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8.2 Probability ĝ(z|τ, t) with fixed τ and t, for the two cases 0 ≤ z < τ

(bottom figure) and τ ≤ z <∞ (top figure). . . . . . . . . . . . . 209
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Abstract

This thesis investigates the revenue management (RM) problem encountered in
an airport carpark of finite capacity, where the available parking spaces should be
sold optimally in advance in order to maximise the revenues on a given day. Cus-
tomer demand is stochastic, where random pre-booking times and stay lengths
overlap with each other, a setting that generates strong inter-dependence among
consecutive days and hence leads to a complex network optimisation problem.
Several mathematical models are introduced to approximate the problem; a model
based on a discrete-time formulation which is solved using Monte Carlo (MC) sim-
ulations and two single-resource models, the first based on a stochastic process
and the other on a deterministic one, both developed in continuous-time that
lead to a partial differential equation (PDE). The optimisation for the spaces is
based on the expected displacement costs which are then used in a bid-price con-
trol mechanism to optimise the value of the carpark.
Numerical tests are conducted to examine the methods’ performance under the
network setting. Taking into account the methods’ efficiency, the computation
times and the resulting expected revenues, the stochastic PDE approach is shown
to be the preferable method.
Since the pricing structure among operators varies, an adjusted model based on
the stochastic PDE is derived in order to facilitate the solution applicable in all
settings. Further, for large carparks facing high demand levels, an alternative
second-order PDE model is proposed.
Finally, an attempt to incorporate more information about the network structure
and the inter-dependence between consecutive days leads to a weighted PDE
scheme. Given a customer staying on day T , a weighting kernel is introduced
to evaluate the conditional probability of stay on a neighbouring day. Then a
weighted average is applied on the expected marginal values over all neighbouring
days. The weighted PDE scheme shows significant improvement in revenue for
small-size carparks. The use of the weighted PDE opens the possibility for new
ways to approximate network RM problems and thus motivates further research
in this direction.
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Chapter 1

Introduction

“Yield management is not a systematic approach to abusing

customers. Think of it as a game in which all players can win.”

Walter J. Relihan III, 1989

1.1 Overview

All businesses, from retailing and grocery stores to hotels and airlines, struggle

with the same issues, these are: the increase of competition, increase of special

offers and promotions, increase of distribution channels, increase of price trans-

parency and decrease in time to respond and to react. As these factors have a

direct effect on a firm’s revenues and profits, managers have always been search-

ing for strategies to maximise the profits of their business. This has given rise to

Revenue Management (RM).

RM addresses three basic categories of demand management decisions; struc-

tural, price and quantity decisions (Talluri and van Ryzin, 2005). Structural deci-

sions are responsible for the selling format in use; for instance, whether prices are

posted or determined through negotiations and/or auctions. They also determine

which segmentation mechanisms are implemented, as well as whether cancella-

tion and refund options are available. Price decisions, on the other hand, are

about setting the prices appropriately. Determining factors include time, capac-

ity remaining, the product’s lifetime and the type of segment. Finally, quantity

decisions regard the allocation of the available capacity to the different segments,

products or distribution channels. These decisions are also responsible for a prod-

uct being withheld from the market and released at a later time.
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The theory of demand management decisions and RM in general is not a new

idea. In fact, every seller in history has had to make such decisions. However,

what is actually new about RM is the manner in which these decisions are made

nowadays; this involves technologically sophisticated and detailed operational

techniques. As such, a vital role in the development of these methods has been

the progress in mathematical sciences, economics and statistics as well as the

evolution in information technology (Talluri and van Ryzin, 2005).

More precisely, the advances in mathematical sciences enabled operators to

model the customer demand, to make an accurate forecast on the market re-

sponse and to evaluate the uncertainties associated with the decision-making.

The progress in information technology enables organisations to compute opti-

mal solutions using complex algorithms to models with many parameters. The

new RM systems are not only fast and accurate, they are capable of holding vast

amounts of data.

Consequently, modern RM has improved in both the quality and speed of de-

mand management decisions, as the models implemented now are of greater scale

(they cover more situations and uncertainties), more accurate (better forecasting

techniques) while still being computable in reasonable time.

Queenan et al. (2007) state that RM can potentially improve revenues 3-7%

in the airline, hotel and car rental industries. Great examples include American

airlines who recorded an additional profit of around $1.4 billion over a two year

period, 1989-1991, Marriot hotels who improved their annual revenue in 1991 by

$25-30 million, while National Car Rental benefited by around $56 million after

one year of implementing a RM system (Baker and Collier, 2003).

1.2 Motivation

Over the last twenty years, cars have formed the main transportation system

for people worldwide, especially in developed countries. At the same time, large

cities have become overcrowded. As a result, parking facilities are an essential

component for building up a sustainable transportation system. Given the limited

land-use for parking spaces in modern cities, optimal parking pricing can be a

flexible and desirable tool for most system planners and regulators (Qian and

Rajagopal, 2013). For instance, an appropriate pricing scheme could potentially

persuade commuters to use different means of transport, such as buses or trains,
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effectively reducing traffic congestion during peak hours.

However, in an attempt to bring parking pricing into an alignment with actual

market forces, this creates an opportunity for carparking owners to exploit the

increased demand to maximise their turnover.

In order for RM techniques to be efficient, carparks need to satisfy a set of

conditions (Kimes, 2000):

1. The company provides service based on a fixed capacity. Fixed capacity

means that no more customers can be accepted and hence no more revenue

can be generated when there are no parking spaces left to sell.

2. Customers can be segmented into distinct groups according to specific char-

acteristics. For example, customers can be differentiated according to their

willingness to pay, response to price changes, length of stay, the service

required or the pre-booking time. Put simply, when people do not value

the product identically, then extra revenue can be made by charging differ-

ent prices for different customers. The more variation there is among the

customers’ willingness to pay, the more RM is likely to increase revenue.

3. The inventory is perishable and it can be sold in advance. A perishable

inventory has a constant utility up until an expiration date, at which point

the utility drops to zero. In carparks, the available parking slots for a

given future day T (the day when the slots are to be consumed) have some

associated value up until T and become worthless after that day. This

time limit of selling the inventory implies that as time passes, the revenue

opportunity of an empty parking slot is lost forever; unsold slots on day T

cannot be carried out to sell at a later time t > T . This naturally leads to

selling the inventory in advance, which also allows the carpark operators to

plan ahead and operate more steadily.

4. The demand fluctuates between different times of the year. For example,

the demand for flights during Christmas or summer periods is higher than

for the rest of the year; similarly, demand in carparks, located near an

airport, is affected accordingly.

5. The company is structured in a way that it faces relatively high fixed costs

and low variable costs. In the carparking industry, increasing the size of

the carpark requires a huge amount of investment, as opposed to the cost
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incurred by completing a sale (accept a request, allocate a space to the

customer, update the system).

In this thesis we consider optimising the revenue of an airport carpark.

Airport carparks or jetparks are by definition located near the airports and

operate with customers who plan to fly and thus look for a place to park their

car until they return. Most airport carparks maintain an internet pre-booking

system where customers can choose to book among different types of jetparks.

The two main types are the premium and the long-stay jetparks. The premium

ones are located within a walking distance from the terminals and thus they are

the most expensive. On the other hand, people parking at the long-stay jetparks

are often required to take the shuttle buses in order to reach to the airport, and

therefore these jetparks are less expensive. These long-stay jetparks are usually

very large and rarely sell out. In contrast, the premium jetparks are relatively

smaller (as they are built close to the airport where the land-space is limited) and

managers usually have to re-direct customers to the long stay carparks due to

excess demand over scarce capacity. Then, it is precisely in this type of carpark

that RM techniques may prove to be beneficial and rewarding.

While parking lot operations share common traits with other prominent RM

problems, the academic literature has paid surprisingly little attention to the

parking industry. Taking into account the size of big international airports as

well as the success stories of American airlines (Smith et al., 1992) and Marriot

hotels (Cross, 1997), we believe that RM in jetparks can achieve similar perfor-

mance. Therefore, the environment we consider is premium jetparks, although

the techniques developed could potentially be implemented in different industries

also.

Two streams of customers are assumed: The price-sensitive (low-paying) and

the time-sensitive (high-paying) customers. The former set of customers is the

group of people who tend to book early in advance to take advantage of any

promotional discounts or offers. These customers usually require to stay for

longer periods that might coincide with a planned holiday trip and thus they will

be referred to as the Leisure class. The latter set comprises of the customers

that are not flexible with times and they are willing to pay a premium in order

to receive service. These customers, however, are described by shorter stays

on average and thus they will be referred to as the Business class. Note that

customers from both classes pre-book and arrive in the carpark in random order
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and can stay for any length of time which is a again random.

Usually, the required length of stay is measured in integer number of days (as

opposed to urban city carparks which it is measured in hours or minutes) and

thus the corresponding price is quoted as price rate per day. Each customer is

quoted a price per day depending on the number of days they are staying for.

Mathematically, this is expressed through the pricing function which relates the

quoted daily price rate to the required length of stay.

One may notice that among the range of industries for which RM is applied

to, airport carparks are most related to hotels. In particular, the main product

that is rented in both cases is a “space” in the facility (room in the hotel, parking

spot in the carpark) for a day, although additional revenue opportunities could

be achieved in the hotel through other services. Therefore, the major challenges

are similar, as the manager needs to address the problem of multi-day stays. For

instance, what price should be quoted to a customer who wants to arrive on a low-

demand day and stay through several high-demand days? To this end, studying

some of the main characteristics of hotel RM (regarding the optimisation stage)

is important in understanding how we should attempt to tackle our problem.

Clearly the uncertainty in customer demand along with the complexity in

dealing with the inter-dependence within the days results in an intellectually

stimulating and challenging problem that we aim to address in this thesis.

We develop several mathematical models to approximate the problem. The

optimisation for the spaces is based on the expected displacement costs - the

expected revenue loss incurred by removing one unit from the capacity. Each

approach will generate a set of expected marginal values which are then used in

a bid-price control mechanism to optimise the carpark.

1.3 Outline

The remainder of this report is organised as follows. Chapter 2 introduces the

reader to the main mathematical tools that are used in the academic literature

and throughout the thesis. A review of the relevant literature and current RM

practices may be seen in chapter 3. We have divided the academic literature into

two main categories, the single-resource and the multiple-resource or network

RM. In each category, the main models are shown for under both a deterministic

and a stochastic setting.
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In chapter 4, we set the scene, list the set of assumptions and define the

problem we aim to solve. This is a stochastic network setting whereby customers

book to stay for any length of time and as such the optimisation of the spaces on

one day is inter-connected to the neighbouring days.

The complex structure of the problem necessities the derivation of mathemat-

ical methods that aim to approximate the problem. In particular, three methods

are developed, a discrete-time model based on Monte-Carlo (MC) simulations

and two continuous-time models that lead to a Hamilton-Jacobi-Bellman-type

(HJB) partial differential equation (PDE). These methods are either solutions to

a simplified network problem or to a decomposed single-resource problem. The

methodology underlying these approaches is presented in chapter 5.

Extensive numerical results for each approach, along with performance com-

parison among them is found in chapter 6. Because of the continuous-time nature

of two of the models, the comparison is performed in the limit, i.e. as the time

interval goes to zero. Thus, in chapter 7, we present an adjustment to the main

PDE model that allows us to obtain solution for any finite time interval consid-

ered.

Based on the original PDE, two further extension models are presented in

chapter 8. The first suggests to apply some kind of a weighting scheme on the

solution of the PDE in order to incorporate more information about the inter-

dependence of the days. The second model assumes continuous capacity and

under some assumptions on the demand process it leads to a second order PDE.

Results from both schemes are presented and discussed.

Concluding this study, chapter 9 presents an overall summary of the developed

mathematical methods as well as a discussion on the main contributions achieved.

As a final note we present a small case study undertaken in collaboration with

the industry, as part of a three-month internship during my studies.

Note: All numerical results and computation times presented, are obtained

using an Intel Xeon(R) E450 @ 3.00 GHz processor with 16GB of RAM.



Chapter 2

Background theory

2.1 Stochastic processes

For the following definitions in this section we follow Zukerman (2012). For a

given sample space Ω, we define the σ-algebra F on Ω as a family of subsets of

Ω with the following characteristics:

� ∅ ∈ F

� F ∈ F =⇒ FC ∈ F , where FC = Ω \F is the complement of F in Ω

� A1, A2, · · · ∈ F =⇒ A =
⋃∞

i=1Ai ∈ F

The pair (Ω,F) is called a measurable space. A probability measure P on (Ω,F)

is a function P : F → [0, 1] such that

� P (∅) = 0, P (Ω) = 1

� if A1, A2, · · · ∈ F and {Ai}∞i=1 are disjoint subsets then

P

(

∞
⋃

i=1

Ai

)

=

∞
∑

i=1

P (Ai).

The triple (Ω,F ,P) is called a probability space.

We define a stochastic process X(t), t ∈ T on a given probability space

(Ω,F ,P) as a collection of random variables in correspondence to the given in-

dex set T . If the index set T is countable then the process is called discrete-time

stochastic process, while if it is not countable it is said to be a continuous-time

28
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stochastic process. Moreover, the stochastic process X(t), t ∈ T can be discrete-

space or continuous-space according to whether the sample space Ω is discrete or

continuous.

2.1.1 Point process

A special class of stochastic processes is called Point processes. A Point process

is a sequence of events1 that occur at random points of time ti, i = 1, 2, . . . , with

ti+1 > ti. The index set T where the ti’s get their values from is usually considered

to be the positive real line. A Point process can be defined by its corresponding

Counting Process N(t), t ≥ 0, where N(t) is the number of events occurred within

[0, t). The following properties hold for the counting process N(t):

1. N(0) = 0

2. N(t) ∈ Z

3. If s > t, then N(s) ≥ N(t) and N(s) − N(t) is the number of occurrences

within the period (t, s].

4. Orderliness:

The probability that two or more arrivals happen at once is negligible. In

other words, we require that

lim
∆t→0

Pr(N(t+∆t)−N(t) > 1|N(t +∆t)−N(t) ≥ 1) = 0.

5. Markov Property:

The future evolution of the process is statistically independent from its past.

Another way to define the point process is through the stochastic process

of the interarrival times ∆i = ti+1− ti. If we then think of Y as the waiting

time between successive events the memoryless property may be expressed

as

Pr(Y > t+ s|Y > t) = P (Y > s).

Two well known processes that belong to the class of discrete-space Point

processes are the discrete-time Bernoulli process and the continuous-time Poisson

process.

1In queueing theory these are called arrivals, as they correspond to time points when arrivals
join the queue.
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2.1.2 Poisson process

2.1.2.1 Homogeneous Poisson process

In addition to its basic properties, in order for a counting process N(t) to be

defined as a Poisson process with rate λ we further require that:

1. The number of events in any interval of length t follows a Poisson distri-

bution with rate λt. Therefore, the number of events in [s, t), N(t)−N(s)

satisfies:

Pr
[

N(t)−N(s) = n
]

=
λn (t− s)n e−λ (t−s)

n!
, (2.1)

where λ is the average number of events in a unit of time.

2. Independent Increments:

The number of events in any disjoint time intervals [t1, t2] and [t3, t4] are

independent random variables.

3. Stationary Increments:

The number of events within the time intervals [s, t+ s] and [0, t] follow the

same distribution (stationary), i.e.

N(t + s)−N(s)
D
= N(t)−N(0) for s, t ≥ 0.

4. The inter-arrival times of events are exponentially distributed with rate

parameter λ, such that the average inter-arrival time is 1/λ.

The orderliness property of the Poisson process leads to the following small

interval conditions :

1. Pr
[

N(t+∆t)−N(t) = 0
]

= e−λ∆t ≈ 1− λ∆t + o(∆t)

2. Pr
[

N(t+∆t)−N(t) = 1
]

= λ∆t e−λ∆t ≈ λ∆t + o(∆t)

3. Pr
[

N(t+∆t)−N(t) ≥ 2
]

= o(∆t),

where any function g(.) is o(∆t) if

lim
∆t→0

g(∆t)

∆t
= 0.

Note that the probability of an event happening within an interval is propor-

tional to the length of the interval. In particular, any process that satisfies the
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stationary, independence and small interval conditions together with N(0) = 0 is

a Poisson process.

Alternatively, one may write the Poisson process in its differential form, that

is

dN = lim
∆t→dt

N(t +∆t)−N(t), (2.2)

and thus express the state dynamics as

dN =

{

0 with probability 1− λdt

1 with probability λdt.
(2.3)

2.1.2.2 Non-homogeneous Poisson process

A non-homogeneous Poisson process is a Poisson process with time varying in-

tensity rate, λ(t), satisfying the independent increment property but not the

stationary increment property. Therefore, the number of events in [s, t), satisfies:

Pr
[

N(t)−N(s) = n
]

=
(Λ(t)− Λ(s))n e−(Λ(t)−Λ(s))

n!
, (2.4)

where

Λ(t) =

∫ t

0

λ(x) dx (2.5)

is the number of events expected to happen within [0, t).

Then, the orderliness property of the non-homogeneous Poisson process leads

to the following small interval conditions :

1. Pr
[

N(t+∆t)−N(t) = 0
]

≈ 1− λ(t)∆t + o(∆t)

2. Pr
[

N(t+∆t)−N(t) = 1
]

≈ λ(t)∆t+ o(∆t)

3. Pr
[

N(t+∆t)−N(t) ≥ 2
]

= o(∆t).

Note that the homogeneous Poisson process with constant rate λ is a special case

of the inhomogeneous Poisson process, where Λ(t) reduces to λt.

Alternatively, according to Gallager (1996) we may consider a non-homogeneous

Poisson process as a homogeneous Poisson process over a non-linear time scale.

In particular, if Ñ(t) is a homogeneous Poisson process with rate 1 then the

inhomogeneous Poisson process may be expressed as N(t) = Ñ(Λ(t)).
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2.1.2.3 Properties of Poisson processes

� Superposition

The superposition of two inhomogeneous processes with intensities λ1(t)

and λ2(t) results in an inhomogeneous Poison process with intensity λ(t) =

λ1(t) + λ2(t).

� Random selection

A random selection of events from an inhomogeneous Poisson process with

intensity λ(t), such that each event is independently selected with proba-

bility p(t), leads to an inhomogeneous process with intensity p(t) λ(t).

� Subdivision

If an inhomogeneous Poisson process with intensity λ(t) is subdivided into

two processes with probability p1(t) and p2(t) respectively, then the result-

ing subprocesses are independent inhomogeneous Poisson processes with

intensities p1(t) λ(t) and p2(t) λ(t), respectively.

� Conditioning on the number

If the total number of arrivals in the interval [0, t) is n, then the event

times are distributed independently in this interval according to the density

function λ(t)/
∫ t

0
λ(x)dx.

2.1.2.4 Generating the Poisson process

We first begin by describing the way to generate event times of a homogeneous

Poisson process with rate λ. The approach used is based on the Inverse Trans-

formation method (see Çinlar, 1975). From the properties of the Poisson process

we know that the time between events is exponentially distributed with rate pa-

rameter λ. Then, the cumulative density function (cdf) of the waiting time is

given by

Hx(t) =

∫ t

0

λ e−λs ds = 1− e−λt, (2.6)

and the inverse cdf by

H−1(u) = − log(1− u)

λ
, 0 ≤ u < 1. (2.7)

Therefore, if u∼U(0, 1) is a uniform random variable in [0, 1), the next event
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occurs at time

t = − log(1− u)

λ
= − log(u)

λ
. (2.8)

For the case of generating event times of a non-homogeneous process with

intensity λ(t) the procedure is slightly more complex. The available methods

can be grouped into three main categories: inversion methods, order-statistic

methods and acceptance-rejection methods. Here, we only describe the method

we have implemented for our problem; this falls into the first category and it is

named Çinlars method.

According to Çinlar (1975) we first generate event times from a homogeneous

Poisson process of rate 1 and then use Λ(·) to obtain the event times for the

required non-homogeneous Poisson process. More precisely, the procedure to

find the next event time t is

1. Draw a random number u∼U(0, 1)

2. Generate an event from the homogeneous Poisson process with λ = 1 by

s = − log(u).

3. Generate t according to,

t = inf{v : Λ(v) ≥ s},

or

t = Λ−1(s),

if the function Λ(·) is invertible.

2.1.3 Wiener process

Another class of stochastic processes is called a Wiener process or so-called Brow-

nian motion. The Brownian motion W (t) is a continuous-time continuous-space

stochastic process and has the following properties:

1. W (0) = 0

2. It has stationary increments, i.e.

W (t+ s)−W (s)
D
=W (t)−W (0) for s, t ≥ 0.
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3. It has independent increments, i.e.

for t1 < t2 < · · · < tn the random variables W (tn)−W (tn−1), . . . ,W (t1)−
W (t0) are all independent.

4. The map t→ W (t) is continuous

5. W (t)−W (s)∼N(0, t− s), where N(·) stands for the Normal distribution.

6. It satisfies the Markov Property.

The differential of a Brownian motion dW can be defined as

dW = lim
∆t→dt

W (t+∆t)−W (t). (2.9)

In particular, dW is normally distributed with mean 0 and variance dt, and it is

often expressed as

dW = ǫ
√
dt,

where ǫ∼N(0, 1).

2.2 Discrete-time optimisation

Optimisation focuses on determining a maximum or a minimum of a given func-

tion over a region. Since this thesis refers to revenue optimisation and maximising

profitability, we focus on finding the value that maximises our objective function.

If there are constraints imposed regarding the possible values of certain variables

of the function, the problem becomes a constrained optimisation problem; if no

constraints are in place the problem is an unconstrained optimisation problem.

In RM most practitioners use a class of methods that falls into the broad

area of Mathematical Programming. Usually, the function’s variables represent

the different products offered by the firm and the objective is to maximise the

profit generated by selling these products subject to some capacity constraints.

One such method, which is perhaps the most popular and forms the basis for the

other mathematical programs, is called Linear Programming.

2.2.1 Linear programming

As the name indicates, Linear Programming (LP) applies to linear objective

functions. The objective function is a linear combination of the n variables subject
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tom linear constraints that set an upper or a lower bound on a linear combination

of the n variables. LP is widely used in practice, mainly because it is intuitively

appealing and computationally efficient (simple).

For illustrative purposes, let us consider a firm with n products y1, . . . , yn

that are priced at c1, . . . , cn respectively. Each product yj is made of a linear

combination of the m materials (resources). Each material i, i = 1, . . . , m has

available capacity xi. The objective is to decide how many units of each product

to build so that the total revenue is maximised. A restriction however applies, as

the capacity of each resource is finite.

Let aij indicate the number of units of material i used to build product j.

Then, the linear program can be expressed as:

max
y1,...,yn

n
∑

j=1

cjyj,

subject to
n
∑

i=1

aijyj ≤ xi for i = 1, 2, ..., m.

yj ≥ 0 for j = 1, 2, ..., n.

Note that we have m inequality constraints, each associated with one resource.

Also, we impose the restriction that the yj is either 0 (no units of product j are

built) or a positive number.

More conveniently, we may rewrite the LP in its canonical form, that is

max
y

c⊤y, (2.10)

subject to

Ay ≤ x,

y ≥ 0,

where c⊤ = (c1, c2, . . . , cn), y
⊤ = (y1, y2, . . . , yn), x

⊤ = (x1, x2, . . . xm) and A =

[aij ]m×n is the matrix consisting of all the elements aij.

In general, when formulating a problem as an LP we are free to choose between

minimising or maximising the objective function, or to use any of ≤,=,≥ to

describe the constraints for the resources or the variables values. However, it

is always best to write the LP in standard form, where the constraints are all
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equalities while the variables are all non-negative.

2.2.2 Duality and complementary slackness

The linear program given in (2.10) is often referred to as the primal problem. For

each primal problem there is an associated dual problem, which is another linear

program that takes the form:

min
b

x⊤b, (2.11)

subject to

A⊤b ≥ c,

b ≥ 0,

where b = (b1, b2 . . . bm) is the vector of dual variables. We note that the dual

problem is a minimisation problem with a number of variables equal to the num-

ber of constraints in the primal (2.10); there is a 1-1 correspondence between the

dual variables and the primal constraints.

The dual value bi at the optimum measures the dependence of the primal

objective function to the constraint i. In particular, bi is the rate of change of

the objective function with respect to the constraint (or resource) i when all

remaining constraints (or resources) are kept fixed.

The Complementary Slackness condition formalises the above (Phillips, 2005):

The incremental change in the objective function from an incremental change

in constraint i in (2.10) will be (approximately) bi. If constraint i is non-binding2,

then bi = 0 and relaxing the constraint will not change the value of the objective

function; if bi > 0, then constraint i in (2.10) is binding.

In the above example, if bi = 2 for instance, this implies that an extra unit of

material i will produce approximately an additional 2 units in revenue, as long as

the optimal solution remains unchanged; similarly, bi = 0 implies that increasing

the capacity of material i will not bring any additional revenue.

In the RM context, knowing the solution to the corresponding dual problem is

vital for decision making, the reason being that each of the resulting dual variable

2A constraint i (can be either an inequality or an equation) is said to be binding if, at the
optimal solution, it is satisfied by an equation between the variables of the LHS and the resource
capacity xi. Otherwise, the constraint is non-binding.
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is interpreted as the marginal value of the corresponding material. A material

that consistently has a high marginal value would be an excellent candidate to be

considered for ordering it in bigger volumes whereas one with consistently zero

marginal values should be ordered in lower volumes.

Fortunately enough, the complementary slackness conditions enable us to

compute the dual values out of the primal solution directly, without actually

having to solve the dual problem explicitly.

2.2.3 Integer programming

In a typical revenue optimisation problem, most of the variables of interest are

discrete rather than continuous; for example, the number of bookings, no-shows

and demand are all integers. This implies that we have to use Integer Program-

ming (IP); we need to find all values y of the vector in (2.10) but requiring that

these values have to be integers.

The restriction that the feasible region consists of only integers renders the

problem relatively more challenging than a problem where the feasible region is

continuous. Thus, researchers often look for ways to approximate the IP problem

rather than solving it directly. The most common approximation method is to

solve the LP problem that results by relaxing the integrality constraint. This

LP-relaxation technique transforms the NP-hard3 optimisation problem to one

that can be solved in a polynomial time4. Therefore, researchers ususally solve

the relaxed LP problem and then based on the solution they design algorithms to

approximate the IP problem. The two most popular algorithms used in practice

are the Cutting Plane (Gomori) method and the Branch and Bound method.

For a detailed study of linear and integer programming techniques the reader

is referred to Luenberger (2003) and Schrijver (1998).

3NP-hard stands for the non-deterministic polynomial-time hard and, in brief, it refers to a
class of problems that can be solved in a polynomial time only by a non-deterministic machine.
In a polynomial time, a deterministic machine, in contrast, can only verify whether the solution
is correct. Further information on NP-hard problems can be found in Hochbaum (1996).

4A problem is said to be solvable in polynomial time if the time it takes to be solved is upper
bounded by a polynomial expression in the size of the input of the problem, i.e. T (k) = O(kr),
where r is a non-negative integer.
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2.2.4 Dynamic programming and the Bellman equation

Another technique that is employed in practice is Dynamic programming (DP).

Dynamic Programming is a technique used to obtain optimal decisions to a cer-

tain problem, when these are made in stages. The objective is to maximise any

desirable outcome; mathematically, this is expressed through the reward function.

A key element of these decisions is that they cannot be viewed in isolation; in

fact, one “must balance the desire of high present rewards with the undesirability

of low future rewards”. Thus, the idea is to break the decision sequence in just

two parts, the present reward and the expected future reward that encapsulates

the decisions from all subsequent stages. Then, the optimal decision is the one

that maximises the sum of these two components.

Following Bertsekas (1995) we consider a finite horizon discrete-time system

with T stages, 0, 1, . . . , T − 1. The state of the system at time t + 1 is given by

xt+1 and it is a function of the state at t, xt, as well as the corresponding action

at t, ut, that is

xt+1 = ft(xt, ut) t = 0, 1, . . . , T − 1.

In this representation, xt belongs to the state space St and ut belongs to the

control set Ut(xt) which itself depends on the current state xt. Further, we assume

that the process is Markov in the sense that all the information relevant to the

determination of the probability distribution of future values is accommodated

in the current state xt.

Define Rt(xt, ut) as the current reward at time t when the state is xt and the

action chosen is ut. We further impose the restriction that the reward function

is additive over time. In other words, the reward incurred at time t, Rt(xt, ut)

accumulates over time. Let RT (xT ) to be the terminal reward at the end of the

process which only depends on the state of the process (independent of any action

chosen). Then, the total reward over all times is given by,

RT (xT ) +

T−1
∑

t=0

Rt(xt, ut). (2.12)

Let the control law π to be the sequence of functions, π = (µ0, µ1, . . . , µT−1),

such that µt maps state xt onto the control ut = µt(xt) and such that µt(xt) ∈
Ut(xt). Then, we may introduce Jπ

t (xt) as the total reward at time t over the



CHAPTER 2. BACKGROUND THEORY 39

remaining stages t, t + 1, . . . , T given the control law π. In fact, this is

Jπ
t (xt) = RT (xT ) +

T−1
∑

k=t

Rk(xk, uk) ∀ t = 0, 1, . . . , T − 1. (2.13)

Finally, the value function Vt(xt) is defined as

Vt(xt) = max
π∈Π

Jπ
t (xt), (2.14)

with the terminal value

VT (xT ) = RT (xT ). (2.15)

where Π is the set of all admissible policies. Consequently, the value function

V0(x0) is the maximum total reward over all times if we are in state x0 initially.

The policy that leads to V0(x0) is denoted by π∗ = (µ∗
0, µ

∗
1, . . . , µ

∗
T−1).

The Bellman Principle or the Principle of Optimality can be expressed as:

Let π∗ = {µ∗
0, µ

∗
1, . . . , µ

∗
T−1} be an optimal policy for the basic problem and assume

that when using π∗, a given state xt occurs at time t with positive probability. Con-

sider the subproblem that starts at state xt at time t and we wish to maximise the

total reward from time t to T . Then, the truncated policy π∗ = {µ∗
t , µ

∗
t+1 . . . , µ

∗
T−1}

is the optimal policy for the subproblem.

In other words, an optimal policy has the property that, whatever the initial

action, the remaining choices constitute an optimal policy with respect to the

subproblem starting at the state that results from the initial actions.

Thus, the Bellman principle enables us to compute the rewards recursively.

In particular, we can show that the value function satisfies

Vt(xt) = max
ut∈Ut(xt)

{

Rt(xt, ut) + Vt+1(ft(xt, ut))

}

∀ t = 0, 1, . . . , T − 1. (2.16)

Equation (2.16) is solved backwards in time, with the final condition

VT (xT ) = RT (xT ). (2.17)

Such computations are highly efficient because at any time point along the re-

cursion one needs to store only two values, the current reward and the remaining
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value function, as opposed to the entire set of values from all subsequent times.

2.3 Continuous-time optimisation

We can now consider maximising a continuous, differentiable function f(x) over

a specified region a ≤ x ≤ b. We note that x can be scalar or even a vector. In

general, a function might have several local maxima within a region. We assume,

however, that the function in consideration is unimodal i.e. it has the property

that any local maximum is a global maximum as well. Continuous optimisation

suggests that we start from a particular point in the region and look for another

point that gives a higher objective function value. The process continues until we

find a point where no further improvement can be found. Such a point is called

the global maximiser. Writing the above statement in a formal manner we have

that for a point x∗ to be a maximiser, all partial derivatives of the function at

that point are zero, i.e. ∂f(x∗)/∂x∗i = 0 ∀i. If, however, ∂f(x∗)/∂x∗i > 0 or

∂f(x∗)/∂x∗i < 0 for some i, then the function f could be increased by increasing

x∗i or decreasing x∗i , respectively.

We can extend the nature of x : [0, T ] → R to be a function in its own right.

Then, the objective becomes to optimise a functional as opposed to a function.

There are three major approaches to solve such continuous optimisation problems,

these are the calculus of variations, the optimal control theory and the dynamic

programming. The notes below are based on Chiang (1992).

2.3.1 Calculus of variations

In calculus of variations we seek to maximise an objective functional J(x(t)),

where x : [0, T ] → R. In other words, we seek to find the function x for which

J(x(t)) is maximised. The fundamental problem in calculus of variations reads,

max J(x(t)) =

∫ T

0

R(x(t), x′(t), t) dt (2.18)

subject to

x(0) = x0

x(T ) = xT
(2.19)
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where x0, xT ∈ R. The integrand R is called the reward rate which depends on

the time t ∈ [0, T ], the state x and the direction of path x′(t). Further, it is

assumed that all the functions that appear in the problem are continuous and

continuously differentiable. Note that in the fundamental problem, the initial

and terminal points are completely specified. Often, there is a terminal point

criterion h(x(T )) that sets the value of the objective functional at time T . Thus,

this term is usually added to equation (2.18).

One can show that the optimal solution to the above problem satisfies the Euler-

Lagrange equation, namely

∂R

∂x
− d

dt

(

∂R

∂x′

)

= 0. (2.20)

which in general is a second order non-linear differential equation5.

Note that equation (2.20) is a necessary condition for finding the optimum x(t)

but it does not tell us whether it maximises or minimises J .

Despite sitting at the core of functional analysis, calculus of variations has two

major limitations that led researchers studying methods to overcome them; it only

deals with differentiable functions and interior solutions. One field that overcomes

these is Optimal Control theory, which is, in fact, the main tool implemented

throughout this thesis.

2.3.2 Relationship to optimal control theory

As in the calculus of variations, the objective is to maximise the reward functional,

but in optimal control theory we achieve this by the use of a control variable

u(t) ∈ U , where U ⊂ R is the control set. This control variable is measurable in

[0, T ] and is directly related to the state variable x through the state dynamics.

In particular, the fundamental problem in optimal control theory reads

max
u∈U

J = h(x(T )) +

∫ T

0

R(x(t), u(t), t) dt (2.21)

5This may be seen after expanding the second term to obtain
d
dt

(

∂R
∂x′

)

= ∂
∂t

(

∂R
∂x′

)

+ ∂
∂x

(

∂R
∂x

)

dx
dt

+ ∂
∂x′

(

∂R
∂x′

)

dx′

dt
.
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subject to

x′(t) = f(x(t), u(t), t),

x(0) = x0,

x(T ) = xT ,

(2.22)

where x0, xT ∈ R, and f : R × U × [0, T ] → R. We notice that x′(t) has been

replaced by the control variable u(t) inside the functional. The presence of the

control variable u necessitates a linkage between u and x, to describe the effect

of u on the movement of x; this relationship is given through the constraint

equation. Also note that when we set u = x′(t), optimal control theory reduces

precisely to the calculus of variations.

The advantage of optimal control theory is that the state path does have to be

continuous but only piecewise differentiable. At the same time the optimal control

path only needs to be piecewise continuous allowing for jump discontinuities.

Another advantage is that the control set U can be restricted, which will naturally

admits corner (boundary) solutions.

Now, consider s ∈ [0, T ] and define J(x(s), u(s), s) as the total reward remaining

from times [s, T ] when the control policy is u, where u is measurable in [s, T ].

This may be written as,

J(x(s), u(s), s) = h(x(T )) +

∫ T

s

R(x(t), u(t), t) dt. (2.23)

Then we can define the value function V (x(s), s) as the maximum total reward

remaining from times [s, T ], i.e.

V (x(s), s) = max
u∈U

J(x(s), u(s), s). (2.24)

There are two approaches to solve this deterministic optimal control problem;

dynamic programming and the Pontryagins maximum principle.

Dynamic programming We begin by illustrating the dynamic programming

approach which is in fact a direct extension of the dynamic programming in the

discrete setting.

Consider a “small” increment of size ∆t. Then, we can apply the Bellman’s
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principle of optimality on (2.24) to obtain the following recurrence relation:

V (x(t), t) = max
u∈U

{

R(x(t), u(t), t)∆t+ V (x(t) + ∆x(t), t +∆t)

}

+ o(∆t).

(2.25)

Applying a Taylor series expansion to V (x(t) + ∆x(t), t +∆t) we obtain,

V (x(t) + ∆x(t), t +∆t)

= V (x(t), t) +
∂V (x(t), t)

∂t
∆t +

∂V (x(t), t)

∂x
∆x(t) + o(∆t)

≈ V (x(t), t) +
∂V (x(t), t)

∂t
∆t +

∂V (x(t), t)

∂x
f(x(t), u(t), t)∆t. (2.26)

Substituting (2.26) into (2.25), dividing by ∆t and then taking the limit as ∆t→ 0

we obtain a partial differential equation (PDE), the Hamilton-Jacobi-Bellman

(HJB) equation,

−∂V (x(t), t)

∂t
= max

u∈U

{

R(x(t), u(t), t) +
∂V (x(t), t)

∂x
f(x(t), u(t), t)

}

, (2.27)

solved backwards in time, starting with the final condition

V (x(T ), T ) = h(x(T )). (2.28)

The HJB equation is in general a non-linear PDE due to the min/max operator

with respect to the value function V . Note that in order to solve this PDE we

need to make some assumptions mainly on the behaviour of the value function V ;

that is a smooth function and continuously differentiable in t and x. If so, how

do we the know that the solution of the HJB is the original value function? It

turns out that if we can solve the HJB equation then we can obtain an optimal

control policy that maximises the right-hand side. Then the solution to the HJB

is precisely the value function in the original problem (2.24). This idea is more

formally expressed as the Verification theorem (see Bertsekas, 1995).

However, in some cases the smoothness assumptions might not hold and thus

it is not possible to find classical solutions to satisfy the HJB equation everywhere.

Then, the optimal value function is only a weak solution to the HJB. Thus, to

solve the optimal control problem one might have to refer to non-smooth analysis

and the notion of viscosity solutions. This research area is out of the scope of our
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study, however, the interested reader is referred to Øksendal and Sulem (2007).

Pontryagins maximum principle As pointed out before, the objective is to

find the optimal control trajectory u∗(t) (and hence the optimal path x∗(t)) that

maximises J . What we then need is a way to compare the different trajectories

of alternative controls. This is achieved by the use of the Hamiltonian H.

Let us define the Hamiltonian H as

H(x(t), u(t), λ(t), t) = R(x(t), u(t), t) + λ(t)f(x(t), u(t), t), (2.29)

where λ(t) is the costate variable defined by

dλ

dt
= −∂H

∂x
. (2.30)

Equation (2.30) is referred to as the equation of motion for λ. Similarly, from

(2.29) we also obtain that
dx

dt
=
∂H
∂λ

, (2.31)

which is defined as the equation of motion for x.

Pontryagins maximum principle states that if the optimal control trajectory

u∗(t) maximises J (i.e gives rise to the value function V ) then it also maximises

H.

The variable λ is also called the Lagrange multiplier of the constraint dx(t) =

f(x(t), u(t), t) dt. In fact, it satisfies

λ =
∂V (x(t), t)

∂x
(2.32)

and, therefore, the Hamiltonian is just the expression inside the brackets of equa-

tion (2.27).

Finally, the problem requires solving the following set of differential equations

u(t) = argmax
u

H(x(t), u(t), λ(t), t)

dλ

dt
= −∂H(x(t), u(t), λ(t), t)

∂x
dx

dt
=
∂H(x(t), u(t), λ(t), t)

∂λ
.

Depending on the problem we attempt to solve, an additional condition might
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be needed. This condition sets the value of λ at the terminal time T , and it is

known as the transversality condition. The above problem can actually arise with

many variations regarding the terminal times and states imposed. Below, we go

through the cases that we will encounter in this thesis.

If the problem in question has fixed a terminal time T but free terminal state

x(T ) then the condition

λ(T ) = 0

has to be satisfied as well.

For the problem stated in (2.21) the terminal time as well as the terminal

state are fixed. In such a case, the transversality condition is replaced by the

terminal condition

x(T ) = xT .

However, our formulation in section 5.4 will naturally lead to an optimal

control problem where the terminal time is fixed and the terminal state x(T ) is

free to vary only subject to xT ≥ xmin, where xmin is a given minimum permissible

level for x. In this case, the transversality condition can be shown to satisfy

λ(T ) ≥ 0 xT ≥ xmin (xT − xmin)λ(T ) = 0.

Although quite complicated at first sight, in practice one could assume a free

terminal state to try λ(T ) = 0 condition first and check whether the resulting x∗T
value satisfies the terminal restriction xT ≥ xmin. If not, we can set x∗T = xmin

and instead treat the problem as one with a fixed terminal state.

Finally, in order to apply Pontryagins maximum principle to an optimal con-

trol problem we first need to solve the equations of motion for λ and x to obtain

general solutions and then use the transversality condition to derive the partic-

ular solution for the optimal trajectories λ∗ and x∗. Then, we can evaluate the

optimal trajectory u∗ that maximises H, and thus J .

2.3.3 Stochastic optimal control

In a stochastic setting the state variable x is a stochastic process. Therefore, the

objective becomes to maximise the expectation of a reward functional. In other

words, J(x(s), u(s), s) is the total expected reward remaining from times [s, T ],
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namely

J(x(s), u(s), s) = E

[

h(x(T )) +

∫ T

s

R(x(t), u(t), t) dt

]

(2.33)

and, therefore, the value function V (x(s), s) is now defined as the maximum total

expected reward remaining from times [s, T ],

V (x(s), s) = max
u∈U

J(x(s), u(s), s) (2.34)

In order to illustrate this, we consider two types of stochastic processes, in their

general form, and summarise some key features that arise. The approach we use

is dynamic programming which in continuous-time leads to the HJB equation.

2.3.3.1 Jump process

Suppose that x(t) is a stochastic differential equation (SDE) of the form

dx(t) = f(x(t), u(t), t)dt+ g(x(t), u(t), t)dQ, (2.35)

where Q is a Poisson process with time varying intensity λ(t), f : R×U×[0, T ] →
R and g : R× U × [0, T ] → R. In particular, in a period dt the Poisson process

Q changes by

dQ =

{

0 with probability 1− λ(t)dt

H with probability λ(t)dt
(2.36)

where H is the size of the jump.

