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Mutation rate plasticity in rifampicin resistance
depends on Escherichia coli cell–cell interactions
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Bharat M. Rash1, Manikandan Kadirvel6,7, Sarah Forbes7 & Christopher G. Knight1

Variation of mutation rate at a particular site in a particular genotype, in other words mutation

rate plasticity (MRP), can be caused by stress or ageing. However, mutation rate control by

other factors is less well characterized. Here we show that in wild-type Escherichia coli (K-12

and B strains), the mutation rate to rifampicin resistance is plastic and inversely related to

population density: lowering density can increase mutation rates at least threefold. This MRP

is genetically switchable, dependent on the quorum-sensing gene luxS—specifically its role in

the activated methyl cycle—and is socially mediated via cell–cell interactions. Although we

identify an inverse association of mutation rate with fitness under some circumstances, we

find no functional link with stress-induced mutagenesis. Our experimental manipulation of

mutation rates via the social environment raises the possibility that such manipulation occurs

in nature and could be exploited medically.
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Mutation rate has long been appreciated as a fundamental
factor in evolutionary genetics1,2. In nature, mutation
rates are typically minimized, as far as population

genetic constraints allow3. However, rates of spontaneous
mutation can vary both between3,4 and locally within5,6

genotypes. In particular systems, such as the model bacterium
E. coli, there is abundant variation in mutation rates among
natural isolates7. For a single genotype, the question of whether
and how mutation rates at any particular site might vary
(mutation rate plasticity, MRP) is of particular interest8. Several
theoretical works have shown that increasing mutation rate,
specifically when an organism is displaced from an adaptive peak,
may be advantageous9–11. Indeed, in evolutionary computing,
such MRP is used to optimize performance12. Evidence for MRP
in nature comes from experiments showing that the number of
mutations can increase during environmental13 or genetic
stress14. However, in such cases, many potential causes of MRP
are confounded. This includes direct mutagenic effects of the
environment and any physiological responses, adaptive or
otherwise, affecting mutation rate.

Here, using E. coli, we identify plasticity in the rate of mutation
to rifampicin resistance. We find this MRP to be mediated by the
population density, to be genetically switchable, dependent on the
quorum-sensing gene luxS and to act via cell–cell signalling. This
link between mutation rate and a social system opens up a new
area in which bacteria may manipulate each other and,
potentially, humans may manipulate bacteria. The relationship
with stress-induced mutagenesis is considered and mutation rate
control mechanisms potentially involved are discussed.

Results
Decreasing mutation rate with increasing absolute fitness. To
explore variation in mutation rate within a single genotype, we
used E. coli K-12 cells in classical fluctuation assays15. These
assays identify mutational events in the rpoB gene by counting
cells resistant to the antibiotic rifampicin (RifR) arising in
the absence of rifampicin (non-selective environment). Different
amounts of nutrient were provided (50–1000 mg l! 1 of glucose),
allowing cells to achieve different numbers of generations per day
(that is, different absolute fitness, wabs). We find variation of
mutation rate related to changing wabs (Fig. 1a): mutation
rate doubles with every reduction in wabs by 2.6 (1.9–3.9,
95% confidence interval (CI)) generations per day (testing
slope by analysis of variance (ANOVA): N¼ 30, F1,28¼ 35,
P¼ 2.4# 10! 6; Model 1 in Methods).

MRP mediated by population density. In Fig. 1a, the indepen-
dent variable, wabs, is affected by many parameters, including
culture volume, inoculum size, viability, productivity and nutrient
availability16. In addition, simply modifying available nutrients
confounds different potentially causal effects, such as changes in
the time spent in different phases of the culture cycle. It is
therefore unclear which factor or factors are determining the
observed MRP. To identify such factors, we sought to manipulate
several of them independently of each other within the same
experiment. Specifically, we tested four non-mutually exclusive
hypotheses about this MRP it is (i) a direct response to nutrient
(glucose) concentration; (ii) an effect intrinsic to the strain (for
example, cellular ageing or different cumulative effects of stress
because of different amounts of time or numbers of divisions in
different phases of the culture cycle); (iii) related to population
density; or (iv) related to the competitiveness of the biological
environment. These hypotheses each make different predictions;
specifically, under each hypothesis, respectively, we expect
mutation rate to relate to (i) glucose concentration ([glc]), (ii)

