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In this thesis we investigate some global desiderata for probabilistic knowledge
merging given several possibly jointly inconsistent, but individually consistent knowl-
edge bases. We show that the most naive methods of merging, which combine appli-
cations of a single expert inference process with the application of a pooling operator,
fail to satisfy certain basic consistency principles.

We therefore adopt a different approach. Following recent developments in ma-
chine learning where Bregman divergences appear to be powerful, we define several
probabilistic merging operators which minimise the joint divergence between merged
knowledge and given knowledge bases. In particular we prove that in many cases the
result of applying such operators coincides with the sets of fixed points of averaging
projective procedures — procedures which combine knowledge updating with pooling
operators of decision theory.

We develop relevant results concerning the geometry of Bregman divergences and
prove new theorems in this field. We show that this geometry connects nicely with some
desirable principles which have arisen in the epistemology of merging. In particular,
we prove that the merging operators which we define by means of convex Bregman
divergences satisfy analogues of the principles of merging due to Konieczny and Pino-
Pérez. Additionally, we investigate how such merging operators behave with respect
to principles concerning irrelevant information, independence and relativisation which
have previously been intensively studied in case of single-expert probabilistic inference.

Finally, we argue that two particular probabilistic merging operators which are
based on Kullback-Leibler divergence, a special type of Bregman divergence, have
overall the most appealing properties amongst merging operators hitherto considered.
By investigating some iterative procedures we propose algorithms to practically com-
pute them.
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Chapter 1

Introduction

1.1 Motivation

A typical problem of real-life is uncertainty. While classical propositional logic han-

dles well the situation where each sentence is either true or false, several frameworks

have been introduced to deal with reasoning in the context of uncertain knowledge.

In the present work we consider the framework of collective probabilistic knowledge.

Such knowledge is thought of as arising from several experts or sources each of which

provides consistent probabilistic knowledge, while collectively their knowledge is typ-

ically inconsistent. Throughout this thesis we will assume that this representation of

uncertainty is in particular suitable for developing a probabilistic expert system.

Several designs of expert systems have been developed for use in industry. A

well known recent example of an expert system is IBM’s Watson which has been

to outperform contestants on a quiz show. However, the largest consumer of expert

systems is the banking sector, see e.g. [47]. In relation to the recent banking crisis,

there is even more need to deal with inconsistent opinion of several experts — a

common issue with economic data.

In our opinion a new area where expert systems can make a significant difference

is the public sector. This is because the public sector is challenged to adopt decisions

which make people less unhappy, and to do it transparently and promptly. If the

expert system satisfies certain natural principles in order better to reflect the joint

opinion of a group, then this can make the process more transparent as it will be clear

for the user of such a system which principles are engaged in the process.

10
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In this thesis, however, we are not going as far as to investigate how a decision

procedure of an expert system should be designed. We aim only to develop a mathe-

matical framework for evaluating the probabilities on which a potential expert system

may be based. In order to develop such a framework the initial assumption we make

is that the probabilistic knowledge of each particular expert is consistent with the

laws of probability. Moreover, the objective of reasoning, given collective probabilistic

knowledge is to use rational criteria to produce consistent knowledge, which optimally

represents the joint knowledge declared by the experts, but no more. It will be assumed

that experts have equal status but we can in fact give different weights to experts by

cloning them. We also assume that reasoning does not depend on the order in which

the knowledge bases are considered, the way in which the knowledge was obtained is

considered irrelevant, and each expert has incorporated all her relevant knowledge into

what she is declaring.

We illustrate the motivation behind this idea by a toy two-expert example which

was introduced in [1].

Imagine that two safety experts are evaluating safety in a chemical factory produc-

ing nitrogen fertilizers. For simplicity we consider only the ammonia supply which is

stored in a tank connected to the rest of the factory by a valve which is controlled by

an electronic switch.

The first expert believes that there is a 4% chance that a mechanical problem will

cause the valve to fail. The second expert comes up with a different opinion that there

is an 8% chance that a mechanical problem will cause the valve to fail. Moreover, the

first safety expert thinks that there is a 7% chance that the electronic switch will fail.

We suppose that both experts have no other knowledge related to this problem.

The joint knowledge of the two experts is inconsistent in this case. In practice,

knowledge is usually incomplete and offers a lot of uncertainty; the first expert in the

example above has no knowledge about, for instance, the conditional probability that

there will be a fault on the the valve given that there will be a fault on the electronic

switch. The situation becomes more complicated once the second expert is considered

whose knowledge is inconsistent with the knowledge of the first expert. Altogether we

can ask the following question:
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How should a rational adjudicator, whose only knowledge consists of what is related to

him by the two experts above, evaluate, for instance, the probability that both the valve

and the electronic switch will be faulty, based only on the experts’ subjective knowledge

specified above and without any other assumptions?

Under our previous assumption that each expert’s knowledge can be represented

within the framework of probability theory, we can describe the knowledge of each

expert by a set of possible probability distributions over four possible mutually exclu-

sive cases: there will be (1) a fault on the valve and a fault on the electronic switch,

(2) a fault on the valve and no fault on the electronic switch, (3) no fault on the

valve and a fault on the electronic switch and (4) no faults on the valve or on the

electronic switch. We can denote the corresponding probabilities that (1), (2), (3) and

(4) is true by real numbers w1, w2, w3 and w4 from the interval [0, 1] which sum to 1.

Based on the knowledge of the first expert w1 + w2 = 0.04 and w1 + w3 = 0.07. Any

probability function (x, 0.04 − x, 0.07 − x, x + 0.89), where x ∈ [0, 0.04], is consistent

with the knowledge of the first expert. Similarly, the second expert admits any prob-

ability function (x, 0.08 − x, y, 0.92 − y) where x ∈ [0, 0.08] and y ∈ [0, 0.92]. This

representation of the knowledge of the experts naturally abstracts from the complex

nature of the actual problem. However, we are not interested here in the particular

manner in which this abstraction from the infinite complexity of a real world problem

has been accomplished. Instead we will focus on the following narrower, abstract, but

more clearly defined question:

Question. Given two (or more) sets of probability functions corresponding to the

probabilistic knowledge of corresponding experts as in the above example, which set

of probability functions best represents the combined probabilistic knowledge of the ex-

perts?

Naturally, we would like to find a general procedure answering the above question

for any knowledge bases, and such that it satisfies some rational principles. We do not

want to restrict the set of probability functions that should represent the knowledge

of several experts otherwise than by rationality criteria. Therefore, we do not a priori

suppose that this set is singleton; yet this will be sometimes a consequence of those

criteria.
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To conclude this section we make some further remarks on our initial assumptions.

Firstly, while in practice humans do not always espouse belief values consistent with

the laws of probability (see [28]), there are very strong arguments in the literature as to

why rational beliefs should obey the laws of probability. Among them the Dutch Book

argument by Ramsey and de Finetti [15] is perhaps the most compelling reason why the

subjective belief of an expert should be represented by a probability distribution. The

idea of this argument is that it identifies belief with willingness to bet. If we assume

that there is no possibility that an expert will rationally agree to make a set of bets

which will subject her to a sure loss, then her willingness to bet must be represented

by a probability distribution. While nonprobabilistic frameworks of reasoning such as

fuzzy logic and combinations of probabilistic framework and rule-based systems such as

Dempster-Shafer theory also have important, but distinct traditions, we seek to extend

the well-established theory of the classical probabilistic framework as developed by

Jaynes, Cox, Johnson, Shore, Paris, Vencovská and others. For more details as to how

the Dutch Book argument relates to our framework see [39]. For further justification

of belief as probability see, for example, [50].

Secondly, the assumption that the representation of the knowledge declared by each

of the experts by a set of probability distributions contains all the relevant information

for answering the above question is sometimes referred to as the Principle of Total

Evidence [8] or the Watts assumption [39]. In practice this assumption is trivially

never satisfied as indeed our toy example illustrates. Overall knowledge of any human

expert can never be fully formalised as a formalisation is always an abstraction from

reality. However, the Principle of Total Evidence needs to be imposed in order to avoid

confusion in any discussion related to methods of representing the collective knowledge

of experts. Otherwise there would be an inexhaustible supply of invalid arguments as

Wilmers in [1] and [2] pointed out:

“... it is often extremely hard to give illustrative real world examples of

abstract principles of probabilistic inference without a philosophical oppo-

nent being tempted to challenge one’s reasoning using implicit background

information concerning the example which is not included in its formal

representation as a knowledge base.”
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In this thesis we argue that it is possible to answer the question which we have

formulated here under the assumptions we have imposed. In order to do that, we first

need to find a formal representation of knowledge.

1.2 Knowledge representation

In this section we introduce three basic notions used in this thesis — a probability

function, a probabilistic knowledge base and a probabilistic merging operator. We will

mostly follow the papers [1] and [2] by Wilmers and the author.

Let L = {a1, . . . , ah} be a finite propositional language where a1, . . . , ah are propo-

sitional variables. In our previous example n = 2, a1 stands for sentence “a fault on

the valve” and a2 stands for sentence “a fault on the electronic switch”. We denote the

set of all propositional sentences which can be defined over L by SL. By the disjunc-

tive normal form theorem any sentence in SL is logically equivalent to a disjunction

of atomic sentences (atoms) where each atom is of the form
∧h
i=1±ai and ±ai denotes

either ai or ¬ai. We denote an enumeration of these atoms in some fixed order by

α1, . . . , αJ , where J = 2h. The set {α1, . . . , αJ} of all atoms of L will be denoted by

At(L). Notice that atoms of At(L) are mutually exclusive and exhaustive.

A probability function w over L is defined by a function w : At(L) → [0, 1] such

that
∑J

j=1 w(αj) = 1. A value of w on any sentence ϕ ∈ SL may then be defined by

setting

w(ϕ) =
∑
αj |=ϕ

w(αj).

Note that formula ϕ which is not satisfiable, e.g. a1∧¬a1, is defined as the disjunction

of an empty set of atoms and we set w(ϕ) = 0 in this case. We will denote the set of

all probability functions over L by DL. For the sake of simplicity we will often write

wj instead of w(αj), but note that this has a sense only for atomic sentences. Given a

probability function w ∈ DL, a conditional probability is defined by Bayes’s formula

w(ϕ|ψ) =
w(ϕ ∧ ψ)

w(ψ)

for any L-sentence ϕ and any L-sentence ψ such that w(ψ) 6= 0, and is left undefined

otherwise.
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In several places we will need to consider language L to be not fixed. There-

fore, at this point, we introduce useful notation which we will use to examine such

a situation. Consider two distinct propositional languages L1 = {a1, . . . , ah1} and

L2 = {b1, . . . , bh2}. Let At(L1) = {α1, . . . , αJ} and At(L2) = {β1, . . . , βI}. Then every

atom of the joint language L1 ∪L2 can be written uniquely (up to logical equivalence)

as αj ∧ βi for precisely one 1 ≤ j ≤ J and precisely one 1 ≤ i ≤ I. With only a

slight abuse of notation, for an L1 ∪ L2-probability function r we will often write rji

instead of r(αj ∧ βi), in a similar manner as for an L1-probability function v we write

vj instead of v(αj).

Notice that |= αj ↔
∨I
i=1 αj ∧ βi. Therefore, the marginal probability function

whose j-th value is given by
∑I

i=1 rji is the projection of an L1 ∪ L2-probability func-

tion r to the language L1. We will denote it by r|L1 . Similarly, if U is a set of

L1 ∪ L2-probability functions, we denote the set {v|L1 : v ∈ U} by U |L1 . Also, if v

is an L1-probability function and w is an L2-probability function then v · w defined

by v ·w(αj ∧ βi) = vjwi is an L1 ∪ L2-probability function such that (v ·w)|L1 = v.

A particular probability function v ∈ DL gives us the full information about the

distribution of the atomic events At(L). Where several probability functions are given

it is not known which probability function applies. From this point of view the set

DL carries no information — any probability function is possible. In our toy example

the first expert stated two constraints on the possible probability functions. In effect

these constraints generate a subset of DL. A particular kind of such subsets will now

play a prominent role in our knowledge representation.

A probabilistic knowledge base K over L is a set of constraints on probability func-

tions over L such that the set of all probability functions satisfying the constraints

in K forms a nonempty closed convex subset V L
K of DL. For brevity we shall use the

terminology knowledge base instead of probabilistic knowledge base. V L
K will be se-

mantically thought of as the set of possible probability functions of a particular expert

which are consistent with her subjective probabilistic knowledge base K and we will be

never concerned with the syntactical definition of V L
K . In particular if K1 and K2 are

such that V L
K1

= V L
K2

we shall say that K1 and K2 are equivalent. In practice we shall

only be interested in knowledge bases up to equivalence, and consequently we may

sometimes informally identify a knowledge base K with its extension V L
K , and with
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V L
K

v
DL

Figure 1.1: The illustration of a knowledge base.

slight abuse of language we may also refer to a nonempty closed convex subset of DL as

a knowledge base. Note that the non-emptiness of V L
K corresponds to the assumption

that K is consistent, while if K and F are knowledge bases then the knowledge base

K ∪F corresponds to V L
K∪F = V L

K ∩ V L
F . The set of all knowledge bases V L

K over fixed

L is denoted by CL. Figure 1.1 illustrates v ∈ V L
K ⊆ DL.

Note that in our definition a knowledge base is associated with the underlying

language. We, however, take some liberty to loosen this connection. This is because

if L1 ⊂ L2 and K ∈ CL1 then K is also in CL2 and V L2
K = {w ∈ DL2 : w|L1 ∈ V L1

K }.

Given K, the underlying language L1 is usually only implicitly understood.

The reason why we have restricted our knowledge bases only to a nonempty closed

convex subset of DL might be unclear at the moment but later on we will see that

this restriction is useful in order to define a relationship between a single probability

function and a knowledge base. On the other hand, neither of these requirements

is severe in a real world situation. Any set of linear constraints such as in the toy

example generates always a nonempty closed convex set of probability functions. In

the following we will give such a knowledge base a special name.

Given a language L consider the following system K of linear constraints for a

probability function Bel: { m∑
s=1

qsiBel(θs) = pi: i ∈ I
}

,

J∑
j=1

Bel(αj) = 1,{
0 ≤ Bel(αj), 0 ≤ j ≤ J

}
,

where α1, . . . , αJ are all the atoms in At(L), I is an index set, qsi, pi ∈ R, and θs,
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1 ≤ s ≤ m, are satisfiable L-sentences.1 If there exists a probability function Bel ∈ DL

which satisfies the system K above then we call it a linearly constrained set. Note

that not all knowledge bases are linearly constrained sets. To avoid confusion we will

use the notation Bel solely to define constraints in a linearly constrained set. We say

that w ∈ DL satisfies K if every constraint in K holds with Bel replaced by w.

In the toy example, the knowledge of the first expert can be represented by the

knowledge base K which consists of a set of linear constraints on a probability function

Bel defined over the atomic sentences a1∧a2, a1∧¬a2, ¬a1∧a2 and ¬a1∧¬a2. That is

K = {Bel(a1∧a2)+Bel(a1∧¬a2) = 0.04, Bel(a1∧a2)+Bel(¬a1∧a2) = 0.07} and V L
K =

{(x, 0.04− x, 0.07− x, x+ 0.89) : x ∈ [0, 0.04]}, where (x, 0.04− x, 0.07− x, x+ 0.89)

denotes values of a probability function w ∈ V L
K over atoms listed in the above order.

With slight abuse of notation we may write w = (x, 0.04− x, 0.07− x, x+ 0.89) when

the order of atoms is implicitly understood.

Another restricted notion of knowledge base is a knowledge base which bounds

probability functions away from zero. This is a knowledge base K ∈ CL such that

w ∈ V L
K satisfies a set of constraints of the form

{aj ≤ wj: 1 ≤ j ≤ J},

where 0 < aj < 1 for all j = 1, . . . , J . We call such a knowledge base bounded, and

we will denote the set of all bounded knowledge bases for a given language L by BCL.

A slightly more general notion is that of a knowledge base K ∈ CL which does not

“force” any atom to take the value zero. More precisely, we call K weakly bounded if

for every 1 ≤ j ≤ J there is w ∈ V L
K such that wj 6= 0. The set of weakly bounded

knowledge bases for L will be denoted by WBCL. Note that BCL ⊂ WBCL ⊂ CL

and that by convexity if K ∈ WBCL then there exists some w ∈ V L
K such that wj 6= 0

for all j = 1, . . . , J . For example the linearly constrained set K of the first expert in

our toy example is a weakly bounded knowledge base but K 6∈ BCL.

There are several possible motivations for studying knowledge bases with a bound-

edness condition imposed. Broadly speaking, the imposition of such a condition may

avoid some of the potentially intractable technical and philosophical difficulties which

1A constraint such as Bel(ψ | θ) = c , where ψ and θ are satisfiable L-sentences, is interpreted as
Bel(ψ ∧ θ) = c · Bel(θ) which makes sense as a linear constraint even though Bel(θ) may take the
value zero (see [39] for details).
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arise from treating zero probabilities in certain contexts. In this thesis we will confine

ourselves to stating and proving some theorems concerning certain classes of knowledge

base, but will not consider further the epistemological status of the various notions of

knowledge base.

We now define the central notion of this thesis. Let ∆ denote an operator defined

for all n ≥ 1 and all L as a mapping

∆L : CL× . . .× CL︸ ︷︷ ︸
n

→ P(DL),

where P(DL) denotes the power set of DL. The number n here intuitively represents

the number of distinct experts or distinct sources of information. We will call such

a ∆ a probabilistic merging operator, abbreviated to p-merging operator, if it satisfies

the following

(K1) Defining Principle. If K1, . . . ,Kn ∈ CL then the set ∆L(K1, . . . ,Kn) is

closed, convex and nonempty.

(K1) ensures that a p-merging operator applied to a product of knowledge bases yields

a knowledge base. A p-merging operator which always results in a single probability

function (i.e. ∆L(K1, . . . ,Kn) is a singleton for all K1, . . . ,Kn ∈ CL) is called a social

inference process.

The idea of probabilistic merging has appeared in many places in the literature,

including [29], [38], [42], [50], [51] and [52] which will be discussed in more detail later.

However, only a few authors have tried to investigate global desiderata of knowledge

merging. We challenge that in this thesis. In particular the definition above together

with the notion of knowledge base allows us formally state the problem which has been

outlined in section 1.1 by the following list of aims to be investigated in this thesis.

• What p-merging operator ∆ should be used to represent knowledge of any college

(group) of experts?

• What general principles should ∆ satisfy?

• How can the choice of p-merging operator be justified subject to rationality and

computability?
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In other words we would like to find a general procedure which represents several

given knowledge bases as only a single knowledge base. At this point one needs to

realize that although there are several possible options for defining such a procedure

∆, we need to find a way to investigate whether any such definition is rational; whether

it satisfies our intuition about well behaved probabilistic expert systems. For instance

the operator ∆ which returns always the set DL is obviously a p-merging operator

however it is hardly a rational one.

A general idea is to introduce an additional structure on the set of probability

functions. In chapter 2 we will define one which allows us to talk about a measure

between probability functions. This resembles a geometry imposed on the set of prob-

ability functions and it will prove to be fairly useful. In the next section we show how

a different kind of structure appears to have solved a restricted version of the central

problem defined above.

1.3 Previous research on inference processes

If we restrict the central question which we have formulated in the previous section to

the case when only one expert is considered and the operator ∆ is required to produce

a single probability function then we obtain the following problem which has been

extensively studied in the literature: Given K ∈ CL, by which procedure we should

choose a specific probability function from V L
K? In general, such a procedure is referred

to as an inference process. Formally, an inference process S for any L gives a mapping

SL : CL→ DL.

In this section we list the results which support the claim that the most rational

answer is given by the associated structure with probability functions whose origins

go back to nineteenth century statistical mechanics as in [25] or [40] — the Shannon

entropy H. For any w ∈ DL entropy is defined by

H(w) = −
J∑
j=1

wj logwj,

where log denotes the natural logarithm. For w ≥ 0 we define −w log 0 = 0 if w = 0

and −w log 0 = +∞ otherwise.
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Entropy can be interpreted both as a measure of disorder and as a measure of infor-

mation content. The higher entropy of w is, the less information is carried by w. One

can then argue that given several seemingly equally probable choices of a probabil-

ity function one should choose the one which carries the least additional information.

Jaynes [26] supported this argument by the following claim.

“If the information incorporated into the maximum-entropy analysis in-

cludes all the constraints actually operating in the random experiment,

then the distribution predicted by maximum entropy is overwhelmingly

the most likely to be observed experimentally.”

Since H is a strictly concave function, and therefore attains a unique maximum over

any nonempty closed convex region V L
K , there is always a unique maximum entropy

point in V L
K , which we denote by MEL(K) and refer to informally as the most entropic

point of V L
K . The family of mappings MEL : CL→ DL is called the maximum entropy

inference process. By only a little abuse of notation given a nonempty closed convex

set V ⊆ DL we will denote the most entropic probability function in V by MEL(V ).

The result of applying ME can be computed for a linearly constrained set. Let

|At(L)| = J . Given a linearly constrained set K = {
∑J

r=1 arkBel(αr) = bk, k =

1, . . . ,m} over L one can compute MEL(K) by using Lagrange multipliers, that is by

solving the system

{ ∂

∂wj

[
H(w) +

m∑
k=1

λk(
J∑
r=1

arkwr − bk)
]

= 0, j = 1, . . . , J
}

for variables w1, . . . , wJ and λ1, . . . , λm subject to K. Since H is a strictly concave

function the above system has a unique solution. Note that one of the m linear

constraints is the equation
∑J

j=1wj = 1. However practically the problem of actually

computing weights to any reasonable approximation is NP-hard, see p. 148 of [39].

We will discuss related computational issues later in this thesis. For more details on

computation of ME see [22].

There are several other inference processes which have been extensively studied

by Paris, Vencovská and others ([24] or [39]) but it is perhaps the maximum entropy

inference process which is best justified. We will now list some of these justifications.
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Model theoretic justification.

By the traditional possible worlds modelling or information theoretic arguments,

the maximum entropy inference process ME has been justified as being optimal by

Paris and Vencovská in [40] extending earlier work of Jaynes, Aczel and others. In

that paper distributions of a large universe of examples were studied, examples have

properties described by some propositional language L and the proportion of examples

possessing certain properties were subject to linear constraints. They proved that

nearly all possible distributions of examples from given universe subject to the given

linear constraints are distributed close to the distribution which has the largest entropy

and actually satisfies those linear constraints, thus providing a justification for the

maximum entropy inference process. This is an analogous argument to the one used

in the statistical mechanic of gases which states that the most likely distribution of

molecules of gas has the most entropy — the most level of disorder. �

Axiomatic justification.

A different justification for ME to the traditional ones was described in [27] by

Johnson and Shore. Their work was developed by Paris and Vencovská in [41] where

they showed that a list of principles based on symmetry and consistency uniquely char-

acterises ME once we have confined inference processes only to linearly constrained

sets.

Let S be an inference process. Paris and Vencovská argue that the following list

of principles is rational for any such inference process.

Equivalence. If K1,K2 ∈ CL are such that V L
K1

= V L
K2

then SL(K1) = SL(K2).

Atomic Renaming. If K1,K2 ∈ CL are

K1 =
{∑

s

psiBel(γs) = qi, i = 1, . . . , n
}

,

K2 =
{∑

s

psiBel(δs) = qi, i = 1, . . . , n
}

,

where γ1, . . . , γJ , and δ1, . . . , δJ are permutations of L-atoms α1, . . . , αJ . Then

for all 1 ≤ j ≤ J

SL(K1)(γj) = SL(K2)(δj).
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Irrelevant Information. Let L1 ∩ L2 = ∅, K1 ∈ CL1, K2 ∈ CL2 and ϕ is L1-

sentence. Then SL1∪L2(K1 ∪K2)(ϕ) = SL1∪L2(K1)(ϕ).

Obstinacy. Let K1,K2 ∈ CL and SL(K1) ∈ V L
K2

. Then SL(K1 ∪K2) = SL(K1).

Independence. Let L = {p1, p2, p3} and K = {Bel(p3) = c, Bel(p1∧p3) = a,Bel(p2∧

p3) = b}, c > 0. Then

SL(K)(p1 ∧ p2 ∧ p3) =
ab

c
.

Open-Mindedness. If K ∈ CL, ϕ ∈ SL and K∪{Bel(ϕ) = c} for c > 0 is consistent

then SL(K)(ϕ) 6= 0.

Relativisation. Suppose K1,K2 ∈ CL, 0 < c < 1 and

K1 = {Bel(θ) = c} ∪
{∑

j

ajiBel(ϕj|θ) = di, i = 1, . . . , h
}

,

K2 = K1 ∪
{∑

j

bjiBel(ψj|¬θ) = ei, i = 1, . . . , h′
}

,

where θ is given and ϕj, ψj ∈ SL. Then for any ϕ ∈ SL

SL(K1)(ϕ|θ) = SL(K2)(ϕ|θ).

Continuity. If θ ∈ SL, K,K1,K2, . . . ∈ CL and limi→∞ ||V L
K , V

L
Ki
||B = 0, where

||V,W ||B is Blaschke metric defined for convex subsets V,W ⊆ DL by

||V,W ||B = inf{δ ∈ R: ∀v ∈ V ∃w ∈ W ||w,v|| ≤ δ and

∀w ∈ W ∃v ∈ V ||w,v|| ≤ δ},

where ||w,v|| is the usual Euclidean distance. Then

lim
i→∞
SL(Ki)(θ) = SL(K)(θ).

The following theorem combines significant results of Paris and Vencovská, see [39]

and [41].

Theorem 1.3.1. 1. ME satisfies all the principles above.

2. On the other hand, if some other inference process S satisfies all these principles

once we have restricted knowledge bases to linearly constrained sets then S is

equivalent to ME over linearly constrained sets.
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It seems fruitful to look at the axiomatic approach also for p-merging operators.

We might hope that ultimately a set of rational principles may determine uniquely a

particular p-merging operator. This idea in multi-expert context was originally put

forward by Wilmers in [52] for a special case of social inference processes — i.e. for p-

merging operators which always produce single probability functions. We investigate

principles for p-merging operators in section 1.4 and chapter 4. �

Game theoretic justification.

Here we consider a justification for ME which is connected to game theory. First,

we define a new binary function — a loss function — a structure associated with

probability functions. A loss function Ls is any mapping

Ls : DL × At(L)→ R∗,

where At(L) is the set of all atomic events or atomic sentences and R∗ is the extended

real line R ∪ {+∞}.

A forecaster is a decision maker whose decision depends on a random variable

X which takes the values from the set At(L) of some atomic events generated by a

language L. The forecaster is willing to accept that the distribution of X lies in some

(closed and convex) set V ⊆ DL; however, forecaster does not know which of these

probability functions applies.

Once the forecaster has chosen one probability function v in V , the loss function

materializes the loss (or the reward when the loss is negative) of the forecaster when

the atomic event α happens to be true. From a game-theoretic point of view this can

be considered, according to [21], as a game between Nature and the forecaster. Nature

takes no account of the forecaster’s prediction and plays her event α. After this the

forecaster needs to pay Nature the value Ls(v, α).

A scoring rule is defined as the extended real-valued function2 S : DL × DL → R∗

S(w,v) =
∑

α∈At(L)

w(α) Ls(v, α).

If the forecaster knows with what distribution w Nature gives her outcomes then the

scoring rule expresses the expected loss for the forecaster.

2Note that this definition corresponds to the categorical scoring rules in the literature, see e.g. [19].
Scoring rules are usually defined over a more general space, not just over a finite set of atomic events.
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An example of a loss function is the logarithmic loss Ls(v, α) = − log v(α) first

used by Good in 1952, [20]. This loss function is real valued with exception that

the loss +∞ is given only when the event claimed to be impossible is realized. The

corresponding logarithmic scoring rule is S(w,v) = −
∑

j wj log vj. Now consider the

following lemma.

Lemma 1.3.2. Let v,w ∈ DL. Then for fixed w the function f : DL → R defined by

f(v) = −
J∑
j=1

wj log vj

is strictly minimal for w = v.3

Proof. Whenever wj 6= 0 we can always get a lower loss than +∞ with vj = 0. On the

other hand, if wj = 0 then we can take the corresponding index j out of the summation

forming an index set I and we may suppose that both vj 6= 0 and wj 6= 0 for all j ∈ I.

The Hessian matrix for the function f is positive definite

wj1
(vj1 )2

0 . . . 0

0
wj2

(vj2 )2
. . . 0

... . . .
...

0 0 . . .
wjn

(vjn )2

 ,

where I = {j1, . . . , jn}, and therefore the function has a global minimum at the only

critical point determined by wj = vj for all j ∈ I. It follows that vj = 0 for all j 6∈ I

since
∑J

j=1 vj =
∑J

j=1wj = 1. �

It follows that for the logarithmic scoring rule S and for a probability function w

played by Nature

arg min
v∈DL

S(w,v) = w,

where arg minv∈DL S(w,v) denotes that unique point in DL at which the function

S(w,v) is minimal. In other words if the forecaster wants to minimise his loss (and it

is always a loss since − log vj ≥ 0 for all j) then he is obliged to choose the probability

function which was played by Nature. Hence, there is no reason why the forecaster

in his prediction should not act honestly according to his true opinion about Nature,

otherwise he will be subject to sure loss.

3Recall that for vj = 0 by definition −wj log vj = 0 if wj = 0 and −wj log vj = +∞ otherwise.
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Now we will describe the properties we want scoring rules to satisfy. A scoring rule

is proper if

S(w,w) ≤ S(w,v), (1.1)

for all w,v ∈ DL. It is a strictly proper scoring rule if (1.1) holds with equality only

if w = v. A scoring rule is regular if Ls(·, α) is real-valued function for all α ∈ At(L)

except possibly that Ls(v, α) = +∞ if v(α) = 0. Obviously the logarithmic scoring

rule is strictly proper and regular. Strictly proper scoring rules encourage the forecaster

to act honestly and regularity ensures that he is rewarded fairly. Finally, a scoring

rule is local if the value of the loss Ls(w, α) depends only on the value of w(α) and

not on the other values — a fairly natural condition. A scoring rule of the form

S(w,v) = −a ·
∑

j wj log vj + b, where a, b are constants, is the only regular strictly

proper local scoring rule, see [35], which indeed justifies a logarithmic scoring rule.

Now assume that the forecaster wants to minimise the worst case loss in the game

with Nature. If he knows the set V ⊆ DL of distributions that Nature operates with

then he is obliged to forecast

arg min
v∈DL

max
w∈V

S(w,v), (1.2)

for more details see [21]. In view of the fact that the logarithmic scoring rule is the only

strictly proper local scoring rule it seems rational to choose S to be the logarithmic

scoring rule.

Now, by [33], theorem 32,4 we can swap ‘min’ and ‘max’ in (1.2):

arg min
v∈DL

max
w∈V

S(w,v) = arg max
w∈V

min
v∈DL

−
J∑
j=1

wj log vj = arg max
w∈V

H(w),

where H is the Shannon entropy and V ⊆ DL is closed and convex. In particular we can

take V = V L
K for some knowledge base K and this can be considered as a justification

of ME in game theory. Given that forecaster is rewarded by a logarithmic scoring rule

and he knows the set V L
K of possible probability functions by which Nature plays, in

order to minimise his loss he is obliged to choose MEL(K). �

4The essential part is due to König’s minimax theorem, see [32], theorem 1.3.
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There are many other inference processes which have been studied. Among these

we mention in detail the CM∞-inference process. For any L and any K ∈ CL

CM∞
L (K) = arg max

w∈V LK

∑
j∈SigL(K)

logwj,

where SigL(K) = {j: ∃w ∈ V L
K , wj 6= 0}. It is not hard to see that by the convexity

argument there is always at least one probability function for which the above formula

does not give −∞. Also the function
∑

j∈SigL(K) logwj has a unique maximal point

since it is strictly concave on the domain defined by 0 < wj, j ∈ SigL(K).

An alternative characterisation of the CM∞-inference process can be given by

using the notion of centre of mass. Let K ∈ CL1 and L1 ⊆ L2. Define

CML2(K)(α) =

∫
V
L2
K

w(α)dV∫
V
L2
K
dV

,

where α ∈ At(L2) and integrals are taken over the relative dimension of V L2
K . Then

for all ϕ ∈ SL1

lim
L1⊆L2
|L2|→∞

CML2(K)(ϕ)

exists and equals to CM∞
L1

(K)(ϕ), see [39].

The CM∞-inference process satisfies the principles of Equivalence, Atomic re-

naming, Obstinacy, Relativisation and Open-mindedness. However, unlike the ME-

inference process, it does not satisfy the principles of Irrelevant information, Continuity

and Independence, c.f. [24] and [39].5

Both ME and CM∞ are a part of so called Renyi spectrum of inference processes

which we now define. For 1 > r > 0 we define RENr for any L and any K ∈ CL by

RENr
L(K) = arg max

w∈V LK

J∑
j=1

(wj)
r

and for r > 1 we define RENr for any L and any K ∈ CL by

RENr
L(K) = arg min

w∈V LK

J∑
j=1

(wj)
r.

Since
∑J

j=1(wj)
r is a strictly concave function for 1 > r > 0 and a strictly convex

function for r > 1 the above is well defined. ME and CM∞ are related to Renyi

spectrum by the following limit theorems:

5Note that reference [39] incorrectly states that CM∞ does not satisfy Relativisation.
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Theorem 1.3.3. For any L and any K ∈ CL

lim
r↘1

RENr
L(K) = MEL(K) and lim

r↗1
RENr

L(K) = MEL(K).

Theorem 1.3.4. For any L and any K ∈ CL

lim
r↘0

RENr
L(K) = CM∞

L (K).

The first result above is due to Mohamed [37], and the second one is due to Hawes [24].

For a positive r 6= 1 the RENr-inference process satisfies the principles of Equiv-

alence, Atomic Renaming, Continuity and Relativisation. On the other hand it does

not satisfy Independence and the Irrelevant information principle and for r > 1 not

even Open-mindedness. For more details see [24]. We can conclude that none of the

other processes in the Renyi spectrum has such appealing properties as the maximum

entropy inference process.

1.4 Collective reasoning

In the previous section we have described three interesting approaches which, we be-

lieve, are also applicable in the multi-expert framework. In this thesis we confine

ourselves to investigating the axiomatic approach. We will now state several elemen-

tary principles applicable to a p-merging operator ∆. It will be implicitly assumed

that these principles are required to hold for every n ≥ 1 and every propositional

language L.

First, recall that one of our initial assumptions (see section 1.1) is the one that

experts are assumed to have equal status. We will now formally state this as a principle

which also extends the equivalence principle for inference processes.

(K2) Equivalence Principle. If K1, . . . ,Kn ∈ CL and F1, . . . ,Fn ∈ CL are such

that there exist a permutation π of the index set {1, . . . , n} such that V L
Ki

=

V L
Fπ(i)

for 1 ≤ i ≤ n and ∆ is a p-merging operator, then ∆L(K1, . . . ,Kn) =

∆L(F1, . . . ,Fn).

The effect which (K2) has is that the order in which the knowledge bases occur

when ∆ is applied is immaterial, and therefore we can loosely refer to ∆ as being

applied to a multiset of knowledge bases instead of a sequence of such knowledge
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bases. On the other hand repetitions of knowledge bases will in general be significant,

so the sequence (or multiset) of knowledge bases cannot be considered as a set; the

∆ we consider will typically share most of the characteristics of what are commonly

referred to as majority merging operator, see [30].

(K3) Atomic Renaming. Consider a permutation σ of the atoms of L. By σ(K)

for K ∈ CL we mean a set of constraints K where the atoms have been renamed

according to σ and every sentence in SL has been changed accordingly. By

σ(w) we mean an L-probability function such that σ(w)(α) = w(σ(α)) for

all α ∈ At(L). Now we say that a p-merging operator ∆ satisfies the atomic

renaming principle if for all K1, . . . ,Kn ∈ CL

∆L(σ(K1), . . . , σ(Kn)) = σ(∆L(K1, . . . ,Kn)).

This principle is natural counterpart to the principle of atomic renaming for inference

processes. It simply says that the result of applying a p-merging operator should not

depend on the order in which atoms are listed.