Now, the associated HJB equation is given by

−∂V (x, t)

∂t
=max

u

{

R(x, u, t) +
∂V (x, t)

∂x
f(x, u, t)

+λ(t)
(

V (x+ g(x, u, t)H , u, t)− V (x, t)
)

}

, (2.37)

with

V (x(T ), T ) = h(x(T )). (2.38)

The last term in (2.37) accounts for the expected rate of change of the value

function with respect to the jump size H , and it results when applying Itô’s
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formula with jumps and taking expectations, i.e.

E[dV (x(t), t)] = E

[

∂V (x, t)

∂t
dt+

∂V (x, t)

∂x
dx

]

= E

[

∂V (x, t)

∂t
dt+

∂V (x, t)

∂x
f(x, u, t) dt

+
(

V (x+ g(x, u, t)H , u, t)− V (x, t)
)

dN

]

. (2.39)

Add and subtract the term λ(t)
(

V (x+ g(x, u, t)H , u, t)− V (x, t)
)

dt to obtain

E[dV (x(t), t)] = E

[

∂V (x, t)

∂t
dt+

∂V (x, t)

∂x
f(x, u, t) dt

+ λ(t)
(

V (x+ g(x, u, t)H , u, t)− V (x, t)
)

dt

+
(

V (x+ g(x, u, t)H , u, t)− V (x, t)
)(

dN − λ(t)dt
)

]

=
∂V (x, t)

∂t
dt+

∂V (x, t)

∂x
f(x, u, t) dt

+ λ(t)
(

V (x+ g(x, u, t)H , u, t)− V (x, t)
)

dt, (2.40)

as dN−λ(t)dt is a martingale with expected value of zero (a Compensated Poisson

process).

Alternatively, we can compute the expectation of dN directly, using its defin-

inition in equation (2.3), and hence deduce the same result.

2.3.3.2 Itô process

Suppose that x(t) is an Itô Process, an SDE of the form

dx(t) = f(x(t), u(t), t)dt+ g(x(t), u(t), t)dW (2.41)

where dW is a Wiener process, f : R×U× [0, T ] → R and g : R×U× [0, T ] → R.

The first term describes the deterministic change of x with time and it is called

the drift term, whereas the second term incorporates the stochastic behaviour of

x, usually referred to as the variance term.

Then, the HJB equation is now defined as a second order non-linear PDE
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which is given by

−∂V (x, t)

∂t
= max

u

{

R(x, u, t) +
∂V (x, t)

∂x
f(x, u, t) +

1

2

∂2V (x, t)

∂x2
g(x, u, t)2

}

,

(2.42)

with

V (x(T ), T ) = h(x(T )), (2.43)

where we suppress the arguments of the functions x(t) and u(t) for clarity.

The presence of a second order term in (2.42) is a direct consequence of

applying Itô’s formula on V (x(t), t). In particular,

E[dV (x(t), t)] = E

[

∂V (x, t)

∂t
dt+

∂V (x, t)

∂x
dx+

1

2

∂2V (x, t)

∂x2
dx2
]

=
∂V (x, t)

∂t
dt+

∂V (x, t)

∂x
f(x, u, t) dt+ E

[

∂V (x, t)

∂x
g(x, u, t) dW

]

+
1

2

∂2V (x, t)

∂x2
g(x, u, t)2 dt

=
∂V (x, t)

∂t
dt+

∂V (x, t)

∂x
f(x, u, t) dt+

1

2

∂2V (x, t)

∂x2
g(x, u, t)2 dt,

(2.44)

where the last equation is derived when noting that the expected value of the

Wiener process dW is zero. For an in-depth analysis on stochastic differential

equations the reader is referred to Øksendal (1995) and Øksendal and Sulem

(2007).

As the problem we consider in this thesis is stochastic, equations (2.37) and

(2.42) will be used to derive two models: the main PDE model in section 5.3

which is based on the Poisson process and one of the extension models in section

8.2 based on the Wiener process.



Chapter 3

RM: Literature review

Some of the contents of this chapter are based on excerpts from Talluri and van

Ryzin (2005) and Phillips (2005), which offer a comprehensive overview of the

main models developed for RM.

3.1 Origins of revenue management and its evo-

lution through time

Revenue management techniques were first conceived by American Airlines in

around 1960. According to McGill and van Ryzin (1999), during these early

stages, passenger cancellations and no-shows had been the first task that airline

managers had to deal with. Thus, almost all research on reservations control

focused on the so-called overbooking control. By this, we mean the practice to

increase the total volume of sales taking into account cancellations and no-shows.

This technique, however, comes at its own cost; it runs the risk of denying service

to customers and facing the resulting legal and regulatory issues. Since overbook-

ing control was based only on predictions about the probability distributions of

passengers who did turn-up to travel, an accurate forecast on the number of

cancellations and no-shows was needed. As a result, overbooking control on the

one hand and forecasting on the other were the primary areas of research within

the decade 1970-80. Some of the early work belongs to Rothstein (1971) who

presented a model for determining airline overbooking policies.

Shortly after 1970, discount fares were offered for the first time. However,

these fares were identical for all carriers and set by the Civil Aviation Board.

49
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The discount fares had the restriction of reserving travel at least three weeks

in advance, in order to drive in customers with low willingness to pay. This

new strategy can be characterised as the first attempt to segment the market

according to price. The problem now was to decide the optimal number of seats

to be offered at the discount rate, as too many low-fare seats imply less full-fare

available seats, and thus, less revenue.

In 1972, Littlewood (1972) proposed a solution method for a two-fare seat-

inventory control problem. His scheme suggests equating the marginal revenues

in each of the two fare classes and rejecting a low fare customer if the resulting

revenue from the sale is less than the expected revenue of selling that same seat

at the higher fare. McGill and van Ryzin (1999) in their review paper state that

Littlewood’s seat inventory rule can be considered as the beginning of a new

approach, so-called Yield management1.

Yield management, however, faced its greatest growth after the Airline Dereg-

ulation Act of 1978 (see Chiang et al., 2007). More precisely, the pricing restric-

tions imposed by the Civil Aviation Board on airlines were then reduced and,

as a consequence, this pricing freedom led to a rapid development of new, more

sophisticated models.

During the decade 1990-2000 the increasing interest in revenue management

became evident in many other industries which operate with perishable assets.

As a result, Weatherford and Bodily (1992) introduced the term Perishable Asset

Revenue Management (PARM) which aimed to generalise the science of yield

management to other industries (such as hotels, car rentals). Within this decade

dynamic pricing strategies soon gained attention by many researchers (such as

Gallego and van Ryzin, 1994; Bitran and Mondschein, 1997). What is more,

models soon became more sophisticated and capable of modelling larger problems

with multiple-resources, the so-called network models.

Since 2000, another important aspect of the problem has been studied, this

is the risk associated with the decisions which until then has not been addressed.

Relevant work is found in Lai and Ng (2005); Liu et al. (2006). Today most

research focuses upon customer-choice models, where customers are assumed to

act strategically when purchasing a product. A detailed review on customer-

choice modelling can be found in Shen and Su (2007).

1This particular name was given as an indication that the goal of managing bookings in
these early stage was to increase yield - the average amount one passenger pays to fly one mile.
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Today, this field of research is generally known as Revenue Management (RM)

and it may applied to any type of industry. According to Chiang et al. (2007) a

potential path for RM in the future is to be applied in non-traditional industries

such as internet providers, IT services or cellular network services. Finally, of

great importance is also the study of the impact of competition and collaboration

into a business.

Several review papers on the evolution of RM techniques are available. Per-

haps the earliest one belongs to Weatherford and Bodily (1992), while more recent

reviews include McGill and van Ryzin (1999), Pak and Piersma (2002), Bitran

and Caldentey (2003) and Chiang et al. (2007).

3.2 The revenue management system

There are four steps that a RM system has to follow:

3.2.1 Data collection

Collect and store relevant historical data such as demand, prices, costs, can-

cellations or no-shows etc. The primary source of data in most RM systems is

transactional databases. Reservation databases are the most widely used transac-

tional databases in the hotel and airline industry, and they appear in two formats:

either as a total number of bookings in a class or as a customer booking record

which is information about each individual booking.

3.2.2 Estimation and forecasting

Estimate the parameters of the demand model, forecast the demand based on

the estimated parameters, forecast the proportion of cancellations and no-shows;

the role of these processes is critical in every RM system. The extent to which

this can be realised is investigated by Pölt (1998); he estimates that a revenue

management system could produce a 1% additional increase in revenue if the

forecasting error is reduced by 20%. Below are the main types of forecasting

methods:

1. Ad-hoc methods (moving averages, exponential smoothing)

2. “Pick-up” methods (additive or multiplicative)



CHAPTER 3. RM: LITERATURE REVIEW 52

3. Time-series and regression models

4. Bayesian methods and machine learning

5. Combined methods (weighted average of historical and advanced booking

forecasts)

For an in-depth review on forecasting methods the reader is referred to Weath-

erford and Kimes (2003).

Often, demand is modelled by a Poisson process because of the memoryless

property that characterises the inter-arrival times. However, improved models

suggest the use of Compound Poisson processes that reflect real world data more

accurately. Such models can be seen in Gallego and van Ryzin (1994), Lauten-

bacher and Stidham (1999) and Zhao (1999).

3.2.3 Optimisation

When the estimation process and modelling has been completed, the task is to de-

termine the optimal set of controls to be applied, until the next re-optimisation.

These controls usually deal with setting the optimal prices (markdowns, dis-

counts) or specifying the optimal inventory allocations to each product. The

main techniques used are dynamic programming or mathematical programming

techniques.

3.2.4 Booking control

The last component of the RM system is to implement the optimised control in

order to control the sale of the inventory. Usually, the optimisation task is per-

formed on a slightly more simplified version of the problem, in order to increase

computation speed. Therefore, the optimisation task can only form the basis for

the design of the booking control, rather than simply being used directly in the

decision making. In this way, more complicated controls are constructed which

can deal with the real problem more accurately.

Figure 3.1 illustrates a schematic overview of a typical RM system with all the

relevant stages. The data is collected and is sent to the estimation and forecasting

department for analysis. Once the forecasts are ready, the optimisation task is
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Figure 3.1: Schematic overview of a typical revenue management system.

performed based on these forecasts, which guides the reservation system in making

an accept/deny decision on the booking.

In this thesis we focus on the Optimisation and Booking control stage. In

other words, we assume that the estimation/forecasting stage would have been

carried out and all relevant probability distributions for the customer demand are

available.

3.3 Quantity-based vs price-based RM

There are two types of RM techniques; Quantity-Based and Price-Based.

Quantity-based RM uses capacity-allocation decisions as the primary tool to

manage demand. In particular, it decides which products should be on offer and

which to be closed during the booking process in such a way that revenues are

maximised.

In price-based RM, the control of customer demand is achieved by varying

prices appropriately over time. In other words, the prices are not pre-determined

and thus a change in the posted price has a direct effect on the customer de-

mand. Specifically, an increase in price reduces the volume of customers that

will be willing to buy. There is not a single correct approach between the two as

the choice of RM model depends upon the nature of the product on offer. For

example, airlines might prefer pre-fixed prices for the different fares and focus on

the optimal seat allocation, while in retailing the price becomes the main control

variable for the demand.

On the one hand, Gallego and van Ryzin (1997) argue that price-based RM
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might be preferred, as rising the prices a firm can achieve the same reduction

in sales but increase revenues at the same time. On the other hand, such price

changes might be costly in practice and also might have a negative effect on

customer goodwill.

As stated in Talluri and van Ryzin (2005) it is sometimes not clear how to

distinguish between the two categories. A customer is “turned away” if either the

price of the product is higher than his reservation price2 - the maximum amount

he is willing to spend for the product - in which case he decides not to buy, or if

the product is withdrawn from sale in which case he does not get the opportunity

to buy. The first scenario falls under the price-based where the second scenario

under the quantity-based RM.

Nonetheless, whichever type of RM technique is chosen the available models

can be divided into two main categories, single-resource or network models, which

are explained in the following sections.

3.4 Single-resource RM

Single-resource refers to the task of optimally allocating capacity of a single re-

source to different classes of demand. For example, in hotels this refers to control-

ling the allocation of a single type of room for a given date among the different

rate classes and in airlines it refers to controlling the allocation of a single type

of seat on a given flight-leg among the different fare classes.

Despite the fact that in reality most RM problems (including ours) are network

problems in which customers would require a bundle of resources (i.e. a number of

consecutive nights in a hotel or two connecting flights), we find it useful to study

the single-resource case, since it is often convenient to regard the network problem

as a collection of single-resource problems. In fact, when there is one-to-one

correspondence between capacity and final product and the demands for products

are independent, then, the network problem reduces to a set of disconnected

single-resource problems (to be explained in later sections).

2A reservation price is the maximum amount of money a customer is willing to pay for a
particular product. Customers buy the product only if their reservation price is greater than
the product’s price. The reservation price is usually modelled by a continuous probability
distribution over the population of potential customers (see Bitran and Mondschein, 1997).
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3.4.1 Capacity control

Let us assume that a firm operates by selling its capacity to N distinct classes

with class 1 to be the highest, 2 to be the second highest and class N the lowest

that require the same resource. For example, if the firm is a hotel then the

classes refer to different discount room rates that are accompanied with different

restrictions. Further, we assume that each customer demands a single unit out of

the resource’s capacity. Thus, the problem is to optimally allocate the capacity

of the resource to the N classes.

3.4.1.1 Types of capacity control

There are three types of capacity controls mainly employed in practice:

(1) Booking limits

These are controls that limit the amount of products that can be sold to a

given class. In particular, the lowest (highest) booking limit corresponds to

the lowest (highest) customer class. Booking limits can either allocate the

available capacity into distinct blocks such that demand from one class has

only access to its allocated capacity (partitioned allocation), or allow for over-

lapping between classes whereby the higher classes have access to all the ca-

pacity reserved for lower classes (nested allocation). In reality when demand

is stochastic, nested booking limits are often preferred over the partitioned

ones. The limitation of partitioning the capacity into separate allocations is

that excess demand of a high class is thrown away when the allocated ca-

pacity of that class is sold out, even though there might still be available

capacity for lower classes.

(2) Protection levels

These are controls that set the amount of capacity to be reserved for a partic-

ular class or set of classes. In particular, a protection level for for the nth class

indicates the amount of capacity to be reserved for class n, n− 1, n− 2, . . . 1.

The protection levels may also be either partitioned or nested. In particu-

lar, for the nested case, the booking limit for class n, bn, is related to the

protection level for class n− 1, yn−1, by

bn = C − yn−1 ∀n = 2, 3, . . . , N ,
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where C is the initial capacity.

(3) Bid prices

The key difference between these controls over the former ones is that they

are revenue-based rather than class-based. More precisely, bid-price controls

set a threshold price (that usually depends on capacity or time), according

to which only requests whose revenues exceed this price are accepted. In

general, bid prices are simpler to implement as they only require storage of

a single threshold value at each point rather than a set of booking limits or

protection levels for each class.

3.4.1.2 Displacement cost intuition

Optimal capacity controls usually rely on complex mathematical procedures and

scientific algorithms. However, the overall idea is simple and intuitive - the man-

ager should accept a request, and thus give out one unit of capacity, only if the

revenue received is greater than or equal to the value of the capacity itself. If

we know the exact value of the capacity then the decision becomes trivial. But

how do we measure the value of the capacity? Well, this is captured through

its (expected) displacement cost - the expected revenue we would lose if we had

one less unit of capacity available. This concept naturally leads to the idea of

the value function V (x) which accounts for the optimal expected revenue to be

generated with x units of capacity available to sell. Then, the displacement cost

is just the difference V (x)− V (x− 1).

The displacement cost idea plays a central role in our study and therefore

it will be examined in detail in the later chapters. Usually alternative3 names

might be used such as opportunity cost or expected marginal values and so for our

purposes we will be using these interchangeably.

3.4.1.3 Static models

In single-resource capacity control there are two solution methods, static and

dynamic. Static models assume that the demand arrives in non-overlapping in-

tervals, starting from the class that corresponds to the lowest price. They further

assume that demands for different classes are independent random variables, and

3To be precise these terms are not exactly equal to one another. However, they all encapsu-
late the main idea of where bid-prices should be based upon.
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they do not depend on any capacity controls, or on the availability of other classes.

Moreover, in the static model, demand arrives in an aggregate amount and the

task is to decide how much of this amount to accept4. Although static models

ignore the stochastic evolution of the booking process, customers often exhibit a

buying behaviour that justifies this simplification. For instance, in the airlines,

low paying customers tend to book well in advance whereas business travellers

book just before the departure of the flight; a further assumption that these time

periods do not overlap enable the static formulation for the problem.

As mentioned earlier, the first static single-resource model dates back to the

work of Littlewood (1972). The proposed scheme assumes two fare classes with

prices p1 > p2. The demand for class n is denoted by λn. Demand for class 2

is realised first, and thus the question is how much demand of class 2 we should

accept before knowing the demand for class 1. Suppose that we have x units of

capacity remaining and a request from class 2 arrives. The firm is faced with two

options: either accept the request and receive p2 amount of money or reject the

request and hope that the demand for class 1 will fill up the place, i.e. λ1 ≥ x. In

this case, the expected marginal value is p1P (λ1 ≥ x). Therefore, it makes sense

to accept the request from class 2 if

p2 ≥ p1P (λ1 ≥ x). (3.1)

Note that Littelwood’s rule is an optimal condition for the two-fare problem.

During the next decade, Belobaba (1987) and Belobaba (1989) extended Lit-

tlewood’s rule to multiple nested fare classes, out of which the well known heuris-

tics EMSR-a and EMSR-b have been developed. However, when multiple classes

are considered, Littlewood’s rule is no longer optimal. Fortunately, optimal poli-

cies for the multiple fare classes have been derived in Curry (1990), Wollmer

(1992), Brumelle and McGill (1993) and Robinson (1995), even though many

airlines still prefer the heuristic approximations due to their simplicity.

3.4.1.4 A general dynamic model

Unlike static models, in dynamic models the demand for different classes can

arrive in a random order while all remaining assumptions are retained. For a

4In real life, demand arrives sequentially over time and the control decision has to be taken
based only on the observable demand by that time.
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discrete-time formulation we need to impose the extra assumption that arrivals

should be Markovian and that at most one arrival occurs per period to make

them tractable. For a continuous-time formulation the most common way is to

assume that demand follows a Poisson process.

Building upon the previous setting, suppose that the N classes have associated

prices p1 ≥ p2 ≥ ... ≥ pN . Assuming a discrete-time setting we consider T total

time periods and in each period t demand is permitted to arrive from any class

n. Now let λn(t) denote the probability of an arrival of class n in period t. The

time interval between two periods is taken to be sufficiently small such that the

orderliness property (at most one arrival per period) is maintained, that is

N
∑

n=1

λn(t) ≤ 1.

Let R(t) be a random variable satisfying the following;

R(t) =







pn if demand for class n arrives in period t

0 if otherwise.

(3.2)

Then, we have that P (R(t) = pn) = λn(t). Next define the control variable u to

be 1 if we accept the booking and 0 if we do not. Finally, define Vt(x) the value

function with x units of capacity as of time t.

The optimal value of u should maximise the current revenue plus the revenue

to go, that is

R(t)u+ Vt+1(x− u).

As a result we obtain the following Bellman5 equation

Vt(x) = E

[

max
u∈{0,1}

{

R(t)u+ Vt+1(x− u)
}

]

= E

[

max
u∈{0,1}

{

R(t)u+ Vt+1(x− u) + Vt+1(x)− Vt+1(x)
}

]

= Vt+1(x) + E

[

max
u∈{0,1}

{

(R(t)−∆Vt+1(x)) u
}

]

, (3.3)

5Note that the maximisation term appears inside the expectation, unlike common dynamic
programs where the order is reversed. This is because we assume that the random variable R(t)
is realised before we need to make the optimal decision.
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where

∆Vt+1(x) = Vt+1(x)− Vt+1(x− 1), ∀x > 0

is the expected marginal value of the xth unit of space in period t + 1 and the

boundary conditions are given by,

VT+1(x) = 0 ∀ x = 0, 1, .., C ,

with

Vt(0) = 0 ∀ t = 1, .., T.

Optimal policy For every capacity remaining x and time period t the following

two properties hold for the value function:

(a) Inventory Monotonicity: ∆Vt(x+ 1) ≤ ∆Vt(x),

meaning that at any given point in time the expected marginal value decreases

as the capacity remaining increases.

(b) Time Monotonicity: ∆Vt+1(x) ≤ ∆Vt(x),

meaning that at a given capacity level the expected marginal value decreases

as time passes.

Optimal control Finally, when a request for the fare class n arrives at t, the

optimal control is to accept it only if:

pn ≥ ∆Vt+1(x). (3.4)

The optimal control can be implemented in three ways: as time-dependent nested

protection levels

y∗n(t) = max
{

x : pn+1 < ∆Vt+1(x)
}

,

as time-dependent nested booking limits

b∗n(t) = C − y∗n−1(t),

or as a bid-price control π(t, x) with the bid price equal to the marginal value

π(t, x) = ∆Vt(x).
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The dynamic model presented here formed the basis for most researchers

when solving the stochastic single-resource capacity-allocation problem. For the

airlines, Lee and Hersh (1993) prove both the monotonicity properties of the value

function. Further, they allow for multiple-seat bookings and show that only the

time monotonicity is still satisfied. Subramanian et al. (1999) extends the work

of Lee and Hersh (1993) to include overbooking, cancellations and no-shows. In

the hotel industry, Bitran and Mondschein (1995) worked under the above setting

and they too derived the monotonicity properties of the value function. Similarly,

Bitran and Gilbert (1996) extended the problem by incorporating no-shows and

cancellations, while Koide and Ishii (2005) also account for overbooking and early

discount but not no-shows.

Although, most researchers worked under the discrete-time environment we

notice the work of Bitran and Gilbert (1996), Liang (1999), Zhao and Zheng

(2001) and Feng and Xiao (2001) who studied the problem in continuous-time.

In particular, Liang (1999) reformulates and solves the problem proposed by Lee

and Hersh (1993) and uses heavyside functions to express the optimal control,

while Zhao and Zheng (2001) modifies the problem such that fares may be closed

down but if so they cannot reopen.

Finally, a detailed comparison between dynamic and static models can be

found in Lautenbacher and Stidham (1999). By showing that both models can

be expressed as dynamic programs, the authors present a unified framework as

a Markov decision process to link the two. Properties of the value function are

then derived based on results from the queueing-control theory.

3.4.2 Dynamic pricing

We now describe some models that explicitly use the price as the main tool

to influence the customer demand; this method requires an explicit relationhip

between quoted price and customer demand.

3.4.2.1 Demand function

Demand functions or price-demand functions describe the relationship between

the price of a product and the corresponding demand for that price. In other

words, for a given price, demand functions show how many customers are willing

to purchase the product.
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If we define p to be the price of the product then λ(p) represents the demand

that corresponds to this price. If we denote the set of feasible prices the product

can take by Ωp, then the domain of the demand function is Ωp ∈ (0,+∞). We

further impose some regularity assumptions in the demand function. According

to Talluri and van Ryzin (2005) we require:

� The demand function is continuously differentiable on Ωp.

� The demand function is strictly decreasing, i.e. λ′(p) < 0 on Ωp.

� The demand function is bounded above and below,

0 ≤ λ(p) <∞ ∀p ∈ Ωp.

� For high prices, the demand function tends to zero, i.e. inf
p∈Ωp

λ(p) = 0.

3.4.2.2 Deterministic dynamic pricing

In this subsection, we present a general single resource dynamic pricing prob-

lem introduced in Gallego and van Ryzin (1994). The problem is formulated

in continuous-time to match up with our current study. For the deterministic

model presented here, we assume that the demand intensity λ(p, t) depends both

on time and price. Alternatively, we may treat the intensity as the control vari-

able and thus the instantaneous price rate as a function of the demand, that is

p(t, λ(t)). We can then consider a firm which sells x units of a product over a

finite time horizon [0, T ], such that the salvage value from any remaining inven-

tory at time T is zero. Then, the problem is to maximise revenues by monitoring

the sequence of prices (or equivalently the flow of demand) throughout the entire

selling horizon, i.e.

max
λ(t)

∫ T

0

λ(t) p(t, λ(t)) dt (3.5)

such that

∫ T

0

λ(t) dt ≤ x (3.6)

λ(t) ∈ Ωλ, (3.7)
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where Ωλ is the set of allowable demand rates.

When demand is time-homogeneous (λ(p, t) = λ(p)) one can show that the

optimal price p∗ to charge (or equivalently the optimal demand intensity) is a

fixed price. To characterise this solution let pr = argmax{p λ(p) : p ≥ 0} to be

the price that maximises the revenue rate, that is the revenue maximising price

and p0 the price at which we sell exactly x units by time T , the run-out price.

Then one can show that p∗ satisfies:

p∗ =







pr if λ(pr) T ≤ x (abundant capacity)

p0 if λ(pr) T > x (scarce capacity).
(3.8)

Often, researchers prefer to work with deterministic models as they are simple

and easy to analyse. However the importance of these models is broader. In

particular, they are used to derive bounds and to provide insights on how different

parameters influence optimal pricing policies. In fact, they have been shown to

be asymptotically optimal for the stochastic problem (see Gallego and van Ryzin,

1994).

In the context of deterministic models Smith and Achabal (1998) extend the

demand intensity to depend also on the available capacity, while Bass (1969)

assumes that demand is affected by the amount sold by that time and also by

the population size.

3.4.2.3 Stochastic dynamic pricing

For the stochastic formulation of these problems most researchers assume Marko-

vian arrivals for the demand process and they assume that an estimate of the

arrival process is available, often called the booking curve. In particular, the

demand is assumed to follow a Poisson process with intensity λ such that in a

sufficiently small time interval ∆t there is at most one sale that happens with

probability λ∆t. Let N(t) to be the number of items sold up to time t and note

that demand is realised at time t if dN(t) = 1. Then the problem of maximising

the total expected revenues over [0, T ] becomes,

V (x, t) = max
u

Eu

[
∫ T

t

p(t, λ(t)) dN(t)

]

(3.9)
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such that

∫ T

0

dN(t) ≤ x (3.10)

λ(t) ∈ Ωλ. (3.11)

where u is any pricing policy that belongs to the set of feasible pricing policies

U .

Dynamic pricing strategies may be found in the early work of Kincaid and

Darling (1963) who introduced the continuous-time setting where customers reser-

vations prices change over time. Similar assumptions for the reservation price

distribution have been studied by Bitran and Mondschein (1997), Bitran et al.

(1998) and Zhao and Zheng (2000).

Gallego and van Ryzin (1994) study the stochastic problem when demand

intensities are time-stationary and depend solely on the price, i.e. λ = λ(p),

while the reservation price distribution does not change over time.

Using the Bellman principle they show that (3.9) is the solution to the follow-

ing Hamilton-Jacobi-Bellman (HJB) equation,

−∂V (x, t)

∂t
= sup

λ

{

λ
(

p(λ)− (V (x, t)− V (x− 1, t))
)

}

, (3.12)

with the final and boundary conditions

V (x, T ) = 0 ∀x,
V (0, t) = 0 ∀t.

According to (3.12) it is easy to notice that the optimal demand intensity

satisfies λ∗ = max{λ : p(λ) ≥ V (x, t) − V (x − 1, t)} which implies that the

optimal price is given by

p∗ ≥ V (x, t)− V (x− 1, t).

The quantity ∆V (x, t) = V (x, t)− V (x− 1, t) represents the opportunity cost of

selling a unit of capacity at time t when the available inventory is x.

Further, Gallego and van Ryzin (1994) prove that the value function is in-

creasing and concave in both the capacity and the remaining time τ = T − t.

The monotonicity of the value function can be summarised in the following two



CHAPTER 3. RM: LITERATURE REVIEW 64

properties

(1) Inventory-monotonicity property: px,t ≥ px+1,t

at a given point in time the optimal price decreases as the inventory increases,

and

(2) Time-monotonicity property: ∂p/∂t ≤ 0

at a given inventory level the optimal price decreases as the time remaining

decreases (as we move towards T ).

In a similar framework, Bitran and Mondschein (1997) study optimal strate-

gies in retailing. For the case of time-invariant reservation price distributions the

authors derive identical properties for the optimal price to that of Gallego and

van Ryzin (1994). However, when reservations prices are also allowed to vary over

time, they show that the time-monotonicity property might be violated. There-

fore, Zhao and Zheng (2000) derived a sufficient condition under which the time

monotonicity property holds. This condition requires that the conditional prob-

ability that a customer would buy at a higher price given that he/she is willing

to buy at a lower price, is decreasing over time. In other words, the willingness

of a customer to pay a premium for a product decreases over time.

Other extensions to the basic model include the work of Feng and Xiao

(2000a), Feng and Xiao (2000b) and Feng and Gallego (2000) who restrict the

optimal prices to be chosen from a finite set. Moreover, Bitran and Mondschein

(1997) studied markdown price policies that are allowed to take effect only at a

finite set of decision times. The problem is further generalised to the case of a

retail chain6 by Bitran et al. (1998). In a similar setting, Feng and Gallego (1995)

studied the optimal time to switch from an initial price p1 to another greater or

lower price p2 (in other words they restrict the price changes to only happen once

within the horizon). They show that the optimal switching policy is of a thresh-

old type; i.e. there exist sequences of time thresholds that tell us to switch as

soon as the time has crossed the time threshold that corresponds to the number

of yet unsold items.

6In their setting, the product is sold in different locations, each of with its own Poisson
demand process.
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3.5 Network RM

Having illustrated the single-resource problem we can move on to the more realis-

tic multiple-resource or network problem where customers might require a bundle

of resources. In RM literature a subcollection of the resources constitutes a spe-

cific product. For example, in airlines a journey that requires a set of connecting

flights defines a product for which one unit of capacity (a seat) out of each flight-

leg (resource) is required. Likewise, in the hotel industry a stay from Monday to

Friday accounts for a product that is build out of one unit of capacity (a room)

from Monday (the first resource), one unit of capacity from Tuesday, all the way

up to one unit of capacity from Friday. Clearly, the hotel situation is the one

we encounter in our airport carpark setting as well, with the only difference that

now customers are represented by cars and capacities on each day refer to the

parking spaces.

Based on the Talluri and van Ryzin (2005) production model we assume a

network of n final products and m types of resources. One unit of product j,

requires aij units of resource i. We restrict the domain of aij to consist only of

0’s and 1’s (i.e. products require exactly 1 unit of capacity from each resource

involved in making the product)7. We define the incidence matrix or the bill

of materials matrix Am×n = [{aij}] and let Aj to denote the set (vector) of

resources that are used by product j. The initial capacity of each resource i is

denoted by xi so that x = (x1, . . . , xm) is the corresponding vector of capacities.

Once product j is sold the remaining capacity vector becomes x−Aj .

3.5.1 Dynamic pricing on the network

Starting from the dynamic pricing models, we denote the n-dimensional price

vector p = (p1, . . . , pn) and λ(p) = (λ1(p), . . . , λn(p)) the associated (time-

homogeneous) vector of demand intensities. Define the revenue function r(λ) =

λ
⊤p(λ) and let λr to be the demand vector that maximises the revenue.

When the demand is assumed to be deterministic, Bitran and Caldentey

(2003) show similar results to the single-resource case, i.e. that the optimal

7This is a common assumption in the literature, however, Gallego and van Ryzin (1997)
extend the domain of aij to any possible value.
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price is a fixed price vector, namely

p∗ =







p(λr) if T Aλ
r ≤ x (abundant capacity)

p(λ0) if T Aλ
r > x (scarce capacity),

(3.13)

where λ
0 is the solution to the following KKT conditions

∇λ

[

λ
⊤p(λ)

]

− A⊤π = 0

π⊤ [T Aλ− x] = 0

λ ≥ 0

π ≥ 0

and π is the m-dimensional vector of Lagrange multipliers.

Also, these authors show that the optimal price in the network problem can

increase with the level of capacity, as opposed to the single resource case where

it is decreasing. Further, they determine under which condition the inventory

monotonicity property can be sustained.

Of great importance in the stochastic setting is the study of Gallego and van

Ryzin (1997). The authors study the problem in continuous-time by modelling the

demand as a Poisson process with intensity λ(p, t), and derive the HJB equation

for the expected revenue similar to (3.12). This is,

−∂V (x, t)

∂t
= sup

p

{

n
∑

j=1

λj(p)
(

pj − (V (x, t)− V (x−Aj , t))
)

}

, (3.14)

with final and boundary conditions given by

V (x, T ) = 0 ∀x
V (0, t) = 0 ∀t.

The quantity V (x, t)−V (x−Aj, t) is the opportunity cost of selling a product

j at time t. In particular it is easy to see that the optimal price satisfies

p∗j ≥ V (x, t)− V (x−Aj , t).

However, this is a set of differential equations which is difficult to solve and for

which a closed-from solution is rarely available. Finally, dynamic pricing on a
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network has also been studied by Zhang and Weatherford (2012).

3.5.2 Network capacity control

Most research on network RM deals with a static-view on prices. In other words,

the prices of the products are pre-determined and the manager’s problem is to

decide which requests to admit and which to reject. As a result, capacity-control

models are widely available and commonly used in practice.

3.5.2.1 Virtual nesting

As with single-resource problems, in network problems capacity control may be

achieved in several ways. The ability of nested controls to dynamically share

the capacity among the classes is a great feature over the partitioned controls.

However, how to directly extend them in the network setting is not clear. There-

fore, researchers developed a new type of control named virtual nesting which

is a hybrid method of network and single-resource controls that maintains the

nested-allocation structure.

Similar to section 3.4, virtual nesting applies single-resource nested-allocation

controls to each resource in the network. The only difference is that the classes

used in the nested allocations are virtual classes. In particular, through a pro-

cess known as indexing, products that share a given resource are clustered into

the virtual classes of that resource based on their network value. Then, nested

booking limits are computed based on these virtual classes. Finally, a request is

accepted only if all the virtual classes on all the related resources are available.

Virtual nesting was originally developed by American airlines (see Smith and

Penn, 1988) and until now it is the main form of control in the airline industry.

In general, these controls do not deviate much from the basic structure of the

nested booking controls, but they can be highly complex and computationally

intensive.

3.5.2.2 Bid-price control

While, in general, extending the single-resource nested policies to the network

environment is a difficult task, for bid-price controls this is straightforward. In

particular, a bid-price control in the network setting specifies a set of bid prices for

each resource. The bid prices now account for the marginal cost to the network
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of consuming the next incremental unit of a resource’s capacity. In this way, a

request for a particular product is accepted only if there is available capacity and

the overall price exceeds the sum of the bid prices for all resources used to build

up the product.

Network bid-price controls remain simple and fast as they only require a single

threshold value to be stored, one for each resource (not each product). In addition,

they retain their intuitive nature as the bid-price of a given resource can be

interpreted economically as the marginal value of that resource to the network.

Network bid-price controls were initially developed by Simpson (1989) and

then studied by Williamson (1992) in her PhD Thesis, who argues that despite

its simplicity a bid-price control allows for “implicit” nesting, as when a product

is open for sale it has access to the entire capacity of the resources involved. How-

ever, she emphasises that to be effective bid-prices must be revised and updated

frequently.

Today, bid-price controls are the dominant form of control used in the hotel

industry. In fact, this is the means of control we implement in our models and

for this reason we take some time to examine it in rather more detail.

3.5.2.3 Optimal capacity control

To see the strong connection between the bid prices and the opportunity costs

we adopt the network setting described in Talluri and van Ryzin (2005).

Network capacity control is often formulated in a discrete-time setting where

T denotes the time of service and we start the problem at time 0 which is T

number of periods in advance.

The price vector at time t, p(t) = (p1(t), . . . , pn(t)) is now pre-determined

(fixed) and so is the demand vector λ(t). Further assume that there is at most

one arrival per time period.

Next, we define the n-dimensional random vector8 R(t). This vector has only

one non-zero entry at a time. For example, if we have R(t) = (0, p2(t), 0, . . . , 0)

it means that at time t demand has arrived for product 2 with associated price

p2(t).

The control vector for all products at time t is defined as u(t) = (u1(t), . . . , un(t)).

If uj(t) = 1 then the request for product j at time t is accepted and if uj(t) = 0

8This definition is the direct network extension to that in 3.2.
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then the request is rejected. In general, the decision vector depends on the avail-

able capacity x the time t and the set of prices p, namely u(t) = u(t,x,p).

Finally, by defining Vt(x) as the maximum expected revenue that is generated

from time periods t, t + 1, . . . , T when the available capacity vector at time t is

x, we construct the following Bellman equation,

Vt(x) = E
[

max
u

{

R(t)⊤u(t,x,p) + Vt+1(x−Au)
}

]

, (3.15)

with the boundary condition

VT+1(x) = 0 ∀x. (3.16)

The optimal control u∗(t,x, p) is then defined as

u∗
j (t,x, pj) =

{

1 if pj ≥ Vt+1(x)− Vt+1(x−Aj) and Aj ≤ x

0 otherwise.
(3.17)

The optimal control policy for the above problem says that: we accept a

request for product j at time t (with price pj) if there is sufficient capacity re-

maining x and the product’s price exceeds the opportunity cost that is incurred

when removing the resources that constitute the product, i.e.

pj ≥ Vt+1(x)− Vt+1(x−Aj). (3.18)

Therefore, based on (3.18) we can construct a bid-price control (assuming

differentiability of the value function V ) as

pj ≥ Vt+1(x)− Vt+1(x−Aj)

≈ ∇V ⊤
t+1(x)Aj

=
∑

i∈Aj

∂

∂xi
Vt+1(x)

:=
∑

i∈Aj

πi(t,x), (3.19)

where ∇V ⊤
t+1(x) is the gradient of the value function and the bid price of resource

i is defined by πi(t,x) =
∂
∂xi
Vt+1(x). Mathematically, a bid-price control u(t,x,p)
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reads

uj(t,x, pj) =







1 if pj ≥
∑

i∈Aj

πi(t,x) and Aj ≤ x

0 otherwise.
(3.20)

Talluri and van Ryzin (1998) presents a detailed study on the existence and

optimality of such bid-price controls. In particular, they argue that bid-price

controls are not optimal in general as they fail to capture the true opportunity

costs. In fact, the authors prove that bid-price controls are optimal only if the

opportunity cost of selling a product is equal to the sum of the opportunity costs

incurred by consuming each of the resources (used by the product) separately,

that is when

Vt+1(x)− Vt+1(x−Aj) =
∑

i∈Aj

Vt+1(x)− Vt+1(x− ei) and Aj ≤ x. (3.21)

where ei is the m-dimensional vector with 1’s in the ith entry and 0’s in all the

remaining entries. The main reason that causes this sub-optimality is the fact

that this bid-price additive property does not hold, in general (for a compar-

ison between additive and non-additive bid prices see Bertsimas and Popescu,

2003). Large relative changes in capacity on several resources are not expected

to produce the same revenue as the sum of the individual changes (see equation

(3.19)).

Fortunately however, Talluri and van Ryzin (1998) show that bid-price con-

trols are asymptotically optimal as the scale of the problem increases. This result

is also verified in Cooper (2002) and it is of great importance because employing

bid-price controls is not just appealing (simple and intuitive structure) but now

justified as well. Analysis of network bid-price controls has also been studied by

Günther et al. (1999).

3.6 Main approximation methods and related

literature

Calculating the optimal solution to a network problem is computationally inten-

sive with a geometrically increasing complexity. As Talluri and van Ryzin (2005)

explain, a network problem involving m resources, all with initial capacities C,
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has Cm states. Therefore, researchers are confined in searching for reasonable ap-

proximations, which are solutions to a simplified version of the original problem.

3.6.1 Approximations based on decomposition

One type of approximation method is to decompose them-resource network prob-

lem to a set of m single-resource problems that include some network information

in them but they are essentially solved independently using single-resource meth-

ods. Then they approximate the network problem by adding up the solutions

to these single-resource problems. In other words, the value function is approxi-

mated as

Vt(x) ≈
m
∑

i=1

V i
t (x

i), (3.22)

where xi and V i
t (x

i) denote the capacity and the single-resource value-function

solution for resource i.

The most popular network decomposition methods are the Prorated Expected-

Marginal-Seat-Revenue (EMSR) (see Williamson, 1992) and the displacement-

adjusted virtual nesting (DAVN) (see Smith and Penn, 1988), both originally

developed for the airlines.

Prorated EMSR has been proposed by Williamson (1992) and allocates a

portion of product’s j revenue to each of the resources i ∈ Aj that contributed in

building the product j. In this way one obtains some measure of the contribution

of the entire product to each of the resources used. Then the approach is to solve

a single-resource problem using an EMSR heuristic, one for each resource i used,

and treat the resulting marginal values ∆V i
t (x

i) as the corresponding bid prices.

DAVN is a virtual nesting approach that uses adjusted product prices instead.

Similar to the Prorated EMSR approach, the idea is to measure the revenue

benefit of accepting product j to each of its resource components i ∈ Aj. The

adjusted price on resource i of product j is computed by subtracting the bid-

price values of all the remaining resources h ∈ Aj, h 6= i from the product’s price.

These adjusted prices are then used to derive the virtual classes for each resource

i. Based on these virtual classes we solve a single-resource model and compute c

protection levels for each resource i.

DAVN approaches are appropriate when the objective is to construct virtual

nesting controls. In contrast, if one is using bid-price controls it might be more
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appropriate to use the displacement-adjusted revenues to solve m dynamic pro-

grams, one for each resource, and calculate the bid prices of each resource by

their corresponding marginal values.

While network decomposition methods are adopted when solving the network

airline problem (see Bertsimas and de Boer, 2005; van Ryzin and Vulcano, 2008),

for hotels, virtual nesting is not the preferable method. As opposed to the airlines

where the virtual classes for each flight-leg are often less than ten, in the hotels

this number is large, as virtual classes have to be maintained for every single day

(see Vinod, 2004). Therefore, a different set of approximation methods dominate

in the hotel industry, which falls under the category shown below.

