse, A., Johnson, C. (Eds.), Proceedings of the
INTERACT 99 IFIP TC.13 International Conference on Human–
Computer Interaction. IFIP/IOS Press, Amsterdam, pp. 329–
335.

Sutcliffe, A.G., Ennis, M., 2000. Designing intelligent assistance for
end-user information retrieval. In: Paris, C., Ozkan, N., Howard,
S., Lu, S. (Eds.), Proceedings of the OZCHI-2000 (Sydney).
CSIRO/CHISIG, Canberra, pp. 202–210.

Sutcliffe, A.G., Maiden, N.A.M., 1998. The domain theory for
requirements engineering. IEEE Transactions on Software Engi-
neering 24 (3), 174–196.

Van Lamsweerde, A., 2001. Goal-oriented requirements engineering: a
guided tour. In: Proceedings of the RE�01—5th IEEE International
Symposium on Requirements Engineering, Toronto, August, 2001.
IEEE Computer Society Press, Los Alamitos, CA, pp. 249–263.

A. Sutcliffe et al. / The Journal of Systems and Software 79 (2006) 273–289 289
Van Lamsweerde, A., Letier, E., 2000. Handling obstacles in goal-
oriented requirements engineering. IEEE Transactions on Software
Engineering 26 (10), 978–1005.

Vici, A.D., Argentieri, N., Mansour, A., d�Alessandro, M., Favaro, J.,
1998. FODAcom: an experience with domain analysis in the Italian
telecom industry. In: Devanbu, P., Poulin, J. (Eds.), Proceedings of
the Fifth International Conference on Software Reuse, pp. 166—
175.

Wehrend, R., Lewis, C., 1990. A problem-oriented classification of
visualization techniques. In: Proceedings First IEEE Conference on
Visualization: Visualization 90. IEEE Computer Society Press, Los
Alamitos CA, pp. 139–143.

Weiss, D.M., Lai, C.T.R., 1999. Software Product-Line Engineering:
A Family-Based Software Development Process. Addison-Wesley,
Reading, MA.

Zhou, M.X., Feiner, S.K., 1998. Visual task characterization for
automated visual discourse synthesis. In: Karat, C.M., Lund, A.,
Coutaz, J., Karat, J. (Eds.), Human Factors in Computing Systems
CHI 98 Conference Proceedings (Los Angeles). ACM Press, New
York, pp. 392–399.

	Comparing requirements analysis methods for developing reusable component libraries
	Introduction
	Related work

	Overview of the Domain Theory
	Case study: Component engineering for collaborative telemedicine applications
	Scenario 1. Patient monitoring
	Scenario 2. Collaborative diagnosis

	Domain analysis method
	Domain analysis: Patient monitoring
	Domain analysis: diagnostic support
	Domain analysis: CSCW layer

	Problem Frames
	Required Behaviour
	Commanded Behaviour
	Information Display
	Workpieces
	Transformation
	Domain analysis using Problem Frames
	Problem Frame analysis: patient monitoring
	Problem Frame analysis: CSCW sub-system

	Lessons learned
	Identifying abstractions
	Lessons learned: reusing knowledge
	Comparison of the approaches

	Discussion
	Acknowledgements
	References

