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Abstract

The University of Manchester
Gantungalag Altansukh

Doctorate of Philosophy in Economics
International Inflation Linkages and Forecasting in the Presence of Structural

Breaks
2013

This PhD thesis consists of three related chapters; each contributes to
the study of inflation dynamics by examining different issues that have pre-
viously been raised in the relevant literature. In particular, the first chapter
is concerned with the nature of different changes that have taken place in the
conditional mean and variance of inflation. To shed light on this question, an
iterative structural break testing methodology is developed which allows the
possibility of distinct changes in the conditional mean and variance compo-
nents by iterating tests between them, with outliers also identified in relation
to regimes. This methodology is applied to models that link domestic and
foreign inflation, and uncovers a positive and strengthening contemporaneous
relationship between domestic and foreign inflation, adding to the literature
that provides evidence of increasing globalization of inflation.

The second chapter sheds further light on the nature of the globalization
of inflation by separating core, energy and food components of aggregate infla-
tion, analyzing changes in the international links in these separate components.
Comparison with the aggregate inflation reveals that the overall globalization
is driven largely by the mean levels of core inflation being very similar across
countries, especially from the early 1990s. Further, an increased synchroniza-
tion of short-run movements in non-core (energy and food) components con-
tribute to the overall globalization effect, but such short-run synchronization
is less evident in core inflation.

The first and second chapters show that structural breaks either in the
conditional mean or variance parameters of inflation are a common feature.
Therefore, the third chapter focuses on the problem of forecasting in the pres-
ence of structural breaks. Specifically, chapter 3 proposes a forecast method
which allows for break date uncertainty by employing a confidence interval
estimate of the break date. A Monte Carlo simulation study and an em-
pirical application to inflation time series demonstrate the usefulness of this
approach. This chapter also proposes an algorithm that re-orders time series
data based on the similarity of regimes. It is shown that such re-ordering can
improve forecast accuracy when estimation exploits the additional information
provided by the re-ordered series. These improvements are significant when
there are multiple breaks which have the form of reverting coefficients.
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Introduction

A number of studies, including Monacelli and Sala (2009), Ciccarelli and Mojon

(2010), Neely and Rapach (2011), Mumtaz and Surico (2012) have commented

on the remarkable degree of similarity shown by inflation across many coun-

tries over the last few decades. Inflation was high and volatile during the 1970s

until the mid 1980s, and subsequently declined, except around 2007 when in-

flation has increased for a few countries. The most notable decline occurred

in the early to mid 1990s for most industrialized countries, bringing levels of

inflation closer to each other, and it has remained low and stable in recent

years. This increased similarity is referred as the ’Globalization of Inflation’

and has attracted a good amount of attention. The main question posed in

the literature is whether this development is due to the increased importance

of international, as opposed to domestic factors. Indeed, the interpretation

for this phenomenon is important as it may carry implications for the con-

duct of monetary policy. If the observed inflation dynamics is the result of

a common global feature, then national central banks need to monitor care-

fully international price developments and analyze their implications for the

domestic economy (Bernanke, 2007, Trichet, 2008, Mumtaz et al., 2011). Fur-

ther, it raises the question of the extent to which any individual country can

successfully pursue an inflation targeting policy.

This thesis contributes to this literature, from the perspectives of both

understanding (possibly changing) international linkages and the importance

of taking account of structural breaks for forecasting inflation. In particular,

a structural break analysis is an integral part of all the contributions made in

this thesis. This is due to the fact that structural instability is found to be a

prevalent feature of inflation series, as documented in the context of univariate

inflation models (see Benati and Kapetanios, 2002, Gadzinski and Orlandi,

2004, Corvoisier and Mojon, 2005, Cecchetti and Debelle, 2006, among others).

The first chapter of the thesis measures the degree of inflation co-movement

across many industrialized countries. A number of relevant studies exist in

the literature that focus on measuring international inflation dependence and

analyzing its effects for shaping the domestic inflation rate. The main finding
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of the chapter which is common to that in many independent studies, is the

existence of a strong link between domestic inflation and the international

environment (Pesaran et al., 2004, Ciccarelli and Mojon, 2010, Mumtaz and

Surico, 2012, and many others).

Specifically, the contributions of chapter 1 are twofold. Firstly, as part of

the methodological contribution, an iterative structural break testing method-

ology is developed which is later used to pin down the nature and date(s)

of change in international inflation linkages. Detection of structural breaks

has a long history and there are a number of available testing methods in-

cluding Andrews (1993), Bai (1997), Bai and Perron (1998). The proposed

methodology builds upon them but attempts to improve the identification of

distinct changes in different components of a series by testing for breaks in one

component conditional on another; see also Bataa et al. (2013b).

Secondly, we analyze the changing dynamics of domestic inflation in rela-

tion to the international environment to answer the question: Has the glob-

alization of inflation deepened? This issue is often addressed using either

subsample analysis or allowing for random coefficient variation in the model.

Results from these studies indicate an increased role of the global factor in ex-

plaining variations of domestic inflation (Ciccarelli and Mojon, 2010, Mumtaz

and Surico, 2012, Neely and Rapach, 2011, among others). Consistent with this

result, our analysis based on the iterative structural break testing methodology

uncovers a positive and strengthening contemporaneous relationship between

domestic and country specific foreign inflation.

The second chapter of the thesis sheds further light on the nature of the

globalization of inflation. Although important for policy purposes, under-

standing the sources of inflation globalization is not easy and little has been

revealed to date. Perhaps, the most supported hypothesis is that the increased

co-movement of inflation is a consequence of the adoption of similar monetary

policies across countries. This includes a currency peg in many countries that

are now part of the Euro Area (Altissimo et al., 2006, Borio and Filardo, 2007),

and the conduct of tighter monetary policies such as inflation targeting by a

number of countries in the 1990s (Altissimo et al., 2006, Mumtaz and Surico,

2012) and a strong response to expected inflation in the US (Clarida et al.,

2000, Ahmed et al., 2004). However, recent studies show that monetary policy

shocks are unable to fully explain inflation dynamics, suggesting that the co-

movement of inflation should be explained beyond the conventional view that

inflation is a pure monetary phenomenon (Wang and Wen, 2007, Canova and

Ferroni, 2012). Other studies suggest alternative explanations, including a role

for the foreign output gap (Borio and Filardo, 2007, Ihrig et al., 2010), cheaper
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imported goods (Peacock and Baumann, 2008), openness to trade (Monacelli

and Sala, 2009) for the co-movement of inflation. However, their corresponding

empirical results do not largely support the observed inflation dynamics across

countries. Perhaps, a number of sources and channels are jointly responsible

for this and exploring them is beyond the scope of a single study alone, neither

is this what chapter 2 strives to do.

Specifically, chapter 2 attempts to shed light on the existing studies through

the use of inflation components while most inflation studies use ’headline’

inflation data. The components studied are core, energy and food inflation. An

analysis of core inflation may provide clearer evidence on the role of monetary

policy, as it is frequently seen as the appropriate concept for monetary policy

purposes (Mishkin, 2007). Further, energy inflation is anticipated to have

a strong international dimension and also there have been large changes in

food supply for developed economies over the last forty years, moving from

predominantly domestically produced to being largely imported. Therefore,

the possibility of increased international co-movement for these components is

assessed.

Two types of analysis are made in this chapter, both of which are based on

the examination of structural breaks through the use of the iterative algorithm,

developed in chapter 1. Firstly, a dynamic model that links domestic and

foreign series (aggregate or components) are analyzed for many countries. The

most prominent characteristic from this analysis is a convergence in the mean

rates for each of the aggregate and components for the countries in our data

set. This provides evidence for the globalization of inflation, which appears

to be clear also across components as well as for the aggregate. Secondly, we

dissect the globalization of aggregate inflation, by examining whether breaks

in international linkages at the aggregate level can be attributed to changes in

the responses of domestic inflation to foreign components. Our analysis shows

an increased role for the foreign core component for a number of European

countries, pointing to the importance of monetary policy in the context of the

formation of the Euro Area.

The subject of the third chapter is a little distinct from the previous two

chapters. However, structural breaks remain a key aspect of this study. Par-

ticularly, chapter 3 focuses on the problem of forecasting in the presence of

structural breaks. This is important because structural instability is a generic

feature of many macroeconomic time series (Stock and Watson, 1996) and it

is a major cause of forecast failure if unaccounted for (Hendry and Clements,

2003). The existing literature includes various forecast techniques which deal

with different causes of forecasts failure such as structural break and model
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uncertainties. The common objective of all methods is to deliver increased

forecast accuracy, often measured as mean squared forecast error. Chapter 3

is no exception to this and proposes a forecast method to deal with historical

discrete breaks that may have occurred during the estimation sample.

Ideally, if information such as the date and the size of a break is known,

this can be used to select an optimal estimation sample by exploiting the bias-

variance trade off (Pesaran and Timmermann, 2007) or optimal observational

weighting scheme in the estimation sample (Pesaran et al., 2013). More sim-

ply, a post break window forecast which includes observations only after the

break could be employed which often yields good forecast accuracy. However,

the forecast accuracies of methods that exploit information on breaks heavily

rely on how well the true break date is estimated. However, in practice, the

estimates of break dates can be imprecise and this rules out achieving the full

efficiency of these methods. Indeed, precise identification of break dates de-

pends on a number of parameters that researchers have to assume but often

do not have prior knowledge about, including the size, the number of breaks,

and frequency of breaks.

On the other hand, it becomes attractive to adopt robust method such

as averaging forecasts from different windows because it does not require ex-

act break information, yet it yields consistently good performance in many

cases (Pesaran and Timmermann, 2007, Pesaran and Pick, 2011, Clark and

McCracken, 2009, Eklund et al., 2013, Tian and Anderson, 2011, and many

others). Our proposed method comes from the same perspective that a com-

bination technique is preferable rather than relying on potentially poor point

estimates of breaks. However, we employ information on breaks for choosing

the range of windows to be averaged. More specifically, we employ a confi-

dence interval for the estimated break date where each date in the confidence

interval is treated as one of a sequence of choices for the potential break date,

and the corresponding post break window forecasts are averaged. In this way,

forecasts from windows which include observations that are likely to belong

to the current regime are averaged. Therefore, our approach can be seen as

an improvement on existing methods that combine forecasts from all possible

windows, many of which may yield large forecast errors, consequently leading

to distortions in overall forecast accuracy. As a result of the extensive Monte

Carlo simulations and empirical analysis of univariate inflation models, chapter

3 reports an overall good performance of the proposed method in the presence

of large and small breaks that occur in the coefficients of the forecast model.

Furthermore, the iterative structural break testing methodology is useful when

dealing with distinct breaks occurring in the coefficients and variances of the
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series as it yields an improvement in forecasting accuracy for the relevant cases.

Chapter 3 also considers a situation where time series may exhibit a regime-

switching process, in which the detected structural breaks capture switches

between two or more distinct (but recurring) regimes. When multiple breaks

are present, most existing methods use the information on the most recent

break only, which may not be ideal for regime-switching processes as it ignores

the fact that data prior to any previous break can be informative with regard

to the forecast. Therefore, this chapter proposes an algorithm that re-orders

time series data based on the similarity of regimes to exploit the additional

information. It is shown that such re-ordering can improve forecast accuracy

of all methods considered, and the improvement is substantial when coefficient

changes are reversed with multiple breaks.

To sum up, this thesis contributes to the literature that studies the role of

structural breaks for inflation. In particular, it studies the nature of the global-

ization of inflation and proposes methods to deal with breaks when forecasting

inflation or other variables.

Unless otherwise stated, all computations are performed using MATLAB

version R2011a. Also, except where indicated otherwise, the associated pro-

grams have been written as part of the research for this PhD thesis.
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Chapter 1

Structural Breaks in

International Inflation Linkages

1.1 Introduction

Over the last decade or so, policymakers and researchers have documented

and discussed the globalization of inflation, namely the apparently strong co-

movement of inflation seen over the last two decades or more. Indeed, even

in the context of the large economies of the US and Euro area, Bernanke

(2007) and Trichet (2008), respectively, emphasize that their central banks

now need to monitor carefully international price developments and analyze

their implications for the domestic economy. The strong link between domestic

inflation and the international environment is also recognized in the models

of Pesaran et al. (2004), Ciccarelli and Mojon (2010), Mumtaz and Surico

(2012) and many others. However, Bataa et al. (2013a) is, to our knowledge,

the only paper that attempts to pin down the nature and dates of change in

international inflation linkages between specific countries.

Studies of the globalization of inflation predominantly employ factor anal-

ysis to extract a common international inflation component. Changes in co-

movement in relation to this factor are then studied for individual countries,

using either subsample analysis or allowing for random coefficient variation

(see Ciccarelli and Mojon, 2010, Monacelli and Sala, 2009, Mumtaz and Surico,

2012, Neely and Rapach, 2011). Nevertheless, implicit and untested assump-

tions about parameter constancy are required in order to extract the factor(s),

and changing covariances could make these unreliable. This is established in

a univariate context by Pitarakis (2004), who shows that serious size distor-

tions arise in testing for mean (and/or persistence) change when volatility is

assumed to be stable but is, in fact, subject to breaks.
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This chapter studies the globalization of inflation by applying an iterative

structural break testing methodology to model the link between domestic and

country-specific foreign inflation. While the multiple break testing method-

ology of Bai and Perron (1998) provides the basic building block, our proce-

dure allows the possibility of distinct changes in the model coefficients and in

volatility. Not only does the presence of volatility breaks affect inference on

coefficients, as shown by Pitarakis (2004), but inference on volatility breaks

can be misleading if the computed residuals are contaminated by un-modeled

mean breaks (Sensier and van Dijk, 2004). Further, ignoring the presence of

outliers can lead to misspecification and biases in estimated parameters (see,

among others, Giordani et al., 2007, Chen and Liu, 1993). Therefore, to avoid

these problems, breaks in the conditional mean and variance parameters are

identified by iterating between mean and variance tests, with outliers also iden-

tified in relation to conditional mean and volatility regimes. This methodology

is closely related to, and builds upon, that of Bataa et al. (2013a,b).

In these models, country-specific foreign inflation is constructed as the

bilateral trade weighted average of inflation in all other countries in our sample

and is treated as weakly exogenous. As a preliminary step to the bivariate1

inflation models linking domestic and foreign inflation, univariate inflation

models are employed to examine the stability of domestic inflation and to assess

the robustness of existing univariate findings. Although there is a substantial

literature on breaks in univariate inflation models, including Cecchetti and

Debelle (2006), O’Reilly and Whelan (2005), Levin and Piger (2003), Bataa

et al. (2013b), the tests applied in almost all papers make the unrealistic

assumption that the variance of inflation is constant over time. Our main focus,

however, is analyzing changes in the linkage of domestic with international

monthly CPI inflation for 19 OECD countries over the period January 1970 to

September 2010. Further, to be clear, we do not attempt to identify potential

reasons for or channels of international interdependencies in this chapter.

Our main findings can be summarized as follows. Firstly, univariate infla-

tion models yield inference on breaks in the conditional mean that are broadly

consistent with the existing literature. However, the number of conditional

mean (that is, intercept and/or dynamic) breaks found in our analysis is fewer

compared to other studies (see Bataa et al., 2013b, Cecchetti and Debelle,

2006). Secondly, we document clusters of variance breaks occurring around

the mid 1970s, early 1980s and early 1990s, while only clusters of mean breaks

1All the models in this chapter are single equation models. In other words, we use the
term ”bivariate model” to refer to the model that shows the relationships between two
variables, namely domestic and foreign inflation, where their lagged and contemporaneous
terms are also allowed.
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have been widely documented in the previous literature. These variance breaks

typically reflect substantial declines in the volatility of inflation, casting doubt

on the common claim in the literature that changes of inflation have been

mainly in the mean. Thirdly, examining bivariate inflation models, we find

a positive and strengthening contemporaneous relationship between domestic

and country specific foreign inflation. Furthermore, the timing of break dates

in conditional means and variances, identified using bivariate inflation models,

also exhibit a clustering pattern around the mid 1970s, early to mid 1980s

and early 1990s, suggesting commonality in changes to international inflation

linkages. These bivariate inflation models also confirm a general pattern of

declining persistence of domestic inflation.

The rest of the chapter is organized as follows. Section 1.2 reviews the

literature on international inflation and structural break analysis. Section 1.3

describes our methodology, including our iterative procedure for structural

break detection. Section 1.4 then presents the data and section 1.5 reports the

results of both the univariate and bivariate inflation analyses. A sensitivity

analysis is presented in section 1.6 and section 1.7 concludes.

1.2 Review of Literature

This chapter relates to two strands of the empirical literature, namely, mod-

eling international inflation and testing for structural breaks. The reviews on

both strands of literature are arranged in the following separate subsections.

1.2.1 International Inflation

Inflation dynamics across countries display a remarkable degree of similarity

over the last few decades. Specifically, inflation becomes low and less volatile

after the mid 1980s compared to a high and volatile period between the 1970s

and the early 1980s for most developed countries investigated in this chapter.

Understanding the reasons for the observed co-movement is not easy, despite

it being a focus of many studies.

Recent studies seem to suggest that the co-movement of inflation should be

explained beyond the conventional view that inflation is a pure monetary phe-

nomenon. Wang and Wen (2007) document that neither money growth across

countries is systematically correlated nor that country specific monetary shocks

produce a co-movement across countries based on OECD countries’ data. Al-

though it may not necessarily point to the absence of a role for monetary

policy in explaining the co-movements, yet it does not support the hypothesis
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that the co-movement of inflation is due primarily to monetary policy coordi-

nation2. Similarly, the recent study by Canova and Ferroni (2012) shows that

monetary policy shocks are unable to capture inflation dynamics fully in the

US, although they partially explain volatility declines. They also note that

the level of inflation becomes less responsive to monetary shocks over time.

A broader perspective is the increased globalization that may have affected

domestic inflation through cheaper imported goods. Cheaper imported goods

engender increased competition, lower production costs, and balance demands

in different countries. In that respect, some studies include import prices

or global output gaps into a structural model of inflation as a proxy for the

global environment. For example, assuming perfect substitutability of do-

mestic and imported goods, Peacock and Baumann (2008) consider cheaper

imported goods which may exert downward pressure on domestic prices and

hence lower inflation for being a main source of increased globalization. They

test their hypothesis based on the structural New Keynesian Philips Curve

(NKPC) by including an intermediate import price in the firm’s marginal cost

using data from the United Kingdom, United States and Japan. Overall results

suggest that import prices help in explaining inflation to some extent, but the

influence is relatively small and constant over time (see also Ihrig et al., 2010,

for similar results). This seems to suggest that an ever deepening globaliza-

tion has left little mark on international price linkages. It may be, according to

Ball (2006), sharp changes in relative prices matter, and any small or smooth

changes do not have any visible impacts on general price changes.

The literature also documents that the use of an output gap as a global

proxy is less informative in explaining the increased co-movements, as op-

posing evidences arise from different studies. Borio and Filardo (2007) find

an increased role of a global output gap3 in explaining domestic inflation.

However, their results are criticized as being sensitive to model specification

(Mishkin, 2009, Ihrig et al., 2010). A number of studies employing similar data

sets (OECD countries) find less significant evidences for the global output gap

when different specifications are employed (see Ihrig et al., 2010, Ball, 2006,

Calza, 2009, for industrial countries). For instance, Calza (2009) employs both

2Countries may adopt similar monetary policies due to a pegged currency. Specifically,
trade and financial integration may cause countries to peg their exchange rates to a larger
currency area which allows monetary shocks in larger economies to affect smaller economies,
hence the co-movements of domestic inflations (Borio and Filardo, 2007). This hypothesis
may be more relevant to Euro area countries. There has been a common monetary policy
across Euro area countries since 1999, but exchange rates have been linked across many of
these countries since 1979.

3The global output gap is measured by a weighted average of output gaps in other
countries.
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backward looking and forward looking Philips Curves augmenting them by a

global output gap and finds the corresponding coefficient to be insignificant

except in a backward looking Philips Curve where a level change is taken into

account.

The approaches reviewed above account for only a single channel that

links inflation across countries. Alternatively, Pesaran et al. (2004) propose a

Global Vector Autoregressive (GVAR) method in which interactions of various

macroeconomic variables across markets and across countries are examined si-

multaneously (see also Dees et al., 2007, for further details). Although it

may be appropriate to consider more than one variable, the related studies

are broader than the framework of our study and not particularly focused

on inflation. Therefore, we do not discuss the GVAR methodology in detail.

Further, we do not attempt to identify potential reasons for or channels of

inflation co-movements in this chapter. Instead we attempt to measure the

impact of international interdependencies on the domestic inflation and an-

alyze its changes over time. In this respect, our study relates to a common

factor approach.

There are several studies that address the international co-movement of

inflation by extracting a common factor from various cross country data. This

method is well suited for disentangling country specific and globally common

shocks to inflation. The principal commonality measure of inflation they pro-

pose is to deduce the share of domestic inflation variance attributable to a

common factor fluctuation. The corresponding results are largely consistent

with each other, indicating that global inflation has a sizable role in explaining

domestic inflation fluctuations with the implication of inflation being largely

a global phenomenon (Ciccarelli and Mojon, 2010, Monacelli and Sala, 2009,

Neely and Rapach, 2011, etc).

For instance, Ciccarelli and Mojon (2010) document that almost 70% of the

variance of domestic inflation in 22 OECD countries is explained by one global

factor using over 45 years data. A similar conclusion is drawn by Monacelli

and Sala (2009), although with less explanatory power of the common factor,

based on four OECD countries’ sectoral level data. Further research, analyzing

a variance decomposition of domestic inflation with respect to the regional

factor in addition to the world and country specific components, is conducted

by Neely and Rapach (2011). Employing the dynamic latent factor model on

the extensive data set of 64 countries’ inflation, they find on average 35%, 16%

and 49% of the fluctuation in domestic inflation is explained by the world,

regional and country specific factors respectively4.

4See also Mumtaz et al. (2011) for the same statistical settings to extract world, regional
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However, common factor models employed in the above studies assume

that the dynamics between variables and underlying parameters are constant

and as such that they are unable to identify time variations in the relationship

between domestic and the international factors. This issue is often addressed

using subsamples (see e.g Peacock and Baumann, 2008, Neely and Rapach,

2011). For instance, Neely and Rapach (2011) divides the full sample into

subsamples where the first subsample covers the period until the early 1980s

and the second starts around early 1980s onward when globalization is often

assumed to accelerate. The comparisons of two subsamples indicate increased

degree of international interdependencies. This is, albeit a crude, indication

that inflation links have strengthened with increased globalization.

An exception that allows time variations in the factor based setting is Mum-

taz and Surico (2012) who employ a dynamic factor model with time varying

coefficients. Specifically, domestic inflation is decomposed into country specific

and common factor components, which each follows an autoregressive process.

Time variations come through the autoregressive coefficients and variances

which evolve as random walks and geometric random walks respectively. How-

ever, the common factor extraction is based on a time invariant dynamic factor

model to reduce the computational burden. Nevertheless, despite the more

general methodology, their conclusion is largely consistent with other studies

– the degree of co-movement is increased since the mid 1980s.

An alternative approach of examining changes in the dynamics of interna-

tional inflations is proposed by Bataa et al. (2013a) who use structural break

tests. They employ a Vector Autoregressive (VAR) specification for inflation

across countries in which breaks in dynamics parameters and disturbance co-

variances are tested separately using their new iterative approach. Further,

the breaks in the disturbance covariance matrix are disentangled in order to

establish whether these breaks are associated with variances or correlations.

The evidence for breaks in the correlation component indicates changes in

the link of inflation across countries. Employing this approach on the Euro

area VAR system including France, Germany and Italy, and a VAR for the

G7 excluding Japan, they show that the international co-movement increases

starting around the 1980s for the Euro area VAR system and the mid 1990s

in the G7-VAR system.

This chapter closely relates to and builds upon Bataa et al. (2013a) when

testing for breaks in the international links, but employs a simple bivariate

model which includes a measure of international inflation as an explanatory

and country specific components from real and nominal variables, by jointly estimating
co-movements in output growth and inflation.
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variable. The system approach makes a strong assumption that all cross-

country inflation linkages exhibit changes at the same date. Additionally, it

considers only links across a small number of countries. Whereas, the analysis

in this chapter is more general in examining each country in conjunction with

an appropriate measure of foreign inflation and in allowing breaks to occur in-

dependently. Further, this chapter improves on their methodology, particularly

in relation to the detection of outliers, which are important for inflation. For

the next subsection, we assess structural break testing methodologies used in

the literature and explain the importance of our methodological contribution.

1.2.2 Structural Break Analysis

Theoretical research highlights the sensitivity of structural break testing to

the assumptions made. On the one hand, Pitarakis (2004) shows that tests for

mean and persistence breaks are distorted substantially when volatility changes

occur but are unaccounted for. On the other hand, inference on volatility

breaks is misleading if the computed residuals are contaminated by neglected

mean breaks as noted by Sensier and van Dijk (2004). However, empirical

analyses for inflation are generally deficient in recognizing these theoretical

findings.

1.2.2.1 Single break tests

The structural stability of inflation is well studied in relation to analysis of

persistence change, which, in the context of an autoregressive model, is usu-

ally measured by the sum of the estimated autoregressive coefficients. A large

number of studies note that the previously believed high inflation persistence

is due to the failure of accounting for structural instability (Gadzinski and

Orlandi, 2004, Clark, 2006, Levin and Piger, 2003, Altissimo et al., 2006, etc).

On the contrary, other studies find persistence to be largely constant after al-

lowing a structural change in the mean level of inflation (O’Reilly and Whelan,

2005, Pivetta and Reis, 2007).

A number of studies of inflation changes focus on its mean level, with

changes in persistence of lesser interest and changes in the variance generally

ignored. Perhaps, this is due to the fact that many studies examine the effects

of monetary policy changes which are often associated with changes in the

mean of inflation5. To date, the main methodology employed in these studies

5Specially, this is the case in those who are motivated to explore the link between mone-
tary policy change and low levels of inflation observed at least for last two decades (Altissimo
et al., 2006, Gadzinski and Orlandi, 2004).
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is to conduct the Andrews (1993), test for a single break at an unknown date.

This is applied to the intercept of a univariate autoregressive model assuming

dynamics parameters are constant (see e.g Levin and Piger, 2003, Altissimo

et al., 2006, on OECD and Euro area data). As a result, persistence is lower

compared to models that impose a constant mean inflation level. However, in

a finite sample, the asymptotic p values may over reject the null of stability

when the true degree of persistence is high (Diebold and Chen, 1996, Hansen,

2000). Therefore, when assessing the significance of break dates, bootstrapped

p values are used which follow the study by Diebold and Chen (1996), who

showed these to be valid.

However, the superiority of the bootstrapping procedure revealed by Diebold

and Chen (1996) is based on the case of simultaneous testing for mean and

persistence breaks. But, the literature tends to test for mean break only or

mean break first and persistence break second, conditionally or uncondition-

ally on the obtained mean break. For instance, in the studies by Gadzinski

and Orlandi (2004) and Clark (2006), models are re-estimated allowing for a

previously obtained intercept change and then the stability of persistence pa-

rameters is tested using bootstrapped p values. After this sequential test, they

conclude that the null of constant persistence is hard to reject based on Euro

area and US data (Gadzinski and Orlandi, 2004, Clark, 2006). This may be

due to low power for detecting small and even moderate size persistence breaks

when testing for mean and persistence breaks separately even after employing

bootstrapped p values, as pointed out by O’Reilly and Whelan (2005).

The majority of empirical studies assume a constant variance. However, in

practice, we should expect changes in the volatility of inflation at least for some

countries in relation to oil price shocks during the 1970s and 1980s, disinflation

or inflation targeting policies in the early 1980s and 1990s respectively. If those

events lead to omitted volatility change, this may contaminate the performance

of the mean break and persistence break tests, since neither Andrews (1993)

asymptotic distribution nor simple bootstrapped p values are robust to the

presence of heteroskedasticity.

Few empirical studies employ a heteroskedasticity robust method when

testing for a mean break. Levin and Piger (2003) use a ”wild” bootstrap

method when testing for a mean break using the OECD data. Furthermore,

Hansen (2000) proposed two forms of ”fixed regressor bootstrap”, one being

appropriate in the presence of heteroskedastic variance and another in the

absence of heteroskedasticity, and compared them with the inference using

the asymptotic distribution which assumes homoskedastic variance. Although

the results from two forms of fixed regressor bootstrap yield a substantial size
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improvement over the asymptotic distribution, these tests also tend to over

reject in the presence of heteroskedasticity.

As a conclusion, many available results for inflation breaks are unreliable

because they do not allow for structural breaks in the variance.

1.2.2.2 Multiple break tests

Inflation was high and volatile around 1970s until the mid 1980, and becomes

low and less volatile after that. It declined further in the early 1990s and has

remained low and stable over the last two decades. Perhaps, looking for mul-

tiple breaks in over forty years may be intuitive. Many studies find more than

one structural break which they associate with the start of European Monetary

System, disinflation policies in the US and UK during the early 1980s (Benati

and Kapetanios, 2002, Corvoisier and Mojon, 2005) and inflation targeting

during the 1990s (Benati and Kapetanios, 2002, Corvoisier and Mojon, 2005,

Cecchetti and Debelle, 2006). Along with these breaks, significant declines of

both mean and persistence are documented.

For example, Corvoisier and Mojon (2005) find 57 breaks in the mean of

inflation across 22 OECD countries when testing for breaks in the uncondi-

tional mean in autoregressive models. That is a little less than three breaks for

each country, on average. Similarly, Cecchetti and Debelle (2006) also docu-

ment multiple mean breaks using data from 19 OECD countries. However, the

numbers of mean breaks found in these studies may be the results of oversized

tests due to the authors’ failure to account for potential changes in variance

and persistence.

As mentioned previously, testing for structural breaks in dynamic models

requires consideration be given also to the nature of volatility. This is because

omitted variance breaks could be interpreted as mean breaks leading to a

conclusion of spurious mean breaks (Sensier and van Dijk, 2004, Pitarakis,

2004). On the other hand, testing variance breaks without accounting for

existing mean breaks may cause an identification of too few variance breaks

than there are. Because, omitted mean breaks make variance estimates larger

and therefore the detection of variance breaks less likely. Whereas, in the

empirical literature, the variance of residuals is constructed using the residuals

obtained from the ordinary least squares estimates where mean breaks are not

taken into account (Benati and Kapetanios, 2002, Clark, 2006). Therefore,

variance breaks may be contaminated by omitted mean breaks which lead

misleading inference.

Empirical support for the theoretical claim stated above seem to be re-

flected in the work by Benati and Kapetanios (2002) who note a reduced
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power of separate coefficient break testing. They separately tested multiple

breaks in the intercept, the AR coefficients and the innovation variances of

univariate autoregressive model using the Andrews (1993), Andrews and Chen

(1994) sequential methodology described in Bai (1997) assuming other param-

eters except the one being tested are constant. Based on real data, they find

uniformly strong evidence of structural instability in the variance and uni-

formly non rejection of the null of stability in the intercept of almost all series

considered,6 and the rejection of stability in the AR coefficients in most cases.

When they employ different test such as the Nyblom-Hansen test, the null of

stability is rejected in the intercept of most autoregressive models while the

number of variance and AR coefficient breaks remains large. This is indicative

of the existence of breaks in the variances and persistence parameters, and one

should be careful when assuming stability in all components other than those

being tested.

Thus, testing for structural change in one component conditional on iden-

tified breaks in other components is vital. This issue is addressed in the recent

paper by Bataa et al. (2013a,b). They propose an iterative methodology to

examine breaks in each component sequentially, using the multiple structural

break test by Qu and Perron (2007) together with an outlier detection proce-

dure. Detail of this approach is provided in section 1.3.1 since it closely relates

to our approach.

1.3 Methodology

1.3.1 Iterative methodology of structural break analysis

As a complement to the existing literature that often conducts break point tests

under misspecification (omitting changes in either mean or variance of a time

series), we employ an iterative approach which aims to avoid misspecification

through the use of an iterative procedure. Our research adapts the iterative

methodology by Bataa et al. (2013b,a) to analyze structural breaks in the

mean, persistence (dynamics) and innovation variance (volatility) of univariate

inflation series.

The iterative methodology proposed by Bataa et al. (2013b) tests for struc-

tural breaks in each of the components of inflation: seasonal, mean, dynamics

and volatility one at a time conditional on previously found breaks in all other

components. The testing procedure employed is that of Qu and Perron (2007),

6A similar approach is undertaken by Clark (2006) in a single break context. He finds
strong evidence of intercept break and very small evidence of persistence and variance
changes.
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together with the outlier detection and removal procedure of Stock and Wat-

son (2003). However, this procedure is quite complex and, as indicated by the

Monte Carlo results in Bataa et al. (2013a) for the multivariate case, iteration

is relatively unimportant in practice for the variance component. Further,

their separation of mean and dynamics breaks can have relatively poor per-

formance in practice, especially since the initial tests for mean breaks apply

Heteroskedasticity and Autocorrelation robust (HAC) inference using the ap-

proach of Andrews (1991), which is known to be sometimes badly oversized

(Bai and Perron, 2006). Finally, while their outlier detection procedure makes

use of detected coefficient breaks, variance breaks are ignored for outlier de-

tection. Therefore, we propose a simple, yet efficient version of the iterative

approach of Bataa et al. (2013b) that also takes account of these concerns. It

is more flexible in a number of respects, including re-specification of the model

employed at each iteration, reflecting the effects of detecting and removing

outliers.

Note that seasonality is not a particular focus of interest in this study.

Since CPI data are typically available only in a seasonally unadjusted form,

we use the widely applied X-12-ARIMA seasonal adjustment procedure7 to

deseasonalize the data prior to beginning our iterative procedure. The X-12-

ARIMA procedure is particularly suitable in our context, as it allows for the

presence of trend, deterministic seasonal patterns, holidays and trading day

adjustment, additive outliers and level shifts (Osborn and Ghysels, 2001, p.106-

127). Note, however, that while additive outliers are taken into account for

the purposes of seasonal adjustment, they remain in the series after seasonal

factors are removed (Census Bureau, 2011, p.123-127).

Here the discussion of methodology focuses on univariate inflation models

although this chapter concerns changing dynamics in international links. This

is because many studies are readily available in the context of univariate in-

flation and results from these studies can be compared to that of ours after

applying the iterative testing procedure. In subsection 1.3.3, we will turn to

the analysis of international inflation links.

A time-varying univariate AR model for monthly domestic inflation in a

country, πDt , is given by

πDt = µj +
n∑
i=1

αijπ
D
t−i + υt, (1.1)

7This is implemented using the EVIEWS 7 software (EVIEWS, 2009). We performed a
small experiment by comparing official seasonally adjusted US data by Bureau Census with
ones filtered by X-12-ARIMA. A graphical analysis indicated that the two series had very
similar properties, thus we proceed with X-12-ARIMA for the inflation series of all countries.
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where the subscript j indicates the coefficient regime and υt is a zero mean

uncorrelated process whose variance σ2
k = E[υ2

t ] is allowed to change over

variance regimes (indicated by the subscript k). Our interest, therefore, focuses

on possible discrete breaks in the coefficients and the disturbance variance,

while allowing for the presence of additive outliers in πDt , which could be due to

(say) changes in indirect taxes. Denote m as the unknown number of coefficient

breaks. Within each of m + 1 coefficient regimes, δj = (µj, α1j, . . . , αnj)
′ is

time-invariant and all AR roots are assumed to lie strictly outside the unit

circle. The jth regime extends over observations t = Tj−1 + 1, . . . , Tj using

the convention that T0 = 0 and Tm+1 = T. All coefficients are allowed to

change and the break dates (T1, . . . , Tm) are treated as unknown. Similarly,

σ2
k is constant within each volatility regime and is assumed to be conditionally

homoskedastic. Our iterative approach to specifying the model in (1.1) is given

by the following steps and a schematic illustration of the algorithm is provided

in the Appendix A.2.

Step 1 - Outlier detection: The first iteration starts by identifying outliers

in the deseasonalized full sample of data. Employing the outlier detec-

tion procedure by Stock and Watson (2003), outliers are defined as four

times of the interquartile range from the median8. Detected outliers are

replaced by the median of the six neighboring non outlier values.

Step 1* - Outlier detection for subsequent iterations: In subsequent it-

erations, outliers are examined separately within each coefficient regime

and in data adjusted for volatility breaks (by standardizing the series us-

ing standard deviations of residuals in corresponding volatility regimes).

Detected outliers are replaced by the median of the six neighboring non

outlier standardized values. The data are then destandardized, to yield

a series adjusted only for outliers.

Step 2 - Model selection: A univariate inflation model is selected using the

Schwartz Information Criterion (thereafter SIC). Specifically, using the

AR model and allowing a maximum lag of n = 17, all possible combina-

tions of lags are considered, implying a total of 217 models. Since ”gaps”

are permitted in coefficients, i is not necessarily consecutive in (1.1). To

ensure comparability, all models for a given country are estimated over

8There is a trade-off for choosing between too small or too big number to multiply the
interquartile range. If the number is chosen too large, then it is unable to pick up obvious
outliers. If it is chosen too small, too many outliers are detected in a single series. In our
judgment a value of four times the interquartile range seems appropriate for most inflation
series as it allows obvious outliers to be identified and results in a reasonably small number
of outliers.
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a common set of data, and the choice among them is made based on

minimum SIC. Persistence is measured by the sum of autoregressive co-

efficients, ρ̂ =
∑n

i=1 α̂i, as it is the best scalar measure of the persistence,

as indicated by Andrews and Chen (1994).

Step 3 - Preliminary coefficient break test: After having specified lags

in (1.1), the Bai and Perron (1998) multiple structural breaks procedure

is applied to the coefficient vector of the autoregressive model (including

intercept and slope parameters of the regression). The possibility of het-

eroskedasticity in the variance is allowed by employing Heteroskedasticity

Consistent (HC) inference9. Although HC inference can lead to over-

sized coefficient break tests when there is no heteroskedasticity, shown

by the simulation analysis by Bai and Perron (2006), the estimates in

each regime are consistent in a large sample. Further, coefficient breaks

identified here are reconsidered in step 5 of the iteration.

Step 4 - Variance break test: Conditional on the coefficient break dates

from step 3, variance breaks are examined through tests applied to the

mean of the squared residuals (see section 1.3.2 for details). This is to

mitigate the concern of misleading inference of variance breaks, caused

by obtained residuals that may be contaminated by coefficient breaks

(Sensier and van Dijk, 2004, Pitarakis, 2004).

Step 5 - Coefficient break test: To avoid the serious problems for coeffi-

cient break tests of omitted variance breaks (Pitarakis, 2004), we re-test

breaks in the coefficients conditional on the variance breaks from step 4.

That is, we apply the feasible GLS transformation10 and, assuming ho-

moskedasticity in the error term, the Bai and Perron (1998) procedure is

performed again on the new transformed data in order to obtain volatil-

ity adjusted coefficients break dates for the model specified in step 2. If

no volatility breaks are found from step 4, coefficient tests are applied

to the original data with a homoskedastic variance assumption, and the

iteration ends.

The iterative testing procedure outlined above differs from the methodology

by Bataa et al. (2013b) in several respects. Firstly, Bataa et al. (2013b) test

9The procedure of Bai and Perron (1998) allows for the presence of disturbance het-
eroskedasticity and/or autocorrelation using the approach of Andrews (1991). Our imple-
mentation requires only HC inference, which follows Bai and Perron (1998) in using the
Andrews (1991) method.

10This methodology is based on the findings by Pitarakis (2004) who revealed substantial
improvement of this transformation in small samples by comparing bootstrap based test on
both transformed and untransformed data.
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for breaks in seasonal components as part of the iterative procedure whereas

we apply seasonal adjustment procedure to the data once prior to beginning of

our iterative procedure. Secondly, outlier detection procedure in step 1* takes

account of the latest identified coefficient and variance breaks while variance

breaks are ignored when detecting outliers in Bataa et al. (2013b). Thirdly,

in step 2 we re-specify the model employed at each iteration, reflecting the

effects of detecting and removing outliers. This is not a concern in Bataa et al.

(2013b).

Fourthly and most importantly, the preliminary coefficient break test in

step 3 (where mean and dynamics are jointly tested) employs HC inference

to account for possible heteroskedasticity in the variance. For their initializa-

tion, HAC inference is employed when testing for mean breaks to account for

un-modeled dynamics and variance, and later they employ HC inference when

testing for breaks in dynamics on the demeaned data. However, as mentioned

previously, this procedure can be substantially oversized, therefore and con-

sequently we jointly test for mean and dynamic breaks. Finally, the iterative

procedure by Bataa et al. (2013b) incorporates ’inner loop’ that iterates be-

tween tests for breaks in the dynamics and the residual variance. However,

as shown by their Monte Carlo simulation, variance breaks are detected well

without iteration. Our variance break testing procedure in step 4 simplifies the

iterations in respect to identification of variance breaks. In each iteration, pos-

sible breaks in the residual variance are tested once conditional on coefficient

breaks detected from step 3.