3.6.2 Approximations based on simplified network models

These techniques retain the full network structure of the original problem but

some further assumptions are placed in order to simplify it, the main being that

demand is realised as an aggregate amount in each time which effectively reduces

the dynamic problem to a static one. Consequently, this simplification naturally

leads to using mathematical programs (linear or integer programs as described in

section 2.2) to formulate and solve the problem.

One such method, originally developed by Simpson (1989) and Williamson

(1992), is the deterministic linear programming (DLP) which states the problem

as

V LP
t (x) = max p⊤y (3.23)

subject to

Ay ≤ x (3.24)

0 ≤ y ≤ E[D]. (3.25)

In this representation the y = (y1, . . . , yn) corresponds to the vector of n products

offered and D = (D1, . . . , Dn) the aggregate demand vector for each of these

products. The set of constraints in (3.24) accounts for the capacity restriction

on the resources whereas (3.25) represents the demand constraints and bounds

the allocations by the expected demand. Consequently the problem reduces to

finding the optimal combination of products that maximises (3.23).

Such models are simple and computationally fast which led many researchers
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to study them in various industries, among them Williamson (1992), de Boer

et al. (2002), Bertsimas and Popescu (2003) for airlines and Weatherford (1995),

Baker and Collier (1999) and Goldman et al. (2002) for hotels.

However, the DLP has a serious drawback; that is, it only considers expected

demand and ignores all other distributional information. Consequently, when

demand is highly variable the solution will lead to poor management decisions.

Therefore, the necessity of incorporating uncertainty more accurately into the

model led researchers to two main variates.

The first has been developed byWollmer (1986) and further studied by de Boer

et al. (2002) and suggests replacing each yj in the objective function (3.23) by

the expected sales of the product j under the partitioned allocation yj, i.e. by

the term E[min{Dj, yj}] ∀j = 1, . . . , N . Indeed, this approximation resolves the

problem seen in the DLP method. However, it comes with a downside since not

only does the resulting program become nonlinear9 and more difficult to solve

but the resulting revenues are consistently lower than those of the DLP.

A second approach proposed by the independent studies of Smith and Penn

(1988) and Talluri and Van Ryzin (1999) is based on simulating a sequence of

demand realisations and solving a DLP problem, one for each. In particular,

they propose to replace the expectation vector E[D] in the demand constraints

(3.25) by an actual realisation vector and proceed as in the DLP. Then taking

the expectation of the DLP solution gives an estimate for the value function.

This probabilistic method is in fact simpler than the former, as it is just a simple

modification to the original DLP model but its performance strongly depends on

the number of samples used.

In a recent study, Maglaras and Meissner (2006) consider a single-resource

multi-product framework and formulate both a dynamic-pricing model and a

dynamic capacity control problem. Interestingly, the authors show that the multi-

dimensional problem can be written in a simpler format such that the firm only

controls the aggregate rate at which the resource is jointly consumed by the

products.

9In general, the program is non-linear but under certain conditions it can be expressed as a
linear program (see de Boer et al., 2002; Talluri and van Ryzin, 2005)
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3.6.3 Optimal control in practice

Whichever techniques are used (discrete/continuous-time and/or quantity/price-

based) the optimal control essentially reduces to calculating the opportunity cost

V (x)− V (x−Aj , t),

which is often approximated by the corresponding bid prices. Then, the bid-prices

are either used directly in a bid-price control mechanism or indirectly to set up

the DAVN decomposition.

The simplest way to achieve this is through the solution of mathematical

programs. More specifically, if we define a given mathematical program by MP

then the opportunity cost is approximated by

(∇V MP
t (x))⊤Aj,

which can easily be found as the dual variables associated with the resources (see

section 2.2.1 on linear programming).

Alternatively, Bertsimas and Popescu (2003) propose approximating the op-

portunity costs by

V MP
t (x)− V MP

t (x−Aj),

which effectively takes out some of the limitations of the bid prices. However,

this comes at its own cost as one should solve the mathematical program twice

for each product, a procedure that increases the computational effort.

3.6.4 Network models in the hotels

As pointed out already, the network formulation in hotels can be seen as one

where resources are represented by the different days. Then multi-day stays are

analogous to the multi-leg itineraries of an airline network. However, some key

differences are that in the hotels it is not clear how to define the end of the horizon.

For this reason, researchers use the so called rolling window procedure where the

time horizon moves along as time progresses. Details on this techniques can be

found in Goldman et al. (2002). Second, according to Zhang and Weatherford

(2012), the network structure is more pronounced as it is not uncommon for

customers to stay for a week, which is analogous to a seven-leg itinerary in the

airlines.
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Each product that goes into the mathematical program now referred to as a

triple (a, L, k) i.e. the arrival day a, the length of stay L and the price class k.

Thus, for an optimisation period of, say, 30 days with maximum length of stay

of one week and 10 price classes we have as many as 2100 different products to

optimise over.

Weatherford (1995) was among the first to study a DLP model to formulate

the network model in the hotel industry and showed significant improvement over

single-resource models. Then, it was Baker and Collier (1999) who presented a

comparative analysis of five different booking control policies.

Stochastic mathematical programs are based on the linear version of the non-

linear probabilistic model described in 3.6.2. The linearisation requires setting

up a set of demand scenarios for each type of stay and form the model based on

the concept of expected marginal revenue (as in Littlewood, 1972). These models

have been studied in Goldman et al. (2002) and de Boer et al. (2002), while Lai

and Ng (2005), Liu et al. (2006) and Liu et al. (2008) extend the model to account

for the risk in revenue from the random demand in several scenarios.

However, some disadvantages arise when using the mathematical programs.

First, the problem is static by definition which means that the resulting bid

prices will be also static. Thus, unless we frequently re-solve and update the bid

prices, the resulting control will lead to poor decisions. Second, implementing

uncertainty into the mathematical program is not easy and in fact renders the

model nonlinear. Linearisiation techniques could ofcourse be used to simplify it

but will result in a large number of variables to monitor. Third, the number of

products to model can increase rapidly when customers are allowed to stay for

longer than one week.

For a critical review on hotel RM the interested reader is referred to Ivanov

and Zhechev (2012).

3.7 Optimisation strategies for carparks

Parking plays a vital role in the transportation industry and in the customer

satisfaction of travellers. Parking pricing, availability and accessibility are the

three major components that influence travellers’ decisions about which type of

transport to use, where and when to park (Qian and Rajagopal, 2013). Thus, in

order to design a reliable and effective transportation system all these components
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have to be optimised simultaneously.

As such, there has been an increasing interest in carparking problems within

the last two decades. Most researchers have studied traffic congestion10 prob-

lems; among them are Verhoef et al. (1995), Teodorović and Vukadinović (1998),

Arnott and Rowse (1999), D’Acierno et al. (2006), Zhao et al. (2010), to list just

a few. Todd (2006) investigates the main problems with the parking planning

practices and evaluates several strategies that help to increase parking efficiency.

For further descriptive information and qualitative guidelines the reader is re-

ferred to the parking management implementation guide found in Todd (2010,

2012).

Although parking pricing strategies are efficient and widely used in travel

demand management policies (D’Acierno et al., 2006), there is not much literature

in RM being applied to carparks; however, we do discuss a few articles that seem

to have studied parking inventory control for revenue maximisation, rather than

for traffic congestion control.

Teodorović and Lučić (2006) propose an “intelligent” parking space inventory

control system, based on fuzzy logic and integer programming techniques. They

study the problem of applying an optimal accept/deny decision on the bookings

in the order these arrive, assuming that multiple customer classes with customer

arrival and departure times are both stochastic. First, they simulate realisations

of these processes in order to derive an upper bound solution using integer pro-

gramming (perfect future prediction), with the procedure to be repeated for every

scenario simulated. Then, by analysing the results of this deterministic optimal

solution, it is possible that at any time a request arrives to know the availability

of the parking capacity (X1) and the relative requests’ revenue (X2), as well as

the percentage of all future requests that make less relative revenue than the cur-

rent request (Y ). By treating the first two quantities as the antecedents and the

last one as the consequence, fuzzy rules are generated (for detailed information

in creating fuzzy rules, the reader is referred to the work of Wang and Mendel,

1992). The outcome of the fuzzy rule is the value of Y ; if this is less than or

equal to a particular constant, chosen by the analyst, the booking is rejected.

The results show that the relative difference (between the proposed algorithm

and the optimal upper bound) never exceeds 10% for any simulated scenario.

10Traffic congestion occurs when traffic demand on road networks is sufficiently high and is
characterised by slower driving speeds, longer destination times and increased vehicular queue-
ing.



CHAPTER 3. RM: LITERATURE REVIEW 77

Guadix et al. (2008, 2011) consider the presence of a group of subscribers

along with the individual customers. The main difference with subscribers over

individual customers is that they have a space rented for the same period of time

during the same hours, and as such they should be treated differently. They

formulate the problem as an integer program and solve it under both a determin-

istic and a stochastic environment. Then, three different algorithms for capacity

allocation are tested: a first-come-first-served, distinct and nested method. By

comparing against a perfect information model they show that a stochastic model

using nested allocation provides revenues that are closest to the optimal values.

Rojas (2006) in his master’s thesis assumes up to four customer classes and

implements the EMRS-a and EMSR-b (see Belobaba, 1989) heuristics to deter-

mine the number of parking spaces to be reserved for the higher classes.

In a similar study, Van Den Eijnden (2009) also uses these heuristics to com-

pute the booking limits for each class. However, as explained in section 3.4 these

models only solve the simpler single-stay problem whereby effects from neighbour-

ing days are ignored. Therefore, he investigates an alternative means to compute

the booking limits so that the inter-dependence within the days is accounted for.

In particular, he proposes to calculate the expected average daily rate a class-i

customer would pay, as a weighted average scheme over the rates of the neigh-

bouring days the customer is likely to be staying for. According to this quantity

he could then decide on whether class i should remain open or should close. His

methodology, although not optimal, has improved occupancy levels significantly.

In conclusion, our work may be distinguished from all previous studies in the

parking industry as airport carparks possess some unique features; they operate

using an online pre-booking reservation system where customers can book early in

advance and the price rates can vary with the length of stay. Note that we also aim

to solve the multi-day problem. Nonetheless, our approach is to compute dynamic

(time and state dependent) bid-price controls using the expected marginal values

of the parking spaces and decide whether to accept/reject a request based on the

sum of bid prices over the days the customer is staying for. The bid prices are

dynamic in the sense that our solution specifies a distinct threshold value for every

combination of capacity remaining Q and time left τ until arrival. Finally, the

problem is formulated in continuous-time and thus to solve it we use alternatives

to mathematical programming techniques. This is considered in detail over the

following chapters.



Chapter 4

A network setting for the airport

carpark

4.1 Problem setting

Our problem is as follows:

Suppose that an airport operator utilises an internet pre-booking system to sell

carparking spaces within the premium jetpark, and that this carpark has fixed

capacity C. Bookings are recorded in the system on a continuous-time basis.

Each booking specifies the exact time the customer requires to arrive at the

carpark and the exact time they want to leave. The bookings arrive in order

and may require to stay for multiple days or even hours. Suppose that we are

on day t and a booking request arrives requiring a slot on a future day T . The

carpark manager1 may decide to either accept or reject the booking. If he decides

to accept the request, he instantly realises the corresponding revenue from the

sale and in return he gives out a space of the carpark on that day. However,

by doing so, he loses out on the opportunity of waiting for any potential future

requests that might have been more profitable. The question that naturally arises

is: how should the manager act? The stochastic nature of the customer demand

and because such managerial decisions are irreversible, results in a challenging

problem which we aim to answer in this thesis.

1The term “carpark manager” is a loose term that describes the set of decision rules put in
place by the airport operator and it might be used frequently for the remainder of this thesis.

78
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Objective Our task is to maximise the expected revenue in the carpark for

the future day T by applying dynamic capacity control techniques to the booking

requests. In other words, we want to apply optimal admission/rejection decision

for each booking, in the order they arrive in such a way that the expected revenues

are maximised.

Challenges There are two main challenges in our problem; first, the stochastic

nature of the customer demand means that decisions today for the future should

be made under uncertainty about the final result. Second, the network structure

of the problem means that customers with different arrival times and/or lengths

of stays overlap and as such every day feeds into the next in a nonlinear manner.

Thus, the decision on a day T should be based not only on that day but on the

state of the carpark in the neighbouring days as well. Clearly, this problem be-

comes very large and even when optimal solutions exist, these are unrealistically

time consuming if not impossible to solve. Therefore, we will be studying dif-

ferent methods of calculating slightly sub-optimal rejection policies of reasonable

performance.

Let us first describe the overall network setting and the varying assumptions

imposed.

4.2 Model assumptions

In particular, we assume the following:

(1) There is only one type of parking space in the carpark, for simplicity.

(2) There are two streams of customers:

� Low-paying customer class, L

These customers book early in advance to take advantage of any dis-

counts or promotions, they require a space for long periods and usually

these represent leisure customers.

� High-paying customer class, H

These customers book just before or on arrival. High-paying customers

are usually business customers who are not flexible with dates, and thus

they are willing to pay full prices for just a short period of time.



CHAPTER 4. NETWORK SETTING IN THE JETPARK 80

Since these two sets of customers describe different types of customer be-

haviour they will have different average daily booking intensities λb, different

average times between booking and arrival, η̄ = 1/λa and different average

length of stays ξ̄ = 1/λs. Therefore, the nth customer class could be expressed

as

Bn ∼







λbn

λan

λsn






. (4.1)

Under this representation there are three sources of uncertainty as the number

of bookings per day from the nth class, the advance-times and length-of-stay

are all stochastic variables.

Using equation (4.1) we can define the total booking profile as a linear com-

bination of the single booking classes, namely

B =
∑

n

Bn. (4.2)

In our model only two classes are assumed and thus we use subscripts 1 and

2 for the leisure and business classes, respectively.

(3) Models like Liu et al. (2008) and Teodorović and Lučić (2006) assume that

the price of a parking spot is linearly proportional to the length of stay.

However, in airport carparks it is often the case that the longer one stays

in the carpark the less price they pay per day (although the total price of

the booking is higher). In other words, the length of stay becomes a variable

that affects the quoted total price in a nonlinear manner.

Therefore, we define the pricing function2 Ψ(ξ) that calculates the (average)

price rate to be paid per day. The pricing function relates the daily price rate

to the length of stay ξ and it is applied to all customers irrespective of the

class they “belong” to.

An examination on real carparks pricing strategies indicates that a pricing

function which is common in practice is of an exponential form, i.e. the

2This should be distinguished from the price-demand function seen in section 3.4.2.2, which
explicitly relates the price to the demand.
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average price rate per day Ψ decreases monotonically in ξ according to

Ψ(ξ) = ψ1 + ψ2e
−µξ, (4.3)

where ψ1, ψ2 and µ are positive constants.

The total price to be paid by a customer staying for ξ days may then be

calculated by

ξΨ(ξ).

Figure 4.1 shows a typical pricing function of this form. The parameter

ψ1 indicates the lowest price rate which may be charged per day; this is

asymptotically achieved in the limit when the length of stay grows to infinity.
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Figure 4.1: Exponential price-rate function, with ψ1 = 5, ψ2 = 10 and µ = 0.2.

Combining the above with the characteristics of the two customer classes we

notice that leisure customers will be quoted, on average, lower price rates per

day, although all customers are treated under the same pricing scheme. This

is perhaps a unique feature encountered in the airport carpark and as far as

we know there are no existing models in the literature that explicitly deal

with this situation.

We note that we are not concerned in deriving the optimal pricing-function

parameters (ψ1, ψ2, µ). Particularly, we consider that these have been derived

or pre-set by the management and they are kept fixed throughout. However,
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it is important to understand that although the pricing function is fixed,

the price rate per day charged to a customer does vary according to his/her

required duration of stay.

(4) No discounting on prices takes place, for simplicity. We do not consider the

time-value of money as our objective is to examine the performance of the

rejection algorithm.

(5) There is no marginal cost incurred after a sale. This is a reasonable as-

sumption, because one can always express price as the increment above cost

(perhaps with a slight variable transformation). Thus, the expressions “rev-

enue” and “profit” will be used interchangeably.

(6) There are no cancellations or no-shows; if a booking for a particular duration

is accepted, then the customer will show up and pay with probability almost

surely.

(7) The network environment is originally formulated in discrete-time meaning

that spaces are sold for integer number of time-periods. In other words, if

we assume day interval-periods, the customers although being able to book

and arrive at any time and ask to stay for any length of stay ξ (continuous

quantity), they will be priced according to the number of periods they will

be staying for. This point should be made clear later in section 4.3.4.

4.3 The model

4.3.1 Structure of the bookings

Each booking consists of three time parameters, the time the booking is made,

the time of arrival to the carpark and the time of departure from the carpark.

Therefore, each booking i can be written as a vector, namely

Bi =







tb

ta = tb + ηi

td = ta + ξi






, (4.4)

where tb denotes the booking time, ta the arrival time with ηi denoting the pre-

booking time and td the departure time with ξi denoting the required duration
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of stay.

In particular, we assume that the number of bookings per day from customer

class n follows a Poisson process with stationary intensity λbn. Furthermore, we

assume that on average customers of the nth class arrive at the carpark η̄ = 1/λan

days after their booking and they stay for an average ξ̄ = 1/λsn days. Thus,

the times between booking and arriving in the carpark as well as arriving and

departing from the carpark may be modelled by exponential distributions with

rate parameters λan and λsn respectively.

Note that, even though we assumed that the average number of bookings

made in a day is known, this is a stochastic problem because their exact number

is still unknown. In addition, the pre-booking time η as well as the duration of

stay ξ are both stochastic.

4.3.2 Generating bookings

Recall that for the nth customer class, the bookings are assumed to follow a

homogeneous Poisson process with intensity3 λb. Thus, the expected number of

bookings per day is λb, while the expected number of bookings in [0, t] is λb t. The

time between two bookings is thus exponentially distributed with rate parameter

λb (with mean time given by 1/λb), namely

ρb(t) = λbe
−λbt (4.5)

and it can be calculated as (see section 2.1.2.4)

t = − 1

λb
log(r), (4.6)

where r is a random variable from the uniform distribution U(0, 1). Therefore,

to get the time of the next booking ti we simply have

ti = ti−1 − 1

λb
log(ri), (4.7)

where ti−1 denotes the time of the last booking.

Therefore, given the last booking Bi−1 we can simulate the next booking Bi

3In this section we slightly abuse notation by omitting the subscript indicating the class we
refer to as it should be made clear from the text.
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as

Bi =







tb = ti−1 − (1/λb) log(ri)

ta = tb − (1/λa) log(ri+1)

td = ta − (1/λs) log(ri+2)






, (4.8)

where ti−1 denotes the booking time of the last booking, Bi−1.

The simulation procedure in (4.8) begins at time t = 0 and it is terminated

when the next simulated booking time, tb, is greater than t = T . Then, the num-

ber of generated bookings constitute one booking set from the chosen customer

class.

We can, therefore, proceed as above to simulate a set of bookings for each

customer class n. Then, the resulting booking sets are added together to form a

combined booking set so that the system does not differentiate between bookings.

In this way, the system can only see the bookings in the order these arrive without

knowing the customer class these have originated from.

4.3.3 Bookings and carpark spaces

Assume that we are on day 0 with an empty carpark that is about to begin its

operations. Furthermore, we seek to maximise the expected revenues on a future

day T . The idea is to consider the situation in the carpark within a time frame

[0, β] with β > T .

In particular, we split the interval into K discrete-time periods of length ∆T

(A day corresponds to having ∆T = 1, the standard unit of analysis in the report.

For ∆t < 1 we have time periods that are fractions of a day, namely half-days,

six hours, thirty minutes etc. ) and we define the time points

t0 = 0

tk = k∆T for k = 1, 2, . . . , K − 1

tK = β.

(4.9)

Then the kth day, T k, is given by

T k = [tk, tk+1) ∀ k = 0, . . . , K − 1. (4.10)

Then, ifMk denotes the number of cars present in the car park at any time during
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the day T k, we have

Mk =
∑

i

f(Bi, k), (4.11)

where

f(Bi, k) =























1 if tk ≤ ta < tk+1

1 if tk < td ≤ tk+1

1 if ta < tk and td > tk+1

0 otherwise

(4.12)

denotes whether the ith booking is present within the day T k. Note that we

consider cars departing at t = tk+1 as being present during the period (this is

explained below). Figure 4.2 shows examples for which booking requests satisfy

f(Bi, k) = 1.

t

tk tk+1

T k

t
(1)
d

t
(2)
d

t
(3)
d

t
(1)
a

t
(2)
a

t
(3)
a

Figure 4.2: Booking requests examples for which f(Bi, k) = 1.

4.3.4 Pricing function

The discrete duration of stay, Di, for each customer is calculated4 according to

the number of days they will be present in the carpark, i.e

Di =
∑

k

f(Bi, k) ∈ Z. (4.13)

Consequently the pricing function (4.3) becomes a step function, with step-

size equal to a day.

Ψ(Di) = ψ1 + ψ2e
−µDi

. (4.14)

4Although bookings can ask for any duration of stay ξ which is a continuous quantity, in this
discrete-time problem the duration is translated as the number of days D the booking happens
to fall within. Therefore, D it does not exactly equal ξ. Note that when ∆T < 1 then D refers
to the number of time intervals of size ∆T . Thus, D and ξ become the same in the limit, when
the size of the interval ∆T → 0.
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Figure 4.3: Price rate per day as a discrete step function, with ∆T = 1, ψ1 = 5,
ψ2 = 10 and µ = 0.2.

Figure 4.3 illustrates the resulting pricing function for the case of day intervals.

For a more detailed analysis of the pricing function, figure 4.4 is provided. If a

customer makes a booking according to which he wants to arrive and depart on

the same day, then he will be charged the price rate for one day stay Ψ(D = 1)

(brown customer). If the customer wants to stay for less than a day in total but

his booking request spans over two days, he will then have to reserve the space

for two days and pay the price rate Ψ(D = 2) per day of stay (red customer).

Also, if the customer arrives in sometime within a day and leaves exactly at the

beginning of the next stay he will still get charged for two days (blue customer).

Day 1 2 3 4 5

D = 1 D = 2 D = 2

Figure 4.4: A carpark setting example with three booking requests. The brown
customer is allocated one day but the blue and red customers are allocated two
days.
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4.3.5 Carpark revenue

Therefore, the revenue generated in T k over all bookings from all preceding times

is expressed as

J =
∑

i

f(Bi, k) Ψ(Di) (4.15)

and the total revenue TR for the carpark becomes

TR =
∑

k

∑

i

f(Bi, k) Ψ(Di). (4.16)

Consider that we are on time t, when we have already observed all bookings

prior to this time. Then, the expected revenue remaining to be generated for the

future day T k, t < tk, is given by

J(t; k) = E

[

∑

i=i∗

f(Bi, k)Ψ(Di)

]

,

where i∗ indicates the first booking made after time tk.

Carpark revenue with capacity constraints Until now, we have assumed

that the carpark has unlimited capacity and therefore all bookings have been

accepted and thus contributed to the revenue. To make things more realistic, we

set a finite capacity C to the carpark. Then, we may define Qk as the number of

spaces remaining in the carpark for day T k. In fact, we must have

Qk = C −Mk ∀ k.

Let us suppose that Mk|i is the number of cars present in day T k after the first

i bookings have been realised. Then, by imposing capacity restrictions on the

carpark implies that the (i+1)th booking can be a candidate for receiving service

only if

Mk|i + f(Bi+1, k) ≤ C ∀ k, (4.17)

or equivalently

Qk|i − f(Bi+1, k) ≥ 0 ∀ k. (4.18)
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4.3.6 Booking rejection policy

If the volume of booking requests is greater than the carpark capacity, then some

customers will be denied service. This means that the total revenue that can be

generated in a period depends upon the carpark capacity which is initially C.

Therefore, the expected revenue in day T k of a carpark of total capacity C

but with only Q spaces remaining as observed at time t < tk is given by

Ju(Q, t; k, C) = E

[

∑

i=i∗

f(Bi, k) ui(k)Ψ(Di)

]

, (4.19)

where u ∈ U is any booking rejection policy from the set of admissible policies U

that abide by the capacity constraints, i.e.

ui(k) =

{

1 if f(Bi, k) = 1 and the booking i is accepted

0 otherwise.
(4.20)

A couple of points to note: First, under any given policy u, equation (4.17)

(or (4.18)) is a necessary condition for a booking to be accepted, but not always

sufficient. In fact, it forms a sufficient condition only when the rejection policy

implemented is a first-come-first-served (FCFS) policy. Second, any given policy

u ∈ U ensures that booking requests may either be accepted in “total”, i.e. for the

full number of days requested by the customer, or for none. Rejected customers

cannot alter their preferences to be accepted, rendering each decision made as

final. Last, all decisions are made based on the current information without any

future knowledge of the demand, rendering it a non-anticipative policy.

Expected Value Function The carpark manager wants to maximise the ex-

pected revenue generated in the carpark. In order to achieve this, they must de-

termine the rejection policy u∗ that gives rise to the value function V (Q, t; k, C);

this is the maximum expected revenue in day T k of a carpark of total capacity C

with Q spaces remaining as observed at time t, expressed by

V (Q, t; k, C) = max
u∈U

Ju(Q, t; k, C). (4.21)
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4.3.7 Rejection policy based on opportunity costs

Our task is to derive an optimal rejection policy under which bookings will be

optimally allowed service so that the expected revenues will be maximised.

By definition, a FCFS policy provides service to customers on a first-come-

first-served basis. When a booking request arrives in the system, the FCFS policy

checks the available capacity for the days requested and it only denies service when

there is no space available for one or some of the days in the booking. It is clear,

that such a rejection policy cannot be optimal in general, as it accepts/rejects

customers based on capacity availability only, completely ignoring the booking’s

profile (price value, pre-booking time, length of stay). Consequently, the spaces

in the carpark might be filled out from leisure customers early in the booking

horizon, while business customers arriving later and willing to pay more are denied

service. Therefore, in order to find the optimal rejection policy u∗, under which

expected revenues are maximised, we need a more sophisticated approach.

Our rejection algorithm suggests that a booking request (at tb) will be rejected

if the total revenue generated by this booking is lower than the expected revenue

of all potential future bookings that the car will displace over all periods it is

present in the carpark.

Let us first consider the quantity

∆V (Q, t; k, C) = V (Q, t; k, C)− V (Q− 1, t; k, C).

This quantity is the opportunity cost which is incurred when we switch from a

carpark (of total capacity C) with Q spaces remaining for the day T k as of time

t to one with only Q− 1 spaces left. This opportunity cost arises after every sale

of a space happens, and therefore it suggests how much the Qth unit of space is

expected to be worth as of time t; we denote this by the Expected marginal value

of the Qth space as of time t.

Then, it is only sensible to accept the booking i on day T k, if the price we

receive is greater than or equal to the corresponding expected marginal value.

Therefore, for accepting the booking i made in day Tm for T k, we require:

Ψ(Di) ≥ ∆V (Q,m; k, C). (4.22)

However, we seek to solve the network problem which means that the booking

decision should be made according to the “total” length of stay (i.e. on the entire



CHAPTER 4. NETWORK SETTING IN THE JETPARK 90

set of T ’s the car requires to be present within) and not for each day period

individually. In fact, given that there is capacity available, the total price received

from the booking should also be greater than the sum of the expected marginal

revenues for the days requested by the booking. Therefore, the optimal control

for day T k may be implemented as a dynamic (time- and state-dependent) bid-

price control where the bid price is equal to the expected marginal value, that

is

π(Q,m; k;C) = ∆V (Q,m; k, C), (4.23)

for every Q = 0, 1, . . . , C and m = 0, 1, . . . , k.

Consequently, we find it convenient to introduce the Expected Added Marginal

Value across all periods EAMV during which the car is present to be:

EAMV =
∑

k

f(Bi, k)
[

Ψ(Di)− π(Q,m; k, C)
]

, (4.24)

with the decision rule

Accept if: EAMV ≥ 0

Reject if: EAMV < 0.

As a result, the optimal rejection policy u∗ is a bid-price policy and reads

(u∗)i(k) =

{

1 if f(Bi, k) = 1 and EAMV ≥ 0

0 otherwise.
(4.25)

We note that the optimal rejection policy in this model preserves the network

structure of the problem whereby the decision depends on the full set of days the

customer is staying for, such that customers are either accepted for the entire

number of days requested or for none. As such this model setting will be denoted

as the Network Model.

4.3.8 Calculating and implementing the opportunity costs

The network model has four dimensions: the carpark capacity C, the target day

to optimise T k, the current day Tm and the available spaces Q(k) for day T k as

of day Tm. In addition, there are K number of such target days to be optimised.
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Thus, calculating the full set of optimal expected marginal values

∆V (Q(k), t; k, C)

for each time and state of the system it is prohibitively time consuming if not

impossible.

Therefore, we are confined to studying some rather more simplified problems

whose solutions will be used to construct a bid-price policy and thus approximate

the network model. As discussed in the literature, these problems will either pre-

serve the network structure but scaled down significantly, or they will effectively

decompose the network into a single-resource problem.

Once a rejection policy has been computed (by a particular approximation

method) it is integrated into the revenue management system in the form of

a bid-price table. Then, booking requests start coming to the system requiring

multiple lengths of stays and the carpark manager has to make a decision whether

to accept or reject the request. The decision is based upon the EAMV of the

booking (see section 4.3.7) which is then computed according to the installed

rejection policy.

Booking Sets

Optimisation
(EAMV)

Rejection Policy

Expected Revenues

Approximation
Method

Figure 4.5: Schematic overview of the program flow

Figure 4.5 illustrates the main idea behind the comparison procedure. As we

can see, the marginal values of an approximation method are imported to form

the bid-price rejection policy. Then booking sets are simulated (see section 4.3.2)

and decisions are made according to the EAMV algorithm. Finally, the revenues

are averaged over a large number of booking sets to obtain the resulting expected

revenues.



CHAPTER 4. NETWORK SETTING IN THE JETPARK 92

4.3.9 Measuring the effectiveness of capacity allocation

The aim is to maximise the expected revenue we would make on a given future

day T under a given rejection policy. But how should we measure the effectiveness

of one method over the other?

To do this we need to define an appropriate metric. In the hotel industry, the

management may target to increase the average occupancy rate - the fraction of

booked rooms over available rooms per night- or the average revenue rate - the

total revenue rate per night over the number of rooms in the hotel. Each of these

metrics could be treated in isolation depending on the manager’s objective which

can either be to maximise revenue rate or to maximise the occupancy rate. A more

representative metric that measures both revenue and capacity utilisation is the

revenue-per-available-room-night (RevPar) which is defined as the multiplication

of the above average daily revenue rate and the occupancy rate (for details see

Phillips, 2005).

For our problem, we are only concerned in finding the policy that maximises

the expected revenues on a given day without worrying about the utilisation of the

resources. In fact, a policy that has resulted in higher revenue is more successful

than one that resulted in lower revenue, even if the first policy resulted in lower

occupancy rate.

Since our model is time-stationary it makes sense to examine the average

revenue rate once the system is at a steady-state equilibrium position, i.e. when

the initialisation (transient) effects have already been absorbed in the system.

This will indicate how the model would perform if it left running forever, i.e. a

perpetual revenue.

More specifically, we simulate a booking set (a path) and we let the algorithm

to run for sufficiently long. Then, we focus on an intermediate 20-day interval

somewhere in the future. The average revenue rate per day can thus be computed

by averaging over these individual expected revenue rates. An illustration on this

is shown in figure 4.6.
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t
0

Initialisation Interval Steady-state

T ∗ T ∗ + 20

Figure 4.6: Illustration of computing the steady-state equilibrium position. An
initialisation period of length T ∗ is used. The steady-state revenue is computed
by averaging over the individual revenues of the 20 days which lie immediately
after T ∗.

This procedure is repeated under a thousand simulated booking sets and an

estimate of the perpetual revenues is calculated by taking the average over the

number of paths. Finally, the resulting perpetual revenues from one method are

compared against the others to examine the methods’ overall performance. Note

that there is no analytical or full network solution to compare against. This

analysis will be dealt in detail later in chapter 6, as next we will present the

approximation methods under consideration.



Chapter 5

Three approximation methods

for the carpark network model

Part of the work in sections 5.1, 5.2 and 5.3 has been published in ICORES 2012

International conference proceedings.

“Continuous-Time Revenue Management in Carparks”, which has been awarded

with the Best Student Paper Prize, is available online in SciTePress Digital Li-

brary at http://www.scitepress.org/DigitalLibrary.

The network problem described in chapter 4 is a typical problem that could

be formulated as a mathematical program, e.g. a linear or integer program. In

particular, we can define an optimisation period of a set of m days (i.e. m re-

sources) and construct products by modelling all possible combinations of arrival

and length of stay that fall in this interval. As shown in section 3.6.4 these pro-

grams are appropriate for the hotel industry especially when there are multiple

products and multiple customer classes.

In our problem we do not restrict products to be of less than a certain length

of stay. This means that for an optimisation period of m days the number of

products are of order O(m2). Even worse, if the time period ∆T is taken to be

small, in order to optimise over the same interval ofm days we need to use m/∆T

periods (or resources) resulting in an enormous number of products to analyse.

Also, if we incorporate uncertainty in the problem and thus result with a non-

linear program, the linearisation methods will generate an even greater number

of variables to manage (as discussed in section 3.6.4).

94
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Finally, it is of our interest to construct dynamic bid-price controls, that is

controls which depend on the time and state of the system. Although computa-

tionally very efficient, the mathematical programs are static in nature (assume

aggregate demand for the products) and thus they will generate dual values that

can only serve as static bid-prices for the original problem. Then, this will have

to be re-updated frequently in order to perform well.

Therefore, this study investigates whether dynamic bid-prices based on alter-

native formulations are sufficient in approximating the specified network problem.

Three main methods are developed:

1. Monte-Carlo (MC)

This method solves a more simplified network problem with less dimensions.

This model is still formed in discrete-time as the network model (although

bookings are made in continuous-time) but for the expected marginal values

the explicit difference between carpark size C and capacity remaining Q is

suppressed. This model is the simplest model intuitively, however it is more

computationally intensive as the solution is based upon Monte-Carlo simu-

lations of the booking patterns. In regards to the existing literature our the

MC method could be clustered into the second category of approximations

methods, that is the methods based on simplified network models.

2. PDE

This is a continuous-time approach which assumes that days do not interact

with each other, enabling decisions to be made for each day individually.

In other words, we could think of this as a network decomposition method

where the network problem is reduced into a set of independent single-

resource dynamic programs. In a continuous-time formulation, the single

resource refers to an infinitesimal instant of time and thus it uses the price

rate per day, as opposed to the total price of the booking. The problem

still remains stochastic but it leads to a partial differential equation (PDE)

for which appropriate schemes can be solved relatively fast.

3. Pontryagins

This is again a continuous-time model where the interdependence within

days is also ignored. However, we assumed that the parking spaces are a

continuous quantity, as opposed to integer spaces. This extra assumption

results in a “fully” PDE formulation (both time and space) and turns the
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problem into a deterministic one. Thus, we use the Pontryagins maximum

principle to obtain the optimal solution. This approach is developed to

examine how well a deterministic model can perform in a stochastic envi-

ronment.

From each method we calculate the expected marginal values, which we use

to construct a 2D bid-price table with respect to the time left τ and the capacity

remaining Q (see section 4.3.7). Then, the coordinate (Q, τ) would tell us the bid

price we should set on the future day that lies τ days later when the remaining ca-

pacity on that day is Q. In this way, the bid prices are defined for a set of possible

outcomes (any combination of time left and capacity remaining) and thus there is

no need to frequently update them. Finally, the bid-price tables are implemented

in the algorithm in section 4.3.8 to access the methods’ performances.

DLP revisited As already discussed in sections 3.6.2 and 3.6.4, perhaps the

most popular mathematical program is the DLP. This is in fact the simplest and

most intuitive mathematical program. However, being deterministic, i.e. it only

considers the mean customer demand for the different products and ignores all

other distributional information, it can lead to poor approximations to the true

marginal expected values (see Talluri and Van Ryzin, 1999).

Despite this deficiency, a key aspect of the DLP renders it very important

when evaluating the performance of different methods. According to de Boer

et al. (2002) the optimal value of the DLP, V LP , overestimates the expected

outcome of implementing its solution as a booking control policy. More precisely,

it follows from Jensen’s inequality that V LP provides an upper bound on the

optimal value of the original problem (see Chen et al., 1998; Cooper and Homem-

de Mello, 2007, for details). Therefore, the DLP could be used as an effective

benchmark model to test the performance of other more sophisticated methods.

Unfortunately, recall that our setting assumes no length restriction on the

products and thus the DLP might become too large to be solved in acceptable

time. This is in fact the reason for which this intuitive benchmark has not been

included in the results to come.
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5.1 A discrete-time model based onMonte Carlo

(MC)

Let us first a take a simple example to address the size of the network problem.

Assume that today is day 5 and we want to maximise the amount of cash realised

on the 30th day. The initial size C of the carpark for each day is 100 but the

remaining capacity Q for each day 5 to 30 is different due to customers that have

booked and been accepted from times before day 5. Then, for a customer who

books today (on day 5) to park on the future day 30, the system checks the price

rate he/she will have to pay, Ψ(ξ) (depending on his/her length of stay ξ), against

the cash threshold of ∆V (Q(30), 5; 30, 100) and accepts the request only if

Ψ(ξ) ≥ ∆V (Q(30), 5; 30, 100).

The quantity on the right is decided after taking into account the availability of

spaces on the neighbouring days too, namely

. . . , Q(27), Q(28), Q(29), Q(31), Q(32), Q(33), . . .

If the demand that has already been realised on each neighbouring day is less

than 100 then all neighbouring days should have some spaces still available for

sale, implying that any length of stay is theoretically valid.

Alternatively, if the carpark size was only C = 10 then the cash threshold to

beat would have been ∆V (Q(30), 5; 30, 10) which should in general be different

than ∆V (Q(30), 5; 30, 100), as some neighbouring days might have already sold

out. In this case the customers would be restricted in only requests of particular

lengths of stay.

In particular, it might happen that if spaces are sold out on days 29 and 31 the

marginal value of the remaining spaces on day 30 is reduced, whereas the opposite

holds when there is abundant capacity on those days. This complex structure

renders the problem intractable and requires some further simplification.

Below we show the two additional assumptions imposed to make the problem

tractable.

1. We assume that customer demand is time-invariant.

Suppose a booking is made at time period Tm to arrive at the future period

T k, with m ≤ k. Under a time-invariant framework the actual time period
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for which the booking happens does not matter, but only the time difference

in the periods between booking and arriving, k −m. In other words, if the

optimal decision uses the expected marginal value ∆V (Q,m; k, C) this will

now be the same as ∆V (Q, 0; k−m,C) effectively reducing the system down

by one dimension. The investigation into relaxing this assumption is left to

further work.

2. We assume that the expected marginal value ∆V (Q(k), m; k, C) is calcu-

lated based on the fact that all preceding days m,m + 1, . . . , k have as

many spaces remaining (=Q(k)) as for the day T k. Then the problem

may be regarded as one where the carpark size C becomes Q(k) for all

days T = 1, . . . , k − 1. Thus, the expected marginal value reduces to

∆V (Q(k), m; k,Q(k)).

Combining these two assumptions, the expected value of the carpark of total

capacity C with Q spaces remaining for time T k as observed at time Tm, m ≤ k

simplifies to

V (Q,m; k, C) = V (Q, 0; k −m,Q), (5.1)

and the expected marginal values become

∆V (Q,m; k, C) = ∆V (Q, 0; k −m,Q). (5.2)

This simplification reduces the number of dimensions to two hence rendering the

problem tractable. Although it does no longer solve the exact network problem,

this simplified methodology is a reasonable approximation. Note that the latter

can now be interpreted as the expected marginal value of the space for a carpark

of size Q and k −m days remaining (this will be revisited below).

The second assumption is crucial to the understanding of our method and

thus it requires some further explanation. Recall that under assumption 2 we

may calculate the expected value (or the expected marginal value) on day T with

Q spaces remaining using a carpark with size C = Q for all days in the optimising

horizon.

To see where our assumption stems from, we begin by considering a carpark

with (trivial) size C = 1. To maximise the expected revenues on a day T we need

to apply optimal decisions according to the expected values of Q = 0 and Q = 1
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spaces remaining for that day, V (Q = 0, 0;T, C = 1) and V (Q = 1, 0;T, C = 1).

We know that the expected value of 0 spaces remaining is zero, thus we only need

to find V (Q = 1, 0;T, C = 1). Notice that Q and C are the same for this carpark

thus

V (Q = 1, 0;T, C = 1) = V (Q = 1, 0;T, C = Q).

Thus the problem reduces down to one where the carpark size and the capacity

remaining are both equal to 1; this situation is shown in figure 5.1.

When we move to a carpark of size 2, we maximise expected revenues by ap-

plying optimal decisions according to the expected values V (Q = 0, 0;T, C = 2),

V (Q = 1, 0;T, C = 2) and V (Q = 2, 0;T, C = 2). As before V (Q = 0, 0;T, C =

2) = 0, but what about the other two terms?

Let us look at V (Q = 1, 0;T, C = 2) first. This is the expected value of

one space remaining on day T for a carpark of total capacity two. Figure 5.2

illustrates this situation. Indeed it is not clear how to obtain this value at all.

Therefore, we propose to approximate it by

V (Q = 1, 0; k, C = 2) ≈ V (Q = 1, 0; k, C = 1),

since the latter value has been already derived from the preceding case of C = 1.

Recall that this approximation corresponds to a carpark with size one, thus it

will be correct when the state of the carpark looks like that in figure 5.3.

