
 

 

Supplementary Figure 1 | Mutation rate to rifampicin resistance in relationship 
to glucose concentration ([glc]) in E. coli B strains. Dark and light blue indicate 
respectively the Ara- (REL606) and Ara+ (REL607) ancestral B strains, red indicates 
the strain evolved for 20,000 generations (REL8593A). Circles are monocultures, 
squares are co-cultures; thin lines link estimates from two strains in the same co-
culture. Note that mutation rate axis is logarithmic. 



 

 

 
Supplementary Figure 2 | Mutation rate to rifampicin resistance in relationship 
to the number of generations achieved by E. coli B strains. Dark and light blue 
indicate respectively the Ara- (REL606) and Ara+ (REL607) ancestral B strains, red 
indicates the strain evolved for 20,000 generations (REL8593A). Circles are 
monocultures, squares are co-cultures; thin lines link estimates from two strains in 
the same co-culture. Note that mutation rate axis is logarithmic. 



 

 

 

Supplementary Figure 3 | Mutation rate to rifampicin resistance in relationship 
to relative fitness (wrel) in E. coli B strains. Dark and light blue indicate 
respectively the Ara- (REL606) and Ara+ (REL607) ancestral B strains, red indicates 
the strain evolved for 20,000 generations (REL8593A). Circles are monocultures, 
squares are co-cultures; thin lines link estimates from two strains in the same co-
culture. Note that mutation rate axis is logarithmic. 



 

 
Supplementary Figure 4 | Difference between mutation rate to rifampicin 
resistance for two E. coli strains in co-culture in relationship to the final 
density of cells (D). A wild-type B strain (ancestral B Ara-) was co-cultured with an 
alternatively marked version of the same strain (ancestral B Ara+, pale blue), a wild-
type K-12 strain (green) or a ΔluxS K-12 strain (Orange). Line colours correspond to 
strain colours and are fits from Model 4 (see Methods). The pairings have 
significantly different responses to D (N = 40, F1,36 = 20, P = 6.7 × 10-5). Qualitatively 
the same result is found analysing only the pairs containing a K-12 strain (N = 25, 
F1,21 = 23, P = 1.1 × 10-4 for the same comparison of slope among pairings) 



 

 
Supplementary Figure 5 | Efficacy of synthetic DPD: Bioluminescent response 
of Vibrio harveyi BB170 cultures to added DPD. Biolumiescence is integrated 
over the course of a 16-hour experiment and plotted against concentration of DPD 
added (DPD batches are considered separately: batch A blue and batch B green). 
The lines are fits from Model 9 (see Methods), with details in Supplementary Table 
S9 and Supplementary Fig. S23, indicating that the bioluminescent response 
doubles with addition of 117 (102-137, SE) μM DPD. Note the logarithmic response 
axis.  



 

Supplementary Figure 6 | Effect of synthetic DPD on mutation rate to 
rifampicin resistance in wild-type E. coli K-12 (green) and otherwise isogenic ΔluxS 
(KX1228; orange). The line applies to both strains and is the fit from Model 5 (see 
Methods). All the cultures were grown in 100 mg/ml glucose, some of the points 
without DPD are shared with Fig. 2a. Note the transformed x-axis. For more 
information see Model 5 (in Methods) and main text. 



 

  

 

Supplementary Figure 7 | Mutation rate to rifampicin resistance in a ΔlsrK 
mutant. Mutation rate in the KX1228 ΔlsrK mutant (brown points) was assayed as in 
Fig. 2a. The data from Fig. 2a are shown semi-transparently, colours and shapes as 
given in that figure. The model shown in Fig. 2a (Model 3 in Methods) was re-fitted to 
include the ΔlsrK mutant data. This showed no significant difference between the 
wild-type and the ΔlsrK mutant, therefore these strains were combined, to give the 
fits shown by the lines here, which are very similar to those in Fig. 2a and Model 3. 



