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dictated by the Scheffé quadratic polynomial . . . . . . . . . . . . 133

A.2 19 point design for GSCBMM identified with priors equal to values
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polynomial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.4 Prediction variance plots for non-saturated locally D-optimum de-

signs, for GQBMM, with point priors equal to implicit values in
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General Blending Models for Mixture Experiments:
Design and Analysis

Liam John Brown
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for the degree of Doctor of Philosophy, January 2014

It is felt the position of the Scheffé polynomials as the primary, or sometimes sole

recourse for practitioners of mixture experiments leads to a lack of enquiry regard-

ing the type of blending behaviour that is used to describe the response and that

this could be detrimental to achieving experimental objectives. Consequently, a

new class of models and new experimental designs are proposed allowing a more

thorough exploration of the experimental region with respect to different blending

behaviours, especially those not associated with established models for mixtures,

in particular the Scheffé polynomials.

The proposed General Blending Models for Mixtures (GBMM) are a powerful

tool allowing a broad range of blending behaviour to be described. These in-

clude those of the Scheffé polynomials (and its reparameterisations) and Becker’s

models. The potential benefits to be gained from their application include greater

model parsimony and increased interpretability. Through this class of models it is

possible for a practitioner to reject the assumptions inherent in choosing to model

with the Scheffé polynomials and instead adopt a more open approach, flexible

to many different types of behaviour. These models are presented alongside a

fitting procedure, implementing a stepwise regression approach to the estimation

of partially linear models with multiple nonlinear terms.

The new class of models has been used to develop designs which allow the

response surface to be explored fully with respect to the range of blending be-

haviours the GBMM may describe. These designs may additionally be targeted

at exploring deviation from the behaviour described by the established models.

As such, these designs may be thought to possess an enhanced optimality with

respect to these models. They both possess good properties with respect to opti-

mality criterion, but are also designed to be robust against model uncertainty.
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Chapter 1

Introduction

In mixture experiments products are made by blending two or more ingredients.

These ingredients are known as components. Examples of such experiments can

be found in numerous different contexts. For example:

1. Petrol blends are blends of organic compounds formed from the fractional

distillation of petroleum.

2. Pringles are blends of wheat starch, flours (potato, corn, rice), vegetable

oils, salt and seasoning.

3. Marketers choose how their budget is to be split between different adver-

tising media.

4. Brake pad formulations are blends of metal powders with fine powder abra-

sives and graphite.

5. Glass include blends of oxides such as silicon dioxide and sodium oxide.

In each case, the practitioner is interested in one or more properties of the

mixture: in Example 1, they could be interested in the octane rating of the per-

formance of the blend; in Example 2, the optimum balance of ‘hardness’ and fat

content in the crisps (Kang, Roshan Joseph, and Brenneman (2011)); in Example

3, the allocation of resources in order to maximise the impact of advertising (van

Vuuren and Goos (2012)); in Example 4, flow characteristics of the formulated

blend (Brown, Bissett, and Donev (2012)), effectiveness of the brakes under in-

tensive repeated use, or noisiness of the brakes when braking at high speed and

in Example 5, any number of properties dependent on the purpose of the glass,

14



CHAPTER 1. INTRODUCTION 15

where Piepel and Redgate (1997) have looked at viscosity, chemical durability

and crystallinity for use in nuclear waste disposal.

It is assumed there is a functional relationship between the mixture composi-

tion, that is the proportions in which the mixture components are blended, and

the property of interest. Practitioners attempt to understand this relationship

often with the aim of identifying the ‘best’ blend, with respect to the investigated

property, or to gain a better general understanding through exploring the roles

played by the individual components in this relationship.

The characterising feature of mixture experiments is that the values taken by

the mixture components represent proportionate amounts in the mixture rather

than unconstrained amounts. Thus, the property under investigation depends on

the proportions of the mixture components, but not on the amount of the mixture.

Hence, the component proportions may not change independently of each other.

It is this which necessitates a distinct statistical strategy for mixture experiments.

Cornell (2002) provides the best summary of work on mixture experiments up to

the point of its publication.

A comprehensive methodology was first proposed by Scheffé (1958, 1963).

This solution was effective and elegant in its treatments of the problem presented

and while there have been subsequent developments of these ideas, with mani-

fold objectives, Scheffé’s ideas endure as the primary recourse for practitioners of

mixture experiments. Scheffé expressed the functional relationship between the

investigated property and mixture components as a statistical model. However,

the manner in which this (and subsequent statistical models) characterise this

relationship is limited. This thesis will discuss why this is the case, hence explain-

ing the motivation behind the General Blending Models for Mixtures (GBMM),

which are the principal novelty of this work.

While one example does demonstrate their application to a constrained ex-

periment, this new class of models are presented in the context of unconstrained

experiments only. Additionally, there is no attempt to address experiments in-

cluding process variables. However, future work can be expected to address both

these areas.

The thesis shall be split into four parts: models, model fitting, experimental

design and examples.

Chapters 2 and 3 introduce the GBMM. Chapter 2 will establish the con-

text for the new class of models. It shall present the ideas of Scheffé and in
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light of these, those of his successors. This will highlight those deficiencies in the

preexisting statistical models which it is felt our new class of models addresses.

Subsequently, in Chapter 3, the new class of models will be introduced, with a

comprehensive discussion of the advantages it presents in relation to these other

models. Chapters 4 and 5 address model fitting. The structure of the newly

proposed models is unusual. Therefore, they require an unusual method of model

fitting. This is discussed in Chapter 4. Chapter 5 then uses a simple exam-

ple to both illustrate this process and begin to demonstrate the advantages the

GBMM has over established models. Chapters 6 and 7 address experimental de-

sign. Experimental design is the study of how to collect data in order to achieve

the statistical and functional goals of the experiment. Typically, the goals of ex-

perimental design relate directly to some feature of the proposed model and the

GBMM presents an interesting challenge in this respect. Chapter 6 establishes

some background on experimental design, while Chapter 7 proposes both several

designs for the GBMM and a new paradigm for developing experimental designs

for mixture experiments; one with far greater allowance for model uncertainty

than has previously been considered. Finally, Chapter 8 shall give further exam-

ples in order to evidence ideas from earlier chapters. We will conclude with some

discussion of the work’s progress, how far it represents a completed methodology

and how it may be developed in the future. R code (R Development Core Team

(2010)) allowing the reproduction of the results and figures in the thesis can be

obtained from the author, or his supervisor, Dr. Alex Donev.



Chapter 2

Methodology

In statistics, response surface methodology explores the relationship between ex-

planatory variables and one or more response variables. A statistical model is a

description of a relationship between these variables in the form of mathematical

equations. It may describe how one dependent, response variable, y, is influenced

by other independent, explanatory variables x, where x is a vector of variables

xi. Such a situation may be formally expressed

yj = f (x) + εj, (2.1)

where εj accounts for the influence of random variation upon the jth observation

of the response. The model is identified with the intention of providing the best

fit to these observations.

There may be different objectives in identifying such models. They can allow

the practitioner to identify the optimum combination of variables in order to

obtain a desired response, identify variables with a significant influence upon the

response or examine how each variable influences the response. They may also be

used for prediction across the entire experimental region, that is across all values

of interest of the explanatory variables. This is the principal purpose of the class

of models proposed in this thesis. However, as shall be seen, inference may also

be made regarding the effects of the variables.

In a mixture experiment, these q independent variables are known as mixture

components and the observed response is dependent only on their relative pro-

portions, rather than their absolute amounts. Taking a simple example of a juice

drink formed by the mixing of grapefruit juice and pineapple juice, it can be seen

17
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the values taken by the mixture components are subject to certain characteristic

constraints. Taking x1 to be grapefruit juice and x2 to be pineapple juice, how

tasty the drink is found to be will depend on whether it is half pineapple juice

and half grapefruit juice, where x1 = 1
2

and x2 = 1
2
, two thirds pineapple juice

and one third grapefruit juice, where x1 = 2
3

and x2 = 1
3
, or all pineapple juice,

where x1 = 1 and x2 = 0. It may be desired to have more juice, but this will not

change opinion of its flavour.

Hence, in a mixture experiment,

q∑
i=1

xi = 1 (2.2)

and

0 ≤ xi ≤ 1, (2.3)

where these constraints define the distinctive geometry of mixture experiments;

the unconstrained response surface is described over a q− 1 dimensional simplex

representing all possible mixtures of the q components.

The components may also be subject to additional upper or lower bound

constraints such as

0 < Li ≤ xi ≤ Ui < 1, (2.4)

where Li and Ui are the lower and upper bound constraints, respectively. More-

over, they may be subject to multicomponent linear constraints of the form

a < A1x1 + . . .+ Aqxq < b, (2.5)

where a and b are the lower and upper bounds, respectively, and Ai are scalar con-

stants. In addition it is possible to have nonlinear multicomponent constraints,

but these are less common and rarely addressed in the theoretical literature

(Atkinson, Donev, and Tobias (2007)). Subjected to constraints, the composition

space is the constrained experimental region within the simplex.

The simplest forms of statistical model are the polynomial models, where f (x)

in Equation 2.1 is a polynomial function, that is a function of the variables x and

estimable parameters β, formed only from addition, subtraction, multiplication

and non-negative integer exponents. Examples are the linear, quadratic and cubic
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polynomial models:

E [y] = β0 +
∑
i=1

βixi, (2.6)

E [y] = β0 +
∑
i=1

βixi +
∑
i=1

βiix
2
i +

∑
i 6=j

βijxixj (2.7)

and

E [y] = β0 +
∑
i=1

βixi +
∑
i=1

βiix
2
i +

∑
i 6=j

βijxixj

+
∑
i=1

βiiix
3
i +

∑
i 6=j

βiijx
2
ixj +

∑
i 6=j 6=k

βijkxixjxk, (2.8)

where β0 represents a mean effect, βi main effects, βii and βiii curvature effects

and other terms interaction effects, where two or more variables work together

to influence the response. However, in the context of mixture experiments, the

Characteristic constraints 2.2 and 2.3 render resolution of the response into mean

effects, main effects and interaction effects meaningless. Therefore, ordinary poly-

nomial models may not be applied to mixture experiments.

To see why, take the linear polynomial model and introduce an arbitrary

constant γ 6= 0:

E [y] = β0 +
∑
i=1

βixi

= β0 + γ − γ +
∑
i=1

βixi

= β0 + γ − γ (1) +
∑
i=1

βixi

= β0 + γ − γ

(
q∑
i=1

xi

)
+
∑
i=1

βixi as

q∑
i=1

xi = 1

= (β0 + γ) +
∑
i=1

(βi + γ)xi

= β
′

0 +
∑
i=1

β
′

ixi.

Thus it is shown that, for mixture experiments, the linear polynomial model may
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not be uniquely determined as

β0 +
∑
i=1

βixi = β
′

0 +
∑
i=1

β
′

ixi, (2.9)

where

βi 6= β
′

i 0 ≤ i ≤ q. (2.10)

It is similarly possible to demonstrate that higher order polynomial models, such

as the quadratic and cubic models, may not be uniquely determined for mixture

experiments. Consequently, it was necessary to develop alternative statistical

models for mixture components.

Before 1958, little was done to achieve this and it was not until Scheffé (1958,

1963) that a comprehensive methodological approach was presented. Prior to this

ordinary polynomial models in mathematically independent variables (MIV) had

been used and these proved to be used occasionally by later practitioners. Clar-

ingbold (1955), Draper and Lawrence (1965a,b), Thompson and Myers (1968),

and Becker (1970) consider cases where the MIV are linear combinations of the

component proportions, while Hackler, Kriegel, and Hader (1956) and Kenwor-

thy (1963) take the MIV to be ratios of the component proportions. Both these

strategies resolve the linear dependence of the component proportions, but in a

manner which may complicate the understanding of their influence upon the re-

sponse. By contrast, Scheffé’s canonical polynomial models allowed the response

to be represented directly as a function of the component proportions. Conse-

quently, his work proved the impetus for mixture experiments as a distinct area of

research and the models he developed remain the recourse for many practitioners

today.

This said, they are not without criticism, nor have later researchers failed to

indicate dissatisfaction with Scheffé’s models through the proposal of alternative

parameterisations or extensions. The linear blending of Becker’s models, the

reparameterisations of Darroch and Waller (1985), Piepel and Cornell (1994),

Piepel, Szychowski, and Loeppky (2001) and Draper and Pukelsheim (1998), and

the inverse terms of Draper and St John (1977a,b) and the log terms of Chen, Zhu,

and Hu (1985) have all been proposed with varied claims for their benefits; some

describe behaviour which the Scheffé polynomials cannot, while others promise

more parsimonious models, that is models with fewer estimable parameters. Each



CHAPTER 2. METHODOLOGY 21

of these alternative models shall be discussed as it is felt there presence reveals

the motivation for an alternative to the Scheffé polynomials.

To date, there has been little work done on nonlinear models for mixture

experiments. Linear models, such as the polynomial models, may be expressed

E[y] = f (x, β) = βfi (x) , (2.11)

that is as a weighted sum of functions of x. Nonlinear models differ in the presence

of the nonlinear parameters θ, such that

E[y] = f (x, θ) . (2.12)

In particular, partially linear models may be expressed

E[y] = βfi (x, θ) . (2.13)

The class of models proposed in this thesis are partially linear. They can be

considered novel for being broadly applicable nonlinear models, well seated within

the canon of mixture experiments literature. The only case of other nonlinear

models proposed for mixture experiments are given by Focke, Ackermann, and

Coetzer (2012), who discuss the generalised Q-fraction mixture models, with

respect to a limited applications. These models do not appear broadly applicable.

However they are certainly worthy of discussion, particularly in relation to how

models for mixture experiments will progress.

The following chapter looks at all of these proposed models for mixture exper-

iments. This will inform both the discussion of how the GBMM was developed,

but also the analysis of its merits and how far it goes to providing a compre-

hensive modelling strategy for mixture experiments. It is not a comprehensive

discussion of all literature relating to the modelling of mixture experiments, but

it is thorough in providing a background to the GBMM.

2.1 Scheffé polynomials

Priority in the treatment of designs for mixture experiments may be claimed by

Quenouillé (1953). However, the work of Scheffé (1958, 1963) proved the greater

impetus for increased interest in the analysis of mixture experiments. Prompted
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by the ideas of Claringbold (1955), Scheffé introduced easily interpretable canoni-

cal polynomial models in the mixture components. For the reasons given above, it

was not possible to apply ordinary polynomial models to the mixture components

and previously the response in mixture experiments had been modelled through

standard polynomials in mathematically independent variables (MIV), these be-

ing either linear transformations or ratios of the component values. However, as

Scheffé’s polynomials and other mixture models became better known the use of

ordinary polynomials in MIV declined.

In 1958, Scheffé introduced the simplex-lattice designs alongside his first

canonical polynomial models for mixture experiments. Subsequently, in 1963, he

proposed the simplex-centroid designs and corresponding alternative models, to

which extensions were later given by Gorman and Hinman (1962) and Lambrakis

(1969). This section looks at Scheffé’s models, introducing them in a manner that

makes note of how they are relevant to the new ideas to be discussed later. Key

to this are some criticisms levelled at Scheffé’s work at the time of its inception.

Of these, those of Quenouillé are particularly important.

Having explained some of the significant early ideas, this section should pro-

vide a satisfactory introduction to the methods used in experiments with mix-

tures. However, it is important to stress that while Scheffé’s work precedes almost

all of what we are to discuss it endures, often without refinement, as the method-

ological recourse of practitioners today.

2.1.1 Simplex lattice designs and canonical polynomial

models

In mixture experiments, if it is desired to model the response in a q-component

mixture experiment, an intuitively appealing design is that where the design

points are distributed evenly across the experimental region. Thus motivated,

Scheffé proposed the simplex lattice designs. For these the values taken by the

component proportions are the m + 1 equally spaced values xi = 0, 1
m
, 2
m
, . . . , 1,

such that the {q,m} lattice designs are all(
m+ q + 1

m

)
=

(m+ q + 1)!

m! (q + 1)!
(2.14)

possible mixtures where the component proportions take these values.
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The {q,m} ordinary polynomial model

E[y] = α0 +

q∑
i=1

αixi +

q−1∑
i=1

q∑
j=i+1

αijxixj + . . . , (2.15)

of interactions up to degree m, where the α values are the model coefficients,

are meaningful in the context of mixture experiments only in light of the Char-

acteristic constraint 2.3. Scheffé instead proposed symmetric canonical polyno-

mial models formed through suitable substitution into Model 2.15 of identities

dictated by the Characteristic constraint 2.3. This resulted in polynomials of

(m+q+1
m ) coefficients, which could be uniquely determined and simply interpreted,

with respect to the mixture components. Additionally, they possess a simple,

intuitive relationship to {q,m} simplex lattice designs, which, even at a time

without computers, allowed them to be easily estimated.

In this way, the {q, 1} linear Scheffé polynomial,

E[y] =

q∑
i=1

βixi, (2.16)

is obtained through replacement of α0, in the ordinary {q, 1} polynomial, with

α0 (
∑q

i=1 xi). Hence,

E[y] = α0 +

q∑
i=1

αixi (2.17)

= α0

(
q∑
i=1

xi

)
+

q∑
i=1

αixi (2.18)

=

q∑
i=1

(α0 + αi)xi (2.19)

=

q∑
i=1

βixi. (2.20)

The quadratic Scheffé polynomial is found where, in addition, each x2i in the

ordinary {q, 2} polynomial

E[y] = α0 +

q∑
i=1

αixi +

q−1∑
i=1

q∑
j=i+1

αijxixj + . . . , (2.21)
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is replaced by

x2i = xi

(
1−

∑
j 6=i

xj

)
= xi −

∑
j 6=i

xixj. (2.22)

The quadratic, cubic and quartic Scheffé polynomials are then

E[y] =

q∑
i=1

βixi +

q∑
i 6=j

βijxixj, (2.23)

E[y] =

q∑
i=1

βixi +

q∑
i 6=j

βijxixj +

q∑
i 6=j

βijxixj (xi − xj) (2.24)

+
∑
i 6=j 6=k

βijkxixjxk (2.25)

and

E[y] =

q∑
i=1

βixi +

q∑
i 6=j

βijxixj +

q∑
i 6=j

βijxixj (xi − xj) (2.26)

+

q∑
i 6=j

βijxixj (xi − xj)2 +
∑
i 6=j 6=k

βijkx
2
ixjxk (2.27)

+
∑

i 6=j 6=k 6=l

βijkxixjxkxl, (2.28)

respectively. The quartic model, not given by Scheffé, was proposed by Gorman

and Hinman in their critique of Scheffé’s method. They cited a lack of complexity

in the response surface which could be described by Scheffé’s polynomials and

therefore introduced another more complex model. This lack of complexity also

motivates the ideas presented in this thesis.

A general form for a polynomial of degree m was suggested by Lambrakis

(1969)

E[y] =

q∑
i=1

βixi +
m∑
n=2

q∑
i 6=j

βijxixj (xi − xj)n−2 +
m∑
n=3

∑
1≤i1<...<in≤q

xs1i1 . . . x
sq
in
, (2.29)

where s is defined subject to the constraint 3 ≤ n ≤ m. Through adding the
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cubic terms +
∑

i 6=j 6=k βijkxixjxk to the Model 2.23, the special cubic polynomial,

E[y] =

q∑
i=1

βixi +

q∑
i 6=j

βijxixj +
∑
i 6=j 6=k

βijkxixjxk, (2.30)

may also be obtained. This extension, suggested by Scheffé, was a precursor to

the models he would later propose in 1963.

The Scheffé polynomials require different interpretations of the coefficients

compared to those applied to Model 2.15. Let ηi denote the response where

xi = 1 and xj = 0, i 6= j, and suppose only pure component effects are observed.

The main component effect

βi = ηi. (2.31)

Therefore, more generally, the main effects βi can be interpreted as giving the

response for a pure mixture of the ith component.

In light of this, the other coefficients are best described with respect to the

deviation from the linear blending described by these pure component effects.

These deviations are here said to occur through joint effects between the com-

ponents. This is in contrast to describing them as interaction terms, as found in

the ordinary polynomial models, which would indicate the effect of a variable is

dependent on the value of another.

Hence, in the Scheffé polynomials, βij are the quadratic coefficients of binary

joint effect between the ith and jth components. Where the cubic model is fitted,

γij are the cubic coefficients of binary joint effect and the βijk cubic coefficients of

ternary joint effect. δij and γijk in the quartic model are the quartic coefficients

of binary and ternary joint effect, respectively.

The characteristic constraint of mixture experiments dictates that mixture

components are non-orthogonal. This is the reason for the contrasting interpre-

tation of interaction terms in ordinary polynomials and terms of joint effect in

the Scheffé polynomials. For this reason, independence of the effect of variables

is a more unusual property in mixture components; removal of terms of joint ef-

fect in a particular component does not imply independence of the effect of that

component in a mixture polynomial.
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2.1.2 Simplex centroid designs and Scheffé q-tenery mod-

els

A potential objection to the simplex lattice designs was that they were intended

to be used to predict the response for mixtures of q, q − 1, q − 2, . . . components,

but fit a model using the observed responses of mixtures of up to m components.

Thus the {3, 2} simplex is used to fit a quadratic model, which may be used

to predict the response for mixtures of three components, but is fit using the

responses for mixtures of up to two components. In reality this is unlikely to

be the case and data is likely to be observed for values outside of these designs.

However, when Scheffé’s polynomials were first proposed, it was judged to be a

failing that needed to be addressed and hence inspired a new model form.

The simplex centroid design overcomes this problem by taking the response at

those mixtures where up to q components take equal proportions in the mixture.