Finally, based on the above we may calculate V (Q = 2, 0; k, C = 2) as the

expected revenue to be generated for a carpark of total size C = 2, namely

V (Q = 2, 0; k, C) = V (Q = 2, 0; k, C = Q).

Generalising, for the carpark of size C the expected values for Q = 1, . . . , C−1

would have been approximated by the preceding cases of smaller sized carparks,

i.e.

V (Q = 0, 0;T, C = C) ≈ V (Q = 0, 0;T, C = 0)

V (Q = 1, 0;T, C = C) ≈ V (Q = 1, 0;T, C = 1)

. . .

V (Q = C − 1, 0;T, C = C) ≈ V (Q = C − 1, 0;T, C = C − 1).

(5.3)
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Note that this method is expected to work well when at any given time the

state of the carpark is reasonably uniform with no great peaks and contrasts on

capacity availabilities between neighbouring days. In general, this assumption is

expected to work better for small-sized carparks where the peaks cannot be too

large.

Day 1 2 3 . . . T T + 1 . . .

V (Q = 1, 0;T, C = 1)

Figure 5.1: An empty carpark with size C = 1.

Day 1 2 3 . . . T T + 1 . . .

V (Q = 1, 0;T, C = 2)

Figure 5.2: A partially filled carpark with size C = 2. Brown boxes correspond to
spaces that have already been sold while white boxes are the remaining available
ones.

Day 1 2 3 . . . T T + 1 . . .

V (Q = 1, 0;T, C = 2) = V (Q = 1, 0; T,C = 1)

Figure 5.3: A semi-filled carpark with size C = 2 but only Q = 1 spaces available
for all days. Brown boxes correspond to spaces that have already been sold while
white boxes are the remaining available ones.
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5.1.1 Numerical scheme

Define the value matrix v. This is a 2D array composed of the expected values

at every time and state of the carpark. In particular, we have

V (Qj , 0; k −m,Qj) := vk−m
j (5.4)

Without loss of generality, under the time-invariant setting this may also be

interpreted as the expected value of the carpark with Q spaces remaining and

k − m periods remaining until all spaces are occupied. This observation here

is crucial; it indicates the manner at which the expected revenues generated for

a carpark of size C on day T k will be translated into the expected values of a

carpark with Q = C spaces remaining and τ = T k time left, in order to form the

bid-price rejection policy.

From a simulated combined booking set (which may be referred to as a path),

we can calculate the corresponding optimal value function. However, the optimal

solution is tied to the path followed. Thus, in order to approximate the correct

optimal solution we proceed using Monte-Carlo simulation, i.e. by simulating

and averaging over thousands of such paths..

The procedure to determine the optimal solution v and the optimal rejection

policy depends upon iterations.

5.1.2 Rejection policy algorithm

1. Choose a booking horizon [0, T ] with K periods sufficiently long to capture

nearly all of bookings in each customer set and a maximum capacity for the

carpark C.

2. Set the value matrix v equal to 0. This implies that all spaces in the carpark

are initially assumed worthless and therefore all customers can be accepted

as long as capacity is available. Since this is our initial estimate for v, we

may denote it as v0, where vr is the rth guess at the solution.

3. Choose a sufficiently large number P and use Monte-Carlo to generate P

booking sets within the pre-specified time interval [0, T ].

4. Evaluate the expected value of the carpark at all time periods and all pos-

sible capacities 0 ≤ Qj ≤ C (beginning with capacity 0) to generate the
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matrix

vk,r+1
j = E

[

∑

i=i∗

f(Bi, k)Ψ(Di)

]

, (5.5)

given that for the ith booking made in the period Tm the added value is

EAMV =
∑

k

f(Bi, k)
[

Ψ(Di)−
(

vk−m,r
j − vk−m,r

j−1

)]

. (5.6)

5. Go to step 3 and repeat until ||vr+1−vr|| < ǫ, where ǫmeasures the tolerance

level we are willing to accept.

Note:

(a) In step 4 the EAMV works by using the set of expected marginal values as

follows; let us take for example, a customer who books on day 2 to arrive on

day 6 and stay for 3 days. Let the spaces availability on day 6, 7 and 8 be

40, 25, 31 respectively. Then, in order for this customer to be accepted the

total price of the 3-day stay should satisfy

3Ψ(3) ≥ (v6−2
40 − v6−2

40−1)

day 6

+ (v7−2
25 − v7−2

25−1)

day 7

+ (v8−2
31 − v8−2

31−1)

day 8

.

Also to optimise a size C carpark we would have used the solution for the

expected marginal values for all smaller carparks 0, 1, . . . , C − 1. In other

words, we start off with a carpark of size C = 1 and maximise the expected

revenues for all days in [0, T ]. Then, the resulting revenues are interpreted as

the expected values of a carpark with Q = 1 spaces remaining and τ = T k

time left, vk1 for every k = 0, 1, . . . , K. Thus, the opportunity costs for the

case of Q = 1 are generated as

∆vk1 = vk1 − vk0 ∀k.

When, moving onto the case of a size 2 carpark the optimisation would take

into account the expected marginal values (opportunity costs) at Q = 1.

From the resulting expected revenues we would obtain the expected marginal

values for Q = 2. Thus, we will move to the case of a size 3 carpark where

we will now need the expected marginal values for Q = 1, 2. In this manner,

we gradually build up expected marginal values for the case of the carpark
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of maximum size C.

(b) We use the same paths at every iteration, to guarantee that at the pth path the

marginal value is non-negative (i.e. ∆V p(Q, t;T ) ≥ 0) so that the estimate

on the expected marginal value is non-negative as well,

1

P

P
∑

p=1

∆V p(Q, t;T ) ≥ 0.

However, even if we use a large number of paths the variance in the calcu-

lated values will still be large. Consequently, the scheme might not converge,

as the convergence relies on accurate estimates of the expected revenues. If

the opportunity costs are overestimating the spaces, we will be rejecting too

many customers in the next iteration, which will, thus, decrease the expected

revenues. Then, the resulting policy will now be underestimating the spaces,

leading to too many customers being accepted and thus push the expected

revenues up. This oscillatory behaviour may potentially persist before con-

verging.

Therefore, we propose an improved algorithm that will prevent us stepping into

such an undesirable situation. The algorithm is based on the idea that we should

iterate towards the correct solution by using an under-relaxation scheme. As

opposed to an over-relaxation scheme, the relaxation parameter ω should now be a

number between 0 ≤ ω < 1. In this manner, the solution should steadily improve

at every iteration. As an extra measure for reducing the variance from the paths,

we propose a solution whereby the number of paths is increased by approximately√
2 at every iteration. Therefore a stopping criterion on the maximum number

of paths, Pmax, is imposed in order to prevent the algorithm from excessive use

of time and RAM.

5.1.3 Successive under-relaxation rejection policy algorithm

1. Choose a booking horizon [0, T ] with K periods sufficiently large to capture

nearly all of bookings for each customer set and a maximum capacity for

the carpark C.

2. Set the value matrix v equal to 0. This implies that all spaces in the carpark

are initially assumed worthless and therefore all customers can be accepted
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as long as capacity is available. Since this is our initial guess to v we denote

it as v0, where vr is the rth guess at the solution.

3. Choose the number of paths P and the relaxation parameter ω.

4. Use Monte-Carlo to generate booking sets within the pre-specified time

interval [0, T ].

5. Evaluate the expected value of the carpark at time T k for all time periods

Tm, m = 0, 1, . . . , k and all possible capacities 0 ≤ Qj ≤ C (beginning from

capacity 0) to generate the matrix

ykj = E

[

∑

i=i∗

f(Bi, k)Ψ(Di)

]

, (5.7)

given that for the ith booking made in the period Tm the added value is

A =
∑

k

f(Bi, k)
[

Ψ(Di)−
(

vk−m,r
j − vk−m,r

j−1

)]

. (5.8)

6. Under-relax to obtain the next estimate on the value

vk,r+1
j = vk,rj + ω (ykj − vr,kj ). (5.9)

7. Go to step 4 P times.

8. Go to step 3, increase P and decrease ω, and repeat until ||vr+1 − vr|| < ǫ

or until P > Pmax, whichever occurs first.

Note: A reasonable choice for ω is to have ω = 1/P . Motivated by the Gauss-Seidel

iteration method (details in Olver and Shakiban, 2006), within this algorithm

new estimates on the expected values made available from one path are used

directly in the evaluation for the next path. Under these assumptions we can

show experimentally that the algorithm converges to the true solution in a finite

number of iterations.
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Booking Sets

Optimisation

(EAMV)
Rejection Policy

Expected Revenues

Figure 5.4: Schematic overview of the MC procedure

In figure 5.4 we illustrate a schematic overview of the program flow. At

the initial phase of the program a booking set is generated through simulation.

The rejection policy is initially set to zero. Next, we apply optimisation to the

bookings using the EAMV algorithm and we perform this on every simulated

booking set. Hence the resulting expected revenues v are calculated. The last

phase of the program is to update the rejection policy by computing the expected

marginal values ∆v and to re-run the optimisation algorithm. This iterative

scheme terminates once the difference between the newly derived revenues and

the previous ones is sufficiently small. Once the algorithm has terminated, the

final set of expected marginal values is computed and defines the MC bid-price

rejection policy.
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5.2 Probability Distributions

5.2.1 Non-stationary derivations of the distributions

Previously, we described the simulation process for a set of bookings that was

characterised by the intensity parameters denoted λb, λa and λs, using exponential

inter-arrival times. Then working solely with the simulated bookings we derived

an algorithm that generates the set of expected displacement costs for all times

and capacities remaining.

In the next two sections, we will be looking at two other methods that are

formulated in continuous time. We do realise that the vast literature assumes a

discrete-time setting since most managers in reality would update their decisions

at discrete points in time. However, we believe that a continuous-time formulation

might now be more suitable as internet and e-commerce enable decisions to be

made automatically and frequently.

Instead of taking simulations we do now properly define the underlying prob-

ability distributions for the arrival and stay plus any other relevant distributions

that may be needed.

We note that although all of our models that we tested are time-invariant we

prefer to present the probability distributions in their most general case, i.e. by

taking into account their explicit dependence in time. Then, we can show how

these are simplified once time-invariance is introduced.

Recall that each booking has three time parameters, the time of the booking,

the time of the arrival and the time of the departure. The explicit reference to

the departure time may be dropped once we include the required length of stay.

Assume that we concentrate on the bookings which are made on day t. For

each of these bookings there is an associated pre-booking time η and length of

stay ξ at the carpark. Thus, they can be represented in a 2D array showing the

breakdown of bookings with respect to different durations of stay and various pre-

bookings times. The sum of all the elements gives the total number of bookings

made at day t. By scaling the array by the total number of bookings we can obtain

statistical information for both η and ξ. Let us define the joint probability density

function φ(η, ξ; t) for bookings at t with respect to η and ξ such that

∫ ∞

0

∫ ∞

0

φ(η, ξ; t) dη dξ = 1. (5.10)
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The density function φ(·) gives the probability density of a customer arriving

η days after booking at t and staying for ξ days and it forms the basis for all

probability distributions derived thereafter. In particular, we may define the

probability density of arrival η days after the booking made at t as

ρa(η; t) =

∫ ∞

0

φ(η, ξ, t) dξ, (5.11)

and, similarly, the probability density of staying ξ days as

ρs(ξ; t) =

∫ ∞

0

φ(η, ξ, t) dη. (5.12)

Given these quantities, we may denote the cumulative probability density of

arrival not more than η days after booking as

Pa(η; t) =

∫ η

0

ρa(η
′; t) dη′

(5.13)

and the cumulative probability density of staying not more than ξ days as

Ps(ξ; t) =

∫ ξ

0

ρs(ξ
′; t) dξ′.

(5.14)

Let us now consider the probability that a customer departs from the carpark

exactly z days after making the booking at t. If we denote this by ρd(z; t), we

may write:

ρd(z; t) =

∫ z

0

φ(η, z − η, t) dη. (5.15)

In this expression we make sure that we sum over all instances where the length

of stay plus the arrival time is equal to z. Consequently, the cumulative density

of departure is given by

Pd(z, t) =

∫ z

0

ρd(z
′, t) dz′. (5.16)

Our objective will be to maximise the revenue rate over a future time T . Thus,
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Figure 5.5: Breakdown of bookings for a particular day t, with respect to different
durations of stay, ξ, and various pre-bookings times, η.

it makes sense to derive a quantity that will describe the number of people that

are present in the carpark at T . In fact, these customers may have either arrived

exactly at T and are staying for any length of stay, or anytime t before T but

they will stay for at least z = T − t days.

Thus, we define the probability of being present in the carpark z days after

booking at t, namely g(z, t), as

g(z, t) =

z
∫

0

∞
∫

z−η

φ(η, ξ, t) dξ dη. (5.17)

Figure 5.5 shows the breakdown of bookings of a particular day t with respect

to the different durations of stay and pre-booking times. In this figure the prob-

ability g(z, t) is found by integrating φ(·) for the area under the shaded region.

This probability takes into account customers that are going to be present z days

after their booking at t irrespective of when they have arrived at the carpark or

when they are about to depart. Thus, g(z, t) will be referred to as the occupancy

probability.
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In particular, we can show that g(z, t) satisfies

g(z, t) = Pa(z, t)− Pd(z, t). (5.18)

Intuitively, the occupancy probability says that a customer is present z days

after the booking made at t only if he arrives not more than z days after the

booking (Pa(z, t)) and does not depart before this time (−Pd(z, t)). In figure (5.5),

the triangular region on the left and above the g(z) correspond to customers that

will depart by time z and the rectangular region that lies below g(z) corresponds

to bookings that will not have arrived yet.

Furthermore, we are interested in finding the probability of staying for ξ days

given that the customer is present z days after the booking made at t. This

conditional probability will be denoted by ρs(ξ|z, t) and it is given by,

ρs(ξ|z, t) =
∫ z

(z−ξ)+
φ(η, ξ, t) dη

g(z, t)
. (5.19)

This conditionality inside the probability is to differentiate it from the original

probability density ρs(ξ) which corresponds to all bookings made on day t. In fact,

the conditional probability only accounts for the possible durations of customers

that will definitely be present on that future time T = t + z.

Therefore, the cumulative probability density of a customer staying at most

ξ days given that he is present z days after the booking made at t, is given by

Ps(ξ|z, t) =
∫ ξ

0

ρs(ξ
′|z, t) dξ′. (5.20)

This cumulative probability density gives the proportion of customers present

z days after the booking is made at t, such that their duration of stay does not

exceed ξ days. This term will be vital in deriving the rejection policy for the

PDE model and thus it will be revisited in the next section.

5.2.2 Adjusting for a time-invariant setting

The above densities are derived for the general non-stationary case in which

the customers average booking intensities (λb) as well as the arrival and staying

probability distributions depend on the current time t.

In this thesis we assume for simplicity that customers booking, arrival and
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staying intensities are time-invariant, i.e. they do not depend on the current time

we calculate them.

Recall for each customer class n we assume that bookings follow a Poisson

process with stationary intensity λbn . Moreover, the probability densities of η and

ξ for the nth customer class are assumed to be stationary exponential distributions

and they are independent of each other. Therefore, we have

ρan(η) = λane
−λanη ∀n (5.21)

and

ρsn(ξ) = λsne
−λsnξ ∀n. (5.22)

Using equation (4.2) and the stationary assumptions of the intensities we may

drop the time-dependence of equations (5.11) and (5.12) and express them as

ρa(η) =
∑

n

αnρan(η) (5.23)

and

ρs(ξ) =
∑

n

αnρsn(ξ), (5.24)

where the weight

αn =
λbn
∑

j

λbj
∀n

follows from the superposition property of the Poisson process and measures the

probability of the next booking to be from booking class n.

Finally, the joint density φ(·) itself is time-invariant and, consequently, we

may use the relations (5.23) and (5.24), to express φ(·) as

φ(η, ξ) =
∑

n

αnρan(η)ρsn(ξ). (5.25)

We note that the assumption imposed on the distributions of arrivals and

stays being independent enables us to write the joint density φ(·) as the product
of the individual densities for η and ξ. In addition, the definition in (4.2) simplifies

the structure of the model, as we can build the joint density by adding up the

individual distributions of all customer classes (with appropriate weights). Such

a typical density function may be seen in figure 5.6.
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Figure 5.6: Joint density φ(η, ξ) as a function of the pre-booking time η and the
length-of-stay ξ. Two classes, 1 and 2, are considered with λb1 = 5, λa1 = 1/14,
λs1 = 1/7, λb2 = 25, λa2 = 1/3, λs2 = 1.

Moving on, the cumulative densities for arrival and stay, (5.13) and (5.14),

become

Pa(η) = 1−
∑

n

αne
−λanη (5.26)

and

Ps(ξ) = 1−
∑

n

αne
−λsnξ, (5.27)

respectively.

Furthermore, the probability density of departure (5.15) is

ρd(z) =
∑

n

αnρdn(z)

=
∑

n

αn

∫ z

0

ρan(t)ρsn(z − t) dt

=
∑

n

αn

λanλsn
λsn − λan

(

e−λanz − e−λsnz
)

. (5.28)
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Figure 5.7: Pa(z, t), Pd(z, t) and g(z, t) for a given day t. Two classes, 1 and 2,
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and, as such, the corresponding cumulative density (5.16) becomes

Pd(z) = 1−
∑

n

αn

[

λane
−λsnz − λsne

−λanz

λan − λsn

]

. (5.29)

Consequently, the occupancy probability g(z, t) reduces to

g(z) = Pa(z)− Pd(z). (5.30)

Figure 5.7 presents the cumulative probabilities of arrival, Pa(z, t), and de-

parture, Pd(z, t), and the occupancy probability g(z, t) on a given day t. The

cumulative probability Pd(z, t) always lies below Pa(z, t), since a departure oc-

curs only if it is preceded by the corresponding arrival. Thus, g(z) is non-negative

with a distinct maximum occurring at the point where the distance between the

distributions Pa(z, t) and Pd(z, t) is maximum.

Finally, the conditional density of stay in ρs(ξ|z; t) simplifies to (appendix A)

ρs(ξ|z) =
∑

n

αn

ρsn(ξ)
(

Pan(z)− Pan((z − ξ)+)
)

g(z)
(5.31)
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and thus the resulting cumulative density becomes

Ps(ξ|z) =
∫ ξ

0

ρs(ξ
′|z) dξ′. (5.32)

Figure 5.8 shows the conditional probability densities ρs(ξ|z, t) and Ps(ξ|z, t)
on a given day t as functions of ξ for different lead times z. The solid line in the

upper figure corresponds to the total probability density of stay ρs(ξ, t) whereas

the solid line in the lower figure to the cumulative probability density of stay

Ps(ξ, t).

In order to compute equation (5.32) we may use numerical integration to eval-

uate the integral, or compute it directly using its (rather cumbersome) analytical

form which may be found in appendix B.

As mentioned before, the importance of this conditional distribution in the

model will be made clear in the next section, where we derive the PDE.

5.3 A stochastic PDE model

Now that we have the probability distributions in place we can proceed to derive

the partial differential equation for the revenue generated in the carpark. Pre-

viously, we have defined the V (Q,m; k) as the expected revenue generated from

bookings made after time tm for T k. Now, with a slight change in notation we

define V (Q, t;T ) as the instantaneous rate at which revenue is generated at time

t over the instant T .

Given that we are at time t our aim is to optimally sell the carparking spaces

of some future time T so that to maximise the expected revenues for that instant

T . We assume that all intermediate days do not affect the solution at T , i.e. that

there is only a single-resource (the instant T ) to optimise.

Let, Q(t;T ) be the number of spaces remaining for time T as of t. Then

our assumption implies that the expected value rate at T depends only on the

current time t and on the available spaces for that time instant Q(t;T ) only, with

zero dependence on the availabilities of the neighbouring times Q(t; T ) for any

T ∈ [t, T ].

This is in fact the only additional assumption that has to be imposed so that

we can easily formulate the continuous-time model. In reality such an assump-

tion can be reasonable when most bookings are for a single-day stay only; when
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Figure 5.8: Conditional probability and cumulative density of stay, ρs(ξ|z) and
Ps(ξ|z) on a given day t. Two classes, 1 and 2, are considered with λb1 = 5,
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intermediate effects from the nearby days might not be significant (see Ladany,

1976; Bitran and Gilbert, 1996).

Although we imposed this simplification to the problem, note that we still

deal with multiple-day requests whereby customers can book for any duration of

stay ξ (which is a continuous quantity). This in some respect, distinguishes our

work from the existing literature.

The average intensity at which bookings are made at time t to be present over

the instant T , f(t;T ), is given by

f(t;T ) =

(

∑

n

λbn

)

g(T − t, t). (5.33)

Then Q may be regarded as a jump process with jump size −1 (corresponding

to one sale), with Q(t = −∞;T ) = C be the initial carpark size. In particular,

over the next time interval dt, we sell one space with probability f(t;T ) dt+o(dt),

we do not sell a space with probability 1 − f(t;T ) dt − o(dt) and we sell more

than one space with probability o(dt). Omitting the terms of order less than dt

we may write the change in Q as

dQ =

{

0 with probability 1− f(t;T ) dt

−1 with probability f(t;T ) dt.
(5.34)

Therefore, according to equation (2.40) the differential of V (·) becomes

E [dV (Q, t;T )] =
∂V (Q, t;T )

∂t
dt+f(t;T )

(

V (Q−1, t;T )−V (Q, t;T )
)

dt. (5.35)

On the other hand, the expected change in the value rate is given by

E [dV (Q, t;T )] = −f(t;T ) dt
∫ ∞

0

ρs(ξ|T − t, t) Ψ(ξ) dξ, (5.36)

the average cashflow rate per customer at t generated from bookings present at

T multiplied by the expected demand intensity. The minus sign indicates that as

time progresses the value remaining for the carpark on day T reduces. However,

the value that is lost when going from t to t+ dt is realised as generated revenue

from customers within this period. Therefore, the rate at which the value reduces

is exactly inversely proportional to the rate at which the revenue is generated as

time passes.
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Equating (5.35) and (5.36) we obtain the differential equation for the rate at

which cashflow is generated at t for cars present at T

∂V

∂t
+ f(t;T )

(

V (Q− 1, t;T )− V (Q, t;T )
)

= −f(t;T )
∫ ∞

0

ρs(ξ|T − t, t) Ψ(ξ) dξ

(5.37)

Equation (5.37) has a corresponding final condition that at time T the remaining

value rate is zero. Also there is a boundary condition on the capacity stating that

the value remaining for time T is zero when there are no more free spaces in the

carpark for that day. Mathematically, the two conditions are expressed as

V (Q, T ;T ) = 0 ∀Q (5.38)

V (0, t;T ) = 0 ∀t. (5.39)

Therefore, the PDE in (5.37) is solved backwards in time and its solution gives

the expected rate at which revenue is generated for the instant T as observed at

time t. This solution corresponds to a carpark where no optimisation policy is in

effect and there is no restriction on the duration of stay for the customers.

5.3.1 A time-invariant model

In a time-invariant setting all days are the same in the sense that the probability

distributions are kept identical, irrespective of the day we are at (t) or the day

we target to optimise (T ). Then there is no point in having explicit reference to

either t or T as the only timescale that matters the most is the time lag between

them τ = T − t. If then f(τ) denotes the expected intensity of bookings to be

present τ days later, the resulting model is

∂V

∂τ
+ f(τ)

(

V (Q, τ)− V (Q− 1, τ)
)

= f(τ)

∫ ∞

0

ρs(ξ|τ) Ψ(ξ) dξ, (5.40)

where the V (Q, τ) is now defined as the rate at which value is generated for a

future instant when there is τ time remaining. The corresponding initial and

boundary conditions are given by

V (Q, 0) = 0 ∀Q (5.41)

V (0, τ) = 0 ∀τ. (5.42)
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5.3.2 Rejection policy

For the stationary model in (5.40) we are able to derive a rejection policy that is

based on the length of stay of the customers. In fact, to maximise the expected

value rate we accept a customer only if its corresponding price rate Ψ is higher

than or equal to some optimal minimum price rate Ψ∗ set by the carpark manager.

Since, there is a one-to-one correspondence between the price Ψ(·) and the length

of stay ξ, with the price rate monotonically decreasing in ξ, we can apply the

rejection policy with regards to the latter. In other words, we accept a customer

only if its duration of stay ξ is less than or equal to some optimal maximum

duration of stay ξ∗.

In fact, the proportion of customers that are present τ days later and do not

stay for more than ξ∗ days is precisely given by Ps(ξ
∗|τ) which has been derived

in (5.32) previously.

Then the intensity of bookings that require to be present τ days later and will

get accepted is given by

f(τ)Ps(ξ
∗|τ). (5.43)

The term in (5.43) may be interpreted as the instantaneous booking acceptance

rate for customers present τ days later.

Similarly, the average cashflow rate per customer generated from the accepted

customers that are present τ days later is given by

∫ ξ∗

0
ρs(ξ|τ) Ψ(ξ) dξ

Ps(ξ∗|τ)
. (5.44)

Multiplying the number of accepted customers (5.43) with the average price per

accepted customer (5.44) we obtain the average instantaneous cashflow rate gen-

erated from accepted customers present τ days later,

f(τ)

∫ ξ∗

0

ρs(ξ|τ) Ψ(ξ) dξ. (5.45)

Therefore, the PDE becomes

∂V

∂τ
+ f(τ)Ps(ξ

∗|τ)
(

V (Q, τ)− V (Q− 1, τ)
)

= f(τ)

∫ ξ∗

0

ρs(ξ|τ) Ψ(ξ) dξ. (5.46)

We can express (5.46) as a HJB equation (see section 2.3.3), where the control
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is the duration of stay ξ. In particular, we have

∂V

∂τ
= max

ξ

{

f(τ)Ps(ξ|τ)
(

V (Q− 1, τ)− V (Q, τ)
)

+ f(τ)

∫ ξ

0

ρs(ξ
′|τ) Ψ(ξ′) dξ′

}

,

(5.47)

with the boundary conditions

V (Q, 0) = 0 ∀Q (5.48)

V (0, τ) = 0 ∀τ. (5.49)

The solution to the optimisation problem in equation (5.47) is the optimal value

rate V (Q, τ) and the values Ψ(ξ∗), with ξ∗ = ξ∗(Q, τ), that achieve the supremum

form the optimal rejection policy.

Since the model in equation (5.47) is based upon the stochastic process Q we

may refer to it as the stochastic PDE or simply the PDE approach.

The PDE model seems to be closer to a dynamic pricing problem seen in

the literature because the price varies continuously as a result of changing the

maximum allowed stay ξ. However, we notice that the demand is not directly

affected by the price but it rather gets truncated so that only customers who pay

more than a minimum amount are accepted. This might then indicate some form

of dynamic capacity control as the entire demand flow is still observed but we

limit the available products (by restricting the length-of-stay) in such a way that

only part of this demand gets through.

Let us now differentiate (5.46) with respect to the control ξ∗ to obtain

V (Q, τ)− V (Q− 1, τ) = Ψ(ξ∗). (5.50)

This is equivalent to the condition (4.22) derived in the discrete-time case and it

verifies that the optimal price charged should equal the corresponding opportunity

cost. The only difference is that the PDE model regards each day individually

and optimises with no reference to the neighbouring days.

Therefore, the optimal rejection policy for a given day T can be alternatively

expressed as a dynamic bid-price table1 where the bid price is equal to the ex-

pected marginal value

π(Q, τ) = ∆V (Q, τ), (5.51)

1For a small but finite choice of ∆τ .
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for every Q = 0, 1, . . . , C and τ ∈ [0, T ].

5.3.3 Numerical scheme

We may use an explicit finite difference scheme to solve this PDE. For details on

this numerical technique the reader is referred to Smith (1985).

Firstly, we construct the mesh. In this stationary case the mesh has only two

dimensions, the advance-time τ and the capacity remaining Q. Suppose that the

domain we will work on is rectangular with τ ranging from 0 to T and Q ranging

from 0 to C. Divide [0, T ] into K equally spaced intervals at τ values indexed by

k = 0, 1, . . . , K. Similarly, we divide [0, C] into C equally spaced intervals at Q

values indexed by j = 0, 1, . . . , J , so that we move with integer steps in space as

parking spaces cannot be sold in fractions. The length of these intervals is ∆τ in

the time direction and ∆Q = 1 in the state direction such that τk = k∆τ ∀k and

Qj = j ∀j. We seek an approximation to the values of V at the (K+1)× (C+1)

grid points.

Therefore,

V (Qj , τ
k) = V (j, k∆τ) ≈ vkj ,

where v is a 2D array.

Similarly, if [0, ξmax] is the domain for the length of stay ξ, we may divide it

into I equally spaced intervals of length ∆ξ such that we have ξi = i∆ξ for every

i = 0, 1, . . . , I.

Then, we may approximate the conditional probability distribution Ps(·) by

Ps(ξ
i|τk) = Ps(i∆ξ|k∆τ) ≈ pki .

Moreover, the average intensity in equation (5.33) may be written as

f(τk) = f(k∆τ) ≈ fk.

Consequently, the integral term on the RHS of the equation (5.46) may be

written as

∫ ξi

0

ρs(ξ
′|τk) Ψ(ξ′) dξ′ =

∫ i∆ξ

0

ρs(ξ
′|k∆τ) Ψ(ξ′) dξ′ ≈ rki

The next step is to approximate the partial derivative of v at each grid point.
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More precisely, we use a forward divided difference in time to write it as

∂v

∂τ
=
vk+1
j − vkj
∆τ

.

Combining, the above we may write the numerical scheme as

vk+1
j = vkj + fk max

i

{

pki (v
k
j−1 − vkj ) + rki

}

∆τ,

with the boundary conditions

v0j = 0 ∀j (5.52)

vk0 = 0 ∀k. (5.53)

This is an explicit scheme as one could then proceed to calculate explicitly all

the (unknown) vk+1
j ’s from the already computed (and thus known) vkj ’s and

recursively obtain u for the entire grid. Note that such a numerical scheme will

lead to a first order convergence in time.

5.3.4 Exhaustive PDE algorithm

Under this scheme, the calculation of the optimal solution depends on iterating

for the optimal value ξ∗ at each time and state point. It performs an exhaustive

linear search for the optimal ξ value. In particular, for every point in the grid

it searches through all possible length of stays (all i’s), one at a time, until it

identifies the one that maximises the value function. Note that each value pki

requires solving an integral (equation 5.32) or evaluating the complex analytical

form derived in appendix B. Similarly, each value rki requires solving the integral

term on the RHS of the equation (5.46). Thus, it will be very time inefficient to

calculate the pki and rki values every time we need them. Therefore, we find it

convenient to calculate all values pki and rki for all i, k at the beginning and store

them into 2D arrays denoted by p and r, respectively. Appendix C illustrates a

novel approach as to the manner at which these calculations can be performed.

The resulting matrices p and r will be of the form shown in figure 5.9.
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Figure 5.9: 2D matrices p (left) and r (right) as functions of the length-of-stay
ξ and time left τ , with λb1 = 5, λa1 = 1/14, λs1 = 1/7, λb2 = 25, λa2 = 1/3,
λs2 = 1.

The algorithm is explained below:

1. Calculate the integrands and fill in the arrays p and r.

2. Set the time τk starting from k = 0 (initial condition) to k = K

3. Set the capacity j starting from j = 0 (boundary condition) to j = C

4. Calculate

vkj = vk−1
j + fk−1max

i

{

pk−1
i (vk−1

j−1 − vk−1
j ) + rk−1

i

}

∆τ

5. Go to step 3 C times.

6. Go to step 2 K times.

The exhaustive PDE algorithm is guaranteed to find the optimal solution.

However, searching through to find the optimal value in this manner may poten-

tially be time consuming as it depends on the number of discretised points I it

has to go through.

5.3.5 Value-policy PDE algorithm

Next, we propose a more efficient method that can identify the optimal ξ without

the need of any iterations. This idea is actually simple and it is based on the
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optimal condition (5.50). In particular, through this relationship the optimal ξ∗

value at a grip point may be directly calculated by

ξ∗(Q, τ) = Ψ−1
(

V (Q, τ)− V (Q− 1, τ)
)

,

since Ψ(·) is an invertible function. As such we end up with the optimal policy

by completely avoiding any iterations. The proposed algorithm is as follows:

1. Calculate the integrand and fill in the matrix r.

2. Set the time τk starting from k = 0 to k = K.

3. Set the capacity j starting from j = 0 (boundary condition) to j = C

4. Set ξ using

i = ξkj = Ψ−1(vk−1
j − vk−1

j−1 )

5. Calculate

vkj = vk−1,r
j + fk−1

(

Ps(ξ
k
j |τk−1) (vk−1,r

j−1 − vk−1,r
j ) + rk−1

i

)

∆τ

6. Go to step 3 C times

7. Go to step 2 K times.

This method is expected to perform much faster than the exhaustive linear

search. Note that in contrast to the exhaustive PDE algorithm, here we can

use the analytical form of Ps(ξ|τ) because there will be no iterations to slow the

process down. This achieves a further reduction in computation time as only the

array r has to be pre-computed.

In conclusion, both schemes are derived using explicit finite differences, thus

the convergence is expected to be of order O(∆τ).

5.4 A deterministic model based on Pontryagins

maximum principle

Recall the stochastic PDE in equation (5.40),

∂V

∂τ
+ f(τ)

(

V (Q, τ)− V (Q− 1, τ)
)

= f(τ)

∫ ∞

0

ρs(ξ|τ) Ψ(ξ) dξ, (5.54)
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with the boundary conditions

V (Q, 0) = 0 ∀Q (5.55)

V (0, τ) = 0 ∀τ. (5.56)

The stochastic nature of the PDE comes from the fact thatQ is a jump process

with integer jump size 1 corresponding to one sale or no sale of a parking slot.

This resulted in expected marginal values of the form V (Q, τ) − V (Q− 1, τ). If

we could rather sell fractions of spaces, the change in remaining value created by

selling the next fraction ∆Q of a slot is given by

V (Q, τ)− V (Q−∆Q, τ).

Then, the relevant marginal value is

V (Q, τ)− V (Q−∆Q, τ)

∆Q
.

As we allow for finer and finer choices of ∆Q the capacity effectively becomes a

continuous quantity and in the limit as ∆Q → 0 we obtain

lim
∆Q→0

V (Q, τ)− V (Q−∆Q, τ)

∆Q
=
∂V

∂Q
.

In other words, when we treat Q as a continuous quantity the expected

marginal values can be computed by the partial derivative of V with respect

to Q (assuming that such a derivative exists).

Therefore, (5.46) is transformed into

∂V

∂τ
+ f(τ)

∂V

∂Q
= f(τ)

∫ ∞

0

ρs(ξ|τ) Ψ(ξ) dξ. (5.57)

Finally, we may optimise this PDE by imposing a control on the length of

stay ξ as before, which gives

∂V

∂τ
= max

ξ

{

f(τ)

∫ ξ

0

ρs(ξ
′|τ) Ψ(ξ′) dξ′ − f(τ)Ps(ξ|τ)

∂V

∂Q

}

. (5.58)
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5.4.1 Applying the maximum principle

An alternative way to express the problem in (5.58) is

max
ξ

∫ T

0

r(ξ(τ), τ) dτ (5.59)

subject to dQ = f(τ)Ps(ξ|τ) dτ,
Q(τ = T ) = C, (5.60)

where the revenue rate is

r(ξ(τ), τ) = f(τ)

∫ ξ

0

ρs(ξ
′|τ) Ψ(ξ′) dξ′. (5.61)

In this representation, time is in reverse, meaning that T should be regarded

as the maximum time remaining until the day we seek to optimise. The idea here

is that at the beginning of the booking horizon (T time before) no spaces have

been sold yet which means that the number of spaces remaining at this point

is the entire carpark capacity C i.e. Q(τ = T ) = C. As we move towards the

target day, spaces are getting sold to customers, effectively reducing the remaining

spaces in the carpark. On the target day, we would have either sold the entire

number of spaces or we would be left with a few unsold spaces (Q(τ = 0) ≥ 0).

The objective is to find the optimal selling rate of the spaces (optimal trajectory

for Q) so that the generated revenue is maximised.

Also notice that from this representation it is made clear the state process Q is

deterministic, as it changes continuously and deterministically with time. Thus,

to solve this model we apply the Pontryagins maximum principle, as discussed

in section 2.3.2. As such we may refer to the PDE in (5.58) as the Pontryagins

method, in order to distinguish it from the PDE model derived in the previous

section 5.3.

The corresponding Hamiltonian H is thus given by

H(ξ(τ), λ(τ), τ) = f(τ)

∫ ξ

0

ρs(ξ
′|τ) Ψ(ξ′) dξ′ + λ(τ)

(

f(τ)Ps(ξ|τ)
)

. (5.62)
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The equations of motion are

dλ

dτ
= −∂H

∂Q
(5.63)

dQ

dτ
=
∂H
∂λ

= f(τ)Ps(ξ|τ). (5.64)

Clearly, H is differentiable in ξ which means that the optimal price ξ∗(τ)

satisfies
∂H

∂ξ∗
= 0, (5.65)

or after simple calculation

λ(τ) = −Ψ(ξ∗(τ)). (5.66)

Moreover, from the equation of motion for λ (5.63) we have

∂λ

∂τ
= 0,

because the Hamiltonian does not depend on Q. Thus, the optimal path for λ

along the optimal Q-trajectory is in fact a constant value. Therefore, using this

result in conjunction with (5.66) we deduce that the optimal price Ψ(·) has to

be constant itself; this happens only if the optimal length of stay ξ∗ is constant

along the optimal Q-trajectory.

Therefore, when the problem is deterministic we have shown that the optimal

price policy is fixed-price policy; when the total demand to come is greater than

the capacity this is the run-out price, Ψ0, at which we sell exactly the entire

capacity and when the total demand is less that capacity this becomes the revenue

maximising price, Ψ∗. This result is also verified in Gallego and van Ryzin (1994)

and has been illustrated in section 3.4.2.2.

5.4.2 Solution of the deterministic problem under the two

cases

Under the deterministic setting the problem is greatly simplified. In this section,

we examine our strategy in the two possible scenarios.

When the expected total demand to come is less than the carpark capacity C

then the problem is trivial because we maximise the revenues by letting ξ∗ → ∞
so that Ψ∗ → ψ1. In this case all customers are accepted irrespective of their
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duration of stay.

However, when the expected total demand to come is greater than the carpark

capacity C, there should exist a constant pricing policy under which we can sell

all the spaces exactly. Mathematically this implies that the optimal policy should

result in Q(τ = 0) = 0.

First, let us write down the initial value problem (IVP) that arises from the

equation of motion for Q (5.64)

dQ

dτ
= f(τ)Ps(ξ|τ), Q(τ = T ) = C. (5.67)

If we solve the IVP problem for a fixed value of ξ we obtain

Q(τ ; ξ) = C −
∫ T

τ

f(τ ′)Ps(ξ|τ ′) dτ ′.

Then, at expiry (τ = 0) the remaining unsold spaces are given by

Q(0; ξ) = C −
∫ T

0

f(τ ′)Ps(ξ|τ ′) dτ ′.

We know that, if we have used the optimal length of stay ξ∗ we would sell the

entire inventory exactly and therefore we would have

Q(0; ξ∗) = C −
∫ T

0

f(τ ′)Ps(ξ
∗|τ ′) dτ ′ = 0.

Let us define the function F as

F(ξ) = C −
∫ T

0

f(τ)Ps(ξ|τ) dτ. (5.68)

Then, at the optimal ξ∗ we must have

F(ξ∗) = 0. (5.69)

This suggests the implementation of the Newton-Raphson method to find the

root of F , i.e. the optimal value ξ∗.

Finally, we can substitute the optimal ξ∗ in equation (5.59 ) to obtain the max-

imised total revenue rate generated within the time horizon T . More precisely,
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we evaluate the double integral

∫ T

0

f(τ)

∫ ξ∗

0

ρs(ξ|τ)Ψ(ξ) dξ dτ. (5.70)

Therefore, the algorithm to calculate the optimal value ξ∗ reads

Pontryagins algorithm

1. Set ξ = 0 at the beginning. This implies that no customers are accepted.

2. Solve the IVP problem in (5.67) using any numerical integration technique

and calculate the resulting F(ξ).

3. If ||F(ξ)|| < ǫ, where ǫ is the tolerance level, ξ∗ has been found and the

iterations terminate.

4. Otherwise, update guess on ξ using Newton-Raphson method (see Press

et al., 2009),

ξr+1 = ξr − F(ξr)

F ′(ξr)

5. Go to step 2.



Chapter 6

Numerical Results

6.1 Monte Carlo Results

Unless otherwise stated, the intensity parameters regarding the two customer

classes are set as follows:

The leisure booking class is given by

B1 ∼











λb = 5

λa = 1/14

λs = 1/7.

(6.1)

The business booking class is given by

B2 ∼











λb = 25

λa = 1/3

λs = 1.

(6.2)

Note: The leisure customers tend to book around two weeks in advance (1/λa)

and stay for around a week in the carpark (1/λs), whereas the business customers

book relatively close to the arrival day and stay on average for only a day. This is

a typical situation in the airport carpark where we encounter a high-percentage

of shorter length-of-stay customers averaging one day per customer.

128
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The total expected demand to be served per day can be calculated by

E[TD] =
∑

n

λbn
λsn

,

which in our scenario is 60 customers per day. In other words, we would expect

that carparks of size 60 or more should be sufficiently large to meet the customer

demand in the long run.

The parameters of the pricing function are set to

Ψ(·) ∼











ψ1 = 5

ψ2 = 10

µ = 1/5

(6.3)

chosen specifically to replicate the behaviour of pricing functions that are com-

monly used in practise. Under this set of parameters, Ψ(ξ) ranges from as 5 units

per day (when ξ → ∞) to 15 units per day (when ξ = 0).

Imagine we are at time t = 0 when the carpark starts its operations. We

seek to evaluate the expected revenue per day to be generated in the carpark.