 

 

 

Supplementary Figure 8 | Mutation rate to rifampicin resistance in relationship 
to the final population density (D) in E. coli K-12 co-cultures. Chloramphenicol 
marked K-12 cells (KX1102) were co-cultured with either unmarked wild-type 
(squares) or ΔluxS mutant cells (diamonds). While there is a significant effect of co-
cultured strain (Fig. 3) there is no significant effect of population density (see Model 
8 in Methods).  



 

 
Supplementary Figure 9 | Mutation rate to RifR in chloramphenicol resistant E. 
coli K-12 strains either containing a ΔluxS mutation (LUX_CM, orange) or wild-
type (MG_CM, green) co-cultured with either unmarked wild-type (MG) or 
ΔluxS mutant (LUX) cells in either aspartate containing (Asp, purple outline) or 
minimal (min) media. Squares indicate co-cultured strains with the same luxS 
genotype, diamonds with different luxS genotypes. Data points are randomly jittered 
left or right for clarity. The left half is the same data as is shown in Fig. 2b, the lower 
right panel is the same data as is shown in Fig. 3. Crosses and lines are fitted values 
and their 95% confidence intervals from Model 8 (see Methods), which analyses all 
the data simultaneously.  



 

 

 

Supplementary Figure 10 | Expression of selected genes in the wild-type and 
ΔluxS strains measured by quantitative reverse-transcriptase polymerase 
chain reaction. Values are given on a Ct scale (time to reach threshold amplification 
in minutes). Bars indicate the median value, boxes the inter-quartile range and 
whiskers the maximum and minimum values recorded. The dashed red line indicates 
the limit of detection (median value of controls without the reverse-transcriptase 
step). These data are analysed in Model 10 (see Methods), with details in 
Supplementary Table S10 and Supplementary Fig. S24. 



 

 
Supplementary Figure 11 | Correlations between Population density and 
stress, mutation control and DNA methylation in published E. coli gene 
expression data. Spearman rank correlations between the expression of two genes 
are shown by colour, either full correlations (above the diagonal) or partial 
correlations (below the diagonal), controlled for correlations with genes in other the 
other groups (i.e. DNA methylation, Mutation control, Stress or Population density). 
Correlation P-values (corrected for multiple testing, Hommel approach1) are given 
over the boxes. All values are weighted medians across 96 separate studies (see 
Methods). It is possible that two genes may be strongly positively associated in some 
studies but strongly negatively associated in others. In such cases the weighted 
median correlation may be close to zero but the weighted median P-value very low 
(as seen in the partial correlation between mutL and dinB). The number of samples 
used by different studies is highly skewed (median=11 but maximum=261). If many 
small studies contain a correlation in one direction, but the larger studies do not, 
there can be a high median correlation with a relatively high P-value (as seen in the 
full correlation between lsrA and dam). 



 

 

 

Supplementary Figure 12 | Slope values for the Luria-Delbrück curves in 
Escherichia coli strains. Luria-Delbrück curve is calculated as log(Pr) against log(r) 
(leaving out r=0), where Pr is the proportion of cultures that contain r or more 
mutants. Boxes correspond to inter-quartile ranges with a heavy bar at the median. 
Whiskers indicate the range excluding an outlier. Strains from left to right; N = 24, N 
= 21, N = 28, N = 31, N = 47, N = 50, N = 19, respectively.  