A single iteration is composed of steps 1 to 5. The iterations proceed to

convergence, with a maximum number of iterations set to 10. Convergence

may be achieved in two different ways: firstly, the same set of break dates may

be obtained from consecutive iterations; alternately, the iteration can cycle

between two or three sets of break dates. In the later case, we choose the

set which achieves the smallest SIC criterion among these local optima. When

calculating SIC for this purpose, we use a fixed number of observations, T . The

version of SIC is that proposed by Yao (1988) for structural break inference,

which is applied to the GLS transformed data and calculated for m breaks as

SIC(m) = ln σ̂2(m) + p∗ ln(T )/T, (1.2)

where σ̂2(m) = T−1ST (T̂1, . . . , T̂m), in which ST (T̂1, . . . , T̂m) is a sum of squared

residuals over m breaks, and p∗ = (m+ 1)q+m in which q equals the number

of coefficients (including the intercept) in (1.1). Thus, the penalty effectively

treats each break date as a parameter to be estimated.
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A single iteration accounts for the main issues that we address in this

chapter - namely, the integrity of estimated mean, persistence and variance

breaks. However, on the one hand, those break dates from steps 4 and 5 can

have a considerable impact on the outlier detection procedure of step 1. For

example, an outlier detected using the full sample may not be an outlier for

a certain high volatile regime but appear as an outlier compared to a smooth

part of the sample. Similarly, an outlier appearing in the relatively stable

regime may be too small to be detected using the full sample compared to a

volatile part of the sample. On other hand, a different set of outliers can be

found from one iteration to another depending on the variance and coefficient

breaks identified in the previous iteration, and newly identified outliers also

can have an impact on the identification of coefficients and variance breaks in

the following steps. Hence, the need for iteration.

1.3.2 Estimating the number of breaks

The heart of the iteration described in the above subsection is the multiple

structural break testing procedure by Bai and Perron (1998)11. Say the model

of (1.1) has a maximum of m coefficient breaks and hence m + 1 regimes,

j = 1, . . . ,m + 1. The estimates of the parameters and the optimal break

dates are computed using the dynamic programming algorithm of Bai and

Perron (1998, 2003a), which searches for the minimum total residual sum of

squares over all m+1 regimes. This yields m sets of possible break dates: that

is, 1, 2, . . . ,m possible estimated break dates.

After m sets of possible estimated break dates are obtained, we employ two

different tests: WDmax and sequential Sup F (l + 1|l) to choose among those

sets. First, we use WDmax12 as an indication of the presence of at least one

break. WDmax tests the null hypothesis of no breaks against the composite

alternative of 1, . . . ,m breaks and failure to reject the null hypothesis then

zero breaks are estimated to occur. As recommended by Bai and Perron (1998,

2003a), when the null hypothesis is rejected, their sequential SupF (l+1|l) test

is employed to estimate the appropriate number of breaks. That is, the null

hypotheses of l = 1, 2, 3, . . . breaks (subject to a maximum of m breaks) are

examined sequentially against the alternative of l+1 breaks, with the first non-

rejection yielding l breaks. In particular, this test is applied first for 2 versus

11We adapt the MATLAB code for testing multiple structural breaks which is originally
developed by Pierre Perron in the GAUSS program and translated later to MATLAB pro-
gram by Yohei Yamamoto (2012).

12The WDmax statistic is used in preference to UDmax because it embodies a set of
weights that ensure the marginal p-values are equal for the null of no breaks against each
specific number of breaks 1, 2, . . . ,m (Bai and Perron, 1998).

32



1 break (not 1 versus 0) due to the difficulty of rejecting the null hypothesis of

zero versus a single break in the sequential test, especially in a case that the

value of the coefficients returns to its original value after the second break when

two breaks are present (Bai and Perron, 2003a, 2006). Sequential Sup F (l +

1|l) tests are conducted due to their good performance under both presence

and absence of serial correlation and heterogeneity compared to the use of

information criterion (Bai and Perron, 2006).

All tests are computed at a nominal 5 percent level of significance, with

the maximum number of breaks considered being m = 5. Testing employs the

asymptotic distributions obtained by Hall and Sakkas (2013), which are shown

by these authors to more accurate than the critical values provided by Bai and

Perron (2003b) and have the additional advantage of allowing computation of

asymptotic p -values. The so-called trimming parameter, which defines the

minimum distance between two consecutive breaks as a function of the total

sample size T is set at 0.15.

More specifically, the testing procedure we describe in this section relates

to steps 3, 4 and 5 of the iteration above. We first test H0 : µj = µj+1 and

αi,j = αi,j+1 for j = 1, . . . ,m against the alternative of HA : µj 6= µj+1 or

αi,j 6= αi,j+1 for at least some m ≤M (M is an upper bound), using

WD maxFT (M, q) = max
1≤m≤M

am[ sup
(λ1,...,λm)∈Λε

FT (λ1, . . . , λm; q)] (1.3)

where λj for j = 1, . . . ,m are possible break dates as fractions of the sample

size, and Λε denotes the set of all possible sample partitions given ε which is

the smallest fraction of the sample that must be included in each segment,

satisfying 0 < ε < 1. For m > 1, am = c(q, α, 1)/c(q, α,m) in which c(q, α,m)

is the asymptotic critical value of the test sup
(λ1,...,λm)∈Λε

FT (λ1, . . . , λm; q) at a

significance level α, where supFT is given as

supFT (λ1, . . . , λm; q) = sup[
1

T
(
T − (m+ 1)q

mq
)δ̂′R′(RV̂ (δ̂)R′)−1Rδ̂] (1.4)

where q is the number of regressors that are allowed to change and δ̂ =

(µ̂j, α̂1j, . . . , α̂nj). We allow the covariance matrix of δ̂ to evolve as V̂ (δ̂j) =

σ̂j
2[(∆T̂j)

−1
∑T̂j

t=T̂j−1+1
ZtZ

′
t]
−1 where σ̂2

j = (∆T̂j)
−1
∑T̂j

t=T̂j−1+1
υ̂2
t for j = 1, ...,m+

1, under the HC inference and Zt = (1, πD
′

t−i) is the vector of regressors. The HC

case here, however, only allows for variance breaks that coincide with coefficient

breaks. R is a matrix of restrictions such that (Rδ)′ =
(
δ′1 − δ′2, ..., δ′m − δ′m+1

)
.

Once the WDmax test rejects the null of no breaks, we employ Sup F (l+1|l)
to define the number of optimal breaks using
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FT (l+1|l) = {SSRT (T̂1, . . . , T̂l)− min
1≤j≤l+1

inf
τ∈Λj,ε

SSRT (T̂1, . . . , T̂j−1, τ, T̂j, . . . , T̂l)}/σ̂j2

(1.5)

where Λj,ε = {τ ; T̂j−1 + (T̂j − T̂j−1)ε ≤ τ ≤ T̂j − (T̂j − T̂j−1)ε}.
Here one additional break is inserted, conditional on the break dates al-

ready uncovered and assessed whether additional break reduces the overall

sum of squared residuals. For example, the null hypothesis of l breaks is re-

jected against the alternative of l + 1 if its overall sum of squared residuals is

sufficiently larger than the sum of squared residuals from the model with l+1,

and it continues sequentially until the testing procedure fails to reject the null

hypothesis.

At step 3 of the iteration, we obtain the estimated coefficient break dates

under equations (1.3) to (1.5) and denote these as T̂C1 , . . . , T̂
C
m . After obtaining

the estimates of δ̂ = (µ̂j, α̂1j,...,α̂nj) and the corresponding coefficient break

dates T̂C1 , . . . , T̂
C
m , we estimate the variance of residuals by first concatenating

the squared residuals in each regime

υ̂2
t = (πDt − µ̂j −

n∑
i=1

α̂i,jπ
D
t−i)

2 (1.6)

where j = 1, . . . ,m+ 1 and t = T̂Cj−1 + 1, . . . , T̂Cj , E(υt) = 0 are assumed.

Then at step 4 of the iteration, we run the tests described in equations

(1.3) to (1.5) again on the variance of residuals through the regression

υ̂2
t = γj + ut (1.7)

where γj is a constant whose value is allowed to change over time.

At step 5, if any variance breaks13, denoted as T̂ V1 , ..., T̂
V
m , are found in

the equation (1.7), we calculate the standard errors in each regime as σ̂j =√
(∆T̂j

V
)−1
∑T̂Vj

t=T̂Vj−1+1
υ̂2
t . Then, the standard error in each regime is used

to standardize the data that leads GLS transformation, π̄Dt =
πDt
σ̂j

π̄Dt−i =
πDt−i
σ̂j

µ̄j = µ
σ̂j

where t = T̂ Vj−1 + 1, . . . , T̂ Vj . Then coefficient break test-

ing is applied to the model using GLS transformed data, but under the ho-

moskedastic assumption so that the covariance matrix of δ̂ is obtained as

V̂ (δ̂j) = σ̂2

[
(∆T̂j

C
)−1
∑T̂Cj

t=T̂Cj−1+1
ZtZ

′
t

]−1

with σ̂2 = (T )−1
∑T

t=1 υ̂
2
t .

13Note that although m is used to denote the number of both coefficient and variance
breaks, in practice we allow different numbers of breaks to apply for these components.
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1.3.3 Testing in the bivariate model

So far, we have focused on univariate inflation models to test for structural

breaks using our iterative methodology. This subsection introduces the bi-

variate model of principal interest, which examines changes in the degree of

interdependence of domestic and foreign inflation. For this purpose, a parsi-

monious representation of domestic inflation for country s in month t (πDt,s) is

given by

πDt,s = µj +
n∑
i=1

αijπ
D
t−i,s + β0jπ

F
t,s +

n∑
i=1

βijπ
F
t−i,s + εt (1.8)

where πFt,s is foreign inflation in relation to country s at time t, and β0j cap-

tures the contemporaneous co-movement between domestic and foreign infla-

tion in coefficient regime j. Inflation in country s also depends on its own

lags and the lags of foreign inflation, where the effects are captured through

(α1j, . . . , αnj) and (β1j, . . . , βnj) coefficients respectively. Foreign inflation is

treated as weakly exogenous for domestic inflation. Inflation persistence for

country s in this model is measured by ρ̂dj =
∑n

i=1 α̂ij.

The motivation for the form of (1.8) is the Global-VAR (GVAR) analysis

which examines international links using country-specific foreign variables. For

instance, Pesaran et al. (2004) model each domestic macroeconomic variable

considered in terms of its own lags, contemporaneous foreign variables and their

lags. The US is a special case in their studies, with foreign inflation and output

excluded from the US model as they assume that it violates weak exogeneity.

Our bivariate model of inflation in (1.8) is similar, but in a single equation

context in order to focus on international linkages of inflation. This allows us

to test for time variations without losing too much power. Additionally, we

include contemporaneous foreign inflation in the US model. This follows the

arguments of Dees et al. (2007), that, in a foreign context and as the number

of countries increases, this variable can be treated as weakly exogenous also

for the US.

We anticipate breaks in the foreign coefficients (β0j, β1j, . . . , βnj), if there

are changes in the way in which domestic inflation relates to foreign inflation.

Additionally, the locations of breaks in the (µj, α1j, . . . , αnj) coefficients may

differ from those found in the univariate models of equation (1.1), due to the

inclusion of foreign variables. Although we do not employ tests to disentangle

explicitly what elements of δj = (µj, α1j, . . . , αnj, β0j, β1j, . . . , βnj) change at

break dates, coefficient estimates in each regime are informative with regard

to this.

Inference as to the presence and dates of the breaks in (1.8), including
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breaks in the disturbance variance, is achieved by employing the iterative pro-

cedure outlined in subsection 1.3.1 and the multiple break testing methodology

in subsection 1.3.2. Although the general procedure is the same as in the uni-

variate analysis, some additional remarks should be made. In step 1 of the

iteration (step 1* for subsequent iterations), the outlier detection and removal

procedure runs only on domestic inflation because aberrant observations in the

explanatory variables should not affect the size of the test14. Furthermore, we

note that the presence of a break in the explanatory variable does not affect

the size of the test15.

In step 2, we choose bivariate models in a slightly different manner from

the univariate models. Employing the same model selection method is compu-

tationally excessive, since the best model would be selected out of 225 possible

models, provided that the maximum lags allowed for domestic and foreign

variables are 12 each plus a contemporaneous foreign variable. Therefore, we

employ a general to specific methodology to remove irrelevant lags from the

general model, but still decide the best model based on SIC. Precisely, we start

by evaluating the model with 25 lags (12 lags for each of domestic and foreign

inflation plus a contemporaneous foreign inflation), then the least significant

lag using t-tests is eliminated and corresponding information criterion (SIC) is

calculated. Continuing by sequentially dropping the least significant lag one at

a time, until only the intercept remains, we choose the model which achieves

the smallest SIC criterion across all 25 models.

However, the selected model is the optimum within a single path. There

could be multiple paths that yield different optima depending on the starting

point of elimination. Therefore, we check the sensitivity of the model selection

to the starting point using the idea of the multipath search algorithm, proposed

by Krolzig and Hendry (2001). To be specific, we proceed through 5 paths by

initially eliminating the zth (where z = 1, . . . , 5) least significant variable.

Once the first variable is dropped, the least significant variable is dropped at

all subsequent stages. At the end of the search, we have 5 sets of SIC values

from which the final model is selected based on the smallest SIC criterion16

14We undertook a simulation study to examine the performance of the Chow test with ex-
planatory variables having moderate and large size outliers. Based on the 10000 replications,
on average, the size of the test is unaffected. The results are reported in the Appendix

15Allowing a single break in the process generating the explanatory variable occurring in
the middle or towards the end of the sample, the test is well-sized at a 5% significance level,
based on 5000 replications. The results are provided in the Appendix.

16We also compare our information criterion based models with a conventional testing
down method, using a significance level of 1%. In the latter approach, all remaining coef-
ficients are significant at 1% but this does not necessarily achieve the smallest information
criterion. It yielded very similar lags to those selected by SIC, except for the inclusion of an
additional lag in a few cases.
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achieved among all values.

Moreover, in the sensitivity analysis (which we will discuss in detail in

section 1.6), an additional explanatory variables is included in the bivariate

model, with a contemporaneous and 12 lagged values added. The additional

variables are oil price inflation and the change in trade weighted real effective

exchange rates. The first is employed because a sudden increase in oil price

can cause an exogeneous inflationary shock to domestic inflation, and omitting

this variable may result upward bias in the estimated coefficients. The latter

is included as it may be important in explaining domestic inflation, especially

for open economies, through its influence on import and export prices. The

approach, including the way SIC is used for model selection, is unchanged from

that employed for the bivariate models.

1.3.4 Measuring foreign inflation

We construct foreign inflation for country s (where s = 1, . . . , N) based on a

weighted average of inflation series over the other N − 1 countries in the data

set. Weights are computed based on bilateral trade statistics as,

w
(i)
s,t =

(M
(i)
s,t +X

(i)
s,t )∑N

i=1,i 6=s(M
(i)
s,t +X

(i)
s,t )

and πFs,t =
N∑

i=1,i 6=s

w
(i)
s,tπi,t (1.9)

where
∑N

i=1,i 6=sw
(i)
s,t = 1 for i = 1, . . . , 19 and i 6= s. The trade weight for

country s with respect to country i, w
(i)
s,t, is given by the share of total trade

between country s and i, in the total trade of country s with all its trading

partners. Precisely, the total trade of country s with country i is measured by

the sum of total imports from i (M
(i)
s ) and exports to i (X

(i)
s ). The weights are

time varying and changes from month to month are relatively small, although

this is not generally the case over the entire sample period. After computing

trade weights, country specific foreign inflation is constructed as in (1.9) for

each of the 19 countries in our sample.

1.4 Data

The data set we use in our analysis comprises of monthly aggregate series of

Consumer Price Index (CPI) inflation for 19 OECD countries over the period

between January 1970 and September 201017. These include ten countries

17Although a few countries can be added if a shorter period is allowed, we prefer to focus
on results using the larger sample.
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that are members of the Euro Area (Austria, Belgium, Finland, France, Ger-

many, Greece, Italy, Netherlands, Portugal, Spain), five other European coun-

tries (Denmark, Norway, Sweden, Switzerland, UK) and four other countries

(Canada, Japan, Korea, US). All inflation series are calculated by differencing

logged monthly indexes and multiplying by 100 where monthly CPI values are

obtained from the OECD Main Economic Indicator database. Since we are

using monthly series, seasonal oscillation is high and taken care of using the

X12-ARIMA filter in EVIEWS 7 program with default options18.

We also use monthly values of trade, which is defined by the sum of total

exports and imports, by partner countries to construct trade weights using

equation (1.9). According to the OECD Main Economic Indicator statistical

website, all series are expressed in US dollars using (where appropriate) the

exchange rates which adjust the rates before and after the start of the European

Monetary Union (EMU). This adjustment facilitates a comparison within and

across countries. The range of trade data is the same as CPI inflation although

there are some missing data for Belgium, Korea and Portugal. Korea starts

registering bilateral trade data from January 1988 and Belgium from January

1993. Portugal has missing trade data with respect to Italy between January

1971 and December 1973. Due to those missing observations, the trade weights

corresponding to those periods are filled by the first available weight after the

missing observations. This does not unduly distort the data since monthly

weights are generally smooth over the 40 years of our sample.

Table 1.1 shows bilateral trade weights averaged over 40 years. In general,

Germany is the biggest trade partner for most European countries, while the

US is the main trade partner for non-European countries such as Japan, Ko-

rea and Canada. However, the UK does not have a dominant trade partner,

although shares with respect to Germany, US and France are relatively large

compared to others. Those weights are informative to construct a country

specific foreign inflation, by taking account of contributions of trading part-

ners’ inflation. We should note, however, that weights based on bilateral trade

statistics may be limited as they do not reflect trade effects of a third-country

such as the big emerging economies of China and India. But, the limitation of

data for those countries precludes their use.

For the sensitivity analysis in section 1.6, the world average crude oil price

index, over the period between January 1970 and September 2010, is used

to calculate oil price inflation which is added as an additional variable in

18Although there are official seasonally adjusted series available for the US and Germany,
due to the consistency with other inflation series, we run the seasonal adjustment procedure
on seasonally unadjusted data for all countries.
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equation (1.8). This is available from the OECD Main Economic Indicator

database. Another variable added in equation (1.8), although not at the same

time with oil price inflation, is monthly averaged trade weighted real effective

exchange rate indexes for individual country. This is obtained from the Bank

of International Settlement database. Changes in these variables are computed

by differencing logged monthly indexes and multiplying by 100, consistent with

the construction of CPI inflation.

1.5 Results

This section presents the results. Section 1.5.1 provides a summary of results

for the univariate inflation models. Section 1.5.2 presents the results for bi-

variate inflation models and discusses inferences with regard to the spillovers

from foreign inflation to domestic inflation. All tests are conducted at the 5

percent significance level allowing a maximum of 5 breaks with value of trim-

ming ε = 0.15, such that a minimum fraction of the sample in each regime

equals to approximately 73 months. Asymptotic p-values are approximated

using the method of Hall and Sakkas (2013).

1.5.1 Univariate inflation models

Table 1.2 represents the selected autoregressive lags of the univariate and bi-

variate inflation models; the latter are discussed in section 1.5.2. In the uni-

variate models, we always find short lags to be present (say, 1, 2 and/or 3)

when the maximum lag allowed is 17. This is not surprising as the recent past

is more relevant. Also, longer lags (say 11, 12 and/or 13) are often found and

this could indicate that some seasonal effects may still be present.

Both the WDmax and Sequential tests are conducted to estimate the num-

ber of breaks. Their test statistics and corresponding p-values when testing

for coefficients and variance breaks are provided in Table A.3 and Table A.4

in the appendix. Generally, the WDmax and Sequential tests agree and point

either to the existence or non existence of breaks. The latter is used to choose

the number of breaks present. We note however, the concern of Bai and Per-

ron (2003a) of low power of the SupF (1|0) test in the presence of multiple

breaks, which may be relevant to the case of Canada when testing for variance

breaks; see Table A.4, in which the WDmax test rejects the null of no breaks,

indicating the existence of some number of breaks. However, the sequential

procedure reaches the conclusion of zero breaks, as SupF (1|0) fails to reject.

However, Canada is the only case where this occurs.
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Table 1.3 reports the break dates uncovered in the univariate coefficients

and residual variances. This table also indicates the number of iterations re-

quired for convergence of the testing procedure of subsection 1.3.1. All coun-

tries except Finland converge to a unique set of break dates, whereas for Fin-

land the iterative procedure cycles between two local optima, in which the one

with the smaller SIC is selected. We note that the iteration is necessary as

convergence usually requires more than one iteration. However, our applica-

tion requires no more than four iterations (except for Finland), highlighting

the efficiency of our iterative methodology.

We also provide a figure for every country (figure 1.1.1-1.1.19, in alphabet-

ical order), each comprising four graphs. The first two graphs in each figure

correspond to the univariate specification and compare the difference between

before and after iteration. Specifically, the first graph presents the break dates

as well as some statistics relating to the corresponding regimes from applying

the testing procedure of subsection 1.3.1 once, while the second graph reports

the results after iterating the testing procedure multiple times until the con-

vergence. For the majority of cases, the results in the first graphs can be seen

as intermediate results to the second graphs as convergence usually requires

more than one iteration, and thus the results in the second graphs are discussed

in this subsection. However, in many cases identical results appear from em-

ploying the testing procedure once and iterating multiple times, indicating the

effectiveness of the proposed testing procedure. Similarly, the third graph in

each figure relates to the bivariate specification after iteration and these are

discussed in the next subsection. The last graph in each figure plots country

specific foreign inflation for each corresponding country. This series is also

plotted in the third graph in order to compare dynamics between domestic

and country specific foreign inflation.

To illustrate, refer to figure 1.1.18b for the univariate specification of UK

inflation, for example. The vertical lines indicate the locations of the coefficient

break dates with the estimated dates (June 1982 and December 1991) in the

boxes next to these lines. Text arrows point to the locations of variance breaks

and the corresponding changes in the variance of the consecutive regimes.

The variance break occurring around April 1982 leads to a reduction of the

variance from 0.13 to 0.03. Furthermore, the estimates of persistence and

the unconditional mean in each regime, denoted by P and UcM respectively,

are shown in the boxes. These estimates are indicative with regard to their

changes over time. Outliers detected at the convergence of the iterations are

indicated by black dots if any outliers are detected, with three outliers found

in UK inflation over 40 years.
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Overall, we find a total of 26 coefficient breaks across all 19 countries, with

Austria and Switzerland having no breaks. This compares with the total of

23 mean and dynamics breaks obtained by Bataa et al. (2013b) for only 8

countries, despite the similar iterative approaches. For example, they uncover

4 mean breaks for France, whereas we find 2 significant breaks over a longer

sample period19. This may point to their testing procedure being oversized if

mean and dynamic breaks are considered separately.

Nevertheless, the timing of breaks presented in Table 1.3 is broadly consis-

tent with the existing literature. We find clusters of coefficients breaks around

the first half of the 1980s (although breaks for France, Spain and Norway are

estimated to occur shortly after this) and early 1990s. The first cluster of

breaks is widely considered to be a consequence of disinflation policies in a

number of countries including the US and UK (Altissimo et al., 2006, Benati

and Kapetanios, 2002, etc), and the currency peg in France, Italy and Nether-

lands which was designed to mimic the low inflationary experience in Germany

(Altissimo et al., 2006). Consistent with this view, the unconditional mean de-

clines to less than half of its pre-break value for most countries. The cluster in

the early 1990s includes many European countries and may be related to the

implementation of the Maastricht Treaty in 1992, in which inflation rates in the

countries joining the Euro Area were required to converge. Additionally, break

dates for the UK and Canada seem to relate closely with their introduction of

inflation targeting policies in October 1992 and February 1991, respectively.

In relation to these later breaks, further declines in the unconditional mean are

observed with a smaller magnitude than the declines in the 1980s. The largest

decline is in the mean of Japan after December 1991, pushing it to a negative

value. These changes in unconditional mean can be seen in their respective

country’s figure.

A figure for each country (figure 1.1.1-1.1.19, in alphabetical order) also re-

ports the estimates of persistence in each coefficient break regime. In common

with the existing literature, the results show that estimated inflation persis-

tence is generally smaller after the coefficient breaks, especially in the latter

part of the sample. In most cases (12 out of 19 countries) estimated persistence

is high, between 0.60-0.90 before the first break, but it falls substantially in

later regimes and almost disappears in the last regime20. This contrasts with

the finding by Cecchetti and Debelle (2006), O’Reilly and Whelan (2005) and

others, who detect weak evidence for persistence change over time. However,

19Bataa et al. (2013b) use data between March 1973 and December 2007.
20This is consistent with findings by Bataa et al. (2013b) who noted zero inflation persis-

tence for Canada.
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in line with these studies, we find that relatively stable persistence applies

in Norway, Germany and Netherlands. In the cases of Portugal and Spain,

persistence declines after the first break, but increases back to previous high

persistence levels after the early 1990s (see figures 1.1.14b and 1.1.15b).

Visual inspection indicates that every country experiences a highly volatile

inflation period that lasts until either the late 1970s or mid-1980s depending

on the country, with volatility decreasing afterwards. For Canada, Norway

and the US we find volatility increases again around the early 2000s (see fig-

ures 1.1.3b, 1.1.13b and 1.1.19b). Consistent with this observed pattern, our

results imply an equal number of variance and coefficient breaks, stressing the

importance of variance break testing, which is largely absent from the existing

literature. More importantly, although the clustering pattern of mean breaks

is widely documented in the literature, we find also a clustering of variance

breaks. For example, we find declines in variances around 1977 for eight coun-

tries, which may reflect the stabilization of inflation after the large oil price

shocks of 1973-1974. An even larger number of breaks (14 in total) occur in the

first half of the 1980s, reflecting ”the great moderation”. A few breaks also

occur around 1992, which may be an effect of stabilization due to inflation

targeting policies; for example, in Greece and Portugal.

Finally, we emphasize the importance of the outlier detection. Searching

for outlier values in the coefficient break regimes using volatility standardized

data yields more plausible outliers compared to those detected using the full

sample. For example, an outlier in April 1991 in the UK does not appear as

an outlier in the full sample when compared to the high inflation experienced

during periods of the oil price shocks. However, our procedure distinguishes

regimes with high and low levels of inflation in which this visually evident

outlier is identified.

More importantly, the outlier detection procedure appears to have a consid-

erable impact on inferences concerning coefficient and variance breaks. Each

iteration hinges on the outlier detection procedure such that the only thing

that changes from one iteration to another is a different set of outliers depend-

ing on the variance and coefficient breaks identified in the previous iteration.

The difference between a single iteration (graph a in each figure) and multi-

ple iterations (graph b in each figure) with an outlier detection procedure is

sometimes striking. For example, see figures 1.1.5, 1.1.10 and 1.1.16 where

outliers contaminate both variance and coefficient breaks, see figures 1.1.12

and 1.1.18 in which outliers complicate the detection of mean breaks and see

figures 1.1.15 and 1.1.19 where variance breaks change after outlier iteration.

Since the results taking account of outliers iteratively always visually appear
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more reliable than those obtained using the full sample information with no

account taken of breaks, we conclude that our conditional break point testing

method with outlier iteration adds value to the existing literature.

1.5.2 Models with foreign inflation

As previously mentioned, Table 1.2 reports the models for the relationship

between domestic and foreign inflation selected by our SIC-based approach.

Furthermore, we note that employing multipath searches with different start-

ing points does not change the models given by a single search. Generally,

the bivariate models are more parsimonious than the univariate ones, with

the number of domestic AR lags declining when the foreign variable is added;

indeed, Austria and Germany now have no AR lags. Furthermore, contem-

poraneous foreign inflation plays a key role, with lags of this variable absent

for most countries. Portugal is the only case where contemporaneous πFt is

not selected. However, it is included in the estimated models for this case for

comparability with other countries.

Corresponding structural break test statistics and approximate p-values are

presented in Table A.5 and Table A.6 in the Appendix. The null hypothesis

of no break is rejected for all series with the resulting coefficient and variance

break dates reported in Table 1.4. We also turn to figures 1.1.1-1.1.19, where

the third graph of each presents the results of the bivariate models. In each

case, country-specific foreign inflation is represented by the red line. Based on

these numerical and graphical illustrations, the results of our analysis can be

summarized as follows.

Firstly and most importantly, we find a positive and increasing contempo-

raneous relationship between domestic and country-specific foreign inflation.

It is particularly notable after 1990 for most countries (but could be after 1980

or 2000 for a few countries) and the corresponding estimated coefficient (β0j in

equation (1.8)), on average across countries, more than doubles compared to

the pre-break regime. The third graph of each figure presents this coefficient.

It is also visually evident in the graphs that the differences between domestic

and foreign inflation gets smaller in the later period of the sample.

There are exceptions to this, however, in a small number of cases. For

example, UK, Korea and Netherlands (figures 1.1.18c, 1.1.11c and 1.1.12c,

respectively), show almost constant contemporaneous interactions over time,

while their marked changes in the domestic indicators are evident. This sug-

gests that the observed breaks are due to internal factors such as monetary

policy changes. Another exception is Japan (figure 1.1.10c), where the con-
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temporaneous effect is high during the oil price shocks in the first half of the

1970s, and declines afterwards. Regardless of these exceptions, a notable in-

crease in the contemporaneous relationship may be informative with regard to

co-movements of inflation. This is in line with Bataa et al. (2013a) who note

increased contemporaneous international inflation linkages for the major G-7

economies they examine.

Secondly, inclusion of foreign inflation in the bivariate models can substan-

tially change the identified break dates, pointing to the relevance of foreign

inflation in explaining changes in domestic inflation. Specifically, there are

three different patterns of break point changes compared to the univariate

models. First, the number of coefficient breaks increases for a small number

of countries, including Austria, Germany, Switzerland and the US. It is clear

for Austria (figure 1.1.1c) and Switzerland (figure 1.1.17c) that the new breaks

reflect changes in the relationship between domestic and foreign inflation, as

the univariate models did not exhibit any breaks. For Germany, a coefficient

break in 1981 is replaced by a variance break, and two more coefficients breaks

are detected in 1976 and 1990 (see figure 1.1.7c). Following each break, an

increase in the contemporaneous foreign inflation coefficient and a decrease in

the unconditional mean are found. Additionally, the relatively high and con-

stant persistence observed in the univariate specification seems to be knocked

out by foreign inflation, as no lags are selected in the bivariate case. For the

US, the break in 1990 is primarily domestic, leading to lower persistence and

lower mean (see figure 1.1.19c). Although not detected in the univariate anal-

ysis, the 1977 break also appears as primarily domestic, whereas that in 2003

seems to be caused by an increased role of foreign inflation. In general, for

Austria, Germany, Switzerland and US, the overall direction appears to be

towards stronger linkages with foreign inflation.

Second, for some countries, the number of coefficient breaks decreases in

the presence of foreign inflation. Interestingly, some coefficient breaks appear

to be replaced by variance breaks, but not necessarily at the same date. For

France and UK (figures 1.1.6c and 1.1.18c), for example, one coefficient break

is replaced by a variance break while the remaining coefficient breaks hardly

change their locations. Table 1.4 shows an increased number of variance breaks

compared to the univariate models in Table 1.3, and corresponding large de-

clines of variances, noted in the graphs. Indeed, newly obtained variance breaks

seem to be located in more plausible places in a sense that they separate high

and low volatility parts of the graph than the coefficient breaks of the univari-

ate model. This may be indicative of the fact that the univariate models are

essentially misspecified if foreign inflation is omitted. Possibly, an effect of the
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omitted variable may have been interpreted as a coefficient break which then

disappears once relevant variable is included. However, this also could be re-

lated to the difficulty, discussed by Pitarakis (2004), of distinguishing between

coefficient and variance breaks.

The third pattern covers countries where previously identified univariate

coefficient breaks are altered although the number of breaks is unchanged.

This may also indicate misspecification of the univariate models, as they omit

effects of foreign environments. The largest variation in terms of location shifts

of the coefficient breaks occurs in Japan by almost two decades (see figure

1.1.10). Variance breaks in univariate inflation, on the other hand, remain

more or less the at same locations. However, for a few instances such as in

Korea, Japan, Sweden and Spain (figures 1.1.11c, 1.1.10c, 1.1.16c and 1.1.15c,

respectively), a new variance break appears in addition to the breaks identified

in the univariate models. Finally, previously identified coefficient breaks are

unchanged in the bivariate models of Norway and Sweden (figures 1.1.13c and

1.1.16c).

Despite the implied misspecification of univariate models, the general re-

sults of declining persistence and mean of domestic inflation remain in the

bivariate models.

1.6 Sensitivity analysis

To assess the sensitivity of the results presented above, we extend the bivariate

inflation models by including an additional variable which potentially has an

impact on domestic inflation. The additional variables, oil price inflation and

the change in trade weighted real effective exchange rates (EER)21, are added

to the bivariate models of inflation one at a time. These variables are measured

in terms of percentage changes, as for CPI inflation. The first is employed

because a sudden increase in oil price can cause an exogeneous inflationary

shock to domestic inflation, and omitting this variable may result in upward

bias in the estimated coefficients. Further, the effective exchange rate may

be important in explaining domestic inflation, especially for open economies,

through its influence on import and export prices.

The selected models including these variables are presented in Table 1.5 and

Table 1.6 with the estimated coefficient and variance breaks using the selected

models reported in Table 1.7 and Table 1.8, respectively. For convenience, the

21We also employed the nominal effective exchange rates for the purpose of the robustness
analysis. However, it is not picked up by the model selection procedure for any country,
consequently yielding the same models as the bivariate inflation models.
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estimated coefficient and variance breaks using bivariate models (previously

presented in Table 1.4) are repeated in Table 1.7 and Table 1.8, respectively.

The results suggest that including either of these variables does not make a

qualitative change for most countries.

In Table 1.7, previously identified coefficient breaks in bivariate models

remain in a qualitatively similar location for most countries, when including

oil price inflation in Table 1.5. The few exceptions are Belgium, Denmark, and

US where some coefficient breaks are dropped, and Germany where the number

of breaks increases. This indicates the potential misspecification of bivariate

inflation models corresponding to these countries. Perhaps, in the absence of

oil price inflation in bivariate models, its omitted effects to domestic inflation

may have interpreted as an extra break in the estimation. While the number

of coefficient breaks using bivariate models decreases when such variable is

included in the model. For example, the US is known as one of the biggest oil

importers, and two of three breaks (in 1970s and 1990s) are dropped when oil

price inflation is included in the model. Despite the importance of oil price

inflation for these countries, a decline in the number of breaks may also be due

to a loss of power when testing for all coefficients.

Table 1.7 also compares coefficient breaks in bivariate models to the models

with EER variable. EER appears to have less impact on big open economies

and most of the Euro area. However, relatively small economies, Finland,

Greece, Norway and Sweden, are sensitive to the inclusion of the EER. These

countries yield an additional coefficient break which occurs prior or running up

to the introduction of the European Monetary Union (EMU). The weakened

role of EER after the EMU for these countries is evident in the estimates

of the corresponding coefficients (see Table 1.10). Indeed, we do not expect

large exchange rate fluctuations to play a role in explaining domestic inflation

after the introduction of the EMU, especially for those belonging to EMU and

who trade mostly with Euro area countries. Spain and Austria, on the other

hand, drop coefficient breaks around early 2000. This may point misspecified

bivariate models where the effects of the omitted exchange rate was captured

previously as a break.

Furthermore, variance breaks obtained from the models with oil price in-

flation do not show any substantive differences from the breaks detected in the

bivariate models. But, there is some variation from the model with EER for a

small number of cases (see Table 1.8 for further details).

Table 1.9 and Table 1.10 provide estimated coefficients for models with

oil price inflation and EER, respectively. Graphical illustrations of the results

shown in these tables and comparison with bivariate models are given in figures
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1.2.1-1.2.19. Each figure consists of four graphs showing changes in the esti-

mates of persistence, mean, contemporaneous foreign inflation, and the sum

of the contemporaneous and (/or) lagged coefficients of third variables (EER

and oil inflation). For Italy in figure 1.2.9, for instance, subplot (a) depicts

changes in persistence that are estimated using the bivariate model (in black

line), the model with oil price inflation (in red line) and the model with EER

(in blue line). A similar interpretation applies to the contemporaneous foreign

inflation coefficients and the subsample mean in subplots (b) and (c) respec-

tively. Subplot (d) shows sum of estimated coefficients corresponding to the

contemporaneous and lagged oil price inflation (in red line) and EER (in blue

line). A missing line either in subplot (a) or (d) indicates the absence of the

corresponding lags (and contemporaneous variable) in the model.

In general, despite the break point changes for a few cases above, con-

clusions drawn from the bivariate models largely carry over. Looking at the

figures, estimated persistence and mean of inflation typically show substan-

tial declining patterns regardless of the different models, represented by the

lines in the graphs. Moreover, the increasing and positive contemporaneous

relationship between domestic and foreign inflation remains robust. We should

note, however, that there are some countries (Japan, Netherlands and the UK)

where contemporaneous coefficients do not increase, but those are the same

countries that show the constant contemporaneous effect in bivariate models of

inflation. Finally, the figures also show that an impact of the lagged and (/or)

contemporaneous third variables on domestic inflation is relatively small.

1.7 Concluding remarks

This chapter adds to the existing literature on international inflation by com-

prehensively examining the structural stability in the relationship between

domestic and country specific foreign inflation. For this aim, we propose and

employ an iterative structural break testing methodology which is designed to

deliver reliable inferences on structural breaks. In the iteration, we account

for breaks in the conditional mean (which comprises intercept, autoregressive

coefficients and coefficients on foreign inflation) and variance parameters by

iterating between tests for conditional mean and variance breaks, while also

taking care of outliers.

We document evidence of structural breaks in the linkage of domestic and

country specific foreign inflation. Furthermore, taking into account the iden-

tified breaks, we find positive and increasing contemporaneous relationships

between domestic and foreign inflation for most countries. This finding is com-
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patible with the co-movement of inflation in different countries, documented

widely in the literature (see Ciccarelli and Mojon, 2010, Neely and Rapach,

2011, etc). This also verifies the finding by Bataa et al. (2013a) who note

increased contemporaneous correlations of inflation in a much more restricted

number of G-7 countries. Moreover, the timing of breaks in mean and variances

across countries exhibit notable clusters around the mid 1970s, early 1980s and

early 1990s. The presence of such clusters already suggests the dependence of

domestic inflation on foreign economic environments.

It appears to be widely accepted that changes in inflation have been mainly

in the mean, with clusters of mean breaks documented in the univariate con-

text. When applied to univariate inflation models, our procedure indicates

that almost all countries in the data set experience at least one variance break,

leading to substantial volatility declines. Furthermore, these breaks also show

a clustering pattern. Overall the results from both univariate and bivariate

inflation models suggest, declining unconditional mean and persistence of do-

mestic inflation, consistent with the existing findings. Results on changes in

inflation co-movement are robust to the inclusion of either oil price inflation

or real effective exchange rates.

Finally, we emphasize that the use of the iterative structural break testing

procedure was important to establish these findings. As shown using some

illustrated cases in subsection 1.5.1, not employing this iterative procedure

would lead to potentially substantial changes in the detected structural breaks

compared to using non-iterated testing procedure.
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Table 1.2: Autoregressive lags of univariate and bivariate models

Univariate Models 

    (maxlag=17)

Domestic lags Domestic lags Foreign lags

Austria [1;2;3;6;7;11] NA [0,4]

Belgium [1;3;4;9;11;12] [1;4] [0]

Canada [1;2;3;4;7;9;12;16] [5;7;9] [0,9]

Denmark [1;3;6;8;11] [1;3] [0]

Finland [2;5;6;7;9] [2;9] [0,4]

France [1;3;6;8;12;17] [1;3;10] [0]

Germany [2;6;7;8;9;11] NA [0]

Greece [1;2;5;8;17] [1;2;5;8] [0]

Italy [1;3;6;12;17] [1;3;6] [0,2]

Japan [1;3;5;7;9;11;12;16] [3;5;9;11] [0]

Korea [1;3;9;12;15] [1] [0,6]

Netherland [1;4;6;7;8;17] [4;6;8] [0]

Norway [1;2;3;7;8] [1;3;7;8] [0]

Portugal [1;6;9;16] [1;6;9] [0,2]

Spain [1;2;8;10;12;13;15] [1;8;10] [0]

Sweden [2;3;7;8;9] [7;8;9] [0]

Switzerland [1;2;4;6;10;17] [1;6;9] [0]

UK [1;2;3;13] [1;2;3] [0]

US [1;7;9;11;12] [1] [0]

Note:  Autoregressive lags are obtained at convergence of the iterations. 

For the domestic models, all combinations of lags are considered as discussed in 

subsection 1.3.1, while the bivariate models compared are based on a testing down 

approach as described in subsection 1.3.3. For both approaches, the final model is 

selected based on SIC.

Country

Bivariate models

(maxlag=12)
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Table 1.3: Breaks in univariate models

1970s 1980s 1990s 2000s 1970s 1980s 1990s 2000s NI

Austria . . . . 1977-Dec . . . 1

Belgium . . 1994-Aug 2003-Dec . 1985-Sep . . 2

Canada . 1982-Jul 1990-Dec . 1978-Nov . . 2000-Mar 2

Denmark . 1982-Nov 1990-Jan . . 1980-Oct 1990-Dec . 3

Finland . . 1991-Mar . 1976-Nov 1983-Jul . . []

France . 1986-Jan 1991-Dec . . . . . 2

Germany . 1981-Nov . . . . . . 2

Greece . . 1992-Nov . 1977-Jul . 1992-Sep . 3

Italy
. 1982-Sep 1995-Jul . .

1981-Feb

1987-Jan
. .

3

Japan . 1980-Aug 1992-Jun . 1977-May . 1992-Jan . 4

Korea . . 1998-Mar . . 1981-Mar . . 2

Netherland . 1982-Feb . . 1978-Aug . . . 3

Norway . 1988-Apr . . . 1982-Feb . 2000-Dec 2

Portugal . 1984-Aug 1992-Jun . 1977-May 1985-Apr 1992-May . 3

Spain . 1986-Feb 1995-Mar . 1977-Aug 1986-Aug . . 4

Sweden . . 1991-Feb . . 1985-Aug . . 3

Switzerland . . . . . 1983-Feb . . 1

Uk . 1982-Jun 1991-Dec . . 1982-Apr . . 4

US . . 1991-Feb . . 1982-Jul . 2004-Oct 2

Total 0 11 14 1 8 13 4 3

Country
Breaks in the set of coefficients Breaks in the variances

Note: Column NI represents the number of iterations required to converge to a single set of break dates. [] 

indicates the set of break dates is selected by a minimum SIC criterion.