We can present the expected revenue as of the current time t, ∀t = 0, . . . , 50.

Nonetheless, since intensities are stationary we find it more convenient to use a

reversed time index and illustrate our findings as functions of the time remaining

τ = T − t.

6.1.1 A First-Come-First-Served (FCFS) Policy

Let us first begin with the simplest case, where the carpark operates with a FCFS

policy. This policy is modelled mathematically by setting all entries of the bid-

price table to zero, so that the only restriction of the bookings is the capacity

availability. The carpark is initially assumed to accept bookings from only a

single customer class. Then, the two customer classes, 1 and 2, are combined to

obtain the general framework for our problem. Our results are based on Monte

Carlo and are averaged over 10000 paths.

Figure 6.1 shows the expected revenue to be generated on day T , as a function

of the time remaining. The left carpark corresponds to customers from the leisure

class only, while the right deals with customers of the business class only. We

observe that in both figures the expected revenues are concave and increasing in
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Figure 6.1: Expected revenue for a carpark on day T with τ days remaining
until T , using the FCFS policy. Single booking sets are used with the left figure
representing the leisure customer class and the right figure the business customer
class. The different lines correspond to different capacities remaining from 100
to 10 in steps of 10, top to bottom.

both the time remaining τ and capacity remaining Q. This is intuitively correct,

as one would expect to make greater profits if there are more spaces to sell and/or

if there is more time available until spaces are used. Looking at the business class,

we also note that a booking horizon of around ten days seems to be sufficient in

capturing the entire revenue from the business class, as by going further in the

past does not produce significant increase on the expected revenues. In contrast

the active booking horizon for the leisure class seems to span over fifty days in

advance due to the longer average pre-booking times of these customers.

Let us now allow customers from both customer classes to arrive at the

carpark. Figure 6.2 presents the resulting expected revenue as a function of

the time remaining. We observe that when capacity is abundant (Q > 60) all

booking requests from both customer classes are accepted. In this case the com-

bined expected revenue is the sum of the individual expected revenues of the two

customer classes and it is indeed increasing and concave in the time remaining.

However, when the capacity is scarce (expected demand is greater than capacity)

then this is no longer the case. In particular, for little time remaining (τ ≤ 5),

business bookings dominate and thus the expected revenues are shown to be in-

creasing. However, when there is much time remaining, the FCFS policy tends

to accept too many leisure customers which results in displacing some lucrative

business customers that would have arrived later in the horizon. As a result

the expected values in this region drop and therefore the expected revenue is no
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Figure 6.2: Expected revenue for a carpark on day T when there are τ days
remaining until T , using the FCFS policy. We use the combined booking set
which results by merging the two customer classes. The different lines correspond
to different capacities remaining from 100 to 10 in steps of 10, top to bottom.

longer an increasing function of the time remaining.

In order to understand the suboptimality of the FCFS policy we examine the

structural properties of the expected marginal value of the space ∆V (Q, τ) =

V (Q, τ)− V (Q− 1, τ). The two distributions in figure 6.3 illustrate ∆V (Q, t;T )

as a function of capacity remaining and time-to-go, respectively. The two figures

verify that expected value of the space is no longer a decreasing value of capacity

remaining nor it increases with the more time remaining.

In a 3D plot (figure 6.4) we can show the resulting surface of expected marginal

values for every Q and τ . The hump shown in the middle of the surface emphasises

the fact that within this region optimality is not satisfied.

In conclusion, the graphs in figure 6.5 summarise our findings by comparing

the three different carparks; a carpark that accepts customers only from the

leisure booking set (dashed line), only from the business booking set (dotted

line) and from the combined booking set (solid line). We notice that under the

FCFS policy, there are instances when the carpark accepting customers from the

combined booking set fails to generate higher revenues than the carpark with only

business customers. This is again because there is nothing stopping the leisure

customers filling up the spaces at the expense of the more profitable business

customers.
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Figure 6.3: Expected marginal value of the space on day T for the combined
carpark, as a function of the capacity remaining Q (left figure) and time remaining
τ (right figure), using the FCFS policy. The different lines in the left figure
correspond to different times remaining from 50 to 10 in steps of 10, right to left.
The different lines in the right figure correspond to different capacities remaining
from 10 to 100 in steps of 10, left to right.
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Figure 6.4: Expected marginal values for the FCFS policy, as a function of the
capacity remaining Q and the time left τ .
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Figure 6.5: Expected revenue on day T for carparks operating under a FCFS pol-
icy, as a function of the time remaining τ (upper figures) and capacity remaining
Q (lower figures). Each line corresponds to one carpark; one that operates with
only leisure customers (dashed line), with only business customers (dotted line)
and with a combined set of customers (solid line). The upper left figure is when
Q = 20 and the upper right figure when Q = 50. The lower left and lower right
figures correspond to having τ = 10 and τ = 50 respectively.

6.1.2 Implementing our Monte Carlo (MC) rejection pol-

icy

Instead of simply using a FCFS policy, we now set the bid prices equal to the

expected marginal values which have been calculated by the algorithm in section

5.1.3. Convergence of our results has been achieved and the algorithm terminated

after 15 iterations whereby the number of paths used reached 12672.

Figure 6.6 illustrates the optimal expected revenues in the carpark for the day

T as functions of the time remaining. It is clear that now the expected revenue

retains its desirable features; it is an increasing function of the time remaining

for all capacities.
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Figure 6.6: Expected revenue for the combined carpark on day T with τ days
remaining until T , using the MC policy. The different lines correspond to different
capacities remaining from 100 to 10 in steps of 10, top to bottom.

Moreover, figures 6.7 present ∆V (Q, τ) as functions of capacity and time

remaining. We notice that ∆V (Q, τ) maintains the desirable monotonicity prop-

erties; it decreases with capacity and increases with time left.

Once again, the optimised expected marginal values are presented in figure 6.8

as a 3D surface with respect to Q and τ . Compared to figure 6.4, the optimised

marginal values are lower in regions where capacity is large and higher in regions

where capacity is limited, to emphasise that the marginal values should adjust

according to the carpark state in order to maximise the expected revenues. The

bump that is seen along the first couple of capacities is created by the fact that

customers are charged for the entire day even though they are only staying for

fractions of a day.

Finally we provide a comparison between the FCFS policy and our improved

MC policy. The plots in figure 6.9 show the expected revenues generated by

the three carparks, as in figure 6.5, where we have added the expected revenue

generated under the MC rejection policy. It is clear, that our rejection policy

outperforms all other carparks for all times and capacities remaining. Looking

at the lower figures we note the manner at which the optimisation algorithm

worked to “fix” the region where the FCFS policy of a combined carpark was

losing out against a single carpark of only business customers (carparks of size
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Figure 6.7: Expected marginal value of the space for the combined carpark on day
T as function of the capacity remaining Q (left figure) and time remaining τ (right
figure), using the MC policy. The different lines in the left figure correspond to
different times remaining from 50 to 10 in steps of 10, right to left. The different
lines in the right figure correspond to different capacities remaining from 10 to
100 in steps of 10, top to bottom.
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Figure 6.8: Bid-price table with expected marginal values for the MC policy, as
a function of capacity remaining Q and time left τ .
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less than 60). In fact, it is within this problematic region where the optimisation

algorithm would have to perform well.

 0

 50

 100

 150

 200

 250

 300

 0  10  20  30  40  50

V
(Q

=
20

,τ
)

Time left, τ

 0

 100

 200

 300

 400

 500

 600

 0  10  20  30  40  50

V
(Q

=
50

,τ
)

Time left, τ

 0

 100

 200

 300

 400

 500

 600

 700

 0  10  20  30  40  50  60  70  80  90  100

V
(Q

,τ
=

10
)

Capacity remaining, Q 

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0  10  20  30  40  50  60  70  80  90  100

V
(Q

,τ
=

50
)

Capacity remaining, Q

Figure 6.9: Expected revenue for different carparks on day T as a function of the
time remaining τ (upper figures) and capacity remaining Q (lower figures). Each
line corresponds to one carpark; one that operates under a FCFS basis with only
leisure customers (dashed line), under a FCFS basis with only business customers
(dotted line), under a FCFS basis with a combined set of customers (solid line)
and under the implemented MC policy with a combined booking set of customers
(thick solid line). The upper left figure is when Q = 20 and the upper right figure
when Q = 50, both with τ = 50 days left. The lower left and lower right figures
correspond to having τ = 10 and τ = 50 respectively.

6.1.3 Convergence of the MC method

So far, we have considered a discrete-time model with the timestep being equal

to a day, i.e. ∆T = 1. In other words, if there was a booking request to arrive

on Wednesday at 22:00 pm and leave on Thursday morning at 08:00 am, the

system would reserve a space for the entire day of Wednesday and Thursday and

require the customer to pay the daily price for two days, even though the stay

would only lasted 10 hours. In the real world, however, a customer might require
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a space for two and a half days, for ten hours or even for thirty minutes and he

would expect to pay the corresponding price. Thus, our rejection algorithm has

to decide whether to accept the booking, according to the availability of spaces for

only the particular hours requested and not for the whole day period. This effect

can be captured by reducing the time interval ∆T in consideration. We would

expect that the finer the ∆T the more accurately we charge customers according

to their required duration of stay and thus these values should be decreasing and

eventually converge to the value when each customer is charged the exact amount

that corresponds to their exact duration of stay.

The pricing function can still calculate the price rate per day but D now refers

to the number of periods of length ∆T the customer is staying for. Therefore,

the price rate per day for a stay of D ∆T -periods is given by

Ψ(Di; ∆T ) = ψ1 + ψ2 e
−µD∆T , (6.4)

which is again a step function where the size of each step equals ∆T 1. One can

calculate the price rate per period of size ∆T by multiplying equation (6.4) by

∆T .

In figure 6.10 we show the convergence of the Monte-Carlo method for the

expected revenue of the carpark on time T as a function of the time remaining.

The different curves correspond to decreasing sizes ∆T (∆T = 1 is a day, ∆T =

0.0125 is 18 minutes). It seems that the expected revenues are behaving in the

right manner as the finer the ∆T is the less the resulting revenues. Again, this is

because as we reduce ∆T , customers are charged a price that better corresponds

to their desired length of stay.

1In fact, (4.14) is a special case of (6.4), with ∆T = 1.
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Table 6.1: Convergence of the MC approach. Computation times (in seconds).

∆T Comput. Time Iterations Paths

1.0 126.7 15 12672
0.5 268.8 16 17920
0.25 621.1 17 25342
0.125 1334.6 18 35780
0.0125 10832.3 18 35780

 0

 100

 200

 300

 400

 500

 600

 0  10  20  30  40  50

V
(Q

=
50

,τ
)

Time left, τ 

∆t=1
∆t=0.5

∆t=0.25
∆t=0.125

∆t=0.0125

Figure 6.10: Convergence in ∆T of the expected revenue generated by the MC
method. Figure shows the expected revenues as functions of the time left τ , for
a carpark with Q = 50 spaces remaining.

Table 6.1 shows the computation time it took to calculate the solution2 for

different sizes ∆T . The computation time increases linearly with ∆T . For the

case of ∆T = 0.0125 it took around three hours to compute the results. The

disadvantage of this method is then apparent as the MC solution takes too long

to compute the solution and thus it cannot be updated on a frequent hourly basis.

However, the solution is a dynamic set of marginal values which by definition do

no need to be frequently updated, perhaps this should be done just once every

day. We note that the number of paths and iterations might increase as ∆T

becomes finer.

As mentioned previously, the continuous-time methods can only be compared

with the MC discrete-time method in the limit, as the size of the interval goes to

2The solution is a 2D array showing expected revenues for capacities from 1 to 100 and
times from 0 to 50 in steps of ∆T .
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zero (∆T → 0). Therefore, for this comparison we will be using the converged

values of the MC method for ∆T = 0.0125 as the corresponding limiting value.

The expected revenues are shown in figure 6.11 as functions of the time re-

maining. Comparing this to figure 6.6 we observe that the expected revenues

have been reduced indicating that customers now tend to get charged a price

that better reflects their required duration of stay. Also note that the curves are

fewer indicating that we can satisfy the same demand with smaller carparks as

we can sell the same space to more than one person per day, effectively squeezing

in more customers.
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Figure 6.11: Expected revenues for the MC method as functions of the time
remaining τ , after setting ∆T → 0.0125. The different lines represent different
carpark sizes from 100 to 10 in steps of 10, top to bottom.

The resulting surface of expected marginal values is shown in figure 6.12.

We note that the surface now looks quite different from that in figure 6.8. In

particular, relatively large capacities now are assigned very low or zero marginal

values which indicates that now we can squeeze in more customers effectively.
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Figure 6.12: Resulting bid-price table with expected marginal values for the MC
policy after setting ∆T → 0.0125.

This set of marginal values will be used as the bid prices to approximate the

solution to the network problem. However, by looking closer at figure 6.12 and

particularly in a cross section of time (say τ = 30) we notice that for very small

capacities the expected marginal values are sloping downwards and they no longer

follow the increasing behaviour which arises from the inventory-monotonicity

property. Recall that for ∆T = 1 the properties are satisfied. Thus, the problem

arises by choosing ∆T to be smaller than a certain level. Let us investigate this

further.
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Figure 6.13: Expected marginal values with 50 days left as functions of the ca-
pacity remaining Q for different sizes ∆T .

Figure 6.13 shows the optimal expected marginal values for day T = 50 as

function of the capacity remaining. The different distributions represent different

sizes of ∆T . For ∆T = 0.5 the distribution shows monotonically decreasing

expected revenues with capacity. However, for smaller choices of ∆T the curves

seem to bend on the far left end and thus the inventory monotonicity property

is no longer satisfied. So, what is it that forces the model to converge in these

values, showing such a strange behaviour? This is because of the manner at which

the pricing function works. When we set ∆T = 1 to account for day intervals we

seek to extract the maximum price rate from the customers who stay for only one

day which is Ψ(D = 1; 1) = 13.18. For this to happen, we require the customer

not only to want to stay for ξ ≤ 1 but that they arrive and leave on the same day

(blue request in the top figure in 6.14). If their duration of stay crosses over two

days, then they will occupy two days and thus pay the price rate per day that

corresponds to two days, Ψ(D = 2; 1) = 11.70 which will in fact be lower (purple

request in the top figure of 6.14). Because the relatively big interval size such

single-day-length single-occupancy customers exist for all days in the horizon and

thus we allocate the last remaining spaces to them.

When ∆T = 0.5 in order to extract the maximum amount per day Ψ(D =

1; 0.5) = 14.04 we require the customer to arrive and depart such that his overall

stay covers only a single period, as shown in the middle figure in 6.14. In fact,



CHAPTER 6. NUMERICAL RESULTS 142

we require two such customers per day, one appearing after the other so that we

receive 2 times Ψ(D = 1; 0.5)∆T which gives 14.04. Fortunately, the simulations

generate such customers and therefore the expected marginal values have the

correct shape. However, for ∆T = 0.25 it becomes less possible to extract the

maximum amount Ψ(D = 1; 0.25) = 14.51; it is harder to find four customers

arriving one after the other who will stay for only a single ∆T period while not

crossing over to the neighboring periods. The simulations show that even when

such single- period customers are found, their request crosses over two periods (as

in the bottom figure of 6.14) and as a result the maximum attainable price-rate is

lowered to Ψ(D = 2; 0.25) = 14.04. This limitation creates that extra curvature

on the distributions. In fact, as ∆T tends to zero the customer requests might

cross more than two periods resulting in even lower maximum attainable price

rates.

One more fact that could potentially cause this effect is the decaying coefficient

µ of the pricing function. The greater this is, the greater the price differential

from a single-period stay to a two-period stay. If our choice of µ is small then the

algorithm might be indifferent in choosing between a single-period-stay customer

(if such a customer exists) and a two-period-stay customer because the price

differential is insignificant.

We conclude this section with some closing remarks on the Monte-Carlo

method. First, the rejection algorithm optimises the day by treating the problem

as a network problem whereby the decision on a booking request was taken after

examining all the days involved. Second, calculating the correct optimal expected

revenues using the MC approach is computationally intensive. This is because

the optimal revenues rely on our estimates of the expected marginal values (rejec-

tion policy) which are based on the large number of paths and iterations taken.

However, even after convergence is achieved the expected marginal value curves

(figure 6.7) are still not sufficiently smooth.

The MC method calculated the dynamic set of expected displacement costs

by taking into account the inter-dependence within the days. This set can be

used to make decisions on a daily basis for a sequence of days without having

to be frequently updated. If, however, the dynamic bid prices have to updated

frequently, such a method cannot be used due to the large computational time

of the method. Therefore, in the next section we examine the solution to the

derived PDE model and later the solution to the Pontryagins method.
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Figure 6.14: Three carparks that price according to day (∆T = 1), half-day
(∆T = 0.5) and quarter-of-day (∆T = 0.25) intervals. The figures show different
cases of bookings that require to stay for a length less than ∆T . According to
when they arrive, the blue bookings are allocated one period of stay whereas the
purple are allocated two.
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6.2 PDE Results

6.2.1 No optimisation

We begin by presenting the results for the case when no optimisation policy is in

place (equivalent to the FCFS policy seen in the previous section).

Figure 6.15 presents the resulting expected revenues as functions of the time

remaining for different remaining capacities. As in figure 6.2, the expected values

fail to be increasing in the time remaining indicating a sub optimality to this

(no optimisation) policy. Also, note that for capacities greater than 60, all curves

appear to be the same, emphasising the fact that we are now solving in continuous

time and thus larger capacities are not needed since cars may be allocated into

parking spaces more easily.
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Figure 6.15: Expected revenue for a carpark on day T when there are τ days re-
maining until T , using no optimisation. The different lines correspond to different
capacities remaining from 100 to 10 in steps of 10, top to bottom.

Furthermore, figure 6.16 shows the expected marginal value of the spaces as

functions of the capacity remaining (left) and time left (right). As before, the

suboptimality of the model is noticeable as ∆V (Q, τ) fails to be a decreasing

function of the capacity remaining nor does it increase in the time left. The

intuition here is that all customers are allowed entry with no preference with

respect to how much revenue they contribute to the system. So when the time

remaining is relatively large, the carpark accepts too many (leisure) low-paying
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Figure 6.16: Expected marginal value of the space for a carpark on day T as func-
tion of the capacity remaining Q (left figure) and time remaining τ (right figure),
with no optimisation in place. The different lines in the left figure correspond to
different times remaining from 50 to 10 in steps of 10, right to left. The different
lines in the right figure correspond to different capacities remaining from 10 to
100 in steps of 10, left to right.

customers and does not save enough spaces for the business customers that will

arrive later, which as a result reduces the expected revenues.

In a 3D plot in figure 6.17 we can show the resulting set of expected marginal

values for every Q and τ . The intuition here is similar to that in figure 6.4.

6.2.2 Optimal rejection policy implemented

Let us now solve the PDE with the rejection policy described by equation (5.50).

In figure 6.18 we present the resulting optimal expected values, while figure 6.19

shows our findings on the optimal rejection policy.

The marginal values behave in the correct manner now, implying that the

corresponding prices are closer to the optimal ones. In simple terms this means

that under our rejection policy the more profitable business customers are pri-

oritised for receiving service at the expense of the low paying leisure customers.

The distributions here are much smoother than those in the MC method, which is

obviously a desirable feature. Although the absolute values are slightly different,

the shape and behaviour of the curves is quite similar.

In a 3D plot (figure 6.20) we can show the resulting set of expected marginal

values for every Q and τ . This set of marginal values will be used as the bid

prices to approximate the solution to the network problem.
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Figure 6.17: Bid-price table with expected marginal values without optimisation,
as a function of capacity remaining Q and time left τ .
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Figure 6.18: Expected revenues on day T as functions of the time left τ after
implementing the optimal PDE policy. The different lines correspond to different
capacities remaining from 100 to 10, top to bottom.



CHAPTER 6. NUMERICAL RESULTS 147

 0

 2

 4

 6

 8

 10

 12

 14

 16

 10  20  30  40  50  60  70  80  90  100

∆V
(Q

,τ
)

Capacity remaining, Q

 0

 2

 4

 6

 8

 10

 12

 14

 0  10  20  30  40  50

∆V
(Q

,τ
)

Time left, τ

Figure 6.19: Expected marginal value of the space on day T as a function of
the capacity remaining Q (left figure) and time left τ (right figure), using the
optimisation policy. The different lines in the left figure correspond to different
times remaining from 50 to 10 in steps of 10, right to left. The different lines
in the right figure correspond to different capacities remaining from 10 to 100 is
steps of 10, top to bottom.
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Figure 6.20: Bid-price table with expected marginal values from the optimal PDE
policy, as a function of capacity remaining Q and time left τ .
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6.2.3 Further investigation on the rejection policy

In this section we seek to further investigate the PDE solution. In particular, we

shed light to the shape of the optimal rejection policy and examine how this is

affected by the various model parameters. Unless otherwise stated all parameter

values in the following figures are set according to equations (6.1), (6.2) and (6.3).

Let us first begin by reviewing figure 6.20. What we observe is a surface that

is increasing in both the time left and the capacity remaining, while it smooths

out to zero after a certain region. In fact, this happens around capacity 60 which

has been the expected total demand under the set of parameters chosen. Looking

closer to this figure, and by focussing on the slice τ = 50 in particular, we may

notice a profound hump around the capacity 60 but also a smaller one (barely

visible) at capacity 25.

As we will see below, this phenomenon is related to the expected demands

of the single customer classes that constitute the combined set. So let us first

start by investigating the solution of the PDE when only a single class is used

at a time. In figure 6.21 we present the optimal rejection policies as these result

from considering (a) only leisure customers and (b) only business customers in

the carpark. In the case of the leisure class the expected marginal value of the

space is nonzero for any carpark size less than around 35. This is because under

our choice of parameters the expected total demand to come from the leisure class

is λb1/λs1 = 35, implying that any excess capacity has little or zero value. Note

that after 35 the expected marginal values, although close to zero, may still be

positive to compensate for the stochastic nature of the problem. Similarly, for the

business carpark the expected marginal values drop to zero after 25 which is the

total expected demand for this class (λb2/λs2 = 25). The two distributions seem

to differ in the general structure, a fact that emphasises the difference in customer

behaviour between the these two customer classes (i.e. they have different average

pre-booking times, average length of stays).

Let us examine in greater detail these differences. In figure 6.22 we plotted

the expected marginal values at τ = 50 for the leisure class and the business

class when treated in isolation. For the leisure class the hump is clearly visible

around capacity 35 and the expected marginal value of the spaces at this point is

roughly 5 currency units which is indeed the long term price rate (according to

our pricerate function parameters) when customers are allowed to stay for long

periods. What actually happens in this case is that when there are only a small



CHAPTER 6. NUMERICAL RESULTS 149

 0
 20

 40
 60

 80
 100  0

 10
 20

 30
 40

 50

 0

 3

 6

 9

 12

∆V(Q,τ)

Q
τ

 0
 20

 40
 60

 80
 100  0

 10
 20

 30
 40

 50

 0
 3
 6
 9

 12
 15

∆V(Q,τ)

Q
τ

(Leisure) (Business)

Figure 6.21: Optimal expected marginal values as functions of the capacity re-
mainingQ and time left τ . The left figure corresponds to a carpark with customers
from only the leisure class while the right figure to a carpark with customers from
only the business class.

number of spaces we accept the leisure customers with shorter stays who bring

higher rates into the carpark. For larger carparks, however, the leisure demand

of only short stays in not enough to fill the carpark and thus we tend to accept

leisure customers with longer stays, which eventually lowers the marginal values.

By capacity 35 we would have accepted all potential customers, meaning that

any length of stay has been allowed and due to the long-stay leisure behaviour

the price rate approaches the long term rate set by the manager. However, in

the business carpark the situation is slightly different. For the business class, due

to the shorter stays the average price is higher on average. In particular, when

there are few spaces remaining we accept short-stay business customers and thus

the pricerate function calculates a higher rate. Even for larger carparks because

of the characteristics of the business class there is still demand to come and stay

for short periods, which justifies the slow decrease in the marginal value of the

space. However, for even larger carparks, greater than around 25, the demand

cannot fill out all spaces and thus the marginal values of the spaces drop rapidly

to zero.

To support the above arguments, figure 6.23 is provided to illustrate the effect

of varying the staying intensity λs of the leisure class, which is achieved by varying

the average length of stay ξ̄ = 1/λs.

If we now combine the two customer classes the resulting distribution (figure

6.24) shows some interesting behaviour. For capacities less than 25, priority goes
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Figure 6.22: Optimal expected marginal values with 50 days left, as functions of
the capacity remaining Q, for two carparks operating with only leisure customers
(dashed line) and only business customers (solid line).
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Figure 6.23: Effect on the expected marginal values of varying the staying in-
tensity λs. We consider customers from a single class only, with λb = 5 and
λa = 1/14.
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Figure 6.24: Optimal expected marginal values for a carpark with customers
from both customer classes. We also plot the corresponding business class and
the leisure class adjusted 25 units towards the right.

to the more high-paying business customers thus the spaces are kept highly priced.

If however the carpark is large enough to meet all the business class, then there

might be free spaces to serve some of the leisure demand too. Therefore, the

expected marginal values adjust according to the leisure demand in this region.

Roughly speaking, it is as if the leisure curve appears after the business curve

with a lag of 25 units. (One may visualise this from figure 6.24 where we show

the leisure curve placed 25 units further on the right.) Finally, when the carpark

is so large that it can satisfy all the demand from both classes, the surplus spaces

are worth very little and eventually worthless.

Now that we have explained the core of the solution we can return back to

our main problem with the two customer classes combined and investigate the

effect on the expected marginal values curves by changing some of the model’s

parameters. We believe that the shape of the rejection policy is affected in three

manners;
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Figure 6.25: Effect on the expected marginal values of changing the expected
total demand E[TD]. In this figure we change the expected total demand by
changing the combination of booking intensities λbn of the two classes, while all
other parameters are fixed.

1. Horizontal Shift:

The rejection policy widens/shrinks: This is the result of varying the ex-

pected total demand of the combined customers. The greater this is, the

wider the curve will become as more spaces will be needed to satisfy the

demand and thus more spaces gain value. To justify this we provide the

reader with figure 6.25 where we present the shape of the rejection policy

at τ = 50 as function of the capacity for varying expected total demand

E[TD].

2. Vertical Shift:

The rejection policy moves up or down according to the choice of µ, the

decaying coefficient in the price-rate function. The bigger this is the greater

the price differential between e.g. one-night and two-night stays. This

implies that the expected-marginal-value curve slopes further downward to

ensure that for greater capacities the restriction should be loosened further.

The argument is supported by figure 6.26 where we present the expected

marginal value for varying choices of µ.

3. Balance between the customer classes:

The rejection policy is affected by the ratio of the booking intensities of
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Figure 6.26: Effect on the expected marginal values of changing the decaying
coefficient µ of the price-rate function.
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Figure 6.27: Effect on the expected marginal values of changing the ratio of the
booking intensities of the two customer classes. In all tests we ensure that the
expected total demand is kept fixed at E[TD] = 60, while all other parameters
are also fixed.
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the two customer classes. Since each booking class represents different

customer behaviour in terms of pre-booking times and length of stays, the

way these classes appear in the combined set should certainly affect the

resulting policy. When business customers dominate, the resulting values

are a combination of the marginal values of the two single customer class

with a greater weight on the business one. Alternatively, the situation

reverses if leisure customers dominate over the business ones. In figure 6.27

we examine this effect for various combinations of the booking class while

making sure that we kept the expected total demand the same in all cases.

6.2.4 Solution analysis: numerical integrity

Table 6.2: PDE optimal solution. First order convergence in time dimension for
the two numerical schemes.

Exhaustive search Value-policy

∆ξ ∆τ V (Q = 30, τ = 50) (%) Rel. Diff V (Q = 30, τ = 50) (%) Rel. Diff

0.0125

0.05 334.723 − 334.723 −
0.025 333.619 0.3308 333.619 0.3308

0.0125 333.090 0.1589 333.090 0.1589

0.00625 332.830 0.0780 332.830 0.0780

0.003125 332.702 0.0387 332.702 0.0387

Table 6.2 shows the convergence for the two PDE algorithms. To obtain these

results we set the control discrete step to ∆ξ = 0.0125 and we vary the time step

from 0.05 to 0.003125. The convergence is shown for the point V (Q = 30, τ = 50).

As we notice both methods give identical results with the percentage relative

difference to be decreasing linearly with halving the timestep, justifying that the

convergence is of order O(∆τ). In particular, for ∆τ = 0.003125 the relative

percentage difference drops to less than 0.05% indicating that the solution is

correct in three significant figures.

Although, the two methods agree at the “final” solution, the computational

times have not been the same, with the value-policy scheme needing only one

third of the time to compute the full solution. Relevant results may be seen in

table 6.3 where we present the computational times needed to calculate the entire

solution for C = 1, 2, . . . , 100 and τ = [0, 50] using ∆ξ = 0.025. The computation

time improvement of the value-policy scheme is explained by two factors: First,
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Table 6.3: PDE optimal solution. Computation times (in seconds) of the two
numerical schemes for different grids.

∆ξ ∆τ Exhaustive search Value-policy

0.025

0.05 5.541 1.955
0.025 11.912 3.820
0.0125 24.579 7.491
0.00625 51.433 14.707
0.003125 111.111 29.321

Table 6.4: Pre-calculation of matrices p and r. Computation times (in seconds)
for different grids.

∆τ

∆ξ 0.05 0.025 0.0125 0.00625 0.003125

0.05 0.88 1.75 3.54 7.1 13.86
0.025 1.76 3.48 6.97 13.88 27.75
0.0125 3.49 6.93 13.99 27.8 55.46

obtaining the optimal ξ′s to use at each point in the mesh requires no iterations

as it comes directly out of equation (5.50). Second, that we do not have to iterate

in order to obtain the result means that we can use the analytical solution of the

conditional density of stay instead (5.32), which is found in appendix B. This

achieves a further reduction in time as only the r matrix has to be pre-calculated.

To show the extent at which the pre-calculation of matrices p and r affects

the total computation time we provide table 6.4. For example, when we take

the pair ∆ξ = 0.025 and ∆τ = 0.0125 we observe that the time needed to

pre-calculate both p and r has been just below 7 seconds. Note that since the

computational work is roughly the same for both matrices we expect around 3.5

seconds to have been consumed for each of the matrices in isolation. Looking at

the corresponding time it took for the exhaustive search method to compute the

entire solution (24.5s in table 6.3) we deduce that it needed around 17 additional

seconds; the combined effect of iterations to find ξ∗ and evaluation of the finite

difference grid. On the other hand, the value-policy method only took 7.5 seconds

in total, which is the combined sum of around 3.5 seconds to pre-calculate r (as

p does not need to be pre-calculated) and additional 4 seconds for the evaluation

of the finite difference grid by using the optimal ξ’s directly.

Lastly, table 6.5 examines the effect on the optimal solution of changing the

size ∆ξ. For these results we have used ∆τ = 0.003125. We notice that changing
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the discrete step from 0.1 to 0.0125 we improve the solution by just 1 significant

figure, from total five to six. This indicates that the discrete step ∆ξ does not

play a major role in forming the final result.

Table 6.5: Effect on the solution of changing the size of the control step ∆ξ.

∆ξ V (Q = 30, τ = 50) (%) Relative Diff

0.1 332.7004082 −
0.05 332.7013901 2.9× 10−4

0.025 332.7016286 7.0× 10−5

0.0125 332.7016878 2.0× 10−5

6.3 Pontryagins deterministic results

In this section we examine results using the Pontryagins method. As before, we

begin by showing some results for the case where no optimisation is implemented,

and thus all customers are allowed to stay based on a FCFS order. Once again the

objective is to maximise the revenue to be generated on a day T given that there

are τ = 50 days left until T . Figure 6.28 shows the deterministic trajectories of

the selling of spaces as a function of the time remaining τ for different carpark

sizes C. On the far right we start with an empty carpark and 50 days to sell the

spaces (Q(τ = 50) = C). As time progresses we sell the spaces at the rate shown

by a particular trajectory. What we observe is that for carparks of size 60 and

more (which is the expected total demand under the set of parameters used) the

total demand to come within a 50 day window is lower than the capacity and as

a result there are unsold spaces. However, in the region of carpark sizes of 60

and less, we sell the spaces too early in the horizon leaving the carpark with no

empty spaces, while there is still much time remaining until T . This behaviour

is problematic as we do not fully exploit the more profitable business customers

who tend to arrive later closer to T . Recall that it is in this region where the

Pontryagins maximum principle is implemented in order to optimise the selling

rate of the spaces.
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Figure 6.28: Non-optimised deterministic trajectories for the selling of the spaces.
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Figure 6.29: Optimal deterministic trajectories for the selling of the spaces.

In figure 6.29 we present the optimal deterministic trajectories of Q as func-

tions of the time left τ , for varying carpark sizes C. Initially (τ = T = 50) the

carpark has the entire capacity available (i.e. Q(τ = 50) = C). As time pro-

gresses the spaces are getting optimally sold effectively reducing the remaining

spaces Q. At the target day (τ = 0) we would have either sold the entire capacity

(Q(τ = 0) = 0) or are left with unsold capacity (Q(τ = 0) > 0). For the tra-

jectories that are left with zero capacity, we have that demand was greater than
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Table 6.6: Optimal fixed lengths of stays ξ∗ for the Pontryagins method, under
two numerical schemes.

C Euler method Runge-Kutta 4th order method Absolute % difference

1 0.30794 0.30797 0.0078
5 0.80140 0.80143 0.0039
10 1.31566 1.31570 0.0030
15 1.87463 1.87468 0.0027
20 2.57408 2.57416 0.0031
25 3.57991 3.58003 0.0034
30 5.21663 5.21683 0.0038
35 7.63024 7.63046 0.0029
40 10.50440 10.50460 0.0019
45 13.91750 13.91770 0.0014
50 18.48930 18.48940 0.0005
55 26.58190 26.58190 0.0000
56 29.55280 29.55270 0.0003
57 34.07530 34.07480 0.0015
58 44.82300 44.81980 0.0071
60 ∞ ∞ ∞
70 ∞ ∞ ∞
80 ∞ ∞ ∞

capacity and thus space optimisation was implemented to control the maximum

length of stay ξ allowed. For the remaining trajectories, capacity was abundant

and therefore no restriction on the allowed length of stay ξ has been imposed.

Recall that along each Q-trajectory the optimal value for ξ∗ is constant. Table

6.6 presents the optimal values of ξ∗ for a carpark with initial capacity C and

τ = 50 days left. Two numerical methods for solving the IVP problem in (5.67)

are shown; the Euler method and the 4th order Runge-Kutta method (see Butcher,

2008).

As expected, the smaller the initial capacity, the more tight the restriction

of the optimal maximum ξ∗. This is because, when capacity is scarce we should

protect the spaces from low-paying customers so that we can sell them at higher

price. On the other hand, for capacities of more than 60, no restriction on prices

is needed and therefore the optimal ξ∗ is infinite (all customers accepted). The

Euler method is the more desirable method (among the two presented) when

speed is concerned; the computations took 5.61 seconds using the Euler method

and 8.81 seconds using the Runge-Kutta method. If accuracy is more important

however the Runge-Kutta 4th order method might be more appropriate, although

for a small timestep the relative percentage difference of the solutions has never

been more than 0.008%, which may be regarded as insignificant.
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Table 6.7: Calculate the optimal fixed length of stays ξ∗. Computation times (in
seconds) for the two numerical schemes.

∆τ Euler method Runge-Kutta method

0.05 0.868 1.647
0.025 1.904 3.776
0.0125 5.284 8.383
0.00625 16.261 22.516
0.003125 49.052 60.462

In more detail, table 6.7 shows the computation times for the two methods to

calculate the optimal values of ξ for all carpark sizes C = 1, . . . , 100.. The Euler

method is quicker than the Runge-Kutta 4th order method as it requires fewer

calculations to approximate the derivative. However, the speed improvement

works at the expense of solution accuracy.

6.3.1 Pontryagins vs PDE

Recall that with the Pontryagins method, once the optimal ξ∗ is found, the ex-

pected revenue generated in a carpark of size C and τ time to go may be calculated

by evaluating the double integral in equation (5.70).
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Figure 6.30: Comparison of the expected revenues of the PDE and the Pontrya-
gins method. These are the expected revenues generated in a carpark with τ = 50
days left, plotted as functions of the carpark capacity.

Figure 6.30 compares the expected revenues obtained by the PDE and the
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Pontryagins method. These are the expected revenues generated in a carpark

with τ = 50 days left, plotted as functions of the carpark capacity. We no-

tice that the Pontryagins deterministic method serves as an upper bound to our

stochastic PDE model, formalising the idea that uncertainty in sales results in

lower expected revenues.

6.3.2 Calculating the expected marginal values from Pon-

tryagins solution

As mentioned already it is the expected marginal values that we wish to use and

not the actual solution (revenues) directly. Unlike the case of the PDE method

where the resulting expected values are used directly to obtain the expected

marginal values for allQ and τ and construct the bid-price control policy, with the

Pontryagins this requires a rather more work. The Pontryagins method calculates

the revenue to be generated from a carpark with C available spaces and τ =

T time remaining to sell them. In figure 6.29 C was allowed to vary but the

maximum advance time T was kept fixed. Thus, if we wish to calculate the

revenue to be generated from a carpark with C spaces and τ = T ′ time remaining

we should resolve the problem starting from the new time T ′. After integrating

for the values for all C and T ′ we could evaluate the marginal values and thus

create the bid-price control policy. This procedure requires resolving the problem

for all possible C and τ which is incredibly inefficient.

Fortunately, we do not have to do this because we can use the values of optimal

ξ∗ to evaluate the marginal values through their relationship in equation (5.50).

For example, from figure 6.29 if we want to calculate the marginal value when

there areQ spaces remaining and τ < 50 time left, we can navigate to the required

time and search through the different trajectories to find the one passing through

Q. Once this is identified we can use the optimal fixed ξ∗ along this trajectory

(or the interpolated ξ∗ between the two closest trajectories) to calculate Ψ(ξ∗)

which by (5.50) is the corresponding expected marginal value at that point.
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Figure 6.31: Calculation of marginal values through Pontryagins solution.

Figure 6.31 illustrates an example to calculate the marginal value when there

are Q = 10 spaces remaining and τ = 14 days to go. This is in fact the same

as figure 6.29 but slightly magnified to emphasise the interpolating procedure

we use. As we can see, there is no trajectory that falls exactly on the required

combination (marked by the red dot). Thus, we take the two closest trajectories;

these correspond to a carpark of initial size C = 10 and C = 11. In particular,

from the trajectories C = 10 and C = 11 we use their corresponding optimal ξ∗

values which are ξ∗ = 1.3161 and ξ∗ = 1.4215, respectively. Linear interpolation

suggests that

ξ∗(Q = 10, τ = 14) = 1.3431

which implies that

∆V (Q = 10, τ = 14) = Ψ(1.3431) = 12.64.

We can proceed in this way to construct the entire set of marginal values and

thus create the bid-price control policy.

If we instead wanted to calculate the marginal value when there are Q = 50

spaces remaining and τ = 10 days to go, we would obtain ξ∗(Q = 50, τ = 10) =

∞ because the point lies above the last trajectory for which optimisation was

implemented (see figure 6.29). Substituting ξ∗ = ∞ in the pricing function leads

to an optimal price Ψ(∞) = 5 currency units. However, the opportunity cost
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does not equal to 5 since in this region Ψ(ξ∗) 6= ∆V (Q, τ). This is because the

opportunity cost only tells us the minimum price we should accept for the booking

not how we should actually be pricing the product. Since expected demand to

come when having only 10 days left is lower than 50, we should be willing to

accept everyone with positive revenue contribution, i.e. the opportunity cost

should be zero.
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Figure 6.32: Bid-price table with expected marginal values derived from the
Pontryagins solution.

The resulting surface of expected marginal values is illustrated in figure 6.32.

The deterministic nature of the solution is apparent; the marginal values drop

directly to zero once the level of capacity meets the expected demand (the Q-

trajectory when C = 60). A comparison between this and figure 6.20 emphasises

the role of uncertainty in the problem.



CHAPTER 6. NUMERICAL RESULTS 163

6.4 Performance of the three methods when ap-

proximating the network model

Finally we can examine the performance of the three derived methodologies, MC,

PDE and Pontryagins, described in sections 5.1, 5.3 and 5.4 respectively, when

these are used to approximate the network model. Recall that the DLP approach

could serve as an upper bound to the solution and thus become an effective

benchmark model for comparison among our derived methodologies; however, the

resulting model has been to large to be solved in reasonable time and therefore it

has not been used. Since there is no full network solution available to compare the

results against, we need to define one of the methods as the benchmark model

for the others. Note that any comparison between the MC and the other two

methods can only be made in the limit ∆T → 0 because of the continuous-time

nature of the PDE and Pontryagins models. Thus, in this section we consider

that customers can stay for as little as ∆T = 0.0125 and as a result we use the

MC rejection policy in figure 6.12.

Our main objective has been to maximise the expected revenue that can be

generated in the carpark on a future day T , given the size of the carpark and

given the network structure of the problem. As pointed out in section 4.3.9, we

examine this once the system is at a steady-state equilibrium position, i.e. when

the initialisation effects have already been absorbed in the system.

Therefore, we have installed the rejection policies on day 0 when the carpark

was entirely empty. Then we simulated a booking set and we let it run for a

sufficient number of days to build up accordingly and eliminate all initialisation

effects. Then, we have taken an interval of 20 consecutive days and calculated the

expected total revenue to be made over this interval. This procedure is repeated

under 1000 simulated paths. Finally, by dividing over the number of days in

the interval and the number of booking sets we obtained an estimate of the

expected value function, i.e the expected revenue per day for the given carpark

as a perpetual quantity. Similarly, we can run this approach and calculate the

expected perpetual revenue per day for any carpark-size C.

Figure 6.33 presents the expected perpetual revenues per day that are gener-

ated under the described procedure, as functions of the carpark size C. All the

methods produce expected revenues that are increasing in the size of the carpark.