 

 

Supplementary Figure 13 | Plating efficiency of pre-existing rifampicin 
resistant (RifR) mutants at different densities of rifampicin sensitive (RifS) cells. 
Boxes correspond to inter-quartile ranges with a heavy bar at the median. Whiskers 
indicate the range excluding an outlier. We performed a fluctuation test with REL606 
(RifS Ara-) using 25, 100, 250 and 1000 mg/l of glucose yielding four different 
population densities, 3.86×107 (N = 14), 1.14×108 (N = 14), 3.04×108 (N = 14) and 
3.67×108 (N = 17), respectively. Before plating of the entire Ara- culture on the 
selective tetrazolium agar medium, we inoculated each Ara- culture with around 25 
pre-isolated REL607 (RifR Ara+) cells.  
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Supplementary Figure 14 | Box-Cox power transformations. Example likelihood 
curves for models with the same main effects as Models 3 and 8 (see Methods). The 
dotted lines give approximate 95% confidence intervals on the maximum likelihood 
transformation. λ is the power in a power transformation of the mutation rate, i.e. a 
value of 1 uses untransformed mutation rate. λ = 0 corresponds to a log transform. 
Other models of mutation rate gave similar curves all centred below 1 and mostly 
including zero. 
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Supplementary Figure 15 | Diagnostic plots for Model 1. Standardised residuals 
by fitted values and normal quantile-quantile plot of standardised residuals 
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Supplementary Figure 16 | Diagnostic plots for Model 2. Standardised residuals 
by fitted values and normal quantile-quantile plot of standardised residuals.  
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Supplementary Figure 17 | Diagnostic plots for Model 3. Standardised residuals 
by fitted values and normal quantile-quantile plot of standardised residuals.  
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Supplementary Figure 18 | Diagnostic plots for Model 4. Standardised residuals 
by fitted values and normal quantile-quantile plot of standardised residuals. 
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Supplementary Figure 19 | Diagnostic plots for Model 5. Standardized residuals 
by fitted values and normal quantile-quantile plot of standardized residuals.  
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Supplementary Figure 20 | Diagnostic plots for Model 6. Standardised residuals 
by fitted values and normal quantile-quantile plot of standardised residuals.  
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Supplementary Figure 21 | Diagnostic plots for Model 7. Standardised residuals 
by fitted values and normal quantile-quantile plot of standardised residuals.  
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Supplementary Figure 22 | Diagnostic plots for Model 8. Standardised residuals 
by fitted values and normal quantile-quantile plot of standardised residuals.  
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Supplementary Figure 23 | Diagnostic plots for Model 9. Standardised residuals 
by fitted values and normal quantile-quantile plot of standardised residuals.  
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Supplementary Figure 24 | Diagnostic plots for Model 10. Standardized residuals 
by fitted values and normal quantile-quantile plot of standardized residuals.  



 

 

 
Degrees of 

freedom 
Value SE F P 

Intercept 1 7.9 0.95 1853 0 

wabs 1 –0.39 0.066 35 2.4 ×10
-6

 

Supplementary Table 1 | ANOVA Table and fitted values for Model 1. See 
Methods for details. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
Degrees of 

freedom 
Value SE F P 

Intercept 1 15 3.6 129 1.5 ×10
-14

 

log2(DAv) 1 –0.47 0.13 14 6.0 ×10
-4

 

Supplementary Table 2 | ANOVA Table and fitted values for Model 2. See 
Methods for details. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 Degrees of 

freedom 

Value SE F P 

Intercept 

(ΔluxS) 

1 2.2 0.067 3560 0 

log2(D)centred 1 0.0019  0.12 23 6.9×10
-6

 

Strain 1 –0.085 0.083 0.25 0.62 

Strain : 

log2(Dcentred) 

1 –0.53 0.15 12 7.3×10
-4

  

Supplementary Table 3 | ANOVA Table and fitted values for Model 3. See 
Methods for details. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 Degrees of 

freedom 

Value SE F P 

Intercept 

(wild-type) 

1 0.41 0.043 112 1.4 ×10
-12

 

log2(Dcentred) 1 –0.012  0.085 3.8 0.058 

StrainPair 1 0.60 0.18 2.8 0.11 

StrainPair : 

log2(Dcentred) 

1 1.7 0.38 20 6.7 ×10
-5

 

Supplementary Table 4 | ANOVA Table and fitted values for Model 4. See 
Methods for details. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 Degrees of 

freedom 

Value SE F P 

Intercept 

(BatchA) 