Table 1.4: Breaks in bivariate models

1970s 1980s 1990s 2000s 1970s 1980s 1990s 2000s NI

Austria 1976-Sep . . 2000-Apr 1976-Sep 3

Belgium . 1982-Apr 1995-Nov . . 1983-Nov . . 2

Canada . . 1990-Dec . 1978-Nov . . . 2

Denmark . 1982-Nov 1994-Jun . . 1980-Oct 1991-Feb . 3

Finland . . 1990-Mar . 1976-Nov 1983-Jul . . 2

France . 1985-Aug . . . 1983-Jan . . 3

Germany 1976-Mar . 1990-Sep . . 1982-Jul . . []

Greece . . . 2000-Dec 1976-Oct . 1993-Apr . 2

Italy
. 1986-Jan 1996-May . .

1981-Feb

1987-Feb
. .

2

Japan 1977-Jan . . . 1977-Jan 1985-Nov 1993-Nov . 2

Korea . 1985-Sep . . . 1982-Mar . 2003-Apr 5

Netherland . 1989-Apr . . 1978-Aug . . . 3

Norway . 1988-Apr . . . 1980-Mar . . 3

Portugal . 1985-Mar 1992-Jul . 1978-May 1985-Mar 1992-May . 2

Spain . 1986-Jul . 2004-May 1977-Nov 1986-Feb 1992-Nov . 4

Sweden . . 1991-Feb . 1977-Jul . 1993-Jan . 3

Switzerland . 1984-Oct . . . 1982-Jun . . 2

Uk . 1980-May . . . . 1991-Aug . []

US 1977-Nov . 1990-Oct 2003-Feb . 1983-May . 2004-Sep 3

Total 4 11 9 4 9 14 7 2

Breaks in the set of coefficients Breaks in the variances

Note: Column NI represents the number of iterations required to converge to a single set of break dates. [] 

indicates the set of break dates is selected by a minimum SIC criterion.

Country
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Table 1.5: Sensitivity analysis: Selected models with
oil price inflation

Domestic lags Foreign lags Oil lags

Austria N/A [0,4] [3]

Belgium [1,4,9] [0] [0,5]

Canada [5,7,9] [0,9] N/A

Denmark [1,6,11] [0] [0,5]

Finland [2,9,11] [0,4] [1]

France [1,3,8,10] [0] [0]

Germany [6] [0] [1]

Greece [1,2,5,8] [0,5] N/A

Italy [1,3,6] [0,2] [8]

Japan [3,5,9,11] [0] [1]

Korea [1] [0,6] [12]

Netherland [4,6,8] [0] N/A

Norway [1,6,8,10] [0] [12]

Portugal [1,6,9] [0*,2] [1]

Spain [1,8,10] [0] N/A

Sweden [7,8,9] [0] [9]

Switzerland [1,6,9] [0] [0,4]

Uk [1,2,3] [0] N/A

US [1,7] [0] [0,1]
Note: * indicates that the model selected by SIC does not include 

contemporaneous foreign variable. However, we test for breaks on the 

model including contemporaneous foreign inflation.

Table 1.6: Sensitivity analysis: Selected models with EER

Domestic lags Foreign lags EER lags

Austria [11] [0] [0]

Belgium [1,4] [0] [0]

Canada [5,7] [0,9] [0]

Denmark [1,6] [0] [0]

Finland [9] [0,4] [0]

France [1,3,10] [0] N/A

Germany N/A [0] [0,5]

Greece [1,2,6,8] [0] [0]

Italy [1,3,6] [0,2] [4]

Japan [5,9,11] [0,1] [0]

Korea [1] [0,6] N/A

Netherland [4,6,8] [0] [0]

Norway [1,2,6,8] [0,11] [0]

Portugal [1,6,9] [0*,2] [0]

Spain [1,2,8,9] [0] [5]

Sweden [3,8,9] [0] [0]

Switzerland [1,6,9] [0] N/A

Uk [1,2,3] [0] N/A

US [1] [0] N/A
Note: * indicates that the model selected by SIC does not include 

contemporaneous foreign variable. However, we test for breaks on the 

model including contemporaneous foreign inflation.

52



T
ab

le
1.

7:
S
en

si
ti

v
it

y
an

al
y
si

s:
C

o
effi

ci
en

t
B

re
ak

s

1
9

7
0

s
1

9
8

0
s

1
9

9
0

s
2

0
0

0
s

1
9

7
0

s
1

9
8

0
s

1
9

9
0

s
2

0
0

0
s

1
9

7
0

s
1

9
8

0
s

1
9

9
0

s
2

0
0

0
s

A
u

st
ri

a
1

9
7

6
-S

ep
.

.
2

0
0

0
-A

p
r

1
9

7
6

-S
ep

.
1

9
9

9
-A

u
g

.
.

.
.

.

B
el

gi
u

m
.

1
9

8
2

-A
p

r
1

9
9

5
-N

o
v

.
.

.
1

9
9

5
-O

ct
.

.
1

9
8

1
-N

o
v

1
9

9
5

-N
o

v
.

C
an

ad
a

.
.

1
9

9
0

-D
e

c
.

.
.

1
9

9
0

-D
e

c
.

.
1

9
8

7
-F

eb
.

.

D
en

m
ar

k
.

1
9

8
2

-N
o

v
1

9
9

4
-J

u
n

.
.

1
9

8
5

-A
p

r
.

.
.

1
9

8
9

-S
ep

1
9

9
5

-S
ep

.

Fi
n

la
n

d
.

.
1

9
9

0
-M

ar
.

.
.

1
9

9
0

-F
eb

.
.

1
9

8
3

-A
p

r
1

9
9

1
-J

u
l

.

Fr
an

ce
.

1
9

8
5

-A
u

g
.

.
.

1
9

8
7

-J
an

.
.

.
1

9
8

5
-A

u
g

.
.

G
er

m
an

y 
1

9
7

6
-M

ar
.

1
9

9
0

-S
ep

.
.

1
9

8
0

-N
o

v

1
9

8
7

-D
e

c
.

2
0

0
1

-F
eb

1
9

7
6

-J
u

l
.

1
9

9
0

-S
ep

.

G
re

ec
e

.
.

.
2

0
0

0
-D

e
c

.
.

.
2

0
0

0
-D

e
c

.
.

1
9

9
4

-A
u

g
2

0
0

0
-D

e
c

It
al

y
.

1
9

8
6

-J
an

1
9

9
6

-M
ay

.
.

1
9

8
6

-J
an

1
9

9
6

-M
ay

.
.

1
9

8
6

-J
an

1
9

9
6

-M
ay

.

Ja
p

an
1

9
7

7
-J

an
.

.
.

1
9

7
7

-J
u

n
.

.
.

1
9

7
7

-J
an

.
.

.

K
o

re
a

.
1

9
8

5
-S

ep
.

.
.

1
9

8
1

-O
ct

.
.

.
1

9
8

5
-S

ep
.

.

N
et

h
er

la
n

d
.

1
9

8
9

-A
p

r
.

.
.

1
9

8
9

-A
p

r
.

.
.

1
9

8
7

-J
u

n
.

.

N
o

rw
ay

.
1

9
8

8
-A

p
r

.
.

.
1

9
8

8
-A

p
r

.
.

.

1
9

8
1

-

M
ay

.
.

P
o

rt
u

ga
l

.
1

9
8

5
-M

ar
1

9
9

2
-J

u
l

.
.

1
9

8
5

-M
ar

1
9

9
2

-J
u

l
.

.
1

9
8

4
-A

u
g

1
9

9
0

-O
ct

.

Sp
ai

n
.

1
9

8
6

-J
u

l
.

2
0

0
4

-M
ay

.
1

9
8

6
-J

u
l

.
2

0
0

4
-M

ay
.

1
9

8
6

-J
u

l
.

.

Sw
ed

en
.

.
1

9
9

1
-F

eb
.

.
.

1
9

9
1

-F
eb

.
.

1
9

8
3

-J
an

1
9

9
1

-F
eb

.

Sw
it

ze
rl

an
d

.
1

9
8

4
-O

ct
.

.
.

1
9

8
4

-O
ct

.
.

.
1

9
8

4
-O

ct
.

.

U
k

.
1

9
8

0
-M

ay
.

.
.

1
9

8
0

-M
ay

.
.

.
1

9
8

0
-M

ay
.

.

U
S

1
9

7
7

-N
o

v
.

1
9

9
0

-O
ct

2
0

0
3

-F
eb

.
.

.
2

0
0

3
-F

eb
1

9
7

7
-N

o
v

.
1

9
9

0
-O

ct
2

0
0

3
-F

eb

To
ta

l 
4

1
1

9
4

2
1

2
7

4
3

1
5

9
2

B
iv

ar
ia

te
 m

o
d

el
s

M
o

d
el

s 
w

it
h

 o
il 

p
ri

ce
 in

fl
at

io
n

M
o

d
el

s 
w

it
h

 E
ER

C
o

u
n

tr
y

53



T
ab

le
1.

8:
S
en

si
ti

v
it

y
an

al
y
si

s:
V

ar
ia

n
ce

B
re

ak
s

1
9

7
0

s
1

9
8

0
s

1
9

9
0

s
2

0
0

0
s

1
9

7
0

s
1

9
8

0
s

1
9

9
0

s
2

0
0

0
s

1
9

7
0

s
1

9
8

0
s

1
9

9
0

s
2

0
0

0
s

A
u

st
ri

a
1

9
7

6
-S

ep
1

9
7

6
-S

ep
.

.
.

1
9

7
7

-J
an

.
.

.

B
el

gi
u

m
.

1
9

8
3

-N
o

v
.

.
.

1
9

8
4

-M
ay

.
.

.
1

9
8

3
-J

an
.

.

C
an

ad
a

1
9

7
8

-N
o

v
.

.
.

1
9

7
8

-N
o

v
.

.
.

1
9

7
8

-N
o

v
.

.
.

D
en

m
ar

k
.

1
9

8
0

-O
ct

1
9

9
1

-F
eb

.
1

9
7

7
-O

ct
1

9
8

4
-A

p
r

.
.

.
1

9
8

3
-A

p
r

1
9

9
1

-M
ar

.

Fi
n

la
n

d
1

9
7

6
-N

o
v

1
9

8
3

-J
u

l
.

.
1

9
7

7
-J

an
1

9
8

3
-J

u
l

.
.

.
1

9
8

3
-J

u
l

.
.

Fr
an

ce
.

1
9

8
3

-J
an

.
.

.
1

9
8

3
-M

ay
.

.
.

1
9

8
3

-J
an

.
.

G
er

m
an

y 
.

1
9

8
2

-J
u

l
.

.
1

9
7

6
-S

ep
.

.
.

.
.

.
.

G
re

ec
e

1
9

7
6

-O
ct

.
1

9
9

3
-A

p
r

.
1

9
7

6
-O

ct
.

1
9

9
3

-J
u

n
.

1
9

7
6

-O
ct

1
9

8
6

-M
ar

1
9

9
4

-A
u

g

It
al

y
.

1
9

8
1

-F
eb

1
9

8
7

-F
eb

.
.

.

1
9

8
1

-F
eb

1
9

8
7

-F
eb

.
.

.

1
9

8
1

-F
eb

1
9

8
7

-F
eb

.

Ja
p

an
1

9
7

7
-J

an
1

9
8

5
-N

o
v

1
9

9
3

-N
o

v
.

1
9

7
7

-J
an

1
9

8
6

-M
ar

1
9

9
3

-D
e

c
.

1
9

7
7

-J
an

1
9

8
5

-D
e

c
1

9
9

5
-N

o
v

.

K
o

re
a

.
1

9
8

2
-M

ar
.

2
0

0
3

-A
p

r
.

1
9

8
1

-A
p

r
.

2
0

0
3

-A
p

r
.

1
9

8
2

-M
ar

.
2

0
0

3
-A

p
r

N
et

h
er

la
n

d
1

9
7

8
-A

u
g

.
.

.
1

9
7

8
-A

u
g

.
.

.
1

9
7

9
-F

eb
.

.
.

N
o

rw
ay

.
1

9
8

0
-M

ar
.

.
.

1
9

8
2

-A
u

g
.

.
.

1
9

8
2

-A
u

g
.

2
0

0
2

-D
e

c

P
o

rt
u

ga
l

1
9

7
8

-M
ay

1
9

8
5

-M
ar

1
9

9
2

-M
ay

.
1

9
7

8
-M

ay
1

9
8

5
-F

eb
1

9
9

2
-M

ay
.

1
9

7
7

-M
ar

1
9

8
5

-M
ar

1
9

9
3

-S
ep

.

Sp
ai

n
1

9
7

7
-N

o
v

1
9

8
6

-F
eb

1
9

9
2

-N
o

v
.

1
9

7
7

-N
o

v
1

9
8

6
-F

eb
1

9
9

2
-N

o
v

.
1

9
7

7
-S

ep
1

9
8

6
-F

eb
1

9
9

2
-N

o
v

.

Sw
ed

en
1

9
7

7
-J

u
l

.
1

9
9

3
-J

an
.

1
9

7
7

-J
u

l
.

1
9

9
3

-J
an

.
.

.
1

9
9

3
-J

an
.

Sw
it

ze
rl

an
d

.
1

9
8

2
-J

u
n

.
.

.
1

9
8

3
-F

eb
.

.
.

1
9

8
2

-J
u

n
.

.

U
k

.
.

1
9

9
1

-A
u

g
.

.
.

1
9

9
1

-A
u

g
.

.
1

9
8

2
-J

u
l

.
.

U
S

.
1

9
8

3
-M

ay
.

2
0

0
4

-S
ep

.
1

9
8

3
-M

ay
.

2
0

0
4

-O
ct

.
1

9
8

3
-M

ay
.

2
0

0
4

-S
ep

To
ta

l
9

1
4

7
2

1
1

1
3

6
2

7
1

5
6

3

B
iv

ar
ia

te
 m

o
d

el
s

M
o

d
el

s 
w

it
h

 o
il 

p
ri

ce
 in

fl
at

io
n

M
o

d
el

s 
w

it
h

 E
ER

C
o

u
n

tr
y

54



T
ab

le
1.

9:
S
en

si
ti

v
it

y
an

al
y
si

s:
E

st
im

at
ed

co
effi

ci
en

ts
in

re
gi

m
es

P
er

si
st

en
ce

M
ea

n
Fo

re
ig

n
 in

fl
at

io
n

 (
la

gs
)

Fo
re

ig
n

 in
fl

at
io

n
 

(c
o

n
te

m
p

o
ra

n
eo

u
s)

O
il 

p
ri

ce
 c

h
an

ge

(l
ag

s)

O
il 

p
ri

ce
 c

h
an

ge

(c
o

n
te

m
p

o
ra

n
eo

u
s)

A
u

st
ri

a
N

/A
0

.5
7

; 0
.2

7
; 0

.1
5

0
.0

4
; 0

.2
9

; 0
.0

4
0

.7
2

; 0
.3

5
; 0

.7
5

0
.0

0
4

; -
0

.0
0

0
9

; 0
.0

0
4

N
/A

B
el

gi
u

m
0

.5
2

; -
0

.0
2

0
.4

3
; 0

.1
6

; 
N

/A
0

.5
1

; 1
.3

6
0

.0
0

2
; 0

.0
0

3
0

.0
0

3
; 0

.0
0

2

C
an

ad
a

0
.3

8
; 0

.0
0

8
0

.5
5

; 0
.1

7
0

.2
9

; 0
.0

8
0

.2
3

; 0
.6

8
N

/A
N

/A

D
en

m
ar

k
0

.2
5

; 0
.2

1
0

.7
6

; 0
.2

1
N

/A
0

.5
5

; 0
.3

2
0

.0
0

8
; -

0
.0

0
0

8
0

.0
0

6
; 0

.0
0

7

Fi
n

la
n

d
0

.3
6

; 0
.1

1
0

.7
0

; 0
.1

7
0

.0
7

; 0
.1

4
0

.5
5

; 0
.7

0
0

.0
0

4
; 0

.0
0

0
7

N
/A

Fr
an

ce
0

.6
8

; -
0

.0
2

0
.7

4
; 0

.1
6

N
/A

0
.3

4
; 0

.7
7

N
/A

0
.0

0
4

; 0
.0

0
2

G
er

m
an

y 
0

.2
8

; -
0

.1
7

; 0
.0

7
; 0

.0
2

0
.4

0
; 0

.2
3

; 0
.1

9
; 0

.1
3

N
/A

0
.0

8
; 1

; 0
.6

5
; 1

.0
1

0
.0

0
4

; 0
.0

0
3

; 0
.0

0
6

; -
0

.0
0

6
N

/A

G
re

ec
e

0
.7

5
; -

0
.3

2
1

.1
; 0

.2
7

0
.0

4
; 0

.2
5

0
.4

5
; 0

.9
3

N
/A

N
/A

It
al

y
0

.5
9

; 0
.3

6
; 0

.2
2

1
.0

6
; 0

.4
4

; 0
.1

8
0

.6
3

; 0
.1

6
; 0

.1
6

0
.0

5
; 0

.2
2

; 0
.4

1
0

.0
0

7
; 0

.0
0

1
; 0

.0
0

0
9

N
/A

Ja
p

an
0

.3
8

; 0
.2

3
; 

0
.8

4
; 0

.1
2

N
/A

0
.4

3
; 0

.4
5

0
.0

1
; 0

.0
0

0
4

N
/A

K
o

re
a

0
.4

1
; 0

.1
9

1
.2

4
; 0

.4
0

0
.5

9
; 0

.1
7

0
.4

2
; 0

.5
2

N
/A

N
/A

N
et

h
er

la
n

d
0

.5
6

; 0
.3

5
0

.4
2

; 0
.1

8
N

/A
0

.4
6

; 0
.4

1
N

/A
N

/A

N
o

rw
ay

0
.5

5
; 0

.3
0

0
.6

8
; 0

.2
1

N
/A

0
.1

4
; 0

.5
1

0
.0

0
6

; -
0

.0
0

0
8

N
/A

P
o

rt
u

ga
l

0
.3

4
; 0

.0
1

; 0
.4

2
1

.5
1

; 0
.9

9
; 0

.2
7

0
.2

7
; 0

.5
2

; 0
.0

4
(-

1
.2

; 0
.2

2
; 0

.6
6

)
0

.0
2

; 0
.0

0
0

7
; -

0
.0

0
0

8
N

/A

Sp
ai

n
0

.4
1

; 0
.4

5
; 0

.1
9

1
.0

9
; 0

.3
7

; 0
.2

1
N

/A
0

.4
6

; 0
.5

2
; 1

.2
N

/A
N

/A

Sw
ed

en
0

.3
1

; 0
.1

4
0

.6
7

; 0
.1

6
N

/A
0

.4
2

; 0
.8

2
0

.0
0

8
; -

0
.0

0
0

9
N

/A

Sw
it

ze
rl

an
d

0
.6

0
; 0

.2
4

0
.4

0
; 0

.1
4

N
/A

0
.2

0
; 0

.8
7

0
.0

0
9

; 0
.0

0
1

0
.0

0
0

8
; 0

.0
0

2

U
K

0
.6

8
; 0

.3
3

1
.0

3
; 0

.3
1

N
/A

0
.6

0
, 0

.5
8

N
/A

N
/A

U
S

0
.4

2
; 0

.2
1

0
.4

0
; 0

.1
9

N
/A

0
.3

7
; 1

.1
8

0
.0

0
5

; 0
.0

0
3

0
.0

0
5

; 0
.0

0
6

55



T
ab

le
1.

10
:

S
en

si
ti

v
it

y
an

al
y
si

s:
E

st
im

at
ed

co
effi

ci
en

ts
in

re
gi

m
es

P
er

si
st

en
ce

M
ea

n
Fo

re
ig

n
 in

fl
at

io
n

 (
la

gs
)

Fo
re

ig
n

 in
fl

at
io

n
 

(c
o

n
te

m
p

o
ra

n
eo

u
s)

C
h

an
ge

 in
 E

ER

(l
ag

s)

C
h

an
ge

 in
 E

ER

(c
o

n
te

m
p

o
ra

n
eo

u
s)

A
u

st
ri

a
0

.1
0

0
.2

9
N

/A
0

.6
N

/A
0

.1
1

B
el

gi
u

m
0

.5
1

; 0
.2

8
; -

0
.0

1
0

.5
8

; 0
.3

0
; 0

.1
6

N
/A

0
.5

3
; 1

.1
0

; 1
.3

9
N

/A
0

.0
7

; 0
.0

6
; 0

.0
4

C
an

ad
a

0
.2

5
; 0

.1
2

0
.6

0
; 0

.2
0

0
.3

1
; 0

.0
9

0
.2

7
; 0

.6
9

N
/A

0
.0

8
; 0

.0
2

D
en

m
ar

k
0

.2
1

; -
0

.0
2

; -
0

.0
1

0
.6

6
; 0

.1
9

; 0
.1

7
N

/A
0

.7
9

; 0
.2

3
; 0

.7
7

N
/A

0
.0

9
; 0

.0
1

; 0
.0

5

Fi
n

la
n

d
0

.2
8

; -
0

.0
4

; -
0

.0
4

0
.8

5
; 0

.5
6

; 0
.1

4
0

.2
4

; -
0

.0
3

; 0
.1

8
0

.4
9

; 0
.6

5
; 0

.7
6

N
/A

0
.1

6
; 0

.1
9

; -
0

.0
0

0
2

Fr
an

ce
0

.6
9

; -
0

.0
4

0
.7

7
; 0

.1
7

N
/A

0
.3

0
; 0

.8
1

N
/A

N
/A

G
er

m
an

y 
N

/A
0

.4
7

; 0
.2

5
; 0

.1
6

N
/A

0
.1

8
; 0

.6
2

; 0
.9

2
0

.0
7

; -
0

.0
1

; 0
.0

1
0

.0
4

; 0
.0

2
; 0

.0
3

G
re

ec
e

0
.4

7
; 0

.6
3

; -
0

.1
3

1
.2

6
; 0

.5
0

; 0
.2

7
N

/A
0

.3
2

; 0
.8

0
; 0

.8
8

N
/A

0
.0

9
; -

0
.0

3
; 0

.0
0

7

It
al

y
0

.6
1

; 0
.3

7
; 0

.1
8

1
.0

6
; 0

.4
4

; 0
.1

8
0

.6
2

; 0
.1

3
; 0

.1
6

0
.0

8
; 0

.2
3

; 0
.4

2
0

.0
3

; 0
.0

0
5

; 0
.0

1
N

/A

Ja
p

an
0

.2
4

; 0
.1

6
0

.8
4

; 0
.1

3
0

.3
6

; 0
.2

3
0

.7
4

; 0
.3

5
N

/A
0

.1
2

; 0
.0

1
; 

K
o

re
a

0
.4

3
; 0

.1
7

;
1

.0
5

; 0
.3

6
0

.6
9

; 0
.2

1
0

.6
0

; 0
.6

3
N

/A
N

/A

N
et

h
er

la
n

d
0

.5
7

; 0
.3

8
0

.4
7

; 0
.1

7
N

/A
0

.5
1

; 0
.3

9
N

/A
0

.0
3

; 0
.0

4

N
o

rw
ay

0
.2

2
; 0

.4
7

; 0
.2

3
0

.6
6

; 0
.7

2
; 0

.2
1

0
.4

5
; -

0
.0

6
; 0

.0
5

0
.2

0
; 0

.1
7

; 0
.3

9
N

/A
N

/A

P
o

rt
u

ga
l

0
.4

5
; -

0
.1

3
; 0

.3
9

1
.4

8
; 1

.1
1

; 0
.3

2
0

.3
7

; 0
.4

8
; 0

.1
0

(-
0

.7
2

; 1
.0

6
;0

.6
5

)
N

/A
N

/A

Sp
ai

n
0

.5
6

; 0
.3

0
1

.0
8

; 0
.3

2
N

/A
0

.3
5

; 0
.8

8
0

.0
4

; 0
.0

0
0

7
N

/A

Sw
ed

en
0

.4
0

;0
.1

2
; 0

.2
2

0
.7

5
; 0

.5
6

; 0
.1

6
N

/A
0

.4
0

; 0
.8

3
; 0

.8
5

N
/A

0
.0

3
; 0

.3
3

; -
0

.0
0

0
5

Sw
it

ze
rl

an
d

0
.6

2
; 0

.2
0

0
.4

0
; 0

.1
4

N
/A

0
.3

0
; 0

.9
4

N
/A

N
/A

U
K

0
.6

9
; 0

.3
9

1
.0

3
; 0

.3
1

 
N

/A
0

.5
9

; 0
.5

9
N

/A
N

/A

U
S

0
.0

2
; 0

.4
4

; 0
.1

0
; 0

.1
3

0
.5

2
; 0

.4
9

; 0
.2

2
; 0

.1
9

N
/A

0
.6

6
; 0

.5
3

; 0
.3

9
; 1

.4
4

N
/A

N
/A

56



Annotation page for Figures 1.1

graph (a) – graph (a) in each figure presents the break dates as well as some

statistics relating to the corresponding regimes from applying the testing

procedure of subsection 1.3.1 once to the univariate model of (1.1).

graph (b) – graph (b) in each figure presents the break dates in Table 1.3

as well as some statistics relating to the corresponding regimes from

iterating the testing procedure of subsection 1.3.1 multiple times to the

univariate model of (1.1) until its convergence.

graph (c) – graph (c) in each figure reports the break dates in Table 1.4

as well as some statistics relating to the corresponding regimes from

iterating the testing procedure of subsection 1.3.1 multiple times to the

bivariate model of (1.8) until its convergence.

graph (d) – graph (d) in each iteration plots country specific foreign inflation

(in red line) for each corresponding country. This series is also plotted in

graph (c) in order to compare dynamics between domestic (in blue line)

and country specific foreign inflation.

Vertical Lines – The vertical lines indicate the locations of the coefficient

break dates with the estimated dates in the boxes next to these lines.

Text arrows – Text arrows point to the locations of variance breaks and the

corresponding changes in the variance of the consecutive regimes.

Black dots – Outliers detected at the convergence of the iterations are indi-

cated by black dots if any outliers are detected.

PD – This shows the estimates of persistence of domestic inflation in each co-

efficient break regime, measured by the sum of autoregressive coefficients

of its own lags.

PF – This shows the estimates of total lagged effect of foreign inflation in

each coefficient break regime, measured by the sum of autoregressive

coefficients of lagged foreign inflation series.

UcM – This reports unconditional mean of domestic inflation in each coeffi-

cient break regime.

Cont – This shows estimated contemporaneous relationship between domestic

and country specific foreign inflation in each coefficient break regime (β0j

in equation (1.8)).
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Figures 1.1: Inflation Dynamics

Figure 1.1.1: Inflation Dynamics: Austria
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Figure 1.1.2: Inflation Dynamics: Belgium
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Figure 1.1.3: Inflation Dynamics: Canada
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Figure 1.1.4: Inflation Dynamics: Denmark
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Figure 1.1.5: Inflation Dynamics: Finland
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Figure 1.1.6: Inflation Dynamics: France
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Figure 1.1.7: Inflation Dynamics: Germany
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Figure 1.1.8: Inflation Dynamics: Greece
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Figure 1.1.9: Inflation Dynamics: Italy
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Figure 1.1.10: Inflation Dynamics: Japan
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Figure 1.1.11: Inflation Dynamics: Korea
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Figure 1.1.12: Inflation Dynamics: Netherlands
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Figure 1.1.13: Inflation Dynamics: Norway
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Figure 1.1.14: Inflation Dynamics: Portugal
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Figure 1.1.15: Inflation Dynamics: Spain
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Figure 1.1.16: Inflation Dynamics: Sweden
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Figure 1.1.17: Inflation Dynamics: Switzerland
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Figure 1.1.18: Inflation Dynamics: United Kingdom
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Figure 1.1.19: Inflation Dynamics: United States
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Appendix A

A.1 Outliers and Breaks in The Exogenous

Variable

Consider following data generating process which exhibits no break

yt = 0.5 + 0.5yt−1 + 0.5zt + et (A.1)

et ∼ N(0, 1)

where yt−1 is one period lag of dependent variable and zt is an exogenous

independent variable with a random normal distribution. First, we undertook

a simulation study to examine the performance of the Chow test with the

explanatory variable zt having moderate (observations between 90-100 are set

equal to 50) and large (observations between 90-100 are set equal to 100) size

outliers. Based on the 10000 replications, on average, the size of the test is

unaffected at 10%, 5% and 1% significance levels.

Second, we analyze the size of the tests: WDmax and Sequential SupF (l+

1|l) rejecting the true null hypothesis of no break, when explanatory variable

zt is subject to a single break in the mean or variance. We impose a break in

the mean by increasing it by 5, and also in the variance by multiplying it by 5,

at the break point. A break occurs at t = bT where b = 0.5 or b = 0.75. After

5000 replications, on average, the size of the WDmax and Sequential tests is

well-sized at a 5% significance level.
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Table A.1: Size of a coefficient break test: Outliers in the explanatory variable

α=0.10 α=0.05 α=0.01

T=500 Moderate 0.100 0.051 0.010

T=500 Large 0.099 0.051 0.010

* After 10000 replications

Chow test

Test Method Sample
Size of 

Outliers

Size*

Coefficient 

break test

Table A.2: Size of the tests: A break in the explanatory variable

b=0.5 b=0.75

SupF(l+1|l) M=5, є=0.15 T=500 0.046 0.047

WDmax M=5, є=0.15 T=500 0.033 0.037

SupF(l+1|l) M=5, є=0.15 T=500 0.060 0.060

WDmax M=5, є=0.15 T=500 0.075 0.073

SupF(l+1|l) M=5, є=0.15 T=500 0.020 0.020

WDmax M=5, є=0.15 T=500 0.016 0.019

SupF(l+1|l) M=5, є=0.15 T=500 0.066 0.066

WDmax M=5, є=0.15 T=500 0.079 0.077

*After 5000 replications

Variance 

break test

B. A single break in the variance of explanatory variable

Coefficient 

break test

Variance 

break test

Test Method Specification Sample
Size*

A. A single break in the mean of explanatory variable

Coefficient 

break test
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A.2 An algorithm for the iterative structural

break testing method
Iterative Structural Break Method 

  

 

  

    

 

 

  

 

  

                                                         Coefficient Breaks                                                       No Coefficient Breaks 

                                                no  

 

 

                           Variance Break                                     No Variance Break               No Variance Break                      Variance Break 

    

 

 

 

 

       Coefficient Break                  No Coefficient Break                       Coefficient Break                               No Coefficient Break 

  

 

 Yes 

 

                                                                                                        

 

 

 

  

                             Data: t
D0

   Step 0: Seasonal Adjustment t
D0  t

D0_sa

    

 

 

Step 1: Detect & Remove outliers in the full sample

Step 1*: Detect & Remove outliers in each coefficient

break regime (2nd iteration onwards)

t
D0_sa  t

D

    

       

Step 2: Select model as t
D  Zt  t

 

Step 3: Structural Break (SB) test on  with HC inference

and get coefficient breaks (T 1
C, . . . ,T m

C ) and .

Step 4: Construct residual variances 

conditional on coefficient breaks in step 3: 

     
Test SB on mean of squared residuals as            

         

 

 

 

 t
2  t

D  Zt2 t  Tj1
C  1, . . . ,Tj

C

 t
2  j  ut T 1

V, . . . ,T m
V j  1, . . . ,m  1

Step 4: Construct residual variances using 

the full sample as

              
Test SB on mean of squared residuals as

         

 

 t
2  t

D  Zt2 t  1, . . . ,T

 t
2  j  ut T 1

V, . . . ,T m
V j  1, . . . ,m  1

Step 5: Calculate standard error in each 

regime conditional on variance breaks from 

step 4 and apply GLS transformation as 

 

 

 j  Tj

V

1 
t

Tj1

V
1


Tj

V

 t
2  t

D0_sa  t
D0_sa

 j

 t
D  t

D

 j
; Z t 

Zt

 j
; t  T j1

V  1, . . . ,T j
V and j  1, . . . ,m  1

Step 5: Calculate standard error in each 

regime conditional on variance breaks from 

step 4 and apply GLS transformation as 

 

 

 

 

 

 j  Tj

V

1 
t

Tj1

V
1


Tj

V

 t
2  t

D0_sa  t
D0_sa

 j

 t
D  t

D

 j
; Z t 

Zt

 j
; t  T j1

V  1, . . . ,T j
V and j  1, . . . ,m  1

End 

  

 t
D   t

D;

Z t  Zt

 t
D0_sa  t

D0_sa

 Step 5: SB test again on t
D  Z t  ut to obtain new T 1

C, . . . ,Tm
C and .

End 

 

 Save

T1

C
, . . . ,


Tm

C
,T 1

V, . . . ,T m
V and 

 Step 5: SB test again on t
D  Z t  ut to obtain new T 1

C, . . . ,Tm
C and .

 Save

T1

C
, . . . ,


Tm

C
,T 1

V, . . . ,T m
V and  End 

 

 

Check whether the same sets of

T 1
C, . . . ,T m

C ; T 1
V, . . . ,T m

V and 

are detected in previous iterations

(from the 2nd iteration onward)

Convergence may be achieved by finding 
the same sets of breaks from consecutive 
iterations. Otherwise, calculate SIC for all 
local optima and select the set which 
achieves the smallest SIC value. 

End

. 

 

 

Feed

t
D0_sa   t

D0_sa;  j;

T 1
C, . . . ,T m

C ; T 1
V, . . . ,T m

V

to the next iteration

Step 1*: De-standardize data (from 

the 2
nd

 iteration onward) so that 

data is adjusted only for outliers as

 

t
D  t

D   j

t  T j1
V  1, . . . ,T j

V

j  1, . . . ,m  1
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Chapter 2

What is the Globalization of

Inflation

2.1 Introduction

In recent years policymakers and researchers have documented and discussed

the globalization of inflation, namely the apparently strong international co-

movement of inflation seen over the last two decades or more. Indeed, even

in the context of the large economies of the US and Euro area, Bernanke

(2007) and Trichet (2008), respectively, emphasize that their central banks

need to monitor carefully international price developments and analyze their

implications for the domestic economy. The strong link between domestic

inflation and the international environment is also recognized in the models of

Pesaran et al. (2004), Ciccarelli and Mojon (2010), Mumtaz and Surico (2012),

Bataa et al. (2013a) and many others. Likewise, exploring the international

link and examining its dynamics over time were also the focus of chapter 1 by

which we document a positive and strengthening contemporaneous relationship

between domestic and country specific foreign inflation.

Despite this now widespread recognition that inflation exhibits strong links

across developed countries, limited progress has been made in uncovering the

sources of these links. For example, the papers of Borio and Filardo (2007) on

the one hand and Ihrig et al. (2010) on the other come to opposing views about

the importance of the foreign output gap in Phillips curve models for a range

of countries, while Ihrig et al. (2010) and Peacock and Baumann (2008) find

little evidence that the role of import prices increases over time. Nevertheless,

positive results are beginning to emerge, with Neely and Rapach (2011) finding

that domestic inflation is more closely linked to foreign inflation in developed

countries with greater central bank independence and more openness to trade,
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while Mumtaz and Surico (2012) suggest that better monetary policy, and

specifically the adoption of inflation targeting by a number of countries in the

1990s, has increased co-movement.

The above papers on the global aspects of inflation predominantly employ

headline or aggregate inflation, as does the analysis in chapter 1. However, it

is frequently argued (for example, Mishkin (2007)) that core inflation is the

appropriate concept for monetary policy purposes, where the ’core’ represents

the underlying or trend inflation level. Although there is some debate about

how this ’core’ should be measured, it is most commonly represented as in-

flation in the consumer price index (CPI) omitting energy and food products;

see Clark (2001) for a discussion on the concept and its measurement. Energy

and food are seen as volatile components, with the former being subject to

international demand and supply shocks and the latter to the vagaries of the

weather, whose effects may not persist over time. Therefore, an analysis of

core inflation may provide clearer evidence on whether monetary policy plays

a role for inflation linkages and their changes over time. Further, while it is

to be anticipated that energy inflation has a strong international dimension,

it is unclear whether these have changed over time. On the other hand, there

have been large changes in food supply for developed economies over the last

forty years, in many cases moving from predominantly domestically produced

to being largely imported, pointing to the possibility of increased international

co-movement for food inflation.

The present chapter1 asks what is the globalization of inflation by separat-

ing the core, energy and food components of aggregate CPI inflation, studying

changes in the international linkages in these components since 1970 along-

side a corresponding analysis of aggregate national CPI inflation for 13 OECD

countries. In particular, we examine structural breaks in a dynamic model

for domestic (aggregate or component) monthly inflation in relation to a cor-

responding country-specific foreign series, with the latter constructed as the

bilateral trade-weighted average of inflation in the other countries of our sam-

ple. In addition, we dissect the globalization of aggregate inflation by exam-

ining whether breaks in international linkages at the aggregate level can be

attributed to changes in the response of domestic inflation to foreign core, en-

ergy or food inflation. For this purpose, we employ an iterative structural break

testing methodology proposed in chapter 1 in order to avoid the conflation of

coefficient and volatility breaks.

1This chapter was presented at ESEM 2013 and is available on the conference website
under the co-authorship of myself with Ralf Becker, George J Bratsiotis and Denise R
Osborn. I undertook all the empirical work for the chapter and wrote the first draft of the
text. The text was subsequently edited by my co-authors.

104



To preview our results, we find that relationships for core inflation are often

distinctive from those of aggregate inflation, with the former providing less evi-

dence of both changes in and the strength of international co-movement. Food

inflation, on the other hand, displays a pattern of increasing co-movement,

as (to a less clear extent) does energy. The most evident characteristic of

the globalization of inflation for these countries is a convergence in the mean

rates for each of aggregate, core and food inflation. The analysis of breaks

in aggregate domestic inflation in terms of component foreign series shows an

increased role for core inflation for a number of European countries, pointing

to the importance of monetary policy in the context of the formation of the

Euro area, while an increased linkage to movements in foreign energy inflation

is important for the US.

The rest of the chapter is organized as follows. Section 2.2 describes our

methodology, including our iterative procedure for structural break detection,

with the data presented in section 2.3. Substantive results are reported and

discussed in the following two sections, with the nature of change documented

for individual (aggregate and component) series in section 2.4 and breaks in

aggregate inflation decomposed in terms of foreign inflation series in section

2.5. Finally, section 2.6 concludes.

2.2 Methodology

The methodology outlined in chapter 1 is repeated in this chapter for conve-

nience. However, it is written here explicitly for the bivariate domestic-foreign

inflation model. Additionally, compared to the discussion of bivariate infla-

tion model in subsection 1.3.3 of chapter 1, a more general specification of

aggregate/component model is discussed in this section.

2.2.1 The model

Structural break analyses need to take account of possible breaks in both

dynamics and volatility in order to avoid misleading inferences arising from

model misspecification (Pitarakis, 2004). Therefore, our approach follows that

of Bataa et al. (2013a,b) in iteratively taking account of breaks in both the

coefficients and the innovation variance of inflation.

The present chapter focuses on the relationship between domestic inflation

for country s (s = 1, . . . , N) in month t (πDt,s) and a corresponding measure

of foreign inflation (πFt,s); the inflation series under analysis can be either ag-

gregate CPI inflation or a component (core, food or energy). In a dynamic
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context, the relationship can be parsimoniously represented as2

πDt,s = α0j +

p∑
i=1

αijπ
D
t−i,s + β0jπ

F
t,s +

r∑
i=1

βijπ
F
t−i,s + εt,s, (2.1)

for j = 1, . . . ,m+ 1 and t = TCj−1 + 1, . . . , TCj , where πFt,s is foreign inflation in

relation to country s at time t, β0j captures the contemporaneous co-movement

between domestic and foreign inflation, while (β1j, ..., βrj) represents dynamic

inflation spillovers, (α1j, . . . , αpj) are the own inflation dynamics, and εt is

a temporally uncorrelated (but possibly heteroskedastic) disturbance process.

For estimation purposes, foreign inflation is treated as weakly exogenous for

domestic inflation. The measurement of foreign inflation for country s is pre-

viously discussed in subsection 1.3.4 of chapter 1. The maximum lag order

considered for both own and foreign inflation is p = r = 12, but the included

lags are specified using a general to specific approach, as explained below. In

line with the usual definition employed in a univariate context, ρdj =
∑p

i=1 αij

is referred to as inflation persistence, although it is measured in (2.1) condi-

tionally on foreign inflation.

The coefficients of (2.1) are subject to change at them break dates (TC1 , . . . , T
C
m),

with the convention that TC0 = 0 and TCm+1 = T , where T is the total sam-

ple size available for estimation (that is, after allowing for lags). Within each

of m + 1 coefficient regimes, αj = (α0j, α1j, . . . , αpj)
′ and βj = (β0j, β1j,

. . . , βrj)
′ are time-invariant and all AR roots are assumed to lie strictly out-

side the unit circle. Similarly, the innovation variance E[ε2
t ] = σ2

k is constant

and is assumed to be conditionally homoskedastic within each volatility regime

k = 1, . . . , n+ 1, but it is allowed to change at n volatility break dates. Both

the numbers and dates of all breaks are unknown, with no restriction that

coefficient and volatility breaks coincide, in either number or timing. Further,

our procedure allows for the presence of additive outliers in πDt , which could be

due to (say) changes in indirect taxes. A feature of our treatment of outliers

is that these are measured after adjusting for volatility breaks.