the number of cell divisions, (iii) final population density (D),
or (iv) relative fitness (wrel). As before, we assayed mutation
rates to RifR, except this time we used cocultures of two strains.
This allowed us to test strains with different fitnesses in the
same environment at the same time. To accomplish this, we used
E. coli B strains either ancestral or evolved in minimal glucose
medium for 20,000 generations17. We conducted experiments
in which conditions were varied by manipulating [glc] (50–
1,500 mg l! 1), the strains paired (ancestral or evolved), culture
volume (1, 1.5, 10 and 15 ml) and culture period (B24 or 45 h).
We fitted a linear model for mutation rate containing each
of the factors testing hypotheses (i–iv) above and their
interactions, sequentially removing non-significant effects. We
found that the only significant effect on mutation rate among
those tested was final population density (D) alone (Fig. 1b): a
reduction in D of 77% (61–96%, 95% CI) gives a doubling in
mutation rate (testing slope by ANOVA: N¼ 80, F1,43¼ 14,
P¼ 6.0# 10! 4; Model 2 in Methods; see Supplementary Figs 1–3
for equivalent plots of the other three factors and Supplementary
Note 1 for tests of modelling assumptions). In other words, we
find strong evidence for an effect of final population density on
mutation rate (hypothesis (iii) above), but no such evidence
supporting alternative hypotheses (numbers (i), (ii) and (iv)
above).
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Figure 1 | MRP in E. coli strains. Relationship of mutation rate (m) per cell
(a) to absolute fitness (wabs) in wild-type E. coli K-12, and (b) to final
population density (D) in E. coli B strains. In a, the line is the fitted curve
(log2(m)¼ 7.9!0.39#wabs) from Model 1 (see Methods). In b, dark and
light blue indicate, respectively, the Ara! (REL606) and Araþ (REL607)
ancestral B strains, and red indicates the strain evolved for 20,000
generations (REL8593A). Circles are monocultures, squares are cocultures;
thin lines link estimates from two strains in the same coculture. The line is
the fitted curve (log2(m)¼ 15!4.7# log2(D)) from Model 2. Note that
mutation rate and population density axes are logarithmic.
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MRP dependent on luxS. The identified inverse relationship
between mutation rate and population density opens the question
of the underlying molecular mechanism. Quorum-sensing
mediated by luxS is responsible for a variety of density-dependent
behaviours in bacteria18. We therefore hypothesized that the
identified MRP is dependent on the luxS gene. To test the role of
luxS, we estimated mutation rate to RifRat different densities in an
E. coli K-12 DluxS mutant both alone and in coculture with the
ancestral B Ara! strain. The DluxS mutant grows to approxi-
mately the same density as the K-12 wild-type (for example,
2.4±0.09# 108 ml! 1 and 2.3±0.09# 108 ml! 1, respectively, in
minimal medium with 250 mg l! 1 glucose; mean±s.e., N¼ 12 in
each case) and has, on average, a mutation rate that is not
significantly different (testing strain effect by ANOVA: N¼ 95,
F1,91¼ 0.25, P¼ 0.62; Model 3 in Methods). However, we
observed a significant difference in the slope of mutation rate
in response to D between strains (Fig. 2a, testing interaction effect
by ANOVA: N¼ 95, F1,91¼ 12, P¼ 7.3# 10! 4; Model 3 in
Methods). Furthermore, the DluxS mutant shows a response
(slope) not significantly different from zero (strain contrast test:
N¼ 95, t91¼ 0.015, P¼ 0.99; Model 3 in Methods), showing that

the identified MRP is not only density dependent but also luxS
dependent. The same conclusion may be reached by analysing
cocultures alone (Model 4 in Methods; Supplementary Fig. 4).

LuxS-dependent MRP via the activated methyl cycle. luxS
encodes an enzyme, part of the activated methyl cycle19, that
splits S-ribosyl homocysteine (HCY) to give HCY and
4,5-dihydroxy-2,3-pentanedione (DPD). This reaction is the
unique metabolic route to DPD that forms the quorum-sensing
signal autoinducer 2 (AI-2). HCY is not a unique product of this
reaction, but is depleted in the DluxS mutant19. HCY is a
precursor of various molecules including the structurally
unidentified signalling molecule autoinducer 3 (AI-3)20. We
hypothesized that if MRP is mediated by AI-2 quorum-sensing,
then the DluxS mutant will be functionally complemented by
adding synthetic DPD. Alternatively, if MRP is mediated by other
metabolic effects of luxS deletion, then these effects will be
functionally complemented by adding aspartate to the medium,
which is metabolized to give HCY20. Adding synthetic DPD
(Supplementary Fig. 5 and Model 5 in Methods) to low density
cultures of either wild-type or DluxS mutant, at a range of
concentrations shown to be physiologically active, gives no
evidence for a reduction in either the wild-type or DluxS strain’s
mutation rate (Supplementary Fig. 6). In fact, the mutation rate
shows a slight but significant change in the opposite direction,
increasing with added DPD (testing slope by ANOVA: N¼ 62,
F1,36¼ 22, P¼ 4.0# 10! 5; Model 6 in Methods). In contrast,
supplying aspartate to the medium at a level known to
complement metabolic defects of the DluxS mutant restores the
density dependence to levels seen in the wild-type: a reduction of
49% (33–89%, 95% CI) in density doubles the mutation rate
(Fig. 2b; testing the interaction between aspartate and density
dependence by ANOVA: N¼ 35, F1,31¼ 8.1, P¼ 0.0079; Model 7
in Methods). We therefore conclude that it is the metabolic
product of LuxS, not the known signalling molecule AI-2, that
affects the mutation rate.

This finding, that density-dependent (Fig. 1b) and luxS-
dependent (Fig. 2a) mutation rate is mediated by the activated
methyl cycle, not the AI-2 signalling, is consistent with the fact that
we see similar MRP in both the K-12 (Figs 1a and 2) and B
lineages (Fig. 1b) of E. coli. Unlike K-12 strains, B strains lack
much of the lsr operon (all except lsrB, lsrF and lsrG) used to detect
and process AI-2 (ref. 21). We observe similar independence from
the lsr operon in the K-12 lineage where a DlsrK mutant, lacking
the kinase required for AI-2 uptake and processing, shows MRP
indistinguishable from that of the K-12 wild-type (Supplementary
Fig. 7; testing for difference between genotypes by likelihood ratio
(LR): N¼ 126, LR10,7¼ 3.3, P¼ 0.34).