1 16 0.13 258665 0 

[DPD] 1 0.0085 0.0012 50 1.4×10
-7

 

Batch 1 -0.50 0.12 16 4.5×10
-4

 

Supplementary Table 5. ANOVA Table and fitted values for Model 5. See 
Methods for details. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
Degrees of 

freedom 
Value SE F P 

Intercept 1 2.8 0.052 3018 0 

Transformed([DPD]) 1 0.027 0.0057 22 4.0 ×10
-5

 

Supplementary Table 6 | ANOVA Table and fitted values for Model 6. See 
Methods for details. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 Degrees of 

freedom 

Value SE F P 

Intercept 1 3.1 0.078 7299 0 

log2(D) 1 0.23  0.26 20 9.5×10
-5

 

Asp 1 0.96 0.1 79 4.9×10
-10

 

Asp : log2(D) 1 -1.3 0.44 8.2 0.0074  

Supplementary Table 7 | ANOVA Table and fitted values for Model 7. See 
Methods for details. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
Degrees of 

freedom 
Value SE F P 

Intercept 

(wild-type) 
1 2.9 0.092 2679 0 

Co-cultured 

strain 
1 0.42 0.12 12 0.0034 

Supplementary Table 8 | ANOVA Table and fitted values for Model 8. See 
Methods for details. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 Degrees of 

freedom 

Value SE F P 

Intercept  1 2.8 0.12 9126 0 

Strain (ΔluxS) 1 0.33  0.16 39 4.0×10
-8

 

Competitor (ΔluxS) 1 0.48 0.16 3.5 0.066 

Asp 1 0.43 0.15 50 1.4×10
-9

  

Strain:Competitor 1 -0.60 0.23 1.9 0.17 

Strain:Asp 1 0.33 0.21 18 6.4×10
-5

 

Competitor:Asp 1 -0.45 0.22 0.89 0.35 

Strain:Competitor:Asp 1 0.59 0.30  4.0 0.050 

Supplementary Table 9 | ANOVA Table and fitted values for Model 9. See 
Methods for details. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 Degrees of 

freedom 

Value SE F P 

Intercept (wild-type 

dinB/umuC BlockA) 

1 25 0.31 15928 0 

Gene (lsrB) 2 1.6  0.55 26 5.4×10
-8

 

(lsrK)  3.5 0.64   

Strain 1 1.2 0.64 17 1.6×10
-4

  

Block 1 -3.7 0.45 68 3.1×10
-10

 

Gene:Strain (lsrB) 2 3.9 1.5 4.9 0.012 

(lsrK)  3.8 1.5   

Supplementary Table 10. ANOVA Table and fitted values for Model 10. See 
Methods for details. 

 

 

 

 

 

 

 

 

 



 

Model Slope of log(mutation rate) against log(density) 

±SE and P value for test that it equals zero 

Full model –0.62±0.13 P=3.6x10
-5

 

Averaged D –0.53±0.12 P=2.1 x10
-4 

Reversed (Averaged μ) –0.82±0.11 P=3.3 x10
-5

 

Supplementary Table 11 | Estimates of the effect of density on mutation rate 
under different modelling assumptions. All models relate log2 mutation rate (μ 
cell-1 generation-1) to log2 density (D colony forming units ml-1) for the data plotted in 
Fig. 1. See Supplementary Note 1 for details.  



