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Abstract

A thesis submitted for the degree of Master of Philosophy

Title: Dynamic Program Analysis and Optimization under DynamoRIO

By Naweiluo Zhou, The University of Manchester, 5th February 2014

The thesis presents five experiments using DynamoRIO to analyse and optimize ma-

chine codes at runtime in various ways and observe the effectof each optimisation

using the SPEC CPU2006 benchmarks as test case codes.

Software often stays unchanged for periods measured in years, while new CPU

chips are introduced every 18 months or so. In addition, it isoften not realized how

modern CPU chips adjust their behaviour, and their performance, in response to dy-

namic conditions arising in the software that is running. Dynamic optimization is

carried out while a program runs. It calls on the knowledge ofruntime behaviour of

the program, which causes high runtime overhead.

Programs can show performance gain by applying removal of redundant instruc-

tions, strength reduction, instruction alignment and persistent code. Strength reduction

replaces expensive instructions with cheap counterparts.The code layout in the mem-

ory could affect the cache miss rate and the branch mis-prediction rate of the proces-

sor, which affect program performance. An optimized program could be recorded as

persistent cache, then loaded directly in the subsequent calls. One dynamic program

analysis method, glacial address propagation, is also presented. The values of glacial

indirect addresses change slowly, making each value act as aconstant address for a pe-

riod, thus enabling a cascade of optimizations. To accelerate information processing,

profile information is processed by multiple threads in parallel.

Therefore, programs can be made to run more quickly using a variety of optimiza-

tion carried out at runtime, aided by observation of controlflow, data flow, and memory

access patterns of programs. Future work could perform static optimization before dy-

namic optimization. The hardware power consumption will betaken into account.
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Symbols

Boolean Test

test if two instructions’ minterms of the Boolean argumentsmatch. 38

Constant propagation

analyse a variable whose value is a constant. 30

DynamoRIO basic block

a sequence of instructions ending with a control transfer instruction. 45

DynamoRIO trace

a piece of hot code constructed by modified NET algorithm. 32,45

DynamoRIO

a runtime code manipulation system. 44

Mojo fragment

a piece of code with additional control transfer instructions in Mojo. 48

Mojo path

consists of multiple basic blocks. 48

Probabilistic Test

test if the output results match the original program. 38

SPEC CPU2006

a benchmark suite. 60

address profile

memory addresses references. 29

17



18 Glossary

application thread

works in DynamoRIO’s code cache. 90

basic block cache

DynamoRIO’s code cache. 45

benchmark

a computer program that performs set operations. 61

binary translation

translate one type of executable to another. 41

client thread

run natively. 90

client

perform runtime code manipulation. 46

code cache

a part of memory space allocated by an optimizer. 28

context switch

DynamoRIO saves and restores the general-purpose registers, the condition codes

(eflags register) and any operating system dependent state.45

context

information of integer registers, flag registers, instruction pointers and the pro-

gram stacks. 36

control flow profile

information of program execution path. 29

dynamic optimization

performs optimization during program execution. 27

equivalence tests

test if two instructions perform the same function. 38

fragment

another expression of trace. 28
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glacial address propagation

label the indirect addresses with useful properties. 85

glacial variables

slowly change variables. 30

hot

the wordhot in this thesis means frequently-executed. 23

instrumentation

a technology for inserting extra codes into a program. 51

just-in-time compilation

compile a machine-independent program for a processor. 41

offline profiling

performed before the program executes. 29

online profiling

records the information during program execution. 29

path

another expression of trace. 28

profile

information of the distribution of call sites, parameter values, the execution times

of each basic block of the program,etc. 29

reference workload

simulate the function of the real application. 61

stage level

a stage level is a basic block labelled with useful properties. 86

stage

a set of basic blocks, a stage ends with a special control transfer instruction. 86

static optimization

optimizes the program during compile time. 27

test workload

a simple version of reference workload. 61
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trace cache

DynamoRIO’s code cache. 45

trace

a trace in a dynamic optimizer is a piece of code which is frequently executed.

28

traditional basic block

a sequence of instructions with a single entry and single exit. 36

traditional trace

a large sequence of instructions. 36

train workload

takes more time to finish than the test workload. 61

transparent optimization

take binary executable and re-optimize it. 41

value profile

information of the specific values. 29

L

LSD

Loop Stream Detector. 38
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Chapter 1

Introduction

Program optimization is ubiquitous, as it improves programperformance though either

reducing the program size or accelerating program execution. Programs run faster on

newer generation CPU silicon. Production software, though, often stays unchanged for

periods measured in years, while new CPU chips are introduced every 18 months or

so. In addition, it is often not realized how modern CPU chipsadjust their behaviour,

and their performance, in response to dynamic conditions arising in the program that is

running. For example, a modern CPU chip will adjust the orderof instructions issued,

the memory references it carries out, and the order in which it fetches instructions

depending on the exact pattern of execution in recent history, since it uses its own

observation of that history to attempt to run future instructions more speedily.

A compiler takes the high-level input source program and outputs the equivalent

but low-level sequences of instructions which are usually machine codes. Compilation

mainly includes five phases [3]: lexical analysis, syntax analysis, intermediate code

generation, code optimization and code generation. Code optimization carried out

during compile time is called static optimization (detailsare given in Section 2.6) and

no online information is available. In contrast, Dynamic optimization (details are given

in Section 2.7) is performed as the program runs, enabling itto call on knowledge about

the runtime behaviour of the program.

Modern software applications heavily make use of shared libraries, dynamic class

loading, virtual functions, plugins, dynamically-generated code, and other dynamic

mechanisms. Optimization decisions really need to be deferred until all the relevant in-

formation is available. Dynamic code optimization shows its advantage over static op-

timization in four respects (the detail will be covered in Chapter 2). First and foremost,

22
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it makes the program work more efficiently compared with static optimization. Sec-

ondly, dynamic optimization makes use of prediction of runtime program behaviour, as

runtime profile information is available. Thirdly, modern software [7] is being shipped

as a collection of DLLs (Dynamically Linked Libraries), making it difficult for a static

compiler to analyse the whole program [11]. Finally, dynamic code manipulation sys-

tems can solve hardware compatibility problems for cross-platform application-level

virtualization (e.g.Apple Rosetta1).

However, dynamic optimization suffers from its own problems. The most signif-

icant disadvantage is that it slows down program execution due to collection of the

runtime information (e.g. hot2 region analysis, memory usage analysis). A number of

runtime systems, such as Dynamo [15], DynamoRIO [13] and Wiggins/Redstone [18],

have been developed in order to perform runtime code optimization and also confine

overhead to a low level.

The most well-known and widely-used code manipulation system is the Java Vir-

tual Machine.3 Figure 1.1 gives a view of where these runtime code manipulation

systems (known as virtual systems) reside in a compilation and execution procedure.

The left of the figure shows the system without the virtual system. The right of the

figure shows the system with the virtual system. The details of all these systems are

presented in Chapter 2.

Figure 1.1: The working layer of virtual systems. The left side is the traditional view;
the right side is the virtual system view

The thesis focuses on dynamic program analysis and optimization, as dynamic op-

timization is able to adapt its optimization approaches to match the runtime behaviour

1 Apple Rosetta, http://www.apple.com/asia/rosetta/, accessed on 30/05/2012.
2 The wordhot in this thesis means frequently-executed.
3 JVM, available from http://docs.oracle.com/javase/specs/jvms/se7/html/jvms-1.html, accessed on

17/04/2012.
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of the program. DynamoRIO, an open-source software, is the runtime code manipu-

lation system employed in this thesis to perform program analysis and optimization.

Firstly, its input is the binary stream, making the platformlanguage-independent. Plus

in some cases, source codes of the program are not available,hence code optimization

cannot rely on the compiler. Secondly, DyanmoRIO is flexible, as it is able to perform

optimizations which tailor the program to the actual processor it is running on. In other

words, DynamoRIO can efficiently make use of underlying hardware mechanisms.

Thirdly, DynamoRIO provides a good user interface for manipulating the runtime pro-

gram. Additionally, DynamoRIO can tackle the machine code directly, such as branch

inlining and instruction replacement,etc. The compiler usually performs optimization

on intermediate representation codes which is generally considered to be easier than

optimization on machine code. However, it is an open question whether recompila-

tion in order to perform the optimization is more time-consuming or performing the

optimization on the machine code directly causes more overhead.

1.1 Contribution

This thesis investigates runtime code analysis and optimization methodologies. Strength

reduction (Section 3.5) has been applied in DynamoRIO in a previous publication [44],

but this thesis expands and presents the method in detail. Three methods in this thesis

are modifications of existing work. This includes redundantinstruction detection (Sec-

tion 3.4), instruction alignment optimization (Section 3.6) and glacial address propa-

gation (Section 3.8). There are some publications that showsimilar research on redun-

dant instruction detection as well as instruction alignment, but none of them apply the

above schemes in the runtime environment under DynamoRIO asin this thesis. Glacial

address propagation is a modification of glacial variable analysis [4]. This algorithm

aims to discover the potential slowly changing addresses during program execution.

As glacial indirect addresses are changed slowly and could be considered to be a con-

stant address for a period, these indirect addresses are candidates for code replacement

aiming for code optimization.

The experimental results in the thesis demonstrate that some benchmarks gain per-

formance at a single digit percentage level through dynamicprogram optimization. A

dynamic program analysis method, glacial address propagation, shows the potential

candidates in a program which may enable a cascade of code optimization.
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1.2 Thesis Structure

The thesis investigates and explores runtime program analysis and optimization method-

ologies. The runtime code manipulation system, DynamoRIO,which supports code

transformation on any part of programs, is exploited as a development tool to inves-

tigate the design space for optimizers between the current state of the art in static

and dynamic languages. DynamoRIO provides interfaces (details are given in Sec-

tion 2.7.3) which enable development of program analysers to observe and potentially

manipulate every single instruction prior to its execution. Although there is runtime

profile overhead, the overall execution time of the application can be decreased in cer-

tain cases.

This thesis first describes background techniques and technologies in Chapter 2.

Then it presents the five experiments on program analysis andoptimization in Chap-

ter 3. The experiments incorporate redundant instruction detection and removing (Sec-

tion 3.4), strength reduction optimization (Section 3.5),instruction alignment (Sec-

tion 3.6), persistent cache (Section 3.7) and glacial address propagation (Section 3.8).

Discussion of the experimental results and potential future work are presented in Chap-

ter 4.
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Chapter 2

Background

2.1 Introduction

The performance of a program is essentially determined by its size and running time.

Program optimization is ubiquitous, as it improves programperformance though ei-

ther reducing the program size or accelerating program execution. Static optimization,

which is employed in almost all compilers, optimizes the program during compile time

to produce better performance of codes.Dynamic optimization, which is found for ex-

ample in a Java Just-In-Time compiler, performs optimization during program execu-

tion, enabling the discovery of runtime information which is not available at compile

time. Feeding back such information could enable the compiler to make better de-

cisions in its optimization algorithms, but an alternativeway of searching for code

optimization is from dynamic optimizers. Such an optimizerdoes not perform com-

plex lexical analysis and syntax analysis, as the compiler does [3], rather it performs

optimization on the machine code (e.g.assembly level or binary level).

This chapter briefly reviews the background techniques and technologies for code

analysis and optimization to help better understand Chapter 3. The chapter is organised

as follows. It first reviews program analysis methods, as program analysis provides

necessary information for the choice of program optimizations. Profiling techniques

(Section 2.3) and data flow/control flow analysis (Section 2.4) are two program anal-

ysis techniques. Section 2.5 gives optimization techniques. These are the algorithms

contributing to an optimizer, a compiler’s basic working procedure or the basic code

optimization algorithms guiding complex algorithm design. The two next sections

(Section 2.6 and Section 2.7) review optimization technologies in the working proce-

dure of some optimizers. Section 2.6 reviews three static optimizers. In Section 2.7

27



28 CHAPTER 2. BACKGROUND

seven well-known dynamic optimizers are reviewed to help gain a better understanding

of how a runtime system works on code optimization.

2.2 Terminology

This section explains some critical terminology used in this chapter and the rest of the

thesis.

Dynamic optimizers share a common and important characteristic, that is building

traces. Atraceis a piece of code which is frequently executed. This piece ofcode may

contain some repeated codes (due to code inlining) occupying a continuous space in

the memory/cache, thus enabling faster code execution in the processor. As building a

trace needs runtime program information, a traditional compiler is unable to construct a

trace. The term trace is also expressed aspathor fragmentin some optimizers, however

they all refer to a sequence of instructions with a large amount of code reuse, although

the details may differ slightly. To build traces, prediction algorithms are required in

order to know which branch will be executed next. A good prediction algorithm could

significantly improve program performance. A dynamic optimizer and the underlying

hardware could both provide branch prediction. Section 2.5and Section 2.5.4 will

explain the difference between the two.

Based on its static characteristics, a compiler can offer various optimization algo-

rithms to the whole program. An example is the well-known algorithm known as loop

inlining. A dynamic optimizer can provide the same optimization algorithms as a com-

piler, however, as a dynamic optimizer has more runtime program information, it can

also use this to choose to only apply optimization algorithms to certain regions of a

program and skip others. This can avoid time being wasted on optimizing infrequently

executed instructions. In dynamic optimizers, optimized traces are typically placed in

a code cache. Acode cacheis a part of memory space allocated by an optimizer. Code

that executes from the code cache is like executing natively. In different dynamic opti-

mizers, the code cache is also called by different names, such as fragment cache, trace

cache, path cache and basic block cache.

2.3 Profiling Techniques

Program profiling collects the specified offline or online information of the program.

This information can be called by a programmer or another program to influence the
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optimization strategy to make the program run faster [34]. The profile information

refers to the distribution of call sites, parameter values,the execution times of each

basic block of the program and so on. As modern CPUs are becoming more and more

complex [34], programmers have little knowledge to understand how their program

interacts with such complicated hardware. Program profiling is thus an important step

for program optimization.

Offline profilingis performed before the program executes. The statistics are gath-

ered when the program runs one or more times. In contrast, anonline profiling tool

records the information during program execution. Hardware can provide profiling

information directly. For example, Intel processors have hardware performance coun-

ters [1] which can gather detailed profile information such as cycles executed, data

cache misses, data cache lines allocated, branches mis-prediction, instruction costet

al. Program Counter Sampling [13] can be exploited to analyse where time is spent in

execution of a program.

Different types of optimization require different types ofprofile information. Three

types of profile [23] are often used, namely control flow profile, value profile and ad-

dress profile.Control flow profilerecords the program execution path, which can help

determine the execution frequencies of certain paths of a program. Value profileob-

tains information about the specific values of operands as well as their frequency of oc-

currence.Address profilecollects the memory addresses references, which can be used

to apply data layout and placement transformations for improving the performance of

the memory hierarchy.

Profile-guided optimization [36] is widely applied in the compiler and the opti-

mizer as discussed in Section 2.7. Data flow and control flow analysis, described in the

next section, are also ways to collect profile information.

2.4 Data Flow and Control Flow Analysis

Data flow and control flow analysis help to profile useful information for program op-

timization; these are usually performed on programs written in a high-level language.

Some optimizations can be achieved by knowing various pieces of information ob-

tained from inspecting the whole program; for instance, expression analysis for global

redundancy elimination. Live variable analysis is helpfulfor global register allocation,

dead variable elimination and uninitialized variable detection. Some statements may
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cause redundant re-computation of values. If such re-computation can be safely elim-

inated, the program may execute faster. It is also helpful todivide the program into

blocks and analyse the control transfer information among the blocks. This helps the

programmer to understand the program execution direction.One way of doing con-

trol flow analysis [46] is to note down the starting address ofeach block. The above

analyses are known as data flow analysis and control flow analysis.

Constant propagation[43] is a well-known global data flow analysis whose goal

is to discover a value that is constant during all its possible executions and propagate

the constant value as far as possible through the program. The constant propagation

technique serves several purposes for program optimization:

• Codes that are never executed can be deleted, for instance unreachable expres-

sions or branches, which simplifies the program.