Roughly speaking, the MC, PDE and Pontryagins seem to perform similarly,
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Figure 6.33: Expected perpetual revenue per day to be generated under the
rejection policies of the four methods: MC, FCFS, PDE and Pontryagins.

while the FCFS fails to do so. For sufficiently large carparks (capacity greater

than expected demand) we tend to accept all customers from both customer

classes, irrespective of the rejection policy implemented. The difference in per-

formance between the rejection policies, however, should be apparent especially

when the expected demand is greater than supply, i.e. in the low-to-intermediate

sized carparks. Thus, we seek to examine the results in more detail.

First, recall that the MC method in section 5.1 has been derived from the

actual network model with only some simplifications in terms of the dimension-

ality of the problem. In contrast the PDE and Pontryagins methodologies differ

mathematically and intuitively as well. Therefore, the MC is expected to better

approximate the network solution for the given network model. As such, the

solution (expected revenues) to the network model when using the MC rejection

policy will form the benchmark model for which the other two approximation

methods will be compared against. Let us denote by V MC the expected per-

petual revenue for the network model after using the MC rejection policy with

∆T = 0.0125. Also let us define by V PDE and V Pontr the expected perpetual

revenues for the network model that result after implementing the PDE and the

Pontryagins policy, respectively. Finally, V FCFS is the expected perpetual rev-

enue under a FCFS policy. Therefore, by dividing over V MC gives us an indication

of the methods’ performance against the MC method.
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Figure 6.34: Relative comparison of the expected perpetual revenues for the three
methods (against the MC).

Table 6.8 presents the expected perpetual revenues per day as these are cal-

culated by implementing the four different rejection policies. We have evaluated

this for any carpark size in C = 1, 2, . . . , 100. In particular, when the capac-

ity is highly congested, 1 ≤ C ≤ 10, the MC method seems to work better

producing greatest expected revenues. The improvement in performance ranges

between 1− 17% against the PDE, and between 2.7− 26% against the Pontrya-

gins, with the difference to be decreasing in carpark size. In the intermediate

region 10 < C ≤ 40 the PDE and Pontryagins have achieved similar performance

to the MC in the order of less than 1%. Finally, for capacities greater than 65 all

methods work identically by allowing service to all the customers.

Figure 6.34 illustrates graphically the difference in performance of PDE, Pon-

tryagins and FCFS methodologies as a relative measure against the MC solution.

According to our preliminary observations there are three regions of interest;

low, intermediate and large capacities. Let us now attempt to give some insight

into what is going on in these three regions, one by one. Clearly, the choice of

a rejection policy to use in the network model should (at least partially) affect

the result. Therefore, figure 6.35 is introduced and shows the expected marginal

values for the three methods as functions of capacity.

At the region where the capacity is scarce (1 ≤ C ≤ 10) the PDE and the

Pontryagins marginal values are higher than the MC. This is because solving for
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each day independently ignores the interdependence within the days and over-

estimates the last spaces. As a result the EAMV algorithm falsely rejects too

many low-paying customers and hence reduces the realised revenues. In addition,

we recall that with these small capacities the assumption imposed on the MC

method about how to obtain the marginal values should work reasonably well.

In the intermediate region the three methods (MC, PDE, Pontryagins) per-

form similarly. Interestingly, the PDE works even better than the MC in carparks

of size C = 17 − 23. We believe that the explanation lies on the manner at

which the MC marginal values work to optimise the bookings in intermediate

sized carparks. To explain this, figure 6.36 illustrates a state of an interme-

diate sized carpark with C = 11 spaces, at some point in time. Imagine we

want to decide whether to accept the next customer for a stay on day T . Since

there is only one space remaining for T we use the expected marginal value

∆V (Q = 1, 0;T, C = 11) which is approximated by ∆V (Q = 1, 0;T, C = 1) (see

section 5.1). However, a customer requiring to stay on day T only (and thus

consume the last space on day T ) would potentially block longer stay bookings

from staying on and around T . Since capacity in the neighbouring days is abun-

dant such bookings would have been accepted and thus contribute more in the

total revenue. Therefore, for the single-stay booking to be accepted, the revenue



CHAPTER 6. NUMERICAL RESULTS 167

generated should somehow compensate for the loss in expected revenue of block-

ing out these longer stay bookings. This implies that the true marginal value of

the last space on day T is higher than the marginal value computed by the MC

approach. In contrast, the marginal value based on the PDE model is higher (as

it is based on a single-resource model) and thus seems to be a better estimate on

the true marginal value in this case (even though it was unintented).
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C VMC V PDE

/V MC V Pontr

/V MC V FCFS

/V MC

1 10.266 0.831 0.743 0.802

2 20.894 0.893 0.829 0.759

3 31.803 0.924 0.874 0.734

4 42.802 0.945 0.902 0.717

5 53.855 0.959 0.922 0.704

6 64.941 0.969 0.938 0.694

7 76.039 0.976 0.949 0.687

8 87.095 0.982 0.958 0.682

9 98.042 0.987 0.967 0.678

10 108.969 0.991 0.973 0.675

11 119.808 0.994 0.978 0.673

12 130.601 0.996 0.982 0.673

13 141.316 0.997 0.986 0.673

14 151.892 0.999 0.988 0.674

15 162.402 1.000 0.991 0.676

16 172.851 1.000 0.992 0.678

17 183.143 1.001 0.994 0.681

18 193.332 1.001 0.995 0.684

19 203.402 1.001 0.996 0.687

20 213.311 1.001 0.997 0.692

21 223.034 1.001 0.998 0.696

22 232.633 1.001 0.999 0.701

23 242.110 1.001 0.999 0.707

24 251.388 1.000 0.999 0.712

25 260.463 1.000 0.999 0.719

30 303.303 0.998 0.999 0.753

35 341.458 0.996 0.996 0.795

40 375.278 0.994 0.993 0.842

45 405.631 0.992 0.990 0.888

50 433.417 0.991 0.988 0.932

55 459.403 0.991 0.989 0.968

60 484.159 0.995 0.994 0.990

65 506.150 0.999 0.999 0.998

70 520.830 1.000 1.000 1.000

75 527.945 1.000 1.000 1.000

80 530.420 1.000 1.000 1.000

85 531.010 1.000 1.000 1.000

90 531.125 1.000 1.000 1.000

95 531.145 1.000 1.000 1.000

100 531.150 1.000 1.000 1.000

Table 6.8: Expected perpetual revenues for a carpark of size C.

It happens that for intermediate size carparks these peaks of having a scarce-

capacity day surrounded by abundant-capacity days is a frequent observation and
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Day 1 2 3 . . . T − 1 T T + 1 . . .

last space

available at T

Figure 6.36: A state of a carpark of size C = 11, with a highly congested resource
(peak) on day T . The brown boxes indicate spaces that have been already sold
and the white boxes indicate the remaining available spaces.

as a result it creates this inefficiency of the MC method. Nonetheless the overall

performance of the MC stays in reasonable levels.

Finally, for capacities greater than 65 all three methods seem to have per-

formed identically. This is in fact the expected outcome because for relatively

large capacities the role of a rejection policy is suppressed and turns into a FCFS

policy, efficiently allowing everyone to stay.

For sake of discussion in figure 6.37 we present the average occupancy rates as

these result from implementing the four rejection polices. As predicted, for low-

to-intermediate capacities the FCFS policy naturally leads to higher utilisation of

the spaces with up to 95% occupancy rates. However the high occupancy levels

do not imply increased revenues as discussed previously. On the other hand, the

MC method maintains a lower occupancy level (around 87%) in this region. For

carparks greater than 60 the occupancy decreases proportionally to the size of

the carpark as even accepting all the demand still cannot fill out the spaces. An

important observation, however, is to notice the significant lower occupancy level

of the method when capacity is too low, for example when C = 1. What happens

here is that this single space is not occupied for every ∆T -period within a day.

In fact under the MC policy the slot stays empty for about 4.8 hours per day



CHAPTER 6. NUMERICAL RESULTS 170

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  10  20  30  40  50  60  70  80  90  100

A
ve

ra
ge

 o
cc

up
an

cy
 r

at
e

Carpark size, C

FCFS
PDE

Pontryagins
MC

Figure 6.37: Average occupancy rate as function of the carpark size C, under the
four rejection policies.

(20% of the day). Even worse, for the PDE and Pontryagins the overestimated

price results in having the space empty for about 9 hours per day (40% of the

day) and for about half a day, respectively.

6.4.1 Comparison under false estimates of the booking

intensities

The PDE and the Pontryagins rejection policies performed reasonably well in

maximising the perpetual expected revenue per day in the carpark, for all carpark

sizes. However, the above results were based on the fact that the estimates of the

average booking intensities used to calculate the rejection policies have been the

correct values. In other words, we have defined from the very beginning that the

average booking intensities for the two customer classes are set fixed and they

are known; λb1 = 5 for the leisure class and λb2 = 25 for the business class. Then,

when running the network model with an installed rejection policy, the bookings

were simulated according to these exact same intensities.

In this section, we challenge the methods to see how well they would perform

under false initial estimates. What we seek to do is to derive the rejection policies

based on the probability distributions with slightly erroneous estimates but in

the network model test them using bookings which are simulated according to
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λb1 = 5 and λb2 = 25. These simulations will then represent the real-life scenario

when bookings might behave slightly differently than what might have expected.

Then, we will obtain an estimate of the expected revenue per day V̂ which we

compare against the correct estimate V . In particular, we have examined three

such combinations which are summarised in table 6.9.

Comb. Leisure λb1 Business λb2 Expected demand

1 6 18 60 (as before)

2 6 22 64 (higher)

3 4 21 49 (lower)

Table 6.9: Combinations of average booking intensity estimates used to derive
the PDE and Pontryagins rejection policies.

Table 6.10 presents the results from our tests regarding the PDE method.

The three combinations show that for small carpark sizes the expected revenue

per day will actually be greater than what it would have been under the correct

estimates3. For combination 1 and 3 this happens because the marginal values

are now lower due to the lower estimate on the high paying business class (from

25 to 18 and from 25 to 21, respectively). Thus, in the network model this results

in more customers being accepted on average, rising the expected value from as

little as 1% to as much as 5%. Combination 2 results in higher revenues purely

because even if the total demand is higher, the estimate on the business demand

is lower than the true estimate.

For medium-sized carparks the variations are in the order of at most 5%

while for large carparks the error in the estimates seems not to have affected the

resulting expected revenues.

Similar results are seen in the case of the Pontryagins policy. Table 6.11

presents the relevant numerical tests. Even though the Pontryagin’s deterministic

nature, the results of using erroneous estimates do not show great variations for

the correct expected revenues.

3Recall that under the correct estimates the PDE policy overvalued the last remaining
parking spaces and in the network model it accepted less sales, resulting in lower revenues than
the MC policy.
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C V PDE V̂1/V PDE V̂2/V PDE V̂3/V PDE

1 8.483 1.048 1.019 1.029

2 18.674 1.035 1.015 1.020

3 29.341 1.031 1.013 1.018

4 40.384 1.029 1.012 1.017

5 51.712 1.024 1.010 1.015

6 63.021 1.018 1.007 1.011

7 74.152 1.017 1.006 1.010

8 85.413 1.015 1.007 1.010

9 96.736 1.012 1.006 1.009

10 107.850 1.010 1.005 1.008

15 162.614 0.999 1.002 1.002

20 214.050 0.990 0.999 0.996

25 261.068 0.982 0.996 0.988

30 303.348 0.975 0.994 0.980

35 340.648 0.972 0.993 0.973

40 373.506 0.971 0.993 0.967

45 402.794 0.970 0.994 0.962

50 429.535 0.972 0.995 0.964

55 454.968 0.982 0.996 0.980

60 481.501 0.994 0.998 0.994

65 506.512 0.999 1.000 0.999

70 522.744 1.000 1.000 1.000

75 531.090 1.000 1.000 1.000

80 534.126 1.000 1.000 1.000

85 534.899 1.000 1.000 1.000

90 535.019 1.000 1.000 1.000

95 535.019 1.000 1.000 1.000

100 535.019 1.000 1.000 1.000

Table 6.10: Expected perpetual revenues using the PDE rejection policy with
wrong initial estimates for the average booking intensities.
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C V PONTR V̂1/V PONTR V̂2/V PONTR V̂3/V PONTR

1 7.629 1.062 1.024 1.038

2 17.352 1.049 1.021 1.030

3 27.839 1.037 1.014 1.022

4 38.616 1.034 1.014 1.021

5 49.636 1.033 1.014 1.019

6 60.939 1.029 1.010 1.017

7 72.255 1.024 1.010 1.014

8 83.537 1.020 1.010 1.013

9 94.946 1.018 1.007 1.010

10 106.204 1.017 1.007 1.010

15 161.312 1.009 1.005 1.006

20 213.219 1.001 1.003 1.002

25 260.812 0.990 1.000 0.996

30 303.709 0.977 0.996 0.983

35 340.601 0.971 0.993 0.974

40 372.926 0.968 0.993 0.965

45 401.801 0.968 0.993 0.960

50 428.203 0.974 0.994 0.962

55 453.673 0.984 0.998 0.981

60 480.908 0.995 0.999 0.995

65 506.398 0.999 1.000 0.999

70 522.740 1.000 1.000 1.000

75 531.090 1.000 1.000 1.000

80 534.126 1.000 1.000 1.000

85 534.899 1.000 1.000 1.000

90 535.019 1.000 1.000 1.000

95 535.019 1.000 1.000 1.000

100 535.019 1.000 1.000 1.000

Table 6.11: Expected perpetual revenues using the Pontryagins rejection policy
with wrong initial estimates for the average booking intensities.
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6.5 Discussion

Three approximation methods have been studied: MC, the PDE and the Pon-

tryagins methods. All these methods attempt to estimate the expected marginal

values of the spaces so that they can be used in a bid-price control to approximate

the network model. We have demonstrated the methodology of each approach

explicitly and presented some important numerical results. Starting from the

MC method we have derived the optimal surfaces for the expected marginal val-

ues. These results are obtained by still solving a network but simplified problem.

However, by using a large number of paths and simulations, the optimal surfaces

were not sufficiently smooth (even after applying smoothing on them). What is

more, obtaining the solution was computationally very expensive even for large

choices of ∆T .

Moving on to our next model, we have shown how to construct a continuous-

time stochastic PDE model. Although this model no longer solves a network

problem, the resulting surfaces have shown to be smooth and they were actually

computed in less than a minute. Finally, building on the previous method we

have solved its deterministic variant using the Pontryagins maximum principle

and verified that the Pontryagins solution forms an upper bound to the stochastic

PDE solution. The biggest advantage of the Pontryagins methods compared to

the PDE is the computation time which has now been limited to just few seconds.

However, further information is lost due to the assumption of the deterministic

sales process.

In the previous section, we have used the resulting expected marginal values to

construct a bid-price table and implement it to approximate the network model.

Comparison between the performances of the three methods followed. Our find-

ings show that overall the MC method has proved to perform better than the

PDE or Pontryagins approaches. This is mainly because the MC still solves a

network problem even though it is slightly simplified. However, this method is

very computationally intensive and might not work well in real-life applications

when policies might have to be updated frequently.

Therefore, what is more important was to find out how well the other two

methods can perform in a network environment in an attempt to replace the MC

method. Our results have shown that in small sized carparks although the MC

performs best, the PDE generates higher revenues than the Pontryagins method.

In fact, according to table 6.8 the absolute benefit of using the PDE method



CHAPTER 6. NUMERICAL RESULTS 175

over the Pontryagins could potentially be from as little as 1.7% (C = 10) to as

much as 9.5% (C = 1). Although for larger carparks the two methods perform

similarly, in reality the important decision is to be made when there are only

few spaces remaining; The negative effect of making a suboptimal decision and

falsely accepting/rejecting a customer is more apparent when there is only one

space available rather than when there are still a number of spaces available that

may potentially balance out the losses later on.

Finally, a test was undertaken to check the performance of the two methods

under false estimates of the booking, arrival and staying intensities. We would

expect that in general the PDE would adapt better because it is derived based

on stochastic demand compared to the Pontryagins approach which is based on

deterministic demand. Nonetheless, both methods seem to be robust and perform

always within 5% from the correct estimates. In general, both the PDE and the

Pontryagins approaches may be viewed as stable policies in the longrun when are

allowed to run into the system for sufficient time.

In conclusion, we believe that the PDE model is the favourable model to be

used in practice because of its computation speed and better accuracy (compared

to the Pontryagins) and thus the following chapters will be devoted in developing

this approach even further.



Chapter 7

PDE model for a finite time

interval

Part of the work below has been published in ICORES 2013 International confer-

ence proceedings. “Continuous-Time Revenue Management in Carparks - Part

Two: Refining the PDE” is available online in SciTePress Digital Library at

http://www.scitepress.org/DigitalLibrary.

The derived PDE model in (5.46) solves for the rate at which cash is generated

through an infinitesimal time rather than over some discrete time as in the case

of the MC method. Thus, a comparison on the optimal solution between the

MC and the PDE methodologies could only be made in the limit i.e. as the time

intervals in the MC tend to zero ∆T → 0.

However, most internet pre-booking systems work with pre-defined fixed time

slots and customers are charged based on the number of time slots they stay rather

than based on the length of stay (e.g. pre-booking systems used at Inventive IT).

In fact, using fixed time slots is beneficial as customers are forced to pay more

than their intended duration of stay.

On the one hand, the pricing structure of most carparks dictates that spaces

are sold to customers in slots, typically an integer number of fixed periods of

time, such as day or hour over which the space will be reserved (see Teodorović

and Lučić, 2006; Guadix et al., 2011). On the other hand, Bitran and Caldentey

(2003) argue that “the explosive growth of the Internet and e-commerce make the

176
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continuous-time model much more suitable in practice”. Moreover, our results in

chapter 6 have shown the superiority of the PDE method over the MC method

with respect to both efficiency (smoothness of results) and computational speed,

but the PDE method presented there could not capture discrete time intervals.

These then provide the motivation for our next study to extend the PDE model

so that it can solve for the rate at which value is generated within any time period

of finite size ∆T .

7.1 Model formulation

The derived PDE in (5.46) is based on the occupancy probability (5.30) and the

booking acceptance rate (5.43) which are used to calculate the rate at which

bookings turn up and stay as of time t for the infinitesimal period at T > t, and

the rate (per day) of cashflow running through that period.

We can still have the bookings arriving in a continuous time (by observing

them at time t) but calculate the associated revenue rates generated within some

discrete-time interval in the future, the size of which can be of any finite length

∆T . What we want to evaluate then is Ṽ (Q, t;T ), the rate per day at which

revenue is generated in the carpark with Q spaces remaining for the future period

[T, T +∆T ] as of time t.

In order to formulate this we still consider that bookings are made in con-

tinuous time but we now adjust the probability distributions in such a way

that we capture the probability of a customer being present within the inter-

val [T, T +∆T ], rather than the instant T , which takes place between [z, z+∆T ]

days after the booking is made.

Given a stationary model the actual time in consideration [T, T+∆T ] does not

matter, henceforth we concentrate on the expected revenue rate to be generated

between [z, z +∆T ] days later and thus we need to evaluate the probability of a

customer being present between [z, z +∆T ] days after booking.

Recall that g(z) is the fraction of customers who are present in the carpark

z days after making their booking. Now let the adjusted occupancy probability

g̃(z; ∆T ) denote the fraction of customers who are present in the carpark between

z and z +∆T days later. Thus, we get

g̃(z; ∆T ) = g(z) +

∫ z+∆T

z

∫ ∞

0

φ(η, ξ) dξ dη. (7.1)
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The integral term in (7.1) calculates this extra region and gives the probability

of a customer arriving between [z, z + ∆T ] days later. Customers who arrive

anytime within this period will contribute to the integral, irrespective of their

duration of stay. In fact, it may be expressed analytically and consequently

g(z; ∆T ) simplifies to

g̃(z; ∆T ) = g(z) +
(

Pa(z +∆T )− Pa(z)
)

= Pa(z +∆T )− Pd(z). (7.2)

Figure 7.1 shows the extra region (the light grey strip below g(z, t)) that

needs to be accounted as well. This region is carefully selected so that the extra

customers arriving are not counted more than once. In addition, figure 7.2 is

provided which presents g̃(·) as function of ∆T . Clearly, the greater the finite

period the greater the probability of a customer to be present over that period

and this is indeed what this figure shows.

z

z

η

ξ0

Day t

ρ̃s(ξ|z, t; ∆T )

g(z, t)

Pa(z +∆T, t)− Pa(z, t)
z +∆T

Figure 7.1: Extended region covered by g̃(z, t; ∆T ) for bookings made at time t.
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Similarly, we can show that the adjusted conditional probability density of a

customer staying ξ days given that the customer is present [z, z+∆T ] days later,

ρ̃s(ξ|z; ∆T ), is given by

ρ̃s(ξ|z; ∆T ) =
1

g(z; ∆T )

∫ z+∆T

(z−ξ)+
φ(η, ξ) dη

=
∑

n

αn

ρsn(ξ)
(

Pan(z +∆T )− Pan((z − ξ)+)
)

g(z; ∆T )
(7.3)

and it is shown in figure (7.1) as the thin vertical strip. Figure 7.3 is also added

to present ρ̃s(·) as a function of ∆T , with z fixed at z = 2.

In addition, the adjusted cumulative probability of staying not more than ξ

days given that the customer is present within [z, z+∆T ] days later, P̃s(ξ|z; ∆T ),
is given by

P̃s(ξ|z; ∆T ) =
∫ ξ

0

ρ̃s(ξ
′|z; ∆T ) dξ′. (7.4)
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Furthermore, let f̃(z; ∆T ) to be the average intensity for bookings so that

they are present between [z, z +∆T ] days later. This can be expressed as

f̃(z; ∆T ) =

(

∑

n

λbn

)

g̃(z; ∆T ). (7.5)

In section 5.3 we looked at all bookings that are present during the same

infinitesimal and given that bookings could only be distinguished by their length

of stay (the larger the length of stay, the less the price to be paid per day) we

imposed a rule to reject those of length greater than ξ∗. In our new formation, the

idea is similar with the only difference that we are now looking at all bookings

that are present at any time within a finite time interval. Unfortunately, this

increases the difficulty of the problem as bookings present in the same period,

although being of the same length of stay, might have pay a different price rate

according to how many time periods (of size ∆T ) each falls into in total; this

depends on the time of arrival and departure given that they are staying during

the period. Therefore, we suggest a simple procedure to estimate the expected

number of time periods (E[D]) for which the customers are likely to occupy the

slot, which will in turn enable us to determine a better estimate for the price

rates that should be applied. We note that D should strongly depend on the size
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of the time period, ∆T .

In particular, we can find k ∈ Z such that the required length of stay ξ

is between k and k + 1 times larger than the length of the interval ∆T , i.e.

k∆T ≤ ξ ≤ (k + 1)∆T . More precisely, k satisfies

k =

⌊

ξ

∆T

⌋

, (7.6)

where ⌊x⌋ is the largest integer not greater than x.

To a first approximation, we assume that customers arrival times given a

particular length of stay follow a uniform distribution, u.

u = 0 u = ∆T + ξ

t

T − k∆T T −∆T T T +∆T T + 2∆T T + (k + 1)∆T

ξ ξ∆T

Figure 7.4: Calculate the expected number of stay periods, E[D], of the customers
that are present between [z, z + ∆T ] time after the booking and have length of
stay ξ. We use a uniform distribution u(0, ∆T + ξ) for the customers conditional
arrival times given the specified length of stay ξ.

Figure 7.4 illustrates the situation; in order for customers who stay for ξ days

to be accounted within the time interval [T, T +∆T ], they must have arrived no

more that ξ days before T and no later than T +∆T . Thus the feasible region,

within which customers contribute to the solution, is T − ξ ≤ t ≤ T + ∆T .

Therefore, the uniform distribution’s endpoints become 0 ≤ u ≤ ∆T + ξ.

Regarding the number of periods (D) the customers are likely to occupy a

slot for, there are only two possible scenarios;

1. the customer stays k+1 periods when their required duration of stay covers

k periods plus a fraction of an additional period either before or after this

interval (their arrival time lies on a red segment of figure 7.4),

2. or stays k+2 periods when their required duration of stay covers the same



CHAPTER 7. PDE MODEL FOR A FINITE TIME INTERVAL 182

k periods plus a fraction before and after this interval (their arrival time

lies on a green segment of figure 7.4).

In particular, we have

P (D = k + 1) = P (ξ − k∆T ≤ u ≤ ∆T ) + P (ξ − (k − 1)∆T ≤ u ≤ 2∆T )

+ · · ·+ P (ξ ≤ u ≤ (k + 1)∆T )

=
(k + 1)∆T − ξ

ξ +∆T
+

(k + 1)∆T − ξ

ξ +∆T
+ · · ·+ (k + 1)∆T − ξ

ξ +∆T

= (k + 1)

(

(k + 1)∆T − ξ

ξ +∆T

)

, (7.7)

while

P (D = k + 2) = 1− P (n = k + 1)

=
(k + 2)ξ − (1− (k + 1)2)∆T

ξ +∆T
. (7.8)

Therefore, D is given by

D =











k + 1 w.p P1 = (k + 1)
(

(k+1)∆T−ξ

ξ+∆T

)

k + 2 w.p P2 =
(k+2)ξ−(1−(k+1)2)∆T

ξ+∆T

Consequently, the expected number of periods becomes

E[D] = (k + 1)P1 + (k + 2)P2. (7.9)

The relationship between the required length of stay ξ and the expected length

of stay E[D] ∆T (which is the expected number of periods multiplied by the size

of the period) is better understood from figure 7.5 where we plot the second with

regards to the first for different choices of ∆T . In this figure the dotted line

marks the equation y = ξ and is added for better interpretation of the graphs.

We notice, that under the discretisation of the time-slots customers are staying

for more than their intended duration of stay (the curves lie above the line y = ξ)

for all choices of ∆T . Consequently, the demand for spaces rises and so is the
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resulting revenue.

Therefore, for a given required duration of stay ξ, we use equations (7.6)

and (7.9) to compute the expected number of time periods (of length ∆T ) the

customer will be staying for (E[D]) and based on this number we can calculate

the required price rate per day by the adjusted pricerate function as,

Ψ̃(E[D]; ∆T ) = ψ1 + ψ2e
−µE[D]∆T . (7.10)

Note, that this function will not be a discrete step function as, in contrast to the

pricing function (6.4), the E[D] varies continuously with the choice of ξ (as shown

in figure 7.5).

Figure 7.6 compares the adjusted price rate function (7.10) with the corre-

sponding discrete-jump price function in (6.4) that has been used for the MC

convergence. The price rate is shown for different sizes of ∆T . In each figure the

continuous pricing function (4.3) is plotted as well. We notice that the adjusted

price-rate function has the property that the expected price rate is always lower

than that of the jump price function; this is because there is always the possibility

that a booking spans over more time-slots that one might expect. This feature is

more pronounce for larger time intervals ∆T because the price difference between

a single-period and a two-period stay is more significant. Last, the two functions

approach one another as ∆T decreases and, in fact, they become equal in the
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limit (as ∆T → 0). In the limiting case both pricing functions are equal to the

continuous pricing function (4.3).
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Figure 7.6: Plots of the adjusted price rate function used in the reformulated
PDE and the discrete-jump price function used in the MC, for varying choices of
∆T . The continuous pricing function (4.3) is shown as well.

Finally, we define Ṽ (Q, τ ; ∆T ) as the rate per day at which revenue is gener-

ated from cars present over the period interval which is formed between [τ, τ+∆T ]

days later.

Therefore, the adjusted PDE can be written as

∂Ṽ

∂τ
= max

ξ∗

{

P̃s(ξ
∗|τ)f̃(τ)

(

Ṽ (Q− 1, τ)− Ṽ (Q, τ)
)

+ f̃(τ)

∫ ξ∗

0

ρ̃s(ξ|τ)Ψ̃(ξ) dξ

}

,

(7.11)
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with the same boundary conditions as before

Ṽ (Q, 0) = 0 ∀Q (7.12)

Ṽ (0, τ) = 0 ∀τ. (7.13)

The solution to this system gives the optimal rate per day at which the value

is generated in the future time period which takes place between τ and τ + ∆T

days later and the values ξ∗ = ξ∗(Q, τ) that achieve the supremum construct the

optimal rejection policy.

Note that the solution is always interpreted as value rate per day irrespective

of the size of ∆T . Also notice that if the revenue rate (second term to the right

of equation 7.11) is multiplied by the size of the interval ∆T then the solution

would calculate the total revenue generated between τ and τ + ∆τ days later.

However, we prefer to factor out ∆T and keep the solution as a rate so that we

can compare among the different ∆T ’s.

7.2 Numerical scheme

When it comes to solving equation (7.11) the procedure is similar to that for

the original PDE in (5.46) and thus it will also be solved using an explicit finite

difference scheme (see Smith, 1985, for details).

Firstly, we construct the mesh. In this stationary case the mesh has only two

dimensions, the advance-time τ and the capacity remaining Q. Suppose that the

domain we will work on is rectangular with τ ranging from 0 to T and Q ranging

from 0 to C. Divide [0, T ] into K equally spaced intervals at τ values indexed by

k = 0, 1, . . . , K. Similarly, we divide [0, C] into C equally spaced intervals at Q

values indexed by j = 0, 1, . . . , J , so that we move with integer steps in space as

parking spaces cannot be sold in fractions. The length of these intervals is ∆τ in

the time direction and ∆Q = 1 in the state direction such that τk = k∆τ ∀k and

Qj = j ∀j. We seek an approximation to the values of Ṽ at the (K+1)× (C+1)

grid points.

Therefore,

Ṽ (Qj, τ
i) = Ṽ (j, k∆τ) ≈ ṽkj ,

where ṽ is a 2D array.

Similarly, if [0, ξmax] is the domain for the length of stay ξ, we may divide it
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into I equally spaced intervals of length ∆ξ such that we have ξi = i∆ξ for every

i = 0, 1, . . . , I.

Then, we may approximate the conditional probability distribution Ps(·) by

P̃s(ξ
i|τk) = P̃s(i∆ξ|k∆τ) ≈ p̃ki .

Moreover, the average intensity in equation (5.33) may be written as

f̃(τk) = f̃(k∆τ) ≈ f̃k.

Consequently, the integral term on the RHS of the equation (5.46) may be

written as

∫ ξi

0

ρ̃s(ξ
′|τk) Ψ̃(ξ′) dξ′ =

∫ i∆ξ

0

ρ̃s(ξ
′|k∆τ) Ψ̃(ξ′) dξ′ ≈ r̃ki .

The next step is to approximate the partial derivative of u at each grid point.

More precisely, we use a forward divided difference in time to write it as

∂ṽ

∂τ
=
ṽk+1
j − ṽkj
∆τ

.

Combining, the above we may write the numerical scheme as

ṽk+1
j = ṽkj + fk max

i

{

p̃ki (ṽ
k
j−1 − ṽkj ) + r̃ki

}

∆τ,

with the boundary conditions

ṽ0j = 0 ∀j (7.14)

ṽk0 = 0 ∀k. (7.15)

For these results we have used the exhaustive search algorithm proposed in section

5.3.4.

In simple terms, we again solve with respect to τ starting from the initial

condition at τ = 0. However, at every point in the τ axis we rather compute the

probabilities of being present between τ and τ + ∆T days later (instead of the

probabilities of being present exactly τ days later.).

Let us now investigate this scheme a little further. When solving this scheme

we begin at τ 0 with the initial condition Ṽ = 0. When we then move to evaluate
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τ 1 = ∆τ the solution will give the value rate to be generated between τ 1 and

τ 1 +∆T time later, which is the time between ∆τ and ∆τ +∆T days later. As

we proceed even further we will be evaluating the value rates between [2∆τ, 2∆τ+

∆T ], [3∆τ, 3∆τ +∆T ], . . . , [T, T +∆T ] days later. An obvious limitation of this

scheme is that in this manner there is no way to account for the value rate between

0 and ∆T days later.

Therefore, we propose to use a slightly modified scheme that will now calculate

for the value rate between τ −∆T and τ days later1. In this way, we can actually

evaluate the value rate between 0 and ∆T days later. In fact, this is achieved

when we reach the time step τk = ∆T for some k. As such, at τK = T the

solution will refer to the value rate which is generated between T − ∆T and T

days later.

It is also important to notice that an issue arises for the time steps τk that

are smaller than ∆T in absolute value. In these cases the left side of the relevant

interval period (i.e. τk − ∆T ) will be negative and the solution will fail. Thus,

we fix this mathematically by setting it to max{τk −∆T, 0}.
Note that the above modifications are only made for computational conve-

nience and they should not alter the interpretation of the approach described

initially.

7.3 Numerical results

In this subsection we go through some numerical results for the cases ∆T =

1.0, 0.5, 0.25, 0.125. Recall that ∆T = 1 indicates that the parking slots are sold

to customers for the minimum of a day, ∆T = 0.5 for a minimum of half a day

and so on. The parameters we use for the results are the same as those in chapter

6. For convenience we have re-stated them in table 7.1.

Table 7.1: Model parameters

Class λb λa λs

B1 5 1/14 1/7

B2 25 1/3 1

Ψ(·) ψ1 ψ2 µ

5 10 1/5

1This requires that the probability distributions described above are adjusted to account for
the period [z −∆T, z] instead of [z, z +∆T ]
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7.3.1 Results on the optimal solution of the adjusted PDE

For each choice of ∆T we solve the adjusted PDE and compute the resulting set

of marginal values ∆Ṽ (Q, τ) and store them in a 2D array as before. Once again

these values will mark the rejection policy of our method and in section 7.3.2 they

will be tested inside the network model. Table 7.2 shows the computation times

to calculate these arrays, for each choice ∆T . For comparison purposes we repeat

ourselves by adding the computation times of the MC method that were initially

presented in table 6.1. We observe that by reducing ∆T the computation time

seems to increase but only for a tiny amount. In particular, computation times

never go beyond one minute. This is because the scheme is independent of the

choice of ∆T it only serves as a simple parameter in the model. Compared to the

MC method where the computation time increases linearly in ∆T the PDE model

improves computations times significantly as it only takes 40% of that time when

∆T = 1 down to just to 4% when ∆T = 0.125.

Table 7.2: Adjusted PDE solution. Computation times (in seconds) for different
choices of ∆T .

∆ξ ∆τ ∆T Adjusted PDE MC method

0.025 0.00625

1.0 51.2 126.7

0.5 53.7 268.8

0.25 55.1 621.6

0.125 56.7 1334.3

Let us now move on to figure 7.7 where we present the expected marginal

values (optimal rejection policies) for the four choices of ∆T under investigation.

A brief look at the 3D figures tells us that they all look quite similar in shape.

However we cannot clearly see their differences, if any. Thus, in figure 7.8 we

examine a slice of each figure at a fixed value of τ . In particular we choose to

work with τ = 50 as the shape of this final curve foreshadows the pattern of the

entire 3D figure. The differences between the four cases are now apparent. In

particular, as ∆T increases we make two major observations:

� we tend to value spaces lower for small sized carparks.

This is because when there is only one space (Q = 1) in the carpark on a

given day, for instance, we seek to extract the maximum revenue for the

day by targeting the space to the highest paying customers; these are a
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single-day-stay customer when ∆T = 1, two half-day-stay customers when

∆T = 0.5, four six-hour-stay customers when ∆T = 0.25 or eight three-

hour-stay customers. These customers should not just arrive on the same

day but also arrive in an order of one after the other so that the same parking

slot is given to all. If there is indeed this demand every day then we will

tend to receive Ψ̃(D = 1;∆T = 1) = 13.24, Ψ̃(D = 1;∆T = 0.5) = 14.04,

Ψ̃(D = 1;∆T = 0.25) = 14.51 and Ψ̃(D = 1;∆T = 0.125) = 14.75, per day

for each ∆T choice, which explains the curves heights on their left side.

� we tend to value spaces higher for bigger sized carparks.

The expected total demand E[TD] for the spaces rises because the expected

duration of stay ξ̄ = 1/λs rises
2. To understand this, recall figure 7.5 where

we have seen that customers indeed stay for longer than intended. What is

more, the greater the ∆T the more distant from the line y = ξ the curve

is, indicating that customers with a given intended stay will have to stay

relatively longer when the spaces are sold per day rather than per hour.

We can generalise this result to refer to the customer classes rather than the

individual customers. In particular, under the purely continuous case and

our model parameters in table 7.1, the expected total demand is E[TD] =

60. Once we introduce the notion of the finite interval, the staying intensi-

ties (λs) of each customer class change. The exact amount by which they

change can be evaluated using equation (7.9) with k computed as

k =

⌊

ξ̄n
∆T

⌋

,

where ξ̄n is the average stay time of class n, namely ξ̄n = 1/λsn. The

relevant results are summarised in table 7.3 for the different choices of ∆T .

7.3.2 Performance of the adjusted PDE in the Network

model

Now that we have explained the effect of the choice ∆T we may proceed to exam-

ine the performance of the adjusted PDE’s optimal rejection policy in the network

2Recall that the expected total demand is given by E[TD] =
∑

n λbn/λsn where 1/λsn is
expected duration of stay from class n.
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Table 7.3: Effect of using discrete time-slots on the expected total demand.

Continuous With adjustment

∆T ξ̄1 ξ̄2 E[TD] ξ̄1 ξ̄2 E[TD]
1.0 7 1 60 8 2 90
0.5 7 1 60 7.5 1.5 75
0.25 7 1 60 7.25 1.25 67.5
0.125 7 1 60 7.125 1.125 63.75
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Figure 7.7: Bid-price tables with expected marginal values ∆Ṽ (Q, τ) from the
adjusted PDE, for varying choices of ∆T , as functions of the time left τ and the
capacity remaining Q.
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Figure 7.8: Expected marginal values from the adjusted PDE with 50 days left.
These are shown as functions of the capacity remaining Q, for varying choices of
∆T .

model. In particular, we implement it in the network model and evaluate the ex-

pected revenue per day as a perpetual quantity. In other words we examine the

results on a steady-state equilibrium which is achieved when the network model

is let to run for sufficiently long so that any initialisation effects are vanished.

Finally, the investigation is done for all choices of ∆T considered.

Our solution will be compared against the MC solution and the adjusted Pon-

tryagins solution. The MC rejection policy corresponds to the MC model de-

scribed in section 5.1 with ∆T to be set accordingly. As for the adjusted Pontrya-

gins solution we prefer not to go through its derivation explicitly, as the Pontrya-

gins model that we used is simply the solution to the adjusted PDE in (7.11) with

Q being a continuous quantity, i.e. we replace the difference Ṽ (Q−1, τ)−Ṽ (Q, τ)
by the first derivative ∂Ṽ /∂Q and solve it using the Pontryagins maximum prin-

ciple similar to section 5.4. The relevant optimal rejection policies for the MC and

the adjusted Pontryagins methods may be seen in figures 7.9 and 7.10, respec-

tively. Recall that the marginal values of the MC method (figure 7.9) have also

been discussed in section 6.1. In particular, we have shown that as ∆T decreases,

the limitation of simulating single-period-stay customers in each period created

the deep towards the left of the figure. As for the marginal values of the adjusted

Pontryagins approach (figure 7.10) the characteristics are similar to those of the
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Figure 7.9: Expected marginal values from the MC with 50 days left. These are
shown as functions of the capacity remaining Q, for varying choices of ∆T .

adjusted PDE (in figure 7.8). The only difference, however, is that the marginal

values drops to zero once the expected demand is greater than the carpark size,

emphasising on the deterministic nature of this method.

Let us denote by V MC the expected perpetual revenue for the network model

after using the MC rejection policy with interval size ∆T . Also let us define by

V Ad.PDE and V Ad.Pontr the expected values for the network model that result after

implementing the optimal policy of the adjusted PDE in (7.11) and the adjusted

Pontryagins policy, respectively.

Furthermore, we want to compare the performance of the new adjusted PDE

against the original PDE model found in equation (5.46) of section 5.3 which

could only solve for infinitesimal periods. This, will show the extent at which

the adjusted PDE improves the results in the case of finite time intervals. Thus,

we define by V PDE the expected perpetual revenues for the network model that

result after implementing the optimal policy of the original PDE.

Similar to section 6.4 we use the MC solution as the point of reference for

the others and thus, by dividing over V MC gives us an indication of the methods

performance against the MC method. All results have been obtained after running

the network model and averaging over one thousand paths.

Figure 7.11 compares the performance of the methods for day intervals, i.e.
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Figure 7.10: Expected marginal values from the adjusted Pontryagins with 50
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Figure 7.11: Relative comparison of the expected perpetual revenues for the
methods with ∆T = 1 (against the MC).
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Figure 7.12: Expected marginal values for the three methods with ∆T = 1, as
functions of the capacity remaining Q in the perpetual sense.

∆T = 1. The results are shown in terms of the expected revenue per day (per-

petual sense) for varying carpark sizes C. The MC method has been shown

to perform better overall than all the other methods (no curve crosses over 1).

Again, this is mainly because of the nature of the MC solution, that it incorpo-

rates more information about the network when evaluating the rejection policy.

In the discussion to follow we will be quite frequently referring to figure 7.12 in

order to seek some sort of explanation to the observations. In particular, figure

7.12 plots the expected marginal values of the spaces under ∆T = 1 for all meth-

ods as function of the capacity remaining. This will shed light into the manner

at which the different policies in consideration value the parking spaces.