 

  

Supplementary Note 1 

Testing modelling assumptions.  
(A) Fluctuation Tests. There are many technical factors in fluctuation tests, as used here for 

assaying mutation rates, which in principle could give spurious relationships
2
. For instance, 

while the assumption of a fluctuation test is that the mutations identified via a selective 

environment (here the presence of rifampicin) have no fitness effect in the environment in 

which they arose, there often are fitness effects of antibiotic resistance
3
, potentially leading to 

biases mutation rate estimates. In the case of rifampicin resistance, that cost of resistance 

varies among environments with the demand for RNA polymerase
4
. Therefore, IF that 

demand varied with population density in an appropriate direction, it might provide a 

spurious explanation for the results in Fig. 1. We refute this and other possible spurious 

explanations for these relationships by subsequent experiments:  

 

Any spurious explanations based on interactions between the environment and technical 

features of the fluctuation test cannot explain results based on the difference between two 

strains co-cultured in the same environment (Supplementary Fig. S4). In addition we test 

multiple independent manipulations (manipulation of density, Fig. 1; manipulation of 

genotype Fig. 2a; and manipulation physical, Fig. 2b and social environment, Fig. 3) each of 

which shows a difference and each of which would require its own correlation with a 

technical effect if our results were to have a spurious explanation. 

 

In addition, there are specific assumptions of the fluctuation test that we assessed directly. 

Firstly we calculated the slope of the Luria-Delbrück curve for mutation rate estimates in 

each strain (Supplementary Fig. S11). A perfect Luria-Delbrück distribution has a slope of –1 

and distortions of this curve might tell us about possible deviations from this distribution. 

Although the number of mutants in our system does not have a perfect Luria-Delbrück 

distribution, which is something expected for biological systems, the distribution stays the 

same in all used strains (Supplementary Fig. S12). We also find that the slope values are not 

correlated with population density, mutation rates or with any other parameter used in 

statistical models. Secondly we tested plating efficiency of rifampicin resistant (Rif
R
) cells at 

different densities. We performed a fluctuation test with REL606 (Rif
S
 Ara

-
), as described in 

Methods, using 25, 100, 250 and 1000 mg/l of glucose yielding four different population 

densities. However, before plating of the entire Ara
-
 culture on the selective tetrazolium agar 

medium, we inoculated each Ara
-
 culture with around 25 pre-isolated REL607 (Rif

R
 Ara

+
) 

cells. We observed that Rif
R
 cells present in the culture before plating makes a colony 

regardless of the plated population density (Supplementary Fig. S13). 

 

(B) Linear models. The linear modelling in the analyses here makes the assumption that there 

is no error in the explanatory variables. For the continuous variables used, such as population 

density, this assumption will never be completely correct. We therefore tested the influence 

of this in modelling our data. For regressing mutation rate (μ) against population density (D), 

cell counts in a non-selective environment contribute to the numerator of the explanatory 

variable and the denominator of the response variable. Therefore in this case we have a 

specific expectation for the effect of deviation from the assumption of error-free explanatory 

variables: more error in these counts will give a more negative (or less positive) dependence.  

 



 

The degree of this error may be manipulated by averaging more or less data. This we did for 

the data shown in Fig. 1a, where the experimentally altered variable was nutrient (glucose) 

concentration ([glc]). A full analysis gives a dependence of –0.62±0.13 (Supplementary 

Table S11). Averaging the value of D for each value of [glc] will reduce any error in D. Re-

fitting with averaged (median) D values does indeed give a less negative dependence 

consistent with some effect of error in the explanatory variable. Nonetheless, both estimates 

are significantly negative and well within each others’ error bounds (Supplementary Table 

S11). It is also possible to increase the error by reversing the regression, treating the mutation 

rate as the explanatory variable (the number of mutational events, m, contributes to this value 

and has a substantial error estimated in the course of its maximum likelihood calculation from 

mutant counts). As expected, this shifts the slope in the opposite direction and the absolute 

shift is much greater than the effect of manipulating the error in D by averaging 

(Supplementary Table S11). Nonetheless, the standard errors of all three estimates overlap. 

We therefore conclude that noise in our explanatory variables, specifically our estimates of 

D, is of little importance for our findings. 