The restricted problem of probabilistic merging when each knowledge base K de-

termines a single probability function (i.e. V L
K is a singleton) has been widely studied

in decision theory literature as the problem of Pooling Operators, see e.g. [16] and [17].

In our presentation, formally, we define a pooling operator Pool for each n ≥ 1

and for each language L as a mapping

Pool : DL × . . .× DL︸ ︷︷ ︸
n

→ DL

such that the result of applying Pool does not depend on the order of probability

functions in the argument and for any permutation σ of the atoms of L

Pool(σ(w(1)), . . . , σ(w(n))) = σ(Pool(w(1), . . . ,w(n))).

Two the most common6 pooling operators are LinOp defined by

LinOp(w(1), . . . ,w(n))(αj) =

∑n
i=1w

(i)
j

n
,

6With their weighted variants.
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for every atom αj ∈ At(L), corresponding to an arithmetic mean in each coordinate,

and LogOp defined by

LogOp(w(1), . . . ,w(n))(αj) =

(∏n
i=1w

(i)
j

) 1
n

∑J
j=1

(∏n
i=1w

(i)
j

) 1
n

,

for every atom αj ∈ At(L), corresponding to a normalised geometric mean in each

coordinate. Notice that LogOp(w(1), . . . ,w(n)) is a probability function if and only if

the following holds.

There is some atom α such that for no i is it the case that w(i)(α) = 0. (1.3)

In relation to expert systems, pooling operators are widely used in economics. For

instance see [36] where an application forecasting UK inflation is considered. Extension

of pooling operators to our framework of knowledge merging is therefore of a significant

interest.

Some axiomatic framework for pooling operators has been also studied (see e.g. [18]

for a survey), however the results are perhaps less convincing than the result of Paris

and Vencovská for inference processes and we will not rely on them. Instead, we

define a proper p-merging operator directly extending the general notions of pooling

operators and inference processes.

We define an Obdurate Merging Operator O by the following two stage process:

Given K1, . . . ,Kn ∈ CL,

1. define w(i) = SL(Ki), 1 ≤ i ≤ n, where S is an inference process and

2. put OL(K1, . . . ,Kn) = Pool(w(1), . . . ,w(n)), where Pool is a pooling operator

which does not depend on the outcome of the first stage7.

We will shortly see why this operator is called ‘obdurate’. Note that the definitions

of Pool and S ensure that O satisfies principles (K1), (K2) and (K3) and by the

definition obdurate merging operators are single valued.

An obdurate merging operator defined by means of ME and LogOp is called the

Obdurate Social Entropy Process (OSEP). Note that whenever (1.3) does not hold

7This is a non-trivial assumption as shown in section 4.4.
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for some MEL(K1), . . ., MEL(Kn) we will leave OSEPL(K1, . . . ,Kn) undefined. By

only slight abuse of language we still call OSEP a p-merging operator. Notice that

(1.3) holds whenever the following condition is satisfied.

There is some atom α such that for no i

is it the case that for all w ∈ V L
Ki

w(α) = 0. (1.4)

This is because ME satisfies Open-Mindedness so if Bel(α) 6= 0 is consistent with

K ∈ CL then MEL(K)(α) 6= 0.

Similarly, the Obdurate Linear Entropy Process (OLEP) is defined by

OLEPL(K1, . . . ,Kn)(αj) = LinOp(MEL(K1)(αj), . . . ,MEL(K1)(αj)),

for all αj ∈ At(L). OLEP has the advantage that it is well defined everywhere.

The notion of an obdurate merging operator seems to be a natural extension of

inference processes to our framework indeed, in particular one may argue in favour of

the first stage of OSEP or OLEP on the grounds of ME. However, instead, we turn

now to some general criticisms of obdurate merging operators. Consider the following

(K4) Consistency Principle. For all K1, . . . ,Kn ∈ CL if
⋂n
i=1 V

L
Ki
6= ∅ then

∆L(K1, . . . ,Kn) ⊆
⋂n
i=1 V

L
Ki

.

(K4) can be interpreted as saying that if the knowledge bases of a set of experts are

collectively consistent then the merged knowledge base should not consist of anything

else than what they agree on.

This principle often fall under the following philosophical criticism. One might

imagine a situation when several experts consider a large set of probability functions

as admissible while one believe in a single probability function. Although this one

is consistent with the beliefs of the rest of the group, one might argue that it is not

justified to merge knowledge of the whole group to that single probability function.

However such a criticism consists of an additional assumption imposed on rationality

of reasoning, namely the lack of trust in a single expert. We argue that once we have

confined ourselves only to the narrow problem of merging of knowledge bases this

principle is strongly justified.

However, since obdurate merging operators are in fact social inference processes

(they always result in a single probability function), the above criticism is hard to
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accept at all. If we needed to choose only one point then which other one we would

choose if not the point of agreement. From this point of view the following theorem is

rather striking.

Theorem 1.4.1. Let O be an obdurate merging operator and let S be the inference

process used in the first stage of O. Assume that for any L and any K ∈ CL SL(K)

is defined as that unique probability function which maximises some strictly concave

function f : DL → R over V L
K . (In particular ME and CM∞ are instances of such an

S.) Then O does not satisfy the consistency principle (K4).

Proof. Suppose that L has at least two propositional variables. Let v ∈ DL be the

unique maximiser of f over DL. Let w,u ∈ DL be such that f(v) > f(w) > f(u) and

w = λv + (1 − λ)u for some 0 < λ < 1 (in particular w is a linear combination of v

and u).

Let a ∈ DL be such that f(v) > f(a) > f(w) and a is not a linear combination of

v and u. Then there is a′ such that a′ = λa + (1− λ)w for some 0 < λ ≤ 1 and f is

strictly decreasing along the line from a′ to w. This is because f is strictly concave

and f(a) > f(w). Note that if there was only one propositional variable in L then a

would be always a linear combination of v and u.

Now we show that f is also strictly decreasing along the line from a′ to u. Assume

this is not the case. Then by the same argument as before there is a′′ such that

f(a′′) > f(a′). Due to the construction the line form v to a′′ intersects the line from

a′ to w, let us denote the point of intersection as r. Since f is strictly decreasing

along the line from a′ to w we have that f(r) < f(a′) < f(a′′) < f(v). This, however,

contradicts concavity of f . The situation is depicted in figure 1.2.

Now assume that V L
K1

= {λv + (1− λ)w : λ ∈ [0, 1]}, V L
K2

= {λa′ + (1− λ)w : λ ∈

[0, 1]}, V L
F1

= {λv + (1−λ)u : λ ∈ [0, 1]} and V L
F2

= {λa′+ (1−λ)u : λ ∈ [0, 1]}. Since

v maximises f , and along the lines from a′ to w and from a′ to u the function f is

strictly decreasing we have that

OL(K1,K2) = Pool(v, a′) = OL(F1,F2), (1.5)

where Pool is a pooling operator used in the second stage of O.

Suppose that O satisfies (K4). Then OL(K1,K2) = w and OL(F1,F2) = u which

contradicts (1.5). �
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v
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u

a a′
r

a′′

DL

Figure 1.2: The situation in the proof of theorem 1.4.1.

The theorem above reveals a serious flaw within the design of an obdurate merging

operator. The first stage does not take into account other experts’ opinions and when

the second stage is finally performed much of the original information has already been

lost. One might say that such a process is obdurate — hence the name.

Note that in [2] the consistency principle is formulated in the following stronger

form.

(K4*) Strong Consistency Principle. For all K1, . . . ,Kn ∈ CL if
⋂n
i=1 V

L
Ki
6= ∅

then ∆L(K1, . . . ,Kn) =
⋂n
i=1 V

L
Ki

In particular, if there is only one expert with knowledge base K then this principle

just asserts that ∆L(K) = V L
K .

In contrast to the above, the following principle focuses on an extremely weak kind

of consistency in the case of an expert possessing zero knowledge.

Ignorance Principle. Let K1, . . . ,Kn ∈ CL and F = ∅ (i.e. V L
F = DL). Then

∆L(K1, . . . ,Kn,F) = ∆L(K1, . . . ,Kn).

It says that if we add an expert who knows nothing relevant to the problem then he

must not influence the merging procedure.

Example 1.4.2. Let K ∈ CL be such that V L
K = {v} is a singleton and F = ∅.

Assume that v 6= MEL(F) =
( 1

J
, . . . ,

1

J︸ ︷︷ ︸
J

)
. Then obviously OSEP and OLEP do

not satisfy the ignorance principle in this case. �
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The ignorance principle is in fact a special case of the following principle due to

Wilmers [52].

(K5) Collegiality Principle. Let K1, . . . ,Kn,F1, . . . ,Fm ∈ CL and
⋂m
i=1 V

L
Fi
6= ∅.

Assume that ∆L(K1, . . . ,Kn) ⊆
⋂m
i=1 V

L
Fi

. Then

∆L(K1, . . . ,Kn,F1, . . . ,Fm) = ∆L(K1, . . . ,Kn).

In other words in the case when an expert agrees with the conclusion of a college

of experts then including this expert in the decision process should not make any

difference to the agreement of the group.

Despite theorem 1.4.1 and the fact that neither OSEP nor OLEP satisfy the fairly

natural ignorance principle they do nevertheless possess some other very appealing

properties, as we will see later. In the next chapter, however, we examine how to

relate a probability function to a knowledge base in a manner which ultimately allow

us to define a class of merging operators which satisfy the consistency principle, the

collegiality principle and much more.



Chapter 2

Information geometry

2.1 Divergences

In this section we will define an associated binary function (a divergence) on the set

of probability functions DL. This function can be interpreted as a measure on ordered

pairs of probability functions. As a result a number of geometrical notions arise which

we will exploit to define some well behaved probabilistic merging operators.

The concept of a divergence over a manifold is widely used in the differential

geometry. For our purposes we define a divergence as a function

D(·‖·) : DL × DL → R∗,

where for any w,v ∈ DL

D(w‖v) ≥ 0, and D(w‖v) = 0 if and only if w = v. (2.1)

Recall that R∗ is the extended real line R ∪ {+∞}. A divergence is neither required

to be symmetric nor to satisfy the triangular inequality, and therefore, in general, it

is not a metric. Due to asymmetry we say that D(w‖v) is a divergence from v to w.

A special type of a divergence which has recently attracted attention in machine

learning and plays a major role in optimisation (c.f. [9]) is a Bregman divergence ([7]).

To define it we first define the useful topological term — a relative interior. For any

nonempty convex set C ⊆ RJ the relative interior of C is defined by

ri(C) = {x ∈ C: ∀y ∈ C ∃λ > 1(λx+ (1− λ)y ∈ C)}.

34
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The relative interior is a version of the concept of interior which is suitable for low

dimensional subregions so as to exclude only their outer boundary in a relative dimen-

sion. Note that v 6∈ ri(DL) only if vj = 0 for some 1 ≤ j ≤ J .

Now consider a mapping df : DL × ri(DL)→ R defined by

df (w‖v) = f(w)− f(v)− (w − v) · ∇f(v),

where f : (R+
0 )J → R is a continuous strictly convex function which is continuously

differentiable over ri(DL) where R+
0 denotes the non-negative real numbers. Note that

∇f(v) = ∇f(v1, . . . , vJ) is a gradient of f and · denotes inner (dot) product of two

vectors. Therefore

(w − v) · ∇f(v) =
J∑
j=1

(wj − vj)
∂f(v)

∂vj
. (2.2)

To create a divergence from the mapping df defined above we need firstly to extend

the domain DL × ri(DL) to DL × DL. This definition will depend on whether f is

differentiable over the whole DL or not. We will define two notions which depend on

this.

For any v ∈ DL and w ∈ DL we say that v f -dominates w and write v�f w if

1. f is differentiable over DL or

2. vj = 0 implies wj = 0 for all 1 ≤ j ≤ J .

If the function f is known then we may say for simplicity v dominates w (v� w).

Note that the binary relation � is reflexive and transitive. To verify transitivity

consider v �f w �f u. Whenever one of v �f w and w �f u holds due to

condition 1 above, v �f u holds for the same reason. If both v �f w and w �f u

hold due to condition 2 above then vj = 0 implies uj = 0 for all 1 ≤ j ≤ J .

A signature of the gradient of f at v is defined as follows.

Sigf (v) =

 {1, . . . , J}, f is differentiable over DL,

{j: vj 6= 0}, otherwise.

We may omit the index f whenever f is implicitly given.

In addition to the assumption that f : (R+
0 )J → R is a continuous strictly convex
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function which is differentiable over ri(DL), suppose that

for every v ∈ DL \ ri(DL) and every w ∈ DL such that v�f w

there exist a directional derivative of f at v in the direction to w,

and is equal to
∑

j∈Sigf (v)

(wj − vj)
∂f(v)

∂vj
. (2.3)

Note that the existence of directional derivatives above gives that the partial derivative

∂f(v)
∂vj

exists if j ∈ Sigf (v).

Then we define a Bregman divergence as a mapping Df : DL × DL → R∗ defined

by

Df (w‖v) =

 f(w)− f(v)−
∑

j∈Sigf (v)(wj − vj)
∂f(v)
∂vj

, if v�f w,

+∞, otherwise.

Whenever v�f w we write (w−v) ·v∗ as a shorthand of
∑

j∈Sigf (v)(wj−vj)
∂f(v)
∂vj

. To

our knowledge the Bregman divergence was so far in the literature only defined over

DL × ri(DL) and therefore the above is an extension of the classical definition.

In the forthcoming lemma 2.1.2 we prove that the mapping above is really a diver-

gence. In order to prove this we need the following theorem, see e.g. p. 69 of [6].

Theorem 2.1.1 (First Convexity Condition). Suppose that U is convex in RJ and

f : U → R is differentiable (i.e., its gradient ∇f exists at each point in U ). Then f

is convex if and only if

f(w) ≥ f(v) + (w − v) · ∇f(v)

holds for all w,v ∈ U .

Lemma 2.1.2. The function Df defined above is a divergence.

Proof. Since f is a convex function by the first-order convexity condition (theo-

rem 2.1.1) we have that f(w) ≥ f(v) + (w − v) · ∇f(v) whenever v ∈ ri(DL) and

w ∈ DL. Notice that f(v) + (w − v) · ∇f(v) for the variable w ∈ DL is the affine

tangent space to f at the point v.

For a point v on the boundary DL \ ri(DL), assume v�f w. By convexity of f for

any λ ∈ [0, 1] λf(w) + (1− λ)f(v) ≥ f(v + λ(w − v)). Then

f(w) ≥ f(v) +
f(v + λ(w − v))− f(v)

λ
.
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f(v) + (w − v) · ∇f(v)

Df (w‖v)

w − v

Figure 2.1: A Bregman divergence.

Since, by assumption (2.3), the directional derivative limλ→0
f(v+λ(w−v))−f(v)

λ
exists,

we have that f(w) ≥ f(v) +
∑

j∈Sigf (v)(wj − vj)
∂f(v)
∂vj

. Note that the existence of only

partial derivatives ∂f(v)
∂vj

, j ∈ Sigf (v), is not sufficient to establish the claim.

On the other hand if v 6�f w then Df (w‖v) = +∞ > 0. In any case Df (w‖v) ≥ 0.

Since f is a strictly convex function, if v�f w then

f(w) = f(v) +
∑

j∈Sigf (v)

(wj − vj)
∂f(v)

∂vj

is possible only if wj = vj for all j ∈ Sigf (v). However, since v �f w we have that

either Sigf (v) = {1, . . . , J}, or vj = 0 implies wj = 0. In any case w = v, where in

the latter case we have used the fact that
∑

j∈Sigf (v) vj = 1.

Consequently Df satisfies (2.1). �

Notice that for fixed f a Bregman divergence Df can be defined for any language L.

Therefore for a particular function f by Df we will always mean the class of the

divergences, one divergence for each language L. Figure 2.1 depicts a geometrical

interpretation of a Bregman divergence when v ∈ ri(DL).

Lemma 2.1.3. Let g : R+
0 → R be a continuous strictly convex function which is

differentiable over (0, 1]. Let f : DL → R be defined by f(v) =
∑J

j=1 g(vj). Then f

satisfies condition (2.3).
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Proof. First notice that v ∈ DL \ ri(DL) only if vj = 0 for some 1 ≤ j ≤ J . Now let

w ∈ DL be such that v �f w. Then the directional derivative of f at v in direction

to w exists since it can be expressed only by derivations of g at non-zero points as∑
j∈Sigf (v)

(wj − vj)
∂g(vj)

∂vj
.

The above is well-defined since, by assumption,
∂g(vj)

∂vj
exists for vj 6= 0. �

The following are examples of a Bregman divergence.

Example 2.1.4 (Squared Euclidean Distance). For any J ≥ 2 let f(x) =
∑J

j=1(xj)
2.

This function is differentiable over (R+
0 )J and therefore any v ∈ DL f -dominates any

w ∈ DL. Also for all v ∈ DL Sigf (v) = {1, . . . , J}. Therefore we can define the

divergence Df at once by

Df (w‖v) =
J∑
j=1

(wj − vj)2.

We will denote this divergence by E2 and, exceptionally, this divergence is symmetric.

�

Example 2.1.5 (Kullback-Leibler Divergence). For any J ≥ 2 let f(x) =∑J
j=1 xj log xj where by definition xj log xj = 0 for xj = 0. This function is differ-

entiable only over (R+)J but, by lemma 2.1.3, it satisfies condition (2.3). Therefore

v ∈ DL f -dominates w ∈ DL only if vj = 0 implies wj = 0. Sig(v) = {j: vj 6= 0}. The

divergence Df is then defined by

Df (w‖v) =


∑

j∈Sig(v) wj log
wj
vj

, if v� w,

+∞, otherwise.

This well-known divergence will be denoted by KL.

Note that limε→0 vj log
vj
ε

= +∞ for vj 6= 0 and limε→0 ε log ε
δ

= 0 for any δ > 0.

However KL(·‖·) is not a continuous function. To see that consider the sequence ε log ε
δ

as ε→ 0 and δ → 0.

The fact that (2.1) holds for the Kullback-Leibler divergence is known as the Gibbs

inequality. �
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Example 2.1.6 (Renyi-B Divergence for 2 ≥ r > 1). For any J ≥ 2 and 2 ≥ r > 1 let

f(x) =
∑J

j=1(xj)
r. This function is differentiable over (R+

0 )J and therefore any v ∈ DL

f -dominates any w ∈ DL. Also for all v ∈ DL Sigf (v) = {1, . . . , J}. Therefore we

can define the divergence Df at once by

Df (w‖v) =
J∑
j=1

[(wj)
r − (vj)

r − r(wj − vj)(vj)r−1].

We will denote this divergence by Dr. In particular D2 = E2. We note that in the

literature the Renyi divergence is defined differently, see [43], and the geometry of the

Renyi divergence has been studied for example in [4]. That is the reason why we call

the above divergence Renyi-B (where ‘B’ stands for ‘Bregman’). �

Bregman divergences are closely related to scoring rules which we have explained

in section 1.3. If a scoring rule S is regular and strictly proper then D(w‖v) =

S(w,v)−S(w,w) is an associated divergence from v ∈ DL to w ∈ DL. If S is regular

and proper it follows that D(w‖v) ≥ 0. If moreover S is strictly proper then D(w‖v)

is strictly positive, unless w = v.

The following theorem follows from a more general theorem by Gneiting and

Raftery in [19], theorem 2, (which is due in essence to McCarthy and Savage [45]).

Theorem 2.1.7. For every Bregman divergence Df there is a regular strictly proper

scoring rule S such that Df (w‖v) = S(w,v)− S(w,w).

Proof. Let |At(L)| = J . Assume that Df is given. Recall that f : (R+
0 )J → R from

the definition of Df is a continuous strictly convex function which is differentiable over

ri(DL) and it satisfies condition (2.3). Define the loss function by

Ls(v, α) =


∑

j∈Sigf (v)(vj ·
∂f(v)
∂vj

)− ∂f(v)
∂vk
− f(v), if k ∈ Sigf (v),

+∞, otherwise,
(2.4)

where vk = v(α). The corresponding scoring rule is

S(w,v) =
∑

α∈At(L)

w(α) Ls(v, α),

where we put by definition w(α) Ls(v, α) = 0 whenever w(α) = 0.
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Now we show that Df (w‖v) = S(w,v)−S(w,w). If v 6�f w then S(w,v) = +∞

and Df (w‖v) = +∞, hence they are equal. Now assume that v�f w. Note that

S(w,v) =
∑

j∈Sigf (v)

[
− wj

∂f(v)

∂vj
− wjf(v) + wj

∑
j∈Sigf (v)

vj
∂f(v)

∂vj

]
=

= −
∑

j∈Sigf (v)

wj
∂f(v)

∂vj
− f(v) +

∑
j∈Sigf (v)

vj
∂f(v)

∂vj
.

Therefore

Df (w‖v) = S(w,v)− S(w,w) =

= −
∑

j∈Sigf (v)

wj
∂f(v)

∂vj
− f(v) +

∑
j∈Sigf (v)

vj
∂f(v)

∂vj
+

+
∑

j∈Sigf (w)

wj
∂f(w)

∂wj
+ f(w)−

∑
j∈Sigf (w)

wj
∂f(w)

∂wj
=

= f(w)− f(v)−
∑

j∈Sigf (v)

(wj − vj)
∂f(v)

∂vj
.

Moreover from the the above it is obvious that the scoring rule S(w,v) is regular and

strictly proper which concludes the proof. �

It seems therefore possible to argue in favour of investigating the Bregman diver-

gence on the grounds of game theory, which, as we have seen before, also offers a

justification for the ME-inference process.

Lemma 2.1.8. For given v ∈ DL a Bregman divergence Df (w‖v) is a strictly convex

function in the first argument over the domain specified by v�f w.

Proof. Consider Df (w‖v) = f(w)− f(v)−
∑

j∈Sig(v)(wj − vj)
∂f(v)
∂vj

where v is a con-

stant. f(v) is therefore constant as well and −
∑

j∈Sig(v)(wj − vj)
∂f(v)
∂vj

is just a linear

term. Since (strict) convexity is not affected by adding a linear term the lemma follows

by the strict convexity of the function f . �

Note that Df (·‖·) is not necessarily convex in its second argument as the following

example demonstrates.

Example 2.1.9. Let f(x) =
∑4

j=1(xj)
3 be defined on (R+

0 )4 so that

Df (w‖v) =
4∑
j=1

((wj)
3 − (vj)

3 − 3(wj − vj)(vj)2) =
4∑
j=1

(2(vj)
3 − 3wj(vj)

2 + (wj)
3).
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For instance if w = (1
4
, 1

4
, 1

4
, 1

4
) then clearly the function Df (w‖v) is not convex since

the Hessian matrix
12v1 − 6w1 0 0 0

0 12v2 − 6w2 0 0

0 0 12v3 − 6w3 0

0 0 0 12v4 − 6w4


is not positive-semidefinite. �

Owing to lemma 2.1.8 if v ∈ DL is given and V ⊆ DL is a closed convex set such

that there is at least one probability function which v f -dominates then we can define

the Df -projection of v to V . It is that unique point w ∈ V which minimises Df (w‖v)

subject only to w ∈ V .

The existence of a Df -projection is heavily used in expert systems which map prob-

ability functions to some linearly constrained sets or spaces generated by marginal

probability functions, see [9] and [48] respectively. Similar idea of projecting infor-

mation that we cannot recognize to a known (training) set is used in artificial neural

networks which in their most trivial version are just linear projections. We study such

use of projections further in section 3.2.

Lemma 2.1.10. For any L-probability functions v�f w�f a

Df (a‖v)−Df (w‖v)−Df (a‖w) = (a−w) · (w∗ − v∗),

where, with only a slight abuse of notation, (a−w) · (w∗−v∗) denotes
∑

j∈Sigf (w)(aj−

wj)
∂f(w)
∂wj
−
∑

j∈Sigf (v)(aj − wj)
∂f(v)
∂vj

.

Proof. Immediately by

f(a)− f(v)− (a− v) · v∗ − [f(w)− f(v)− (w − v) · v∗]−

−[f(a)− f(w)− (a−w) ·w∗] = (a−w) ·w∗ − (a−w) · v∗.

�

The following theorem was proved for the Kullback-Leibler divergence first by

Csiszár in [11]. The following proof is a modification of the proof given in [3] for a

Bregman divergence.
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Theorem 2.1.11 (Extended Pythagorean Theorem). Let Df be a Bregman diver-

gence. Let w be the Df -projection of v ∈ DL to a closed convex set W ⊆ DL. Let

a ∈ W be such that v�f w�f a. Then

Df (a‖w) +Df (w‖v) ≤ Df (a‖v).

If, in particular, W is a line segment in DL such that w ∈ ri(W ) then

Df (a‖w) +Df (w‖v) = Df (a‖v).

Proof. First of all notice that by lemma 2.1.10 we have that

Df (a‖v)−Df (w‖v)−Df (a‖w) = (a−w) · (w∗ − v∗)

and the values of all the divergences above are real numbers. Let wλ = λa+ (1−λ)w,

for λ ∈ [0, 1]. Clearly Df (wλ‖v) ∈ R. Consider

∂

∂λ
Df (wλ‖v)|λ=0 =

∂

∂λ
(f(λa + (1− λ)w)− f(v)− (λa + (1− λ)w − v) · v∗)|λ=0 =

= (a−w) ·w∗ − (a−w) · v∗ = (a−w) · (w∗ − v∗).

Therefore if (a−w) · (w∗ − v∗) < 0 there is wλ such that Df (wλ‖v) < Df (w‖v)

for some λ > 0. This contradicts that w is the Df -projection of v to W and the first

part of the theorem follows.

If moreover W is a line segment in DL such that w ∈ ri(W ) then for any a ∈ W

there is λ < 0 such that wλ ∈ W . Now if (a − w) · (w∗ − v∗) > 0 then there is

λ ≤ ε < 0 such that wε ∈ W and Df (wε‖v) < Df (w‖v). This contradicts that w is

the Df -projection of v to W and the second part of the theorem follows. �

Notice that the squared Euclidean distance has a special role among all other

Bregman divergences. It is symmetric and it interprets the extended Pythagorean

theorem ‘classically’ as the relation of the sizes of the squares constructed on the sides

of a triangle.

The following theorem in the version for the Kullback-Leibler divergence is folklore

in information theory, see [10].

Theorem 2.1.12 (Parallelogram Theorem). Let w(1), . . . ,w(n),v ∈ DL be such that

v�f w(i) for all 1 ≤ i ≤ n and Df be a Bregman divergence. Then

n∑
i=1

Df (w
(i)‖v) =

n∑
i=1

Df (w
(i)‖LinOp(w(1), . . . ,w(n)))+
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Df (a‖w)+Df (w‖v)≤ Df (a‖v)

Figure 2.2: The extended Pythagorean theorem.

+n ·Df (LinOp(w(1), . . . ,w(n))‖v).

Proof. Let w = LinOp(w(1), . . . ,w(n)). The equality is easy to observe by

n∑
i=1

[
f(w(i))− f(v)−

∑
j∈Sigf (v)

(w
(i)
j − vj)

∂f(v)

∂vj

]
=

=
n∑
i=1

[
f(w(i))− f(w)− (w(i) −w) ·w∗

]
+

+n ·
[
f(w)− f(v)−

∑
j∈Sigf (v)

(wj − vj)
∂f(v)

∂vj

]
since

∑n
i=1(w(i) −w) ·w∗ = 0. �

Since a Bregman divergence is not necessary convex in its second argument the fol-

lowing result might be a bit surprising. This theorem formulated for random variables

was proved in [5].

Theorem 2.1.13. Let w(1), . . . ,w(n) be given L-probability functions and Df be a

Bregman divergence. Then the function

n∑
i=1

Df (w
(i)‖v),

in the domain given by v ∈ DL, v�f w(i) for all 1 ≤ i ≤ n, is strictly minimal for

v = LinOp(w(1), . . . ,w(n)).
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Proof. By the parallelogram theorem the minimality of
∑n

i=1Df (w
(i)‖v) for fixed

w(1), . . . ,w(n) is equivalent to the minimality of Df (LinOp(w(1), . . . ,w(n))‖v). Since

Df (w‖v) = 0 only if w = v and otherwise it is positive, the unique minimum of the

considered function is at the point v = LinOp(w(1), . . . ,w(n)). �

Let D be a divergence. We say that D(·‖·) is a convex function over a domain

V ⊆ DL if for all λ ∈ [0, 1] and all w(1),w(2),v(1),v(2) ∈ V

λD(w(1)‖v(1)) + (1− λ)D(w(2)‖v(2)) ≥ D(λw(1) + (1− λ)w(2)‖λv(1) + (1− λ)v(2)).

Note that if D(·‖·) is a convex function then D(·‖·) is a convex function also in each

argument separately.

Note that the domain {(w,v) ∈ DL × DL: v �f w} is convex and nonempty.

In the rest of this section we will study Bregman divergences which are convex over

{(w,v) ∈ DL × DL: v�f w}.

Example 2.1.14. The squared Euclidean distance

E2(w‖v) =
J∑
j=1

(wj − vj)2

is obviously a convex function over the domain DL × DL and hence it is a convex

Bregman divergence. �

Example 2.1.15. Let f(x) =
∑J

j=1 xj log xj. The Kullback-Leibler divergence

KL(w‖v) =


∑

j∈Sig(v) wj log
wj
vj

, if v� w,

+∞, otherwise

is a convex function over the domain {(w,v) ∈ DL × DL: v � w} and hence it is a

convex Bregman divergence. For this it is sufficient to prove the following lemma. �

Lemma 2.1.16. KL(x‖y) is a convex function over the domain {(x,y) ∈ DL ×

DL: yj = 0 implies xj = 0}. Note that over this domain KL(x‖y) is defined by∑
j∈Sig(y)

xj log
xj
yj

.
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Proof. A differentiation for all j ∈ Sig(y) gives

∂KL(x‖y)

∂xj
= log

xj
yj

+ 1,

∂KL(x‖y)

∂yj
= −xj

yj
,

∂2 KL(x‖y)

∂xj∂xj
=

1

xj
,

∂2 KL(x‖y)

∂xj∂yj
=
∂2 KL(x‖y)

∂yj∂xj
= − 1

yj
,

∂2 KL(x‖y)

∂yj∂yj
=

xj
(yj)2

.

Therefore the Hessian matrix is block-diagonal 2 · J × 2 · J matrix

H =


B1 0 0 . . .

0 B2 0 . . .

0 0 B3 . . .
...

...
...

. . .

 ,

where each block is 2× 2 matrix

Bj =

 1
xj

− 1
yj

− 1
yj

xj
(yj)2

 ,

if j ∈ Sig(y) and

Bj =

 0 0

0 0

 ,

otherwise.

A continuously differentiable function is convex if its Hessian matrix is positive-

semidefinite. A matrix H is positive-semidefinite if zHzT ≥ 0 for all z ∈ R2·J . It is

easy to check that it is sufficient to prove that the matrix Bj is positive-semidefinite

for all j ∈ Sig(y):

zBjz
T =

1

xj
z2

1 −
2

yj
z1z2 +

xj
(yj)2

z2
2 =

( 1
√
xj
z1 −

√
xj

yj
z2

)2

≥ 0.

Above expression can attain 0 for a positive vector z and moreover some of Bj-s might

be zero matrices. Therefore the function KL is not strictly convex over the specified

domain. �
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Example 2.1.17. For 2 ≥ r > 1 let f(x) =
∑J

j=1(xj)
r. The Renyi-B divergence

Dr(w‖v) =
J∑
j=1

[(wj)
r − (vj)

r − r(wj − vj)(vj)r−1]

is a convex function over the domain {(w,v) ∈ DL × DL} and hence it is a convex

Bregman divergence. For this it is sufficient to prove the following lemma. �

Lemma 2.1.18. For 2 ≥ r > 1
∑J

j=1[(xj)
r − (yj)

r − r(xj − yj)(yj)r−1] is a convex

function over the domain {(x,y) ∈ [0, 1]J × [0, 1]J}.

Proof. A differentiation for all 1 ≤ j ≤ J gives

∂Dr(x‖y)

∂xj
= r(xj)

r−1 − r(yj)r−1,

∂Dr(x‖y)

∂yj
= −r(r − 1)(xj − yj)(yj)r−2,

∂2Dr(x‖y)

∂xj∂xj
= r(r − 1)(xj)

r−2,

∂2Dr(x‖y)

∂xj∂yj
=
∂2Dr(x‖y)

∂yj∂xj
= −r(r − 1)(yj)

r−2,

∂2Dr(x‖y)

∂yj∂yj
= r(r − 1)2(yj)

r−2 − r(r − 1)(r − 2)xj(yj)
r−3.

Therefore the Hessian matrix is block-diagonal 2 · J × 2 · J matrix

H =


B1 0 0 . . .

0 B2 0 . . .

0 0 B3 . . .
...

...
...

. . .

 ,

where each block is 2× 2 matrix

Bj =

 r(r − 1)(xj)
r−2, −r(r − 1)(yj)

r−2

−r(r − 1)(yj)
r−2, r(r − 1)2(yj)

r−2 − r(r − 1)(r − 2)xj(yj)
r−3

 .

A continuously differentiable function is convex if its Hessian matrix is positive-

semidefinite. A symmetric matrix H is positive-semidefinite if determinants of all its

principal sub-matrices are non-negative. It is not hard to see that we need to verify

that the matrix Bj is positive-semidefinite for all j ∈ Sig(y):



CHAPTER 2. INFORMATION GEOMETRY 47

The determinant of the first principal sub-matrix of Bj is r(r−1)(xj)
r−2 ≥ 0, since

2 ≥ r > 1 and xj ∈ [0, 1]. After some algebraic manipulation the determinant of Bj is

equal to

r2(r − 1)2(yj)
r−3[−(r − 2)(xj)

r−1 + (r − 1)yj(xj)
r−2 − (yj)

r−1].

One can easily see that for xj = yj the term above is zero. Fix yj. Then differentiating

according to xj gives

r2(r − 1)3(2− r)(yj)r−3(xj)
r−3[xj − yj].

Clearly, for 1 ≥ xj > yj the value of the determinant is increasing, and for 0 ≤ xj < yj

this value is decreasing. Therefore at xj = yj we get a global minimum (for yj fixed)

and we conclude that the determinant is non-negative. �

Lemma 2.1.19. Assume that a Bregman divergence Df (w‖v) is a convex function

over the domain {(w,v) ∈ DL × DL: v�f w}. Then

n∑
i=1

Df (w
(i)‖LinOp(w(1), . . . ,w(n)))

is also a convex function over the domain {(w(1), . . . ,w(n)) ∈ DL × . . .× DL︸ ︷︷ ︸
n

}.

Proof. Since Df (·‖·) is a convex function and the sum of convex functions is convex

we have that

λ

n∑
i=1

Df (w
(i)‖v) + (1− λ)

n∑
i=1

Df (u
(i)‖s) ≥

n∑
i=1

Df (λw(i) + (1− λ)u(i)‖λv + (1− λ)s)

for any λ ∈ [0, 1] and w(1), . . . ,wn ∈ DL, u(1), . . . ,un ∈ DL and v, s ∈ DL such that

v�f w(i) and s�f u(i) for all 1 ≤ i ≤ n. By substituting v = LinOp(w(1), . . . ,w(n))

and s = LinOp(u(1), . . . ,u(n)) we have also

λ

n∑
i=1

Df (w
(i)‖LinOp(w(1), . . . ,w(n)))+(1−λ)

n∑
i=1

Df (u
(i)‖LinOp(u(1), . . . ,u(n))) ≥

≥
n∑
i=1

Df (λw(i)+(1−λ)u(i)‖λLinOp(w(1), . . . ,w(n))+(1−λ) LinOp(u(1), . . . ,u(n))) =

=
n∑
i=1

Df (λw(i) + (1− λ)u(i)‖LinOp(λw(1) + (1− λ)u(1), . . . , λw(n) + (1− λ)u(n)))

which concludes the proof. �
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The following theorem will have later some strong consequences.

Theorem 2.1.20. Let Df be a convex Bregman divergence. Let u(1), . . . ,u(n) ∈ DL

and a(1), . . . , a(n) ∈ DL be such that
n∑
i=1

Df (u
(i)‖v) >

n∑
i=1

Df (a
(i)‖a),

where v = LinOp(u(1) . . . ,u(n)) and a = LinOp(a(1) . . . , a(n)). Assume that

u(i) �f a(i) for all 1 ≤ i ≤ n. Then
n∑
i=1

(a(i) − u(i)) · ((u(i))∗ − v∗) < 0.