Before turning to the iterative methodology used for structural break de-

tection, some further discussion of (2.1) is warranted. It is noteworthy that, by

construction, any common global influences are included in the foreign infla-

tion series for country s, so that any increase over time in truly global inflation

effects will be captured by the βij coefficients. This is not a problem for our

analysis in that such global effects are, indeed, foreign in relation to coun-

try s. Dees et al. (2007) discuss related issues in the context of their GVAR

2All coefficients are country-specific, but the subscript s is omitted, and also from the
disturbance in (2.1), for notational simplicity.
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model, noting that it may imply that cross-section correlations exist across

the εt,s; however, unlike those authors, we are not concerned with identifying

country-specific shocks.

The assumption of weak exogeneity for πFt,s may be questioned for the large

economies of Germany and the US, both of which are included in our sample

and (as noted in Section 2.3) attract large weight in our foreign inflation series

for a number of other countries. Consequently, it is possible that an apparent

increase in globalization for these countries may actually be due to an increased

role for US or German inflation for other countries. However, allowing for

simultaneity using the two-step methodology of Hall et al. (2012) is limited in

the nature of breaks that can be examined3. An alternative model for aggregate

inflation was therefore also examined for these countries, with πFt,s omitted from

the analysis. For Germany, the results are substantively unchanged from those

reported below, whereas less evidence of globalization was uncovered in this

modified specification for the US. We return to this point for the US in the

final section of the chapter.

2.2.2 Iterative testing methodology

The iterative methodology proposed by Bataa et al. (2013b) employs structural

break tests in conjunction with the outlier detection and removal procedure of

Stock and Watson (2003) to examine structural breaks in each of the seasonal,

mean, dynamic and volatility components of univariate inflation. While based

on this approach, our procedure differs in three important respects. Firstly,

we treat all elements of the coefficient vector δj = (α′j, β
′
j)
′ of (2.1) together,

rather than separating mean and dynamic breaks. In addition to mean breaks

in this bivariate context requiring consideration of both domestic and foreign

inflation, the simulation analysis in Bataa et al. (2013b, Table 1) shows that

their procedure results in the mean break test being substantially oversized.

This feature may be due to the initial tests for mean breaks applying HAC

inference with un-modeled dynamics; Bai and Perron (2006) show that the use

of HAC inference in this context can lead to badly oversized tests, whereas

this is improved when the dynamics are modeled explicitly. Secondly, our

procedure simplifies the iterations in respect to volatility breaks, since the

results of Bataa et al. (2013a, Table 1) implies these are detected well without

iteration. Finally, we take account of variance breaks when identifying outliers,

3More specifically, for a ‘structural’ equation such as (2.1), breaks are estimated first
for the coefficients of the corresponding ‘reduced form’ equation. Possible breaks in the
‘structural form’ coefficients can then be examined only for the sub-intervals between the
‘reduced form’ breaks, rather than over the entire sample period.
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whereas these are ignored in their procedure.

It is also important to note that seasonality is not a focus of interest in

the present study, and hence we avoid the additional complications of the

Bataa et al. (2013b) procedure in detecting breaks in a deterministic (dummy

variable) representation of seasonality; in this context, it is reassuring that

the robustness analysis in Bataa et al. (2013b) indicates that the detection of

structural breaks in univariate dynamics is not substantively affected by the

method of accounting for seasonality. As discussed in section 2.3, all series are

seasonally adjusted prior to the application of the iterative procedure4.

Step 1 - Outlier detection: In the initialization, outliers in the univariate

πDt,s series5 are detected using the procedure by Stock and Watson (2003)

over the full sample of data t = 1, . . . , T . Outliers are defined as four

times the interquartile range from the median6, and are replaced by the

median of the six neighboring non-outlier values.

Step 1* - Outlier detection for subsequent iterations: In subsequent it-

erations, the data are adjusted for volatility breaks (by standardizing πDt,s

using the residual standard deviation for the volatility regime correspond-

ing to t), with outliers then examined separately within each coefficient

regime. This is because, observations which were initially classified as

outliers are reconsidered in every iteration as they may indeed part of

the changed volatility and should not be classified as outliers any longer.

Detected outliers are replaced by the median of the six neighboring non-

outlier values and (except for the initialization) the data are rescaled to

yield a series adjusted only for outliers.

Step 2 - Model selection: The model is specified using a simplified version

of the general to specific multi path search algorithm proposed by Krolzig

and Hendry (2001), in combination with the Schwartz Information Cri-

terion (SIC). Since the intercept is always included, the model is initially

evaluated with 25 individual (own and global) lags. Five starting points

are then generated by initially eliminating the single variable that is the

zth least significant (z = 1, ..., 5) in the general regression, calculating

the corresponding SIC value in each case. From each starting point, the

least significant variable is dropped sequentially one at a time, until only

4This is essentially the same algorithm proposed in chapter 1
5A small Monte Carlo analysis confirmed that the presence of aberrant observations in

the explanatory variable did not affect the size of the structural break tests for (2.1).
6Based on a visual examination of results, using four times the interquartile range pro-

vides a balance between failing to detect ‘obvious’ outliers and apparently detecting too
many.
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the intercept remains. The selected model is that which achieves the

smallest SIC across all 25 models and 5 paths7.

Step 3 - Preliminary coefficient break test: After specifying the lags in-

cluded in (2.1), the Bai and Perron (1998) multiple structural breaks

test procedure is applied to the coefficients (intercept and all slope coef-

ficients) employing heteroskedasticity consistent (HC) inference.

Step 4 - Variance break test: Using the residuals from the model with co-

efficient breaks as identified in step 3, variance breaks are examined

through tests applied to the mean of the squared residuals.

Step 5 - Coefficient break test: Since HC inference can lead to oversized

coefficient break tests (Bai and Perron, 2006), breaks in the coefficients

are reconsidered conditional on the variance breaks from step 4. Fol-

lowing the proposal of Pitarakis (2004), this is achieved by applying

homoskedastic inference in (2.1) after applying the feasible GLS transfor-

mation. If no volatility breaks are detected, coefficient tests are applied

to the original data with a homoskedastic variance assumption.

The heart of the iterations just described is the multiple structural break

testing procedure of Bai and Perron (1998) which is detailed in subsection

1.3.2 of chapter 1.

A single iteration comprises steps 1 to 5, inclusive, and the output of each

iteration is two sets of break dates, namely identified coefficient and volatility

break dates, and outliers. The maximum number of iterations is set to 10 and

convergence may be achieved in two different ways. Firstly, identical dates

may be output from two consecutive iterations; alternately, the iterations can

cycle between (say) two or three sets of dates. In the latter case, we focus on

coefficient breaks and choose the set which achieves the smallest SIC among

those in the cycle. The version of SIC is that proposed by Yao (1988) for

structural break inference, which is applied to the GLS transformed data and

calculated for m breaks as

SIC(m) = ln[T−1ST (T̂C1 , . . . , T̂
C
m)] + q∗ ln(T )/T (2.2)

where ST (T̂ c1 , . . . , T̂
c
m) is the sum of squared standardized residuals for πDt,s

computed over the m + 1 coefficient regimes in (2.1) and q∗ = (m + 1)q + m

where q is the total number of coefficients (including the intercept) estimated

7A comparison of this SIC based procedure with a conventional testing down method led
to the selection of very similar lags.

109



in the model. Note that, through q∗, the penalty term effectively treats each

coefficient break date as an estimated parameter. The T sample observations

for πDt,s used in computing SIC are identical over all models in the comparison.

2.2.3 Decomposing foreign inflation

In order to shed light on whether individual breaks in international inflation

linkages in (2.1) can be attributed to changed responses to a specific component

of foreign inflation, we also study the following generalized version of this

dynamic model:

πDt = α0j +

p∑
i=1

αi,jπ
D
t−i +

3∑
l=1

{β0l,jπ
F
t,l +

r∑
i=1

βil,jπ
F
t−i,l}+ εt (2.3)

for j = 1, . . . ,m+ 1, and t = TCj−1 + 1, . . . , TCj . where πDt is domestic aggregate

inflation and πFt,l (l = 1, 2, 3) are the component foreign series relating to core,

energy and food inflation in month t. Both the domestic and foreign inflation

series are specific to country s, but this subscript is dropped from (2.3) for

notational simplicity.

We employ two approaches to the identification of breaks in (2.3). One

takes the coefficient and volatility breaks identified in (2.1) as also applying to

(2.3). In this case, based on those dates, the more general model is estimated

using the same dynamic specification as selected for (2.1), and also replacing

the outliers as identified there for πDt , but replacing the aggregate series on

the right-hand side of the model by the three component series. The second

approach applies the iterative methodology of subsection 2.2.2 to the more

general model of (2.3). Whereas the former provides a direct test of whether

the given structural breaks in aggregate international inflation linkages can

be associated with coefficient change for one or more specific components, the

latter treats this as a distinct model and can be viewed as a check on the

breaks identified from the aggregate. However, it is also relevant to note that

the second approach is less parsimonious and hence may lack power for the

detection of breaks compared to the first.

Due to the costs of searching in the more highly parameterized model of

(2.3), model selection is modified when the iterative methodology of subsec-

tion 2.2.2 is applied in this context. To be specific, model selection uses the

SIC-based procedure outlined there, but this is applied once, prior to the

commencement of the iterations, so that the same dynamic specification is

employed throughout.

The use of (2.3) in place of (2.1) effectively treats the aggregate foreign in-
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flation series as a weighted sum of the component series with constant weights.

However, both the weights we use to construct each foreign inflation series for

country s from inflation data for other countries (see subsection 1.3.4 of chapter

1) and those implicitly used to construct an aggregate inflation series from its

components within each country change over time. Hence it is only an approx-

imation to consider aggregate foreign inflation as a fixed weighted sum of the

corresponding component series. This is, indeed, an additional reason why it

is appropriate to re-evaluate the existence and dates of breaks in international

inflation linkages in the context of (2.3).

The primary focus of our analysis is the nature of changes in the inter-

national co-movement of inflation. Reflecting this, and for given (estimated)

dates of structural breaks in (2.3) we apply a sequence of F -tests on the co-

efficients of this model8. Of particular interest is the test of the hypothesis of

no change in the contemporaneous coefficient across regimes which is applied

both separately for each components l = 1, 2, 3

H0 : β0l,1 = · · · = β0l,m+1 (2.4)

and jointly across all three components

H0 : β0l,1 = · · · = β0l,m+1, all l = 1, 2, 3. (2.5)

The tests of (2.4) and (2.5) are applied to both sets of estimated break dates

for (2.3), namely those based on the aggregate CPI model of (2.1) and those

estimated directly from (2.3). In addition, the corresponding tests are applied

to the lagged coefficients for foreign inflation, namely

H0 : βil,1 = · · · = βil,m+1, all i = 1, ..., r (2.6)

and

H0 : βil,1 = · · · = βil,m+1, all i = 1, ..., r and l = 1, 2, 3. (2.7)

Care needs to be taken when comparing the coefficients of foreign inflation

components estimated in (2.3) with those for the separate models estimated

using (2.1). To see this, consider the following special case of (2.1) for the

8Since Bai and Perron (1998) show that (with coefficient breaks of fixed magnitude)
the estimated break fractions asymptotically converge to the true values at a rate of T ,
whereas the estimated coefficients in a model such as (2.3) converge at the usual rate of
T 1/2. This implies that conventional hypothesis tests are asymptotically valid when applied
to the coefficients conditional on the estimated break dates.
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inflation component l (l = 1, 2, 3)

πDtl = α0 + α1π
D
t−1,l + β0π

F
tl + εtl, l = 1, 2, 3 (2.8)

where no structural breaks apply and the country subscript s is omitted for

simplicity. Note, in particular, that (2.8) assumes common coefficients across

components. Further, the aggregate is a weighted sum of the component infla-

tion series, and assuming constant weights both over time and across domestic

and foreign inflation with πDt =
∑3

l=1 ωlπ
D
tl and πFt =

∑3
l=1 ωlπ

F
tl , then aggre-

gating (2.8) across components gives

πDt = α0 + α1π
D
t−1 +

3∑
l=1

(ωlβ0)πFtl + εt. (2.9)

Consequently, the contemporaneous coefficient of the foreign component series

l in (2.9) is not β0, but rather β0l = ωlβ0.

Therefore, consideration of this simple special case implies that coefficients

estimated in the component models (2.1) should be scaled by the weights ωl

when compared with those estimated in (2.9). In the case of the US, for exam-

ple, averaged over the period 1987 to 2012, goods and services that contribute

to core inflation have a weight of 0.77 in aggregate inflation, with the weights

of energy and food inflation being 0.09 and 0.14, respectively. Therefore, the

estimated coefficients of foreign energy and food inflation can be anticipated

to be substantially smaller in the context of (2.3) than in the separate models

of (2.1), even when the same coefficients apply in the latter across the three

components. Due to the larger role it plays in the aggregate, the reduction

will be less marked for core inflation.

2.3 Data

The inflation data comprises monthly CPI aggregate inflation, together with

the corresponding core, energy and food component inflation series, for OECD

countries over January 1970 to September 2010. Our sample relates to 13

OECD countries, that is fewer than 19 OECD countries used in the aggregate

analysis of chapter 1, due to the limitations of the availability of data at the

sub-aggregate core, energy and food level and at the monthly frequency over an

extended period. These include six countries that are currently members of the

Euro area (Austria, Finland, France, Germany, Italy, Netherlands), four other

European countries (Denmark, Sweden, Switzerland, UK) and three others

(Canada, Japan, US). Although the sample of countries we use is dictated
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purely by data availability, the inclusion of a number of Euro area countries

sheds light on the impact of the formation of the Euro area on the nature of

inflation in these countries.

All inflation series are calculated by differencing the logged monthly in-

dices and multiplying by 100. The underlying monthly CPI values for both

the aggregate and components are obtained from the OECD Main Economic

Indicator database. To account for seasonality in the computed monthly infla-

tion series, we undertake a prior seasonal adjustment for each inflation series

using the widely applied X-12-ARIMA seasonal adjustment procedure9.

For the construction of foreign inflation, the method described in subsection

1.3.4 of chapter 1 is employed based on the bilateral trade statistics of 13 OECD

countries. Appendix Table B.1 shows bilateral trade weights for these countries

which are averaged over the sample of approximately 40 years. Similar to

bilateral trade weights computed for 19 OECD countries, in general, Germany

is the most important trading partner for European countries, while the US

is for the non-European countries of Japan and Canada. However, the UK

does not have a dominant trading partner, although shares with respect to the

US, Germany and France are relatively large compared to others. We should

note, however, that these weights based on bilateral trade do not reflect effects

of third-countries, such as the large emerging economies of China and India.

However, the limitation of available data for those countries precludes their

inclusion in our analysis.

2.4 Changes in Inflation Linkages

This section presents a summary of the results. Subsection 2.4.1 examines the

break points which are detected in the coefficients and residual variances of

aggregate inflation and its components. Subsection 2.4.2 studies the source(s)

of changes by comparing estimates of the contemporaneous coefficients of for-

eign inflation across the aggregate and component analyses. Changes in the

mean, persistence and volatility characteristics of inflation are then discussed

in the remainder of the section.

As discussed in section 2.2, the dynamics employed in the general specifica-

tion of (2.1) are selected within our iterative structural break testing procedure

and Table 2.1 reports the resulting lags for each series (namely, aggregate, core,

energy and food inflation) at the end of the iterations. Aggregate models pre-

9Official seasonally adjusted data is available for the US and our graphical comparison of
this series with the comparable unadjusted series filtered using X-12-ARIMA showed these
to have very similar properties. Hence we apply X-12-ARIMA seasonal adjustment to series
for all countries.
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sented in Table 2.1 are largely similar to those selected in chapter 1 (using

more countries to construct the foreign inflation series) for the same countries.

All later results using (2.1) are obtained using the models reported in this

table; the domestic aggregate with foreign components model refers to (2.3)

and is discussed in the next section.

It is noteworthy, in Table 2.1, that more domestic lags are selected in

the aggregate and (particularly) core inflation models of (2.1) as compared to

energy and food inflation. This is not surprising, due to the higher volatility

of energy and food inflation those are less dependent on their past; indeed,

for the majority of countries energy inflation has no persistence in the sense

that the selected models include no domestic lags. Interestingly, more lags are

selected for core than aggregate inflation. Another informative characteristic

of Table 2.1 is that contemporaneous foreign inflation is always selected for

the aggregate and also for both energy and food inflation, whereas in the clear

majority of cases it would not be selected when the model is applied to core

inflation. Indeed, for Japan and Switzerland, no foreign (contemporaneous or

lagged) value would be selected at all for core inflation. These results suggest

that short-run inflation linkages may apply primarily through energy and food

inflation, rather than core inflation. Nevertheless, since our main focus is

inflation linkages, the contemporaneous foreign value is always included when

(2.1) is estimated and subject to structural breaks analysis.

2.4.1 Number and dates of breaks

Break dates detected in the coefficients and variances for (2.1) are shown in

Table 2.2, with these presented for both (2.1) and (2.3); results for the latter

are discussed in Section 2.5. The corresponding test statistics relating to (2.1)

are provided in Appendix Tables B.2 to B.4. More specifically, Tables B.2 and

B.3 provide detailed results for the model (2.1) applied to the aggregate infla-

tion series, while (to conserve space) Table B.4 gives results for the WDmax

statistic applied to the core, energy and food inflation models; all p-values are

obtained using the method of Hall and Sakkas (2013). All results shown here

are at the end of the iterative procedure of Section 2.210 11. A glance at the

10For information, all sequential F -statistics are shown to Sup(5|4), although the proce-
dure stops when the relevant null hypothesis is not rejected at 5%.

11For all countries, with the exception of France, break dates detected in the coefficients
and variances for aggregate specification of (2.1) converges to a unique set of coefficient
and variance breaks in the iterative structural break testing methodology. For France,
convergence is achieved by choosing the set which achieves the smallest SIC among other
local optima, using (2.2). Similarly, in some cases break dates are selected based on (2.2) for
core (Denmark, Germany, Netherlands, the UK), energy (Canada, Italy) and food (Canada,
Finland) model of (2.1).
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p-values of the WDmax test statistics in these appendix tables indicates that

there is usually strong evidence for breaks in both the coefficients and vari-

ances. This last statement applies particularly for the aggregate series, where

the p-values of Table B.2 indicate strong evidence for breaks, with failure to

reject at the 1 percent level only for the coefficients of the Austria model (p-

value 0.019). However, these tables also indicate that the number of breaks is

not always clearcut; for example, the choice of one rather than two breaks for

aggregate inflation in Italy is based on the marginal p-value of 0.052 for the

SupF (2|1) statistic; see Table B.2. On the other hand, when core, energy and

food inflation are considered separately, statistical evidence of breaks is not

always uncovered (Table B.4).

Overall, coefficient and volatility breaks are found in aggregate inflation

for all 13 countries, with coefficient breaks in 11, 12 and 10 countries for core,

energy and food inflation, respectively (using a 5 percent significance level).

Across the 13 countries, we find more breaks in total for the energy series (19

breaks) than others (16 for food, 15 each for core and aggregate inflation).

Although a maximum of five breaks are allowed, the most uncovered in any

series is three coefficient breaks and (with the exception only of aggregate in-

flation in Japan) two is the maximum number of volatility breaks. Hence,

although we use four decades of monthly data, structural breaks occur rela-

tively infrequently in either the coefficients or volatility of these international

inflation relationships. However, our finding of fewer breaks overall than uni-

variate studies that examine the mean level of inflation (such as Benati, 2008,

Bataa et al., 2013b) can be attributed to our methodology that explicitly in-

cludes dynamics in the breaks analysis in order to avoid the oversizing of HAC

methods, as discussed in Section 2.2 above.

Some clustering of coefficient break dates can be observed, with seven coun-

tries having estimated breaks in aggregate and/or core inflation between 1980

and 1982. In some cases (Denmark, Germany, the US) this is preceded by

a break in the relationship energy inflation relationship; for example, Hooker

(2002) documents a substantial role of oil prices in explaining US core inflation

prior to 1981. More broadly, the clustering of these breaks in both the aggre-

gate and energy inflation series around the first half of the 1980s point to the

importance of energy prices for historical changes in inflation. On the other

hand, breaks dated for Canada, Sweden and the UK in the early 1990s may

be associated with the introduction of inflation targeting in those countries (in

February 1991, January 1993 and October 1992 for Canada, Sweden and the

UK, respectively), while a number of current members of the Euro area (specif-

ically Finland, Germany, Italy, and the Netherlands) show coefficient breaks
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in the decade leading to the launch of the common currency; these results are

in line with Altissimo et al. (2006), Cecchetti and Debelle (2006), Bataa et al.

(2013b) and others. The variance breaks in Table 2.2 cluster mainly in the

decade from 1979 (32 in total) and far fewer occur at other periods, in contrast

to the coefficient breaks where many occur in the early 1990s.

Corresponding to the regimes implied by the estimated break dates of Table

2.2, the corresponding coefficient estimates are summarized in Table 2.3. More

specifically, this latter table gives the contemporaneous coefficient of foreign

inflation β̂0j over coefficient regimes j = 1, ...,m + 1 and the corresponding

sum of the lagged global coefficients
∑r

i=1 β̂ij, together with the sample mean

of the univariate inflation series and persistence measured by ρ̂dj =
∑p

i=1 α̂ij for

j = 1, ...,m+ 1. Finally, volatility is the residual variance obtained in (2.1) for

each identified volatility regime k = 1, ..., n + 1. ; These results are discussed

in the next three subsections.

2.4.2 International co-movement

Our findings on changes in international inflation linkages are summarized by

Figures 2.1 and 2.2, which plot the estimated contemporaneous and (summed)

lag coefficients, respectively over regimes for the 13 countries of our sample.

In each figure, the values in these countries are presented over three panels:

panel A (includes Austria, Canada, Denmark, Finland), panel B (includes

France, Germany, Italy, Japan), and panel C (includes Netherlands, Sweden,

Switzerland, United Kingdom, United States) for the readability of individual

country’s dynamics. More specifically, each panel consists of graphs a, b, c and

d which correspond to aggregate, core, energy and food inflation, respectively,

showing the break dates of Table 2.2 and the estimated coefficients of Table

2.3 for the model of (2.1). Note, however, that lagged foreign inflation is not

always included in the models, and hence fewer than 13 countries are shown

in each graph of Figure 2.2.

Graph a (in each panel) of Figure 2.1 shows a clear pattern of increasing

contemporaneous co-movement for aggregate CPI inflation, with many coun-

tries showing an increased role for foreign inflation from the 1980s or early

1990s. This applies for most European countries, including France and Ger-

many (though not the UK), and also for Canada. However, the substantial

increase is dated to occur later for the US (in 2004). Therefore, our model

applied to aggregate inflation reproduces the pattern of inflation globalisation

documented in other studies (including Ciccarelli and Mojon, 2010, Neely and

Rapach, 2011, Bataa et al., 2013a). This phenomenon apparently applies in
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the very short-run, with graph a of Figure 2.2 showing no evident tendency

for lagged foreign inflation to play a greater role over time. However, the

pattern of increased contemporaneous co-movement for aggregate inflation is

not reproduced when core inflation is examined in graph b of Figure 2.1. In

particular, this shows the contemporaneous foreign coefficient to be relatively

constant over time for core inflation and of smaller magnitude than that for

aggregate inflation (graph a). Indeed, the estimated contemporaneous foreign

coefficient for core inflation declines in a number of cases; for example, that

for the UK changes from 0.32 to -0.13 after November 1990, around the time

of the introduction of inflation targeting (see Tables 2.2 and 2.3). The cor-

responding coefficient for Canada increases to 0.25 with inflation targeting,

which may reflect a closer alignment of its level to that of the US. The six

Euro area countries present no substantial evidence that foreign core inflation

(which Appendix Table B.1 shows to be influenced strongly by inflation in

other European countries) plays a greater role with monetary integration, ex-

cept that the relevant coefficient for Italy reverts from effectively zero to 0.48

from the mid-1990s. This conclusion is not substantively changed when the

coefficients of lagged foreign core inflation are examined in Figure 2.2, albeit

there are some individual cases (such as Sweden) where an increased role is

indicated.

The implication is that non-core inflation elements largely drive the co-

movement seen in aggregate inflation, and indeed graphs c and d of Figure

2.1 show similar characteristics in this respect to graph a. With the excep-

tions only of Japan (where foreign energy inflation apparently plays no role)

and the UK, energy price inflation in all countries shows greater exposure to

foreign movements over the last decade compared with the 1970s. The large

estimated contemporaneous energy coefficient for the US from 1993 is par-

ticularly notable, with this being numerically very similar to the estimated

foreign coefficients for the small countries of Finland and Switzerland in the

latter part of the sample. With the exceptions only of Austria, Japan and

Switzerland (where no breaks are uncovered), the foreign coefficients for food

inflation are also larger at the end of the sample than in the early period. For

instance, France and Germany experience an increased foreign food inflation

role from around 1990, and this may be due to greater currency integration

causing prices movements from other member states to be transmitted more

fully to these large countries.

Our results based on (2.1) therefore suggest that short-term movements in

national core inflation are primarily domestically determined and the role of

international inflation has not increased overall during the last four decades.
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This applies across countries, irrespective of whether they are members of

the European monetary union or not. The increased co-movement seen in

aggregate CPI inflation since the 1980s appears to be due, therefore, primarily

to the components of energy and food, which do generally exhibit evidence of

increased foreign effects; we will return to this issue through the model (2.3)

in Section 2.5 below. Meanwhile, in subsection 2.4.3 we examine the impact

of structural breaks on the mean and persistence of inflation in the context of

(2.1).

2.4.3 Mean and persistence

The discussion of the previous subsection relates to co-movement across coun-

tries for monthly CPI inflation. However, breaks dated in (2.1) may refer to

level shifts or changes in persistence, which are discussed here and depicted

graphically in Figures 2.3 and 2.4. In common with earlier figures, all 13 coun-

tries are presented over panels A, B, C and graphs a to d in each panel show

regime-specific values relating to aggregate, core, energy and food inflation.

The mean inflation levels in Figure 2.3 are computed as the sample mean for

the univariate inflation series over the indicated regimes, while persistence is

measured as the sum of the AR coefficients in (2.1) and hence is conditional

on the respective foreign inflation series; see also Table 2.3.

Any globalisation of inflation does not necessarily refer to month-on-month

movements, but can be interpreted as longer term characteristics. With such

an interpretation, graph a of Figure 2.3 presents strong evidence that all 13

OECD countries have effectively converged to a common inflation level of about

0.2 percent a month. Further, this common inflation level largely applies also

to core inflation (graph b) since the late 1990s. The pattern is clear in both

graphs, with each break being associated with a lowering of the respective

inflation measure in each country, except for a temporary increase for core

inflation in Italy between 1980 and 1986. In addition to the general decline of

the early 1980s after the second world oil price shock, the declines for Canada

and the UK in the early 1990s effectively coincide with the introduction of

inflation targeting, while Euro area countries experience breaks in the run-up

to full monetary integration (see also subsection 2.4.1). Italy is an interesting

example of the last statement, where the inflation decline occurs in December

1995 and brings Italy’s inflation in line with the requirements of the Maastricht

Treaty12.

12The formal Maastricht Treaty requirement is for annual inflation to be no more than
1.5 percent higher than the average of the three lowest inflation countries of the European
Union.
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As indicated by Table 2.3, with the single exception of the first break for

core inflation in Italy, coefficient breaks in the relationships for aggregate and

core inflation are associated with declines in the mean level, which is com-

puted as the sample mean for the univariate inflation series over the indicated

regimes. While the mean of energy inflation also declines in all countries from

its initially high level of the 1970s, in some cases it increases again in the latter

part of the sample period (June 2004 for Germany and Japan, and during the

1990s for Austria, Netherlands and Switzerland). The level of food inflation

also shows a pattern of decline over time, with the corresponding breaks gen-

erally dated between the mid-1970s and mid-1980s. A summary measure of

the extent of the decline in mean inflation is given by the ratio of the aver-

age values across countries of mean inflation for the first versus last coefficient

regimes, yielding 3.5, 4, 3 and 4.5 for aggregate, core, energy and food inflation,

respectively.

In line with results for univariate inflation models (including Benati, 2008,

Bataa et al., 2013b) the persistence of aggregate inflation in (2.1) declines over

time. As indicated in graph a of Figure 2.4 (see also Table 2.3), every country

except German (which has very low persistence throughout) shares in the

decline, with inflation persistence in all countries being 0.34 or less by the end

of the sample. However, as for co-movement in Figure 2.1, the pattern for core

inflation in graph b differs from the aggregate. More specifically, Denmark,

Finland, Germany, the UK and Italy (from 1980) show persistence for core

inflation to be effectively constant or to increase over time, with persistence

typically higher for core than aggregate inflation in the final coefficient regimes.

Our models find little change over time in persistence for energy inflation,

with this often being zero as no lagged dependent variable is required (Table

2.1). Similarly, the model for food inflation requires no lags in a number of

cases, while persistence substantially declines in others (notably France, Italy

and the UK). These findings support those of Altissimo et al. (2006), who note

less persistence for non-processed foods and energy and higher persistence for

industrial goods and services.

2.4.4 Volatility

An important but often overlooked feature of inflation is volatility, which is

plotted in Figure 2.5 for each of the four series we analyse (but note the

different scales used here for energy and food inflation versus aggregate and

core) in the context of the model of (2.1). It is clear that energy inflation

is more volatile than core or food inflation, with a variance of around 1.5-2
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percent squared per month. Aggregate and core inflation are relatively smooth,

with variances typically less than 0.5 percent squared variance per month from

the early 1980s onward, while food inflation is intermediate, where volatility

of less than 1 percent squared, with the exception of Italy and Japan.

The volatility reductions around the early 1980s in Figure 2.5 appear to

be a manifestation of the international dimension of the so-called Great Mod-

eration, which a number of studies link to improved monetary policy; see, for

example, the discussion in Summers (2005). The volatility reductions apply

particularly to aggregate and core inflation, with all countries except Austria

and the Netherlands experiencing volatility declines for at least one of these.

However, if these are due to improved monetary policy, it is surprising that the

substantial policy changes of the 1990s in relation to the introduction of infla-

tion targeting in Canada and the UK and the movement to the euro currency

in Europe apparently had little impact on either aggregate or core inflation

volatility, with the notable exception of the reduction in the volatility of core

inflation in the UK in August 1992.

In general, energy inflation is volatile until the mid 1980s, with a somewhat

mixed picture of declines and increases subsequently. On the other hand, the

volatility of food inflation typically declines, but is generally stable from the

mid-1990s onwards.

2.4.5 Discussion

The results just presented based on the model (2.1) shed light on the nature of

the globalisation of inflation. More specifically, the cross-country convergence

of mean rates of aggregate, core and food inflation in Figure 2.3 is striking. In

contrast, energy inflation does not show such a pattern of mean convergence.

Also, while Figure 2.1 indicates increased contemporaneous co-movement for

aggregate CPI inflation, this is less clear for the components. In particular, core

inflation provides less strong evidence of increased short-run co-movement than

does the aggregate at the monthly frequency which we examine. Therefore,

even though the model for aggregate inflation finds increased contemporaneous

co-movement, the components models, and specifically that for core inflation,

indicate the role played by the long-run downward shift in the mean level. Ta-

ble 2.2 shows that estimated break dates may differ over components, allowing

the possibility that long-run convergence in the sense of an effectively com-

mon mean core inflation level from the early 1990s could appear as short-run

co-movement when the aggregate series is examined.

Previous authors, including Neely and Rapach (2011) and Mumtaz and
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Surico (2012), suggest that monetary policy plays a role in explaining the

globalisation of inflation, and our results support this in terms of the level of

inflation. In particular, although the dates of structural change are estimated

in terms of the domestic-foreign relationship of (2.1), those for core inflation

in each case precede by a short period the introduction of inflation targeting

for each of Canada, Sweden and the UK. While we cannot, therefore, necessar-

ily attribute the break to this monetary policy change, nevertheless inflation

targeting may help to keep inflation expectations at this new lower level and

consequently make the downward shift permanent. It is also noteworthy that

breaks for the Euro area countries of Finland, Italy and the Netherlands are

dated in the run-up to the launch of the common currency. On the other hand,

in line with the view that Euro area monetary policy largely follows that of

Germany over the earlier period, Germany experiences no break in its core

inflation relationship at this time.

On the other hand, the US does not have an explicit inflation target, but

here also monetary policy is recognised as having changed after the appoint-

ment of Paul Volker as chairman of the US Federal Reserve in 1979; see, for

example, Orphanides (2004). Although our model finds a break in the coef-

ficients of the core inflation model for the US in 1980, with a variance break

also in 1983, the only breaks in the aggregate series are dated in 2003/4. This

suggests that aggregation, and specifically counteracting directions of change

in the contemporaneous coefficients for foreign energy and food inflation in the

early 1980s may have obscured the closer alignment of US core inflation with

foreign values from the 1980s when the headline series is examined. Further,

the increase in the volatility of US headline inflation in the early 2000s appears

to be due to a substantial increase in the volatility of energy inflation.

Indeed, Table 2.3 suggests that energy and food inflation may play a role

in explaining the globalisation of inflation. Recalling that no lagged foreign

inflation is typically selected when (2.1) is specified for the energy series, it is

striking that the contemporaneous foreign coefficient is higher at the end of

the sample than at the beginning (in the 1970s) for every country we study,

with the exceptions only of Japan, Sweden and the UK. Further, now with

the exception of Austria, Japan and Switzerland, the role of contemporaneous

foreign food inflation increases in that model.

The results of this section, therefore, support the proposition that the

adoption of similar monetary policies (although not necessarily in the form

of explicitly inflation targeting) across countries plays an important role in the

globalisation of inflation, by effectively bringing the levels of core inflation into

line across countries. This long-run aspect may also explain why Ciccarelli
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and Mojon (2010) find that inclusion of a long run error-correction to for-

eign inflation improves the accuracy of domestic forecasting models. In terms

of short-run movements, however, the individual models suggest that energy

and food inflation may largely drive the increased synchronicity of monthly

movements.

2.5 Decomposing International Co-Movements

Further insight into the nature and causes of changes in international inflation

linkages are provided by the model of (2.3). More specifically, this focuses on

CPI inflation at the aggregate level, since the globalisation or co-movement

of inflation is documented using data at the aggregate level in the studies of

Ciccarelli and Mojon (2010), Neely and Rapach (2011), Mumtaz and Surico

(2012), Bataa et al. (2013a) and others. However, to shed light on the nature

of this co-movement and how it changes over time, (country-specific) foreign

inflation is decomposed into core, energy and food components.

As preliminary to the substantive results, consider the lags selected by our

SIC procedure (with a maximum of 12 lags considered for both the lagged

domestic inflation variable and each of the foreign components) in the context

of (2.3) and shown in the final columns of Table 2.1. With the contempora-

neous values treated in the same way as any individual lag, current foreign

core inflation is selected in only three of the 13 cases, which may imply that

this does not play a strong role overall in explaining movements in domestic

CPI inflation. Foreign core inflation may nevertheless still play a role, with

a (single) lagged value typically selected, although neither contemporaneous

nor lagged foreign core inflation would be included in the models for either

Japan or the US. The situation for foreign energy inflation stands in contrast

to this, with the contemporaneous value always selected and a lagged value

only for Germany. Finally, contemporaneous foreign food inflation is selected

for a small majority of countries (7 of 13), while for Germany, Switzerland and

the UK no contemporaneous or lagged value is selected. However, to facilitate

comparison with the results discussed above for the model of (2.1), contempo-

raneous values of each foreign series are included in the specification of (2.3)

when this is employed for structural break testing. Although there are some

differences, the broad pattern of domestic lags selected for (2.3) is broadly

similar to those for the model (2.1) estimated for aggregate CPI inflation.

As discussed in section 2.2 above, two sets of break dates are employed

in this analysis decomposing foreign effects, namely those obtained from the

model (2.1) applied to aggregate inflation and those breaks estimated from
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application of our iterative procedure13 directly to the model of (2.3); both

of these are included in Table 2.2, with detailed structural break test results

for the latter models included as Appendix Tables B.5 and B.6. It is notable

that direct use of (2.3), including all contemporaneous foreign components,

sometimes leads to the identification of two coefficient breaks rather than one

revealed for aggregate inflation in (2.1). While there are differences, neverthe-

less a broad correspondence can generally be seen between these two sets of

coefficient break dates. Not surprisingly, the coefficient break dates obtained

directly from (2.3) also sometimes line up with those estimated for food or

inflation in the context of (2.1). The variance breaks are quite clearcut, in

the sense that the sets for aggregate inflation and for the aggregate-foreign

components models in Table 2.2 are very similar overall.

Conditional on these break dates, Table 2.4 presents the estimated co-

efficients for foreign inflation in each regime together with p-values for the

significance of changes across regimes, namely p-values for tests of the null

hypotheses of (2.4) and (2.5) for contemporaneous coefficients, together with

(2.6) and (2.7) for lag coefficients. To facilitate comparison, the first line of

results in Table 2.4 for each country repeats the estimates from the aggregate

inflation model of Table 2.3, but now including the corresponding p-values

for the null hypothesis (2.4) or (2.6) applied in the aggregate model of (2.1).

For example, the increased contemporaneous coefficient (from 0.23 to 0.66)

in the aggregate model for Canada is significant at 1 percent. This can be

attributable to the increases in responses of domestic inflation to foreign core,

energy and food components, as their observed changes are significant at 1%,

1% and 10%, respectively. Consistently, the joint hypothesis of no change in

the contemporaneous coefficient across components is also rejected at 1 percent

significance level. As discussed in subsection 2.2.3, the estimated coefficients

for foreign inflation components partly reflect the differing weights on com-

ponents, so that those on energy and food are anticipated to be smaller than

on core, with the latter reduced to a lesser extent from those of the aggregate

equation, even when the same coefficients apply across the models of (2.1).

Seven countries have contemporaneous foreign aggregate inflation coeffi-

cients that exhibit significant change over regimes in (2.1), and the decompo-

sition of (2.3) indicates the nature of change. Thus, the increases in the con-

temporaneous foreign inflation coefficients of the aggregate models for Italy,

Sweden and Switzerland are associated with increases in the responses of do-

13For Finland and Italy only, our iterative methodology of structural break testing in the
context of component model (2.3) identifies more than a single set of coefficient and variance
breaks in which the iteration cycles among those, and thus the convergence is achieved based
on the smallest SIC among them, using (2.2).
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mestic inflation to foreign core inflation, with no significant changes in the

responses to foreign energy or food inflation14; note, however, the overall null

hypothesis of equal and unchanged contemporaneous coefficients (2.5) is not

rejected for Italy in this specification. There is also some indication of an

increase in the response to foreign core inflation for Germany in Table 2.4

when break dates are imposed from the aggregate specification results, but an

increased response to energy inflation at the first break is apparently more im-

portant, while inflation in France exhibits increased responses to both foreign

energy and food inflation. Finally, foreign core and energy inflation contribute

to the increased foreign effects for Canada, while for the US it is attributed to

an increased response to foreign energy, as the coefficient on foreign core infla-

tion declines. It is noteworthy that, with the exception of Italy, the equality

joint null hypothesis of (2.5) is also rejected for these seven countries in the

context of the model of (2.3).

There is much less evidence of change when lagged foreign coefficients are

examined, in the context of either model (2.1) or (2.3), when the break dates

are imposed from the former. Indeed, where change is significant in the context

of the latter, the foreign component coefficients generally increase.

The second set of results in Table 2.4 are based on break dates estimated in

the context of the model of (2.3), and these are largely compatible with those

obtained using breaks imposed from the aggregate inflation model of (2.1).

Note, however, that although the quoted p-values are asymptotically justified

by the analysis of Bai and Perron (1998), they may over-state significance in

a finite sample context, especially for a joint test applied to (2.3) when the

break dates are also endogenously determined within this model. Hence, it

is unsurprising to find greater apparent significance of change compared to

when the break dates are imposed from (2.1). With this caveat, the results

nevertheless agree with the first set that changes relating to energy inflation are

important for increased contemporaneous co-movement of inflation in Canada,

France, Germany and the US, while those for core inflation play a role for some

European countries, namely Germany, Italy and Sweden15. Only for France

changes are relating to food inflation significant at 5 percent in both sets

of results, with the overall null hypothesis of constant co-movement, (2.5),

also rejected. Nevertheless, irrespective of whether the change is judged to be

significant for an individual country or not, with endogenous dating of breaks in

14Care is required in interpreting the magnitudes of the coefficients for global energy and
food inflation in the context of (2.3), since these make smaller contributions to aggregate
inflation than does core inflation.

15While the contemporaneous coefficient on global core inflation declines for Denmark
around 1990, it is noteworthy that this country is not a member of the Euro area.
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the context of (2.5), Table 2.4 provides evidence that transmission of external

food inflation to domestic aggregate inflation has become more important for

all European countries since around the mid-1980s, except for Denmark and

the Netherlands (the break for the latter is dated in 1977).

As noted above, contemporaneous core inflation would often not be selected

in the context of the aggregate-foreign component model (2.3), so that changes

in the corresponding lag coefficients may be informative. However, while such

change is significant for Austria, Germany, Italy and the UK, the corresponding

coefficients often decline.

The general pattern of persistence decline for aggregate inflation seen in

Table 2.3 also applies in Table 2.5, where the latter is calculated for the decom-

posed foreign inflation model of (2.3) with breaks endogenously dated in the

context of that model. There are, however, some interesting exceptions to the

pattern of decline. Persistence changes significantly in seven countries, with

the predominant direction being decline. However, it is effectively constant for

Italy, the Netherlands and the UK , while that for the US is initially effectively

zero in the early part of the 1970s, increases and then declines again to around

0.3. The overall decline in mean aggregate inflation seen in Figure 2.3 can also

be associated with the significant declines in the intercept seen for a number

of countries in Table 2.5.