• It can reduce the number of memory accesses. Variables whosevalues stay con-

stant during their execution period can be replaced by constants.

• It avoids unnecessary computation by replacing an expression which holds a set

result (a constant) every time it is used.

While a program executes, some data values change sufficiently slowly that they can

be identified as “glacial variables”. Such glacial variables can be worthy of generating

special-case code in which each value is treated as a constant for a period, thus enabling

a cascade of optimizations [4]. These glacial variables arediscovered through online

data flow and control flow analysis. Such analysis is a modification of constant prop-

agation analysis. It is composed of two parts. The first part is called global recursion

level analysis, which labels the stage level of the loop and identifies their execution

frequency. The outer loop is Stage 0 and inner loop is Stage n (n=1,2,3...). The second

part is glacial variable propagation, which measures how frequently the value of the

variable changes. The stage level (e.g.Stage 0, Stage 1...) is captured for the variable

modified in a loop as well as the final value of variable exitingthe loop. This is an

interesting approach to optimization which is investigated further in Section 3.8.
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2.5 Optimization Techniques

2.5.1 Introduction

The rationales [3] behind code optimization consist of detecting patterns in the pro-

gram and replacing the patterns by more efficient constructs. The replacement strate-

gies can be machine-dependent or machine-independent. This thesis mainly takes ac-

count of machine-independent strategies. This section focuses on optimization tech-

niques that either are contributing to optimizers’ basic working procedures or as the

basic concepts to guide more complex user-designed optimization algorithms to im-

plement in optimizers. Software and hardware optimizationmethods are reviewed.

A variety of software and hardware prediction mechanisms (Section 2.5.2 and Sec-

tion 2.5.4) are surveyed, as prediction mechanisms play an important role for code

optimization. Section 2.5.3 and Section 2.5.5 discuss optimization algorithms on a

program and underlying hardware mechanisms for code reuse to speed up program

execution.

Optimization techniques reviewed in this section are the common and basic opti-

mization strategies. Section 2.6 and Section 2.7 focus on program optimizers work.

2.5.2 Software Prediction

Dynamic optimizers usually incorporate software prediction algorithms to improve

program performance. Prediction algorithms provide useful information for building

traces as well as selecting appropriate regions for code optimization.

Dynamo (see Section 2.7.2), which is a dynamic optimizer, exploits a simple scheme

for trace prediction: Most Recently Executed Tail (MRET). Dynamo starts a counter

associated with a trace head. A backward taken branch (likely to be a loop head) or

an exit branch from a previously hot trace is a candidate for atrace head. A counter

keeps recording until it exceeds a threshold. When the counter reaches a threshold, the

trace head is recorded. This simple scheme only records the trace head, as it is likely

that, when an instruction or basic block becomes hot, its following instructions are also

hot. Therefore, instead of profiling the rest of branch instructions, Dynamo predicts

the tail of instructions following the hot trace head. This saves the storage space for the

counter, as counters are only maintained for the potential loop head. MRET is called

Next Executing Tail (NET) in later publications [19]. DynamoRIO, another dynamic

optimizer (Section 2.7.3), utilises NET with a small changeto control the overhead. In
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NET, it considers all backward branches as a trace head, DynamoRIO ignores back-

ward indirect branches so that the number of trace heads is reduced. More trace heads

may lead to larger numbers of tiny traces, which is undesirable.

Dynamic optimizers implement trace-based selection algorithms for hot-spot de-

tection and construction. However, trace-selection algorithms suffer from two prob-

lems: trace separation and excessive code duplication [24]. Trace separation occurs

when associated paths1 are selected to be separate traces and these traces may be

placed far apart from each other. This means there is always adelay when calling

or identifying the next execution trace as well as the delay for control jumps between

traces. The second problem stems from common parts of related traces; isolating these

traces leads to code duplication. Davidet al. [24] give two prediction algorithms to

solve the above problems: region-selection algorithms which are Last-Executed Itera-

tion algorithm (LEI) and trace-combination algorithm.

LEI is similar to NET but surpasses NET when identifying cyclic paths2 of exe-

cution. As in NET, LEI first searches whether the target branch is in the code cache.

Working from the code cache is more efficient than working by emulation (more de-

tails are given in Section 2.7.3). If the target branch is in the code cache, control is

transferred to the code cache, otherwise it is retrieved from the branch historic buffer.

A hashtable is provided to make the retrieval more efficient.Only a cyclic path is se-

lected from the historic buffer. The branches in the buffer are removed when selected

to form a trace. Trace-combination is an extension of trace selection, it simply rejoins

certain frequently-executed traces to prevent excessive code duplication. This oper-

ation requires space for caching traces before combinationwhich causes a memory

overhead even if only a compact representation of each traceis stored.

2.5.3 Optimization Algorithms in Software

Optimization Methods for Array References

Compilers apply two approaches [3] that permit array references as operands:

• The reference to the array will not change until the code generation phase. It is

in the code generation phase that the offset of an array and its base address are

generated. And then an indexing operation is performed.

1 Path in Section 2.5.2 is not the terminology that is used in dynamic optimizers, but the literal
meaning.

2 A cyclic pathis simply a path that ends with a branch to its beginning.
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• The array references are expanded into three-address statements that do the off-

set calculation. The three-address statement is typicallyof the general form

A:=B op C. Where A, B and C can be a programmer-defined name (a constant

or compiler-generated temporary name) and op stands for anyoperator (such

as an arithmetic operator). This approach is widely appliedfor optimization of

array reference in loops to improve locality of reference inmemory.E.g, assum-

ing a two-dimensional 10x20 array A, A[i,j] is in locationaddr(A)+20(i-1)+j-1

which is equal to(addr(A)-21)+20i+j. The machine code to reference A[i,j] will

compute20i+j in an index register. The three-address statement to evaluate the

element of an A[i,j] into a temporary T would look like this:

code to evaluate i into temporary T1

T2:=20*T1

code to evaluate j into temporary T3

T4:=T2+T3

T:=(addr(A)-21)+[T4]

Usually there is a base register for storing the starting address of the array, so the

compiler can determine the starting addresses at the beginning of the program.

The offset is calculated either by the final compilation phase (code generation

phase) or by the loader.

The details of optimization for array references are beyondthe scope of the thesis;

more information can be found in [3].

Inner Loop

It is generally accepted that most of the running time is spent in a small part of a

program: for example, 90% of the time is used by 10% of the program. So the “inner

loop”, the most-frequently executed part, is the first target for code optimization.

The running time of a program may decrease when the length of an inner loop is

shortened, even when the number of instructions outside theloop increases. Induction

variable elimination can reduce the number of arguments in aloop by merging vari-

ables. Choosing cheaper operations, for instance substituting multiplications by addi-

tions, can improve the performance. This optimization is called strength reduction. On

top of that, loop unrolling [3] and loop jamming [3] can sometimes be utilized to make

the loop execute more quickly.
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2.5.4 Hardware Prediction

Branch Prediction

Hardware provides schemes [14, 33] to perform branch prediction. The simplest strat-

egy is the so-called one-bit branch prediction buffer [29].The buffer is a small memory

indexed by the least significant bits of the branch instruction address. It incorporates

a bit specifying whether the branch is recently taken or not:1 is for taken, 0 is for

not-taken. The bit will be inverted if the branch predictionturns out to be wrong. For

example, bit=1 indicates that the associated branch is predicted to be taken when next

executed. A slightly more complicated but more reliable branch prediction uses two

bits for branch prediction. The value is between 0 and 3. Prediction must fail twice

in succession before it is changed. Bits are incremented when branch is predicted as

taken otherwise stays as 0 or decremented. Only 2 and 3 indicate that branch will be

taken in the next round execution. Compared with 1-bit prediction, two-bit prediction

can avoid the constant mis-prediction when a branch is takenand not-taken alternately.

Value Prediction

Value prediction [21, 30, 22] is similar to instruction reuse (see Section 2.5.5) but

predicts the value of the input operands prior to execution.The procedure of value

prediction is illustrated in Figure 2.1. This value prediction procedure is embodied in

hardware. The predict value is obtained from a Value Prediction Table (VPT) which

is implemented in hardware [20]. If the value predicted is wrong then the instructions

have to re-execute, otherwise nothing needs to be done and the instruction completes

earlier than without the prediction scheme.

Figure 2.1: Value prediction (taken from [20])
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2.5.5 Code Reuse in Hardware

Instruction Reuse

Some parts of the code are executed repeatedly during the lifetime of a program execu-

tion. Capitalizing on this, the results of previous operations, which can be instructions,

basic blocks or traces, are cached so that they can be used again the next time they are

detected [20]. According to Avinashet al. [37], there are three sources of instruction

repeatability, as follows:

• The repetition of the input data being processed by a given program. Programs

that manipulate texts can encounter the same characters (e.g. words, spaces)

during execution.

• The repetition of loops and functions (methods). The instructions in a given loop

are constantly repeated even though the processed data is different each time.

• There are data structures that have repeated access to theirelements which leads

to a repeated process.

The instruction reuse procedure in a typical processor is demonstrated in Fig-

ure 2.2. The main principle behind instruction reuse [20] isthat when an instruction

with the same operands is repeated numerous times during program execution, the re-

sult of this instruction is fetched from a memory place instead of executing it via a

function unit. As demonstrated in Figure 2.2, the first time an instruction runs, its re-

sult is cached in the Reuse Buffer (RB). The entries in the RB are indexed by Program

Counter (PC). The next time the identical PC value is detected, the result is fetched

from the RB. This procedure is done prior to fetching the actual instructions from

memory. Before the commit phase, there is a reuse test to check if reuse is valid.

Figure 2.2: Instruction reuse in a typical processor (takenfrom [20])

The advantage [20] of instruction reuse is obvious. Instruction results cached in the

RB, which could incur large delays, can be executed quickly,for instance multiplica-

tion and division. The reused instructions actually employtwo pipelines as their path
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instead of one pipeline on the processor, as illustrated in Figure 2.2. Due to instruction

reuse, there are fewer accesses to the registers and memory.These effects potentially

increase the number of instructions that can be executed concurrently, which leads to

a reduction in execution time for a program.

Reuse also can be applied to more-than-one instructions at atime, as described

below.

Basic Block Reuse

A traditional basic blockis composed of a sequence of instructions with a single entry

and single exit [20]. An entry point is a any instruction after a branch, subroutine call

or return target. The exit point is a branch instruction or a return. Basic block reuse is

similar to instruction reuse. The boundaries of the basic blocks are identified on the fly

during the program execution. The information of basic blocks is cached in the Block

History Buffer (BHB). Each basic block occupies one entry ofthe BHB. Every entry

incorporates the information of register references, input and output context, PC, a bit

indicating whether it is reused or not and the address of the following basic block.

Trace Reuse

A trace in this section is a traditional concept of trace. Different from the trace de-

scribed in Section 2.2, atraditional traceis a larger sequence of instructions than that

of a basic block. A reused trace is determined dynamically during program execution.

Each time the first instruction of a reused trace is executed,the context of the trace is

fetched from a special buffer and reconstructed. This procedure can avoid the execu-

tion of the trace on the processor. Thecontext[15] here refers to information of integer

registers, flag registers, instruction pointers and the program stacks.

2.6 Static Optimizers

2.6.1 Introduction

A traditional compiler, for languages such as C, C++, even VHDL or Verilog, com-

piles programs once, producing a binary program that produces correct results under

all inputs. Code optimization in such a compiler depends on the static analysis carried

out at compile-time, often at an optimization level selected by the user. Static com-

pilers employ some very sophisticated analyses [3] but are unable to optimize around
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variables whose values may change during program execution. Static optimization is

performed ahead of execution, making runtime profile information unavailable.

However, static optimization shows a significant advantageover dynamic optimiza-

tion. It is not concerned about the overhead caused by optimization operations. All the

optimization operations are carried out before program execution, and the optimization

overhead will not have negative effect on the code executionspeed. For applications

with little amount of code reuse or short execution, static optimization works well.

In the following three sections, three important static optimizers, MAO, Super-

optimizer and peephole optimizer are reviewed. Introduction to some background

technologies and techniques for static optimizers helps tounderstand the underlying

working mechanism differences between static and dynamic optimizers. However, dy-

namic optimizers may also utilise the same techniques or algorithms that are employed

in static optimizers. Chapter 3 utilises some techniques from MAO. Some background

on MAO is important for better understanding the dynamic optimization algorithms

used in Chapter 3. Since static optimization is not the main concern of this thesis, only

three static optimizers are reviewed here.

2.6.2 MAO

MAO [25] is an extensible micro-architecture optimizer, seeking to address the prob-

lem of undocumented and puzzling performance cliffs of the X86/84 processors. MAO

is a thin wrapper around an assembler infrastructure, GNU assembler (gas). The as-

sembler accepts an input assembly file and converts it into anintermediate representa-

tion (IR). The optimization is performed on the IR and the results are output as IR into

another assembly file. Code optimization in MAO is fully static.

MAO cooperates with the GNU assembler (gas); the input is parsed with gas’s ta-

ble driven encoder which encodes each input instruction into a single Cstruct type.

Such encoded instruction sequences become a part of MAO’s IR. Although MAO only

performs static optimization, it can be integrated into a dynamic code generator eas-

ily because all the intermediate instructions are represented by a single C structure.

MAO provides several types of optimization for IR, such as alignment optimization,

experimental optimization and scheduling optimization [25].

In [25], the authors use a novel method of simply inserting orremovingnopinstruc-

tions, which makes the program gain performance improvement in some cases. The

paper states the rationales behind how performance is improved. These are described

as follows:
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• The Intel platform comprises a Loop Stream Detector (LSD), which can bypass

instruction fetching and decoding under certain circumstances. The loop must

execute at least 64 iterations, cannot span more than four 16-byte decoding line

and may not incorporate certain branches (more details are in the Intel manual

[2]). The requirements may vary for different CPU vendors. When a loop meets

the requirements to invoke LSD by inserting a certain numberof nops, LSD can

boost the program performance.

• The branch predictor in some Intel platforms is indexed by 5 PC steps which are

instruction fetching, decoding, execution, memory accessand writeback. Two

short backward branches whose target addresses are close toeach other may

share the same branch predictor information (the same entryin a branch predic-

tion table). Insertingnopsmay potentially make the PC value reach 5 so that the

two backward branches may hit separate branch predictor spots. By appropri-

ately paddingnops, the correct branch prediction rate increases leading to saving

of CPU cycles.

• Moreover, it is helpful to insert a random number ofnopsin a program. The idea

behind this is that codes get shifted around to expose micro-architectural cliffs

via inserting instructions. For example, this may result from removing unknown

alias constraints in the branch predictor.

This is another interesting approach to program optimization which is further in-

vestigated in Section 3.6.

2.6.3 Superoptimizer

Superoptimizer [32] is a static code optimization system. It takes a program writ-

ten in machine language as the input source and detects the shortest program which

computes the same function as the source program through exhaustive search over all

possible programs. In the first step, the op-codes of instruction sequences are stored in

a table, the superoptimizer searches the table and generates all the possible combina-

tions of the op-codes. The superoptimizer needs to determine whether the generated

instructions perform the same function as the source program. This is achieved by

equivalence tests. Two algorithms, referred to asBoolean TestandProbabilistic Test,

are utilised to fulfil the equivalence test. In Boolean Test,the input arguments are

changed to be the boolean-logic arguments at the beginning of a Boolean test. Two
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instructions are considered to be equivalent when their minterms of the Boolean ar-

guments match. A minterm here is a special product of literals, in which each input

variable appears exactly once. Boolean Test is a time-consuming procedure, so Henry

Massalin [32] introduces a second method, Probabilistic Test, to achieve the same goal

but execute faster. The basic idea is that of running the selected programs (the ones

obtained from the first step) and testing their outputs to seeif the results match the

original program. The theory of Boolean Test and Probabilistic Test is out of the range

of this thesis, more details can be found in Section 2.6.3. Massalin claims that only

a few programs can pass such a test, and these successful programs will be inspected

by a subsequent Boolean test again to compare their equivalence. Probabilistic Test

largely reduces the memory requirements, as only a few boolean operations are left

after the Probabilistic Test. To further decrease the search time, the superoptimizer fil-

ters the instruction sets that are not optimal by either Boolean Test or setting the rules

manually. For example, by spotting the equivalent instruction sets and adding the new

rule manually, so that the superoptimizer can replace the equivalent counterparts with

a single instruction.