Thus it includes pure mixtures, those where two components xi = xj = 1/2, three

components xi = xj = xk = 1/3 and so forth. Using these designs, Scheffé chose

to fit a model which again had an equal number of coefficients as points in the

design:

E[y] =

q∑
i=1

βixi +

q∑
i 6=j

βijxixj +
∑
i 6=j 6=k

βijkxixjxk

+
∑

i 6=j 6=k 6=l

βijklxixjxkxl + . . . . (2.32)

Here the βi are the main effects, βij the binary joint effects between the ith and jth

components, βijk the ternary joint effects between the ith, jth and kth components

and so forth. Thus, in this model, each coefficient is associated with a particular

sub-simplex within the factor space and has no effect upon mixtures for which

any of its associated components equal zero. Hence, for example, βij has no effect

upon the response of any mixture where xi = 0 or xj = 0.

With hindsight these q-tenery models can be said to be redundant beyond

those special cases which are included among the Scheffé canonical polynomi-

als; there is almost no record of their application beyond those of the quadratic

and special cubic model, which could be viewed as reduced cases of the earlier

proposed Models 2.23 and 2.30 (where some terms have been eliminated).
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2.1.3 What can be described using Scheffé’s polynomials?

An important motivating factor for the ideas given in this thesis is the limitations

on what types of surfaces and particularly, what joint effects can be described

by the Scheffé polynomials. As has been noted, this was also a consideration

for Gorman and Hinman, prompting them to propose a higher order model than

given by Scheffé.

To consider the particular joint effects described by the canonical polynomial

models and q-tenery model we can first consider the two component case. For a

binary mixture described by a quadratic model the response surface may have a

maximum or a minimum, but not both, and no point of inflection. Any departure

from linearity, as created by the quadratic terms of binary joint effect, is symmet-

ric with maximum departure occurring at the 50:50 mixture. More generally, this

will be the case for the second order q-tenery model or the quadratic canonical

polynomial model and the restriction upon the maximum departure from linear-

ity in binary mixtures endures for the cubic and quartic models, for which it may

lie between 21% and 79% x1 and 15% and 85% x1, where the cubic and quartic

terms of binary joint effect, respectively, have offered increased flexibility.

These two cases are relevant to binary and ternary joint effects. The q-tenery

model offers terms describing joint effects in 4 or more components. For q com-

ponent cases the restrictions upon the q-tenery model can be described thus: in

Scheffé’s terminology, the ‘pull-up’ effect (possibly negative) of each term of joint

effect is symmetric in the components involved. This is seen in the particular

case of the quadratic terms of binary synergism βijxixj, which cause a symmetric

effect about the 50:50 mixture. This concept extends to more than 2 components.

Thus the departure from linearity effected by each term is greatest in the centre of

the sub-simplex to which that term applies. Therefore, for example, in a ternary

mixture experiment where the quadratic Scheffé polynomial,

E[y] =
3∑
i=1

βixi +
3∑
i 6=j

βijxixj, (2.33)

is fitted, adding the βijkxixjxk term, assuming all other coefficients remain the

same, results in a symmetric change in the response surface, about the centre

of three dimensional simplex, where xi = xj = xk = 1
3
, and similar statements

can be made when adding the terms of the q-tenery models in greater than 3



CHAPTER 2. METHODOLOGY 28

components. For this reason, these terms can be viewed as severely limited in

what they can describe. This will prove important as new ideas are proposed in

later chapters.

2.1.4 Comments upon Scheffé’s ideas

Finally, we explore the comments levelled at Scheffé in the discussion given in

the appendix of his 1963 paper. Nadler, Cox and Plackett each made noteworthy

contributions relevant to the development of later ideas. However, the most

significant comments, with respect to the ideas presented here, were made by

Quenouillé.

Quenouillé’s work on mixtures predated Scheffé’s, but lacked its appeal. His

contention was that Scheffé’s models were the poorer for not allowing certain

situations he would like to describe. Let A, B and C be the vertices of the 2-

dimensional simplex, attributed to the pure mixtures x1 = 1, x2 = 1 and x3 = 1,

respectively, as shown in Figure 2.1a on page 31. Supposing D to be any point

along the edge between A and B, that is the edge representing binary mixtures

of x1 and x2, then the reduced Scheffé polynomial,

E[y] = β1x1 + β2x2 + β3x3 + β12x1x2, (2.34)

fails to describe linear blending in x3, that is a lack of curvature in the response

surface between C to D. For Quenouillé, the curvature that this model instead

describes is the result of a joint effect between the component x3 and supercom-

ponent x1 +x2, which cannot be attributed to the joint effect between x3, and x1

and x2, respectively.

In response, Scheffé reiterated that he considered that traditional understand-

ing of interaction to be unsuitable for mixture experiments, and suggested that

a model of the form

E[y] = β1x1 + β2x2 + β3x3 + β12
x1x2
x1 + x2

, (2.35)

would represent what Quenouillé described. This model would be the basis of

Becker’s work on linear blending, which shall be introduced in the next section.

Furthermore, its use of a supercomponent, a sum of two or more components,

gives an example of how Scheffé suggests other types of curvature in the blending
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of components may be represented. These ideas will be significant as we explore

the alternative mixture polynomials to those proposed by Scheffé and moreover,

will feed directly into the new ideas to be proposed later.

Also important, in this respect, is the contribution of Plackett, who identi-

fies that the Scheffé polynomials, instead of predicting the response, take their

respective designs and use the model in effect as a smoothing formula. Each

model, when fit to its allocated design, will pass through the mean of the obser-

vations at each of the design points and therefore additional points are required

in order that the models can be checked for goodness of fit. This means that the

models may appear to be artificially well fit, where the Scheffé polynomial may

in fact be the wrong choice of model. More generally, this statement identifies

that the choice of the Scheffé polynomials, by a practitioner, contains inherent

assumptions about the type of response surface which is expected and regarding

how the individual components influence the response.

Quenouillé highlights the choice of the correct form of polynomial is therefore

important and hence, models and designs are required which can explore more

varied behaviour than that investigated by the Scheffé’s polynomials. Plackett in

turn compounds Quenouillé’s point by suggesting that non-polynomial methods

of modelling mixtures could be beneficial, foreshadowing the ideas proposed here.

2.1.5 Concluding remarks on Scheffé polynomials

The Scheffé polynomials present an effective recourse for practitioners of mixture

experiments. There is lack of flexibility in the type of behaviour which may be

described, particularly by the lower order models and the q-tenery models, but

in many cases this will not sufficiently hinder the practitioner in obtaining ap-

parently effective statistical analysis. That said, Gorman et al and Quenouillé

correctly identify deficiencies in what they may describe, and the statements of

Plackett and Quenouillé create space to explore different model forms describing

alternative or more varied behaviour. The following section presents the alterna-

tives developed by Becker, who was building directly on the ideas of Scheffé in

response to Quenouillé.
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2.2 Becker’s models

As was discussed in the previous section, Quenouillé (1959) criticised Scheffé

for adopting a polynomial smoothing method, which assumed a specific form of

polynomial and collected data accordingly. Scheffé’s models failed to describe the

linear blending in the component proportions which Quenouillé found intuitively

sensible. He suggested some alternative model should be devised, but failed to

propose any such solution. Instead Scheffé made a suggestion which adapted his

own canonical polynomial forms. This suggestion would go on to be developed by

Becker (1968, 1978), who would make proposals which addressed not only linear

blending, but also inactivity in the effect of the components. This section shall

explain further the nature of Quenouillé’s criticism and examine how Becker’s

ideas developed to address them.

2.2.1 Linear and quadratic blending

The reduced 3 component Scheffé polynomial,

E[y] =
3∑
i=1

βixi + β12x1x2, (2.36)

can be said to describe quadratic curvature in the blending of the components, x1

and x2, with the remainder of the mixture. This shall be referred to as quadratic

blending. This is in contrast to the linear blending Quenouillé desired Scheffé’s

models to describe.

To identify what this means, look at Figure 2.1a, where A, B and C are the

vertices of the 3-dimensional simplex attributed to the pure mixtures x1 = 1,

x2 = 1 and x3 = 1, respectively. For arbitrary D along the edge between A and

B, the components x1 and x2 remain in fixed relative proportion to each other

along the line between C and D, that is

x1
x1 + x2

= α

and
x2

x1 + x2
= 1− α.

for 0 ≤ α ≤ 1.
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(a) Region where x1
x1+x2

= x2
x1+x2

= 1
2

(b) Plots of response where x1
x1+x2

=
x2

x1+x2
= 1

2 for Models 2.36 and 2.39

Figure 2.1: Illustration of the difference in Quenouillé and Scheffé’s understanding
of component blending

In the case illustrated

x1
x1 + x2

=
x2

x1 + x2
=

1

2
. (2.37)

The response, in this case, as described by Model 2.36, is given as

E[y] =
β1 + β2

2
+

(
β3 −

β1 + β2
2

)
x3 +

β12
4

(1− x3)2 , (2.38)

and is shown by the red line in Figure 2.1b for β1 = β2 = β12 = 1. In contrast,

the response as described by the model

E[y] =
3∑
i

βixi + β12
x1x2
x1 + x2

, (2.39)

is given by

E[y] =
β1 + β2

2
+

(
β3 −

β1 + β2
2

)
x3 +

β12
4

(1− x3) (2.40)

and is shown in blue in Figure 2.1b.
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More generally, for any ray where x1 and x2 remain in fixed relative proportion

to each other Model 2.36 will describe a quadratic response, with respect to x3,

while Model 2.39 will describe a linear response, with respect to x3. This is to say

Model 2.39 provides the kind of linear blending Quenouillé felt was not described

by Scheffé’s model. In this case, it may be said that Model 2.39 allows component

x3 to blend linearly with the remainder of the mixture, that is without curvature

in the response as the component value x3 changes.

2.2.2 Becker: New models

Developing on Scheffé’s proposal, Becker Becker (1978) identified that a more

general model describing linear blending in a component xq would take the form

E[y] = βqxq + (1− xq)f (x1/ (1− xq) , , xq−1/ (1− xq)) , (2.41)

where the interpretations of the terms in f are invariant under the introduction

of the linear blending component, that is where f is homogenous of degree one.

A function f is homogenous of degree one where

f (tx) = tf (x) . (2.42)

To allow easier fitting Becker suggests that f may be expressed

f (x) = βihi (xi) + βijhij (xi, xj) + . . .+ βij...q−1hij...q−1 (xi, xj, , xq−1) , (2.43)

where each term h is homogenous of degree one. Becker describes three such

terms which may be employed:

hij...k (xi, xj, . . . , xk) = min

(
xi

1− xq
,

xj
1− xq

, . . . ,
xk

1− xq

)
, (2.44)

hij...k (xi, xj, . . . , xk) =
xixj . . . xk

1− xq
(2.45)

and

hij...k (xi, xj, . . . , xk) =

√
xixj . . . xk

1− xq
. (2.46)

where each of these three types of terms can be used to construct the H1, H2 and

H3 models, respectively. For a three component mixture experiment, where x3 is
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said to blend linearly, these models are

E[y] = β3x3

+ (1− x3)
(
β1

x1
1− x3

+ β2
x2

1− x3
+ β12 min

(
x1

1− x3
,

x2
1− x3

))
, (2.47)

E[y] = β3x3 + (1− x3)
(
β1

x1
1− x3

+ β2
x2

1− x3
+ β12

x1x2
1− x3

)
(2.48)

and

E[y] = β3x3 + (1− x3)
(
β1

x1
1− x3

+ β2
x2

1− x3
+ β12

√
x1x2

(1− x3)2

)
, (2.49)

respectively. Here, the H2 model is that proposed by Scheffé in response to

Quenouillé as it may be expressed

E[y] =
3∑
i

βixi + β12
x1x2

1− x3
. (2.50)

Similarly, the H1 and H3 models may be expressed as

E[y] =
3∑
i

βixi + β12 min (x1, x2) (2.51)

and

E[y] =
3∑
i

βixi + β12
√
x1x2, (2.52)

respectively. The terms proposed by Becker may of course be used in other models

which do not describe strict linear blending in any one component but do provide

the best fit to the collected data. Each term permits an alternative description

in comparison to a particular term in the Scheffé polynomials and may prove

a beneficial addition to a model. For example, it may be that a model which

combines both Becker and Scheffé terms, such as

E[y] =
3∑
i

βixi + β12
x1x2

1− x3
+ β23x2x3, (2.53)

provides the best overall fit to a set of data.

More generally, Becker’s work suggests three models as alternatives to the
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Scheffé polynomials. These are the full H1, H2 and H3 models, respectively given

by

E[y] =
∑
i

βixi +
∑
i 6=j

βij min (xi, xj) +
∑
i 6=j 6=k

βij min (xi, xj, xk) + · · · , (2.54)

E[y] =
∑
i

βixi +
∑
i 6=j

βij
xixj
xi + xj

+
∑
i 6=j 6=k

βij
xixjxk

(xi + xj + xk)
2 + · · · (2.55)

and

E[y] =
∑
i

βixi +
∑
i 6=j

βij
√
x1x2 +

∑
i 6=j 6=k

βij 3
√
x1x2x3 + · · · , (2.56)

where each term is homogenous of degree one. Hence, reduced forms of these

models are capable of describing linear blending in any one component. However,

it is not necessary to apply these models in this way and it could just be that

application of the terms of these models, instead of those found in the Scheffé

polynomials, provides the best possible description of the response surface or a

more parsimonious description. In this context, it is better to think of the linear

blending described by a term
xixj
xi+xj

to be between the pair of components xi and

xj and the remainder of the mixture.

Choosing between the binary term of joint effect, x1x2, of the Scheffé poly-

nomial and the binary term of joint effect, x1x2
x1+x2

, of Becker’s H2 model would

go some way to testing the inherent assumptions of the ‘polynomial smoothing

method’ that Plackett identified Scheffé’s method to represent. It also leads to

the question of which further alternatives could be proposed to the models of

Scheffé.

2.2.3 Further linear blending models

In a subsequent paper, Becker (1978) extended his ideas for the treatment of

linear blending components. This was done through proposing the more general

term

hijq−1 (xi, xj, . . . , xq−1) =

q−1∏
i=1

(
xi

1− xq

)si
, (2.57)

which includes all possible terms of the type included in the H2 and H3 models,

but also provides asymmetry in the joint effect between the components included

in the term, thus addressing one of the significant shortcomings of the Scheffé
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polynomials. Very ‘unusual’ behaviour could be most readily described through

Scheffé type polynomials by the extension proposed by Gorman and Hinman -

the quartic polynomial. Yet this is a relatively complex model to describe what

potentially could be described by far fewer terms of the type suggested by Becker.

However, although Becker’s terms allow particular behaviour to be described

in a manner which was not possible with the Scheffé polynomials, they may not

necessarily be applied in a straight forward manner. This is because the esti-

mation of a large number of nonlinear parameters is likely to be problematic. It

is probably for this reason that Becker does not apply these models and conse-

quently his 1978 paper has seen little attention although, as shall be seen, his

work is very closely related to the class of models which are proposed here.

2.2.4 Summary

Becker’s models give the potential to describe linear blending in one or more com-

ponents in the manner which Quenouillé considered useful. More importantly,

the full H1, H2 and H3 models represent an alternative to the models of Scheffé

and the work of Becker’s 1978 paper indicates a path towards a far more flex-

ible modelling strategy. Both these points are influential in the work which is

presented here.

However, while Becker’s proposed alternatives to the models of Scheffé are

certainly the most important with respect to our work, they are not the only

alternatives and, as much as the Scheffé polynomials possess certain inherent

assumptions about the influence of the components upon the response, Becker’s

models possess similar assumptions. Therefore, there are other behaviours which

neither sets of models can represent, some of which were considered important to

other practitioners.

2.3 Inverse and logarithmic terms

A phenomenon that may occur in mixture experiments is extreme change in the

response at the boundary of the experimental region, for example, where xi → 0.

In general, neither the Scheffé polynomial models nor the Becker models can

handle this behaviour. To deal with these cases the model

f (x)→ inf, (2.58)
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as xi → 0, is needed. Ratio terms which, before Scheffé proposed his canonical

polynomial models, were commonly applied in mixture experiments as MIV in

ordinary polynomial models, describe such types of behaviour. For example,

x1/(x2 + x3) and x1/x3 describe extreme change as x2 + x3 → 0 and x3 → 0,

respectively. However, their effect is dependent on the value of x1. Draper and

St John (1977a,b) propose instead

E[y] =

q∑
i=1

βixi +
∑
i 6=j

+βijxixj +

q∑
i=1

β−ix
−1
i , (2.59)

that is, the Scheffé polynomial models with additional inverse terms of the indi-

vidual mixture components. These preserved a model in the mixture components

rather than MIV, while allowing extreme behaviour through the new inverse terms

β−ix
−1
i .

Although in this case xi = 0 is the active boundary of interest, to allow

fitting, the experimental region should not actually be considered to include the

boundary itself. Hence there exists the implicit constraint,

xi > 0, (2.60)

imposed upon xi in the inverse term. To achieve this the practitioner may add a

small value ci. Thus the inverse terms take the form

β−1
1

xi + ci
. (2.61)

Draper proposed the inverse terms be fitted in addition to the terms of the Scheffé

polynomials. Of course, they may equally be added to the Becker models. Akay

(2007) discussed the comparison of Becker models and inverse polynomial models

of the type described, but did not consider inclusion of inverse terms and Becker

terms in the same model.

An alternative to the inverse terms are logarithmic terms. These were first

suggested by Chen et al. (1985). The expectation of a practitioner wishing to

apply inverse terms is that the extreme behaviour will be relevant to values of xi

approximately less than 0.05, in line with the suggestions of Draper and St John;

Draper and St John. This means the change in the effect is perceived to be less

steep than that described by a logarithmic term. Hence, the models proposed by
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Chen, such as

E[y] =

q∑
i=1

βixi +
∑
i 6=j

βijxixj +

q∑
i=1

β−i log (xi) , (2.62)

the Scheffé polynomials with additional logarithmic terms of the individual com-

ponents, consider the extreme behaviour to be relevant for lower values of xi than

the inverse terms.

As a result of the appeal of the polynomial models, inverse terms and par-

ticularly logarithmic terms have not been considered much beyond the papers

already mentioned. This may be attributed to the limited nature of the option

they offer - it is a manner of handling more extreme behaviour, but in a very

specific way. While their existence suggests dissatisfaction with the limitations

of the behaviour described in models already discussed, they do not allow a very

broad range of extreme behaviour to be explored; they do not describe extreme

behaviour where values other than xi approach zero.

A better solution might be to introduce a term or terms which not only allowed

extreme change to be described as xi → 0, but also at other extremes of the

experimental region, that is, say, at the two component edges where xi +xj → 0,

or the three component sides where xi + xj + xk → 0.

2.4 Reparameterisations

The models of Becker present terms describing contrasting joint effects in com-

parison to those of the Scheffé polynomial. Therefore, these models present the

possibility of describing the response surface in a different and potentially more

effective manner, regardless of whether one or more components are described

as blending linearly. The logarithmic and inverse terms also allow the response

surface to be described in a contrasting manner to the Scheffé polynomials.

A different manner in which to improve upon the Scheffé polynomials is to

suggest reparameterisations. These will describe the same behaviour, but al-

low more parsimonious representation of the response surface through the use of

equivalent terms. For simplicity, this section will focus on the reparameterised

quadratic Scheffé polynomial, but there are equivalent reparameterisations for

the higher order models.

To introduce such reparameterisations consider a three component experiment
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in which the response is described by the model:

E[y] = 3x1 + 4x2 + 5x3 + 15x1x2 + 15x1x3,

=3x1 + 4x2 + 5x3 + 15x1 (x2 + x3) ,

=3x1 + 4x2 + 5x3 + 15x1 (1− x1) ,

=3x1 + 4x2 + 5x3 + 15x1 (1− x1) ,

=3x1 + 4x2 + 5x3 + 15x1 − 15x21,

=18x1 + 4x2 + 5x3 − 15x21.

Hence, it is seen that having considered the square term x21, a more parsimonious

description is given of the response - there are fewer terms. This is achieved due

to the equivalence of component effects through the Characteristic constraint 2.2.

The differences between methods of reparameterising the Scheffé polynomials de-

pend upon the manner in which the identities due to the Characteristic constraint

2.2 are used.

Slack variable models

A quadratic slack variable model, for a q-component mixture experiment, de-

scribes the response as a function of q− 1 components. One component xi is de-

noted slack and is removed from the model through the identity xi = 1−
∑

j 6=i xj.

Its linear effect is represented by an intercept and its joint effects absorbed into

square terms and the terms of binary joint effect of the other components. Thus,

in a ternary experiment, through substitution of x3 in the quadratic canonical

Scheffé polynomial,

E[y] = β1x1 + β2x2 + β3x3 + β12x1x2 + β13x1x3 + β23x2x3, (2.63)

the slack variable model,

E[y] = α0 + α1x1 + α2x2 + α11x
2
1 + α22x

2
2 + α12x1x2, (2.64)
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may be obtained, using the identity x3 = 1− x1 − x2. Here

α0 = β3,

α1 = β1 − β3 + β13,

α2 = β2 − β3 + β23,

α12 = β12 − β13 − β23,

α11 = −β13

and

α22 = −β23.

These two full-model representations describe the same predicted response, but

the square terms of the slack variable model provide a different representation of

curvature in the response surface in comparison to that of the canonical polyno-

mial model. This is discussed by Piepel and Cornell (1994).

Previously, Marquardt and Snee (1974) and Snee and Rayner (1982) had

identified the complexity of comparing the interpretation of the parameters in

the slack variable and canonical polynomial models as potentially prohibitive.

However, the interpretation of the slack variable model itself is straightforward

and not inherently more complex than that of the canonical polynomial model.

Ease of understanding should not prohibit any practitioner from applying the

slack variable model rather than the canonical polynomial model. More impor-

tantly, the work of Cornell (2000) and Khuri (2005) indicates that, potentially,

these models could prove to be more parsimonious when fitting in a reduced form.