MRP via cell–cell interactions. The observed wild-type MRP
depends on the biological environment (Figs 1b and 2a),
suggesting action via cell–cell interactions. Yet counter-
intuitively, it is the non-secreted product of LuxS that is required
for MRP. In addition, the effect of the luxS deletion on mutation
rate is not functionally complemented by coculture with the
wild-type (Fig. 2b and Model 7 in Methods). To test explicitly
whether the effect of the DluxS mutation acts via cell–cell inter-
actions, we cocultured K-12 cells marked via chloramphenicol
(Cm) resistance either with wild-type K-12 or DluxS mutants
(both sensitive to Cm). We then measured mutation rates to
RifR in the marked fraction of the population. We find that
populations comprising either combination of strains grow to
very similar final population densities (D¼ 2.4±0.097# 108

and 2.3±0.17# 108 for wild-type and DluxS mutant, respectively,
in minimal medium with 250 mg l! 1 glucose; mean±s.e., N¼ 9
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Figure 2 | Role of luxS gene in MRP. (a) Relationship of mutation rate and
population density (D) in wild-type E. coli K-12 (green) and otherwise
isogenic DluxS mutant (KX1228; orange). Lines are the fits from
Model 3 (see Methods). Note that some data is common with Fig. 1a.
(b) Mutation rate in E. coli DluxS mutant (KX1200) (cocultured with either
wild-type (diamonds) or DluxS mutant (KX1228; squares)) cells in either
aspartate-containing (outlined) or minimal (no outline) media. Lines are the
fits from Model 6. Note the different logarithmic scales used in each plot;
also note that the density axes are shorter than in Fig. 1b, as K-12 strains do
not grow to as high density in this medium as B strains. In a, the range of
densities considered is extended by including cocultures with B strains
(squares), although these do not behave significantly differently to
monocultures (Model 3).

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms4742 ARTICLE

NATURE COMMUNICATIONS | 5:3742 | DOI: 10.1038/ncomms4742 | www.nature.com/naturecommunications 3

& 2014 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


and 10, respectively). However, mutation rate to RifR depends
strongly on the identity of the cocultured strain, not on overall
population density D (Supplementary Fig. 8): average mutation
rate increases by over a third in the presence of the DluxS mutant
relative to the presence of wild-type cells (Fig. 3; testing effect of
biological environment by ANOVA: N¼ 19, F1,17¼ 12,
P¼ 0.0034; Model 8 in Methods). As in Fig. 2b, this effect of the
DluxS mutant may be functionally complemented by aspartate in
the medium, with an increase in average mutation rate
(Supplementary Fig. 9, testing effect of aspartate on average
mutation rate by ANOVA: N¼ 72, F1,64¼ 50, P ¼ 1.4# 10! 9;
Model 9 in Methods). This confirms that the action of luxS is
both via cell–cell interactions and via the activated methyl cycle.
Taken together, it is clear that the MRP we observe is dependent
upon the social environment provided by luxS-dependent
processes.

Hypothesis generation via transcription analysis. In stress-
induced mutagenesis, increases in mutation rate occur
predominantly via induction of error-prone DNA polymerases IV
and V (PolIV and PolV; encoded by the dinB and umuC/D genes,
respectively)22. We therefore assayed transcription of these genes
in the wild-type and DluxS mutant at high density, where we see a
minimized mutation rate in the wild-type, but not in the DluxS
strain (Fig. 2a). We detect expression of both dinB and umuC at
similar levels in the two genotypes (Supplementary Fig. 10, where
we also find that, as expected, luxS-dependent expression of lsr
genes does differ between genotypes). The small differences
that we do see are marginally non-significant in the opposite
direction to that predicted if error-prone DNA polymerases were
responsible for the observed modulation in mutation rate (i.e.,
greater dinB and umuC expression in the wild-type than DluxS
mutant: strain contrast test N¼ 48, t41¼ 2.0, P¼ 0.056; Model 10
in Methods).

Such negative results are potentially misleading, because we
cannot look comprehensively across the culture cycle, associated
environmental differences and relevant genotypes. Therefore, to
generate hypotheses about potential mechanisms involved in the
observed MRP, we looked more widely across growth conditions/
phases, genetic and environmental manipulations by analysing
published expression data23. As a proxy for density-dependent
effects, we considered expression of lsr genes that are transcribed

in response to AI-2. We focused on the correlation of
density-dependent expression with representative downstream
effectors of stress responses, mutation control and DNA
methylation (all directly or indirectly linked with mutational
processes). We identify strong positive correlations of density-
dependent expression with the general stress response and
mutation generation (error-prone polymerase genes). At the
same time, we identify strong negative correlations of density-
dependent expression with the SOS stress response, mutation
repair (mut DNA mismatch repair genes) and methyl transferases
(Fig. 4). It is possible that these strong correlations among several
groups of genes may mask correlations between specific gene
groups. We therefore controlled for correlations with other
groups of genes using partial correlations (Supplementary
Fig. 11). When controlled in this way, the signs of the correla-
tions of density-dependent expression with the SOS stress
response and DNA mismatch repair become less consistent
(notably for mutS). However, the signs of the observed
correlations of density-dependent expression with the general
stress response, error-prone DNA polymerases and methyl
transferases are maintained and in some cases strengthened by
using partial correlations (notably for dcm; Supplementary
Fig. 11).