The limitation of superoptimizer is obvious. The exhaustive search grows facto-

rially with the number of generated instructions. Another concern for superoptimizer

is the use of pointers. One needs to take all the memory locations into account, as a

pointer can point to anywhere in the memory. More information on the limitation of

superoptimizer can be found in Section 2.6.4.

2.6.4 Peephole Optimizer

A peephole optimizer [8] is similar to a superoptimizer. It typically operates by re-

placing one sequence of instructions with another faster-executed counterpart in an

automatic way. A simple example is shown below:

mov r1,r2;mov r2,r1;

Replaced by: mov r1,r2;

If the value in registerr1 is already copied tor2, then the following instructionmov

r2,r1 is unnecessary.

Code replacement rules in the superoptimizer largely depend on the human writing

pattern match rules, which require expertise as well as time. A peephole optimizer

is automatic. It is structured in three main parts: a harvester, an enumerator and an
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optimization database. Figure 2.3 shows how the optimizer works.

Figure 2.3: Structure of the peephole optimizer (taken from[8])

The harvester extracts sets of instructions from the training program which are the

instructions targeted to be optimized. This component is designed to train the opti-

mizer so that each later real program instruction can be retrieved from a database to

obtain its cheaper counterpart. The canonicalizer reducesthe number of instructions

by eliminating the registers and immediate operands that are only renaming of others.

For instance, the argumentmov r1 r0may have multiple versions when applying to

different registers. A fingerprint is an index to a hashtablewhere each bucket of the

hashtable holds the target instructions. The Fingerprinter executes the instruction se-

quence on test machine states and calculates the hash of the results. This component

performs the equivalence test for the source instruction and the target instruction. The

enumerator exhaustively enumerates all the candidate instructions out of the input pro-

gram. The fingerprint of the instruction is computed and compared with those in the

Fingerprint Hashtable. Once the matched counterpart is detected from the hashtable,

an equivalence test is performed. The equivalence test is achieved through execution

test and boolean test. Execution test is simply running the two sequences over a set

of testvectors and observing if the same results are yielded. The optimized instruction

stream, if it can pass the equivalence test, is passed to the Optimization Database. The

database is indexed by the original instruction sequences and the live registers.

2.6.5 Summary

Three static optimizers have been reviewed. Their code optimization is performed

before program execution. In a compiler, optimization is performed during the com-

pilation procedure. Code optimization depends on the static analyses carried out at
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compile-time. Static optimization lacks online information about the program be-

haviour which limits the optimization approach and makes itnot as flexible as dynamic

optimization. But static optimization shows a significant advantage over dynamic op-

timization, in that it does not need to account for any overhead caused by performing

optimization during program execution.

MAO seeks to address the problem of undocumented and puzzling performance

cliffs of X86/84 processors. It converts the input assemblyprogram into an interme-

diate instruction representation (IR) which makes it easy to integrate with a dynamic

code generator. MAO provides several types of optimizationfor IR, such as alignment

optimization, experimental optimization and scheduling optimization. A Superopti-

mizer takes a program written in machine language as the input source to detect the

shortest program through exhaustive search over all possible programs. The detection

and replacement processes largely rely on hand-written rules. A peephole Optimizer

is similar to a Superoptimizer. It typically replaces one sequence of instructions by

another faster-executed counterpart in an automatic way.

In studying these static optimizers, some methods that might help dynamic opti-

mization have been identified. These will be further investigated in Chapter 3. The

next section reviews the technology of dynamic optimizers in order to complete the

necessary background.

2.7 Dynamic Optimizer

2.7.1 Introduction

Dynamic optimization refers to code optimization performed while the program is

executing. A dynamic optimizer seeks to generate efficient codes for high-performance

as well as reducing the optimization overhead. This trade-off, between the runtime

optimization overhead and the performance benefit, is a big challenge for dynamic

optimization systems [40].

Dynamic optimizers fall into three general categories [24]based on their primary

functions: transparent optimization, just-in-time compilationand binary translation.

A transparent optimizer takes a binary executable for a target processor and re-optimizes

it. A just-in-time compiler takes a machine-independent program and compiles it for

a target processor. A binary translator takes an incompatible executable for a certain

processor as input and translates it to be one that is compatible with a target processor.
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The rationale behind a dynamic optimizer is to effectively detect frequently exe-

cuted instructions in the input program and perform optimization on them appropri-

ately. A dynamic optimizer, such as the Just-In-Time optimizer residing in the Java

Virtual Machine, operates at run-time and therefore can call on knowledge of run-

time behaviour to influence its optimization operations. This technique enables the

performance of object-oriented languages, such as Java andC#, to approach that of

statically compiled languages. A dynamic optimizer may take advantage of the current

behaviour of the running software to produce a specialized version of code running

faster than a simple version generated without this knowledge.

Dynamic optimization includes five significant advantages.Firstly, it can make the

program work more efficiently, compared with static optimization, in certain cases. It

makes use of online profile information, such as the distribution of call sites, parameter

values, register usage, memory usageet al. Secondly, dynamic optimization improves

the prediction of runtime program behaviour as online profile information is available

to the optimizer. Dynamic optimization can make use of the runtime information and

give an instant response to changes in order to achieve better program performance.

Details are discussed in the following sections. Thirdly, modern software is being

shipped as a collection of DLLs (Dynamically Linked Libraries) [7], so it is hard for

a static compiler to analyse the whole program. Dynamic optimization is performed

while the program is running and enables analysis of the whole program on the fly.

Fourthly, some software vendors are hesitant to ship highlystatic optimized codes

because they are hard to debug [10]. Lastly, as dynamic compilation is a way to solve

the problem for cross-platform application-level virtualization (e.g. Apple Rosetta3,

Strata [35], binary translation [9]), dynamic optimization is widely applied in such

technologies.

The requirements for dynamic optimization are becoming more and more practical.

The software needs runtime binding of the DLL (Dynamically Linked Libraries). In a

network device (e.g.a cellphone), codes are downloaded and linked on the fly, and this

process cannot rely on static compilation.

Based on the above background, dynamic optimizers are widespread. They typi-

cally share some common characteristics:

• Transparency–An application executing via a dynamic optimizer does not realize

the existence of the optimization system. For instance, thedynamic optimizer

3 Apple Rosetta, http://www.apple.com/asia/rosetta/, accessed on 30/05/2012.
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does not occupy the same memory allocation routines or input/output buffers as

that of the application.

• Universal–The dynamic optimizer is capable of operating onall kinds of appli-

cations.

• Overhead–Time overhead, caused by optimization performedduring program

execution, slows down the program. This overhead includes the program anal-

ysis and machine state analysis. This overhead needs to be offset before any

performance improvement is seen.

These characteristics are better explained by reviewing seven different dynamic op-

timizers, namely, Dynamo, DynamoRIO, Mojo, Wiggins/Redstone, Java Virtual Ma-

chine, Pin and HDtrans, in the following sections. By introducing several dynamic

optimizers, it is possible to better understand their working mechanisms and the simi-

larities among each dynamic optimizer as well as their differences compared to static

optimizers.

2.7.2 Dynamo

Dynamo [6, 7] is considered to be the ancestor of the dynamic optimizer, and is also the

origin of DynamoRIO (Section 2.7.3). It is developed by HP laboratory and performs

optimizations on the native user-mode executable at runtime.

Figure 2.4 demonstrates how Dynamo works. The input programis user-mode ex-

ecutable. Dynamo is a trace-based optimization system, whose traces are formed by

a binary interpreter. A trace is simply a sequence of hot instructions as described in

Section 2.2. Software interpretation is much slower than direct execution on the pro-

cessor, hence Dynamo only interprets the instruction stream until a trace is identified.

Traces are placed in the fragment cache and execute natively.

Dynamo starts by interpreting the native instruction sequence until it reaches a

taken branch. If the target address of the branch is already present in the fragment

cache, Dynamo will be suspended. As a result, the optimized fragments in the frag-

ment cache will be executed directly by the processor. Otherwise, when the branch

is not detected in the fragment cache, a counter associated with the target address is

incremented when the branch is a backward-taken branch or a fragment cache exit

branch. These two types of branch are considered to be the start of a new trace. When

the value of the counter exceeds a certain threshold (usually a preset one), the inter-

preter will jump into code generation mode. It is in this modethat the trace is recorded.
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Traces are recorded in a trace buffer which is not shown in Figure 2.4. Dynamo will

move to the next phase from the code generation mode if it meets an end-of-trace con-

dition (such as backward-taken branch). In this step, a fastand lightweight optimizer

will create a single-entry, multi-exit, contiguous sequence of instructions from the trace

buffer. The instruction sequence here is defined as a fragment which will be emitted

into the fragment cache by a linker as well as being connectedto other fragments.

Figure 2.4: How Dynamo works (taken from [6])

The instruction sequences in the fragment cache are those optimized and frequently

executed, it is possible that the overhead, which is the timespent in the whole optimiza-

tion procedure, can be offset by repeated native execution of the optimized fragments.

2.7.3 DynamoRIO

DynamoRIO[13] is a runtime code manipulation system which allows codetransfor-

mation on any part of the program as the program runs. DynamoRIO, originated from

Dynamo [6] (Section 2.7.2), joins the work between Dynamo and the Runtime Intro-

spection & Optimization (RIO) group from MIT. It works as an intermediate platform

between applications and operating system. DynamoRIO supports IA32 and AMD64

as well as both Windows and Linux. The goal [11] of DynamoRIO is to observe and

potentially manipulate every single instruction prior to its execution. DynamoRIO cre-

ates basic blocks out of the target program. The frequently executed basic blocks in
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sequence are stitched together to be a trace. Basic blocks and traces are placed in a

basic block cacheand atrace cache, respectively. Codes running from these caches

behave as if running natively.

The basic infrastructure of DynamoRIO is presented in Figure 2.5. DynamoRIO

considers a sequence of instructions ending with a single control transfer instruction

as a basic block. The basic block of DynamoRIO is different from the traditional basic

block described in Section 2.5.5; its entry and exit points are either a subroutine call, a

return or a branch instruction. A basic block of DynamoRIO usually contains around

6 or 7 instructions, but some basic blocks can reach over 50 instructions. The default

maximum basic block size is 1024. DynamoRIO copies the basicblocks into a basic

block cache from which the instructions can be executed natively. The basic block

cache is a part of memory space. The processor fetches a cacheline from the opti-

mized version of instructions out of the basic block cache. If DynamoRIO detects that

the next target basic block is present in the basic block cache and at the same time can

be targeted by the current executing basic block through a direct branch, DynamoRIO

will link the two blocks together directly. This procedure avoids a time-consuming

and storage-consuming context switch. Acontext switchrefers to the procedure that

saves and restores the general-purpose registers, the condition codes (eflags register)

and any operating system dependent state. Context [15] incorporates the integer reg-

isters, the flag registers, the instruction pointers and theprogram stacks. A context

switch is required when a cache miss occurs and control needsto be transferred back

to DynamoRIO to obtain the required instructions.

Linking direct branches is simple because a direct branch has a unique target. How-

ever an indirect branch incorporates multiple possible targets. DynamoRIO provides

an indirect branch lookup hashtable for referencing the addresses of indirect branches.

The address in the lookup table is not the actual address of the indirect branches, but

one that has already been translated into the basic block cache address. To further im-

prove efficiency and obtain better code layout in the code cache (see Section 2.2), Dy-

namoRIO additionally provides a trace cache. The trace cache occupies a part of cache

space (the physical cache). A trace in the trace cache may have multiple exit points

but it has only one entry point. When a basic block ends with anindirect branch, Dy-

namoRIO retrieves the trace cache before referring to the indirect branch lookup table.

This procedure is much faster than searching the indirect branch lookup table directly.

In DynamoRIO, the data structure of each basic block is a linked list and each instruc-

tion occupies one of its nodes. A basic block is passed as a pointer to a trace. The data
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structure of a trace is also a linked list. The default maximum trace size can reach 128

instructions.

Figure 2.5: Basic infrastructure of DynamoRIO. Each dashedline indicates that control
leaves the code cache and returns to DynamoRIO (taken from [11])

DynamoRIO provides the user a rich application programminginterface (API) for

building the user-defined DynamoRIO client. Aclient of DynamoRIO, which is writ-

ten in C or C++, is written by the user to perform runtime code manipulation [13].

The client can modify the application code and place the appropriate instructions into

the code cache. It also guarantees transparency with respect to the application and

DynamoRIO, so that the application can work without being aware of the presence

of DynamoRIO. A client is built as a shared library that is loaded in by DynamoRIO

once it takes over a target program. The client interacts with DynamoRIO through

hooks[13] that the client exports. It jointly works with DynamoRIO to operate on an

input program. When the client starts, it instruments the input application (the target

program). The input program has already been compiled to be sequences of binary.

Hence, there is no concern that inserted instructions will be removed by the compiler.

Figure 2.6 shows the deployment of DyanmoRIO and its API client at the computer

system layer.

As DynamoRIO accepts the binary stream as its input, it requires a mechanism

to decode and encode machine instructions. Instructions are decoded or encoded into

five different levels. From the lowest level to the highest level, each level contains

more details. For instance, the lowest level only records the final instruction boundary.

The highest level is the assembly language level which contains the information on

opcodes, operands and flags. This five-level encoding and decoding strategy avoids

the significant overhead for fully decoding. Instructions can be transferred to a certain
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Running Application 
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Figure 2.6: The deployment of DynamoRIO and its client (taken from [13])

instruction representative level as needed.

It can be seen that Dynamo and DynamoRIO share some common characteristics.

They both attempt to identify the frequently-executed instruction sequences (traces)

and place them in a code cache. However, DynamoRIO incorporates two code caches,

which are a basic block cache and a trace cache, whereas Dynamo only contains one

code cache which is a fragment cache where the frequently-executed instructions re-

side. The basic block cache in DynamoRIO contains the rest ofthe instruction se-

quence which is used to simplify the code discovery avoidingconstant instructions

transferring between IR and the original input codes. In contrast, Dynamo does not

build basic blocks. Instead it simply suspends the fragmentcache and transfers con-

trol back to the operating system and makes the instructionsexecute in a normal

way. DynamoRIO also contains an indirect branch lookup table for addressing indirect

branches. These additional constituents further improve the performance of the pro-

gram if the additional time overhead of building them can be ignored. In fact, Derek L.

Bruening [13] claims that the majority of direct runtime overhead comes from handling

indirect branches. Even when an indirect branch is inlined into a trace, a comparison

is still needed to ensure that the dynamic branch stays in thetrace. This is achieved

by inserting a check to compare the actual target of the branch with the target that will

keep it on the trace. If the check fails, the trace is exited.

The application of DynamoRIO is not restricted to code optimization. Google

uses DynamoRIO together with Dr Memory to detect memory bugs, such as memory

leaks or shadow memory [12]. DynamoRIO has also been exploited to monitor system

security [28]. For instance, suspicious and malicious applications can be terminated

by DynamoRIO. Zhaoet al. [46] propose an application making use of DynamoRIO

to present the detailed execution profile (DEP). DynamoRIO also shows significant

performance on efficiently analysing interactions betweenthreads to determine thread
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correlation and detect true and false sharing [45]. Other applications of DynamoRIO

can be found on the official web site of DynamoRIO.4

2.7.4 Mojo

Mojo [15] is a dynamic optimizer which operates on the X86 architecture for the Win-

dows operating system and supports exception handling as well as multiple-thread

applications. Figure 2.7 shows the basic infrastructure ofMojo.

MojoDispatcher is a critical component which is in charge ofcontrol transfer. Only

the fragments in the PathCache and BasicBlockCache can be executed by Mojo, other-

wise Mojo needs to pack the codes into basic blocks/paths or let the codes run natively.

