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Abstract
The University of Manchester
Dalila Ammour
Doctor of Philosophy
Highly Resolved LES and Tests of The E�ectiveness of Di�erent URANS
Models for The Computation of Challenging Natural Convection Cases
September 2013
In the present thesis turbulent natural convection of air within di�erent challenging test cases
are investigated numerically by means of an unstructured finite volume code, Code_Saturne
2.0. First, flow within both two-dimensional vertical and inclined di�erentially heated rectan-
gular cavities at 60o and 15o to the horizontal for an aspect ratio of H/L = 28.6 and Rayleigh
number of 0.86 ◊ 106 is computed using several high and low-Re models. Here the e�ective-
ness of the RANS models in Code_Saturne is assessed through comparisons with a range
of available experimental data. After some tests of thermal field inside vertical cavity, the
“two-velocity-scale wall function” is chosen to be used with high-Re models. In both vertical
and inclined cases the overall flow pattern appears similar, with a single circulation cell, and a
boundary layer at the wall. The levels of turbulence energy are generally slightly lower in the
inclined case. Most models give a reasonable prediction of measured Nusselt number, with
the two low-Re approaches generally being closer to the data than the schemes employing wall
functions. For the 15o inclined cavity, a multi cellular motion is shown by the high-Re models.
Nevertheless, all the model predictions disagree with experimental data due to the presence in
real flow of 3-D unsteady structures as found in Benard convection problems. These cannot,
definitely, be reproduced using a 2-D geometry. Both highly resolved LES and unsteady RANS
computations are then conducted, for turbulent natural convection of air inside 15o unstably
and stably stratified cavities. In accordance with recent experimental data, the LES compu-
tations for both enclosures returned three-dimensional time-averaged flow fields. In the case
of the unstably stratified enclosure, the flow is highly unsteady with coherent turbulent struc-
tures in the core of the enclosure. Results of LES computations show close agreement with the
measured data. Subsequent comparisons of di�erent URANS schemes with the present LES
are used in order to explore to what extent these models are able to reproduce the large-scale
unsteady flow structures. All URANS schemes have been found to be able to reproduce the
3-D unsteady flow features present in the 15o unstable cavity. However, the low-Re model
tested as well as requiring a high resolution near-wall grid, also needed a finer grid in the core
region than the high-Re models, thus making it computationally very expensive. Flow within
the 15o stable cavity also shows some 3-D features, although it is significantly less unsteady,
and the URANS models tested here have been less successful in reproducing this flow pattern.
Finally, natural convection of CO2 inside a horizontal annular penetration enclosure, which
can be found in AGR’s, has been performed using a highly resolved LES and a set of RANS
models. The Rayleigh number is 1.5 ◊ 109. RANS models agree with the present LES on
the fact that the flow is unsteady and there are large-scale oscillations present which decrease
in amplitude as one moves from the open towards the closed end of the annular enclosure.
Overall heat transfer and thermal quantitative and dynamic results show that RANS schemes
are in close agreement with the current LES data except some discrepancies shown by the
high-Re model which can be returned to the limitation of the simple wall function used to
predict such complex flow.
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itÕ Turbulent scalar flux

uÕ
iu

Õ
j Reynolds stress tensor

U, V , W Filtered velocity components

n Unit vector in the direction normal to the wall

g Acceleration due to gravity

Gij Buoyant production of Reynolds stress uÕ
iu

Õ
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l Turbulent length scale

lm Characteristic length scale

Nu Local Nusselt number

P Pressure

Pr Molecular Prandtl number

Prt Turbulent Prandtl number

Ra Local Rayleigh number

Re Reynolds number

Ri Richardson number

S Strain rate invariant (S =
Ò

2SijSij)

Sij Strain tensor

T Temperature

t Time

uÕ
i fuctuating velocity component
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U, V, W Mean velocity components

U· Friction velocity

Uk Friction velocity based on k (Uk = C1/4
µ

Ô
k)

x, y, z Cartesian coordinates directions

y+ Dimentionless distance to the wall (y+
k = yUk

‹ , y+ = yU·

‹ )

y‹ Viscous sublayer thickness

yP Distance from the near-wall node to the wall
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Chapter 1

Introduction

1.1 Natural Convection
Convection is defined as the transport of mass and energy by potential gradients and
by bulk fluid motion. Where the fluid flow arises from an external agent, the process is
generally called forced convection. In contrast, fluid motion can also be induced by body
forces such as gravitational, centrifugal, or Coriolis forces, and this process is generally
called natural convection. Our attention will be focussed on natural convection where
the flow results from an interaction of the density di�erence with the gravitational (or
some other body force) field and is therefore inevitably linked with, and dependent
on, the temperature and/or concentration fields. The main characteristics of most
natural convection flows include: the absence of externally imposed velocity scales and
the convection currents been generated due to the body forces acting on a fluid in
which there is a density gradient. The density gradient is, in turn, often generated by
temperature di�erences and the buoyancy force is due to gravity.

There are two main scenarios often encountered in the context of natural convection.
In the first, a density gradient exists in a fluid in a direction that is parallel to and aligned
with the gravity vector, whilst in the second the gradient is aligned but in the opposite
direction to gravity. Such situations lead to “stable” or “unstable” density stratification
of the fluid. In a stable stratification, less dense fluid is at the top and more dense fluid
at the bottom. In the absence of other e�ects, convection will be absent, and the heat
transfer problem can be treated as one of conduction. In an unstable stratification, in
which less dense fluid is at the bottom, and more dense fluid at the top, provided the
density gradient is su�ciently large, convection will start spontaneously and significant
mixing of the fluid will occur.
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1.2 Buoyancy-driven flows
Buoyancy e�ects occur, in principle, in any variable-density flow in a gravitational field.
The importance of the buoyancy increases with density gradient and it is characterised
by the size of the Richardson number, the simplest form of which is:

Ri = �fl

fl

gh

u2 , (1.1)

where �fl is the density di�erence that occurs over a typical (usually vertical) length
scale h in a flow of velocity u. As this Richardson number, in Equation (1.1), tends to
zero, so does the importance of buoyancy. Flows created entirely by buoyancy forces
are referred to as buoyancy-driven flows. The range of buoyant flows that can occur in
nature and in engineering practice is large and has been extensively considered. Natural
convection flows occur generally in atmospheric and oceanic circulation, electric ma-
chinery, nuclear reactor cooling systems, heated or cooled enclosures, electronic power
supplies, and so forth.

1.2.1 Buoyancy-driven flows in enclosures

Natural convection flows in enclosures are good examples of complicated flow types.
These flows have a number of technical applications, including ventilation in buildings,
cooling of electronic equipments, solar collectors, energy storage systems and cooling of
nuclear reactors.

Over the past years, convection phenomena induced by body forces have been the
subject of extensive research e�orts. Internal problems such as the flow and heat trans-
fer between parallel plates or in fluid-filled cavities are considerably more complex than
the external forced or even mixed convection problems. Thus far, external problems
have received a great deal of attention while relatively little has been done about in-
ternal ones. For confined natural convection problems, the boundary layers and core
are closely coupled to each other and this coupling presents the main source of di�-
culty in obtaining analytical solutions to internal problems. In order to elucidate some
important physical flow features, and industrial applications, of the natural convection
in enclosures, Figure 1.1 shows the ensemble of test cases considered in the present
thesis. First, the flow within two dimensional vertical tall-cavities is examined in order
to test the di�erent wall functions embedded in In-house and Open source CFD code
Code_Saturne 2.0. The cavities are then tilted at 60o under stable stratification and
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15o under unstable stratification in order to see the influence of the angle of inclination.

Figure 1.1: Buoyancy-driven flows within di�erent enclosures investigated in the present
thesis.
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The second set of cases tested here are three-dimensional stable and unstable stratified
tilted enclosures at 15o to the horizontal. LES and URANS techniques are used here
and recent experimental data set is available for validation. A final industrial test case
is considered, representing a horizontal annular penetration enclosure which can be
found in the AGR’s (Advanced Gas Cooled Reactors).

1.3 Computational Fluid Dynamics
Computational fluid dynamics is one of the tools (in addition to experimental and
theoretical methods) available to solve fluid-dynamic problems, being the numerical
approximation to the solution of mathematical models of fluid flow and heat transfer.
With the advent of modern computers, computational fluid dynamics evolved from
potential-flow and boundary-layer methods to more complex configurations. It is now
used in diverse fields, including engineering, physics, chemistry, meteorology, and ge-
ology. The crucial elements of computational fluid dynamics are discretization, grid
generation and coordinate transformation, solution of the coupled algebraic equations,
turbulence modeling, and visualization.

Numerical solution of partial di�erential equations requires representing the contin-
uous nature of the equations in a discrete form. Discretization of the equations consists
of a process where the domain is subdivided into cells or elements (that is, grid genera-
tion) and the equations are expressed in discrete form at each point in the grid by using
finite di�erence, finite volume, or finite element methods. The finite di�erence method
requires a structured grid arrangement (that is, an organized set of points formed by
the intersections of the lines of a boundary-conforming curvilinear coordinate system),
while the finite element and finite volume methods are more flexible and can be formu-
lated to use both structured and unstructured grids (that is, a collection of triangular,
or other shaped, elements or a random distribution of points).

There are a variety of approaches for resolving the phenomena of fluid turbulence.
The Reynolds-averaged Navier-Stokes (RANS) equations are derived by decomposing
the velocity into mean and fluctuating components. An alternative is large-eddy simula-
tion, which solves the Navier-Stokes equations in conjunction with a sub-grid turbulence
model. The most direct approach to solving turbulent flows is direct numerical simula-
tion, which solves the Navier-Stokes equations on a mesh that is fine enough to resolve
all length scales in the turbulent flow. Unfortunately, direct numerical simulation is
limited to simple geometries and low-Reynolds-number flows because of the limited
capacity of even the most sophisticated supercomputers.
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The final step is to visualize the results of the simulation. Visualization software
permits generation of velocity vectors, pressure and velocity contours, streamline gener-
ation, calculation of secondary quantities (such as vorticity), and animation of unsteady
calculations. Despite the sophisticated hardware, visualization of three-dimensional and
unsteady flows is still particularly di�cult. Moreover, many advanced visualization
techniques tend to be qualitative, and the most valuable visualization often consists of
simple x-y plots comparing the numerical solution to theory or experimental data.

Computational fluid dynamics has wide applicability in such areas as aerodynamics,
hydraulics, environmental fluid dynamics, and atmospheric and oceanic dynamics, with
length and time scales of the physical processes ranging from millimeters and seconds to
kilometers and years. Vehicle aerodynamics and hydrodynamics, which have provided
much of the impetus in the development of computational fluid dynamics, are primarily
concerned with the flow around aircraft, automobiles, and ships. Nowadays, further
applications include cooling of nuclear rectors and heat exchangers.

1.4 Turbulence and its modelling

1.4.1 Introduction

Turbulence is a phenomenon that occurs frequently in nature; it has, therefore, been
the subject of study for several centuries. In 1510, Leonardo Da Vinci accompanied a
drawing of the vortices shed behind a blunt obstacle with the following observation:

“Observe the motion of the water surface, which resembles that of hair, that has two
motions: one due to the weight of the shaft, the other to the shape of the curls; thus,
water has eddying motions, one part of which is due to the principal current, the other
to the random and reverse motion”.

1.4.2 The phenomenon of turbulence:

Turbulence causes the appearance in the flow of eddies with a wide range of length
and time scales that interact in a dynamically complex way (Figure 1.2). Turbulence is
commonly encountered in almost all flows of practical engineering and environmental
relevance:

• In most internal flows such as pipes and conduits, heat exchangers and other ther-
mal and chemical equipment, pumps, compressors, turbines, internal combustion
(IC) engines, hydraulic machinery and equipments, in building space...etc
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• In most external flows such as around and in wakes of aircraft, ships, trains and
road vehicles...etc

• In Earth’s atmosphere (also on and around other planets) in winds at high and
low altitudes (atmospheric boundary layer).

• In natural convection flows, rivers, lakes and oceans.

Figure 1.2: Turbulent flow [43].

Although turbulence is ubiquitous and a part of our daily life, there is no clear definition
of turbulence. One can state that turbulence denotes a state of fluid flow in which all
properties (velocity, pressure, density, temperature,..) fluctuate continuously in an
irregular, disorderly, non-repeating manner.
Other definitions and statements on turbulence can be found in the literature.

1.4.3 Some features of turbulence

Turbulence is, by its nature, an irregular, disorderly, non-stationary, three-dimensional,
highly non-linear, irreversible, stochastic phenomenon. Here are some interesting fea-
tures of turbulence:

• Randomness which means disorder and non-repeatability.

• Vorticality: high concentration and high intensity of vorticity (rotation of fluid
element, ≠æÊ = ≠æÒ ◊ ≠æ‚ ), the dynamics of which involves vortex stretching, elon-
gation, spinning, breakup, coalescing and pairing, all playing important roles in
turbulence interactions.
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• Nonlinearity and three-dimensionality are basic features of turbulence, both orig-
inating in vorticity production due to vortex self stretching. This is a three-
dimensional phenomenon which creates and maintains the turbulence vorticity.

• Continuity of eddy structure which is reflected in a continuous spectrum of fluc-
tuations over a range of frequencies, i.e. a spectrum of eddies of varying size.
Here an “eddy” means a vaguely identifiable fluid structure in swirling motion,
revealed by flow visualisation and associated with a Fourier component of a par-
ticular frequency or wave length (“cellular pattern”).

• Energy cascade, irreversibility and dissipation: this presumes a continuous vortex
stretching and a consequent one-directional transfer of energy towards smaller
eddies until finally dissipated into heat by viscosity. Hence, turbulence cannot
maintain itself and will decay rapidly if the source of its generation (a supply of
energy) disappears.

• Intermittency: turbulence can interact with non-turbulent fluid flow, can appear
intermittently in time at certain locations, or can occupy only parts of the flow
domain. Its appearance in time and space is characterised by an intermittency
factor.

• High di�usivity: fluctuations stretch and distort the fluid elements containing a
lump of property inhomogeneity (hot spots of heat, species, momentum, vorticity)
until the increase in surface area and in property gradient enables molecular e�ects
to act e�ciently, thus far enhancing, by several orders of magnitude, the mixing
and transport of momentum, heat and species. The consequences of this are
intensive spreading, mixing and transporting of momentum, heat and species.

• Local isotropy of turbulence structure: Large eddies keep memory of their origin
and retain the imposed directional orientation. Cascade vortex stretching damps
the transmission of information on the turbulence origin towards the smaller mo-
tion and, if the Reynolds number is su�ciently high, small scale motions lose their
orientational preference and become statistically isotropic (Kolmogorov). This lo-
cal isotropy (localised in spectral space to the high wave numbers) is also a very
fortunate property of turbulence; it allows the neglect of viscosity in analysing
and computing turbulence. If the source of turbulence is eliminated, the whole
spectrum of turbulent motion tends to become isotropic (“isotropic turbulence”).
In most cases turbulence is non-isotropic and inhomogeneous.
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1.4.4 Scales of turbulence

Turbulence and its interactions are characterised by turbulence time- and length scales
(or velocity scales). Di�erent interactions are governed by di�erent scales (eddies of
di�erent sizes and life-times). Turbulence generation and its transport (di�usion) are
associated with large eddies, while the viscous dissipation occurs at the smallest tur-
bulence scales. Large eddies in a shear layer or in an enclosure can grow until they
fill the layer or the entire flow domain, hence the largest length scale can be related
to the characteristic flow dimension. Large eddies are mostly responsible for transport
of momentum, heat and species (di�usion length scale), and generation of turbulence
in shear layers occurs due to the mean flow deformation and its interaction with the
most energetic eddies (energy containing eddies which are close in size to the largest
eddies). Through the process of their generation large eddies extract energy from the
mean motion. These energy containing eddies are large in size though not the very
largest (which are usually weak, with lower energy content) and they are most e�cient
in extracting energy from the mean motion. However, they also control the amount of
energy which they give away to the smaller eddies (the start of the cascade process),
which will ultimately be dissipated by viscosity (around the Kolmogorov scale). We
denote the rate of dissipation of turbulent kinetic energy by Á. Hence, we can define
the time and length scales of energy containing eddies in terms of the total content
of turbulence kinetic energy k and its dissipation rate Á, i.e as f (k, Á). Dimensional
analysis yields time and length scales respectively

· = k

Á
, (1.2)

lT = k3/2

Á
, (1.3)

The velocity scale of turbulence is denoted by uT , It is defined as:

uT = K1/2 (1.4)

where K = 1
2u

Õ
iu

Õ
j is the mean kinetic energy in the turbulence.

One can summarise, in Figure 1.3, the three main sets of scales in a turbulent flow
(there may be more if other physical phenomena take part); these are:

• the large scale, based on the problem domain geometry,
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• the Taylor microscale, which is an intermediate scale, basically corresponding to
Kolmogorov’s inertial subrange, and

• the Kolmogorov (or dissipation) scale which is the smallest of turbulence scales.

Figure 1.3: Turbulence energy wavenumber spectrum.

1.4.5 Modelling of turbulence

Over 100 years after ’Osborne Reynolds’ experiments, turbulence is still one of the
outstanding problems in applied mechanics. No useful analytical solutions of turbulent
flows of engineering interest are available, although statistical theories of turbulence
have provided good understanding of the scaling laws in various flow regimes. Experi-
mental studies have also given insight in the understanding of the structure of turbulent
flows. Flow visualisation has been particularly useful in the identification of the coher-
ent eddies that are responsible for most of the energy production, especially in regions
of high shear. Measurement techniques have progressed significantly: it is now possible
to obtain single-point measurements of velocity and velocity gradient components us-
ing Laser-Doppler velocimetry or multiple wire anemometers, or velocity distributions
in a plane, through Particle-Image or Particle-Tracking Velocimetry. Some empirical
correlations for certain flows have been obtained, and can be used in some situations.

A widely-used approach to analysing turbulent flows is via Reynolds decomposition,
in which averaging operation permits to decompose any quantity f into its mean part,
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f , and a fluctuating part, f
Õ (x, t) = f (x, t) ≠ f (x). The long-time average f is defined

as:

f (x) = lim
T æŒ

1
T

ˆ t+T

t

f (x, t) dt, (1.5)

where T is a time interval much longer than all the time scales of the turbulent flow.
If the flow is unsteady, time averaging cannot be used and it has to be replaced with

ensemble averaging. The concept of this is to imagine a set of flows in which all of the
variables that can be controlled (energy, boundary conditions etc.) are identical but the
initial conditions are generated randomly. This will give flows that di�er considerably
from one another. An average over a large set of such flows is an ensemble average; In
mathematical form written as:

f (x, t) = 1
N

Nÿ

n=1
fn (x, t) dt, (1.6)

If the averaging operation (1.5) is applied to the equations of motion, one obtains the
well-known Reynolds-averaged Navier-Stokes equations (RANS), that describe the evo-
lution of the mean quantities. RANS equations are represented in Chapter 3. The e�ect
of turbulent fluctuations appears in a Reynolds stress term that must be modelled to
close the system. A very wide range of models for the Reynolds stresses is available,
ranging from simple, algebraic models, to k ≠ Á models, to full or algebraic Reynolds
stress closures. The solution of the RANS equations is now used in engineering appli-
cations to predict the flow in fairly complex configurations. This approach, however,
su�ers from one principal shortcoming, the fact that the model for the Reynolds stresses
must represent a very wide range of scales. While the small scales tend to depend only
on viscosity, and may be somewhat universal, the large ones are a�ected very strongly
by the boundary conditions (consider, for instance, the di�erence between the spanwise
rollers present in mixing layers and wakes and the elongated streamwise vortices that
are found in the near-wall region of a turbulent boundary layer). Thus, it does not
seem possible, or at least may be a significant challenge, to model the e�ect of the large
scales of turbulence in the same way in flows that are very di�erent.

The direct numerical simulation (DNS) of turbulence is, in principle, the most
straightforward approach to the solution of turbulent flows. In DNS, the governing
Navier-Stokes equations are discretized and solved numerically. If the mesh and time
step are fine enough to resolve even the smallest scales of motion, and the scheme is
designed to minimise the numerical dispersion and dissipation errors, one can obtain an
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accurate three-dimensional, time-dependent solution of the governing equations com-
pletely free of modeling assumptions, and in which the only errors are those introduced
by the numerical approximation. DNS makes it possible to compute and visualise any
quantity of interest, including some that are di�cult or impossible to measure exper-
imentally, and to study the spatial relationships between quantities of interest (for
instance, vorticity and energy production), to obtain insight on the detailed kinematics
and dynamics of turbulent eddies. DNS has been a very useful tool, over the past ten
years, for the study of transitional and turbulent flow physics, but it also has some lim-
itations. First, the use of highly accurate and high-order schemes is desirable to limit
dispersion and dissipation errors; these schemes (spectral methods, for example) tend to
have little flexibility in handling complex geometries and general boundary conditions.
Secondly, to resolve all scales of motion, one requires a number of grid points in the
three directions proportional to the 9/4 power of the turbulent Reynolds number, Ret,
and the cost of the computation scales like Re3/4. For these reasons, DNS has largely
been limited to simple geometries (flat plate boundary layers, homogeneous flows) at
low Reynolds numbers, and its application to engineering-type problems within the
next decade appears unlikely.

Large-eddy simulation (LES) is a technique intermediate between the direct simula-
tion of turbulent flows and the solution of the Reynolds-averaged equations. In LES, the
contribution of the large, energy-carrying structures to momentum and energy transfer
is computed exactly, and only the e�ect of the smallest scales of turbulence is modelled.
Since the small scales tend to be more homogeneous and universal, and less a�ected
by the boundary conditions than the large ones, there is hope that their models can
be simple and require fewer adjustments when applied to di�erent flows than similar
models for the RANS equations. The attention in the present work is focussed on highly
resolved LES computations of buoyancy-driven flows.

The extent of modelling for certain CFD approaches is illustrated in figure 1.4. It
is clearly seen that models solving the Navier Stokes equations (DNS or LES) have
the ability to provide better results. However they have a demand of much greater
computer power than those models applying RANS methods.

One can summarise the modelling requirements of the above approaches as follows:

• DNS requires no modelling, but it demands resolution from the large scales all
the way through the beginning of the dissipation scales.

• LES requires modelling of part of the inertial subrange and the dissipation scales.
The amount of required modelling is set by the amount of resolution that can be
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a�orded.

• RANS requires modelling of everything from the integral scales into the dissipation
range.

Figure 1.4: Schematic of comparisons between DNS, RANS and LES [43].

1.5 Objectives
Buoyant flows occur in a variety of engineering cooling systems including ventilation in
buildings, cooling of electronic equipments, thermal design of furnaces, energy storage
systems and cooling of nuclear reactors. It is therefore essential to have reliable and
e�cient numerical simulation models. Buoyant flows, even in simple geometries, tend
to be physically complex, which poses severe challenges to RANS turbulence models
used widely by industry. The principal objective of this research is to employ the Large
Eddy Simulation (LES) method to produce accurate simulations of buoyancy-driven
flows in complex internal systems found in engineering applications, both to examine
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the flow physics, and to provide data for use in testing and validating RANS modelling
approaches. As a first pair of test cases, 2-D buoyancy driven flow within di�erentially
heated vertical and inclined enclosures at 60° and 15° to the horizontal have been
computed using Unsteady RANS modelling approaches. The aim of this stage is to
test the performance of di�erent high- and low-Reynolds number turbulence models
embedded in Code_Saturne 2.0, together with the di�erent wall function treatments
available.

3-D LES and URANS computations of the flow within a 15° inclined cavity under
both unstable and stable stratifications have then been conducted. Finally, a more com-
plicated test case is considered here, the horizontal penetration enclosure, which can be
found in the AGR’s. Measured data are not available for this case, so a highly resolved
LES and URANS techniques have both been used to investigate the flow pattern in
such a geometry.

In these latter cases the results from the URANS approaches are compared with the
LES data, to allow conclusions to be drawn on the model’s performance for a range of
buoyancy-driven flows.

1.6 Outlines of the thesis
The work presented here is organised as follows: after a detailed introduction pre-
sented in this Chapter, which includes introductory definitions of natural convection,
buoyancy-driven flows, CFD and turbulence, together with its scales and modelling
approaches, Chapter 2 contains a detailed literature survey of previous investigations
carried out by researchers on buyancy-driven flows inside di�erent geometries, including
both experimental and numerical studies.

Chapter 3 gives details of the governing equations and modelling procedures and
physical models used for the present computations, with particular attention given to
the URANS models and wall functions implemented in Code_Saturne 2.0. Details
of the LES filtering and modelling are also given here. Specific forms of particular
turbulence models employed are given in Appendix B.

The Finite Volume Method, which is widely applied as a discretization strategy
in CFD codes, will be presented in Chapter 4, together with details of the particular
numerical discretization and solution treatments employed in Code_Saturne 2.0.

Chapter 5 includes a description, results and discussion of the numerical simula-
tion of 2-D vertical and inclined cavities using di�erent RANS models embedded in
Code_Saturne 2.0. Models tested include high-Reynolds number k ≠ Á and Reynolds
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stress transport models, with di�erent wall function treatments, and low-Reynolds num-
ber models such as the SST k ≠ Ê scheme and elliptic blending models including the
Ï ≠ f and newer Ï ≠ – schemes.

Chapter 6 considers the computations of flow within 3-D enclosures tilted at 15o at
the horizontal under unstable stratification, using a high resolution LES and URANS
models. The corresponding case at 15o with stable stratification is covered in Chapter
7.

In Chapter 8, LES and URANS computations of buoyancy-driven flow in the in-
dustrial test case of a horizontal annular penetration will be considered. Detailed
qualitative and quantitative results, including comparisons between URANS and LES
predictions will be presented.

Finally, Chapter 9 includes conclusions together with suggestions for future work.

41



Chapter 2

Literature Survey

2.1 Experimental investigations

2.1.1 Vertical tall cavities

Warner [89] investigated experimentally turbulent natural convection in air flow at low
pressure along a vertical heated flat plate, for Rayleigh numbers up to 1012. Extensive
measurements of the temperature field indicated a good similarity in the temperature
profile when compared on the basis of the natural coordinate. The use of a power
law temperature profiles was shown to be undesirable for the case of turbulent natural
convection. Except at the wall itself, the turbulent mean temperature profile was
well represented in natural coordinates by a laminar profile over a great portion of
the thermal layer. The primary e�ect of increased distance along the plate upon the
temperature profiles appeared to be a thickening of the thermal layer, with all profiles
taking the same basic form for moderate distances from the wall.

Measurement data on temperature fields and heat flux is extensive, ranging from
well-known experiments of Mac Gregor and Emery [63] who investigated the flow and
heat transfer in a vertical two dimensional enclosure with the height-to-width ratio,
H/W , greater than unity, to the large models of domestic rooms investigated by Yguel
[93]. However, the low velocities involved were di�cult to measure, as hot wire probes
generated their own local convection and were insensitive to the flow reversals present
in the flow.

Yin et al. [94] investigated experimentally natural convection in an air layer con-
tained in a rectangular cavity having side walls at di�erent temperatures and for various
aspect ratios ranging from 4.9 to 78.8. The Grashof number based on layer thickness
ranged from 1.5 ◊ 103 to 7.0 ◊ 106. The measured temperature profile shapes were
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found to be relatively independent of the temperature di�erence between the two ver-
tical plates for each aspect ratio. Temperature inversions, believed to be caused by
a high rate of tangential convection of heat relative to the horizontal transport, were
observed in several test conditions.

Despite the widespread occurrence of natural convection in enclosed regions, the
availability of good quality experimental data involving both temperature and velocity
fields is still very limited. Cheesewright and Ziai [18], Bowles and Cheesewright [14]
and Cheesewright and King [17] carried out experimental investigations on two- dimen-
sional buoyant cavity flows. They studied rectangular cavities to produce experimental
data for validation of two-dimensional computer codes. The working fluid was air and
the Rayleigh number developed, based on the cavity height, was 1010 . They produced
a large amount of measurements of mean and fluctuation values of velocity and temper-
ature in the cavity. LDA and thermocouples were employed to carry out measurements
of velocity and temperature, respectively. They observed that the flow near the hot and
cold walls was not symmetric to each other. Also they reported relaminarisation on the
floor wall and then transition to turbulence at 20% of the way up the hot wall. The
measurements of velocity fluctuations showed a reduction at the bottom of the cavity,
which confirmed the relaminarisation phenomena. Mergui et al. [20] investigated a
nearly square cavity. The flow was only transitional, with a stratified quiescent flow in
the core even at a Rayleigh number based on cavity width, W , of Ra = 2.3 ◊ 109.

Dafa’Alla and Betts [29] and Tian et al. [82] investigated the flow in a simple rectan-
gular cavity, with opposing vertical walls held at di�erent temperatures. The existence
of turbulence within such a cavity depends on the aspect ratio

1
A = H

W

2
and Rayleigh

number. In the first of the above studies, the aspect ratio was 28.6 and Ra = 106,
and the flow in the core region was fully turbulent with rms turbulence levels over
half the maximum mean vertical velocity. Most experimental work was undertaken to
provide data under idealised thermal boundary conditions, such as constant heat flux
active walls and adiabatic or perfectly conducting passive ones. Dafa’Alla and Betts
[29] attempted to impose a constant heat flux on the hot wall, with an isothermal
cold wall and all other walls were insulated. They encountered particular di�culties at
the junction between the electrically heated hot plate and the nominally adiabatic top
and bottom walls. These problems are typical of all attempts to reproduce idealised
boundary conditions. Although the results of Ince and Launder [52] in modelling these
flows computationally were encouraging to the turbulence modellers, the uncertainty in
boundary layer definition in regions of rapidly changing temperature gradient (e.g, at
one end of the nominally adiabatic top and bottom surfaces) meant that one did not
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know whether the relatively minor di�erences between the experiment and the compu-
tation should be attributed to the turbulence model or problems with the experiment.
The apparatus of Dafa’Alla and Betts [29] was rebuilt to ensure well-defined, readily
measurable, and smooth varying temperatures within the boundary walls. Conduction
within the walls became part of the problem, but there was a clear unambiguous spec-
ification. Moreover, the flow was controlled to be two-dimensional over most of the
enclosure volume.

Betts and Bokhari [11] designed an experiment to overcome the di�culties which
were discussed previously and to provide an appropriate benchmark for modellers. They
investigated the natural convection of air in a tall di�erentially heated rectangular cav-
ity of 2.18m high by 0.076m wide by 0.52m in depth. The experiments were performed
with temperature di�erentials between the vertical plates of 19.6oC and 39.9oC, giv-
ing Rayleigh numbers based on the cavity width of 0.86 ◊ 106 and 1.43 ◊ 106. Under
these conditions, the flow in the core of the cavity is fully turbulent and property vari-
ations with temperature were comparatively small. Mean and turbulent temperature
and velocity variations within the cavity were measured, together with heat fluxes and
turbulent shear stresses. The temperature and flow fields were found to be closely two-
dimensional, except near to the front and back walls, and anti-symmetric across the
diagonal of the cavity. The provision of partially conducting top and bottom walls suc-
cessfully overcame the problems associated with trying to achieve an adiabatic surface
there. The di�ering thermal stratification between the flow across the top and bottom,
which plagued previous investigations, was also overcome.

2.1.2 Vertical square cavities

Kirkpatrick and Bohn [57] experimentally studied natural convection at high Rayleigh
numbers in a cubical enclosure with various thermal boundary conditions. All of the
experiments were variations of the heating-from-below case. Their results indicated
that the heated floor promoted mixing in the enclosure and reduced the thermal strat-
ification. By increasing the Rayleigh number, the thermal stratification decreased at
the core of the cavity and then changed suddenly at Ra t 0.65 ◊ 1010. The thermal
stratification was also not symmetric about the centre-line.

Tian and Karayiannis [82] conducted an experimental study of low level turbulent
natural convection in an air filled vertical square cavity. The dimensions of the cavity
were 0.75m ◊ 0.75m ◊ 1.5m, reported to give two-dimensional flow. The hot and cold
walls of the cavity were isothermal at 50oC and 10oC, respectively, giving a Rayleigh
number of 1.58 ◊ 109. The temperature and velocity distributions were nearly anti-
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symmetrical, with fairly good agreement in velocity and temperature profiles at mid-
height near the vertical hot and cold walls. Slight di�erences were found at mid-width.
It was concluded that the flow was limited to a narrow strip along the walls where the
velocity and temperature changed sharply. In the vertical boundary layer, the velocity
reached its maximum value between the buoyant sub-layer and the outer layer and
decreased to negative values at the outer edge of the boundary. The negative values
were the result of four vortices, two forming in each of the hot top and cold bottom
corners. The flow in the cavity core was stationary and stratified.

Ampofo and Karayiannis [5] carried out an experimental study of low-level turbu-
lent natural convection in an air filled vertical square cavity, figure 2.1. they used the
same rig and set-up as Tian & Karayiannis [82]. The local velocity and temperature
were simultaneously measured at di�erent locations in the cavity and both mean and
fluctuation quantities were presented together with the local and average Nusselt num-
bers, the wall shear stress as well as the turbulent kinetic energy and the dissipation
rate of the temperature variance. It was concluded that for this kind of cavity, the
inner boundary layer along the isothermal walls was less than 7% of the outer bound-
ary layer thickness. Also, the viscous layer, which was next to the isothermal walls,
was about 3mm thick (60% of the inner layer) whilst the conductive layer was 2mm
thick. The turbulent quantities were almost negligible in the conductive layer, which
confirmed that the heat transfer in this region was by pure conduction. The local Nus-
selt number reached a maximum at the bottom of the hot wall and at the top of the
cold wall because of a thinner thermal boundary there. They showed also that at the
bottom of the hot wall (and top of the cold wall) the turbulent heat flux was e�ectively
zero. The absence of a turbulent heat flux in these regions suggested that the lower
part of the hot wall (and upper part of the cold wall) boundary layer had many of the
characteristics of a laminar flow. In general, the horizontal turbulent heat flux was one
order of magnitude smaller than the vertical turbulent heat flux.

Valencia et al. [86] reported experimental measurements and numerical simulations
of natural convection in a cubical cavity heated from below and cooled from above
at turbulent Rayleigh numbers using water as a convective fluid (Pr = 6.0). Direct
numerical simulations (DNS) were carried out, assuming the Boussinesq approximation,
using a second-order finite volume code (107 6 Ra 6 108), and taking into consideration
heat conduction through the sidewalls. The particle image velocimetry technique was
used to measure the velocity field at Rayleigh numbers equal to 107, 7 ◊ 107 and 108.
There was general agreement between the predicted time averaged local velocities and
those experimentally measured.
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Figure 2.1: Schematic diagram of test cavity and velocity field, profiles of rms velocity
fluctuations at y/H=0.5 [5].