Discussion
Much of the interest in MRP concerns its potential evolutionary
consequences8. We do not yet know whether an adaptive
explanation is appropriate for the MRP identified here. Theory
shows that such relationships may be adaptive when mutation
rate is inversely related to fitness9–11; the precise nature of the
relationship that maximizes the expected rate of fitness increase is
mathematically derivable under some circumstances24. In such
models, it is only when a population is close to an adaptive peak
that minimizing mutation rate is beneficial, so when a genotype is
displaced from an adaptive peak, the deleterious effects of a raised
mutation rate are outweighed by the potential for increasing
fitness via beneficial mutations. Fitness is the important variable
theoretically, whereas we find that cell density is the important
variable in vivo. These variables will be correlated only under
some circumstances. Thus, we see fitness-dependent MRP only in
some cases (for example, a relationship in Fig. 1a, but not in
Supplementary Fig. 2).

Nonetheless, the direction of MRP we see in response to cell
density is both consistent with adaptive theory and biologically
remarkable. The paradigm of stress-induced mutagenesis8 relates
the induction of error-prone DNA polymerases (PolIV and
PolV)22 and the downregulation of repair proteins25 to the key
stationary-phase stress factor RpoS. RpoS is expressed only late in
the culture cycle and therefore at relatively high densities. On its
own, this would, intuitively, lead to a positive relationship
between cell density and mutation rate, the opposite of what we
find (we are aware of one other study involving an inverse
relationship between population density and the frequency of
reversion in Salmonella typhimurium Thy! mutants26). This
intuition is largely confirmed by our analysis of published E. coli
expression data (Fig. 4 and Supplementary Fig. 11). As expected,
stress responses, particularly the general stress response
(members of the RpoS regulon), are typically positively
correlated with PolIV and PolV gene expression and negatively
correlated with mut gene expression. However, both the general
stress response and expression of error-prone DNA polymerases
are positively correlated with the density-induced expression in
this data; the opposite of what would be expected if this MRP
were explained by stress-induced mutagenesis. This is consistent
with the effect of aspartate that we identify (see Supplementary
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Figure 3 | Role of social context in MRP. Mutation rate to RifR in E. coli
K-12 (KX1102) dependent on cocultured strain: either wild-type or DluxS
mutant (KX1228). Heavy bars are median values, boxes indicate the
interquartile range, and whiskers indicate the maximum and minimum
values recorded. Mutation rate in KX1102 is significantly different
depending on the cocultured strain (N¼ 19, F1,17¼ 12, P¼0.0034;
Model 8), but not on overall culture density (Supplementary Fig. 8;
Model 8). Note the logarithmic scale on the mutation rate axis.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms4742

4 NATURE COMMUNICATIONS | 5:3742 | DOI: 10.1038/ncomms4742 | www.nature.com/naturecommunications

& 2014 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


Note 2) and existing work demonstrating that, in glucose minimal
media as used here, RpoS expression is not functionally related to
population density27. Therefore, while we cannot rule out the
possibility that some aspects of mechanism may be shared with
RpoS or SOS stress responses, or that relationships may be
identified via a more nuanced interpretation of gene regulation or
what constitutes ‘stress’, the MRP observed here does not appear
to be functionally related to stress.

Our data suggest hypotheses for the mutagenic mechanism(s)
underlying the MRP identified. For instance, the inverse
relationship between population density and mutS expression28

(see also Fig. 4) may be caused primarily by the correlations of
each with stress responses rather than any specific relationship
between the two (Supplementary Fig. 11). Modulation of mutS
expression, independent of stress, could therefore be involved in
the minimization of mutation rate that we see at high densities
(Figs 1b and 2a). Another hypothesis comes from our finding that
it is the metabolic role of luxS that is involved in the modulation
of mutation rate. This metabolic role is in the activated methyl
cycle, which is named because of its importance in mediating the
availability of activated methyl groups in the cell. These methyl
groups are used, for instance, in DNA methylation, something
that has long been known to affect mutation rates at particular
sites29. Specifically, adenine residues in GATC sites are
methylated by Dam methylase30 and these are mutational hot
spots31. It is notable that two of the key positions in the rpoB
gene, where mutation results in RifR in wild-type E. coli K-12, as
assayed here, are the adenines in a GATC site (position 1,714 on
the positive and 1,715 on the negative strand)32. It is therefore
reasonable to hypothesize that the modulation in mutation rate
we observe could be effected by variation in the methylation of
GATC mutational hot spots by Dam methyl transferase. This
would also be consistent with the expression of the dam gene,
which is inversely associated with density-dependent expression
(Fig. 4 and Supplementary Fig. 11). Targets for the Dcm
methylase are also mutational hot spots29 and dcm expression
is also inversely correlated with density-dependent expression
(Supplementary Fig. 11). However, sites resulting in RifR do not

include nucleotides methylated by Dcm, hence, even if there is
MRP involving such sites, we were not able to observe it in
our assays. Also, E. coli B strains, which display MRP (Fig. 1b),
are lacking in Dcm activity33. We therefore believe that
Dam-mediated rather than Dcm-mediated modulation of
mutational hot spots provides the most plausible hypothetical
mechanism for the MRP identified here. The testing of such
hypotheses and elucidation of relevant pathways is an important
target for future work.