Proof. First of all notice that by lemma 2.1.10 and by the assumption u(i) �f a(i), for

all i, we have that

Df (a
(i)‖v)−Df (u

(i)‖v)−Df (a
(i)‖u(i)) = (a(i) − u(i)) · ((u(i))∗ − v∗).

The above has a sense since v�f u(i) for all 1 ≤ i ≤ n. By the parallelogram theorem
n∑
i=1

Df (a
(i)‖v) =

n∑
i=1

Df (a
(i)‖a) + n ·Df (a‖v).

Hence
n∑
i=1

Df (a
(i)‖a)−

n∑
i=1

Df (u
(i)‖v) + n ·Df (a‖v)−

−
n∑
i=1

Df (a
(i)‖u(i)) =

n∑
i=1

(a(i) − u(i)) · ((u(i))∗ − v∗). (2.5)

Since we assume that Df (w‖v) is a convex function in both arguments whenever

v�f w by the Jensen inequality

n ·Df (a‖v)−
n∑
i=1

Df (a
(i)‖u(i)) ≤ 0. (2.6)

The inequality (2.6) together with the assumption that
n∑
i=1

Df (u
(i)‖v) >

n∑
i=1

Df (a
(i)‖a)

gives that left-hand side of the equality (2.5) is negative and so the right-hand side is

too, whence
n∑
i=1

(a(i) − u(i)) · ((u(i))∗ − v∗) < 0

as required. �

Figure 2.3 depicts the situation in the proof above for n = 2. Arrows indicate

corresponding divergences.
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u(2)

u(1)

v

a(2)

a(1)

a

Figure 2.3: The situation in the proof of theorem 2.1.20 for n = 2.

2.2 Conjugated geometry

In the previous section we have defined a projection exploiting fact that a Bregman

divergence is a strictly convex function in the first argument. Since the same is not true

for the second argument, not even if we confine ourselves to KL-divergence, we have

not defined a projection by means of the second argument. However due to the fact

that KL(·‖·) is a convex function we can define a notion of conjugated KL-projection,

introduced by Matúš in [34], as follows:

Let v ∈ DL and W be a closed convex set of L-probability functions such that there

is at least one w ∈ W which dominates v. Then the set V ⊆ W of all L-probability

functions w which minimise KL(v‖w) subject only to w ∈ W is nonempty, closed and

convex (since KL is a convex function). Whenever vj > 0 for all 1 ≤ j ≤ J we have

that V is a singleton — the conjugated KL-projection of v to W . This is proved in

forthcoming lemma 2.2.1. If V is not a singleton then the conjugated KL projection

of v to W is defined to be MEL(V ).

Lemma 2.2.1. Let v ∈ DL be such that vj > 0, 1 ≤ j ≤ J . Then KL(v‖w) is a

strictly convex function over the domain {w ∈ DL : wj > 0, 1 ≤ j ≤ J}.

Proof. ∂
∂wj

KL(v‖w) = − vj
wj

and ∂2

∂wj∂wj
KL(v‖w) =

vj
(wj)2

. Then the Hessian matrix

is positive definite and the considered function is strictly convex over the specified

domain. �

Theorem 2.2.2 (Four Points Property). Let V be a convex closed subset of DL and

let v,u,w, a ∈ DL be such that v � u, and w is the conjugated KL-projection of v
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V
a

w

u

v

conjugated KL-projection

KL(u‖w) ≤ KL(u‖a) + KL(u‖v)

Figure 2.4: The illustration of theorem 2.2.2.

into V and a ∈ V be such that a� u. Then

KL(u‖w) ≤ KL(u‖a) + KL(u‖v).

The theorem above is a specific instance of a result due to Csiszár and Tusnády,

see [12], lemma 3 (the above formulation using the term ‘conjugated KL-projection’

appeared in [34]). We will not prove it here since a proof can be derived from our

forthcoming proof of theorem 2.2.3. The theorem is illustrated in figure 2.4.

It is a remarkable fact that we can abstractly define ‘conjugated projection’ with

respect to a sum of KL-divergences: Let w(1), . . . ,w(n) ∈ DL. Consider the following

minimisation problem. For which v ∈ DL is the sum

n∑
i=1

KL(w(i)‖v)

minimal subject only to v� w(i), 1 ≤ i ≤ n?

By theorem 2.1.13

v = LinOp(w(1), . . . ,w(n)).

We can abstractly think of v as the conjugated projection of (w(1), . . . ,w(n)) into DL

since the following analogue of the four points property holds.

Theorem 2.2.3. Let K1, . . . ,Kn ∈ CL, w(1) ∈ V L
K1
, . . . ,w(n) ∈ V L

Kn
and v =

LinOp(w(1), . . . ,w(n)). Let a(1) ∈ V L
K1
, . . . , a(n) ∈ V L

Kn
be such that w(i) � a(i),

1 ≤ i ≤ n, and u ∈ DL be such that u� a(i), 1 ≤ i ≤ n. Then

n∑
i=1

KL(a(i)‖v) ≤
n∑
i=1

KL(a(i)‖u) +
n∑
i=1

KL(a(i)‖w(i)).
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Proof. By lemma 2.1.10

n∑
i=1

KL(a(i)‖w(i)) =
n∑
i=1

KL(a(i)‖v)−
n∑
i=1

KL(w(i)‖v)−
n∑
i=1

∑
j∈Sig(v)

(a
(i)
j −w

(i)
j ) log

w
(i)
j

vj
.

Notice that the assumption w(i) � a(i), 1 ≤ i ≤ n, is necessary here. We can rewrite

the above as

n∑
i=1

KL(a(i)‖w(i))−
n∑
i=1

KL(a(i)‖v) +
n∑
i=1

KL(a(i)‖u) =

=
n∑
i=1

KL(a(i)‖u)−
n∑
i=1

KL(w(i)‖v)−
n∑
i=1

∑
j∈Sig(v)

(a
(i)
j − w

(i)
j ) log

w
(i)
j

vj
. (2.7)

Since KL(·‖·) is a convex function, by applying the first convexity condition (the-

orem 2.1.1) twice, we have that

n∑
i=1

KL(a(i)‖u) ≥
n∑
i=1

KL(w(i)‖v)+

+
n∑
i=1

∑
j∈Sig(v)

(a
(i)
j − w

(i)
j )

∂

∂xj

[
KL(x‖v)

]∣∣∣
x=w(i)

+
n∑
i=1

∑
j∈Sig(v)

(uj − vj)
∂

∂xj

[
KL(w(i)‖x)

]∣∣∣
x=v

. (2.8)

(2.7) and (2.8) give that

n∑
i=1

KL(a(i)‖v) ≤
n∑
i=1

KL(a(i)‖u) +
n∑
i=1

KL(a(i)‖w(i))−

−
n∑
i=1

∑
j∈Sig(v)

(uj − vj)
∂

∂xj

[
KL(w(i)‖x)

]∣∣∣
x=v

.

Notice that

−
n∑
i=1

∑
j∈Sig(v)

(uj − vj)
∂

∂xj

[
KL(w(i)‖x)

]∣∣∣
x=v

=

=
∑

j∈Sig(v)

(uj − vj) · n = −n ·
(

1−
∑

j∈Sig(v)

uj

)
.

Since
∑

j∈Sig(v) uj ≤ 1 the above is not positive and therefore the theorem follows. �

Note that a proof for theorem 2.2.2 can be constructed analogously to the proof

above.

The following is a counterpart to the parallelogram theorem for the conjugated

geometry.



CHAPTER 2. INFORMATION GEOMETRY 52

Theorem 2.2.4. Let w(1), . . . ,w(n),v ∈ DL be such that w(i) � v for all 1 ≤ i ≤ n.

Then
n∑
i=1

KL(v‖w(i)) =
n∑
i=1

KL(LogOp(w(1), . . . ,w(n))‖w(i))+

+n ·KL(v‖LogOp(w(1), . . . ,w(n))).

Proof. Let w = LogOp(w(1), . . . ,w(n)). First note that

n∑
i=1

∑
j∈Sig(w(i))

vj log
vj

w
(i)
j

=
∑

j∈
⋂n
i=1 Sig(w(i))

vj log
(vj)

n∏n
i=1w

(i)
j

.

This is because whenever w
(i)
j = 0 we have vj = 0 since w(i) � v for all 1 ≤ i ≤ n.

Now ∑
j∈

⋂n
i=1 Sig(w(i))

vj log
(vj)

n∏n
i=1w

(i)
j

= n
∑

j∈
⋂n
i=1 Sig(w(i))

vj log
vj
wj
−

−n
( ∑
j∈

⋂n
i=1 Sig(w(i))

vj

)
log
( ∑
j∈

⋂n
i=1 Sig(w(i))

(
n∏
i=1

w
(i)
j )

1
n

)
=

= n
∑

j∈
⋂n
i=1 Sig(w(i))

vj log
vj
wj

+
n∑
i=1

∑
j∈

⋂n
i=1 Sig(w(i))

wj log
wj

w
(i)
j

, (2.9)

where
∑

j∈
⋂n
i=1 Sig(w(i)) vj = 1. Since wj 6= 0 if and only if j ∈

⋂n
i=1 Sig(w(i)), (2.9) is

equal to
n∑
i=1

∑
j∈Sig(w(i))

wj log
wj

w
(i)
j

+ n
∑

j∈Sig(w)

vj log
vj
wj

.

�

Later we will see that the two theorems above have very nice consequences for a

p-merging operator based on the conjugated KL-projection.

Theorem 2.2.5. Let w(1), . . . ,w(n) be given L-probability functions satisfying (1.3).

Then the function
n∑
i=1

KL(v‖w(i))

is strictly minimal for

v = LogOp(w(1), . . . ,w(n)).

Proof. By theorem 2.2.4 the minimality of
∑n

i=1 KL(v‖w(i)) for fixed w(1), . . . ,w(n) is

equivalent to the minimality of KL(v‖LogOp(w(1), . . . ,w(n))). Since KL(v‖w) = 0

only if v = w and otherwise it is positive the unique minimum of the considered

function is at the point v = LogOp(w(1), . . . ,w(n)). �
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In this chapter we have offered a complete definition for Bregman divergences

which, to our knowledge, has not appeared elsewhere. We have provided a compre-

hensive list of geometrical properties and we have supplied the proofs for all those

properties within our framework. In particular the following new lemmas and theo-

rems have been proved: 2.1.3, 2.1.18, 2.1.19, 2.1.20 and 2.2.4.



Chapter 3

Merging based on convex Bregman

divergences

3.1 Minimum sum of divergences

In this section we will define p-merging operators based on minimization of a sum of

convex Bregman divergences, for which we have prepared the ground in the previous

chapter. We also aim to show that these p-merging operators have better properties

than obdurate ones.

For any K1, . . . ,Kn ∈ CL the ∆̂D-merging operator is defined as follows:

∆̂D
L (K1, . . . ,Kn) =

{
arg min

v∈DL

n∑
i=1

D(w(i)‖v): w(i) ∈ V L
Ki

, 1 ≤ i ≤ n
}

,

where D is a convex Bregman divergence and the right hand-side denotes the set of all

possible minimisers. This is the second possible use of the notation ‘arg min’ in this

thesis as a set constructor.

In the special case of the Kullback-Leibler divergence we will call ∆̂KL the Linear

Entropy Operator. Similarly ∆̂E2 is called the Linear Euclidean Operator and this

operator was first formulated by Osherson and Vardi in [38]. Finally, in the case of a

Renyi-B divergence Dr, for 2 ≥ r > 1, we call ∆̂Dr the Linear Renyi Operator.

Dually to the linear entropy operator we define the Social Entropy Operator ∆KL

for any K1, . . . ,Kn ∈ CL by

∆KL
L (K1, . . . ,Kn) =

{
arg min

v∈DL

n∑
i=1

KL(v‖w(i)): w(i) ∈ V L
Ki

, 1 ≤ i ≤ n
}

.

54
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This operator was first introduced by Wilmers in [52]. Notice that the Kullback-Leibler

divergence in the definition of ∆KL
L (K1, . . . ,Kn) takes the divergence between v and

w(i) in the opposite direction to the one used in the definition of ∆̂KL
L (K1, . . . ,Kn).

We will show (theorem 3.1.2) that the ∆̂D-merging operator satisfies the principle

(K1) for any convex Bregman divergence D. But first we will state the following

auxiliary lemma.

Lemma 3.1.1. Let D be a convex Bregman divergence. In particular D can be KL or

E2. Then the following are equivalent:

1. The L-probability functions v,w(1), . . . ,w(n) minimise the quantity

n∑
i=1

D(w(i)‖v)

subject to w(1) ∈ V L
K1
, . . . ,w(n) ∈ V L

Kn
.

2. The L-probability functions w(1), . . . ,w(n) minimise the quantity

n∑
i=1

D(w(i)‖LinOp(w(1), . . . ,w(n))

subject to w(1) ∈ V L
K1
, . . . ,w(n) ∈ V L

Kn
and

v = LinOp(w(1), . . . ,w(n)).

Proof. This lemma follows directly by theorem 2.1.13. �

By Γ̂DL (K1, . . . ,Kn) we denote the set of (ordered) n-tuples of probability func-

tions satisfying condition 2 of the previous lemma. Hence clearly ∆̂D
L (K1, . . . ,Kn)

can be characterized as the set of all probability functions of the form v =

LinOp(w(1), . . . ,w(n)) where (w(1), . . . ,w(n)) ∈ Γ̂DL (K1, . . . ,Kn).

Notice that for any w(1), . . . ,w(n) ∈ DL LinOp(w(1), . . . ,w(n)) is an L-probability

function. This, together with the fact that D is convex, implies that ∆̂D
L (K1, . . . ,Kn)

is nonempty and hence well-defined for any K1, . . . ,Kn ∈ CL.

It also follows that every ∆̂D-merging operator extends the LinOp-pooling opera-

tor, in the sense that it coincides with LinOp in the special case when each knowledge

base admits only a single probability function. However, unlike the obdurate linear
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entropy process OLEP which possesses the same feature, this operator also satis-

fies the consistency principle (K4), and in fact the stronger form (K4*), since given

K1, . . . ,Kn ∈ CL the value

M̂
D

L (K1, . . . ,Kn) = min
{ n∑

i=1

D(w(i)‖v) : v ∈ DL ; w(1) ∈ V L
K1
, . . . ,w(n) ∈ V L

Kn

}
lies in the interval [0,+∞) and is equal to 0 if and only if v = w(1) = . . . = w(n).

Although it is not hard to see that the ∆̂D-merging operator satisfies also the

collegiality principle (K5), we give an elegant proof of this fact later as a consequence

of theorem 4.1.1.

Theorem 3.1.2. Let D be a convex Bregman divergence. Then for all n-tuples

K1, . . . ,Kn ∈ CL the set ∆̂D
L (K1, . . . ,Kn) is a closed convex region of DL.

Proof. Let v, s ∈ ∆̂D
L (K1, . . . ,Kn). We need to show that λv + (1 − λ)s ∈

∆̂D
L (K1, . . . ,Kn) for any λ ∈ [0, 1].

Assume that (w(1), . . . ,w(n)) ∈ Γ̂DL (K1, . . . ,Kn) are such that

v = LinOp(w(1), . . . ,w(n))

and (u(1), . . . ,u(n)) ∈ Γ̂DL (K1, . . . ,Kn) are such that

s = LinOp(u(1), . . . ,u(n)).

By lemma 2.1.19 the function

g(x(1), . . . ,x(n)) =
n∑
i=1

D(x(i)‖LinOp(x(1), . . . ,x(n)))

is convex over the convex region specified by constraints x(i) ∈ V L
Ki

, 1 ≤ i ≤ n.

Moreover, by the definition of the set ∆̂D
L (K1, . . . ,Kn), the function g attains its

minimum over this convex region at points (w(1), . . . ,w(n)) and (u(1), . . . ,u(n)). We

need to show that g also attains its minimum at the point

λ(w(1), . . . ,w(n)) + (1− λ)(u(1), . . . ,u(n))

for any λ ∈ [0, 1]. Since g is convex we have that

λg(w(1), . . . ,w(n)) + (1− λ)g(u(1), . . . ,u(n)) ≥
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Figure 3.1: ∆̂D-merging operator.

≥ g(λ(w(1), . . . ,w(n)) + (1− λ)(u(1), . . . ,u(n)))

by the Jensen inequality. Since g(w(1), . . . ,w(n)) = g(u(1), . . . ,u(n)) the inequality

above can only hold with equality and therefore

λv + (1− λ)s ∈ ∆̂D
L (K1, . . . ,Kn)

for any λ ∈ [0, 1].

Note that, since VKi
is a closed set for all 1 ≤ i ≤ n, by lemma 3.1.1 the set

Γ̂DL (K1, . . . ,Kn) is closed. It follows that ∆̂D
L (K1, . . . ,Kn) is closed as well. �

We can conclude that a ∆̂D-merging operator is a probabilistic merging operator

whenever D is a convex Bregman divergence. It also obviously satisfies principles

(K2) and (K3). Figure 3.1 illustrates the case n = 3.

The social entropy operator ∆KL was first introduced by Wilmers in [52] and it

was further studied in [1] and [2] by Wilmers and the author. The rest of this section

is taken entirely from [2].

Given knowledge bases K1, . . . ,Kn ∈ CL let

MKL
L (K1, . . . ,Kn) = min

{ n∑
i=1

KL(v‖w(i)) : v ∈ DL ; w(1) ∈ V L
K1
, . . . ,w(n) ∈ V L

Kn

}
.

It is easy to see that this is well-defined (see [53]). Note that this value lies in the

interval [0,+∞] . Also MKL
L (K1, . . . ,Kn) = 0 if and only if v = w(1) = . . . = w(n)
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in the definition above in which case the K1, . . . ,Kn are jointly consistent. Also

MKL
L (K1, . . . ,Kn) is finite if and only if condition (1.4) holds. Therefore we redefine

∆KL as follows: for any L and any K1, . . . ,Kn ∈ CL ∆KL
L (K1, . . . ,Kn) is defined

as

{v ∈ DL : ∃w(1)∈ V L
K1
, . . . ,w(n)∈ V L

Kn
s.t.

n∑
i=1

KL(v‖w(i)) = MKL
L (K1, . . . ,Kn)}.

(3.1)

Example 3.1.3. Let L = {p, q} and K1 = {Bel(p) = 0.2, Bel(q) = 0}, K2 =

{Bel(p) = 0.4, Bel(q) = 1}. There is only one probability function w(1) ∈ V L
K1

:

(0, 0.2, 0, 0.8) (atoms are listed in the obvious order) and the only one w(2) ∈ V L
K2

:

(0.4, 0, 0.6, 0). Hence by (3.1) ∆KL
L (K1,K2) = DL. �

In [53] it is shown that for any K1, . . . ,Kn ∈ CL the set ∆KL
L (K1, . . . ,Kn) is al-

ways a nonempty closed convex region of DL, and hence it follows that ∆KL is a

p-merging operator (i.e. it satisfies (K1)). We note, however, that although ∆KL

is everywhere defined1 it is really only interesting as a merging operator for those

K1, . . . ,Kn ∈ CL for which the relatively undemanding condition (1.4) is satisfied,

since otherwise applying ∆KL simply returns the whole space DL. The fact that the

social entropy operator ∆KL satisfies (K4*) follows at once from the fact noted above

that MKL
L (K1, . . . ,Kn) = 0 if and only if v = w(1) = . . . = w(n) in the definition

of MKL
L (K1, . . . ,Kn). Moreover ∆KL satisfies (K2) and (K3) trivially by definition.

Although it is not hard to see that the ∆KL-merging operator also satisfies the colle-

giality principle (K5), we give an elegant proof of this fact later as a consequence of

theorem 4.1.1.

Lemma 3.1.4. Assume that K1, . . . ,Kn ∈ CL satisfy condition (1.4). Then the

following are equivalent:

(i) The L-probability functions v, w(1), . . . ,w(n) minimise
∑n

i=1 KL(v‖w(i)) subject

only to w(1) ∈ V L
K1
, . . . ,w(n) ∈ V L

Kn
.

1In the presentation in [53] the region ∆KL
L (K1, . . . ,Kn) is only defined assuming that condition

(1.4) holds, but this does not significantly affect the results.
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(ii) The L-probability functions w(1), . . . ,w(n) maximise
∑J

j=1(
∏n

k=1 w
(k)
j )

1
n , subject

only to w(1) ∈ V L
K1
, . . . , w(n) ∈ V L

Kn
, and

v = LogOp(w(1), . . . ,w(n)).

Proof. Directly by theorem 2.2.5. �

We will denote the set of all (ordered) n-tuples satisfying condition 2 of the previous

lemma by ΓKL
L (K1, . . . ,Kn). In the very special case when each expert i specifies

a single probability function w(i) the set ∆KL
L (K1, . . . ,Kn) is just the singleton

{LogOp(w(1), . . . ,w(n))}.

In this section we have defined several p-merging operators (∆KL, ∆̂D for any

convex Bregman divergence D) which satisfy the consistency principle (K4) and, as

we will see later, also the collegiality principle (K5). In the next section we will

investigate these promising operators from the point of view of knowledge updating.

3.2 Averaging projections and fixed points

As we have noted before, lemma 2.1.8 is a basic result which stands behind many

probabilistic expert systems. Given a space DL this lemma allows us to interpret a

new probability function v ∈ DL in a given knowledge base W ⊆ DL as the w ∈ W

which minimises Df (w‖v) for a given Bregman divergence Df . We can say that by

identifying the single w ∈ W we have updated our knowledge base W by new knowledge

v. An example of updating is the following problem which dates back to 1940, see [13].

Example 3.2.1. Suppose that a random sample of citizens answered two questions

regarding their education and age. The level of education is scaled by J1 categories

α1, . . . , αJ1 and age by J2 categories β1, . . . , βJ2 . Let the distribution of respondents

over J1·J2 atomic events be {v(αj∧βi)}J1,J2j=1,i=1. However the distributions of population

in the country according to the level of education and age are well known statistical

data, say w(1)(α1), . . . ,w(1)(αJ1) for the level of education and w(2)(β1), . . . ,w(2)(βJ2)

for the age. Assume that v does not correspond to the national data i.e.
∑J1

j=1 v(αj ∧

βi) 6= w(2)(βi) for some i and
∑J2

i=1 v(αj ∧ βi) 6= w(1)(αj) for some j. How can we

adjust our distribution v in order to make it consistent with the national distributions

for education and age but still make it as close as possible to our original data? �
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While in the previous example we update our incomplete but reliable knowledge

by a new statistically obtained piece of information, we can use updating also from

the other perspective:

Example 3.2.2. Suppose that the distribution of patients with respect to a disease

A and symptoms C, D is well known at the national level. Now a doctor moved to

a specific city where she investigated several patients. She observed that all patients

having the disease A have also the symptom C but not D. However, at the national

level there is a significant proportion of patients having both the disease A and the

symptom D. One can argue that there might be something specific about this city

which prevents the occurrence of the symptom D, and therefore the doctor wishes

to find the estimation of the proportions of patients in the city which are consistent

with her observations rather than adopt the national proportions. Nevertheless, the

national proportions can still be highly related to the illness spreading in the city.

Therefore the doctor wishes to somehow update her knowledge using the national

proportions. �

A common method of updating in probabilistic expert systems is by means of

the KL-projection, see [22] or [48]. In the previous example we would take the KL-

projection of the national distribution of patients to the set of all possible proportions

which, according to doctor’s observation, could apply for the city.

In particular, KL-projections appear to be justified in the ‘model theoretic’ sense

for problems such as in example 3.2.2. More specifically, if there are two large sets of

examples V and W such that W is small relatively to V (e.g., W are patients in a

specific city), we are given a distribution v of examples in V and a set of constraints K

on possible distributions of examples in W , then the KL-projection identify the most

likely distribution of examples in W if they are taken randomly from V . For more

details see theorem 8.7 of [39].

Since the above ‘model theoretic’ justification of KL-updating is essentially the

same as the one for the ME-inference process, it is not surprising that KL-updating

extends the maximum entropy inference process in the sense that given a language

L the KL-update of K ∈ CL by the uniform probability function
( 1

J
, . . . ,

1

J︸ ︷︷ ︸
J

)
, J =
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Figure 3.2: An averaging projective procedure.

|At(L)|, is equal to MEL(K) since

arg min
w∈V LK

J∑
j=1

wj log
wj
1
J

= arg max
w∈V LK

−
J∑
j=1

wj logwj = MEL(K).

Recently updating by a more general Bregman divergence has become popular,

e.g. [5]. Remarkably, updating by a Bregman divergence is a unifying framework for

a variety of techniques used in machine learning such as logistic regression, see [9].

There is a striking relation between an updating considered as a projection by

means of a convex Bregman divergence Df , and a ∆̂Df -merging operator. It is easy

to see that given K1, . . . ,Kn ∈ CL and v ∈ ∆̂
Df
L (K1, . . . ,Kn), we have that those

w(1) ∈ V L
K1
, . . . ,w(n) ∈ V L

Kn
which globally minimise

n∑
i=1

Df (w
(i)‖v)

are also Df -projections of v into V L
K1
, . . . , V L

Kn
respectively. Every v ∈

∆̂
Df
L (K1, . . . ,Kn) is then a fixed point of the mapping

F̂
Df
[K1,...,Kn] : U → DL,

where U = {v ∈ DL : for all 1 ≤ i ≤ n ∃w ∈ V L
Ki

(v�f w)}, defined by

F̂
Df
[K1,...,Kn](v) = LinOp(w(1), . . . ,w(n))

and w(i) = arg minw∈V LKi
Df (w‖v) for all 1 ≤ i ≤ n. A mapping such as above is

called an averaging projective procedure. Figure 3.2 depicts the geometrical idea of

this procedure.

If we denote the set of all fixed points of F̂
Df
[K1,...,Kn] by Θ̂

Df
L (K1, . . . ,Kn) then we

have already established the following.
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Theorem 3.2.3. For all n-tuples of knowledge bases K1, . . . ,Kn ∈ CL and any convex

Bregman divergence D

∆̂D
L (K1, . . . ,Kn)⊆Θ̂D

L (K1, . . . ,Kn).

In particular Θ̂D
L (K1, . . . ,Kn) is always nonempty.

The averaging projective procedure F̂KL was first investigated by Matúš in [34] and

the idea of combining E2-updating separately applied to each expert with arithmetic

averaging of the updates was first introduced by Predd et al. in [42].

The following example illustrates that in some contexts it makes a good sense to

investigate the set of all fixed points Θ̂
Df
L (K1, . . . ,Kn).

Example 3.2.4. Assume that there are n experts each with knowledge base

K1, . . . ,Kn ∈ CL respectively. Say that an independent chairman of the college

has announced a probability function v to represent the agreement of the college of

experts. Each expert then naturally updates her own knowledge base by what seems

to be the right probability function. In other words, the expert ‘i’ projects v to V L
Ki

obtaining the probability function w(i). Each expert subsequently accepts w(i) as her

working hypothesis, but knowledge base Ki is not discarded, she only takes other peo-

ple opinion into account. Then it is easy for the chairman to identify the average of the

actual beliefs w(1), . . . ,w(n) of the experts. If he found that this average v′ does not

coincide with the originally announced probability function v then he would naturally

feel unhappy about such a choice, so he would be tempted to iterate the process in a

hope that eventually he will find a fixed point. �

Theorem 3.2.5. Let K1, . . . ,Kn ∈ CL and Df be a convex Bregman divergence.

Assume that

v ∈ Θ̂
Df
L (K1, . . . ,Kn) \ ∆̂

Df
L (K1, . . . ,Kn).

Then there is 1 ≤ i ≤ n such that the Df -projection w(i) of v to V L
Ki

does not f -

dominate the Df -projection of any u ∈ ∆̂
Df
L (K1, . . . ,Kn) to V L

Ki
.

Proof. Assume that v ∈ Θ̂
Df
L (K1, . . . ,Kn) and

u ∈ ∆̂
Df
L (K1, . . . ,Kn) ⊆ Θ̂

Df
L (K1, . . . ,Kn).
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Figure 3.3: The situation in the proof of theorem 3.2.5 for n = 2.

Let us denote the Df -projections of v to V L
K1
, . . . , V L

Kn
by w(1) . . . ,w(n) respectively.

Accordingly let us denote the Df -projections of u to V L
K1
, . . . , V L

Kn
by r(1) . . . , r(n)

respectively. We show that the assumption w(i) �f r(i) for all 1 ≤ i ≤ n leads to a

contradiction.

First of all notice that since v,u ∈ Θ̂
Df
L (K1, . . . ,Kn) then

v = LinOp(w(1) . . . ,w(n)) and

u = LinOp(r(1) . . . , r(n)).

Since v 6∈ ∆̂
Df
L (K1, . . . ,Kn)

n∑
i=1

Df (w
(i)‖v) >

n∑
i=1

Df (r
(i)‖u).

Now by the theorem 2.1.20

n∑
i=1

(r(i) −w(i)) · ((w(i))∗ − v∗) < 0.

However, since w(1) . . . ,w(n) are Df -projections of v to V L
K1
, . . . , V L

Kn
respectively, by

the extended Pythagorean theorem (theorem 2.1.11)

n∑
i=1

(r(i) −w(i)) · ((w(i))∗ − v∗) ≥ 0

which is a contradiction. �
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Corollary 3.2.6. [Of theorems 3.2.3 and 3.2.5.]

1. If we restrict CL to BCL then for any K1, . . . ,Kn ∈ BCL and any convex

Bregman divergence D

∆̂D
L (K1, . . . ,Kn) = Θ̂D

L (K1, . . . ,Kn).

2. If a convex Bregman divergence D is such that D(w‖v) 6= +∞ for all w,v ∈ DL

then for all K1, . . . ,Kn ∈ CL

∆̂D
L (K1, . . . ,Kn) = Θ̂D

L (K1, . . . ,Kn).

In particular for all K1, . . . ,Kn ∈ CL and 2 ≥ r > 1

∆̂Dr
L (K1, . . . ,Kn) = Θ̂Dr

L (K1, . . . ,Kn).

This corollary says that the set ∆̂D
L (K1, . . . ,Kn) in many cases represents the set

of the fixed points Θ̂D
L (K1, . . . ,Kn). In situations such as in example 3.2.4 this can be

used as a justification of the ∆̂D-merging operator.

The following example shows that the above restrictions are necessary:

Θ̂KL
L (K1, . . . ,Kn) \ ∆̂KL

L (K1, . . . ,Kn)

can be nonempty and Θ̂KL
L (K1, . . . ,Kn) is not in general a convex set.

Example 3.2.7. Let V L
K1

= {λ(0, 0, 1
6
, 5

6
) + (1 − λ)(0, 1

3
, 1

3
, 1

3
) : λ ∈ [0, 1]} and V L

K2
=

{λ(0, 0, 1
3
, 2

3
) + (1 − λ)(0, 1

3
, 1

3
, 1

3
) : λ ∈ [0, 1]}. It is easy to check that (0, 0, 1

4
, 3

4
) and

(0, 1
3
, 1

3
, 1

3
) are both fixed points but the former does not belong to the set ∆̂KL

L (K1,K2).

The illustration is depicted in figure 3.4.

Now 1
2
(0, 0, 1

4
, 3

4
)+ 1

2
(0, 1

3
, 1

3
, 1

3
) = (0, 1

6
, 7

24
, 13

24
) is in the convex hull of these two fixed

points but we prove that it is not a fixed point itself and hence Θ̂KL
L (K1,K2) is not a

convex set. First of all notice that this point is equal to LinOp((0, 1
6
, 1

4
, 7

12
), (0, 1

6
, 1

3
, 1

2
))

where (0, 1
6
, 1

4
, 7

12
) ∈ V L

K1
and (0, 1

6
, 1

3
, 1

2
) ∈ V L

K2
in both cases with the parameter λ = 1

2
.

This is the only possible option if this point is to be an arithmetic mean of two points

in V L
K1

and V L
K2

respectively.
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3
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Figure 3.4: The illustration of example 3.2.7.

Now we verify whether the KL-projection of (0, 1
6
, 7

24
, 13

24
) to V L

K2
is equal to

(0, 1
6
, 1

3
, 1

2
). Consider G(λ) = 1

3
(1−λ) log

1
3

(1−λ)
1
6

+ 1
3

log
1
3
7
24

+(1
3
(1−λ)+ 2

3
λ) log

1
3

(1−λ)+ 2
3
λ

13
24

.

∂G(λ)
∂λ

= 0 if

1

3
log(2(1− λ)) =

1

3
log

1
3
(1− λ) + 2

3
λ

13
24

which holds when λ = 9
17
6= 1

2
. Since G(λ) is convex it follows that (0, 1

6
, 1

3
, 1

2
) is not the

KL-projection of (0, 1
6
, 7

24
, 13

24
) to V L

K2
and hence (0, 1

6
, 7

24
, 13

24
) can not be a fixed point.

�

Dually to what we have done in this section so far we obtain similar results when

we relate the social entropy operator ∆KL to the conjugated KL-projection, provided

that we confine ourselves to the class of weakly bounded knowledge bases WBCL.

Lemma 3.2.8. Let K1, . . . ,Kn ∈ WBCL. Suppose that v ∈ ∆KL
L (K1, . . . ,Kn) and

(w(1), . . . ,w(n)) ∈ ΓKL
L (K1, . . . ,Kn) be such that v = LogOp(w(1), . . . ,w(n)). Then

w(1) ∈ V L
K1
, . . . ,w(n) ∈ V L

Kn
are the conjugated KL-projections of v into V L

K1
, . . . , V L

Kn

respectively (which are unique).

Proof. By definition we know that w(1), . . . ,w(n) globally minimise

n∑
i=1

KL(v‖w(i)).

First of all, they exist with the above sum finite since whenever K ∈ WBCL then

there is w ∈ V L
K such that wj 6= 0 for all j (by convexity of V L

K). Therefore, if t(i) is the

conjugated KL-projection of v into V L
Ki

then it cannot be that tj = 0 while vj 6= 0. By
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lemma 2.2.1 we have that for fixed v and for every 1 ≤ i ≤ n the sum
∑

j∈Sig(x) vj log
vj
xj

is a strictly convex function over the domain {x : xj > 0, 1 ≤ j ≤ J} and therefore

t(i) coincides with w(i) on Sig(v).

Now for any given j, vj = 0 if and only if w
(1)
j = 0, . . . , w

(n)
j = 0. This is proved in

[53], theorem 3.6 (ii), and holds only under the assumption that for every 1 ≤ i ≤ n

and every 1 ≤ j ≤ J = |At(L)| there is w ∈ V L
Ki

such that wj 6= 0. (The restriction

to WBCL is therefore necessary to the proof.) This together with the fact that t(i)

coincides with w(i) on Sig(v) gives that whenever vj = 0 then t
(i)
j = 0 and the lemma

is proved. �

It follows that given K1, . . . ,Kn ∈ WBCL every v ∈ ∆KL
L (K1, . . . ,Kn) is a fixed

point of the conjugated averaging projective procedure

FKL
[K1,...,Kn] : DL → DL,

defined by

FKL
[K1,...,Kn](v) = LogOp(w(1), . . . ,w(n))

where for all 1 ≤ i ≤ n w(i) is the conjugated KL-projection of v into V L
Ki

. This is

well defined due to the restriction to WBCL since then condition (1.4) holds.

If we denote the set of all fixed points of FKL
[K1,...,Kn] by ΘKL

L (K1, . . . ,Kn) then we

have already established the following.

Theorem 3.2.9. For all n-tuples of knowledge bases K1, . . . ,Kn ∈ WBCL

∆KL
L (K1, . . . ,Kn)⊆ΘKL

L (K1, . . . ,Kn).

In particular ΘKL
L (K1, . . . ,Kn) is always nonempty.

If we restrict WBCL to BCL then we obtain:

Theorem 3.2.10. For any K1, . . . ,Kn ∈ BCL

∆KL
L (K1, . . . ,Kn) = ΘKL

L (K1, . . . ,Kn).

Proof. The proof is similar to the proof of theorem 3.2.5. For a contradiction assume

that v ∈ ΘKL
L (K1, . . . ,Kn) \∆KL

L (K1, . . . ,Kn) and

u ∈ ∆KL
L (K1, . . . ,Kn) ⊆ ΘKL

L (K1, . . . ,Kn).
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Figure 3.5: The situation in the proof of theorem 3.2.10 for n = 2.