However, the use of the slack variable models does present difficulties. Each

distinct choice of xi as the slack variable represents a different parameterisation

of the Scheffé canonical polynomial, which itself also represents an alternative

parameterisation. Thus the canonical polynomial model and each of the q slack

variable models, fitted with a different component taken as slack, will have to

be examined in order to find the most effective subset of square terms, x2i and

terms of joint effect, xixj. This could be considered an unwanted complication.

However, Piepel, Szychowski, and Loeppky (2001) and Piepel and Landmesser

(2009) present a solution.
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Partial quadratic mixture models

Piepel recognises that the slack variable model can be used advantageously to

provide a more parsimonious model. However, he also raises valid concerns that

through denoting one variable slack, a practitioner, particularly one inexperienced

in mixture experiments, may draw incorrect conclusions about the effects of mix-

ture components. This could occur where the practitioner does not appreciate

the relationship between the estimated coefficients of the canonical polynomial

and slack variable models. Cornell (2002) is also suspicious of recommending a

method which encourages practitioners to incorrectly consider one component to

be a non-entity. Therefore, Piepel proposes an alternative: the Partial Quadratic

Mixture (PQM) model. This is found by adding either square terms or terms of

binary joint effect, in any components, to the Scheffé linear mixture model

E[y] =

q∑
i=1

βixi. (2.65)

Thus, the full PQM model is expressed

E[y] =

q∑
i=1

βixi +

q−1∑
i=1

q∑
j=i+1

βijxixj +

q∑
i=1

βiix
2
i , (2.66)

where q joint effects or square terms are removed through an appropriate con-

straint in order to avoid over-parameterisation. Both the quadratic canonical

polynomial and each of the q quadratic slack variable models are equivalent to

special forms of the PQM model. This is also true of the quadratic additive

model,

E[y] =

q∑
i=1

βixi +

q∑
i=1

βiix
2
i , (2.67)

inferred by Darroch and Waller (1985) and discussed further by Chan, Guan, and

Zhang (1998) and Chan, Meng, Jiang, and Guan (1998). This model is gained by

the same substitutions by which the slack variable models were obtained above

and provides similar advantages, without treating a variable as slack and hence

artificially diminishing its importance. Higher order forms, with no terms of joint

effect, can also be found for additive, slack variable and PQM models.

In addition, the PQM models also include other models, which are not equiv-

alent to slack variable, quadratic additive or canonical polynomial models. Thus,
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the best reduced PQM model is of at least equal fit to the best reduced forms

of each of these three alternatives and for this reason its application would be

expected to be most effective in finding the most parsimonious description of the

response surface, provided the correct reduced form was identified.

Piepel demonstrated the superiority of the PQM model through a three com-

ponent example, which looked at the tint strength of house paint and was used

by Cornell (2002) and Khuri (2005) to support the viability of the slack variable

approach. Starting from the linear model, Piepel implements a stepwise regres-

sion procedure for the quadratic terms of the canonical polynomial, slack variable

and PQM models. This use of stepwise regression where there are more possible

terms than can actually be fit will be referred to later in reference to the fitting

procedure for the GBMM.

The resultant reduced PQM model provides a better fit than the reduced

canonical polynomial model or reduced slack variable models. It is also not

equivalent to an additive quadratic model. With some caveats, it is demonstrated

to be the most useful of these type of parameterisations, where linear terms are

preserved in the model. However, one further reparameterisation provides an

alternative to what are conventionally described as linear terms.

Kronecker polynomial models

The Kronecker polynomial models (K-models), introduced by Draper and Pukelsheim

(1998), are based on the Kronecker algebra of vectors and matrices. The mixture

components may be expressed as a vector,

x = (x1, . . . , xq) . (2.68)

The Kronecker square,

x⊗ x =
(
x21, x1x2, . . . , x1xq, x2x1, x

2
2, . . . , xq−1xq, x

2
q

)
, (2.69)

is the vector of the order 2 cross product terms xixj, including the square terms

x2i . The cross product terms of the ith and jth components appear twice as xixj

and xjxi. Similarly the Kronecker cube,

x⊗ x⊗ x =
(
x31, x

2
1x2, . . . , xq−1x

2
q, x

3
q

)
, (2.70)
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is the vector of the order 3 crossproduct terms xixjxk, including the cube terms

x3i , where the third order terms are repeated six or three times dependent upon

the subscripts iij or ijk.

The first and second order K-models are expressed

E[y] = x
′
θ =

q∑
i=1

θixi (2.71)

and

E[y] = (x⊗ x)
′
θ =

q∑
i=1

θix
2
i +

q∑
i=1

q∑
j=1

θijxixj. (2.72)

Since the terms xixj and xjxi, of the second order model, are identical, it is

assumed that θij = θji. The third order model is given similarly.

Draper considers it incorrect to state that the second order K-model loses

linear terms or the third order K-model loses linear or quadratic terms. The full

second order K-model features the same number of terms as the full second order

Scheffé polynomial and describes the same surface and this is similarly true of

a comparison of the third order models. Moreover, the square terms x2i of the

second order K-model represent the individual components in the manner of the

xi terms of the Scheffé polynomials, while the xixj terms describe a joint effect

of the ith and jth components. Similarly, terms within the third order K-model

may be associated with each of the individual components and the joint effects

of any combination of two or three components.

However, the reduced models are not equivalent. Tests based upon the co-

efficient estimates of the terms of joint effect in each model do not return the

same results. The parameter estimates in each case represent different types of

behaviour and for this reason it could be felt that Draper is incorrect to state

that linear terms are preserved in K-models. This is because a linear term typ-

ically has a particular effect upon the response, not preserved by the x2i terms

of the second order K-model or the x3i terms of the third order K-model. Sim-

ilarly, the representation of two component synergy in the third order K-model

does not preserve the quadratic curvature of the xixj terms. In short, interpreta-

tion is complicated by engaging all terms as representative of quadratic or cubic

curvature, respectively.
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This is not to say the interpretation is particular complex. However, it con-

trasts with both the common understanding of linear, quadratic and cubic cur-

vature and the interpretation of other models used for the analysis of mixture

experiments. While it may not be considered prohibitive to their application,

it could be expected to be deleterious to their appeal. This said, if it is ac-

knowledged that the linear effects are not important, and instead it is chosen to

explore more flexible single component effects, the Kronecker models represent

an important starting point.

2.5 Generalised Q-fractions mixture model

Prior to recent years the closest attempt to producing nonlinear models for mix-

ture experiments were those of Becker. In 1978, he suggested a model including

nonlinear parameters, but without application nor discussion of their estimation.

More recently, the work of Focke, Sandrock, and Kok (2007) and Focke et al.

(2012) has led to the development of a nonlinear model for mixture experiments,

based upon chemical mixing rules commonly applied in thermodynamics. Their

final model is

E[y] =

 ∑q
i=1 aixiβ

r
i(∑q

j=1 a
s
jxj

) 1
s


1
r

, (2.73)

where βi represents a known value, associated with a measurable physical prop-

erty, and ai, r and s are estimable parameters. βi represent the same property

as they would in the Scheffé polynomial, but here they are fixed at the observed

pure component effect, rather than being estimable, thus not being influenced by

observations in the rest of the response surface.

This model can instead be represented as

E[y] =
(∑

βriQi

) 1
r
, (2.74)

where

Qi =
aixi(∑q

j=1 a
s
jxj

) 1
s

. (2.75)

Hence, these are linear blending models upon functions of the mixture components

and the Scheffé linear model is a special case where r = s = ai = 1 (and βi are
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estimable).

As a nonlinear model it is highly adaptable in a manner which is intriguing. It

can describe a broad range of behaviour, including asymmetry in the joint effects

of the components, which is not possible for the Scheffé polynomials. However, the

structure of the model means it can have a large number of nonlinear parameters

as the number of components increases. This would particularly be the case where

βi cannot be fixed at some theoretically logical value. For this reason, estimation

has not yet been made in more than 3 components (to our knowledge). This

opens a space for similarly flexible, but more broadly applicable models.

2.6 Summary

Scheffé’s models represented a significant progression in the modelling of mixture

experiments. However, this has not prevented others attempting to develop upon

his models and present wholesale alternatives. The stated objective for several

of these developments were to explore blending behaviour for which Scheffé’s

models did not allow (in the case of Becker’s models, inverse and logarithmic

terms and the Generalised Q-fraction model). The view of Plackett, in his ini-

tial assessment of the Scheffé polynomials, that they represented a polynomial

smoothing method, seems consistently problematic; the assumptions in Scheffé’s

models regarding the blending of the components, appear too rigid.

In short, it would appear desirable to possess a model which could adapt to

describe a wider range of blending effects. The Generalised Q-fraction model

is one such attempt. However, this model includes nonlinear parameters which

could not be easily handled in cases of more than a small number of components.

Moreover, it is not well seated within the established methodology for mixture

experiments and cannot be shown to represent a theoretical advance upon the

firmly established methods, i.e. the Scheffé polynomials, Becker models and PQM

models.

In developing the new class of models proposed in this thesis, it was considered

desirable to develop a model which included as special cases the models of Scheffé

and Becker, as well as a continuous range of other possibilities. Thus, it would

be capable of describing a broad range of blending behaviours, including that

given by the models of Scheffé and Becker, as well as similar behaviour to that

desired by Chen and Draper when proposing the logarithmic and inverse terms.
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In the manner of the Generalised Q-fraction models, such a class of models could

be expected to possess a large number of nonlinear parameters, particularly in

cases where there are a large number of components. As such, the new class

of models is represented here alongside a detailed discussion of their fitting, in

order that the reader understands how to handle the potentially large number of

parameters.



Chapter 3

General blending models for

mixture experiments

The linear in parameters models discussed thus far will describe well situations

where their terms accommodate the specific joint effects of the mixture com-

ponents. However, the situations where this will be the case are limited and

there are joint effects outside the scope of what they may describe. It is felt

this could lead them to perform poorly when these effects are required and they

may not adequately represent the response or do so in a manner detrimental to

model parsimony. This section proposes a general class of models, utilising flex-

ible regressors, which allow for the description of responses of mixtures whose

components have a wide range of different effects. The discussion will first look

at joint effects of two components, and then the presented ideas will be extended

to three components. The joint effects of more than three components are rarely

considered when modelling mixture experiments using existing methodology and

therefore are not considered here, although such terms could be developed simi-

larly to the two and three component cases shown.

3.1 Regressor defining parameters

In order to establish the link between the existing methodology we start by de-

scribing an idea for combining and generalising standard quadratic models. It is

from this that the entire class of models has developed.

46
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The models

E[y] =

q∑
i=1

βixi + βijxixj (3.1)

and

E[y] =

q∑
i=1

βixi + βij
xixj
xi + xj

, (3.2)

where 1 ≤ i, j ≤ q, i 6= j, characterise the response surface in contrasting ways

with respect to the joint effect of xi and xj. While Model 3.2 allows an addi-

tive blending effect through Becker’s H2 model, Model 3.1 utilises the quadratic

blending effect of the Scheffé polynomial. This contrast is reflected in the form

of the regressors for xi and xj.

Where more than one pair of mixture components demonstrate joint effects,

the best model fit may be achieved where the joint effect of the term in Model

3.1 is used for one pair of components and that of the regressor in Model 3.2

for another (Johnson and Zabik, 1981). However, the choice of regressors in this

context may be far more extensive and can be defined by the introduction of

regressor defining parameters.

Firstly, a generalised binary blending effect is defined by introducing the pa-

rameter sij in the model

E[y] =

q∑
i=1

βixi + βij

(
xi

xi + xj

)(
xj

xi + xj

)
(xi + xj)

sij . (3.3)

The blending effects corresponding to five different values of sij (sij = 0.2, 0.5, 1,

2, 5) are shown in Figure 3.1, including those for Models 3.1 and 3.2, for sij = 2

and sij = 1, respectively.

Further flexibility can be added with the introduction of the regressor defining

parameters rij and rji to the model, which gives

E[y] =

q∑
i=1

βixi + βij

(
xi

xi + xj

)rij ( xj
xi + xj

)rji
(xi + xj)

sij , (3.4)

where, if sij = 1, this term of joint effect is the same as in Model 2.57 proposed

(but not applied) by Becker in 1978. Thus we define a flexible regressor for the



CHAPTER 3. THE GBMM 48

Figure 3.1: Blending effects for sij = 0.2, 0.5, 1, 2 and 5.

joint effect of xi and xj, governed by the regressor defining parameters sij, rij,

rji and the corresponding model parameters βij.

This idea of regressor defining parameters can be extended to introduce a

flexible regressor describing general ternary joint effects in the model

E[y] =

q∑
i=1

βixi + βijk

(
xi

xi + xj + xk

)rijk ( xj
xi + xj + xk

)rjki
×(

xk
xi + xj + xk

)rkij
(xi + xj + xk)

sijk .

(3.5)

Here, the joint effect of the components xi, xj and xk is governed by sijk, rijk,

rjki, rkij and the corresponding βijk. In particular, sijk governs the blending effect

between xi+xj+xk and the remainder of the mixture, in an analogous manner to

sij, for xi + xj above. Thus, contrasting effects may be seen along any ray where

xi, xj and xk remain in fixed relative proportions. The flexible regressors, for the

binary and ternary cases, shall be referred to as the general term of binary and

ternary joint effect, respectively.

Model 3.4 may alternatively be expressed

E[y] =

q∑
i=1

βixi + βij

(
xi

xi + xj

)gijhij ( xj
xi + xj

)gji(1−hij)
(xi + xj)

sij , (3.6)

where gijhij = rij and gij (1− hij) = rji, so that gij = rij + rji and hij = rij/gij.
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Similarly, Model 3.5 may alternatively be expressed

E[y] =

q∑
i=1

βixi + βijkxixjxk

(
xi

xi + xj + xk

)gijkhijk ( xj
xi + xj + xk

)gijkhjki
×

(
xk

xi + xj + xk

)gijk(1−hijk−hjki)
(xi + xj + xk)

sijk , (3.7)

where gijk = rijk + rjki + rkij, hijk = rijk/gijk, hjki = rjki/gijk, gijkhijk = rijk,

gijkhjki = rjki and gijk (1− hijk − hjki) = rkij. These reparameterisations are

important in understanding how the regressor defining parameters govern the

joint effects these terms describe.

3.2 The Dirichlet distribution

To assist this, it is useful to look at the Dirichlet distribution (Huang (2005)).

The Dirichlet distribution is a probability distribution in K ≥ 2 variables, xi,

with probability density function

f (x, αi) =
1

B (α1, . . . , αk)

K∏
i=1

xαi−1
i , (3.8)

where
∑
xi = 1 and 0 ≤ xi ≤ 1, α1, . . . , αk are parameters to be estimated and

B (α1, . . . , αk) is the Beta function,

B (α1, . . . , αk) =

∏k
i=1 Γ (αi)

Γ
(∑k

i=1 αi

) . (3.9)

The constraints upon xi mean the probability density function of the Dirichlet

distribution is supported on the K − 1 dimensional simplex - this support is

analogous to the unconstrained experimental region of a mixture experiment.

It can be shown the binary term of joint effect can be expressed as a product

of a constant, β′ij, and two functions, each with the same form as the probability
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density function of the Dirichlet distribution for K = 2:

βij ×
(

xi
xi + xj

)gijhij ( xj
xi + xj

)gji(1−hij)
× (xi + xj)

sij (1− xi − xj)0 =

β′ij×
1

B
(
γij1 , γ

ij
2

) ( xi
xi + xj

)(γij1 −1)( xj
xi + xj

)(γij2 −1)

× 1

B
(
δij1 , δ

ij
2

) (xi + xj)
δij1 −1 (1− xi − xj)δ

ij
2 −1 (3.10)

where gij =
∑

i γi−1, hij = γi−1
gij

= γi−1∑
i γi−1

, sij = δ1−1 and βij =
β′ij

B(δij1 ,δ
ij
2 )B(γij1 ,γ

ij
2 )

.

The ternary term of joint effect can similarly be written as a product of a con-

stant, one function of the form of the probability density function of the Dirichlet

distribution for K = 2 and one function of the form of the probability density

function of the Dirichlet distribution for K = 3.

It is possible to interpret a Dirichlet distribution through the mean,

M =
(α1

S
, . . . ,

αK
S

)
, (3.11)

and the concentration,

S =
∑
i

αi, (3.12)

where M describes the point within the simplex where the distribution is at its

maximum and S describes the concentration about that point. By looking at the

two functions embedded within the general binary term of joint effect, it is also

possible to interpret this through mean and concentration effects: the mean and

concentration effects with respect to xi and xj, and the mean and concentration

effects with respect to xi + xj.

3.3 Interpreting the terms of joint effect

From Equation 3.10 it is evident that the binary term of joint effect can be

separated into two functions and these functions can be interpreted in terms of

mean and concentration effects, in the manner of the Dirichlet distribution. One

of these functions is governed by the regressor defining parameters hij and gij,

and the other by the regressor defining parameter sij.
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In the first of these functions,

(
xi

xi + xj

)gijhij ( xj
xi + xj

)gji(1−hij)
=

(
xi

xi + xj

)(γij1 −1)( xj
xi + xj

)(γij2 −1)

, (3.13)

gij defines the concentration effect of the term with respect to xi and xj, since

Sij = gij+2, where Sij is the concentration parameter as defined for the Dirichlet

distribution above. Therefore, since

hij =
γij1 − 1

Sij − 2

hij
Sij

=
γij1 − 1

Sij (Sij − 2)(
Sij − 2

) hij
Sij

=
γij1 − 1

Sij(
Sij − 2

) hij
Sij

+
1

Sij
=
γij1
Sij

,

the parameter hij can be said to govern the mean effect of the term with respect

to xi and xj,

M ij =

(
γij1
Sij

,
γij2
Sij

)
=

(
(Sij − 2)hij

Sij
+

1

Sij
,
(Sij − 2) (1− hij)

Sij
+

1

Sij

)
. (3.14)

In particular, it can be shown that hij = 0.5 indicates a symmetric effect.

To illustrate the way the joint effect of xi and xj changes with these regressor

defining parameters, the effects for gij = 20 and gij = 0.2 (that is concentration

effects Sij = 22 and Sij = 2.2, respectively) are shown in Figure 3.2 for hij = 0.75,

that is mean effect M ij = (0.727, 0.273).

In the second function contained within the binary term of joint effect,

(xi + xj)
sij (1− xi − xj)0 = (xi + xj)

δij1 −1 (1− xi − xj)δ
ij
2 −1 , (3.15)

where δij2 = 1 is seen to be fixed and δij1 = sij − 1. The influence of sij has

already been seen in Figure 3.1, and is understood to govern the blending between

xi + xj and the remainder of the mixture. The concentration effect of the binary

term of joint effect with respect to xi + xj, is Sijs = sij and the mean effect,

M ij
s =

(
sij−1
sij

, 1
sij

)
. Hence, it is seen sij governs both mean and concentration

effects with respect to xi + xj.
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Figure 3.2: Effect of binary term of joint effect for gij = 20 and gij = 0.2 and
hij = 0.75

At this point, it seems useful to reiterate the terminology for the terms of

binary joint effect:

• M ij - the mean effect of the binary term of joint effect, with respect to xi

and xj;

• Sij - the concentration effect of the binary term of joint effect, with respect

to xi and xj;

• M ij
s - the mean effect of the binary term of joint effect, with respect to

xi + xj;

• Sijs - the concentration effect of the binary term of joint effect, with respect

to xi + xj;

• hij - the regressor defining parameter governing M ij;

• gij - the regressor defining parameter governing Sij;

• sij - the regressor defining parameter governing M ij
s and Sijs ;

• rij, rji, sij - regressor defining parameters combining mean and concentra-

tion effects, used for estimation.
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The interpretation of the ternary term of joint effect can similarly be separated

into mean and concentration effects with respect to xi, xj and xk, governed by

hijk, hjki and gijk, and mean and concentration effects with respect to xi+xj+xk,

governed by sijk. As mentioned, the influence of sijk is similar to that of sij. The

effect of different hijk, hjki and gijk, are illustrated in Figure 3.3.

In the Dirichlet distribution there are restrictions placed upon α. For the

binary terms of joint effect these are most usefully reexpressed in terms of rij, rji

and sij, as these are the parameters estimated when fitting the GBMM:

rji, rij, sij ≥ −1. (3.16)

For now, estimation has only occurred for

rji, rij, sij > 0, (3.17)

in order to preserve the interpretation of the linear parameters as in established

models, but this is something which could be looked at again. The parameters

rijk, rjki, rkij, and sijk would similarly be constrained for the general ternary term

of joint effect,

rijk, rjki, rkij, sijk ≥ −1, (3.18)

but have been restricted to values greater than 0, for the purpose of estimation.
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(a) gijk = 20,hijk = hjki = 1
3 (b) gijk = 2,hijk = hjki = 1

3

(c) gijk = 7,hijk = 1
4 , hjki = 1

4 (d) gijk = 7,hijk = 1
10 , hjki = 4

10

Figure 3.3: Plots of the response described by the general ternary term of joint
effect for different values of gijk, hijk and gjki
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3.4 General blending models for mixture exper-

iments

Using the terms of binary and ternary joint effect, the new class of General

Blending Models for Mixtures (GBMM) is proposed of the form

E[y] =

q∑
i=1

βixi

+
∑
i 6=j

βij

(
xi

xi + xj

)rij ( xj
xi + xj

)rji
(xi + xj)

sij

+
∑
i 6=j 6=k

βijk

(
xi

xi + xj + xk

)rijk ( xj
xi + xj + xk

)rjki
×(

xk
xi + xj + xk

)rkij
(xi + xj + xk)

sijk . (3.19)

It is possible to include more than one term of each type in the model, that is

for each pair or triple of components, but for simplicity this is not considered.