A fragment, indexed by original program addresses, is a copyof original codes with

additional control transfer instructions added. A path consists of multiple basic blocks.

MojoDispather first refers to the PathCache. If a path, whoseentry pointer is the given

instruction pointer, is buffered there, the codes are directly executed natively from

the PathCache. Otherwise MojoDispather consults the BasicBlockCache. Recently-

executed blocks are buffered into the BasicBlockCache and the frequently-executed

blocks are packed into the PathCache. The PathBuilder is designed to identify hot ba-

sic blocks and create a new entry from the BasicBlockCache tothe PathCache.

Figure 2.7: Basic structure of Mojo (taken from [15])

To control the overhead, MojoDispatcher audits the time spent in generating the

hot paths. It will transfer back to the original codes if the overhead is too high; under

4 http://dynamorio.org/pubs.html.
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such a condition the codes will run natively. NtDLL is the dynamic linked library of

the Windows system that can be utilised by multiple processes. When control returns

to the application asynchronously, execution re-enters the user-mode through NtDLL.

NtDLL will not return control back to the application until the machine state is set up.

Mojo works well on some small applications and two SPEC CPU 20005 bench-

marks (mcf andcompress95). Similar to DynamoRIO, Mojo also tries to find the hot

instructions and execute them from the fast code cache (called PathCache in Mojo).

But Mojo does not care about the direct branches or indirect branch it encounters, it

plants basic blocks from recently executed instruction sequences and further forms the

path out of hot basic blocks.

2.7.5 Wiggins/Redstone

Wiggins/Redstone [18] is an experimental dynamic optimizer, which makes use of

hardware sampling together with software instrumentationto dynamically collect hot

path/trace information.

Depending on a hardware PC sampler, Wiggins/Redstone identifies hot instruc-

tions. These frequently-executed instructions are copiedto a side buffer6 and form

traces continuously. Wiggins/Redstone continues to identify the hot traces from the

buffer and further optimize them.

Wiggins/Redstone is also a trace-based optimizer like Dynamo and DynamoRIO,

but it relies on hardware to determine which instructions need to be placed in the code

cache.

2.7.6 Java Virtual Machine and JIT compiler

Java Virtual Machine (JVM)7 is software which provides an environment/platform in

which Java bytecodes run. JVM is responsible for interpreting bytecodes and translat-

ing them where necessary into operating system calls.

The latest JVM usually offers Just-In-Time compilation in multiple execution modes

[40]. These systems exploit interpreters or baseline compilers as the first execution

mode [40]. A sampling profiler is employed in this mode to snoop the hot spots. When

5 SPEC CPU2000 is an early published benchmark suite, the later version is SPEC CPU2006 as
described in Section 3.2.1.

6 A side buffer in Wiggins/Redstone is equivalent to a code cache.
7 JVM, available from http://docs.oracle.com/javase/specs/jvms/se7/html/jvms-1.html, accessed on

17/04/2012.
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the frequently executed spots are detected, the system switches to the next mode which

utilises an optimizing compiler for higher performance. Inthis mode, the recompila-

tion controller determines which spots needed to be recompiled. Based on the informa-

tion obtained from a sampling profiler (a sampling profiler only in charge of detecting

the hot spots and incrementing a hotness counter associatedwith each spot), the con-

troller also decides the optimization level the codes should adapt to. The threshold of

the hotness count matters a lot. The detailed profile information (such as the distribu-

tion of call sites and parameter values) is collected by an instrumenting profiler to feed

back to the recompilation controller. Figure 2.8 shows where the JVM resides and its

working environment.

Java Runtime Environment 

Java API class JVM 

Operating System 

Hardware 

Figure 2.8: How JVM works

The Just-In-Time compiler from IBM cooperates with the JVM to improve the

performance of Java applications at run time. IBM’s JVM runswith JIT enabled by

default. IBM’s JIT compiler works in five stages:8 inlining, local optimization, control

flow optimizations, global optimizations and native code generation. A JIT compiler

often incorporates a Mix Mode Interpreter (MMI) [40]. The traditional JIT compiler

employs a method-based optimizing compiler, but it shows its limitation when tack-

ling programs with largely flat profiles.9 A trace-based JIT compiler [26] has been

developed which demonstrates the benefits by forming largerscopes than a method-

based compiler, even in cold spots of a program. This compiler aims to identify the hot

spots and optimize them. In contrast to this technology, a Region-Based Compilation

Technique designed for a JIT compiler [41] attempts to identify the rarely-executed

portions of a program and remove them from the original code so that the compiler

only concerns itself with optimization of the frequently executed portions. A region

8 Available from http://publib.boulder.ibm.com/infocenter/iseries/v5r3/index.jsp?topic=%2Frzaha%2Fjit.htm,
accessed on 25/05/2012.

9 Flat profile refers to a profile with a large number of methods that are almost equally important.
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here refers to a compilation unit which results from collecting codes from executed

methods but excludes all rarely executed portions of the methods [41].

The differences between DynamoRIO and the IBM JIT compiler are as follows:

• DynamoRIO creates two types of fragments which are basic blocks and traces. A

basic block is single entry and single exit and a trace is single entry and multiple

exits. A region of JIT compiler only has single-entry and single-exit block (for

a Region-based compiler).

• The JIT compiler does not take into account whether a branch is direct or indirect

as DynamoRIO does.

2.7.7 Pin and its JIT compiler

Pin is an instrumentation tool for program analysis such as profiling, performance

evaluation and bug detection [31].Instrumentationis a technology for inserting extra

codes into a program to observe its behaviour: data races, memory system behaviour

and parallelizable loops. Pin provides instrumentation byinserting and optimizing

codes through the JIT compiler. Figure 2.9 shows the basic architecture of Pin. Fig-

ure 2.10 gives a performance comparison between Pin and DynamoRIO. Pin uses a

way for linking indirect branches that is very similar to that of DynamoRIO. However

Pin exhibits three differences from DynamoRIO [31]:

• In DynamoRIO, the whole chain of predicted indirect branches is generated at

once. In contrast, Pin is more flexible, the chain can be modified while the

program is running.

• Pin utilises a local hashtable whereas dynamoRIO creates a global hashtable.

Luk et al. [31] claim that a local hashtable is able to perform at higher perfor-

mance than a global one.

• Pin uses function cloning [17] to accelerate the indirect branches:returns. A

copy of the function is inserted at the call site when it is called. This function

can be cloned to multiple call sites.

The main goal of Pin is not to improve the performance of the application, but to

analyse the program behaviour. Pin involves a JIT compiler so that it demonstrates

some advantages compared with other instrumentation tools. The code cache of Pin is

not used to store the frequently-executed traces, as is the one in DynamoRIO, but to

keep the compiled codes from its JIT compiler.
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Figure 2.9: The basic architecture of Pin (taken from [31])

2.7.8 HDTrans

HDTrans [38, 39], a simple High-performance Dynamic Translator, was initially de-

signed as a supervisor-mode translator for virtual machinesimulation. The source

basic blocks are translated into the corresponding target basic blocks (traces) by HD-

Trans and are stored in a directory called BBdirectory. It isworth to noting that no

attempt is made to optimize target codes except for trace linearization in this translator.

The translation procedure mainly includes translation of unconditional direct branches

(trace linearization), conditional branches, indirect branches andreturn instructions.

They are summarized in the following paragraphs, respectively.

Translation proceeds straight through conditional branches orcall instructions, and

continues until reaching one of the following three types ofinstructions. These in-

structions are an indirect branch, an unconditionaljmp whose destination has been

previously translated or whose destination is statically unknown. If a directjmpwhose

destination has not been previously translated is encountered, thejmp is elided, a di-

rectory entry is added to BBdirectory for the destination and continue translating at

the destination instruction. In the case of acall instruction, the HDTrans proceeds by

translating the instructions past thecall instruction rather than translating the destina-

tion of call. If the destination ofcall is translated, ajmp is inserted into the basic block,

otherwise performing a translation of acall instruction . This scheme is demonstrated

in Figure 2.11 and Figure 2.12. The syntax of the assembly instructions in the two
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figures is AT&T10. $desthas not been translated. As shown in Figure 2.12 thatjmp

is elided and translation continues frommov $30,%ecxinstead of the instructions fol-

lowed directly (these instructions afterjmpare omitted in the picture). The fifth line of

the original instructions (call $proc) is the call instruction whose destination has been

translated, therefore ajmp is performed. The sixth line in Figure 2.11 is copied directly

to the translated codes asadd $4,espis the following instruction ofcall $procand HD-

Trans chooses not to insert the destination instructions ofcall beforeadd $4,esp; this

last instruction is therefore not reachable

(a) Pin

(b) Pin Versus DynamoRIO

Figure 2.10: Benchmarks performance of Pin and DynamoRIO. The pic-
tures are from the DynamoRIO tutorial at CGO2012, availablefrom:
https://code.google.com/p/dynamorio/downloads/list.

10 There are two common assembly language syntaxes which are Intel and AT&T.
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The technology employed in HDTrans for conditional branches is the same as that

in Dynamo. That is, if the destination of the branch has already been translated, a con-

ditional jump is emitted to the existing basic block, otherwise HDTrans conditionally

branches to the exit stub.

add $20,%ecx
jmp $dest
...

dest: mov $30,%ecx
call $proc

next: add $4,%esp
...

Figure 2.11: An example of source instructions for unconditional direct branch in
HDTrans (taken from [38])

add $20,%ecx
mov $30,%ecx
push $next
jmp $<translation of proc>
add $ 4,%esp
...

Figure 2.12: An example of translated instructions for unconditional direct branch in
HDTrans (taken from [38])

HDTrans constructs a global hash table for processing indirect branches. The des-

tination for an indirect branch remains unknown until it is executed. The translated

destination is cached in the global hash table. This hashtable performs similar func-

tions as the one in DynamoRIO (see Section 2.7.3).

The return instruction is by far the most important form of indirect branch in

terms of dynamic frequency. Although translating ofreturn can be handled by indi-

rect branching scheme, HDTrans employs an additional hashtable (called return cache)

rather than utilising the global indirect branch hashtbaleto deal with it. The translation

of a call instruction pushes the untranslatedreturn address on the stack, and records

the translated return address into return cache. The translation of areturn instruction

leaves the original return address on the stack and blindly performs an indirect jump

through its calculated return cache entry.
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HDTrans works mainly as a translator, however it embodies dynamic optimization

technology in its infrastructure. HDTrans employs a globalhash table for retrieving

the destination of the indirect branches instead of a trace cache for caching the most-

frequently executed basic blocks. Compared with DynamoRIO, this global hash table

can avoid excessive instruction duplication as well as reducing register pressure and

cache pressure.

2.7.9 Summary

Seven specific runtime optimizers have been surveyed. The dynamic optimizers re-

viewed tend to snoop the frequently executed regions of the program and store them

in some form of code cache. Executing the hot code natively inthe code cache may

accelerate application execution. Dynamic optimizers exploit runtime profile infor-

mation to perform branch prediction and to construct the frequently-executed frag-

ments. DynamoRIO reconstructs the hot basic blocks into traces and executes them

in a trace cache. To overcome the time-consuming procedure for processing indirect

branches, DynamoRIO includes an indirect branch lookup hash table. It will retrieve

the hash table prior to the execution in the basic block cachewhen there is a trace cache

miss. Dynamo performs similar functions as DynamoRIO but only provides one code

cache and lacks an indirect branch hash table. Mojo introduces a basic block cache

for buffering only recently executed blocks. Wiggins/Redstone is an experimental dy-

namic optimizer, which relies on the hardware to speculate which traces are suitable to

reside in the trace cache. The JIT compiler of JVM is a conventional optimizer. It is a

complex system and is developed into different versions which exploit different infras-

tructures. The JIT optimizer combines static and dynamic optimization methods. JIT

compilers fall into two main categories: trace-based compilers and method-based com-

pilers. Pin is developed as a programming analysis tool but it incorporates a structure

based on DynamoRIO for code optimization. The optimizationrationales behind Pin

are similar to DyanmoRIO, however it has been demonstrated that DynamoRIO de-

livers a more significant performance improvement than Pin.HDTrans works mainly

as a translator, however it embodies dynamic optimization technology in its infras-

tructure. HDTrans employs a global hash table for retrieving the destination of the

indirect branches instead of a trace cache for caching the most-frequently executed

basic blocks. Compared with DynamoRIO, this global hash table can avoid excessive

instruction duplication as well as reducing register pressure and cache pressure.



56 CHAPTER 2. BACKGROUND

A dynamic optimizer involves much work on tackling indirectbranches. The desti-

nation of an indirect branch remains unknown until it executes. It is a time-consuming

procedure to process an indirect branch. Therefore the dynamic optimizer employs

prediction algorithms for indirect branches. A dynamic optimizer relies on an impor-

tant principle, which is that a small portion of code occupies the majority of the appli-

cation’s execution time so the performance can benefit from the reuse of instructions

residing in the fragment cache.

2.8 Chapter Summary

This chapter has reviewed relevant background techniques and technologies. It has first

introduced the program analysis methods which are necessary procedures to provide

useful information to guide program optimization. Next, ithas surveyed the method-

ologies for optimization techniques which include software optimization algorithms

and hardware optimization mechanisms. Lastly, it has inspected the basic working

procedures of three important static optimizers and seven dynamic optimizers.

Traditional compilers compile programs once, producing a binary program that

generates correct results under all inputs. Their code optimization depends on static

analyses carried out at compile-time, often at an optimization level selected by the user.

Such optimization technology suffers from inflexibility. Dynamic optimization can

make use of information about the program behaviour while the program runs, thus its

optimization methodology is more flexible than that of static optimization. However,

the overhead caused by runtime optimization operations andsystem initialization must

be offset before any performance improvement is seen. Therefore, static optimization

and dynamic optimization are usually employed in such a way as to supplement each

other.

Profiling techniques and program analysis play an importantrole for analysing and

collecting useful program information to support the choice of program optimization

strategies. Data flow and control flow analysis gains knowledge of the data changes

and control transfers of the whole program. Hence they are widely applied in the com-

piler for program optimization or exploited for programmers to better understand the

program behaviour. A dynamic optimizer needs to generate efficient code to obtain

high performance and reduce the time spent on system initialization and optimization

overhead. This trade-off, between the profile overhead and the performance benefits,
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is a crucial issue for dynamic optimizers [40]. Dynamic optimization requires infor-

mation from the runtime profile to make more accurate prediction and construct the

traces (except that Dynamo does not depend on the runtime profile for trace selection).

The dynamic optimizers tend to exploit a code cache for storing frequently-executed

instruction sequences. The codes run in the code cache can accelerate the execution of

the program.

Comparing the pros and cons of all the optimizers that have been reviewed in this

chapter, DynamoRIO shows significant advantages. Hence, the work described later

in this thesis has used DynamoRIO as the code manipulation system to perform run-

time code analysis and optimization on five carefully selected experiments which are

presented in detail in the next chapter. A static optimization algorithm viewed in Sec-

tion 2.6.2 is revisited in a dynamic context in the next chapter. Also, a modified pro-

gram analysis method from Section 2.4 is presented in the next chapter. Chapter 4 then

summaries the experimental results and discusses future work.
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Dynamic Code Analysis and

Optimization

3.1 Introduction

This thesis investigates runtime code manipulation to discover the possible optimiza-

tion strategy and speed up program execution. This chapter presents five experiments

on program analysis and program optimization. Some of theseexperiments, such as

redundanttest instructions removal and instruction alignment, have beencarried out

in static contexts in previous publications but not in a dynamic environment. Some

of these experiments, such as strength reduction and glacial address propagation, are

modifications of previous publications. An overview of the experimental methodology

is presented first in Section 3.2. The chapter then evaluatesthe base performance of

DynamoRIO to gain a brief view of how efficiently it works on code optimization (Sec-

tion 3.3). Next it analyses redundant instruction detection (Section 3.4) and strength

reduction (Section 3.5). Section 3.6 studies runtime instruction alignment analysis

and optimization. Following that, Section 3.7 explains themethod of persistent cache.

Finally, glacial address propagation is investigated and presented in Section 3.8.