2.1.3 Other vertical cavities

The e�ects of backward-facing and forward-facing steps on turbulent natural convec-
tion along a vertical heated flat plate, figure 2.2, were examined experimentally by
Abu-Mulaweh [1]. Laser-Doppler velocimetry and cold wire anemometry were used to,
respectively, measure simultaneously the time-mean turbulent velocity and temperature
distributions and their turbulent fluctuation intensities. The experiment was carried
out for a step (backward-facing and forward-facing) height of 22mm and a tempera-
ture di�erence between the heated walls and the free stream (ambient air) of 30oC.

Results reveal that the maximum local Nusselt number occurred in the vicinity of the
reattachment region. For the backward facing step this maximum was approximately
twice that found on a flat plate under similar flow and thermal conditions, whilst for
the forward-facing step it was two and a half times the flat plate value.
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Figure 2.2: Schematic of the flow geometries and the local number variation [1].

Ampofo [6] studied experimentally turbulent natural convection of air in non-partitioned
and partitioned cavities with di�erentially heated vertical and conducting horizontal
walls, figure 2.3. The dimensions of the cavity, which were 0.75 m high, 0.75 m wide
and 1.5 m deep, resulted in two-dimensional flow in the mid-plane of the cavity. The
hot and cold walls of the cavity were isothermal at 50 and 10°C, respectively, giving a
Rayleigh number of 1.58◊109. Five partitions of a higher thermal conductivity material
than that of the cavity wall were installed on the hot wall. The partitions were 150mm
long, 3mm thick and covered the depth of the cavity. The local velocity and temperature
were systematically measured at di�erent locations in the cavity using a laser Doppler
anemometer and a micro-diameter thermocouple. Both mean and fluctuation quanti-
ties were presented. The most important conclusion from this study was the e�ect of
the partitions on the heat transfer rates along the hot wall. The local average Nusselt
number was obtained and indicated that partitions of this length tended to reduce the
heat transfer rates along the hot wall compared with similar cavities without partitions.
The velocity, temperature and the turbulence results obtained in the partitioned cavity
di�ered substantially from the corresponding results in the non-partitioned cavity with
the same dimensions and under the same experimental conditions. Due to the high heat
transfer input from the hot partitioned wall, all the flow and thermal field quantities
obtained in the cold wall boundary layer of the partitioned cavity had higher peaks and
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thicker boundary layer structure than the corresponding values in the non-partitioned
cavity.

Figure 2.3: Vector plot of mean velocity profiles. (a) Non-partitioned cavity (scale:
0.038 m/s/mm). (b) Partitioned cavity (scale: 0.080 m/s/mm [6]).

2.2 Numerical investigations

2.2.1 Vertical tall cavities

William and Capp [41] analyzed the turbulent natural convection boundary layer next
to a heated vertical surface by classical scaling arguments. It was shown that the fully
developed turbulent boundary layer must be treated in two parts: an outer region
consisting of most of the boundary layer in which viscous and conduction terms were
negligible and an inner region in which the mean convection terms were negligible. The
inner layer was identified as a constant heat flux layer. An overlap region, which was
called the buoyant sublayer, was shown to exist at high Rayleigh number values. In this
region the temperature and the velocity were dependent on the cube root of distance
from the wall. Regions of linear variation of velocity and temperature existed next
to the wall and they were termed the conductive and thermo-viscous sublayers. Heat
transfer and friction laws were derived for the fully developed boundary layer.

Evren-Selamet et al. [39] conducted a numerical study on natural convection in a
vertical slot with a narrow upper section. The fluid (air) in the slot was initially at
a uniform temperature and motionless. The top and bottom were insulated. The left
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wall was subjected to a step change in temperature, while the right wall was kept at the
initial temperature. The resulting flow patterns and heat transfer for di�erent Rayleigh
numbers were numerically studied by a projection method involving a Godunov-type
discretization for convective terms. Transient solutions of the equations of momentum
and energy have been obtained. The Godunov discretization of the convective terms
was shown to provide an accurate representation of the flow and temperature fields in
buoyancy-driven flows. The numerical results were in good agreement with available
predictions obtained by other investigators. The study demonstrated the existence
of di�erent flow regimes, which changed from conduction-dominated to convection-
dominated as the Rayleigh number was increased. It was concluded that the laminar
solution at high Rayleigh numbers, greater than 106, showed a thermal stratification in
the core which was almost independent of the Rayleigh number and seemed to vanish
totally for infinitely large Rayleigh number. Di�erences between the turbulence model
predictions were largest for quantities that are determined in the inner layer of the
vertical boundary layer, the wall heat transfer and the wall shear stress. Di�erences in
the prediction of the vertical velocity maximum, the turbulent viscosity maximum, the
horizontal velocity at half the cavity width and the thermal stratification in the core
were small. Di�erences between the model predictions were larger for water than for
air.

Peeters and Henkes [74] investigated numerically the turbulent natural convection
boundary layer for air along a heated vertical plate with an algebraic (ASM) and
fully di�erential (RSM) Reynolds-stress model. Sensitivity tests on the RSM constants
showed which constants dominated the mean-flow prediction, and which constants only
a�ected turbulence quantities. Modifications were employed to improve predictions of
the near-wall turbulence. RSM calculations of the turbulence quantities agreed well
with available experimental data. ASM results were poorer, but in qualitative agree-
ment with experiments. They concluded that, in natural-convection boundary layers,
the local-equilibrium assumption had only limited applicability. Furthermore, the eddy-
viscosity concept used in the k ≠ Á model (KEM) was also tested. The KEM gave good
mean-flow results, but for a good prediction of the detailed turbulence structure the
RSM was needed.

lnce and Launder [52] studied numerically turbulent natural convection in a cavity
of 5:l aspect ratio, in which the heated and cooled surfaces (long sides) were vertical.
An extended form of k ≠ Á eddy viscosity model was adopted, which had earlier been
employed to study the same flow assuming two-dimensional (2-D) motion with perfectly
insulated end walls. They considered the three-dimensional (3-D) behavior and allowed
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realistic heat losses through the nominally adiabatic surfaces. The study explored
the extent to which failures of earlier predictions of the cavity flows of Cheesewright
and co-workers [14, 18, 17] could be attributed to the fact that these studies did not
account for heat losses from nominally adiabatic surfaces, or for 3-D e�ects. It was,
indeed, found that accounting for both these factors led to much closer agreement with
experiment than hitherto. Indeed, they found there was a significant rise in Nusselt
number very close to the side walls associated with the appreciable down flow induced
by heat leakage through the side wall. The Nusselt numbers at the cold wall were
appreciably low, simply because 20% of the heat entering the cavity through the heated
wall left through the insulated surfaces. Comparing 3-D with 2-D computations, the
temperature profiles were similar in the lower half of the cavity, although near the top
of the cavity the core fluid in the 2-D computations became significantly warmer.

HanjaliÊ [44] studied numerically the flow pattern and the temperature field in
empty and partitioned, two-dimensional (2D), rectangular enclosures at Rayleigh num-
bers 1010≥1012, using an extended algebraic model for turbulent heat transport ◊ui. The
geometries considered, with partial, downward-extending and full adiabatic and con-
ductive vertical partitions, imitate neighbouring rooms in real buildings with a doorway
in between. Two closure levels were applied: three- and four-equation models, k≠Á≠◊2

and k ≠ Á ≠ ◊2 ≠ Á◊, both incorporating low-Reynolds number modifications, which al-
lowed integration up to the wall and, in principle, prediction of turbulence transition.
The computations confirmed earlier experimental findings that in this range of Rayleigh
numbers, the flow became turbulent, but the turbulence remained confined to only some
regions of the enclosure. Noticeable improvements in capturing details of the turbulent
field, particularly at transitional Rayleigh numbers, were achieved with the algebraic
model for turbulent heat transport ◊ui, with both the three- and four-equation models,
as compared with employing the eddy di�usivity hypothesis. It was concluded that for
all cases, the applied model gave plausible mean temperature and velocity fields. For
enclosures filled with air at higher Rayleigh numbers the computations in undivided and
partitioned 2-D enclosures reproduced a persistent turbulence in some parts of the en-
closures. The low-Re k ≠Á model reproduced a turbulent regime erratically and only at
substantially higher Ra numbers. The algebraic flux model proved capable of generat-
ing and maintaining the mechanical and thermal turbulence. In cases with side heating
and cooling, the turbulence was found in regions adjacent to the non-adiabatic walls,
influencing substantially the averaged heat transfer across the enclosure. In all cases
considered, the computations yielded strong variations of the Nusselt number along the
non-adiabatic walls, with a sudden increase at the onset of turbulence transition, the
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location of which depended on the Ra number.
Dol [34] used results of direct numerical simulation (DNS) of turbulent natural

convection between two di�erentially heated infinite vertical plates for Ra = 5.4 ◊ 105

to assess models of various terms in the transport equations for the turbulent heat-
flux vector ◊ui and the temperature variance ◊2. He also presented results of the
computation of natural convection in a tall cavity. The hypotheses used to truncate a
di�erential model into algebraic forms were examined, together with a fully di�erential
and a four-equation k ≠Á≠◊2 ≠Á◊◊ algebraic models. Computations yielded acceptable
agreement with experimental and DNS data. It was concluded that a term-by-term
comparison of the transport equations for the turbulent heat flux and the temperature
variance led to the conclusion that most models of individual terms poorly reproduced
the DNS of the corresponding terms in the exact equations. Dol also mentioned that
none of the algebraic expressions reproduced the heat-flux components, this was caused
by mutual compensation of errors in modelling individual terms.

Versteegh [88] performed Direct Numerical Simulation (DNS) of natural convection
flow in an infinite, di�erentially heated, vertical channel at four Rayleigh numbers
varying from 5.4 ◊ 105 to 5.0 ◊ 106 for Pr = 0.709. He focussed their attention on the
turbulent Reynolds-stresses, heat fluxes and variance and their budgets. He interpreted
the budgets in terms of the physical processes that determine this flow. In addition, he
calculated the stresses and budgets based on the structures found from linear stability
analysis of the laminar solution of this problem. The latter budgets were compared
with the budgets for fully developed turbulent flow, in order to estimate the influence
of the large scale coherent structures on the budgets. He found that in the near-wall
region, the shear production of turbulence was negative. The turbulent budgets showed
that the flow can be divided into a near wall region, where di�usive transport balances
dissipation, and an outer region, where (pressure) production balances dissipation. Only
in the region near the velocity maximum did advective transport became important.
For the turbulent case, the large temperature fluctuations near the velocity maximum,
combined with the high Rayleigh number, induced forces that destroyed the original
flow pattern.

Liu & Wen [62] developed a new buoyancy-modified turbulence model on the basis
of the four-equation model, k ≠ Á ≠ ◊2 ≠ Á◊, of HanjaliÊ [44]. The strong anisotropy of
Reynolds stresses due to buoyancy e�ects in the vertical boundary layers was considered
by inclusion of a newly devised “return-to-isotropy” concept in the pressure-strain cor-
relation. The wall-reflection functions were also modified. The new model was tested
in buoyancy-driven cavity flows. It demonstrated significant improvements in captur-
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ing the non-isotropy of Reynolds-stresses and turbulent heat flux in vertical boundary
layers. It was concluded the model was capable of predicting the lateral extent of the
turbulent boundary layer near the vertical wall. Significant improvement was achieved
on the predictions of velocity fluctuations for the region near the vertical walls.

Peng [75] investigated numerically a turbulent natural convection flow (Ra = 1.58◊
109) in a confined cavity with two di�erentially heated side walls by means of Large Eddy
Simulation (LES). The mean flow in the cavity was characterized by stable thermal
stratification and a relatively low turbulence level. Good agreements were found when
comparing with measurements. Nevertheless, there were some discrepancies in the
prediction of turbulence statistics, particularly in the outer region of the near-wall
flow where the boundary layer interacts with the recirculating core region. In the
viscous/conductive sublayer of the boundary layer close to the heated/cooled vertical
walls the flow tended to form streak-like structures, which did not however appear in
the near-wall flow along the horizontal top and bottom walls.

HanjaliÊ [45] reviewed some specific modelling issues related to buoyant flows in
the context of one-point closures. The inadequacy of isotropic eddy-di�usivity models
was discussed first, followed by the rationale of the second-moment modelling and its
term-by-term scrutiny based on Direct Numerical Simulations (DNS) data. Algebraic
models based on a rational truncation of the di�erential second-moment closure were
proposed.

Tieszen et al. [83] compared results from two-dimensional calculations using the
‚2 ≠ f and a k ≠ Á model with data for two geometries, the vertical flat plate and the
5:1 height: width box with constant temperature hot and cold side walls. The results
showed that the ‚2 ≠ f model was at least as good as the k ≠ Á model with a two-layer
wall treatment. The ‚2 ≠ f model gave good prediction for the vertical flat plate data
without changes. However, in the hot-wall, cold-wall, box it had a delayed transition
with respect to the data and significantly under-predicted the heat transfer. With the
addition of the GGDH for modelling the heat flux, the overall heat transfer comparisons
improved.

Corcione [26] studied numerically steady laminar natural convection in air-filled 2-D
rectangular enclosures heated from below and cooled from above for a wide variety of
thermal boundary conditions at the sidewalls. A specifically developed numerical model
based on the SIMPLER algorithm was used for the solution of the mass, momentum
and energy transfer governing equations. Simulations were performed for several values
of both the width-to-height aspect ratio of the enclosure in the range between 0.66
and 8, and the Rayleigh number based on the cavity height in the range between 103

52



Chapter 2. Literature Survey

and 106. The temperature distributions and the heat transfer rates were analyzed. In
particular, with reference to the typical configuration where the sidewalls are adiabatic,
it was found that the heat transfer e�ectiveness of the bottom wall increased (or slightly
decreased) as each adiabatic sidewall was replaced by a cooled (or a heated) sidewall. An
opposite behavior was observed for the top wall. The heat transfer rate results obtained
were expressed through dimensionless correlation-equations. Once the Rayleigh number
was assigned, for all the thermal configurations investigated, the heat transfer rates from
the top and bottom walls tended asymptotically to the same value (typical of horizontal
air layers) as the cavity aspect ratio increased. The local heat fluxes from the top and
bottom walls were strictly dependent on the thermal boundary conditions assumed at
both sidewalls.

Hsieh [49] investigated numerically turbulent natural convection in enclosures with
di�erentially heated vertical walls. Low-Reynolds-number turbulence models were adopted.
He showed that when the turbulence level in the core region of the cavity was low, most
low-Re models, particular those showing good performance for bypass transitional flows,
tended to relaminarise the flow and, as a consequence, significantly under-predicted the
near-wall turbulence intensities and boundary-layer thickness. He also tested an un-
steady RANS approach, employing a low-Re k ≠ Á model, and the predicted flow field
was found to be e�ectively relaminarised. To overcome this di�culty, likely caused by
the low-Re functions in the Á-equation, the two-layer approach was attempted, in which
the near-wall lengthscale was prescribed algebraically using the one-equation k≠l model
of Wolfshtein (1969). The two-layer approach combined with a quadratic stress–strain
relation gave overall the best performance in terms of mean velocities, temperature and
turbulence quantities.

Choi et al. [21] carried out a numerical study of natural convection in a rectangular
cavity with a low-Re di�erential stress and flux model. The turbulence model considered
in the study is that developed by Peeters and Henkes [74] and further refined by Dol
and HanjaliÊ [35]. This model was applied to the prediction of natural convection in a
rectangular cavity, together with the two-layer model, the shear stress transport model
and the time-scale bounded ‚2 ≠ f model, all with an algebraic heat flux model. It
was shown that the low-Reynolds number di�erential stress and flux model predicted
well the mean velocity and temperature, the rms vertical velocity fluctuations, the
Reynolds shear stress, the horizontal turbulent heat flux, the local Nusselt number and
the wall shear stress, but slightly under-predicted the vertical turbulent heat flux. The
performance of the ‚2 ≠ f model was comparable to that of the low-Reynolds number
di�erential stress and flux model except for an overprediction of the horizontal turbulent
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heat flux. The two layer model predicted poorly the mean vertical velocity component
and under-predicted the wall shear stress and the local Nusselt number. The shear
stress transport model predicted well the mean velocity, but the general performance
of the shear stress transport model was nearly the same as that of the two-layer model,
under-predicting the local Nusselt number and the turbulent quantities.

Snoussi et al. [80] studied numerically natural convection flow resulting from the
combined buoyancy e�ects of thermal and mass di�usion in a cavity with di�erentially
heated side walls with di�erent aspect ratios ranging from 1 to 4. The water on the
left hot wall of the cavity was vaporized from the liquid-vapor interface. The vapor
moved through the air and condensed at the cooled right wall. The Finite Element
Method (FEM) was used and the full vorticity transport equation, together with the
stream function, and concentration and energy equations, were solved. This numerical
approach allowed them to analyse the complex natural convection flow situations arising
in the cavity, and appeared to be su�ciently versatile to permit computation of other
e�ects such as inclination of glazing cavities.

Aksouh and Mataoui [4] predicted numerically natural convection of air in an en-
closed tall di�erentially heated rectangular cavity of 0.076m ◊ 2.18m ◊ 0.52m. Two
di�erential temperatures between the vertical plates, respectively 19.6°C and 39.9°C,
corresponding to the low and higher Rayleigh numbers of 0.86◊106 and 1.43◊106 were
considered. The closure of the motion equations was achieved by two statistical turbu-
lence models coupled with wall functions: the energy dissipation k ≠ Á model and the
RNG model to improve the e�ects of low Reynolds numbers, particularly in the viscous
sublayer near the wall. The numerical solution of the RANS equations was performed
through a finite volume method based on a second order upwind space discretization
and a pressure-velocity PISO algorithm. It was found that comparison between the
two models showed that the predictions of the RNG model were in better agreement
with experimental data than those of the standard k ≠Á model for flow at low Rayleigh
number. The discrepancy between the two models was especially observed close to the
wall. The increase of the temperature di�erence between the hot and the cold wall
generated an increase of the turbulence intensity in the flow. This increase was more
significant near the wall. However, the velocity magnitude and streamline contours
showed that in addition to the primary flow, which moved between the active walls,
a secondary flow with weak velocity amplitude was also present. This secondary flow
started only in the core region of the cavity, and moved fluid along the spanwise axis.

Trias et al. [85] investigated numerically a set of 2-D and 3-D Direct Numerical
Simulations (DNS) in a di�erentially heated air-filled cavity of aspect ratio 4 with
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adiabatic horizontal walls giving Rayleigh numbers, based on the cavity height, of 6.4◊
108, 2◊109 and 1010, and Prandtl number of air Pr = 0.71. Significant di�erences were
observed between 2-D and 3-D results. The numerical algorithm and the methodology
used to verify the code and the simulations were presented. The main features of the
flow, including the time-averaged flow structure, the power spectra and probability
density distributions of a set of selected monitoring points, the turbulent statistics,
the global kinetic energy balances and the internal waves motion phenomenon were all
presented and discussed.

2.2.2 Vertical square cavities

Markatos and Pericleous [66] presented a computational method which they used to
obtain solutions of the buoyancy-driven, turbulent flow and heat transfer in a square
cavity with di�erentially heated side walls. A series of Rayleigh numbers, ranging from
103 to 1016 were investigated numerically. Donor-cell di�erencing was used and mesh-
refinement tests were performed for all considered Rayleigh numbers. They tested a
two-equation model of turbulence (k ≠ Á) for Rayleigh numbers greater than 106, that
included gravity~density gradient interactions. They concluded that the use of the k≠Á

model indicated that, despite its well-known deficiencies in terms of physical realism, it
led to a reasonable prediction of the overall flow structure of the considered problems.

Henkes et al. [47] calculated numerically the laminar and turbulent natural-convection
flow in a two-dimensional square cavity heated from the vertical side up to a Rayleigh
number of 1014 for air and up to 1015 for water. Three di�erent turbulence models
were compared: the standard Ÿ ≠ Á model with logarithmic wall functions and the low-
Reynolds-number models of Chien [19], and Jones and Launder [53]. The position of
the laminar-turbulent transition in the vertical boundary layer was found to strongly
depend on the turbulence model used. Moreover, multiple solutions for the transition
position could occur for a fixed Rayleigh number on the same numerical grid. The
thermal stratification in the core of the cavity broke up when the flow became tur-
bulent. Comparison of the averaged wall-heat transfer with experiments for the hot
vertical plate and for tall vertical cavities showed that the standard Ÿ ≠ Á model gave
a too high prediction, whereas the low-Reynolds-number models were reasonably close
to the experiment. Below a critical Rayleigh number (Racr), the solution was lami-
nar everywhere. Increasing the Prandtl number increased the critical Rayleigh number
Racr.
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2.3 Tilted enclosures

2.3.1 Experimental investigations

The natural convection motion and heat transfer rates in an inclined rectangular air
layer, in which two opposing isothermal rigid-boundaries were kept at di�erent temper-
atures, were investigated experimentally by Inaba [51] for various angles of inclination
from 0 ≠ 180o, figure 2.4, various aspect ratios, H

W = 5 ≠ 83, and Rayleigh numbers
Raw = 1.2 ◊ 103 ≠ 2 ◊ 106. Flow and heat transfer behaviours in these inclined air lay-
ers were investigated by flow visualisations and measurements of temperature profiles
and heat transfer through the air layer. Three types of flow patterns in the laminar flow
regime were recognised, depending on the inclination angle theta. For ◊ Æ 30o, there
existed mainly multi cellular flows (Rayleigh Benard convection). For ◊ = 30o ≥ 60o,
convoluted flows (spiral flows) with their axes directed to up slope were recognised in
the inclined air layer. For ◊ = 60o ≥ 150o, a unicellular flow (boundary layer flow)
existed in the inclined air layer. For small aspect ratios ( H

W = 10 ≠ 29), the change of
Nusselt number Nuw with inclination angle ◊ became complex because of the di�erence
of flow patterns. The Nuw values were maximum between 15o ≥ 60o, and decreased
steeply with increasing ◊.

Figure 2.4: Convective flow patterns in the X-Y plane for H/W=5 (W=22mm) for
◊ = 90o, ◊ = 60oand ◊ = 15o;RaW = 104 [51].

Steady-state natural convection taking place in rectangular cavities filled with air
was studied both experimentally and numerically by Baïri et al. [9]. The active
walls, hot and cold, of the cavity were maintained isothermal at temperatures TH and
TC , respectively, and the other walls were adiabatic. Di�erent angles of inclination
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– of the cavity from 0¶ to 360¶ were considered, including the significant configura-
tions corresponding to inclinations of 0° (vertical active walls), 90¶ (hot wall down,
Rayleigh–Bénard convection) and 270¶ (hot wall up, pure conductive mode). Two as-
pect ratios A = L/H = 0.75 and 1.5 were investigated, L being the distance between
the active walls and H the height of the cavity. The numerical study was carried out by
means of the finite volume method and provided thermal and dynamic maps of the fluid
for several geometrical configurations obtained while varying –, A and —T = TH ≠ TC .
The range of the Rayleigh number, RaL, extended from 10 to 108 (see Figure figure 2.5).
The convective exchanges computed by the RNG-k ≠Á turbulence model were, for most
of the treated cases, close to those obtained experimentally. The overall di�erences were
relatively small, with an average discrepancy between calculations and measurements of
about 6%, corresponding to the expected uncertainty of the model and measurements.
The authors provided new correlations of the type NuL–RaL which were useful for the
sizing of structures based on this type of cavity (Table 2.2).

Figure 2.5: Calculated Nusselt number
vs the angle of inclination – for di�erent
values of the Rayleigh number RaL and
A = 0.75 [9].

–(deg) Correlation

0, 30, 360 NuL = 0.147Ra0.287
L

45, 135, 315 NuL = 0.130Ra0.305
L

60, 90 NuL = 0.133Ra0.304
L

270 NuL = 0.058Ra0.058
L

Table 2.2: Correlations Nu-RaL for As-
pect ratios of 0.75 and 1.5 at di�erent
angles of inclination and 103 < Ra < 108

[9].

Recently, Cooper et al. [25] performed a set of experiments in which They focused
on the e�ects of angle of inclination on buoyancy-driven flows inside tall, rectangular,
di�erentially heated cavities. They considered a rectangular cavity with an aspect ratio
of 28.6, with its two long sides maintained at di�erent temperatures and the other walls
are all thermally insulated. The Rayleigh numbers, based on the temperature di�erence
and spacing on the long sides, were Ra = 0.86◊106 and 1.43◊106, the working fluid was
air. Laser Doppler anemometry was used for the velocity and thermocouple traverses
for the thermal fields. Results were presented for both inclined cavities at 60o to the
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horizontal with the heated surface the upper one and at 15o with the heated surface
being the lower one. For the latter case, additional data were presented for a Rayleigh
number of Ra = 1.54 ◊ 106. Cooper et al. [25] observed that for moderate angles
of inclination, under stable temperature stratification, the flow was two-dimensional
and the e�ects of the angle of inclination were primarily confined to the fluctuating
fields. For large angles of inclination, with unstable temperature stratification, a set
of four longitudinal vortices were formed over the entire width of the cavity, which
made the dynamic field three-dimensional. The enhanced mixing at 15o led to uniform
temperature in the cavity core and thus only minor deviations from two-dimensionality
in the thermal field. A modest rise in Rayleigh number did not a�ect the mean motion,
but caused an increase in the normalised turbulence intensities, which in turn led to
a more uniform temperature within the cavity core and a practically two dimensional
thermal field. In this experiemnt the authors estimated the relative uncertainties as:
6% in the Rayleigh number, 20% in the Nusselt number and 3% in buoyancy velocity.

2.3.2 Numerical investigations

Sharif & Liu [79] studied numerically turbulent natural convection at a moderately high
Rayleigh number (4.9 ◊ 1010) in a two- dimensional side-heated square cavity at various
angles of inclination, Figure 2.6.

Figure 2.6: Streamlines in the cavity at various angles of inclination [79].
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The k ≠ Ê and k ≠ Á models were evaluated against experimental measurements. The
performance of the Wilcox k ≠ Ê model was found to be superior in capturing the
flow physics such as the strong streamline curvature in the corner regions. The Lam
and Bremhorst k ≠ Á model was not capable of predicting these features but provided
reasonable predictions away from the corners. None of these models, however, was
capable of predicting the boundary-layer transition from laminar to turbulent. In order
to study the e�ect of the inclination of the square cavity on the heat transfer and flow
patterns, computations were then performed using the Wilcox k ≠ Ê model [90] for a
range of inclination angles from 0o through 90o, keeping other parameters fixed. The
computed flow patterns, isotherms, convection strengths, variation of the local Nusselt
numbers along the heated walls, and the average Nusselt number for various inclination
angles of the square cavity were reported. It was noticed that the flow fields and heat
transfer characteristics became significantly di�erent for inclinations greater than 45o.

Aounallah et al. [7] investigated numerically turbulent natural convection of air
flow in a confined and wavy cavity with two di�erentially heated side walls for Rayleigh
number ranging from 1.58 ◊ 109 to 1012. The authors tested di�erent RANS models,
together with with what they termed a “coarse DNS”. The aim was to study the e�ect
of the inclination angle and the amplitude of the undulation on turbulent heat transfer.
They showed the influence of the undulation of the cavity and its orientation. The
trend of the local heat transfer was wavy with di�erent frequencies for each undulation,
Figure 2.7.

Figure 2.7: Iso-temperature distributions and corresponding local Nusselt number at
the hot wall of the undulated cavity (Ra = 1.58 ◊ 109 and „ = 90o) [7].

The turbulence caused an increase in the convective heat transfer on the wavy wall
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surface compared to the square cavity for high Rayleigh numbers. They proposed a
correlation of the mean Nusselt number as a function of Rayleigh number for Rayleigh
numbers between 109–1012.

Addad et al. [3] carried out an LES and RANS of natural convection in a “shallow”
cavity with a heated ceiling and cooled floor. The rectangular cavity aspect ratio was
1/29, with its longest axis forming a small angle of 5o or less with the horizontal axis.
The Rayleigh number was 4.16 ◊ 108. The strong temperature gradient at the floor or
ceiling resulted in a laminar layer, while on the other side of the velocity peak turbulence
was able to develop, and in the central layer the flow was found to be again strongly
stratified. They concluded that RANS models reproduced Nusselt numbers very well
because there was only very weak turbulence and most of the heat was transferred by
a laminar convective mode rather that any turbulence e�ect.

Cooper et al. [24] investigated numerically flow in a rectangular cavity with an as-
pect ratio of 28.6, with its two long sides maintained at di�erent temperatures and the
two short end-walls thermally insulated. The Rayleigh number, based on the tempera-
ture di�erence and spacing on the long sides, was 0.86 ◊ 106 and the working fluid was
air (Prandtl number 0.71). The dimensions of the cavity were 2.18m◊0.52m◊0.0762m.
This study focussed on the e�ects of angle of inclination. Results were presented for
a cavity inclined at 60o and at 5o angles of inclination, with the hot surface being the
upper one for both angles. A number of strategies were employed for the modelling of
near-wall turbulence, including the analytical wall function (AWF of Craft et al. [27])
and also for the modelling of the turbulent stresses and heat fluxes. They found that the
AWF approach resulted in reliable flow and thermal predictions, while the prediction
of temperature fluctuations improved with the introduction of second-moment closures.
For tall di�erentially heated cavities with either vertical heated walls or inclined at mod-
erate angles to the vertical, the k ≠ Á model predictions were in close agreement with
measurements. The LRR model displayed some deficiencies, with the linear version
over-estimating velocity peaks at mid-height and the more elaborate non-linear model
over-estimating the turbulent mixing near the end walls. The present study has begun
by examining these cases using several RANS models implemented in Code_Saturne
2.0 and the LES approach.

2.4 Horizontal annular enclosures
The subject of buoyancy-driven flow inside a two dimensional horizontal annulus has
attracted great attention from researchers in both experimental and computational
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fields.
Castrejon and Spalding [15] performed an experimental and a numerical study of the

transient free-convection flow in an annulus between two concentric horizontal cylinders,
the inner one of which was heated. In the experiment, photographs were taken, and
successive positions of plume of heated fluid were observed. For the numerical study,
an implicit finite-domain solution procedure embedded in the PHOENIX code was used
to solve a closed system of four coupled di�erential equations. The numerical solution
procedure a�orded considerable insight into both general patterns. The authors found a
fairly good agreement between predictions and experimental measurements. However,
the numerical model failed to predict the transition to random motion which occurred
towards the end of the observation period.

Kumar [58] studied numerically natural convection of gases in a horizontal annulus,
where the inner cylinder was heated by the application of a constant heat flux and
the outer cylinder was isothermally cooled. For di�erent diameter ratios of 1.2 ≠ 10
and a wide range of Rayleigh numbers of 105 ≠ 3 ◊ 106, he presented detailed results
of temperature, velocity and heat transfer. His results showed a crescent-shaped eddy
dominated for the small diameter ratio, and a kidney-shaped flow pattern appeared
for the large diameter ratio. He also observed that the inner wall temperature was
a function of diameter ratio and Rayleigh number. He concluded that an increase
in Rayleigh number increased the heat transfer rate and most of the heat was rejected
within 20o from the top line of symmetry on the outer cylinder for small diameter ratios.
The heat rejection became more uniform around the outer cylinder as the diameter ratio
increased.

McLeod et al. [67] investigated experimentally heat transfer by natural convection of
Helium between horizontal isothermal concentric cylinders at cryogenic temperatures.
Overall heat transfer rates, profiles of time-averaged temperature, and temperature
fluctuations were measured for Rayleigh numbers of 8 ◊ 106 ≠ 2 ◊ 109 and for thermal
expansion numbers of 0.25 ≠ 1. Time-averaged temperature profiles of the annulus gas
were qualitatively shown. It was concluded that by increasing the thermal expansion
number, for a constant Rayleigh number, more developed turbulence existed at a given
annulus location. They also showed that changing the expansion parameter did not
have any e�ect on the overall heat transfer rate.

Large Eddy Simulation based on sub-grid modelling of natural convection in con-
centric horizontal annuli with a heated inner and cooled outer cylinder were conducted
by Miki et al. [69]. The Rayleigh number used was 1.18◊109. They presented results of
time-averaged temperature. The authors found reasonable agreement comparing with
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the experimental data. They concluded that the additional terms associated with the
sub-grid scale model in LES dissipated energy at high wave numbers, and the amount
of dissipation depended strongly on the Smagorinsky constant Cs.

Ho et al. [48] conducted a numerical study supplemented with experiments of flow
visualization and halo-graphic interferometric measurements, concerning the buoyancy
induced fluid flow and heat transfer between two horizontal, di�erentially heated cylin-
ders inside a circular, air filled enclosure subjected to external convection. The Rayleigh
numbers considered were between 104 and 107, and the inclination angles of the enclo-
sure were 30o, 60o and 90o. The external convection at the circular enclosure wall
was found to further promote buoyant convection flow and it enhanced heat transfer
between cylinders. The e�ects of varying the Rayleigh number, the orientation angle
of the enclosure and the gap width between the cylinders in the presence of external
convection were found to be similar to those observed in an adiabatic enclosure.

Desai and Vafai [32] studied numerically turbulent buoyancy-driven flow in an an-
nulus bounded by concentric, horizontal cylinders and adiabatic end walls. They used
in their simulation a wall function approach coupled with the standard k ≠ Á model to
solve time-averaged equations of fluid motion and heat transfer. The Rayleigh number
used ranged from 106 to 109. Contours of turbulent kinetic energy and turbulent viscos-
ity were presented, the latter contours indicated that the highest turbulence intensities
were found in the upper portion of the annulus and in the region near the inner cylinder
where boundary layer separation occurred. Heat transfer rates were found to be higher
than those in the laminar regime. Their results showed a decrease in heat transfer rates
from the inner and outer cylinder with an increase of the gap width. They also inves-
tigated the e�ects of Prandtl number. The turbulent viscosity was found to decrease
for fluids with higher Prandtl number. A three dimensional domain was also employed
to study the e�ect of the end walls on the natural convection process. It was observed
that the Nusselt number decreased at the end walls because of the more prominent
damping e�ect of the end walls at high Rayleigh numbers.