Model 3.19 can have many terms, but usually only a small number of such terms

will be necessary to represent the studied relationship.

As discussed earlier, the GBMM can also be reparameterised as

E[y] =

q∑
i=1

βixi

+
∑
i 6=j

βij

(
xi

xi + xj

)gijhij ( xj
xi + xj

)gji(1−hij)
(xi + xj)

sij

+
∑
i 6=j 6=k

βijk

(
xi

xi + xj + xk

)gijkhijk ( xj
xi + xj + xk

)gjkihjki
×

(
xk

xi + xj + xk

)gkij(1−hijk−hjki)
(xi + xj + xk)

sijk . (3.20)
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Additionally, they may be expressed

E[y] =

q∑
i=1

βixi +
∑
i 6=j

βij
x
rij
i x

rji
j

(xi + xj)
tij

+
∑
i 6=j 6=k

βijk
x
rijk
i x

rjki
j x

rkij
k

(xi + xj + xk)
tijk

, (3.21)

where tijk = rijk + rjki + rkij − sijk. This form is useful for estimation and shall

be used in the following chapter.

Models 3.19, 3.20 and 3.21 may be used to establish a broad range of joint

effects. In fact, most models presented in the literature are special cases of our

class of models. For example, the quadratic crossproduct terms in the Scheffé

polynomial or the PQM model occur when hij = 0.5, gij = 2 and sij = 2. The

squared terms in the PQM model occur when hij = 0, gij = 2 and sij = 2. The

quadratic terms of Becker’s H2 and H3 models occur when hij = 0.5, sij = 1

and gij = 2 or 1, respectively. Furthermore, the ternary term of the special cubic

model occurs when hijk = hjki = 1
3
, gijk = 3 and sijk = 3 in the general ternary

term of joint effect. Thus, the GBMM allows us to consider commonly used

terms, as well as new terms, in a context of notable flexibility.

It is possible that a practitioner may choose not to include the terms of ternary

joint effect in a GBMM. Therefore, cases where they aren’t included shall be

referred to as the General Quadratic Blending Mixture Model (GQBMM), ac-

knowledging the relationship to the Scheffé polynomials. Cases where they are

included shall be referred to as the General Special Cubic Blending Mixture Model

(GSCBMM).

It should be noted that while the possible interpretation can be made of the

particular binary and ternary terms of joint effect, it is not foreseen that interpre-

tation will necessarily be useful. It is expected that more than one such term will

be included in a model and this will blur the interpretation of the individual terms.

However, this is not to say that interpretation will be impossible and evidently

there is a clear framework for doing so, which could be useful as methodologies

for the GBMM are developed. In fact, the possibility of interpretation will be

evident in some of the examples of the following chapters.



Chapter 4

Model estimation and model

selection: a fitting procedure for

the GBMM

In fitting the GBMM, it is not expected to fit a full model, i.e. one with at

least one term of joint effect between every pair or triplet of components. It is

necessary to select only a subset of such terms, with the objective of achieving

model parsimony. Parsimony, in the context of statistical models, provides the

best fitting model with the fewest number of parameters. Hence, the simplest

model is chosen judged to possess a sufficiently good description of the observed

responses, that is, sufficient goodness of fit.

The difficulty of fitting a reduced GBMM is that, in order to ascertain such

a subset, it is also necessary to estimate the values of the regressor defining pa-

rameters for each term of joint effect within the subset. Therefore, the challenge

of fitting the GBMM, is to achieve both model selection and nonlinear model

estimation simultaneously. In order to describe the process chosen, certain con-

cepts regarding both model estimation and model selection are discussed at the

beginning of this chapter. Subsequently, the details of the fitting procedure for

the GBMM are presented.

4.1 Model estimation

In order to fully inform the fitting procedure proposed, it is necessary to look

at two methods of model estimation: maximum likelihood and least squares.

57
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Maximum likelihood is addressed briefly, in the context of linear models, while

least squares is additionally explored in the context of nonlinear models.

4.1.1 Maximum likelihood estimation

A linear in parameters model may be expressed

E[y] = Fβ, (4.1)

where β is the vector of linear parameters, F is the extended design matrix whose

rows Fi (x) give the values of each of the terms of the model at the values of x,

for which y, the vector of responses, were observed. Thus for the two component

quadratic Scheffé polynomial,

E[y] = β1x1 + β2x2 + β12x1x2, (4.2)

if observations are made at the pure mixtures, x = (1, 0) and x = (0, 1), and the

50-50 mixture x =
(
1
2
, 1
2

)
,

F =

 1 0 0

0 1 0
1
2

1
2

1
4

 .

Under the assumptions of the linear model, the vector of observations are normally

distributed such that

y ∼ N
(
Fβ, σ2

ε I
)
, (4.3)

where I is the identity matrix.

The joint probability density of these observations is

p (y) =
1(

σε
√

2π
)n exp

(y − Fβ)
′
(y − Fβ)

2σ2
ε

, (4.4)

of which the log likelihood is

logL
(
β, σ2

)
= −n

2
log 2π − n

2
log σ2 − 1

(2σ2)
(y − Fβ)

′
(y − Fβ) , (4.5)

where n is the number of observations taken in the experiment. The maximum

likelihood estimators of the model parameters are found by maximising the log

likelihood.
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In the context of the fitting procedure presented for the GBMM, maximum

likelihood is important with respect to a measure of model parsimony. Of the

several statistics which can measure model parsimony, here the corrected AIC

AICc = −2L+
2n (k + 1)

n− k − 1
, (4.6)

is used, which is a function of L, the maximised value for the likelihood function

of the estimated model. This can be viewed as a measure of goodness of fit with

an additional penalisation for the number of parameters, where k is the number

of parameters.

4.1.2 Least squares regression

More significant to the fitting of GBMM is least squares regression. In order to

estimate β, both in the case of least squares and maximum likelihood estimation,

the functional

‖y − Fβ‖22, (4.7)

can be minimised, where ‖‖22 is the Euclidean distance. Therefore, a measure of

the goodness of fit

R2 = 1− ‖y − Fβ‖22
‖y − ȳ‖22

. (4.8)

The estimates of β, defined by maximising Equation 4.7, are expressed

β̂ =
(
FTF

)−1
FTy, (4.9)

the variance of which are given as

var
(
β̂
)

= σ2
(
FTF

)−1
. (4.10)

The confidence ellipsoid of the p parameters can be defined in p-dimensional space

as

S (β)− S
(
β̂
)

= ps2Fp,v,α, (4.11)

where s2 is an estimate of σ2, p is the number of parameters and Fp,v,α is the

critical value for the desired false-rejection probability, α, of an F-distribution

with p and v = n−p degrees of freedom. A confidence ellipsoid is used to suggest
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the accuracy of the estimates β̂ in relation to their true value. The volume of

this ellipsoid is inversely proportionate to the square root of the determinant of

the information matrix, ∣∣FTF
∣∣ . (4.12)

In experimental design it is often viewed as desirable to reduce the size of this

ellipsoid in some respect. As such many criteria for assessing experimental design

relate to
∣∣FTF

∣∣. In particular, experimental designs which maximise the determi-

nant of the information matrix are known as D-optimum. This will be of interest

when experimental design for the GBMM is discussed later.

Given estimates β̂, the predicted value of the response for any x is now given

as

ŷ = β̂fT (x) , (4.13)

such that

var{ŷ (x)} = σ2fT (x)
(
FTF

)−1
f (x) . (4.14)

The prediction variance is then given as

N
var{ŷ (x)}

σ2
= NfT (x)

(
FTF

)−1
f (x) . (4.15)

This is of interest with respect to several other criteria relating to experimental

design. In particular a G-optimum design minimises the maximum generalised

prediction variance across the design space. Again this topic shall be returned to

later.

4.2 Partially linear models

As discussed, the GBMM is a particular type of nonlinear model, that is a par-

tially linear model. In a partially linear model, the ith row of the extended design

matrix F is expressed

FT
i (x, α) , (4.16)

where α is a vector of unknown nonlinear parameters to be estimated. A feature of

such models and all nonlinear models, initiating estimation requires prior values

for the nonlinear parameters α. Therefore, some prior information is required

regarding α to initiate estimation. Additionally, the choice of experimental design

for partially linear models is also dependent on α. The use of prior information
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for α both in estimation of the GBMM and choice of experimental design are

important issues to be addressed.

Estimation of the model parameters of partially linear models can be achieved

through nonlinear optimisation of the functional

‖y − F (α) β‖22, (4.17)

where F (α) is the matrix of the nonlinear functions Fi (x, α), now dependent

on α. However, because of the partially linear structure, the variable projection

method of Golub and Pereyra (1973, 2003) permits the parameters be estimated

instead through optimisation of the functional

‖
(
I− F (α)F+ (α)

)
y‖22, (4.18)

where F+ is the Moore-Penrose generalized inverse of F. This functional is an

expression of the nonlinear parameters only, although this is not to say that

it does not estimate the linear parameters, as this still occurs implicitly. In

this manner, estimation is achieved through a lower-dimensional although more

complex optimisation problem, which nevertheless achieves the estimation of both

the linear and nonlinear parameters simultaneously. This can prove advantageous

for reasons relevant to the proposed estimation procedure for the GBMM.

These reasons are twofold. Firstly, optimisation may be quicker than it would

be with more widely used methods of nonlinear optimisation. This is provided

the reduction in dimensionality sufficiently compensates the increased complex-

ity. Secondly, it requires only starting values of the nonlinear parameters (and

not the linear parameters) to begin optimisation. In other methods of nonlin-

ear optimisation, prior information regarding the nonlinear parameters would be

used to gain the corresponding initial values for the linear parameters. A search

for optimal values can then be initiated from these starting values, in the case of

our examples using a Gauss-Newton algorithm. By removing the step of identi-

fying the initial values of the linear parameters, time can be saved in the overall

estimation time.

The variable projection method allows that the starting values for the linear

parameters need not be identified. This will be seen to be particularly advan-

tageous in the proposed fitting procedure of the GBMM, as a large proportion

of the parameters can be excluded from the optimisation problem. Hence, the
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potentially large numbers of parameters in the GBMM is overcome, reducing the

dimensionality of the problem. This said, even excluding the linear parameters,

the number of parameters in the GBMM increases rapidly as the number of re-

gressors in the model increases. Therefore a creative application of the existing

statistical software is still required.

4.3 Stepwise regression and model selection

This creative application is achieved using ideas from stepwise regression

(Efroymson (1965)). Stepwise regression is a commonly applied method of achiev-

ing model parsimony and can be broken down into forward, backward and step-

wise selection, of which the former is relevant to the fitting procedure proposed

for the GBMM. All three present a method for the selection of a subset of terms,

from a linear model, in order to a achieve a parsimonious reduced model. Forward

and stepwise selection are of particular interest where it is infeasible to fit the full

model, which is most likely to be the case when fitting the GBMM to data from

a mixture experiment in a large number of components.

It is also important where all the terms of a model may not be fit simultane-

ously because of confounding effects. This is the case with the PQM models,

E[y] =

q∑
i=1

βixi +

q∑
i=1

q∑
j=1

βijxixj +

q∑
i=1

βiix
2
i , (4.19)

where it is only possible to fit a model with q(q−1)
2

of the full q(q−1)
2

+ q terms.

This is because, for example,

x2i = xi

(
1−

∑
i 6=j

xj

)
. (4.20)

As stepwise regression was recommended by Piepel as a method for selecting

a PQM, it is used here to illustrate both the concepts of forward and stepwise

selection.

Forward selection involves beginning with a reduced model and subsequently

adding terms in order to improve model parsimony. Piepel suggests beginning
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with the linear Scheffé polynomial,

E[y] =

q∑
i=1

βixi. (4.21)

Each of the models formed from adding one of the q(q−1)
2

+ q additional square

or joint effect terms to the model are then found and the AICc calculated. That

model with the lowest AICc is then chosen as the second model. The process then

continues by adding one of the remaining other q(q−1)
2

+q−1 terms to this second

model. Hence forward selection is an iterative process where one term is added at

each iteration. When no additional terms can be added without damaging model

parsimony, according to AICc, say, the final model has been reached.

Stepwise selection differs from forward selection in that it allows for terms to

be removed from the model. At any stage in forward selection, model parsimony

may be improved by removing a term added earlier. This will be because terms

added later in the fitting procedure have rendered this term ‘less important’

in contributing to model fit. Hence, any iteration of stepwise selection involves

consideration of all models formed by removing a term from the model, in addition

to all models formed by adding a term to the model. AICc is then used similarly

to choose the most parsimonious model from which to begin the next iteration.

Methods of stepwise regression are generally criticised for causing stochastic

errors. This means that, at any stage, the process may take a step away from se-

lecting the most parsimonious final model. This mistake can then be compounded

at later stages, resulting in a solution very distant from the most parsimonious

possibility. This concept shall be discussed with respect to the GBMM. More

generally, in order to avoid problems of stochastic errors, best subset selection

or elastic net methods are applied in selection of parsimonious reduced models.

However, for the GBMM these options were not possible.

4.4 Fitting the GBMM: an introduction

Fitting a parsimonious GBMM is made relatively complex because model un-

certainty exists not only in the terms to be included in the model, but also the

form of these terms. This is made particularly complicated by the large number

of regressor defining parameters which will have to be chosen in any GBMM of

more than a handful of terms. To address this forward selection can be used,
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adding the terms of joint effect sequentially. This allows the consideration of

only those regressor defining parameters of one general term of joint effect at a

time, provided the regressor defining parameters of general terms of joint effect

added at earlier steps remain fixed.

However, by fixing the regressor defining parameters of terms chosen at earlier

steps of the forward selection procedure, the GBMM may be viewed as partic-

ularly susceptible to stochastic errors. The estimation procedure proposed in-

troduces an additional step to combat this problem. Upon adding a new term

of joint effect, through forward selection, it is proposed to re-estimate the terms

of joint effect already included in the model. Hence, the regressor defining pa-

rameters of a term do not remain fixed once the term has enter the model. Not

only does this improve upon the approach which could have been undertaken, it

continues to take advantage of the flexibility of the GBMM.

At each step of the forward selection procedure, a large number of models will

be estimated in order to choose both the best term of joint effect to be added

to the model and the values of its regressor defining parameters. Each of these

models presents a nonlinear optimisation problem. This requires the starting

values be given for the model parameters, in order to initiate the search for their

optimum values. However, the strength of the GBMM is its approach to model

uncertainty, which is to say the form of the model terms are unknown prior to

fitting and hence the best starting values are unknown. To tackle this problem

the variable projection method of Golub and Pereyra is applied, greatly reducing

the required number of starting values to only those for the regressor defining

parameters of the term of joint effect being estimated at that point. Then, rather

than one set of starting values, a list of possible starting values has then been

used and the same model estimated multiple times. It is hoped this approach

maximises the advantages taken from the flexibility of the GBMM.

The rest of this chapter begins with a discussion of how the process of esti-

mating multiple models, using multiple starting values, is implemented. Hence,

Section 4.5 can be viewed as an in depth discussion of how each term is added

to the model. Section 4.6 elaborates on this, introducing the idea of reestimating

terms of joint effect added to the model at earlier steps of the forward selec-

tion process. Finally, in Section 4.7, the additional separate reestimation of the

regressor defining parameters tij and tijk is discussed.

Section 4.8 then gives the full iterative process of model estimation graphically,
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for the simplest case, that of the GQBMM. This permits discussion of each of

the steps of this process and how they could be applied differently. We will also

identify how the process changes when using the GSCBMM. Finally, the following

chapter will look at several simple examples. The purpose of these is twofold.

Firstly, to inform a discussion of how the changes to the model fitting procedure,

introduced in Section 4.8, can change the consequent model and secondly, to

begin to illustrate how the GBMM can be applied advantageously in comparison

to the models for mixture experiments presented in Chapter 2.

4.5 Adding a term

The final form of any GBMM can mean the regressor defining parameters of a very

large number of terms need be identified in selecting the final model. Estimation

of all of these parameters simultaneously would present a very high-dimensional

nonlinear optimisation problem. Particularly challenging is the choice of which

general terms of joint effect to include in the model, given the unknown values

of their regressor defining parameters. As discussed above, it is proposed to

overcome this challenge using forward selection. This section discusses the process

of selecting each term to be added to a fitted GBMM.

To do this we look at the fitting of a GQBMM, to a three component mixture

experiment. In such a model it is necessary to select a reduced form of the model

E[y] =
3∑
i=1

βixi +
3∑
i=1

∑
j<i

βij
x
rij
i x

rji
j

(xi + xj)
tij
. (4.22)

Using forward selection, first a model with one general binary term of joint

effect is selected. This requires the three models

E[y] =
3∑
i=1

βixi + β12
xr121 xr212

(x1 + x2)
t12
, (4.23)

E[y] =
3∑
i=1

βixi + β13
xr131 xr313

(x1 + x3)
t13

(4.24)

and

E[y] =
3∑
i=1

βixi + β23
xr232 xr323

(x2 + x3)
t23
, (4.25)
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be fitted and compared using some measure of goodness of fit.

Each of these models is nonlinear in the regressor defining parameters rij, rji

and tij and hence require the implementation of methods of nonlinear optimisa-

tion for their estimation. To do this the variable projection method is applied.

Hence, for each pair of components xi and xj, the estimation occurs through

optimisation of the functional

‖I− F (rij, rji, tij) F+ (rij, rji, tij) y‖22, (4.26)

rather than

‖y − F (rij, rji, sij) β‖22 , (4.27)

where β is the vector of linear coefficients, β1, β2, β3 and βij, and rij, rji and tij

are equivalent to α in Equation 4.17. In this manner, a nonlinear optimisation

problem in seven dimensions, including the linear coefficients, is replaced by a

somewhat more complex optimisation problem in only three dimensions.

It should be noted that, when considering one general term of binary joint

effect in a GBMM, the optimisation problem inherent in estimation will always

reduce to three dimensions, regardless of the number of components. Similarly, for

a general term of ternary joint effect, the optimisation problem can be expressed

in four dimensions, those of the respective regressor defining parameters. Where

there are a large number of components, this then has the potential to massively

reduce the dimensionality of the optimisation problem required in estimating each

model.

For each pair of components xi and xj, the Functional 4.26 is optimised using

numerous sets of initial values for rij, rji and tij. This is because, using only one

set of starting values may only identify a local optimum for the values of these

parameters or indeed no optimum may be found; using a list a different sets of

initial values gives the greatest opportunity of finding the global optimum values.

Having estimated Models 4.23, 4.24 and 4.25, using the numerous sets of

starting values, the best fitted of each of these models is then identified and each

of these three models is then compared to each other and one model selected as

‘best’. This model is expressed

E[y] =
3∑
i=1

β̂ixi + β̂i1j1
x
r̂i1j1
i1

x
r̂j1i1
j1

(xi1 + xj1)
t̂i1j1

, (4.28)
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where i1 and j1 identify the components present in the chosen general term of

joint effect and r̂i1j1 , r̂j1i1 , t̂i1j1 , β̂i and β̂i1j1 indicate the estimated values of the

parameters. Without loss of generality, it is supposed i1 = 1 and j1 = 2

This model found, a second term can now be added. This requires the two

models,

E[y] =
3∑
i=1

βixi + β12
xr̂121 xr̂212

(x1 + x2)
t̂12

+ β13
xr131 xr313

(x1 + x3)
t13

(4.29)

and

E[y] =
3∑
i=1

βixi + β12
xr̂121 xr̂212

(x1 + x2)
t̂12

+ β23
xr231 xr323

(x2 + x3)
t23
, (4.30)

to be estimated and compared. Here, r̂12, r̂21 and t̂12 indicating the values of

these regressor defining parameters estimated at the previous step, will be fixed

during this current round of estimation at the values in Model 4.28.

Hence, fitting Models 4.29 and 4.30 requires the estimation of the regressor

defining parameters of the new term only. Therefore, using the variable projection

method, estimation is once again possible through optimisation of the functional

‖I− F (rij, rji, tij) F+ (x, rij, rji, tij) y‖22, (4.31)

where now β = (β1, β2, β3, β12, βij), and the ith and jth components are now the

pairs of components for which there is not already a general term of binary joint

effect present in the model, in this case x2 and x3, and x1 and x3. As with the

fitting of Models 4.23, 4.24 and 4.25 this is a problem in 3 dimensions. Thus, it

is seen that by fixing the regressor defining parameters of those terms fitted at

earlier steps, the problem of defining the regressor defining parameters of a large

number of general terms of joint effect can be overcome.

4.6 Reestimating the regressor defining param-

eters of each term

Having chosen either Models 4.29 or 4.30, once again through estimation for

multiple sets of initial values, it may be advantageous to adjust the regressor

defining parameters of the term added at the first iteration. This can be done by

now fixing the regressor defining parameters estimated for the second term and

reestimating those for the first. Supposing Model 4.29 to have been selected over
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Model 4.30, then the model,

E[y] =
3∑
i=1

βixi + β12
xr121 xr212

(x1 + x2)
t12

+ β13
xr̂131 xr̂313

(x1 + x3)
t̂13
, (4.32)

is fitted, in the same manner as above, thus finding new values for r12, r21 and t12.

Here, r̂13, r̂31 and t̂13 appear with hats to indicate they are fixed at the values

found for them at the most recent, previous step of the estimation procedure.

Throughout this chapter hats upon model parameters indicate they are fixed at

such values and therefore, are not estimated in fitting the presented model. The

model

E[y] =
3∑
i=1

βixi + β12
xr̂121 xr̂212

(x1 + x2)
t̂12

+ β13
xr131 xr313

(x1 + x3)
t13

(4.33)

can then be refitted to identify new values for r13, r31 and t13 in light of the new

(fixed) values r̂12, r̂21 and t̂12.