3.2 Methodology

Dynamic code optimization introduces a significant runtimeoverhead; this overhead is

expected to be offset by a large amount of efficient code reuse. Therefore, optimization

on the ”cold” regions of a program is not necessary. Code optimization in this chap-

ter is performed on the frequently-executed program regions. Code manipulation and

59
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optimization is performed by the runtime code manipulationsystem DynamoRIO. The

performance of DynamoRIO for dynamic code optimization is evaluated by the exe-

cution time of programs from the SPEC CPU2006 benchmark suite. More details of

SPEC CPU2006 are in Section 3.2.1. The test workload (short-time run) and reference

workload (long-time run) of SPEC CPU2006 are employed for testing effectiveness of

optimization technology. The user defined DynamoRIO clients manipulate the appli-

cation through the interface provided by DynamoRIO. As described in Section 2.7.3,

the user defined clients work together with DynamoRIO to analyse and optimize the

program as it runs. The outcomes (program execution time) are compared with re-

sults of running benchmarks natively (without DynamoRIO).Details of how results

are presented are given in Section 3.3. Running the test workload, few clients demon-

strate performance improvement, as DynamoRIO needs time tobuild the basic blocks,

the traces and the indirect branch hashtable and performingother profiling operations.

This runtime overhead has not yet been offset by performanceimprovement. However,

running the reference workload, more of the benchmarks demonstrate performance

gain because the overhead caused by DynamoRIO is better offset. To guarantee the

performance stability and credibility, the benchmarks areeach tested three times and

the presented results give the average time of the three tests. In Section 3.6, a small

testing program is used for the performance measurement with its error 0.05s. SPEC

CPU2006 is used to measure the performance of computer processor, memory archi-

tecture and compilers. So performance may vary for different hardware and compilers.

3.2.1 Evaluation Test Case: SPEC CPU2006

This section reviews the benchmark suiteSPEC CPU20061, which is widely employed

in academia and industry for evaluating performance of optimization and other tech-

nology. SPEC CPU2006 programs simulate well the behaviour of many kinds of real

applications and are often used as an initial stage to evaluate code optimization meth-

ods or algorithms. A good optimization strategy will lead toperformance gain for

SPEC CPU2006 programs.

SPEC stands for Standard Performance Evaluation Corporation. SPEC is a non-

profit organization, which takes building the standard benchmarks for computer system

as a goal. This organization covers a wide-range of members:computer hardware

vendors, software companies, universities, research organizations, systems integrators,

1 SPEC CPU2006, available from http://www.spec.org/cpu2006/, accessed on 25/05/2012.
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publishers and consultants.

SPEC CPU2006 is a benchmark suite that is exploited in this thesis to test the

performance of the dynamic optimization technologies. A software benchmarkis a

computer program that performs set operations, so running the same benchmark on

different platforms allows comparison to be made. SPEC CPU2006 provides a compar-

ative measure of compute-intensive performance across thewidest practical range of

hardware using workloads developed from real end-user applications. SPEC CPU2006

measures the performance of computer processors, memory architecture and compil-

ers. It incorporates INT2006 suite and CFP2006 suite which measure the compute-

intensive integer and compute-intensive floating point performance, respectively.

SPEC CPU2006 also offers three types of workloads, known astest, train andref-

erence, for each benchmark. Thetest workloaddefines a short-run program which is

often used for debugging. This type of workload is a simplified version of the corre-

sponding reference workload, which can usually finish executing in several seconds.

The train workload version takes more time to finish than the test counterpart. The

reference workloadis designed to simulate the function of the real applicationor soft-

ware. Time spent on reference workload is usually more than 10 minutes.

The benchmark packages utilised in this thesis are400.perlbench, 401.bzip2,

403.gcc, 429.mcf, 445.gobmk, 456.hmmer, 458.sjeng, 462.libquantum, 464.h264ref,

471.omnetpp, 473.astarand483.xalancbmk. The primary component of400.perl-

bench is the Open Source spam checking software SpamAssassin. SpamAssassin is

used to score a couple of known corpora of both spam and non-spam, as well as a

sampling of mail generated from a set of random components.401.bzip2simulates

the procedure of file compression and decompression.403.gccsimulates an optimiz-

ing compiler.429.mcf is designed for simulating single-depot vehicle scheduling for

mass public transportation.445.gobmkis designed to play Go and executes a set of

commands to analyse Go positions. The purpose of456.hmmeris to search a gene se-

quence database.458.sjengis designed to simulate chess playing.462.libquantum is

a library for the simulation of a quantum computer.464.h264refis a reference imple-

mentation of the latest state-of-the-art video compression standard.471.omnetppper-

forms discrete event simulation of a large Ethernet network. 473.astaris derived from

a portable 2D path-finding library that is used in computer game’s AI. 483.xalancbmk

is a modified version of Xalan-C++, an XSLT processor writtenin a portable subset of

C++. Table 3.1 summaries all the benchmark packages and introduces the short name

for each package which will be used to refer to it in the remainder of the thesis.
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name short name functionality

400.perlbench perlbench spam checking
401.bzip2 bzip2 simulate compression and decompression
403.gcc gcc simulate an optimizing C compiler
429.mcf mcf simulate single-depot vehicle scheduling
445.gobmk gobmk play and execute commands to analyse Go positions
456.hmmer hmmer search a gene sequence databases
458.sjeng sjeng simulate chess playing
462.libquantum libquantum simulate a quantum computer
464.h264ref h264ref reference implementation of the video compression standard
471.omnetpp omnetpp simulate discrete event of a large network
473.astar astar a portable 2D path-finding library
483.xalancbm xalancbm a modified version of Xalan-C++

Table 3.1: SPEC CPU2006 packages

3.2.2 Configuration

The performance of the dynamic optimization and analysis strategies in this thesis are

tested by the popular benchmark suites SPEC CPU2006. The performance testing is

carried out on a Pentium(R) dual-core CPU E5700. The operating system version is

Fedora 16 (32 bits). The compiler version is GCC 4.6.3 20120306 (Red Hat 4.6.3-2).

3.3 Base Performance of DynamoRIO

The goal of this section is to demonstrate DynamoRIO’s base performance on runtime

program analysis and optimization. In this section, the application is controlled by

the default user defined clients provided with DynamoRIO. The user clients and Dy-

namoRIO cooperate to analyse and optimize the program as it executes. The default

user clients presented in this thesis include:empty.c, bbsize.c, bbcount.c, inc2add.c

andinline.c. They either perform code optimization or runtime program analysis. To

be more exact,empty.c makes DynamoRIO do basic operations.bbsize.candbb-

count.c are two simple program analysis clients, which are used to observe the size

information of the basic block and how many basic blocks are executed. In2add.c

is a program optimization client, which may speed up programexecution on certain

Intel cores.inline.c is an instrumentation client to perform code inlining whichinlines

entire callees into traces. The functionality of each client is listed in Table 3.2, which

also introduces short client names that will be used in the remainder of the thesis.
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client name client short name functionality

empty.c empty DR does basic operations
bbsize.c bbsize calculate the size of each block
bbcount.c bbcount calculate the dynamic blocks that executed
inc2add.c inc2add replaceinc instrution withadd
inline.c inline perform code inlining

Table 3.2: Default DynamoRIO client details

The performance of different clients (different clients means different program

analysis and optimization algorithms) is evaluated by bothexecuting applications un-

der DynamoRIO and executing them natively. Figure 3.1 showsthe performance of

the different benchmarks manipulated by the default user defined clients. Three types

of workloads from SPEC CPU2006 suites are available to use: test, train and reference

(as explained in Section 3.2.1). For each benchmark package, the execution time rises

across the test, train and reference workloads, respectively. The performance fluctu-

ates when running the three types of benchmarks under the same DynamoRIO client.

Ideally, DynamoRIO is always able to increment the program performance. Unfortu-

nately, only some of the benchmarks show any performance gain.
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In Figure 3.1, a zero value on the y-axis stands for no performance improvement

for an application. To be more exact, the application spendsthe exactly same time run-

ning under DynamoRIO as running natively. A positive value on the y axis presents

a performance decrease and a negative value means a performance gain. The num-

bers that are presented in the performance figures in this chapter are calculated as

follows: time running under DynamoRIO minus time running natively, then divided

by time running natively. A value of 100% shows that the application executing under

DynamoRIO takes twice the time (half as fast) as the application executing natively.

A value of -100% shows that the application under DynamoRIO takes half the time

(twice as fast) as the application executing natively. In Figure 3.1(a), only two bench-

marks show a performance gain:bzip2 andlibquantum . Forbzip2, theempty client

shows a little performance improvement: less than 10%. Withrespect tolibquantum ,

three clientsempty, bbsize andbbcount show a performance improvement around

50%. The records for the two benchmarks are more explicitly shown in Figure 3.2(a).

According to Figure 3.1(c),perlbench, mcf, libquantum andomnettp gain perfor-

mance; this is clearly demonstrated in Figure 3.2(b) which has a performance improve-

ment less than 10%. The detail of time spent on each version ofeach benchmark under

DynamoRIO is listed in Tables 3.3a, 3.3b and 3.3c. More benchmarks gain perfor-

mance when running the reference workload.

This simple performance test leads to the conclusion that DynamoRIO introduces

runtime overhead when constructing basic blocks, traces, ahashtable and other profile

operations. Such overhead can be offset by a performance gain when running large

programs with large amounts of code reuse. In the following sections, only the perfor-

mance of the reference workload is presented. The referenceworkload is the one that

is closest to simulation of real applications and is used forall future experiments.
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Figure 3.1: Simple benchmark performance for test, train and reference workloads
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Figure 3.2: Simple benchmark performance of test and reference workload

3.4 Experiment 1—Removal of Redundant Instructions

The input code stream for DynamoRIO is a binary stream which is generated by the

compiler (e.g. gcc). The compiler cannot remove all redundant instructions through

static analysis due to lacking online information about program behaviour. Hence the

compiler often generates some redundant instructions. Theruntime code manipula-

tion system is able to observe the online program behaviour and make better use of

hardware configurations to learn new optimization algorithms. One of the significant
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benchmarks native empty bbsize bbcount inc2add inline

perlbench 3.7s 14.8s 17.6s 22.4s 16.5s 23.7s
bzip2 11.3s 11.08s 11.8s 16.5s 12.2s 12s
gcc 1.32s 5.05s 5.75s 7.95s 5.92s 8.52s
mcf 2.57 2.75 2.78 3.49 2.83 2.78
gobmk 20.2 31.9s 31.6s 41.5s 31.3s 35.9s
hmmer 3.56s 3.95s 3.97s 4.82s 3.96s 3.95s
sjeng 4.64s 6.57s 6.3s 10.5 6.29s 6.85s
libquantum 0.0617s 0.282s 0.21s 0.286s 0.205s 0.228s
h264ref 20.6s 27.7s 27.7s 39.9s 27.8s 26.2s
omnetpp 0.546s 1.13s 1.13s 1.87s 1.08s 1.31s
astar 10.4s 11.1s 11.1s 13.6s 11.1s 11s
xalancbm 0.104s 1.07s 1.32s 1.8s 1.19s 1.81s

Table 3.3a: Time spent on each test workload benchmark with and without Dy-
namoRIO

redundant instructions istest, such as the instruction sequence shown in Figure 3.3.

add $0x00000004 %edi -> %edi ;
test %edi %edi;

Figure 3.3: Redundanttestinstruction

The add instruction has already set the condition codes, so the following test is

redundant and can be removed. This type of optimization is employed in the static

optimizer developed by Hundt, Ret al. [25] to perform some kinds of static optimiza-

tion. MAO (reviewed in Section 2.6.2) findstestinstructions where both operands are

the same registers and wheretesthas a previous instruction. Then it traverses upward,

bypassingmovinstructions. If it finds asub, and, add, or, xor, or sbbinstruction using

the same register astest, it knows the test was redundant.

MAO does not incur any extra runtime consumption for optimizing the code, but

this matters to DyanmoRIO. The code fragments in DynamoRIO are represented as

linked lists which may not occupy a continuous space even in the same fragment.

Traversing a linked list causes too much overhead and this overhead must be offset by

the performance improvement via reducing redundant instructions. Based on the above

reasons, the first step is to traverse the linked list backward for only one position after

a test instruction is identified. Only redundant instructions residing in the traces (the

definition of trace is reviewed in Section 2.7.3 of Chapter 2)are removed. By doing
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benchmarks native empty bbsize bbcount inc2add inline

perlbench 25s 41.9s 42.3s 76.8s 42.2s 43s
bzip2 58.1s 62.5 63s 86.6s 63.8s 62.8s
gcc 1.15s 3.99s 4.56s 6.24s 4.35s 6.52s
mcf 19.5s 20.4s 20.2s 23.3s 20.5s 19.8s
gobmk 108s 160s 162s 217s 161s 181s
hmmer 60s 60.3s 60.4s 68.9s 60.4s 60.4s
sjeng 141s 184s 183s 314s 183s 186s
libquantum 2.55s 2.6s 2.6s 4.63s 2.66s 2.65s
h264ref 118s 159s 159s 227s 159s 148s
omnetpp 73.1s 96.8s 97.3s 171s 97.3s 98.5s
astar 131s 134s 133s 160s 133s 132s
xalancbm 77.3s 128s 130s 216s 129s 158s

Table 3.3b: Time spent on each train workload benchmark withand without Dy-
namoRIO

this, benchmarklibquantum obtains a 3% performance improvement.

Inspired by this result, a deep retrieval algorithm has beendeveloped to better iden-

tify redundant instructions. This algorithm has been implemented in thetestremover

client. When a suitabletest instruction is detected, the client traverses upward the

whole trace, bypassingmov instructions. However, there are significant numbers of

control transfer instructions residing in the traces whichcan be the original application

instructions or extra profiling instructions. Control transfer instructions may lead the

program to jump to other basic blocks and it is hard to tell whether the condition set

by testwill affect other branches or not. So, when it hits a control transfer instruction,

the algorithm terminates backward searching and continuesto detect the next possible

testinstruction.

Figure 3.4 shows the DynamoRIO routine (a hook function) that is called when a

trace is created and it works as an interface to support instrumentation for each trace.

This routine a function declaration in the program.dr_emit_flags_tis one of the in-

ternal enumeration types defined by the DynamoRIO function libraries; it controls the

behaviour of basic blocks and traces. (more detail can be found from DynamoRIO

header file reference.2 void *tag is the beginning address of each trace. Thevoid

*drcontextparameter here is the thread local machine context used by DynamoRIO. A

client treats*drcontextas an opaque pointer and passes it around for use when calling

API routines [13]. instrlist_t *trace is a trace which is a linked list. The parameter

2 DynamoRIO document, available from http://dynamorio.org/ ,accessed on 25/08/2012.
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benchmarks native empty bbsize bbcount inc2add inline

perlbench 637s 635s 639s 1240s 637s 629s
bzip2 815s 841s 841s 1160s 836s 840s
gcc 506s 618s 622s 941s 624s 658s
mcf 484s 495s 469s 547s 454s 468s
gobmk 579s 577s 801s 1090s 800s 870s
hmmer 608s 608s 611s 694s 611s 611s
sjeng 680s 679s 885s 1530s 887s 931s
libquantum 1330s 1320s 1270s 1400s 1270s 1290s
h264ref 872s 872s 1090s 1490s 1090s 1140s
omnetpp 617s 601s 652s 884s 667s 669s
astar 691s 699s 702s 822s 698s 625s
xalancbm 405s 502s 500s 899s 504s 533s%

Table 3.3c: Time spent on each reference workload benchmarkwith and without Dy-
namoRIO

translatingindicates whether this callback is for trace creation (false) or is for fault ad-

dress recreation (true). Whentranslatingis set to be true, DynamoRIO needs to map

codes back to application instructions.

static dr_emit_flags_t
event_trace(void *drcontext, void *tag, instrlist_t *trace, bool translating);

Figure 3.4: DynamoRIO routine for instrumenting in a trace.