The mechanism of MRP we have identified is dependent on
luxS, which in turn is involved in communication within and
between diverse microbial species18. It has recently been
suggested that polymorphism in E. coli of genes downstream of
luxS, such as lsrK considered here, is maintained by a process of
social evolution21. In this scenario, strains lacking such genes
(for example, E. coli B used here) are social cheats. The fact that
we find mutation rate to be under the control of luxS-mediated
cell–cell interactions adds a new dimension to such social
processes. Finally, as many virulence factors are under quorum-
sensing control34, quorum-sensing is a current target for
anti-virulence drugs35. When we remove the luxS-dependent
quorum-sensing of some cells in a mixed coculture, we boost the
emergence of de novo antibiotic resistance in other cells (Fig. 3).
Such a boost could be a significant side effect if it also occurred in
response to quorum-sensing inhibitors. Equally, we have shown
that this mechanism of density-dependent MRP is independent of
the best-characterized E. coli quorum-sensing signalling system
(lsrK-dependent AI-2 signalling). We therefore speculate that
enhancing this alternative cell–cell interaction (as we do in
Figs 1–3 by increasing the density of interacting cells) may be a
route to slow the pervasive emergence of microbial anti-
biotic resistance36, thereby improving the efficacy of antibiotic
treatment.

Methods
Strains. E. coli K-12 strains KX1102 (luxSþ lsrKþ Araþ DlacZYA::Cm),
KX1200(DluxS::Cm lsrKþ Araþ ) and KX1228 (DluxSlsrKþ Araþ ) were derived
from the wild-type K-12MG1665 (luxSþ lsrKþ Araþ )37. The lsrK::Cm deletion in
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the parent of KX1448 (luxSþDlsrK Araþ ) was constructed by Karina Xavier
using the red swap protocol described by Datsenko and Wanner38. To eliminate
the Cm-resistance cassette, the FLP recombinase expressing plasmid pCP20 was
introduced in the parent yielding KX1448 (ref. 38). E. coli B strain REL606
(luxSþDlsrKAra! ) is the ancestor of all B strains used in this study. REL607
(luxSþ DlsrKAraþ ) is a spontaneous Araþ revertant from REL606 (ref. 17).
REL8593A Ara-1 (luxSþDlsrK Ara! ) was derived from REL606 after 20,000
generations of batch culture in a glucose-limited environment17,39. During
experimental evolution the fitness of REL8593A increased by B70% relative to
REL606 and REL607 via several beneficial mutations39. REL8593A retains the
ancestral mutation rate40. Strains in cocultures are distinguished by a visible
arabinose (Ara) marker or Cm-resistance marker. B and K-12 strains used in this
study possess an rpoB gene with an identical DNA sequence and it is located on the
same position within the genome.

Media. We used Milli-Q water for all media. Tetrazolium arabinose agar (TA) and
Davis minimal medium (DM) were prepared according to Lenski et al.17 (on TA
agar Ara! strains are red, and Araþ strains are white or pinkish). Magnesium,
thiamine, carbon source (3 g l! 1 L-arabinose or various concentrations of
D-glucose), tetrazolium red (Sigma T8877) and 0.5 mM aspartate dipeptide
(BACHEM) were sterile filtered and added to a cooled medium as necessary.
Selective TA medium is TA supplemented with freshly prepared antibiotic
50mg ml! 1 rifampicin. For KX1102, selective TA was supplemented with both
50mg ml! 1 of rifampicin (Rif) and 25 mg ml! 1 of Cm. For all cell dilutions, sterile
saline (8.5 g l! 1 NaCl) was used. Media were solidified as necessary with 15 g l! 1

of agar (Difco).

Fluctuation tests. We used fluctuation tests designed by Luria and Delbrück15.
Specifically, strains were first inoculated from frozen stock and grown in 10 ml
liquid LB medium at 37 !C (shaken at 120 r.p.m.) to OD600 ¼B1 (B7 h). As a
preconditioning step, each strain was transferred (via a 2,000-fold dilution) to
10 ml of non-selective liquid DM medium supplemented with a particular
concentration (80–1,500 mg l! 1) of glucose and allowed to grow overnight at 37 !C
(120 r.p.m.). Cells were again diluted into fresh medium giving N0 (the initial
number of viable cells, containing no rifampicin resistant, RifR, mutants) of
B7,000. The same medium was used as in the preconditioning step. Where N0
included two strains, they were distinguished by alternative Ara- or Cm-resistance
markers. Three volumes of cultures were used: 1 and 1.5 ml cultures were grown in
96 deep-well plates, and 10 ml cultures in glass universal tubes. Cultures were then
grown to saturation (24–28 h at 37 !C at 250 r.p.m.). To minimize spatial effects, we
positioned each independent culture on the plate randomly. The final number of
viable cells, Nt, was determined by plating an appropriate dilution on solid non-
selective TA medium. Nt was calculated with 3–6 cultures per mutation rate
estimate. Evaporation (routinely monitored by weighing plate before and after
incubation) was accounted for in the Nt value. For 1 ml cultures, this was on
average 12% of the population density, calculated per millilitre of the medium. We
obtained the observed number of RifR mutants, r, by plating the entirety of
remaining cultures (at least 12 per estimate) onto solid selective TA medium that
allows spontaneous RifR mutants to produce colonies. Plates were incubated at
37 !C and mutants were counted at the earliest possible time after plating.
For Rif plates, this was 44–48 h, when both Rif and Cm were used the incubation
time was 68–72 h.