4.7 Reestimating the regressor defining param-

eters t

In addition to sequential reestimtation of the regressor defining parameters of each

of the terms in a GBMM, a practitioner may also choose to subsequently reesti-

mate the parameters t, made up of all parameters tij currently in the model. This

can equivalently be viewed as separate reestimation of the vector of parameters

s, made up of all parameters sij. This group of parameters could be considered

an interesting distinct subset for such treatment, as their values can not be dis-

cussed with respect to a particular two or three component sub-simplex. Hence,

continuing the example above, it is proposed to take one more step, where the

model,

E[y] =
3∑
i=1

βixi + β12
xr̂121 xr̂212

(x1 + x2)
t12

+ β13
xr̂131 xr̂313

(x1 + x3)
t13
, (4.34)

is estimated with fixed values r̂ij and r̂ji, in order to reestimate new values for t.



CHAPTER 4. FITTING THE GBMM 69

4.8 Fitting the GBMM: a graphical representa-

tion

The previous section presented a method through which to handle estimation of

the regressor defining parameters of multiple general terms of joint effect. This

now allows us to present the estimation procedure in full. As the discussion

above suggests, this is an iterative procedure, where each iteration has two or

three stages. At each iteration a new term is first chosen for the model, and then

the regressor defining parameters for each term of joint effect in the model are

reconsidered in light of this new term. Finally, the practitioner may then choose

to reestimate all values t again, simultaneously, where this is the vector of all

values tij already fit to the model. These three stages are presented separately in

Sections 4.8.1, 4.8.2 and 4.8.3, respectively.

The following notation is used in the description below:

• the vector of all parameters βi and βij included in the model found at the

jth iteration of the fitting procedure -

β(j); (4.35)

• unfitted linear model -

f0
(
x, β(0)

)
; (4.36)

• fitted linear model -

f0

(
x, β̂(0)

)
; (4.37)

• the list of unestimated models to be fit in order to identify the new term

added at the kth iteration -

fk
(
x, β(k)

)
; (4.38)

• the estimations of these models found to have the best, respective, goodness
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of fit -

fk

(
x, β̂(k)

)
; (4.39)

• the model decided upon at the k−1th iteration, with fixed regressor defining

parameters for those terms added to the model up to this point -

Fk−1
(
x, β(k−1)) ; (4.40)

• the model to be estimated in reconsidering the regressor defining parameters

of the terms added at the jth iteration during the kth iteration -

f jk
(
x, β(k)

)
; (4.41)

• the estimation of this model providing the greatest improvement in goodness

of fit -

F j
k

(
x, β̂(k)

)
; (4.42)

• the current model of the kth iteration with the term added at the jth itera-

tion -

F−jk

(
x, β̂(k)

)
; (4.43)

• the model to be estimated with fixed values of rij and rji of the terms added

to that point, but estimable tij -

f t
k

(
x, β(k)

)
. (4.44)
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4.8.1 Adding a term

Linear model

f0
(
x, β(0)

)
=∑q

i=1 βixi

Estimated lin-

ear model

F 0
0

(
x, β̂(0)

)
=∑q

i=1 β̂ixi

Prospective models: step k

fk
(
x, β(k)

)
= Fk−1

(
x, β(k−1)) + βij

x
rij
i x

rji
j

(xi+xj)
tij

Estimated models: step k

fk

(
x, β̂(k)

)
= Fk−1

(
x, β̂(k−1)

)
+ β̂ij

x
r̂ij
i x

r̂ji
j

(xi+xj)
t̂ij

Chosen model: step k

F 0
k

(
x, β̂(k)

)
= Fk−1

(
x, β̂(k−1)

)
+β̂ikjk

x
r̂ikjk
ik

x
r̂jkik
jk

(xik+xjk)
t̂ikjk

Matrix of start-

ing values for

rij,rji and tij
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4.8.2 Reestimating the regressor defining parameters of

each term

Model for reestimation of term 1

f 1
k

(
x, β(k)

)
= F−1k−1

(
x, β(−1)) + βi1j1

x
ri1j1
i1

x
rj1i1
j1

(xi1+xj1)
ti1j1

Reestimation Term 1

F 1
k

(
x, β̂(k)

)
= F−1k

(
x, β̂(−1)

)
+ β̂i1j1

x
r̂i1j1
i1

x
r̂j1i1
j1

(xi1+xj1)
t̂i1j1

Model for reestimation of Term 2

f 2
k

(
x, β(k)

)
= F−2k

(
x, β(k−1)) + βi2j2

x
ri2j2
i2

x
rj2i2
j2

(xi2+xj2)
ti2j2

...

Reestimation Term k

F k
k

(
x, β̂(k)

)
= F−kk

(
x, β̂(−k)

)
+ β̂ikjk

x
r̂ikjk
ik

x
r̂jkik
jk

(xik+xjk)
t̂ikjk

Previous values

for ri1j1 ,rj1i1

and ti1j1 used as

starting values

Previously estimated

values for rikjk ,rjkik
and tikjk used as

starting values
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4.8.3 Reestimating the regressor defining parameters t

Model for reestimation of t

f tk
(
x, β(k)

)
=

∑q
i=1 βixi +∑nk

m=1 βimjm
x
r̂imjm
im

x
r̂jmim
jm

(xim+xjm )timjm

Reestimation of t

F k
k

(
x, β̂(k)

)
=

∑q
i=1 β̂ixi +∑nk

m=1 β̂imjm
x
r̂imjm
im

x
r̂jmim
jm

(xim+xjm )t̂imjm

Previous values

for t used as

starting values

4.9 How to fit the GBMM: discussion

Thus far the discussion of the fitting procedure for the GBMM has looked ex-

clusively at the GQBMM. Moreover, certain details have been left aside in order

to maintain the clarity of presentation of the full procedure. These are now ad-

dressed. Some of them ascertain to variations in how the fitting procedure is

applied and some of these in turn have been explored in the examples of the

following section. There it is hoped to discuss these details of how the fitting pro-

cedure shall be implemented, although not necessarily answer this definitively.

4.9.1 Ternary terms of joint effect

The additional inclusion of ternary terms of joint effect is simple. At stage 1,

each possible ternary term of joint effect not already included in the model is

considered for inclusion; at stage 2 all ternary terms included in the model thus

far are reestimated in the same manner as the binary terms of joint effect, and at

stage 3 the parameters tijk in the model are reestimated along side the parameters
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tij. How different the final model may be, as a result of fitting a GSCBMM rather

than a GQBMM, will be explored in the next chapter.

4.9.2 How many times shall the terms be reestimated?

In stage 2 of the estimation procedure, presented in section 4.8.2, a dotted line

indicates that, having reestimated the regressor defining parameters of each of the

terms once, the process of reestimation of terms in the model can occur repeatedly.

This is aimed at achieving convergence before progressing to adding another term.

This can be governed by continuing until the level of model improvement is below

a set threshold or through setting the number times to undertake the process of

reestimation.

The latter option is explored in the examples of the following chapter. How-

ever, it is also questionable how worthwhile it is to make small adjustments in

the regressor defining parameters at this stage, when they may be changed a lot

once another term is added at the next iteration. To investigate the effectiveness

of such reestimations, examples are given, in the next chapter, where 0, 1 and 10

reestimations are made. In this way it is also investigated whether Stage 2 and

Stage 3 should occur at all.

4.9.3 Should t be reestimated separately?

Similarly, the next chapter will also look at whether estimation should occur

without Stage 3. Stage 3 could be considered unnecessary in light of the amount

of reestimation that may have occurred by that point. Moreover, where a large

number of general terms of joint effect have already been added to the model,

Stage 3 will demand a high-dimensional nonlinear optimisation problem for which

convergence may not easily occur. This is to say, Stage 3 may not be an option.

The next chapter will consider the difference inclusion of Stage 3 in the fitting

procedure can make to the final model.

4.9.4 What set of initial values shall be used for rij, rji

and tij?

While it has been suggested that in Stage 1, when adding a new term to the

model, a list of different sets of initial values should be used, no attempt has yet
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been made to define how these values should be chosen. Moreover, no discussion

has been made of the initial values used in Stage 2 and Stage 3.

At this point, it should be acknowledged that fitting of a model for multiple

sets of starting values is time consuming. Therefore, reasoned ways of reducing

the number of sets of initial values would be useful in order to reduce the imple-

mentation time of the fitting procedure. Often many sets of starting values will

result in the same locally optimum values for rij, rji and tij and hence, it will

not be necessary to explore any more than one of these. This said, the number of

sets of starting values should not be so limited as to be detrimental to the final

model. The next chapter looks specifically at how using respectively larger and

smaller lists of sets of initial values in Stage 1 can change the final model.

Regarding the initial values used for reestimation in Stages 2 and 3, at this

point all parameters have been previously estimated, and it is felt these estimated

values should not be discarded completely. Therefore, it is suggested to use as

the initial values for any regressor defining parameters to be reesimated, their

current estimated values.

4.9.5 How many general binary terms of joint effect can

be considered for each pair of components?

Where forward regression is implemented upon the Scheffé quadratic polynomial,

which can occur in the same manner as discussed for the PQM, only one term

of joint effect is considered between the components xi and xj. This is because

there is only one such term between xi and xj, that is, βijxixj. In the case of

the general binary term of joint effect, it is possible to have a model where two

regressors βij
x
rij
i x

rji
j

(xi+xj)
tij

are used, with different values for the regressor defining

parameters rij, rji and tij. So, once one of these terms is added to the model,

should another be considered? In examples given here this has not been done.

Thus, there may only be one blending term of each type between xi and xj, or

equivalently xi, xj and xk, for the general cubic term of joint effect. However, it

is possible that considering more than one term would allow a worthy extension

of the types of GBMM which could be fit.
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4.9.6 AICc and the number of parameters

The AICc has been used here, as a measure of model parsimony, in the examples

of subsequent chapters. Only the linear parameters have been counted when

calculating the penalisation. The logic for this is thus: given there are existing

models which can be considered special cases of the GBMM, and fitting these

models and comparing them would not take into account that there exist implicit

values of the regressor defining parameters in these models, it would be remiss to

count such parameters in the GBMM, when what was proposed was a systematic

manner of exploring a greater number of special cases, i.e. model estimation

should not be penalised for now additionally performing the process of model

selection. For example, say the two models

E[y] =

q∑
i=1

βixi + β12x1x2 (4.45)

and

E[y] =

q∑
i=1

βixi + β12
x1x2
x1 + x2

, (4.46)

are estimated and compared. The term of joint effect of the first model has

implicit value s12 = 2 (or equivalently, t12 = 0) and the term of joint effect of the

second model has implicit value s12 = 1 (t12 = 2), but these parameters would

not be counted in a penalised measure of model parsimony. Similarly, 100 models

could be fit separately and compared, each with s12 equal to 100 different values

between 0 and 1, each providing slightly different fit. Once again the implicit

presence of the regressor defining parameters would not be considered. However,

should nonlinear regression be used to choose t12, even when restricted between 0

and 1, the model fit would be penalised for the presence of t12. I have considered

this illogical, so it is proposed not to count regressor defining parameters when

penalising the fit of the GBMM.

4.9.7 Stopping criterion

The final model of each full iteration of the fitting procedure is F k
k . Where Stage

2 and Stage 3 are not applied, F 0
k becomes F k

k . In the typical manner of forward

selection this model is then compared, using some criteria, to the model found at

the previous iteration of the fitting procedure. In the examples given here that
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criterion is the AICc. Should the AICc be reduced from the previous iteration of

the fitting procedure, another iteration is undertaken.

4.10 Summary

As the previous section discussed, there are several ways to vary the fitting proce-

dure proposed for the GBMM. The examples that shall be given in the following

chapter illustrate some of these variations. In particular, these examples will look

at the benefits from including general ternary terms of joint effect, increasing the

number of sets of initial values for rij, rji and tij used in Stage 1, increasing the

number of reestimations in Stage 2 and the use of Stages 2 and 3 at all.



Chapter 5

Application of fitting procedure

for the GBMM

This chapter shall give examples illustrating the fitting procedure for the GBMM.

Multiple GBMM will be fitted to data presented by Cornell (2002, p.543-546),

where the effects of the proportions of protein (x1), fat (x2) and carbohydrate

(x3), in a force-fed diet, upon the fat gain (y) of chicks were studied. This shall

be done using several of the variations described in the previous chapter. There

were 30 observations and the ranges taken by the components were

0.05 ≤ x1 ≤ 0.40,

0.06 ≤ x2 ≤ 0.86

and

0.02 ≤ x3 ≤ 0.89.

Eight examples shall be given, where each example may contain more than

one model. The purpose of each example is to progress the discussion around

the fitting procedure with respect to a specific feature. The first four examples

include only GQBMM.

• Example F1 fits a GQBMM without Stage 2 or Stage 3 of the fitting pro-

cedure; this example will help examine how the fitting procedure benefits

from reestimation of regressor defining parameters.

78
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• Example F2 fits two GQBMM without Stage 3, exploring specifically rees-

timation of regressor defining parameters in Stage 2; this example will look

at how multiple reestimations of the regressor defining parameters, that is

multiple implementations of Stage 2, can change the final estimated model.

• Example F3 fits a GQBMM without Stage 3, but with a fixed number of

passes of Stage 2; compared to Example F2, the model will be fit using

a different sized set of initial values for the regressor defining parameters

in Stage 1. Hence this example looks at how this can impact upon the

final model. The sets of initial values are described here with reference to

parameters tij and tijk, but could instead be described in respect to sij and

sijk.

• Example F4 fits one GQBMM with the full fitting procedure; the purpose

of this example is to look at how the inclusion of Stage 3 in the fitting

procedure can change the final model.

The subsequent four examples, Examples F5-F8, have the same objectives

as Examples F1-F4, respectively. However, in these examples GSCBMM are fit

where GQBMM were fit before. This will allow a discussion of the potential

benefits of inclusion of general ternary terms of joint effect to be initiated. In

all examples the model presented is that chosen by using the AICc as a stopping

criterion as described in the previous section. All models are presented with their

parameters given to 4 significant figures alongside their corresponding R2 and

AICc values.

R code giving the different versions of the fitting procedure is available from

the author. The fitting procedure applied in Examples F1-F3, is given in Fitting

Procedure 1.txt, as applied in Example F4, is given in Fitting Procedure 2.txt,

as applied in Examples F5-F7, is given in Fitting Procedure 3.txt and as applied

in Example F8, is given in Fitting Procedure 4.txt.

Subsequent to the presentation of these examples, the response surface shall

be given for two models from Examples F1-4 and two models from Examples F5-8.

This is done alongside a reduced Scheffé cubic model. This will begin to establish

the potentially advantageous use of the GBMM over established models, while

also continuing to progress the discussion on the benefits of the ternary terms of

joint effect.
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5.1 Example F1

In this example, a GQBMM is fitted, using the set of initial values found from all

combinations of (0, 3, 6, 9, 12) for rij and rji and (−12,−9,−6,−3, 3, 6, 9, 12, 15, 18, 21, 24)

for tij. There is no attempt at reestimation of terms estimated at earlier iterations

of the fitting procedure, that is no implementation of either Stage 2 or Stage 3 of

the fitting procedure.

The resultant model,

E[y] = −18.34x1 + 61.73x2 + 42.26x3 − 73.01
x0.81862 x0.57773

(x2 + x3)
−21.67

+ 1.172× 108x
18.91
1 x2.280×10

−8

3

(x1 + x3)
0.5426 , (5.1)

contains two terms of joint effect, those between x1 and x3, and x2 and x3. It has

R2 value, 0.9230, and AICc, 144.5738.

5.2 Example F2

In this example, two GQBMMs are fit using the same list of initial values for rij,

rji and tij outlined in Example F1. However, for both models, reestimation of

the terms added at previous iterations of the fitting procedure has now occurred.

This has been undertaken once and 10 times, respectively, upon each iteration.

Alternatively, it could be said there have been one and ten passes of Stage 2,

respectively, upon each addition of a new term to the model.

The resultant models are the same, although subtlely different from that found

without reestimation of terms added at previous iterations of the fitting proce-

dure. Given that the new model (found with both 1 and 10 reestimations),

E[y] = −18.34x1 + 61.72x2 + 42.27x3 − 73.17
x0.81922 x0.58103

(x2 + x3)
−21.64

+ 1.172× 108x
18.91
1 x9.143×10

−8

3

(x1 + x3)
0.5458 , (5.2)

has parameter estimates very similar to those for the model found in the previous

example, they can be thought to give essentially the same representation of the

response surface. R2 = 0.9230 and AICc = 144.5725.
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5.3 Example F3

This example is very similar to Example F2. The fitting procedure is undertaken

with 10 passes of reestimation upon the inclusion of each additional term. How-

ever, in contrast to Example F2, the list of initial values for rij, for rji and for tij

is now larger, taking all combinations of the sequence from 0 to 24, at intervals

of 3, for rij and rji and the sequence from -24 to 48, at intervals of 3, for tij.

The difference between the consequent model and those presented in the pre-

vious examples is, once again, negligible. The model,

E[y] = −18.34x1 + 61.72x2 + 42.27x3 − 73.21
x0.81962 x0.58133

(x2 + x3)
−21.64

+ 1.172× 108x
18.91
1 x2.9069×10

−7

3

(x1 + x3)
0.5427 , (5.3)

has R2 = 0.9230 and AICc = 144.5737. Interestingly, this indicates a model

slightly less well fit than that given in the previous example, a manifestation of

the stochastic nature of forward selection. This indicates that, while expanding

the list of initial values and increasing the number of times reestimation of terms

is undertaken is theoretically more thorough, it may lead to deviations away

from the path towards the most parsimonious model. Admittedly, in this case

that deviation is very small.

5.4 Example F4

This section looks at the difference the inclusion of Stage 3 can make to the

estimation procedure. Hence, in addition to the reestimation of each term in

turn, t is also subsequently reestimated. As shall be seen, the result can be

a different choice of model. The number of times previously added terms are

reestimated, that is the number of passes of Stage 2, is now fixed at 10 and the

smaller list of initial values, introduced in Example F1, has been used. The effect

of reestimating t is to arrive at a three term model which wasn’t gained using
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the fitting procedures of the previous examples. This model,

E[y] = −17.19x1 + 63.74x2 + 42.02x3 − 46.69
x0.64302 x0.36583

(x2 + x3)
−16.93

+ 6.402× 107 x
18.65
1 x0.02543

(x1 + x3)
1.833 − 1.048× 108 x9.4911 x14.622

(x1 + x2)
17.52 , (5.4)

has R2 = 0.9363 and AICc = 142.0389. Evidently, the reestimation of t can be

used advantageously.

The following section progresses to explore GSCBMM. In fitting such models,

more time is required in order to consider the ternary terms of joint effect. As

such, fitting can be more time consuming. In order to capture this, each of

the models in Examples F5-8 possess analogous examples in Examples F1-4 and

comparison is made of the time taken to fit these models, on a computer with a

dual core 3GHz processor and 3.5GB RAM.

5.5 Example F5

As with Example F1, here there is no attempt at reestimation of terms fit-

ted to the model at earlier iterations and the list of initial values for the bi-

nary terms of joint effect is all combinations of (0, 3, 6, 9, 12) for rij and rji and

(−12,−9,−6,−3, 0, 3, 6, 9, 12, 15, 18, 21, 24) for tij. The set of initial values for

the ternary terms of joint effect is all combinations of (0, 6, 12) for rijk, rjki and

rkij and (−12,−6, 0, 6, 12, 18, 24, 30, 36) for tijk.

However, in spite of the introduction of possible ternary terms of joint effect,

the model identified is no different from that found in Example F1. Obviously,

this is possible given that the GQBMM is a special case of the GSCBMM. In

addition to the models being the same, the difference in the time taken for the

model to be fit is small: the model found in Example F1 took 20 minutes to

fit and that found in this example took 21 minutes to fit. However, as shall be

seen in later examples, this very small difference in estimation time is anomalous

among these examples.
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5.6 Example F6

Reestimation of terms is now added to the fitting of the GSCBMM. This has been

done once and 10 times, as with Example F2 above, resulting in two models which

can be ostensibly thought of as the same model. However, unlike the model found

in Example F5, this model includes a term of ternary joint effect. The model,

E[y] =− 26.76x1 + 67.99x2 + 47.23x3 − 39.42
x0.44432 x0.25243

(x2 + x3)
−10.94

+ 3.553× 107 x17.631 x1.6143

(x1 + x3)
1.325 − 1.023× 108 x9.3911 x15.042

(x1 + x2)
18.37

+ x15.891 x5.8252 x66.813 , (5.5)

has R2 = 0.9486 and AICc = 137.5857. This evidences that the inclusion of a

ternary term can improve the fit of a model. Moreover, as shall be shown later,

this can result in a contrasting description of the response surface.

Given that the models found, when reestimating terms once or 10 times, were

almost the same, this leads to a question of whether this is worthwhile? Obviously

the latter is more time consuming. In this example, reestimating once allowed

the model to be fit in 52 minutes - 5 minutes faster than when reestimating 10

times. Yet, this resulted in the same model. Practitioners may wish to consider

whether the gains that can be made by multiple reestimations are worthwhile,

while further research should establish just how substantial such gains can be.

At this point it is also worth noting that the additional consideration of ternary

terms meant that the equivalent fitting procedure for the GQBMM, used in Ex-

ample F2, took only 20 minutes (in both cases). In this situation, this extra time

appears to have been worthwhile, but in other contexts, with a larger number

of components, more data and with more terms being fitted, a practitioner may

veer towards only exploring GQBMM in order to save time.