Let us denote the conjugated KL-projections of v to V L
K1
, . . . , V L

Kn
by w(1) . . . ,w(n)

respectively. Accordingly let us denote the conjugated KL-projections of u to

V L
K1
, . . . , V L

Kn
by a(1) . . . , a(n) respectively. By the assumption both wj 6= 0 and vj 6= 0

for all 1 ≤ j ≤ J . Hence w� v and v� w.

First of all notice that since v,u ∈ ΘKL
L (K1, . . . ,Kn) then

v = LogOp(w(1) . . . ,w(n)) and

u = LogOp(a(1) . . . , a(n)).

Since v 6∈ ∆KL
L (K1, . . . ,Kn)

n∑
i=1

KL(u‖a(i)) <
n∑
i=1

KL(v‖w(i)). (3.2)

By theorem 2.2.4 we have that

n∑
i=1

KL(u‖w(i)) =
n∑
i=1

KL(v‖w(i)) + n ·KL(u‖v)

which by theorem 2.2.2 becomes

n∑
i=1

KL(u‖a(i)) + n ·KL(u‖v) ≥
n∑
i=1

KL(v‖w(i)) + n ·KL(u‖v)

and that contradicts (3.2). �

The following lemma will be useful in the forthcoming proof.
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Lemma 3.2.11. Assume that we are given K ∈ BCL, v[i] ∈ DL, i = 1, 2, . . ., and

w[i] ∈ DL, i = 1, 2, . . ., such that v
[i]
j > 0 for all 1 ≤ j ≤ J and w[i] is the KL-projection

of v[i] into V L
K for all i = 1, 2, . . . . Assume that {v[i]}∞i=1 converges to v ∈ DL, where

vj > 0, 1 ≤ j ≤ J , and {w[i]}∞i=1 converges to w ∈ DL. Then w is the KL-projection

of v into V L
K .

Proof. For a contradiction assume that the KL-projection of v into V L
K denoted by

w̄ is distinct from w. Then by the extended Pythagorean theorem KL(w[i]‖v[i]) +

KL(w̄‖w[i]) ≤ KL(w̄‖v[i]). Due to the continuity of KL(·‖·) (we are confined to BCL)

lim
i→∞

KL(w[i]‖v[i]) = KL(w‖v),

lim
i→∞

KL(w̄‖w[i]) = KL(w̄‖w) and

lim
i→∞

KL(w̄‖v[i]) = KL(w̄‖v).

Therefore KL(w‖v) + KL(w̄‖w) ≤ KL(w̄‖v) which contradicts the assumption that

w̄ is the KL-projection of v into V L
K . �

We conclude this section by stating remarkable results of Matúš [34]2 concerning

convergence of sequences generated by the averaging projective procedures F̂KL and

FKL. Matúš proved these results by applying the well known theorem of Csiszár and

Tusnády, see [12], theorem 3.

Theorem 3.2.12. 1. Let U = {v ∈ DL : vj > 0, 1 ≤ j ≤ J} and K1, . . . ,Kn ∈

BCL. Then for any v ∈ U the sequence

{v[i]}∞i=0,

where v[0] = v and v[i+1] = F̂KL
[K1,...,Kn](v

[i]), converges to some probability func-

tion in ∆̂KL
L (K1, . . . ,Kn).

2. Let K1, . . . ,Kn ∈ BCL. For any v ∈ U , where U is defined above, the sequence

{v[i]}∞i=0,

where v[0] = v and v[i+1] = FKL
[K1,...,Kn](v

[i]), converges to some probability func-

tion in ∆KL
L (K1, . . . ,Kn).

2This is an unpublished manuscript, for a published reference to this theorem see [48].
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Proof for part 1. With respect to our corollary 3.2.6 and with respect to the way we

use this theorem later we only need to establish this theorem for K1, . . . ,Kn ∈ BCL.

For a proof in full generality see [34].

Denote the KL-projections of v[i] into V L
K1
, . . . , V L

Kn
by π1v

[i], . . . , πnv
[i] respectively.

Then it is easy to observe (see theorem 2.1.13) that

n∑
k=1

KL(πkv
[i]‖v[i]) ≥

n∑
k=1

KL(πkv
[i]‖v[i+1]) ≥

n∑
k=1

KL(πkv
[i+1]‖v[i+1]),

for all i = 1, 2, . . . . Due to the monotonicity of this sequence the limit

limi→∞
∑n

k=1 KL(πkv
[i]‖v[i]) exists. Thanks to the compactness of V L

K1
, . . . , V L

Kn
the

sequence {(π1v
[i], . . . , πnv

[i],v)}∞i=1 has a convergent subsequence. Let us denote the

limit of this subsequence (π1v, . . . , πnv,v). Due to lemma 3.2.11 πkv is really the

KL-projection of v into V L
Kk

for all 1 ≤ k ≤ n. Moreover

lim
i→∞

n∑
k=1

KL(πkv
[i]‖v[i]) =

n∑
k=1

KL(πkv‖v).

By theorem 2.2.3

n∑
k=1

KL(πkv‖v[i]) ≤
n∑
k=1

KL(πkv‖v) +
n∑
k=1

KL(πkv‖πkv[i−1]). (3.3)

This is because v[i] = LinOp(π1v
[i−1], . . . , πnv

[i−1]). Moreover by the extended

Pythagorean theorem

n∑
k=1

KL(πkv
[i]‖v[i]) +

n∑
k=1

KL(πkv‖πkv[i]) ≤
n∑
k=1

KL(πkv‖v[i]). (3.4)

An illustration of the situation is depicted in figure 3.6.

Now since limi→∞
∑n

k=1 KL(πkv
[i]‖v[i]) =

∑n
k=1 KL(πkv‖v) two equations (3.3)

and (3.4) give that

n∑
k=1

KL(πkv‖πkv[i]) ≤
n∑
k=1

KL(πkv‖πkv[i−1]) (3.5)

for all i = 1, 2, . . . . We conclude that this is possible only if

lim
i→∞

n∑
k=1

KL(πkv‖πkv[i])

exists.
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V L
Kk

πkv
[i−1]

πkv
[i]

v[i]

πkv

v

KL-projection
KL-projection

Figure 3.6: The situation in the proof of theorem 3.2.12, part 1.

But we already know that a subsequence of {(π1v
[i], . . . , πnv

[i])}∞i=1 converges to

(π1v, . . . , πnv) hence a subsequence of the sequence {
∑n

k=1 KL(πkv‖πkv[i])}∞i=1 de-

creases to zero which by (3.5) forces the whole sequence to converge to zero. Due to

the fact that KL(x‖y) = 0 only if x = y and by the continuity we get

lim
i→∞

πkv
[i] = πkv.

It follows that limi→∞ v[i] exists and is equal to v. Moreover v = limi→∞ v[i+1] =

limi→∞ LinOp(π1v
[i], . . . , πnv

[i]) = LinOp(π1v, . . . , πnv) and therefore v is a

fixed point of the mapping F̂KL
[K1,...,Kn] and by corollary 3.2.6 we have that v ∈

∆̂KL
L (K1, . . . ,Kn).

The proof for part 2 is similar although some additional lemmas need to be proved.

We omit the proof and refer to [34]. �

The problem of characterising both limits above more precisely remains open. On

the other hand, the theorem above suggests a way to compute at least some points

in ∆KL
L (K1, . . . ,Kn) and ∆̂KL

L (K1, . . . ,Kn), in particular the single points if these sets

are singletons. Examples of how the theorem above can be used for a computation

can be found in chapter 5.

Now consider the special case when knowledge bases K1, . . . ,Kn ∈ CL are given

by a partition L1∪ . . .∪Ln of the propositional language L together with the marginal

probability functions w(1) ∈ DL1 , . . . ,w(n) ∈ DLn by the following:

V L
Ki

= {w ∈ DL: w|Li = w(i)},
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1 ≤ i ≤ n. Hence, each knowledge base is generated by a marginal probability function

of the given language. Such knowledge bases are jointly consistent so letW =
⋂n
i=1 V

L
Ki

.

In [34] the following is proved.

Theorem 3.2.13. Let K1, . . . ,Kn be as above and bounded. Then the limit of the

sequence

{v[i]}∞i=0,

where v[0] ∈ DL, vj > 0 for 1 ≤ j ≤ J , and v[i+1] = FKL
[K1,...,Kn](v

[i]), is in fact the

KL-projection of v[0] into W .

However, as shown in [48], if the sequence is defined by means of the mapping

F̂KL
[K1,...,Kn] then that limit is not the KL-projection of v[0].

We note that the averaging projective procedure defined by means of the mapping

FKL
[K1,...,Kn] gives in the special case of knowledge bases generated by marginal probabil-

ity functions the same answer as the well known iterative projective fitting procedure

IPFP which we now define.

Let L = L0 ∪ . . . ∪ Ln−1 be a partition of a propositional language L and let

w(0) ∈ DL0 , . . . ,w(n−1) ∈ DLn−1 . IPFP is the sequence of L-probability functions

v[0],v[1], . . . such that for all i ∈ N and all α ∈ At(L) we have that

v[i](α) =

 0, if v[i−1]|Lj(β) = 0,

v[i−1](α) w(j)(β)

v[i−1]|Lj (β)
, otherwise,

where j = i(modn) and β ∈ At(Lj) is such that α |= β. The convergence of this

procedure was proved by Csiszár in [11]:

Theorem 3.2.14. Let L = L0 ∪ . . . ∪ Ln−1 be a partition of a propositional language

L, w(0) ∈ DL0 , . . . ,w(n−1) ∈ DLn−1 and v ∈ DL. Assume that W = {w ∈ DL : w|Li =

w(i), 0 ≤ i ≤ n − 1} and v ∈ DL. If there is a probability function w ∈ W such that

v� w then IPFP converges for v[0] := v and the limit is equal to

lim
i→∞

v[i] = arg min
w∈W

KL(w‖v).

IPFP is popular for its computational speed and numerical stability. For a proof and

more details on IPFP see [48].
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The above theorem shows that IPFP can be effectively employed to find a KL-

projection in example 3.2.1 whenever the KL-projection is the preferred method of

updating. The reason why we have mentioned IPFP here is to demonstrate that

for some problems KL-projections can be computed effectively. And computing KL-

projections is the crucial part of the averaging projective procedure.

Example 3.2.15. Let L = {p} ∪ {q}, w(1)(p) = 1
3
, w(2)(q) = 1

4
and v[0] = (1

4
, 1

4
, 1

4
, 1

4
).

Then IPFP gives the sequence which is constant after two iterations:

v[1](p ∧ q) =
1

4

1
3
1
2

=
1

6
, v[1](p ∧ ¬q) =

1

4

1
3
1
2

=
1

6
,

v[1](¬p ∧ q) =
1

4

2
3
1
2

=
2

6
, v[1](¬p ∧ ¬q) =

1

4

2
3
1
2

=
2

6
,

and

v[2](p ∧ q) =
1

6

1
4
1
2

=
1

12
, v[2](p ∧ ¬q) =

1

6

3
4
1
2

=
3

12
,

v[2](¬p ∧ q) =
2

6

1
4
1
2

=
2

12
, v[2](¬p ∧ ¬q) =

2

6

3
4
1
2

=
6

12
.

It is easy to check that the KL-projection of (1
4
, 1

4
, 1

4
, 1

4
) to W = {v ∈ DL: v|{p} =

1
3
,v|{q} = 1

4
} is in fact MEL(W ) = ( 1

12
, 3

12
, 2

12
, 6

12
), where the probability function is

listed in the following order of atoms: p ∧ q, p ∧ ¬q, ¬p ∧ q and ¬p ∧ ¬q. �

In this chapter we have introduced several appealing p-merging operators and we

have proved several technical results. In the next chapter we will go back and study

some principles to be satisfied by these operators.



Chapter 4

Some principles for p-merging

operators

4.1 Agreement and disagreement

This section is based on paper [2] by Wilmers and the author.

Konieczny and Pino Pérez in [30] proposed an axiomatic framework, referred to

below as KPP, for expressing the desiderata required of a non-probabilistic proposi-

tional merging operator. Such an operator ∆ acts on a multiset K1, . . . , Kn of sets

of knowledge bases to generate a single knowledge base. Each knowledge base Ki is

assumed to be consistent1, but the union of two or more knowledge bases may not be

consistent. The resulting merged knowledge base ∆(K1, . . . , Kn) should be consistent,

and the operator ∆ should at the minimum satisfy the principles listed below. In [30]

the case was considered where a knowledge base is interpreted to mean a consistent

set of sentences of a given finite propositional language L. However, as noted in [30],

the general idea of a merging operator can easily be applied to other types of knowl-

edge base, and there exists a large literature concerning such generalisations2. In this

section we consider whether KPP can be applied to probabilistic merging.

In the KPP framework as formulated for consistent sets of sentences of a given

finite propositional language L, a propositional merging operator ∆ should satisfy the

1This is a slight restriction of the KPP formulation which is more appropriate for our present
considerations.

2See [31] for a survey paper and bibliography.

73
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following principles:

For every n,m ≥ 1, every propositional language L and consistent subsets

K1, . . . , Kn, F1, . . . , Fm ⊆ SL

(A1) ∆(K1, . . . , Kn) is a nonempty consistent subset of SL,

(A2) if K1, . . . , Kn and F1, . . . , Fn are such that there exist a permutation σ of the

index set {1, . . . , n} such that Ki is logically equivalent to Fσ(i) for 1 ≤ i ≤ n,

then ∆(K1, . . . , Kn) is logically equivalent to ∆(F1, . . . , Fn),

(A3) if K1, . . . , Kn are jointly consistent then ∆(K1, . . . , Kn) is logically equivalent

to
⋃n
i=1Ki,

(A4) if K1 and F1 are jointly inconsistent then ∆(K1, F1) 6|= K1,

(A5) ∆(K1, . . . , Kn) ∪∆(F1, . . . , Fm) |= ∆(K1, . . . , Kn, F1, . . . , Fm),

(A6) if ∆(K1, . . . , Kn) ∪∆(F1, . . . , Fm) is consistent then

∆(K1, . . . , Kn, F1, . . . , Fm) |= ∆(K1, . . . , Kn) ∪∆(F1, . . . , Fm).

The idea, that these axioms of Konieczny and Pino-Pérez should be considered in

relation to the merging of probabilistic information from different sources, was origi-

nally put forward by Williamson, see [49]. Notice that (K1) is a natural counterpart

to (A1); just as (A1) ensures that a propositional merging operator yields a consis-

tent subset of SL, so (K1) ensures that a p-merging operator applied to a multiset

of knowledge bases yields a knowledge base. Also (K2) corresponds to (A2) while

(K4*) corresponds to (A3) which can be interpreted as saying that if the knowledge

bases of a set of experts are collectively consistent then the merged knowledge base

should simply consist of all the knowledge of the experts collected together.

On the other hand principles (A4), (A5) and (A6) do not yet have probabilistic

counterparts. Taking inspiration from them we formulate the following two principles

for p-merging operators.

(K6) Disagreement Principle. Let K1, . . . ,Kn ∈ CL and F1, . . . ,Fm ∈ CL. As-

sume that
⋂m
i=1 V

L
Fi
6= ∅. Then ∆L(K1, . . . ,Kn) ∩∆L(F1, . . . ,Fm) = ∅ implies

that

∆L(K1, . . . ,Kn,F1, . . . ,Fm) ∩∆L(K1, . . . ,Kn) = ∅.
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(K6) represents a significant but natural strengthening of (A4), adapted to the

p-merging context. Intuitively the principle says that if the merged knowledge base

K of a set of experts is inconsistent with the merged knowledge F of a distinct set of

experts, where the knowledge bases of the latter set are collectively consistent, then the

result of merging the knowledge bases of all the experts together is also inconsistent

with K. Expressed more pithily, but less exactly, we could say that a coherent group

who disagree with another group and then merge with them can be sure that they

have influenced the opinions of the combined group.

(K7) Agreement Principle. Let K1, . . . ,Kn ∈ CL and F1, . . . ,Fm ∈ CL. If

∆L(K1, . . . ,Kn) ∩∆L(F1, . . . ,Fm) 6= ∅ then

∆L(K1, . . . ,Kn) ∩∆L(F1, . . . ,Fm) = ∆L(K1, . . . ,Kn,F1, . . . ,Fm).

(K7) combines the ideas of (A5) and (A6) into a single principle adapted to the

probabilistic context. In particular (K7) implies that if each of two distinct sets of

experts arrive at the same set of possible conclusions then the result of considering the

knowledge bases of all the experts together should result in the same set of possible

conclusions.

Theorem 4.1.1. Whenever a p-merging operator ∆ satisfies the strong consistency

principle (K4*) and the agreement principle (K7) then it also satisfies the collegiality

principle (K5).

Proof. Let K1, . . . ,Kn ∈ CL and F1, . . . ,Fm ∈ CL be such that

∆L(K1, . . . ,Kn) ⊆
m⋂
i=1

V L
Fi
6= ∅.

By (K4*) ∆L(F1, . . . ,Fm) =
⋂m
i=1 V

L
Fi

so then ∆L(K1, . . . ,Kn) ∩ ∆L(F1, . . . ,Fm) =

∆L(K1, . . . ,Kn) and by (K7)

∆L(K1, . . . ,Kn) = ∆L(K1, . . . ,Kn,F1, . . . ,Fm).

�

Our reformulation of the KPP principles into a probabilistic framework is a fairly

straightforward translation. We should note however that whereas Williamson [49]
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previously advocated the relevance of the KPP principles in relation to the merging

of knowledge bases, in a more recent paper [51] he rejects the KPP principles (A3),

(A4), and (A6) as representing norms which are too strong to be applicable in this

context. However in order to arrive at this conclusion Williamson uses a particular

interpretation of the epistemological status of an expert’s knowledge base, which he

calls “granting”. The point he makes is that several experts may grant the same piece

of knowledge for inconsistent reasons. However, as granting violates our principle of

total evidence we do not find Williamson’s arguments against these principles to be

applicable in our framework. Furthermore, as we will show later, some p-merging

operators do in fact satisfy all the principles (K1), (K2), (K3), (K4*) and satisfy

(K6) and (K7) at least when their application is restricted to bounded knowledge

bases BCL.

Williamson in [50] considered the following p-merging operator as possible. For

any n ≥ 1, any L and K1, . . . ,Kn ∈ CL let

W =
{
V : ∃I ⊆ {1 . . . n}

[
V =

⋂
i∈I

V L
Ki
6= ∅ & (∀j ∈ {1 . . . n}\I)

(⋂
i∈I

V L
Ki

)
∩V L

Kj
= ∅
]}

.

The Convex Hull Operator HULL is defined by

HULLL(K1, . . . ,Kn) =
{

v ∈ DL: ∃λ1, . . . , λ|W | ∈ [0, 1]

∃w(1) ∈ V1, . . . ,w
(|W |) ∈ V|W |

(
v =

|W |∑
i=1

λiw
(i) &

|W |∑
i=1

λi = 1
)}

,

where V1, . . . , V|W | is an enumeration of all sets in W in some fixed order. In other

words, the convex hull operator takes the convex hull of all the sets in W . Clearly

HULLL(K1, . . . ,Kn) is closed convex and nonempty and hence it satisfies (K1).

Example 4.1.2. Let |L| = 1, V L
K1

= {(x, 1 − x), x ∈ [1
4
, 1

2
]}, V L

K2
= {(x, 1 − x), x ∈

[1
2
, 2

3
]} and V L

K3
= {(x, 1− x), x ∈ [3

4
, 1]} then W =

{
{(1

2
, 1

2
)}, V L

K3

}
and

HULLL(K1,K2,K3) =
{

(x, 1− x), x ∈
[1

2
, 1
]}

. �

Theorem 4.1.3. HULL satisfies (K5).
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V L
K3

V L
K1

V L
K2

HULLL(K1,K2,K3)

DL

Figure 4.1: The illustration how the operator HULL works.

Proof. Let K1, . . . ,Kn,F1, . . . ,Fm ∈ CL. Assume that HULLL(K1, . . . ,Kn) ⊆⋂m
i=1 V

L
Fi
6= ∅. Now consider

W =
{
V : ∃I ⊆ {1 . . . n}

[
V =

⋂
i∈I

V L
Ki
6= ∅ & (∀j ∈ {1 . . . n}\I)

(⋂
i∈I

V L
Ki

)
∩V L

Kj
= ∅
]}

.

If V ∈ W then

V ⊆ HULLL(K1, . . . ,Kn) ⊆
m⋂
i=1

V L
Fi

.

Therefore HULLL(K1, . . . ,Kn,F1, . . . ,Fm) is also the convex hull of all the sets from

W and hence HULLL(K1, . . . ,Kn) = HULLL(K1, . . . ,Kn,F1, . . . ,Fm). �

HULL also obviously satisfies (K2), (K3) and (K4*). However it satisfies neither

the principle of disagreement (K6) nor the principle of agreement (K7). To see this

consider the following example.

Example 4.1.4. Let K,F ∈ CL be such that V L
K ∩ V L

F = ∅. It follows that

HULLL(K) ∩ HULLL(F) = ∅ however HULLL(K) ⊆ HULLL(K,F) and hence HULL

does not satisfy the principle of disagreement. Moreover HULLL(K,F)∩HULLL(K) 6=

∅ while

HULLL(K,F) ∩ HULLL(K) ( HULLL(K,F,K)

and hence it does not satisfy the principle of agreement. �

On the other hand it is not hard to see that obdurate merging operators based

either on the LinOp-pooling operator or the LogOp-pooling operator (in particular
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OSEP and OLEP) satisfy both (K6) and (K7). In view of the fact that unlike

OSEP and OLEP the p-merging operator HULL satisfies (K4) one might perhaps

doubt that the linear entropy operator ∆̂KL or the social entropy operator ∆KL which

both satisfy (K4) also satisfy (K6) or (K7). We will see however that once we confine

ourselves to BCL they do satisfy them. Before proceeding to that we introduce the

following natural strengthening of the disagreement principle (K6).

(K6*) Strong Disagreement Principle. Let K1, . . . ,Kn ∈ CL and

F1, . . . ,Fm ∈ CL. Then ∆L(K1, . . . ,Kn) ∩∆L(F1, . . . ,Fm) = ∅ implies that

∆L(K1, . . . ,Kn,F1, . . . ,Fm) ∩∆L(K1, . . . ,Kn) = ∅.

Trivially the strong disagreement principle implies the disagreement principle.

Theorem 4.1.5. Let D be a convex Bregman divergence, K1, . . . ,Kn ∈ CL and

F1, . . . ,Fm ∈ BCL. Then ∆̂D
L (K1, . . . ,Kn) ∩ ∆̂D

L (F1, . . . ,Fm) = ∅ implies

∆̂D
L (K1, . . . ,Kn,F1, . . . ,Fm) ∩ ∆̂D

L (K1, . . . ,Kn) = ∅.

Proof. Assume that v ∈ ∆̂D
L (K1, . . . ,Kn) and v ∈ ∆̂D

L (K1, . . . ,Kn,F1, . . . ,Fm). Let

(v(1), . . . ,v(n)) ∈ Γ̂DL (K1, . . . ,Kn) be an n-tuple associated with v; in particular v =

LinOp(v(1), . . . ,v(n)). Recall that the symbol Γ̂ was defined in section 3.1. Let

(w(1), . . . ,w(n),u(1), . . . ,u(m)) ∈ Γ̂DL (K1, . . . ,Kn,F1, . . . ,Fm)

be an (n+m)-tuple associated with v; then

v = LinOp(w(1), . . . ,w(n),u(1), . . . ,u(m)).

This can only happen when

w(i) = v(i) for all 1 ≤ i ≤ n

since the D-projections of the fixed v to each V L
Ki

are unique. Since in that case

v = LinOp(v(1), . . . ,v(n))

and

v = LinOp(v(1), . . . ,v(n),u(1), . . . ,u(m)).
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we have that

v = LinOp(u(1), . . . ,u(m)).

It follows that v ∈ Θ̂D
L (F1, . . . ,Fm). Since we have restricted F1, . . . ,Fm to BCL

by corollary 3.2.6 v ∈ ∆̂D
L (F1, . . . ,Fm) which concludes the proof. �

Corollary 4.1.6. If the knowledge bases to which the linear entropy operator ∆̂KL is

applied are restricted to BCL then ∆̂KL satisfies (K6*).

Proof. Although theorem 4.1.5 holds with only F1, . . . ,Fm restricted to BCL, to get

the full principle of strong disagreement (‘both ways’) we need to restrict all knowledge

bases to BCL. �

Theorem 4.1.7. The linear Renyi operator ∆̂Dr , for 2 ≥ r > 1, satisfies (K6*).

Proof. The proof is similar to the one for theorem 4.1.5. However, since in the case of

the Renyi-B divergence Dr the zero points cause no discontinuity, the strong disagree-

ment principle holds without any restriction on the class CL. �

A closer look at the whole proof of the above corollary reveals that rather compli-

cated geometrical properties of the ∆̂KL-merging operator can be expressed by some-

thing that everyone can understand. Something as simple as the principle that if

someone disagrees with you then you should take this into an account.

The following counterexample shows that the assumption of the corollary above

restricting knowledge bases to BCL is necessary even if we reformulate it using the

weaker disagreement principle (K6) in place of (K6*).

Example 4.1.8. Assume that |L| = 2, V L
K1

= {(1, 0, 0, 0)}, V L
K2

= {(0, 1, 0, 0)},

V L
F1

= {(2x, 0, 1 − 2x, 0), x ∈ [0, 1
2
]} and V L

F2
= {(0, 2x, 1 − 2x, 0), x ∈ [0, 1

2
]}.

Clearly ∆̂KL
L (K1,K2) = {(1

2
, 1

2
, 0, 0)} and ∆̂KL

L (F1,F2) = {(0, 0, 1, 0)}. Therefore

∆̂KL
L (K1,K2) ∩ ∆̂KL

L (F1,F2) = ∅. Now we prove that also

∆̂KL
L (K1,K2,F1,F2) =

{(1

2
,
1

2
, 0, 0

)}
,

i.e.{(1

2
,
1

2
, 0, 0

)}
= {arg min

v∈DL
(KL((1, 0, 0, 0)‖v) + KL((0, 1, 0, 0)‖v) + KL((w(1)‖v)+

+ KL(w(2)‖v)) : w(1) ∈ V L
F1
,w(2) ∈ V L

F2
}.
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Let

v(x, y) = LinOp((1, 0, 0, 0), (0, 1, 0, 0), (2x, 0, 1− 2x, 0), (0, 2y, 1− 2y, 0)) =

=
(x

2
+

1

4
,
y

2
+

1

4
,
1

2
− x

2
− y

2
, 0
)

,

where x ∈ [0, 1
2
] and y ∈ [0, 1

2
]. It is sufficient to prove that

2 ·KL
((

1, 0, 0, 0
)∥∥∥(1

2
,
1

2
, 0, 0

))
+ 2 ·KL

((
0, 1, 0, 0

)∥∥∥(1

2
,
1

2
, 0, 0

))
<

< KL((1, 0, 0, 0)‖v(x, y)) + KL((0, 1, 0, 0)‖v(x, y)) + KL((2x, 0, 1− 2x, 0)‖v(x, y))+

+ KL((0, 2y, 1− 2y, 0)‖v(x, y)) (4.1)

for all x ∈ [0, 1
2
] and y ∈ [0, 1

2
] where either x 6= 1

2
or y 6= 1

2
.

Assume that there are x ∈ [0, 1
2
] and y ∈ [0, 1

2
], where either x 6= 1

2
or y 6= 1

2
, such

that

2 ·KL
((

1, 0, 0, 0
)∥∥∥(1

2
,
1

2
, 0, 0

))
+ 2 ·KL

((
0, 1, 0, 0

)∥∥∥(1

2
,
1

2
, 0, 0

))
≥

≥ KL((1, 0, 0, 0)‖v(x, y)) + KL((0, 1, 0, 0)‖v(x, y)) + KL((2x, 0, 1− 2x, 0)‖v(x, y))+

+ KL((0, 2y, 1− 2y, 0)‖v(x, y)).

Since KL(w‖v) is a convex function whenever v� w, by symmetry and by the Jensen

inequality we have that

4 ·KL
((

1, 0, 0, 0
)∥∥∥(1

2
,
1

2
, 0, 0

))
+ 4 ·KL

((
0, 1, 0, 0

)∥∥∥(1

2
,
1

2
, 0, 0

))
≥

≥ 2 ·KL
((

1, 0, 0, 0
)∥∥∥v(x+ y

2
,
y + x

2

))
+ 2 ·KL

((
0, 1, 0, 0

)∥∥∥v(x+ y

2
,
y + x

2

))
+

+2 ·KL
((

2
x+ y

2
, 0, 1− 2

x+ y

2
, 0
)∥∥∥v(x+ y

2
,
y + x

2

))
+

+2 ·KL
((

0, 2
y + x

2
, 1− 2

y + x

2
, 0
)∥∥∥v(x+ y

2
,
y + x

2

))
.

Therefore, for a contradiction, it is sufficient to show that (4.1) holds for x = y.

Notice that (4.1) is equivalent to

4 log 2− log
1

x
2

+ 1
4

− log
1

y
2

+ 1
4

− 2x log
2x

x
2

+ 1
4

−
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−2y log
2y

y
2

+ 1
4

− (1− 2x) log
1− 2x

1
2
− x

2
− y

2

− (1− 2y) log
1− 2y

1
2
− x

2
− y

2

< 0.

For x = y this becomes

−2 log
1

x
2

+ 1
4

− 4x log
2x

x
2

+ 1
4

+ 2 log 2 + 4x log 2 < 0

which is further

(4x+ 2) log
(
x+

1

2

)
< 4x log(2x).

One can see that this inequality holds by considering the Jensen inequality

2x+ 1

2
log

2x+ 1

2
≤ 2x log(2x) + log 1

2
.

Since x log x is a strictly convex function the equality holds only for x = 1
2
. �

The following example shows that the social entropy operator ∆KL does not in

general satisfy the principle of disagreement.

Example 4.1.9. Let V L
K = {(0, 0, 1

3
, 2

3
)} and V L

F = {(0, 1
3
, 2

9
, 4

9
)}. Obviously

∆KL
L (K) ∩∆KL

L (F) = ∅. However

∆KL
L (K,F) = LogOp

((
0, 0,

1

3
,
2

3

)
,
(

0,
1

3
,
2

9
,
4

9

))
=
(

0, 0,
1

3
,
2

3

)
.

�

On the other hand ∆KL does satisfy the principle of disagreement (K6) if the

knowledge bases to which ∆KL is applied are restricted to WBCL. The proof is in [2].

If we restrict WBCL further to BCL then ∆KL also satisfies the strong principle of

disagreement (K6*). The following theorem actually states something a bit stronger.

Theorem 4.1.10. Let K1, . . . ,Kn ∈ WBCL and F1, . . . ,Fm ∈ BCL. Then

∆KL
L (K1, . . . ,Kn) ∩∆KL

L (F1, . . . ,Fm) = ∅

implies

∆KL
L (K1, . . . ,Kn,F1, . . . ,Fm) ∩∆KL

L (K1, . . . ,Kn) = ∅.

Proof. Suppose that K1, . . . ,Kn ∈ WBCL and F1, . . . ,Fm ∈ BCL as above.

Assume that for some fixed v we have that v ∈ ∆KL
L (K1, . . . ,Kn) and v ∈
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∆KL
L (K1, . . . ,Kn,F1, . . . ,Fm). Let (v(1), . . . ,v(n)) ∈ ΓKL

L (K1, . . . ,Kn) be an n-tuple

associated with v. Then

v = LogOp(v(1) . . . ,v(n)). (4.2)

Similarly let (w(1), . . . ,w(n),u(1), . . . ,u(m)) ∈ ΓKL
L (K1, . . . ,Kn,F1, . . . ,Fm) be associ-

ated with v. Also

v = LogOp(w(1), . . . ,w(n),u(1), . . . ,u(m)). (4.3)

The above can only happen when for all 1 ≤ j ≤ J , J = |At(L)|,

w
(i)
j = v

(i)
j for all 1 ≤ i ≤ n. (4.4)

This is because by lemma 3.2.8 w(i) and v(i) are both conjugated KL-projections of

v into V L
Ki

, and such a projection is unique when we are confined to WBCL.

Equation (4.3) can be by (4.4) rewritten for all j ∈ Sig(v) as

vj =

[∑J
j=1[

∏n
i=1 v

(i)
j ]

1
n∑J

j=1[
∏n
i=1 v

(i)
j ]

1
n

(
∏n

i=1 v
(i)
j )

1
n (
∏m

i=1 u
(i)
j )

1
n

] n
m+n

∑J
j=1[
∏n

i=1 v
(i)
j

∏m
i=1 u

(i)
j ]

1
n+m

and since by (4.2) vj =
(
∏n
i=1 v

(i)
j )

1
n∑J

j=1[
∏n
i=1 v

(i)
j ]

1
n

we have that

vj =
[
∏m

i=1 u
(i)
j ]

1
m

(
∑J
j=1[

∏n
i=1 v

(i)
j

∏m
i=1 u

(i)
j ]

1
n+m )

m+n
m

(
∑J
j=1[

∏n
i=1 v

(i)
j ]

1
n )

n
m

. (4.5)

In order to obtain (4.5) above the cancelation of a term [
∏n

i=1 v
(i)
j ]

1
n is required; however

this is permissible since we know by the discussion preceding theorem 3.2.9 that this

term is non-zero for j ∈ Sig(v). For similar reasons the denominator on the right of

(4.5) is finite and non-zero. On the other hand (4.5) holds even if j /∈ Sig(v) in which

case both sides are equal to zero.

Notice that the denominator of (4.5) is independent of j so

v = LogOp(u(1), . . . ,u(m)).

It follows that v ∈ ΘKL
L (F1, . . . ,Fm). Since we have restricted F1, . . . ,Fm to BCL by

theorem 3.2.10 v ∈ ∆KL
L (F1, . . . ,Fm) which concludes the proof. �
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Theorem 4.1.11.

(i) For any convex Bregman divergence D the ∆̂D-operator satisfies (K7).

(ii) The social entropy operator ∆KL satisfies (K7) for all knowledge bases in

WBCL.

Proof. (i) Since we are assuming that ∆̂D
L (K1, . . . ,Kn)∩ ∆̂D

L (F1, . . . ,Fm) 6= ∅, there is

some v ∈ ∆̂D
L (K1, . . . ,Kn)∩ ∆̂D

L (F1, . . . ,Fm). For any such v this is equivalent to the

assertion that for some (w(1), . . . ,w(n)) ∈ Γ̂DL (K1, . . . ,Kn) and some (u(1), . . . ,u(m)) ∈

Γ̂DL (F1, . . . ,Fm)

n∑
i=1

D(w(i)‖v) = M̂
D

L (K1, . . . ,Kn) and
m∑
i=1

D(u(i)‖v) = M̂
D

L (F1, . . . ,Fm).

Recall that M̂
D

L (K1, . . . ,Kn) was in section 3.1 defined as the minimal value of the

sum
∑n

i=1D(w(i)‖v) subject only to w(1) ∈ V L
K1
, . . . ,w(n) ∈ V L

Kn
and v ∈ DL.

Then by definition

M̂
D

L (K1, . . . ,Kn) + M̂
D

L (F1, . . . ,Fm) ≤ M̂
D

L (K1, . . . ,Kn,F1, . . . ,Fm)

and the same vectors v, w(1), . . . ,w(n), u(1), . . . ,u(m) globally minimise the sum

n∑
i=1

D(w(i)‖v) +
m∑
i=1

D(u(i)‖v)

subject to w(i) ∈ V L
Ki

, 1 ≤ i ≤ n and u(i) ∈ V L
Fi

, 1 ≤ i ≤ m. Thus v ∈

∆̂D
L (K1, . . . ,Kn,F1, . . . ,Fm), and

M̂
D

L (K1, . . . ,Kn) + M̂
D

L (F1, . . . ,Fm) = M̂
D

L (K1, . . . ,Kn,F1, . . . ,Fm). (4.6)

Since v was arbitrary we have proved that

∆̂D
L (K1, . . . ,Kn) ∩ ∆̂D

L (F1, . . . ,Fm) ⊆ ∆̂D
L (K1, . . . ,Kn,F1, . . . ,Fm).