For Figs 1a,b and 2a,b and Fig. 3 we used 10, 18, 13, 7 and 6 independent
experimental blocks, respectively. Across Fig. 1a,b, the number of plates per
estimation is at least 12 (median¼ 17, interquartile range 13–21), across Fig. 2a,b is
at least 17 (median¼ 21, interquartile range 20–21) and across Fig. 3 is at least 21
(median¼ 21, interquartile range 21–23).

Estimation of mutation rates. For calculating the number of mutational events m,
we used the Ma–Sandri–Sarkar maximum-likelihood method41,42. This method is
valid over the entire range of values of m43,44 and is implemented by the FALCOR
web tool45 that uses Stewart’s Equation 1 to calculate s.d. of m46. The mutation rate
per cell per generation, m, is calculated as m divided by the number of cells at
risk, Nt. Only values of m 40.3 were considered to be valid44 and were analysed
further.

Fitness assay. In two-strain fluctuation tests, the neutral Ara marker or Cm
resistance allowed us to assess the initial and final number of viable cells (N0 and
Nt respectively) of the two strains. From these values we calculated each strain’s
realized Malthusian parameter log(Nt/N0). Relative fitness (wrel) was then calcu-
lated as the ratio of the realized Malthusian parameters17, averaged across 3–6
replicates. When we used one strain in a fluctuation test wrel was designated as 1.
Absolute fitness (wabs) was measured as number of generations (G) per 24 h,
calculated as G¼ log2(Nt/N0)/t, where t is time in days.

In vitro synthesis of AI-2. In vitro synthesis of (S)-DPD (AI-2) was carried out as
previously described47. We supplemented DM medium with 1, 10, 100, 400 and
1,000 mM of synthetic AI-2.

Bioluminescence assay. Standard bioluminescence assay was performed
according to Surette and Bassler48. Bioluminescence were integrated across a 16-h
culture of Vibrio harveyi BB170, ATCC number BAA-1117, at 30 !C with aeration
in AB medium, with the given concentration of DPD. Overnight cultures were
diluted to an OD600 of 0.2 and then further diluted to 1:5,000 in fresh AB medium.
Cultures (180 ml) were then aliquotted in a 96-well plate. Bioluminescence was
recorded every 30 min using a Biotek Synergy-2 luminometer.

Quantitative real-time PCR. Primers were designed using the tool available at
Invitrogen (http://tools.lifetechnologies.com/content.cfm?pageid=9716) to give a
product between 70 and 200 bp. Primer sequences are the following: lsrB forward
(F): (50-CCCAGTGTTTCTGGTCAGGT-30) and reverse (R): (50-AACCGCAGA
AACGATAATGG-30), lsrK F:(50-TCGACACCTATACGCTGCTG-30) and
R:(50-CGCAGGTGATACCAGGTTTT-30), dinB F:(50-ACGCCTACAAAGAAGC
CTCA-30) and R:(50-TTGCAGCTCGTTGAAGATTG-30), umuC F:(50-TGGGGGA
TTTCTTCAGTCAG-30) and R:(50-TTCCTCTGCCCTCTTTAGCA-30). The
duration of the reverse transcription reaction was 60 min at 45 !C, the reaction was
stopped at 95 !C for 15 min. Reverse transcription products were subjected to 50
cycles of PCR amplification (1 min at 95 !C for denaturation, 1 min at 62 !C for
annealing and 30 s at 72 !C for extension). At the end, we run a dissociation curve
by gradually increasing temperature from 55 to 95 !C (0.2 !C per second). The
iScript One-Step RT-PCR Kit with SYBR Green was used. All reactions were
performed with Bio-Rad (M J Research) Chromo4 real-time PCR machine, and we
used Opticon Monitor 3 for analysis.

Analysis of published expression data. Data were taken from the Colombos
transcription database version 2 (20131118), containing 131 different studies
covering a wide range of environmental and genetic perturbations in E. coli23. For
all combinations of genes of interest, rank correlations of expression and associated
P values were calculated across samples within a single study. In each case, the
median value of the correlation and P value was calculated across studies, weighted
by –log10(P) (that is, a weighting from 0 to 16, the limit of numerical accuracy, in
favour of studies where strong correlations were found or that were powerful
enough to find weaker correlations). We included all studies where there was
sufficient data to calculate both full and partial correlations. For partial correlations
this requires that, when controlling for correlations with N other genes, there are at
least Nþ 3 samples with data for all Nþ 2 genes. Ninety-six studies met these
criteria for all genes of interest and were included. Only two example of genes of
interest were taken for each subgroup, as increasing the number of genes reduces
the number of studies in which there are sufficient data available to calculate
correlations. However, similar results are found using different representative
genes.