5.7 Example F7

Fixing the number of times for reestimation at 10, but using the larger list of

initial values, of all combinations of (0, 3, 6, 9, 12, 15, 18, 21, 24) for rijk, rjki and
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rkij and at all values at intervals of 6, from -24 to 72, for tijk, the model,

E[y] =− 15.78x1 + 58.51x2 + 42.62x3 − 59.08
x0.59212 x0.67353

(x2 + x3)
−23.32

+ 1.197e+ 08
x19.241 x0.04413

(x1 + x3)
1.253 + 1.473e+ 37x17.321 x104.12 x8.1413 , (5.6)

is fitted. It is interesting that in introducing a larger set of initial values a model

is reached which is less well fit than that found with the smaller set of initial

values: R2 = 0.9363 and AICc = 140.8038. Here the stochastic nature of forward

selection deviates from the path to that model found in Example F6.

5.8 Example F8

In this final example, as was done with respect to the GQBMM in Example F4,

separate reestimation of t is introduced, that is Stage 3 is introduced to the fitting

procedure. Reestimation of terms occurs 10 times, that is Stage 2 is implement

10 times upon each addition of a new term to the model, and the smaller list of

initial values, used for Examples F5 and F6, is applied.

The model,

E[y] =− 24.07x1 + 68.53x2 + 44.58x3 − 38.60
x0.51192 x0.26153

(x2 + x3)
−11.74

+ 1.013e+ 08
x18.731 x0.00045813

(x1 + x3)
0.8778 − 1.059e+ 08

x8.7291 x16.742

(x1 + x2)
20.17

− 3.135e+ 18x4.7791 x26.372 x13.663 , (5.7)

has R2 = 0.9464 and AICc = 140.2696. This means it has a worse fit than the

model in Example F6, in spite of the more convoluted fitting procedure. Once

again, this is clearly an effect of the stochastic nature of the model building pro-

cedure; here, as with Example F7, through attempting to optimise improvements

in model fit at each step, the model identified in Example F6 is not obtained.

Consequently, the models describe different response surfaces. This is explored

in the following section.
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Model 5.2 Model 5.4 Model 5.5 Model 5.7
R2 0.9230 0.9363 0.9486 0.9464
AICc 144.5725 142.0389 137.5857 140.2696

Table 5.1: Statistics comparing GBMM found, with different fitting procedure,
for chick diet data

5.9 Comparison of GBMMs

Following on from the work of the first half of this chapter, this section compares

four of the models found thus far. These are Models 5.2 and 5.5, the most

parsimonious GQBMM and GSCBMM fitted without separate reesimation of t,

and Models 5.4 and 5.7, the GQBMM and GSCBMM found in Examples F4

and F8, where Stage 3 of the fitting procedure was implemented and separate

reestimation of t did occur.

The goodness of fit statistics for these models are given in Table 5.1 and the

plots of their predicted response surfaces are given in Figure 5.1. Evidently, there

are advantages to the inclusion of ternary terms, which have allowed a better fit

both with and without reestimation of t. Moreover, they have identified shapes

in the response surface which are not evident in those described by the GQBMM.

A manner through which to test the veracity of these descriptions of the response

surface does not exist in this specific context, but it is evident the ternary terms

can be a worthy use of the extra time required to fit them.

There is some contrast in the response surface representation given by the

two GQBMM, Models 5.2 and 5.4. There are two obvious features, the contours

arriving from either side of the experimental region, while the plot for Model 5.4

includes an additional set of contours, arriving from the bottom right. Each of

these three features is evident in the plots for Models 5.5 and 5.7, where each

has different additional features, attributable to their respective ternary terms of

joint effect. For Model 5.5 this is the slight additional curvature at the top of the

experimental region, where for Model 5.7 it is the far more obvious feature.

These contrasting surfaces for the two GSCBMM could be viewed as prob-

lematic. However, there is only one term of ternary joint effect in each model,

since the fitting procedure was deliberately limited to fitting only one term of

joint effect between each pair or triplet of components. More than one term of

any one type could enter a final model and it may be that this would allow both

these features to be picked up in a final description of the response surface, if so
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desired.

(a) Model 5.2 (b) Model 5.4

(c) Model 5.5
(d) Model 5.7

Figure 5.1: Response surfaces for GBMM for chick diet data

5.10 Comparison to other models

Having compared the different models identified with variations of the fitting

procedure, the advantage of using the GBMM is now assessed. The best fitting
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Linear Reduced Scheffé cubic Model 5.5
R2 0.8661 0.9250 0.9486
AICc 155.5686 150.3390 137.5857

No of Terms 3 7 7

Table 5.2: Statistics comparing GBMM to a reduced Scheffé cubic polynomial,
for chick diet data

model identified above (Model 5.5) is compared to the model,

E[y] =561.43x1 + 52.12x2 + 33.54x3 − 1061.54x1 (x3 + x2)− 33.71x2x3

− 638.44x1 (x2 (x1 − x2) + x3 (x1 − x3)) + 1448.40x1x2x3. (5.8)

This was found through reducing the full Scheffé cubic polynomial through com-

bining and removing terms. This seemed necessary for an effective comparison

as no reduced form of the Scheffé cubic polynomial, without such manipulation,

proved to have a lower AICc than the linear model.

The statistics of fit for these two models, along with those for the linear model,

are given in Table 5.2, from which it is evident the GBMM gives the better fit.

There is a degree of agreement between the two models about the major features

in the response surface. However, Model 5.5 gives additional features in the

bottom right and the top left of the plot, as can be seen in Figure 5.2. This is

significant as the Scheffé cubic polynomial, the most complex model commonly

applied to mixture experiments, has not described these additional features; there

is scope with the GBMM to describe things that commonly applied models, in

all their reparameterisations, do not describe. However, in order to benefit from

this it will prove important to insure against overfitting.

5.11 Conclusions

The purpose of the previous two chapters has been to introduce the fitting pro-

cedure for the GBMM and discuss some of its variations. Most significantly, it is

evident that the fitting procedure allows the GBMM to be used effectively. This

initial example suggests the description of the response surface given by GBMM

possesses possible advantages over those of Scheffé polynomials: it can provide

better fit and it can describe features which other models cannot. This shall be

evidenced further in the later examples.
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(a) Model 5.5 (b) Reduced Scheffé polynomial

Figure 5.2: Predicted response surface for the chick diet data

It is possible that the fitting procedure itself is a novelty. It was necessary,

required in order to fit the relatively complex models being proposed. Therefore,

it cannot be said to be well informed by the canon on nonlinear model fitting

literature. Moreover, it would be generous to describe it as elegant. However, the

exploitation of the partially linear structure in order to build models of multiple

nonlinear terms is evidently effective and at least can be viewed as an adroit

solution to the fitting problem posed.

The example discussed in this chapter demonstrates that, depending on the

variation of the fitting procedure, different models may be reached for the same

data. As seen, this does not necessarily mean substantially different conclusions

and is really to be expected given each variation upon the fitting procedure can be

viewed as a separate procedure entirely. Different results were sought in order to

begin a discussion of which variation of the fitting procedure could be considered

best. However, it does lead to the question of which model to ultimately select.

Certainly, the differences in the final model are attributable to the stochastic

nature of all forward selection procedures and were expected, but it means that

concrete conclusions on how best to undertake the model fitting procedure are

difficult. Moreover, the quality of the estimation procedure when applied to other

data will depend upon the size and the quality of the data, the complexity of the

problem and the level of variability.
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Based on current experience, the best suggestion appears to be to undertake

several variations of the fitting procedure as has been done here. Using general

ternary terms of joint effect appears effective, but when implemented as described

may still lead away from the most parsimonious modelling solution. This said,

they potentially allow behaviour to be described which otherwise cannot. For this

reason if is felt they should always be included, time permitting. Such concrete

suggestions, regarding the other variations are less comfortably made.

The reestimation of t has been demonstrated to result in improved model

fit in some cases, but not in others. Intuitively, the idea of reestimating some

parameters simultaneously across terms of joint effect appeals and the additional

reestimation will always create improvements within each iteration of the fitting

procedure, if not overall. This can similarly be said of additional reestimation of

each term, although it appears, in the cases above, the gains to be made through

reestimation diminished across each consecutive reestimation. It is likely time

gains could be made by limiting this aspect of the fitting procedure, although the

more terms, the greater the gains are likely to be from multiple reestimations.

Finally, larger sets of initial values did not appear worthwhile above, and it

could be concluded that time gains can be made using smaller sets. However, it

is difficult to make conclusions on how to choose these based on such a simple

study.



Chapter 6

Design of Experiments

The next two chapters shall look at the initial work on developing experimental

designs for the GBMM. By dictating the appropriate collection of data, optimal

experimental design theory helps provide answers with the most efficient use of

experimental resources. Such theory provides algorithms for the selection of ex-

perimental designs and criteria by which to assess them. Both shall be presented

in this chapter in addition to ideas on experimental designs for non-linear models.

Designs for the GBMM are then presented in the following chapter.

The issue of optimal experimental designs for other mixture models will also

be addressed briefly. However, it is reiterated that the designs here are dictated

by the newly proposed model. In taking an approach motivated by a model not

yet considered in other work and one with greater flexibility than other models, we

feel a novel method is presented of exploring the influence of component blending

on the response and how this may deviate from that described by the established

models. For a thorough summary of work on experimental design for mixture

experiments the reader may refer to Chan (2000), in addition to Cornell (2002).

6.1 Continuous and exact designs and their op-

timality

The design region of an experiment is all values x for which responses y may

be observed. This may or may not coincide with the region of interest of the

experiment. The support points of a design are the distinct values x at which

responses y are observed. An experimental design defines the choice of support

90
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points.

An experimental design in which the distribution of trials over a design region

χ that is specified by a measure, ξ, is called continuous. Supposing there to be

three sets of values x at which observations are made, a measure ξ, where there

are n distinct support points of the design, is expressed

ξ =

{
x1 x2 x3

w1 w2 w3

}
,

where observations are made at the factor values xi, with weighting wi. Since ξ

is a measure
∑

iwi = 1.

In practice all designs are exact, such that they contain a specific number of

design points N . In this case the measure

ξN =

{
x1 x2 x3

r1 r2 r3

}
,

where ri are the integer number of observations at xi and
∑

i ri = N . Often good

exact designs can be found approximating the continuous design ξ.

There can be many motivations for choosing a particular experimental design.

In the theory of continuous designs the objective is to minimise a measure of

imprecision Ψ (M (ξ)). In particular, D-optimal designs minimise

Ψ (M (ξ)) = − log |M (ξ) |, (6.1)

or equivalently maximise the the determinant of the information matrix,

∣∣F TF
∣∣ = |M (ξi)| . (6.2)

D-optimality achieves the minimum volume of the confidence ellipsoid of the

parameters. The length of the axes of this ellipsoid are proportionate to the

squares of the eigenvalues, λi, of the information matrix. Therefore, a D-optimal

design also minimises the product of the eigenvalues,

min
∏
i

λi. (6.3)

There exist other types of design optimality related to the eigenvalues of the
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information matrix (see Atkinson, Donev, and Tobias (2007)), although these are

not relevant to the discussion of the following chapter.

Two other design criteria which shall be referred to later are G-optimality

and V-optimality. A G-optimal design minimises the maximum of the generalised

prediction variance over the design region i.e.

min max d{x, ξ∗}, (6.4)

where

d{x, ξ∗} = fT (x)M−1 (ξ∗) f (x) , (6.5)

while a V-optimal design seeks to minimize the average prediction variance over

the design points, that is,

min

∫
d{x, ξ∗}dx. (6.6)

6.2 General Equivalence Theorem

In general, for continuous designs, a design satisfying one type of optimality will

also satisfy another. Hence, a D-optimal design will also be G-optimal. This is

because of the General Equivalence Theorem (GET). This states the equivalence

of the following three conditions for ξ:

• The design ξ minimises Ψ (M (ξ));

• The design ξ maximises the minimum of ψ (M (ξ)), the derivative of Ψ (M (ξ));

• The maximum of ψ (M (ξ)), over the design region, is equal to 0. This

maximum occurs at the points of support of the design.

For a design with p support points, this also means that the maximum of d{x, ξ∗} =

p at the support points of the design.

While true for continuous designs, it is not necessarily so that an exact design,

for a particular N , will satisfy the GET. This means that a design of size N1

may be D-optimal and another of size N2 G-optimal. Identifying such designs

requires the implementation of computer searches. The manner in which this has

been undertaken for the GBMM will be described once optimal design theory for

nonlinear models has been discussed.
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6.3 Experimental design for nonlinear models

Thus far experimental design has been discussed in the context of linear in param-

eters models. Therefore, the choice of design has not depended on the values of

the parameters of the model. This section addresses the contrasting case of non-

linear models. In this case, the optimum design depends upon the values taken

by the nonlinear parameters. There will be particular reference to partially linear

models.

For simplicity, consider the case of a model with a single nonlinear parameter

α. This parameter is unknown and therefore requires assumptions to be made

about its value. These assumptions may take the form of a point prior, where it

is assumed that

α = α0, (6.7)

allowing locally optimal designs. Alternatively, a prior distribution may be as-

sumed, where α is assumed to take one of a range of values each with probability,

p (α). We shall address both cases here and use each to propose designs for the

GBMM.

Suppose

E[y] = η (β, α) , (6.8)

where β are linear coefficients. As the β enter the model linearly, their values do

not effect the optimum design. However, the design is influenced by the value

of α. As such, prior information on α is required to identify an optimal design.

Initially, α takes the point prior α0.

In such a case a Taylor expansion creates the linearised model

E[y] = η (β, α) ≈ η (β, α0) + (α− α0)
∂η

∂α
|α=α0

=η (β, α0) + (α− α0) f (x, α0) . (6.9)

From this it is possible to construct an optimal design. The extension of this to

models with p nonlinear parameters is straightforward, where now the linearised

equation is given

η (β, α) + γfT (x, α) , (6.10)
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where

γ =
(
α1 − α1

0, . . . , α
p − αp0

)T
(6.11)

and

fT (x, α) =

(
∂η

∂α1
|α=α0 , . . . ,

∂η

∂αp
|α=α0

)
. (6.12)

Taking point priors, as the prior information for α, will be an effective strategy

where the choice of prior is well informed by subject matter knowledge. How-

ever, in general, as the purpose of the design is to allow the estimation of the

model parameters, dependence on α is unfortunate. It is possible to address

this problem using sequential designs, identifying an initial design from which

more information on α can be obtained, in light of which more points can be

added to the design. This process can be undertaken multiple times, as far as

the experimental resources allow.

Alternatively, prior distributions p (θ) can be chosen for the model parameters

rather than point priors. While D-optimum designs, in the presence of point

priors α0, maximise log |M (ξ, α0)|, where a prior distribution is available for α,

D-optimum designs can be shown to maximise

Eθ log |M (ξ, θ)| =
∫
θ

log |M (ξ, θ)| p (θ) dθ. (6.13)

There then exists an analogous equivalence theorem for the variances,

Eθd (x, ξ, θ) =

∫
θ

d (x, ξ, θ) p (θ) dθ, (6.14)

meaning a relationship between G- and D- optimality continues to apply.

6.4 The Fedorov exchange

As stated above, an exact D-optimum design, ξi, maximises the determinant of the

information matrix. This design is identified from points across the design region,

χ. While in simple cases analytic solutions may be possible, usually identifying

the optimal design is achieved using numerical methods. This is particularly the

case in irregular shaped, constrained regions common in mixture experiments.

The Fedorov exchange is one such method.
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In the Fedorov Exchange an initial design ξ0, of size N , is subjected to iterative

improvement. This is done either by adding a point xl to the design, from a list of

alternative candidate points, to achieve a design of size N + 1, removing a point

xk, to achieve a design of size N − 1 or exchanging a point xk currently in the

design, for a point xl in the list of candidate points. The change providing the

most improvement in the determinant of the information matrix is implemented.

This should identify the locally optimal design with respect to the chosen criteria.

The value of the determinant of the information matrix of design ξi+1, when

a point xl is added to design ξi is

|M (ξi+1)| = (1 + d (xl, ξi)) |M (ξi)| , (6.15)

when a point xk is removed from design ξi is

|M (ξi+1)| = (1− d (xk, ξi)) |M (ξi)| (6.16)

and when a point xk is replaced by a point xl,

|M (ξi+1)| =
[
(1− d (xk, ξi)) (1 + d (xk, ξi)) + d2 (xk, xl, ξi)

]
|M (ξi)| , (6.17)

where

d (xl, xk, ξi) = fTl M
−1 (ξi) fk. (6.18)

Typically, it is difficult to obtain an optimal design of size N from one of size

N + 1 or N − 1. For this reason, experimental designs are usually identified for

a given N . This has been done for all designs given in the following chapter,

although there is opportunity to compare designs for different N .

Even simplifying the search for a optimal design by fixing N , it is still possible

not to achieve a globally optimal design. In order to increase the chance of this

happening the choice of the initial design, ξ0, is important. For this reason, in the

cases of the examples given, random sampling has been applied to obtain multiple

initial designs, for each of which the determinant of the information matrix has

been calculated, in order to choose the one design currently closest to maximising

this value.

In order to decrease the length of time taken to find a design in the examples

of the next chapter, the initial designs are calculated for a coarse grid of values,

that is the support points are chosen from a relatively small set (mesh) of possible
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mixtures. The Fedorov exchange is then applied to find the D-optimal design of

support points chosen from this mesh. Improvements to the design are then made

by making small changes, swapping the chosen design points with others on an

increasingly fine mesh. Implicit in this approach is the expectation that the final

design will be obtained by only shifting a small amount from the design identified

from the original coarse grid.

6.5 D-optimum design for the Scheffé polyno-

mials

Before progressing to discuss some designs identified for fitting the GBMM, it

will be useful to look at design in relation to the Scheffé polynomials. This will

allow some comparison to be made later. Scheffé chose his designs to satisfy a

particular motivation, the equal spread of data across the design region, χ. Hence,

the {q,m} simplex lattice designs place support points where the components take

the m equally spaced values {1, 1
m
, . . . , m−1

m
, 1}.

Scheffé’s failure to consider optimality criteria in proposing his designs was of

particular significance to Kiefer (1959, 1961). Kiefer explored D-optimal designs

for the models of Scheffé’s 1958 paper. He found the {q, 2} simplex lattice design

in Figure 6.1a and the design in Figure 6.1b, proposed for the special cubic model,

to be D-optimal for their respective models. These designs shall be useful to refer

to in relation to the designs proposed in the next chapter.

As has been discussed, the quadratic and special cubic Scheffé polynomials,

are special cases of the GBMM and the approach taken to building experimental

designs for the GBMM has been to exploit this relationship. Therefore, what is

presented in the next chapter represents a new method of building designs for

mixture experiments in general, not just when applying the GBMM.
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(a) q, 2 simplex lattice design (b) Scheffé special cubic design

Figure 6.1: Designs for the Scheffé polynomials



Chapter 7

Designs for the GBMM

The following section proposes several designs for fitting the GBMM. All exam-

ples look at experiments where there are 3 components and each example contains

more than one design with the objective of advancing the discussion with respect

to a particular feature. In line with the theory of optimal designs for nonlin-

ear models, creating designs for the GBMM requires assumptions to be made

about the likely values of the regressor defining parameters in each term; prior

information is required.

In order to build a broadly applicable logic for the choice of prior values, the

relationship between the GBMM and those models already commonly applied has

been exploited. As mentioned previously, both the H2 and H3 Becker models and

Scheffé quadratic and special cubic models are special cases of the GBMM. For

example, the quadratic term of the Scheffé polynomials is the term of binary joint

effect of the GBMM, where hij = 0.5, gij = 2 and sij = 2. When this is noted,

applying these models is in effect applying the GBMM with strict assumptions

fixing the values of the regressor defining parameters.

Where subject matter knowledge does not dictate the priors in some other

manner, it is proposed to use these inherent values to define the prior information

for the regressor defining parameters. For example, in Example D1 below, a

design for the GQBMM is constructed where the point priors taken are hij = 0.5,

gij = 2 and sij = 2, for all i and j. The consequent D-optimal designs can

be viewed to possess an enhanced D-optimality for the 3 component quadratic

Scheffé polynomial. It is assumed that the terms fitted to the GQBMM are likely

to be of the form of the Scheffé quadratic terms, and the design best serves fitting

that model. However, the flexibility of the GBMM allows alternatives also to

98
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be fit, other than the Scheffé polynomial, where different values for the regressor

defining parameters would allow better fit. Thus, this enhanced D-optimal design

can also be viewed to introduce robustness against model uncertainty into the

choice of a D-optimal design for the Scheffé quadratic polynomial.

The examples of this section are separated to address particular issues. There

are five sections each containing more than one design. Example D1 contrasts

the D-optimal saturated designs for the GQBMM and GSCBMM respectively.

Saturated designs have the same number of design points as parameters to be

estimated. Example D2, gives several non-saturated D-optimal designs for the

GQBMM with the same priors as in Example D1. Thus there can be comparison

of how the number of observations changes the design. In each of these first two

examples, point priors are taken, defined by their implicit values in the Scheffé

polynomials. In Examples D3 and D4, the priors are dictated by the implicit

values of the regressor defining parameters in both the Becker H2 model and the

Scheffé quadratic polynomial. In these two examples, these two sets of priors can

best be viewed as two sets of point priors. Example D3 looks at saturated designs,

while Example D4 looks at non-saturated designs. Example D5 uses the implicit

values of the regressor defining parameters in the Scheffé and Becker models as

the end points for a uniform prior distribution for the parameters. This is a move

away from use of point priors to prior distributions, thus meaning Example D5

allows some exploration of the use of Bayesian D-optimal designs, in the context

of GBMM.