Now suppose x ∈ ∆̂D
L (K1, . . . ,Kn,F1, . . . ,Fm). Then for some

(y(1), . . . ,y(n), z(1), . . . , z(m)) ∈ Γ̂DL (K1, . . . ,Kn,F1, . . . ,Fm) and

n∑
i=1

D(y(i)‖x) +
m∑
i=1

D(z(i)‖x) = M̂
D

L (K1, . . . ,Kn,F1, . . . ,Fm).
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In view of (4.6) if we did not now have that
∑n

i=1D(y(i)‖x) = M̂
D

L (K1, . . . ,Kn) and∑m
i=1D(z(i)‖x) = M̂

D

L (F1, . . . ,Fm) then this would contradict the minimality of either

M̂
D

L (K1, . . . ,Kn) or M̂
D

L (F1, . . . ,Fm). Hence x ∈ ∆̂D
L (K1, . . . ,Kn)∩ ∆̂D

L (F1, . . . ,Fm)

and the result is proved.

(ii) The proof for ∆KL is similar except that the final argument involving the

equation corresponding to (4.6) fails if either of the quantities MKL
L (K1, . . . ,Kn) or

MKL
L (F1, . . . ,Fm) is +∞ , which is the reason for the restriction of knowledge bases

to WBCL (which implies condition (1.4)). �

The fact that the p-merging operator ∆̂D, where D is a convex Bregman divergence,

satisfies the collegiality principle (K5) is a direct consequence of the result above

together with theorem 4.1.1. Similarly, in the case when we confine ourselves to

WBCL, the same argument shows that the social entropy operator ∆KL satisfies the

collegiality principle (K5). However the following argument shows that the restriction

to WBCL is not necessary in this last case.

Lemma 4.1.12. The social entropy operator ∆KL satisfies the collegiality principle

(K5).

Proof. Let K1, . . . ,Kn,F1, . . . ,Fm ∈ CL are such that ∆KL
L (K1, . . . ,Kn) ⊆⋂m

i=1 V
L
Fi
6= ∅. We need to prove that

∆KL
L (K1, . . . ,Kn) = ∆KL

L (K1, . . . ,Kn,F1, . . . ,Fm).

Since
⋂m
i=1 V

L
Fi
6= ∅ we have that MKL

L (F1, . . . ,Fm) = 0 6= +∞ . Given the result above,

it is sufficient to consider the case when MKL
L (K1, . . . ,Kn) is +∞ . However in this

case both ∆KL
L (K1, . . . ,Kn) and ∆KL

L (K1, . . . ,Kn,F1, . . . ,Fm) are equal to DL. �

The principles of agreement and disagreement are variants of principles which ap-

peared naturally in epistemology of merging as developed by Konieczny, Pino-Pérez,

Williamson and others. The reason why we investigate them is because if a merging

operator satisfies them, then for a consumer of an expert system based on such a

merging operator it is easy to understand the recommendations of the expert system

in the same way as we would understand the argumentation of another human. The

beauty of this idea lies in the shift from a black-box expert system to a transparent

one with a human-like argumentation.
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4.2 Language invariance and Irrelevant Informa-

tion

This section extends the ideas first introduced by Wilmers and the author in [1],

which are themselves generalisations of classical notions of Paris and Vencovská in

[39] and [41].

An obvious question we need to ask regarding probabilistic merging opera-

tors is whether they depend on the choice of a particular propositional language

L = {a1, . . . , ah}. For a fixed p-merging operator ∆, language L, ϕ ∈ SL and

K1, . . . ,Kn ∈ CL consider w(ϕ) where w ∈ ∆L(K1, . . . ,Kn). It would seem to

be irrational to change this value if L is extended by a set of propositional variables

{b1, . . . , bk}, all distinct from the variables of L, provided that we have not supplied

any new knowledge. This motivates the following principle.

Language Invariance Principle (LI). A probabilistic merging operator ∆ satisfies

language invariance if whenever L1 and L2 are languages with L1 ⊆ L2 and

K1, . . . ,Kn ∈ CL1, then

1. for any w ∈ ∆L2(K1, . . . ,Kn) we have that w|L1 ∈ ∆L1(K1, . . . ,Kn), and

2. for any v ∈ ∆L1(K1, . . . ,Kn) there is a w such that w|L1 = v and w ∈

∆L2(K1, . . . ,Kn).

Recall that if L1 ⊆ L2 and ∆ is a set of probability functions we write ∆|L1 to denote

the set {w|L1 : w ∈ ∆}. Hence if the two conditions above hold we write

∆L2(K1, . . . ,Kn)|L1 = ∆L1(K1, . . . ,Kn).

The notion of language invariance was first defined by Paris for inference processes.

In [39] he proved several results concerning language invariance and inference processes.

In particular, both ME and CM∞ satisfy the obvious reformulation of LI for an

inference process S: for any languages L1 ⊆ L2 and any knowledge base K ∈ CL1 we

have that SL2(K)|L1 = SL1(K).

The language invariance principle appears to be a crucial principle in any frame-

work — how could we possibly trust an expert system which changes its answers by
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merely expanding the language describing the problem? An inaccurate but nicely il-

lustrative analogy would be if the validity of mathematical theorems depended on the

unused symbols in which they are written in. It is perhaps surprising how overlooked

this principle is in the literature, in particular in the field of computer science.

Now we ask a stronger question. What will happen, if alongside the new propo-

sitional variables, new knowledge concerning these variables is also provided which

contains no reference to the old variables? It would seem to be irrational if a proba-

bilistic merging operator applied to such extended knowledge produced a probability

function which, when restricted to the original language, would not be produced by

the probabilistic merging operator applied to the original knowledge. This leads us to

the:

Irrelevant Information Principle (IIP).

A probabilistic merging operator ∆ satisfies the irrelevant information principle

if whenever L = L1 ∪ L2 are such that L1 and L2 are disjoint propositional

languages, and K1, . . . ,Kn ∈ CL1 and F1, . . . ,Fn ∈ CL2, then

∆L(K1 ∪ F1, . . . ,Kn ∪ Fn)|L1 = ∆L(K1, . . . ,Kn)|L1 .

Assuming LI this last equation is equivalent to

∆L(K1 ∪ F1, . . . ,Kn ∪ Fn)|L1 = ∆L1(K1, . . . ,Kn).

Both probabilistic merging operators ∆̂KL and ∆KL are language invariant, as we

show later in the corollaries 4.2.7 and 4.2.9 respectively. On the other hand the next

two examples shows that neither of them satisfies IIP.

In this section, and particularly in the following example, we will adopt the follow-

ing useful notation. For any K1, . . . ,Kn ∈ CL satisfying condition (1.4) the expression

CKL
L (K1, . . . ,Kn) will denote the maximum value of

J∑
j=1

(
n∏
k=1

w
(k)
j )

1
n

subject to w(k) ∈ V L
Kk

, for all 1 ≤ k ≤ n. Recall that any n-tuple w(1), . . . ,w(n) which

maximises the above sum belongs to ΓKL
L (K1, . . . ,Kn) and so generates a probability

function

LogOp(w(1), . . . ,w(n)) ∈ ∆KL
L (K1, . . . ,Kn).
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And conversely, any n-tuple (w(1), . . . ,w(n)) ∈ ΓKL
L (K1, . . . ,Kn) maximises the above

sum.

The following example shows that the social entropy operator ∆KL does not satisfy

IIP.

Example 4.2.1. Let L1 = {a1}, L2 = {a2} and L = L1 ∪ L2. In the follow-

ing we consider just two experts. Assume that the first expert possesses knowl-

edge K1 = {Bel(a1) = 0.2}, F1 = {Bel(a2) = 0.2} and the second has knowledge

K2 = {Bel(a1) = 0.3}, F2 = {Bel(a2) = 0.4}. Suppose that w(1) ∈ V L1
K1∪F1

and

w(2) ∈ V L2
K2∪F2

. We can identify CKL
L (K1 ∪ F1,K2 ∪ F2) by maximizing the following

expression for parameters w(1)(a1 ∧ a2) = x ∈ [0, 0.2] and w(2)(a1 ∧ a2) = y ∈ [0, 0.3]:

M(x, y) =
√
xy +

√
(0.2− x)(0.3− y) +

√
(0.2− x)(0.4− y) +

+
√

(0.6 + x)(0.3 + y).

It is the matter of elementary analysis to prove that the above is strictly maximal for

x = 0.12 and y = 0.24. It follows that there is only one point w ∈ ∆KL
L (K1 ∪F1,K2 ∪

F2). Since

CKL
L (K1 ∪ F1,K2 ∪ F2) = M(0.12, 0.24) = (

√
0.12 · 0.24 +

√
0.08 · 0.16)+

+(
√

0.08 · 0.06 +
√

0.72 · 0.54) =
√

0.08 +
√

0.48

we evaluate

w|L1(a1) =

√
0.12 · 0.24 +

√
0.08 · 0.06√

0.08 +
√

0.48
. (4.7)

There is also only one point v ∈ ∆KL
L (K1,K2)|L1 . Notice that

v(a1) =

√
0.06√

0.06 +
√

0.56
. (4.8)

Since the quantities (4.7) and (4.8) are not equal it follows that the social entropy

operator ∆KL does not satisfy IIP. �

We now give an example to show that the ∆̂KL-operator does not satisfy IIP.

Example 4.2.2. Now consider L1 = {p, q}, L2 = {r} and L = L1 ∪ L2. We put

K1 = {Bel(p) = 0.4, Bel(q) = 0.7}, F1 = {Bel(r) = 0} and K2 = {Bel(p ∧ q) =

0, Bel(p ∧ ¬q) = 0.3, Bel(¬p ∧ q) = 0.5, Bel(¬p ∧ ¬q) = 0.2}, F2 = {Bel(r) = 1}.
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First we show that there is only one point in ∆̂KL
L1

(K1,K2).

V L1
K1

= {t ∈ DL: (t(p ∧ q), t(p ∧ ¬q), t(¬p ∧ q), t(¬p ∧ ¬q)) =

= (x, 0.4− x, 0.7− x, x− 0.1), x ∈ [0.1, 0.4]}.

Using the same order of atoms as above

V L2
K2

= {(0, 0.3, 0.5, 0.2)}.

Now

∆̂KL
L1

(K1,K2) =
{

arg min
v∈DL

(
x log

x
x
2

+ (0.4− x) log
0.4− x
0.4−x+0.3

2

+

+(0.7− x) log
0.7− x
0.7−x+0.5

2

+ (x− 0.1) log
x− 0.1
x−0.1+0.2

2

+ 0.3 log
0.3

0.3+0.4−x
2

+ 0.5 log
0.5

0.5+0.7−x
2

+

+0.2 log
0.2

0.2−0.1+x
2

)
,v =

(x
2
,
0.4− x+ 0.3

2
,
0.7− x+ 0.5

2
,
x− 0.1 + 0.2

2

)}
.

After some algebraic manipulation we get that the term to minimise is equivalent to

x log x+ (0.4− x) log (0.4− x) + (0.7− x) log (0.7− x)+

+(x− 0.1) log (x− 0.1)− x log x− (0.7− x) log (0.7− x)−

−(1.2− x) log (1.2− x)− (x+ 0.1) log (x+ 0.1).

By the first derivative test the critical points satisfy

(1.2− x)(x− 0.1)

(0.1 + x)(0.4− x)
= 1

which gives us the only critical point for x = 0.16. By the second derivative test this

continuous function has the global minimum at this point. This concludes our proof

that there is only one point in ∆̂KL
L1

(K1,K2).

On the other hand there are many points in the set ∆̂KL
L (K1 ∪ F1,K2 ∪ F2)|L1 . If

t ∈ V L
K1∪F1

then t(p ∧ q ∧ r) = t(p ∧ ¬q ∧ r) = t(¬p ∧ q ∧ r) = t(¬p ∧ ¬q ∧ r) =

0, t(p ∧ q ∧ ¬r) = x, t(p ∧ ¬q ∧ ¬r) = 0.4 − x, t(¬p ∧ q ∧ ¬r) = 0.7 − x and

t(¬p ∧ ¬q ∧ ¬r) = x − 0.1 for some x ∈ [0.1, 0.4]. There is only one w ∈ V L
K2∪F2

;

w(p ∧ q ∧ r) = 0, w(p ∧ ¬q ∧ r) = 0.3, w(¬p ∧ q ∧ r) = 0.5, w(¬p ∧ ¬q ∧ r) = 0.2

and w(p ∧ q ∧ ¬r) = w(p ∧ ¬q ∧ ¬r) = w(¬p ∧ q ∧ ¬r) = w(¬p ∧ ¬q ∧ ¬r) = 0. By

lemma 3.1.1 if v ∈ ∆̂KL
L (K1 ∪ F1,K2 ∪ F2) then v = LinOp(t,w). Hence, regardless
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on the value of the parameter x, the sum of KL-divergences from the definition of the

∆̂KL-merging operator is

x log
x
x
2

+ (0.4− x) log
0.4− x

0.4−x
2

+ (0.7− x) log
0.7− x

0.7−x
2

+ (x− 0.1) log
x− 0.1
x−0.1

2

+

+0.3 log
0.3
0.3
2

+ 0.5 log
0.5
0.5
2

+ 0.2 log
0.2
0.2
2

= 2 log 2.

Therefore for each x ∈ [0.1, 0.4] we have that LinOp(t,w) ∈ ∆̂KL
L (K1 ∪F1,K2 ∪F2).

Clearly

∆̂KL
L (K1 ∪ F1,K2 ∪ F2)|L1 6= ∆̂KL

L1
(K1,K2)

and, since we will later in corollary 4.2.9 prove that ∆̂KL satisfies LI, we can conclude

that the linear entropy operator ∆̂KL does not satisfy IIP. �

Moreover, the convex hull operator HULL also does not satisfy IIP as the next

example shows.

Example 4.2.3. Let L = L1 ∪ L2 and L1 ∩ L2 = ∅. Let K1,K2 ∈ CL1 and F1,F2 ∈

CL2 be such that V L1
K1
∩ V L1

K2
6= ∅, V L1

K1
∩ V L1

K2
6= V L1

K1
and V L2

F1
∩ V L2

F2
= ∅. Then

HULLL1(K1,K2) = V L1
K1
∩ V L1

K2
.

However since V L
K1∪F1

∩ V L
K2∪F2

= ∅, in the convex hull

HULLL(K1 ∪ F1,K2 ∪ F2)|L1

there are also probability functions from V L1
K1

which are not in V L1
K1
∩ V L1

K2
. Therefore

HULLL1(K1,K2) 6= HULLL(K1 ∪ F1,K2 ∪ F2)|L1 .

Later in theorem 4.2.4 we prove that HULL satisfies LI so we can conclude that HULL

does not satisfies IIP. �

In view of the counterexamples above IIP appears hard for a probabilistic merging

operator to satisfy. However we might argue that this principle is just too strong. If

knowledge provided by experts for the language L2 is itself inconsistent then the addi-

tion of such new knowledge may provide us with more information on how strongly the

experts disagree, which in turn may affect our evaluation of the knowledge concerning

L1. However, if the new knowledge does not change the level of disagreement as is the

case when the new knowledge of all the experts is jointly consistent, then the principle

of irrelevant information is arguably more justified. Accordingly we formulate the:
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Consistent Irrelevant Information Principle (CIIP).

A probabilistic merging operator ∆ satisfies the consistent irrelevant information

principle if whenever L = L1 ∪ L2 are such that L1 and L2 are disjoint propo-

sitional languages, K1, . . . ,Kn ∈ CL1 and F1, . . . ,Fn ∈ CL2, and moreover

F1, . . . ,Fn are jointly consistent, then

∆L(K1 ∪ F1, . . . ,Kn ∪ Fn)|L1 = ∆L(K1, . . . ,Kn)|L1 .

Assuming LI this last equation is equivalent to

∆L(K1 ∪ F1, . . . ,Kn ∪ Fn)|L1 = ∆L1(K1, . . . ,Kn).

For instance, in the toy example of the section 1.1 the information of both experts

about a fault on the electronic switch is both consistent and a priori irrelevant to the

probability that there will be a fault on the valve. Hence if we want to know only the

probability that there will be a fault on the valve, then applying the CIIP we need

consider only the fact that the first expert states that this probability is 4% and the

second states that this probability is 8%.

Theorem 4.2.4. HULL satisfies CIIP and LI.

Proof. Let L = L1 ∪ L2 where L1 and L2 are disjoint propositional languages. Let

K1, . . . ,Kn and F1, . . . ,Fn be knowledge bases formulated for the languages L1 and

L2 respectively, and suppose that F1, . . . ,Fn are jointly consistent. In particular

F1, . . . ,Fn could be empty.

Consider

WL1 =
{
V : ∃I ⊆ {1 . . . n}

[
V =

⋂
i∈I

V L1
Ki
6= ∅ & (∀j ∈ {1 . . . n}\I)

(⋂
i∈I

V L1
Ki

)
∩V L1

Kj
= ∅
]}

and

WL =
{
V : ∃I ⊆ {1 . . . n}

[
V =

⋂
i∈I

V L
Ki∪Fi 6= ∅ &

(∀j ∈ {1 . . . n} \ I)
(⋂
i∈I

V L
Ki∪Fi

)
∩ V L

Kj∪Fj = ∅
]}

.

Recall that HULLL(K1 ∪F1, . . . ,Kn ∪Fn) is defined as the convex hull of sets in WL.

Notice that if

v ∈ V L
Ki∪Fi ∩ V

L
Kj∪Fj
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then v|L1 satisfies both Ki and Kj i.e. v|L1 ∈ V L1
Ki
∩ V L1

Kj
. On the other hand if

w ∈ V L1
Ki
∩ V L1

Kj
then for any t ∈ V L2

Fi
∩ V L2

Fj

w · t ∈ V L
Ki∪Fi ∩ V

L
Kj∪Fj

and (w · t)|L1 = w.

Therefore V ∈ WL if and only if V |L1 ∈ WL1 . Notice that this is not true when

F1, . . . ,Fn are not jointly consistent, for instance see example 4.2.3. We can conclude

that the convex hull of the sets in WL restricted to L1 is the same as the convex hull

of the sets in WL1 , and the theorem follows. �

Now we prove that the linear entropy operator ∆̂KL and the social entropy operator

∆KL also satisfy CIIP. In the rest of this section we fix two distinct propositional

languages L1 = {a1, . . . , ah1} and L2 = {b1, . . . , bh2}. Moreover we fix L = L1 ∪ L2

and At(L1) = {α1, . . . , αJ} and At(L2) = {β1, . . . , βI}.

For r ∈ DL, in order to simplify the notation, we often denote r|L1(αj) by rj·.

We also denote the conditional probability function r(βi|αj) by ri|j. It follows that

rji = rj·ri|j, i.e. the value rji can be computed as the product of the projection of r to

L1 on the L1-atom αj and the conditional probability r(βi|αj).

Lemma 4.2.5. Let w
(k)
j ≥ 0 be real numbers for all 1 ≤ j ≤ J and 1 ≤ k ≤ n where

k, j, J, n ∈ N. Then
J∑
j=1

[ n∏
k=1

w
(k)
j

] 1
n ≤

[ n∏
k=1

J∑
j=1

w
(k)
j

] 1
n

.

Equality holds if and only if either there are real constants l(1) > 0, . . . , l(n) > 0

such that l(1)(w
(1)
1 , . . . , w

(1)
J ) = l(2)(w

(2)
1 , . . . , w

(2)
J ) = . . . = l(n)(w

(n)
1 , . . . , w

(n)
J ) or∑J

j=1w
(k)
j = 0 for some k.

This lemma is Hölder’s inequality, see [23], and it will be very useful in the following

proof.

Lemma 4.2.6. Let K1, . . . ,Kn ∈ CL1, F1, . . . ,Fn ∈ CL2 be such that F1, . . . ,Fn are

jointly consistent and condition (1.4) holds for K1, . . . ,Kn. Recall that L = L1 ∪ L2.

Then:

(a) If v ∈ ∆KL
L1

(K1, . . . ,Kn) and t is an L2-probability function such that t ∈
⋂n
k=1 V

L2
Fk

then v · t ∈ ∆KL
L (K1 ∪ F1, . . . ,Kn ∪ Fn). In particular F1, . . . ,Fn could be empty in

which case t can be arbitrary.
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(b) Let r ∈ ∆KL
L (K1 ∪ F1, . . . ,Kn ∪ Fn). Then r|L1 ∈ ∆KL

L1
(K1, . . . ,Kn). Moreover

CKL
L (K1 ∪ F1, . . . ,Kn ∪ Fn) = CKL

L1
(K1, . . . ,Kn).3

Proof. For a given v ∈ ∆KL
L1

(K1, . . . ,Kn) let (p(1), . . . ,p(n)) ∈ ΓKL
L1

(K1, . . . ,Kn) be

such that vj =
(
∏n
k=1 p

(k)
j )

1
n

CKL
L1

(K1,...,Kn)
. Note that CKL

L1
(K1, . . . ,Kn) =

∑J
j=1(

∏n
k=1 p

(k)
j )

1
n . For a

given r ∈ ∆KL
L (K1 ∪ F1, . . . ,Kn ∪ Fn) let

(w(1), . . . ,w(n)) ∈ ΓKL
L (K1 ∪ F1, . . . ,Kn ∪ Fn)

be such that rji =
(
∏n
k=1 w

(k)
ji )

1
n

CKL
L (K1∪F1,...,Kn∪Fn)

.

Let us consider probability functions w(1)|L1 , . . . ,w
(n)|L1 . Let M =∑J

j=1(
∏n

k=1w
(k)
j· )

1
n . Then M ≤ CKL

L1
(K1, . . . ,Kn) since CKL

L1
(K1, . . . ,Kn) is maximal.

But by the lemma 4.2.5 also CKL
L (K1 ∪ F1, . . . ,Kn ∪ Fn) ≤M , hence

CKL
L (K1 ∪ F1, . . . ,Kn ∪ Fn) ≤ CKL

L1
(K1, . . . ,Kn). (4.9)

(a) Let t ∈
⋂n
k=1 V

L2
Fk

. We are going to prove that

(p(1) · t, . . . ,p(n) · t) ∈ ΓKL
L (K1 ∪ F1, . . . ,Kn ∪ Fn). (4.10)

It is easy to see that p(1) · t, . . . ,p(n) · t satisfy K1 ∪ F1, . . . ,Kn ∪ Fn respectively.

Moreover, ∑
j=1,...,J,i=1,...,I

(
n∏
k=1

p
(k)
j ti)

1
n =

∑
j=1,...,J,i=1,...,I

(
n∏
k=1

p
(k)
j )

1
n ti = CKL

L1
(K1, . . . ,Kn),

since
∑I

i=1 ti = 1. But from (4.9) we already know that CKL
L (K1∪F1, . . . ,Kn∪Fn) ≤

CKL
L1

(K1, . . . ,Kn) hence (4.10) is proved.

(b) By part (a) and by (4.9) we have

CKL
L (K1 ∪ F1, . . . ,Kn ∪ Fn) = M = CKL

L1
(K1, . . . ,Kn). (4.11)

Hence ∑
j=1,...,J,i=1,...,I

(
n∏
k=1

w
(k)
ji )

1
n =

J∑
j=1

(
n∏
k=1

I∑
i=1

w
(k)
ji )

1
n .

By lemma 4.2.5 this equality could only occur if for each j there are real constants

l
(1)
j > 0, . . . , l

(n)
j > 0 such that the proportionality

l
(1)
j (w

(1)
j1 , . . . , w

(1)
jI ) = l

(2)
j (w

(2)
j1 , . . . , w

(2)
jI ) = . . . = l

(n)
j (w

(n)
j1 , . . . , w

(n)
jI )

3The symbol CKL was defined just above example 4.2.1.
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holds, or w
(k)
j· =

∑I
i=1w

(k)
ji = 0 holds for some k.

Let us consider the coefficient j to be fixed. If w
(k)
j· = 0 for every k let q·|j be an

arbitrary L2-probability function with value on i-th atom denoted as qi|j. Otherwise

for k̄ such that w
(k̄)
j· 6= 0 let us define

qi|j =
w

(k̄)
ji

w
(k̄)
j·

.

Obviously,
I∑
i=1

qi|j =
I∑
i=1

w
(k̄)
ji∑I

i=1w
(k̄)
ji

= 1

and hence q·|j is a well defined L2-probability function. Notice that thanks to propor-

tionality the definition does not depend on the choice of k̄:

l
(k̄)
j w

(k̄)
ji

l
(k̄)
j

∑I
i=1w

(k̄)
ji

=
l
(k)
j w

(k)
ji

l
(k)
j

∑I
i=1 w

(k)
ji

.

In other words

w
(k)
ji = w

(k)
j· qi|j. (4.12)

By (4.11) the projections to L1 satisfy

(w(1)|L1 , . . . , w
(n)|L1) ∈ ΓKL

L1
(K1, . . . ,Kn).

Then for L1-probability function v defined by vj =
(
∏n
k=1 w

(k)
j· )

1
n∑J

j=1(
∏n
k=1 w

(k)
j· )

1
n

we have that

v ∈ ∆KL
L1

(K1, . . . ,Kn).

Moreover,

rji =
(
∏n

k=1 w
(k)
ji )

1
n∑J

j=1

∑I
i=1(
∏n

k=1 w
(k)
ji )

1
n

=
(
∏n

k=1w
(k)
j· qi|j)

1
n∑J

j=1

∑I
i=1(
∏n

k=1w
(k)
j· qi|j)

1
n

= vjqi|j.

Then rj· =
∑

i vjqi|j = vj and ri|j =
rji
rj·

=
vjqi|j
rj·

= qi|j which gives us the required result

that r|L1 ∈ ∆KL
L1

(K1, . . . ,Kn). �

Corollary 4.2.7. The social entropy operator ∆KL satisfies LI and CIIP.

Proof. Let K1, . . . ,Kn ∈ CL1 satisfy (1.4) and L1 ∩ L2 = ∅. By the previous lemma,

part (b), if r ∈ ∆KL
L1∪L2

(K1, . . . ,Kn) then r|L1 ∈ ∆KL
L1

(K1, . . . ,Kn). This together with

part (a) gives LI; ∆KL
L1∪L2

(K1, . . . ,Kn)|L1 = ∆KL
L1

(K1, . . . ,Kn). Applying this identity

to the lemma above we get the formulation of CIIP.
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Now assume that K1, . . . ,Kn do not satisfy (1.4). By definition

∆KL
L1

(K1, . . . ,Kn) = DL1 . It is easy to see that ∆KL
L1∪L2

(K1, . . . ,Kn) = DL1∪L2 . For

instance, if K1 force w ∈ V L1
K1

to w(α) = 0 for some α ∈ At(L1) then w(α ∧ β) = 0

for all β ∈ At(L2). Moreover adding a new knowledge base formulated in the

language L2 does not change this so ∆KL
L1∪L2

(K1 ∪ F1, . . . ,Kn ∪ Fn) = DL1∪L2 for

any F1, . . . ,Fn ∈ CL2. DL1∪L2 |L1 = DL1 and therefore ∆KL satisfies both LI and

CIIP. �

Recall that in section 3.1 we have defined M̂
KL

L (K1, . . . ,Kn) the minimum value of

n∑
k=1

∑
j∈Sig(v)

w
(k)
j log

w
(k)
j

vj

subject to v ∈ DL and w(k) ∈ V L
Kk

, for all 1 ≤ k ≤ n.

Lemma 4.2.8. Let K1, . . . ,Kn ∈ CL1 and F1, . . . ,Fn ∈ CL2 be such that F1, . . . ,Fn

are jointly consistent. Recall that L = L1 ∪ L2. Then:

(a) If v ∈ ∆̂KL
L1

(K1, . . . ,Kn) and t is an L2-probability function such that t ∈
⋂n
k=1 V

L2
Fk

then v · t ∈ ∆̂KL
L (K1 ∪ F1, . . . ,Kn ∪ Fn). In particular F1, . . . ,Fn could be empty in

which case t can be arbitrary.

(b) Let r ∈ ∆̂KL
L (K1 ∪ F1, . . . ,Kn ∪ Fn). Then r|L1 ∈ ∆̂KL

L1
(K1, . . . ,Kn).

Proof. For a given v ∈ ∆̂KL
L1

(K1, . . . ,Kn) let (p(1), . . . ,p(n)) ∈ Γ̂KL
L1

(K1, . . . ,Kn) be

such that v = LinOp(p(1), . . . ,p(n)). For a given

r ∈ ∆̂KL
L (K1 ∪ F1, . . . ,Kn ∪ Fn)

let (w(1), . . . ,w(n)) ∈ Γ̂KL
L (K1 ∪ F1, . . . ,Kn ∪ Fn) be such that

r = LinOp(w(1), . . . ,w(n)).

Let us consider probability functions w(1)|L1 , . . . ,w
(n)|L1 . Recall that by lemmas

2.1.16 and 2.1.19 and since LinOp(w(1), . . . ,w(n))� w(k) for all 1 ≤ k ≤ n (note that

we leave out all indices such that w
(1)
ji = . . . = w

(n)
ji = 0 and we implicitly assume this

in all the summations below) we have that

∑
j,i

n∑
k=1

x
(k)
ji log

x
(k)
ji∑n

k=1 x
(k)
ji

n
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is a convex function. Then by the Jensen inequality

M̂
KL

L (K1 ∪ F1, . . . ,Kn ∪ Fn) ≥
n∑
k=1

∑
j

w
(k)
j· log

n · w(k)
j·∑n

k=1w
(k)
j·

. (4.13)

On the other hand by lemma 2.1.13 and the definition of M̂

n∑
k=1

∑
j

w
(k)
j· log

n · w(k)
j·∑n

k=1 w
(k)
j·

≥ M̂
KL

L1
(K1, . . . ,Kn).

Hence

M̂
KL

L (K1 ∪ F1, . . . ,Kn ∪ Fn) ≥ M̂
KL

L1
(K1, . . . ,Kn). (4.14)

(a) Let t ∈
⋂n
k=1 V

L2
Fk

. We are going to prove that

(p(1) · t, . . . ,p(n) · t) ∈ Γ̂KL
L (K1 ∪ F1, . . . ,Kn ∪ Fn). (4.15)

It is easy to see that p(1) · t, . . . ,p(n) · t satisfy K1 ∪ F1, . . . ,Kn ∪ Fn respectively.

Moreover,
n∑
k=1

∑
j,i

p
(k)
j · ti log

n · p(k)
j · ti∑n

k=1 p
(k)
j · ti

=

=
∑
i

ti

n∑
k=1

∑
j

p
(k)
j log

n · p(k)
j∑n

k=1 p
(k)
j

= M̂
KL

L1
(K1, . . . ,Kn),

since
∑

i ti = 1. But from (4.14) we already know that

M̂
KL

L (K1 ∪ F1, . . . ,Kn ∪ Fn) ≥ M̂L1(K1, . . . ,Kn)

hence (4.15) is proved.

(b) By part (a) and by (4.14) we have

M̂
KL

L (K1 ∪ F1, . . . ,Kn ∪ Fn) = M̂
KL

L1
(K1, . . . ,Kn).

This together with (4.13) gives w(1)|L1 , . . . ,w
(n)|L1 ∈ Γ̂KL

L1
(K1, . . . ,Kn) and

LinOp(w(1)|L1 , . . . ,w
(n)|L1) ∈ ∆̂KL

L1
(K1, . . . ,Kn).

Since r = LinOp(w(1), . . . ,w(n)) clearly r|L1 = LinOp(w(1)|L1 , . . . ,w
(n)|L1) and the

part (b) of the lemma is proved. �

Corollary 4.2.9. The linear entropy operator ∆̂KL satisfies LI and CIIP.
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Proof. Let K1, . . . ,Kn ∈ CL1 and L1 ∩ L2 = ∅. By the previous lemma, the part (b),

if r ∈ ∆̂KL
L1∪L2

(K1, . . . ,Kn) then r|L1 ∈ ∆̂KL
L1

(K1, . . . ,Kn). This together with the part

(a) gives LI; ∆̂KL
L1∪L2

(K1, . . . ,Kn)|L1 = ∆̂KL
L1

(K1, . . . ,Kn). Applying this identity to

the lemma above we get the formulation of CIIP. �

For the linear Renyi operator ∆̂Dr , 2 ≥ r > 1, we can prove a similar, although

weaker, result comparable to lemmas 4.2.6 and 4.2.8. Recall that we have defined

M̂
Dr

L (K1, . . . ,Kn) to be the minimum value of

n∑
k=1

J∑
j=1

[(w
(k)
j )r − (vj)

r − r(w(k)
j − vj)(vj)r−1]

subject to v ∈ DL and w(k) ∈ V L
Kk

, for all 1 ≤ k ≤ n.

Lemma 4.2.10. Let 2 ≥ r > 1. Recall that I = |At(L2)| and L = L1 ∪ L2. Let

K1, . . . ,Kn ∈ CL1, F1, . . . ,Fn ∈ CL2 be such that t =
( 1

I
, . . . ,

1

I︸ ︷︷ ︸
I

)
∈
⋂n
k=1 V

L2
Fk

. In

particular F1, . . . ,Fn could be empty. Then:

(a) If v ∈ ∆̂Dr
L1

(K1, . . . ,Kn) then v · t ∈ ∆̂Dr
L (K1 ∪ F1, . . . ,Kn ∪ Fn).

(b) If r ∈ ∆̂Dr
L (K1 ∪ F1, . . . ,Kn ∪ Fn) then r|L1 ∈ ∆̂Dr

L1
(K1, . . . ,Kn).

Proof. For a given v ∈ ∆̂Dr
L1

(K1, . . . ,Kn) let (p(1), . . . ,p(n)) ∈ Γ̂DrL1
(K1, . . . ,Kn) be

such that v = LinOp(p(1), . . . ,p(n)). For a given r ∈ ∆̂Dr
L (K1 ∪ F1, . . . ,Kn ∪ Fn) let

(w(1), . . . ,w(n)) ∈ Γ̂DrL (K1 ∪ F1, . . . ,Kn ∪ Fn)

be such that r = LinOp(w(1), . . . ,w(n)).

Let us consider probability functions w(1)|L1 , . . . ,w
(n)|L1 . Recall that by lemmas

2.1.18 and 2.1.19 we have that∑
j,i

n∑
k=1

[
(x

(k)
ji )r −

(∑n
k=1 x

(k)
ji

n

)r
− r
(
x

(k)
ji −

∑n
k=1 x

(k)
ji

n

)(∑n
k=1 x

(k)
ji

n

)r−1]
is a convex function. Then by the Jensen inequality

M̂
Dr

L (K1 ∪ F1, . . . ,Kn ∪ Fn) ≥

≥
∑
j

n∑
k=1

[
(w

(k)
j· )r−

(∑n
k=1w

(k)
j·

n

)r
−r
(
w

(k)
j· −

∑n
k=1 w

(k)
j·

n

)(∑n
k=1 w

(k)
j·

n

)r−1]
· I
Ir

. (4.16)
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On the other hand by lemma 2.1.13 and the definition of M̂
Dr

∑
j

n∑
k=1

[
(w

(k)
j· )r −

(∑n
k=1 w

(k)
j·

n

)r
− r
(
w

(k)
j· −

∑n
k=1w

(k)
j·

n

)(∑n
k=1w

(k)
j·

n

)r−1]
≥

≥ M̂
Dr

L1
(K1, . . . ,Kn).

Hence

M̂
Dr

L (K1 ∪ F1, . . . ,Kn ∪ Fn) ≥ I

Ir
· M̂

Dr

L1
(K1, . . . ,Kn). (4.17)

(a) We are going to prove that

(p(1) · t, . . . ,p(n) · t) ∈ Γ̂DrL (K1 ∪ F1, . . . ,Kn ∪ Fn). (4.18)

It is easy to see that p(1) · t, . . . ,p(n) · t satisfy K1 ∪ F1, . . . ,Kn ∪ Fn respectively.