2.6 Conclusions

This paper sheds new light on the nature of the globalisation of inflation by

examining the separate roles of core, energy and food inflation in the increased

synchronicity of monthly CPI inflation across OECD countries. To do so, we

analyse changes in the linkages of domestic and country-specific foreign in-

flation (the latter constructed as a trade-weighted average) using an iterative

methodology that allows for breaks in both coefficients and disturbance vari-

ances.

It is, perhaps, not surprising that our analysis reveals the importance of

more than one feature. In terms of long-run movements, the apparent con-

vergence in the mean levels of core inflation from the early 1990s indicates an

important role for monetary policies that focus on inflation. This includes Euro

area countries, such as Finland and Italy, as well as others that introduced in-

flation targeting during that decade (Canada, Sweden and the UK). There is,

however, less strong evidence of globalisation in terms of short-run movements

(contemporaneous relationships) of core than for aggregate inflation. Perhaps,

these results support the proposition that the apparent globalisation in aggre-
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gate inflation may due to the conduct of independent but similar monetary

policy rules rather than the coordination across countries.

However, it is not easily distinguishable whether the convergence in the

mean of core and aggregate inflation is caused mainly by the effectiveness

of improved monetary policies or relatively stable global economic conditions

such as reduced common shocks hitting the economies. It is also possible that

these two explanations are jointly responsible for the (low and stable) mean

convergence of inflation in a sense that a drop of exogenous shocks to the

economies enables monetary policies to control inflation effectively (Ahmed

et al., 2004, Summers, 2005). Nevertheless, short run movements of non-core

elements (energy and food) suggest that they may largely drive the increased

synchronicity of monthly movements, and thus their important roles in ex-

plaining globalisation of inflation.

Further examination based on the aggregate-foreign component models re-

veals an increased role for foreign energy inflation in explaining the apparent

globalisation of domestic CPI inflation in both the US and Canada. This is a

particularly interesting finding in the light of the discussion in Bernanke (2007)

about the role of domestic monetary policy in the context of the globalisation

of inflation. Indeed, domestic US monetary policy appears to be successful in

the sense that our aggregate-foreign component model (2.3) finds no role for

movements in foreign core inflation after the 1970s and no role for foreign food

inflation from 2003. Therefore, the evidence indicates that US inflation is pri-

marily domestically determined, except in respect of energy price movements.

As a side-product, these findings also reduce the concern noted in subsection

2.2.1 about the possible endogeneity of foreign inflation for the US.
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Table 2.2: Estimated dates of structural breaks

Country Model 1970s 1980s 1990s 2000s 1970s 1980s 1990s 2000s

Aggregate inflation . 1981-May . . 1977-Jan . . .

Core inflation . . . . 1977-Jan . . .

Energy inflation 1976-Apr . 1999-Aug . . . . .

Food inflation . . . . . 1984-Oct . .

Aggregate-foreign components 1976-Sep 1983-Jun . . 1976-Sep . . .

Aggregate inflation . . 1990-Dec . 1978-Nov . . .

Core inflation . 1982-Nov 1991-Sep . . 1981-Feb . .

Energy inflation . . 1991-Feb . . . 1992-Jul

Food inflation 1976-Dec 1987-Jan . . 1978-Oct 1986-Sep . .

Aggregate-foreign components . 1982-Nov 1991-Jan . . 1981-Feb . .

Aggregate inflation . 1982-Nov . . . 1980-Oct 1990-Jan .

Core inflation . 1988-Mar . . . 1987-Apr . .

Energy inflation . 1981-Jun . . . . 1990-Dec .

Food inflation . 1985-Mar . 2001-Sep 1976-Jul 1984-Mar 1991-Jan .

Aggregate-foreign components 1977-Nov 1989-May . . . 1985-Apr 1990-Dec .

Aggregate inflation . . 1990-Mar . 1983-Jul . .

Core inflation . . 1991-Jun . . 1983-Jul 1994-Feb .

Energy inflation . . 1991-Mar . . . . .

Food inflation . 1985-Jun . . . 1982-Oct . .

Aggregate-foreign components . 1989Nov . . . 1983-Jul . .

Aggregate inflation . 1985-Aug . . . 1983-Jan . .

Core inflation . 1987-Mar . . . 1983-May . .

Energy inflation . 1985-May . . . . . .

Food inflation .
1980-Mar

1989-Dec
. . . . 1990-Mar .

Aggregate-foreign components . 1987-Jan . . . 1983-May . .

Aggregate inflation . 1980-Nov 1991-Apr . . 1982-Jul . .

Core inflation 1976-Oct . . . . . . .

Energy inflation 1979-Feb . 1990-Oct 2004-Jun . . 1991-Nov .

Food inflation 1977-Oct . 1991-Mar . 1977-Feb . . 2000-Jan

Aggregate-foreign components . 1980-Feb 1991-Apr . . 1982-Jul . .

Aggregate inflation . . 1996-May . .
1981-Jan

1986-Jul
. .

Core inflation .
1980-Feb

1986-Feb
1995-Dec . 1976-Dec 1982-May . .

Energy inflation . 1995-Sep . 1986-Jun . .

Food inflation 1976-May . . . . . . .

Aggregate-foreign components 1976-Aug 1983-Feb . . . 1982-Sep . .

Aggregate inflation 1977-Jan . . . 1977-Jan 1985-Jan 1993-Jun .

Core inflation . . . . . 1980-Feb . .

Energy inflation . . 1997-Apr 2004-Jun . 1987-Jun . 2004-Feb

Food inflation . . . . 1977-Jan . 1998-Mar .

Aggregate-foreign components 1977-Jan . . . 1977-Jan 1985-Dec 1993-Dec .

France

Germany 

Italy

Japan

Breaks in coefficients Breaks in variances

Austria

Canada

Denmark

Finland
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Country Model 1970s 1980s 1990s 2000s 1970s 1980s 1990s 2000s

Aggregate inflation . 1989-Apr . . 1979-Feb . . .

Core inflation . . 1998-Feb . 1978-Aug . . .

Energy inflation . 1983-Sep 1993-Oct . . 1988-Nov . .

Food inflation 1976-Dec .
1992-Jan

1998-Jan
. . . . .

Aggregate-foreign components 1976-Dec . . . 1977-May . . .

Aggregate inflation . . 1991-Feb . 1977-Jul . 1992-Apr .

Core inflation . . 1991-Feb . . 1983-Mar . .

Energy inflation . . . . . 1985-Dec . .

Food inflation . . 1991-Feb . . 1987-Sep . .

Aggregate-foreign components . . 1990-Aug . . 1985-Jun 1993-Jan .

Aggregate inflation . 1984-Oct . . . 1983-Feb . .

Core inflation . . 1993-Nov . 1976-Nov 1985-Feb . .

Energy inflation . 1982-Feb 1991-Jun . . 1983-Feb . .

Food inflation . . . . 1979-Aug 1985-Feb . .

Aggregate-foreign components . . 1993-Sep . 1976-Dec 1983-Apr . .

Aggregate inflation . 1980-May 1991-Jul . . 1982-Jul . .

Core inflation . 1980-Feb 1990-Nov . . 1980-Jun 1992-Aug .

Energy inflation . . . . . . . .

Food inflation . 1984-Jun . . 1976-Nov . . .

Aggregate-foreign components . 1980-May 1990-Oct . . 1982-Jul . .

Aggregate inflation . . . 2003-Feb . 1983-May . 2004-Mar

Core inflation . 1980-May . . . 1983-Feb . .

Energy inflation .
1980-Jan 

1986-Jul
1993-Jul . . . . 2000-Nov

Food inflation . . . 2004-Aug 1977-Mar . 1994-Oct .

Aggregate-foreign components 1977-Nov . 1990-Oct . . 1983-May . 2004-Oct

UK

US

Notes: Estimated dates of structural breaks are shown for the model of (2.1) applied separately to aggregate, core, energy and food inflation. In 

addition, the row labelled aggregate-foreign components shows estimated dates of structural breaks for the model of (2.3).

Table 2.2 continued

Breaks in coefficients Breaks in variances

Netherland

Sweden

Switzerland
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Appendix B

B.1 Additional Tables

Table B.1: Average trade weights by partner countries
Aus Can Den Fin Fra Ger Ita Jap Net Swe Swi Uk US SUM

Aus 0.000 0.008 0.013 0.010 0.056 0.523 0.119 0.027 0.038 0.026 0.077 0.051 0.053 1.000
Can 0.002 0.000 0.002 0.002 0.013 0.022 0.011 0.055 0.008 0.004 0.005 0.037 0.840 1.000
Den 0.015 0.009 0.000 0.038 0.067 0.279 0.054 0.036 0.073 0.181 0.024 0.144 0.080 1.000
Fin 0.017 0.012 0.051 0.000 0.067 0.218 0.049 0.046 0.064 0.206 0.026 0.150 0.095 1.000
Fra 0.014 0.014 0.013 0.010 0.000 0.311 0.177 0.037 0.090 0.025 0.055 0.130 0.125 1.000
Ger 0.075 0.013 0.030 0.016 0.188 0.000 0.130 0.046 0.153 0.039 0.072 0.110 0.129 1.000
Ita 0.038 0.015 0.014 0.008 0.225 0.305 0.000 0.028 0.073 0.020 0.065 0.092 0.118 1.000
Jap 0.006 0.067 0.009 0.006 0.039 0.096 0.027 0.000 0.034 0.013 0.023 0.062 0.618 1.000
Net 0.015 0.008 0.021 0.013 0.137 0.412 0.072 0.028 0.000 0.032 0.023 0.137 0.102 1.000
Swe 0.020 0.014 0.114 0.090 0.076 0.229 0.051 0.037 0.078 0.000 0.027 0.151 0.114 1.000
Swi 0.054 0.010 0.014 0.009 0.137 0.346 0.122 0.044 0.049 0.024 0.000 0.083 0.107 1.000
Uk 0.013 0.039 0.031 0.021 0.140 0.203 0.074 0.051 0.122 0.051 0.048 0.000 0.204 1.000
US 0.005 0.396 0.007 0.005 0.052 0.100 0.042 0.231 0.039 0.015 0.022 0.086 0.000 1.000

Table A1. Average trade weights by partner countries

Note: The shares for each country with respect to partner countries are given in the rows of the table. The values shown are computed as
monthly averages of trade shares over 40 years of data.

Table B.2: Detailed results for coefficient break tests applied to aggregate
inflation

Country Statistic p-value SupF(2|1) p-value SupF(3|2) p-value SupF(4|3) p-value SupF(5|4) p-value

Austria 18.737 0.019 13.466 0.252 9.906 0.784 0.000 1.000 0.000 1.000

Canada 60.343 0.000 17.559 0.224 9.556 0.995 16.234 0.536 6.437 1.000

Denmark 37.280 0.000 18.874 0.080 10.627 0.874 0.000 1.000 0.000 1.000

Finland 32.589 0.000 15.843 0.216 11.362 0.801 13.734 0.624 0.000 1.000

France 100.975 0.000 18.828 0.081 13.213 0.585 4.979 1.000 0.000 1.000

Germany 44.393 0.000 30.301 0.000 4.360 1.000 1.253 1.000 0.000 1.000

Italy 38.430 0.000 22.024 0.052 19.442 0.184 19.099 0.259 0.000 1.000

Japan 29.250 0.003 11.506 0.917 17.160 0.513 15.089 0.838 0.000 1.000

Netherland 26.783 0.001 18.650 0.086 10.999 0.839 2.855 1.000 0.000 1.000

Sweden 27.319 0.001 11.100 0.686 7.936 0.997 5.488 1.000 0.000 1.000

Switzerland 45.171 0.000 16.489 0.177 14.011 0.491 11.348 0.888 0.000 1.000

UK 28.182 0.001 21.688 0.028 10.127 0.915 19.331 0.131 0.000 1.000

US 63.893 0.000 17.450 0.063 19.207 0.048 19.335 0.059 5.742 1.000

WDmax test Sequential F-tests

Notes: Results are shown for structural break test statistics applied to the coefficients of (2.1) for aggregate inflation using the 

iterative procedure of subsection 2.2.2; p -values are obtained using the method of Hall and Sakkas (2012).
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Table B.3: Detailed results for variance break tests applied to aggregate infla-
tion

Country Statistic p-value SupF(2|1) p-value SupF(3|2) p-value SupF(4|3) p-value SupF(5|4) p-value

Austria 16.728 0.001 8.946 0.088 1.538 1.000 2.042 1.000 0.000 1.000

Canada 12.724 0.006 3.414 0.737 5.355 0.523 1.076 1.000 0.000 1.000

Denmark 31.125 0.000 31.283 0.000 2.573 0.978 0.307 1.000 0.000 1.000

Finland 44.920 0.000 6.176 0.284 2.471 0.985 1.312 1.000 0.000 1.000

France 17.832 0.000 6.621 0.238 4.485 0.679 1.936 1.000 0.998 1.000

Germany 13.781 0.003 3.521 0.715 0.812 1.000 0.513 1.000 0.000 1.000

Italy 62.459 0.000 13.164 0.013 2.835 0.953 0.366 1.000 0.093 1.000

Japan 84.407 0.000 39.520 0.000 12.080 0.032 1.471 1.000 0.000 1.000

Netherlands 15.844 0.001 5.276 0.401 2.892 0.946 2.648 0.994 0.000 1.000

Sweden 31.275 0.000 15.744 0.004 4.702 0.639 2.666 0.993 0.000 1.000

Switzerland 34.942 0.000 6.793 0.222 7.004 0.290 1.240 1.000 0.000 1.000

UK 58.954 0.000 5.007 0.442 8.787 0.140 2.266 1.000 0.004 1.000

US 22.579 0.000 17.624 0.001 3.025 0.930 7.534 0.300 0.307 1.000

WDmax test Sequential F-tests

Notes: As for Table B.2, except that tests are applied to the variance.

Table B.4: WDmax tests for no breaks in component domestic/foreign inflation
models

Country WDmax p-value WDmax p-value WDmax p-value WDmax p-value WDmax p-value WDmax p-value

Austria 18.828 0.050 117.995 0.000 11.115 0.081 29.079 0.000 6.917 0.148 15.856 0.001

Canada 37.572 0.000 85.488 0.000 27.135 0.000 38.713 0.000 28.653 0.000 40.135 0.000

Denmark 50.291 0.000 25.167 0.000 24.471 0.000 30.502 0.000 25.672 0.000 24.448 0.000

Finland 30.375 0.001 148.391 0.000 26.366 0.000 40.091 0.000 3.923 0.572 31.846 0.000

France 41.912 0.000 63.192 0.000 75.692 0.000 36.891 0.000 6.564 0.176 12.776 0.006

Germany 28.938 0.001 37.024 0.000 63.299 0.000 3.804 0.598 14.848 0.002 12.917 0.006

Italy 30.063 0.002 18.470 0.008 19.690 0.005 34.864 0.000 13.574 0.004 5.234 0.330

Japan 20.130 0.216 25.977 0.002 20.041 0.068 34.068 0.000 18.569 0.000 23.687 0.000

Netherlands 25.695 0.007 79.503 0.000 32.630 0.000 24.371 0.000 18.986 0.000 8.541 0.064

Sweden 36.663 0.000 11.327 0.074 35.793 0.000 20.180 0.000 11.052 0.016 15.687 0.001

Switzerland 26.216 0.012 54.693 0.000 12.076 0.145 61.604 0.000 19.675 0.000 43.072 0.000

UK 30.030 0.001 17.172 0.040 36.268 0.000 16.027 0.001 3.988 0.558 26.347 0.000

US 37.040 0.000 171.177 0.000 17.750 0.031 35.776 0.000 41.531 0.000 46.242 0.000

Food inflation

Notes: As for Tables B.2 and B.3, except that the models are estimated using core, energy or food inflation series.

Coefficient breaks Variance breaks

Core inflation Energy inflation Food inflation Core inflation Energy inflation
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Table B.5: Detailed results for coefficient break tests in aggregate-foreign com-
ponents model

Country Statistic p-value SupF(2|1) p-value SupF(3|2) p-value SupF(4|3) p-value SupF(5|4) p-value

Austria 28.629 0.002 24.808 0.019 15.242 0.550 13.360 0.855 0.000 1.000

Canada 84.525 0.000 26.721 0.019 13.787 0.859 10.048 1.000 13.891 0.969

Denmark 90.912 0.000 24.522 0.042 11.665 0.977 6.040 1.000 0.000 1.000

Finland 33.981 0.001 23.350 0.115 16.082 0.786 13.302 0.995 9.987 1.000

France 111.103 0.000 20.300 0.270 24.482 0.115 11.737 1.000 0.000 1.000

Germany 45.427 0.000 38.995 0.000 24.312 0.121 3.836 1.000 0.000 1.000

Italy 40.716 0.000 30.451 0.010 21.868 0.245 17.408 0.764 0.000 1.000

Japan 35.323 0.001 18.683 0.538 18.939 0.647 12.161 1.000 0.000 1.000

Netherland 31.717 0.005 22.370 0.241 24.869 0.168 12.329 1.000 4.410 1.000

Sweden 42.046 0.000 15.503 0.831 16.783 0.847 12.218 1.000 0.000 1.000

Switzerland 60.017 0.000 10.743 0.991 12.731 0.986 8.702 1.000 0.000 1.000

UK 42.967 0.000 34.968 0.002 12.453 0.991 19.475 0.547 0.000 1.000

US 43.430 0.000 27.685 0.028 25.235 0.091 19.537 0.540 15.333 0.964

WDmax test Sequential F-tests

Notes: As for Table B.2, except that results refer to the model of (2.3).

Table B.6: Detailed results for variance break tests applied to aggregate-foreign
components model

Country Statistic p-value SupF(2|1) p-value SupF(3|2) p-value SupF(4|3) p-value SupF(5|4) p-value

Austria 21.107 0.000 6.517 0.248 1.492 1.000 1.518 1.000 0.000 1.000

Canada 16.264 0.001 6.730 0.227 1.325 1.000 0.072 1.000 0.000 1.000

Denmark 57.259 0.000 29.217 0.000 3.757 0.814 0.725 1.000 0.331 1.000

Finland 32.273 0.000 6.456 0.254 1.767 1.000 1.594 1.000 0.000 1.000

France 23.662 0.000 5.192 0.413 4.373 0.700 0.857 1.000 0.493 1.000

Germany 18.383 0.000 9.902 0.058 2.265 0.995 0.582 1.000 0.000 1.000

Italy 63.614 0.000 8.564 0.105 0.992 1.000 0.448 1.000 0.112 1.000

Japan 104.269 0.000 41.768 0.000 11.428 0.043 0.601 1.000 0.000 1.000

Netherlands 11.168 0.015 2.448 0.919 1.260 1.000 1.959 1.000 0.000 1.000

Sweden 28.789 0.000 12.796 0.015 0.647 1.000 0.410 1.000 0.000 1.000

Switzerland 35.553 0.000 10.473 0.044 3.981 0.773 3.776 0.892 2.577 1.000

UK 42.874 0.000 5.991 0.305 7.429 0.246 1.194 1.000 0.000 1.000

US 24.733 0.000 18.323 0.001 4.869 0.609 7.712 0.280 0.426 1.000

WDmax test Sequential F-tests

Notes: As for Table B.5, except that tests are applied to the variance.
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Chapter 3

Forecasting Time Series in the

Presence of Structural Breaks

3.1 Introduction

Structural changes which characterize many macroeconomics time series are

often unanticipated and they are a major cause of forecast failure (Hendry and

Clements, 2003). If structural changes are defined as permanent shifts in the

data generating process, a previously best in-sample model generally no longer

applies after the parameters of the data generating process change. Since fore-

casts are generated relying on parameter estimates of the model, unaccounted

breaks may lead to substantial deterioration in forecasting performance.

The existing literature includes various forecasting methods which differ in

their handling of structural breaks. These methods can be grouped depending

on whether their forecasts are based on a carefully selected single estimation

window, average across multiple estimation windows or apply different weights

to observations in the full sample. A detailed review of methods in each cate-

gory is presented in the next section. In brief, many of these single estimation

window and observational weighting methods exploit information on breaks

(described as non-robust methods). Whereas, window averaging methods are

often robust to structural breaks of unknown break dates and sizes (described

as robust methods).

More specifically, when estimating the parameters of the forecasting model

using single window methods, forecasters attempt to detect structural breaks

that may have occurred in the past and eliminate observations which are gen-

erated from different regimes from that which currently applies. The rationale

for this procedure is related to the potential bias in the parameter estimates

when such observations are included in the estimation sample. The common
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example is the post break window method which only employs observations

after the most recent break. However, if the length of the post break window

is short, variances of the parameter estimates and resulting forecast errors

increase. Pesaran and Timmermann (2007) analytically shows that such vari-

ances can be reduced by employing a longer estimation window which includes

pre-break observations despite the bias of parameter estimators using such

a window. This trade-off method exploits an optimal estimation window by

trading off bias against variances of the OLS estimators.

Rather than defining an estimation window within which all observations

are weighted equally, information on breaks can also be used to derive observa-

tional weights in which all observations in the sample are utilized but weighted

differently when estimating the parameters of the forecast model. For exam-

ple, Pesaran et al. (2013) propose observational weights that are optimal in the

sense that the resulting mean squared forecast error is minimized by exploiting

information on the dates and sizes of breaks.

Nevertheless, forecast accuracies of these methods heavily rely on how well

the true break date is estimated. However, in practice, estimates of break

dates can be imprecise and this rules out achieving the full efficiency of these

methods. Indeed, precise identification of break dates depends on a number of

parameters that researchers have to assume but often do not have prior knowl-

edge about, including the size, the number of breaks, and frequency of breaks.

Alternatively, some forecasters advocate robust methods to structural breaks,

for example, forecast combination methods, to avoid inaccurate estimates of

breaks.

Specifically, forecasts from multiple windows of different sizes can be com-

bined using various weighting schemes, which is found to be superior compared

to a single estimation window method (Pesaran and Pick, 2011, Tian and An-

derson, 2011, Eklund et al., 2013, and many others). In particular, forecast

averaging across estimation windows is shown to work well when the breaks are

small or recurring or only occur in the variance. However, these methods do

not perform well in the presence of large breaks (Pesaran and Timmermann,

2004, 2007, Eklund et al., 2013). This suggests that sizes of breaks plays an

important role in determining the success of this method. In practice, both the

date and size of breaks need to be estimated. The latter can be more difficult

to be estimated with high accuracy as the number of available observations in

each break segment can be small (Pesaran and Pick, 2011).

This paper proposes a forecast method that is effectively a mixture of the

two types of approaches: namely, non-robust and robust, mentioned above.

Specifically, we employ a confidence interval for the estimated break date for
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choosing the range of windows to be averaged. Each date in the confidence

interval is treated as one of a sequence of choices for the potential break date,

and the corresponding post break window forecasts are averaged. To some

extent, the size of breaks is incorporated in the width of the interval – for

example, when the break is large, the corresponding interval is narrow and

hence windows that use less relevant data are excluded from the forecast com-

bination process. Therefore, our approach can be seen as an improvement on

existing methods that combine forecasts from all possible windows, many of

which may yield large forecast errors, consequently leading to distortions in

overall forecast accuracy.

The performance of the proposed confidence interval method is assessed

against other related forecast methods, using Monte Carlo simulations and

an empirical application to inflation. We report an overall good performance

of our method in the presence of large and small breaks that occur in the

coefficients of the forecast model. In particular, confidence interval methods

can outperform forecast combination methods in coefficient break experiments

regardless of the locations of breaks. Furthermore, when variance breaks are

present in the data generating process, we employ an iterative structural break

testing methodology proposed in the preceding chapters (subsections 1.3.1 and

2.2.2). The iteration based confidence interval which accounts breaks in the

both coefficients and residual variances improves on single window forecast

methods that ignore the possibility of changing variances.

A second contribution of this paper is to improve forecastability when there

are multiple breaks which have the form of reverting coefficients. Most fore-

cast methods that break date estimates are well suited in the presence of a

single break. The prevailing way to adapt these methods in a multiple break

environment is to use the most recent break only. However, time series may

exhibit a regime-switching process, in which the detected structural breaks

capture switches between two or more distinct (but recurring) regimes. In this

respect, using only the most recent break ignores the fact that data prior to

any previous break can be informative with regard to a forecast value. To ac-

count for this, we propose a procedure of re-ordering data segments associated

with estimated coefficient breaks based on the relative closeness of the esti-

mated parameters compared with those in the segment after the last identified

break. Monte Carlo simulations show that the procedure of re-ordering data

segments substantially improves forecast accuracies of all methods assessed

when coefficient reversion applies.

This paper proceeds as follows. In section 3.2, we review the existing meth-

ods in the literature. Section 3.3 describes available procedures to estimate a

155



break date confidence interval and details the proposed confidence interval

forecast. This section also outlines the procedure of re-ordering data segments

in the presence of multiple estimated breaks. Section 3.4 sets up the Monte

Carlo simulations and the simulation results are presented in section 3.5. Sec-

tion 3.6 examines the performances of forecast methods for observed data for

inflation in the G7 countries. Section 3.7 concludes and some remaining details

are presented in the appendix.

3.2 Review of current methods

In order to examine the issues, consider the multivariate regression model

yt = β′txt−1 + σtεt εt ∼ IID(0, 1) (3.1)

where xt−1 is a k × 1 vector of stationary lagged regressors, βt is the k × 1

coefficient vector which is subject to a single discrete break at time T1. εt is a

serially uncorrelated error term with mean zero and variance of σ2
t , which is

assumed to be independently distributed to xt−1. As in previous chapters, we

allow the variance of εt to also be subject to structural breaks.

Suppose that data t = 1, 2..., T are available to make a forecast for period

T + 1. In the absence of structural breaks in the coefficients or disturbance

variance, all available data are utilized for parameter estimation of the forecast

model and this is called the full sample forecast. This is often used as a

benchmark to assess the performances of forecast methods which allow the

possibility of one or more structural breaks. In the presence of structural

breaks, several types of approaches are proposed in the literature, which we

group through their treatment of the estimation window or of observational

weights in the subsections which follow.

3.2.1 Single estimation window

The forecast can be generated using a carefully selected single window which

includes a subset of the available data. The main question in relation to this

strategy is how much data should be used to estimate the parameters of the

forecast model in order to minimize forecast errors according to a measure such

as the Mean Squared Forecast Error (MSFE). A standard solution is to use a

window that only includes observations after the most recent coefficient break,

as it is anticipated these will be more informative with regard to future values.

Specifically, given the estimate of the break date T̂1, βt is estimated using

data [T̂1 + 1 : T ], yielding β̂T̂1+1:T and the forecast for T + 1 is computed as
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ŷT+1 = β̂′
T̂1+1:T

xT . This is referred to as the post break forecast methodology

in the literature and it involves pre-testing for a break and estimating the

break date using one of the conventional tests such as Andrews (1993), or Bai

and Perron (1998, 2003a).

Alternatively, a sequence of papers by Pesaran and Timmermann (2004,

2005, 2007) proves analytically and empirically that the optimal estimation

window can include some, but not necessarily all, pre-break observations. The

rationale is that, although it increases the bias of OLS, including pre-break

observations can reduce the variances of the parameter estimates. For this

reason, the optimal window can be selected by trading off bias against re-

duction of forecast error variance. For practical implementation, Pesaran and

Timmermann (2007) propose the trade-off function

f(v1) = λ2(µ′
∑

v1

∑−1

v
xT )2+

1

v
(x′T

∑−1

v
xT )2+

λψ

v
(x′T

∑−1

v

∑
v1

∑−1

v
xT )

where µ = (β̂2 − β̂1)/σ̂2, ψ = (σ̂2
1 − σ̂2

2)/σ̂2
2, λ = v1/v and v = v1 + v2, with

v1 and v2 the numbers of pre and post break observations respectively used in

estimation. β̂1 and σ̂2
1 are estimated using v1 = T̂1−m+1 for 1 ≤ m < T̂1 < T

where m is the first observation used in the estimation window, while β̂2 and

σ̂2
2 are estimated over v2 = T − T̂1, and

∑
v1

= v−1
1

T̂1∑
t=m

x′t−1xt−1,
∑

v2
= v−1

2

T∑
T̂1+1

x′t−1xt−1,
∑

v
= λ

∑
v1

+(1−λ)
∑

v2

Selecting v1 to minimize this function, βt is estimated over the sample of

[T̂1−v1+1 : T ] yielding in our notation β̂T̂1−v1+1:T , and the forecast is calculated

as ŷT+1 = β̂′
T̂1−v1+1:T

xT . Here, a single break date is assumed, which can apply

to coefficients as well as to variances.

Clearly, both post break and trade off methods may be prone to imprecise

estimation of the break point location. In practice, the difficulty of estimating

the break date is well known, especially when size of the break is small in

magnitude (Elliott, 2005).

Another method that carefully selects an estimation window is the cross

validation approach of Pesaran and Timmermann (2007). This considers all

possible estimation windows with different lengths of observations and chooses

a single window which achieves the smallest pseudo out of sample forecast error.

Then the selected window is used for parameter estimation of the forecast

model. Specifically, for each possible starting point of the estimation window,
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m, the recursive pseudo out of sample MSFE value is calculated as

MSFE(m|T, w̃) = w̃−1

T−1∑
τ=T−w̃

(yτ+1 − x′τ β̂m:τ )
2

where β̂m:τ is the OLS estimate based on the observation window [m : τ ] and

m ∈ 1, ...,min(T̂1 +1, T − w̃−w), having a minimum estimation window length

w and reserving the last w̃ observations of the data for an out of sample

evaluation. Out of all possible windows, the one which generates the smallest

MSFE is selected as

m∗(T, T̂1, w̃, w) = arg min
m=1,...,min(T̂1+1,T−w̃−w)

{
w̃−1

T−1∑
τ=T−w̃

(yτ+1 − x′τ β̂m:τ )
2

}

Then, the parameters of the forecast model are estimated on the sample

[m∗ : T ] and the forecast is ŷT+1 = β̂′m∗:T xT . This method eases the de-

pendence on potentially poor estimation of the break point as it indirectly

use information on break point location to restrict the number of estimation

windows considered. It also can be adapted for use without any information

of break point location. In particular, assuming unknown break date, this

method searches m∗ along all available m = 1, . . . , T − w̃ − w.

A common method that is unconditional on the location of the break point

is the rolling window forecast which employs a single estimation window with a

constant number of recent observations to estimate the parameters of the fore-

cast model. A difficulty also arises, however, in determining the appropriate

length of the rolling window.

Despite the problems corresponding to the above mentioned methods, they

generally outperform the natural benchmark of the full sample forecast method

which assumes no break when breaks indeed occur. The details of previous

simulation results concerning their performances will be discussed in subsection

3.2.5.

3.2.2 Multiple estimation windows

There is a stream of methods that combine forecasts from multiple windows

instead of attempting to exploit a single best estimation window. Specifically,

forecasts using the same model estimated over different sizes of windows are

averaged to generate a single forecast for T + 1. In relation to combining

forecasts from different windows, various weighting schemes are proposed.

Forecasts based on different windows with sizes spanning [w, T ] and aver-
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aged using equal weights (Pesaran and Timmermann, 2007, Pesaran and Pick,

2011, among others) are given by

ŷT+1(T,w) = (T − w)−1

T−w∑
m=1

(x′T β̂m:T )

This is often referred as a pooled forecast in the literature and can also be

applied when the estimate of the break date is available by setting m =

1, ...,min(T̂1 + 1, T − w), as values of m greater than T̂1 + 1 lead to ineffi-

cient estimators as all data after the most recent break are not used.

Alternatively, unequal weights can be employed when pooling forecasts

from different windows. For example, weights proportional to the inverses of

the associated pseudo out of sample MSFE values (Pesaran and Timmermann,

2007) result in

ŷT+1(T, T̂1, w̃, w) =

∑min(T̂1+1,T−w̃−w)
m=1 (x′T β̂m:T ) MSFE−1(m|T, w̃)∑min(T̂1+1,T−w̃−w)

m=1 MSFE−1(m|T, w̃)
(3.2)

Also, weights based on the values of reversed ordered Cusum (ROC) struc-

tural break test statistics, and a location weight which assigns heavier weights

to forecasts based on recent observations, are proposed in Tian and Anderson

(2011). Their simulation results show an important role for the location weight

rather than the ROC weight in window averaging forecasts. In effect, therefore,

this procedure gives relatively large weights to the most recent observations.

Since we employ other similar types of observational weighting methods, such

as exponential smoothing weights, we do not replicate the location weight and

thus the details are not provided in this chapter.

These forecast combination methods just mentioned involve all possible

windows with different sizes. A version averages forecasts from only two win-

dows: the post break window and the full sample window (Eklund et al.,

2013). Specifically, in the context of a recent break, they carry out repeated

tests for a break using a Cusum based test, and once a break is detected the

forecast is obtained by combining forecasts from using the full sample and the

post break window. However, this chapter focuses on accounting for historical

breaks, rather than recent breaks and therefore the details of this method are

not included in this chapter. Clark and McCracken (2009) also investigate the

effectiveness of forecast combination based on recursive and rolling window

forecasts: the first uses all available observations in the estimation sample and

the latter employs a rolling window of the most recent observations after the

break. Linear convex combining weights for these two forecasts are analytically
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derived based on the bias-variance trade off characterization. They report the

superior performance of this combination method compared to the forecasts

either using recursive window only or rolling window only.

In general, combination methods are suited to reduce the bias from im-

precise estimation of the break date, as they mainly assume this is unknown.

Also, combining forecasts from different subsamples may deliver a better fore-

cast than a single window by canceling upward and downward biased forecasts

arising from different windows (Hendry and Clements, 2003).

3.2.3 Observational weight

Averaging forecasts from different windows implicitly assigns decaying weights

to older observations. However, some forecast methods, including rolling win-

dow, exponential smoothing, optimal and robust observational weights, explic-

itly weight past observations in parameter estimation. Implementation of the

first two methods do not require estimates of the date and size of the break,

but the down-weighting parameter should be pre-specified. In the literature,

the down-weighing parameter is often chosen arbitrarily and forecasting per-

formance is sensitive to the choice of this parameter (Pesaran et al., 2013).

The recent paper by Giraitis et al. (2013) proposes a data-dependent method

to define the down-weighting rate in the context of ongoing structural change.

Specifically, their weighting strategy is based on a cross validation method by

numerically minimizing the mean squared forecast error of the in-sample fore-

casts to obtain the down-weighting parameter. Furthermore, their theoretical

analysis explores the properties of the new forecasts using a simple model of

yt = βt + ut where βt follows a variety of processes including stationary, unit

root, deterministic trend and a structural break in the mean, and show the

validity of their method in the presence of different forms of structural breaks

(see Giraitis et al., 2013, for details). Although interesting, this approach is

not replicated in our simulation analysis due to time constraints. Instead,

as a representation of this type of method and as it is also found to work

quite well in the simulation study by Giraitis et al. (2013), the exponential

smoothing method with a fixed down-weighting parameter is implemented in

our simulation study. Specifically, exponentially decreasing weights are

wt =
1− γ

1− γT
γT−t for t = 1, 2, ..., T

where the γ is a down-weighting parameter which is subject to forecasters’

choice.

Pesaran et al. (2013) proposes optimal and robust observational weighting
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schemes, which are more suitable for discrete breaks. These are optimal in

the sense that the resulting forecasts minimize the MSFE conditioning on the

break size and location and the weights follow a step function that are constant

within a regime but different weights across regimes. Specifically, with known

parameters, including break size and location, the weights are defined as

wt =

{
1
T

1
b+(1−b)(q2+Tbφ2)

1
T

q2+Tbφ2

b+(1−b)(q2+Tbφ2)

for

for

t ≤ T̂1

t > T̂1

where φ =
x′T θ

(x′TΩ−1
xx xT )1/2

, E(xtx
′
t) = Ωxx and θ= (β1 − β2) /σ2, the size of the

break relative to the disturbance standard deviation after break. Also, the

weights depend on the pre-break sample fraction, b = T̂1/T and a ratio of

standard deviations of the error term before and after break, q = σ1/σ2. In

practice, these parameters are replaced by their estimates.

An extension of optimal weights to the case of multiple breaks is provided

by the authors. We describe their optimal weights in the presence of two

breaks in Appendix C.1, as it is appropriate within our framework of Monte

Carlo studies in section 3.4 where data generating processes with two breaks

are considered. Its performance is then evaluated, in subsection 3.5.2, together

with other forecast methods described in subsection 3.3.2.

A robust weighting scheme which is also proposed by Pesaran et al. (2013)

does not use information regarding the break date, but uses a range over which

the potential break date is assumed to be uniformly distributed. There are two

types of robust weights: restricted and unrestricted depending on assumptions

regarding the distribution. Assuming that the fraction of break point to full

sample, b, is uniformly distributed over the range b and b with 0 < b < b < 1,

weights for each point in time can be described as

wt =


0

−1
T (b−b) log(1−a

1−b )
−1

T (b−b) log(1−b
1−b)

for

for

for

a < b

b ≤ a ≤ b

a > b

(3.3)

where a = t/T. This is a restricted version of a robust weight. An unrestricted

robust weighting scheme is defined when b is allowed to occur any time in [0, 1]

as

wt =

{
− log(1−a)

T−1
log(T )
T−1

for

for

t = 1, 2, ..., T − 1

t = T

where a = t/T. These unrestricted robust weights do not sum to unity as a
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discrete time approximation is applied, they are scaled as

w∗t =
wt∑T
t=1wt

, for t = 1, 2, ..., T.

Common to all methods based on weighted observations, the parameters

of the forecast model are estimated over the estimation period 1, ..., T using

Weighted Least Squares as

β̂T =

(
T∑
t=1

wtx
′
t−1xt−1

)−1 T∑
t=1

wtx
′
t−1yt

where
∑T

t=1wt = 1 and the forecast for T + 1 is computed as,

ŷT+1 = β̂′T xT .

3.2.4 Approximated Weights

Understanding the relationships between window based forecasts in subsections

3.2.1 and 3.2.2, and observational weighted forecasts in 3.2.3 is important to

identify the underlying key factors for the relative performance of different

forecast methods under a variety of situations. Perhaps, the easiest way is

to translate weights on the forecasts from different windows into weights on

the observations. For instance, window averaging with equal weights implies

smoothly decaying weights on the observations (Pesaran et al., 2013). This is

because each forecast is generated using an estimation window which includes

at least the last w observations and expands backward. Overall, more recent

observations are used in every estimation window and hence they carry higher

weights compared to earlier observations.

Using the same logic, a given window weighting scheme can be approxi-

mated in terms of observational weights using the relative importance of each

observation for the implicit β̂T . In general, this approximation does not pre-

cisely replicate the forecasts from schemes such as window averaging or single

window methods. However, the equivalence does hold for mean only forecast

models, namely, yt = αt + εt (Pesaran and Pick, 2011). The details of ap-

proximated observational weights are outlined in Appendix C.2. To provide

a visual intuition, figure 3.1 plots some selected observational weights for the

case of homoskedastic disturbances.

In brief, an equal weighted window averaging forecast assigns smoothly

increasing weights throughout the sample compared to the unrestricted ro-

bust and exponential smoothing weights which get steeper toward the end of
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Figure 3.1: Weights for observations
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Notes: The vertical dotted line indicates the location of the break used
in the optimal weighting scheme. The restricted robust weight is plotted
based on the assumption that the break date is uniformly distributed in the
observation range of [50:75]. All other forecast methods are unconditional
on the estimate of break date. The exponential smoothing parameter in
this figure is γ = 0.95. A minimum estimation window of 10 observations
is employed for the equal weighted window averaging method.

sample, allocating relatively higher weights to the most recent observations.

The optimal weighting scheme appears to be similar to the implied weights for

post break1 window method when there is a small single break in the autore-

gressive coefficient. However, these could be substantially different when the

variance of the disturbances is subject to a change (details of these weights are

in Pesaran et al. (2013)). Finally, the restricted robust weights assign increas-

ing weights within a range, with constant and the highest weights on recent

observations.

3.2.5 A summary of previous findings

Based on simulation results in the literature, the following conclusions emerge.

Firstly, the relative performance of forecasting methods depends on the size

of the break. When the break is small or only occurs in the disturbance

variance, forecast combination methods deliver good forecasts (Pesaran and

1The shape of weights corresponding to the single window forecasts, including post break,
cross validation and trade-off, are similar to the shape of the optimal weighting scheme.
Differences lie in defining the origin of the estimation sample but all observations within the
estimation sample receive equal weights.
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Timmermann, 2004, 2007, and others). However, when the break in coefficients

is large, the forecast errors of estimation windows that include more pre-break

observations are high and including these deteriorates overall forecast accuracy.

This is because the correlation between forecast and realization weakens for

windows that include both pre and post break observations when coefficient

differences are large (Pesaran and Timmermann, 2004). On the other hand,

methods involving pre-testing break dates for example, cross validation, trade-

off and post break window methods, perform quite well when the break in

coefficients is large (Pesaran and Timmermann, 2007). It should be noted

however, that the gain from pre-testing for breaks is only marginal even if

their size is large when breaks appear towards the end of the estimation sample

(Eklund et al., 2013). This is due to the small number of observations available

after the break for estimating the parameters of the forecast model.

Secondly, forecast accuracy crucially depends on how precisely the timing

of the break is estimated (Pesaran and Timmermann, 2007, Pesaran and Pick,

2011, Elliott, 2005, Pesaran et al., 2013, among others). This issue is espe-

cially relevant for methods which directly hinge on estimated break dates. In

practice, estimating the timing of breaks is notoriously difficult when breaks

are small in magnitude. The widely used methods based on least squares can

perform poorly for estimating the break date. As shown by the Monte Carlo

experiment in Elliott (2005), when the break is small, the distribution of break

dates is spread evenly across all possible dates, except for peaks around the

true break date and smaller peaks at the two ends of the sample. The bias

of the forecast then depends on how far the break is identified from the true

break date: the larger the distance the higher the bias. On the other hand, the

presence of a larger break increases the chance that its date is estimated well.