Table 3.4 gives the total number oftest instructions detected in all the traces and

the total number of redundanttestinstructions deleted by thetestremoverclient. Fig-

ure 3.5 shows the resulting benchmark performance when removing test from the

traces alongside theempty client both compared with the benchmark performance

running natively. Theempty client of DynamoRIO does not perform additional instru-

mentation for collecting profile information and does not perform additional program

optimization. This client only enables DynamoRIO to finish its basic operations, such

as building basic blocks, traces, hash table andetc. Performance comparison under

empty client with DynamoRIO’s other clients clarifies performance gains or loses ob-

tained by the designed optimization or analysis algorithm.For instance, better per-

formance thanempty client but worse than native execution shows that a program’s

performance is improved but still not enough to offset the overhead caused by Dy-

namoRIO’s initialization. Where appropriate the following experiments in this chapter
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also compare performance of the new clients with DynamoRIO’sempty client as well

as native execution,

benchmarks redundanttest testdetected redundant rate

perlbench 102 11792 0.86%
bzip2 36 237 15.18%
gcc 470 97276 0.48%
mcf 6 270 2.22%
gobmk 105 13975 0.75%
hmmer 18 694 2.59%
sjeng 11 562 1.96%
libquantum 1 113 0.88%
h264ref 56 6042 0.93%
omnetpp 37 1920 1.93%
astar 8 504 1.59%
xalancbm 13 2789 0.47%

Table 3.4: Total number oftestinstructions detected and deleted bytestremoverclient
in the traces of the SPEC CPU2006 benchmarks
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Figure 3.5: Benchmark performance on thetestremoverclient andempty client

3.5 Experiment 2—Strength Reduction

Strength reduction refers to the strategy of substituting an expensive instruction with

its cheaper counterpart. In some cases, X86 instructionlea (load effective address)
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performs the same function asadd. For example, the instructions in Figure 3.6 are

equivalent.

add reg, reg, update;
lea reg,[reg+update];

Figure 3.6: Equivalent instructions. The two instructionsboth increase the value in reg
by the same amount:update.

This section presents a replacement algorithm usinglea to substituteadd if lea

updates the register in the above format.lea does not change eflags (the arithmetic

flags) and doing away with the need to save and restore eflags significantly reduces

the overhead due to a context switch [44]. However,lea andadd both only require

one CPU cycle so their execution speed is the same on the processor butlea executes

faster thanadd under DynamoRIO. This could be further extended to any runtime

code manipulation system that needs a context switch. Recall that a context switch is a

procedure of storing and calling the machine states. More details of context switch are

reviewed in Section 2.7.3. The replacement operation is merely applied in the traces,

since the program spends most of its time on them. A further analysis needs to be

done to determine if the eflags variation betweenlea andadd is acceptable for each

trace. To be more specific, when a suitableadd is observed, the algorithm continues

to check subsequent instructions within the trace. If the following instructions need

to read the eflags or an exit control transfer instruction is hit, add is not allowed to

be replaced bylea. In addition,add has two source operands (reg and updateare

two separate operands) butlea has only one ([reg+update] is one operand). Because

of this, the operands merge (merge two operands into one) here for lea needs to be

carefully handled.

The above strength reduction algorithm has been implemented in the add2lea

client, which improves the performance of benchmarkslibquantum andmcf by 3.8%

and 7.6%, respectively. Table 3.5 gives the total number ofadd instructions that reside

in all the traces and the total number ofadd instructions that are replaced bylea by

theadd2leaclient. More detail of the performance results is shown in Figure 3.7. One

thing that needs to be taken into account is that benchmarkgccfails during the testing.

A verified reason for this at the time of writing remains unknown.
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benchmarks add to lea adddetected replacement ratio

perlbench 1009 8593 11.74%
bzip2 20 1033 1.94%
mcf 8 288 2.78%
gobmk 3448 24359 14.15%
hmmer 92 920 10.00%
sjeng 50 811 6.17%
libquantum 18 199 9.05%
h264ref 529 11940 4.43%
omnetpp 374 11676 3.20%
astar 80 1048 7.63%
xalancbm 512 3277 15.6%

Table 3.5: Total number ofadd instructions in the traces of SPEC CPU2006 bench-
marks
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Figure 3.7: Benchmark performance foradd2leaclient andempty client

3.6 Experiment 3—Instruction Alignment

Alignment optimization utilises the processor resource inan effective way through

seeking to change the relative placement of instructions [25]. Inspired by an idea

from the paper on MAO [25], the performance of a program can beimproved via only

padding the “no operation instruction”nop into the program. Paddingnop into the in-

struction streams changes the code alignment which may cause performance variation.

nopis an assembly language instruction, it occupies CPU clock cycles but performs no

operation. Intel IA32/IA64 provides different size ofnop, which vary from one byte to
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nine bytes. In C/C++, an instruction can be considered as anopoperation when it does

not affect the program output. For instance,i+1 or “;” can become anopoperation.

In DynamoRIO, the instructions listed in Table 3.6 are also considered to benop. Dy-

namoRIO also provides several choices for the size of onenop, in this thesis one byte

is selected.

xchg reg,reg;
mov reg,reg;
lea reg, (reg);

Table 3.6: Equivalent tonop instructions in DynamoRIO

In static optimization, a compiler may remove or generatenopswhen compiling

the source files into the executable. A static compiler inserts alignment instructions

roughly based on the underlying micro-achitecture [25]. For example, insertingnop

to avoid a pipeline hazard and to align a branch target to an 8-byte or 16-byte cache

line. The problem of the alignment strategy is that a compiler just paddingnop into

the branch based on a rough idea about the underlying hardware [25]. In a dynamic

optimizer, more information about underlying hardware maybe available. To inves-

tigate the dynamic situation, firstly a simple clientnopremovehas been designed to

simply delete all thenopsin traces. Other infrequently-executed regions of the pro-

gram are ignored. By doing this operation, it receives 4% and1% performance gain on

benchmarkmcf andlibquantum , respectively. The benchmark performance is shown

in Figure 3.8. DynamoRIO only deletesnop on the fly, after benchmarks finish exe-

cution, the “deleted”nopstill exists in the original code stream. DynamoRIO will not

make changes to the original code, as it makes a copy of all thecodes in the basic block

cache.

In order to test how insertingnop can affect program performance, a small loop-

intensive testing program has been written. This program costs around 2 minutes to

execute. The time error is 0.05 seconds. DynamoRIO automatically builds 15 traces

for this program. Each trace contains no more than 11 instructions. An example of

a trace from this program is shown in Figure 3.9. It is worth noting that, Figure 3.9

is addressed to show the structure of a trace only. This traceis an intermediate code

sequence generated directly by DynamoRIO itself, which canbe a sequence of instru-

mentation codes. It is worth noting that the focus of the picture is to present how a trace

is composed of rather than its actual functionality. This trace has multiple exits. The
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Figure 3.8: Benchmark performance fluctuation when removing nop instructions in
the hot regions

rightmost column shows the instructions comprising the trace. The instructions are

presented in AT&T format. The middle column is the binary code corresponding to

each assembly instruction.0x416563f8is the beginning address of the trace. The left

column indicates the address increase. The clientnopoptimizer has been implemented

to dynamically insertnopsinto the program. Different numbers ofnopsare inserted

into different positions (in the beginning, in the middle and the second last position) of

each trace. The reasons of such a choice will be stated later in this section. Through

investigating the performance it is observed that the appropriate number ofnopsto pad

into each trace is between 5 and 16. The performance variation whennopsare inserted

into different traces is demonstrated in Figure 3.10. The ordinals in the x dimension

stand for the trace label. For example, 1 represents Trace 1 and 15 represents Trace

15. The performance running under thenopoptimizer client is compared with the

performance under DynamoRIO’sempty client as well as program execution natively.

Theempty client only does limited optimization performed by DynamoRIO itself (for

more detail see Section 3.4). The performance of theempty client always stays on a

level of +6%. Thenopoptimizer VS empty client bars are performance comparison

betweennopoptimizer client andempty client (this is a client comparison, rather than

against native as used everywhere else).

The performance of the program is presented in Figure 3.10 only when anopis in-

serted at the beginning, in the middle and at the second last position of each trace. As

the last instruction of a trace is always a control transfer instruction,nopsinserted after
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TAG 0x416563f8
+0 L3 8a 01 mov (%ecx) -> %al
+2 L3 3a 02 cmp %al (%edx)
+4 L3 75 09 jnz $0x41656407
+6 L3 41 inc %ecx -> %ecx
+7 L3 42 inc %edx -> %edx
+8 L3 84 c0 test %al %al
+10 L3 75 f4 jnz $0x416563f8
END 0x416563f8

Figure 3.9: A trace example for the loop-intensive testing program described in the
text

it will not be executed. Theempty client of DynamoRIO slows down program perfor-

mance by around 6%. Through merely paddingnopsinto certain traces, it is observed

that such performance degradation caused by DynamoRIO is offset by the resulting

performance gain. In other words, the performance of DynamoRIO is increased by

approximately 6% via simply inserting a certain number ofnop instructions into ap-

propriate traces. For example, the 5th, 8th, 9th and 10th trace are good traces which

show performance gain. Performance of some traces degradeswherevernopsare in-

serted.

DynamoRIO treats the instrumentation instructions that are inserted into a trace

by an API client the same way as it treats application instructions. DynamoRIO pro-

vides two types of instrumentation instructions:metaandnon-metainstructions. Both

of these will be brought into code cache (basic block cache and trace cache) by Dy-

namoRIO and may potentially influence the code layout in the code cache. An inserted

non-meta instruction in the code cache needs to map back to anapplication instruction

while a meta instruction does not. Therefore to avoid the complexity of address map-

ping, nop is inserted into the program as a meta instruction. DynamoRIO provides

convenient macros to create new instructions. Figure 3.11 gives the DynamoRIO func-

tion call to insertnopas a meta instruction. This is a function call in a program nota

function declaration. It creates anop instruction and inserts it in front of the specified

instructioninstr.
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Figure 3.10: Performance fluctuation whennopsare padded into different positions
of each trace compared with running the program natively andrunning under Dy-
namoRIO’s empty client
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instrlist_meta_preinsert(trace,instr,INSTR_CREATE_nop(drcontext));

Figure 3.11: A DynamoRIO function call for insertingnopas a meta instruction

3.6.1 Analysis of Rationales fornop Optimization

According to previous research [25], the identified and speculative rationales thatnop

can make an effect on program performance are summarized as follows:

• Intel core micro-architecture (core i3, core i5 and core i7)[2] comprises a Loop

Stream Detector (LSD), which can detect small loops in the program and lock

them in a double buffer (which resides in CPU). This double buffer is able to

hold two 16-byte chunks of data. LSD can bypass instruction fetching, decoding

or reading under certain circumstances. This takes advantage of avoiding repeat-

edly decoding the same instructions and making the same branch predictions. If

a loop contains no more than 18 instructions (excluding thecall instruction ),

executes at least 64 iterations, does not span over four 16-byte decoding lines

(requires only up to 4 decoder fetches of 16 bytes) and incorporates at most 4

taken branches, then the loop may be locked in the instruction queue and there-

fore more quickly available when the loop is used again. The requirements may

vary for different vendors. Paddingnopsmay lead a loop to meet the require-

ments for invoking LSD. Many calculation intensive loops, searches and soft-

ware string moves match the above characteristics, which can be easily affected

by noppadding.

• Insertingnopmay change the branch prediction of the processor. Several condi-

tional branches may be mapped to the same entry of the branch prediction pattern

table. Each entry in this table gives the information of taken or not taken. There

is a high possibility that several branches may share the same branch prediction

entry which cause the prediction outcomes to interfere witheach other. Suppos-

ing branch a and branch b share the same entry in the pattern table, branch a

is always not taken and branch b is always taken. In the worst case, the taken

and not-taken branches are executed alternately. Thereby the taken branch is

predicted based on the outcome of the fall-through branch and vice versa. By

insertingnops, the odds of such interference among branches may be reduced.



78 CHAPTER 3. DYNAMIC CODE ANALYSIS AND OPTIMIZATION

• x86/64 Core-2 decodes instructions in 16-byte chunks. Aligning a loop at a 16-

byte chunk results in decoding of one line instead of two.

• Paddingnopsmay affect data dependences in the pipeline.

As a consequence of the above, it may be helpful to insert pseudo-random num-

bers ofnop instructions into a program. The idea [25] behind this (inserting random

number ofnops) is that codes get shifted around to expose micro-architectural cliffs

via inserting instructions. This may result from removing unknown alias constraints

or limitations in the branch predictor, however this is a speculative reason which needs

to be further investigated. Also it is still not clear that how many numbers ofnops

to layout are able to make best use of the underlying processor architecture, thus en-

abling program optimization. In the following sections, the maximum number ofnops

inserted are 15 occupying 15 bytes. As stated above, processors tends to organize in-

structions into 16-byte chunks, therefore inserting less than 16-bytenopsmay trigger

its optimization mechanism and speed up program.

However, paddingnopcan also cause performance degradation which in fact hap-

pens with a high possibility. Insertingnopsin a program brings more instructions in the

program and a larger instruction cache footprint. This may degrade program perfor-

mance, but it is expected that this degradation can be covered by any performance gain

due to above reasons. According to the above reasons, the nop_optimizer approach is

highly hardware-dependent. Performance will certainly bedifferent when running the

nopoptimizer client on a different platform.

Through testing the small specified program, an overview hasbeen obtained of how

paddingnopsinto the frequently-executed regions in the program can make changes to

its performance. In following sections, this idea is applied to programs from the SPEC

CPU2006 benchmark suite. In order to find out the appropriatetraces for insertingnop,

three instrumentation clients have been investigated to collect the online profile infor-

mation, namely:MemoryReference, BranchTarget andCacheSimulator. However,

no performance results are presented for the first two clients. MemoryReferenceand

BranchTarget do not work efficiently to collect the required expected profile informa-

tion, due to limitations in DynamoRIO.

3.6.2 Memory References Simulator

Memory reference in this section is an address for instructions only. It includes direct

addresses and indirect addresses. A direct address specifies an address by a constant
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value. An indirect address specifies an address by either a register or a combination

of registers and constant values. TheMememoryReferenceclient collects informa-

tion about memory references for each trace. The information, such as memory write

reference and memory read reference, is collected before and after paddingnop. The

idea is that, when the total number of memory references varies, this means thatnops

influence memory accesses. As the number of memory references can be profiled for

each trace, and this makes it possible to select traces that are significantly affected by

insertingnops.

Figure 3.12 gives the DynamoRIO function calls that are utilised to determine if

an instruction is a memory reference (memory read or memory write). instr in the

brackets here represents an instruction which is a pointer in DynamoRIO. However, no

memory reference change is detected after insertingnopinto the traces. This operation

is constrained by DynamoRIO itself. DynamoRIO only considers instructions whose

operand is a memory access address as a memory reference. Sincenophas no operand,

it is not considered as a memory reference by DynamoRIO even thoughnopstill needs

to be stored in the memory.

instr_reads_memory(instr);
instr_writes_memory(instr);

Figure 3.12: The DynamoRIO calls to determine memory references. The two instruc-
tions are function calls not function declaration.

3.6.3 Branch Target Prediction Simulator

Apart from memory access, branch prediction is the main factor for slowing down

the processor in the case of misprediction. DynamoRIO simply utilises a hardware

branch prediction mechanism known as Branch Target Buffer to perform the branch

prediction and inlines a frequently taken branch into the trace. Branch prediction has

been reviewed in Section 2.5.4 (for more information on Branch Target Buffer, refer to

Intel manual [2]).