Moreover,

n∑
k=1

∑
j,i

[
(p

(k)
j ·ti)r−

(∑n
k=1 p

(k)
j · ti

n

)r
−r
(
p

(k)
j ·ti−

∑n
k=1 p

(k)
j · ti

n

)(∑n
k=1 p

(k)
j · ti

n

)r−1]
=

=
∑
i

(ti)
r

n∑
k=1

∑
j

[
(p

(k)
j )r −

(∑n
k=1 p

(k)
j

n

)r
− r
(
p

(k)
j −

∑n
k=1 p

(k)
j

n

)(∑n
k=1 p

(k)
j

n

)r−1]
=

=
I

Ir
· M̂

Dr

L1
(K1, . . . ,Kn).

But from (4.17) we already know that

M̂
Dr

L (K1 ∪ F1, . . . ,Kn ∪ Fn) ≥ I

Ir
· M̂

Dr

L1
(K1, . . . ,Kn)

hence (4.18) is proved.

(b) By part (a) and by (4.17) we have

M̂
Dr

L (K1 ∪ F1, . . . ,Kn ∪ Fn) =
I

Ir
· M̂

Dr

L1
(K1, . . . ,Kn).

This together with (4.16) gives w(1)|L1 , . . . ,w
(n)|L1 ∈ Γ̂DrL1

(K1, . . . ,Kn) and

LinOp(w(1)|L1 , . . . ,w
(n)|L1) ∈ ∆̂Dr

L1
(K1, . . . ,Kn).

Since r = LinOp(w(1), . . . ,w(n)) clearly r|L1 = LinOp(w(1)|L1 , . . . ,w
(n)|L1) and the

part (b) of the lemma is proved. �

Corollary 4.2.11. The linear Renyi operator ∆̂Dr , 2 ≥ r > 1, satisfies LI.
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Proof. Let K1, . . . ,Kn ∈ CL1 and L1 ∩ L2 = ∅. By the previous lemma, the part (b),

if r ∈ ∆̂Dr
L1∪L2

(K1, . . . ,Kn) then r|L1 ∈ ∆̂Dr
L1

(K1, . . . ,Kn). This together with the part

(a) gives LI; ∆̂Dr
L1∪L2

(K1, . . . ,Kn)|L1 = ∆̂Dr
L1

(K1, . . . ,Kn). �

So far we have not seen any p-merging operator which satisfies the irrelevant in-

formation principle IIP. It might be a bit surprising that two p-merging operators,

which until now we have ignored because they satisfy neither the consistency principle

(K4) nor the collegiality principle (K5), do in fact satisfy IIP. These operators are

the obdurate social entropy operator OSEP and the obdurate linear entropy operator

OLEP. Recall that these operators always produce a single probability function and

therefore they are thus far the only instances of, what we call, social inference processes

which we have considered. In the following section we prove that they satisfy IIP and

we discuss whether these operators satisfy a further strengthening of this principle.

4.3 Independence principle

In this section we investigate the property which is called independence. In proba-

bility theory two events are independent if the probability that they both occur is

the product of their individual probabilities. In multi-expert probabilistic reasoning

the question has been studied as to whether there are pooling operators which pre-

serve independence. We say that a pooling operator Pool preserves independence if

whenever θ, ϕ ∈ SL and w(1), . . . ,w(h) ∈ DL are such that θ ∧ ϕ is satisfiable and

w(i)(θ ∧ ϕ) = w(i)(θ) ·w(i)(ϕ), for all 1 ≤ i ≤ n, then

Pool(w(1), . . . ,w(h))(θ ∧ ϕ) = Pool(w(1), . . . ,w(h))(θ) ·Pool(w(1), . . . ,w(h))(ϕ).

Unfortunately, Genest and Wagner in [17] proved that in a fairly general case the

pooling operators which preserve independence are dictatorships — for some i

Pool(w(1), . . . ,w(h)) = w(i).

More explicitly the above happens when a pooling operator Pool is of the form

Pool(w(1), . . . ,w(h))(αj) =
Fj(w

(1)(αj), . . . ,w
(n)(αj))∑J

k=1 Fk(w
(1)(αk), . . . ,w(n)(αk))

, (4.19)
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for all 1 ≤ j ≤ J = |At(L)|, where Fj : [0, 1]n → [0, 1], α1, . . . , αJ ∈ At(L) and |L| > 2.

LinOp and LogOp pooling operators are both of the form (4.19) and consequently

they do not preserve independence.

On the other hand, as was pointed out in [17], one can easily see that if |L| = 2

then LogOp pooling operator does preserve independence. (Note that for |L| = 1 the

situation is trivial.) It is therefore of a particular interest to examine what particular

properties present in the |L| = 2 case which ensure that the LogOp pooling operator

preserves independence. In the following we propose a strengthening of one such

property.

We say that probability functions w(1), . . . ,w(n) ∈ DL are strongly independent

for L-sentences θ and ϕ if θ ∧ ϕ is satisfiable and there exist two sets of L-sentences

{α1, . . . , αJ1} and {β1, . . . , βJ2} such that

1. J1 · J2 = J = |At(L)|,

2. every atom of At(L) is logically equivalent to one and only one sentence of the

form αj ∧ βi, where 1 ≤ j ≤ J1 and 1 ≤ i ≤ J2,

3. θ ≡
∨
j∈Sθ αj, ϕ ≡

∨
j∈Sϕ βj for some index sets Sθ and Sϕ and

4. w(k)(αj ∧ βi) = w(k)(αj) ·w(k)(βi), for all 1 ≤ j ≤ J1, 1 ≤ i ≤ J2 and 1 ≤ k ≤ n.

Note that above conditions imply that

w(k)(θ ∧ ϕ) = w(k)(θ) ·w(k)(ϕ)

since w(k)(θ ∧ ϕ) =
∑

j∈Sθ,i∈Sϕ w(k)(αj ∧ βi) =
∑

j∈Sθ,i∈Sϕ w(k)(αj)w
(k)(βi) =∑

j∈Sθ w(k)(αj)
∑

i∈Sϕ w(k)(βi) = w(k)(θ)w(k)(ϕ).

Conditions 1–3 above hold for instance when L1 ∪ L2 = L is a partition of L,

θ ∈ SL1, ϕ ∈ SL2 and the two sets are At(L1) and At(L2). The following example

shows that this is not the only case.

Example 4.3.1. Consider L = {a, b} and θ = a, ϕ = a ↔ b. Then for sets of

L-sentences {a,¬a} and {a↔ b,¬(a↔ b)} conditions 1–3 hold.

The following lemma will help us to understand the notion of strong independence

a little bit better.



CHAPTER 4. SOME PRINCIPLES FOR P-MERGING OPERATORS 100

Lemma 4.3.2. Let {α1, . . . , αJ1} and {β1, . . . , βJ2} be such that conditions 1–4 hold

for some w ∈ DL and θ, ϕ ∈ SL. Then
∑J1

j=1 w(αj) = 1 and
∑J2

i=1 w(βi) = 1.

Proof. We prove only that
∑J2

i=1 w(βi) = 1; the other case is analogous. Let αj be

such that w(αj) 6= 0. Such αj exists because there is at least one atom γ ∈ At(L)

such that w(γ) 6= 0 and we can choose αj in a way that γ |= αj. Then

w(αj) = w(
∨

γ∈At(L)
γ|=αj

γ) = w(

J2∨
i=1

(αj ∧ βi)) = w(αj)

J2∑
i=1

w(βi).

�

The following theorem shows that if w(1), . . . ,w(n) ∈ DL are strongly independent

for L-sentences θ and ϕ then the LogOp-pooling operator preserves independence

restricted to sentences θ and ϕ.

Theorem 4.3.3. Assume that w(1), . . . ,w(n) ∈ DL are strongly independent for L-

sentences θ and ϕ and that they satisfy (1.3). Then

LogOp(w(1), . . . ,w(n))(θ) · LogOp(w(1), . . . ,w(n))(ϕ) =

= LogOp(w(1), . . . ,w(n))(θ ∧ ϕ).

Proof. Let A = {α1, . . . , αJ} and B = {β1, . . . , βI} be the two sets of L-sentences from

the definition of strong independence. First of all note that

LogOp(w(1), . . . ,w(n))(θ ∧ ϕ) =
∑

γ∈At(L)
γ|=θ∧ϕ

LogOp(w(1), . . . ,w(n))(γ).

From the definition every atom γ ∈ At(L) is logically equivalent to an unique

αγ ∧ βγ where αγ ∈ A and βγ ∈ B. Therefore the above is equal to∑
γ|=θ∧ϕ
γ∈At(L)

[∏n
k=1 w(k)(αγ ∧ βγ)

] 1
n∑

γ∈At(L)

[∏n
k=1 w(k)(αγ ∧ βγ)

] 1
n

=

∑
γ|=θ∧ϕ
γ∈At(L)

[∏n
k=1 w(k)(αγ)w

(k)(βγ)
] 1
n∑

γ∈At(L)

[∏n
k=1 w(k)(αγ)w

(k)(βγ)
] 1
n

.

Let α |= θ, α ∈ A. Then for every β |= ϕ, β ∈ B, there is an atom γ ∈ At(L) such

that γ |= θ ∧ ϕ and γ ≡ α ∧ β . On the other hand if α 6|= θ then α ∧ βi 6|= θ ∧ ϕ for

all βi, 1 ≤ i ≤ I. We can conclude that∑
γ|=θ∧ϕ
γ∈At(L)

[ n∏
k=1

w(k)(αγ)w
(k)(βγ)

] 1
n =

∑
α|=θ
α∈A

[ n∏
k=1

w(k)(α)
] 1
n ·
∑
β|=ϕ
β∈B

[ n∏
k=1

w(k)(β)
] 1
n .
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Applying the same procedure as above we prove that∑
γ∈At(L)

[ n∏
k=1

w(k)(αγ)w
(k)(βγ)

] 1
n =

∑
α∈A

[ n∏
k=1

w(k)(α)
] 1
n ·
∑
β∈B

[ n∏
k=1

w(k)(β)
] 1
n ,

∑
γ|=θ

γ∈At(L)

[ n∏
k=1

w(k)(αγ)w(βγ)
] 1
n =

∑
α|=θ
α∈A

[ n∏
k=1

w(k)(α)
] 1
n ·
∑
β∈B

[ n∏
k=1

w(k)(β)
] 1
n

and ∑
γ|=ϕ

γ∈At(L)

[ n∏
k=1

w(k)(αγ)w
(k)(βγ)

] 1
n =

∑
α∈A

[ n∏
k=1

w(k)(α)
] 1
n ·
∑
β|=ϕ
β∈B

[ n∏
k=1

w(k)(β)
] 1
n .

It follows that

LogOp(w(1), . . . ,w(n))(θ ∧ ϕ) =

=

∑
γ|=θ

γ∈At(L)

[∏n
k=1 w(k)(αγ)w

(k)(βγ)
] 1
n∑

γ∈At(L)

[∏n
k=1 w(k)(αγ)w

(k)(βγ)
] 1
n

·

∑
γ|=ϕ

γ∈At(L)

[∏n
k=1 w(k)(αγ)w

(k)(βγ)
] 1
n∑

γ∈At(L)

[∏n
k=1 w(k)(αγ)w

(k)(βγ)
] 1
n

=

= LogOp(w(1), . . . ,w(n))(θ) · LogOp(w(1), . . . ,w(n))(ϕ).

�

Now consider the following theorem.

Theorem 4.3.4. Let L1 ∩ L2 = ∅, K ∈ CL1 and F ∈ CL2. Then

MEL1∪L2(K ∪ F) = MEL1(K) ·MEL2(F).

The proof is in [39]. The property described in this theorem is called the in-

dependence property. It is worth mentioning that ME is the only known inference

process which satisfies this independence property, see [24]. (Note that this property

is stronger than the independence principle for inference processes due to Paris and

Vencovská mentioned in section 1.3.) Since ME satisfies the independence property

and a corollary of theorem 4.3.3 is that LogOp preserves the independence of strongly

independent probability functions for sentences formulated in distinct languages, we

will see that the obdurate social entropy operator OSEP also satisfies the following:

Independence Principle (IP). A p-merging operator ∆ satisfies the independence

principle if whenever L = L1∪L2 is such that L1 and L2 are disjoint propositional

languages and K1, . . . ,Kn ∈ CL1 and F1, . . . ,Fn ∈ CL2, then

∆L(K1 ∪ F1, . . . ,Kn ∪ Fn) = ∆L1(K1, . . . ,Kn) ·∆L2(F1, . . . ,Fn),
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where ∆L1(K1, . . . ,Kn) ·∆L2(F1, . . . ,Fn) = {v ·w: v ∈ ∆L1(K1, . . . ,Kn),w ∈

∆L2(F1, . . . ,Fn)}.

Note that IP implies both the language invariance principle LI and the irrelevant

information principle IIP.

The next theorem states that OSEP satisfies IP.

Theorem 4.3.5. Let L1∩L2 = ∅, K1, . . . ,Kn ∈ CL1, F1, . . . ,Fn ∈ CL2 and ϕ ∈ SL1,

ψ ∈ SL2. Assume that K1, . . . ,Kn; F1, . . . ,Fn and K1 ∪F1, . . . ,Kn ∪Fn respectively

satisfy (1.4). Then

OSEPL1∪L2(K1 ∪ F1, . . . ,Kn ∪ Fn)(ϕ ∧ ψ) =

= OSEPL1(K1, . . . ,Kn)(ϕ) ·OSEPL2(F1, . . . ,Fn)(ψ).

Proof. By theorem 4.3.4 MEL1∪L2(Kk ∪Fk) = MEL1(Kk) ·MEL2(Fk) for all 1 ≤ k ≤

n. Therefore the probability functions MEL1∪L2(Kk ∪ Fk), 1 ≤ k ≤ n, are strongly

independent for ϕ ∈ SL1 and ψ ∈ SL2. Then by theorem 4.3.3 we have that

LogOp(MEL1∪L2(K1 ∪ F1), . . . ,MEL1∪L2(Kn ∪ Fn))(ϕ ∧ ψ) =

= LogOp(MEL1(K1), . . . ,MEL1(Kn))(ϕ) · LogOp(MEL2(F1), . . . ,MEL2(Fn))(ψ).

�

This principle is obviously a strengthening of the irrelevant information principle

and OSEP is so far the only natural p-merging operator which is known to satisfy it.

This underlines how hard it is for this principle to be satisfied. Unfortunately, OSEP

does not satisfy the consistency principle and the collegiality principle, and so from

our point of view can hardly be a preferred choice for multi-expert reasoning.

Theorem 4.3.6. OLEP satisfies IIP and LI. On the other hand OLEP does not

satisfy IP.

Proof. Let L1 ∪ L2 = L, L1 ∩ L2 = ∅, K1, . . . ,Kn ∈ CL1 and F1, . . . ,Fn ∈ CL2. Let

MEL(Kk∪Fk) = w(k). By theorem 4.3.4 w
(k)
ji = w

(k)
j· w

(k)
·i , where w(k)|L1 = MEL1(Kk)

and w(k)|L2 = MEL2(Fk). Hence

OLEPL(K1 ∪ F1, . . . ,Kn ∪ Fn)(αj)|L1 = LinOp(w(1), . . . ,w(n))|L1 =
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=
∑
i

∑n
k=1w

(k)
j· w

(k)
·i

n
=

∑n
k=1w

(k)
j·

n
= OLEPL1(K1, . . . ,Kn)(αj)

for any αj ∈ At(L1) which gives us the formulation of IIP. Since we can set F1 =

. . . = Fn = ∅ it also follows that OLEP satisfies LI.

Notice that
∑n
k=1 w

(k)
j· w

(k)
·i

n
6≡
∑

j

∑n
k=1 w

(k)
j· w

(k)
·i

n
·
∑

i

∑n
k=1 w

(k)
j· w

(k)
·i

n
and therefore OLEP

does not satisfy IP. �

4.4 Merging of Kern-Isberner and Röder

In this section we mention an original idea how to merge knowledge bases due to

Kern-Isberner and Röder, see [29]. Let L+ = L ∪ {s1, . . . , sn} where s1, . . . , sn are

propositional variables all distinct from the variables in L. The atoms of L+ are of the

form αj ∧si1 ∧ . . . sim ∧¬sim+1 ∧ . . .∧¬sin , where αj ∈ At(L). Given K1, . . . ,Kn ∈ CL

we define Ki(si) as Ki where every L-sentence θ is replaced by L+-sentence θ|si.

Now consider the knowledge base K defined by
n⋃
i=1

Ki(si) ∪
⋃
i1,i2
i1 6=i2

{Bel(si1 ∧ si2) = 0} ∪ {Bel(
n∨
i=1

si) = 1}.

K is obviously well defined (constraints are consistent). Kern-Isberner and Röder argue

that this set naturally represents original possibly inconsistent n-tuple of knowledge

bases K1, . . . ,Kn. Following the justification of the ME-inference process, they define

their probabilistic merging operator as the most entropic probability function in V L+

K .

Notice that this operator satisfies the defining principle (K1) since it always produces

a single probability function. It is therefore another instance of a social inference

process. In the following we describe how we can actually compute the result of this

process.

Let us denote MEL+(K) = v. In [29] it is proved that

v(αj) =
n∑
i=1

v(si) MEL(Ki)(αj) (4.20)

for all αj ∈ At(L).

Theorem 4.4.1. Let v, K1, . . . ,Kn ∈ CL and s1 . . . , sn be as above. Then

v(si) =
eH(MEL(Ki))∑n
i=1 e

H(MEL(Ki))
,

for all 1 ≤ i ≤ n, where H denotes the Shannon entropy.
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Proof. By (4.20) and by the definition of K we have that

v(αj ∧ si) = v(si) MEL(Ki)(αj)

and v(αj|si) = MEL(Ki)(αj). Therefore v ∈ V L+

K regardless on values v(si), 1 ≤ i ≤

n, subject only to
∑n

i=1 v(si) = 1. Hence, it is sufficient to identify for which v(si),

i = 1, . . . , n, the entropy

−
n∑
i=1

J∑
j=1

v(si) MEL(Ki)(αj) log
[
v(si) MEL(Ki)(αj)

]
is maximal subject to

∑n
i=1 v(si) = 1. Now

∂

∂v(si)

[
−

n∑
i=1

J∑
j=1

v(si) MEL(Ki)(αj) log
[
v(si) MEL(Ki)(αj)

]
+

+λ(
n∑
i=1

v(si)− 1)
]

= −1− log v(si) +H(MEL(Ki)) + λ.

Setting this equal to zero gives

v(si) = eH(MEL(Ki))eλ−1.

Since
∑n

i=1 v(si) = 1 we have that

eλ−1 =
1∑n

i=1 e
H(MEL(Ki))

and hence

v(si) =
eH(MEL(Ki))∑n
i=1 e

H(MEL(Ki))
, i = 1, . . . , n,

is the only critical point. Since the function is concave there is a global maximum at

this point. �

In particular, if V L
K1

= {w(1)}, . . . , V L
Kn

= {w(n)} then MEL+(K)(αj) is equal to

n∑
i=1

eH(w(i))∑n
i=1 e

H(w(i))
w

(i)
j

what is simply a weighted linear pooling operator.

Therefore the Kern-Isberner and Röder merging operator (KIRP) can be alterna-

tively defined for any K1, . . . ,Kn ∈ CL by

KIRPL(K1, . . . ,Kn) =
n∑
i=1

eH(MEL(Ki))∑n
i=1 e

H(MEL(Ki))
MEL(Ki),

where H(w(i)) = −
∑J

j=1w
(i)
j logw

(i)
j and w(i) = MEL(Ki).

It is easy to see that KIRP satisfies principles (K2) and (K3). Also:
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Theorem 4.4.2. KIRP satisfies (K6*) and (K7).

Proof. The theorem is easy to observe by considering the following identity.

KIRPL(K1, . . . ,Kn,F1, . . . ,Fm) =

=

∑n
i=1 e

H(MEL(Ki))∑n
i=1 e

H(MEL(Ki)) +
∑m

i=1 e
H(MEL(Fi))

KIRPL(K1, . . . ,Kn)+

+

∑m
i=1 e

H(MEL(Fi))∑n
i=1 e

H(MEL(Ki)) +
∑m

i=1 e
H(MEL(Fi))

KIRPL(F1, . . . ,Fm).

�

Notice that KIRP gives higher weights to those experts whose knowledge bases are

more entropic and hence less controversial. Therefore it is in spirit something in be-

tween obdurate merging operators and those which satisfy the principles of consistency

and collegiality. However:

Theorem 4.4.3. KIRP does not satisfy the consistency principle (K4).

Proof. Assume that L has at least two propositional variables. In the proof of theorem

1.4.1 the following knowledge bases have been constructed: V L
K1

= {λv + (1 − λ)w :

λ ∈ [0, 1]}, V L
K2

= {λa′ + (1 − λ)w : λ ∈ [0, 1]}, V L
F1

= {λv + (1 − λ)u : λ ∈ [0, 1]}

and V L
F2

= {λa′ + (1 − λ)u : λ ∈ [0, 1]}, where w,u, a′,v are distinct L-probability

functions. If we take in place of a general concave function f (in the proof of theorem

1.4.1) the Shannon entropy H then we have that MEL(K1) = v, MEL(K2) = a′,

MEL(F1) = v and MEL(F2) = a′. Therefore

KIRPL(K1,K2) =
eH(v)

eH(v) + eH(a′)
v +

eH(a′)

eH(v) + eH(a′)
a′ = KIRPL(F1,F2). (4.21)

Now, if KIRP satisfied (K4) then KIRPL(K1,K2) = w and KIRPL(F1,F2) = u

would contradict (4.21). �

One can also see that KIRP does not satisfy the collegiality principle (K5):

Example 4.4.4. Let K,F ∈ CL. Assume that MEL(K) ∈ V L
F but MEL(F) 6=

MEL(K). Note that this is perfectly possible, for instance consider that the uniform

probability function belongs to V L
F but not to V L

K . Then clearly KIRPL(K,F) 6=

MEL(K) = KIRPL(K).
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Theorem 4.4.5. KIRP does satisfy LI.

Proof. Let L = L1 ∪ L2, L1 ∩ L2 = ∅ and K ∈ CL1. Assume that u ∈ DL2 is the

uniform probability function. Notice that by theorem 4.3.4 MEL1(K) · u = MEL(K)

so H(MEL1(K)) +H(u) = H(MEL(K)). Therefore if K1, . . . ,Kn ∈ CL1 then

KIRPL(K1, . . . ,Kn)|L1 =
n∑
k=1

eH(MEL1
(Kk))eH(u)∑n

k=1 e
H(MEL1

(Kk))eH(u)
MEL(Kk)|L1 =

=
n∑
k=1

eH(MEL1
(Kk))∑n

k=1 e
H(MEL1

(Kk))
MEL1(Kk) = KIRPL1(K1, . . . ,Kn).

�

On the other hand the following example shows that KIRP does not satisfy IIP

and CIIP.

Example 4.4.6. Let L = L1 ∪ L2, L1 = {p} and L2 = {q}. Assume that K1,K2

are such that V L1
K1

= {(1
4
, 3

4
)} and V L1

K2
= {(1

2
, 1

2
)}. Let F1,F2 ∈ CL2 be such that

V L2
F1

= {(x, 1 − x), 1
4
≤ x ≤ 1

2
} and V L2

F2
= {(1

4
, 3

4
)}. Hence MEL2(F1) = (1

2
, 1

2
)

and H((1
2
, 1

2
)) = − log 1

2
= h1 while MEL2(F2) = (1

4
, 3

4
) and H((1

4
, 3

4
)) = −1

4
log 1

4
−

3
4

log 3
4

= h2.

Now

KIRPL(K1 ∪ F1,K2 ∪ F2)(p) =

=
eh1eh2

2 · eh1eh2
1

4

(1

2
+

1

2

)
+

eh1eh2

2 · eh1eh2
1

2

(1

4
+

3

4

)
=

3

8
,

where we have used theorem 4.3.4. On the other hand, since h1 6= h2,

KIRPL1(K1,K2)(p) =

=
eh2

eh2 + eh1
1

4
+

eh1

eh2 + eh1
1

2
6= 3

8
. �

Thus KIRP, like the obdurate merging operators previously considered does not

satisfy the consistency principle, but unlike them it does not have the advantage of

rationality when dealing with irrelevant information. Although for this reason one

might find KIRP inconclusive, this process is an important example showing that not

every naturally defined two stage process which applies an inference process at the

first stage is necessary obdurate.
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4.5 Relativisation

In section 1.3 we have mentioned the principle called Relativisation which was origi-

nally formulated in [39]. This is a fairly simple principle expressing how an inference

process should treat a certain type of linear constraint. In this section we introduce a

version for p-merging operators.

For θ ∈ SL and w ∈ DL we define w|θ by w|θ(α) = w(α|θ) for all α ∈ At(L)

if w(θ) 6= 0 and we leave it undefined otherwise. Note that given w(θ) 6= 0 and

α ∈ At(L) such that α |= ¬θ we have that w|θ(α) = 0. Then for ∆ ⊆ DL define

∆|θ = {w|θ: w ∈ ∆}.

Relativisation (REL). Suppose that K1, . . . ,Kn,F1, . . . ,Fn ∈ CL are such that

Kk = {Bel(θ) = c(k)} ∪
{∑

s

a
(k)
si Bel(ϕs|θ) = d

(k)
i , i = 1, . . . , h(k)

}
,

Fk = Kk ∪
{∑

s

b
(k)
si Bel(ψs|¬θ) = e

(k)
i , i = 1, . . . , l(k)

}
,

where 0 < c(k) < 1, θ is fixed and ϕs, ψs are L-sentences indexed over some index

set. Let ∆ be a p-merging operator. Then

∆L(K1, . . . ,Kn)|θ = ∆L(F1, . . . ,Fn)|θ.

This principle is fairly natural since if θ is true then F1, . . . ,Fn do not say anything

more than K1, . . . ,Kn do respectively.

In the following we denote At(θ) = {j : αj ∈ At(L), αj |= θ} and At(¬θ) = {j :

αj ∈ At(L), αj 6∈ At(θ)}.

Theorem 4.5.1. ∆̂KL satisfies REL.

Proof. Let K1, . . . ,Kn,F1, . . . ,Fn ∈ CL be as in the definition of REL. As-

sume that w ∈ ∆̂KL
L (K1, . . . ,Kn) and let (w(1), . . . ,w(n)) ∈ Γ̂KL

L (K1, . . . ,Kn) be

such that w = LinOp(w(1), . . . ,w(n)). By lemma 3.1.1 w(1), . . . ,w(n) minimise∑n
i=1 KL(w(i)‖LinOp(w(1), . . . ,w(n)) subject only to w(1) ∈ V L

K1
, . . . , w(n) ∈ V L

Kn
.

Now note that due to the constraints {Bel(θ) = c(k)} ∈ Kk, 1 ≤ k ≤ n, we

have that w(1), . . . ,w(n) also minimise
∑n

i=1

∑
j∈At(θ)∩Sig(w) w

(i)
j log

n·w(i)
j∑n

i=1 w
(i)
j

, where w =

LinOp(w(1), . . . ,w(n)), subject to w(1) ∈ V L
K1
, . . . , w(n) ∈ V L

Kn
.
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Let v(1), . . . ,v(n) be such that (i) they minimise

n∑
k=1

∑
j∈At(¬θ)∩Sig(v)

v
(k)
j log

n · v(k)
j∑n

i=k v
(k)
j

,

where v = LinOp(v(1), . . . ,v(n)), subject to v(1) ∈ V L
F1
, . . . , v(n) ∈ V L

Fn
, and (ii)

v
(k)
j = w

(k)
j for all j ∈ At(θ) and 1 ≤ k ≤ n. It follows that v(1), . . . ,v(n) minimise∑n

k=1 KL(v(k)‖LinOp(v(1), . . . ,v(n)) subject to v(1) ∈ V L
F1
, . . . ,v(n) ∈ V L

Fn
and hence

LinOp(v(1), . . . ,v(n)) ∈ ∆̂KL
L (F1, . . . ,Fn).

We need to show that LinOp(w(1), . . . ,w(n))|θ = LinOp(v(1), . . . ,v(n))|θ. Let

j ∈ At(θ) and αj be the corresponding L-atom. Then

LinOp(w(1), . . . ,w(n))|θ(αj) =

=

∑n
k=1w

(k)
j∑

j∈At(θ)

∑n
k=1 w

(k)
j

=

∑n
k=1 v

(k)
j∑

j∈At(θ)

∑n
k=1 v

(k)
j

=

= LinOp(v(1), . . . ,v(n))|θ(αj).

Note that by {Bel(θ) = c(k)} ∈ Kk, 1 ≤ k ≤ n,
∑

j∈At(θ)

∑n
k=1w

(k)
j 6= 0. Moreover,

since v(k)(αj|θ) = w(k)(αj|θ) = 0 for j ∈ At(¬θ) and 1 ≤ k ≤ n, we can conclude that

∆̂KL
L (K1, . . . ,Kn)|θ ⊆ ∆̂KL

L (F1, . . . ,Fn)|θ.

The proof for ∆̂KL
L (F1, . . . ,Fn)|θ ⊆ ∆̂KL

L (K1, . . . ,Kn)|θ is similar. �

Theorem 4.5.2. ∆̂Dr , 2 ≥ r > 1, satisfies REL.

Proof. The proof is analogous to the one above. The crucial difference is only that the

quantity to minimise is

n∑
k=1

∑
j∈At(¬θ)

[
(w

(k)
j )r −

(∑n
k=1w

(k)
j

n

)r
− r
(
w

(k)
j −

∑n
k=1w

(k)
j

n

)(∑n
k=1w

(k)
j

n

)r−1]
.

However, since the constraints {Bel(θ) = c(k)} ∈ Kk, 1 ≤ k ≤ n, have the same effect

on this quantity as on the sum of KL-divergences, the theorem follows for ∆̂Dr -operator

as well. �

The following result is in fact a consequence of a more general theorem 3.9 in [53].

Theorem 4.5.3. The ∆KL-merging operator satisfies REL when its definition is re-

stricted so that condition (1.4) is satisfied for any input of knowledge bases.
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Proof. Let K1, . . . ,Kn,F1, . . . ,Fn ∈ CL be as in the definition of REL and more-

over assume that K1, . . . ,Kn and F1, . . . ,Fn satisfy condition (1.4) respectively. As-

sume that w ∈ ∆KL
L (K1, . . . ,Kn) and let (w(1), . . . ,w(n)) ∈ ΓKL

L (K1, . . . ,Kn) be

such that w = LogOp(w(1), . . . ,w(n)). By lemma 3.1.4, w(1), . . . ,w(n) maximise∑J
j=1(

∏n
k=1w

(k)
j )

1
n subject only to w(1) ∈ V L

K1
, . . . , w(n) ∈ V L

Kn
.

Now note that due to the constraints {Bel(θ) = c(k)} ∈ Kk, 1 ≤ k ≤ n, we have

that w(1), . . . ,w(n) also maximise
∑

j∈At(θ)(
∏n

k=1w
(k)
j )

1
n subject to w(1) ∈ V L

K1
, . . . ,

w(n) ∈ V L
Kn

.

Let v(1), . . . ,v(n) be such that (i) they maximise
∑

j∈At(¬θ)(
∏n

k=1 v
(k)
j )

1
n subject to

v(1) ∈ V L
F1
, . . . , v(n) ∈ V L

Fn
, and (ii) v

(k)
j = w

(k)
j for j ∈ At(θ) and 1 ≤ k ≤ n. It follows

that v(1), . . . ,v(n) maximise
∑J

j=1(
∏n

k=1 v
(k)
j )

1
n subject to v(1) ∈ V L

F1
, . . . ,v(n) ∈ V L

Fn

and hence LogOp(v(1), . . . ,v(n)) ∈ ∆KL
L (F1, . . . ,Fn).

We need to show that LogOp(w(1), . . . ,w(n))|θ = LogOp(v(1), . . . ,v(n))|θ. Let

j ∈ At(θ) and αj be the corresponding L-atom. Then

LogOp(w(1), . . . ,w(n))|θ(αj) =

(
∏n
k=1 w

(k)
j )

1
n∑

j∈At(θ)(
∏n
k=1 w

(k)
j )

1
n+

∑
j∈At(¬θ)(

∏n
k=1 w

(k)
j )

1
n∑

j∈At(θ)(
∏n
k=1 w

(k)
j )

1
n∑

j∈At(θ)(
∏n
k=1 w

(k)
j )

1
n+

∑
j∈At(¬θ)(

∏n
k=1 w

(k)
j )

1
n

=

=
(
∏n

k=1w
(k)
j )

1
n∑

j∈At(θ)(
∏n

k=1 w
(k)
j )

1
n

.

Note that by {Bel(θ) = c(k)} ∈ Kk, 1 ≤ k ≤ n,
∑

j∈At(θ)(
∏n

k=1w
(k)
j )

1
n 6= 0. Accord-

ingly,

LogOp(v(1), . . . ,v(n))|θ(αj) =
(
∏n

k=1 v
(k)
j )

1
n∑

j∈At(θ)(
∏n

k=1 v
(k)
j )

1
n

.

Since v
(k)
j = w

(k)
j for j ∈ At(θ) and 1 ≤ k ≤ n, the two values above are equal.

Moreover, since v(k)(αj|θ) = w(k)(αj|θ) = 0 for j ∈ At(¬θ) and 1 ≤ k ≤ n, we can

conclude that ∆KL
L (K1, . . . ,Kn)|θ ⊆ ∆KL

L (F1, . . . ,Fn)|θ.

The proof for ∆KL
L (F1, . . . ,Fn)|θ ⊆ ∆KL

L (K1, . . . ,Kn)|θ is similar. �

The following example shows that condition (1.4) in theorem above is necessary.

Example 4.5.4. Let L = {a, b}. Assume that the knowledge of the first expert

consists of K1 = {Bel(a) = 1
2
, Bel(a ∧ b | a) = 0} and F1 = {Bel(¬a ∧ b | ¬a) = 0},
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and the knowledge of the second expert consists of K2 = {Bel(a) = 1
2
, Bel(a ∧

¬b | a) = 0} and F2 = {Bel(¬a ∧ ¬b | ¬a) = 0}. Then V L
K1

= {(0, 1
2
, x, 1

2
− x), x ∈

[0, 1
2
]}, V L

K1∪F1
= {(0, 1

2
, 0, 1

2
)}, V L

K2
= {(1

2
, 0, x, 1

2
− x), x ∈ [0, 1

2
]} and V L

K2∪F2
=

{(1
2
, 0, 1

2
, 0)}, where the atoms in probability functions are listed as follows: a ∧ b,

a ∧ ¬b, ¬a ∧ b and ¬a ∧ ¬b.

Now, while ∆KL
L (K1 ∪ F1,K2 ∪ F2) = DL, for all v ∈ ∆KL

L (K1,K2) we have that

v(a) = 0 so the principle of relativisation does not even make sense for such knowledge

bases. �

Theorem 4.5.5. OLEP and OSEP satisfy REL.

Proof. First, recall that ME satisfies the Relativisation principle. Therefore, if

K1, . . . ,Kn,F1, . . . ,Fn ∈ CL are as in the definition of REL and α |= θ is an L-

atom then

MEL(Ki)(α)

MEL(Ki)(θ)
= MEL(Ki)|θ(α) = MEL(Fi)|θ(α) =

MEL(Fi)(α)

MEL(Fi)(θ)
. (4.22)

Due to {Bel(θ) = c(i)} ∈ Ki and {Bel(θ) = c(i)} ∈ Fi we have that MEL(Ki)(θ) =

MEL(Fi)(θ) 6= 0 and (4.22) gives MEL(Ki)(α) = MEL(Fi)(α) for all 1 ≤ i ≤ n.

Now,

OLEPL(K1, . . . ,Kn)|θ(α) = LinOp(MEL(K1), . . . ,MEL(Kn))|θ(α) =

=

∑n
i=1 MEL(Ki)(α)∑

α|=θ
∑n

i=1 MEL(Ki)(α)
=

∑n
i=1 MEL(Fi)(α)∑

α|=θ
∑n

i=1 MEL(Fi)(α)
=

= LinOp(MEL(F1), . . . ,MEL(Fn))|θ(α) = OLEPL(F1, . . . ,Fn)|θ(α).

Similarly, given that K1, . . . ,Kn and F1, . . . ,Fn satisfy condition (1.4) respectively,

OSEPL(K1, . . . ,Kn)|θ = LogOp(MEL(K1), . . . ,MEL(Kn))|θ

and

OSEPL(F1, . . . ,Fn)|θ = LogOp(MEL(F1), . . . ,MEL(Fn))|θ.