Desai and Vafai [33] carried out an experimental and numerical study of natural
convection in an open ended horizontal annular cavity. In the experimental study,
smoke flow visualization using laser-induced lighting was used in order to understand
the flow field around the open end of the cavity. A known heat flux was applied to each
component of the cavity (inner cylinder, inner cylinder tip, outer cylinder and walls)
and local surfaces temperature measurements were made to determine heat transfer
characteristics of the convective flow. In the numerical investigation, a finite element
analysis was applied to solve time-averaged-steady-state equations of fluid motion and
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heat transfer. The Rayleigh number considered ranged from 1.3◊109 to 5.1◊109. The
flow field results indicated the strong influence of the open end on the flow field within
the cavity. The bulk flows were characterized by the suction of cold fluid into the lower
portions of the cavity and ejection of the hot fluid as a buoyant jet from the top of
the cavity. Interactions between the inner and the outer flow fields were responsible for
enhancing heat transfer rates from the open ended cavities.

Natural convection in horizontal concentric and eccentric annuli with heated inner
cylinder was studied by Kenjeres and HanjaliÊ [56] using several variants of single-point
closure models at the eddy di�usivity and algebraic flux level. They found that the
application of an algebraic model for turbulent heat flux ◊uj derived from the di�erential
transport equation and closed with low-Reynolds number forms of transport equations
for the kinetic energy, k, its dissipation rate Á, and temperature variance ◊2, reproduced
well the experimental data for mean and turbulence properties and heat transfer over a
range of Rayleigh numbers. It was concluded that turbulence persisted only in a narrow
plume above the heated inner cylinder with laminar flow in the rest of the annuli. They
found that the application of the extended algebraic turbulence models proved to be
crucial for predicting the flow pattern and wall heat transfer at transitional Rayleigh
numbers.

Chakir et al. [16] studied numerically the natural convection of gases (mixture of
SF6 and N2) in a horizontal annulus. The study represented a thermal analysis of high
voltage power gas insulated transmission lines. The considered Rayleigh number was
ranging from 105 to 1010. It was found that the maximum temperature deviation was
15%. The Nusselt number showed a high dependency on the Rayleigh number. The
increase of heat convection for high Rayleigh numbers occurred mainly in the middle
part of the cylinder and at the top of the outer one. The temperature in the centre of
the annulus became constant for cases with higher turbulence levels. The temperature
gradient was higher in the wall boundary layers than outside them.

Padilla and Silveiraneto [73] carried out three-dimensional large eddy simulation
of natural convection in a horizontal annulus using Smagorinsky’s dynamic sub-grid
model. The onset of transition to turbulence and turbulent regimes were analyzed. It
was found that as the Rayleigh number increased, the flow became fully irregular and
chaotic when a turbulent regime was reached. The flow dynamic characteristics and
the plume transition were captured and results returned good agreement with available
experimental data.

Addad et al. [2] carried out a numerical simulation of natural convection between
concentric cylinders using RANS and LES approaches on three geometries. The first
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two were a single inner cylinder at gap-based Rayleigh numbers of 1.18 ◊ 109 and
2.38 ◊ 1010 and ratio of outer-to-inner cylinder diameters Ro/Ri = 4.87 and 3.37. the
third test case was a cylinder with three inner tubes. It was concluded that the flow
patterns in the latter case were more complex than the one internal concentric cylinder
cases. The two-equation RANS models used were found to be less satisfactory than in
the concentric annular with single inner tubes test cases while second moment closure
results were closer to LES predictions.

Omranian [72] recently started simulating the flow in a horizontal annular pen-
etration cavity with a cooled central cylinder using a high-Reynolds-number k ≠ Á

model with the analytical wall function approach within the in-house computer code
STREAM. The resulting computations showed that within the penetration the flow be-
came unsteady. Because of the absence of any measured validation data for the latter
test case, a major aim for the present study is to perform a highly resolved Large Eddy
Simulation, in order to provide full and accurate data of the thermal and dynamic fields
of the flow in the penetration, and the rate of heat transfer to/from the central tube,
and to determine how far the flow can be driven inside the penetration. A further aim
is to test the ability of RANS models available in the Code_Saturne 2.0 software to
predict this type of flow.

2.5 Final remarks
The review of previous experimental and numerical investigations helped us to under-
stand the physics of turbulent buoyant flows and allowed us to know the performance
of some turbulence models to predict turbulent buoyancy-driven flows within di�er-
ent configurations including rectangular, square and cylindrical enclosures. Interesting
results have been concluded from the previous reviewed investigations within vertical
and tilted enclosures. When configurations in which the length in the direction of the
body force is large compared to the width, thermal instabilities could be encountered
when the heating is from below. The character of the core velocity and temperature
distribution for natural convection at large Rayleigh number in an enclosure depends
on the imposed thermal conditions. The relatively few existing experiments have shown
that under di�erent conditions, di�erent core configurations can be obtained. In square
cavities, the velocity maximum occurs near the hot and cold walls, and reduces to
almost zero in the core region. It was concluded that laminar flow is located in the
core and turbulent flow near both hot and cold walls. Several turbulence models have
been tested for the investigation of natural convection in enclosures ranging from sim-
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ple high-Reynolds-number models to more complicated low-Reynolds-number models.
New models have also been developed for buoyant flows. In general, RANS models
showed reasonable performance for predicting buoyant flows within vertical and tilted
enclosures. It was concluded from the literature survey that low-Re models (like ‚2 ≠ f

model of Durbin [38]) showed better performance than high-Re models (like k≠Á model
of Jones and Launder [54]). Turbulence models were very promising when they were
used with advanced approaches for modelling heat fluxes, GGDH of Daly and Harlow
[30], the algebraic buoyancy-modified k ≠ Á ≠ ◊2 ≠ Á◊ model of HanjaliÊ [44] and others.
High-Re models, including k ≠ Á and RSM models gave good results when used with
an advanced analytical wall function of Craft et al. [27]. As mentioned above, few
researchers studied buoyant flows inside tilted cavities. In the first part of the present
thesis one was interested in investigating the influence of di�erent angles of inclination
on the dynamic of buoyant flows. Buoyancy-driven flow inside tilted cavities (Betts cav-
ity [11]) under both unstable and stable stratification were computed. One of the aims
was to test the e�ectiveness of the unsteady RANS approach (URANS) for modelling
such flows, a range of RANS models embedded in Code_Saturne 2.0 have been used
to identify which of these models is suitable for predicting buoyancy-driven flow inside
the cavity. Highly resolved LES has been used to provide accurate data for validation
purpose.

Previous investigations of buoyant flow inside 2-D and 3-D annular enclosures have
also been reviewed here. It has been concluded that the heat transfer is dependent on
the Rayleigh number and a significant increase in Rayleigh number inside the horizontal
annular enclosures enhances the heat transfer. Inside 3-D closed annular cylinders the
overall heat transfer decreases at the end walls because of the prominent damping e�ect
of the walls. Eddy-viscosity-models showed less satisfactory results for the horizontal
annulus unless they are used in conjunction with an advanced wall function like the
analytical wall function. The application of advanced algebraic models show their
ability to predict the correct heat transfer within the enclosure. The final test case in
the present thesis is a pure industrial test case, the penetration annular cavity which
plays a major role in the cooling systems of the Advanced Gas Cooled Reactors (AGRs).
Flow within the penetration annular enclosure is a complex buoyant flow and therefore it
is considered as a challenging industrial application. The aim beneath this computation
is to satisfy the industrial needs by providing an LES accurate data of the thermal and
dynamic fields of the flow in the penetration, and the rate of heat transfer to/from
the central tube, and to determine how far the flow can be driven by buoyancy force
inside the penetration. Some initial URANS simulations have been conducted in order
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to determine appropriate boundary conditions and to provide an initial qualitative and
quantitative view of the flow patterns found in the problem with the absence of any
measured validation data.
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Modelling of Turbulent
Buoyancy-Driven Flows

3.1 Introduction
Turbulence modelling comprises the various strategies developed for predicting mean
flow quantities and averaging solutions to the Navier-Stokes equations. The most popu-
lar approaches in this regard seek to close the RANS (Reynolds Averaged Navier-Stokes)
equations.

Ultimately the capabilities of RANS models, no matter low complex, remain limited,
and alternative modelling approaches continue to be sought. The most popular of
these is LES, in which the “filtered” Navier-Stokes equations are solved with the aid of
simplified models for small-scale phenomena, called sub-grid scale stress models. Such
methods reduce the dependence on modelling at the cost of greater computer resources.

Both RANS and LES approaches have been used in the present work. This Chapter
will start by outlining the RANS modelling and near-wall treatments adopted, and then
describe the LES modelling approaches.

3.2 Navier Stokes equations in natural convection
The incompressible Navier-Stokes and temperature equations in natural convection
cases can be written as:

fl
ˆui

ˆxi
= 0, (3.1)
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fl
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ˆxj
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, (3.3)

where g is the gravity vector.
In the present thesis the Boussinesq approximation is used, which treats density as a

constant value in all solved equations, except for the buoyancy term in the momentum
equation:

(fl ≠ fl0) g ¥ ≠fl0— (T ≠ T0) g, (3.4)

where — is the thermal expansion coe�cient, defined as:

— = ≠ 1
fl0

ˆfl

ˆT
, (3.5)

The density in the final term of Equation 3.2 is then written, after re-arrangement, as:

fl = fl0 (1 ≠ — (T ≠ T0)) , (3.6)

where fl0 and T0 are the reference density and the reference temperature respectively.
This approximation is accurate as long as changes in actual density are small, specifi-
cally, the Boussinesq model is valid when — (T ≠ T0) 6 1.

3.3 Unsteady RANS modelling
In unsteady RANS computations, ensemble averaged forms of the Navier-Stokes equa-
tions are solved, in which second-moment correlations between velocity and tempera-
ture fluctuations, u

Õ and tÕ, appear. These computations are all performed in a time-
dependent framework (URANS), implying that certain low-frequency scales in time can
be resolved in the calculation. Flow field thermal and dynamic quantities can then be
interpreted as being the sum of three contributing terms: the time averaged term, and
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the fluctuating part which consists of both the modelled and resolved time-dependent
terms f

Õ and f
ÕÕ . The quantity f in URANS is defined as:

f(x, t) = f (x) + f
Õ (x, t) + f

ÕÕ (x, t) , (3.7)

The incompressible Reynolds-Averaged-Navier-Stokes equations in natural convec-
tion cases with Boussinesq approximation can be written as:

fl0
ˆUi

ˆxi
= 0, (3.8)

fl0
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ˆt
+ Ujfl0

ˆUi

ˆxj
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ˆxj
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Õ
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Õ
j

B

+ fl0—(T ≠ T0)gi, (3.9)

The Reynolds-averaged temperature equation can be written as:

fl0
ˆT

ˆt
+ Ujfl0

ˆT

ˆxj
= ˆ

ˆxj

A
µ

Pr

ˆT

ˆxj
≠ fl0u

Õ
jt

Õ

B

, (3.10)

In order to close the system, models must be introduced for the Reynolds stresses
and turbulent heat fluxes. The forms tested in the present work are detailed below.

3.3.1 The Boussinesq model

The most common approach to eddy-viscosity modelling is known as the Boussinesq
approximation. The Boussinesq approximation assumes that the Reynolds-stress-tensor
is proportional to the mean-flow strain tensor, i.e.,

u
Õ
iu

Õ
j = 2

3k”ij ≠ ‹tSij, (3.11)

where the mean rate-of-strain tensor Sij is given by,

Sij = 1
2

A
ˆUi

ˆxj
+ ˆUj

ˆxi

B

, (3.12)

In this relationship, the constant of proportionality is the eddy viscosity, ‹t. It is
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important to note here that the eddy viscosity is not a property of the fluid, like
the molecular viscosity, but a property of the flow field and hence will vary in time
throughout the flow domain.

Before the Boussinesq approximation can be applied, one needs to find a model for
the eddy viscosity. The three main types of eddy viscosity models are algebraic (or zero-
equation models), one-equation models and two-equation models. Algebraic models use
an algebraic specification for the eddy viscosity that is related to the mean flow and
geometric properties. One-equation models solve a single partial di�erential equation
(PDE) that is used to evaluate the eddy viscosity, whereas two-equation models solve
two PDEs. The latter models will be discussed in the following section.

The Boussinesq approximation has been criticised as a major limitation of eddy-
viscosity models. this is because it assumes that the Reynolds-stress-tensor is isotropic,
i.e., its axes align with the mean-strain tensor. However, in many flow situations
anisotropy e�ects cannot be neglected and a full second-order closure is necessary.

3.3.2 Two-equation eddy viscosity models

The eddy viscosity relates the Reynolds stresses to the mean strains via a turbulent, or
eddy, viscosity ‹t:

u
Õ
iu

Õ
j =

32
3

4
k”ij ≠ ‹t

A
ˆUi

ˆxj
+ ˆUj

ˆxi

B

, (3.13)

One of the most widely-used eddy-viscosity models available in Code_Saturne 2.0
is the k ≠ Á model of Jones and Launder [53]. Two transport equations are solved, for
turbulent kinetic energy, k, and its dissipation rate, Á, and details such as coe�cient
values are given in Appendix B. This k ≠ Á model is a high-Reynolds-number model,
not accounting for any near-wall viscous e�ects, and so is used with wall functions.

In addition to the above high-Re model, a number of low-Re schemes, designed to
resolve the flow across the near-wall viscous layer, have also been tested in the present
work. The first of these is the SST shear stress transport model of Menter [68], which
combines the above k ≠ Á model with a k ≠ Ê model formulation of Wilcox [90] in
the near-wall region using empirical functions based on the distance from the wall to
switch between the two. Details of this scheme are given in Menter [68] (also detailed
in Appendix B).

The other two low-Reynolds-number eddy viscosity models employed here are based
on the elliptic-relaxation approach of Durbin [38] (this model is detailed in Appendix
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B). Called ‚2–f and Ï ≠ f respectively, the ‚2/k–f model was proposed by HanjaliÊ
et al. [46] and, independently, by Laurence et al. [61]. They aimed to improve the
robustness by solving a transport equation for the ratio Ï = ‚2/k instead of ‚2 in the
‚2–f model of Durbin [38], and the model is also based on solving an elliptic equation
for a function f that appears in the modelled equations.

The second elliptic relaxation approach tested here, the Ï ≠ – scheme, was devised
by Laurence et al. [61] and Billard [13] to be more stable than the ‚2/k–f model,
and solves a modelled transport equation for Ï = ‚2/k, and an elliptic equation for a
switching function – (which takes the value 0 at walls and relaxes towards 1 further
away). Details of the latter model are also presented in Appendix B.

3.3.3 Second-moment closure

One weakness of the eddy viscosity models is that the stresses respond instantly to
changes in the mean strain. The route chosen for testing more advanced forms in
this work is stress transport models which solve modelled transport equations for each
stress component. The Reynolds stress tensor is likely to be anisotropic in flows where
rapid changes in mean strain rate exist. In the following situations the Boussinesq
approximation may fail [92]:

• Flows with sudden changes in mean strain rate.

• Flows over curved surfaces.

• Flows in ducts with secondary motions.

• Flow in rotating fluids (swirling flows).

• Three dimensional flows.

• Flows with boundary layer separation.

One method for dealing with anisotropic turbulence flow is to discard the Boussinesq
approximation and use a nonlinear relationship between the Reynolds stress tensor
and the mean strain tensor ([74], [72]). Second-order closures go one step further and
account for anisotropy by modelling the actual transport equations for each individual
component of the Reynolds stress tensor.
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3.3.3.1 Second moment closure models

The Reynolds stress equations are a system of six equations, one for each independent
component of the Reynolds-stress-tensor. The second-order correlations are now the
dependent variables and the new unknowns involve third-order correlations as well
as correlations involving gradients of the fluctuating velocities and pressure. Second
moment closure models close the Reynolds-stress equation by replacing the unknowns
with coe�cients and algebraic expressions that are based upon mean flow properties.
The advantage of second-moment closure models over eddy-viscosity models is that the
Reynolds stress tensor is not treated as an isotropic tensor.

Two stress transport models embedded in Code_Saturne 2.0 have been tested here,
namely the LRR scheme of Launder-Reece-Rodi [60], and the slightly more complex
SSG formulation of Speziale-Sarker-Gatski [81]. Both of these are high-Reynolds-
number models, and are therefore applied in conjunction with wall function (Details of
stress transport models are presented in Appendix B).

3.3.4 Contribution of buoyancy

When a non-zero gravity field and temperature gradient are present simultaneously, the
two-equation EVMs in Code_Saturne 2.0 take account of this extra source of turbulence
generation (or destruction) via additional contributions to both the k and Á equations.
The generic transport equations for the k ≠ Á scheme are presented as:
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the total production of k is defined as:

Pk = ≠u
Õ
iu

Õ
j

ˆUi

ˆxj
+ Gb, (3.16)

where the generation of turbulence due to buoyancy is given by

Gb = ≠— gi u
Õ
jt

Õ , (3.17)
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where — is the thermal expansion coe�cient, and gi is the gravitational acceleration
component in the i direction.

The generic stress equations are presented as follows:
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For the stress transport models, the total production P is defined as
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with
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3.4 Modelling turbulent heat fluxes
To solve the energy equation, and close the buoyancy generation and related terms in
the dynamic field in buoyancy-a�ected flows, one needs to approximate the turbulent
heat fluxes u

Õ
jt

Õ (the last term in the energy equation (3.10)).

3.4.1 The e�ective viscosity approximation

Extending the ideas of the Boussinsq approximation, Equation (3.11), to the turbulent
heat fluxes, one might approximate these by:

u
Õ
jt

Õ = ≠–t
ˆT

ˆxj
, (3.21)

where the eddy di�usivity –t is taken as –t = ‹t/Prt, and Prt is the turbulent Prandtl
number. In practice, Prt is usually taken as a constant of around 0.9 for wall-bounded
flows. In free shear layers a slightly lower value (around 0.6) is often more appropriate.
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With the above eddy-di�usivity model, the turbulent heat fluxes are related directly
to the corresponding temperature gradients.

3.4.1.1 Simple shear flows

Considering “1” and “2” the streamwise and the cross-stream directions respectively,
with U (y) and T (y). In a simple shear horizontal flow, with the temperature gradient
across the shear layer, the eddy-di�usivity model gives:

u
Õ
1t

Õ = ≠ (‹t/Prt)
ˆT

ˆx1
, (3.22)

u
Õ
2t

Õ = ≠ (‹t/Prt)
ˆT

ˆx2
, (3.23)

3.4.1.2 Buoyancy-driven flows

For buoyancy a�ected flows, there exist two general stratification patterns: the unstable
and the stable stratifications. Considering a horizontal flow where the gravitational
force and the temperature gradient are aligned. Using the eddy-di�usivity model for
u

Õ
jt

Õ , for the stably stratified buoyant flows, the buoyancy production is defined as:

Gb = ≠—gju
Õ
jt

Õ = ≠—gj (‹t/Prt)
ˆT

ˆxj
, (3.24)

If the temperature gradient ˆT/ˆxj is negative, the gravity g is negative, so the buoy-
ancy production Gb is positive (unstable stratification).

In case of a vertical buoyant flow, where the gravitational force and the temperature
gradient are not aligned, one still has Equation (3.24), however the temperature gradient
is now rather small (the dominant temperature gradient is normal to the wall), and
consequently the buoyancy production is also small.

3.4.2 The GGDH heat flux model

An improved turbulent heat flux model was suggested by Daly and Harlow [30], known
as the generalised gradient di�usion hypothesis (GGDH). The form of the GGDH model
is expressed as:
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u
Õ
it

Õ = ≠CT
k

Á
u

Õ
iu

Õ
j

ˆT

ˆxj
, (3.25)

where the constant CT takes the value of 0.3.
Again Considering “1” and “2” the streamwise and the cross-stream directions re-

spectively, with U (y) and T (y). In the simple shear flows considered earlier, the heat
flux expressions are now evaluated as:

u
Õ
1t

Õ = ≠CT
k

Á
u

Õ
iu

Õ
j

ˆT

ˆx1
, (3.26)

u
Õ
2t

Õ = ≠CT
k

Á
u

Õ2
j

ˆT

ˆx2
, (3.27)

If using the linear EVM formulation for the stresses the heat flux expressions become

u
Õ
1t

Õ = ≠CT
k

Á
‹t

ˆU

ˆxj

ˆT

ˆx1
, (3.28)

u
Õ
2t

Õ = ≠ (2/3) CT
k2

Á

ˆT

ˆx2
, (3.29)

The GGDH model is known for its ability to give a better representation of the tur-
bulent heat fluxes than the e�ective viscosity approximation [72]. For the prediction of
buoyancy-driven flows within the present test cases the e�ective di�usivity approxima-
tion is used and it shows acceptable results for some particular test cases, for example in
certain unstable stratifications. The GGDH model is not used here because at the time,
when the present results were obtained and later, the GGDH model or other more com-
plex algebraic models were not embedded in the distributed versions of Code_Saturne
2.0 and their implementation would need reasonably extensive validation tests, so they
have not been applied in the present thesis.
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3.5 Wall treatment

3.5.1 The turbulent boundary layer

Figure 3.1 shows a schematic of the large-scale motions in a turbulent boundary layer.
The size of the largest eddies is limited by the presence of the wall. Typically for
boundary layer flows,

l = Ÿy, (3.30)

where l is the length scale of the turbulent eddies, Ÿ is the Von Kármán constant, Ÿ =
0.41, and y is the distance from the wall. Very close to the wall, Equation (3.30) does
not hold. Molecular viscosity begins to a�ect the nature of the turbulent fluctuations
and damps the motion of the turbulent eddies.

Figure 3.1: Schematic of large eddies in a turbulent boundary layer. The flow above
the boundary layer has a steady velocity U ; the eddies move at randomly fluctuating
velocities of the order of a tenth of U , the largest eddy size, (l) is comparable to the
boundary layer thickness ” [92].

The Log-Law of the wall for the tangential velocity (Figure 3.2) is presented as follows:

U+ = 1
Ÿ

lny+ + B, (3.31)
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Figure 3.2: Velocity distribution near a solid wall.

where U+ is the dimensionless velocity and y+ is the normal dimensionless distance to
the wall. These are defined as:

U+ = U

U·
, (3.32)

y+ = U· y

‹
, (3.33)

where the friction velocity, U· =
Ò

·w/fl, and ·w = µˆU
ˆy |w is the shear stress at the

wall. Coles and Hirst [23] found estimates of Ÿ and B from correlation with a number
of attached, incompressible boundary layer experiments. The values are:

Ÿ = 0.41, B = 5.0 ≥ 5.2, (3.34)

Experiments have shown that the near-wall region can be divided up into four layers:

• In the inner layer, called the viscous sub-layer where molecular viscosity plays a
dominant role in momentum transport.

• The bu�er layer where both molecular and turbulent e�ects are present.
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• The log-law region, the length-scale does grow linearly with wall distance, is where
one gets the log law.

• Beyond this, in the outer layer, called the defect layer, turbulence plays the domi-
nant role in momentum transport. In this region molecular viscosity is negligible.

In typical high-Reynolds-number flows, the bu�er region starts at y+ values less than
30 and the viscous sub-layer at values less than 5.

3.5.2 Role of the wall function

The importance of the law of the wall in the present work is that it provides an explicit
formula for the mean turbulent velocity profile near a solid boundary. With this in
hand, it is not necessary to employ the fine meshing required to capture the scales near
the wall. Instead, one can use the log-law formula to provide a boundary condition
for the velocity at the outer edge of the bu�er layer, or even further from the wall,
thus allowing a coarse near-wall mesh to be employed. This significantly reduces the
required amount of total arithmetic for simulating wall-bounded flows and is widely
used both in RANS methods and in LES.

The above log-law is valid only for equilibrium boundary layer flows, and so implies
a loss of accuracy when applied to more complex flows involving separation or other
non-equilibrium features. There have been more advanced treatments developed to
address some of these weaknesses (e.g. AWF of Craft et al. [27]), but these have not
been employed in the current work. The sections below outline the approaches on which
the present modelling has been based.

3.5.3 Wall treatment strategy

The typical strategy of employing a wall function involves:

1. The use of relatively large near-wall control volumes (so the near-wall cell node
lies in the fully turbulent flow region).

2. Calculation of wall shear-stress and appropriate generation and dissipation rates
of turbulent kinetic energy for the near-wall control volume.

3. Modification of the discretized transport equations for wall-parallel momentum
and turbulent kinetic energy or Reynolds stresses over near-wall control volumes,
using the above wall shear stress and cell-averaged generation/dissipation rates.

4. Numerical solution of resulting discretized equations.
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3.5.4 Standard wall treatment formulations

One considers the general configuration of a boundary face as shown in Figure 3.3:

Figure 3.3: General configuration of a boundary face.

F denotes the centre of the boundary face, and P is the centre of the near-wall control
volume.

3.5.4.1 Single velocity-scale wall function

Using the log-law of Equation 3.31, applying it at a near-wall node leads to Equation
3.35, from which one can obtain the wall shear stress:

UP

(·w/fl)1/2 = 1
Ÿ

ln
S

UEy
(·w/fl)1/2

‹

T

V = U+ = 1
Ÿ

ln y+ + B © U+ = 1
Ÿ

ln Ey+, (3.35)

where Ÿ = 0.41 and E = 8.4 is a roughness parameter usually taken as a constant
determining the thickness of the viscous sublayer.
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The temperature variation is represented as:

T + =
flCp

Ò
·Ê/fl (TP ≠ TÊ)

q̇ÕÕ
Ê

= 1
ÂŸ

ln y+ + B © 1
ÂŸ

ln ÂEy+, (3.36)

where Cp is the specific heat capacity, TÊ and q̇ÕÕ
Ê are, respectively, temperature and

heat flux to the wall from the fluid, ÂŸ is the thermal Von Kármán constant (usually
taken to be 0.38), and ÂE w 9 (for smooth walls).

After rearrangement, the heat transfer rate in terms of the distance of the wall-
adjacent control volume, yP , and the temperature, TP is represented as

q̇ÕÕ
Ê =

ÂŸflCp

Ò
·Ê/fl (TP ≠ TÊ)
ln ÂEy+

, (3.37)

3.5.4.2 Two velocity scale wall function

The above form of the wall function has been used successfully to compute heat transfer
rates in many attached flows. However, an unfortunate weakness of this approach is
that, if the wall shear stress should fall to zero, so also does the wall heat transfer
rate (see the book of HanjaliÊ and Launder [43]). The heat transfer coe�cients are
close to maximum at stagnation points, then the equation could give highly inaccurate
results. There have therefore been several refined versions of wall functions proposed
where attempts have been made to develop forms applicable over a wider range of
flow conditions. The best known and the most widely used form is that due to Jones
and Launder [53], where essentially the wall friction velocity

Ò
·w/fl is replaced by the

square root of the near-wall turbulence energy, k. The law of the wall for velocity and
temperature is thus reformulated as

Uú © UP k1/2
P

(·Ê/fl) = 1
C1/4

µ Ÿ
ln

Q

aEC1/4
µ k1/2

P y

‹

R

b = 1
Ÿú ln Eúyú, (3.38)

T ú = flCpk1/2
P (T ≠ TÊ)

q̇ÕÕ
Ê

= 1
C1/4

µ ÂŸ
ln

ÂEC1/4
µ k1/2

P y

‹
= 1

ÊŸú ln ÊEúyú, (3.39)

where Ÿú © ŸC1/4
µ and ÊŸú © ÂŸC1/4

µ , Eú = EC1/4
µ and ÊEú = ÂEC1/4

µ , yú © k1/2y/‹ =1
k1/2/U·

2
y+.
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Assuming the above formulae are valid at the near-wall control volume results in
the wall shear stress being given as:

·Ê = ŸúUP k1/2
P

ln Eúyú , (3.40)

Rearranging Equation 3.39, one obtains the following expression linking the wall
heat flux to the wall and near-wall nodal temperatures:

q̇ÕÕ
Ê =

ÊŸúflCpk1/2
P (TP ≠ TÊ)

ln ÊEúyú
, (3.41)

The advantage of the above approach for impinging and reattaching flows is that
the heat transfer is non-zero, and is typically of around the correct magnitude for such
flow situations.

In order to use the above form one needs to define kP , and this is usually obtained by
solving the k transport equation over each near-wall cell. However, since generation and
dissipation terms will vary considerably across the cell, simply using the discretization
approach of evaluating them at the cell centre may not be su�ciently accurate.

An approach taken in some solvers, including the code used for the present thesis
(Code_Saturne 2.0), is to base the generation rate on a turbulent shear stress that
is assumed to be constant over the cell (and hence equal to the wall shear stress) and
mean velocity gradient obtained by di�erentiating the logarithmic velocity profile. This
leads to:

Pk,P = · 2
Ê

fl2Ÿúk1/2
P yP

, (3.42)

The above formulations do not fully account for the strong variation of production
and dissipation rates over the near-wall region. To account for this, one approach is to
estimate cell-averaged values of Pk and Á, that can then be used in the discretized k

transport equation.
One such approach was proposed by Chieng and Launder [20], the approach is based

on building approximations for the variation of generation and dissipation rates over
the near-wall cell. One assumes the turbulent shear stress is zero within the viscous
sublayer, and then equal to the wall shear stress beyond that, whilst the mean velocity
gradient outside the viscous sublayer is obtained from di�erentiating the log-law. The

81



Chapter 3. Modelling of Turbulent Buoyancy-Driven Flows

mean turbulence energy generation rate over the near-wall control volume, Pk, is then
approximated as:

Pk = 1
yn

ˆ yn

y‹

(·Ê/fl)2

Ÿúk1/2
P y

dy = (·Ê/fl)2

Ÿúk1/2
P yn

ln
A

yn

y‹

B

, (3.43)

where yn is the distance of the near-wall node centre to the wall, and y‹ is the
distance of the edge of the viscous sub-layer to the wall.

The wall value of the dissipation rate may be evaluated, according to Jones and
Launder [53], as:

ÁÊ = lim
yæ0

2 ‹ k

y2 = ‹
ˆ2k

ˆy2 , (3.44)

The value of k at the edge of the viscous layer is taken as that at the near-wall node,
the dissipation within the sublayer is then assumed to be uniform, equals to:

Á‹ = 2 ‹ kP

y2
‹

, (3.45)

The dissipation rate can then be estimated by assuming a linearly increasing length-
scale across the cell, so that at the centre of the near-wall control volume one has:

ÁP = k3/2
P

Cl yP
, (3.46)

where Cl = Ÿú/Cµ = Ÿ/C3/4
µ ¥ 2.5.

Thus the spatially averaged dissipation rate over the near-wall control volume is
expressed as:

Á = 1
yn

Cˆ y‹

0

2 ‹ kP

y2
‹

dy +
ˆ yn

y‹

k3/2

Cly
dy

D

= 1
yn

C
2 ‹ kP

y2
‹

+ k3/2

Cly
ln

A
yn

y‹

BD

, (3.47)

3.5.4.3 Scalable wall function

The scalable wall function approach of Grotjans and Menter[42] is based on limiting
the minimum value of y+ so the value of the velocity gradient at the first cell will be
the same as if it was on the edge of the viscous sublayer. A new value of y+ is then
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calculated, denoted by y+
b , using the friction velocity Uk:

y+
b = max

3
Uky

‹
, y+

lim

4
with y+

lim = 11.06, (3.48)

The wall-shear stress over the wall boundary face can be computed as:

·wall = flU· Uk, (3.49)

In this procedure the wall can be seen as the limit of the logarithmic layer. When the
grid is fine (y+ < y+

lim), the relation between U· and U becomes linear, that is:

U = – U· , (3.50)

The friction velocity U· is obtained, using the log law, as a function of y+
b :

U· = U
1
Ÿ ln

1
y+

b

2
+ C

, (3.51)

One obtains:

– = 1
Ÿ

log (11.06) + 5 = 10.86, (3.52)

The advantage of this procedure is that predictions are less sensitive to the location
of near-wall nodes.

3.5.5 wall functions in Code_Saturne 2.0

In Code_Saturne 2.0, like in any other CFD solver, the high-Reynolds number approach
is based on the use of wall functions to bridge the viscous sublayer and determine
the shear stress. There exist three simple wall function formulations in the o�cial
version of the code, including the single-velocity-scale, two-velocity-scale and scalable
wall functions described in the previous section. wall functions in Code_Saturne 2.0
are all base on the log-law assumption.

In Code_Saturne 2.0, the transport equation for turbulent kinetic energy k is solved
(or, for the components of the normal stresses if a second moment closure is used). The
rate of production at the centre of the near-wall control volume, P , is calculated as:

Pk =| ·Ê | C1/4
µ k1/2

P

Ÿ yP
, (3.53)

The momentum and enthalpy equations (for uniform wall temperature) in the wall-
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normal direction are reduced to (the pressure gradient is neglected):

·Ê = µ
ˆU

ˆy
≠ flu

Õ
iu

Õ
j, (3.54)

and

µt

Prt

ˆT

ˆy
≠ flu

Õ
jt

Õ = qÊ

Cp
, (3.55)

where CP is the specific heat capacity of the fluid, and Prt is the turbulent Prandtl
number.

As mentioned earlier, the heat fluxes in Code_Saturne 2.0 are modelled using the
e�ective viscosity approximation:

flu
Õ
jt

Õ = ≠ µt

Prt

ˆT

ˆy
, (3.56)

By integrating Equation (3.55) and introducing the following normalised values:

T + = (T ≠ TÊ) Cp U·

qÊ
, y+ = yU·

‹
, (3.57)

one obtains:

1
Pr

dT +

dy+ ≠ flu
Õ
jt

Õ

qÊ
= 1, (3.58)

Considering Equation (3.56), the relation (3.58) can be re-written as:
A

1
Pr

dT +

dy+ ≠ 1
‡t

µt

µ

B
dT +

dy+ = 1, (3.59)

or

�eff
dT +

dy+ = 1, (3.60)

A 3-layer model is used to approximate the variation of �eff over the near-wall cell.
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Y
____]

____[

�eff = 1/Pr, y+ < y+
1 ,

�eff = 1/Pr + a1 (y+)3 /Prt, y+
1 6 y+ < y+

2 ,

�eff = Ÿ y+/Prt, y+
2 6 y+,

(3.61)

the values of y+
1 and y+

2 are obtained by calculating the intersection points of the three
formulations used in the above expression for �eff (see figure 3.4).