As discussed before, paddingnopinto codes containing branches may influence the

branch predictor of the Intel platform. The idea in this section is to collect the branch

target addresses3 before paddingnop and the branch target addresses after padding

3 The target address of a branch where the branch will jump to.
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nop. Several branch instrumentation routines that are provided by DynamoRIO can

be exploited to investigate whether or not the branch targetpredictions are affected by

paddingnopprior to the control transfer instructions. DyanmoRIO provides four types

of branch instrumentation function calls which are listed in Figure 3.13.

dr_insert_call_instrumentation();
dr_insert_ubr_instrumentation();
dr_insert_mbr_instrumentation();
dr_insert_cbr_instrumentation();

Figure 3.13: The DynamoRIO branch instrumentation function calls

These routines insert a clean call4 prior to the control transfer instructions and pass

the instruction PC and target PC as well as the taken or not taken information for

conditional branches to the callee (a user-defined function). The first routine is used

for passing two arguments: address of call instruction and target address of call. The

second routine is used for passing two arguments: address ofbranch instruction and

target address of branch instruction. The third routine is used for passing address of

branch instruction and target address of branch. The last routine is used for passing

three arguments: address of branch instruction, target address of branch instruction

and taken or fall-through information. In theBranchTarget client, a thread event

from DynamoRIO is invoked to dump target addresses, branch target addresses and

the information of whether branches are taken or not to a log file for later inspection.

There are also two global counters set for the total branch hits and branch misses of

the program.

However, the branch target addresses that DynamoRIO can obtain are the instruc-

tion addresses, not the code cache addresses. The instruction addresses will not be

changed due to inserting a meta or non-meta instruction, although it is achievable to

insert a non-meta instruction and make it execute together with the application in-

structions, so that the code cache addresses can be collected. But the code cache ad-

dress of an application branch jump target remains unknown due to a constraint of

DynamoRIO. DynamoRIO links and unlinks the target dynamically to point to differ-

ent fragments. Also the layout of code cache will be disturbed by inserting meta and

4 A clean call in this section inserts into a trace prior to where meta-instruction(s) to save state for
a call, switch to this thread’s DynamoRIO stack, set up the passed-in parameters, make a call to callee,
clean up the parameters, and then restore the saved state.
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non-meta instructions. As a consequence of the above reasons, this branch target pre-

diction client does not detect any branch mis-prediction rate change nor the instruction

address changes after paddingnop into the traces.

3.6.4 Cache Simulator

Th CacheSimulatorclient simulates the behaviour of a hardware cache. In this section

the cache simulator is limited to be a fully associative instruction cache. The most

commonly-used cache line replacement algorithms FIFO (First In First Out) and LRU

(Least Recently Used) are employed. The FIFO cache line contains two parts, namely

a tag and a valid bit. A tag in this cache simulator is specifiedas a dynamic address of

an instruction in the trace cache. An LRU cache line containsone more segment which

is a counter or timer. This local counter in the cache line is updated by a global counter

every time a cache access happened. To be more specific, the global counter increases

every time a cache access happens. When a cache hit happens, the local counter of a hit

cache line is replaced by the global counter. When a cache miss happens, DynamoRIO

creates a new cache line and sets the value of its local counter to be the value of the

current global counter. In this way, it can be guaranteed that the least recently used

cache line can be swapped out of the cache block when cache is full but a new cache

line will not be swapped out immediately

As in the previous experiment,nopsare padded only in the traces. They are inserted

in front of the control transfer instructions, which may potentially change the target

addresses of the control transfer instructions and cause the cache lines to change. The

cache hit and cache miss for each trace and the whole program are recorded to find out

whether the program’s performance is affected by insertingnopand to decide which

trace is an appropriate trace for insertingnop.

Two global counters are used to record the cache misses and cache hits for the

whole program and export them in the standard output stream of DynamoRIO. Two

local counters are also set to record the cache misses and cache hits for each trace. The

information for each trace is dumped into a log file for later inspection. A thread is

generated every time a trace finishes execution, to record the cache misses and hits of

each trace. The thread exports the results into a log file every time a trace finishes ex-

ecution. The thread is initialised and terminated by the routines shown in Figure 3.14.

The thread initialisation and termination routines are hook functions.

The experiment results for theCacheSimulator client show the following. The
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void event_thread_init(void *drcontext);
void event_threead_exit(void *drcontext);

Figure 3.14: Thread initialisation and termination routines

FIFO cache line replacement algorithm causes frequent cache misses. The cache sim-

ulator becomes busy when the program starts to run for a whileand reaches its size

limit. The old cache lines are swapped out frequently, especially when insertingnops

into each trace, asnopsalso occupy the cache line. Insertingnopsin each trace of the

benchmarks greatly increases the whole cache miss rate. Forexample, before inserting

nops, libquantum has 5% cache miss rate, but after inserting 15nops(the reasons for

the choice of the numbers are stated in Section 3.6.1) in front of every control transfer

instruction in each trace, the cache miss rate rises to be 46%. However, the cache miss

rate decreases in certain traces after insertingnops. The cache simulator helps to de-

cide the good traces in which to insertnop, which are the ones that cause fewer cache

misses.nopsare padded in front of every control transfer of the selectedtrace instruc-

tions. By doing this,libquantum shows 2% performance improvement. Paddingnops

does not have any obvious effect on the performance ofgccor perlbench.

The LRU cache replacement algorithm does not cause as much cache miss rate

as FIFO does. Traces are the frequently-executed codes thatare linked together to

achieve better performance. So, in each trace, the instructions executed are very likely

to be called soon and will not be swapped out of the cache. Padding nopsinto each

trace in front of every control transfer instruction actually decreases the cache miss

rate, however this may be caused by the size of the simulated cache. The good traces

detected under LRU are almost the same as the good traces detected under FIFO, which

show lower cache miss rate after paddingnops.

The disadvantage of theCacheSimulatorclient is that it requires a large amount

of time to finish. This may be not acceptable to apply for a realapplication, as real

applications tend to be larger than the benchmark suite. However, this strategy is

approachable and currently the only way that DynamoRIO can be employed to detect

the effect ofnop. The reason that the performance oflibquantum is affected maybe

due to its CPU-intensive operations. CPU-intensive programs are more likely to be

affected by the optimization algorithms targeting the processor, either by making better

use of the superscalar or branch prediction or LSD of the processor.
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3.7 Experiment 4—Persistent Code

Dynamic code optimization works well for long-running applications with a significant

amount of code reuse. But, for short-running applications or long-running applications

with little code-reuse, it is not a good idea to apply online optimization because the

time speed-up cannot offset the runtime overhead. In such cases, the optimized ver-

sion of the application can be stored on disk and reloaded directly the next time the

application is called. Thereby, subsequent executions of the application can be much

faster with little instrumentation overhead. This sectiononly investigates techniques

on persistent codes and presents a simple clientpersistcodeto show performance of

the persistent code.

To achieve persistent code in the context of DynamoRIO, the user needs to set

DynamoRIO’s runtime flags-persist and-persist_dir. The-persist flag enables per-

sisting of the code caches by storing to the disk, while-persist_dir sets the directory

where the persistent code expected to be stored. By default in DynamoRIO, codes

are not persistent. It is required to backup the state of the code cache the first time

the application executes and restore it when the application executes again under Dy-

namoRIO. The function calls provided by DyanmoRIO that enables users to cache the

different types of data in the persistent file are shown in Figure 3.15.

dr_register_persist_ro();
dr_register_persist_rx();
dr_register_persist_rw();
dr_register_persist_patch();

Figure 3.15: DynamoRIO calls to enable 4 types of data to be saved in persistent cache

The first function enables the client to store read-only data, the second one enables

the client to add executable code, the third one enables the client to tackle the writable

data and the last one to patch the codes. Only the optimized basic blocks can be stored

to the disk and reloaded directly by DynamoRIO.

The code optimization strategies are applied to the basic blocks due to the limita-

tion of DynamoRIO. DynamoRIO only enables persistent code for basic blocks. The

return value of the basic block event is set to be: DR_EMIT_PERSISTABLE, instead

of DR_EMIT_DEFAULT to inform DynamoRIO that the basic blockneeds to be per-

sistent. There is not too much investigation of persistent code optimization in this sec-

tion, because the system consumes a large amount of time to backup the environment
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parameters and application codes as well as the profile codes. The approach, persistent

cache, is found more adequate and widely used for static optimization rather than ap-

plying in a dynamic environment. Figure 3.16 shows the performance of the persistent

code. The blue columns (the left-hand ones) represent the application running at the

initial step and the red columns (the right-hand ones) represent the application being

reloaded and run a subsequent call. The system shows a slighttime decrease in a sub-

sequent run. Conclusion appears to be that the cost of reinstalling the persistent code

without any optimization is almost the same as the original cost for instrumentation to

make persistent code.
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Figure 3.16: Persistent code performance comparison between that of the initial step
and that of the second call. Persistent code is constructed in the initial step and is
reloaded to execute under DynamoRIO in the second call

3.8 Experiment 5—Glacial Address Propagation

Some variables, whose values change sufficiently slowly in execution of the program,

are qualified to be worth generating special case code, in which the value is treated as

a constant for a period, thus enabling a cascade of optimization. Such variables are

called glacial variables [4]. This type of analysis is a modification the constant prop-

agation optimization algorithm. Background information on glacial variable analysis

and constant propagation analysis is reviewed in Section 2.4. Since glacial variable

analysis largely relies on runtime profile information, this makes it impossible for a

static compiler to perform during compile time. In spite of the promise of existing
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work, glacial variable analysis has not been widely exploited, since it has been diffi-

cult to imagine a mechanism whereby the information about glacial values, necessarily

obtained at runtime, is fed back to a compiler. In this section, the main goal of glacial

variable propagation is to detect the potential glacial variables in a program, and dis-

cover the opportunity for runtime code optimization; therefore the program execution

time is temporarily ignored. DynamoRIO has no notion of variables other than ad-

dresses, however indirect addresses are variables at the assembly language level. The

goal of glacial address propagationin this section is to label the indirect addresses

with useful properties to aid selection of cost-effective and value-specific optimiza-

tion. TheGlacialVariable client has been designed and implemented to perform this

analysis.

3.8.1 Constant Addresses Analysis

Constant propagation is usually employed in a compiler and is easy to perform at the

high-level language or IR level. A constant address enablesthe processor to make bet-

ter use of the instruction pipeline and branch prediction. Table 3.7 shows an example

of two potential indirect address candidates which could bereplaced by address con-

stants, and Table 3.8 shows the substitution of the candidate instructions. The assembly

language instructions here are presented in Intel format. For the two instructions in Ta-

ble 3.7, their operands contain indirect addresses which could be replaced by constant

addresses. To be more exact, the operanddword ptr [eax+0x50] gives the content

at the address computed by taking the content in registereax plus 0x50. Therefore

the computed address (assuming the computed address is 0x06) can be replaced by a

constant address0x06. The operandedi is an indirect address whose content is an ad-

dress, therefore the registeredi could be replaced by the constant address0x4ce74008

(assuming the address stored in the register is 0x4ce74008). The values of the con-

stant addresses are based on the previous instructions executed. For example, if the

value in the registeredi stays the same as0x4ce74008, then the register operand can

be replaced with the constant value0x4ce74008.

mov ecx, dword ptr [eax+0x50];
jmp [edi];

Table 3.7: An example of indirect address candidates
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mov ecx,[0x06];
jmp 0x4ce74008;

Table 3.8: An example of substitution instructions for the instructions in Table 3.7

Analysis of glacial addresses is a modification of the glacial variable analysis (see

Section 2.4 for more details) proposed by Autreyet al. [4]. Instead of analysing

variables, memory addresses are taken into account, as variables are expressed as ad-

dresses at the assembly language level. The same as in [4], the analysis is divided into

the following two steps:

• distinguish a program into different special parts based onsome conditions. In

this section, such a special part is addressed as astage. Within a stage, it is com-

posed of several basic blocks. A basic block with a stage is called astage level.

• analyse the change frequency of the indirect memory addresses in each labelled

stage level (basic blocks) of its corresponding stage.

To be more exact, the whole program is distinguished into many stages. Within

a stage the basic blocks are numbered as stage levels starting at stage level 0 when

each time a new stage begins. One basic block is one stage level. Recall that each

basic block in DynamoRIO is a sequence of instructions ending with a control transfer

instruction. A basic block could be executed multiple timescontiguously but is only

regarded to be one stage level. It is worth noting that a stagecan also repeat multiple

times. Figure 3.17 shows how a stage is constructed. A basic block ending with an

indirect call (call via a register) or direct call (call via aprocedure name) is a possible

candidate of Stage Level 0. The clientGlacialVariable continues to label its subse-

quent executed basic blocks until meeting a basic block ending with return instruction

or a control transfer instruction excluding direct call andindirect call instruction. A

basic block with areturn instruction or a control transfer instruction (excluding call

instruction) is the last Stage Level n-15. For example, a basic block ending with a call

instruction is labelled to be Stage Level 0; the next executed basic block is labelled to

be Stage Level 1 if it ends with a call instruction too; if the next basic block ends with a

return instruction then this basic block will be Stage Level 2 and the client will start to

label a new stage. The client repeats the above procedure on the subsequent executed

blocks until the program finishes execution. TheGlacialVariable client is only set

5 As stage level begins with zero, n-1 is used as the last stage level.
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to consider at most 10 stage levels in each stage, as after 10 stage levels the number

of the constant addresses becomes so few it is do not worth to taking into consideration.

Basic Block 1 ending 

with a call instruction 

Basic Block 2 ending 

with a call instruction 

Basic Block n ending 

with a return or other 

cti  instruction 

 

         Stage Level 0 
(a block of instructions) 

 

         Stage Level  1 
(a block of instructions) 

         Stage Level n-1 
(a block of instructions) 

Figure 3.17: The way for labelling stage levels

Memory references/addresses incorporate memory write andmemory read refer-

ences. A complete address includes four parts: a base register, an index register, a

scale and a displacement. The register’s name and its corresponding value, as well as

the value of the scale and displacement are captured. Figure3.18 gives the codes on

how to obtain values in registers under DynamoRIO. This section concentrates on ex-

plaining the algorithms, therefore the details on how to program the client using C/C++

will be skipped. Two buffers are set to record the information of memory references

in each stage level. One buffer captures the initial value ofeach memory address, the

other captures the final value of a memory address when a basicblock finishes exe-

cution. In each stage level, the initial value of the addressis compared with the final

value to check whether it has changed.

The client also records the number of addresses acting as constants in each stage

level. A third buffer is set to record the stage level information, namely the starting ad-

dress of a basic block, in which stage level a basic block resides and how many stage

levels that a stage contains. The information in this bufferhelps to decide that where

a direct address substitution for an indirect address should be applied. When a client

reaches Stage Level n-1, the information in the first two buffers (which contain the

values of the memory addresses) are logged onto a file which isachieved by invoking
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a thread for writing. When logging is finished, the two buffers are emptied and are

ready for recording the newly coming information. The information in the third buffer

is also processed and emptied every time a stage finishes execution. Moreover, a global

counter is set for each basic block to capture its repeated execution times. More fre-

quently executed basic blocks are better candidates for performing glacial addresses

replacement with constant addresses in the future work. Theinserted counter instruc-

tion cannot be only simply presented in the formatATOMIC_INC(counter),6 as simply

increasing the counter when the client sees a block will onlymake the client capture

the number of a specific basic block rather than its executionfrequency, therefore fre-

quency counter here will stay at one. As the client inserts instructions into each basic

block before its execution, this type of counter can only record the static number of the

basic blocks in a program rather than the dynamic number of times they are executed.

The way to capture the execution frequency of each block is toforce the frequency

counter to execute together with the application instructions. Figure 3.19 shows how.

The variablefreq_counteris the frequency counter.

dr_get_tls_field(dr_get_current_drcontext());
dr_mcontext_t mc=sizeof(mc),DR_MC_ALL,;
dr_get_mcontext(dr_get_current_drcontext(), &mc);
base_reg_value=reg_get_value(temp_base,&mc);
index_reg_value=reg_get_value(temp_index,&mc);

Figure 3.18: Codes to obtain the register value under DynamoRIO

instrlist_meta_preinsert(
bb, instr,INSTR_CREATE_inc(
drcontext, OPND_CREATE_ABSMEM(
(byte *)&(BufOne->freq_counter), OPSZ_4)));

Figure 3.19: Codes to obtain the execution frequency of eachblock under DynamoRIO

The results needed are the starting address of each basic block, the different num-

ber of stage levels that stages contain in a program, the address value information of

each stage level and the execution frequency of each basic block. Only results from

6 ATOMIC_INC increases the value of a variable by one; this is asafer way than counter++, as the
variable area will be locked while it increases thereby avoiding any concurrency problem.
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libquantum and mcf have been obtained due to time limitations. Figure 3.20 and

Table 3.9 show the stage level information. The y-axis of Figure 3.20 represents the

number of the program parts that have Stage Level n-1 and the x-axis represents the

stage level. For example, 2 on x-axis means there are two stage levels in a stage, and its

corresponding value on y-axis represents the stage number that contains 2 stage levels.