Let α |= θ be an L-atom. Then

LogOp(MEL(K1), . . . ,MEL(Kn))|θ(α) =

(
∏n
i=1 MEL(Ki)(α))

1
n∑

α∈At(L)(
∏n
i=1 MEL(Ki)(α))

1
n∑

α|=θ
α∈At(L)

(
∏n
i=1 MEL(Ki)(α))

1
n

∑
α∈At(L)(

∏n
i=1 MEL(Ki)(α))

1
n
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and

LogOp(MEL(F1), . . . ,MEL(Fn))|θ(α) =
(
∏n

i=1 MEL(Fi)(α))
1
n∑

α|=θ
α∈At(L)

(
∏n

i=1 MEL(Fi)(α))
1
n

.

Since MEL(Ki)(α) = MEL(Fi)(α) for all 1 ≤ i ≤ n the theorem follows. �

The following example shows that KIRP does not satisfy relativisation.

Example 4.5.6. Let L = {a, b}. Assume that the knowledge of the first expert

consists of K1 = {Bel(a) = 1
2
, Bel(a ∧ b | a) = 1

2
} and F1 = {Bel(¬a ∧ b | ¬a) = 1

4
},

and the knowledge of the second expert consists of K2 = {Bel(a) = 1
2
, Bel(a∧b | a) =

1
4
}. Then MEL(K1) = (1

4
, 1

4
, 1

4
, 1

4
), MEL(K1 ∪ F1) = (1

4
, 1

4
, 1

8
, 3

8
) and MEL(K2) =

(1
8
, 3

8
, 1

4
, 1

4
), where the atoms in probability functions are listed as follows: a∧ b, a∧¬b,

¬a ∧ b and ¬a ∧ ¬b. Let H((1
4
, 1

4
, 1

4
, 1

4
) = h1 and H((1

8
, 3

8
, 1

4
, 1

4
)) = H((1

4
, 1

4
, 1

8
, 3

8
)) = h2.

Now

KIRPL(K1,K2)(a ∧ b | a) =

eh1

eh1+eh2
MEL(K1)(a ∧ b) + eh2

eh1+eh2
MEL(K2)(a ∧ b)

eh1

eh1+eh2
MEL(K1)(a) + eh2

eh1+eh2
MEL(K2)(a)

=

= 2
eh1

eh1 + eh2
1

4
+ 2

eh2

eh1 + eh2
1

8
(4.23)

and

KIRPL(K1 ∪ F1,K2)(a ∧ b | a) =

eh2

eh2+eh2
MEL(K1 ∪ F1)(a ∧ b) + eh2

eh2+eh2
MEL(K2)(a ∧ b)

eh2

eh2+eh2
MEL(K1 ∪ F1)(a) + eh2

eh2+eh2
MEL(K2)(a)

=
1

4
+

1

8
. (4.24)

Since eh2 6= eh1 the quantities (4.23) and (4.24) are not equal. �

As it is shown in the following example, also HULL does not satisfy REL.

Example 4.5.7. Let L = {a, b}. Assume that the knowledge of the first expert

consists of K1 = {Bel(a) = 1
2
, Bel(a ∧ b | a) = 1

2
} and F1 = {Bel(¬a ∧ b | ¬a) =

1
2
}, and the knowledge of the second expert consists of K2 = {Bel(a) = 1

2
} and

F2 = {Bel(¬a ∧ b | ¬a) = 1
4
}. Then V L

K1
= {(1

4
, 1

4
, x, 1

2
− x), x ∈ [0, 1

2
]}, V L

K1∪F1
=

{(1
4
, 1

4
, 1

4
, 1

4
)}, V L

K2
= {(y, 1

2
− y, x, 1

2
− x), y ∈ [0, 1

2
], x ∈ [0, 1

2
]} and V L

K2∪F2
= {(y, 1

2
−

y, 1
8
, 3

8
), y ∈ [0, 1

2
]}, where the atoms in probability functions are listed as follows:

a ∧ b, a ∧ ¬b, ¬a ∧ b and ¬a ∧ ¬b.
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Since K1 and K2 are jointly consistent we have that

HULLL(K1,K2) = V L
K1
∩ V L

K2
=
{(1

4
,
1

4
, x,

1

2
− x
)
, x ∈

[
0,

1

2

]}
.

On the other hand K1 ∪ F1 and K2 ∪ F2 are inconsistent and hence(
y,

1

2
− y, 1

8
,
3

8

)
∈ V L

K2∪F2
⊂ HULLL(K1 ∪ F1,K2 ∪ F2),

say for y = 0. But certainly (0, 1
2
, 1

8
, 3

8
)|a 6∈ {(1

4
, 1

4
, x, 1

2
− x), x ∈ [0, 1

2
]}|a. �



Chapter 5

Making a merging process

single-valued

5.1 Chairman theorems

We started our quest for multi-expert merging procedures by observing that the most

naive generalisations of single-expert inference processes do not appear very appealing

once the principle of consistency is considered. In chapter 3 we examined the linear

entropy operator ∆̂KL and the social entropy operator ∆KL and argued that, when

restricted to BCL, they naturally occur as the fixed points of processes of knowledge

updating and pooling. In chapter 4 we have seen that when confined to BCL both

∆̂KL and ∆KL possess relatively attractive properties when compared to other known

p-merging operators.

In this section we will focus only on these two operators ∆̂KL and ∆KL and we

investigate their susceptibility to a small bias by the uniform probability function —

the most uninformative point of DL. The study of this problem first occurred in [52]

where Wilmers argued that an independent adjudicator, whose only knowledge con-

sists of what is related to him by the given college of experts, can rationally bias

the agreement procedure by including himself as an additional expert, whose personal

probability function is the uniform one, in order to calculate a single social probability

function; and then find what would happen to this social probability function if his

contribution were happen to be infinitesimally small relative to that of the other ex-

perts. He showed that in the case of the ∆KL-merging operator this point of agreement

113
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is characterised by applying the ME-inference process to the region defined by ∆KL.

In what follows we adapt this result and show that in the case of the ∆̂KL-merging

operator the corresponding point can be characterised by applying the CM∞-inference

process to the region defined by ∆̂KL.

Theorem 5.1.1. Let K1, . . . ,Kn ∈ BCL be such that for at least one i V L
Ki

is a

singleton. Then ∆̂KL
L (K1, . . . ,Kn) is a singleton.

Proof. Without loss of generality assume that V L
K1

= {v}. For a contradiction

suppose that w, r ∈ ∆̂KL
L (K1, . . . ,Kn) and w 6= r. Denote w(2), . . . ,w(n) the KL-

projections of w into V L
K2
, . . . , V L

Kn
respectively and r(2), . . . , r(n) the KL-projections

of r into V L
K2
, . . . , V L

Kn
respectively. By corollary 3.2.6 w = LinOp(v,w(2), . . . ,w(n))

and r = LinOp(v, r(2), . . . , r(n)).

Now consider x = λw+(1−λ)r for some λ ∈ (0, 1). By theorem 3.1.2 we have that

x ∈ ∆̂KL
L (K1, . . . ,Kn). Since KL(·‖·) is a convex function, by the Jensen inequality

we have that

KL(v‖x) +
n∑
i=2

KL(λw(i) + (1− λ)r(i)‖x) ≤

≤ λ
(

KL(v‖w) +
n∑
i=2

KL(w(i)‖w)
)

+ (1− λ)
(

KL(v‖r) +
n∑
i=2

KL(r(i)‖r)
)

=

= M̂
KL

L (K1, . . . ,Kn). (5.1)

However, since w, r,x ∈ ∆̂KL
L (K1, . . . ,Kn) and λw(i) + (1 − λ)r(i) ∈ V L

Ki
, 1 ≤ i ≤ n,

the above is possible only with the equality.

On the other hand, by lemma 2.2.1, the following Jensen inequality is strict:

KL(v‖x) < λKL(v‖w) + (1− λ) KL(v‖r).

Note that the border points λ = 0, 1 are excluded. Therefore (5.1) yields

n∑
i=2

KL(λw(i) + (1− λ)r(i)‖x) >

> λ
( n∑
i=2

KL(w(i)‖w)
)

+ (1− λ)
( n∑
i=2

KL(r(i)‖r)
)

.

However this contradicts the Jensen inequality. �

Note, that example 4.2.2 shows that in the theorem above it is not possible to

replace BCL by CL.
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Theorem 5.1.2 (Chairman Theorem for ∆̂KL). Let I ∈ BCL be such that V L
I = {t},

where t = ( 1
J
, . . . , 1

J
) and J = |At(L)|. Let K1, . . . ,Kn ∈ BCL. Define

{v[m]} = ∆̂KL
L (K1, . . . ,K1︸ ︷︷ ︸

m

, . . . ,Kn, . . . ,Kn︸ ︷︷ ︸
m

, I),

for all m = 1, 2, . . . . Then {v[m]}∞m=1 converges and

lim
m→∞

v[m] = CM∞
L (∆̂KL

L (K1, . . . ,Kn)).

Proof. First of all recall that M̂
KL

L (K1, . . . ,Kn) denotes the minimal value of

n∑
i=1

KL(w(i)‖v)

subject to w(i) ∈ V L
Ki

, 1 ≤ i ≤ n, and v ∈ DL. Furthermore, we denote by Em the

minimal value of

m
n∑
i=1

KL(w(i)‖v)−mM̂
KL

L (K1, . . . ,Kn) + KL(t‖v) (5.2)

subject to w(i) ∈ V L
Ki

, 1 ≤ i ≤ n, and v ∈ DL. By the definition of M̂
KL

L (K1, . . . ,Kn)

we have that 0 ≤ Em for all m = 1, 2, . . . . Notice that for (w(1), . . . ,w(n)) ∈

Γ̂KL
L (K1, . . . ,Kn) and v = LinOp(w(1), . . . ,w(n)) (5.2) becomes KL(t‖v).

Note that for a fixed m if v ∈ DL globally minimises (5.2) subject to w(i) ∈ V L
Ki

,

1 ≤ i ≤ n, then v ∈ ∆̂KL
L (K1, . . . ,K1︸ ︷︷ ︸

m

, . . . ,Kn, . . . ,Kn︸ ︷︷ ︸
m

, I) (by theorem 5.1.1 such a v is

unique), and conversely if v ∈ ∆̂KL
L (K1, . . . ,K1︸ ︷︷ ︸

m

, . . . ,Kn, . . . ,Kn︸ ︷︷ ︸
m

, I) then v minimises

(5.2) subject to above constraints.

Now let r = CM∞
L (∆̂KL

L (K1, . . . ,Kn)). Since K1, . . . ,Kn ∈ BCL this means that

r = arg max
v∈∆̂KL

L (K1,...,Kn)

J∑
j=1

log vj = arg min
v∈∆̂KL

L (K1,...,Kn)
KL(t‖v).

Since r ∈ ∆̂KL
L (K1, . . . ,Kn) it follows that for all m ∈ N

Em ≤ KL(t‖r). (5.3)

Since DL ⊆ RJ is a compact space there exist a convergent subsequence of the

sequence {v[m]}∞m=1. Let {v[mk]}∞k=1 be any such convergent subsequence. Let

(w(1)[mk], . . . ,w(1)[mk]︸ ︷︷ ︸
mk

. . .w(n)[mk], . . . ,w(n)[mk]︸ ︷︷ ︸
mk

, t) ∈ Γ̂KL
L (K1, . . . ,K1︸ ︷︷ ︸

mk

. . .Kn, . . . ,Kn︸ ︷︷ ︸
mk

, I)
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be associated with v[mk] for all k ∈ N. Recall that these are unique for every v[mk]

because w(i)[mk] corresponds to the KL-projection of v[mk] to V L
Ki

, 1 ≤ i ≤ n.

Now the sequence

{
n∑
i=1

KL(w(i)[mk]‖v[mk])}∞k=1 (5.4)

is bounded in R. That is because we are operating in BCL and therefore the coordi-

nates of all w(i)[mk], 1 ≤ i ≤ n and k = 1, 2, . . . , are bounded away from zero by some

constants. And, since v[mk] = LinOp(w(1)[mk], . . . ,w(n)[mk]), we can find some global

bound away from zero for the coordinates of all v[mk], k = 1, 2, . . . . Consequently the

sequence (5.4) also has a convergent subsequence. If the limit of any such convergent

subsequence was not equal to M̂
KL

L (K1, . . . ,Kn) then there would be eventually an m

which would contradict (5.3).

Now we show that existence of a convergent subsequence and the fact

that every convergent subsequence has the limit M̂
KL

L (K1, . . . ,Kn) implies that

{
∑n

i=1 KL(w(i)[mk]‖v[mk])}∞k=1 converges and that

lim
k→∞

n∑
i=1

KL(w(i)[mk]‖v[mk]) = M̂
KL

L (K1, . . . ,Kn). (5.5)

Assume that (5.5) is not the case. Then there is an open neighbourhood of the point

M̂
KL

L (K1, . . . ,Kn) outside of which there is an infinite number of the members of

the sequence {
∑n

i=1 KL(w(i)[mk]‖v[mk])}∞k=1. By the same compactness argument as

before we have that there is a convergent subsequence with the limit distinct from

M̂
KL

L (K1, . . . ,Kn) which contradicts our previous claim.

Note that we already know that limk→∞ v[mk] exists and we can denote it by v.

However we do not know whether the same is true for limk→∞w(i)[mk], 1 ≤ i ≤ n. On

the other hand since V L
K1
, . . . , V L

Kn
are compact there is a subsequence {ml}∞l=1 of the

sequence of indices {mk}∞k=1 such that for all 1 ≤ i ≤ n the subsequence {w(i)[ml]}∞l=1

of the sequence {w(i)[mk]}∞k=1 is convergent. Let us denote the corresponding limits

w(1), . . . ,w(n). Note that also liml→∞ v[ml] = v. Since KL(·‖·) is a continuous function

in both variables (we are confined to BCL) the value of
∑n

i=1 KL(w(i)‖v) is equal to

the limit liml→∞
∑n

i=1 KL(w(i)[ml]‖v[ml]) which, by (5.5), is M̂
KL

L (K1, . . . ,Kn). But

this means that we have found a minimiser of
∑n

i=1 KL(w(i)‖v) subject to w(i) ∈ V L
Ki

,

1 ≤ i ≤ n, and v ∈ DL.
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It follows that v = limk→∞ v[mk] ∈ ∆̂KL
L (K1, . . . ,Kn) and therefore limk→∞Emk =

KL(t‖ limk→∞ v[mk]) which, by the definition of CM∞, is greater or equal to KL(t‖r).

However, by (5.3) this is possible only if limk→∞ v[mk] = r.

In fact we have proved that every convergent subsequence of {v[m]}∞m=1 has r as

the limit. Now exactly as several lines above we prove that this implies convergence

of whole sequence {v[m]}∞m=1 and that limm→∞ v[m] = r. Assume that this is not the

case. Then there is an open neighbourhood of the point r outside of which there is an

infinite number of the members of the sequence {v[m]}∞m=1. Since then these lie in a

compact space there is a convergent subsequence among them with limit distinct from

r which contradicts our previous claim. �

The following theorem is proved in [53].

Theorem 5.1.3. Let K1, . . . ,Kn ∈ CL be such that condition (1.4) holds and for at

least one i V L
Ki

is a singleton. Then ∆KL
L (K1, . . . ,Kn) is a singleton.

The following theorem is a significant result of Wilmers, see [53].

Theorem 5.1.4 (Chairman Theorem for ∆KL). Let I ∈ CL be such that V L
I = {t},

where t = ( 1
J
, . . . , 1

J
) and J = |At(L)|. Let K1, . . . ,Kn ∈ CL be such that condition

(1.4) holds. Define

{v[m]} = ∆KL
L (K1, . . . ,K1︸ ︷︷ ︸

m

, . . . ,Kn, . . . ,Kn︸ ︷︷ ︸
m

, I),

for all m = 1, 2, . . . . Then {v[m]}∞m=1 converges and

lim
m→∞

v[m] = MEL(∆KL
L (K1, . . . ,Kn)).

We prove this theorem here only for the restriction to BCL. We follow the same

lines as in the proof of theorem 5.1.2. For the proof in full generality see [53].

Proof for the restriction to BCL. First of all recall that MKL
L (K1, . . . ,Kn) denotes the

minimal value of
n∑
i=1

KL(v‖w(i))
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subject to w(i) ∈ V L
Ki

, 1 ≤ i ≤ n, and v ∈ DL. Furthermore, we denote by Em the

minimal value of

m

n∑
i=1

KL(v‖w(i))−mMKL
L (K1, . . . ,Kn) + KL(v‖t) (5.6)

subject to w(i) ∈ V L
Ki

, 1 ≤ i ≤ n, and v ∈ DL. By the definition of MKL
L (K1, . . . ,Kn)

we have that 0 ≤ Em for all m = 1, 2, . . . .

Note, that for a fixed m if v ∈ DL globally minimises (5.6) subject to w(i) ∈ V L
Ki

,

1 ≤ i ≤ n, then v ∈ ∆KL
L (K1, . . . ,K1︸ ︷︷ ︸

m

, . . . ,Kn, . . . ,Kn︸ ︷︷ ︸
m

, I) (by theorem 5.1.3 such a v

is unique) and conversely if v ∈ ∆KL
L (K1, . . . ,K1︸ ︷︷ ︸

m

, . . . ,Kn, . . . ,Kn︸ ︷︷ ︸
m

, I) then v minimises

(5.6) subject to above constraints.

Now let r = MEL(∆KL
L (K1, . . . ,Kn)), that is

r = arg max
v∈∆KL

L (K1,...,Kn)
−

J∑
j=1

vj log vj = arg min
v∈∆KL

L (K1,...,Kn)
KL(v‖t).

Since r ∈ ∆KL
L (K1, . . . ,Kn) it follows that for all m ∈ N

Em ≤ KL(r‖t). (5.7)

Since DL ⊆ RJ is a compact space there exist a convergent subsequence of the

sequence {v[m]}∞m=1. Let {v[mk]}∞k=1 be any such convergent subsequence. Let

(w(1)[mk], . . . ,w(1)[mk]︸ ︷︷ ︸
mk

. . .w(n)[mk], . . . ,w(n)[mk]︸ ︷︷ ︸
mk

, t) ∈ ΓKL
L (K1, . . . ,K1︸ ︷︷ ︸

mk

. . .Kn, . . . ,Kn︸ ︷︷ ︸
mk

, I)

be associated with v[mk] for all k ∈ N. Recall that by lemma 3.2.8 these are unique for

every v[mk] because w(i)[mk] corresponds to the KL-projection of v[mk] to V L
Ki

, 1 ≤ i ≤ n.

Now the sequence

{
n∑
i=1

KL(v[mk]‖w(i)[mk])}∞k=1 (5.8)

is bounded in R. That is because we are operating in BCL and therefore the coordi-

nates of all w(i)[mk], 1 ≤ i ≤ n and k = 1, 2, . . . , are bounded away from zero by some

constants. And, since v[mk] = LogOp(w(1)[mk], . . . ,w(n)[mk]), we can find some global

bound away from zero for the coordinates of all v[mk], k = 1, 2, . . . . Consequently the

sequence (5.8) also has a convergent subsequence. If the limit of any such convergent

subsequence was not equal to MKL
L (K1, . . . ,Kn) then there would be eventually an m

which would contradict (5.7).
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A similar argument to the one used in the proof of chairman theorem for ∆̂KL gives

that {
∑n

i=1 KL(v[mk]‖w(i)[mk])}∞k=1 converges and that

lim
k→∞

n∑
i=1

KL(v[mk]‖w(i)[mk]) = MKL
L (K1, . . . ,Kn). (5.9)

Note that we already know that limk→∞ v[mk] exists and we can denote it by v.

However we do not know whether the same is true for limk→∞w(i)[mk], 1 ≤ i ≤ n. On

the other hand since V L
K1
, . . . , V L

Kn
are compact there is a subsequence {ml}∞l=1 of the

sequence of indices {mk}∞k=1 such that for all 1 ≤ i ≤ n the subsequence {w(i)[ml]}∞l=1

of the sequence {w(i)[mk]}∞k=1 is convergent. Let us denote the corresponding limits

w(1), . . . ,w(n). Note that also liml→∞ v[ml] = v. Since KL(·‖·) is a continuous function

in both variables (we are confined to BCL) the value of
∑n

i=1 KL(v‖w(i)) is equal to

the limit liml→∞
∑n

i=1 KL(v[ml]‖w(i)[ml]) which, by (5.9), is MKL
L (K1, . . . ,Kn).

It follows that limk→∞ v[mk] ∈ ∆KL
L (K1, . . . ,Kn) and therefore limk→∞Emk =

KL(limk→∞ v[mk]‖t) which, by the definition of ME, is greater or equal to KL(r‖t).

However, by (5.7) this is possible only if limk→∞ v[mk] = r. As we have seen in the proof

of chairman theorem for ∆̂KL this implies convergence of whole sequence {v[m]}∞m=1

and that limm→∞ v[m] = r. �

Both chairman theorems suggest that if we want to create from ∆̂KL and ∆KL

merging operators which are stable with respect to an infinitesimal bias by the most

uninformative point — a fairly natural condition — we should consider the following

two p-merging operators:

1. The Linear Entropy Process (LEP) to be for any L and any K1, . . . ,Kn ∈ CL

defined by

LEPL(K1, . . . ,Kn) = CM∞
L (∆̂KL

L (K1, . . . ,Kn)) and

2. the Social Entropy Process (SEP) to be for any L and any K1, . . . ,Kn ∈ CL

defined by

SEPL(K1, . . . ,Kn) = MEL(∆KL
L (K1, . . . ,Kn)).

However the question now arises as to how these operators behave with respect to the

principles which we have investigated in the previous chapter. In the next section we

take a look on this problem.
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Note that by requiring the stability induced by the chairman theorems we have

obtained the pleasing property that both LEP and SEP always return a single prob-

ability function and therefore they belong to the special type of p-merging operator

— social inference processes. Social inference processes are particularly interesting

for the implementation of practical expert system, where in general we may expect a

single probability function to be produced.

Also note that SEP was first defined by Wilmers in [52] and it was further inves-

tigated in [53] and [1].

5.2 Principles for LEP and SEP

In this section we investigate whether LEP and SEP satisfy all the previously con-

sidered principles for probabilistic merging. We take an advantage of our results for

∆̂KL and ∆KL merging operators.

Since the ∆̂KL and ∆KL merging operators satisfy the principle of equivalence (K2)

and both ME and CM∞ satisfy the equivalence principle, see section 1.3, we have

that LEP and SEP also satisfy (K2).

Similarly since the ∆̂KL and ∆KL merging operators satisfy the principle of atomic

renaming (K3) and both ME and CM∞ satisfy the atomic renaming principle, see

section 1.3, we have that LEP and SEP also satisfy (K3).

Assume that K1, . . . ,Kn ∈ CL. ∆̂KL and ∆KL satisfy the principle of consis-

tency (K4). Hence, if
⋂n
i=1 V

L
Ki
6= ∅ then LEPL(K1, . . . ,Kn) ∈ ∆̂KL

L (K1, . . . ,Kn) ⊆⋂n
i=1 V

L
Ki

and SEPL(K1, . . . ,Kn) ∈ ∆KL
L (K1, . . . ,Kn) ⊆

⋂n
i=1 V

L
Ki

. Therefore LEP

and SEP satisfy (K4). On the other hand note that the principle of strong consis-

tency (K4*) does not really have a sense for social inference processes.

Suppose that K1, . . . ,Kn, F1, . . . ,Fm ∈ CL,
⋂m
i=1 V

L
Fi

6= ∅ and

LEPL(K1, . . . ,Kn) ∈
⋂m
i=1 V

L
Fi

. Then, since the ∆̂KL-merging operator satisfies the

principle of agreement, we have that

∆̂KL
L (K1, . . . ,Kn,F1, . . . ,Fm) = ∆̂KL

L (K1, . . . ,Kn) ∩
m⋂
i=1

V L
Fi

.

Consequently

LEPL(K1, . . . ,Kn) ∈ ∆̂KL
L (K1, . . . ,Kn,F1, . . . ,Fm) ⊆ ∆̂KL

L (K1, . . . ,Kn)
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and therefore LEPL(K1, . . . ,Kn) = LEPL(K1, . . . ,Kn,F1, . . . ,Fm). We conclude

that LEP satisfies the principle of collegiality (K5). A proof that SEP satisfies (K5)

can be constructed analogously.

We note that all these results in the case of SEP have been observed by Wilmers

in [52].

It is a simple consequence of the agreement principle (K7), which is sat-

isfied by ∆̂KL and ∆KL, that if SEPL(K1, . . . ,Kn) = SEPL(F1, . . . ,Fm) and

LEPL(K1, . . . ,Kn) = LEPL(F1, . . . ,Fm) for some K1, . . . ,Kn,F1, . . .Fm ∈ CL then

∆KL
L (K1, . . . ,Kn) ∩∆KL

L (F1, . . . ,Fm) = ∆KL
L (K1, . . . ,Kn,F1, . . . ,Fm)

and

∆̂KL
L (K1, . . . ,Kn) ∩ ∆̂KL

L (F1, . . . ,Fm) = ∆̂KL
L (K1, . . . ,Kn,F1, . . . ,Fm).

Therefore

SEPL(K1, . . . ,Kn) ∈ ∆KL
L (K1, . . . ,Kn,F1, . . . ,Fm) ⊆ ∆KL

L (K1, . . . ,Kn)

and

LEPL(K1, . . . ,Kn) ∈ ∆̂KL
L (K1, . . . ,Kn,F1, . . . ,Fm) ⊆ ∆̂KL

L (K1, . . . ,Kn).

So it follows that SEPL(K1, . . . ,Kn) = SEPL(K1, . . . ,Kn,F1, . . . ,Fm),

LEPL(K1, . . . ,Kn) = LEPL(K1, . . . ,Kn,F1, . . . ,Fm) and consequently both

SEP and LEP satisfy (K7).

Unfortunately, neither SEP nor LEP satisfy the disagreement principle (K6).

This is because the principles of consistency and disagreement lead to a contradiction

for the social inference processes in general. Let S be a social inference process.

Consider SL(K1) 6= SL(K2) ∈ V L
K1

and {SL(K2)} = V L
K2

. This can be always achieved

given that V L
K1

contains at least two distinct points. Then the principle of consistency

gives SL(K1,K2) = SL(K2) what contradicts the principle of disagreement.

Another principle with a flavour of the disagreement principle has been introduced

by Savage in [46] as a converse to the collegiality principle. The following is a refor-

mulation of it in our framework.
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Savage Principle. Let ∆ be a p-merging operator. Let K1, . . . ,Kn,F1, . . . ,Fm ∈

CL and assume that
⋂m
i=1 V

L
Fi
6= ∅. If ∆(K1, . . . ,Kn) ∩

⋂m
i=1 V

L
Fi

= ∅ then

∆(K1, . . . ,Kn) ∩∆(K1, . . . ,Kn,F1, . . . ,Fm) = ∅.

We can make the following trivial observation.

Lemma 5.2.1. Let ∆ be a p-merging operator which satisfies the consistency principle

(K4) and the disagreement principle (K6). Then ∆ satisfies the Savage principle.

A consequence is that both ∆KL and ∆̂KL merging operators satisfy the Savage

principle once we have confined ourselves to BCL.

Theorem 5.2.2. LEP and SEP satisfy the Savage principle when restricted to BCL.

Proof. Let K1, . . . ,Kn,F1, . . . ,Fm ∈ BCL and
⋂m
i=1 V

L
Fi
6= ∅. Assume that

LEPL(K1, . . . ,Kn) 6∈
m⋂
i=1

V L
Fi

. (5.10)

If ∆̂KL
L (K1, . . . ,Kn)∩

⋂m
i=1 V

L
Fi

= ∅ then by the disagreement principle for ∆̂KL-operator

∆̂KL
L (K1, . . . ,Kn) ∩ ∆̂KL

L (K1, . . . ,Kn,F1, . . . ,Fm) = ∅.

If ∆̂KL
L (K1, . . . ,Kn) ∩

⋂m
i=1 V

L
Fi
6= ∅ then by the agreement principle for ∆̂KL-

operator

∆̂KL
L (K1, . . . ,Kn) ∩

m⋂
i=1

V L
Fi

= ∆̂KL
L (K1, . . . ,Kn,F1, . . . ,Fm)

which by assumption (5.10) does not contain LEPL(K1, . . . ,Kn).

In any case LEPL(K1, . . . ,Kn) 6∈ ∆̂KL
L (K1, . . . ,Kn,F1, . . . ,Fm) which concludes

the proof for LEP. A proof for SEP can be constructed similarly. �

Note that the result above for SEP above was proved differently by Savage in [46].

One would perhaps guess that the Savage principle is only a weaker version of the

disagreement principle. However, while OLEP satisfies the disagreement principle,

the following example shows that OLEP does not satisfy the Savage principle.

Example 5.2.3. Let V L
K = {(2

8
, 6

8
)}, V L

F1
= {(1

8
, 7

8
)} and V L

F2
= {(x, 1− x), x ∈ [1

8
, 3

8
]}.

OLEPL(K) = (2
8
, 6

8
) 6∈ V L

F1
∩ V L

F2
= (1

8
, 7

8
), however

OLEPL(K,F1,F2) = LinOp(MEL(K),MEL(F1),MEL(F2)) =

= LinOp
((2

8
,
6

8

)
,
(1

8
,
7

8

)
,
(3

8
,
5

8

))
=
(2

8
,
6

8

)
. �



CHAPTER 5. MAKING A MERGING PROCESS SINGLE-VALUED 123

Example 5.2.4. By setting

V L
K =

{
LogOp

((1

8
,
7

8

)
,
(3

8
,
5

8

))}
in the example 5.2.3 we get a counterexample to the Savage principle for OSEP. �

Now we investigate whether LEP and SEP satisfy the crucial principle of language

invariance.

Theorem 5.2.5. SEP satisfies LI.

Proof. Let L = L1 ∪ L2 where L1 ∩ L2 = ∅. Let K1, . . . ,Kn ∈ CL1. We prove that

MEL(∆KL
L (K1, . . . ,Kn)|L1 = MEL1(∆

KL
L1

(K1, . . . ,Kn))

which is sufficient to establish the claim.

Let v = MEL(∆KL
L (K1, . . . ,Kn)) and r = MEL1(∆

KL
L1

(K1, . . . ,Kn)). Since

the ∆KL-merging operator is language invariant we have that v|L1 ∈ ∆KL
L1

(K1, . . . ,Kn)

and hence

H(v|L1) ≤ H(r). (5.11)

On the other hand

H(v|L2) ≤ H(t), (5.12)

where t ∈ DL2 is the uniform probability function.

Let |At(L1)| = J and |At(L2)| = I. Recall that we write vji, 1 ≤ j ≤ J and

1 ≤ i ≤ I, to denote values of v ∈ DL on all L-atoms, and we write vj· =
∑I

i=1 vji and

v·i =
∑J

j=1 vji to simplify the notation.

By the Jensen inequality applied to the concave function −x log x

H(v)−H(v|L1)−H(v|L2) =

= −
J,I∑

j=1,i=1

vji log vji +
J∑
j=1

vj· log vj· +
I∑
i=1

v·i log v·i ≤ log(JI)− log(J)− log(I) = 0.

This together with (5.11) and (5.12) gives

H(v) ≤ H(v|L1) +H(v|L2) ≤ H(r) +H(t) = H(r · t).

Note that the last equality can be observed by a straightforward algebraic manipula-

tion.
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By lemma 4.2.6 we have that r · t ∈ ∆KL
L (K1, . . . ,Kn), which is possible only if

v = r · t since v is the unique most entropic point in ∆KL
L (K1, . . . ,Kn). Therefore

v|L1 = r and the theorem follows. �

The proof above is essentially a combination of the fact that the ∆KL-operator

satisfies LI and the proof that the ME-inference process is language invariant. Ac-

cordingly, we combine the fact that the ∆̂KL-merging operator satisfies LI and the

proof that the CM∞-inference process is language invariant into the following proof.

Theorem 5.2.6. LEP satisfies LI.

Proof. Let L = L1 ∪ L2 where L1 ∩ L2 = ∅. Let |At(L1)| = J and |At(L2)| = I. Let

K1, . . . ,Kn ∈ CL1. We prove that

CM∞
L (∆̂KL

L (K1, . . . ,Kn)|L1 = CM∞
L1

(∆̂KL
L1

(K1, . . . ,Kn)).

Notice that whenever α ∈ At(L1) is such that for all w ∈ ∆̂KL
L1

(K1, . . . ,Kn) we

have w(α) = 0 then for all v ∈ ∆̂KL
L (K1, . . . ,Kn) we have v(α ∧ β) = 0 for β ∈

At(L2). Therefore, in order to simplify the notation in the formulation of the CM∞-

inference process, we may assume that there is no α ∈ At(L1) such that for all w ∈

∆̂KL
L1

(K1, . . . ,Kn) we have w(α) = 0.

Let v = CM∞
L (∆̂KL

L (K1, . . . ,Kn)) and r = CM∞
L1

(∆̂KL
L1

(K1, . . . ,Kn)). Since the

∆̂KL-merging operator is language invariant we have that v|L1 ∈ ∆̂KL
L1

(K1, . . . ,Kn)

and hence
J∑
j=1

log(vj·) ≤
J∑
j=1

log(rj). (5.13)

Since log is concave by the Jensen inequality

J∑
j=1

log(vj·) = J log I +
J∑
j=1

log
(vj·
I

)
≥ J log I +

1

I

I∑
i=1

J∑
j=1

log(vji). (5.14)

Now let t be the uniform L2-probability function (1
I
, . . . , 1

I
). Then, by lemma 4.2.8,

r · t ∈ ∆̂KL
L (K1, . . . ,Kn) and therefore

J log I +
1

I

I∑
i=1

J∑
j=1

log(vji) ≥ J log I +
1

I

I∑
i=1

J∑
j=1

log
(rj
I

)
=

J∑
j=1

log(rj).

This together with (5.14) gives

J∑
j=1

log(vj·) ≥
J∑
j=1

log(rj)
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which together with (5.13) and uniqueness of the maximum point implies r = v|L1 . �

With respect to the stronger principles concerning irrelevant information there are

couple of immediate negative results: SEP does not satisfy the irrelevant information

principle due to example 4.2.1 and LEP cannot satisfy even the consistent irrelevant

information principle since it is known that CM∞ does not satisfy the irrelevant in-

formation principle for inference processes, see [24] or [39], (consider only one expert).

However, the remaining question whether SEP satisfies the consistent irrelevant in-

formation principle is still open.

Finally, the fact, that SEP satisfies the principle of relativisation REL given con-

dition (1.4), is a consequence of a more general result proved by Wilmers in [53]

(theorem 3.9). We prove here only the following result:

Theorem 5.2.7. LEP satisfies REL.

Proof. We proceed similarly to the proof of theorem 4.5.1:

Let K1, . . . ,Kn,F1, . . . ,Fn ∈ CL be such that

Kk = {Bel(θ) = c(k)} ∪ {
∑
s

a
(k)
si Bel(ϕs|θ) = d

(k)
i |i = 1, . . . , h(k)},

Fk = Kk ∪ {
∑
s

b
(k)
si Bel(ψs|¬θ) = e

(k)
i |i = 1, . . . , l(k)},

where 0 < c(k) < 1, θ is fixed and ϕs, ψs ∈ SL.

Suppose that w = LEPL(K1, . . . ,Kn). Therefore w ∈ ∆̂KL
L (K1, . . . ,Kn) and let

(w(1), . . . ,w(n)) ∈ Γ̂KL
L (K1, . . . ,Kn) be such that w = LinOp(w(1), . . . ,w(n)). By

lemma 3.1.1 w(1), . . . ,w(n) minimise
∑n

k=1 KL(w(k)‖LinOp(w(1), . . . ,w(n))) subject

only to w(1) ∈ V L
K1
, . . . , w(n) ∈ V L

Kn
.

Now, note that due to the constraints {Bel(θ) = c(k)} ∈ Kk, 1 ≤ k ≤ n, we have

that w(1), . . . ,w(n) also minimise

n∑
k=1

∑
j∈At(θ)∩

⋃n
k=1 Sig(w(k))

w
(k)
j log

n · w(k)
j∑n

k=1w
(k)
j

subject to w(1) ∈ V L
K1
, . . . , w(n) ∈ V L

Kn
.