However, Elliott (2005) also shows that structural break testing procedures

based on least squares are highly asymmetric in estimating the break date.

In particular, most breaks are estimated to appear after the true break date,

which increases the variances of parameter estimation leading to larger mean

squared forecast errors.

Thirdly, breaks in variance appear to have a negligible effect on forecast

accuracy. None of above approaches tests for the location and size of vari-

ance breaks or handles them explicitly in the forecast. However, the optimal

weighting scheme in Pesaran et al. (2013) uses the size of variance break, which

is calculated using available observations before and after the estimated coef-

ficient break date assuming that variance changes at the same time as the

change in coefficients. If the break occurs at any other time, the size of the

break may be estimated inaccurately. Some studies indirectly use informa-
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tion regarding the direction of variance changes for selecting window size or

observational weights. Pesaran and Timmermann (2007) shows analytically

that if the variance increases after the break, including more pre-break ob-

servations in the estimation window is optimal provided that the size of the

coefficient break and the number of post break observations are small. Also

Pesaran et al. (2013) propose robust weights on observations which monoton-

ically rise with time when the pre-break variance is less than the post break

variance. However, these may not be sufficient methods to deal with variance

breaks. Unaccounted variance breaks complicate the identification of coeffi-

cient breaks in the data generating process so that overall forecast accuracy

could be reduced.

Finally, forecast methods which involve estimation of the break date are

well suited in the presence of a single break. The prevailing way to apply

them to multiple breaks is to employ the most recent break only (Pesaran

and Timmermann, 2002, 2005, 2007, and others). Specifically, a multiple2

structural break testing methodology such as Bai and Perron (1998) is applied,

and then information from the last break date is used when more than a

single break is estimated. This is due to the assumption of higher relevance of

most recent observations for forecasting purpose. However, information from

earlier regimes could be relevant, especially when breaks have the form of the

‘reverting’ coefficients in which the detected breaks capture switches between

two or more distinct but recurring regimes.

3.2.6 Other relevant literatures

This chapter focuses on forecast issues related to structural break(s) in the

dynamics3 of a single equation forecast model, and breaks are assumed to oc-

cur in the estimation sample. Additionally, this chapter does not investigate

more complex models for example, models with multiple explanatory variables.

Instead, we employ small scale VAR models with a single exogenous variable

for the Monte Carlo simulation and univariate autoregressive models for the

empirical study. However, for completeness, this subsection briefly overviews

other forecast methods that deal with deterministic breaks, model uncertain-

ties, and breaks in the forecast horizon which are not investigated further in

this chapter.

2Pesaran and Timmermann (2002) also used the reversed order Cusum test as an alterna-
tive to estimating multiple breaks. Specifically, as the last break is assumed to be empirically
relevant, a single break testing Cusum procedure is applied to the reverse ordered data in
which the first identified break date is the last break in the non reversed time series.

3See section 3.4 for the details of a Monte Carlo simulation where long run means of the
series are set up to remain unchanged.
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In addition to the methods examined in this chapter, other tools are avail-

able to deal with uncertainties of structural breaks including differencing and

intercept correction. Hendry and Clements (2003), and Castle and Hendry

(2008) claim that breaks in deterministic terms are the major source of fore-

cast failure in practice and suggest using intercept corrections in which the in-

tercept is adjusted using realized equation errors when such a break is present.

Moreover, in the presence of deterministic breaks, differencing (or double dif-

ferencing) some or all variables in forecasting models works well because it

removes intercepts and linear trends (Clark and McCracken, 2008, Hendry

and Clements, 2003).

Uncertainties associated with model selection are well studied in the fore-

cast literature. It is almost impossible to replicate true data generating process,

as a model can be misspecified in many different ways and a poorly selected

single model can be anticipated to yield poor forecasts. In this respect, the

Bayesian model averaging technique is widely used, whereby different models

use the same set of data to produce forecasts which are averaged (Clark and

McCracken, 2008, and others). Also, as an alternative to the Bayesian ap-

proach to specification of the weights, information-theoretic model averaging

method is proposed by Kapetanios et al. (2008) in which various models are

weighted based on their relative model likelihoods. However, model averaging

techniques often make an implicit assumption of model stability while at least

some of models may be subject to breaks. To overcome this problem, Pesaran

et al. (2009) propose a double averaging method that averages forecasts over

different models and different observation windows. Specifically, it employs

Bayesian model averaging in which coefficient changes in each model are ac-

counted for by averaging over different estimation windows. They note that

double averaged forecasts outperform methods based on model averages only

and window averages only.

Furthermore, most studies employ simple linear models with a single ex-

ogenous variable or univariate autoregressive models. Clark and McCracken

(2008) assess forecasting performance using small scale VAR models, each com-

prises of different measures of output, inflation and short run interest rates.

They employ a total of 86 different forecasting methods incorporating choice of

lags, estimation windows, level and difference, intercept correction, time vary-

ing parameters, break dating, discounted least square, Bayesian shrinkage,

de-trending and model averaging methods. Aggregating all models, horizons

and variables, model averaging and Bayesian shrinkage methods perform best,

while fixed width rolling window and its less extreme version – discounted least

squares method appear to yield the worst forecasts.
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The forecasting performance of the Global VAR (GVAR) specification that

take into account the increasing interdependencies across countries and mar-

kets, is examined by Pesaran et al. (2009). They find improved forecasting

accuracy from the GVAR model employed with the double averaging forecast

combination method, compared to its competitors, namely univariate autore-

gressive and random walk models. Moreover, Banerjee et al. (2008) attempt

to improve forecasting accuracy in a short sample with structural change by

using a diffusion index (common factor). Specifically, a model with a diffu-

sion index, which is extracted using a large amount of data, is compared with

autoregressive and VAR models with robust forecasting devices such as differ-

encing and intercept correction. They find good performance of the diffusion

index, especially when its factor loading is time varying, compared to other

candidate forecasting models.

The above mentioned studies assume single or multiple breaks occurring

in the estimation period. Another interesting framework which is not studied

in this chapter is the possibility of a break occurring in the forecast horizon.

Pesaran et al. (2006) propose a new approach that addresses the problem of

breaks occurring not only in the estimation period but also in the forecast

horizon. They allow random breaks in a forecast horizon using a Hierarchical

Markov Chain method. Specifically, they employ the Bayesian approach to

choose the number of breaks in which the marginal likelihood estimate of each

model with n breaks is calculated and ranked using a Bayes factor. Then, given

the number of breaks, probabilities of all possible break dates are computed

using the Hierarchical Markov Chain where parameters are drawn from some

common meta distribution. They show an improved forecasting performance

over a range of methods including those which assume no break in the forecast

horizons and time varying parameter models which assume breaks in each

period.

Overall, these studies suggest that use of advanced methods rather than

simple constant parameter autoregressive models could help to extrapolate

more accurate forecasts. This chapter pursues this in a single equation con-

text.

3.3 Methodology

This section describes our proposed forecasting methodologies. Recall equation

(3.1) where we assume up to n breaks occur in a set of coefficients βt at times

T1, T2, ..., Tn. We also consider a scenario where the variance of disturbances

σ2
t may be subject to structural changes, but these changes do not necessarily
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coincide with coefficient breaks. Our interest lies in forecasting yT+1 given

available observations of Γt = {yt,xt : t = 1, 2, ..., T}, recognizing that break

dates may not be well estimated.

3.3.1 Single break confidence interval forecast

Suppose that we do not know the true break date but estimate it as T̂1, using

an appropriate method. Instead of a point estimate T̂1, we employ a confidence

interval to reduce loss associated with a poor single break date estimate, since

the confidence interval provides a collection of potential break dates. For

convenience of exposition, assume that the dates within the confidence interval

are contiguous and denote [T̂1L, T̂1U ] as the lower and upper bounds of the

confidence interval for T1, which we will describe how to obtain in subsection

3.3.4. Then treating each date in the interval as one of a sequence of choices

for the potential break date, the corresponding post break window forecasts

are averaged with equal weights as

ŷT+1,CIE =
1

T̂1U − T̂1L + 1

T̂1U+1∑
t=T̂1L+1

β̂′t:T xT . (3.4)

Furthermore, to ensure that a minimum w observations are used in each es-

timation, T̂1U + 1 in the summation is replaced by min(T̂1U + 1, T − w). If

T −w < T̂1U + 1, the denominator of (3.4) is then also adjusted. In an analo-

gous manner to the discussion in subsection 3.2.4, approximated observational

weights for the confidence interval approach are given by

wt =


0

1

(T̂1U−T̂1L+1)

∑t
m=T̂1L+1

1
T−m+1

1

(T̂1U−T̂1L+1)

∑T̂1U+1

m=T̂1L+1
1

T−m+1

for

for

for

t ≤ T̂1L

T̂1L + 1 ≤ t ≤ T̂1U + 1

T̂1U + 1 < t ≤ T

and the weights sum to one.

We also employ cross-validation weights proposed by Pesaran and Timmer-

mann (2007) within a confidence interval. Specifically, we adopt the framework

of cross validation by reserving w̃ observations for the pseudo out of sample

evaluation. Then, in a similar way to equation (3.2), estimation windows with

starting points m ∈ T̂1L + 1, ...,min(T̂1U + 1, T − w̃ − w) are evaluated in w̃,

and the corresponding MSFEs are used to weight the forecasts. The forecast
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for T + 1 period is

ŷT+1,CIW (T, T̂1L, T̂1U , w̃, w) =

∑min(T̂1U+1,T−w̃−w)

m=T̂1L+1
(x′T β̂m:T ) MSFE(m|T, w̃)∑min(T̂1U+1,T−w̃−w)

m=T̂1L+1
MSFE(m|T, w̃)

(3.5)

and the corresponding approximate observational weights are

wt =


0∑t

m=T̂1L+1
µm

T−m+1∑T̂1U+1

m=T̂1L+1

µm
T−m+1

for

for

for

t ≤ T̂1L

T̂1L + 1 ≤ t ≤ T̂1U + 1

T̂1U + 1 < t ≤ T

where µm = MSFE(m|T, w̃)/
∑T̂1U+1

m=T̂1L+1
MSFE(m|T, w̃). Further, when w̃ is

large relative to the full sample and the estimated break date is close to the

end of the sample, both the lower and upper bounds exceed T − w̃−w. In that

case, we estimate the parameters of the model on the sample [T − w̃−w : T ].

We further pursue the idea of using a confidence interval for the estimated

break date to develop the robust weighting scheme proposed by Pesaran et al.

(2013). In order to derive the restricted robust weighting scheme, they make

an assumption that the break date fraction of the full sample, b is uniformly

distributed over the range b, b with 0 < b < b < 1. The range of b is selected

arbitrarily, yet it may yield a poor forecast when the true break date is out of

the pre-specified range. One way to develop this method is to set the lower and

upper bounds of the contiguous confidence interval as b and b, respectively. In

this way, the true break date is likely to be included within the range. Using

restricted robust weights in equation (3.3), the weights are described as

wt =


0

−1

(T̂1U−T̂1L)
log( 1−a

1−(T̂1L/T )
)

−1

(T̂1U−T̂1L)
log(1−(T̂1U/T )

1−(T̂1L/T )
)

for

for

for

a < T̂1L/T

T̂1L/T ≤ a ≤ T̂1U/T

a > T̂1U/T

(3.6)

where a = t/T.

3.3.2 Multiple breaks confidence interval method

So far we have assumed the presence of a single break when describing various

forecast methods. However, in practice time series may be subject to multiple

structural breaks. In relation to multiple breaks, we consider two scenarios

in the data generating process (DGP). First, changes in a set of coefficients

are in the same direction after each break by either increasing or decreasing.

Second, breaks have the form of reverting coefficients, in which the values shift
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after the first break but revert to the original values after the second break.

The latter case is interesting in this context, as it implies that earlier and later

observations can be informative, but observations between the first and second

breaks have the least information regarding the DGP relevant for forecasting.

We propose a method designed to improve forecast accuracy when there

are multiple breaks which lead to reversion in the coefficients. First, we test for

multiple breaks in equation (3.1) using the test procedure of Bai and Perron

(1998). Suppose that n breaks are estimated at T̂1, T̂2, ..., T̂n and those breaks

divide the full sample into n+1 segments of observations. By re-ordering such

segments based on the relative closeness of their estimated coefficients, we aim

to exploit more information and improve forecasting performance. The process

of re-ordering segments is described in the following.

Firstly, we estimate the set of coefficients in each segment conditional on

the estimated break dates:

β′t =


β′1 for 1 ≤ t ≤ T̂1

β′2 for T̂1 < t ≤ T̂2

...
...

...

β′n+1 for T̂n < t ≤ T

Treating the break dates as known we then employ the Chow (1960) test

to examine whether a set of estimated coefficients in each segment is statisti-

cally different from the coefficients in the final data segment. Specifically, the

hypotheses are 
H0 : β′1 = β′n+1 vs HA : β′1 6= β′n+1

H0 : β′2 = β′n+1 vs HA : β′2 6= β′n+1
...

H0 : β′n = β′n+1

...

vs

...

HA : β′n 6= β′n+1

(3.7)

After conducting this sequence of coefficient equality tests, the correspond-

ing p-values are saved. Based on the 5% significance level, any p-values higher

than 0.05 are taken to justify the union of the corresponding segments with the

last (n+ 1th) segment as they are judged to be not statistically different from

those of the final segment. If more than one segment needs to be combined

with the n+ 1th segment, their corresponding p-values are used to decide the

order of segments. That is, the smaller the p-value, the higher the rejection

level and thus the corresponding segment should be located further from the

n+ 1th segment. On the other hand, any p-values smaller than 0.05 are taken

to indicate differences in the estimated coefficients and such segments are not
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Figure 3.2: Using the most recent break
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Figure 3.3: Data Re-ordering
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Figure 2. Using the most recent break
combined with the last segment of observations. Although not combined with

the last segment, these segments are also re-ordered based on their p-value

ranks, so that the ”most similar” (in p-value terms) are located closest to the

final segment. We should note however, that the Chow test is based on known

break dates, whereas our break dates are estimated, so p-values may appear

more significant than they are.

For example, say, we find 4 breaks which divide the full sample into 5

segments. As mentioned previously, the majority of studies recognize only the

most recent break in forecasting when multiple breaks are estimated. This

is described in figure 3.2 by the solid bold line and the remaining estimated

breaks represented by dotted lines are ignored. Figure 3.3 sketches an example

to describe our process of re-ordering the original data. Hypothetical p-values

from testing coefficient equality of each segment against the last segment are

given in brackets. Then, data are re-ordered 4 as shown in figure 3.3 where

we also use the most recent break in forecasting, indicated by the solid bold

line. However, due to re-ordering data, the location of the last break moves to

reflect the pooled segments. In relation to this, bounds of the corresponding

confidence interval also should move. To keep things simple, we apply the

width of the original confidence interval to the new break on both sides. This

is described by hypothetical lower and upper bounds for the confidence interval

using red dashed lines.

In terms of the tests of (3.7), we anticipate that the last null hypothesis

H0 : β′n = β′n+1 is rejected, as the parameter differences in last two segments are

implied by the last break date in the original sample. In this sense, the last two

segments are never joined and thus the last break date is always maintained

4In the procedure, not only the value of dependent variable is re-ordered but also all
regressor values are re-ordered in the same way of dependent variable.
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while other breaks may disappear once the segments are re-ordered. However,

unless account is taken of possible variance breaks, it is also possible that the

apparent significance may be due to a variance break rather than a coefficient

break.

The Chow (1960) test is only valid when disturbance variances are stable

over time. To allow for the possibility of changing variances, we assume that

any change in the disturbance variances occur at the same time as the coef-

ficient breaks and perform a GLS transformation to the original data when

estimating the coefficients in each regime and testing the hypotheses of (3.7).

However, in the iterative structural break testing methodology in which vari-

ance breaks are tested as in Chapters 1 and 2, coefficient tests are applied

to variance break adjusted data without making any prior assumption on the

dates of variance breaks.

Finally, we apply all single break forecast methods described in subsection

3.3.1 as well as some of the relevant methods in the literature on both re-

ordered and original data by exploiting information on the last break, and

assess any value added by our re-ordering data procedure.

3.3.3 Structural break testing methodology

The methodology we employ for structural break detection uses, firstly, a het-

eroskedastic version of Bai and Perron (1998) testing procedure to test for a

break in the set of coefficients in equation (3.1). Later, we employ an itera-

tive structural break testing methodology in order to identify breaks in both

coefficients and variances which do not necessarily occur at the same time.

Variance breaks are often overlooked in the forecast literature due to the

dominant effect of coefficient breaks. However, testing for coefficient breaks

requires consideration be given to potential breaks in the variance because the

presence of variance breaks can affect inferences on coefficient breaks (Detailed

discussion is provided in subsection 1.3.1 in chapter 1 and subsection 2.2.2 in

chapter 2). For example, the testing procedure on coefficients could wrongly

identify a variance break as a coefficient break while indeed there is none.

In this case, a spurious coefficient break will lead to increased MSFE, since

estimation is less efficient than using all observations.

Steps for the iterative procedure are outlined in the following. Although

this is similar to that used in the previous chapters, the different procedure

in testing for variance breaks should be noted, namely this is based on the

absolute value, rather than the squares, of the residuals. The absolute value

specification is robust to non-normality of residuals compared to the conven-
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tional variance estimator, a mean of squared residuals (Davidian and Carroll,

1987, McConnell and Perez-Quiros, 2000). Additionally, in our simulation, the

absolute value specification is found to work well in identifying the timing of

the break compared to employing the mean of squared residuals.

Step 1 - Preliminary coefficient break test The Bai and Perron (1998)

multiple structural breaks testing procedure is applied to the coefficients,

β, employing heteroskedasticity consistent (HC) inference.

Step 2 - Variance break test Using residuals from the model after allow-

ing for coefficient breaks identified in step 1, variance breaks are tested

using the absolute value specification. Specifically, the test regression is√
π

2
|ε̂t| = α + εt (3.8)

to which the homoskedastic version of the Bai and Perron (1998) mul-

tiple break testing methodology is applied. The resulting α̂t yields the

estimated disturbance standard deviation for each variance regime.

Step 3 - Coefficient break test Since HC inference can lead to oversized

coefficient break tests (Bai and Perron, 2006), breaks in the coefficients

are reconsidered conditional on the variance breaks from step 2. Fol-

lowing the proposal of Pitarakis (2004), this is achieved by applying

homoskedastic inference after applying the feasible GLS transformation.

If no variance breaks are detected, coefficient tests are applied to the

original data with a homoskedastic variance assumption.

3.3.4 Estimating confidence intervals

We employ two procedures that have been proposed in the literature for esti-

mating confidence intervals for break dates.

3.3.4.1 Confidence interval I

As described in the previous subsection, Bai and Perron (1998) testing proce-

dure is used to test for breaks and, along with the coefficient break dates, we

obtain their corresponding 95% confidence intervals. The confidence intervals

are constructed using the asymptotic framework of the break dates. Recall

equation (3.1), where we assume n breaks occur in a set of coefficients βt. For

j = 1, ..., n, let 4̂j = β̂j+1− β̂j be the difference between estimated coefficients

in consecutive data segments, and σ̂2
j be the estimated variance of disturbances

that are serially uncorrelated and assumed to be homoskedastic within each
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coefficient segment which can be estimated using σ̂2
j = (4T̂j)−1

∑T̂j

t=T̂j−1+1
ε̂2
t

with 4T̂j = T̂j − T̂j−1. As the regressors are assumed to be identically dis-

tributed across regimes, define Q̂ = T−1
∑T

t=1 x′t−1xt−1 and then the confidence

intervals can be constructed using the following approximation

(4̂′jQ̂4̂j)

σ̂2
j

(T̂j − T 0
j ) =⇒ arg max

s
{W (j)(s)− |s|/2} (3.9)

where T 0
j indicates a true break date and W (j)(s) denotes a two-sided Brownian

motion; see Bai and Perron (1998).

3.3.4.2 Confidence interval II

Despite the popularity of the Bai and Perron (1998) procedure, the coverage

rate for the associated confidence intervals are far below the nominal rate for

small breaks, as shown by Elliott and Muller (2007) and by the simulation re-

sults in Bai and Perron (2006). Therefore, we also use the confidence interval

proposed by Elliott and Muller (2007) to assess the robustness of forecast per-

formances based on the Bai and Perron (1998) confidence interval. However,

the Elliott and Muller (2007) confidence interval is constructed based on the

assumption that a single break occurs in time series, hence it is compared with

Bai and Perron (1998) confidence interval only for a single break cases.

The confidence interval is constructed based on series of hypothesis tests for

the maintained break at times τm = 1, ..., T. Specifically, the null hypothesis

that time τm is the true break date τ0 is tested against the alternative that the

break occurs at some other time, namely

H0 : τ0 = τm against H1 : τ0 6= τm

using the statistic

UT (τm) = τ−2
m

τm∑
t=1

(
t∑

s=1

us)
′Ω̂−1

1 (
t∑

s=1

us) + (3.10)

(T − τm)−2

T∑
t=τm+1

(
t∑

s=τm+1

us)
′Ω̂−1

2 (
t∑

s=τm+1

us)

where {ut}Tt=1 = {xt−1ε̂t}Tt=1 and ε̂t are the estimated residuals from equa-

tion (3.1); Ω̂1 and Ω̂2 are the long run variance estimators of {ut}τmt=1 and

{ut}Tt=τm+1 , respectively. The computed test statistics are compared with the

critical values tabulated by Elliott and Muller (2007). When ÛT (τm) < CV ,

include τm in the confidence interval as it is not rejected by the test, and ex-
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clude it otherwise. The testing procedure runs for each point in time, and the

resulting confidence interval need not be a contiguous set.

3.4 Monte carlo simulations

We conduct Monte carlo simulations to evaluate our proposed forecast method-

ologies, following the simulation setup in Pesaran and Timmermann (2007). A

similar setting is also adopted in Clark and McCracken (2005) and Tian and

Anderson (2011).

Consider the following bivariate VAR(1) DGP,(
yt

xt

)
=

(
µyt

µxt

)
+ At

(
yt−1

xt−1

)
+

(
εyt

εxt

)
(3.11)

where the pre-break unconditional mean is

µ0 =

(
0.5

0.5

)

and the intercept vector (
µyt

µxt

)
= (I − At)−1µ0

is such that the long run means of the series remain unchanged. The VAR

coefficient matrix is

At =

(
β11t β12t

0 β22t

)
with β21 = 0 as x Granger causes y and not vice versa, with the parameters

in At subject to changes. Error terms are normally distributed with variance

covariance matrix (
σ2
εyt E(εytεxt)

E(εxtεyt) σ2
εxt

)
=

(
σ2
yt 0

0 1

)

where σ2
yt may also be subject to changes. Details of the DGPs with breaks in

At and σ2
t are given in Table 3.1 and Table 3.2 for single and multiple break

cases, respectively. In the testing procedure, we examine breaks in the first

equation of (3.11).

Experiment 1 in Table 3.1 corresponds to the case that the parameters

of the model are unaffected by a break in which we anticipate the best fore-
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casting performance to be the benchmark which ignores a break and uses all

observations. In experiments 2 and 3, a break occurs in the autoregressive

coefficient, β11t, which leads to a small (declined by 0.2) and large (declined

by 0.4) changes after the break, respectively. Similarly, the effects of a small

(increased by 0.5) and large (increased by 1) changes to the coefficient of the

lagged exogenous variable on yt, β12t, are considered in experiments 4 and 5,

respectively. Experiment 6 is the combination of experiments 2 and 5, where

a single break affects both β11t and β12t coefficients simultaneously. The ef-

fects of increasing and decreasing variances are studied in experiments 7 and

8, with the post-break variance increasing by a factor of four and declining by

a factor of two, respectively. In addition to the experiments in Pesaran and

Timmermann (2007), we consider situations in which all parameters of the

model are affected by the break. Specifically, experiment 9 introduces simul-

taneous changes in coefficients and variances by combining experiments 6 and

7, and similarly for experiment 10 which is the combination of experiments 6

and 8.

In the single break DGPs, we set a single break occurring at 1/4 (quarter),

1/2 (half) and 3/4 (three-quarters) of the full sample size in order to examine

the sensitivity of the break point location for forecasting performance. We

employ the Bai and Perron (1998) procedure to test for breaks in which we

allow a maximum of one break with trimming ε = 0.10 (10% of the full sample).

We also employ a DGP with two breaks in the Monte Carlo experiments,

which occur at 1/3 (one-third) and 2/3 (two-thirds) of the full sample. How-

ever, we allow up to three breaks in the break point testing procedure with

trimming ε = 0.10 (10% of the full sample). More specifically, first the WDmax

test is employed to check the presence of at least one break. If the WDmax

test indicates the presence of any breaks, then the sequential Sup F (l + 1|l)
procedure is applied to estimate the number of breaks starting from the test

Sup F (2|1). If WDmax fails to reject the null hypothesis of no break, the pro-

cedure stops and concludes the presence of no break. All tests are conducted

at the 5% significance level.

We consider two patterns of coefficients in DGPs with two breaks, with

details provided in Table 3.2. A scenario where the coefficients either increase

or decrease in the same direction after each break is investigated in experiments

12, 14 and 16; changes occur in β11t for the first two and in β12t for the latter.

We do not expect substantial differences in terms of forecast performances

using original and re-ordered data for these cases. More interesting scenarios

are in experiments 11, 13, 15 where reversion in coefficients is considered, with

coefficients equal in the first and third segments, where data re-ordering may
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yield some forecast benefits. Additionally, experiments 17 and 18 cover cases

of decreasing and increasing variances after the break, in which there are no

coefficient breaks and a single variance break occurs at 2/3 of the sample.

Furthermore, to assess the impact of the sample size on forecasting perfor-

mance, sample sizes T = 100, 200 and 500 are employed in the simulations.

For each DGP, as an initialization, we set the first value of yt−1 = µyt and

simulate T0 + T + 1 observations for the corresponding DGP with T0 = 100.

Then the first T0 is thrown away and observations T0 + 1, . . . , T are used for

the parameter estimation to generate a forecast for the observation T + 1, and

repeat the simulation 5000 times5.

The forecast accuracy of the methods described in section 3.3 as well as

methods in section 3.2 are assessed in the Monte Carlo experiments based on

sample Mean Squared Forecast Error (MSFE), the average squared difference

between forecasted and realized values as

MSFE = 1/S
S∑
i=1

(yT+1 − ŷT+1)2

where S denotes the number of simulations. In the results reported, the com-

puted MSFE for each method is divided by the MSFE of the benchmark model

which uses the full sample in the parameter estimation regardless of the pres-

ence of breaks. Ratios lower than 1 indicate better performances of the cor-

responding methods than the benchmark, and higher than 1 points to worse

performances compared to the benchmark model.

Although the evaluation of point forecasts is widely based on the smallest

MSFEs or its alternative MAEs (Mean Absolute Errors) across different fore-

cast methods, more advanced tests for evaluating the accuracy of a method

relative to another method are available in the literature. An extensive review

of the relevant literature including recent developments in the forecast evalua-

tion is provided by Clark and McCracken (2013). For example, tests of equal

predictive accuracy – the MSE-t and MSE-F, can be applied to forecasts from

nested models where the tests have non-standard asymptotic distributions and

require the use of bootstrapped critical values (see Clark and McCracken, 2013,

for details). Alternatively, equal predictive accuracy of forecasts from nested

models can be tested based on the comparison of MSFEs after adjusting for

the upward bias in the MSFE of the larger model, proposed by Clark and

West (2007). However, these tests are not appropriate for our forecast method

comparison and more applicable test to forecasts from non-nested models by

5The initial seed is set for each DGP so that all forecasting methods are evaluated based
on exactly the same sample data.
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Diebold and Mariano (2002) is employed in our empirical analysis in section

3.6.

Furthermore, researchers often make inferences about the relative forecast

performance of competing models based on (not limited to) above mentioned

tests which crucially rely on the size of the estimation window. On the other

hand, the choice of the estimation window affects the size and power of tests in

assessing the null hypothesis of equal predictive ability (Rossi and Inoue, 2012).

Rossi and Inoue (2012) proposes a method that is robust to the choice of the

estimation window size. Specifically, they evaluate the performance of forecast

models using different window sizes and then taking summary statistics, and

this method is applicable to many of existing predictive ability tests to forecasts

from non-nested and nested models. However, due to time constraints, this

methodology is not adapted in this chapter.

Finally, in the forecast methods, we allow a minimum estimation window

w equals to 10% and the length of the pseudo out of sample forecast period

used in cross-validation, w̃, equals to 25% of the full sample data. For the

exponential smoothing method, we set γ = 0.95 and γ = 0.98, and for the

restricted robust weighting scheme, we assume that a break occur in the range

of observations [75:95] following Pesaran et al. (2013).

3.5 Simulation Results

3.5.1 Single break

This subsection summarizes the simulation results of different forecast methods

for the DGPs with a single break. Table 3.3-Table 3.5 report relative MSFEs

of forecast methods to the benchmark when a single break occurs at the 1/4,

1/2, and 3/4 of the full sample, respectively, with a sample of length of 100

observations. Specifically, in these tables, DGPs with a single break refer to the

experiments specified in Table 3.1. Each row of the table then shows the results

for the selected forecasting methods, which are grouped as single window,

multiple window, observational weights and our proposed confidence interval

methods, as panel A, B, C and D respectively. The forecast methods in panels

A, B and C are described in subsections 3.2.1, 3.2.2 and 3.2.3, respectively.

Panel D includes our proposed methods which are introduced under subsection

3.3.1.

Specifically, the first and second rows of panel D in each case show the

results for the non-iterated (denoted as ’CI’) and the iterated versions (de-

noted as ’iterated’), respectively, of confidence interval methods which employ
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equation (3.4). More specifically, when detecting the break date and obtaining

its confidence interval, the homoskedastic Bai and Perron (1998) procedure is

used for the non-iterated version, while an iterative coefficient/variance test-

ing methodology (described in subsection 3.3.3) is employed for the iterated

version of the confidence interval method. Also, cross validation weights are

employed within the iterated confidence interval as in equation (3.5) and the

results are reported in the third row of panel D (denoted as ’CV weight’). The

EM confidence interval in panel D refers to forecasts that are generated using

the confidence interval proposed by Elliott and Muller (2007), as outlined in

subsection 3.3.4.2. Finally, the iterated confidence interval is used to define

the bounds for the restricted robust weighting scheme as in equation (3.6) and

the resulting forecasts are presented in the last row.

This grouping facilitates us to find reliable procedures not only among all

of the forecast methods, but also among each group. First, we will discuss

the overall performances of methods across groups, and later we turn to the

detailed discussion for each group of methods.

As one would expect, in experiment 1 in each table where no break applies,

the best forecasting method is full sample OLS (benchmark). This is due to

the efficiency of using all available data when a break is absent. Consistent

with this, forecast methods which use longer estimation windows such as expo-

nential smoothing with γ = 0.98 work well with less than 1% MSFE accuracy

loss. Worst is the restricted robust weighting method which assumes a break

occurring between the 75th and 95th observations and cuts off all other obser-

vations, leading to a short estimation window. However, in the presence of any

size of coefficient break (Exp 1-6), all forecast methods yield smaller MSFE

than the benchmark, especially the reduction in a relative MSFE is substantial

when the break is large. Furthermore, the largest gain over the benchmark for

all forecast methods is observed in experiment 10 which is associated with a

break that changes coefficients and leads to a decreased variance. In experi-

ment 9 where the same coefficient break occurs but the variance is increasing,

most forecast methods perform worse than the benchmark. Similar patterns

are seen for experiments 7 and 8 where the break affects only the variance of

the series.

In general, across all DGPs with a coefficient break excluding experiment

9, our confidence interval methods consistently generates good forecasts along

with the single window methods (post break, trade-off and cross validation).

The best performance in terms of the smallest MSFE interchangeably appear

either in single window methods or in confidence interval methods, although

the differences are small in magnitude. This applies regardless of the location
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of break, that is across Tables 3.3-3.5. Essentially, these two groups of forecast

methods condition on break date information and their corresponding MSFEs

are much smaller than the MSFEs of other methods when the break is large

(see for example, Exp 3 and 5). However, the differences are small when the

break is small in magnitude (see for example Exp 2 and 4). This is related to

the increased accuracy of the break point estimation procedure with a large or

moderate size of break.

Moreover, confidence interval methods (except the confidence interval us-

ing Elliott and Muller (2007)) outperform forecast combination (averaging

multiple windows) methods and most of observational weighting methods in

coefficient break experiments regardless of the locations of breaks, with the

exception of experiment 9.

For experiments related to the changing variances (Exp 7, 8, 9 but not

10), the most accurate performances are cross validated window average and

exponential smoothing with γ = 0.98 when the break occurs in the early or

middle part of the sample. The iterated confidence interval method combined

with cross validation weights also yields relatively good accuracy. When the

break occurs in the later part of the sample (see Table 3.5), the pooled win-

dow averaging methods in Panel B tend to yield good forecasts in addition

to the previously accurate methods mentioned above for the variance break

cases. Although experiment 10 associates with a variance break case, forecast

methods behave similar to the coefficient break experiments.

Overall, across Table 3.3 to 3.5, the gain from employing a confidence in-

terval over using an estimated post break window is marginal except in exper-

iment 4 and the increasing variance experiments of 7 and 9. More important

benefits come from employing a confidence interval based on the iterated coef-

ficient/variance break testing procedure, which substantially reduces MSFEs

in all variance break cases compared to both the post break window and con-

fidence interval methods that assume homoskedastic errors. Moreover, there

is no loss associated with the iterative confidence interval in the absence of a

changing variance, hence it is a useful method when forecasting different types

of DGPs.

Finally, as discussed in subsection 3.3.4, an alternative confidence interval

to that of Bai and Perron (1998) and proposed by Elliott and Muller (2007) is

implemented and this is referred as the EM confidence interval in the tables.

We note that the EM interval does not outperform Bai and Perron’s confidence

interval for our purpose except in the case of an increased post break variance.

However, even in this case, once we employ iteration, the forecasts from the

EM confidence interval are dominated by the forecasts from Bai and Perron’s
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confidence interval. In the following, we discuss forecast methods within each

group.

Single window: The post break method is the most accurate among single

window forecasts in panel A for most coefficient break experiments (see Exp 2,

3, 5, 6, 10 in Tables 3.3-3.5). However, the trade off and the cross validation

methods are not far off, especially when the break is small. The explanation

for this is simple. If the break is large, it is estimated with a high precision

and the full efficiency of the post break method can be exploited. On the other

hand, small breaks are hard to detect and may result in either efficiency loss

due to late or bias due to early detection of the break. The trade-off and cross

validation approaches allow pre-break observations to be used which introduces

potential inefficiency and bias. For experiments 4 and 9, the cross validation

method performs with the highest accuracy of this group. In the latter case of

increasing post break variance, the cross validation method may be suited well

by introducing pre-break observations and choosing the forecast which achieves

the smallest MSFE. To support this, experiment 7 with increasing variance

DGP also favours the cross validation method regardless of the location of the

break (see Exp 7 and 9 in Tables 3.3-3.5).

However, when DGPs have a single break only in the variance (Exp 7 and

8), the post break and trade-off methods perform poorly, even worse than the

benchmark. This is due to the poor performance of the homoskedastic Bai

and Perron (1998) testing procedure in the presence of a variance break. The

deterioration is even higher when the location of a variance break is later in the

sample. We observe that the testing procedure tends to erroneously identify

a coefficient break around the timing of the volatility break. This falsely cuts

off available observations, leaving a relatively small estimation sample. Cross

validation works better in this case because it does not directly use an estimate

of the break date.

Multiple windows: The pooled scheme which does not use any break

date information consistently performs well when the break is in the coefficients

(with exception of Exp 9). In particular, the relative MSFEs compared to the

benchmark are smaller when the break is large. This is because forecast errors

associated with the full sample estimation are large in the presence of a large

break. Additionally, using an estimate of the break date does not improve

upon the equal weighting scheme as it is not always precisely estimated. In

the presence of a variance break only, the cross validated weighting scheme

performs well, implying that weighting forecasts by their corresponding MSFEs

helps to reduce overall forecast errors by assigning smaller weights to those with

high MSFEs. These patterns do not vary with different break locations.
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Observational weights: Among this group, the most accurate method in

the coefficient break experiments overall is the optimal weighting scheme which

is based on the location, magnitude of the coefficient break and changes in the

standard deviations. Although optimal weights can be prone to an imprecise

break date estimate, exploiting this information adds value compared to other

observational weighting schemes. Exponential smoothing with γ = 0.95 also

does well, often having a MSFE closer to that of the optimal weights than

other methods. However, this deteriorates when γ = 0.98. The performance

of the robust weighting scheme is poor when the break is early in the sample,

because the true break date is out of the pre-assumed range [75 : 95] and

important observations are given zero weights in the estimation. The perfor-

mance, however, improves when the true break date falls in the range such

as when the break is at 75th observation. In this case, the robust weighting

scheme generally yields the smallest MSFE in panel C. The optimal weights

continue to perform well in most coefficient break experiments regardless of

the different break locations. However, it should be noted that experiment 9

is an exception to these observed patterns as it behaves similarly to the DGPs

with only changing post break variance.

The ranking of most accurate methods changes substantially in the vari-

ance break cases. The most accurate method both for an increase and decrease

of the post break variance is exponential smoothing with γ = 0.98. This is

reasonable, since this implies a longer estimation window and should work

well with no coefficient break. Now the robust weighting scheme is the worst

performer even when the break is late in the sample (see Table 3.5) – ap-

proximately 30% loss in accuracy in increasing and 25% loss in decreasing

post variance experiments, compared to the benchmark. This is related to the

large data loss in the absence of a coefficient break.

Confidence interval methods: The non-iterated confidence interval

method with equal weights performs well in all DGPs except those with a

variance break (Exp 7 to 9 in Tables 3.3-3.5). This is not surprising as the

confidence interval is associated with a coefficient break and any variance break

is ignored. To account for a variance break, we also employ our iterated proce-

dure when estimating the coefficient break date and confidence interval. The

simulation results show forecast improvements with the iterated procedure

when there is a variance break. As expected, in the DGPs with only coeffi-

cient breaks, there is no difference between iteration and non-iteration. This

implies no accuracy loss is associated with the iteration procedure for forecast-

ing.

Furthermore, we employ cross validated weights in the iterated confidence
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interval which yields further improvement in the small break experiments 2

and 4 when the break occurs either early or in the middle of the sample (see

Tables 3.3 and 3.4). However, its performance deteriorates when the break

is late in the sample (see Table 3.5), which is related to the small sample

available after reserving the required data for the evaluation period. Cross

validated weights in the iterated confidence intervals also improves forecast

accuracy of the iterated confidence interval method for experiments 7, 8 and

9 that include a variance break, regardless of the different break locations.

Therefore, in panel D, this method is the most accurate across all DGPs when

the break occurs in the early or middle part of the sample.

The usefulness of using a confidence interval to give the bounds for the

restricted robust weighting scheme is found to be non-negligible. The im-

provement over the restricted robust weighting scheme of Pesaran et al. (2013)

is evident for all DGPs and all break locations (see Exp 1-10 in Tables 3.3-

3.5). Differences in terms of their MSFEs are large when the true break is out

of the pre-assumed interval for the robust weight. The explanation for this

is clear – using the estimated confidence interval increases the probability of

including the true break date in the range when employing a robust weighting

scheme. Even when the true break date falls in the assumed interval, replacing

it by the estimated interval improves the forecast performance as can be seen

in Table 3.5. It is among the best methods in coefficient break cases, having

approximately equal MSFEs with the simple confidence interval forecasts.

Large sample performance: We repeat all simulations with a larger

sample of 200 observations. The results are reported in appendix Table C.1-

Table C.3. The observed patterns and rankings of the forecast methods re-

main largely unchanged from those discussed for T=100. However, the relative

MSFEs for all methods are reduced compared to the simulations with 100 ob-

servations. Probably, this is due to an increased accuracy of the estimated

break date with a larger sample as well as the availability of more post break

observations for parameter estimation. For instance, in experiment 7 with

100 observations, our iteration largely improves on the non-iterated confidence

interval, even though iteration still yields some loss over the benchmark. In

particular, with 200 sample observations, the loss decreases from 4% to 1%

when the break is early, 6% to 2% when the break is in the middle or later

in the sample. We also simulated experiments 7 and 8 with 500 observations

to see whether the efficiency loss in our iterated confidence interval over the

benchmark disappears. The results are presented in appendix Table C.4. In-

deed, we find an improvement in the MSFE sense – having an accuracy loss

less than 1% in experiment 7 and accuracy gains of 3%-7% in experiment 8
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with different break dates.

3.5.2 Multiple breaks

As discussed in subsection 3.2.5, to date methods use information only on

the most recent break date. In addition to evaluating methods based on that

approach, Table 3.6 also employs our re-ordering procedure described in sub-

section 3.3.2. Therefore, for each method, two sets of results are shown, the

first of which does not apply re-ordering whereas the second does. A sample

size of T = 100 observations is employed.

Despite similar conclusions often applying when employing original and

re-ordered data, the resulting MSFEs are distinct in the parameter reversion

cases of experiments 11, 13, 15. To be more specific, the procedure of re-

ordering data segments reduces MSFEs, often substantially, for all forecast

methods in the coefficient reversion cases. The improvements are reported in

Table 3.7, in terms of the MSFE differences between the two approaches for

the corresponding experiments. The improvements are larger in experiments

11 and 15, where persistence is high (around 0.9) compared to experiment 13

in which autoregressive coefficients are relatively small (0.3 to 0.5 and back to

0.3). This is reasonable, because the gain from using a longer data sample for

estimation will be greater for a more persistent process.