By integrating Equation (3.58) and using the same assumption above, one obtains:

Y
____]

____[

T + = Pr y+, y+ < y+
1 ,

T + = a2 ≠ ‡t/a1 (y+)2 , y+
1 6 y+ < y+

2 ,

T + = Prt/Ÿ ln (y+) + a3, y+
2 6 y+,

(3.62)

where: a1 = P rt
1000 , a2 = 15Pr2/3, a3 = 15Pr2/3 ≠ Prt/2Ÿ (1 + ln (1000Ÿ/Prt)).

Figure 3.4: �eff as a function of y+ obtained for Pr = 1 and Prt = 1.

An exploration of some further refinements to the wall function embedded in Code_Saturne
2.0 has been undertaken in the present thesis, and details of these enhancements are
given below.
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3.5.6 Code_Saturne 2.0 wall function enhancements

In the original Code_Saturne 2.0 implementation a Neumann boundary condition for
Á was imposed at the near wall node. The value of Á was obtained from the expression:

ÁP = 4yU5
k fl2

Ÿ µ2 (y+)2 , (3.63)

In the present thesis this has been modified to a Dirichlet boundary condition, to
be consistent with the epsilon variation implied by Equation 3.46, to the following:

ÁP =
k3/2

P C3/4
µ

Ÿ yP
, (3.64)

The results of introducing these modifications will be shown in Chapter 5.

3.6 Large Eddy Simulation

3.6.1 Introduction

In a turbulent flow, it is observed that there are many di�erent length scales. These
length scales are representative of eddy scales in the motion. It is believed that the large
scales receive the energy from the main flow, and subsequently deliver it via smaller
scales to the smallest scales where it is dissipated. This phenomenon is called the
cascade process.

The idea of LES comes from the hypothesis that the small scales, regardless of the
type of flow and boundary conditions, show an isotropic behaviour. So if the large
scales are resolved, it is su�cient to use a fairly simple model for the small scales which
are called the sub-grid scales or SGS. In order to get reasonably good accuracy, the grid
should be fine enough to ensure the cut-o� (the wavenumber representing the smallest
resolved scales) takes place within the inertial sub-range, but that at least a portion
of that sub-range is actually resolved. According to Kaltenbach et al. [55], an LES
simulation based on spectral methods over a moderate Reynolds number range will
produce reliable results if the near wall grid spacings based on wall units are of the
order of —x+ = 100 for streamwise direction, —y+ = 1 in the cross stream direction
and —z+ = 30 in the spanwise direction. The extent of the grid in the spanwise
direction should be such that the two point correlations of all important parameters in
this direction reach to the zero.
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There are four conceptual steps in LES:

• A filtering operation is defined to decompose the velocity U(x, t) into the sum of
a filtered (or resolved) component U(x, t) and a residual (or sub-grid-scale, SGS)
component uSGS(x, t).

• The filtered velocity field U(x, t), which is three-dimensional and time-dependent,
represents the motion of the large eddies.

• The equations for the evolution of the filtered velocity are derived from the Navier-
Stokes equations. These equations are of a standard form, with the momentum
equation containing the residual-stress tensor that arises from the residual mo-
tions.

• Closure is obtained by modelling the residual-stress tensor, most simply by an
eddy-viscosity model.

The filtering in LES should, ideally, only remove the small scales, leaving the larger,
energy-containing ones resolved. Near a wall, this has significant resolution implica-
tions, since the turbulence scales become smaller, due to near-wall e�ects, and so a very
fine grid and small time step are required if one is to resolve a significant proportion of
the turbulent motions here.

3.6.2 Filtering in LES

It is essential to define the quantities to be computed precisely. A velocity field that
contains only the large scale components of the total field is needed. This is best
produced by filtering the velocity field; in this approach, the large or resolved scale
field is the one to be simulated. In the definitions below the fields will be treated as
one-dimensional, but the generalisation, to three dimensions is straight forward. The
filtered velocity is defined by:

Ui (x) =
ˆ

G
1
x, x

Õ2
ui

1
x

Õ2
dx

Õ
, (3.65)

where G (x, xÕ), the filter kernel, is a localised function. Filter kernels which have been
applied in LES include a Gaussian, a box filter and a cuto� (a filter which eliminates
all Fourier coe�cients belonging to wave-numbers above a cuto�). Every filter has a
length scale associated with it, —. Roughly, eddies of size larger than — are
considered as the large eddies while those smaller than — are deemed to be the small
eddies, whose e�ect will be modelled.
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The LES filter is defined by the filter function G(y) which must satisfy the condition

+Œˆ
≠Œ

G (y) dy = 1, (3.66)

For a flow variable „, the filtered and “fluctuating” components „ and „Õ, respectively,
are defined as

„ = „ ı G =
ˆ

R3

„ (y) G (y ≠ x) dy, „Õ = „ ≠ „, (3.67)

where R denotes the set of real numbers and ı denotes the convolution operator.
There are many types of filter functions G used in the LES community. The most

common are “box” (or “top-hat”) filter, the Gaussian filter, and Fourier sharp cut-o�
filter, all illustrated in Figure 3.5.

The box filter

The “box” filter function is given by

G (y) =

Y
_]

_[

0, | y |> —/2

1/V, | y |< —/2
, (3.68)

where � is the characteristic filter length, and V is the filter volume, defined as �3.

Gaussian filter

The Gaussian filter function is given by

G (y) =
Ò

A/fi.e≠Ay2
, (3.69)

where the constant A is commonly chosen to be A = 6/�2.

Fourier cut-o� filter

Finally, the wave cut-o� filter is defined in Fourier space. For this filter, all wave
numbers above a cut-o� number, kc, are modelled, while all wave numbers below are
resolved:
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Ĝ (y) =

Y
_]

_[

1, k 6 kc

0, k > kc

, (3.70)

To illustrate the di�erence between the filters defined above they are applied to a
test function, and the spectra of the filtered variables are shown in Figure 3.5. The
top hat and Gaussian filters give similar results; in particular, they both smooth the
large-scale fluctuations as well as the small-scale ones, unlike the Fourier cuto�, which
only a�ects the scales below the cuto� wave number.

Figure 3.5: Associated transfer functions to the Fourier cut-o�, top-hat and Gaussian
filters.

3.6.3 Filtered Navier-Stokes equations

If the filtering operation (3.79) is applied to the governing Equations (3.1), (3.2) and
(3.3), one obtains the filtered equations of motion. Following the introduction of the
Boussinesq approximation for the buoyancy e�ect, they can be represented as:

fl0
ˆ

1
Ui

2

ˆxi
= 0, (3.71)

fl
ˆ

1
Ui

2

ˆt
+ ˆ

ˆxj

1
fl0Ui Uj

2
= ≠ ˆP

ˆxi
+µ

ˆ

ˆxj

A
ˆUi

ˆxj
+ ˆUj

ˆxi

B

≠fl0
ˆ·SGS,ij

ˆxj
≠fl0(T ≠T0)gi, (3.72)
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fl0
ˆT

ˆt
+ ˆ

ˆxj

1
fl0Uj T

2
= ˆ

ˆxj

A
µ

Pr

ˆT

ˆxj

B

≠ fl0
ˆhSGS,j

ˆxj
, (3.73)

The above filtering of the equations in space leads to unknown sub-grid-scale (SGS)
stresses and heat fluxes in the filtered equations. They are defined in section 3.6.4 and
modelled in section 3.6.5.

It should be noted that LES filtering is quite di�erent from RANS averaging. The
fundamental di�erences are summarised in the Table 3.1.

RANS LES
„Õ = 0 „Õ ”= 0

ˆ„
ˆxi

= ˆ„
ˆxi

ˆ„
ˆxi

”= ˆ„
ˆxi

„ = „ „ ”= „

Table 3.1: Di�erence between RANS averaging and LES filtering.

3.6.4 The sub-grid-scale stresses

The nonlinear term in Equation (3.72), can be decomposed (using the sub-grid-scale
velocity Ui(x, t) = Ui(x, t) + ui(x, t)), and the SGS stresses written as:

·SGS,ij = UiUj ≠ Ui Uj =
1
Ui Uj + Uiuj + Ujui + u

Õ
iu

Õ
j

2
≠ Ui Uj, (3.74)

·SGS,ij = Lij + Cij + Rij, (3.75)

where

• Lij =
1
Ui Uj ≠ Ui Uj

2
is called the Leonard tensor, and represents interactions

among the large scales.

• Cij =
1
Uiu

Õ
j + Uju

Õ
i

2
is the Cross stress which represents the interactions between

large and small scales.

• Rij = u
Õ
iu

Õ
j is the Reynolds stress which reflects the interactions between sub-grid

scales.

90



Chapter 3. Modelling of Turbulent Buoyancy-Driven Flows

The Leonard tensor has only the resolved scales in it, so one can say the Leonard stress
represents the interaction between the large scales and is responsible for transferring
the energy to the unresolved small scales. This process is known as Outscatter.

The Cross stress tensor has a cross product of filtered and unfiltered fields in it,
this means it has two known terms and two unknowns, but as a whole it an unknown
quantity and needs to be modelled. It represents interactions between resolved and
unresolved scales, and is hence responsible for the transferring of energy from large to
small scales, or vice-versa (back scatter).

Finally the Reynolds stress involves only unresolved scales, and has to be modelled.
This term is responsible for the transfer of energy from small scales to the large ones.
This reverse flow phenomenon of energy is known as the backscatter.

The models used to approximate the SGS Reynolds Stress are called sub-grid-scale
(SGS) or sub-filter-scale models.

3.6.5 The sub-grid-scale models

3.6.5.1 The Smagorinsky model

In coarse LES, the dissipative scales of motion are resolved poorly. The main role of the
sub-grid-scale model is, therefore, to remove energy from the resolved scales, mimicking
the drain that is associated with the energy cascade. Most sub-grid-scale models and
heat fluxes are eddy-viscosity models of the forms:

·SGS,ij = ≠2‹tSij + ”ij

3 ·kk, (3.76)

hSGS,j = ≠ ‹t

Prt

ˆT

ˆxj
, (3.77)

where Prt is the SGS Prandtl number. In the LES literature, a broad range of values
has been proposed for this parameter, from 0.25 to 0.9 (see for example Ciofalo [22]).

The Smagorinsky sub-grid-scale model is used in the present LES computations, in
which the sub-grid eddy-viscosity is modelled as:

‹t = (Csf‚d—)2 | S |, (3.78)

with | S |=
1
2Sij Sij

21/2
, where Sij =

1
ˆUi/ˆxj + ˆUj/ˆxi

2
/2 is the strain rate tensor.

f‚d is the Van Driest damping function [37]. — is the grid size (for anisotropic grids, the
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cube root of the cell volume is usually employed, mentioned below in the next section).
Cs =

Ô
C is the Smagorinsky constant, the value of the coe�cient C can be determined

from isotropic turbulence decay; if the cuto� is in the middle of a long inertial subrange,
the Smagorinsky constant takes values between 0.18 and 0.23 (and C w 0.032—0.053)
(see Ferziger and Peric [40]). In the presence of shear, near solid boundaries or in
transitional flows, however, it has been found that it must be decreased. This has been
accomplished by various types of ad hoc corrections such as Van Driest damping [37]
or intermittency functions.

The widely-used form being that of VanDriest [37] in which the length scale — is
multiplied by the damping function f‚d:

— æ —f‚d © —
1
1 ≠ exp

1
≠y+/A+

22
, (3.79)

Here y+ = yu· /‹ is the standard non-dimensional distance from the wall, and A+ = 25
is the Van Driest constant.

3.6.6 Grid resolution for LES

The quality of LES computation mostly relies on the scale separation between scales of
turbulence captured and the ones modelled, which is related to the grid resolution. A
quantitative measure of the turbulence resolution, introduced by Pope [76], depends on
the resolved turbulent kinetic energy, k, and the SGS turbulent kinetic energy, kSGS,
defined as:

k = 1
2

1
U U

2
, (3.80)

kSGS = 1
2

1
UU ≠ U U

2
, (3.81)

one considers R the resolution criterion, defined as:

R = kSGS

kSGS + k
, (3.82)

R varies between 0 (equivalent to DNS where no model is needed) and 1. In the present
LES computations, the resolution criterion R takes a very small value close to zero. This
is achieved by employing a very fine mesh which can assure the resolution of not just
large length scales but also many of the smallest dissipative ones.

One set of guidelines to estimate grid spacing quality for near-wall LES is to consider
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the non-dimensional cell size (in wall units). For a grid with grid-spacings of —x, —y

and —z in the x, y and z directions respectively, the lengthscale in the SGS model is
here taken as:

— = (—x, —y, —z)1/3 , (3.83)

where Ÿ is the Von Karman constant which takes the value of 0.41, and n is the distance
to the nearest wall. In the present thesis, it is believed that, for a good resolution, the
grid has been designed to respect the constraints: —x+ π40, —y+ π 1 and —z+ π20.

3.6.7 LES initialisation

When running an LES computation of a given test case it is important to initialise
with turbulence at the start of a time dependent solution process. This is achieved by
starting an LES simulation from a converged unsteady RANS simulation of the same
test case. The mean profiles of the velocity from the RANS computation are those of
a turbulent flow, and they can consequently allow the LES solution to develop more
rapidly than if initialised from some other, more arbitrary field.

3.7 Final remarks
The RANS and LES governing equations have been exposed in the present Chapter, and
the turbulence and near-wall models used in this thesis have been described. Full details
of the schemes, including closure coe�cients are given in Appendix B. The modelling
strategies described in this Chapter will be used to compute buoyancy driven flow inside
di�erent enclosures ranging from 2-D vertical and tilted cavities to 3-D inclined cavities
under di�erent stratifications, and finally an industrial test case in Chapters 5 to 8,
making comparison to recent experimental data, where available.
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Chapter 4

Numerical Methods

4.1 Introduction
This chapter describes the numerical methods and solution processes used in the present
work to generate approximate solutions to the flow equations described in the previous
Chapter 3.

The most fundamental consideration in CFD is how one treats a continuous fluid
flow with a computer. The most widely used general method is to discretize the spatial
domain into small cells to form a volume mesh, and then apply suitable algorithms
to approximate the governing equations of motion on these cells. For all such CFD
approaches, the same basic procedure is followed:

• Pre-processing: This consists of the input of a flow problem to a CFD program,
typically by means of an operator-friendly interface or Fortran programming, and
the subsequent transformation of this input into a form suitable for use by the
solver. The activities at the pre-processing stage involve:

1. Definition of the geometry and regions of interest: the computational domain,

2. The volume occupied by the fluid is divided into discrete cells (the mesh). Stan-
dard meshes are typically constructed in either a structured or unstructured ar-
rangement, using one or more type of cell elements. The most commonly known
types of elements in 3D are: the tetrahedron, the pyramid, the prism and the
hexahedron. Code_Saturne 2.0 can handle many types of cells, including a num-
ber of formats generated from packages such as SALOME SMES, I-DEAS Nx,
GMSH, Gambit (used in the present thesis), Simail, Harpoon, ICEM-CFD, Star-
CCM+. The meshes used in the present thesis are structured (conforming), and
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composed of hexahedral elements. For 2-D simulations, di�erent structured uni-
form and non-uniform coarse grids have been made to be used with high-Reynolds
number models; a structured non-uniform fine grid has been built to be used with
low-Reynolds number models. For 3-D simulations, structured, non-uniform grids
have been used.

3. Selection of the physical phenomena that need to be modelled.

4. Specification of the appropriate boundary condition types to be applied (denoted
by names or colours).

• Solver: Assembling discretized equations and solving them. The solver consid-
ered here is the unstructured finite volume code called Code_Saturne 2.0.

• Post-processing: As in pre-processing a huge amount of development work has
recently took place in the post-processing field. Owing to the increased popularity
of engineering workstations, many of which have outstanding graphics capability,
the leading CFD packages are now equipped with versatile data visualisation
tools. These include: domain geometry and grid display, vector plots, line and
shaded contour plots, particle tracking, view manipulation (translation, rotation,
scaling, etc.), colour postscript output.

4.2 Code_Saturne 2.0 solver
At Electricity De France (EDF), development of in-house codes has been a strategic
choice for more than thirteen years. In particular, for problems requiring local three-
dimensional analyses with refined flow modelling, specific e�ort had been put into in-
house “general purpose CFD codes” such as N3S-EF [CHA 92] and ESTET-ASTRID
[MAT 92]. N3S-EF, an unstructured finite element code, could tackle complex geome-
tries, while ESTET-ASTRID, a structured finite volume code, provided refined physical
modelling. In 1996, EDF initiated a program to unify the potentials of these two prod-
ucts within the same software, Code_Saturne 2.0. In addition to making available to
users the most advanced capabilities of these two complementary products, it was also
a convenient way to benefit from the recent advances in design, software development,
programming and meshing techniques, numerical schemes and physical modelling.

Code_Saturne 2.0 is an unstructured finite-volume, open source code (www.Code-
Saturne.org). It solves the Navier-Stokes equations for 2D, 2D-axisymmetric and 3D
flows, steady or unsteady, laminar or turbulent, incompressible or weakly dilatable,
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isothermal or not, with scalars transport if required. Several turbulence models are
available, from Reynolds-Averaged models (a. k. a. RANS models) to Large-Eddy
Simulation models. In addition, a number of specific physical models are also avail-
able as "modules": gas, coal and heavy-fuel oil combustion, semi-transparent radiative
transfer, particle-tracking with Lagrangian modelling, Joule e�ect, electrics arcs, weakly
compressible flows, atmospheric flows, rotor/stator interaction for hydraulic machines.

4.2.1 Features of Code_Saturne 2.0

• Discretization

Code_Saturne 2.0 is based on a co-located Finite Volume approach that handles meshes
with any type of cell (tetrahedral, hexahedral, prismatic, pyramidal, polyhedral. . . ) and
any type of grid structure (unstructured, block structured, hybrid, conforming or non-
conforming. . . ). The code can solve flows in steady or unsteady mode. It uses a theta
scheme for the time discretization.

• Velocity-pressure coupling: Code_Saturne 2.0 uses a fractional step method,
similar to SIMPLEC. Rhie & Chow interpolation is used when solving the pressure
to avoid spurious oscillations. The main steps involved are:

1. Velocity prediction: Solve the momentum equation with an explicit pressure gra-
dient and obtain a predicted velocity

2. Pressure correction: Use the continuity equation to enforce mass conservation

3. Update velocity field

After the velocity has been updated, the resolution of turbulent variables and scalars
is done according to their time scheme.

• Linear system resolution: Code_Saturne 2.0 has di�erent ways of solving the
linear system:

1. Jacobi (default for velocity, temperature, turbulent variables, passive scalars).

2. Algebraic multigrid (default for Poisson equation).

3. Conjugate gradient (default for Poisson equation).
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4. Stabilised bi-conjugate gradient (BI-CGSTAB) (optional).

• Convective scheme: Di�erent schemes for convective terms are available in
Code_Saturne 2.0:

1. First order upwind Scheme.

2. Second order centred scheme.

3. Second order Linear Upwind (SOLU) Scheme.

A slope test is activated by default for second order schemes to switch from second
order to first order upwind in case of overshoots.

• Gradient calculation: In Code_Saturne 2.0 several options are available:

1. Iterative reconstruction of the non-orthogonalities (initialisation by zero or based
on the least-square method).

2. Least squares method (with a standard, extended or partial extended neighbour-
hood).

These features will be detailed in the next section.

• User routines: The following principal routines are used in the present thesis:

1. usclim.f90: this routine allows the user to define particular boundary conditions
(inlet, outlet, walls, symmetries or other non standard boundary conditions) on
the boundary faces and modify them if needed for particular cases.

2. usini1.f90: this routine allows the user to define all the physical properties and
parameters needed for running the calculation including the physical properties,
the number of time-steps, averaging...etc

3. usphyv.f90: this routine allows the user to specify variable physical properties,
such as density.

4. usproj.f90: this routine is called at the end of each time step and has access to the
whole set of variables of the code. It is therefore useful for performing user-specific
post-processing.

Other routines exist in Code_Saturne 2.0, each one having a specific role. The user can
make modifications, depending on the case studied and the models used or models to
be modified.

Details of the finite volume method, space and time discretization schemes and other
numerical methods in Code_Saturne 2.0 are shown in Appendix C.
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4.3 Wall function implementation in Code_Saturne

2.0

4.3.1 Boundary conditions for the velocity (k ≠ Á model)

One considers the boundary face as shown in Figure 3.3. The default approach for
treating walls when using High-Re RANS models for turbulent flows in Code_Saturne
2.0 is to employ the two-velocity-scale logarithmic wall function, described above in
Section 3.5.4.2. Using this approach to account for physical phenomena related to the
wall layer, it is necessary to modify the wall boundary conditions described above, to
approximate the wall shear stress. The tangential stress can be written, (in a way that
introduces the turbulent viscosity), as:

·Ê = flP U· Uk = U·

Ÿ yP
flP Ÿ yP Uk = U·

Ÿ yP
µml

t , (4.1)

where Uk is the friction velocity at the wall obtained from the turbulent kinetic energy.
For the two-velocity-scale model, Uk and U· are defined as:

Uk = C1/2
µ k1/4

P (4.2)

Y
_]

_[

UP
U·

= 1
Ÿ ln

1
y+

k

2
+ 5.2 for y+

k > y+
‹

UP
U·

= y+
k for y+

k 6 y+
‹

, (4.3)

with Cµ = 0.09 and Ÿ = 0.42. y+
k represents a dimensionless wall distance, y+

k =
UkyP /‹ (‹ is the molecular kinematic viscosity taken at the centre of the boundary
cell). y+

‹ is the dimensionless limit distance which separates the viscous sublayer from
the logarithmic region. Its value is 1/Ÿ, by default, and 10.88 in LES.

The turbulent viscosity in Equation (4.1) is modelled using a mixing-length approx-
imation as: µml

t = flP Ÿ yP Uk.
The velocity gradient at the cell face is computed in the code as:

(µI + µt,I) ˆU

ˆn
= (µN + µt,N) (UF ≠ UP )

yP
, (4.4)

Using Equations 4.1 and 4.4, one obtains the value of the velocity at the face UF :
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UF = UP ≠ yN

µP + µt,P
·Ê = UP ≠ Uk

Ÿ (µP + µt,P )max
1
µml

t ≠ µt,P

2
, (4.5)

An approximation made in Code_Saturne 2.0 is to impose a zero normal velocity
at the wall, and use Equation 4.5, projected onto the plane parallel to the wall:

UF = U·,P ≠ Uk

Ÿ (µP + µt,P )max
1
µml

t ≠ µt,P

2
, (4.6)

In cells where the value obtained for y+ is lower than y+
‹ , a no-slip condition is

applied.
The wall boundary condition for the wall-parallel velocity when using the k ≠ Á

model is thus summarised as:
Y
_]

_[

UF = ‚F y+ 6 y+
‹

UF = ‚F +
5
U·,P ≠ Uú

Ÿ(µP +µt,P )max
1
µml

t ≠ µt,P

26
Otherwise

, (4.7)

where ‚F is the velocity at the wall.
The transport equation for k is solved (or, for the components of the normal stresses

if a second moment closure is used).

4.3.2 Boundary conditions for turbulence

For the k ≠ Á model, Dirichlet condition is imposed at the wall for both k and Á. Their
values at the edge of the boundary face are implemented in the code as:

k(n+1)
F = (U2

k )(n)

C1/2
µ

= k(n)
P , (4.8)

Á(n+1)
F = Á(n)

P + (U3
k )(n)

Ÿ yP
, (4.9)

where ÁP is defined above in Equation (3.64).
For the second moment closure the conditions are:

ˆu
Õ
iu

Õ
j

ˆy
nj = 0 if i = j, (4.10)
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u
Õ
iu

Õ
j

(n+1)
= U (n)

· U (n)
k , (4.11)

u
Õ
iu

Õ
k = u

Õ
ju

Õ
k = 0, (4.12)

Á(n+1)
F = Á(n)

P + (U3
k )(n)

Ÿ yP
, (4.13)

4.4 Final remarks
In this chapter the overall numerical procedure and notes on the implementation of the
wall function in Code_Saturne 2.0 are summarised.
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Chapter 5

URANS Computation of Flow
Within 2-D Vertical and Tilted
Cavities

5.1 2-D vertical enclosure (Betts cavity [11])

5.1.1 Case description

2-D buoyancy-driven flows in a vertical cavity have been computed numerically. Dimen-
sions of the cavity are: H ◊ L = 2.18m ◊ 0.0762m, leading to an aspect ratio A = H/L
of 28.6. The cold and hot long walls are isothermal (Figure 5.1), whilst the other walls
are insulated (adiabatic). The Prandtl number (Pr) of the fluid is taken as 0.71 (air),
and the temperature of the fluid and other fluid properties are chosen such that the
Rayleigh number, defined as:

Ra = fl2g——TL3

µ2 Pr, (5.1)

where —T = Th ≠ Tc = 34oC, with the subscripts h and c denoting the hot inlet
temperature and cold wall temperature respectively, takes a value of 1.86 ◊ 106.

The reference buoyant velocity, V0, used for scaling results below, is defined as:

V0 =
Ò

—g—TL, (5.2)

The local Nusselt number based on distance between the cold and hot sides, L, is
defined as:
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NuL = hL

K
, (5.3)

where K is is the thermal conductivity of the fluid and h is the surface heat flux
coe�cient defined as:

h = qÊ

—T
, (5.4)

with qÊ the wall heat flux per unit area obtained from Fourier’s law:

qÊ = ≠K
ˆT

ˆxn

-----
wall

, (5.5)

where xn denotes the direction normal to the wall.
The properties of the fluid considered in the present thesis are illustrated in table

5.1.

Flow properties Values

Thermal expansion coe�cient — (1/oC) 0.0033

Thermal di�usivity – (m2/s) 2.37 ◊ 10≠5

Density fl (kg/m3) 1.187

Specific heat capacity Cp (J/kg.K) 1005.38

Thermal conductivity � (W/m.K) 0.026

Kinematic viscosity ‹ (m2/s) 1.59 ◊ 10≠5

Dynamic viscosity µ (kg/m.s) 1.8 ◊ 10≠5

Gravity g (m/s2) 9.81

Temperature di�erence —T (oC) 18

Temperature of reference T0 = Th+Tc

2 (oC) 25

Table 5.1: Flow properties.

Thermal and dynamic boundary conditions for the present test cases are summarized
in Table 5.2:
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Type Thermal boundary Dynamic boundary

conditions conditions

X=0 (Isothermal wall at Th) Th = 340C

U = 0, V = 0
(Adherence of the fluid
to the wall)

X=L (Isothermal wall at Tc) Tc = 160C

Y=0 (Adiabatic wall) ˆT
ˆy = 0

Y=H (Adiabatic wall) ˆT
ˆy = 0

Table 5.2: Thermal and dynamic boundary conditions for 2-D computations.

5.1.2 Computational mesh and numerical methods

In order to choose the most appropriate computational grids to use for both high- and
low-Re models, a number of grids with di�erent node densities and distributions, and
di�erent near-wall non-dimensional y+ distances, have been tested. These tests are
detailed in Appendix D. As a result of these grid sensitivity tests, the mesh used for the
computation of these 2-D cavities using high-Re models with wall functions is a 80◊20
uniform coarse grid, shown in Figure 5.2-a. For the computations using low-Re models
120 ◊ 80 non-uniform mesh has been employed with grid nodes clustered towards the
walls to resolve the steep gradients in these regions. This is shown in Figure 5.2-b.
Parameters of both grids are given in Table 5.3.

Spatial discretization was achieved using a second-order central di�erence scheme
(CDS), whilst for time discretization the implicit first-order Euler scheme was employed
with a time step of ”t = 0.01, giving a maximum CFL number of 0.5. Simulations
were run to obtain steady state conditions, typically requiring around 20000 time steps
(approximately 4 hours on an Intel Duo-Core processor computer).

2-D Coarse Grid 2-D Fine grid

Density 80 ◊ 20 120 ◊ 80

Size of near-wall cell Y 0.0038 0.0002

Y + [min, max] [3, 11]
#
10≠5, 0.01

$

Table 5.3: Parameters of 2-D coarse and fine computational meshes.
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Figure 5.1: Geometry of 2-D vertical cav-
ity. Location of plot lines are indicated.

Figure 5.2: 2-D computational meshes
for high and low-Re modelling of the ver-
tical cavity.

5.1.3 Qualitative results

To give a qualitative picture of the flow, Figures 5.3 to 5.5 illustrate contours of temper-
ature, velocity magnitude and turbulent kinetic energy respectively inside the vertical
enclosure resulting from di�erent high and low-Re models. The general pattern is sim-
ilar between models, with fluid near wall moving upwards wall to impinge on the top
surface, and that near the cold wall downwards to impinge on the bottom wall. There
are some qualitative di�erences visible between predictions of the thermal boundary
layer thickness, particularly towards the upper and lower ends of the cavity, as a result
of di�erences in the near-wall and outer modelling details.

Contours of the velocity magnitude shown in Figure 5.4 show a single circulation
formed by the fluid moving up the hot wall side and down the cold wall side of the
cavity. This confirms the comments above. Again, the predicted pattern is similar
between the models, although the most noticeable feature of this comparison is that
the LRR gives the lowest peaks, and the SSG the highest. The SST scheme appears
to give slightly higher velocity peaks than the elliptic relaxation based model.

The single circulation cell in the centre of the cavity leads to peak turbulence levels
in this region. The second moment closures give lower values of turbulent kinetic energy
comparing with the k ≠ Á and Ï ≠ f models which show significant high turbulence in
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the core of the cavity.

Figure 5.3: Temperature contours inside the vertical cavity 2.18 ◊ 0.0762. (a) k ≠ Á,
(b) LRR, (c) SSG, (d) k ≠ Ê SST , (e) Ï ≠ f .

Figure 5.4: Velocity magnitude contours inside the vertical cavity 2.18 ◊ 0.0762. (a)
k ≠ Á, (b) LRR, (c) SSG, (d) k ≠ Ê SST , (e) Ï ≠ f .
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Figure 5.5: Turbulent kinetic energy contours inside the vertical cavity 2.18 ◊ 0.0762.
(a) k ≠ Á, (b) LRR, (c) SSG, (d) k ≠ Ê SST , (e) Ï ≠ f .

5.1.4 Quantitative results

5.1.4.1 Comparison between di�erent standard wall functions embedded
in Code_Saturne 2.0

In order to evaluate the performance of wall functions, one and two-velocity-scale and
scalable wall functions have been used in conjunction with the high-Re k ≠ Á model in
the present thesis. Figures 5.6 to 5.9 show, respectively, profiles of mean temperature,
mean vertical velocity and rms vertical velocity fluctuations at di�erent heights across
the cavity, and the local Nusselt number distribution along the heated wall. Compar-
isons with the benchmark data of Betts and Bokhari [11] show that the standard two
velocity scale wall function performs best. The other two formulations mispresent the
temperature distribution, especially towards the end walls. Profiles of mean vertical
velocity show that the three wall functions inadequately predict the velocity near the
top and bottom walls where the experiments show a slight deviation from the linear
velocity profile that is still predicted by standard wall function calculations here. The
one-velocity-scale and scalable wall functions show greater discrepancies than the two-
velocity wall function, especially in the impingement regions near the top and bottom
walls of the cavity. In these regions the wall-shear stress is low, and it might be expected
that schemes based on the log-law and local equilibrium assumptions would not perform
so well. Some attempts at improving the performance of the “two-velocity-scale wall
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function” are presented in section 5.4.

Figure 5.6: Mean temperature profiles at di�erent locations inside the vertical cavity,
comparison between di�erent wall functions and experimental data.

Figure 5.7: Mean vertical velocity profiles at di�erent locations inside the vertical cavity,
comparison between di�erent wall functions and experimental data.
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As might be expected with a linear EVM, the rms vertical velocity fluctuations are
underpredicted at the central vertical location of the cavity, compared with experimen-
tal data. Turbulence levels are lower near the two end walls, where slight di�erences are
shown between the three wall function treatments. The two-velocity scale wall function
predicts the near-wall values slightly better than the other formulations, although none
captures the small peaks shown in the measured data near the bottom left and top
right corners.

Overall heat transfer is overpredicted by all the wall function formulations, and
particularly by the scalable wall function. This is linked to its poor predictions of mean
temperature and velocity, described earlier.

Figure 5.8: Rms fluctuating vertical velocity profiles at di�erent locations inside the
vertical cavity, comparison between di�erent wall functions and experimental data.

Figure 5.9: Local Nusselt number distribution along hot wall of the vertical cavity,
comparison between di�erent wall functions and the experimental data.
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5.1.4.2 Model validation for buoyancy-driven flows inside the vertical cav-
ity

In order to test the ability of RANS turbulence models embedded in Code_Saturne
2.0 to predict the buoyancy-driven internal flows, computations have been made of
the flow in the vertical rectangular enclosure using both high- and low-Re models.
These tests include examining the ability of the models to predict the correct flow
physics, and comparing their computational resource requirements. High-Re models
tested include the k≠Á [53] and second moment closure models of Launder-Reece-Rodi,
LRR [60] and Speziale-Sarkar-Gatski, SSG [81], all combined with the two-velocity-
scale wall treatment. Low-Reynolds number models tested include Menter’s shear Stress
Transport SST [68], and elliptic relaxation models, namely the Ï ≠ f [61] and Ï ≠ –

[13] (for the 60o where the Ï ≠ f model failed). Details of all these schemes and their
coe�cients are given in Appendix B.

Figure 5.10 shows profiles of the dimensionless mean temperature (T ≠ Tc) / (Th ≠ Tc)
at four heights inside the tall cavity. Results are presented for both high and low-Re
models, together with the measurements of Betts and Bokhari [11]. The experimental
data show that in the core region, between around X/L = 0.3 and 0.7, there is an
approximately linear variation of temperature across the cavity, indicating that most of
the heat transfer is due to turbulent mixing and only a small portion of the total heat
flux is due to molecular conduction across the cavity. The measurements also show
that between the conductive sub-layers and this core region, bu�er zones exist where
the variation of temperature is not linear. Of the high-Re models, both k ≠Á and SSG,
using the “two-velocity-scale wall function”, give generally good agreement with exper-
imental data, while the LRR model deviates from the data significantly, particularly
towards the insulated end walls. Both low-Re schemes give very similar predictions, in
good agreement with the measurements, for all locations inside the vertical cavity.