Table 3.9 shows the exact results. Table 3.10 gives the average glacial address num-

ber in each stage level of the whole program and Table 3.11 gives the sum of glacial

addresses in each stage level for the whole program.
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Figure 3.20: Stage information oflibquantum andmcf of SPEC CPU2006 bench-
marks

stage 2 3 4 5 6 7 8 9 10
libquantum 173 96 26 12 3 3 0 1 5
mcf 200 74 13 8 0 1 0 0 0

Table 3.9: Stage information oflibquantum andmcf. The second and third rows show
the number of stages in the program that contain 2 to 10 stage levels

stage level 0 1 2 3 4 5 6 7 8 9
libquantum 0.4 0.8 0.6 0.4 0.3 0.2 0.3 0.1 0.1 0.1
mcf 0.3 0.5 0.4 0.4 0.1 1.0 0 0 0 0

Table 3.10: Average glacial address number in each stage level of the whole program.
The second and the third rows are the results for the average number of glacial ad-
dresses in different stage level in the whole program

These results show that there are indirect addresses in somebenchmarks whose

values change slowly during execution of the program, in which the value acts as a

constant address for a period. These indirect addresses aresuitable candidates for code
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stage level 0 1 2 3 4 5 6 7 8 9
libquantum 124 253 86 23 8 3 3 1 1 1
mcf 77 141 37 9 1 1 0 0 0 0

Table 3.11: Sum of glacial addresses in each stage level of the program. The second
and the third rows are the results for the sum of the glacial addresses from Stage Level
0 to Stage Level 9 of the whole program

replacement, which could enable a cascade of program optimization. For instance, ac-

cording to Table 3.10, the average number of glacial addresscandidates is 0.5 at Stage

Level One formcf. This means that the whole number of glacial address candidates on

Stage Level One can be significant in a program, as there are a large number of stages

in a program which incorporate a Stage Level One. As detecting glacial addresses in

a program is a dynamic procedure, a compiler is not able to perform such operations

due to lack of the online profile information.

3.8.2 Instrumentation Optimization

To accelerate the instrumentation speed, multiple threadsare generated by theGlacial-

Variable client to process the information in the buffers. There are two types of thread

under DynamoRIO: application thread and client thread. Anapplication threadworks

in DynamoRIO’s code cache. Aclient threadruns natively and does not execute its

code from the code cache. The application threads fill in the buffer with the target

profile information. The client threads process the profile information in the way de-

scribed in Section 3.8.1. Two sets of buffers are created. Each buffer set contains

two buffers: one for capturing the initial value of addresses and the other for captur-

ing the final value of the addresses. When the application under examination starts

execution, all the buffers are initialized and two clients threads are generated. The

application thread begins to fill in one set of the buffers. When this set of buffers is

full, the associated client thread begins to process them. Each client thread is bound to

one set of buffers. The client thread communicates with the application thread using

two associated semaphores, or to be more exact, the threads require a mutex to access

their associated buffer set. The application thread obtains the mutex for one associ-

ated buffer set and begins to fill in the profile information. While one stage finishes

execution, the application thread informs the appropriateclient thread that the buffer is

ready. The client thread then processes the set of buffers and meanwhile the applica-

tion thread fills in the profile information to the other available buffer set. Figure 3.21
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shows how to generate a client thread under DynamoRIO. The client thread will ter-

minate automatically when returning from the function or the whole program finishes

execution. The ways to generate and handle the client threads are similar to those of

POSIX threads.7

bool dr_create_client_thread(void (*func)(void *param), void *arg);

Figure 3.21: The DynamoRIO function8to generate a client thread

A signal (mutex) is triggered while the application thread finishes filling the pro-

file information of one block. To be more exact, the buffer only records the profile

information for one stage level. The signal handler performs two tasks. First the signal

handler signals the client thread to start processing the ready buffer by acquiring its

associated mutex. Next it switches to the next empty buffer set, returning when it has

successfully acquired one mutex. The buffer sets are switched by simply triggering a

signal (mutex). Figure 3.22 shows the multi-threading procedure.

7 POSIX thread manual: http://www.cs.nmsu.edu/ jcook/Tools/pthreads/pthreads.html.
8 This instruction in this picture is a function declaration.
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Due to time limitations, the performance improvement on benchmarks through pro-

cessing buffers by generating multiple threads have not been tested. This is reserved

for future work.

Initial  final Initial  final 

Client 

Thread1 
   App 

Threads 
Client 

Thread2 

Buffer Set 1 Buffer Set 2 

process process 

input 

Figure 3.22: Multi-threading procedure. Each client thread is bound to one buffer
set. One buffer set contains two buffers. Client threads andapplications require the
associated mutex to access a buffer set

3.9 Chapter Summary

This chapter has presented some techniques for dynamic program analysis and op-

timization. Dynamic code analysis and optimization are performed as the program

executes. DynamoRIO is the platform used to perform runtimecode manipulation. By

defualt, any changes that are caused by runtime instrumentation do not reside in the

program when execution terminates. DynamoRIO works as an intermediate platform

between the application and the operating system. It introduces a large amount of run-

time overhead. The overhead can be offset by the performancegain of the program

when there is a large amount of code reuse. The runtime instrumentation is performed

by user-defined clients, which work together with DynamoRIOto perform the on-

line code analysis and optimization. DynamoRIO provides interfaces for user-defined

clients, so that the clients can take control and manipulatethe application instructions.

The SPEC CPU2006 benchmark suite is employed for testing theeffectiveness of the
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optimization techniques.

client name functionality

testremover remove redundanttestinstructions
add2lea replaceaddwith lea where possible
nopremover removenops
nopoptimizer insertnops
CacheSimulator simulate cache miss and cache hit
MemoryReference simulate memory reference change
BranchTarget simulate branch prediction change
persistcode perform persistent code
GlacialVariable: analyse the glacial variables in a program

Table 3.12: A list of all the implemented clients and their functionality

The clients that have been implemented and described in thischapter are summa-

rized in Table 3.12. Some of these clients have achieved the goals of dynamically re-

moving redundant instructions; strength reduction; instruction realignments; and anal-

ysis of the glacial addresses as the potential candidates for optimization. The imple-

mentation of clients under DynamoRIO has demonstrated the potential for dynamic

program optimization. However, this has not been always possible. Where it has been

possible, the performance results have been presented. Where not possible, an expla-

nation of the reasons has been given. For the program analysis only, results have been

presented to show the potential for code optimization in a program. The overall con-

clusion is that it is difficult to find performance gains that are large enough to offset the

cost of the dynamic analysis and code manipulation required. However, the results also

show that programs can in certain circumstances be made to run more quickly using

a variety of higher-level optimizations carried out at runtime, aided by observation of

control flow, data flow, and memory access patterns of applications as they run. There

is also a possibility to accelerate the program analysis by multi-threaded processing.

The next chapter turns to conclusions and discussion. It discusses the advantages

and disadvantages of the approaches presented in this chapter and evaluates the exper-

imental results. Future work is also proposed.
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Conclusion and Discussion

4.1 Introduction

This chapter presents a summary of the thesis and its experimental results discussion,

which are covered in Section 4.2. Possible future work is proposed in Section 4.3.

4.2 Conclusion and Discussion

The thesis has presented some techniques for dynamic program analysis and optimiza-

tion. Five experiments have been carried out on a runtime code manipulation system

DynamoRIO. DynamoRIO works an intermediate platform between applications and

the operating system. DynamoRIO introduces a large amount of runtime overhead,

but this overhead can be offset by the performance gain of a program when there is a

large amount of code reuse. The runtime instrumentation is performed by user-defined

clients, which work together with DynamoRIO to perform online code analysis and

optimization. DynamoRIO provides interfaces for user-defined clients, so that such

clients can take control and manipulate the application instructions. Five experiments

are presented in the thesis. Some experiments have demonstrated program perfor-

mance improvement by runtime optimization. Where program improvement has not

been possible, an explanation has been given. The results for program analysis are also

presented to show the potential for other kinds of code optimization in a program.

In Section 3.4, removal of redundant instructions has been used in a static envi-

ronment in a previous publication. This thesis applies thisalgorithm in a dynamic

context. This has demonstrated performance improvement onsome benchmarks. Re-

dundant instruction identification and deletion is performed after the compiler applies

95
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optimization on the program. Hence the performance of the developed method depends

on the compiler. The performance will differ when a different compiler is utilised.

Strength reduction, presented in Section 3.5, is an algorithm that could be utilised

on the runtime system which needs storing and restoring eflags during its context

switch. This approach could accelerate the program execution, however maybe a more

important usage of this method is to accelerate the online profile analysis when using

a runtime profile analysis tool. Benchmarkgcc fails during the testing. The reason

maybe thatgcc is more sensitive to flag fluctuation, there may be some trivial changes

of flags that leads the whole benchmark to crash. A verified reason for this at the time

of writing remains unknown.

Instruction alignment presented in Section 3.6 is a good example for architecture-

specific optimization that is better performed dynamically, tailoring the program to the

actual processor on which it is running on. This method has also been applied else-

where in a static context, but the thesis has shown that it maybe more worthwhile to

employ instruction alignment in a dynamic context to adjustthe layout of programs by

inserting or deletingnopsbased on their runtime behaviour. Therefore, three simula-

tors (memory reference simulator, branch target simulatorand cache simulator) have

been built to collect profile information of how program performance are affected by

insertingnops. However two simulators do not work well due to constraints in Dy-

namoRIO.

There is no deep investigation of persistent codes in Section 3.7, again constrained

by DynamoRIO itself. DyanmoRIO could only make the basic blocks persistent. A

large application is also not available for packing them as persistent codes. The results

show that the time of executing the persistent codes in the subsequent calls are slightly

shorter than the time of executing the code initially. This is because the subsequent

code is loaded directly without rebuilding basic blocks. The experiment in this thesis

is limited to enable persistent codes without any optimization algorithms applied in

them. Therefore, there is only a slight time difference between the initial execution

and a subsequent call. The benchmarks with little code reuseshow that there is execu-

tion time degradation in the following calls; however, it may be better to apply static

optimization on this type of program as building the persistent cache and restoring it

for the subsequent calls is also a time-consuming procedure.

Glacial address propagation, presented in Section 3.8, shows that there are indirect

addresses in programs whose values change sufficiently slowly in execution of the

program that it is worth generating special case codes, in which the address values are
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treated as constants for a period, thus enabling a cascade ofoptimization. However

the main focus of the approach in the thesis is on identification of the potential targets.

The large amount of runtime overhead caused by profiling and code replacement are

big obstacles that need to be overcome in future work.

The techniques presented in this thesis aim to optimize the program performance at

runtime. Since running a program faster can also be used to reduce the energy demand

of hardware, the presented optimization strategies can be applied as a way to optimize

hardware power consumption. Optimization of a program is a continuous procedure,

even when hardware is upgraded, yet the optimization strategies can improve the pro-

gram performance at a similar rate based on the new hardware.

4.3 Future Work

4.3.1 Integration of Static and Dynamic Optimization

The peephole optimizer developed by Sorav Bansal [8] is an outstanding static opti-

mizer, which optimizes the program offline. This static optimizer can automatically de-

tect and replace one sequence of instructions by another equivalent but faster sequence

of instructions. The peephole optimization could be performed before dynamic opti-

mization. The output from the peephole optimizer can be dumped into DynamoRIO

for further optimization.

DynamoRIO constructs the basic fragments, hashtable and other instrumentation

operations every time when importing a program even if the same program as before

is executed. When running a program with a large amount of code reuse, this overhead

can be offset by the performance gain. However, for a programwith little code reuse

or short execution time, the overhead caused by DynamoRIO initiation may not be

overcome by the program performance gain. To decrease this overhead, such a pro-

gram can be optimized in the initial execution and be constructed as persistent code

in a database. The optimized program will be loaded directlyfrom the database in the

subsequent calls. Figure 4.1 shows the possible infrastructure of the system described

above.

4.3.2 Glacial Addresses Optimization and Multiple Threading

Chapter 3 has presented the results for potential glacial indirect address candidates for

replacement with constant addresses. This work could be further extended to utilise
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Figure 4.1: The infrastructure of the optimization system

such profile information to perform code replacement, thus enabling a cascade of op-

timization. This algorithm requires a large amount of time for profiling. In order to

reduce the online profiling overhead, multiple threads can be generated to process in-

formation. In Chapter 3, although parallel program analysis is implemented, no results

are presented to show its effectiveness on performance improvement which could be

completed in the proposed future work.

DynamoRIO provides a way to generate multiple client threads as well as synchro-

nisation primitives, such as mutex. However, at the time of writing, DynamoRIO does

not contain the functionality for conditional signals likethose in POSIX threads.1

More precisely, a thread cannot give a signal to another waiting thread when it fin-

ishes its job. The waiting thread has to keep checking its satisfied conditions all the

time. When the conditions are met, the waiting thread beginsto process or collect in-

formation. Threads will be suspended again when their working conditions cannot be

satisfied.

4.3.3 Memory Management

This thesis does not take memory management into account, asit only run one bench-

mark at a time. Memory control will not play an important roleuntil large applications

run or several applications run simultaneously. Memory expansion becomes a seri-

ous problem in the above situations. For instance, it can cause more cache misses

which reduce the benefits that come from code optimization. Also, in order to main-

tain execution of both application instructions and DyanmoRIO’s profile instructions,

1 POSIX thread manual: http://www.cs.nmsu.edu/ jcook/Tools/pthreads/pthreads.html.
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the memory requirement becomes much higher than for the original application alone.

Memory intensity analysis cannot only benefit the program performance but also

bring profits to the energy consumption of the computer system. Energy consumption

has been discussed in Section 4.3.5 and is widely felt to be critical for future systems.

Therefore memory usage management will be a promising area to be addressed in the

future work.

4.3.4 Possible Application Analysis

The thesis only covers performance analysis on benchmark suite SPEC CPU2006.

Industry is more interested in optimization approaches which can demonstrate per-

formance gain on real world, widely used applications. In order to achieve this, it

is possible to install the optimization system proposed in Section 4.3.1 in the operat-

ing system and make it work as a background application, therefore the optimization

system can automatically accelerate program execution andcontrol the application’s

memory expansion properly.

4.3.5 Energy Consumption Management

Power consumption and energy efficiency is becoming an increasingly important con-

cern for computer systems, especially for large computer systems and embedded sys-

tems [5]. Dynamic program optimization could lead to the acceleration of code genera-

tion and execution, which speed up program execution. Program optimization can also

lead to a fall in energy demand of the hardware. Software constitutes a major compo-

nent of systems and impacts the system power consumption. For instance, the choice

of algorithms, the layout of instruction sequences, the process of translating the high-

level codes into machine instructions and so on so forth, these procedures determine

the energy cost of software [42]. Limited by time, no investigation has been carried

out on the energy consumption fluctuation of the system due tosoftware optimization.

This could be carried out in future work.

To restrict control the energy demand to a low level, optimization on the program

is required not only to accelerate the program execution butalso to manage memory

intensity, cache intensity and CPU intensity. Evaluation tools are also needed in the

future research for estimating the power consumption of thehardware.

Energy consumption is a combined effect of various hardwarecomponents. There

are a few papers [27, 16] into energy estimation on analysingthe high-level input code



100 CHAPTER 4. CONCLUSION AND DISCUSSION

with the aid of information about hardware parameters, suchas the supply voltage, data

cache hit latency, memory access latencyet al. It is an open question how these energy

hints from program level can be exploited to benefit program optimization methodol-

ogy to reduce power consumption for hardware issues.
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