For the trended coefficient and variance break cases, the differences using

original and re-ordered data segments are negligible. The implication is that

the re-ordering procedure does not change the ordering of the original data

when there is no coefficient reversion. Therefore, it assures no loss by using

the re-ordering procedure for all DGPs when forecasting a time series that is

subject to multiple coefficient breaks.

When reversion occurs in the coefficients, exponential smoothing with γ =

0.95, optimal weights, unrestricted robust weights and pooled average methods

tend to generate good forecasts compared to others. Their good performances

relate to the long data coverage that includes observations prior to the first

break which are informative with regard to the forecast value. When the co-

efficients are either increasing or decreasing after each break (Exp 12, 16), the

most accurate methods are the single window forecasts and our confidence

interval forecast methods. This is the same conclusion that arises from the

experiments with a single break occurring in the set of coefficients. The im-

plication is that using the most recent break information is appropriate when

the parameters are changing in the same direction after each break. Although

experiment 14 is a DGP with increasing coefficients, somewhat similar findings
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to coefficient reversion cases appear in terms of the favoured forecast methods.

We also note that our confidence interval method with cross validated weights

generally performs well for both reverting and trending coefficient DGPs com-

pared to other methods.

For DGPs with variance breaks, cross validation weighted window averag-

ing, exponential smoothing with γ = 0.98 and confidence interval with cross

validated weights methods are the most accurate forecasters which are similar

to the findings for single break cases.

Table 3.6 also includes the forecasting results using the optimal weights

under multiple break information proposed by Pesaran et al. (2013). This

method is an extension of their optimal weighting scheme in a single break,

when multiple breaks are assumed and we described the case with two breaks

in Appendix C.1. We find that it does not perform well compared to our re-

ordering method or the optimal weighting scheme for a single break where the

estimate of the last break point is used.

When the sample size increases from 100 to 200, the MSFE ratios for all

methods decrease substantially. The results are presented in appendix Table

C.5. The general conclusions based on a sample size of 100 largely carry

over. Due to the increased sample, the structural break testing method yields

more accurate estimates of break dates. Consequently, the performances of

single window forecasts and confidence interval methods which use estimates

of break dates improve when using the original data for the coefficient reverting

experiments of 11 and 15. Finally, Table C.6 in the appendix shows differences

between the forecasts using original and re-ordered data in the MSFE sense

for the parameter reversion experiments with T = 200. Compared with Table

3.7, we observe that the gain from employing re-ordered data is even larger for

the majority of cases when the sample size increases.

3.6 Application to G7 inflation

3.6.1 The empirical model

In order to find out how well our proposed methods work in practice, we

forecast aggregate inflation series of the G7 countries, namely Canada, France,

Germany, Italy, Japan, UK and US. The exercise uses one step ahead pseudo

out of sample forecasts which are based on simple autoregressive models (AR)

with a fixed lag order of 4 as,
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π̂
t+1|t = β̂0 +

4∑
i=1

β̂iπt + εt (3.12)

where β̂0 and β̂i are the OLS estimates using a rolling window of 400 observa-

tions up to period t, to generate a forecast for period t+ 1. All inflation data

are monthly and cover the period between February 1970 and September 2010.

Having 4 lags in the forecast model, the remaining sample is divided into an

initial estimation sample (June 1970–September 2003) in which 400 observa-

tions are available and a forecast sample (October 2003–September 2010) with

a length of 84 observations. For instance, the initial estimation sample is used

to produce a one-step ahead forecast for October 2003, and then the estimation

window moves forward by one month (but excludes the oldest one observation

from the estimation window) and a forecast is produced for November 2003,

and so on.

For each rolling window, multiple structural break testing procedure runs

to assess the existence of breaks which, if any detected, are taken into ac-

count to generate one step ahead forecast. We acknowledge that the repeated

application of multiple break testing procedure to each rolling window may

raise an issue that the probability of rejecting a true null hypothesis of no

change approaches one as the number of application grows. This is discussed

in Robbins (1970), Chu et al. (1996) in the context of expanding estimation

window. However, in our application of repeated tests, the same conclusions

are generally found as to the existence and non-existence of breaks with the

estimates of breaks remaining at the same temporal locations.

The inflation series are constructed by differencing the logged monthly

CPI indices6 and multiplying by 100. After computing the inflation series, we

apply X-12-ARIMA seasonal adjustment procedure to account for any seasonal

effects in each inflation series and forecast the seasonally adjusted values.

The current study is not focused on the presence of breaks in the forecast

horizon and it is consequently desirable to rule out this possibility when evalu-

ating forecast methods. For an initial inspection, figure 3.4 plots the inflation

series for the full sample, which does not suggest any obvious breaks in the

forecast horizon except a slight increase in the volatility of Canada and US

inflation. Further, we test for breaks in the inflation series of G7 countries

using the iterative break point testing procedure outlined in subsection 3.3.3

on the full sample. The results are reported in Table C.7 in the appendix and

they are reassuring as no break is uncovered in the forecast horizon either in

6We take the underlying CPI index values from the OECD Main Economic Indicator
Database.
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Figure 3.4: G7 Inflation Dynamics
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the coefficients or variance of inflation for these countries.

In parameter estimation for the purpose of forecasting, we test for multiple

breaks using the Bai and Perron (1998) procedure allowing a maximum of 37

breaks with trimming of 10% and set the significance level to 5%. The number

of breaks is estimated as described in section 3.4 and all forecast methods

considered in the simulation experiments are re-evaluated on each rolling data

window. If no break is detected, the full sample (T = 400) estimation is used

for the coefficients of the forecast model. In the presence of any number of

breaks, forecast methods are applied based on the most recent break both

on the original (as in subsection 3.3.1) and re-ordered data (as in subsection

3.3.2). Additionally, in the application we set a minimum estimation sample

w equals to 10% of the rolling sample. In cross validation based methods,

7As indicated by the results of chapter 1 for the study of 19 OECD countries, allowing a
maximum of 3 breaks is appropriate.
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we allow the out of sample evaluation period w̃ equals to 20% of the rolling

estimation sample. For the exponential smoothing method, we set γ = 0.95

and γ = 0.98.

For each forecast method, we again report the out of sample MSFE relative

to the full sample benchmark as our measure of forecast accuracy. We also

employ the Diebold and Mariano (2002)8 test of equal predictive accuracy for

two competing methods. Specifically, this asymptotic test is based on the

loss differentials series as given by the difference between MSFE values. To

save space, only a few of the best performing forecasts based on their relative

MSFEs are selected and tested against each other. The null hypothesis is equal

accuracy of the forecast methods compared. Rejection of the null hypothesis

indicates that lower MSFE is delivered by the alternative method (2nd method)

if the test value is positive. Conversely, if the test value is negative, the test

favours the null forecast method (1st method) as it implies smaller MSFE

compared to the alternative method.

3.6.2 Empirical Results

Table 3.8 reports the estimated break dates and the corresponding changes

in mean, persistence and standard deviation of disturbance of each country’s

model as obtained from the iterative procedure outlined in subsection 3.3.3,

using the initial estimation period of 400 observations. As the estimation

sample moves forward by 1 observation at a time, in general, the estimates of

breaks remain at these temporal locations. Conditional on coefficient breaks,

in each regime the mean is calculated as the sample average and persistence is

computed as the sum of autoregressive coefficients. Changes in absolute values

of residuals are also reported based on breaks in the mean of absolute errors.

These measures are indicative with regards to the magnitude and nature of

breaks, and helps us understand why some methods perform well for some

countries and not so well for other countries.

To measure forecast accuracy, out of sample MSFEs relative to the full

sample benchmark are reported in Table 3.9 where same grouping of methods

is used as in Tables 3.3. MSFEs in this table are computed based on the most

recent break using data that has not been re-ordered. We also report MSFEs

calculated using re-ordered data in Table C.8 in the appendix. Since there are

no coefficient reversion cases for these series, the values in Table 3.9 and Table

8Clark and West (2007) propose a test for equal predictive accuracy of forecasts which is
appropriate for nested models. However, the test compares a parsimonious null model to a
larger model that collapses to the null model when certain parameters are set to zero, and
this set up is not applicable to our forecast method comparisons.
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C.8 are almost identical. Hence, the following analysis is focused on Table 3.9.

In general, iterated confidence interval methods consistently perform well,

ranking amongst the most accurate forecast methods for all countries with the

exception of France. Depending on the nature of breaks in different countries,

some other methods also produce good forecasts. Brief summaries of the results

in Table 3.8 and Table 3.9 for each country are as follows.

Canada: A single break in the coefficients leads to substantial declines

both in mean and persistence, as shown in Table 3.8. It is anticipated that

this large break will be estimated with good precision and thus forecast meth-

ods which use the location of a break are expected to work well. Consistent

with this, single estimation window forecasts and confidence interval methods

which directly hinge on the break date estimate perform well compared to the

methods in panels B and C. Although the mean of the residual absolute values

increases slightly after the second variance break, the less volatile sample is

included in the relevant coefficient estimation window which reduces variances

of estimated coefficients in the forecasting model.

France: Averaging forecasts from multiple windows, such as equally weighted

average with break date information and cross validation weighted average,

yield the most accurate forecasts for France inflation. According to the sim-

ulation results, these methods work well when the coefficient break is small

and/or for DGPs with changing variances which are the case for France. In-

deed, the most recent break is relevant in forecasting and the second break

estimated in the coefficients around June 1992 results in small reductions in

the mean and persistence compared to the period before first break around

July 1985. Additionally, we document that France inflation has undergone

two variance breaks and the second break leads to an increase in variance.

Germany: A break in July 1982 seems to affect only the mean of German

inflation which is reduced to less than half its previous value. Considering the

initial relatively low level of inflation, the size of the break is not large. In

this respect, methods that do not use an estimate of the break date may yield

higher accuracy of forecasting. Indeed, equally weighted window averaging,

which does not use the estimate of break date, unrestricted robust weight and

exponential smoothing with γ = 0.98 methods are the most accurate forecast-

ers for German inflation. However, unlike methods based on an estimate of the

break date, our iterated version of confidence interval methods perform almost

as well as the most accurate methods just mentioned. It is a little surpris-

ing that the iterated testing methodology works better than the non-iterated

homoskedastic version of Bai and Perron (1998) in the absence of variance

breaks. Presumably this implies that a variance break is found in some other
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estimation windows (beyond the initial one for which results are presented in

Table 3.8), and using this information helps accuracy. Nevertheless the lower

MSFEs yielded by use of the iterated confidence interval is evident compared

to their non-iteration based alternatives.

Italy, UK: There are similarities between UK and Italy inflation series in

terms of changing patterns in the coefficients and variances. Each break in

the coefficients (only one break for Italy) results in substantial declines both

in mean and persistence. For both countries, the residuals variances increase

after the first variance break but decline to even lower levels after the second

break. Under these changes, the iterated confidence interval method, with

both equally and cross validation weighted, and the robust weighting method

combined with confidence interval bounds yield the smallest MSFEs among all

forecast methods. This result is consistent with the simulation results where we

find the accuracy of confidence interval methods increase when the coefficient

break is large and volatility declines towards the end of the sample. With

large breaks, single window forecasts are also expected to work well. However,

estimation of the coefficient break date with the homoskedastic version of the

Bai and Perron (1998) procedure may not be accurate when the variance is

changing. Perhaps, for this reason, single window methods and non-iterated

confidence interval methods do not perform as well as the iterated confidence

interval method for Italy and UK inflation series.

Japan: The mean level of inflation and residual variances decline after

each break for the Japan inflation series. However, the relatively high negative

persistence after the second coefficient break should be noted. In this case, it

may be appropriate to assign higher weights to the more recent observations

as they are more informative with regards to a forecast value. Consistent with

the expectation, optimal weight, unrestricted robust weight and confidence

interval methods which put heavier weights on recent past observations yield

small MSFEs compared to other methods. Additionally, the persistence (albeit

here negative) appears to increase substantially in magnitude after the second

coefficient break and models with persistent parameters benefit from a longer

coverage in the estimation sample. Perhaps, good performances of optimal

weight and unrestricted robust weight methods may be related to not only

assigning heavier weights to the recent observations but also employing a longer

estimation sample compared to other methods (see figure 3.1 for observational

weights).

To support this view, the accuracy of exponential smoothing with γ = 0.98

is not far from these best performing methods. Furthermore, the late occur-

rence of a coefficient break around late 1997 shortens the effective estimation
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sample. As supported by the simulation analysis and the empirical study, our

confidence interval methods work well when the break is close to the end of

sample. Besides, as the window moves through time, more post-break obser-

vations become available in the estimation sample assuming that there are no

further breaks. In this sense, confidence interval methods are expected to work

well as they are essentially the average of post break window forecasts and this

is the case for Japan.

US: The most accurate methods to forecast US inflation are cross valida-

tion, cross validation weighted average, equally weighted average with break

date information and iterated confidence interval methods. These methods

use an estimate of the break date and judging by their good performance

break date information adds value for forecasting US inflation. However, this

excludes post break, trade-off and non-iterated confidence interval methods

which do not tackle changes in variance, whereas (according to Table 3.8))

the residual variance has changed twice, the first change leads a decline and

the second leads an increase. Although cross validation based approaches and

equal weighted average methods do not directly handle variance breaks, the

simulation analysis reveals these work well in DGPs with changing variance.

This is shown again in the empirical analysis and they perform as well as iter-

ated confidence interval methods which are designed to account for changing

variances.

Table 3.10 provides Diebold and Mariano (2002) statistics and statistical

significance at 5% and 10% levels are indicated by double and single stars

respectively. Each panel corresponds to tests for a chosen null model against

other forecast methods for the G7 countries. For example, in panel A, the

full sample method is tested against nine other forecast methods (selected as

representative of the various approaches) and the statistics shows that cross

validation, pooled average and iterated confidence interval methods are signif-

icantly better than the full sample benchmark method for most G7 countries’

inflation. The iterated confidence interval method appears to be significantly

better than other methods that do or do not recognize breaks for only a small

number of countries. In other panels, the majority of tests statistics are not

statistically significant and this may due to a relatively short out of sample pe-

riod as the asymptotic distribution of the test statistics rely on a large sample.

To this extent, the relative performance of these methods in Table 3.9 should

be treated with some caution.
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3.7 Conclusion

This chapter considers the problem of forecasting in the presence of a single or

multiple structural breaks in the data generating process. We take an approach

that attempts to identify the locations of breaks and then uses this information

in the context of forecast combination methods. However, we do not rely on a

single estimate of the break date as it is often difficult to estimate accurately.

Instead, we examine the usefulness of employing a confidence interval of the

estimated break date in improving forecastability of time series.

Monte Carlo and empirical studies undertaken here show an overall good

performance for the confidence interval methods. In particular, confidence

interval methods can outperform forecast combination methods in coefficient

break experiments regardless of the locations of breaks, but result in a higher

MSFE when a variance break presents in the DGP. However, the confidence

interval obtained using the iterative procedure takes account of breaks both

in the set of coefficients and residual variances. Employing the iterative confi-

dence interval, especially when it is incorporated with cross validation weights,

reduces forecast errors such that MSFE is lower than that obtained using other

forecast combination approaches in most experiments.

However, we should note that the improvement over single window meth-

ods is marginal in the coefficient break experiments. Nevertheless, the iteration

based confidence interval improves other methods that hinge on a point esti-

mate of break dates when variance breaks are present in the DGP. Overall,

our proposed methods show no loss compared to benchmark and the majority

of other competing methods for coefficient break only cases.

We also propose a method to improve forecastability when there are multi-

ple breaks which lead to reversion in the coefficients. This involves re-ordering

data segments associated with estimated coefficient breaks based on the rela-

tive closeness of the estimated parameters. Monte Carlo simulations show that

the procedure of re-ordering data segments substantially reduces MSFEs of all

forecast methods in the parameter reversion cases. Further, the gain from

employing such a procedure is even larger when the sample size increases, sug-

gesting this is related to the increased accuracy of the estimated break dates

and corresponding coefficients with a larger sample size.
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Tables

Table 3.1: Simulation setup: single break

Parameters

Exp Comments/Regimes R1 R2 R1 R2 R1 R2

EXP 1 No Break 0.9 0.9 1 1 1 1

EXP 2 Small break in β11 0.9 0.7 1 1 1 1

EXP 3 Large break in β11 0.9 0.5 1 1 1 1

EXP 4 Small break in β12 0.9 0.9 1 1.5 1 1

EXP 5 Large break in β12 0.9 0.9 1 2 1 1

EXP 6 Break in β11 and β12 0.9 0.7 1 2 1 1

EXP 7 Increase in σyt 0.9 0.9 1 1 1 4

EXP 8 Decrease in σyt 0.9 0.9 1 1 1 0.5

EXP 9 Break in β11, β12+Increase in σyt 0.9 0.7 1 2 1 4

EXP 10 Break in β11, β12+Decrease in σyt 0.9 0.7 1 2 1 0.5

β11 β12 σyt

Note: β21=0;  β22=0.9. The values of coefficients before and after the break are given in R1 and R2 columns, respectively.

Table 3.2: Simulation setup: multiple breaks

Parameters

Exp Comments/Regimes R1 R2 R3 R1 R2 R3 R1 R2 R3

EXP 11 Coefficient reversion in β11 0.9 0.7 0.9 1 1 1 1 1 1

EXP 12 Decline in β11 0.9 0.7 0.5 1 1 1 1 1 1

EXP 13 Coefficient reversion in β11 0.3 0.5 0.3 1 1 1 1 1 1

EXP 14 Increase in β11 0.3 0.5 0.7 1 1 1 1 1 1

EXP 15 Coefficient reversion in β12 0.9 0.9 0.9 0 1 0 1 1 1

EXP 16 Increase in  β12 0.9 0.9 0.9 0 1 2 1 1 1

EXP 17 Increase in σyt 0.9 0.9 0.9 1 1 1 1 1 4

EXP 18 Decline in σyt 0.9 0.9 0.9 1 1 1 1 1 0.5

σyt

Note: β21=0;  β22=0.9. The values of coefficients before and after the breaks are given in R1, R2 and R3 columns.

β11 β12
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Table 3.3: MSFE ratios (T=100, T1 = 25)

Sample size: T=100 

Break location: T1=25
No Break

Small 

break  in 

β11

Large 

break in 

β11

Small 

break  in 

β12

Large 

break in 

β12

Break in 

β11 and 

β12

Increase 

in σyt

Decrease 

in σyt

EXP6 

+

EXP 7

EXP6 

+

EXP 8

EXP 1 EXP 2 EXP 3 EXP 4 EXP 5 EXP 6 EXP 7 EXP 8 EXP 9 EXP 10

A. Single estimation windows

Post break 1.027 0.721 0.552 0.917 0.664 0.703 1.112 1.001 1.220 0.380

Trade-off 1.017 0.726 0.577 0.908 0.667 0.704 1.071 0.998 1.135 0.385

Cross Validation (CV) 1.036 0.727 0.562 0.910 0.678 0.717 1.044 1.005 1.013 0.385

B. Averaging multiple windows

Pooled (without break info) 1.042 0.739 0.580 0.916 0.694 0.723 1.046 1.016 1.019 0.388

Pooled (with break info) 1.036 0.840 0.784 0.925 0.786 0.806 1.038 1.006 1.001 0.606

Cross validated weights 1.012 0.821 0.746 0.916 0.760 0.786 1.020 0.989 0.990 0.514

C. Observational weight

Optimal weight 1.010 0.753 0.622 0.923 0.693 0.717 1.041 0.998 1.088 0.397

Unrestricted Robust weight 1.034 0.773 0.700 0.912 0.697 0.732 1.038 1.010 1.017 0.410

Restricted Robust weight (75-95) 1.326 0.908 0.696 1.157 0.865 0.887 1.278 1.294 1.255 0.456

Exponential (ϒ=0.95) 1.056 0.760 0.649 0.927 0.698 0.732 1.060 1.031 1.038 0.387

Exponential (ϒ=0.98) 1.009 0.850 0.833 0.920 0.758 0.794 1.014 0.990 0.997 0.565

D. Confidence interval methods

Confidence Interval (CI) 1.021 0.723 0.555 0.910 0.664 0.703 1.093 0.999 1.169 0.378

Confidence Interval (iterated) 1.030 0.723 0.555 0.914 0.664 0.703 1.043 1.017 0.998 0.371

Confidence interval (CV weight) 1.011 0.719 0.555 0.906 0.664 0.703 1.014 0.994 0.988 0.371

EM confidence interval 1.087 0.801 0.688 0.935 0.721 0.775 1.095 1.049 1.049 0.479

Restricted Robust -CI bounds 1.062 0.724 0.554 0.909 0.664 0.703 1.072 1.040 1.004 0.371

Note: The details of forecast methods presented in panel A, B, C and D can be found in subsections 3.2.1, 3.2.2, 3.2.3 and 3.3.1, respectively. 

DGPs in the first row of the table are from table 3.1. The values in the table are the ratios of MSFEcandidate/MSFEbenchmark. Larger than 1 

indicates worse and smaller than 1 indicates better performance than the benchmark model.

Table 3.4: MSFE ratios (T=100, T1 = 50)

Sample size: T=100 

Break location: T1=50
No Break

Small 

break  in 

β11

Large 

break in 

β11

Small 

break  in 

β12

Large 

break in 

β12

Break in 

β11 and 

β12

Increase 

in σyt

Decrease 

in σyt

EXP6 

+

EXP 7

EXP6 

+

EXP 8

EXP 1 EXP 2 EXP 3 EXP 4 EXP 5 EXP 6 EXP 7 EXP 8 EXP 9 EXP 10

A. Single estimation windows

Post break 1.027 0.610 0.455 0.813 0.446 0.509 1.311 1.008 1.165 0.201

Trade-off 1.017 0.613 0.477 0.806 0.450 0.514 1.193 1.002 1.086 0.214

Cross Validation (CV) 1.036 0.616 0.465 0.797 0.456 0.521 1.043 1.004 1.003 0.205

B. Averaging multiple windows

Pooled (without break info) 1.042 0.663 0.552 0.806 0.525 0.577 1.053 1.000 0.982 0.315

Pooled (with break info) 1.036 0.813 0.786 0.849 0.675 0.729 1.040 0.997 0.968 0.584

Cross validated weights 1.012 0.785 0.735 0.842 0.619 0.684 1.023 0.982 0.965 0.431

C. Observational weight

Optimal weight 1.010 0.652 0.538 0.820 0.492 0.526 1.107 1.003 1.048 0.215

Unrestricted Robust weight 1.034 0.757 0.743 0.809 0.548 0.629 1.046 0.994 0.988 0.397

Restricted Robust weight (75-95) 1.326 0.746 0.561 0.969 0.561 0.627 1.288 1.265 1.201 0.248

Exponential (ϒ=0.95) 1.056 0.698 0.665 0.794 0.490 0.560 1.069 1.010 0.997 0.279

Exponential (ϒ=0.98) 1.009 0.843 0.835 0.852 0.671 0.745 1.019 0.979 0.978 0.596

D. Confidence interval methods

Confidence Interval (CI) 1.021 0.609 0.456 0.806 0.447 0.510 1.264 1.003 1.119 0.203

Confidence Interval (iterated) 1.030 0.610 0.457 0.808 0.447 0.510 1.057 1.001 1.083 0.202

Confidence interval (CV weight) 1.011 0.607 0.456 0.801 0.447 0.509 1.021 0.987 1.046 0.202

EM confidence interval 1.087 0.706 0.613 0.826 0.549 0.621 1.097 1.038 1.028 0.360

Restricted Robust -CI bounds 1.062 0.610 0.457 0.792 0.447 0.510 1.074 1.025 1.082 0.202

Note: Same as Table 3.3

194



Table 3.5: MSFE ratios (T=100, T1 = 75)

Sample size: T=100 

Break location: T1=75
No Break

Small 

break  in 

β11

Large 

break in 

β11

Small 

break  in 

β12

Large 

break in 

β12

Break in 

β11 and 

β12

Increase 

in σyt

Decrease 

in σyt

EXP6 

+

EXP 7

EXP6 

+

EXP 8

EXP 1 EXP 2 EXP 3 EXP 4 EXP 5 EXP 6 EXP 7 EXP 8 EXP 9 EXP 10

A. Single estimation windows

Post break 1.027 0.616 0.427 0.847 0.367 0.459 1.548 1.014 1.181 0.157

Trade-off 1.017 0.609 0.453 0.819 0.369 0.462 1.314 1.007 1.084 0.172

Cross Validation (CV) 1.036 0.813 0.781 0.806 0.541 0.670 1.030 1.012 1.005 0.474

B. Averaging multiple windows

Pooled (without break info) 1.042 0.727 0.671 0.775 0.546 0.640 1.053 1.003 0.969 0.479

Pooled (with break info) 1.036 0.825 0.809 0.810 0.645 0.746 1.042 0.999 0.972 0.636

Cross validated weights 1.012 0.872 0.866 0.855 0.702 0.813 1.019 0.995 0.984 0.715

C. Observational weight

Optimal weight 1.010 0.648 0.531 0.821 0.415 0.471 1.163 1.006 1.036 0.181

Unrestricted Robust weight 1.034 0.788 0.763 0.777 0.569 0.705 1.050 0.991 0.986 0.568

Restricted Robust weight (75-95) 1.326 0.638 0.467 0.812 0.390 0.485 1.292 1.243 1.126 0.173

Exponential (ϒ=0.95) 1.056 0.746 0.719 0.737 0.476 0.605 1.073 1.004 0.979 0.425

Exponential (ϒ=0.98) 1.009 0.866 0.848 0.849 0.723 0.822 1.021 0.979 0.980 0.746

D. Confidence interval methods

Confidence Interval (CI) 1.021 0.615 0.428 0.832 0.366 0.457 1.465 1.005 1.137 0.159

Confidence Interval (iterated) 1.030 0.615 0.428 0.832 0.366 0.458 1.065 0.999 1.095 0.158

Confidence interval (CV weight) 1.011 0.805 0.768 0.830 0.514 0.629 1.007 0.993 1.033 0.439

EM confidence interval 1.087 0.704 0.626 0.803 0.511 0.605 1.099 1.042 1.011 0.405

Restricted Robust -CI bounds 1.062 0.616 0.432 0.793 0.366 0.458 1.072 1.018 1.092 0.157

Note: Same as Table 3.3
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Table 3.6: MSFE ratios under multiple breaks (T=100)

Sample size: T=100 

Break locations: T1=33, T2=66

Coeff

reversion

 in β11

Decline in 

β11

Coeff

reversion

 in β11

Increase 

in β11

Coeff 

reversion 

in β12

Increase

 in  β12

Increase

 in σyt

Decline

 in σyt

EXP 11 EXP 12 EXP 13 EXP 14 EXP 15 EXP 16 EXP 17 EXP 18

A. Single estimation windows

Post break 1.004 0.576 1.048 0.809 0.847 0.222 1.495 1.011
Post break 0.967 0.576 1.045 0.809 0.814 0.222 1.388 1.011
Trade-off 0.970 0.576 1.026 0.787 0.834 0.222 1.293 1.006
Trade-off 0.934 0.578 1.025 0.787 0.794 0.223 1.227 1.005
Cross Validation (CV) 0.950 0.564 1.005 0.752 0.840 0.232 1.034 1.012
Cross Validation (CV) 0.900 0.568 1.005 0.758 0.773 0.228 1.047 1.012

B. Averaging multiple windows
Pooled (without break info) 0.951 0.573 0.985 0.753 0.893 0.331 1.055 0.998
Pooled (without break info) 0.896 0.578 0.982 0.756 0.766 0.334 1.060 0.998
Pooled (with break info) 0.991 0.721 0.991 0.810 1.010 0.440 1.043 0.995
Pooled (with break info) 0.912 0.728 0.987 0.813 0.804 0.445 1.041 0.996
Cross validated weights 0.998 0.698 1.003 0.809 1.006 0.371 1.022 0.987
Cross validated weights 0.915 0.703 0.997 0.811 0.794 0.370 1.024 0.987

C. Observational weight
Optimal weight 0.945 0.634 1.018 0.785 0.800 0.252 1.153 1.004
Optimal weight 0.928 0.632 1.019 0.789 0.781 0.251 1.153 1.005
Optimal weight (multiple break) 0.933 0.722 1.013 0.788 0.843 0.588 1.079 1.005
Unrestricted Robust weight 0.939 0.716 1.000 0.751 0.884 0.369 1.049 0.989
Unrestricted Robust weight 0.887 0.721 0.996 0.754 0.767 0.371 1.055 0.990
Restricted Robust weight (75-95) 1.074 0.606 1.166 0.848 0.877 0.249 1.290 1.252
Restricted Robust weight (75-95) 1.072 0.607 1.166 0.849 0.880 0.250 1.291 1.252
Exponential (ϒ=0.95) 0.919 0.645 0.997 0.733 0.832 0.279 1.073 1.003
Exponential (ϒ=0.95) 0.889 0.651 0.994 0.735 0.763 0.281 1.080 1.003
Exponential (ϒ=0.98) 0.950 0.826 0.991 0.806 0.920 0.566 1.021 0.977
Exponential (ϒ=0.98) 0.898 0.828 0.986 0.808 0.802 0.568 1.025 0.977

D. Confidence interval methods
Confidence Interval (CI) 0.983 0.574 1.033 0.789 0.843 0.221 1.433 1.006
Confidence Interval (CI) 0.950 0.576 1.033 0.793 0.810 0.221 1.360 1.006
Confidence Interval (iterated) 0.981 0.573 1.034 0.791 0.846 0.221 1.084 1.008
Confidence Interval (iterated) 0.949 0.575 1.033 0.794 0.810 0.221 1.085 1.009
Confidence interval (CV weight) 0.941 0.556 1.007 0.755 0.826 0.224 1.026 0.993
Confidence interval (CV weight) 0.919 0.561 1.007 0.760 0.787 0.222 1.027 0.993
Restricted Robust -CI bounds 0.983 0.574 1.040 0.784 0.849 0.222 1.095 1.032
Restricted Robust -CI bounds 0.945 0.580 1.031 0.791 0.806 0.222 1.084 1.006

Note: The details of forecast methods presented in panel A, B, C and D can be found in subsections 3.2.1, 3.2.2, 3.2.3 and 

3.3.1, respectively. DGPs in the first row of the table are from table 3.2. For each method, the first row reports the relative 

MSFEs obtained using the original sample, while the second row presents the relative MSFEs from using the re-ordering 

procedure described in subsection 3.3.2. The third row for the optimal weights is calculated using the weights derived under 

multiple break information, proposed by Pesaran et al (2013).
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Table 3.7: Changes in MSFE ratios in the coefficient reverting experiments

Sample size: T=100 

Break locations: T1=33, T2=66

Coeff

reversion

 in β11

Coeff

reversion

 in β11

Coeff 

reversion in 

β12

EXP 11 EXP 13 EXP 15

Post break -0.037 -0.002 -0.033

Trade-off -0.036 -0.002 -0.040

Cross Validation (CV) -0.050 0.000 -0.067

Pooled (without break info) -0.054 -0.003 -0.127

Pooled (with break info) -0.079 -0.004 -0.206

Cross validated weights -0.083 -0.006 -0.211

Optimal weight -0.016 0.001 -0.019

Unrestricted Robust weight -0.052 -0.004 -0.117

Restricted Robust weight (75-95) -0.002 0.000 0.003

Exponential (ϒ=0.95) -0.030 -0.003 -0.069

Exponential (ϒ=0.98) -0.052 -0.004 -0.119

Confidence Interval (CI) -0.033 -0.001 -0.033

Confidence Interval (iterated) -0.032 -0.001 -0.036

Confidence interval (CV weight) -0.022 0.000 -0.040

Restricted Robust -CI bounds -0.038 -0.009 -0.043

Note: The values in the table are differences between MSFEs of the first and second 

rows for each forecast method for experiments 11, 13, 15 in Table 3.6. Negative 

values indicate gains from employing re-ordering data method in MSFE sense 

compared to using the original data. Similarly, positive values indicate the loss 

associated with a re-ordering data method.

Table 3.8: Structural breaks and corresponding parameter changes in inflation
models of G7 countries

Coefficients Variance R1 R2 R3 R1 R2 R3 R1 R2 R3

Canada
Feb-1991 Dec-1983

Feb-2000
0.555 0.170 0.772 0.048 0.309 0.205 0.408

France
Jul-1985

Jun-1992

Jun-1983

Dec-1999
0.770 0.257 0.132 0.813 -0.051 0.080 0.176 0.125 0.226

Germany
Jul-1982

NA 0.420 0.173 0.357 0.460 0.209

Italy
Jul-1995 Nov-1973

Dec-1982
0.821 0.221 0.868 0.496 0.231 0.456 0.118

Japan
Dec-1980

Nov-1997

Dec-1974

Feb-1986
0.713 0.141 -0.037 0.483 0.014 -0.636 0.848 0.443 0.250

United

Kingdom

Jan-1982

Dec-1991

Oct-1973

May-1980
1.048 0.448 0.154 0.542 0.238 0.131 0.330 0.595 0.201

United

States

Oct-1981

Feb-1991

May-1983

Feb-2000
0.636 0.348 0.213 0.754 0.382 0.117 0.271 0.138 0.225

Countries

Structural Breaks Mean Persistence Residual Variance

Notes: Reported break dates are estimated using an estimation window which includes first 400 observations. Prefix R

indicates a regime. In each regime, the mean is calculated as the sample average of aggregate inflation and the

persistence is computed as a sum of estimated autoregressive coefficients conditional on the estimated coefficient

breaks. The residual variance refers to the mean of absolute values of residuals in (3.8) in each variance break regime.

These errors are used in the GLS transformation. NA means not applicable, since no break is detected.
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Table 3.9: MSFEs for G7 inflation (based on the last break)

Countries Can Fra Ger Ita Jap UK US

A. Single estimation windows

Post break 0.829 1.032 0.965 0.881 0.913 0.938 0.983

Trade-off 0.838 1.003 0.947 0.882 0.903 0.939 0.951

Cross Validation (CV) 0.829 0.954 0.951 0.878 0.939 0.962 0.888

B. Averaging multiple windows

Pooled (without break info) 0.863 0.920 0.910 0.862 0.891 0.951 0.914

Pooled (with break info) 0.909 0.907 0.954 0.908 0.924 0.956 0.904

Cross validated weights 0.912 0.909 0.956 0.912 0.925 0.957 0.903

C. Observational weight

Optimal weight 0.846 0.933 0.943 0.867 0.846 0.958 0.939

Unrestricted Robust weight 0.894 0.960 0.925 0.893 0.892 1.010 0.980

Restricted Robust weight (75-95) 0.859 1.016 0.936 0.918 0.957 1.131 1.001

Exponential (ϒ=0.95) 0.869 1.057 1.005 0.979 1.015 1.332 1.172

Exponential (ϒ=0.98) 0.849 0.957 0.912 0.878 0.900 1.059 0.996

D. Confidence interval methods

Confidence Interval (CI) 0.828 1.021 0.962 0.879 0.903 0.948 0.966

Confidence Interval (iterated) 0.837 1.011 0.917 0.830 0.895 0.927 0.908

Confidence interval (CV weight) 0.838 0.986 0.918 0.844 0.884 0.927 0.908

Restricted Robust -CI bounds 0.842 1.010 0.917 0.829 0.890 0.921 0.906
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Table 3.10: Diebold and Mariano test statistics

Methods Canada France Germany Italy Japan UK US

A. Full sample vs

Post break 2.00** -0.23 0.39 1.78** 0.98 0.62 0.11

Trade off 2.00** 0.39 0.60 1.92** 0.85 0.48 1.01

Cross Validation 2.68** 1.81** 1.86** 2.78** 1.64** 1.23 1.49*

Pooled Average 2.67** 1.72** 1.84** 2.78** 1.66** 1.23 1.37*

CV weighted average 2.20** -0.15 0.44 2.02** 1.18 0.56 0.25

Optimal Weight 1.68** -1.75** 0.51 -0.22 1.00 -1.27 0.24

Exp smoothing (ϒ=0.98) 1.33* -0.43 -0.04 0.17 -0.10 -1.96** -0.82

Confidence interval (iterated) 2.25** 0.92 1.73** 2.02** 1.54* 0.74 0.91

Restricted Robust-CI bounds 2.15** 0.11 0.83 1.52* 1.26 0.69 0.83

B. Post break vs

Trade off -0.05 2.01** 1.11 0.14 -0.72 -0.81 1.43*

Cross Validation -1.51* 1.28* 0.14 -0.70 -0.23 -0.26 0.85

Pooled Average -1.48* 1.36* 0.16 -0.61 -0.20 -0.25 0.89

CV weighted average 0.09 1.83** 0.67 0.23 1.22 -0.69 0.97

Optimal Weight -0.69 -0.26 0.39 -1.85** 0.37 -1.46* 0.10

Exp smoothing (ϒ=0.98) -0.72 -0.25 -0.45 -0.97 -0.96 -2.24** -1.99**

Confidence interval (iterated) -1.12 1.85** 1.24 0.53 0.64 -0.33 1.00

Restricted Robust-CI bounds -0.39 1.94** 1.30* 0.68 0.92 0.66 0.91

C. Trade-off vs

Cross Validation -1.51* 0.62 -0.08 -0.93 0.36 0.11 -0.27

Pooled Average -1.48* 0.69 -0.06 -0.85 0.41 0.14 -0.30

CV weighted average 0.10 -1.93** -1.05 -0.05 1.10 0.65 -1.48*

Optimal Weight -0.68 -0.93 0.17 -2.14** 0.62 -1.42* -1.04

Exp smoothing (ϒ=0.98) -0.72 -1.36* -0.64 -1.04 -0.59 -2.28** -1.94**

Confidence interval (iterated) -1.12 0.92 1.13 0.53 1.02 0.72 -0.80

Restricted Robust-CI bounds -0.39 -1.04 0.88 0.61 0.99 0.96 -0.40

D. Cross validation vs

Pooled Average 2.43** 0.54 1.15 2.54** 1.17 1.31* -0.15

CV weighted average 1.79** -1.22 -0.10 0.96 0.49 0.14 -0.81

Optimal Weight 1.09 -2.45** 0.15 -2.11** 0.38 -1.56* -0.84

Exp smoothing (ϒ=0.98) 0.58 -1.53* -0.46 -0.63 -0.68 -2.26** -1.63*

Confidence interval (iterated) 1.69** -0.27 1.44* 1.20 0.89 0.16 -0.34

Restricted Robust-CI bounds 1.63* -0.86 0.47 0.89 0.72 0.38 -0.08

E. Pooled average vs

CV weighted average 1.76** -1.30* -0.12 0.86 0.46 0.13 -0.85

Optimal Weight 1.05 -2.38** 0.14 -2.20** 0.36 -1.57* -0.83

Exp smoothing (ϒ=0.98) 0.54 -1.60* -0.47 -0.68 -0.70 -2.27** -1.69**

Confidence interval (iterated) 1.65** -0.37 1.43* 1.13 0.86 0.13 -0.34

Restricted Robust-CI bounds 1.59* -0.93 0.46 0.85 0.69 0.37 -0.07
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Table 3.10 continues

Methods Canada France Germany Italy Japan UK US

F. CV weighted average vs

Optimal Weight -0.66 -0.34 0.33 -2.08** 0.13 -1.42* -0.06

Exp smoothing (ϒ=0.98) -0.75 -0.38 -0.48 -1.02 -1.04 -2.23** -1.95**

Confidence interval (iterated) -1.56* 1.80** 1.24 0.57 0.43 -0.09 0.99

Restricted Robust-CI bounds -0.62 1.60* 1.14 0.64 0.65 1.06 0.83

G. Optimal weight vs

Exp smoothing (ϒ=0.98) -0.48 0.10 -1.14 0.27 -1.24 -1.03 -1.25

Confidence interval (iterated) -0.54 1.56* 0.43 2.17** 0.18 1.59* 0.69

Restricted Robust-CI bounds 0.17 0.60 0.62 1.72** 0.68 1.50* 0.60

H. Exponential smoothing vs

Confidence interval (iterated) 0.11 1.71** 1.14 1.47* 1.20 2.44** 1.75**

Restricted Robust-CI bounds 0.52 0.76 1.29* 1.76** 1.28* 2.22** 1.57*

I. Confidence interval (iterated)

Restricted Robust-CI bounds 0.89 -1.27 -0.16 0.50 0.29 0.51 0.15

Notes: The table reports Diebold and Mariano (2002) test statistics. The null hypothesis is that a null 

forecast method and an alternative method have equal predictibility. The rejection of the null hypothesis 

is indicated by a double star at the 5% level of significance, and a single star at the 10% level of 

significance. If the rejection occurs with a positive test value, the alternative method is better than the 

null method, while with a negative test value, the null method is better than the alternative method. 

Finally, due to a symmetry of the test, we only report the test statistics from testing the accuracy of a first 

method against a second method, but not the second against a first method. For this reason, the latter 

panels shrink as previous panels include the information for all other possible test combinations.
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Appendix C

C.1 Optimal weights in the presence of 2 breaks

As proposed by Pesaran et al. (2013) optimal weights to the observations in

each coefficient break segment for the case of 2 breaks (3 segments) are given

by

w(1) =
1

T

1 + T (b2 − b1)φ2
(2) − T (b2 − b1)φ(1)φ(2)

aa,2

w(2) =
1

T

1 + Tb1φ
2
(1) − Tb1φ(1)φ(2)

aa,2

w(3) =
1

T

1 + Tb1φ
2
(1) − T (b2 − b1)φ2

(2)

aa,2

where aa,2 = 1+T (1−b2)b1φ
2
(1)+T (b2−b1)(1−b2)φ2

(2)+Tb1(b2−b1)(φ(1)−φ(2))
2

and φ(i) =
x′T θ(i)

(x′TΩ−1
xx xT )1/2

with E(xtx
′
t) = Ωxx and θ(i)= (βi − β3) /σ for i = 1, 2.