Information on the designs is provided through plots of the designs and of the

generalised prediction variance. All designs are some sort of D-optimal design

and therefore the determinant of the information matrix is provided for each of

them. Additionally, statistics relating to G- and V- optimality are also given:

the maximum generalised prediction variance value and the mean of the gener-

alised prediction variance across the entire simplex, respectively. In addition, the

median value is also given. The designs are given in full in Appendix A.
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7.1 Example D1

In this set of examples, two designs are given. Firstly, for the GQBMM,

E[y] =
3∑
i=1

βixi +
3∑
i 6=j

βij

(
xi

xi + xj

)gijhij ( xj
xi + xj

)gij(1−hij)
(xi + xj)

sij , (7.1)

where the point priors hij = .5, gij = 2 and sij = 2 are the implicit values for these

parameters in the Scheffé quadratic polynomial and secondly, for the GSCBMM,

E[y] =
3∑
i=1

βixi +
3∑
i 6=j

βij

(
xi

xi + xj

)gijhij ( xi
xi + xj

)gij(1−hij)
(xi + xj)

sij

+ β123x
g123h123
1 xg123h2312 x

g123(1−h123−h231)
3 , (7.2)

where the point priors for the additional parameters h123 = 1
3
, h231 = 1

3
and

g123 = 3, are the implicit values for these parameters in the Scheffé special cubic

polynomial.

(a) 15 point design for GQBMM (b) 19 point design for GSCBMM

Figure 7.1: Design plots for saturated locally D-optimum designs, for GQBMM
and GSCBMM, with point priors equal to implicit values in the Scheffé polyno-
mials

The two D-optimal designs, for the GQBMM and GSCBMM, are plotted

in Figures 7.1a and 7.1b. The table of statistics relevant to D-optimality, G-

optimality and V-optimality are given in Tables 7.1 and 7.2, respectively, while



CHAPTER 7. DESIGNS FOR THE GBMM 101

the associated plots of the generalised prediction variance are given in Figures

7.2a and 7.2b.

|F TF |
4.985e-22

d (x, ξ)
Median Mean Max
13.7640 13.5780 16.5150

Table 7.1: Statistics for locally D-optimum 15 point design 7.1a for GQBMM
with priors equal to implicit values in the Scheffé quadratic polynomial

|F TF |
1e-38

d (x, ξ)
Median Mean Max
16.0113 15.9106 18.9943

Table 7.2: Statistics for locally D-optimum 19 point design 7.1b for GSCBMM
with priors equal to implicit values in Scheffé cubic polynomial

Allowing for a degree of imprecision regarding the position of the design points,

we see that the design for the GSCBMM satisfies the GET, while that for the

GQBMM does not. That a saturated design satisfies the GET in one case but

not the other is intriguing, particularly given the saturated D-optimal designs for

the Scheffé quadratic and special cubic models themselves satisfy the GET. The

points of the D-optimal designs of the Scheffé quadratic and special cubic models

are respectively subsets of the points of the designs given here for the GQBMM

and GSCBMM.

7.2 Example D2

The previous section gave the opportunity to look at saturated designs for the 3

component GQBMM and GSCBMM, where point priors were taken at the values

for the special case Scheffé quadratic and special cubic polynomials. The focus

is now narrowed to only the GQBMM, using the same point priors, but now

looking at D-optimal designs of 18, 19, 21, 24 design points. Those for 18, 21 and
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(a) 15 point design 7.1a for GQBMM (b) 19 point design 7.1b for GSCBMM

Figure 7.2: Prediction variance plots for saturated locally D-optimum designs,
for GQBMM and GSCBMM, with point priors equal to implicit values in Scheffé
polynomials

24 points, that is, for p+ 3, p+ 6 and p+ 9 points, respectively, permit common

conclusions to be drawn from adding a point for each binary term of joint effect,

that is adding three points at a time. The 19 point design with p+ 4 points gives

a somewhat contrasting design.

The two saturated D-optimal 18 and 21 point designs are plotted in Figures

7.3a and 7.3b. The 24 point design is the same as the 21 point design except with

repeated observations at the pure mixtures.

The statistics relevant to D-optimality, G-optimality and V-optimality are

given in Table 7.3. This also includes those for the 15 point design for the

GQBMM, given in the previous set of examples. The plots of the prediction

variance for each design are given in Figure 7.4.

In the designs where points are added in multiples of 3, the design points are

allocated symmetrically. In this context, this seems intuitively sensible; the terms

of joint effect, for each pair of components, are subject to the same assumptions.

However, it raises the question of whether, and if so how, this changes as the

terms are subjected to different assumptions, that is, when point priors are not

taken at values dictated by the Scheffé quadratic polynomial and when different

priors are taken for different terms of joint effect.

The 19 point design is shown in Figure 7.3c. This design is not symmetric
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Saturated 15 point design
|F TF |

4.9850e-22
d (x, ξ)

Median Mean Max
13.7640 13.5780 16.5150

18 point design
|F TF |

5.0771e-21
d (x, ξ)

Median Mean Max
11.8728 12.0042 17.4168

19 point design
|F TF |

1.0140e-20
d (x, ξ)

Median Mean Max
11.9529 12.1163 18.3863

21 point design
|F TF |

4.0437e-20
d (x, ξ)

Median Mean Max
12.3123 12.1842 17.5077

24 point design
|F TF |

1.3393e-19
d (x, ξ)

Median Mean Max
13.9176 13.7256 20.1480

Table 7.3: Statistics for locally D-optimum designs for GQBMM with priors equal
to implicit values in the Scheffé quadratic polynomial
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(a) 18 point design (b) 21 point design

(c) 19 point design

Figure 7.3: Design plots for non-saturated locally D-optimum designs, for
GQBMM, with point priors equal to implicit values in the Scheffé quadratic
polynomial

about the centre of the simplex which, in this particular situation, can be at-

tributed to not having added points in multiples of 3. The design is a subset of

the 21 point design and can clearly be viewed as a compromise between the 18

point design and the 21 point design.

Increasing the number of points in the design appears to be advantageous

with respect to D-optimality, but disadvantageous with respect to the other two
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(a) 18 Point Design (b) 21 point design

(c) 24 point design (d) 19 point design

Figure 7.4: Prediction variance plots for non-saturated locally D-optimum de-
signs, for GQBMM, with point priors equal to implicit values in the Scheffé
quadratic polynomial

criteria. Adding 3 points appears to provide improvement with respect to V-

optimality, but in general, adding points increases the average prediction vari-

ance over the design region. The asymmetry of the design with 4 extra points

appears particularly influential with respect to G-optimality. However, this does

not appear to be true with V-optimality, where it can be assumed the increase

in the maximum prediction variance in one part of the design region occurs in
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conjunction with a reduction in the prediction variance in another. Given the

saturated design for the GSCBMM, found in the previous section, satisfied the

GET, it is interesting that adding more points appears to improve the design for

the GQBMM with respect to D-optimality. More needs to be done to look at

designs for mixture experiments satisfying the GET.
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7.3 Example D3

In the previous section, the designs given for the GQBMM differed from that

given in the first section in the number of design points. In this section, the focus

is instead on how changing the priors taken for the regressor defining parameters

effects the design. Therefore, the designs are saturated, as for the design for the

GQBMM in Example D1.

For simplicity, in this case the priors now take two sets of values, each of which

is of particular interest. The first as before, is those taken by the regressor defining

parameters in the special case of the Scheffé quadratic polynomial, while the

second is the values taken by the regressor defining parameters in the Becker H2

model, where sij = 1 for all i, j, rather than for the Scheffé quadratic polynomial,

where sij = 2.

The 15 point design for the GQBMM, where the priors are dictated only by

the values taken by the regressor defining parameters in the Becker H2 model,

is plotted in Figure 7.5a and a plot of the prediction variance is given in Figure

7.5b. In contrast to the 15 point design for the GQBMM, given in Example D1,

this design is not symmetric, nor does it place as many points on the edge of

the design space. These contrasts are interesting regarding the following design,

which should attempt to compromise between the 15 point design, where the

point priors are dictated by the Scheffé quadratic polynomial and the 15 point

design, where the point priors are dictated by the Becker H2 model.

The 15 point design where both sets of values are taken as priors is given in

Figure 7.6a and a plot of the prediction variance for this design is given in Figure

7.6b. The design appears similar to the design found where the point priors are

dictated by the Scheffé quadratic polynomial, although there is a slight shift in

the position of the full mixtures. To illustrate this, these designs are given side by

side in Figure 7.7. In the previous section the designs tended towards symmetry

where possible. The same can be thought to have happened here.

Looking at the statistics for the two designs introduced in this section, given

in Table 7.4, it is seen the design where the priors are defined by the Becker H2

model is less efficient with respect to G-optimality. Once again the asymmetry

of the design increases the maximum prediction variance in a particular region of

the response surface. The compromise design appears far better in this respect.
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(a) 15 point design (b) Prediction variance

Figure 7.5: Design plot and prediction variance plot for 15 point locally D-
optimum design, for GQBMM, with point priors equal to implicit values in the
Becker H2 Model

(a) 15 point design (b) Prediction variance

Figure 7.6: Design plot and prediction variance plot for 15 point locally D-
optimum design, for GQBMM, with point priors equal to implicit values in the
Becker H2 Model and Scheffé quadratic polynomial

7.4 Example D4

This pair of designs is very similar to those given in Example D3. However, here

the designs are non-saturated: the designs contain 19 points, i.e. p+ 4. The plot
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(a) Design chosen with point priors equal
to implicit values in the Scheffé quadratic
polynomial

(b) Design chosen with point priors equal
to implicit values in the Becker H2 Model
and Scheffé quadratic polynomial

Figure 7.7: Contrasting 15 point designs for GQBMM, chosen with different priors

of the 19 point D-optimum design, where the priors are determined solely by the

Becker model, is given in Figure 7.8a and the plot of its prediction variance is

given in Figure 7.8b. The equivalent pair of figures where the priors are the two

sets of values dictated by the Becker H2 model and Scheffé quadratic polynomial

are given in Figures 7.9a and 7.9b.

The most interesting aspect of these two designs is how the former contrasts

with all the designs proposed for the GQBMM with priors dictated by the Scheffé

quadratic polynomial, but then how the latter design does not, including points

close to the centre of the design region in the manner of the designs for the

Scheffé priors and then adding an additional point near the edge, in the manner

of the design found for Becker priors. This suggests that with a greater number of

points the designs will develop to provide effective estimation of models describing

different effects. The GBMM, used in combination with these designs, could be

particularly robust to model uncertainty.
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Becker H2 priors
|F TF |

2.6506e-18
d (x, ξ)

Median Mean Max
14.0565 14.7405 33.4800

Becker H2 and Scheffé quadratic priors
|F TF |

2.2797e-18
d (x, ξ)

Median Mean Max
14.8125 14.9295 20.4300

Table 7.4: Statistics for contrasting locally D-optimum 15 point designs for
GQBMM, chosen with different priors

Becker H2 priors
|F TF |

1.1864e-16
d (x, ξ)

Median Mean Max
11.9168 12.1961 16.7333

Becker H2 and Scheffé quadratic priors
|F TF |

8.4155e-17
d (x, ξ)

Median Mean Max
11.8769 12.1163 17.7555

Table 7.5: Characteristics for contrasting locally D-optimum 19 point designs for
GQBMM, chosen with different priors
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(a) 19 point design (b) Prediction variance

Figure 7.8: Design plot and prediction variance plot for 19 point locally D-
optimum design, for GQBMM, with point priors equal to implicit values in the
Becker H2 Model

(a) 19 point design (b) Prediction variance

Figure 7.9: Design plot and prediction variance plot for 19 point locally D-
optimum design, for GQBMM, with point priors equal to implicit values in the
Becker H2 Model and Scheffé quadratic polynomial

7.5 Example D5

In this final set of designs, a continuous prior distribution is assumed for all sij.

However, the sij have also been assumed to remain equal for all i and j. Allowing
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for this constraint, the prior distribution,

p (sij) =

{
1 if 1 ≤ sij ≤ 2

0 otherwise
, (7.3)

is a uniform distribution between the values sij = 1 and sij = 2, that is between

the values of sij defined by the Becker H2 model and Scheffé quadratic polyno-

mial. To achieve the Bayesian D-optimal design, the mean value of the criteria

is calculated over 11 equally spaced values across the distribution.

With respect to the degree of accuracy applied here the design is the same as

that found for the average saturated design between the Becker H2 and Scheffé

quadratic polynomials found in Example D3. Looking at the plots of the predic-

tion variance for these two models there seems subtle differences, suggesting that

maybe larger differences would be found when calculations are made with greater

accuracy. The characteristics in Table 7.6 also suggest only subtle differences,

(a) Bayesian D-optimal design 1 ≤ sij ≤ 2 (b) Locally D-optimal design sij = 1, 2

Figure 7.10: Plots of prediction variance for designs where priors are defined
through Becker H2 Model and Scheffé quadratic polynomial

the larger value for the mean of the determinant of the information matrix at-

tributable to calculating more values close to sij = 1. The design is less effective

with respect to D-optimality when sij is close to 1. This is unsurprising give how

different this design is in comparison to the first design given in Example D3.
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Locally D-optimal design sij = 1, 2
|F TF |

2.2797e-18
d (x, ξ)

Median Mean Max
14.8125 14.9295 20.4300

Bayesian D-optimal design 1 ≤ sij ≤ 2
|F TF |

4.0724e-19
d (x, ξ)

Median Mean Max
14.4660 14.6550 20.6250

Table 7.6: Characteristics for contrasting D-optimum 15 point designs for
GQBMM

7.6 Conclusions

The set of designs presented might all be considered for use when constructing an

experiment to which it is intended to fit a GBMM. Collectively, they also suggest

an idea of how to go about building further designs for the GBMM dependent

on prior knowledge of the values of the regressor defining parameters. Generally

this may come from subject matter knowledge allowing an understanding of how

the joint effects of the components impact upon the response or from a previous

study. However, alternatively the prior assumptions regarding the values of the

regressor defining parameters may be based upon the inherent assumptions which

have always been present when practitioners have fitted the more established

models to mixture data. In this way, the designs presented can be viewed as the

starting point for a new, more robust method of analysis to be introduced.

As was mentioned in Example D1, the designs for the GBMM where the point

priors of the regressor defining parameters are equal to the implicit values of these

parameters in the Scheffé quadratic and special cubic polynomials, includes the

D-optimal designs for these models as a subset of the design points. Moreover,

the designs for the GBMM also include additional points chosen in a manner

which favours good estimation of all parameters of the Scheffé quadratic and

special cubic models. Hence the designs for the GBMM are well chosen to fit

these models.
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Similar designs, but with more design points, were presented in Example

D2. For designs of up to 21 points, rather than 15, no repetition of points were

included. New points were added to the 15 point design of Example D1, further

improving the coverage of the design space in a manner that lends itself to fitting

the Scheffé quadratic polynomial.

In these cases, the selection of the prior values of the regressor defining pa-

rameters explicitly suggests that the final models are likely to take the form of the

Scheffé polynomials. However, because the GBMM is a partially linear model,

there is an implicit acceptance of model uncertainty. The designs for the GBMM

address both the likely model forms, underlying the choice of design, as well as

additional model uncertainty. Hence it is possible to construct a model building

strategy which uses these designs to explore first, how well the most likely model

forms fit the data and secondly, what alternative model could be used should

these models prove insufficiently effectual.

One particular manner through which this issue of addressing model uncer-

tainty, through the design, has been looked at before, is through the choice be-

tween the Scheffé quadratic polynomial and Becker’s models. This is alluded

to in a broad discussion by Becker (1978) and more specifically by Cornell and

Gorman (1978), although without complete resolution of the problem. Here, by

introduction of the regressor defining parameters sij, it is possible to propose

designs, driven by ideas of design optimality, specifically capable of choosing be-

tween these models. In fact, the designs of Examples D3-D5 address the choice

between the 3 component quadratic Scheffé polynomial and the Becker H2 model.

However, this is done with the additional consideration that sij may be estimated

such as to choose a term which is found in neither of these models. This is a nov-

elty. Additional work of optimal designs for Becker’s models has been done by

Liu and Neudecker (1997).

In this way the designs for the GBMM can be chosen to possess an enhanced

optimality for the more traditional mixture models, such as the Scheffé polynomi-

als and Becker’s models. These designs are robust against the uncertainty which

the GBMM reveals about these model forms, will identify if these models are

inadequate, allow for a choice between the established model forms and permit

other model forms to be fit if necessary. In this manner, the designs here can

be viewed to have application beyond just the fitting of the GBMM, and present

an approach to undertaking mixture experiments far more open to the wealth of



CHAPTER 7. DESIGNS FOR THE GBMM 115

joint effects the GBMM allow us to explore. In the following chapter, an example

is presented which begins to explore how such designs could be applied as part

of a multi-stage sequential experiment.



Chapter 8

Examples

This section provides applications of GBMM, both to simulated data and data

from real industrial experiments. Across three sections, four examples are pre-

sented, where each section intends to address a particular issue. Section 8.1

provides examples of behaviour which may be easily described by a GBMM, but

which other, more established models can find difficult to describe. This is done

using two examples of simulated data, in two and three components, respectively.

Section 8.2 presents an example, in three components, from an industrial experi-

ment, designed and then executed by Federal Mogul to serve joint aims with this

project. This applies one of the designs presented in the previous chapter with the

intention of fitting the Scheffé quadratic polynomial. The purpose of this example

is to examine how designs found for the GBMM, can be used to reveal whether,

and if so where, established models inadequately describe the response surface.

This leads to new ideas for building sequential designs for mixture experiments.

Section 8.3 presents a final example, again from an industrial experiment. In this

case, the example is in eight components and the intention is to demonstrate that

GBMM can be fit to cases where there are more than three components and that

the required model is of high complexity. For each example it is specified how

the fitting procedure was applied, with reference to the variations discussed in

Chapters 4 and 5.

8.1 What can the GBMM describe?

This section contains two examples. Both are for simulated data, in two and

three components, respectively. The intention is to demonstrate that there are

116
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types of behaviour which the GBMM can easily describe, but which other models

cannot, or at least, cannot without a large number of model terms. For each

model fit, AICc and R2 values are provided, in addition to plots comparing the

predicted response surface to the underlying behaviour.

8.1.1 Two component example

This example uses a data set of 11 points, spaced uniformly across a 1 dimensional

simplex. Hence they occur at mixtures where x1 = (0, 0.1, 0.2, . . . , 0.9, 1) and

x2 = 1− x1. At these points a response is simulated for

y = 5x1 + 2.5x2 + 500000x61x
10
2 , (8.1)

which in the terminology introduced in Chapter 3, describes an asymmetric joint

effect, more concentrated than that of the quadratic terms of the Scheffé quadratic

polynomial. Random variation is added such that

εi ∼ N
(

0,
ȳ

10

)
. (8.2)

To this data set 7 models are fitted: the two component quadratic, cubic and

quartic Scheffé polynomials,

E[y] = β1x1 + β2x2 + β12x1x2, (8.3)

E[y] = β1x1 + β2x2 + β12x1x2 + β12x1x2 (x1 − x2) (8.4)

and

E[y] = β1x1 + β2x2 + β12x1x2 + β12x1x2 (x1 − x2) + β12x1x2 (x1 − x2)2 ; (8.5)

the two component quadratic, cubic and quartic models with additional inverse

terms

β−1
1

x1 + 0.1
(8.6)

and

β−2
1

x2 + 0.1
(8.7)

and a GQBMM.
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Figure 8.1: Fitted response surface for GQBMM v. Underlying response surface

Figure 8.2 plots the predicted response for each of the first six models (exclud-

ing the GQBMM) over the underlying response surface, while Figure 8.1 does the

same for the GQBMM. From Tables 8.1 and 8.2 it can be seen that, other than

the GQBMM, only the Scheffé cubic and quartic models with additional inverse

terms provide an effective fit to the data. However, the plots for these models,

Figures 8.2e and 8.2f, reveal that this relatively good fit is achieved by describing

a simple underlying response surface with one which is relatively complex. This

is reflected in the statistics for model parsimony, for which these models compare

poorly in comparison to the fitted GQBMM,

E[y] = 4.87x1 + 2.44x2 + 293414.34x5.7531 x9.3532 , (8.8)

which matches the simulated response surface very closely. Here the GBMM was

fitted without either Stage 2 or Stage 3 of the fitting procedure as there is only

one possible pair of components for which to define a term of joint effect.

Scheffé quadratic Scheffé cubic Scheffé quartic GQBMM
R2 0.5363 0.6979 0.8011 0.9814
AICc 66.67 67.20 69.94 31.30

No of Terms 3 4 5 3

Table 8.1: Statistics comparing GBMM to Scheffé polynomials for simulated two
component example
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Scheffé quadratic Scheffé cubic Scheffé quartic GQBMM
R2 0.7300 0.9016 0.9039 0.9814
AICc 73.30 73.20 91.27 31.30

No of Terms 5 6 7 3

Table 8.2: Statistics comparing GBMM to Scheffé polynomials with additional
inverse terms for simulated two component example

8.1.2 Three component example

In contrast to the previous example, here the data have been simulated for a

three component experiment. The design is as indicated in Figure 8.3d and the

underlying response surface is described by the model

E[y] = 3x1 + 4x2 + 5x3 + 500000
x61x

10
2

(x1 + x2)
12 + 100x0.51 x0.52 x2.53 , (8.9)

to which has been added random variation, as in the two component example.

Therefore, this model includes the same effect as investigated in the two compo-

nent example and an additional three component joint effect; again asymmetric

and somewhat more concentrated that the cubic term of ternary joint effect found

in the cubic Scheffé polynomial. To this has been fit a GSCBMM, using all three

stages of the fitting procedure, and full quadratic, cubic and quartic Scheffé poly-

nomials. The R2 and AICc values for these four models are given in Table 8.3.