 

The small effect identified above could nonetheless have an influence when choosing 

between explanatory variables which may experience the effect to different degrees. This is 

done explicitly in Model 2 (see Methods). Therefore, for this model, we averaged D and other 

estimated explanatory variables within each strain-environment combination (where 

environment includes nutrient, competitor strain, culture volume and growth period) in this 

analyses. Again the dependence on density is less negative than obtained from a naïve 

analysis (as is apparent from Fig. 1b), however, the relationship of mutation rate with 

population density remains highly significant (Model 2 in Methods, Supplementary Table 

S2). It is important to note that this approach is, in general, unnecessarily conservative and 

therefore only taken in Model 2 – variation in population density within strain-environment 

treatments is meaningful in these experiments. This is demonstrated in Fig. 2b and 

Supplementary Fig. S7, where, in each case, all the variation in density for the K-12 strains is 

within a single glucose, volume and incubation time treatment (250 mg/ml Glucose 1ml 

cultures incubated for 24h). Nonetheless, in each case, there is a relationship with density in 

one treatment (aspartate in Fig. 2b, ΔluxS in Supplementary Fig. S4) but not the other. 

 

 

Supplementary Note 2 

In our data, to explain the effect of social environment seen in Fig. 3 by stress-induced 

mutagenesis would require the secretion of a stressful or mutagenic compound by the ΔluxS 

mutant and/or a reduction its depletion of stress-relieving or anti-mutagenic nutrients. This 

effect of ΔluxS on the social environment is complemented (i.e. the difference between a 

wild-type and a ΔluxS environment is removed) by addition of aspartate (Supplementary Fig. 

S9). If the underlying mechanism involved stress-induced mutagenesis, we would infer that 

aspartate is relieving the secretion of a stressful or mutagenic compound by the luxS mutant 

and/or a reduction its depletion of stress-relieving or anti-mutagenic nutrients. We would 

therefore expect that the effect of aspartate on the ΔluxS mutant alone would be a reduction in 

mutation rate. Contrary to this we find a general and significant increase in the mutation rate 

with the addition of aspartate (Supplementary Fig. S9 and Model 9 in Methods). Again, this 

suggests an independence of the MRP identified here and stress-induced mutagenesis. 



 

Supplementary Methods 

#This script reproduces the analysis and figures 1-3 from the main text of the paper 

(Krasovec et al. 2014). 

#It is designed to be run using R (see r-project.org) 

#Reading in the data requires setting the working directory appropriately e.g.:  

#setwd("~/folder_containing_data") 

#(remove the comment sign (#) in the line above and insert an appropriate file path before 

use) 

#This script may either be run in one go, simply to reproduce the figures, by copying and 

pasting this section (from #This script to the date at the end) into a .R file, saving that file 

(e.g. calling it KrasovecCode.R) in the same folder as the data and using the following 

command in R (again remove comment before use): 

#source("KrasovecCode.R") 

#Equally, this script may be worked through line by line to look at the models in more detail. 

#In either case it requires the KrasovecData worksheet of the associated data file exported 

from Excel as a comma separated value file, KrasovecData.csv, which can be read in: 

 

d <- read.csv("KrasovecData.csv", header=TRUE) 

 

#the nlme package is required for the linear models and the RColorBrewer package for the 

colours used in the figures: 

 

require(nlme) 

require(RColorBrewer) 

 

#Each Figure and analysis uses a subset of the data based on the 'Figure' column. Some of the 

data is common between figures 1a and 2a, meaning that some rows are duplicated apart from 

their value in the 'Figure' column. This is made clear by the 'ID' column which is unique for 

each unique row. 