Profiles of the dimensionless vertical velocity at four Y locations in the cavity are
shown in Figure 5.11, and compared with experimental data of Betts and Bokhari [11].
The figure shows that, as flow accelerates down the cold side, there exists a linear
variation of the vertical velocity in the centre of the cavity between around Y/H = 0.3
and 0.7. Near the walls the experimental measurements do show some di�erences in
behaviour between the hot and cold sides: on the hot side the fluid accelerates from
the bottom corner, reaching a peak velocity at around Y/H = 0.3, it then decelerates
slightly as the boundary layer spreads, before exhibiting a more rapid deceleration as the
top wall is approached. On the cold side, however, the flow reaches its peak velocity not
far from the starting corner, near Y/H = 0.9 then slows as it moves downward, retaining
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a roughly constant velocity peak between Y/H = 0.7 and 0.3 before decelerating again
close to the bottom wall. As far as the model performance goes, most schemes give
a fairly good representation of the linear velocity profiles in the central region of the
cavity, apart from the SSG model which returns a rather too steep velocity gradient
across the cavity. The low-Re schemes generally appear to give a better representation
of the near-wall regions than the high-Re models with wall functions, particularly close
to the end walls. The SST does, however, slightly overpredicts the velocity peak values
in the cavity mid-height, whilst the Ï ≠ f scheme gives generally good agreement with
experimental data.

Figure 5.10: Mean temperature profiles at di�erent locations inside the vertical cavity,
comparison between RANS models and experimental data.
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Figure 5.11: Mean vertical velocity profiles at di�erent locations inside the vertical
cavity, comparison between RANS models and experimental data.

Figure 5.12: Rms fluctuating vertical velocity profiles at di�erent locations inside the
vertical cavity, comparison between RANS models and experimental data.
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Figure 5.13: Local Nusselt number distribution along hot wall of the vertical cavity,
comparison between RANS models and experimental data.

Figure 5.12 shows the variation of the rms fluctuating vertical velocity component
parallel to the long walls at three heights inside the cavity (near the top and bottom
walls and in the cavity core, the other positions does not show significant changes).
Results are shown from the high and low-Re models. As suggested by the earlier contour
plots of turbulent kinetic energy, Figure 5.5, the maximum levels are generally found
in the central region of the cavity. The eddy-viscosity schemes, as might be expected,
generally underpredict the levels of V rms, which in most regions is the streamwise
rms velocity component. The stress transport models return better predictions at the
cavity mid-height (Y/H = 0.5), with the SSG performing slightly better than the LRR

scheme, both at mid-cavity cavity height and towards the end regions.
As a final comparison for the vertical cavity case, Figure 5.13 shows the predicted

and measured Nusselt number along the hot wall. Heat transfer is constant over most
of the cavity height where turbulent mixing is high. Most models give a reasonable
representation of this, with the two low-Re approaches generally being closer to the
data than the schemes employing the wall function.

5.2 2-D tilted stable enclosure at 60o

Turning attention now to the cavity under stable stratification, tilted at 60o to the
horizontal, contours of temperature, velocity and turbulent kinetic energy inside the
cavity from high and low-Re models are illustrated in Figures 5.15 to 5.17. The flow
inside this tilted cavity generally shows a similar behaviour to that in the vertical tall
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cavity. The flow is characterised by a single circulation motion in the middle of the
cavity as also found in the previous test case. Concerning the RANS turbulence model
predictions, very similar conclusions can be drawn in this case as in the vertical cavity
case, presumably due to the moderate angle of inclination here resulting in a similar
behaviour in the two cases.

Dimensionless mean temperature and vertical velocity profiles are shown in Figures
5.18 and 5.19 at four height locations within the tilted cavity at 60o. Comparisons
between both high and low-Re models with experimental data of Cooper et al. [25] are
presented here. In this case, converged results could not be obtained using the Ï ≠ f

model, and so instead the results shown are from the newer alternative Ï ≠ – scheme
as an example of a blending factor based model. Thermal predictions inside the tilted
cavity are similar to those in the vertical one. This confirms the comments above, with
a uniform temperature in the middle section of the cavity because of high mixing in this
region and a linear variation of velocity caused by the presence of a one large circulation
motion inside the enclosure. For the 60o tilted cavity case, the peaks of vertical velocity
in Figure 5.19 are slightly lower than those in the vertical case. This can be explained by
the fact that in the inclined cavity the gravity contribution in the momentum equation is
divided into two non-zero components, and in consequence, the component of buoyancy
force parallel to the tall walls is smaller than that in the vertical cavity. In general, the
low-Re models, including SST and Ï≠–, give better thermal field predictions than the
high-Re models used in conjunction with wall function. However, the velocity profiles
show some discrepancies between measurements and the predictions from both high-
and low-Re models.

Figure 5.20 shows profiles of the dimensionless rms fluctuating vertical velocity
V rms/Vo at three vertical locations inside the tilted enclosure. Comparing the experi-
mental data between the present test case and the vertical one (Figure 5.12), one can
see that the overall levels are generally slightly lower in the inclined case, although
there are now more noticeable peaks in V rms levels near both hot and cold walls. The
models do generally show a reduction in V rms levels from those predicted in the ver-
tical case, although they also predict a reduction in the near-wall regions, resulting in
profile shapes that do not capture the near-wall V rms peaks shown by measured data.
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Figure 5.14: Geometry of 2-D vertical cavity. Location of plot lines are indicated.

Figure 5.15: Temperature contours inside the 60o tilted cavity. (a) k ≠ Á, (b) LRR, (c)
SSG, (d) k ≠ Ê SST , (e) Ï ≠ –.
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Figure 5.16: Velocity magnitude contours inside the 60o tilted cavity. (a) k ≠ Á, (b)
LRR, (c) SSG, (d) k ≠ Ê SST , (e) Ï ≠ –.

Figure 5.17: Turbulent kinetic energy contours inside the 60o tilted cavity. (a) k ≠ Á,
(b) LRR, (c) SSG, (d) k ≠ Ê SST , (e) Ï ≠ –.
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Figure 5.18: Mean temperature profiles at di�erent locations inside the 60o tilted cavity,
comparison between RANS models and experimental data.

Figure 5.19: Mean vertical velocity profiles at di�erent locations inside the 60o tilted
cavity, comparison between RANS models and experimental data.
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Figure 5.20: Rms fluctuating vertical velocity profiles at di�erent locations inside the
60o tilted cavity, comparison between RANS models and experimental data.

Figure 5.21: Local Nusselt number distribution along hot wall of the 60o tilted cavity,
comparison between RANS models and experimental data.

Local Nusselt number profiles predicted by high and low-Re models, Figure 5.21,
are very close in shape to those in the vertical tall cavity, however the predictions of
the low-Re Ï ≠ – scheme show lower heat transfer than the Ï ≠ f ones in the vertical
case, which are now closer to the measured data.
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5.3 2-D tilted unstable enclosure at 15o

Figure 5.22: Geometry of 2-D vertical cavity. Location of plot lines are indicated.

In order to show the influence of unstable stratification on the buoyancy-driven cav-
ity flow, the cavity is tilted here at 15o to the horizontal and heated from the lower
side. The flow inside tilted cavity is characterised by the appearance of multiple cells
throughout the cavity. This suggests that the real flow is no longer two-dimensional.
The measurements of Cooper et al. [25] confirm this behaviour by showing four longi-
tudinal circulations inside the enclosure. When applied in the present 2-D domain, the
RANS turbulence models tested below show two di�erent behaviours. High-Re models
in general (and particularly the stress transport schemes) capture a set of rolls (Figures
5.24 and 5.25) and thermal plumes (Figure 5.23) over the entire cavity length. However
the low-Re models are not able to capture either of these features and show instead one
large circulation in the central region similar to that seen in the previous stable test
cases. Although the number of mesh cells in the low-Re model grid is greater than in
the wall function one, the non-uniform grid used to ensure good near-wall refinement
means that the grid in the cavity core is actually coarser than that used with the high-
Re models, and it might not be su�ciently fine to allow the roll-cells to develop. A
finer mesh is created and used for the 3-D simulations using low-Re models in chapters
6 and 7.

In order to give further information about the flow within the 2-D 15o unstable
cavity, profiles of time-averaged temperature, vertical velocity and rms vertical velocity
component are shown in Figures 5.26 to 5.28. All models fail here to predict the correct
thermal and dynamic patterns, with profiles of temperature and velocity at di�erent
locations deviating significantly from the experimental data of Cooper et al. [25]. The
reason of this failure is not so much the model performance, but the nature of the flow
inside the unstable cavity, which is 3-dimensional and unsteady. In a later chapter this
case will be studied using a full 3-D geometry, employing both highly resolved LES and
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unsteady RANS approaches, which are potentially capable of capturing the unsteady
3-D structures.

As a final comparison between the three enclosures studied here, vertical, stable
tilted at 60o and unstable tilted at 15o to the horizontal, vector plot comparisons are
presented in Figure 5.29, obtained from computations using the SSG second moment
closure. The above comments are confirmed in this figure which shows a large circular
motion in both vertical and 60o stable cavities, while for the 15o unstable cavity, the
flow contains a number of roll cells over the entire cavity.

Figure 5.23: Temperature contours inside the tilted unstable cavity at 15o. (a) k ≠ Á,
(b) LRR, (c) SSG, (d) k ≠ Ê SST , (e) Ï ≠ f .
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Figure 5.24: Velocity magnitude contours inside the tilted unstable cavity at 15o. (a)
k ≠ Á, (b) LRR, (c) SSG, (d) k ≠ Ê SST , (e) Ï ≠ f .

Figure 5.25: Turbulent kinetic energy contours inside the tilted unstable cavity at 15o.
(a) k ≠ Á, (b) LRR, (c) SSG, (d) k ≠ Ê SST , (e) Ï ≠ f .
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Figure 5.26: Mean temperature profiles at di�erent locations inside the vertical cavity,
comparison between RANS models and experimental data.

Figure 5.27: Mean vertical velocity profiles at di�erent locations inside the vertical
cavity, comparison between RANS models and experimental data.
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Figure 5.28: Rms fluctuating vertical velocity profiles at di�erent locations inside the
vertical cavity, comparison between RANS models and experimental data.

Figure 5.29: Velocity vectors resulting from SSG second moment closure computation.
Comparison between 2-D cavities: (a) vertical, (b) stable tilted at 60o, (c) unstable
tilted at 15o.
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5.4 Refinement of the standard one- and “two-velocity-
scale wall function” in Code_Saturne 2.0

In Section 5.1.4.1, comparisons between di�erent formulations of wall treatment embed-
ded in Code_Saturne 2.0 including one-velocity-scale, two-velocity-scale and scalable
wall functions used with High-Re models have been performed. The “two-velocity-scale
wall function” was shown to perform best amongst these in predicting the buoyancy-
driven flow inside the vertical cavity, although it still showed some discrepancies with
experimental data, particularly in the local Nusselt number. In order to try improving
the predicted results, a further refinement has thus been tested with the one- and “two-
velocity-scale wall functions”. As explained in Chapter 3, this refinement was to modify
the boundary condition value imposed for epsilon at the near-wall node, to be consis-
tent with what is conventionally employed instead of that is originally implemented in
Code_Saturne 2.0 (see section 3.5.6 in Chapter 3).

Profiles of dimensionless mean temperature, vertical velocity, turbulent kinetic en-
ergy and Nusselt number distribution along the heated wall of the vertical cavity, using
the k ≠ Á model with original and corrected versions of the wall functions, are shown
in Figures 5.30 to 5.34. Temperature predictions using k ≠ Á with the modified “one-
velocity-scale wall function” do not show improvement, except near the top wall of the
cavity. However, the modified “two-velocity-scale wall function”, shown on the right
hand side of Figure 5.30 shows better agreement than the old formulation compared
with the measured data, especially near the top and bottom insulated walls, with only
a very slight deviation from the measurements in the middle of the cavity.

Profiles of mean vertical velocity presented in Figure 5.31 also show better predic-
tions using the modified formulation of “two-velocity-scale wall function”, compared
with the original predictions.

Profiles of turbulent kinetic energy and dissipation rates are also presented here
in Figures 5.32 and 5.33. The modification of the the Á boundary conditions at the
near-wall node (Dirichlet boundary condition for Á), produces a noticeable change in Á

and consequently k, particularly in the central region of the cavity where the flow is
more turbulent.

A significant improvement of the predicted heat transfer rate, using the modified
“two-velocity-scale wall function”, is shown on the right hand side of Figure 5.34. In
general, however, no improvement has been shown using the modification in the one-
velocity-scale wall treatment formulation.
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Figure 5.30: Mean temperature profiles at di�erent locations inside the vertical cavity,
comparison between corrected and old versions of wall functions with experimental
data.
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Figure 5.31: Mean vertical velocity profiles at di�erent locations inside the vertical cav-
ity, comparison between corrected and old versions of wall functions with experimental
data.
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Figure 5.32: Mean turbulent kinetic energy profiles at di�erent locations inside the
vertical cavity, comparison between corrected and old versions of wall functions with
experimental data.
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Figure 5.33: Mean dissipation rate profiles at di�erent locations inside the vertical
cavity, comparison between the corrected and old versions of wall functions with exper-
imental data.

127



Chapter 5. URANS Computation of Flow Within 2-D Vertical and Tilted Cavities

Figure 5.34: Local Nusselt number distribution along hot wall of the vertical cavity,
comparison between corrected and old versions of wall functions with experimental
data.

5.5 Concluding remarks
This chapter has described the modelling of buoyant flow inside a two-dimensional
vertical cavity and inclined ones at 60o under stable stratification and 15o under unstable
stratification using di�erent RANS schemes. After the selection of an appropriate grid
and the “two-velocity-scale wall function” for high-Reynolds-number models, the cases
have been computed with a range of models and predictions compared to available
measurements.

In both the vertical and stable 60o tilted cavities, a single large circulation cell
is present, with boundary layers near the walls, and maximum turbulence levels in
the central region of the cavity. In the vertical case the mean velocity and thermal
fields were well reproduced by both low-Re models (k ≠ Ê SST and Ï ≠ f). However,
profiles of velocity and temperature obtained from high-Re schemes deviate slightly
from measurements near the walls, due to the wall function strategy embedded in
Code_Saturne 2.0. Heat transfer was also generally slightly better predicted by the
low-Re schemes. The vertical Reynolds normal stress profiles were reasonably well
reproduced by the stress transport models, although generally underpredicted by the
eddy viscosity schemes, as might be expected. Recently an adaptive wall function with
the elliptic blending model has been developed by Billard et al. [12], its use can be
promising to tackle the flaws of the simple wall function embedded in Code_Saturne
2.0 and further versions for the computation of buoyant and separated flows.

The overall flow pattern in the cavity inclined at 60o, with the upper side heated, is
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similar to that of the vertical case, and the model performance, as far as the mean field
is concerned, was also mostly similar. One noticeable di�erence in the measurements
between the two cases is that there is a reduction in turbulence levels in the cavity
core region in the inclined case, although levels in near-wall regions do not decrease
significantly. The models do generally predict a decrease in turbulence levels in the
inclined case, but in both near-wall and core regions, so the profile shapes of the rms
velocity are not particularly well captured.

Concerning the flow pattern inside the 15o inclined cavity, a multi-cellular motion
is shown by the high-Re models. Nevertheless, all the model predictions disagree with
experimental data due to the presence unsteady structures as found in Rayleigh Benard
convection problems. These cannot be reproduced using a 2-D geometry.

Despite the “two-velocity-scale wall function” performing better than the other
forms, results using it still showed some discrepancies with measurements in the vertical
cavity. As described in Chapter 3 the boundary value for Á has thus been modified, to
conform with a widely-used form. This modification led to improvement of thermal,
dynamic and heat transfer fields within the vertical heated enclosure. This modified
wall functions is used with all high-Re models, including k ≠ Á and second moment
closure, in all the following RANS computations.
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Chapter 6

Buoyancy-Driven Flow Within the
3-D Tilted Enclosure Under
Unstable Stratification

6.1 Introduction
From the previous results of buoyancy-driven flow within a 2-D cavity inclined at 15o

to the horizontal, it has been found, for some not surprisingly, that all RANS models
fail to predict the correct behaviour of the flow with a 2-D geometry. Experimental
data of Cooper et al. [25] showed the existence of a set of four longitudinal vortices,
corresponding to the Benard problem [10]. In this Chapter, computation of flow inside
a 3-D unstably stratified enclosure tilted at 15o to the horizontal is conducted using
highly-resolved LES, and a range of URANS schemes are tested for validation purposes.

The dimensions of the cavity are: H◊L◊W = 2.18m ◊0.0762m◊0.52m, to match
those used by Cooper et al. [25], leading to a lengthwise aspect ratio A = H/L of
28.6 and a spanwise aspect ratio B = W/L of 6.82. The cold and hot long walls are
isothermal (Figure 6.1), the temperature di�erence —T takes the value of 18oC, the
other walls are insulated (adiabatic). The Prandtl number (Pr) of the fluid is taken as
0.71 (air), and the temperature of the fluid and other fluid properties are chosen such
that the Rayleigh number, defined in Equation 5.1, takes the value of 0.86 ◊ 106.
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Figure 6.1: Geometry of 3-D cavity inclined at 150 to horizontal (unstable stratifica-
tion). Location of plot lines are indicated.

Thermal and dynamic boundary conditions for the present test case are summarised
in table (6.1).

Type Thermal boundary Dynamic boundary

conditions conditions

X=0 (Isothermal wall at Th) Th = 340C

X=L (Isothermal wall at Tc) Tc = 160C

Y
_____]

_____[

U = 0

V = 0

W = 0

Z
_____̂

_____\

Y=0 (Adiabatic wall) ˆT
ˆy = 0

(Adherence of the fluid

Y=H (Adiabatic wall) to the wall)

Z=0 (Adiabatic wall) ˆT
ˆx = 0

Z=0.52 (Adiabatic wall)

Table 6.1: Thermal and dynamic boundary conditions for 3-D calculation.

6.2 Computational mesh and numerical methods
The present numerical simulations are carried out using the finite-volume code, Code_
Saturne [8]. The computational mesh used for the present LES is structured and non-
uniform, consisting of three blocks (in order to maintain a fine resolution in the core
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of the cavity), as shown in Figure 6.2. It uses around three million cell volumes, with
appropriate clustering in the near wall regions to give non-dimensional near-wall node
distances at the di�erentially heated walls of —y+ around 1. The grid spacing in wall
units also satisfies the constraints —x+ < 40, —z+ < 20.

Spatial discretization is achieved using a second-order central di�erence scheme
(CDS), whilst the second-order Crank-Nicolson scheme is employed for the time dis-
cretization and the time step is ”t = 10≠3s, resulting in a maximum CFL number of 1.
The simulation required 30000 time steps and approximately 250 hours in 24 CPUs, to
reach a fully developed turbulent flow state, and at least a further 170000 time steps
for statistical averaging of the flow field.

For the URANS computations, a second-order central di�erence scheme is employed
for spatial discretization (with slope test activated for temperature). Time discretiza-
tion is via the implicit first order scheme with a time step of ”t = 10≠2s. For high-
Reynolds-number models a coarse and uniform mesh of 80000 cells is used. For the
low-Reynolds-number model two non-uniform grids are used: The first one contains
around one million cells (being more refined near the wall than the high-Re grid, but
coarser in the core region) and the other is the LES mesh described above. Character-
istics of the LES and URANS calculations are summarised in Table 6.2.

Case LES
SST (finer mesh)

Low-Re models
(SST fine mesh)

High-Re models

L ◊ H ◊ W 0.0762◊2.18◊0.52 0.0762◊2.18◊0.52 0.0762◊2.18◊0.52

NL ◊ NH ◊ NW 100◊200◊150 80◊120◊100 20◊80◊50

—x+ ◊ —y+ ◊ —z+ (< 40) ◊1◊ (< 20) y+ = 1 y+ = 11

”t (s) 10≠3 10≠2 10≠2

Max CFL 1 1 1

Normalised CPU time
(on 24 Cores)

1 0.3 0.02

Table 6.2: Characteristics of LES and URANS simulations.
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Figure 6.2: 3-D computational mesh for LES.

6.3 Assessment of LES resolution
As a first, a-priori, assessment of the LES resolution on the grid described above, the
grid spacing can be compared to an estimate of the Kolmogorov length scale ÷ (the size
of small dissipative scales). This latter is here obtained from the viscosity, ‹, and the
dissipation rate, Á, (taken from a precursor converged and validated RANS simulation),
and is defined as

÷ =
A

‹3

Á

B 1
4

(6.1)

Figure 6.3 illustrates profiles of the ratio of the grid spacings (—X, —Y and —Z) to
the Kolmogorov length scale ÷ along the three mid-section lines of the unstably stratified
case. Pope [76] suggested that the maximum dissipation takes place at a wavenumber
k of 0.26/÷ corresponding to a wavelength scale ⁄ = 2fi/k of 24÷ and suggesting a grid
spacing down to around 12÷ is needed to resolve a considerable part of the dissipative
scales. As seen in Figure 6.3, the ratio of grid spacing to Kolmogorov scale in the
present LES is smaller than 10 over nearly all of the cavity (and smaller than 5 over
much of it), suggesting that a substantial portion of the dissipative processes is resolved
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in the present LES.

Figure 6.3: Profiles of the ratio of grid spacings to the Kolmogorov length scale at three
middle planes (X/L (Y/H = 0 and Z/W = 0), Y/H (X/L = 0 and Z/W = 0), Z/W
(X/L = 0 and Y/H = 0)) within the unstably stratified cavity.

A further indication of the LES resolution is provided by examining the ratio of the
modelled sub-grid-scale turbulent viscosity (Equation 3.78) to the implied turbulent
viscosity of the resolved scales (obtained from the resolved turbulent stresses and mean
velocity gradients). Figure 6.4 shows example profiles of this ratio for the unstably
stratified enclosure, again along the three mid-section lines, and it is found to be less
than 1% (and considerably less than this over much of the cavity).

The above results indicate that at this moderate Rayleigh number the small scale
dissipative scales are largely resolved on the present grid. For this unstable case, much
of the turbulent mixing occurs in the unsteady roll-cells which are largely resolved in
the LES, and consequently the contribution of the sub-grid-scale model is fairly small.
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Figure 6.4: Profiles of the ratio of the sub-grid (SGS) viscosity to the resolved turbulent
viscosity at three middle planes (X/L (Y/H = 0 and Z/W = 0), Y/H (X/L = 0 and
Z/W = 0), Z/W (X/L = 0 and Y/H = 0)) within the unstably stratified cavity.

6.4 Qualitative results
To begin with a qualitative picture of the flow field, Contours of temperature and
velocities are first presented within the 15o enclosure under unstable di�erential heating
in order to shed light on the flow physics inside the tilted cavity at this particular
angle of inclination. When the tilted enclosure is heated from the lower side, unsteady
structures dominate the flow and most turbulence models would be expected to capture
such a behaviour.

Figures 6.5 to 6.8 represent predictions of instantaneous temperature contours ob-
tained from a highly resolved LES and some high-Reynolds-number models including
the k ≠ Á and SSG models and the low-Reynolds-number turbulence model k ≠ Ê SST
at the three middle sections (X, Y ), (X, Z) and (Y, Z) (the SST scheme is used here
rather than the Ï ≠ f model because it is a widely used and validated, the Ï ≠ f model
failed to converge for the tilted test cases in the previous chapter). The results of the
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latter model are presented for two fine meshes (Table 6.2). Results of both LES and
URANS show the presence of thermal plumes and instabilities along the height and
width of the tilted cavity. By simulating the full 3-D flow, longitudinal vortices are
captured by LES and almost all the URANS models, similar to the structures noticed
in the experiments of Cooper at al [25]. The predictions of the SST model shown in
Figure 6.8 show di�erent results when two di�erent meshes are used. The computa-
tion using the finer mesh (the one used for LES computation) shows the correct flow
pattern, with unstable roll cells, which are not present in the coarser grids predictions,
suggesting that the SST k ≠ Ê model needs a very fine grid resolution in the core of the
cavity, as well as the near wall region, in order to capture the flow unsteadiness.

In order to give deep understanding of the 3-D flow features within the unstably
stratifies cavity, Figure (6.9) shows the instantaneous coherent structures obtained from
the LES computation, using the Q-criterion which is defined, according to Hunt et al.
[50], as:

Q = 1
2 (�ij�ij ≠ SijSij) (6.2)

where Sij = 1
2

1
ˆUi
ˆxj

+ ˆUj

ˆxi

2
is the strain-rate tensor, �ij = 1

2

1
ˆUi
ˆxj

≠ ˆUj

ˆxi

2
is the vorticity

tensor. Q > 0 means the vorticity tensor dominates that of the rate of strain. Inside
the unstably stratified enclosure the complexity of the computed flow is clearly visible;
a large number of coherent structures are captured inside the cavity.

Contours of the instantaneous dimensionless temperature and V and W velocity
components obtained from the LES computation, illustrated in Figures 6.10 and 6.11,
suggest the presence of a large number of small vortices, which thoroughly mix the fluid
across the cavity, leading to practically isothermal conditions over most of the cavity,
with the temperature being the average of the hot and cold side temperatures.
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Figure 6.5: Instantaneous temperature contours at mid-width of the unstably stratified
cavity obtained from LES: (a) plane (X, Y ), (b) plane (X, Z), (c) plane (Y, Z).

Figure 6.6: Instantaneous temperature contours at mid-width of the unstably stratified
cavity obtained from k ≠ Á model: (a) plane (X, Y ), (b) plane (X, Z), (c) plane (Y, Z).

Figure 6.7: Instantaneous temperature contours at mid-width of the unstably stratified
cavity obtained from SSG model: (a) (X, Y ), (b) (X, Z), (c) (Y, Z).
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Figure 6.8: Instantaneous temperature contours at mid-width of the unstably stratified
cavity obtained from SST k≠Ê model. Left: 1 million cell mesh, right: finer LES mesh.

Figure 6.9: LES results: Iso-surfaces of Q-criteria coloured by vorticity in the unstably
stratified cavity.

Figure 6.10: LES results: instantaneous temperature contours in the unstably stratified
cavity.
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Figure 6.11: LES results: instantaneous velocity contours inside the unstably stratified
cavity. Left: V velocity, right: W velocity.

Time-averaged temperature contours at three longitudinal and spanwise cross sec-
tions, Figure 6.12, also confirm the above observations: the temperature is constant
throughout much of the cavity, due to high mixing, and takes the average between the
hot and cold temperatures. These predictions are also in agreement with the experi-
mental findings of Cooper et al. [25].

Figures 6.13, 6.14 and 6.15 show time-averaged contours of the three dimensionless
velocity components (U, V, W ), predicted by LES, along three longitudinal and span-
wise sections. The contours of the wall-normal and spanwise velocity components (U
and W ) across the spanwise planes (right hand side of Figures 6.13 and 6.15) show
that in the unstably stratified enclosure there are four longitudinal vortices which cut
across all the spanwise monitoring sections and therefore extend over most of the cavity.
These observations are consistent with the findings of the Cooper et al. experimental
study [25]. The contours of the wall-parallel velocity (V ), on the right of Figure 6.14,
show that inside the unstably stratified cavity there are possibly four weak longitudinal
cells across the spanwise direction which transport the fluid up and down the inclined
direction. Velocity component contours along longitudinal sections (left hand side of
Figures 6.13, 6.14 and 6.15) also show circular convection cells between the two di�er-
entially heated walls, along the height of the cavity. Temperature di�erences (leading
to density di�erences), and the associated gravitational forces, cause the fluid to rise
then fall forming streamwise rolls.

As a final qualitative comparison, the vector plots at three spanwise sections ob-
tained from LES and high and Low-Re models (k ≠ Á, LRR, SSG and SST) results are
illustrated in Figure 6.16. These plots confirm the comments above by showing around
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four large longitudinal rolls across the spanwise mid-plane (Y/H = 0.5).

Figure 6.12: LES results: time averaged temperature contours at three longitudinal
and spanwise cross-sections of the unstably stratified cavity.

Figure 6.13: LES results: time averaged wall-normal (U) velocity contours at three
longitudinal and spanwise sections of the unstably stratified cavity.

Figure 6.14: LES results: time averaged wall-parallel (V ) velocity contours at three
longitudinal and spanwise sections of the unstably stratified cavity.
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Figure 6.15: LES results: time averaged spanwise (W ) velocity contours at three lon-
gitudinal and spanwise sections of the unstably stratified cavity.

Figure 6.16: LES and URANS results: vector plots of velocity magnitude at the span-
wise mid-section (Y/H = 0.5) of the unstably stratified enclosure.

6.5 Quantitative results
Turning attention to the quantitative results within the unstably stratified cavity, Fig-
ure 6.17 shows comparisons of profiles of the dimensionless time-averaged temperature,
normalised by the temperature di�erence (T h-T c), along four traverse lines normal to
the hot and cold sides (Y/H = 0.05, 0.3, 0.5 and 0.95), within two spanwise planes
(Z/W = 0.5 and Z/W = 0.75). The comparisons include the LES predictions and
the experimental data of Cooper et al. [25] for the unstable stratification. The LES
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profiles are in good agreement with the experimental data, reflecting the fact that in
the unstable case the strong mixing leads to an isothermal core, at a temperature which
is the average of that of the hot and cold sides.

Figure 6.17: LES results: time-averaged temperature profiles at four longitudinal lo-
cations and at two spanwise sections inside the unstably stratified enclosure. Left:
Z/W = 0.5, right: Z/W = 0.75.

The unsteady RANS predictions on the central plane Z/W = 0.5, using the high-Re
k ≠ Á, the LRR and SSG second-moment closures and the k ≠ Ê SST scheme (using the
two di�erent fine meshes), are compared with the present LES and the experimental
data [25] and are shown in Figure 6.18. As seen above, almost all URANS models,
including standard k ≠ Á and second-moment closures, are able to reproduce the strong
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mixing e�ects present in the 15o unstable enclosure. The low-Re SST k ≠ Ê however
needs the finer grid resolution in the core of the cavity, as well as the near wall region,
in order to capture the unsteady mixing, and hence its results on the coarser grid show
much poorer agreement with the LES and experimental data.

Figure 6.18: URANS results: time-averaged temperature profiles at four longitudinal
locations on the middle spanwise section (Z/W = 0.5) inside the unstably stratified
enclosure.
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Figures 6.19 and 6.20 present respectively comparisons of time-averaged dimension-
less velocity profiles for the wall-normal U and the wall-parallel V velocity components
normalised by the buoyant velocity V0 along traverse lines normal to the hot and cold
sides, within two central longitudinal planes (Z/W = 0.5 and Z/W = 0.75). The main
feature of these profiles is that the velocity shows an almost linear variation across the
cavity, with the fluid moving upwards along the hot wall and downwards along the
cold one. The velocity levels are very low in comparison to those for a vertical cavity.
This is a consequence of the practically isothermal conditions across much of the cav-
ity, caused by the strong mixing, due to the presence of the streamwise vortices. The
LES profiles are in close agreement with the measurements, apart from some profiles
of the wall-normal component where the experimental data exhibit some scatter. The
profiles predicted by the unsteady RANS models, in Figure 6.21, are generally in close
agreement with those of the LES and experimental data, as expected since the URANS
models should be able to capture the relatively slow, unsteady, structures present in
the flow. The only exception is the SST k ≠ Ê scheme when used on a fairly coarse
grid in the core of cavity, which overestimates the wall-parallel V velocity. As noted
in the thermal predictions above, the model performance does, however, improve when
a finer grid is used. The LRR model also tends to over-estimate the wall-normal U

velocity close to the top and bottom insulated walls, possibly due to its pressure-strain
model (and particularly the wall-reflection terms in that) not responding correctly to
the change in direction of the wall-normal velocity component in these regions.
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Figure 6.19: LES results: time-averaged U velocity profiles at five longitudinal locations
inside the unstably stratified enclosure. Left: Z/W = 0.5, right: Z/W = 0.75.
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Figure 6.20: LES results: time-averaged V velocity profiles at five longitudinal sections
inside the unstably stratified enclosure. Left: Z/W = 0.5, right: Z/W = 0.75.
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Figure 6.21: URANS results: time-averaged velocity profiles at five longitudinal loca-
tions and at the middle spanwise section (Z/W = 0.5) inside the unstably stratified
enclosure. Left: U velocity, right: V velocity.

147



Chapter 6. Buoyancy-Driven Flow Within the 3-D Tilted Enclosure Under Unstable Stratification

Figures 6.23 to 6.27 present profile comparisons of turbulence parameters, which
include the temperature variance, the turbulence intensities and the turbulent heat
fluxes. As mentioned in Chapter 3 above, URANS fluctuation profiles include both
the resolved and the modelled components. In order to quantify the intensity of the
resolved large-scale unsteadiness and its relative contribution to the total budget of the
turbulence kinetic energy k, comparisons between the modelled and resolved k in the
core of the unstably stratified cavity obtained from URANS models are presented in
Figure 6.22. One denotes, km, the time-average of the kinetic energy obtained from the
time-accurate solution of the k-equation as follows:

km (x, y, z) = lim
tæŒ

1
t

tˆ
0

k
1
t

Õ
, x, y, z

2
dt

Õ
, (6.3)

where k(tÕ
, x, y, z) is the solution of the transport equation for k at point (x, y, z) at

time t
Õ with turbulent fluctuations relative to the phase–averaged velocity components.

km quantifies the amount of the turbulence kinetic energy modelled by the turbulence
closure model. The resolved kinetic energy, kr, on the other hand is the amount of
energy due to the large-scale, coherent motions in the flow, which are resolved directly
by solving the URANS equations. It is defined as follows:

kr = lim
tæŒ

1
t

tˆ
0

1
2

1
u

ÕÕ2 + v
ÕÕ2 + w

ÕÕ2
2

dt
Õ
, (6.4)

where u
ÕÕ = u ≠ u, u is the instantaneous, phase-averaged velocity component obtained

from the solution of the URANS equations, and u is its time-averaged value. The
wall-normal fluctuation uÕuÕ , for example, is calculated from the k ≠ Á model as:

uÕuÕ = 1
2 (kr + km) = 1

2 (uu ≠ u u) + 2
3km, (6.5)

The other turbulence quantities are calculated in the same way.
It is evident from Figure 6.22 that the resolved kinetic energy (kr) produced by

the coherent periodic vortex shedding accounts for a significant percentage of the total
energy in the core of the unstably stratified enclosure where it appears to overwhelm km

for all URANS models (k ≠ Á, LRR, SSG and k ≠ Ê SST). It is important to emphasise
that the flow in the core of the cavity is highly three-dimensional and unsteady. It is
featured by the presence of dominant large scales which can be resolved by URANS
and this is what explains the high values of the resolved k.