The fraction of pre-break sample for each break is bi = T̂i/T. Here the authors

assume a constant residual variance and focus only on breaks in the coefficients.

C.2 Approximated observational Weights

Weights on sample observations can be approximated for the following window

forecast methods based on their relative contributions to the sample used for

estimation different windows.

1. Post-break window

Given the time of the break T̂1 is either known or estimated, the weight

on observation at time t is defined as

wt =

{
0
1

(T−T̂1)

for t ≤ T̂1

for t > T̂1

201



2. Cross - validation

Assuming that cross validation approach finds the optimal starting point

of the estimation sample as m∗, then the estimation period has a sample

of [m∗ : T ] and weights on observations can be approximated as

wt =

{
0
1

(T−m∗−1)

for t < m∗

for t ≥ m∗

3. Averaging windows using equal weights

After reserving a minimum estimation sample w , starting point of the

estimation window is defined as m = 1, 2, ..., T − w and window size

spans [w, T ]. By adding up the weight given to each observation in each

window, we can approximate weights as,

wt =

{
1

(T−w)

∑t
m=1

1
T−m+1

1
(T−w)

∑T−w
m=1

1
T−m+1

for t ≤ T − w
for T − w < t ≤ T

Since the last w observations are used in all estimation windows, they

receive the highest and equal weights.

4. Averaging windows using cross validation weights

Using a similar method as equal weighting scheme, we can approximate

a weight on observation at time t as,

wt =

{ ∑t
m=1

µm
T−m+1∑T−w̃−w

m=1
µm

T−m+1

for

for

t ≤ T − w̃ − w
T − w̃ − w < t ≤ T

where µm = MSFE(m|T, w̃)/
∑T−w̃−w

m=1 MSFE(m|T, w̃), is a cross vali-

dation weight given to each window starting from m = 1, ..., T − w̃ − w
with w̃ is being a pseudo out of sample estimation sample.
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C.3 Additional Tables

Table C.1: MSFE ratios (T=200, T1 = 50)

Sample size: T=200 

Break location: T1=50
No Break

Small 

break  in 

β11

Large 

break in 

β11

Small 

break  in 

β12

Large 

break in 

β12

Break in 

β11 and β12

Increase 

in σyt

Decrease 

in σyt

EXP6 

+

EXP 7

EXP6 

+

EXP 8

EXP 1 EXP 2 EXP 3 EXP 4 EXP 5 EXP 6 EXP 7 EXP 8 EXP 9 EXP 10

A. Single estimation windows

Post break 1.014 0.650 0.500 0.916 0.713 0.659 1.056 0.998 1.020 0.343

Trade-off 1.010 0.656 0.517 0.916 0.714 0.662 1.040 0.997 1.002 0.347

Cross Validation (CV) 1.017 0.659 0.507 0.927 0.725 0.669 1.019 1.009 0.976 0.348

B. Averaging multiple windows

Pooled (without break info) 1.016 0.673 0.529 0.925 0.729 0.680 1.016 1.007 0.975 0.366

Pooled (with break info) 1.016 0.818 0.779 0.943 0.817 0.795 1.013 1.007 0.975 0.601

Cross validated weights 1.008 0.796 0.737 0.942 0.799 0.774 1.008 1.001 0.974 0.507

C. Observational weight

Optimal weight 1.005 0.678 0.549 0.922 0.729 0.666 1.022 0.997 0.996 0.350

Unrestricted Robust weight 1.020 0.722 0.670 0.929 0.734 0.694 1.019 1.010 0.981 0.387

Restricted Robust weight (75-95) 1.120 0.718 0.551 1.014 0.791 0.728 1.112 1.109 1.065 0.373

Exponential (ϒ=0.95) 1.072 0.692 0.533 0.972 0.759 0.702 1.065 1.063 1.024 0.360

Exponential (ϒ=0.98) 1.020 0.718 0.666 0.928 0.732 0.691 1.019 1.010 0.980 0.382

D. Confidence interval methods

Confidence Interval (CI) 1.011 0.652 0.501 0.917 0.713 0.661 1.044 0.996 1.004 0.344

Confidence Interval (iterated) 1.013 0.652 0.501 0.917 0.713 0.660 1.015 1.000 0.954 0.341

Confidence interval (CV weight) 1.002 0.652 0.501 0.916 0.713 0.660 0.998 0.998 0.954 0.341

EM confidence interval 1.045 0.759 0.661 0.953 0.781 0.753 1.036 1.032 0.996 0.493

Restricted Robust -CI bounds 1.030 0.651 0.499 0.916 0.713 0.660 1.031 1.016 0.954 0.341

Note: Same as Table 3.3

Table C.2: MSFE ratios (T=200, T1 = 100)

Sample size: T=200 

Break location: T1=100
No Break

Small 

break  in 

β11

Large 

break in 

β11

Small 

break  in 

β12

Large 

break in 

β12

Break in 

β11 and β12

Increase 

in σyt

Decrease 

in σyt

EXP6 

+

EXP 7

EXP6 

+

EXP 8

EXP 1 EXP 2 EXP 3 EXP 4 EXP 5 EXP 6 EXP 7 EXP 8 EXP 9 EXP 10

A. Single estimation windows

Post break 1.014 0.535 0.411 0.774 0.453 0.465 1.123 1.003 0.960 0.184

Trade-off 1.010 0.542 0.429 0.774 0.454 0.468 1.082 1.002 0.947 0.189

Cross Validation (CV) 1.017 0.540 0.415 0.782 0.458 0.470 1.014 1.009 0.936 0.186

B. Averaging multiple windows

Pooled (without break info) 1.016 0.617 0.528 0.804 0.528 0.548 1.018 0.999 0.936 0.307

Pooled (with break info) 1.016 0.796 0.785 0.867 0.687 0.719 1.015 1.001 0.948 0.578

Cross validated weights 1.008 0.762 0.733 0.858 0.631 0.668 1.010 0.996 0.948 0.417

C. Observational weight

Optimal weight 1.005 0.563 0.461 0.790 0.476 0.473 1.046 1.001 0.945 0.188

Unrestricted Robust weight 1.020 0.725 0.738 0.810 0.540 0.595 1.022 1.002 0.949 0.375

Restricted Robust weight (75-95) 1.120 0.581 0.448 0.845 0.495 0.506 1.114 1.098 1.009 0.200

Exponential (ϒ=0.95) 1.072 0.564 0.455 0.811 0.475 0.489 1.068 1.053 0.970 0.194

Exponential (ϒ=0.98) 1.020 0.698 0.711 0.798 0.512 0.557 1.022 1.002 0.940 0.320

D. Confidence interval methods

Confidence Interval (CI) 1.011 0.537 0.412 0.775 0.453 0.467 1.091 1.000 0.949 0.185

Confidence Interval (iterated) 1.013 0.537 0.412 0.775 0.453 0.467 1.021 0.998 0.947 0.184

Confidence interval (CV weight) 1.002 0.537 0.412 0.774 0.453 0.467 1.002 0.995 0.939 0.184

EM confidence interval 1.045 0.695 0.625 0.833 0.596 0.603 1.038 1.026 0.955 0.396

Restricted Robust -CI bounds 1.030 0.537 0.412 0.774 0.453 0.466 1.030 1.015 0.947 0.184

Note: Same as Table 3.3
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Table C.3: MSFE ratios (T=200, T1 = 150)

Sample size: T=200 

Break location: T1=150
No Break

Small 

break  in 

β11

Large 

break in 

β11

Small 

break  in 

β12

Large 

break in 

β12

Break in 

β11 and β12

Increase 

in σyt

Decrease 

in σyt

EXP6 

+

EXP 7

EXP6 

+

EXP 8

EXP 1 EXP 2 EXP 3 EXP 4 EXP 5 EXP 6 EXP 7 EXP 8 EXP 9 EXP 10

A. Single estimation windows

Post break 1.014 0.479 0.351 0.678 0.312 0.379 1.234 1.002 0.960 0.135

Trade-off 1.010 0.486 0.374 0.675 0.316 0.383 1.146 1.001 0.934 0.141

Cross Validation (CV) 1.017 0.704 0.685 0.763 0.504 0.587 1.014 1.011 0.942 0.411

B. Averaging multiple windows

Pooled (without break info) 1.016 0.697 0.650 0.770 0.560 0.632 1.019 1.000 0.928 0.492

Pooled (with break info) 1.016 0.806 0.790 0.829 0.675 0.749 1.015 1.001 0.952 0.653

Cross validated weights 1.008 0.852 0.844 0.868 0.728 0.812 1.008 1.004 0.969 0.727

C. Observational weight

Optimal weight 1.005 0.511 0.409 0.692 0.348 0.389 1.080 1.001 0.923 0.143

Unrestricted Robust weight 1.020 0.756 0.734 0.768 0.560 0.688 1.024 1.001 0.951 0.563

Restricted Robust weight (75-95) 1.120 0.495 0.368 0.683 0.324 0.395 1.119 1.085 0.942 0.141

Exponential (ϒ=0.95) 1.072 0.564 0.536 0.672 0.340 0.422 1.073 1.043 0.918 0.190

Exponential (ϒ=0.98) 1.020 0.743 0.722 0.750 0.527 0.646 1.023 1.000 0.937 0.509

D. Confidence interval methods

Confidence Interval (CI) 1.011 0.479 0.353 0.674 0.313 0.380 1.180 1.001 0.939 0.136

Confidence Interval (iterated) 1.013 0.480 0.353 0.676 0.313 0.380 1.024 0.992 0.981 0.135

Confidence interval (CV weight) 1.002 0.692 0.670 0.753 0.497 0.572 1.002 0.991 0.966 0.404

EM confidence interval 1.045 0.658 0.599 0.771 0.507 0.583 1.052 1.025 0.954 0.396

Restricted Robust -CI bounds 1.030 0.479 0.354 0.674 0.313 0.380 1.029 1.015 0.974 0.135

Note: Same as Table 3.3

Table C.4: MSFE ratios (T=500)

Increase 

in σyt

Decrease 

in σyt

Increase 

in σyt

Decrease 

in σyt

Increase 

in σyt

Decrease 

in σyt

EXP 7 EXP 8 EXP 7 EXP 8 EXP 7 EXP 8

A. Single estimation windows

Post break 1.019 0.999 1.047 0.996 1.085 0.999

Trade-off 1.015 0.999 1.035 0.996 1.059 0.999

Cross Validation (CV) 1.004 0.999 1.004 0.997 1.004 0.996

B. Averaging multiple windows

Pooled (without break info) 1.005 0.997 1.006 0.994 1.007 0.994

Pooled (with break info) 1.004 0.997 1.005 0.996 1.005 0.995

Cross validated weights 1.002 0.995 1.003 0.994 1.003 0.997

C. Observational weight

Optimal weight 1.009 0.998 1.023 0.997 1.039 0.999

Unrestricted Robust weight 1.008 1.001 1.010 0.997 1.011 0.996

Restricted Robust weight (75-95) 1.044 1.040 1.045 1.035 1.047 1.031

Exponential (ϒ=0.95) 1.084 1.089 1.086 1.084 1.087 1.079

Exponential (ϒ=0.98) 1.029 1.023 1.030 1.018 1.033 1.014

D. Confidence interval methods

Confidence Interval (CI) 1.014 0.999 1.031 0.997 1.057 0.999

Confidence Interval (iterated) 1.005 0.997 1.007 0.994 1.009 0.993

Confidence interval (CV weight) 1.000 0.995 1.001 0.992 1.001 0.993

EM confidence interval 1.021 1.019 1.028 1.016 1.030 1.017

Restricted Robust -CI bounds 1.009 1.004 1.008 1.001 1.009 1.003

Sample size: T=500 

T1=125 T1=250 T1=375

Note: Same as Table 3.3
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Table C.5: MSFE ratios under multiple breaks (T=200)

Sample size: T=200 

Break locations: T1=66, T2=132

Coeff

reversion

 in β11

Decline in 

β11

Coeff

reversion

 in β11

Increase 

in β11

Coeff 

reversion 

in β12

Increase

 in  β12

Increase

 in σyt

Decline

 in σyt

EXP 11 EXP 12 EXP 13 EXP 14 EXP 15 EXP 16 EXP 17 EXP 18

A. Single estimation windows

Post break 0.914 0.470 0.998 0.740 0.774 0.202 1.199 1.003
Post break 0.881 0.470 0.988 0.741 0.761 0.202 1.154 1.003
Trade-off 0.907 0.469 0.991 0.737 0.771 0.203 1.129 1.002
Trade-off 0.875 0.470 0.982 0.738 0.754 0.203 1.100 1.002
Cross Validation (CV) 0.913 0.473 0.966 0.734 0.788 0.216 1.011 1.013
Cross Validation (CV) 0.866 0.471 0.953 0.736 0.748 0.212 1.016 1.013

B. Averaging multiple windows
Pooled (without break info) 0.950 0.545 0.966 0.757 0.902 0.341 1.019 0.998
Pooled (without break info) 0.871 0.546 0.951 0.758 0.749 0.340 1.021 0.997
Pooled (with break info) 1.012 0.647 0.991 0.812 1.030 0.454 1.015 0.998
Pooled (with break info) 0.901 0.648 0.968 0.813 0.801 0.454 1.014 0.998
Cross validated weights 1.015 0.617 1.005 0.808 1.018 0.376 1.009 0.999
Cross validated weights 0.900 0.616 0.980 0.808 0.791 0.371 1.008 0.998

C. Observational weight
Optimal weight 0.898 0.510 0.981 0.740 0.763 0.223 1.070 1.002
Optimal weight 0.872 0.509 0.977 0.741 0.752 0.222 1.062 1.002
Optimal weight (multiple break) 0.893 0.763 0.982 0.766 0.795 0.589 1.034 1.003
Unrestricted Robust weight 0.946 0.696 0.980 0.755 0.883 0.362 1.024 1.000
Unrestricted Robust weight 0.873 0.697 0.961 0.756 0.762 0.362 1.025 0.999
Restricted Robust weight (75-95) 0.939 0.484 1.001 0.761 0.795 0.213 1.118 1.089
Restricted Robust weight (75-95) 0.941 0.484 1.000 0.763 0.796 0.213 1.125 1.089
Exponential (ϒ=0.95) 0.910 0.475 0.969 0.737 0.784 0.210 1.071 1.045
Exponential (ϒ=0.95) 0.902 0.475 0.971 0.738 0.763 0.210 1.076 1.045
Exponential (ϒ=0.98) 0.931 0.676 0.967 0.745 0.851 0.326 1.023 0.998
Exponential (ϒ=0.98) 0.870 0.677 0.952 0.746 0.756 0.326 1.025 0.998

D. Confidence interval methods
Confidence Interval (CI) 0.907 0.468 0.990 0.735 0.772 0.202 1.159 1.001
Confidence Interval (CI) 0.877 0.469 0.981 0.737 0.759 0.202 1.127 1.002
Confidence Interval (iterated) 0.906 0.469 0.991 0.736 0.771 0.202 1.027 0.993
Confidence Interval (iterated) 0.876 0.469 0.982 0.737 0.757 0.202 1.028 0.994
Confidence interval (CV weight) 0.907 0.467 0.980 0.732 0.775 0.215 1.003 0.990
Confidence interval (CV weight) 0.866 0.467 0.973 0.734 0.745 0.211 1.003 0.991
Restricted Robust -CI bounds 0.906 0.469 0.986 0.736 0.772 0.202 1.033 1.016
Restricted Robust -CI bounds 0.876 0.470 0.982 0.737 0.756 0.202 1.026 0.994

Note: Same as Table 3.6
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Table C.6: Changes in MSFE ratios in the coefficient reverting experiments

Sample size: T=200 

Break locations: T1=66, T2=132

Coeff

reversion

 in β11

Coeff

reversion

 in β11

Coeff 

reversion in 

β12

EXP 11 EXP 13 EXP 15

Post break -0.033 -0.010 -0.013

Trade-off -0.032 -0.009 -0.017

Cross Validation (CV) -0.048 -0.013 -0.040

Pooled (without break info) -0.079 -0.015 -0.153

Pooled (with break info) -0.111 -0.023 -0.228

Cross validated weights -0.115 -0.026 -0.227

Optimal weight -0.027 -0.004 -0.011

Unrestricted Robust weight -0.073 -0.019 -0.122

Restricted Robust weight (75-95) 0.002 -0.001 0.001

Exponential (ϒ=0.95) -0.007 0.002 -0.021

Exponential (ϒ=0.98) -0.061 -0.014 -0.094

Confidence Interval (CI) -0.030 -0.009 -0.013

Confidence Interval (iterated) -0.030 -0.009 -0.014

Confidence interval (CV weight) -0.041 -0.007 -0.030

Restricted Robust -CI bounds -0.030 -0.003 -0.016

Note: The values in the table are differences between MSFEs of the first and second 

rows for each forecast method for experiments 11, 13, 15 in Table C.5. Negative 

values indicate gains from employing re-ordering data method in MSFE sense 

compared to using the original data. Similarly, positive values indicate the loss 

associated with a re-ordering data method.

Table C.7: Structural breaks and corresponding parameter changes in inflation
models of G7 countries (based on the full sample)

Coefficients Variance R1 R2 R3 R1 R2 R3 R1 R2 R3

Canada
Jan-1991 Nov-1983

Dec-1999
0.555 0.162 0.772 0.032 0.309 0.205 0.313

France
Jun-1985

Nov-1991
NA 0.770 0.263 0.134 0.797 -0.025 0.193

Germany
Jul-1975

Aug-1994
NA 0.485 0.274 0.122 -0.011 0.595 -0.052

Italy
Jun-1985

Jun-1995

May-1974

Nov-1982
1.075 0.443 0.193 0.799 0.447 0.580 0.294 0.457 0.122

Japan
Nov-1980

Aug-1993

Nov-1974

Oct-1986
0.713 0.167 -0.003 0.467 -0.034 -0.002 0.893 0.427 0.224

United

Kingdom

Apr-1991 May-1982
0.770 0.187 0.754 0.370 0.454 0.188

United

States

Sep-1981

Jan-1991

Apr-1983

Mar-1999
0.636 0.348 0.207 0.754 0.380 0.221 0.269 0.144 0.223

Countries
Structural Breaks Mean Persistence

Notes: Reported break dates are estimated using the full sample which includes 484 observations. Prefix R indicates a

regime. In each regime, the mean is calculated as the sample average of aggregate inflation and the persistence is

computed as a sum of estimated autoregressive coefficients conditional on the estimated coefficient breaks. The

residual variance refers to the mean of absolute values of residuals in (3.8) in each variance break regime. These errors

are used in the GLS transformation. NA means not applicable, since no break is detected.

Residual variance
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Table C.8: MSFEs for G7 inflation (based on data using the re-ordering pro-
cedure)

Countries Can Fra Ger Ita Jap UK US

A. Single estimation windows

Post break 0.829 1.032 0.965 0.852 0.913 0.938 0.983

Trade-off 0.838 1.003 0.947 0.849 0.898 0.939 0.953

Cross Validation (CV) 0.829 0.954 0.951 0.845 0.924 0.962 0.886

B. Averaging multiple windows

Pooled (without break info) 0.863 0.920 0.910 0.858 0.891 0.951 0.915

Pooled (with break info) 0.909 0.907 0.954 0.903 0.919 0.959 0.909

Cross validated weights 0.912 0.909 0.956 0.906 0.921 0.960 0.904

C. Observational weight

Optimal weight 0.846 0.933 0.943 0.838 0.844 0.958 0.931

Unrestricted Robust weight 0.894 0.960 0.925 0.886 0.900 1.012 0.982

Restricted Robust weight (75-95) 0.859 1.016 0.936 0.918 0.956 1.131 1.005

Exponential (ϒ=0.95) 0.869 1.057 1.005 0.978 1.009 1.332 1.177

Exponential (ϒ=0.98) 0.849 0.957 0.912 0.875 0.899 1.059 1.002

D. Confidence interval methods

Confidence Interval (CI) 0.828 1.021 0.962 0.846 0.901 0.948 0.966

Confidence Interval (iterated) 0.837 1.011 0.917 0.831 0.895 0.927 0.908

Confidence interval (CV weight) 0.838 0.986 0.918 0.846 0.884 0.927 0.908

Restricted Robust -CI bounds 0.842 1.010 0.917 0.830 0.890 0.921 0.906
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Conclusion

This thesis has addressed several issues which have previously arisen in the

literature of inflation dynamics and forecasting. In this conclusion, the main

results of the thesis are summarized and some potential directions for further

research are offered.

In the course of this thesis, an iterative structural break testing procedure

proposed in chapter 1 plays a key role for the all contributions made. The

method is motivated by the theoretical result that identification of breaks in

one component (either mean or variance) requires consideration be given to

the presence of breaks in another component (Pitarakis, 2004, Sensier and van

Dijk, 2004). To avoid the potential misspecification (omitting changes in either

mean or variance of a time series), the iterative procedure identifies distinct

breaks in conditional mean and variance parameters by iterating tests between

them, with also outliers identified in relation to conditional mean and variance

break regimes.

The use of this procedure enables chapter 1 to pin down the nature and

dates of change in international inflation linkages and consequently, a strong

and increasing co-movement of inflation is uncovered. Additionally, as promi-

nent outcomes from the iterative algorithm, clusters of variance breaks which

reflect substantial declines in the volatility of inflation are documented across

many industrialized countries, casting doubt on the common claim in the lit-

erature that changes of inflation have been mainly in the mean.

Further research will develop the results of this chapter in several aspects.

Firstly, formal assessments on the performance of the iterative procedure are

warranted both in terms of the size and power of the test. For instance, one

of the differences of our iterative procedure from the similar procedure by

Bataa et al. (2013b) is a joint test of mean and dynamic coefficients to avoid

substantial oversized results in the mean break test, revealed in their Monte

Carlo analysis. The improvements will be explored through simulation anal-

ysis. Secondly, due to the availability of inflation and bilateral trade data at

the monthly frequency over the extended period, most countries in the set ex-

amined are currently members of the Euro area. However, this analysis does
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not cover the use of third-countries’ data such as large emerging economies

of China and India. This would provide a clearer answer to the question of

whether the observed inflation dynamics is truly global in a sense that it is

dictated by globally common shocks. Thirdly, an inclusion of more countries

in the analysis would help to ensure the weak exogeneity assumption on con-

temporaneous foreign inflation which is a relevant issue for the large economies

of Germany and the US those included in our data set.

The second chapter of thesis closely relates to the first chapter in terms of

both the subject of study, the globalization of inflation, and the methodology

used, except it examines the separate roles of core, energy and food components

in addition to the headline inflation. In this respect, the above suggested

research extensions are applicable also to the analysis in chapter 2. However,

the aim of the second chapter differs from the first as it attempts to shed light

on the nature of the inflation globalization while the objective was to measure

the degree of co-movement in chapter 1. The results reveal some important

features of components, including the apparent convergences in the mean levels

of aggregate and each component (with the largest extent seen in core and

lesser extent in energy inflation) in the long run. Specially, the convergence in

core is notable from the 1990s in countries that introduced inflation targeting

and as well as in Euro area countries, indicating the importance of monetary

policy in explaining the co-movements. Moreover, the short run dynamics of

food and energy components implies their important roles for co-movements

in aggregate inflation.

In addition to the previously suggested extensions, more efforts may be

directed to the modeling aspects of inflation in chapter 2. On the one hand, the

models that link domestic and foreign inflation could be extended by explicitly

including monetary variables in order to assess the relative importance of policy

effects in explaining the dynamics of domestic inflation compared to a proxy

for the international environment. Similarly, on the other hand, the supporting

results for globalization may suggest, to some extent, that inflation should be

modeled as a global rather than domestic phenomenon. Then, the conventional

inflation models such as the Phillips equation can be augmented by a global

variable which may yield some interesting insights.

The empirical examination of aggregate and component inflation in chapter

1 and chapter 2 show that structural breaks either in the conditional mean or

variance parameters of inflation are a common feature. This is an important

source of forecast failure if unaccounted for, as forecasts are generated relying

on parameter estimates of a particular model. Therefore, the third chapter of

the thesis focuses on the problem of forecasting in the presence of structural
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breaks. In particular, two contributions are made to the literature on forecast-

ing. Firstly, a forecast method that deals with structural break uncertainty is

proposed. Specifically, the method involves averaging forecasts from different

estimation windows where the range of estimation windows is selected using

a confidence interval for the estimated break date. This method adds value

to the forecast combination literature in the presence of both large and small

breaks occurring in the coefficients of the forecast model, shown in the Monte

Carlo simulations and empirical analysis to univariate inflation models.

The second contribution of chapter 3 relates to the case where coefficient

changes are reversed with multiple breaks. In order to exploit additional in-

formation from similar but distinct coefficient regimes, a data re-ordering pro-

cedure is proposed in which the similarity of coefficients is tested and obser-

vations in the corresponding segments are re-ordered based on their p-value

ranks. Monte Carlo simulation shows improvement in forecast accuracy for all

methods, often substantially for the experiments with multiple breaks which

have the form of reverting coefficients.

This chapter could be developed in several ways. Firstly, in the re-ordering

procedure, not only the orders of coefficient break segments are rearranged

but also some of the segments can be combined if the estimated coefficients in

those segments are judged to be not statistically different and the correspond-

ing breaks are removed. However, when two or more segments are combined

and re-ordered based on their p-value ranks, it is possible that two segments

that were previously apart from each other come together. In this case, the

possibility of a break between these regimes should be re-assessed. Secondly,

at the end of the re-ordering procedure, only the most recent break is acknowl-

edged as a break although the location of such break can move to reflect the

pooled segments. Then, due to time constraints and for sake of simplicity,

the width of the original confidence interval is applied to the newly located

break. This is not the statistically correct way of handling confidence interval.

This should be re-estimated and the performance of this procedure re-assessed

through Monte Carlo simulation.

Finally, this thesis can be further developed by incorporating the results

from the first and second chapters within the forecasting methodology pro-

posed in the third chapter to improve forecasting performance for inflation

series. Specifically, chapter 1 and 2 suggest that domestic inflation, at some

extent, should be modeled with global variables to reflect ongoing inflation

globalization and use of such information may be anticipated to increase the

predictability of inflation. Nevertheless, the empirical analysis using univariate

inflation for G7 countries in chapter 3 yields overall good forecast performance
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for our proposed methodology compared to most other forecast methods. Po-

tentially, the application of our proposed methodology to inflation models aug-

mented by global variables may offer further improvements in forecasting ac-

curacy.

211



Bibliography

Ahmed, S., Levin, A., and Wilson, B. A. (2004): “Recent U.S. Macroe-

conomic Stability: Good Policies, Good Practices, or Good Luck?” Review

of Economics and Statistics, 86, 824–832.

Altissimo, F., Bilke, L., Levin, A., Matha, T., and Mojon, B. (2006):

“Sectoral and Aggregate Inflation Dynamics in the Euro Area,” Journal of

the European Economic Association, 4, 585–593.

Andrews, D. W. K. (1991): “Heteroskedasticity and Autocorrelation Con-

sistent Covariance Matrix Estimation,” Econometrica, 59, 817–858.

(1993): “Tests for Parameter Instability and Structural Change With

Unknown Change Point,” Econometrica, 61, 821–856.

Andrews, D. W. K. and Chen, H.-Y. (1994): “Approximately Median-

Unbiased Estimation of Autoregressive Models,” Journal of Business & Eco-

nomic Statistics, 12, 187–204.

Bai, J. (1997): “Estimating Multiple Breaks One at a Time,” Econometric

Theory, 13, 315–352.

Bai, J. and Perron, P. (1998): “Estimating and Testing Linear Models with

Multiple Structural Changes,” Econometrica, 66, 47–78.

(2003a): “Computation and analysis of multiple structural change

models,” Journal of Applied Econometrics, 18, 1–22.

(2003b): “Critical values for multiple structural change tests,” Econo-

metrics Journal, 6, 72–78.

(2006): “Multiple Structural Change Models: A Simulation Analy-

sis,” In Econometric Theory and Practice: Frontiers of Analysis and Ap-

plied Research, D. Corbea, S. Durlauf and B. E. Hansen (eds.), Cambridge

University Press, 212–237.

212



Ball, L. M. (2006): “Has Globalization Changed Inflation?” Working Paper

12687, National Bureau of Economic Research.

Banerjee, A., Marcellino, M., and Masten, I. (2008): “Chapter 4 Fore-

casting Macroeconomic Variables Using Diffusion Indexes in Short Samples

with Structural Change,” Frontiers of Economics and Globalization, 3, 149–

194.

Bataa, E., Osborn, D. R., Sensier, M., and van Dijk, D. (2013a):

“Structural Breaks in the International Dynamics of Inflation,” Review of

Economics and Statistics, 95, 646–659.

Bataa, E., Osborn, D. R., Sensier, M., and Dijk, D. v. (2013b): “Iden-

tifying Changes in Mean, Seasonality, Persistence and Volatility for G7 and

Euro Area Inflation,” Oxford Bulletin of Economics and Statistics, forth-

coming.

Benati, L. (2008): “Investigating Inflation Persistence Across Monetary

Regimes,” The Quarterly Journal of Economics, 123, 1005–1060.

Benati, L. and Kapetanios, G. (2002): “Structural Breaks in Inflation

Dynamics,” manuscript, Bank of England.

Bernanke, B. S. (2007): “Globalization and Monetary Policy,”

Speech presented at the Fourth Economic Summit, Stanford In-

stitute for Economic Policy Research, 2 March. Downloaded from

www.federalreserve.gov/newsevents/.

Borio, C. and Filardo, A. (2007): “Globalisation and inflation: New cross-

country evidence on the global determinants of domestic inflation,” Working

Paper 227, Monetary and Economic Department, Bank for International

Settlements, Basel, Switzerland.

Calza, A. (2009): “Globalization, Domestic Inflation and Global Output

Gaps: Evidence from the Euro Area,” International Finance, 12, 301–320.

Canova, F. and Ferroni, F. (2012): “The dynamics of US inflation: Can

monetary policy explain the changes?” Journal of Econometrics, 167, 47–60.

Castle, J. L. and Hendry, D. F. (2008): “Chapter 2 Forecasting UK Infla-

tion: The Roles of Structural Breaks and Time Disaggregation,” Frontiers

of Economics and Globalization, 3, 41–92.

Cecchetti, S. G. and Debelle, G. (2006): “Has the inflation process

changed?” Economic Policy, 21, 311–352.

213



Census Bureau, U. (2011): “X-12-ARIMA reference Manual.”

Chen, C. and Liu, L.-M. (1993): “Joint Estimation of Model Parameters

and Outlier Effects in Time Series,” Journal of the American Statistical

Association, 88, 284–297.

Chow, G. C. (1960): “Tests of Equality Between Sets of Coefficients in Two

Linear Regressions,” Econometrica, 28, 591–605.

Chu, C.-S. J., Stinchcombe, M., and White, H. (1996): “Monitoring

Structural Change,” Econometrica, 64, 1045–1065.

Ciccarelli, M. and Mojon, B. (2010): “Global Inflation,” Review of Eco-

nomics and Statistics, 92, 524–535.

Clarida, R., Gali, J., and Gertler, M. (2000): “Monetary Policy Rules

and Macroeconomic Stability: Evidence and Some Theory,” The Quarterly

Journal of Economics, 115, 147–180.

Clark, T. E. (2001): “Comparing measures of core inflation,” Economic

Review-Federal Reserve Bank of Kansas City, 86, 5–32.

(2006): “Disaggregate evidence on the persistence of consumer price

inflation,” Journal of Applied Econometrics, 21, 563–587.

Clark, T. E. and McCracken, M. W. (2005): “The power of tests of pre-

dictive ability in the presence of structural breaks,” Journal of Econometrics,

124, 1–31.

(2008): “Chapter 3 Forecasting with Small Macroeconomic VARs in

the Presence of Instabilities,” Frontiers of Economics and Globalization, 3,

93–147.

(2009): “Improving Forecast Accuracy by Combining Recursive and

Rolling Forecasts,” International Economic Review, 50, 363–395.

(2013): “Advances in Forecast Evaluation,” In Handbook of Economic

Forecasting SET 2A-2B, Elliot, G., and Timmermann, A. (eds.), Elsevier.

Clark, T. E. and West, K. D. (2007): “Approximately normal tests for

equal predictive accuracy in nested models,” Journal of Econometrics, 138,

291–311.

Corvoisier, S. and Mojon, B. (2005): “Breaks in the Mean of Inflation:

How they Happen and What to do With Them,” Working Paper No. 451,

European Central Bank, Rochester, NY.

214



Davidian, M. and Carroll, R. J. (1987): “Variance Function Estimation,”

Journal of the American Statistical Association, 82, 1079–1091.

Dees, S., Mauro, F. d., Pesaran, M. H., and Smith, L. V. (2007): “Ex-

ploring the international linkages of the euro area: a global VAR analysis,”

Journal of Applied Econometrics, 22, 1–38.

Diebold, F. X. and Chen, C. (1996): “Testing structural stability with

endogenous breakpoint A size comparison of analytic and bootstrap proce-

dures,” Journal of Econometrics, 70, 221–241.

Diebold, F. X. and Mariano, R. S. (2002): “Comparing Predictive Accu-

racy,” Journal of Business & Economic Statistics, 20, 134–144.

Eklund, J., Kapetanios, G., and Price, S. (2013): “Robust Fore-

cast Methods and Monitoring during Structural Change,” The Manchester

School, forthcoming.

Elliott, G. (2005): “Forecasting when there is a single break,” manuscript,

University of California at San Diego.

Elliott, G. and Muller, U. K. (2007): “Confidence sets for the date of a

single break in linear time series regressions,” Journal of Econometrics, 141,

1196–1218.

EVIEWS. (2009): software version 7 (EVIEWS 7), IHS Global Inc., United

States.

Gadzinski, G. and Orlandi, F. (2004): “Inflation Persistence in the Eu-

ropean Union, the Euro area, and the United States,” Working Paper No.

414, European Central Bank, Rochester, NY.

Giordani, P., Kohn, R., and van Dijk, D. (2007): “A unified approach

to nonlinearity, structural change, and outliers,” Journal of Econometrics,

137, 112–133.

Giraitis, L., Kapetanios, G., and Price, S. (2013): “Adaptive forecast-

ing in the presence of recent and ongoing structural change,” Journal of

Econometrics, forthcoming.

Hall, A. R., Han, S., and Boldea, O. (2012): “Inference regarding multiple

structural changes in linear models with endogenous regressors,” Journal of

Econometrics, 170, 281–302.

215



Hall, A. and Sakkas, N. (2013): “Approximate p-values of certain tests

involving hypotheses about multiple breaks,” Journal of Econometric Meth-

ods, forthcoming.

Hansen, B. E. (2000): “Testing for structural change in conditional models,”

Journal of Econometrics, 97, 93–115.

Hendry, D. F. and Clements, M. P. (2003): “Economic forecasting: some

lessons from recent research,” Economic Modelling, 20, 301–329.

Hooker, M. A. (2002): “Are Oil Shocks Inflationary?: Asymmetric and Non-

linear Specifications versus Changes in Regime,” Journal of Money, Credit,

and Banking, 34, 540–561.

Ihrig, J., Kamin, S. B., Lindner, D., and Marquez, J. (2010): “Some

Simple Tests of the Globalization and Inflation Hypothesis,” International

Finance, 13, 343–375.

Kapetanios, G., Labhard, V., and Price, S. (2008): “Forecasting Using

Bayesian and Information-Theoretic Model Averaging,” Journal of Business

& Economic Statistics, 26, 33–41.

Krolzig, H.-M. and Hendry, D. F. (2001): “Computer automation of

general-to-specific model selection procedures,” Journal of Economic Dy-

namics and Control, 25, 831–866.

Levin, A. T. and Piger, J. (2003): “Is Inflation Persistence Intrinsic in

Industrial Economies?” Working Paper No. 2002-023A, Federal Reserve

Bank of St. Louis, Rochester, NY.

MATLAB. (2011): software version 7.12.0.635 (R2011a), The MatWorks

Inc., Natick, Massachusetts, United States.

McConnell, M. M. and Perez-Quiros, G. (2000): “Output Fluctuations

in the United States: What Has Changed Since the Early 1980’s?” The

American Economic Review, 90, 1464–1476.

Mishkin, F. S. (2007): “Headline versus core inflation in the con-

duct of monetary policy,” Speech presented at the Business Cy-

cles, International Transmission and Macroeconomic Policies Con-

ference, HEC Montreal, Canada, 20 October. Downloaded from

http://www.drduru.com/money/SavedFiles/071020 FRB- Speech-Mishkin-

Ination.htm.

216



(2009): “Globalization, Macroeconomic Performance, and Monetary

Policy,” Journal of Money, Credit and Banking, 41, 187–196.

Monacelli, T. and Sala, L. (2009): “The International Dimension of In-

flation: Evidence from Disaggregated Consumer Price Data,” Journal of

Money, Credit and Banking, 41, 101–120.

Mumtaz, H., Simonelli, S., and Surico, P. (2011): “International co-

movements, business cycle and inflation: A historical perspective,” Review

of Economic Dynamics, 14, 176–198.

Mumtaz, H. and Surico, P. (2012): “Evolving International Inflation Dy-

namics: World and Country-Specific Factors,” Journal of the European Eco-

nomic Association, 10, 716–734.

Neely, C. J. and Rapach, D. E. (2011): “International comovements in

inflation rates and country characteristics,” Journal of International Money

and Finance, 30, 1471–1490.

O’Reilly, G. and Whelan, K. (2005): “Has Euro-Area Inflation Persistence

Changed Over Time?” Review of Economics and Statistics, 87, 709–720.

Orphanides, A. (2004): “Monetary Policy Rules, Macroeconomic Stability,

and Inflation: A View from the Trenches,” Journal of Money, Credit, and

Banking, 36, 151–175.

Osborn, D. R. and Ghysels, E. (2001): The Econometric Analysis of

Seasonal Time Series, Cambridge University Press.

Peacock, C. and Baumann, U. (2008): “Globalisation, import prices and

inflation dynamics,” Working Paper No. 359, Bank of England.

Pesaran, M. H., Pettenuzzo, D., and Timmermann, A. (2006): “Fore-

casting Time Series Subject to Multiple Structural Breaks,” The Review of

Economic Studies, 73, 1057–1084.

Pesaran, M. H. and Pick, A. (2011): “Forecast Combination Across Esti-

mation Windows,” Journal of Business & Economic Statistics, 29, 307–318.

Pesaran, M. H., Pick, A., and Pranovich, M. (2013): “Optimal forecasts

in the presence of structural breaks,” Journal of Econometrics, forthcoming.

Pesaran, M. H., Schuermann, T., and Smith, L. V. (2009): “Forecasting

economic and financial variables with global VARs,” International Journal

of Forecasting, 25, 642–675.

217



Pesaran, M. H., Schuermann, T., and Weiner, S. M. (2004): “Modeling

Regional Interdependencies Using a Global Error-Correcting Macroecono-

metric Model,” Journal of Business & Economic Statistics, 22, 129–162.

Pesaran, M. H. and Timmermann, A. (2005): “Small sample properties

of forecasts from autoregressive models under structural breaks,” Journal of

Econometrics, 129, 183–217.

(2007): “Selection of estimation window in the presence of breaks,”

Journal of Econometrics, 137, 134–161.

Pesaran, M. and Timmermann, A. (2002): “Market timing and return

prediction under model instability,” Journal of Empirical Finance, 9, 495–

510.

(2004): “How costly is it to ignore breaks when forecasting the direc-

tion of a time series?” International Journal of Forecasting, 20, 411–425.

Pitarakis, J.-Y. (2004): “Least squares estimation and tests of breaks in

mean and variance under misspecification,” Econometrics Journal, 7, 32–

54.

Pivetta, F. and Reis, R. (2007): “The persistence of inflation in the United

States,” Journal of Economic Dynamics and Control, 31, 1326–1358.

Qu, Z. and Perron, P. (2007): “Estimating and Testing Structural Changes

in Multivariate Regressions,” Econometrica, 75, 459–502.

Robbins, H. (1970): “Statistical Methods Related to the Law of the Iterated

Logarithm,” The Annals of Mathematical Statistics, 41, 1397–1409.

Rossi, B. and Inoue, A. (2012): “Out-of-Sample Forecast Tests Robust to

the Choice of Window Size,” Journal of Business & Economic Statistics, 30,

432–453.

Sensier, M. and van Dijk, D. (2004): “Testing for Volatility Changes in

U.S. Macroeconomic Time Series,” Review of Economics and Statistics, 86,

833–839.

Stock, J. H. and Watson, M. W. (1996): “Evidence on Structural In-

stability in Macroeconomic Time Series Relations,” Journal of Business &

Economic Statistics, 14, 11–30.

(2003): “Forecasting Output and Inflation: The Role of Asset Prices,”

Journal of Economic Literature, 41, 788–829.

218



Summers, P. M. (2005): “What caused the Great Moderation? Some cross-

country evidence,” Economic Review-Federal Reserve Bank of Kansas City,

90, p. 5.

Tian, J. and Anderson, H. M. (2011): “Forecasting Under Structural

Break Uncertainty,” working paper, Monash University, Department of

Econometrics and Business Statistics.

Trichet, J.-C. (2008): “Globalisation, inflation and the ECB monetary pol-

icy,” Lecture at the Barcelona Graduate School of Economics, 14 February.

Downloaded from www.ecb.int/press/.

Wang, P. and Wen, Y. (2007): “Inflation dynamics: A cross-country inves-

tigation,” Journal of Monetary Economics, 54, 2004–2031.

Yao, Y.-C. (1988): “Estimating the number of change-points via Schwarz’

criterion,” Statistics & Probability Letters, 6, 181–189.

Yohei Yamamoto. (2012): m-Break, [MATLAB code]. Downloaded from

http://people.bu.edu/perron/.

219