Statistical analysis. All statistical models were fitted using the nlme package
in R49. This enabled the inclusion within the same model of experimental factors
(fixed effects), blocking effects (random effects) and factors affecting variance
(giving heteroscedasticity). Note that many of the models are heteroscedastic and
accounting for this involves fitting one or more parameters. Therefore, the P values
used in model simplification (comparing two models one with and one without an
effect of interest, where heteroscedasticity parameter(s) may be fitted differently in
each case) will not be identical to the P values given in the ANOVA tables for
effects within a single model (Supplementary Tables 1–10). To see how we tested
model assumptions, see Supplementary Note 1, Supplementary Figs 12 and 13 and
Supplementary Table 11. Box–Cox power transformations50 of mutation rate in
models with mutation rate as the response consistently gave a maximum likelihood
for a power (l) significantly o1 (untransformed mutation rate), and not
significantly different from zero (log-transformed mutation rate); see
Supplementary Fig. 14. Therefore, log2-transformed mutation rate was considered
in all the models below. The same was true of modelling bioluminescence (Model 5
below). Details of models and their fitting are given below and diagnostic plots in
Supplementary Figs 15–24. ANOVA tables for each model are given in
Supplementary Tables 1–10. Where relevant in those tables, the level of a factor is
given in parentheses next to an effect (for example, ‘Intercept (wild-type)’ implies
that the intercept is the value for the wild-type, and a subsequent ‘Strain’ effect will
be the difference of another strain considered from that).

Model 1. The model giving the fitted line in Fig. 1a is the log2 mutation rate as a
function of absolute fitness (wabs). A random effect of experimental block explained
only a tiny proportion of the variance (6.0# 10! 8) and was, therefore, not
included in the final model (the same applies to each of the models below). Various
experimental effects could in principle affect the variability of results (hetero-
scedasticity), specifically: experimental blocks again and their order, the number of
plates used to estimate the final population size and the number of mutation events
(m), the estimated value and coefficient of variation of m, the estimated density of
the culture (D) and fitted value of the mutation rate, the estimated inoculum size,
the proportion of the culture remaining following evaporation and glucose
concentration ([glc] treated as either a continuous or discrete variable). Models
including each of these effects were fitted and compared, plus models containing
combinations of effects that individually improved the model. The best model
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(lowest Akaike information criterion, AIC) was achieved allowing the variance to
change as [number of plates used to estimate the final population size]–1.6. See
Supplementary Table 1, Fig. 1a and Supplementary Fig. 15.

Model 2. Glucose concentration ([glc]), absolute fitness (wabs), final culture density
(log2(D)) and relative fitness (wrel), plus all interactions, were considered as
explanatory variables for mutation rate measured for strains in cocultures including
both ancestral and evolved strains (20,000 generations in minimal glucose). To
minimize any issues with error in these explanatory variables (Supplementary
Note 1), the median (for example, Dmed) of each of these values was used within
each strain–environment combination (where environment includes nutrient,
competitor strain, culture volume and growth period; for Dmed there were 2
(median) 1.25–3 (interquartile range) measurements for each of 30 unique strain–
environment combinations). There is also potential for pseudoreplication in the
cases where mutation rate estimates for both strains in a culture were available
(Fig. 1b). This was accounted for by including a random effect of culture (nested
within experimental block) in the model (giving s.d.¼ 0.56 and 0.45 at block and
culture level respectively, with residual s.d.¼ 81). This model was simplified,
sequentially removing non-significant effects not required in higher-level interac-
tions until any further removal resulted in a significantly worse model (LR test
Po0.05, that is, finding the minimal adequate model). Heteroscedasticity relating
to experimental variables was tested for as above, including the effect of strain
(either the strain for which the mutation estimate was made or the cocultured
strain, either separating the alternatively marked versions of the ancestral B strain
or not) and competition time (in hours). The resulting model contained only the
effect of final culture density (log2(D)), with variance increasing as [number of
plates used for estimating the number of mutational events]–2.0. See Supplementary
Table 2, Fig. 1b and Supplementary Fig. 16.

Model 3. Mutation rate was considered as a response to strain (wild-type K-12
or DluxS), cocultured strain (in monocultures this was the strain itself and in
cocultures the wild-type B strain REL606) and density (log2(D), centred on the
average density: log2(D)centred) and their interactions. Testing the experimental
variables as above, significant heteroscedasticity among strains was identified in the
final model with the DluxS mutant strain having 1.4 times the variance of the other
strains and variance increasing as [number of plates used to estimate the final
population size]–1.0. This model was simplified by sequentially removing non-
significant effects not required in higher-level interactions until any further
removal resulted in a significantly worse model (LR test Po0.05, that is, finding the
minimal adequate model). The resulting model contained no effect of cocultured
strain, only the effect of strain, final culture density (log2(D)centred) and their
interaction. See Supplementary Table 3, Fig. 2a and Supplementary Fig. 17.