For the unstably stratified case, starting with the wall-parallel vÕvÕ and spanwise
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wÕwÕ components of the Reynolds stress tensor, Figures 6.24 and 6.25, the LES and ex-
perimental profiles are in close agreement, with uniformly high levels across the cavity.
This is consistent with the presence of strong mixing. The LES and experimental pro-
files of the wall-normal component uÕuÕ, Figure 6.23, show a more gradual increase from
the walls, but the same levels as the other two components in the cavity core. Profiles
of the shear stress uÕvÕ are also presented here, in Figure 6.26, with LES predictions
showing similar levels of uÕvÕ near the top and bottom walls, and slightly lower levels
in the centre of the cavity. URANS model predictions are generally close to LES data
except the k ≠ Á model which overpredicts the shear stress uÕvÕ.

The measured temperature variance tÕtÕ profiles, in Figure 6.27, display a uniform
distribution similar to that of the wall-parallel and spanwise velocity fluctuations. The
LES profiles, however, return higher near-wall peaks than the experimental ones, as
do most of the URANS models. These discrepancies might indicate possible errors in
the near-wall measurements of the fluctuating temperature, maybe due to radiation
or other wall-proximity e�ects. The LES profiles of the turbulent heat fluxes (corre-
sponding experimental profiles are not available) show that those of the wall-normal
component uÕtÕ, Figure 6.28, mirror the variation of the profiles of the wall-normal
Reynolds stress component, with a gradual rise across the near-wall regions and uni-
form core distribution. For the wall parallel component vÕtÕ, Figures 6.29, the LES
profiles show high near wall peaks and core values lower than those of the wall-normal
turbulent heat flux. The main feature of the profiles of the spanwise component of the
turbulent heat flux wÕtÕ, Figure 6.30, is that this component is an order of magnitude
lower than the other two. All the unsteady RANS models return predictions of the rms
temperature very close to those of the LES and the measurements. For the turbulent
heat fluxes, the unsteady RANS predictions are in qualitative agreement with the LES,
though there are noticeable quantitative deviations. This might be related to the use
of the e�ective di�usivity approximation for modelling the turbulent heat fluxes, which
in some complex flows is not able to give a correct prediction of all the turbulent heat
flux components. The use of more advanced models like the EB-RSM of HanjaliÊ and
Manceau [65] with GGDH can improve the performance of the second moment closure.
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Figure 6.22: Comparisons between resolved and modelled k of the wall-normal rms
velocity fluctuation

Ô
uÕ2 at the the middle location (Y/H = 0.5, Z/L = 0.5) inside the

unstably stratified cavity.
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Figure 6.23: Time-averaged rms wall-normal velocity
Ô

uÕuÕ at three longitudinal loca-
tions (Y/H = 0.1, 0.5, 0.9) inside the 15o unstably stratified cavity.
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Figure 6.24: Time-averaged rms wall-parallel velocity
Ô

vÕvÕ at three longitudinal loca-
tions (Y/H = 0.1, 0.5, 0.9) inside the 15o unstably stratified cavity.

0 0.2 0.4 0.6 0.8 1

X/L 

0

0.05

0.1

0.15

0.2

0.25

0.3

√
 w

’w
’/

V
0

Y/H=0.1
Present LES
k-ε
LRR
SSG
k-ω SST finer mesh

0 0.2 0.4 0.6 0.8 1

X/L 

0

0.05

0.1

0.15

0.2

0.25

0.3

√
 w

’w
’/

V
0

Present LES
k-ε
LRR
SSG
k-ω SST finer mesh

Y/H=0.5

0 0.2 0.4 0.6 0.8 1

X/L 

0

0.05

0.1

0.15

0.2

0.25

0.3

√
 w

’w
’/

V
0

Present LES
k-ε
LRR
SSG
k-ω SST finer mesh

Y/H=0.9

Figure 6.25: Time-averaged rms spanwise velocity
Ô

wÕwÕ at three longitudinal locations
(Y/H = 0.1, 0.5, 0.9) inside the 15o unstably stratified cavity.
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Figure 6.26: Time-averaged turbulent shear stress uÕvÕ at three longitudinal locations
(Y/H = 0.1, 0.5, 0.9) inside the 15o unstably stratified cavity.
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Figure 6.27: Time-averaged rms temperature
Ô

tÕtÕ at three three longitudinal locations
(Y/H = 0.1, 0.5, 0.9) inside the 15o unstably stratified cavity.
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Figure 6.28: Time-averaged rms wall-normal heat flux uÕtÕ at three longitudinal loca-
tions (Y/H = 0.1, 0.5, 0.9) inside the 15o unstably stratified cavity.
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Figure 6.29: Time-averaged rms wall-parallel heat flux vÕtÕ at three longitudinal loca-
tions (Y/H = 0.1, 0.5, 0.9) inside the 15o unstably stratified cavity.
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Figure 6.30: Time-averaged rms spanwise heat flux wÕtÕ at three longitudinal locations
(Y/H = 0.1, 0.5, 0.9) inside the 15o unstably stratified cavity.

0 0.2 0.4 0.6 0.8 1

Z/W

0

0.05

0.1

0.15

0.2

0.25

√
 v

’v
’/

V
0

Present LES
Exp Cooper at al.

k-ε
LRR
k-ω SST finer mesh

Y/H=0.5

0 0.2 0.4 0.6 0.8 1

Z/W

0

0.05

0.1

0.15

0.2

√
 w

’w
’/

V
0

Present LES
k-ε
LRR
k-ω SST finer mesh

Y/H=0.5

0 0.2 0.4 0.6 0.8 1

Z/W

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

√
 t

’t
’/

(T
h
-T

c)

Present LES
k-ε
LRR
k-ω SST finer mesh

Y/H=0.5

0 0.2 0.4 0.6 0.8 1

Z/W

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

u
’v

’/
V

0

2

Present LES
k-ε
LRR
k-ω SST finer mesh

Y/H=0.5

0 0.2 0.4 0.6 0.8 1

Z/W

0

0.005

0.01

0.015

0.02

0.025

0.03

u
’t

’/
V

0
(T

h
-T

c)

Present LES
k-ε
LRR
k-ω SST finer mesh

Y/H=0.5

0 0.2 0.4 0.6 0.8 1

Z/W

0

0.0025

0.005

0.0075

0.01

0.0125

0.015

v’
t’

/V
0
(T

h
-T

c)

Present LES
k-ε
LRR
k-ω SST

Y/H=0.5

0 0.2 0.4 0.6 0.8 1

Z/W

-0.001

-0.0005

0

0.0005

0.001

0.0015

0.002

w
’t

’/
V

0
(T

h
-T

c)

Present LES
k-ε
LRR
k-ω SST finer mesh

Y/H=0.5

Figure 6.31: Time-averaged Reynolds stresses and heat fluxes along the spanwise cross-
section, at the longitudinal central location (Y/H = 0.5) of the 15o unstably stratified
cavity.

The corresponding rms velocity fluctuations and heat fluxes along spanwise cross-
sections, at the Y/H = 0.5 longitudinal traverse, are also plotted and presented in
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Figure 6.31. It was mentioned earlier that LES successfully captured the four longitu-
dinal vortices present in the spanwise cross sections, in agreement with the experiment of
Cooper et al. [25]. Once again, profiles of rms velocity fluctuations suggest the presence
of these unsteady structures. The LES profiles of rms velocity fluctuations are in close
agreement with the available measured data, showing a uniform level across the span-
wise extent, because of the high mixing over most of the cavity. The URANS schemes
used here again show a good performance in predicting the turbulence quantities except
for some deviations of profiles of the uÕvÕ component and heat fluxes comparing with
the LES data.

Figure 6.32: Time-averaged velocity profiles along the spanwise cross-section, at three
longitudinal traverses inside the unstably stratified enclosure. Left: U velocity, right:
V velocity.

Further comparisons of LES and URANS results with the available measurements
have also been carried out, this time along three spanwise traverses. Profiles of the
dimensionless wall-normal U and wall-parallel V velocities, in the spanwise Z direction,
half-way between the hot and cold surfaces, are illustrated in Figure 6.32. A sinusoidal
shape of the profiles of wall-normal and wall-parallel velocities is predicted by both
LES and URANS with two peaks at around Z/W = 0.25 and 0.75. This is consistent
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with the experimental data of Cooper et al. [25] which suggest the presence of the
longitudinal vortices, for which more evidence from the LES computation has been
presented in Figure 6.16. As far as the RANS models are concerned, it is found that
the second moment closure is best in reproducing the three-dimensionality implied by
the LES and measurements.

Figures 6.33 to 6.36 show the LES temporal density power-spectra plotted against
the Strouhal number, which is the dimensionless frequency defined as fL/Vo, of the
fluctuations of temperature and the three velocity components (U, V, W ) at two probe
locations A (near the bottom insulated wall) and B (the centre of the cavity). The
spectral distributions are obtained by recording time histories of flow parameters at
the selected locations and subsequently carrying out a Fast Fourier Transform. For the
present unstably stratified cavity, there is little variation in the spectral distribution of
the velocity components. Energy levels start to fall more rapidly for Strouhal numbers
(dimensionless frequencies) greater than 0.1. The spectral distribution of the temper-
ature shows higher power densities of the dominant frequencies compared with the
velocity components. These findings confirm the conclusions reached from earlier com-
parisons that in the unstably stratified cavity, due to the strong mixing, conditions in
the cavity core are highly homogeneous and isotropic. The FFT analysis obtained from
LES shows that the range of dominant frequencies is between Strouhal number values
of around 0.01 and 0.1, or frequency values of 0.03Hz and 0.3Hz, with corresponding
power densities of around 0.01 for the velocities and 0.5 for the temperature. These fea-
tures are consistent with the measurements, which suggest the presence of slow-moving
large scale flow structures of low frequencies (less than 0.5Hz). Comparing the FFT at
the two monitoring points, one finds that towards the centre of the cavity (Probe B)
the power-spectra density of the dominant frequencies is slightly higher than near the
bottom wall (ProbeA).
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Figure 6.33: LES results: Temporal power spectrum of temperature at the monitoring
points A and B inside the 15o unstable stratified cavity.
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Figure 6.34: LES results: Temporal power spectrum of U velocity at the monitoring
points A and B inside the 15o unstable stratified cavity.
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Figure 6.35: LES results: Temporal power spectrum of V velocity at the monitoring
points A and B inside the 15o unstable stratified cavity.
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Figure 6.36: LES results: Temporal power spectrum of W velocity at the monitoring
points A and B inside the 15o unstable stratified cavity.
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Figure 6.37: URANS results: Temporal power spectrum of temperature at the moni-
toring point B inside the 15o unstable stratified cavity.
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Figure 6.38: URANS results: Temporal power spectrum of V velocity at the monitoring
point B inside the 15o unstable stratified cavity.

The corresponding power spectra predicted by the URANS models at Probe B

location for temperature and wall-parallel velocity are shown in Figures 6.37 and 6.38,
where it can be seen that they do broadly reproduce the range of dominant frequencies
and their densities. These buoyancy-driven flows do not perhaps contain as wide a
range of high frequency fluctuations as would be found in some forced convection flows,
and thus the general characteristics of the spectra appear similar to the LES ones,
although as would be expected the RANS schemes show a more rapid decay of spectral
energy at higher frequencies, particularly in the case of the k ≠ Á model. Nevertheless,
in reproducing the larger scale structures the RANS schemes are able to return very
similar time-averaged flow features to the LES, as already seen in the results above.

Attention is now turned to local Nusselt number comparisons. Figures 6.39 and 6.40
present the variation of the time-averaged local Nusselt number along two longitudinal
lines, over the hot and cold surfaces of the unstably stratified enclosure respectively.
Once more, there is close agreement between the LES predictions and the available
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experimental data, showing uniform levels over the length and width of both sides. This
is consistent with the isothermal conditions observed in the temperature contour plots.
The LES profiles also exhibit an oscillatory behaviour, consistent with the presence
of vortex structures normal to the longitudinal direction. The experimental data are
not su�ciently detailed to either confirm or contradict this. Among the unsteady
RANS predictions, those of the high-Re k ≠ Á are consistently closer to the LES and
experimental data, while LRR’s second moment closure overestimates the overall heat
transfer slightly near the top and bottom walls, maybe as a result of the turbulent heat
fluxes being modelled through the eddy di�usivity approximation in Code_Saturne 2.0.
The local Nusselt number distribution on the cold surface, Figure 6.40, shows a similar
pattern.
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Figure 6.39: Profiles of time-averaged local Nusselt number at the spanwise locations
Z/W = 0.5, 0.625, 0.75 along the heated wall of the 15o unstable cavity.
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Figure 6.40: Profiles of time-averaged local Nusselt number at the spanwise locations
Z/W = 0.5, 0.625, 0.75 along the cold wall of the 15o unstable cavity.

6.6 Concluding remarks
The flow within the unstably stratified cavity, inclined at 15o angle of inclination, has
been deeply investigated using a well resolved LES and URANS techniques. The un-
stable stratification causes the formation of four longitudinal vortices which extend
over the entire length of the cavity and four longitudinal cells in the spanwise direc-
tion. These vortices lead to strong mixing, which results in practically isothermal
conditions over most of the cavity and in an “isotropic and homogeneous turbulence”
field. Because of the near isothermal conditions, the time-averaged buoyancy-induced
wall-parallel motion is substantially lower than what is found in the vertical case. An-
other consequence of the isothermal conditions and the homogeneous turbulence field
is the uniform Nusselt number over the hot and cold sides, both in the longitudinal and
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spanwise directions.
Comparisons with URANS predictions show that all models tested, the high-Re

k ≠ Á, the LRR and SSG second-moment closures and the low-Re k ≠ Ê SST are able
to reproduce the unsteady three-dimensional structures, and thus capture the broad
features of the flow. The low-Re k ≠ Ê SST model, however, needs substantially finer
meshes than the three high-Re models.

As far as the local Nusselt number predictions are concerned, somewhat surpris-
ingly, the profiles returned by the high-Re k ≠ Á model are consistently close to those
of the LES predictions, while the local Nu profiles of the LRR and the SST scheme
show some deviations. One possible explanation for the poorer second-moment pre-
dictions is the use of the e�ective di�usivity approximation for the turbulent heat
fluxes within Code_Saturne 2.0, even when the Reynolds stresses are modelled through
second-moment closures. It is feasible that improvements could be achieved by using
more advanced representations for the heat fluxes, possibly even by simply moving to
the generalised gradient di�usion hypothesis (GGDH) formulation or even better by
solving the transport equation of ◊2 by using of algebraic schemes like the three and
four extended algebraic models, k ≠ Á ≠ ◊2 and k ≠ Á ≠ ◊2 ≠ Á◊, which were proposed by
HanjaliÊ [36] . The use of EB-RSM model of Manceau and HanjaliÊ [65] and EB-AFM
of Manceau [64] can be advantageous for computing turbulent heat fluxes when buoyant
flow are involved.
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Chapter 7

Buoyancy-Driven Flow Within the
3-D Tilted Enclosure Under Stable
Stratification

7.1 Introduction
After a detailed investigation of the flow inside the 15o unstably stratified cavity, pre-
sented in the previous chapter, computations of flow within a 15o stably stratified
enclosure (heated from the upper side), Figure 7.1, are presented in this chapter. The
dimensions of the cavity and aspect ratio, together with boundary conditions, are sim-
ilar to the unstably stratified enclosure. The only di�erence is that the temperature
di�erence between the di�erentially heated walls, —T , takes the value of 34oC, leading
to a slightly higher Rayleigh number of 1.5 ◊ 106.

Figure 7.1: Geometry of 3-D cavity inclined at 15o to horizontal (stable stratification).
Location of plot lines are indicated.
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7.2 Computational mesh and numerical methods
The computations of flow within the stably stratified tilted enclosure have also been
carried out using Code_Saturne [8]. The same numerical steps as for the unstable
stratified enclosure are followed. In order to draw a comparison between unstable and
stable stratifications in the present thesis, the same computational mesh, spatial and
time numerical schemes are used, and the boundary conditions are also similar except
that the stably stratified cavity is heated from the upper side.

The flow physics within the stably stratified cavity are di�erent from those inside the
unstably stratified one, and therefore the CPU time consumed for the stably stratified
case is slightly di�erent. The LES simulation required 30000 time steps, and approx-
imately 60 hours in 24 Cores, to reach a fully developed turbulent flow state, and at
least a further 30000 time steps for statistical averaging of the flow field. The URANS
computations required around 25000 time steps and approximately 2 hours in 24 Cores.

7.3 Assessment of LES resolution
Through an analysis similar to that described for the unstably stratified case in section
6.3 the ratio of the grid spacing — to the Kolmogorov length scale for the stably
stratified case is estimated to be around 0.5 to 10 (approximately similar to the unstable
case), suggesting a good LES resolution of the dissipative scales.

The ratio of the sub-grid-scale (SGS) turbulent viscosity to the turbulent viscosity of
the resolved scales, along the three mid-section lines within the stably stratified cavity,
are plotted and shown in Figure 7.2. This ratio is slightly higher than for the unstable
case (Chapter 6) but still lower than 10%, implying that a considerable part of the
dissipative scales here is also well resolved.
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Figure 7.2: Profiles of the ratio of the SGS viscosity to the resolved turbulent viscosity
at three middle planes (X/L (Y/H = 0 and Z/W = 0), Y/H (X/L = 0 and Z/W = 0),
Z/W (X/L = 0 and Y/H = 0)) within the stably stratified cavity.

7.4 Qualitative results
Figure 7.3 shows instantaneous dimensionless temperature contours in the stably strat-
ified tilted enclosure. The temperature shows a gradual change across the cavity from
the cold to the hot side. Near the lower end wall there is an accumulation of cold fluid,
and near the top end wall an accumulation of hot fluid. The instantaneous tempera-
ture contours suggest that there is a large longitudinal recirculation cell, which transfers
fluid along the top wall from the lower end wall to the upper end wall, while along the
cold wall the fluid travels in the opposite direction. The time-averaged contours of
temperature, plotted at three longitudinal and spanwise locations, illustrated in Figure
7.5, confirm this and agree with the experimental findings of Cooper et al. [25].

The Q-criterion (Equation (6.2)), in Figure 7.4, shows larger and fewer vortices
inside the stably stratified enclosure comparing with unstably stratified test case. These
3-D structures are concentrated near the top wall where the hot fluid is accumulated
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and near the opposite bottom wall where the cold fluid is accumulated. The interaction
of the fluid flow with the insulated side walls causes the rotation of these large vortex
shedding and the formation of two large circular cells in the spanwise direction.

The time averaged contours of the three components of velocity (U, V, W ) at three
longitudinal and spanwise cross sections are illustrated in Figures 7.6 to 7.8. The U and
W velocity contours along the spanwise sections (right hand side of Figures 7.6 and 7.8)
show the presence of two large longitudinal vortices at each spanwise section. These
observations are confirmed by the vector plots of Figure 7.9, and are also consistent
with the findings of the Cooper et al. experimental study [25]. The contours of the wall-
parallel velocity (V ) (right hand side of Figure 7.7) show that in the stable stratification
situation, two strong longitudinal cells appear, which transport fluid down the inclined
wall along the middle of the cavity and back up the slope, along the side walls. These
observations are also in accord with the findings of the Cooper et al. experimental
investigation [25].
On the other hand, the contour plots of the three components of the time-averaged
dimensionless velocity (U, V, W ) along longitudinal planes (left hand side of Figures
7.6, 7.7 and 7.8) show that the wall-normal velocity component (U) implies that along
the centre longitudinal plane the motion is predominantly from the hot to the cold side,
while within the two longitudinal sections between the centre section and the side walls
the wall-normal motion is weak. By contrast, the spanwise velocity component (W )
contours show that across the two side-sections, over the upper half the spanwise motion
is towards the middle and over the lower half towards the sides. Both the wall-normal
and spanwise component contours confirm the presence of two spanwise vortices over
the entire length of the cavity. The contours of the wall-parallel velocity component
(V ), with motion towards the lower end wall along the centre and towards the upper
end wall along the sides, also confirm the presence of two longitudinal cells.
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Figure 7.3: LES results: instantaneous temperature contours inside the stably stratified
cavity.

Figure 7.4: LES results: Iso-surfaces of Q-criteria coloured by vorticity inside the stably
stratified cavity.

Figure 7.5: LES results: time averaged temperature contours at three longitudinal and
spanwise sections of the stably stratified cavity.
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Figure 7.6: LES results: time averaged wall-normal U velocity contours at three longi-
tudinal and spanwise sections of the stably stratified cavity.

Figure 7.7: LES results: time averaged wall-parallel V velocity contours at three lon-
gitudinal and spanwise sections of the stably stratified cavity.

Figure 7.8: LES results: time averaged spanwise (W ) velocity contours at three longi-
tudinal and spanwise sections of the stably stratified cavity.
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Figure 7.9: LES results: vector plots of velocity magnitude at three spanwise sections
of the stably stratified enclosure.

7.5 Quantitative results
After the above qualitative study of the flow within the stably stratified cavity, the
quantitative results are presented here. LES results of the dimensionless time-averaged
temperature, normalised by the temperature di�erence (T h-T c), are compared with the
experimental data of Cooper et al. [25] within two spanwise planes (Z/W = 0.5 and
Z/W = 0.75), at four di�erent longitudinal traverse lines (Y/H = 0.05, 0.3, 0.5 and
0.95), and shown in Figure 7.10. For the stable case, in which the mixing is not as strong
as in the unstable case, there is a more gradual change in temperature across the cavity
and the longitudinal cell transports the hot fluid to the upper and the cooler fluid to
the lower end of the cavity. LES thermal predictions are close to the experimental data
with some deviations noticeable at the near wall regions. This is probably caused by
minor heat losses in the experimental model.

Figure 7.11 illustrates time-averaged profiles of the dimensionless temperature, also
normalised by (T h-T c), obtained from the unsteady RANS models, compared with the
present LES and experimental data. The low-Reynolds number SST model has not
been used because, as mentioned earlier in Chapter 6, it requires a much finer grid,
making it substantially more expensive. The URANS models used here, including the
LRR and k≠Á, show close agreement with the present LES data, however, discrepancies
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between URANS and the experimental profiles are noticed near the di�erentially heated
walls due to same reasons mentioned above for the LES predictions.

Time-averaged dimensionless profiles of the U and V components of velocity, nor-
malised by the buoyant velocity V0, obtained from LES for the stably stratified test
case are presented in Figures 7.12 and 7.13, respectively. The wall-normal U velocity
shows a low negative peak in the central region, which is consistent with the presence
of the two large streamwise vortices identified by the contour plots discussed earlier.
In common with previous comparisons there is close agreement between the LES and
measured profiles. Wall-parallel V velocity profiles for the stable case, Figure 7.13, on
the other hand, show that, as also indicated by the contour plots in Figure 7.7, the
wall-parallel velocity is now considerably stronger with a downward component. The
LES and experimental profiles are in close agreement.

The corresponding results of U and V velocity components obtained from URANS
predictions, shown in Figure 7.14, reproduce qualitatively the same behaviour as LES
and the measured data, but none of the models results in profiles which are in close
quantitative agreement with the LES/experimental ones. All the URANS profiles show
considerably weaker wall-parallel motion and a nearly anti-symmetric variation across
the cavity. This leads to the conclusion that the RANS models tested here have failed
to reproduce the three-dimensional features shown in the LES predictions and the
experimental data. This is in contrast to the findings of Omranian [72], who demon-
strated that the LRR second-moment closure, used with a more advanced wall function
to model the viscous layer, did reproduce the three-dimensional flow structures, and
maybe points to the benefits that could be obtained by using a more accurate mod-
elling of the near-wall layer in such a stably-stratified case. The work of Dehoux et al.
[31] using EB-RSM with GGDH showed good predictions of heat fluxes for the stably
stratified test cases. The use EB-RSM model of Manceau and HanjaliÊ [65] or EB-AFM
model of Manceau [64] can be very promising to predict the 3-D flow features in the
15o stably stratified enclosure.
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Figure 7.10: LES results: time-averaged temperature profiles at four longitudinal
locations and at two spanwise sections inside the stably stratified enclosure. Left:
Z/W = 0.5, right: Z/W = 0.75.
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Figure 7.11: URANS results: time-averaged temperature profiles at four longitudinal
locations on the central spanwise section (Z/W = 0.5) inside the stably stratified
enclosure.
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Figure 7.12: LES results: time-averaged U velocity profiles at four longitudinal locations
and at two spanwise sections inside the stably stratified enclosure. Left: Z/W = 0.5,
right: Z/W = 0.75.
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Figure 7.13: LES results: time-averaged V velocity profiles at four longitudinal locations
and at two spanwise sections inside the stably stratified enclosure. Left: Z/W = 0.5,
right: Z/W = 0.75.

173



Chapter 7. Buoyancy-Driven Flow Within the 3-D Tilted Enclosure Under Stable Stratification

Figure 7.14: URANS results: time-averaged velocity profiles at five longitudinal lo-
cations and at the central spanwise section (Z/W = 0.5) inside the stably stratified
enclosure. Left: U velocity, right V velocity.

The rms turbulence fluctuations and shear stresses inside the stably stratified en-
closure are illustrated in Figures 7.15 to 7.19. The dynamic field statistics, Figures 7.15
to 7.18 and the temperature variance, Figure 7.19, are lower than those in the unstable
case, discussed in the previous chapter, and also have a more non-uniform distribution.
The former is due to the absence of mixing through small-scale vortices and the latter
is due to the stabilising e�ect of the temperature gradient. Some deviations now do
appear between the LES and the available experimental profiles, though this might be
simply that they are more noticeable because of the lower magnitudes involved. For
the turbulent heat fluxes only the wall-parallel component vÕtÕ is presented, Figure 7.20,
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because the wall normal and spanwise components are two orders of magnitude lower
and hence practically zero. The vÕtÕ component of the turbulent heat flux shows large
variations across the cavity, from the hot to the cold walls, and also appears to be high
near the lower end and to reduce to practically zero near the upper end. The former
is a consequence of the non-uniform temperature and flow fields which develop in the
stable case, as illustrated in the contour plots discussed earlier, while the latter may be
caused by the fact that along the longitudinal mid-plane, there is flow impingement at
the lower end. Again in most cases, especially at the Y/H = 0.1 and Y/H = 0.5 lo-
cations, there is reasonable qualitative agreement between the unsteady RANS profiles
and the LES/experimental ones, but with significant quantitative deviations which are
larger than for the unstably stratified case.
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Figure 7.15: Time-averaged rms wall-normal velocity
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uÕuÕ at three longitudinal loca-
tions inside the 15o stably stratified cavity.
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Figure 7.17: Time-averaged rms spanwise velocity
Ô

wÕwÕ at three longitudinal locations
inside the 15o stably stratified cavity.
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Figure 7.18: Time-averaged shear stress uÕvÕ at three longitudinal locations inside the
15o stably stratified cavity.

Figure 7.19: Time-averaged rms temperature
Ô

tÕtÕ at three longitudinal locations inside
the 15o stably stratified cavity.
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Figure 7.20: Time-averaged rms wall-parallel heat flux vÕtÕ at three longitudinal loca-
tions inside the 15o stably stratified cavity.
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Figure 7.21: Time-averaged Reynolds stresses and heat fluxes along the spanwise cross-
section, at the longitudinal central location (Y/H = 0.5) of the 15o stably stratified
cavity.

The corresponding rms profiles and heat fluxes along the spanwise middle section
(Y/H = 0.5) are presented in Figure 7.21. The LES data, which is in close agreement
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with the available measured data, show a symmetry in the spanwise direction because
of the presence of two longitudinal large circular rolls along the width of the cavity.
None of the RANS models appears to display a distinctive predictive advantage. The
common factor among the URANS models tested here is the simple eddy di�usivity
model to represent the turbulent heat flux vector, which is unlikely to fully capture all
its components in such a flow, and hence may lead to some of the deviations noted from
the LES and measured data.

Profiles of the U and V velocity components at three longitudinal locations and
at the middle spanwise cross-section within the stably stratified cavity obtained from
both LES and URANS are also presented here in Figure 7.22. Comparison with the
Cooper et al. [25] data show that the LES data agree with the measurements on the
fact that there are two large circular rolls over the spanwise section, which is also
qualitatively illustrated in Figure 7.9. RANS models generally show close agreement
with LES/experiment data.

Figure 7.22: Time-averaged velocity profiles along the spanwise cross-section, at three
longitudinal traverses inside the stably stratified enclosure. Left: U velocity, right: V
velocity.
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The temporal power spectrum of temperature and the three components of veloc-
ity within the stably stratified cavity, at the same two points A and B used when
examining the unstable case, are presented in Figures 7.23 to 7.26. There are notice-
able di�erences in the spectral variation for the di�erent velocity components and also
at di�erent locations, with both the maximum energy levels and the frequency range
over which the spectral energy remains constant changing between points A and B.
The spanwise velocity component also shows a more rapid decay of spectral energy at
higher frequencies than the other components. In comparison with the unstable test
case, discussed earlier in Chapter 6, LES data, in accord with the measurements, show
that there is an attenuation in energy levels (around 0.005) and also a reduction in the
size of the frequency range over which the spectral energy remains constant. These
di�erences are consistent with the presence of smaller scale vortices in the unstable
case, which increase turbulence levels and also make the turbulence more isotropic and
homogeneous.
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Figure 7.23: LES results: Temporal power spectrum of Temperature at the monitoring
points A and B inside the 15o stable stratified cavity.
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Figure 7.24: LES results: Temporal power spectrum of U velocity at the monitoring
points A and B inside the 15o stable stratified cavity.
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Figure 7.25: LES results: Temporal power spectrum of V velocity at the monitoring
points A and B inside the 15o stable stratified cavity.
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Figure 7.26: LES results: Temporal power spectrum of W velocity at the monitoring
points A and B inside the 15o stable stratified cavity.
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The comparisons of the local Nusselt number profiles with the experimental data of
Cooper et al. [25] for the stable case are presented in Figures 7.27 and 7.28. The LES
and measured profiles show an anti-symmetric variation in local Nusselt number in the
longitudinal direction, over both sides, and uniformity in the spanwise direction. Over
the hot side, Nusselt number levels are higher at the lower end and then fall monoton-
ically towards the upper end, while over the cold side this variation is reversed. While
agreement between the LES and measured profiles is generally close, the measured val-
ues are higher near the upper end of the hot side and the lower end of the cold side.
Again, the possibility of minor heat losses in the experiment might account for this
deviation. As far as the unsteady RANS computations are concerned, as also noted in
the unstable case comparisons, Chapter 6, the high-Re k ≠ Á model is consistently close
to the LES predictions.
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Figure 7.27: Profiles of time-averaged local Nusselt number at the spanwise locations
Z/W = 0.5, 0.625, 0.75 along the heated wall of the 15o stably stratified cavity.
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Figure 7.28: Profiles of time-averaged local Nusselt number at the spanwise locations
Z/W = 0.5, 0.625, 0.75 along the cold wall of the 15o stably stratified cavity.

7.6 Concluding remarks
A highly resolved LES and URANS computations of buoyancy-driven flow within the
15o stably stratified cavity have been conducted, the results of which have been pre-
sented and discussed in this chapter. In such a case, the three-dimensionality is caused
by the thermally insulated side walls. Their presence causes the formation of two
counter-rotating longitudinal vortices and two strong longitudinal cells, which trans-
port fluid from the upper end to the lower end of the cavity along the middle and from
the lower end to the upper end along the side walls. As a result, the fluid temperature
changes more gradually from the hot to the cold side and there is a rise in the core fluid
temperature from the lower to the upper end of the cavity. This temperature variation
in turn causes strong longitudinal variations in the local Nusselt number. Over the hot
side the Nusselt number is high at the lower end and low at the upper end of the cavity,
while over the cold side the local Nusselt number variation is reversed. Velocity and
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temperature fluctuations are considerably weaker than for the unstably stratified case
and also confined to lower frequencies.

For the stably stratified case, the challenge is in reproducing the three-dimensional
flow structures which arise as a result of the lateral wall e�ects and weak buoyancy
influences. None of the RANS models tested was able to fully reproduce these features,
although further research within the author’s group, Omranian [72], suggests that the
use of more advanced wall functions, Craft et al [27], with second-moment closures can
result in significant predictive improvements in this case. The work of Dehoux et al.
[31] using the EB-RSM model of Manceau [65] with GGDH also showed advantageous
predictions of flow inside the stably stratified test cases.
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Chapter 8

Buoyancy-Driven Flow Within the
Horizontal Annular Penetration
Cavity

8.1 Introduction
After a detailed investigation of buoyancy-driven flow inside unstably and stably strat-
ified tilted rectangular cavities, one turns attention into more complex buoyant flow,
the penetration annular enclosure.

In several Advanced Gas Cooled Reactors (AGCRs), boiler penetrations protrude
horizontally from the vertical wall of a pressurised vessel, Figure 8.1. The length of
these penetrations is long compared with their diameter. At the bottom and top of
the boilers, the penetrations contain tubes that carry water and steam respectively into
and out of the boilers. In both cases the tubes are colder than the ambient pressurised
carbon dioxide gas. The number of tubes within the penetrations ranges from 3 to
44, and tube size varies significantly. The tubes are supported along their length by
a number of support plates, also intended to act as gas ba�es. However, an angular
gap exists between the plates and the outer penetration sheath tube to accommodate
expansion and bowing of the tubes. Because of the high gas pressure and thermal
stresses, these gaps do not o�er a significant resistance to the flow reaching the end of
the penetrations.

The flow in and out of the penetration is driven by the di�erence in temperature
between the hot reactor gas and the cold tube at the centre. Because of the absence
of any measured validation data for this test case, a major aim for the present thesis
is to perform a highly resolved LES, in order to provide full and accurate data of the

184



Chapter 8. Buoyancy-Driven Flow Within the Horizontal Annular Penetration Cavity

thermal and dynamic fields of the flow in the penetration, and the rate of heat transfer
to/from the central tube, and to determine how far the flow can be driven inside the
penetration. Some initial URANS simulations are conducted in order to determine
appropriate boundary conditions and to provide an initial qualitative and quantitative
view of the flow patterns found in the problem.