#In each case a model is generated called 'mod' which, if desired, may be inspected using 

commands such as: 



 

#summary(mod) 

#intervals(mod) 

#anova(mod) 

#The diagnostic plots given in supplementary figures may be regenerated in each case using: 

#plot(mod) 

#qqnorm(mod) 

 

#Figure 1a 

 

d1a <- d[d$Figure == "Fig1a", ] 

 

#The model used (Model 1) 

mod <- gls(log2(Mutation_rate_per1e9)~Wabs, data=d1a, 

weights=varPower(form=~Nt_plates)) 

 

#Choose appropriate colours and plot characters 

pch <- 19 

pal <- brewer.pal(8, "Paired") 

cols <- pal[4] 

 

#Create the plot 

pdf("Fig1a.pdf") 

plot(Mutation_rate_per1e9~Wabs, data=d1a, log="y", ylim=c(2.5,11), main="Mutation Rate 

versus Absolute Fitness", type="n", xlab="Wabs", ylab="Mutation rate x 10^9") 

points(Mutation_rate_per1e9~Wabs, data=d1a, pch=pch, col=cols,cex=2) 

lines(d1a$Wabs, 2^fitted(mod), lwd=6) 



 

dev.off()  

 

#Figure 1b 

 

d1b <- d[d$Figure == "Fig1b", ] 

 

#The model used (model 2): 

mod <- lme(log2(Mutation_rate_per1e9)~log2(density_av), random= ~1|set/Experiment, 

data=d1b, weights=varPower(form=~C_plates)) 

 

#Choose appropriate colours and plot characters 

pal <- brewer.pal(8, "Paired") 

cols <- rep(pal[1], nrow(d1b)) 

cols[d1b$Strain == "0_minus"] <- pal[2] 

cols[d1b$Strain == "20_minus"] <- pal[6] 

pch <- rep(15, nrow(d)) 

pch[d1b$Competitor == "none"] <- 19 

 

#create a subset of data containing the co-cultures with mutation rates for both strains only  

d1b_co <- d1b[d1b$Experiment %in% 

unique(d1b$Experiment)[table(d1b$Experiment)==2],] 

 

#Create the plot 

pdf("Fig1b.pdf") 

plot(Mutation_rate_per1e9~density_per_ml, data=d1b, log="xy", main="Mutation Rate 

versus Density", type="n", xlab="Overall culture Density", ylab="Mutation rate x 10^9", 

ylim=c(0.6, 17)) 



 

segments(x0=d1b_co$density_per_ml[as.logical(1:30 %% 2)], 

x1=d1b_co$density_per_ml[as.logical(0:29 %% 2)], 

y0=d1b_co$Mutation_rate_per1e9[as.logical(1:30 %% 2)], 

y1=d1b_co$Mutation_rate_per1e9[as.logical(0:29 %% 2)] ) 

points(Mutation_rate_per1e9~density_per_ml, data=d1b, pch=pch, col=cols, cex=2) 

lines(d1b$density_av[order(d1b$density_av)], 2^fitted(mod, 

level=0)[order(d1b$density_av)], lwd=6) 

dev.off() 

 

#Figure 2a 

 

d2a <- d[d$Figure == "Fig2a", ] 

 

#The model used (Model 3): 

mod <- gls(log2(Mutation_rate_per1e9)~I(log2(density_per_ml)-

log2(mean(density_per_ml)))*Strain, data=d2a, 

weights=varComb(varIdent(form=~1|Strain),varPower(form=~C_plates))) 

 

#Choose appropriate colours and plot characters 

pal <- brewer.pal(8, "Paired") 

cols <- rep(pal[4], nrow(d2a)) 

cols[d2a$Strain == "LUX"] <- pal[8] 

pch <- rep(15, nrow(d2a)) 

pch[d2a$Competitor == "none"] <- 19 

 

#Create the plot 

pdf("Figure2a.pdf") 

plot(Mutation_rate_per1e9~density_per_ml, data=d2a, log="xy", main="Effect of luxS on 

mutation rate plasticity", type="n", xlab="cells/ml", ylab="Mutation rate x 10^9") 