Also given, in Figures 8.3a, 8.3b and 8.3c, respectively, are the plots of the un-

Scheffé quadratic Scheffé cubic Scheffé quartic GSCBMM
R2 0.4275951 0.7068914 0.9491928 0.9882141
AICc 93.54475 101.2201 94.16494 4.269948

No of Terms 6 10 16 5

Table 8.3: Statistics comparing GBMM to Scheffé polynomials for simulated three
component example

derlying response surface, as described by Model 8.9 (without additional random

variation), the response surface described by the fitted GSCBMM,

E[y] = 3.021x1 + 4.002x2 − 0.1172x3 − 1.275e+ 07
x10.231 x14.782

(x1 + x2)
19.65

+ 94.09x0.32991 x0.57122 x2.53 , (8.10)
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(a) Scheffé quadratic polynomial (b) Scheffé cubic polynomial

(c) Scheffé quartic polynomial
(d) Scheffé quadratic polynomial with in-
verse terms

(e) Scheffé cubic polynomial with inverse
terms

(f) Scheffé quartic polynomial with inverse
terms

Figure 8.2: Fitted response surface for alternative models v. underlying response
surface for simulated two component example
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and the fitted quartic Scheffé polynomial. These demonstrate the fitted GSCBMM

matches the underlying response relatively strongly in comparison to the quar-

tic Scheffé polynomial, the only alternative considered which can be thought to

provide a reasonable fit.

(a) Underlying surface
(b) Response surface predicted by fitted
GSCBMM

(c) Response surface predicted by fitted
Scheffé quartic polynomial

(d) Design for simulated 3 component ex-
ample

Figure 8.3: Plots relating to simulated 3 component example
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8.1.3 Discussion

There is a bias toward the GBMM in these examples; as the underlying response

surface is simulated using a GBMM it is likely that a GBMM will prove to describe

the surface well. However, the focus here is on the inability of the established

models to describe such surfaces. Even when using models with a large number

of varied terms, none of the models given above provide effective representation

of the underlying response. The problem is particularly felt with the quadratic

and cubic Scheffé polynomials, which are also the only models which have been

frequently applied to mixture experiments elsewhere. In almost all other cases,

mixture experiments are represented through the behaviour described by the

terms of the quadratic and cubic Scheffé polynomials. Yet these terms appear

inadequately equipped to describe surfaces which we would consider reasonable

to expect in mixture experiments.

8.2 Using a design for the GBMM: an example

from industry

The purpose of this example is somewhat different to those given in the previous

section. Here the focus is upon the relationship between the GQBMM and the

Scheffé quadratic polynomial and how this may be used to propose new ways of

undertaking mixture experiments. As previously discussed, the Scheffé quadratic

polynomial can be viewed as a special case of the GQBMM, where hij = 0.5,

gij = 2 and sij = 2. For a three component experiment, assuming these values as

point priors, Design 7.1a is produced. This design can be viewed as the D-optimal

design of the Scheffé quadratic polynomial with 9 additional check points, chosen

in a manner which will specifically challenge the inherent assumptions which

exist when choosing to model a mixture experiment with the Scheffé quadratic

polynomial.

The data comes from an industrial mixture experiment, that took place at

Federal Mogul, on formulations for motorcycle disc brake pads. These products

are blends of metal powders with fine powder abrasives and graphite. The mixes

are compacted under high pressure at ambient temperature and then sintered

at high temperatures in an inert atmosphere to form individual disc brake pads.

This experiment explores the compaction properties of the mixture, during the
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manufacturing process.

(a) 15 point design (b) 41 point design

Figure 8.4: Designs for brake compaction data

The data consists of 41 observations, of which 15 were those of Design 7.1a.

The full design is shown in Figure 8.4b, alongside the plot of the 15 point design

in Figure 8.4a, originally seen in the previous chapter. Initially, the full Scheffé

quadratic polynomial,

E[y] = 50.58x1 + 26.41x2 + 15.55x3 + 25.19x1x2 + 25.05x1x3− 20.31x2x3, (8.11)

and GQBMM,

E[y] =49.12x1 + 26.31x2 + 16.61x3 + 1801.43
x5.2811 x2.4743

(x1 + x3)
7.754

− 36.65
x1.4392 x1.1423

(x2 + x3)
2.582 + 19.58

x0.85151 x0.91502

(x1 + x2)
−2.424 , (8.12)

were fit to the latter 15 points, returning R2 values of 0.9671 and 0.9972, at these

points, and 0.9386 and 0.9508 for observations across the entire data set. There

is little difference in the fit of these models. However, looking at the plots of the

response surfaces they describe, in Figures 8.5a and 8.5b respectively, there are

evidently implications from choosing between these models; the fitted GQBMM

identifies curvature in the response surface where there is no such behaviour

described by the Scheffé quadratic polynomial. A logical experimental strategy



CHAPTER 8. EXAMPLES 124

would be to, subsequently, take observations which particularly focus on whether

it is correct to expect such behaviour.

Without reference to the regressor defining parameters this could be done by

spreading the additional points randomly or uniformly over the region of interest,

whether that is the whole of the initial experimental region or some part of it.

This is a strategy which could also be taken with higher order models indicating

curvature where the Scheffé quadratic polynomial did not. However, just as the

regressor defining parameters were used to define the initial design, their newly

estimated values can also be used to define the subsequent additional design

points. In this context, the GBMM may be viewed as a tool through which a

more systematic exploration of the experimental region can take place, whether

or not a GBMM should, ultimately, be used for prediction. Hence, if necessary,

experimental resources can be focussed upon those regions of interest where there

is expected to be curvature which deviates from what would be described by the

established models.

The final GBMM, fitted to the full 41 points is

E[y] = 49.12x1 + 26.31x2 + 16.61x3 + 1801.43
x4.2591 x2.5743

(x1 + x3)
6.44

− 36.65
x5.2332 x11.033

(x2 + x3)
11.61 + 19.58

x1.5971 x2.6872

(x1 + x2)
0.6414 . (8.13)

This possesses an R2 value 0.9791 and the response surface it describes can be

seen in Figure 8.5c. Assuming this later GQBMM to describe something closer

to the true response surface, given the greater amount of data, it is evident that

the initial GQBMM did identify a region in which it would have been informative

to collect more data. Hence, in this case, the proposed design building method-

ology would have been worthwhile as a method of systematically allocating the

additional experimental resources, although the curvature does not appear to be

as dramatic as first indicated.

8.3 Fitting where there are more components:

a second example from industry

Thus far, all examples presented have been in three components or less. However,

the strength of the proposed fitting procedure for the GBMM is that it can be used
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(a) Response surface predicted by fitted
Scheffé quadratic polynomial to 15 data
points

(b) Response surface predicted by fitted
GQBMM to 15 data points

(c) Response surface predicted by fitted
GQBMM to 41 data points

Figure 8.5: Predicted response surface for models fitted to brake compaction data
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where there are far more components, in spite of the model selection requiring the

values of much greater numbers of regressor defining parameters to be identified.

This final example gives a model in 8 components and 9 terms.

The data, consisting of 101 observations, once again comes from an experiment

on formulations for motorcycle disc brake pads. The aim of this experiment

was to examine how the individual components behave to determine the overall

flow of the mixture, quantified through the bulk flow energy response. The flow

characteristics for each pure component and all blends were measured using a

powder rheometer.

The GBMM was obtained with 9 terms describing binary joint effects. No

terms of ternary joint effect were included in the model, although the full fitting

procedure, looking for ternary terms, with both Stages 2 and 3, was applied. The

estimates of the model parameters for the individual components are given in

Table 8.4, while those for the terms of joint effect are given in Table 8.5.

Component x1 x2 x3 x4 x5 x6 x7 x8
β̂i 976.1 -398.8 3478 6563 4677 2944 7819 7380

s.d.
(
β̂i

)
316.9 367.8 361.7 390.2 400.6 324.9 346.0 412.5

Table 8.4: Parameter estimates for the linear terms of the GBMM fit to 8 com-
ponent FM data

Components β̂ij s.d.
(
β̂ij

)
rij rji sij

x2 x4 -8.382e+10 1.397e+10 7.581 17.46 22.19

x3 x5 -2.445e+07 6.032e+06 5.945 7.370 -1.225

x2 x7 -5.741e+10 1.414e+10 0.0434 24.68 16.93

x4 x6 -4.534e+05 9.254e+04 5.749 1.614 -39.73

x2 x8 -1.055e+10 2.399e+09 9.914 12.21 21.04

x1 x7 7.057e+05 1.737e+05 9.313 1.541e-05 6.829

x5 x9 -5.039e+10 1.409e+10 15.27 9.278 -16.86

x3 x8 4.440e+10 1.123e+10 20.02 7.855 0.2484

x4 x8 2.974e+03 987.7 0.8299 0.3282 0.0914

Table 8.5: Parameter estimates for the terms of the joint effect of the GBMM fit
to 8 component FM data

The GBMM was compared to the best reduced Scheffé quadratic, cubic and

special cubic models and the PQM model, found using stepwise regression. The

R2 and AICc values for these models are given in Table 8.6. The GBMM is best
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Model AICc R2 p
GBMM 803.0 0.9632 9

Scheffé quadratic 841.1 0.9285 10
PQM 836.1 0.9285 9

Scheffé special cubic 817.3 0.9758 15
Scheffé cubic 810.1 0.9895 19

Table 8.6: Comparison of models fit to 8 component FM data

with respect to the AICc criterion and its R2 value is only slightly lower than

those for the Scheffé special cubic and cubic models, but the latter have 6 and

10 more parameters, respectively. In this case, the GBMM provides a better fit

with fewer terms.



Chapter 9

Discussion

This final chapter shall be used to summarise the ideas discussed. It shall be

separated into two parts. The first shall discuss what it is felt has been achieved

by the work presented, making claims to novel contribution. The second shall

look at how the work presented should be developed in the future.

9.1 What has been achieved?

The PhD, of which this work is the culmination, was funded by Federal Mogul

(FM) Friction Materials. FM, among other activities, manufacture brake discs

for many of the world’s leading automobile manufacturers. As discussed in the

examples, brake disc manufacture involves the formulation of mixtures.

When initiating the project, the objective was to explore the experimental

region of mixture experiments more thoroughly, with respect to different types of

blending behaviour. It was felt that the position of the Scheffé polynomials as the

primary, or sometimes sole, recourse for practitioners led to a lack of enquiry re-

garding the type of blending behaviour that was used to describe a response. This

could be detrimental to achieving the experimental objectives. More specifically,

it was felt that there did not exist a method for building experimental designs

which would systematically allow blending behaviour to be explored which was

not associated generally with the established models and more specifically, with

the Scheffé polynomials. As such, while the initial remit of the project was vague,

were there to have been two stated aims, they would have been these:

1. Develop a model capable of describing a broad range of blending behaviour.

128
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2. Develop experimental designs specifically directed towards exploring blend-

ing behaviour other than that given by the Scheffé polynomials.

The GBMM is a powerful tool allowing a very broad range of blending be-

haviours to be described. These include those of the Scheffé polynomials (and

its reparameterisations) and Becker’s models. There are potential benefits to be

gained from the GBMM through fitting more parsimonious models and possibly,

although it has not been explored here, interpreting the terms of the GBMM with

respect to the mean and concentration effects described in Chapter 3. Through

this class of models it’s possible for a practitioner to reject the assumptions in-

herent in choosing to model with the Scheffé polynomials and instead adopt a

more open approach, flexible to many different types of behaviour. It is foreseen

that the approach presented here will prove only one manner in which this class

of models can be used; a practitioner, acutely aware of the manner in which the

components in their experiment influence the response, now has a tool more ca-

pable of both reflecting the subject knowledge they have been able to build up

and of adapting to new knowledge they may acquire.

However, the flexibility of the GBMM is a challenge. Should a practitioner

wish to exploit the full range of possible behaviours, a powerful method for model

fitting is required. The method proposed here may be considered crude, essen-

tially being a brute force approach. However, as a response to the challenge

presented, it is effective; it astutely exploits the partially linear structure using

the variable projection method and can at least be viewed as an effective response

to the challenge presented. The novelty of taking the obvious step of applying

stepwise methods to partially linear models is doubtful. However, as an answer

to how to channel the flexibility of the GBMM, it is a useful and adroit response.

Moreover, for other cases where partially linear models exist, in a large num-

ber of nonlinear terms, this method could be applied with little redevelopment;

theoretically, it is a fitting procedure with application beyond the GBMM.

What novelty can be attributed to the designs presented here is drawn from

developing designs for the new class of models. However, in taking this approach

it has been possible to make proposals which allow designs specifically capable of

exploring deviation from the behaviour described by the established models.

More generally, it has been shown the flexibility of the models can be used to

drive the design process systematically, in a manner which allows the response

surface to be explored fully, with respect to the blending behaviours common in
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most models for mixture experiments. This is in contrast to cruder approaches to

providing effective coverage of the design space, such as uniform designs (Wang

and Fang (1996)), which would similarly allow the GBMM to be used. The result

is that new designs can be presented for established models, which can be said

to be D-optimal, but which also allow for uncertainty regarding the form of the

regressors, something that has not previously been considered.

With respect to the objectives above, it is felt that the project has been

successful. In particular, it is felt the new class of models, the GBMM, are a

novel contribution. It is already the case that these models can be advantageously

applied. However, with the development of holistic experimental approaches, with

these models at their centre, it is believed the benefits from their application can

be substantial.

9.2 What is still to be achieved?

In order that the full benefits be gained from application of the GBMM, it will

be necessary to undertake further research. Some of what follows should be

considered imperative. However, other points are only suggestions. The primacy

of developing a complete and universally applicable methodology, for the design

and analysis of mixture experiments using the GBMM, should be the driving

factor in the direction of all future research.

One important challenge is to look at the possibility of overfitting. In Exam-

ples F5-F8, the selected general ternary terms of joint effect were inconsistent,

depending upon the fitting procedure applied. However, the general binary terms

of joint effect were always the same or very similar; these were also consistently

fitted before the ternary terms. It is possible that these differences in the fit-

ted models, using different fitting procedures, reveal that the features described

by the ternary terms were unnecessary. Certainly, looking at the plots, their

influence is more subtle.

While the flexibility of the GBMM is obviously a boon, theoretically, the

range of available terms increases the chance of overfitting. It is beneficial to

explore blending effects which other models cannot. However, often, where other

models cannot describe a more subtle feature, the GBMM has a solution. In this

manner, features could be erroneously identified as important to representing the

response, rather than being a reflection of variability in the experiment. There
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would be overfitting and consequently, one of the most important challenges of

future work on the GBMM, is to establish a method for avoiding such situations

from happening.

More generally, how the fitting procedure is applied needs clarification. Sev-

eral variations were presented above, but with no conclusions regarding which

was better. Further work could be done in order to establish one method. Fur-

thermore, more effective programming could result in a more efficient program,

reducing the relatively long amount of time taken to fit GBMM.

In addition to these two tasks relating to the fitting procedure, there are also

several other areas which definitely need addressing. While Examples F1-F8 look

at an experiment across a constrained region of the full simplex, there is yet to

be a theoretical examination of application of the GBMM in such cases. More-

over, no work has yet looked at GBMM for mixture - process variable (MPV)

experiments. Both constrained experimental regions and MPV experiments are

common and it is believed that, in such situations, the GBMM could be advan-

tageously applied. This is particularly so with constrained mixture experiments,

where there is commonly a problem with collinearity. The ability of the GBMM

to present a more parsimonious model would go some way to addressing this

problem in some cases.

There are several directions for further work on experimental designs for the

GBMM. Certainly, designs could be developed and applied in the sequential man-

ner discussed in Example 3. Moreover, it remains to expand upon the designs

presented here, looking at those for more components. Particularly with the satu-

rated designs, it is suspected that there will be simple rules, relating to the values

of the regressor defining parameters, defining the allocation of the design points.

Finally, it is important to look at constrained mixture experiments, where the

allocation of design points for optimal designs can become more complex.

Regarding development to the GBMM itself, the path is less clear. There could

be benefits from interpreting the terms of the GBMM. For example, Model 5.3,

of Example F3, described two distinct features in the response surface, through

two distinct terms. A precise understanding of these two effects would be gained

through the regressor defining parameters of these terms. However, it is unclear

how generally such an approached could be applied, particularly where there are

a larger number of components and a larger number of terms.
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One other possible way to develop the new class of models would be to in-

troduce more terms. In Chapter 3, it was demonstrated that the general terms

of joint effect could be shown to be the product of two functions, each taking

a similar form to the probability density function of the Dirichlet distribution.

It may prove interesting to explore other known functions upon the simplex, in

order to similarly construct new terms describing types of behaviour the terms

of the GBMM cannot describe.

9.3 Summary

The manner in which the GBMM is applied can still be improved; it is evident that

clarification is needed regarding the fitting procedure and comprehensive ideas

on experimental design are still in development. Moreover, in order to maximise

its utility, several areas are still to be looked at, including MPV experiments.

However, it seems undeniable that the GBMM has the potential to prove a useful

tool in the analysis of mixture experiments.
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Designs for the GBMM

x1 x2 x3
0 0.132 0.868

0.132 0 0.868
0.5 0 0.5

0.500 0 0.5
0 0.5 0.5
0 0.868 0.132

0.868 0.132 0
0.868 0 0.132
0.203 0.594 0.203
0.200 0.200 0.600
0.594 0.203 0.203
0.132 0.868 0

1 0 0
0 1 0
0 0 1

Table A.1: 15 point design for GQBMM identified with priors equal to values
dictated by the Scheffé quadratic polynomial

133
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x1 x2 x3
0.5 0.5 0
0 0.5 0.5

0.5 0 0.5
0.144 0.712 0.144
0.144 0.144 0.712

0 0.132 0.868
0.468 0.064 0.468
0.868 0 0.132
0.132 0 0.868
0.132 0.868 0

0 0.868 0.132
0.712 0.144 0.144
0.064 0.468 0.468
0.332 0.332 0.336
0.468 0.464 0.068
0.868 0.132 0

1 0 0
0 1 0
0 0 1

Table A.2: 19 point design for GSCBMM identified with priors equal to values
dictated by the Scheffé cubic polynomial
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x1 x2 x3
0.120 0.760 0.120
0.136 0.864 0

0 0.5 0.5
0.12 0.12 0.76

0 0.864 0.136
0.136 0 0.864
0.5 0.5 0

0.232 0.232 0.536
0.864 0 0.136
0.864 0.136 0
0.232 0.536 0.232
0.760 0.120 0.120
0.536 0.232 0.232

0 0.136 0.864
0.5 0 0.5
1 0 0
0 1 0
0 0 1

Table A.3: 18 point design for GQBMM identified with priors equal to values
dictated by the Scheffé quadratic polynomial
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x1 x2 x3
0.404 0.596 0

0 0.125 0.875
0.128 0.744 0.128

0 0.404 0.596
0 0.875 0.125

0.875 0.125 0
0.125 0 0.875
0.596 0.404 0
0.404 0 0.596
0.128 0.128 0.744
0.125 0.875 0

0 0.596 0.404
0.744 0.128 0.128
0.532 0.234 0.234
0.596 0 0.404
0.234 0.532 0.234
0.875 0 0.125
0.234 0.234 0.532

1 0 0
0 1 0
0 0 1

Table A.4: 21 point design for GQBMM identified with priors equal to values
dictated by the Scheffé quadratic polynomial
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x1 x2 x3
0.125 0 0.875
0.864 0.136 0
0.532 0.236 0.232

0.59375 0.000 0.40625
0 0.136 0.864

0.406 0 0.594
0.232 0.236 0.532

0 0.864 0.136
0.136 0.864 0
0.232 0.536 0.232
0.748 0.124 0.128
0.5 0.5 0
0 0.5 0.5

0.12 0.76 0.12
0.875 0 0.125
0.128 0.124 0.748

1 0 0
0 1 0
0 0 1

Table A.5: 19 point design for GQBMM identified with priors equal to values
dictated by the Scheffé quadratic polynomial

x1 x2 x3
0.844 0 0.156
0.484 0.0312 0.484

0 0.752 0.248
0.156 0 0.844
0.156 0.844 0

0 0.248 0.752
0.784 0.108 0.108
0.844 0.156 0
0.484 0.484 0.0312
0.092 0.812 0.096
0.092 0.096 0.812
0.250 0.375 0.375

1 0 0
0 1 0
0 0 1

Table A.6: 15 point design for GQBMM identified with priors equal to values
dictated by the Becker H2 model
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x1 x2 x3
0 0.132 0.868

0.868 0 0.132
0.184 0.632 0.184
0.5 0 0.5

0.184 0.184 0.632
0.5 0.5 0

0.132 0 0.868
0 0.5 0.5

0.632 0.184 0.184
0.868 0.132 0
0.132 0.868 0

0 0.868 0.132
1 0 0
0 1 0
0 0 1

Table A.7: 15 point design for GQBMM identified with priors equal to values
dictated by Becker H2 model and the Scheffé quadratic polynomial

x1 x2 x3
0.472 0.472 0.056

0 0.152 0.848
0.5 0.5 0

0.056 0.472 0.472
0.848 0.152 0
0.784 0.108 0.108
0.104 0.104 0.792

0 0.848 0.152
0.152 0 0.848
0.5 0 0.5

0.152 0.848 0
0.332 0.332 0.336
0.472 0.056 0.472
0.848 0 0.152
0.108 0.784 0.108

0 0.5 0.5
1 0 0
0 1 0
0 0 1

Table A.8: 19 point design for GQBMM identified with priors equal to values
dictated by the Becker H2 model
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x1 x2 x3
0.144 0.856 0
0.5 0.5 0

0.052 0.476 0.472
0.265625 0.531250 0.203125

0 0.852 0.148
0 0.492 0.508

0.144 0 0.856
0.268 0.208 0.524
0.5 0 0.5

0.568 0.216 0.216
0.1 0.8 0.1

0.104 0.104 0.792
0.792 0.104 0.104
0.859 0.141 0

0 0.144 0.856
0.86 0 0.14

1 0 0
0 1 0
0 0 1

Table A.9: 19 point design for GQBMM identified with priors equal to values
dictated by Becker H2 model and the Scheffé quadratic polynomial
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