The dimensions and boundary conditions of the enclosure modelled here are illus-
trated in Figure 8.2. The dimensions of the external vessel I, D, W are 1m, 5m and
3m, respectively, while the dimensions of the horizontal penetration are the length
L = 5.68m, the inner tube diameter h = 0.026m, and the penetration diameter
H = 0.343m. At the top inlet of the domain the pressure is set as constant, with
the axial and spanwise velocity components (W and U) set to zero. A zero gradi-
ent condition is applied to the vertical velocity, V , whilst the initial temperature is
set at 300oC, and relatively low levels of turbulence are prescribed (k = 0.01V0

2 and
Á = 0.09(k2/3‹)). At the exit of the domain zero gradient conditions are applied to
all variables. Symmetry conditions are applied at the left side of the container. The
inner cylinder wall is maintained at a temperature of 65oC, whilst all the other walls
are adiabatic.

The Prandtl number (Pr) of the fluid is taken here as 0.7 (CO2), and the temper-
ature of the fluid and other fluid properties are chosen such that the Rayleigh number,
defined as:

Ra =
fl2g — —T (H≠h

2 )3

µ2 Pr (8.1)

where —T = Th ≠ Tc, with the subscripts h and c denoting the hot inlet temperature
and cold wall temperature, respectively, takes a value of 1.5 ◊ 106.

The reference buoyant velocity V0, used for scaling results below, is defined as:

V0 =
ı̂ıÙ— g —T

A
H ≠ h

2

B

(8.2)
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Figure 8.1: Sketch of the annular horizontal penetration cavity and its position in the
AGR.

Figure 8.2: Geometry and boundary conditions of 3-D annular penetration cavity. Lo-
cation of plot lines are indicated.
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8.2 Computational mesh and numerical methods
The computational mesh used for the present LES and the SST k≠Ê model is structured
and non-uniform, consisting of four blocks, as shown in Figure 8.3. It uses around six
million cell volumes, with appropriate clustering in the near wall regions to give non-
dimensional near-wall node distances around the circular walls of —y+ ƒ 1. Spatial
discretization is achieved using a second-order central di�erence scheme (CDS), whilst
the second-order Crank-Nicolson (C-N) scheme is employed for the time discretization
and the time step is ”t = 10≠5s, resulting in a maximum CFL number of 0.5. The
simulation required 60000 time steps, which corresponds to approximately 120 hours in
60 CPU processors, to reach a fully developed turbulent flow state, and at least a further
200000 time steps for statistical averaging of the flow field. For the URANS simulations,
the spatial discretization scheme employed is the second order central di�erence scheme
and the implicit first order Euler scheme for time discretization. The mesh used for
the high-Re model simulation is of about 200000 cells and correspondingly larger time
step, still giving a maximum CFL number of 1. Characteristics of the LES and URANS
calculations are summarised in Table 1.

Case (cylinder) LES k ≠ Ê SST k ≠ Á

(H ≠ h) ◊ L 0.1715◊5.68 0.1715◊5.68 0.1715◊5.68

N(H≠h) ◊ NL 100◊200 100◊200 40◊30

— (H ≠ h)+ ◊ —L+ (6 1) ◊ (6 20) y+(max) = 1 y+(max) = 30

”t (s) 10≠5 10≠2 10≠2

Max CFL 0.5 1 1

Normalised CPU time (on 60 Cores) 1 0.2 0.06

Table 8.1: Characteristics of LES and URANS simulations.

187



Chapter 8. Buoyancy-Driven Flow Within the Horizontal Annular Penetration Cavity

Figure 8.3: 3-D computational mesh for LES.
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8.3 Assessment of LES resolution
Since the aim of the present work is to perform a highly resolved LES of pure buoyancy-
driven flow inside a cylindrical penetration enclosure, the temporal and spatial resolu-
tions should be fine enough to capture all but the very smallest turbulent scales. This
was first checked by calculating the mesh size to the Kolmogorov length scale ratio, in
Figure 8.4, which gave a maximum value of around 5 along the gap between the inner
and the outer cylinders.

Further assessment of the resolution of the LES is achieved by checking the ratio
of the SGS turbulent viscosity to the resolved one, this ratio gives a maximum value
of around 0.15 which indicates a well resolved dissipative motion. The dominant scales
in the present case are the large eddies which are all well resolved in addition to a
substantial part of the dissipative scales.
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8.4 Qualitative results

8.4.1 Time-dependent results

The instantaneous temperature and the three components of velocity W, V , U contours
at a fully developed turbulent flow state, on both middle (Y, Z) section and three
spanwise cross-sections Z/L = ≠0.25, ≠0.5 and ≠0.75 inside the horizontal penetration
obtained from LES, k ≠ Ê SST and k ≠ Á models are shown in Figures 8.6 to 8.9
respectively. The di�erence in temperature between the inlet and the cold inner tube
of the cylindrical penetration creates a buoyancy force. This causes the fluid cooled
by the inner tube to move downwards from the central tube towards the lower wall
of the horizontal annular penetration. This cooling of the inner tube then results in
warm fluid drawn into the penetration and moving along its top half towards the closed
end. While the cooled fluid in the lower half of the penetration moves in the opposite
direction and eventually spills out of the open end and moves downwards. The velocity
contours represented in Figures 8.7, 8.8 and 8.9 suggest the existence of a number of
unsteady eddies of di�erent sizes dispersed inside the cylindrical penetration. These
unsteady features are concentrated in the lower part of the penetration between the
concentric cylinders. A somewhat di�erent flow behaviour is noticed when comparing
velocity distributions at the three (X, Y ) cross sections, with more of unsteadiness
being noticeable towards the left open end of the penetration. Instantaneous contours
of temperature and velocity components resulting from RANS models (Figures 8.6-b-c
to 8.9-b-c) also suggest that the flow is unsteady, and hence these models are able to
resolve some large-scale unsteady structures in this flow.

Vector plots at di�erent axial positions (Z/L) within the penetration enclosure,
illustrated in Figure 8.10, confirms the presence of di�erent scales more noticeable at
bottom half of the penetration as mentioned above in the di�erent time-dependent
contour plots.

In order to show further features of flow within the penetration annular enclosure,
the iso-surfaces of Q-criterion (Equation 6.2) are presented in Figure 8.11. Coherent
structures of di�erent size are dispersed in the bottom half of the penetration where the
fluid flow descends by buoyancy force towards the bottom outer surface of the annulus
and then flows out through the open end towards the outlet.

3-D Streamline plots, in Figure 8.12, show the direction of the buoyant flow inside
the penetration. These streamlines show that the large scale vortices, which exist in
the bottom half of the penetration, rotate in spiraling movement until it reaches the
open end of the penetration then falls towards the exit.
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Figure 8.6: Instantaneous temperature contours at fully turbulent conditions and at
middle cross section X/W = 0 (magnified view of the penetration) and three cross
sections Z/L = ≠0.25,≠0.5,≠0.75. (a) LES, (b) SST k ≠ Ê, (c) k ≠ Á.

Figure 8.7: Instantaneous axial velocity (W ) contours at fully turbulent conditions and
at the middle cross section X/W = 0 (magnified view of the penetration) and three
cross sections Z/L = ≠0.25, ≠0.5,≠0.75. (a) LES, (b) SST k ≠ Ê, (c) k ≠ Á.
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Figure 8.8: Instantaneous vertical velocity (V ) contours at fully turbulent conditions
and at the middle cross section X/W = 0 (magnified view of the penetration) and three
cross sections Z/L = ≠0.25,≠0.5,≠0.75. (a) LES, (b) SST k ≠ Ê, (c) k ≠ Á.

Figure 8.9: Instantaneous spanwise velocity (U) contours at fully turbulent conditions
and at the middle cross section X/W = 0 (magnified view of the penetration) and three
cross sections Z/L = ≠0.25,≠0.5,≠0.75. (a) LES, (b) SST k ≠ Ê, (c) k ≠ Á.

192



Chapter 8. Buoyancy-Driven Flow Within the Horizontal Annular Penetration Cavity

Figure 8.10: LES results: vector plots of velocity magnitude at di�erent axial sections
of the penetration enclosure.

Figure 8.11: LES results: Iso-surfaces of Q-criteria coloured by vorticity inside the
penetration enclosure.
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Figure 8.12: LES results: streamline plots inside the penetration enclosure.

Time dependent pictures are presented here in order to shed light on the flow physics
within this particular case and to give further information of the dynamic and evolution
of the buoyancy-driven flow inside the penetration with the elapsed simulation time.
Instantaneous contours of temperature and the three components of velocity W , V ,
U , plotted along three middle sections, (X, Y ), (Y, Z), (X, Z), and at di�erent time
intervals t (number of time step divided by 1000) are presented in Figures from 8.13 to
8.15. Across the (X, Y ) middle plane, in Figure 8.13, the axial velocity, W , distribution
shows the development of the flow across the horizontal axis of the penetration. It
confirms that over the upper half of the cross-section the fluid moves towards the closed
end of the penetration and over the lower half it has the opposite direction. Moreover,
contours of the vertical velocity component V show that the fluid falls from the central
cold tube towards the bottom wall due to the buoyancy force e�ect. The spanwise U

velocity contours also confirm that the flow inside the penetration oscillates forming
downward eddies of di�erent sizes. Across the (Y, Z) middle section, in Figure 8.14,
the component of velocity parallel to the horizontal axis of the penetration, W , also
shows the evolution of the flow along the penetration. The flow gradually penetrates
further and further into the annular cylinder from the upper half of the opening, and
by the end of the simulation, it extends over the entire length of the penetration. V

and U velocity distributions confirm the presence of dominant large structures noticed
inside the penetration and smaller ones are noticed near the closed end wall of the
penetration. The corresponding contours of the three components of velocity across
the (X, Z) middle section, in Figure 8.15, confirm the presence of di�erent structures
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in the flow which are more noticeable near the closed end of the penetration.

Figure 8.13: LES results: dimensionless T , W , V and U contours across the central
(X, Y ) plane (Z/L = ≠0.5) of the annular penetration at di�erent time steps.
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Figure 8.14: LES results: dimensionless T , W , V and U contours across the central
(Y, Z) plane (X/W = 0) of the annular penetration at di�erent time steps.
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Figure 8.15: LES results: dimensionless T , W , V and U contours across the central
(X, Z) plane (Y/D = 0) of the annular penetration at di�erent time steps.
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8.4.2 Time-averaged results

Contours of the time-averaged temperature, for the three components of velocity and
the total turbulent kinetic energy at the central (X, Y ) and (Y, Z) cross-sections of the
penetration obtained from LES, SST k ≠ Ê and k ≠ Á models are shown in Figures 8.16
and 8.17 respectively. A similar behaviour of the thermal field is shown in the LES and
URANS predictions. The flow is cooled while moving downward towards the surface of
the outer tube, resulting in largely cold fluid in the lower half of the annulus, with the
temperature value equal to around the average of the hot and cold temperatures, and
warmer fluid in the upper half, the k ≠ Á model show a slightly colder flow at the lower
part of the horizontal penetration compared to the other models.

Contours of axial velocity W show a negative motion over the upper half of the
cross-section, indicating that the fluid penetrates inside the annular penetration and
reaches the closed end, and a positive motion over the lower half of the cross-section,
which suggest that this fluid changed direction towards the open end of the penetra-
tion. Contours of the vertical V and the spanwise U velocities show downward circular
cells from both LES and URANS but the axial cross-section figure shows more large
dominant eddies from LES compared to the URANS qualitative results. Moreover,
The k≠Á scheme returns less unsteadiness in the flow and therefore it predicts smaller
structures in comparison to the LES. The di�erences in the k≠Á predictions can be
attributed to the di�usive nature of the e�ective di�usivity approximation and also to
the use of the log-law-based wall function. While the SST is also an e�ective-viscosity
model, it includes a viscosity limiter, which reduces the turbulent viscosity in regions
of high strain rates. This feature makes it more likely to predict flow unsteadiness.
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Figure 8.16: LES and URANS: Time averaged contours of dimensionless temperature
T and velocity components W , V , U at the central spanwise plane of the annular
penetration, obtained from: (a) LES, (b) SST k ≠ Ê, (c) k ≠ Á.
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Figure 8.17: LES and URANS: Time averaged contours of dimensionless temperature T
and velocity components W , V , U at the central axial plane of the annular penetration,
obtained from: (a) LES, (b) SST k ≠ Ê, (c) k ≠ Á.
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8.5 Quantitative results
In this section, the following quantitative results are presented at two angular positions:
0o, which corresponds to the horizontal radius of the annular penetration (See Figure
8.2 for geometry definition), and 270o, which corresponds to the lower vertical radius.
The results are not presented for the angular position 90o because there is not much
happening in the upper region of the penetration. The results are not plotted at the
angular position 180o due to symmetry.

Figures 8.18 to 8.21 show, respectively, time-averaged profiles of temperature nor-
malised by temperature di�erence —T and the three components of velocity W, V and
U normalised by the buoyant velocity scale V0, at three traverse lines, Z/L = ≠0.25,
≠0.5 and≠0.75, and at the angular position of 0o. LES and RANS predictions show
that the temperature is low at the vicinity of the inner tube, and then increases away
from it, maintaining a fairly uniform value over a substantial part of the gap radius
between the inner and the outer tube. The general pattern of thermal profiles is similar
for all axial cross-sections, with the time-averaged temperature obtained from the SST
k≠Ê and the LES being in generally good agreement. However, the LES does show
a slight decrease in the temperature level in the outer part of the gap as one moves
from the open towards the closed end of the penetration, whilst the SST and k ≠ Á

models appear to give a more uniform value along the penetration length. Profiles of
temperature obtained from k ≠ Á deviate from LES and SST near the closed end of the
horizontal annular penetration, this may be attributed to the simple wall function em-
ployed with this model which assumes a logarithmic variation of the near-wall velocity.
The SST and k ≠ Á schemes show predictions at the middle of the horizontal penetra-
tion (Z/L = ≠0.5), which are in good agreement with the LES data. The normalised
time-averaged vertical velocity component V is virtually zero over much of the annular
gap, but takes negative values close to the inner tube as the fluid there gets cooled and
descends. The axial and spanwise velocities W and U also show negative values at the
vicinity of the cold tube. The two components of velocity, W and U , remain negative
in the annular gap and increase in magnitude while approaching the outer wall of the
annulus. RANS schemes agree with these predictions except for some deviations of the
k ≠ Á model near the inner tube for the same reasons mentioned above.

Turning attention now to the angular position of 270o, equivalent profiles to those
discussed above are shown at the three di�erent cross-sections of Z/L = ≠0.25, ≠0.5
and ≠0.75 in Figures 8.22 to 8.25 respectively. A di�erent behaviour of the flow is
noticed at this angular position. The profiles of the time-averaged temperature obtained
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from RANS schemes are again in close agreement with the present LES except for some
deviations in the k ≠ Á predictions at the position (Z/L = ≠0.25). The temperature
is low close to the cold inner tube and then increases to reach a fairly uniform value
across the lower part of the annular gap. LES and SST results show slightly higher
temperatures close to the open end of the horizontal annular penetration compared to
other locations as one moves from the open end towards the closed end at the right
hand side of the penetration. As also seen at the angular position 0o, this may be due
to the warm fluid being entrained into the penetration from the surrounding domain.
In Figure 8.23, at the location near the open end (Z/L = ≠0.25), The axial velocity
W is negative close to the the inner tube and then increases significantly to reach a
maximum normalised value of 0.3 at around (Y ≠ h)/(H ≠ h) = 0.7, this suggests that
when the cold fluid falls downward, it then moves back towards the open left end of
the penetration. The W velocity is lower as one moves towards the closed end, simply
because amount of flow penetration reduces with distance from the open end. In Figure
8.24, the magnitude of the vertical velocity V starts from zero at the underside of the
cold inner tube and then increases as the cooled fluid falls towards the lower wall. It
reaches a maximum at around (Y ≠ H) / (H ≠ h) = 0.1 before decreasing back to zero
at the surface of the outer tube. At position Z/L = ≠0.25, the maximum downward
velocity is slightly higher than at the other locations. At this location a region of
positive (upward) velocity is also noted in the LES beyond (Y ≠ h)/(H ≠ h) approx.
0.4 and somewhat closer to the outer tube in RANS results. This is a result of flow
interaction which occurs at the penetration inlet, and at locations further inside the
penetration, the vertical velocity across this lower section is always directed downwards.
The magnitude of the spanwise U velocity presented in Figure 8.25 is very low compared
to that of the other components because the flow is mostly directed vertically. RANS
predictions of the dynamic field are close to the present LES data except for some
deviations in those of the k ≠ Á model. As noted earlier, the SST k ≠ Ê scheme has
a viscosity limiter, while the k ≠ Á version embedded in Code_Saturne 2.0 does not.
This feature results in lower turbulent viscosities in regions of high shear and probably
explains why the SST predicts stronger oscillations and therefore better agreement with
the present LES.
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Figure 8.18: Time-averaged dimensionless temperature at angular position 0o on three
locations inside the penetration (Z/L =≠0.25,≠0.5,≠0.75).
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Figure 8.19: Time-averaged dimensionless axial velocity W at angular position 0o on
three locations inside the penetration (Z/L = ≠0.25,≠0.5,≠0.75).
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Figure 8.20: Time-averaged dimensionless vertical velocity V at angular position 0o on
three locations inside the penetration (Z/L = ≠0.25,≠0.5,≠0.75).
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Figure 8.21: Time-averaged dimensionless spanwise velocity U at angular position 0o

on three locations inside the penetration (Z/L = ≠0.25,≠0.5,≠0.75).
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Figure 8.22: Time-averaged dimensionless temperature at angular position 270o on
three locations inside the penetration (Z/L =≠0.25,≠0.5,≠0.75).
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Figure 8.23: Time-averaged dimensionless axial velocity W at angular position 270o on
three locations inside the penetration (Z/L = ≠0.25,≠0.5,≠0.75).
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Figure 8.24: Time-averaged dimensionless vertical velocity V at angular position 270o

on three locations inside the penetration (Z/L = ≠0.25,≠0.5,≠0.75).
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Figure 8.25: Time-averaged dimensionless spanwise velocity U at angular position 270o

on three locations inside the penetration (Z/L = ≠0.25,≠0.5,≠0.75).
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Temperature variance tÕtÕ and Reynolds stress components wÕwÕ, vÕvÕ and uÕuÕ, at
angular position of 270o and at three cross-sections along the penetration Z/L = ≠0.25,
≠0.5 and ≠0.75, are presented in Figures 8.26 to 8.29. The temperature variance reaches
it’s maximum close to the inner tube at approx. (Y ≠ H) / (H ≠ h) = 0.1, where the
mixing is very high and then decreases to reach a zero value after (Y ≠ H) / (H ≠ h) =
0.4. The LES also shows that the temperature variance generally decreases as one
moves from the open end towards the closed end of the penetration, its lower value is in
the middle of the horizontal penetration. At Z/L = 0.25 and 0.5, the SST k≠Ê scheme
produces predictions close to LES in comparison to the k≠Á model near the inner tube,
but overpredicts tÕtÕ slightly over the rest of the annular gap. At Z/L = ≠0.75, there is
closer accord between the LES and SST predictions, but the k ≠ Á continues to predict
a very steep drop in the levels of temperature variance away from the inner cylinder.
The deviations from RANS models might be attributed to the fact that both the RANS
models in this study do not include a transport equation for the temperature variance.
Consequently only the contributions arising from the resolved temperature fluctuations
are taken into account. LES results of Reynolds stresses wÕwÕ, vÕvÕ and uÕuÕ, in Figures
8.27 to 8.29, show that the anisotropy is dominant in this case, wÕwÕ and vÕvÕ are very
low in the middle of the horizontal penetration and reach their higher value near the
open end (Z/L = ≠0.25) where there are more unsteady structures. Turbulence levels
are higher at the two ends of the penetration (especially the open end) and lower in the
middle. The k ≠ Á scheme, because as noted earlier generally returns a less unsteady
flow field, it also underpredicts the three Reynolds stress components and shows more
isotropy in comparison to the SST k ≠ Ê model. The latter shows good qualitative
agreement with the LES data but also shows some deviations more specifically for the
spanwise component uÕuÕ at the location (Z/L = ≠0.5).

The total turbulent kinetic energy k along the annular gap at angular position of
270o and at three locations across the length of the penetration Z/L = ≠0.25, ≠0.5
and ≠0.75, is presented in Figure (8.30). LES data show that the total k reaches its
maximum value at the top quarter of the annular gap, as expected, where there is more
mixing and the buoyancy force is high which produces more energy, then an attenuation
of energy occurs as one moves towards the closed end of the annular penetration. The
SST scheme shows close agreement with the LES at the location (Z/L = ≠0.25) but
overdepredicts the total k profiles as one moves towards the closed end of the penetra-
tion. The k ≠ Á scheme underpredicts the modelled turbulent kinetic energy, due to its
dissipative nature which dumps most of the structures present in the flow.
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Figure 8.26: Time-averaged dimensionless temperature variance tÕtÕ at angular position
270o on three locations (Z/L=-0.25,-0.5,-0.75 ).

Figure 8.27: Time-averaged dimensionless Reynolds stress component wÕwÕ at angular
position 270o on three locations inside the penetration (Z/L=-0.25,-0.5,-0.75).

Figure 8.28: Time-averaged dimensionless Reynolds stress component vÕvÕ at angular
position 270o on three locations inside the penetration (Z/L=-0.25,-0.5,-0.75 ).
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Figure 8.29: Time-averaged dimensionless Reynolds stress component uÕuÕ at angular
position 270o on three locations inside the penetration (Z/L=-0.25,-0.5,-0.75 ).

Figure 8.30: Time-averaged dimensionless total turbulent kinetic energy at angular
position 270o on three locations inside the penetration (Z/L=-0.25,-0.5,-0.75 ).
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Figure 8.31 shows the variation of time-averaged local Nusselt number around the
cold inner tube at three positions along the penetration Z/L = ≠0.25, ≠0.5 and ≠0.75.
Results obtained from both RANS schemes are in close agreement with the present
LES data. The same distribution is shown along the cylindrical penetration at the
three axial locations, with a slightly lower heat transfer rate close to the open end
of the penetration, this is consistent with the thermal quantitative results mentioned
above. The LES together with RANS schemes show a high level of heat transfer between
the angular position 0o and 270o, this can be explained by the higher temperature at
the upper part of the cylindrical penetration. It decreases to reach a minimum which
corresponds to the angular position 270o. It then increases again beyond that point
because the boundary layer starts to become thinner again. The k ≠ Á model agrees
with the other models but shows some discrepancies around the 270o region. The use
of the log-law-based wall function is the most likely the cause.

Figure 8.31: Time-averaged local Nusselt number around the inner cold tube on three
locations inside the penetration (Z/L = ≠0.25,≠0.5,≠0.75).
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As a final LES result, the temporal power density spectrum profiles of temperature
T , W and V velocities at a location A which has the coordinates: (X ≠ h) / (H ≠ h) =
0, (Y ≠ h)/(H ≠ h)=-0.5 and Z/L = ≠0.5, are presented in Figure 8.32. The FFT
analysis shows clear dominant peaks of energy and their values vary from one physical
quantity to another at a Strouhal number ranging between 0.0001 and 0.02. The FFT
of the axial, W , velocity shows a clear peak at St = 0.002, its maximum value is 0.01,
this corresponds to the presence of a set of slow large structures at the bottom half
of the penetration which may cause fatigue to the bottom outer wall of the cylindrical
penetration. The Power spectra of T and V also show a range of dominant energy
peaks which have the values of 1 and 0.01 respectively. This also suggests the presence
of a set of structures at the bottom of the horizontal annular penetration.

Figure 8.32: Density power spectrum of temperature T and W , V velocity components
at probe location A ((X ≠ h) / (H ≠ h) = 0, (Y ≠ h) / (H ≠ h) = ≠0.5, Z/L = ≠0.5)
inside the horizontal annular penetration.
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8.6 Concluding remarks
Turbulent natural convection flow within an industrial application, referred to here as
an annular horizontal penetration, has been investigated using a highly resolved LES.
One of the aims has been to provide validation data for URANS modelling, and two
eddy-viscosity RANS models have also been employed to simulate the flow. As the fluid
is cooled by the inner tube, it generally descends towards the bottom of the annulus
and flows out of the open end of the penetration. It is replaced by warm fluid which
enters mostly through the upper section of the open annulus end. In agreement with
earlier URANS work of Omranian [72], LES predictions return large-scale unsteady
flow structures inside the penetration which can be captured by RANS models when
applied in a time-dependent flow solver. Qualitative and quantitative comparisons show
a reasonable agreement between the LES and RANS results, particularly in the mean
thermal and velocity fields. The low-Re SST k ≠ Ê model requires a substantially finer
mesh than needed for the high-Reynolds-number k ≠ Á model. There are some discrep-
ancies from the RANS models. This is thought to be due to the use of the e�ective
viscosity approximation for modelling the heat fluxes and the use of the simple wall
function with the high-Re model. The temperature variance and some Reynolds stress
components are provided here. The k ≠ Á model shows some discrepancies probably
due to the use of the log-law based wall function and the fact that the Code_Saturne
2.0 version of the k ≠ Á does not include any viscosity limiter to reduce the value of the
turbulent viscosity in regions of high shear.

The overall heat transfer rate on the inner cylinder surface appears to be fairly
constant along the penetration length, but with slightly higher values towards the open
end. In the circumferential direction the maximum heat transfer occurs, as would be
expected, on the upper surface of the inner tube. The URANS schemes show good
agreement of the local Nusselt number comparing with the present LES data except
some deviations from the k ≠ Á model at angular position of 270o. The temporal power
density spectrum of thermal and dynamic quantities show a range of dominant peaks
of energy which implies the presence of di�erent unsteadiness in the flow and mostly
concentrated in the bottom half of the penetration.
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Chapter 9

Conclusions and Recommendations
for Future Work

9.1 Conclusions
Convection phenomena induced by body forces have been the subject of extensive re-
search e�orts. The reliable computation of buoyant flow is important in a number of
engineering sectors. Buoyancy-driven flows are physically complex. It is therefore im-
portant to have accurate and e�cient numerical simulation models. Highly-resolved
LES is the principal technique adopted in the present thesis. The e�ectiveness of the
URANS approach is tested for the computation of di�erent challenging test cases:

• URANS model validation of buoyancy-driven flow inside the 2-D vertical cavity

• URANS computation of buoyancy-driven flow inside the 60o tilted cavity under
stable stratification

• URANS computation of buoyancy-driven flow inside the 15o tilted cavity under
unstable stratification

• URANS and highly-resolved LES of buoyancy-driven flow within 3-D 15o unstably
and stably stratified tilted enclosures

• URANS and highly-resolved LES of buoyancy-driven flow of industrial applica-
tion: the horizontal annular penetration enclosure
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2-D vertical cavity

In the present thesis, a turbulent buoyant flow calculation inside a vertical and inclined
cavity has been carried out using di�erent RANS models. After a selection of a con-
venient grid and what is referred to in Code_Saturne 2.0 as the “two-velocity-scale
wall function” for high-Re models, the two-dimensional buoyancy-driven flow within
the vertical cavity of Betts and Bokhari [11] has been computed using several RANS
models. Two flow regions have been identified, a large recirculation motion, and a
boundary layer at the wall. In general, velocity and thermal fields were well reproduced
by almost all low-Re models. However, profiles of velocity and temperature obtained
from high-Re models deviate slightly from measurements near the long walls due to the
simple wall function strategy embedded within Code_Saturne 2.0.

The “two-velocity-scale wall function” used with the high-Re models was shown to
perform best amongst the wall functions embedded in Code_Saturne 2.0 in predict-
ing the buoyancy-driven flow inside the vertical cavity, although it still showed some
discrepancies with experimental data, particularly in the local Nusselt number. A re-
finement has been tested with the “one- and “two-velocity-scale wall functions”. By
modifying the boundary condition value imposed for Á at the near-wall node, to be con-
sistent with what is conventionally employed instead of that originally implemented in
Code_Saturne 2.0. Dynamic, thermal predictions and the heat transfer rate using the
corrected “two-velocity-scale wall function” showed significant improvements. However
the changes to the “one-velocity-scale wall function” did not show any advantageous
results.

Recently Billard et al. [12] developed an adaptive wall function to use with elliptic-
blending model. This approach can be promising to predict wall bounded and buoyant
flows.

2-D tilted cavities at 60o under stable stratification

The second test case was the 2-D buoyancy driven flow within the inclined cavity at 60o

to the horizontal, heated from the top side (stable stratification), using di�erent RANS
models. It was found that this case is similar, in terms of flow physics and model
predictions, to the vertical case. Some di�erences in the models’ predictions of rms
velocity fluctuations have been identified between the two cases. Most of the RANS
models result in a reasonable representation of the measured Nusselt number along
the hot wall. Low-Re approaches are generally closer to the data than the schemes
employing the Code_Saturne 2.0 wall function.
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2-D 15o tilted cavity under unstable stratification

Highly inclined cavities at angles of 15o are also investigated here. The 15o unstably
stratified cavities, even with high spanwise aspect ratios, showed three-dimensional and
unsteady behaviour. Attempts to reproduce the flow and thermal conditions within the
longitudinal (X, Y ) mid-plane through two-dimensional steady RANS computations,
proved unsuccessful.

3-D 15o unstably and stably stratified tilted enclosures

Fully three-dimensional LES and URANS simulations of buoyancy driven flow within
the 15o tilted cavity are conducted here, under both stable and unstable stratifications.
The highly-resolved LES data, in accord with the recent experimental data of Cooper
et al. [25], show that free convection flows in di�erentially heated cavities at high angles
of inclination become three dimensional, even at high aspect ratios and for both stable
and unstable stratification. In the unstably heated cavity, the unstable stratification
causes the formation of four longitudinal vortices which extend over the entire length
of the cavity and four longitudinal cells. These vortices lead to strong mixing, which
results in practically isothermal conditions over most of the cavity and in an isotropic
and homogeneous turbulence field. Because of the near isothermal conditions, the
time- averaged buoyancy-induced wall-parallel motion is substantially lower than what
is found in either the vertical case, or for the stably stratified inclined case. Another
consequence of the isothermal conditions and the homogeneous turbulence field is the
uniform Nusselt number over the hot and cold sides, both in the longitudinal and
spanwise directions. In the stably heated cavity, the three-dimensionality is caused by
the thermally insulated side walls. Their presence causes the formation of two counter-
rotating longitudinal vortices and two strong longitudinal cells, which transport fluid
from the upper end to the lower end of the cavity along the middle and from the
lower end to the upper end along the side walls. As a result, the fluid temperature
changes more gradually from the hot to the cold side and there is a rise in the core fluid
temperature from the lower to the upper end of the cavity. This temperature variation
in turn causes strong longitudinal variations in the local Nusselt number. Over the
hot side, the Nusselt number is high at the lower end and low at the upper end of the
cavity, while over the cold side the local Nusselt number variation is reversed. Velocity
and temperature fluctuations are considerably weaker than for the unstably stratified
case and also confined to lower frequencies. Comparisons with URANS predictions
show that for the unstably stratified cavity all models tested, the high-Re k ≠ Á, the
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LRR and SSG second-moment closures and the k ≠ Ê SST are able to reproduce the
unsteady three-dimensional structures present, and thus capture the broad features of
the flow. The low-Re SST scheme, however, needs substantially finer meshes than the
three high-Re models.

For the stably stratified case, the challenge is in reproducing the three-dimensional
flow structures which arise as a result of the lateral wall e�ects and weak buoyancy
influences. None of the models tested was able to fully reproduce these features, al-
though further research within the authors group, Omranian [24], suggests that the use
of more advanced wall functions, Craft et al. [27], with second-moment closures can
result in significant predictive improvements in this case. Also the work of Dehoux et
al. [31] showed good prediction of natural convection flows inside stably stratified test
cases using the EB-RSM model [65] with GGDH. As far as the local Nusselt number
predictions are concerned, somewhat surprisingly, the profiles returned by the high-Re
k ≠ Á model are consistently close to those of the LES predictions, while the local Nu
profiles of the second-moment closures and the SST scheme show some deviations. One
possible explanation for the poorer second-moment predictions is the use of the e�ective
di�usivity approximation for the turbulent heat fluxes within Code_Saturne 2.0, even
when the Reynolds stresses are modelled through second-moment closures.

In conclusion, the LES data generated has further advanced our understanding of
the flow physics and the thermal characteristics of natural convection in highly inclined
cavities, and provides validation data for two highly challenging natural convection test
cases. The unsteady RANS computations showed that the use of RANS in the case of
unstably stratified flows is very promising and also point to two areas in which current
turbulence modelling practices within Code_Saturne 2.0 can be improved: the wall
function with high-Re models and modelling heat fluxes.

The horizontal annular penetration enclosure

Turbulent natural convection flow within an industrial application, referred to here as
an annular horizontal penetration, has been investigated using a highly resolved LES.
This penetration can be found in the AGR’s. They play a major role in the operation
of cooling of the nuclear reactor. The complex buoyancy-driven flow inside the annular
penetration enclosure makes this latter a challenging natural convection case. One of
the aims has been to provide validation data for URANS modelling, and two eddy-
viscosity RANS models have also been employed to simulate the flow. As the fluid is
cooled by the inner tube it generally descends towards the bottom of the annulus and
flows out of the open end of the penetration. It is replaced by warm fluid which enters

220



Chapter 9. Conclusions and Recommendations for Future Work

mostly through the upper section of the open annulus end. In agreement with RANS
earlier work of Omranian [72], LES results show there to be large-scale unsteady flow
structures inside the penetration that can be captured by RANS models when applied
in a time-dependent flow solver. Qualitative and quantitative comparisons show a
reasonable agreement between the LES and RANS results, particularly in the mean
thermal and velocity fields. The low-Re SST k ≠ Ê model requires a substantially finer
mesh than that needed for the high-Reynolds-number k ≠ Á model. There are some
discrepancies in the predictions of the RANS models. This is thought to be due to the
use of the e�ective viscosity approximation, use of the simple wall function with the
high-Re model. The temperature variance and some Reynolds stress components are
provided here. The k ≠ Á model shows some discrepancies due to the reasons identified
earlier. The overall heat transfer rate on the inner cylinder surface appears to be fairly
constant along the penetration length, but with slightly higher values towards the open
end. In the circumferential direction, the maximum heat transfer occurs, as would be
expected, on the upper surface of the inner tube. The URANS schemes show good
agreement of the local Nusselt number comparing with the present LES data except
some deviations from the k ≠ Á model at angular position of 270o. The temporal power
density spectrum of thermal and dynamic quantities show a range of dominant peaks
of energy which implies the presence of di�erent unsteadiness in the flow and mostly
concentrated in the bottom half of the penetration.