While the above follows by w ∈ ∆̂KL
L (K1, . . . ,Kn), the fact that actually w =

CM∞
L (∆̂KL

L (K1, . . . ,Kn)) gives that w(1), . . . ,w(n) also maximise∑
j∈SigL(∆̂KL

L (K1,...,Kn))

log

∑n
k=1 w

(k)
j

n
,
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where SigL(∆̂KL
L (K1, . . . ,Kn)) = {j: ∃w ∈ ∆̂KL

L (K1, . . . ,Kn), wj 6= 0}, sub-

ject to w(1) ∈ V L
K1
, . . . ,w(n) ∈ V L

Kn
and to the equation M̂

KL

L (K1, . . . ,Kn) =∑n
k=1

∑
j∈

⋃n
k=1 Sig(w(k)) w

(k)
j log

n·w(k)
j∑n

k=1 w
(k)
j

.

Therefore, again due to the constraints {Bel(θ) = c(k)} ∈ Kk, 1 ≤ k ≤ n, we have

that w(1), . . . ,w(n) maximise

∑
j∈At(θ)∩SigL(∆̂KL

L (K1,...,Kn))

log

∑n
k=1w

(k)
j

n
, (5.15)

subject to the above conditions.

Let u = CM∞
L (∆̂KL

L (F1, . . . ,Fn)) and (u(1), . . . ,u(n)) ∈ Γ̂KL
L (F1, . . . ,Fn) be

such that u = LinOp(u(1), . . . ,u(n)). It follows that u(1), . . . ,u(n) minimise∑n
k=1 KL(u(k)‖LinOp(u(1), . . . ,u(n))) subject to u(1) ∈ V L

F1
, . . . ,u(n) ∈ V L

Fn
. Due to

the constraints {Bel(θ) = c(k)} ∈ Fk, 1 ≤ k ≤ n, we have that u(1), . . . ,u(n) also min-

imise
∑n

k=1

∑
j∈At(θ)∩

⋃n
k=1 Sig(u(k)) u

(k)
j log

n·u(k)j∑n
k=1 u

(k)
j

subject to u(1) ∈ V L
F1
, . . . ,u(n) ∈ V L

Fn

and they also maximise

∑
j∈At(θ)∩SigL(∆̂KL

L (F1,...,Fn))

log

∑n
k=1 u

(k)
j

n
, (5.16)

subject to u(1) ∈ V L
F1
, . . . ,u(n) ∈ V L

Fn
and to the equation M̂

KL

L (F1, . . . ,Fn) =∑n
k=1

∑
j∈

⋃n
k=1 Sig(u(k)) u

(k)
j log

n·u(k)j∑n
k=1 u

(k)
j

.

Since the maximisation problem for
∑

j∈At(θ) log xj over a closed convex area has a

unique solution and KL-projections are unique, both (5.15) and (5.16) must give that

w
(k)
j = u

(k)
j for all j ∈ At(θ) and 1 ≤ k ≤ n.

The remaining proof of the second equality in LEPL(K1, . . . ,Kn)|θ =

LinOp(w(1), . . . ,w(n))|θ = LinOp(u(1), . . . ,u(n))|θ = LEPL(F1, . . . ,Fn)|θ is the same

as the one for theorem 4.5.1. �

5.3 Computability

In the previous section we have argued that LEP and SEP are attractive merging

operators. However computing the result of applying these procedures proves to be
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tricky. First of all, there are some serious computational issues with the whole setting

which we have introduced in this thesis. In particular it is not even possible to find a

random Turing machine running in polynomial time which on input given by a set of

constraints K ∈ CL verifies the consistency of K (given that the problems solvable in a

randomized polynomial time cannot be solved in a polynomial time), see theorem 10.7

of [39].

However, some closely related computational problems have been extensively stud-

ied in the literature. As we have noted in section 3.2 this includes procedures for

finding a KL-projection to a closed convex set of probability functions. These show

that in many particular practical implementations the problem of intractability does

not arise, e.g. as in the case when knowledge bases are generated by marginal prob-

ability functions and where the IPFP-procedure can be applied to effectively find a

KL-projection, see section 3.2. Therefore, instead of trying to find algorithms to com-

pute LEP and SEP from scratch, we will assume in this section that some effective

procedures for KL-projections and conjugated KL-projections are given.

Let K1, . . . ,Kn ∈ BCL. Recall the averaging projective procedure F̂
Df
[K1,...,Kn] de-

fined in section 3.2. Here we consider only the Kullback-Leibler divergence Df = KL

in which case

F̂KL
[K1,...,Kn](v) = LinOp(w(1), . . . ,w(n))

and w(i) = arg minw∈V LKi
KL(w‖v) for all 1 ≤ i ≤ n. Note that the domain of

F̂KL
[K1,...,Kn] is restricted to {v ∈ DL : vj > 0, 1 ≤ j ≤ J}, J = |At(L)|, due to our

initial restriction to BCL.

By theorem 3.2.12 we know that the sequence

{v[i]}∞i=0, (5.17)

where v[0] = ( 1
J
, . . . , 1

J
), J = |At(L)|, is the uniform L-probability function and

v[i+1] = F̂KL
[K1,...,Kn](v

[i]), converges to some probability function in ∆̂KL
L (K1, . . . ,Kn).

This procedure can be immediately used to compute LEPL(K1, . . . ,Kn) in the case

when ∆̂KL
L (K1, . . . ,Kn) is a singleton. By theorem 5.1.1 this happens, for instance,

when at least one of V L
K1
, . . . , V L

Kn
is a singleton.

Let I ∈ CL be such that V L
I = {t}, where t = ( 1

J
, . . . , 1

J
). For every m = 1, 2, . . .
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we define the sequence {v[i]
[m]}∞i=0 by v

[0]
[m] = ( 1

J
, . . . , 1

J
) and

v
[i+1]
[m] = F̂KL

[I,K1 . . .K1︸ ︷︷ ︸
m

,...,Kn . . .Kn︸ ︷︷ ︸
m

]
(v

[i]
[m]).

By theorem 3.2.12

lim
i→∞

v
[i]
[m] = LEPL(I,K1 . . .K1︸ ︷︷ ︸

m

, . . . ,Kn . . .Kn︸ ︷︷ ︸
m

).

By the chairman theorem for ∆̂KL

lim
m→∞

lim
i→∞

v
[i]
[m] = LEPL(K1, . . . ,Kn). (5.18)

It is interesting that

lim
m→∞

v
[i]
[m] = v[i],

where {v[i]}∞i=0 was defined in (5.17), as we show in lemma 5.3.2.

Lemma 5.3.1. Let K1, . . . ,Kn ∈ BCL. Then F̂KL
[K1,...,Kn] is a continuous function

over the domain {v : vj > 0, 1 ≤ j ≤ J}.

Proof. Assume that a sequence {vi}∞i=0, vi ∈ DL, vi(αj) > 0, 1 ≤ j ≤ J , con-

verges to v ∈ DL, vj > 0, 1 ≤ j ≤ J . Consider the sequence of the corresponding

KL-projections w
(k)
i ∈ V L

Kk
, 1 ≤ k ≤ n. Now due to compactness of V L

K1
, . . . , V L

Kn

the sequence {(vi,w(1)
i , . . . ,w

(n)
i )}∞i=0 has a convergent subsequence which, by lemma

3.2.11, converges to (v,w(1), . . . ,w(n)), where w(k) is the KL-projection of v into V L
Kk

for all 1 ≤ k ≤ n. But then the whole sequence {(vi,w(1)
i , . . . ,w

(n)
i )}∞i=0 converges

to (v,w(1), . . . ,w(n)) because otherwise we could find a convergent subsequence which

would contradict lemma 3.2.11.

Since the operator LinOp is clearly continuous the function F̂KL
[K1,...,Kn](vi) con-

verges to F̂KL
[K1,...,Kn](v) and therefore the function F̂KL

[K1,...,Kn] is continuous provided

that K1, . . . ,Kn ∈ BCL. �

Lemma 5.3.2. Let v
[i]
[m] and v[i], i = 0, 1, . . ., m = 1, 2, . . ., be as above. Then

lim
m→∞

v
[i]
[m] = v[i].
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Proof. By induction we prove that limm→∞ v
[i]
[m] = v[i] for all i = 0, 1, . . . . First, for

i = 0 the sequence is constant. Now assume that limm→∞ v
[i]
[m] = v[i] for all i < h.

Since by lemma 5.3.1 F̂KL
[K1,...,Kn] is a continuous function we have that

lim
m→∞

F̂KL
[K1,...,Kn](v

[h−1]
[m] ) = F̂KL

[K1,...,Kn](v
[h−1]) = v[h]. (5.19)

Now as m increases the difference between F̂KL
[K1,...,Kn] and F̂KL

[I,K1 . . .K1︸ ︷︷ ︸
m

,...,Kn . . .Kn︸ ︷︷ ︸
m

]

vanishes so

lim
m→∞

v
[h]
[m] = lim

m→∞
F̂KL

[I,K1 . . .K1︸ ︷︷ ︸
m

,...,Kn . . .Kn︸ ︷︷ ︸
m

]
(v

[h−1]
[m] ) = lim

m→∞
F̂KL

[K1,...,Kn](v
[h−1]
[m] )

and by (5.19) that all important inductive step follows. �

Now notice that if the limits in (5.18) were interchangeable then this would offer a

nice algorithm to compute LEP in full generality (but with no claims to any theoretical

results on the complexity of computation) and it would answer the question to closely

characterise the limit limi→∞ v[i]. Unfortunately, the following simple example shows

that these limits are not interchangeable since for some K1, . . . ,Kn

lim
i→∞

v[i] 6= LEPL(K1, . . . ,Kn).

Example 5.3.3. Let L = {p, q}, K1 = {Bel(p) = 1
4
} and K2 = {Bel(q) = 1

4
}

and assume the additional constraint that every atom is bounded by 0.01. Note

that V L
K1

= {(x, 1
4
− x, y, 3

4
− y), x ∈ [0.01, 1

4
− 0.01], y ∈ [0.01, 3

4
− 0.01]} and V L

K2
=

{(x, y, 1
4
−x, 3

4
−y), x ∈ [0.01, 1

4
−0.01], y ∈ [0.01, 3

4
−0.01]}, where probability functions

are listed in the following order of atoms: p ∧ q, p ∧ ¬q,¬p ∧ q,¬p ∧ ¬q.

Then the members of the sequence {v[i]}∞i=0 can be computed by two minimisation

problems: Find x ∈ [0.01, 1
4
− 0.01] and y ∈ [0.01, 3

4
− 0.01] which minimise

x log
x

v
[i]
1

+
(1

4
− x
)

log
1
4
− x
v

[i]
2

+ y log
y

v
[i]
3

+
(3

4
− y
)

log
3
4
− y
v

[i]
4

and other couple x̄ ∈ [0.01, 1
4
− 0.01] and ȳ ∈ [0.01, 3

4
− 0.01] which minimise

x̄ log
x̄

v
[i]
1

+ ȳ log
ȳ

v
[i]
2

+ (
1

4
− x̄) log

1
4
− x̄
v

[i]
3

+ (
3

4
− ȳ) log

3
4
− ȳ
v

[i]
4

.

Then v
[i+1]
1 = x+x̄

2
, v

[i+1]
2 =

1
4
−x+ȳ

2
, v

[i+1]
3 =

1
4
−x̄+y

2
and v

[i+1]
4 =

3
2
−ȳ−y

2
. After setting

v[0] = (1
4
, 1

4
, 1

4
, 1

4
) it turns out that in each iteration x̄ = x and ȳ = y.
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After performing a numerical computation for the first one hundred iterations we

obtain

{v[100]} ≈ (0.0488395, 0.2011605, 0.2011605, 0.5488394).

The rate of convergence for the first atom p∧ q is depicted in figure 5.1 by the bottom

red line.

However, since K1 and K2 are jointly consistent, we have that

∆̂KL
L (K1,K2) = V L

K1
∩ V L

K2
=
{(
x,

1

4
− x, 1

4
− x, 1

2
+ x
)

, x ∈
[
0.01,

0.96

4

]}
.

We compute that CM∞
L (K1 ∪K2) is approximately

(0.091506, 0.15849, 0.15849, 0.5915),

which is obviously not equal to the limit of the sequence {v[i]}∞i=0.1 �

It seems that only achievable way to use (5.18) to estimate a result of applying

LEP is to choose a sufficiently big m and for this m iterate the sequence {v[i]
[m]}∞i=0.

However the next theorem shows that the rate of convergence depends on m and in

fact this often materialises in a negative way for a practical computation.

Theorem 5.3.4. {v[i]
[m]}∞i=0 does not converge uniformly in m.

Proof. Since we can treat probability functions as vectors in RJ the following variant

of Moore-Osgood theorem is relevant here, see [44].

Assume that v
[i]
[m] ∈ R and v[m] and v[i] in R are given. If

lim
i→∞

v
[i]
[m] = v[m] uniformly in m

and

lim
m→∞

v
[i]
[m] = v[i] pointwise for every i

then the double limits exists and

lim
m→∞

lim
i→∞

v
[i]
[m] = lim

i→∞
lim
m→∞

v
[i]
[m].

But then, if {v[i]
[m]}∞i=0 was convergent uniformly in m then the limits in (5.18)

would be interchangeable which would contradict example 5.3.3. �

1Just for comparison MEL(K1 ∪K2) is approximately (0.0625, 0.1875, 0.1875, 0.5625).
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Example 5.3.5. Consider the situation from example 5.3.3. We compute numerically

the first members of the sequence {v[i]
[m](p ∧ q)}∞i=0 for several values of m and we

compare them with the sequence {v[i](p ∧ q)}∞i=0. The algorithm we use is as follows.

Note that due to the design of the knowledge bases only one minimisation problem is

sufficient to solve in each iteration as we have pointed out in the previous example.

v1 := 1
4
; v2 := 1

4
; v3 := 1

4
; v4 := 1

4
;

for i from 1 by 1 to 200 do

Minimise
(
x log x

v1
+
(

1
4
− x

)
log

1
4
−x
v2

+ y log y
v3

+
(

3
4
− y
)

log
3
4
−y
v4
, x = 0.01..0.96

4
, y =

0.01..2.96
4

)
;

v1 :=
x·m+x·m+ 1

4

m+m+1
; v2 :=

( 1
4
−x)·m+y·m+ 1

4

m+m+1
; v3 :=

( 1
4
−x)·m+y·m+ 1

4

m+m+1
; v4 :=

( 3
4
−y)·m+( 3

4
−y)·m+ 1

4

m+m+1
;

end do;

The numerical result for m = 10, 20, 30 is plotted in figure 5.1. We can see that as

m rises the limit points of sequences are converging to the CM∞
L (K1∪K2)(p∧q) which

is denoted by the black dotted line. The red line denotes the sequence {v[i]}∞i=0(p∧ q).

Figure 5.1: The numerical computation for example 5.3.5. Blue lines from top are for
m = 10, m = 20 and m = 30.

The numerical result for m = 30, 60, 90 is plotted in figure 5.2. We can conclude

that although the eventual precision rises as m increases, the rate of convergence is

affected severely. Therefore there is a significant trade-off between the precision and

the number of iterations. �
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Figure 5.2: The numerical computation for example 5.3.5. Blue lines from top are for
m = 30, m = 60 and m = 90.

Now consider the averaging projective procedure FKL
[K1,...,Kn] defined in section 3.2

but also restricted to BCL. By theorem 3.2.12 we know that the sequence

{u[i]}∞i=0, (5.20)

where u[0] = ( 1
J
, . . . , 1

J
) and u[i+1] = FKL

[K1,...,Kn](u
[i]), converges to some probability

function in ∆KL
L (K1, . . . ,Kn). This procedure can be immediately used to compute

SEPL(K1, . . . ,Kn) in a case when ∆KL
L (K1, . . . ,Kn) is a singleton. By theorem 5.1.3

this happen for instance when at least one of V L
K1
, . . . , V L

Kn
is a singleton.

In the following example we will see that there are K1, . . . ,Kn ∈ BCL such that

limi→∞ u[i] 6= SEPL(K1, . . . ,Kn). Note that we cannot use example 5.3.3 since in that

case actually limi→∞ u[i] = SEPL(K1,K2) due to theorem 3.2.13.

Example 5.3.6. Let L = {p, q, r}, K1 = {Bel(p ∧ r) = 1
12
, Bel(q ∧ r) = 1

12
, Bel(p ∧

¬r) = 1
6
, Bel(¬p ∧ q ∧ ¬r) = 1

6
, Bel(¬p ∧ ¬q ∧ ¬r) = 1

6
}, K2 = {Bel(p ∧ r) =

1
12
, Bel(q ∧ r) = 1

12
, Bel(¬p ∧ ¬r) = 2

6
, Bel(p ∧ q ∧ ¬r) = 1

12
, Bel(p ∧ ¬q ∧ ¬r) = 1

12
}

and assume the additional constraint that every atom is bounded by 0.01. Note that

V L
K1

=
{(
x,

1

12
− x, 1

12
− x, 2

6
+ x, y,

1

6
− y, 1

6
,
1

6

)
, x ∈

[
0.01,

0.88

12

]
, y ∈

[
0.01,

0.94

6

]}
and

V L
K2

=
{(
x,

1

12
−x, 1

12
−x, 2

6
+x,

1

12
,

1

12
, y,

2

6
−y
)

, x ∈
[
0.01,

0.88

12

]
, y ∈

[
0.01,

1.94

6

]}
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where probability functions are listed in the following order of atoms: p ∧ q ∧ r, p ∧

¬q ∧ r,¬p ∧ q ∧ r,¬p ∧ ¬q ∧ r, p ∧ q ∧ ¬r, p ∧ ¬q ∧ ¬r,¬p ∧ q ∧ ¬r,¬p ∧ ¬q ∧ ¬r.

K1 and K2 are jointly consistent; V L
K1
∩ V L

K2
= {(x, 1

12
− x, 1

12
− x, 2

6
+

x, 1
12
, 1

12
, 1

6
, 1

6
), x ∈ [0.01, 0.88

12
]} and we can compute that SEPL(K1,K2) is the most

entropic probability function from the set above with x equals approximately 0.013888.

However the sequence {u[i]}∞i=0 is already constant after one iteration and equal to

CM∞
L (K1) = CM∞

L (K2) = CM∞
L (V L

K1
∩ V L

K2
) in which case x ≈ 0.029231. �

By the aid of the chairman theorem for ∆KL (5.1.4) we also suggest a modification

of the above procedure to approximate SEPL(K1, . . . ,Kn), but we have no claims

to any theoretical results on the complexity of computation. Let I ∈ CL be such

that V L
I = {t}, where t = ( 1

J
, . . . , 1

J
) is the uniform probability function. For every

m = 1, 2, . . . we define the sequence {u[i]
[m]}∞i=0 by u

[0]
[m] = ( 1

J
, . . . , 1

J
) and

u
[i+1]
[m] = FKL

[I,K1 . . .K1︸ ︷︷ ︸
m

,...,Kn . . .Kn︸ ︷︷ ︸
m

]
(u

[i]
[m]).

By theorem 3.2.12

lim
i→∞

u
[i]
[m] = SEPL(I,K1 . . .K1︸ ︷︷ ︸

m

, . . . ,Kn . . .Kn︸ ︷︷ ︸
m

).

By the chairman theorem for ∆KL

lim
m→∞

lim
i→∞

u
[i]
[m] = SEPL(K1, . . . ,Kn). (5.21)

In order to approximate SEPL(K1, . . . ,Kn) using (5.21) one needs to choose a suffi-

ciently big m and then iterate the sequence {u[i]
[m]}∞i=0. However the question as to how

to determine such an m and i in order to achieve a specific level of accuracy merits

further investigation.

5.4 The toy example again

In this section we will go back to our motivation example from section 1.1. Taking an

advantage of the previously suggested algorithms we compute what result the linear

entropy process LEP and the social entropy process SEP give in this particular case.

Recall that in this example two safety experts are evaluating safety in a chemical

factory. The first expert believes that there is a 4% chance that a mechanical problem
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will cause the valve to fail. The second expert comes up with a different opinion that

there is an 8% chance that a mechanical problem will cause the valve to fail. Moreover,

the first safety expert thinks that there is a 7% chance that the electronic switch will

fail. We suppose that both experts have no other knowledge related to this problem.

To keep us confined to BCL we will need to add additional constraints that the

values of probability functions on atoms are bounded, say by 0.001. The knowledge

bases of the two safety experts generate in this case the following two closed and convex

sets of probability functions.

V L
K1

= {(x, 0.04− x, 0.07− x, x+ 0.89), x ∈ [0.001, 0.039]} and

V L
K2

= {(x, 0.08− x, y, 0.92− y), x ∈ [0.001, 0.079], y ∈ [0.001, 0.919},

where L = {p, q} and p stands for sentence “a fault on the valve” and q stands for

sentence “a fault on the electronic switch”. Probability functions are listed in the

following order of atoms: p ∧ q, p ∧ ¬q, ¬p ∧ q, ¬p ∧ ¬q.

First we approximate the value of LEPL(K1,K2). To make sure that the approx-

imation is accurate enough we choose m = 10000 and apply the following algorithm.

v1 := 1
4
; v2 := 1

4
; v3 := 1

4
; v4 := 1

4
;

for i from 1 by 1 to 50 do

Minimise
(
x1 log x1

v1
+ (0.04 − x1) log 0.04−x1

v2
+ (0.07 − x1) log 0.07−x1

v3
+ (0.89 +

x1) log 0.89+x1
v4

, x1 = 0.001..0.039
)

;

Minimise
(
x2 log x2

v1
+ (0.08 − x2) log 0.08−x2

v2
+ y2 log y2

v3
+ (0.92 − y2) log 0.92−y2

v4
, x2 =

0.001..0.079, y2 = 0.001..0.919
)

;

v1 :=
x1·m+x2·m+ 1

4

m+m+1
; v2 :=

(0.04−x1)·m+(0.08−x2)·m+ 1
4

m+m+1
; v3 :=

(0.07−x1)·m+y2·m+ 1
4

m+m+1
; v4 :=

(0.89+x1)·m+(0.92−y2)·m+ 1
4

m+m+1
;

end do;

After 50 iterations the result is approximately as follows: v
[50]
[10000](p∧q) ≈ 0.0096514,

v
[50]
[10000](p ∧ ¬q) ≈ 0.0503705, v

[50]
[10000](p ∧ ¬q) ≈ 0.0622752 and v

[50]
[10000](¬p ∧ ¬q) ≈

0.8777027. Figure 5.3 shows that 50 iterations are more than enough to get very close

to the limit point of {v[i]
[10000]}∞i=0.

Although LEP does not satisfy the consistent irrelevant information principle in

this particular case we can use the fact that the linear entropy operator ∆̂KL sat-

isfies CIIP. If we denote F1 = {Bel(p) = 0.04} and F2 = {Bel(p) = 0.08} then
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Figure 5.3: The rate of convergence when approximating LEPL(K1,K2) for m =
10000 and for all four atoms.

there is only one point in ∆̂KL
{p}(F1,F2) = {(0.06, 0.94)}. By CIIP we have that

LEPL(K1,K2)|{p} ∈ ∆̂KL
{p}(F1,F2) and consequently LEPL(K1,K2)(p) = 0.06. Now

we can use this to check the accuracy of the computation above which gives

v
[50]
[10000](p) = v

[50]
[10000](p ∧ q) + v

[50]
[10000](p ∧ ¬q) ≈ 0.0600219

and that is fairly accurate.

We perform a similar computation to approximate SEPL(K1,K2). The dual algo-

rithm to the one above is as follows.

v1 := 1
4
; v2 := 1

4
; v3 := 1

4
; v4 := 1

4
;

for i from 1 by 1 to 50 do

Minimise
(
v1 log v1

x1
+ v2 log v2

0.04−x1 + v3 log v3
0.07−x1 + v4 log v4

0.89+x1
, x1 = 0.001..0.039

)
;

Minimise
(
v1 log v1

x2
+ v2 log v2

0.08−x2 + v3 log v3
y2

+ v4 log v4
0.92−y2 , x2 = 0.001..0.079, y2 =

0.001..0.919
)

;

c :=
(

(x1)m(x2)m 1
4

) 1
2m+1

+
(

(0.04 − x1)m(0.08 − x2)m 1
4

) 1
2m+1

+
(

(0.07 −

x1)m(y2)m 1
4

) 1
2m+1

+
(

(0.89 + x1)m(0.92− y2)m 1
4

) 1
2m+1

;

v1 :=

(
(x1)m(x2)m 1

4

) 1
2m+1

c
; v2 :=

(
(0.04−x1)m(0.08−x2)m 1

4

) 1
2m+1

c
;

v3 :=

(
(0.07−x1)m(y2)m 1

4

) 1
2m+1

c
; v4 :=

(
(0.89+x1)m(0.92−y2)m 1

4

) 1
2m+1

c
;
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end do;

After 50 iterations the result is approximately as follows: u
[50]
[10000](p∧q) ≈ 0.013163,

u
[50]
[10000](p ∧ ¬q) ≈ 0.0436207, u

[50]
[10000](p ∧ ¬q) ≈ 0.0596818 and u

[50]
[10000](¬p ∧ ¬q) ≈

0.8835343. Figure 5.4 shows that 50 iterations are more than enough to get very close

to the limit point of {u[i]
[10000]}∞i=0.

Figure 5.4: The rate of convergence when approximating SEPL(K1,K2) form = 10000
and for all four atoms.

Similarly as in the case of LEP, we take an advantage of the fact that ∆KL satisfies

CIIP. For this reason we know that

SEPL(K1,K2)(p) = SEP{p}({Bel(p) = 0.04}, {Bel(p) = 0.08})(p) ≈ 0.0567754 .

Our algorithm took us fairly close to that value:

u
[50]
[10000](p) = u

[50]
[10000](p ∧ q) + u

[50]
[10000](p ∧ ¬q) ≈ 0.0567837 .

Finally, we provide the answers which LEP and SEP give to the question which

started this thesis: How should a rational adjudicator, whose only knowledge consists

of what is related to him by the two experts above, evaluate the probability that both

the valve and the electronic switch will be faulty, based only on the experts’ subjective

knowledge and without any other assumptions? By LEP this probability should be
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approximately 0.96% and by SEP it should be approximately 1.31%. But whether

a rational adjudicator should adopt either of these procedures is a different question

altogether. Throughout this thesis we have argued that both these p-merging operators

have appealing properties in comparison to other operators considered. However there

are many places where this argument fall short. A full axiomatic characterisation,

similar to one of those used to justify the maximum entropy inference process, would

be preferred.



Chapter 6

Conclusion

6.1 Summary

In this thesis we have pursued the problem of probabilistic knowledge integration by

combining both the geometrical notion of projections by means of a Bregman diver-

gence and the framework of pooling operators. Our first original result (theorem 1.4.1)

showed that the most obvious approach of obdurate merging does not satisfy the nat-

ural principle of consistency.

In chapter 2 we have therefore studied the geometry of convex Bregman divergences

and we have shown how Bregman divergences relate to pooling operators. We have

proved several technical results which have been used later in the thesis. In particular

theorem 2.1.20 is the main original contribution of the chapter. Several dual results

for the Kullback-Leibler divergence have been also listed.

In chapter 3 we have defined probabilistic merging operators ∆̂D and ∆KL, where

D is a convex Bregman divergence and KL is the Kullback-Leibler divergence, which

satisfy the consistency principle and extend the framework of pooling operators. We

have shown how these operators relate to the existing results in the literature. In

particular we have shown that their images coincide with the sets of the fixed points

of certain mappings under fairly general conditions. These results (essentially theorems

3.2.5 and 3.2.10) are perhaps the most important in the thesis. Moreover they have

been used to prove Matúš’s convergence theorems (3.2.12) and to prove results relating

to the strong disagreement principle, namely theorems 4.1.5 and 4.1.10.

138
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HULL ∆KL ∆̂KL ∆̂Dr OSEP OLEP KIRP
(K2) YES YES YES YES YES YES YES
(K3) YES YES YES YES YES YES YES
(K4) YES YES YES YES NO1.4.1 NO1.4.1 NO4.4.3

(K4*) YES YES YES YES NO1.4.1 NO1.4.1 NO4.4.3

(K5) YES4.1.3 YES4.1.12 YES4.1.1 YES4.1.1 NO1.4.2 NO1.4.2 NO4.4.4

(K6) NO4.1.4 NO4.1.9 NO4.1.8 YES4.1.7 YES YES YES4.4.2

(K6*) NO4.1.4 NO4.1.9 NO4.1.8 YES4.1.7 YES YES YES4.4.2

(K7) NO4.1.4 NO4.1.11 YES4.1.11 YES4.1.11 YES YES YES4.4.2

REL NO4.5.7 NO4.5.4 YES4.5.1 YES4.5.2 YES4.5.5 YES4.5.5 NO4.5.6

LI YES4.2.4 YES4.2.7 YES4.2.9 YES4.2.11 YES4.3.5 YES4.3.6 YES4.4.5

CIIP YES4.2.4 YES4.2.7 YES4.2.9 ? YES4.3.5 YES4.3.6 NO4.4.6

IIP NO4.2.3 NO4.2.1 NO4.2.2 ? YES4.3.5 YES4.3.6 NO4.4.6

IP NO4.2.3 NO4.2.1 NO4.2.2 ? YES4.3.5 NO4.3.6 NO4.4.6

Table 6.1: The list of principles and p-merging operators.

To summarise chapter 4 where we have compared our p-merging operators with

those investigated elsewhere in the literature we list in table 6.1 the probabilistic

merging operators defined over CL. On the other hand, if we confine ourselves only to

BCL then we get table 6.2. Each number refers to an example or a theorem where the

corresponding result has been proved. Recall that (K2) is the principle of equivalence,

(K3) is the principle of atomic renaming, (K4) is the principle of consistency, (K4*)

is the principle of strong consistency, (K5) is the collegiality principle, (K6) is the

principle of disagreement, (K6*) is the principle of strong disagreement, (K7) is the

principle of agreement, REL is the principle of relativisation, LI is the principle of

language invariance, CIIP is the principle of consistent irrelevant information, IIP is

the principle of irrelevant information, and finally IP is the principle of independence.

We have seen that obdurate inference processes OSEP and OLEP possess some

excellent properties. However it seems that the price we need to pay for this, in the

form that they satisfy neither the consistency principle (K4) nor the very natural

collegiality principle (K5), is too high. We believe that these principles are absolutely

necessary. The same criticism thus applies to KIRP.

The convex hull operator HULL has its weakness in terms of the principles of

agreement, disagreement and relativisation. However it satisfies (K4), it is language

invariant and it satisfies the pleasing principle of consistent irrelevant information.

The social entropy operator ∆KL and the linear entropy operator ∆̂KL seem to be



CHAPTER 6. CONCLUSION 140

HULL ∆KL ∆̂KL ∆̂Dr OSEP OLEP KIRP
(K2) YES YES YES YES YES YES YES
(K3) YES YES YES YES YES YES YES
(K4) YES YES YES YES NO1.4.1 NO1.4.1 NO4.4.3

(K4*) YES YES YES YES NO1.4.1 NO1.4.1 NO4.4.3

(K5) YES4.1.3 YES4.1.1 YES4.1.1 YES4.1.1 NO1.4.2 NO1.4.2 NO4.4.4

(K6) NO4.1.4 YES4.1.10 YES4.1.5 YES4.1.7 YES YES YES4.4.2

(K6*) NO4.1.4 YES4.1.10 YES4.1.5 YES4.1.7 YES YES YES4.4.2

(K7) NO4.1.4 YES4.1.11 YES4.1.11 YES4.1.11 YES YES YES4.4.2

REL NO4.5.7 YES4.5.3 YES4.5.1 YES4.5.2 YES4.5.5 YES4.5.5 NO4.5.6

LI YES4.2.4 YES4.2.7 YES4.2.9 YES4.2.11 YES4.3.5 YES4.3.6 YES4.4.5

CIIP YES4.2.4 YES4.2.7 YES4.2.9 ? YES4.3.5 YES4.3.6 NO4.4.6

IIP NO4.2.3 NO4.2.1 ? ? YES4.3.5 YES4.3.6 NO4.4.6

IP NO4.2.3 NO4.2.1 ? ? YES4.3.5 NO4.3.6 NO4.4.6

Table 6.2: The list of principles and p-merging operators restricted to BCL.

attractive when compared to other p-merging operators hitherto considered. However

∆KL does not satisfy the most interesting principles concerning irrelevant information

and independence, and the same is conjectured for ∆̂KL even once we have confined

ourselves to BCL.

The linear Renyi operator ∆̂Dr , 2 ≥ r > 1, seems to be as interesting as the

operators ∆KL and ∆̂KL. There are still some unanswered questions about this operator

but it is promising as it generalises the linear Euclidean operator and there is no need

to restrict it to BCL.

In chapter 5 we have investigated how to modify ∆̂KL and ∆KL-merging operators

in order to obtain a single point as the result of a merging procedure. We have used the

‘Chairman idea’ due to Wilmers and similarly as he has defined operator SEP from

the social entropy operator we have defined operator LEP from the linear entropy

operator. We recapitulate the properties of LEP and SEP in table 6.3. Finally, by

combining the ‘Chairman idea’ with Matúš’s convergence theorems we have proposed

possible algorithms to compute their results but with no claims on computational

feasibility.
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LEP SEP OSEP OLEP
(K2) YES YES YES YES
(K3) YES YES YES YES
(K4) YES YES NO NO
(K5) YES YES NO NO
(K6) NO NO YES YES
(K6*) NO NO YES YES
(K7) YES YES YES YES
Savage YES YES NO NO
REL YES YES YES YES
LI YES YES YES YES
CIIP NO ? YES YES
IIP NO NO YES YES
IP NO NO YES NO

Table 6.3: The list of principles to compare LEP with SEP over BCL.

6.2 Future research

Although the problem of finding a full axiomatic characterisation of particular p-

merging operators may be hard, there are several obvious open questions regarding

the principles for probabilistic merging which we have considered in this work. Per-

haps the most interesting question is whether there exists a social inference process

(or a naturally defined p-merging operator) which satisfies the principle of irrelevant

information as well as the principles of consistency and collegiality.

In section 3.2 we have argued that fixed points of the averaging projective procedure

and the conjugated averaging projective procedure (defined by KL-divergence) may

be viewed as points of equilibrium for a group seeking agreement. If we add that in

addition we expect this equilibrium to be stable with respect to infinitesimal bias by

the most uninformative point then we are left with the LEP and SEP respectively.

Note however, that here we assume that the KL-divergence is the preferred choice

for projections (or conjugated projections). As we have mentioned earlier, there are

certainly arguments arising from Shannon entropy in favour of KL-divergence, and

currently it is the most popular measure of information distance. Nevertheless, other

convex Bregman divergences may perhaps be as appealing in some respects.

In particular we believe that an investigation of the Renyi-B divergence is promising

since it is already known that a theorem analogous to the chairman theorem holds
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for the linear Renyi operator ∆̂Dr , 2 ≥ r > 1. We then conjecture that for any

K1, . . . ,Kn ∈ BCL

lim
r↘1

arg min
v∈∆̂Dr

L (K1,...,Kn)
Dr(t‖v) = LEPL(K1, . . . ,Kn),

where t ∈ DL is the uniform probability function. The proof should involve theo-

rem 1.3.4. Considering conjugated projections of Renyi-B divergence for 2 ≥ r > 1

may give us a dual result for SEP.

Moreover, the result due to Csiszár and Tusnády, on which the proof of theo-

rem 3.2.12 is based, was observed also for Bregman divergences, see theorem 2.17 of

[14]. It may be therefore possible to extend the algorithm we proposed in section 5.3

also for the linear Renyi operator.

As we have seen in the examples in chapter 5 where LEP and SEP were computed,

one of the problems appeared to be the computation of the KL-projection (respectively

the conjugated KL-projection). As we have noted before, this problem was studied

in the literature and there are some results to build on which can be used to develop

further the framework presented in this thesis. However, for more general applica-

tions than our toy examples, the rate of convergence of the algorithm we proposed in

section 5.3 needs to be carefully investigated.
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