Model 4. The difference in mutation rate between two strains in coculture was
considered as function of final population density (log2(D), centred on the average
density: log2(D)centred), strain pairing (wild-type K-12, DluxS or ancestral B Araþ ,
each paired with ancestral B Ara! ) and their interaction. Heteroscedasticity
associated with experimental variables was tested for as above, although where
appropriate, variables were tested for each cocultured strain separately (either the
‘winning’ or ‘losing’ strain) and together (for example, when asking whether the
number of mutational events estimated had an effect on variance, the numbers for
each strain separately and the total number of events for both strains were all
tested). Variance was found to increase with [fitted value]1.3 and to be 2.7-fold
greater in competitions where the B Araþ strain was out-competed. The fitted
lines for K-12 wild-type and ancestral B Araþ were very similar, giving non-
significant treatment contrasts between them (P¼ 0.11 for both the main effect and
interaction with density) and with higher P values than contrasts between other
pairs of strains. Therefore, these two strains were combined, which improved the
model (lower AIC, LR7,9¼ 4.4, P¼ 0.11). See Supplementary Table 4 and
Supplementary Figs 4 and 18.

Model 5. log2(Bioluminescence), where Bioluminescence is integrated over the
course of the experiment, was considered as a response to the concentration of
DPD added ([DPD]), the batch of DPD used and their interaction. The interaction
was non-significant (LR8,7¼ 2.3, P¼ 0.13) but both main effects were significant.
Heteroscedasticity relating to experimental variables was tested for as above, var-
iance increasing significantly as [fitted value]42 and with decreasing DPD
concentration (relative variance of 1 for 6.25 mM DPD, 0.2 for concentrations of
12.5–50 mM and 0.066 for 100mM). See Supplementary Table 5, and
Supplementary Figs 5 and 19.

Model 6. Mutation rate was considered as a response to strain (wild-type (K-12)
or DluxS), DPD concentration and their interaction. As the shape of any DPD
concentration response was unknown, power transformation was used (Box–Cox
as above), which gave a maximum likelihood for a transformation close to loga-
rithmic (l¼ 0.099). This model was simplified, sequentially removing non-sig-
nificant effects (not required in the interaction) until any further removal resulted
in a significantly worse model (LR test Po0.05; that is, finding the minimal

adequate model). Heteroscedasticity associated with experimental variables was
tested for as above. Variance was found change as [number of plates used to
estimate the mutation rate]! 2.6. The resulting model contained only the effect of
DPD concentration. See Supplementary Table 6 and Supplementary Fig. 20.

Model 7. Mutation rate in the DluxS CM-marked mutant was considered as a
response to culture density (D), competitor (wild-type K-12 or DluxS), aspartate
(presence/absence) and all possible interactions. This model was simplified,
sequentially removing non-significant effects not required in higher-level interac-
tions until any further removal resulted in a significantly worse model (LR test
Po0.05, that is, finding the minimal adequate model). Heteroscedasticity relating
to experimental variables was tested for as above, variance increasing significantly
as [inoculum size]–1.7 in the final model. The final model contained only the effect
of final culture density (D), the effect of aspartate and their interaction. See
Supplementary Table 7, Fig. 2b and Supplementary Fig. 21.

Model 8. The final culture density (log2(D)), the identity of the cocultured strain
(wild-type or the DluxS mutant) and their interaction were considered as expla-
natory variables for mutation rate measured in the Cm-marked wild-type strain.
This model was simplified, sequentially removing non-significant effects, not
required in the interaction, until any further removal resulted in a significantly
worse model (LR test Po0.05, that is, finding the minimal adequate model).
Heteroscedasticity relating to experimental variables was tested for as above. The
resulting model contained only the effect of cocultured strain, allowing the variance
to increase as [coefficient of variation of m]0.81. See Fig. 3, Supplementary Table 8
and Supplementary Figs 8 and 22.

Model 9. Mutation rate was considered in response to strain (CM-marked
wild-type or DluxS mutant), competitor (wild-type (K-12) or DluxS) and aspartate
(presence/absence) and all possible interactions. Removal of the three-way
interaction made the model significantly worse (LR10,9¼ 4.3 P¼ 0.037 despite its
marginally non-significant P value by ANOVA, see Supplementary Table 8, AIC
was also lower for the complete model than any simplification of it), therefore
no simplification was possible. Heteroscedasticity relating to experimental
variables was tested for as above, variance increasing as [m]0.25. See Supplementary
Table 9, and Supplementary Figs 9 and 23.

Model 10. Expression (measured as Ct, the time taken in minutes to reach a
threshold of amplification) was considered as a response to the particular genes
assayed (dinB, umuC, lsrB and lsrK), the strain (wild-type or DluxS) and their
interaction, including an effect of experimental block. Both the interaction and the
experimental block effect were significant (Po0.05 comparing a reduced model to
the full model). However, the results for dinB and umuC were very similar;
considering these genes together improved the model (lower AIC, LR11,13¼ 3.6
P¼ 0.17). Heteroscedasticity relating to experimental variables was tested for as
above, variance increasing significantly as [fitted value]2.7. Variance also differed
among strains (relative variance for wild-type¼ 1, for DluxS¼ 1.7) and experi-
mental blocks (block A¼ 1 and block B¼ 2.5) See Supplementary Table 10, and
Supplementary Figs 10 and 24.

The data and R code used to construct Figs 1–3 and their associated models
are available as Supplementary Data set 1 and Supplementary Methods,
respectively.
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