In the region with the lowest-size carparks (C < 5 ) the adjusted PDE and

Pontryagins solutions remarkably match up with the MC. This is because the

parking spaces are priced identically under all three policies - MC, adjusted PDE,

adjusted Pontryagins - and this might actually be seen clearly in figure’s 7.12 top

left corner. The economic interpretation here is that under this valuation there

is indeed such customer demand to come and fill out the spaces and thus pay the

corresponding prices that maximise the revenues. On the other hand the original

PDE policy does poorly here because the valuation of the spaces are set so high

(7.12) that even the higher paying customers are not paying enough money to

satisfy the acceptance price threshold and thus get denied service.
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Still in figure 7.11 but for carparks of size C ≥ 35 we observe that the ad-

justed PDE performs remarkably well (although a little worse than in the region

C < 5) with the adjusted Pontryagins slightly lower while the original PDE is

unsatisfactory once again. In particular, the performance steadily improves with

the capacity. The maximum deviation from the MC value is 1.2% and 4.8% for

the adjusted PDE and the adjusted Pontryagins, respectively, both incurred when

C = 35. Once again notice that the performance difference between these two

stems from the fact that we used a deterministic solution (adjusted Pontryagins)

to approximate a stochastic problem.

From figure 7.12 we observe that the adjusted PDE and adjusted Pontryagins

value the spaces very similar to the MC method, which is the reason why the

resulting performance is very close. In contrast, the rejection policy of the original

PDE constitutes of marginal values which are significantly lower than the others;

this implies that spaces are priced low resulting in relatively too many low-paying

customers being accepted at the expense of the most profitable business customers

that would have arrived later in the horizon.

For large carparks all methods perform more or less identically because the

actual role of any rejection policy in this region is suppressed by the excess in

capacity over the expected total demand.

Intentionally, I have skipped a particular region to discuss it at the end. This

is the region 10 < C < 25 where the results show some rather interesting pattern.

Within this region, the original PDE outperforms both the adjusted PDE and

the adjusted Pontryagins. In fact, within this region its performance against the

MC is never less than 2.6% (incurred at C = 10), as opposed to 4.2% (incurred

at C = 12) and 10.0% (incurred at C = 13) for the adjusted PDE and the

adjusted Pontryagins. Such a result may seem a bit surprising at a first glance as

the original PDE seems to be spotting something the other “improved” schemes

might have missed out on. So let us try to give some explanation to what might

actually be happening in this region. We first recall that the manner at which

we compute the expected revenues per day in the network model is based on the

additive bid-price methodology - the booking is accepted if it generates greater

revenue than the sum of the bid prices on the days it will occupy the space for

- which is still a heuristic approximation to the true network solution. As a

result, one may find an alternative approach that might work even better in some

cases. This is what partially might happen here. The original PDE, although it
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completely ignores the network inter-dependence of the days, calculates a more

representative set of marginal values (bid prices) when the carpark size lies in this

region and therefore the additive bid-price approach picks out the most suitable

booking requests for parking. In fact, this is the exact same region we have

observed the PDE to perform better than the MC in the previous chapter (table

6.8).

To sum up, the adjusted PDE performed significantly better than the adjusted

Pontryagins and the original PDE for most carpark sizes. In particular, the

PDE achieves the same performance with the MC within only 0.8% deviation on

average3 whereas the Pontryagins achieved 3.1% deviation on average. As for the

original PDE, its performance was around 5.2% lower than the MC solution on

average. For the exact numerical results of all four methods the reader is referred

to table 7.4.

Finally, figure 7.13 shows the average daily occupancy rates under the four

methods. In general, the occupancy levels are now higher than those achieved in

the infinitesimal case, seen in figure 6.37. For C = 1 when there is only one space

to manage, under the MC method as well as under the two adjusted schemes we

always have the space sold out for the day. In contrast under the original PDE

policy the space is rented only about two thirds of the time which naturally lead

to poor revenues. For greater capacities, however, it happens the opposite, as the

original PDE lets too many people to park (occupancy rate rises up to 98%) but

still misses out on extracting the maximum revenue out of the customers.

Next, we proceed to the case ∆T = 0.5 and observe that the MC is again the

dominant method. Relevant results may be seen in figure 7.14 with a detailed

analysis in Table 7.5. The three methods perform similarly but significantly lower

than the MC in the region C < 5. In fact, this is verified by figure 7.15 where

the three methods generate similar (if not exactly the same) marginal values in

this region but significantly higher than those of the MC. As a result too many

customers are denied service leading to lower expected revenues. It is remarkable

to notice how the adjusted methodology adjusts accordingly in ∆T to generate

marginal values that lie close to the MC ones.

Overall, the PDE again performed better than the Pontryagins. In particular,

the adjusted PDE produced similar results to the MC only with a maximum

3The average deviation of one method from the MC is computed by summing the revenue
performances over all carparks sizes C = 1, 2, . . . , 100 and then subtracting this number from
100.
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Figure 7.13: Average occupancy rate as function of the carpark size C, under the
four rejection policies for ∆T = 1.
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Figure 7.14: Relative comparison of the expected perpetual revenues for the
methods with ∆T = 0.5 (against the MC).
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Figure 7.15: Expected marginal values for the three methods with ∆T = 0.5, as
functions of capacity remaining Q in the perpetual sense.

deviation 4.4% (at C = 3), as opposed to a maximum deviation of 7.0% (at C = 7)

for the Pontryagins. We notice that the original PDE although underperforming

in most cases, it actually generates higher revenues than even the MC for carparks

C = 12−18; similar situation was also discussed in the preceding case of ∆T = 1.

Similarly, in figure 7.16 and table 7.6 we have the results for ∆T = 0.25, while

the results for ∆T = 0.125 are presented in figure 7.17 and table 7.7. For carpark

sizes C = 20− 25 the adjusted PDE also achieves a higher performance than the

MC when ∆T = 0.125.

Another key observation is that the original PDE policy seems to improve as

∆T increases. This is the expected behaviour since the original PDE is designed

to work for infinitesimal time intervals and consequently should perform better

the closer we get to this infinitesimal setting. In fact, this is justified by figures

7.18 and 7.19 where the marginal values of the original PDE are now located

closer to those of the adjusted PDE and the MC.
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Figure 7.16: Relative comparison of the expected perpetual revenues for the
methods with ∆T = 0.25 (against the MC).
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Figure 7.17: Relative comparison of the expected perpetual revenues for the
methods with ∆T = 0.125 (against the MC).
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Figure 7.18: Expected marginal values for the three methods with ∆T = 0.25, as
functions of capacity remaining Q in the perpetual sense.
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Figure 7.19: Expected marginal values for the three methods with ∆T = 0.125,
as functions of capacity remaining Q in the perpetual sense.
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7.4 Closing remarks

In real carparks it is up to the manager to decide which pricing strategy to

follow. For instance, they can choose to sell the slots for a minimum length of a

day (∆T = 1), half a day (∆T = 0.5) or an hour (∆T = 1/24). Whichever their

choice is, the problem becomes one that we should maximise the revenues to be

made within a time period of size ∆T . Since the original PDE model could not

capture this situation we have reformulated the PDE in a way that it could now

solve for the expected value rate that is generated within a finite ∆T -period in

the future.

Numerical results have been conducted and showed that this adjusted PDE

even though not incorporating any information about the inter-dependence within

the days it performed undoubtedly well when tested under the network environ-

ment for any given choice of ∆T . In particular, by implementing the adjusted

PDE rejection policies we managed to generate expected revenues within a 4.5%

to the MC solution for all carparks and all ∆T sizes.

What is more, we achieved in keeping the computation times in less than a

minute. Even though the policy is defined as a dynamic set of expected marginal

values which would naturally mean that frequent re-optimisation is not necessary,

that we kept the computation time in relatively low levels implies that such an

algorithm is flexible enough to be used in a real environment for which frequent

optimisation may be conducted.
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C VMC V Ad.PDE

/V MC V Ad.Pontr

/V MC V PDE

/V MC

1 13.241 1.000 1.000 0.640

2 26.418 1.000 1.000 0.796

3 39.549 1.000 1.000 0.856

4 52.549 1.000 1.000 0.893

5 65.285 0.999 0.999 0.920

6 77.640 0.998 0.995 0.941

7 89.704 0.993 0.988 0.955

8 101.535 0.985 0.975 0.965

9 113.348 0.976 0.958 0.971

10 125.103 0.967 0.941 0.974

11 136.867 0.962 0.924 0.977

12 148.591 0.958 0.911 0.979

13 160.328 0.957 0.900 0.981

14 172.037 0.958 0.893 0.982

15 183.675 0.960 0.889 0.984

16 195.274 0.962 0.888 0.985

17 206.829 0.965 0.889 0.986

18 218.334 0.968 0.893 0.987

19 229.756 0.971 0.897 0.986

20 241.117 0.974 0.903 0.985

21 252.411 0.976 0.909 0.984

22 263.491 0.979 0.915 0.984

23 274.485 0.981 0.921 0.983

24 285.377 0.983 0.927 0.982

25 296.131 0.984 0.933 0.981

30 348.896 0.985 0.950 0.972

35 399.666 0.988 0.952 0.959

40 447.741 0.991 0.962 0.945

45 493.304 0.994 0.968 0.930

50 535.865 0.996 0.975 0.914

55 575.289 0.997 0.981 0.900

60 611.532 0.998 0.986 0.894

65 644.808 0.999 0.989 0.900

70 675.215 0.999 0.991 0.920

75 703.544 0.999 0.992 0.947

80 730.268 1.000 0.993 0.973

85 756.270 1.000 0.993 0.991

90 780.957 1.000 0.995 0.998

95 800.119 1.000 0.998 1.000

100 812.141 1.000 0.999 1.000

Table 7.4: Expected perpetual revenues for a carpark of size C, with ∆T = 1.
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C VMC V Ad.PDE

/V MC V Ad.Pontr

/V MC V PDE

/V MC

1 13.432 0.988 0.984 0.953

2 26.477 0.957 0.931 0.955

3 39.284 0.956 0.896 0.954

4 51.944 0.969 0.894 0.967

5 64.453 0.982 0.911 0.980

6 76.804 0.989 0.930 0.989

7 89.076 0.990 0.947 0.993

8 101.279 0.988 0.958 0.995

9 113.331 0.987 0.963 0.997

10 125.345 0.986 0.962 0.998

11 137.223 0.988 0.960 0.999

12 148.956 0.991 0.960 1.000

13 160.625 0.993 0.962 1.001

14 172.173 0.994 0.966 1.002

15 183.705 0.994 0.970 1.001

16 195.098 0.994 0.974 1.001

17 206.437 0.994 0.975 1.001

18 217.597 0.995 0.975 1.000

19 228.737 0.996 0.975 0.999

20 239.699 0.996 0.976 0.999

21 250.564 0.997 0.977 0.998

22 261.401 0.997 0.979 0.997

23 272.033 0.997 0.981 0.996

24 282.526 0.998 0.982 0.995

25 292.974 0.998 0.982 0.993

30 343.243 0.999 0.986 0.984

35 389.992 1.000 0.991 0.974

40 432.777 1.000 0.994 0.965

45 471.402 1.000 0.997 0.956

50 506.252 1.000 0.998 0.949

55 537.819 1.000 0.998 0.943

60 566.725 1.000 0.998 0.947

65 593.689 0.999 0.998 0.964

70 619.384 0.999 0.998 0.984

75 643.919 0.999 0.999 0.996

80 663.620 1.000 1.000 0.999

85 675.727 1.000 1.000 1.000

90 681.249 1.000 1.000 1.000

95 683.238 1.000 1.000 1.000

100 683.771 1.000 1.000 1.000

Table 7.5: Expected perpetual revenues for a carpark of size C, with ∆T = 0.5.
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C VMC V Ad.PDE

/V MC V Ad.Pontr

/V MC V PDE

/V MC

1 12.448 0.967 0.842 0.935

2 24.919 0.960 0.914 0.963

3 37.292 0.968 0.921 0.972

4 49.614 0.973 0.927 0.977

5 61.826 0.974 0.942 0.983

6 73.911 0.980 0.946 0.987

7 85.874 0.982 0.952 0.990

8 97.770 0.985 0.960 0.993

9 109.561 0.987 0.964 0.994

10 121.200 0.989 0.968 0.996

11 132.758 0.991 0.972 0.998

12 144.201 0.993 0.975 0.999

13 155.542 0.994 0.978 1.000

14 166.799 0.995 0.981 1.001

15 177.963 0.996 0.982 1.001

16 188.989 0.997 0.984 1.001

17 199.926 0.998 0.986 1.001

18 210.730 0.999 0.987 1.001

19 221.413 0.999 0.988 1.001

20 232.045 0.999 0.989 1.000

21 242.503 1.000 0.990 1.000

22 252.849 1.000 0.991 0.999

23 263.019 1.000 0.992 0.998

24 273.049 1.000 0.993 0.997

25 282.933 1.000 0.993 0.996

30 329.916 1.000 0.996 0.991

35 372.454 1.000 0.999 0.985

40 410.655 1.000 0.999 0.981

45 444.680 0.999 0.999 0.976

50 475.444 0.998 0.997 0.972

55 503.594 0.998 0.996 0.970

60 529.892 0.997 0.996 0.977

65 555.138 0.998 0.997 0.990

70 578.084 0.999 0.999 0.998

75 594.698 1.000 1.000 1.000

80 603.426 1.000 1.000 1.000

85 606.878 1.000 1.000 1.000

90 607.865 1.000 1.000 1.000

95 608.065 1.000 1.000 1.000

100 608.107 1.000 1.000 1.000

Table 7.6: Expected perpetual revenues for a carpark of size C, with ∆T = 0.25.
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C VMC V Ad.PDE

/V MC V Ad.Pontr

/V MC V PDE

/V MC

1 11.541 0.912 0.830 0.913

2 23.290 0.941 0.881 0.945

3 35.142 0.954 0.905 0.960

4 46.949 0.963 0.923 0.969

5 58.743 0.970 0.935 0.976

6 70.467 0.976 0.945 0.981

7 82.128 0.979 0.953 0.985

8 93.682 0.983 0.960 0.988

9 105.142 0.987 0.966 0.991

10 116.536 0.989 0.970 0.994

11 127.784 0.992 0.975 0.996

12 138.933 0.994 0.979 0.998

13 149.990 0.996 0.982 0.999

14 160.982 0.997 0.985 1.000

15 171.859 0.998 0.987 1.001

16 182.613 0.999 0.988 1.001

17 193.276 0.999 0.990 1.001

18 203.791 1.000 0.991 1.001

19 214.173 1.000 0.993 1.001

20 224.489 1.000 0.993 1.001

21 234.626 1.001 0.994 1.000

22 244.624 1.001 0.995 1.000

23 254.459 1.001 0.996 0.999

24 264.081 1.001 0.996 0.999

25 273.600 1.001 0.997 0.998

30 318.485 1.000 0.999 0.995

35 358.679 0.999 0.999 0.992

40 394.420 0.998 0.998 0.989

45 426.350 0.997 0.996 0.986

50 455.479 0.996 0.994 0.983

55 482.307 0.996 0.994 0.983

60 507.720 0.996 0.995 0.989

65 531.736 0.998 0.998 0.996

70 550.744 1.000 1.000 0.999

75 561.832 1.000 1.000 1.000

80 566.449 1.000 1.000 1.000

85 567.867 1.000 1.000 1.000

90 568.158 1.000 1.000 1.000

95 568.217 1.000 1.000 1.000

100 568.229 1.000 1.000 1.000

Table 7.7: Expected perpetual revenues for a carpark of size C, with ∆T = 0.125.



Chapter 8

Extensions of the PDE model

In this chapter, we present two possible extensions of the original PDE model.

Each of these new models is still part of an ongoing study. Nonetheless, we

do present the underlying methodology and some results to justify the need for

future study in these directions.

The first model aims to apply the solution of the original PDE in a certain way

as to incorporate more information about the network structure of the problem

and the inter-dependence of the consecutive days in particular. This approach is

expected to generate significant improvement in revenue over the original PDE

solution, especially when the percentage of multi-day bookings is high.

The second model approximates the jump process that describes the remaining

spaces by a Brownian motion with drift and leads to a second order PDE. As it will

be shown, this model might be appropriate when the carpark size and customer

demand is large, in which case a sale of a space happens quite frequently and it

is small relative to the size of the carpark.

The parameters we use for the results are the same as in all previous chapters.

For convenience we have re-stated them in table 8.1.

Table 8.1: Model parameters

Class λb λa λs

B1 5 1/14 1/7

B2 25 1/3 1

Ψ(·) ψ1 ψ2 µ

5 10 1/5

206
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8.1 Hybrid PDE model that adjusts for the net-

work solution.

Recall that the derived PDE in section 5.3 was based on the assumption that

we can solve for the value rate for each day T independently from the others.

However, consecutive days are in general not independent due to multi-day book-

ings and thus the decision also depends upon the availability of spaces on these

neighboring days. For example, if the carpark is sold out for the days surrounding

T then only single-stay customers should be accepted, while a looser restriction

would apply if the carpark is empty on those days. In the original PDE (5.46)

such a condition has been completely ignored from the model.

Therefore, in this section we attempt to incorporate into the EAMV algo-

rithm more information about the network structure and the inter-dependence

within the neighbouring days.

In particular, we aim to examine to what extent the value function on a day

T is affected by the occupancy on its neighbouring days T − k, . . . , T − 1, T +

1, . . . , T + k for every k. In other words, we aim to derive a model that describes

how the solution of the carpark on a nearby day T ′ affects the stays on the target

day T . This should give more insight into how customers are distributed around

a given a day and could potentially improve the decision process even further.

Let us recall the occupancy probability function g(z, T − z). This function

computes the probability of being present at day1 T , z days after the booking

(t = T − z). However, it does not tell us anything about how likely will the

customer also be present on the neighbouring days T−k, . . . , T−1, T+1, . . . , T+k

for every k. In fact, if a customer is present at T it will be much likely that he

will also be present just before or just after T .

8.1.1 Model formulation

So, let us suppose that we want to optimise the revenue on the day T , which lies

τ days away from the current time, i.e. T = t + τ . Let us then denote by Tz a

nearby day that lies z days away from the current time, i.e. Tz = t + z for any

z ∈ [0, ∞) (figure 8.1).

1To be precise, in the continuous-time formulation T represents an infinitesimal instant of
time. However, in order to provide an intuitive explanation of the limitation of the model we
refer to T as being a day.
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t TTzTime
z

τ

Figure 8.1: Illustration of the days

The starting point will be to find out the probability of a customer who booked

at t, to be present on a nearby day Tz given that he will definitely be present

on day T . More precisely, we seek to find the probability of a customer being

present z days after booking at t given that he is present τ days after booking at

t. This is denoted by ĝ(z|τ, t). Obviously, there will be two cases; when 0 ≤ z ≤ τ

and when τ ≤ z ≤ ∞. Figure 8.2 shows how the corresponding probabilities are

formed under each case. The light grey shape corresponds to g(τ, t) which is kept

fixed, while the medium gray shape to g(z, t) with z being a free variable. The

darker gray shape is the intersection of these two probabilities and gives out the

desired probability ĝ(z|τ, t).
Simple calculations can show that ĝ(z|τ, t) may be written as

ĝ(z|τ, t) = 1

g(τ, t)

∫ min(z,τ)

0

∫ ∞

max(z,τ)−η

φ(η, ξ, t) dξ dη ∀ t ≤ z ≤ ∞. (8.1)

For a given fixed choice of t and τ = T − t the distribution of ĝ(z|τ, t) as a

function of z is shown in figure 8.3. Note that the shape of the distribution might

not necessarily be as the one used for the illustration here; however, it must have

a maximum of one at the point where z = τ .

Consequently, ĝ(z|τ, t) can potentially be used to create a weighting kernel

that encapsulates some information from the nearby days. We can derive such a

weighting kernel W by dividing the distribution ĝ(z|τ, t) over its total area under

the curve denoted by Z0(τ, t). In particular, the total area under the curve reads

Z0(τ, t) =

∫ ∞

0

ĝ(z|τ, t) dz. (8.2)

Therefore, the weighting functionW (z|τ, t) for fixed τ and booking time t can

then be expressed by

W (z|τ, t) = ĝ(z|τ, t)
Z0(τ, t)

, 0 ≤ z <∞ (8.3)
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Figure 8.2: Probability ĝ(z|τ, t) with fixed τ and t, for the two cases 0 ≤ z < τ
(bottom figure) and τ ≤ z <∞ (top figure).
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zτ0

1
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Figure 8.3: Possible shape of ĝ(z|τ, t) as function of z, for fixed τ and t.

W (z|τ, t)

zτ0

1
Z0(τ,t)

Figure 8.4: Possible shape of the weighting function W (z|τ, t) as function of z,
for fixed τ and t.

In fact, W (z|τ, t) has the same shape with ĝ(z|τ, t) only scaled by Z0(τ, t) (figure

8.4). This weighting kernel takes into account the multiple influence of different

days on day T . The question is how can we actually use W (·) in order to improve

our model?

We suggest that once the solution V (Q, t;T ) for all Q, t, T to the original PDE

is found, all values are refined according to a weighted average over the (infinite set

of) neighbouring values, i.e. for a given combination t, Q, T we update V (t, Q;T )

by

V̄ (t, Q;T ) =

∫ ∞

0

W (z|τ, t) V (t, Q(t;Tz);Tz) dz, (8.4)

where Q(t;Tz) is defined as the number of spaces remaining on a nearby day Tz

(which may be different than Q).

Such a “correction” attempts to transform the value function from a pure
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single-resource solution to one that incorporates more information about the en-

tire network. Note that the value functions that will be integrated on the RHS of

equation (8.4) will have already been computed when solving the original PDE

model for different T ’s.

Recall that inside the network model our decision is based on the additive

bid-prices approach i.e. accept the booking only if the total price we receive

for a stay is greater than or equal to the sum of the bid prices across the days

the customer is staying for. This heuristic approach should improve with the

quality of the bid prices used, which are defined by the expected marginal values

∆V (Q, t;T ) = V (Q, t;T )−V (Q−1, t;T ). Therefore, it might be more reasonable

to apply the weighting on the marginal values themselves2, namely

∆V̄ (t, Q;T ) =

∫ ∞

0

W (z|τ, t) ∆V (t, Q(t;Tz);Tz) dz. (8.5)

In this section we work under a time-stationary setting, and thus equation

(8.5) simplifies to

∆V̄ (Q, τ) =

∫ ∞

0

W (z|τ) ∆V (Q(z), τ) dz, (8.6)

where Q(z) is the number of spaces remaining with z time left.

Let us now attempt to average the marginal values appropriately, and in

particular compute the expected marginal value ∆V̄ (Q, τ) for a fixed parameter

choice of Q and time left τ . To do so we need the marginal values of all remaining

times z around the given time τ (already computed by solving the original PDE)

and also the state of the carpark Q(z) to apply on each of these neighbouring

times.

However, the carpark availability Q(z) with z time left should not in general

be equal to the availability Q with τ time left. In fact, there are infinite number

of combinations of space availabilities to choose from and also an infinite number

of nearby times-remaining to model. Thus, the challenging part is to determine

the most representative state of the carpark at each remaining time z to apply.

Under our model, in the steady-state equilibrium, the state of the carpark is

expected to behave smoothly around a set of days. In other words, we do not

expect to have large capacity-availability differences between neighbouring days;

2Otherwise we would have to apply the weighting on V ’s according to equation (8.4) and
then take the difference to compute the ∆V ’s.
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a situation whereby we are sold out on Monday and Wednesday but empty on

Tuesday is therefore not preferable.

Thus, we suggest to model the availability of the carpark on the nearby days

by following the expected optimal3 sales trajectory of the spaces. In particular,

the expected optimal sales trajectory uses the optimal length of stay ξ∗ and is

simply the solution to the IVP problem

∂Q

∂τ
= Ps(ξ

∗|τ) f(τ), Q(τ = ∞) = C, (8.7)

which may be solved by any numerical integration technique.

Then, if we seek to find the state of the carpark around τ days later, the idea

is to choose the optimal sales trajectory that starts from some carpark size C

and passes through (or closer to) point (Q, τ) and use that to specify the space

availability before or after τ .

In order to visualise this we may consider a discrete-time setting as illus-

trated in figure 8.5. The dark grey bar corresponds to the choice of time left τ

and the number of spaces remaining that we seek to implement the weighting

to, i.e. Q(τ) = Q. As mentioned previously, the state of the carpark in the

nearby days will correspond to the optimal sales trajectory we choose. If we pick

out a trajectory that passes relatively distant from the point of interest then the

resulting carpark state we obtain will not correspond to the “correct” neighbour-

hood of Q. Consequently, the weighting might degrade instead of improving the

marginal value. This is in fact the case for the top and central figures. However, if

we choose the trajectory that passes through the point of interest (bottom figure)

then this is the correct expected sales path and therefore represents the states of

the carpark on the nearby days that are most likely to behave accordingly.

Therefore, the optimal sales trajectory to choose is strongly related to the

point of interest (Q, τ). Moreover, each optimal sales trajectory is uniquely de-

fined by the initial carpark size C - the initial number of parking spaces before

any sales have been made. As such, we may express mathematically that the

optimal trajectory that passes through (Q, τ) is the one that has initial carpark

size CQ,τ .

Then, the refinement of the expected marginal value at the point (Q, τ) is

3By optimal we mean the trajectory that maximises the reward functional in equation (5.59).
The optimal trajectory is evaluated using the Pontryagins maximum principle (see section 2.3.2)
and it specifies the optimal length of stay ξ∗ to be implemented.
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performed as follows

∆V̄ (Q, τ) =
∫ ∞

0

W (z|τ) ∆V (Q(z;CQ,τ ), τ) dz (8.8)

and this will be referred to as the weighted PDE scheme.

8.1.2 Results

For the general set of parameters chosen, we plot ĝ(z|τ) as function of the time z

for fixed choices of τ ; this may be seen in figure 8.6. The first major observation

we make is that the shapes of the distributions are actually spiky curves which are

not differentiable at z = τ . This indicates that the conditional probability of a

customer being present on a neighbouring day drops down rapidly once we move

away from the target day. In order to understand the shape of these curves, one

may evaluate the derivative of ĝ(z|τ) with respect to z to realise that the slope

changes dramatically according to whether z is smaller (steep positive gradient

on the left side of τ) or larger (steep negative gradient on the right of τ) than

τ . We also observe a horizontal shift of the curves with a slight change in shape.

First, the shift happens because the probability attains its maximum of one at

the point where z = τ . The change in the shape follows naturally as ĝ(z|τ)
always runs between z = 0 (being present zero days later) and z = ∞ (being

present infinitely later). In fact all the shapes have fixed endpoints at z = 0 and

as z → ∞.

Furthermore, in figure 8.7 we show the weighting function W (z|τ) that has

been computed after dividing each curve by the total area. This is again shown

as a function of z for fixed choices of τ . We observe that the main shape of the

curve is retained but it is now scaled accordingly. The peaks seam to decay for

larger values of τ . This happens because the area covered by ĝ(·) increases with
τ , which is the result of accounting for the longer-staying leisure customers.

Now, let us shed some light on the rejection policy that results after applying

the weighting on the original PDE’s marginal values according to equation (8.8).

As described, when evaluating the weighted marginal value at the point (Q, τ)
we use the optimal sales trajectory that passes through this point. This sales

trajectory will then specify the state of the carpark Q to use at each and every

time along the path, which is a continuous quantity. However, the list of marginal

values we have to use at each time in the path is only defined for Q being an
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Figure 8.5: Effect of choosing an arbitrary optimal sales trajectory, on the re-
sulting state of the carpark around time τ . The top and centre figures show a
sub-optimally chosen trajectory that results in relatively higher (top figure) and
lower (centre figure) neighboring states. The bottom shape shows the correct
optimal sales trajectory that has to implemented.
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integer. We believe that an interpolation scheme to work out the marginal value

at a nearby non-integer state Q does not really make sense under this setting,

as we can only have integer spaces remaining (spaces are sold as integers not as

fractions). Thus, the most reasonable approximation in this case is to use the

marginal value at the nearest integer of Q.

Figure 8.8 presents the weighted PDE policy (bottom figure) as a function of

the capacity remaining and time left. The optimal rejection policy of the original

PDE is also added (top figure). The algorithm to compute the weighted surface

took around one and a half hours; however there is always room for improvement

in the code efficiency. As a first look we do not spot any huge differences among

the two policies; this is to be expected as the weighting function gives more

emphasis (more weight) on to the point of interest, while the weights drops rapidly

for the nearby times.

However there are some notable differences for small capacities as we show

in figure 8.9, where we plot the expected marginal values for small capacities as

functions of the time remaining. In particular, we observe that for the weighted

PDE the marginal values are not continuous in time. Also for τ close to zero

the weighting scheme calculates higher marginal values than the original PDE,

whereas the converse happens for greater τ . The former observation is the result

of the numerical limitation that is created in the manner we pick out the optimal

sales trajectory to follow. To explain this, consider two points of interest (Q, τ)
and (Q, τ +∆τ) that we seek to apply the weighting to. Then, the optimal tra-

jectory to use is CQ,τ and CQ,τ+∆τ , respectively. In general, we would expect that

the two optimal trajectories are the same or at least close to each other because

the second point is only a “tiny” ∆τ distance away from the first. However, if τ

is relatively small (τ < 5) then the resulting trajectories for τ and τ + ∆τ vary

by a great amount (see figure 6.31 where a lot of trajectories pass through the

region and thus a slight shift to the left or to right takes us to a trajectory that

diverges away). Consequently, the marginal values that will be used inside the

weighting scheme will be significantly different, resulting in the discontinuity of

weighted values observed.

Let us now examine the performance of the weighted PDE solution inside

the network model. As before we seek to evaluate the expected-revenue-per-day

metric for varying carpark sizes by using the rejection policy (expected marginal

values) as defined by the weighted PDE scheme; this is denoted by V WPDE.
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Figure 8.8: Bid-price table of the original PDE (upper figure) and of the weighted
PDE scheme (lower figure), as functions of the capacity remaining Q and time
left τ .
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Figure 8.9: Expected marginal values of the weighted PDE for fixed Q, as func-
tions of the time left. The different curves represent different choices of Q, 1, 5,
10, top to bottom. The marginal values of the original PDE are plotted as well.

As in the previous chapters the performance of the method is shown as the

ratio over the MC expected revenue per day V WPDE/V MC . Figure 8.10 presents

the relative performance of the original PDE and the weighted PDE against the

MC as a function of the carpark size. Starting from the right, we can see that the

weighting of the marginal values does not bring any additional improvement on

the expected revenue per day to that of the original PDE. In fact the rejection

policy implemented in this region is identical for the two methods. However, for

small-sized carparks we observe significant improvement of the weighted PDE

policy. Detailed results on the performance of the method are found in table 8.2.

What is worth noting is that in the region C = 17 − 23 when the original PDE

was shown to perform better than the MC (also recall table 6.8), the weighted

PDE scheme generates identical expected revenues. This result “justifies” in

some sense using the (single-resource) marginal values of the original PDE which

will overprice the spaces for small carparks as it performs better for carparks

C = 17− 23.
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C VMC V PDE

/V MC V WPDE

/V MC

1 10.266 0.831 0.885

2 20.895 0.893 0.917

3 31.803 0.924 0.937

4 42.802 0.945 0.953

5 53.856 0.959 0.965

6 64.941 0.969 0.973

7 76.040 0.976 0.979

8 87.095 0.982 0.984

9 98.042 0.987 0.988

10 108.969 0.991 0.992

11 119.809 0.994 0.995

12 130.602 0.996 0.996

13 141.316 0.997 0.998

14 151.893 0.999 0.999

15 162.402 1.000 1.000

16 172.851 1.000 1.001

17 183.144 1.001 1.001

18 193.332 1.001 1.001

19 203.402 1.001 1.001

20 213.311 1.001 1.001

21 223.034 1.001 1.001

22 232.634 1.001 1.001

23 242.111 1.001 1.001

24 251.388 1.000 1.000

25 260.463 1.000 1.000

30 303.303 0.998 0.998

35 341.459 0.996 0.996

40 375.278 0.994 0.994

45 405.631 0.992 0.993

50 433.417 0.991 0.992

55 459.404 0.991 0.991

60 484.159 0.995 0.995

65 506.150 0.999 0.999

70 520.830 1.000 1.000

75 527.945 1.000 1.000

80 530.420 1.000 1.000

85 531.010 1.000 1.000

90 531.125 1.000 1.000

95 531.145 1.000 1.000

100 531.150 1.000 1.000

Table 8.2: Expected perpetual revenues for a carpark of size C.
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Finally, in figure 8.11 we show the improvement in the average occupancy rate

achieved for small capacity carparks under the weighted PDE scheme.

Although the improvement of the weighted PDE scheme is not significant

if one takes into account the absolute difference in additional revenue (a 5%

increase on a single-sized carpark of total worth 10.26 currency units is just 0.51),

this is a promising result as it supports the reasoning of using the occupancy of

the nearby days (through the weighting kernel) to compute a perhaps better

estimate on the marginal value on a day. It is worth noting that these results

are based on a set of parameters that assume a higher-percentage of business

customers (the booking intensity λb of business customers is five times more

than that of the leisure customers, see table 8.1) and thus shorter-stay bookings.

This indicates that the significance of the method could potentially be more

pronounced when there is a higher percentage of longer-stay bookings, when the

inter-dependence within the days is more apparent. Bearing in mind the rather

long time needed to make this adjustment, it is worthwhile examining the solution

in greater detail to identify whether such an improvement compensates for the

additional computational effort.

To examine this we lower the booking intensity of the business class so that a

higher proportion of leisure (or long-stay) customers is realised. In particular we

run two experiments where the leisure booking intensity stays fixed at λb1 = 5,

but the business booking intensity is set to (a) λb2 = 5 for an even proportion

between the two classes and (b) λb2 = 2 so that long-stay customers dominate.

The results on the performance are shown in figure 8.12. We notice that the

improvement of the weighted PDE scheme is still not significant, even though

the number of longer-stay bookings has increased considerably. We believe that

the reason this happens is due to the manner at which the weighted marginal

values are applied at the problem. Recall that the weighted marginal value at an

arbitrary point (Q, τ) have been computed in advance by using the optimal sales

trajectory around that passes through that point (figure 8.5) and was then used

inside the network model for examination. However, in reality and actually in our

simulations, the states of the carpark around that point will be much different

than the expected trajectory, as these are filled arbitrarily from accepting other

customers. Thus, when tested inside the network model, once a booking arrives

the weighting should rather be applied in real time according to the current state

of the carpark at that particular point. In this way, the state of the carpark should
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be more representative of the real life scenario and the improvement might be

significant.
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Figure 8.12: Relative comparison of the expected perpetual revenues for the
original and weighted PDE against the MC, as functions of carpark size C. The
booking intensity for the leisure class is fixed to λb1 = 5. The booking intensity
for the business class is lower to λb2 = 5 and λb2 = 2 in the left and right figures,
respectively.

8.2 Second-order PDE

Let us recall the original PDE model with no optimisation

∂V

∂t
+ f(t;T )

(

V (Q− 1, t;T )− V (Q, t;T )
)

= −f(t;T )
∫ ∞

0

ρs(ξ|T − t, t) Ψ(ξ) dξ

(8.9)

with

V (Q, T ;T ) = 0 ∀Q (8.10)

V (0, t;T ) = 0 ∀t. (8.11)

In this model we have described the available parking spaces Q (state variable)

by a jump process. In particular, we assumed that if a sale occurs over the next

time interval dt, this happens with probability f(t;T )dt and results in a jump of

∆Q = −1 (a sale of a parking space). Thus, the number of sales over an interval

of size dt follows a Poisson distribution with mean and variance f(t;T ) dt.

However, if we assume that we can sell a fraction of parking lot each time, i.e.



CHAPTER 8. EXTENSIONS OF THE PDE MODEL 223

effectively reducing the jump size of the process (∆Q→ 0), while we increase the

intensity of the sales (f → f/∆Q) then the number of sales over an interval of

size dt might be approximated by a normal distribution with mean and variance

f(t;T ) dt. In particular, since Q is regarded as a continuous quantity we may

approximate it by the Brownian motion with drift,

dQ = −f(t;T )dt+
√

f(t;T )dW, (8.12)

where dW is a Wiener process and the minus sign on the drift term captures the

fact that as time progresses the number of available parking spaces reduces.

This type of model might be appropriate when the carpark is sufficiently large

(C >> 1) and sales intensity is high enough so that the expected demand is close

to capacity; that is when the sale of one parking space does not create a significant

change in the remaining capacity and sales are made frequently.

8.2.1 Brownian motion with drift as an approximation to

the jump process

Support to the above model may be found through the relationship between the

Compound Poisson process and the Brownian motion (with drift). Below we go

through the main idea. First, notice that the remaining capacity of the carpark

(state process) on day T as of time t, Q(t;T ) may be written as

Q(t;T ) = C −
N(t;T )
∑

i=1

1, (8.13)

where C = Q(0;T ) is the initial carpark size minus the number of sales at T that

have occured by time t, N(t;T ). More precisely, N(t;T ) is a Poisson process with

intensity f(t;T ).

If however we let the magnitude of the jump to be a random variable H , we

result in a Compound Poisson process and thus Q(t;T ) may be written as

Q(t;T ) = C −
N(t;T )
∑

i=1

H. (8.14)

In other words, every time a sale occurs the number of spaces change by the

random amount H (as opposed to a unit change).
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These types of processes are common in Risk theory, especially when modelling

the ruin probability of insurance companies, found in Asmussen and Rosiński

(2001) and Mircea et al. (2010). In particular, when the intensity f is stationary

they often approximate it by a Brownian motion with drift. Given that E[H ] = µ

and V ar[H ] = σ2, we consider a sequence of the state process

Qk(t;T ) = Ck −
N(kt;T )
∑

i=1

H(k)

and assume that Ck/
√
k → C,

√
k H(k) → H ,

√
k µ(k) → µ and σ(k) → σ. Then,

as n→ ∞ one can show that

1√
k
Qk(t;T )

D−→ C − µf t+ σ
√

f W (t),

with the approximation to improve as the magnitude of the jumps becomes small

and by the same speed the expected number of jumps becomes large (i.e. take

H → 0 and set the intensity of the Compound Poisson process to f/H .)

Many textbooks have studied the relationship between the random walk and

the Brownian motion (e.g. Neftçi, 2000). In particular, they show that one can

approximate a Brownian motion by a scaled symmetric random walk, that is

speeding up the time and taking down the jump size of a symmetric random walk.

Likewise, one may think of a Compound Poisson process with high intensity and

small jumps to behave like a scaled random walk because the variance of the

jump times will be very small when the intensity is high.

For further details on approximating the jump process by a Brownian motion

the reader is referred to Asmussen and Albrecher (2010) and Rydberg (1997).

In the context of RM, the use of a Brownian motion to model the sale process

has also been used in Raman and Chatterjee (1995), who further allowed the

volatility to depend on the cumulative sales.

Therefore, according to (2.42), we can approximate (8.9) by

∂V

∂t
− f(t;T )

∂V

∂Q
+

1

2
f(t;T )

∂2V

∂Q2
= −f(t;T )

∫ ∞

0

ρs(ξ|T − t, t) Ψ(ξ) dξ. (8.15)
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with

V (Q, T ;T ) = 0 ∀Q (8.16)

V (0, t;T ) = 0 ∀t. (8.17)

Notice the diffusion term that is added in has effectively transformed the

equation into a second order PDE. Consequently, to obtain a unique solution we

require an additional boundary condition. This condition can be derived directly

from the following logical argument. When the number of remaining spaces Q is

sufficiently4 large then a small change in this quantity is not going to affect the

value of the carpark. Mathematically, this reads

∂V (∞, t;T )

∂Q
= 0 ∀t. (8.18)

8.2.2 Optimal rejection condition

In the time-stationary setting we could potentially approximate the capacity re-

maining by

dQ(τ) = f(τ) dτ +
√

f(τ) dW. (8.19)

where τ = T − t. Figure 8.13 illustrates a realisation of the sales process as a

function of the time left (τ = T − t) when modelled by a Poisson process with

intensity f (left figure) and by a Brownian motion with drift f and variance
√
f

(right figure). We observe that under these conditions the two processes look

quite similar.

As in section 5.3, we may write the corresponding stationary model for V (Q, τ)

and then implement the optimal rejection condition to obtain the HJB-type equa-

tion

∂V

∂τ
+ f(τ)Ps(ξ

∗|τ)∂V
∂Q

− 1

2
f(τ)Ps(ξ

∗|τ)∂
2V

∂Q2
= f(τ)

∫ ξ∗

0

ρs(ξ|τ) Ψ(ξ) dξ, (8.20)

4The number of spaces should be relatively large compared to the expected customer de-
mand.
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Figure 8.13: A Poisson process path with intensity f(τ) (left figure) and a Brow-
nian motion path with drift term f(τ) and volatility

√

f(τ) (right figure). The
intensity f is computed based on two classes, 1 and 2, with λb1 = 15, λa1 = 1/14,
λs1 = 1/7, λb2 = 25, λa2 = 1/3 and λs2 = 1.

with

V (Q, 0) = 0 ∀Q (8.21)

V (0, τ) = 0 ∀τ (8.22)

∂V (∞, τ)

∂Q
= 0 ∀τ, (8.23)

where ξ∗ is the optimal maximum duration of stay allowable. For notation pur-

poses we will refer to the PDE model in (8.20) as the second order PDE scheme.

Differentiating (8.20) with respect to ξ∗ we obtain that the optimal price

should satisfy

Ψ(ξ∗) =
∂V

∂Q
− 1

2

∂2V

∂Q2
. (8.24)

Notice the extra term (diffusion term) that arises in the optimal condition. How-

ever, we have already shown (section 5.3) that for Q being a Poisson process, the

optimal price satisfies Ψ(ξ∗) = V (Q, τ) − V (Q − 1, τ). How does then equation

(8.24) relate to the marginal value? If we consider that Q is continuous then ap-

plying a Taylor expansion to the function V (Q+∆Q, τ) around the point Q+∆Q

we obtain

V (Q+∆Q, τ) = V (Q, τ) + ∆Q
∂V

∂Q
+

1

2
∆Q2∂

2V

∂Q2
+O(∆Q3).