 

points(Mutation_rate_per1e9~density_per_ml, data=d2a, pch=pch, col=cols, cex=1.2) 

 lines(c(max(d2a$density_per_ml[d2a$Strain == "MG"]), 

min(d2a$density_per_ml[d2a$Strain == "MG"])), c(2^min(predict(mod)[d2a$Strain == 

"MG"]), 2^max(predict(mod)[d2a$Strain == "MG"])), lwd=6, col=pal[4]) 

 lines(c(max(d2a$density_per_ml[d2a$Strain == "LUX"]), 

min(d2a$density_per_ml[d2a$Strain == "LUX"])), c(2^min(predict(mod)[d2a$Strain == 

"LUX"]), 2^max(predict(mod)[d2a$Strain == "LUX"])), lwd=6, col=pal[8]) 

dev.off() 

 

#Figure 2b 

 

d2b <- d[d$Figure == "Fig2b", ] 

 

#The model used (Model 7): 

mod<-gls(log2(Mutation_rate_per1e9)~I(log2(density_per_ml)-

mean(log2(density_per_ml)))*aspEnv, data=d2b, 

weights=varPower(form=~Innoculum_size))   

 

#Choose appropriate colours and plot characters 

pal<-brewer.pal(12,"Paired") 

bgcols<-rep(pal[7], nrow(d2b)) 

ecols<-rep(pal[7], nrow(d2b)) 

ecols[d2b$aspEnv=="Asp"]<-pal[10] 

pch <- rep(22, nrow(d)) 

pch[d2b$Competitor=="MG"]<-23 

 

pdf("Figure2b.pdf") 

plot(Mutation_rate_per1e9~density_per_ml, data=d2b, log="xy", main="Effect of Aspartate 

on luxS mutatant plasticity", type="n", xlab="cells/ml", ylab="Mutation rate x 10^9") 



 

points(Mutation_rate_per1e9~density_per_ml, data=d2b, pch=pch, col=ecols,bg=bgcols, 

cex=2, lwd=3) 

  lines(c(max(d2b$density_per_ml[d2b$aspEnv=="Asp" 

]),min(d2b$density_per_ml[d2b$aspEnv=="Asp" ])), 

c(2^min(predict(mod)[d2b$aspEnv=="Asp" ]),2^max(predict(mod)[d2b$aspEnv=="Asp" ])), 

lwd=6, col=pal[10]) 

  

lines(c(min(d2b$density_per_ml[d2b$aspEnv=="min"]),max(d2b$density_per_ml[d2b$aspE

nv=="min"])), 

c(2^min(predict(mod)[d2b$aspEnv=="min"]),2^max(predict(mod)[d2b$aspEnv=="min"])), 

lwd=6, col=pal[7]) 

dev.off() 

 

#Figure 3 

 

d3 <- d[d$Figure == "Fig3", ] 

 

#ensure appropriate factor levels: 

d3$Competitor <- factor(d3$Competitor) 

 

#Create the plot 

pdf("Figure3.pdf") 

plot(Mutation_rate_per1e9~Competitor, data=d3, log="y", main="Effect of social context", 

xlab="Competitor", ylab="Mutation rate x 10^9", ylim=c(4.8, 12.5)) 

dev.off() 

 

#17th March 2014 



 

 Supplementary References 

1. Hommel, G. A Stagewise rejective multiple test procedure based on a modified 

Bonferroni Test. Biometrika 75, 383–386 (1988). 

 

2. Pope, C. F., O'Sullivan, D. M., McHugh, T. D. & Gillespie, S. H. A practical guide to 

measuring mutation rates in antibiotic resistance. Antimicrob. Agents Chemother. 52, 

1209–1214 (2008).  

 

3. Andersson, D. I. The biological cost of mutational antibiotic resistance: any practical 

conclusions? Curr. Opin. Microbiol. 9, 461–465 (2006). 

 

4. Hall, A. R., Iles, J. C. & MacLean, R. C. The fitness cost of rifampicin resistance in 

Pseudomonas aeruginosa depends on demand for RNA polymerase. Genetics 187, 817–

822 (2011). 