In the expansion ∆Q can be any number, so if we set it to -1 to match the case
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of the Poisson process, we have

V (Q− 1, τ) = V (Q, τ)− ∂V

∂Q
+

1

2

∂2V

∂Q2
− O(∆Q3),

which after rearranging and ignoring higher order terms gives

V (Q, τ)− V (Q− 1, τ) ≈ ∂V

∂Q
− 1

2

∂2V

∂Q2
. (8.25)

Equation (8.25) indicates that (8.24) is a first order approximation to the marginal

value of the space and thus is expected to behave similarly.

8.2.3 Numerical scheme

The second order PDE in (8.20) can be solved using an implicit finite difference

scheme which is still first order accurate in time but a second order accurate in the

state variable (see Smith, 1985, for details). Note that, a more accurate Crank-

Nicolson scheme should theoretically increase (double) the convergence rate in

time; however, the non-linearity of the PDE (the presence of the optimal control)

as well as the presence of the convention term makes it difficult to obtain a stable

scheme. We believe that using a change of variables to eliminate the convection

term could potentially improve the stability of the Crank-Nicolson scheme (see

Sachs and Strauss, 2008, for details), however for the current study we choose

not to address this issue here.

Firstly, we must construct the mesh. In this stationary case the mesh has

only two dimensions, the advance-time τ and the capacity remaining Q. Suppose

that the domain we will work on is rectangular with τ ranging from 0 to T

and Q ranging from 0 to C. Divide [0, T ] into K equally spaced intervals at τ

values indexed by k = 0, 1, . . . , K and [0, C] into J equally spaced intervals at Q

values indexed by j = 0, 1, . . . , J . The length of these intervals is ∆τ in the time

direction and ∆Q in the state direction such that τk = k∆τ ∀k andQj = j∆Q ∀j.
We seek an approximation to the values of V at the (K+1)× (J +1) grid points.

Therefore,

V (Qj , τ
k) = V (j∆Q, k∆τ) ≈ vkj ,

where v is a 2D array.

Similarly, if [0, ξmax] is the domain for the length of stay ξ, we may divide it
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into I equally spaced intervals of length ∆ξ such that we have ξi = i∆ξ for every

i = 0, 1, . . . , I.

As in section 5.3, we pre-calculate the conditional probability distribution

Ps(·),
Ps(ξ

i|τk) = Ps(i∆ξ|k∆τ) ≈ pki

and the integral term on the RHS of the equation (8.20)

∫ ξi

0

ρs(ξ
′|τk) Ψ(ξ′) dξ′ =

∫ i∆ξ

0

ρs(ξ
′|k∆τ) Ψ(ξ′) dξ′ ≈ rki .

Finally we recall that the average intensity f in equation (5.33) may be written

as

f(τk) = f(k∆τ) ≈ fk.

In the explicit scheme in section 5.3.3 we calculated the values at τk by using

the already computed (known) values at the previous timestep τk−1, resulting in

an explicit relationship between one current value to a set of previous values.

However, the implicit scheme entails that one previous value at τk−1 is related

to a set of new values at τk. Under this representation, the new values still

depend on the previous information but this happens in an implicit manner. In

particular, we cannot solve for each new value independently but rather these

values have to be simultaneously determined as the solution to a system of linear

equations for every j.

Before explaining more on this, let us first approximate the derivatives of v.

The implicit scheme uses a forward difference in time and and a central difference

in space, i.e

∂v

∂τ
=
vkj − vk−1

j

∆τ
+O(∆τ)

∂v

∂Q
=
vkj+1 − vkj−1

2∆Q
+O(∆x2)

∂2v

∂Q2
=
vkj+1 − 2vkj + vkj−1

∆Q2
+O(∆x2),

where the spaces derivative are approximated at the future time step τk. Note

that in this discretisation, the only known quantity is vk−1
j . We can use these
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terms to approximate the derivatives inside the PDE (8.20) and then separate

the terms into known and unknown to obtain J − 1 equations of the form

vkj+1

[

−fk pki
∆τ

2∆Q

(

1 +
1

∆Q

)]

+ vkj

[

1 + fk pki
∆τ

∆Q2

]

+ vkj−1

[

fk pki
∆τ

2∆Q

(

1− 1

∆Q

)]

= vk−1
j + fk rk∆τ, ∀ j = 1, . . . , J − 1

This structure of the scheme enables us to rewrite this valuation problem as

a system of J + 1 equations, namely:

































b0 c 0 0 . . . 0

a b1 c 0 . . . .

0 a b2 c 0 . . .

0 0 a b3 c 0 . .

. . . . . . . .

. . . . a bj c .

. . . . . . . .

0 . . . . . a bJ

































































vk0

vk1

vk2
vk3

.

.

vkJ−1

vkJ

































=

































dk0

dk1

dk2
dk3

.

.

dkJ−1

dkJ

































for every k = 1, . . . , K, where

a = −fk pki
∆τ

2∆Q

(

1 +
1

∆Q

)

bj = 1 + fk pki
∆τ

∆Q2

c = fk pki
∆τ

2∆Q

(

1− 1

∆Q

)

and

dj = vk−1
j + fk rk∆τ.

The above quantities are calculated for all capacities j between 1 and J − 1.

For capacities j = 0 and j = C we need to impose the boundary conditions. The

first row of the matrix refers to j = 0 which corresponds to the capacity Q = 0.

From the boundary condition we know that at this state the value is zero for any
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choice of τ . To preserve this condition we need to set b0 = c0 = d0 = 0.

Similarly, the last row of the matrix corresponds to the capacity Q = C the

maximum capacity considered. At this state we have a boundary condition that

sets the derivative of the value to zero. To include this condition in the scheme

we need to discretise it first. In particular, using one-sided difference we may

approximate it by

∂V (C, τk)

∂Q
≈ V (C, τk)− V (C −∆Q, τk)

∆Q
≈ vkJ − vkJ−1

∆Q
. (8.26)

Setting the above equal to zero yields

vkJ = vkJ−1 ∀k, (8.27)

which translates to aJ = −1, bJ = 1 and dJ = 0.

The optimal choice of ξ∗ (the index i in the scheme) is calculated through the

relationship in equation (8.24). In particular,

ξ∗ = Ψ−1

(

∂V

∂Q
− 1

2

∂2V

∂Q2

)

, (8.28)

which is expressed numerically as

i = ξkj = Ψ−1

(

vk−1
j+1 − vk−1

j−1

∆Q
− 1

2

vk−1
j+1 − 2vk−1

j + vk−1
j−1

∆Q2

)

, (8.29)

where the terms on the right-hand side would have already been computed at the

previous step.

Finally, Thomas algorithm (details in Smith, 1985) may be employed to solve

the tridiagonal system of equations.

8.2.4 Results

8.2.4.1 Solution analysis: numerical integrity

In the results below we use T = 50 and C = 100. Once again, we refer to the

optimal solution as being the full set of values vkj for all j = [0, J ] and k = [0, K].

Table 8.3 presents the convergence in time for the implicit scheme as well

as the relevant computation times in each case. As expected the convergence
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is linear in time. In particular, when using a timestep of ∆τ = 0.003125 we

achieved solution accuracy to 3 significant figures. As for the computation times

these range from as little as 5 seconds to as much as 74 seconds. As seen in the

main PDE results of chapter 6 these times depend strongly on the time it takes

for the pre-calculation of the matrices p and r.

Similarly, table 8.4 presents the convergence in space with the relevant com-

putation times in each case. Our results justify a second order convergence in

space as by taking a step of half the size of the previous one, we improve the

solution by (approximately) four times. In particular, the scheme is extremely

accurate in the space dimension as even with considerably large space-steps we

achieved a solution accuracy to 5 significant figures.

Table 8.3: Second-order PDE solution. First order convergence in time for the
implicit scheme and computation times (in seconds) for different grids.

∆ξ ∆τ ∆Q V (Q = 30, τ = 50) (%) Rel. Diff Comp. Time (secs)

0.025

0.05

0.025

330.6860622 − 4.94

0.025 331.6357739 0.2864 9.42

0.0125 332.1219689 0.1464 18.63

0.00625 332.3673601 0.0738 37.68

0.003125 332.4908955 0.0372 73.89

Table 8.4: Second-order PDE solution. Second order convergence in space for the
implicit scheme and computation times (in seconds) for different grids.

∆ξ ∆τ ∆Q V (Q = 30, τ = 50) (%) Rel. Diff Comp. Time (secs)

0.025 0.0125

0.05 332.1217692 − 16.26

0.025 332.1219689 6.01× 10−5 18.47

0.0125 332.1220239 1.65× 10−5 23.08

0.00625 332.1220402 4.91× 10−6 32.19

0.003125 332.1220439 1.11× 10−6 50.54

8.2.4.2 Numerical comparison against the original PDE

Next, we compare the original PDE scheme to the new second order PDE scheme.

Figure 8.14 presents the expected values with τ = 50 days left as a function of

the capacity remaining Q. The two schemes seem to generate very similar if not

identical results, a fact that justifies our Brownian motion approximation to the

Poisson process.
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But how does the added diffusion term affect the solution? Let us recall the

diffusion term (second derivative in equation (8.20))

1

2
f(τ)Ps(ξ

∗(Q, τ)|τ) ∂
2V

∂Q2
,

where ξ∗(Q, τ) is the optimal maximum duration of stay to implement when there

are Q spaces remaining and τ time left. By looking at the shape of the resulting

value function in figure 8.14 we deduce that the second derivative should be close

to zero in the region Q < 50 and Q > 65 because the value function V shows

little curvature in this region and thus behaves like a linear function.

If then the diffusion term is close to zero almost everywhere, one might think

of removing it completely from the equation. However, by doing so we will end

up with a first order PDE scheme, as the one in chapter 5 section 5.4, which will

no longer be stochastic. So the diffusion term is not redundant everywhere.

Finally, it is interesting to examine the behaviour of the optimal condition

Ψ(ξ∗). Recall that the original PDE equates the optimal price to the marginal

value of the space, namely

Ψ(ξ∗) = V (Q, τ)− V (Q− 1, τ),

while the second order PDE uses equation (8.24) which reads

Ψ(ξ∗) =
∂V

∂Q
− 1

2

∂2V

∂Q2
. (8.30)

Thus, we may calculate the expected marginal values out of the solution of

the second order PDE and compare them against the above condition. Relevant

results are shown in figure 8.15 which presents the optimal conditions as functions

of the capacity remaining Q with 50 days left. Even though the expected marginal

value is slightly lower, we notice that the two curves are sufficiently close to one

another, a result that justifies equation (8.25) about the approximation of the

expected marginal value by the term ∂V/∂Q− 1/2 ∂2V/∂Q2.

An ongoing (and future) study on this model should provide further explana-

tion in regards to the exact relationship between the original PDE and the second

order PDE models and the role of the diffusion term in forming the final solution.

Thus, at this stage of the work we do not extend into further analysis.
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Chapter 9

Conclusions

“There are a lot of parallels between what we’re doing and an

expensive watch. It’s very complex, has a lot of parts and it only

has value when it’s predictable and reliable.”

Gordon Bethune, Chairman and CEO Continental Airlines 1997.

In this thesis we have investigated the network RM problem encountered in

an airport carpark. The objective has been to maximise the expected revenues

on a given future day. Customers were assumed to arrive in random order and

request a stay for any length of time. However, unlike in other industries, in

our setting the price per day charged decreases monotonically in the length of

stay of the customer. Consequently, operators must apply optimal accept/deny

decisions to the booking requests in the order these arrive in the system taking

into account both the length-of-stay and the total revenue to be generated.

Therefore, the inter-dependence of consecutive days on the one hand and the

uncertainty in the demand process and/or length-of-stay on the other, resulted

in a challenging optimisation problem.

The huge size of the problem meant that we had to develop several mathemat-

ical models to approximate the optimal solution. Even though each method can

evaluate the expected revenue on a given day, V (Q, τ), for every time remaining τ

and capacity remaining Q, the most useful output of these approximation meth-

ods was the set of expected marginal values , ∆V (Q, τ) = V (Q, τ)−V (Q− 1, τ),

used to construct a bid-price control mechanism that enabled accept/deny deci-

sions to be made in real time.

234



CHAPTER 9. CONCLUSIONS 235

Three main methods have been developed in chapter 5, denoted as MC, PDE

and Pontryagins. We note that usually managers prefer to sell the spaces for

finite time intervals of size ∆T , as in this way they extract more revenue from

the customers. It is common the intervals to correspond to entire days (∆T = 1),

but carpark operators are flexible enough to reduce it down to hours (∆T = 1/24)

or even minutes.

However, the continuous-time nature of the PDE and Pontryagins models

implied that a comparison among the three methods should be made in the

limiting case, as ∆T → 0. Numerical tests have been conducted to examine the

methods’ performance in maximising the perpetual expected revenue per day.

Taking into account both computation times and generated expected revenues,

we have shown that the PDE model is the preferable method. This motivated us

in developing the PDE model even further.

In particular, we have shown the conditions under which the PDE model

can be transformed accordingly in order to calculate the expected revenue rate

generated within a finite interval of size ∆T , as opposed to an infinitesimal time.

Then, the performance of the adjusted PDE model was examined for different

choices of ∆T and the results revealed that the method performed always within

10% of the MC solution.

Note that the optimised PDE model is based on a time-stationary setting

(equation (5.46)). In other words we assumed that booking, arrival and staying

intensities are fixed. This means that we were able to compute a dynamic bid-

price table with only two dimensions (the pre-booking time τ and the capacity

remaining Q) as the actual target day T did not matter and thus all days are

treated in the same manner.

In general, customer demand is time-varying as different times of the year,

days of the week or even hours in a day face a different stream of customers. What

is more the distribution of length-of-stay of the customers might also change over

time. Fortunately, our PDE model is flexible enough to model this situation; it

can use non-stationary booking intensities λb(t) and φ(η, ξ, t) can be any proba-

bility distribution.

A simple illustration of the time-varying setting is to assume that the weekly

booking intensity of class n is of the form

λbn(t) = λbn sin

(

πt

7

)

,
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a half sinusoid peaking towards the middle of the week. In such a case, the

non-stationary PDE formulation in equation (5.37) could easily be extended to

incorporate a rejection policy based on length of stay and thus to obtain a set of

distinct optimal expected marginal values for each target day T , namely

∆V (Q, τ ;T ) = V (Q, τ ;T )− V (Q− 1, τ ;T ) ∀T.

This will then lead to a set of bid-price tables, one for each day T in the horizon.

It is worth noting that the PDE still remains simple to solve (since its di-

mensions do not increase), with the only difference that we will have to solve one

PDE for each target day T we choose.

However, we note that the non-stationary PDE is still based on a single-

resource model. Also remember the observation of high peaks and asymmetries in

capacities availabilities over neighbouring days, an issue that has been addressed

in section 6.4. This indicated that in the network case the bid price of a given

day T should not just be the expected marginal value of that day (which was

based on a single-resource solution) but should somehow relate to the capacity

availabilities of the neighboring days, thus to their marginal values.

Let us take a simple example to illustrate the situation. Consider a booking

request on day t for a stay over ξ days T1, . . . , Tξ, this booking if accepted it

will generate a revenue equal to ξΨ(ξ). The EAMV heuristic would accept the

booking if
Tξ
∑

T=T1

(

Ψ(ξ)− π(Q, τ = T − t;T )
)

≥ 0,

where the bid price π(Q, τ ;T ) was given by

π(Q, τ ;T ) = ∆V (Q, τ ;T ) (9.1)

and the expected marginal value ∆V (Q, τ ;T ) was computed based on the single-

resource solution. The challenge is then to come up with a more representative

set of bid prices that would encapsulate some information about the surrounding

days too. Bearing in mind that under a continuous-time setting the number

of products are infinite (bookings can stay for any length of stay which is a

continuous quantity), we introduced a weighted PDE scheme (chapter 8) in an

attempt to eliminate the peaks and make sure that the carpark is filling out
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uniformly. In particular, the proposed scheme applies a correction to the single-

resource marginal values by applying a weighted average over the infinite set of

marginal values of the neighbouring days, where the number of spaces remaining

for each day is computed according to the optimal expected sales trajectory (see

figure 8.5). The use of the weighting kernel W (·) is to assign a probability to

the event that a customer is present on a neighbouring day given that he is

present on a specified day T . This is in fact an estimate of the demand on the

surrounding days of T . Finally, the bid prices are obtained by equating them to

these “corrected” marginal values, as in equation (9.1).

However, using the optimal expected sales trajectory to determine the capac-

ity availabilities on these surrounding days might not be the best way in practice.

As the state of the carpark unfolds it might become asymmetric in capacity avail-

abilities over consecutive days. If in the extreme case, the carpark on day T is

highly congested while in the surrounding days capacity is abundant, the bid

price of day T should rise to prevent short stay customers of filling out day T

reducing demand for the surrounding days. In contrast, if on day T the carpark is

almost empty while in the neighbouring days the spaces are sold out the bid price

on day T should reduce to make sure that the spaces are sold. These scenarios

may be seen in figure 9.1.

Day T T

Figure 9.1: States of a carpark with size C = 5 under extreme scenarios. The
left figure shows a carpark being highly congested on day T but with abundant
capacity on its surrounding days, whereas the right figure shows a carpark almost
empty on day T but sold out on the neighbouring days.

We believe that the proposed weighting kernel might be the key in understand-

ing how to deal with this problem. Intuitively, the weighting kernel should “add

in” value to the bid price of day T in the former case, while it should “take out”

value from the bid price in the latter. The exact manner at which the weighting
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kernel should adjust according to the state of the carpark is not obvious at this

stage of the research.

In conclusion, this problem naturally goes to further work and its outcome

could potentially bring new insights as to how network problems could be tackled

in the future.



Case study: RM in car

supermarkets

Aside to my Ph.D programme I had an excellent opportunity to work as a pricing

analyst with one of the UK’s leading used-car supermarkets. This has been a great

experience for myself (and them too!) and my future plans as I have been given

the chance to apply novel RM techniques I acquired in a real environment. The

study was undertaken for a period of three months and this section is dedicated on

the main models, results and analysis performed on investigating car sales data

provided.

The main question we tried to answer is how should the prices of each car

be set so that the firm’s revenues are maximised. Thus, our main objective is

to model the relationship between car prices and customer demand. We have

delivered a statistical model which, for a given period of time and a given stock

distribution, can accurately replicate the expected number of sales (demand) and

the expected resulting revenue from the sales. Using this model, we are able

to determine the price elasticity of demand (customer sensitivity to price) for a

given set of car sales data. Once the price elasticity has been determined, we

are able to carry out two pieces of analysis. Firstly, we are able to forecast the

number of sales and revenue generated, both if prices stay the same or if the

price of the stock is changed (within certain limits of significance). Secondly,

it provides a good way to group particular cars according to their sensitivity to

price. This targets groupings on customer behaviour, which is what drives how

likely a customer is to pay a certain price for a car, and hence the revenues.

239
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Model formulation

Defining the price

In order to build a pricing model we first need to examine customer behaviour and

in particular how the volume of sales is affected by changes in advertised prices.

Since most sales are driven through online channels, we focused on modelling

the impact of the web-advertised prices in the customer demand. For notational

purposes we refer to the advertised web price of car j by WPj.

The value of any car depends upon many factors such as make, model, mileage,

engine, transmission. As such, the advertised web prices will vary between even

cars of the same model. Therefore, to measure the response when pricing a car at

a particular level we will use the CAP price at sale of that particular car as our

theoretical estimate for the fair price. The CAP price efficiently encapsulates all

previously mentioned factors and it assigns an estimated value to every single car.

This is the closest estimate to the fair value as it is the only source of measure

acknowledged from all distributors and courts.

In particular, we define the relative web price (p) for car j to be:

pj =
WPj

CAPj

, (1)

Then, WPi can alternatively be expressed as

WPi = pi CAPi. (2)

For instance, if theWPi is 6% above the corresponding CAP price, then pi = 1.06.

Usually, the final prices (FP ) at which cars are sold are slightly different from

the advertised web prices at the time of sale. Thus, we define the relative final

price (f) for car i to be:

fi =
FPi

CAPi

, (3)

Then, FPi now reads

FPi = fi CAPi. (4)
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Defining the time unit

The historical stock data hold snapshots of the stock for each day throughout

the period of interest. This implies that cars might have multiple records within

the same week. Since daily prices at which a particular car is advertised, rarely

(and if so, slightly) change within the same week, we can convert the data into a

weekly stock data that will consist of unique weekly car records (but still multiple

records, in general). Therefore, a one-week time span becomes the standard unit

of time used in the analysis.

Formatting the data

The historical sales data and the historical weekly stock data are merged together

so that for each car we have a complete path showing the weekly price movements

on that car until the time of sale. The variables p and f will form two new columns

in the dataset, with f taking zero values at the observations that come from the

stock data.

A sample data example for a particular car model can be seen in table CS1.

The column i assigns a unique number to each of the observations in the data,

and column j refers to a particular car. The State column shows whether the

corresponding observation i of car j was accounted as being a Stock or as being

a Sale - the day at which car j was sold. In this table, there are four unique cars.

Cars 1 and 3 first appeared in stock on 14/12/09, car 2 on 28/12/09 and car 4

on 21/12/2009.

Modelling the demand

The methodology presented below, can be applied to any given time period (1

month, 2-months, 1 year) for which data is available. We assume that weekly

sales evolve according to a Poisson process with stationary intensity λ. Thus, the

probability of n sales in a week is Poisson distributed, namely

P (n;λ) =
λne−λ

n!
. (5)

In this setting, λ denotes the expected number of sales per week (demand). This

is expressed as rate (# sales/week) that depends only1 on the prices the firm

1Competitors prices are not considered in this model setting for the time being.
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Table CS1: Sample data example

i j Week beginning State CAP pi fi
1 1 14/12/09 stock 8000 1.20 0
2 1 21/12/09 stock 8000 1.18 0
3 1 28/12/09 sale 7900 1.18 1.23
4 2 21/12/09 stock 11500 1.17 0
5 2 28/12/09 sale 11300 1.13 1.14
6 3 14/12/09 stock 10000 1.20 0
7 3 21/12/09 stock 10000 1.18 0
8 3 28/12/09 stock 9500 1.12 0
9 3 04/01/10 stock 9500 1.10 0
10 3 11/01/10 sale 9500 1.10 1.10
11 4 21/12/09 stock 12300 1.19 0
12 4 28/12/09 stock 12300 1.19 0
13 4 04/01/10 stock 12300 1.19 0
14 4 11/01/10 stock 10200 1.14 0
15 4 18/01/10 stock 10200 1.14 0
16 4 25/01/10 stock 10200 1.13 0
17 4 02/02/10 sale 9300 1.11 1.12

advertises their cars for, through a function λ = λ(p).

Although, this simple model assumes that the data is stationary, i.e. that

customers intensities have been constant along the year, it is still useful to study

this model before proceeding into more complex models.

The available historical data suggests that the price-demand function is of an

exponential form i.e.

λ(p) = β1e
−β2p, (6)

where β1 and β2 are fitting parameters that are explicitly determined from the

data. Usually, the decaying coefficient β2 is referred to as the price elasticity

parameter.

The range of prices p is a continuous quantity and lies in the interval p ∈ [a, b].

This interval is then divided into K bins of size ∆p. Thus, we can express the

kth price-bin as

pk =
(

a+ (k − 1)∆p , a+ k∆p
]

∀ k = 1, 2, . . . , K. (7)

For each unique car j in the data we can find:

1. The time elapsed from when it was first advertised on the web until the

time it eventually was sold.
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2. The time spent at each price interval prior to being sold.

3. The price interval it was advertised at the time of sale.

4. The actual price it was sold for.

By only considering the prices at the time of sale, we ignore the valuable

information that can be extracted from the time for which cars were sitting in

particular price-bins without being sold. Thus, intensities are determined using

the following procedure:

Let us define STjk to be the number of weeks that the jth car was advertised

at the price pk before it was sold. In other words, this is all instances for which

car j has been counted as a Stock. Then, the total number of observations for

which all cars in Stock were priced at pk is given by

∑

j

STjk , (8)

so that
∑

k

∑

j

STjk (9)

is the total number of observations in the data.

Now, let us denote the number of sales made at pk by SAk. Then, the average

time needed for a car being priced at price-bin pk to sell is given by

t̄k =

∑

j STjk

SAk

. (10)

Therefore, the observed intensity (λ) at which sales are made when cars are priced

in pk is

λ(pk) =
1

t̄k
. (11)

We show the observed intensities against the price-bins in figure CS1. Since

each of the points in this plot have different statistical significance2, we assign to

them appropriate weights and then perform a weighted exponential regression to

obtain the fitted intensities λ̂(pk) ≈ λ(pk) ∀k. The blue line in figure CS1 shows

2For the derivation of each of these points we use equations (8) and (11). The accuracy
of each point depends upon the information provided by its corresponding equation (8); the
greater this is, the more accurate the derived intensity is.
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λ(p)

p
p1 p2 p3 p4 ..... pK

Figure CS1: Estimating the price-demand function λ(p)

the curve of best fit and it outputs the values for parameters β1 and β2 that are

used to convert this discrete price-demand function into a continuous function.

Actual sales and revenue

As described before, the actual number of sales occurred (over the pre-specified

time range) by pricing at pk was given by SAk. In fact, using equations (8) and

(11) we may write it as
∑

j

STjk λ(p
k), (12)

and therefore, the total number of sales over all price-bins k can be expressed as

∑

k

[

∑

j

STjk λ(p
k)

]

. (13)

The actual revenue3 realised by pricing at pk is given by

∑

i
pi∈k

fi CAPi. (14)

This formula simply sums up all final prices for cars that were advertised at price

bin pk. Consequently, the actual total revenue realised over all price-bins can be

expressed as
∑

k

∑

i
pi∈k

fi CAPi. (15)

3By the term revenue we mean the amount of money collected from sales without subtracting
the purchase prices or any other costs that the firm might incur.
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Estimated sales and revenue

The estimated number of sales occurred by pricing at pk is given by

E

{

∑

j

STjk λ̂(p
k)

}

(16)

and therefore, the estimated total number of sales over all price-bins can be ex-

pressed as

E

{

∑

k

[

∑

j

STjk λ̂(p
k)

]}

. (17)

Equation (17) calculates the expected number of sales by using the fitted inten-

sities λ̂(k) as opposed to the observed intensities λ(k) which have been used to

derive the actual number of sales in (13). The estimated revenue realised by

pricing at pk is given by

E











∑

i
pi∈k

λ̂(pi) piCAPi α











(18)

and therefore, the estimated total revenue realised over all price-bins can be ex-

pressed as

E











∑

k

∑

i
pi∈k

λ̂(pi) pi CAPi α











, (19)

where the parameter α will be explained shortly.

Let us now try to explain these equations. Each observation i in our data file

is assigned a probability λ̂(pi) according to the (exact) price pi it is advertised

at. This is the intensity at which observation i is expected to sell at by being

priced at pi. In this way we calculate the expected revenue that is generated

from each observation i to be the intensity of sale λ̂(pi) times the price pi times

CAPi. Summing all expected revenues that result from observations of the same

price-bin we obtain (18), and after summing over all price-bins we obtain the

total expected revenue as shown in (19).

The extra parameter α captures the fact that final prices often differ from

the web prices at the time of sale, and it can be adjusted accordingly so that the
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error in revenue is minimised. Starting values for the estimation of α are

α =

∑I

i fi
∑I

i pi
, (20)

where I is the subset of observations i that are noted as a sale. In practice,

α determines the percentage average price above p that the firm would aim to

receive at the time of sale.

Numerical results on car model XXX

In this section we present the main results of our analysis on a particular car model

XXX . Similar analysis has been performed to all major (based on popularity)

car models.
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Figure CS2: Car model XXX sales over a two-year period.

Figure CS2 presents a time series data on the sales of model XXX over a two

year period from December 2009 to December 2011. Although, the number of

sales varies significantly between different time regions, the assumption of using

a stationary intensity in our model is reasonable, as the mean of the time series

is approximately constant.

In figure CS3 we show the average sales intensities (number of sales per week)

for each price-bin pk along with the fitted price-demand intensity λ̂(p). The size
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of price-bins used here (and throughout this report) is 0.01 (1%) for better resolu-

tion. The blue curve is the fitted intensity after applying a weighted exponential

regression4. The exponential model is

λ(p) = 0.242e−0.971p. (21)
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Figure CS3: Average sales intensities (# sales/week) per price-bin pk for the
period 14/12/2009 to 12/12/2011.

We can then use equation (17) to estimate the total number of sales made

within this 2-year period. Table CS2 summarises our results on the estimated

number of sales. Notably, our proposed model estimates 2161 car sales, a highly

accurate result leaving an error of less than a tenth of one percent.

Similarly, the estimated revenue is shown in table CS3. In this case, our

proposed model estimates the total generated revenue with accuracy of just above

three percent. This result is achieved with α set to 1.039, which means that

company XY Z can afford, on average, to charge up to an extra 3.9% above the

cars’ advertised web prices at the time of sale.

4As previously explained (figure CS1) the fitted curve will be drugged up or down according
to the weights of the data points. Thus, although the curve does seem closer to being linear,
this is actually the most representative fit of the data. Once more data become available these
curves could easily be updated. Of course, such data to be generated it requires a bit of price
experimentation.
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Table CS2: Results on estimating the total number of sales

Actual total Estimated total Relative difference
# sales # sales in # sales
2163 2161 −0.1%

Table CS3: Results on estimating the total revenue

Relative difference
α

in revenue estimation
3.2% 1.039

Investigating sensitivity of prices

We now investigate the degree of change in total revenue and number of sales by

shifting the stock distribution by a small amount ∆p = 0.01. In other words, given

the prices all cars of this model have been advertised at (mean advertised price is

p̄ = 1.20), for the entire two-year period, we examine the revenue difference that

would have occurred if the prices had all been shifted either up or down by the

same small amount ∆p.
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Figure CS4: Expected % change in total revenue by shifting the mean of the
stock distribution.

Figure CS4 shows the expected percentage change in revenue as we shift (in-

crease and decrease) the mean of the stock distribution (the point of no price

change is indicated by the 0 on the x-axis, as indicated by the red vertical line).
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Table CS4: Revenue and sales sensitivity on prices.

Price shift from Expected % Change in % Change in
mean p̄ by # sales expected # sales expected revenue

-0.03 2226 0.03 0.0036
-0.02 2205 0.02 0.0025
-0.01 2182 0.01 0.0013
0 2161 0 0.0000

0.01 2142 -0.01 -0.0013
0.02 2120 -0.02 -0.0028
0.03 2102 -0.03 -0.0042

This line indicates the current state where no shift on prices has been performed.

As we increase prices the total expected revenue decreases; although the marginal

revenue from each car increases, the resulting revenue is outperformed by a drop

in the total number of sales. However, as we lower the prices, the expected num-

ber of sales as well as the total expected revenue increases up to a point where

the marginal revenue from each car is so low that the high number of sales is not

adequate to stimulate the total revenue even further, that is when total revenue

begins to decrease again. The optimal price shift percentage is the point when

the maximum revenue has been achieved. From figure CS4 the optimal point is

found when pricing on average 0.16 below the current mean level (p̄ = 1.20). This

point is indicated by the vertical orange line.

The result does not imply that the optimal price for each car is p∗ = 1.20 −
0.16 = 1.04. It simply tells us that for the given stock distribution and the given

time period, revenue would have been maximised if all web prices were lowered

by an amount of 0.16.

Some key notes to consider are that there is a possibility that once other

related costs (such as transaction costs, car delivery, car service) are taken into

consideration, the excess revenue of 1.1% could be wiped out. In addition, if the

optimal point that maximises revenues requires a significant price drop, the com-

pany XY Z will enter a competition zone and, henceforth, potential interactions

with the other competitors could be an issue.

Therefore, XY Z might not be interested to determine this optimal point

(which requires a massive and perhaps ineffective price movement) but just to

investigate the sensitivity of sales and revenues for small price change. For this,

table CS4 is provided.
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Out-of-sample forecasts

Given a time period the derived model produced encouraging in-sample forecasts.

However, the question is how well the model performs for periods that lie outside

the period from which the model is estimated (out-of-sample forecasts).

To illustrate this idea we provide an example which forecasts the number of

sales and the total revenue for the month in October of 2011. Then, in order to

derive the appropriate price-demand function λ(p), we can use the available data

from 14/12/2009 to 30/09/2011. Results about the performance of our model

can be viewed in tables CS5.

Table CS5: Forecast sales and revenue for October 2011.

Actual total Estimated total Relative difference Relative difference

# sales # sales in # sales in revenue

103 93 −9.7% -3.5%

Our out-of-sample forecast results in a relative sales error and a relative rev-

enue error of less than 10% and less than 4%, respectively. We note that forecast

accuracy varies between different time periods and that the longer the period of

interest the lower the accuracy of the out-of-sample forecast.

Concluding remarks

Based on the data available, we have developed a model that derives the relation-

ship between price and demand using an exponential function and we showed the

optimal pricing point that would have maximised the total revenue. However, the

expected increase in revenue was relatively low compared to the price movement

needed. This is caused by two factors;

1. The elasticity parameter β2 = −0.971 indicates that customers are not very

price sensitive and, thus, a small change in the prices does not affect the

total outcome significantly.

2. Often, the sensitivity of customers, and the demand in general, depends

upon the time period (Christmas, Summer) and therefore shifts in prices

might result in different (and sometimes opposite) outcomes. Thus, extra

revenues and opportunities generated by the model in a period-interval
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might have off set by losses made in other time-intervals. This suggests a

further study whereby seasonal factors may be taken into account.

As previously mentioned this study has been undertaken for every major car

model in stock, generating a list of price elasticities (β2) of the customers accord-

ing to the make and model of the car. Working mostly with these parameters

we could group car models into different clusters with respect to their price elas-

ticities. These clusters have revealed some interesting insights into the customer

behaviour, as car models that target different customer markets (low, middle,

higher classes) may still end up in the same cluster and should, therefore, be

treated similarly. Such a result also establishes other advantages in terms of

the applicability of the model, as a manager will now have fewer parameters to

control.

We believe that the statistical model in this report enables a simple way for

company XY Z to analyse the data. So long as the data can be combined and

formatted correctly, the calculations are simple enough to be built into a spread

sheet, and can report back with estimates of expected demand and revenue. It

can be run over a selected period of time allowing it to be constantly updated

and re-calibrated as new data is revealed. There is also potential for competitor

data to be included in the model as long as the corresponding CAP ’s can be

identified for each car in their inventory. XY Z will be able to use this information

along with their own analysis (factoring in purchase costs, cost of processing etc.)

to determine which groups of stock should be targeted for price changes. In

particular, they can use the model to predict which price changes will drive the

most profit.
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Appendix A

Derivation of analytical form for

ρs(ξ|z) when time is stationary.

From the definition of conditional probabilities, we know that

ρs(ξ|z) =
ρs(ξ ∩ z)
g(z)

. (A.1)

If ξ ≥ z, from figure (5.5) we have,

ρs(ξ ∩ z) =
∫ z

0

φ(η, ξ) dη. (A.2)

If ξ < z, from figure (5.5) we have,

ρs(ξ ∩ z) =
∫ z

z−ξ

φ(η, ξ) dη. (A.3)

Let us define (x)+ as,

(x)+ =

{

x if x > 0

0 if otherwise

= max{x, 0}. (A.4)

261



APPENDIX A. ANALYTICAL FORM FOR ρS(ξ|Z) 262

Thus, for every ξ ∈ [0,∞) we have,

ρs(ξ ∩ z) =
∫ z

(z−ξ)+
φ(η, ξ) dη

=

∫ z

(z−ξ)+

∑

n

αnρan(η)ρsn(ξ) dη

=

∫ z

0

∑

n

αnρan(η)ρsn(ξ) dη −
∫ (z−ξ)+

0

∑

n

αnρan(η)ρsn(ξ) dη

=
∑

n

αnρsn(ξ)

(

∫ z

0

ρan(η) dη −
∫ (z−ξ)+

0

ρan(η) dη

)

=
∑

n

αnρsn(ξ)
(

Pan(z)− Pan

(

(z − ξ)+
)

)

. (A.5)

Therefore, the conditional probability density of stay can be expressed analyti-

cally as

ρs(ξ|z) =
∑

n

αn

ρsn(ξ)
(

Pan(z)− Pan ((z − ξ)+)
)

g(z)
. (A.6)



Appendix B

Derivation of analytical form for

Ps(ξ|z) when time is stationary.

In a time stationary setting the conditional cdf of stays is given by,

Ps(ξ|z) =
∫ ξ

0

ρs(ξ
′|z) dξ′, (B.1)

where

ρs(ξ|z) =
∑

n

αn

ρsn(ξ)
(

Pan(z)− Pan((z − ξ)+)
)

g(z)
. (B.2)

is the conditional probability density of staying for ξ days given that the customer

is present z days after the booking. In fact, there are two regions of interest ac-

cording to which ρs(ξ|z) changes discontinuously; these are z ≥ ξ and z < ξ. Let

us examine each case separately.

• Case 1: z ≥ ξ

In this case the conditional probability density becomes

ρs(ξ|z) =
∑

n

αn

ρsn(ξ)
(

Pan(z)− Pan(z − ξ)
)

g(z)
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and, therefore, if we integrate this with respect to ξ we obtain

P 1
s (ξ|z) =

∫ ξ

0

ρs(ξ
′s|z) dξ′,

=
1

g(z)

∑

n

αn

(

λsn
λan − λsn

e−λanz
(

e(λan−λsn )z − 1
)

+ e−λanz
(

e−λsnξ − 1
)

)

(B.3)

• Case 2: z < ξ

This case is a bit more interesting as within the process of integrating from

0 to ξ there will be instances when z < ξ but also other instances when z ≥ ξ.

Since (B.2) behaves differently in either case, before evaluating the integral in

(B.2) we should split it in two regions as follows:

P 2
s (ξ|z) =

∫ ξ

0

ρs(ξ
′|z) dξ′

=

∫ z

0

ρs(s|z) ds+
∫ ξ

z

ρs(ξ
′|z) dξ′

= P 1
s (z|z) +

∫ ξ

z

ρs(ξ
′|z) dξ′ (B.4)

In P 1
s (z|z) the integration variable will run for values being always less than z

whereas in i in the second term the integration variable will always run above z.

In fact, it is the same expression to P 1
s (ξ|z) with ξ being replaced by z.

For the second term ρs(ξ|z) is given by,

ρs(ξ|z) =
∑

n

αn

ρsn(ξ)Pan(z)

g(z)

and after integrating from z to ξ we obtain

∫ ξ

z

ρs(ξ
′|z) dξ′ = 1

g(z)

∑

n

αn(e
−λanz − 1)(e−λsnξ − e−λsnz) (B.5)

In conclusion, the analytical form for Ps(ξ|z) is given by

Ps(ξ|z) =











P 1
s (ξ|z) if z < ξ

P 1
s (z|z) + 1

g(z)

∑

n αn(e
−λanz − 1)(e−λsnξ − e−λsnz) if z ≥ ξ



Appendix C

Calculation of the value matrices

p and r

Recall that we seek to compute the integrals

pki = Ps(i∆ξ|k∆τ) =
∫ i∆ξ

0

ρs(ξ|τk) dξ (C.1)

and

rki =

∫ i∆ξ

0

ρs(ξ|τk) Ψ(ξ) dξ. (C.2)

Notice that equation (C.1) may be written as

pki =

∫ (i−1)∆ξ

0

ρs(ξ|τk) dξ +
∫ i∆ξ

(i−1)∆ξ

ρs(ξ|τk) dξ

= pki−1 +

∫ i∆ξ

(i−1)∆ξ

ρs(ξ|τk) dξ. (C.3)

Thus, the next value of pi can be expressed in terms of the previous value pi−1

plus an integral term. Similarly, for equation (C.2) we have

rki =

∫ (i−1)∆ξ

0

ρs(ξ|τk) Ψ(ξ) dξ +

∫ i∆ξ

(i−1)∆ξ

ρs(ξ|τk) Ψ(ξ) dξ

= rki−1 +

∫ i∆ξ

(i−1)∆ξ

ρs(ξ|τk) Ψ(ξ) dξ. (C.4)

Again, the next value of ri may be computed as the previous value ri−1 plus an

integral term.
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Now, if the difference of the two limits ∆ξ = ξi−ξi−1 is sufficiently small then

the integral term can be approximated by the one-step Simpsons Rule.

Therefore the above formualtions for p and r are powerfull as they enable

us to recursively calculate the values p and r based on the previous ones. The

recursion begins from the trival case pk0 = 0 and rk0 = 0 for all k.

Below is a sample code in C++ that incrementally builds up the matrices

using the one-step Simpsons rule.

//define the step in time

double T=50;

int K=5000;

double dt=T/K;

//define the step in xi

double Xi_max=50;

int I=5000;

double dxi=Xi_max/I;

for (int t=0;t<Kmax;t++)

{

for (int s=0;s<Imax;s++)

{

if (s==0)

{

p[s][t]=0;

r[s][t]=0;

}

else

{

//The upper limit of xi is s*dxi

double upper=s*dxi;

//The lower limit of xi is (s-1)*dxi

double lower=(s-1)*dxi;

//Calculate the half step to use in the Simpsons rule

double h=(upper-lower)/2.;

//Find next p value

//Add previous value plus a single segment simpsons rule
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p[s][t]= p[s-1][t]+(h/3.)*(conditional_rho_s(lower,t*dt)

+4.*conditional_rho_s(lower+h,t*dt)

+conditional_rho_s(upper,t*dt)

);

//Find next r value

//Add previous value plus a single segment simpsons rule

r[s][t]=

r[s-1][t]+(h/3.)*(conditional_rho_s(lower,t*dt)*priceRate(lower)

+4.*conditional_rho_s(lower+h,t*dt)*priceRate(lower+h)

+conditional_rho_s(upper,t*dt)*priceRate(upper)

);

}//end else

}//end s loop

}//end t loop

This code is faster than the conventional method of applying a multistep Simp-

sons rule for every value, as previous calculated values may be used to evaluate

the new ones.