9.2 Recommendations for future work
In the present thesis a highly resolved LES has been adopted as the main accurate
technique to predict and to provide validation data for di�erent challenging natural
convection cases. The LES results provide accurate data for future validation of RANS
simulations and improvements of natural convection calculations.

The turbulent flows driven by thermal buoyancy are featured by inherent unsteadi-
ness, energy non-equilibrium, strong pressure fluctuations and others, which pose spe-
cial challenge to RANS models. The e�ectiveness of the URANS approach was tested
and di�erent high and low-Re RANS schemes have been used in the present thesis.
The main flaws here, in some complex situations, were mainly caused by the use of the
e�ective viscosity approximation with RANS models for modelling the heat fluxes. The
alignment of the heat flux with the mean temperature-gradient vector can lead to model
failure in some cases especially with second moment closure. It is therefore worth using
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more advanced models for modelling the heat fluxes. The GGDH can be employed
to give better approximation of the streamwise component of the turbulent heat flux.
The GGDH takes into account more influential parameters in the calculation of u

Õ
it

Õ

such as the Reynolds stresses, but it does not take into account all of the important
parameters on which u

Õ
it

Õ depends, such as gravity and mean velocity gradients. More
complex algebraic schemes, when the Reynolds stresses are modelled through second-
moment closures, can be used in order to include the influence of buoyancy e�ects on
the turbulent heat fluxes. The three and four extended algebraic models, k ≠Á≠◊2 and
k ≠ Á ≠ ◊2 ≠ Á◊, which were proposed by HanjaliÊ [36], have been proven by many re-
searchers to well reproduce the mean flow properties, turbulence second moments, and
wall heat transfer in a variety of wall-bounded buoyant flows. The EB-RSM model of
Manceau and HanjaliÊ [65] and EB-AFM of Manceau [64] also showed good predictions
of heat fluxes.

Another issue was concluded from the present investigation is the simple wall func-
tions embedded in Code_Saturne 2.0 which have been used in the present thesis. The
use of more advanced wall function can be very promising for prediction of complex
buoyant flows. The UMIST-A [27] and UMIST-N [28] schemes are more advanced and
improved analytical wall functions. The UMIST-A approach is based on the analytical
solution of simplified near-wall momentum and temperature equations, accounting for
pressure gradients and other force fields such as buoyancy. The UMIST-N is based on
a local one-dimensional numerical solution of the governing equations. Implementing
these two approaches into Code_Saturne 2.0 will be very fruitful because they are very
well improved to tackle the issues associated with the log-law based wall function.

The flows created by cross-flow separation or impingement require modification to
eddy viscosity in order to simulate the wide range of length scales present in such
flow. When the strain rate is greater than a certain value, the normal component of
the Reynolds stress can become negative. Negative normal stress can lead to an over-
prediction of turbulent kinetic energy resulting from very small value of dissipation
rate, and finally over-prediction of eddy viscosity. The Reynolds stresses must meet
certain constraints to be physically plausible. It will be very useful to improve the
Code_Saturne 2.0’ version of the high-Re k ≠Á by introducing a realizability constraint
for the turbulent viscosity to ensure Schwartz’ inequality. Schumann [78] introduced the
realizability constraint. This constraint specifies that all the component energies of the
turbulent kinetic energy (the diagonal terms of the Reynolds stress tensor) remain non-
negative and all o�-diagonal components of the Reynolds stress tensor satisfy Schwartz’s
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inequality. A paper examining realizability in two-equation turbulence models by Moore
and Moore [70] provides a good review of stress-limiting methods for eddy-viscosity
models.

Finally, many natural convection applications are involved in the nuclear sector and
can be very challenging for future numerical investigations. It will be interesting to
examine using LES the same tilted cavities as in the present thesis but with twice the
spanwise length and see whether one will get twice as many vortices in the spanwise
direction or completely di�erent flow pattern. Testing cavities at other inclination or
other stratifications will be very beneficial. Further improvements of RANS models
and wall functions can be assessed by using the DNS data of flow within a turbulent
di�erentially heated cavity of aspect ratio 5 and Rayleigh number Ra = 4.5 ◊ 1010,
which was conducted by Trias et al. [84]. In the present thesis, the flow inside the 3-D
horizontal annular penetration has been investigated with one inner central tube. In
several advanced Gas Cooled Reactors (AGR’s) these penetrations can contain a set of
inner tubes ranging from 3 to 44. These tubes carry water and steam respectively into
and out of the boilers. It will be interesting to investigate numerically using URANS
and LES the buoyant flow between a set of tubes inside the 3-D penetration.
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Appendix B

RANS models

B.1 Two-Equation EVMs
In general, two equation models solve an equation for the turbulent kinetic energy, k,

and one other scale determining transport equation.

The Standard k ≠ Á model

The most commonly used two-equations turbulence model over the last three decades is
the standard Á model [53]. The second transport equation that is solved in the standard
k≠Á model is the dissipation of turbulent kinetic energy per unit mass, Á. The standard
k ≠ Á model by Jones and Launder, as described in [53] is as follows,

Eddy Viscosity

‹t = Cµk2/Á, (A.1)

Turbulent Kinetic Energy

ˆk

ˆt
+ Uj

ˆk

ˆxj
= Pk ≠ Á + ˆ

ˆxj

C

(‹ + ‹t/‡k) ˆk

ˆxj

D

, (A.2)

Dissipation rate

ˆÁ

ˆt
+ Uj

ˆÁ

ˆxj
= CÁ1

Á

k
Pk ≠ CÁ2

Á2

k
+ ˆ

ˆxj

C

(‹ + ‹t/‡Á)
ˆÁ

ˆxj

D

, (A.3)
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Closure coe�cient and auxiliary relations

CÁ1 = 1.44, CÁ2 = 1.92, Cµ = 0.09, ‡k = 1.0, ‡Á = 1.3,

¸ = Cµk3/2/Á, (A.4)

This model is implemented in Code_Saturne 2.0 and has produced acceptable results
for a wide range of buoyancy-driven flows.

The k ≠ Ê model

In k ≠ Ê models the modelled k ≠ equation is solved with an equation for the specific
rate of dissipation of turbulent kinetic energy, Ê = Á/k. The most popular k ≠ Ê model
is that of Wilcox [90] which is commonly referred to as standard k ≠ Ê model:

Turbulent kinetic energy

ˆk

ˆt
+ Uj

ˆk

ˆxj
= Pk ≠ —úkÊ + ˆ

ˆxj

C

(‹ + ‡ú‹t)
ˆk

ˆxj

D

, (A.5)

Specific Dissipation rate

ˆÊ

ˆt
+ Uj

ˆÊ

ˆxj
= –

Ê

k
Pk ≠ —Ê2 + ˆ

ˆxj

C

(‹ + ‡‹t)
ˆÊ

ˆxj

D

, (A.6)

Eddy viscosity

‹t = k

Ê
, (A.7)

Closure coe�cients and auxiliary relations

– = 13/25, — = —of—, —ú = —ú
of—, ‡ = 1/2, ‡ú = 1/2,

—o = 9/125, f— = 1.0, —ú
o = 9/100, f— = 1.0,

¸ = k1/2/Ê, (A.8)
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Wilcox [90] has illustrated that the model not only performs well for flat boundary
layer flows. the major downfall of the standard k ≠ Ê model is that it has a large
dependence on the free-stream boundary conditions for Ê. In some cases this can lead
to inaccurate solution if Ê is not appropriately specified at the free-stream boundary.

Menter’s SST model:

Wilcox [91] have shown that the standard k ≠ Ê model processes an inappropriate
dependency on the free-stream boundary condition for Ê. Wilcox [91] has shown that
this free-stream boundary condition can e�ect the eddy-viscosity. However the e�ect
is less for boundary layer flows (especially for high-Reynolds-number flows) than it
is for free-shear flows. Menter introduced cross di�usion in a non-linear manner by
multiplying the cross di�usion term with “blending functions” [68]. These functions
are zero at the inner edge of a turbulent boundary layer and blend to a unitary value
at the outer edge of the layer. Consequently the model behaves like the k ≠ Á model
away from walls and like the k ≠ Ê model in the near-wall region.

Menter proposed the Shear-Stress Transport (SST) model [68], which is implemented
in Code_Saturne 2.0 and it is used in the present work. The SST model uses a new
definition of the eddy-viscosity:

Turbulent kinetic energy

ˆk

ˆt
+ Uj

ˆk

ˆxj
= Pk ≠ —úkÊ + ˆ

ˆxj

C

(‹ + ‡ú‹t)
ˆk

ˆxj

D

, (A.9)

Specific dissipation rate

ˆÊ

ˆt
+ Uj

ˆÊ

ˆxj
= –

Ê

k
Pk ≠ —Ê2 + ˆ

ˆxj

C

(‹ + ‡‹t)
ˆÊ

ˆxj

D

+ 2 (1 ≠ F1)
‡Ê2
Ê

ˆk

ˆxj

ˆÊ

ˆxj
, (A.10)

Eddy viscosity

SST : ‹t = a1k

max (a1Ê; SF2)
, (A.11)
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Closure coe�cients and auxiliary relations
Let „ represent the set of closure constants for the SST model and let „1 and „2

represent the constants from the standard k ≠ Á and k ≠ Ê models respectively.
Set 1, „1 (standard k ≠ Ê):

—1 = 0.075, —ú = 0.09, ‡k1 = 0.5,

‡Ê1 = 0.5, Ÿ = 0.41, –1 = —2/—ú ≠ ‡Ê1Ÿ
2/

Ò
—ú, (A.12)

Set 2, „2 (standard k ≠ Á):

—2 = 0.0828, —ú = 0.09, ‡k2 = 1.0 (BSL) , ‡k2 = 0.85 (SST ) ,

‡Ê2 = 0.85, Ÿ = 0.41, –2 = —2/—ú ≠ ‡Ê2Ÿ
2/

Ò
—ú, (A.13)

In Menter’ models the constants „ are calculated using the following blend between the
constants „1 and „2:

„ = F1„1 + (1 ≠ F1)„2, (A.14)

F1 = tanh
1
arg4

1
2

, (A.15)

and

arg1 = min
C

max
A Ô

k

0.09Êy
; 500‹

y2Ê

B
4fl‡Ê2k

CDkÊy2

D

, (A.16)

Here y is the distance to the nearest surface and CDkÊ is the positive portion of the
cross di�usion term, i.e.,

CDkÊ = max
A

2fl‡Ê2
1
Ê

ˆk

ˆxj

ˆÊ

ˆxj
; 10≠20

B

, (A.17)
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The blending function for the eddy-viscosity relation in the SST model is defined as:

F2 = tanh
1
arg2

2
2

, (A.18)

where

arg2 = max
A

2
Ô

k

0.09Êy
; 500‹

y2Ê

B

, (A.19)

The ‚2 ≠ f model, version of Durbin

In the ‚2 ≠f model suggested by Durbin [38] who proposed a surrogate scalar transport
equation for a quantity he termed ‚2 and its source term f . Thus, in addition to the
k and Á-equations of the k ≠ Á eddy viscosity model. This enables to account for wall
blocking e�ects as in second moment closures. The main idea is to approximate directly
the two-point correlation in the integral equation of the pressure redistribution term by
an isotropic exponential function. The non-local character of the redistribution term is
preserved by the elliptic nature of the equation.

In modelling of the Reynolds Stress equations Durbin [38] proposed an elliptic re-
laxation approach to model the pressure-velocity fluctuations term „ij in order to take
into account the wall e�ects in the form of:

„ij ≠ L2Ò2„ij = „h
ij, (A.20)

where „h
ij corresponds to the quasi-homogeneous solution. In the framework of the full

Reynolds Stress model. Durbin solves an equation for fij = „ij/k for each
ij-component of the tensor. Thus, the total number of equations is increased by six.

In the case of the ‚2 ≠ f model the system of equations for the Reynolds Stress
Tensor components is replaced by a transport equation for the value ‚2 and an elliptic
equation for a scalar function f related to the energy distribution in the equation for
‚2. The main far-wall-flow is supposed to be isotropic and the k ≠ Á model can be
used. The complete model can be summarised by the following equation set including
the Durbin realizability constraint T = min

5
k
Á , aÔ

6CµS

6
, S =

Ò
SijSij, implemented

in the definitions of the time and length scales,
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ˆk

ˆt
= Pk ≠ Á + ˆ

ˆxk

C

(‹ + ‹t)
ˆk

ˆxk

D

, (A.21)

ˆÁ

ˆt
= C

Õ
Á1Pk ≠ CÁ2Á

T + ˆ

ˆxk

C3
‹ + ‹t

‡k

4
ˆÁ

ˆxk

D

, (A.22)

ˆ‚2

ˆt
= kf ≠ ‚2

k
Á + ˆ

ˆxk

C

(‹ + ‹t)
ˆ‚2

ˆxk

D

, (A.23)

f ≠ L2 ˆ2f

ˆx2
k

= (C1 ≠ 1)

1
2/3 ≠ ‚2/k

2

T + C2
Pk

k
, (A.24)

T = max
S

Umin
Q

ak

Á
,

ak

‚2Cµ

Ò
6SijSij

R

b , CT

3
‹

Á

41/2
T

V , (A.25)

L = CL max
S

Umin
Q

ak3/2

Á
,

k3/2

‚2Cµ

Ò
6SijSij

R

b , C÷

A
‹3

Á

B1/4T

V , (A.26)

Eddy viscosity

‹t = C
Õ

µ‚2T , (A.27)

Closure coe�cients and auxiliary relations
It’s noted that coe�cients C1 and C2 originate from the pressure-strain model. Orig-
inally, Durbin used the values from the LRR model (1.5 and 0.4, respectively) but
subsequently settled for:

Cµ = 0.19, ‡k = 1, ‡Á = 1.3, C1 = 1.4, C2 = 0.3,

CT = 6, C÷ = 80, CL = 0.17, C
Õ

Á1 = 1.4
S

U1 + 0.045
Û

k

‚2

T

V , (A.28)
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The Equation set (A.21)-(A.27) is designed to be integrated up to the wall, using the
exact boundary conditions for k and ‚2 (both equal to zero) and ÁÊ = 2‹k/y2 at the
wall-adjacent node while the wall value of f , i.e. fÊ, is determined from the wall-limiting
balance of terms in the ‚2 equation:

ˆ‚2

ˆt

-----
yæ0

= 0 = k f¸˚˙˝
–y2

≠ ‚2

k
Á

¸˚˙˝
–y2

+ ˆ

ˆy

A

‹eff
ˆ‚2

ˆy

B

¸ ˚˙ ˝
–y2

, (A.29)

which results in

fÊ = ≠20 ‹2‚2

Á y4 , (A.30)

Successful predictions of a range of flows have been reported, however, the boundary
condition for f , Equation A.30, may cause computational instability as the equation
is sensitive to near-wall grid clustering: a small unbalance between the numerator and
denominator (both varying as y4 since, in the wall limit ‚2 Ã y4). Thus, the ‚2 ≠ f

model does not tolerate very small wall-normal dimensions of the wall-adjacent grid
cell. The problem can be avoided by solving the ‚2 and f equations, (A.23) and (A.24),
simultaneously.

The Ï ≠ f model

In order to improve the computational robustness HanjaliÊ et al. [46] proposed to
solve a transport equation for the ratio Ï = ‚2/k instead of ‚2, and independently by
Laurence et al. [61]. The Ï equation can be derived directly from ‚2 and k equations,
but an extra ’Cross-di�usion’ term, X, appears from direct derivation of the Ï equation
from the k and ‚2 equations. Equations of Ï and f can be summarised as

ˆÏ

ˆt
= f ≠ Ï

k
Pk + ˆ

ˆxk

CA

‹ + ‹t

‡Ï

B
ˆÏ

ˆxk

D

, (A.31)

f ≠ L2 ˆ2f

ˆx2
k

=
3

C1 ≠ 1 + Cú
5

Pk

Á

4 (2/3 ≠ Ï)
T , (A.32)
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X = 2
k

A

‹ + ‹t

‡Ï

B
ˆÏ

ˆxk

ˆk

ˆxk
, (A.33)

Closure coe�cients and auxiliary relations

C
Õ

µ = 0.22, CÁ1 = 1.4 (1 + 0.012/Ï) , C1 = 1.4, CÁ2 = 1.9, Cú
5 = 0.65

‡k = 1.0, ‡Á = 1.3, ‡Ï = 1.2, ‡T = 6.0, CL = 0.36, C÷ = 85, (A.34)

The Ï ≠ f model o�ers two advantages compared with the original ‚2 ≠ f model.

• Instead of Á appearing in the ‚2 equation, which is di�cult to model correctly
very close to a wall, the Ï-equation contains the kinetic energy production Pk,
which is much easier to produce accurately if the local turbulent stress and the
mean velocity gradient are captured properly.

• Because Ï Ã y2 as y æ 0, the wall boundary condition for Ï reduces to a balance
of only two terms, the elliptic relaxation function, f , and the viscous di�usion
D‹

Ï, both with finite values at the wall. In comparison, PkÏ/k is negligible as it
varies as y3.

ˆÏ

ˆt

-----
yæ0

= 0 = f¸˚˙˝
–y0

≠ Ï

k
Pk

¸ ˚˙ ˝
–y3

+ ˆ

ˆy

A

‹eff
ˆÏ

ˆy

B

¸ ˚˙ ˝
,

–y0

(A.35)

Thus, the wall boundary condition for f becomes:

fÊ = ≠2‹Ï

y2 , (A.36)

The new Ï ≠ – model, version of Billard

Billard [13] combines proposals of Laurence et al. [61] and Manceau and HanjaliÊ [45].
An elliptic equation is solved for the non-dimensional parameter – (which takes the
value 0 at walls and relaxes towards 1 further away) and allows a complete removal of
the boundary condition problem. The source term f is defined as a blending between
two di�erent forms as follows:
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f =
1
1 ≠ –P

2
fw + –P fh, (A.37)

The functions fw and fh are defined, respectively, as the model for f at the wall and
away from the wall.

The part of the cross di�usion term associated to the molecular viscosity is defined
as

2
k

‹
ˆk

ˆxj

ˆÏ

ˆxj
=

1
1 ≠ –P

2
◊ 4ÏÁ

k
+ –P 2

k
‹

ˆk

ˆxj

ˆÏ

ˆxj
, (A.38)

Equations of the Ï ≠ – are represented as

ˆk

ˆt
= Pk ≠ Á + ˆ

ˆxj

C3
‹ + ‹t

‡k

4
ˆk

ˆxj

D

, (A.39)

ˆÁ

ˆt
= C

Õ
‘1Pk ≠ C‘2Á

T + ˆ

ˆxj

C3
‹ + ‹t

‡Á

4
ˆÁ

ˆxj

D

, (A.40)

L2—– ≠ – = ≠1, (A.41)

ˆÏ

ˆt
=

1
1 ≠ –P

2
fÊ + –P fh ≠ Pk

Ï

k
+ 2

k

3
–P ‹ + ‹t

‡k

4
ˆk

ˆxj

ˆÏ

ˆxj
+

ˆ

ˆxj

CA

‹ + ‹t

‡Ï

B
ˆÏ

ˆxj

D

+ ˆ

ˆxj

CA

‹ + ‹t

‡Ï

B
ˆÏ

ˆxj

D

, (A.42)

fh = ≠ 1
T

3
C1 ≠ 1 + C2

Pk

Á

4 3
Ï ≠ 2

3

4
, (A.43)

fw = ≠ÏÁ

k
, (A.44)
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T = max
A

k

Á
, CT

3
‹

Á

41/2B

, (A.45)

L = CLmax

Q

ak3/2

Á
, CT

A
‹3

Á

B1/4R

b , (A.46)

C
Õ

Á1 = CÁ1

A

1 + A1
1
1 ≠ –P

2 Û
1
Ï

B

, (A.47)

Eddy viscosity

‹t = CµkÏT , (A.48)

Closure coe�cients and auxiliary relations

CÁ1 = 1.44, CÁ2 = 1.83, A1 = 0.04, Cµ = 0.22, C1 = 1.7, C2 = 1.2,

P = 3, ‡Á = 1.22, ‡k = 1, ‡Ï = 1, CL = 0.161, C÷ = 90, CT = 6,(A.49)

B.2 Stress transport models
In second-order moment closure models the Reynolds-stress-tensor is modelled using
the Reynolds-stress equations. The equations of the Reynolds stress equations are:

ˆ·ij

ˆt
+ Uk

ˆ·ij

ˆxk
= ≠·ij

ˆUj

ˆxk
≠ ·ij

ˆUi

ˆxj
+ 2‹

ˆui

ˆxj

ˆuj

ˆxj
+ ui

ˆp

ˆxj
+ uj

ˆp

ˆxi
+

ˆ

ˆxj

C
‹

fl

ˆ·ij

ˆxj
+ uÕ

iu
Õ
j

D

, (A.50)

The Reynolds stress equations are a system of six equations, one for each indepen-
dent component of the Reynolds-stress-tensor. This system of equations also contains
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22 new unknowns. The second-order correlations are now the dependent variables and
the new unknowns involve third-order correlations as well as correlations involving gra-
dients of the fluctuating velocities and pressure.

Second order closure models close the Reynolds-stress equation by replacing the
unknowns with coe�cients and algebraic expressions that are based upon mean flow
properties. The advantage of Second-order closure models over Eddy-viscosity models
is that the Reynolds stress tensor is not treated as an isotropic tensor.

The exact transport equations for the transport of the Reynolds stresses, uiuj,
including the buoyancy term which is implemented in Code_Saturne 2.0 and which is
tested in the present thesis, is expresses as follows:

ˆ

ˆt

1
uÕ

iu
Õ
j

2
+ ˆ

ˆxk

1
UkuÕ

iu
Õ
j

2
= ≠ ˆ

ˆxj

Ë
uÕ

iu
Õ
j + (”ijui + ”ijuj)

È
+ ˆ

ˆxj

C

‹t
ˆ

ˆxj

1
uÕ

iu
Õ
j

2D

≠
A

uÕ
iu

Õ
j

ˆuj

ˆxk
+ uÕ

iu
Õ
j

ˆui

ˆxj

B

≠ —
1
giuÕ

jtÕ + gju
Õ
it

Õ
2

+
A

ˆui

ˆxj
+ ˆuj

ˆxi

B

≠

2µ
ˆui

ˆxj

ˆui

ˆxj
≠ 2fl�ij

1
uÕ

iuÕ
mÁijm + uÕ

iuÕ
mÁjim

2
+ Suser, (A.51)

or:

Local time derivative + Cij = DT,ij + DL,ij + Pij + Gij + „ij ≠ Áij + Fij + Suser (A.52)

where Cij is the convection term, DT,ij equals the turbulent di�usion, DL,ij stands for
the molecular di�usion, Pij is the term for stress strain, Gij equals buoyancy production,
„ij is for the pressure strain, Áij stands for the dissipation and Fij is the production by
system rotation. Of these terms, Cij , DL,ij, Pij and Fij do not require modelling. DT,ij

, Gij , „ij and Áij have to be modelled for closing the equations.

Gibson and Launder’s RST model

Gibson and Launder [59] proposed a high-Reynolds-number RST model whose general
equation for the Reynolds stress uiuj is:
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ˆ
1
uÕ

iu
Õ
j

2

ˆt
+

ˆ
1
UkuÕ

iu
Õ
j

2

ˆxk
= Pij ≠ 2

3Á”ij + „ij + ˆ

ˆxk

CA

‹t + Cs
k

Á
uiuj

B
ˆuÕ

iu
Õ
j

ˆxk

D

, (A.53)

Pij is the production of the Reynolds stresses expressed as:

Pij = ≠
A

uÕ
iu

Õ
k

ˆUj

ˆxk
+ uÕ

ju
Õ
k

ˆUi

ˆxk

B

, (A.54)

where 2
3Á”ij represents the dissipation term for high-Reynolds-number flows where it is

assumed that local isotropy holds. The di�usion term follows the Generalised Gradient
Di�usion Hypothesis (GGDH). The pressure-strain correlation term represents the ef-
fective contribution of Gibson and Launder’s work [59]. The pressure-strain correlation
is expressed as a sum of four terms: an interaction between the fluctuating velocity
components themselves, „ij,1, an interaction between these and the main flow, via a
linear relation with the mean velocity gradients, „ij,2, and two wall reflection terms.
The latter are those which were actually proposed by Gibson and Launder [59] as a new
contribution since the former, „ij,1 and „ij,2, had been already proposed by Launder et
al. [60]. The equation for the modelled pressure-strain correlation is:

„ij = „ij,1 + „ij,2 + „ij,Ê1 + „ij,Ê2 , (A.55)

where:

„ij,1 = ≠C1
Á

k

3
uÕ

iu
Õ
j ≠ 2

3”ijk
4

, (A.56)

„ij,2 = ≠C2

3
Pij ≠ 2

3”ijPk

4
, (A.57)

„ij,Ê1 = C
Õ

1
Á

k

3
uÕ

kuÕ
mnknm”ij ≠ 3

2uÕ
kuÕ

inknj ≠ 3
2uÕ

kuÕ
jnkni

4
, (A.58)

„ij,Ê2 = C
Õ

2
Á

k

3
„km,2nknm”ij ≠ 3

2„ik,2nkni ≠ 3
2„jk,2nkni

4
F, (A.59)

and
F = k3/2

2.5yÁ
, (A.60)
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In the above equation, Pk stands for the production rate of turbulence given by: Pk =
≠uiuj

ˆUi
ˆxj

, nm is the unit vector normal to the wall in the m direction and F is the
length scale function, y is the normal distance to the wall.
The RST model also requires an equation for the turbulent eddy dissipation rate Á.
which can be expressed as:

ˆÁ

ˆt
+ ˆUjÁ

ˆxj
= ˆ

ˆxk

CA

‹t + CÁ
k

Á
uÕ

iu
Õ
j

B
ˆÁ

ˆxj

D

≠ CÁ1
Á

k
Pk ≠ CÁ2

Á2

k
, (A.61)

Closure coe�cients and auxiliary relations

C1 = 1.8, C2 = 0.6, C
Õ

1 = 0.5, C
Õ

2 = 0.3, Cs = 0.22,

CÁ = 0.18, , CÁ1 = 1.44, CÁ2 = 1.92, (A.62)

The SSG RST model

The SSG Reynolds stress transport model is also a high-Reynolds-number model, de-
veloped by Speziale et al. [81]. Its general equation form for the Reynolds stresses u

Õ
iu

Õ
j

and the turbulent eddy dissipation rate Á are the same of those presented for the GL
model, Equations A.53 and A.61. The main di�erence between these two models lies
in the pressure strain correlation expression. Also starting from the Poisson equation
for the instantaneous pressure field, Speziale et al. [81] developed a general solution,
subjected to physical constrains, for the pressure strain correlation which resulted in a
non-linear formulation for the latter, where it varies quadratically with the anisotropy
tensor defined by bij = u

Õ
iu

Õ
j≠ 2

3 k”ij

2k . The resulting expression for the pressure strain
correlation „ij is thus:

„ij = ≠
3

C1 + Cú
1

˝

Á

4
bij + C2‘

3
bikbkj ≠ 1

3bmnbmn”ij

4
+

1
C3 ≠ Cú

3
Ô

A
2

kSij +

C4k
3

bikSjk + bjkSik ≠ 2
3bmnSmn”ij

4
+ C5k (bikWjk + bjkWik) , (A.63)

where A = bijbij is the stress invariant, Sij = 1
2

1
ˆUi
ˆxj

+ ˆUj

ˆxi

2
and Wij = 1

2

1
ˆUi
ˆxj

≠ ˆUj

ˆxi

2

are the mean strain and vorticity tensors.
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In Equation A.63, the term:≠
1
C1 + Cú

1
˝
Á

2
bij is equivalent to the interaction between

the fluctuating velocity components themselves, „ij,1 used in the GL model in sec-
tion (3.3.2). The second term C2Á

1
bikbkj ≠ 1

3bmnbmn”ij

2
contains the quadratically

non-linear terms in the anisotropy tensor bij. The term
1
C3 ≠ Cú

3
Ô

A
2

kSij is linearly
dependent on the mean strain rate tensor, although its coe�cient still depends on the
anisotropy tensor. The term C4k

1
bikSjk + bjkSik ≠ 2

3bmnSmn”ij

2
+C5k (bikWjk + bjkWik)

define the dependence of the pressure-strain correlation on the interaction between the
anisotropy tensor and the mean strain and vorticity tensors, respectively. There is no
wall reflection term.

Closure coe�cients and auxiliary relations

C1 = 3.4, Cú
1 = 1.8, C2 = 4.2, C3 = 0.8, Cú

3 = 1.3, C4 = 1.25,

C5 = 0.4, Cs = 0.22, , CÁ = 0.18, CÁ1 = 1.44, CÁ2 = 1.83, (A.64)
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Appendix C

Numerical methods

C.1 Finite Volume Method (FVM)
Code_Saturne 2.0 is base on the finite volume method. This method relies on:

• Dividing the domain into control volumes.

• Formal integration of the governing equation of fluid flow over each control volume
in the solution domain.

• Discretization involves the substitution of a variety of finite-di�erences-type of
approximations for the terms in the integrated equation, representing flow pro-
cesses such as convection, di�usion and sources. This converts integral equations
into a system of algebraic equations.

• Solution of the algebraic equations by an iterative method.

If one considers a general variable „, the conservative form of all fluid flow equations, in-
cluding equations for scalar quantities such as temperature etc., can usefully be written
in the following form:

ˆ (fl„)
ˆt

+ div (fl„u) = div
1
� grad„

2
+ S„, (A.1)

where „ represents the scalar being solved for, and the source term can be decomposed
as:

S„ = Si (f, Ï) „ + Se, (A.2)
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where f represents the physical properties (fl, �, ...), Ï represents the variable of the
problem (u, µt, k, Á, ...), Si is the linear part of the source terms and Se include all other
source terms.
Equation (A.1) highlights the various transport processes a�ecting variable „: the rate
of change term and the convective term on the left hand side and the di�usive term
(�= di�usivity coe�cient) and the source term respectively on the right hand side.
The key step of the finite volume method is the integration of Equation (A.1) over a
three-dimensional control volume CV yielding:

ˆ
�

ˆ (fl„)
ˆt

d� +
ˆ

�
div (fl„u) d� =

ˆ
�

div
1
� grad„

2
d� +

ˆ
�

S„d�, (A.3)

The volume integrals in the second term on the left hand side, the convective term,
and the first term on the right hand side, the di�usive term, are re-written as integrals
over the entire bounding surface of the control volume by using the Gauss divergence
theorem. For a vector a this theorem states:

ˆ
�

div ad� =
ˆ

A

n.adA, (A.4)

Applying Gauss divergence theorem, Equation (A.3) can be written as follows:

ˆ

ˆt

Aˆ
�

fl„d�
B

+
ˆ

A

n. (fl„u) dA =
ˆ

A

n.
1
� grad„

2
dA +

ˆ
�

S„d�, (A.5)

The order of integration and di�erentiation has been changed in the first term on the
left hand side of Equation (A.5) to illustrate the physical meaning. This term signifies
the rate of change of the total amount of fluid variable „ in the control volume. The
product n. (fl„u) represents the flux component of variable „ due to fluid flow along the
outward normal vector n, so the second term on the left hand side of Equation (A.5),
the convection term, is therefore the net rate of change of fluid variable „ of the fluid
element due to convection.

In time dependent problems, it is also necessary to integrate with respect to time t

over a small interval t+�t from, say, t until �t . This yields the most general integrated
form of the transport equation:
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ˆ
�t

ˆ

ˆt

Aˆ
�

fl„d�
B

dt +
ˆ

�t

ˆ
A

n. (fl„u) dA dt =
ˆ

�t

ˆ
A

n
1
� grad„

2
dA dt +

ˆ
�t

ˆ
�

S„d� dt, (A.6)

C.2 Space discretization in Code_Saturne 2.0
Discretization in space is achieved using the above finite volume approach, with a co-
located storage arrangement of all variables.

Figure C.1: Notation for the spatial discretization.

In Figure (C.1), I denotes the cell centre. J is the centre of the neighbouring cell. I Õ

and J Õ are the projection points of the cell centres onto the face normal vector. O is
the point where the line that connects the two cell centres, crosses the face between
them. �i and �j are the volumes of cells I and J respectively. Aij is the area of the
face between the cell nodes I and J .

After integrating each term of Equation A.1, one obtains the finite volume dis-
cretization.

• Time derivative:
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fl
ˆ

ˆt

ˆ
�i

„id� = fl
ˆ

ˆt
(„i�i) , (A.7)

where „i is the value of „ at the cell centre I.

• Convection term:

ˆ
�

div ((„flu)) d� =
ˆ

Aij

„flu.ndA =
ÿ

jœN(i)
„ij (flu.n)ij Aij, (A.8)

where „ij is the value of „ at the face centre, interpolated from the cell centres. N (i)
are the neighbouring cells of i.

• Di�usion term:ˆ
�

div
1
�grad„

2
d� =

ˆ
Aij

1
�grad„

2
.n dA =

ÿ

jœN(i)

1
� grad„

2

ij
.n Aij, (A.9)

„ij and grad„ij are needed (at the face) so it needs to be interpolated. Three di�erent
options are available in Code_Saturne 2.0. They are presented in the following section.

C.2.1 Convection schemes

In Code_Saturne 2.0 the convection can be calculated either by using an upwind dif-
ferencing scheme (UDS), a central di�erencing scheme (CDS) or a second order linear
upwind scheme (SOLU). The code has also a slope test based on the product of the gra-
dients at the cell centres to dynamically switch from CDS to UDS. These are detailed
as:

• First order upwind scheme (UDS)

„ij =

Y
_]

_[

„I , if (u n)F > 0 (positive flux)

„J , if (u n)F < 0 (negative flux)
(A.10)

This scheme is robust and stable, but introduces additional numerical di�usion which
can become large if the grid is coarse and dramatic in LES.

• Second order central di�erence scheme (CDS)
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For a centred scheme, the value at the face can be computed as:

„ij = –ij„I + (1 ≠ –ij) „J + 1
2

Ë1
grad f

2

I
+

1
grad f

2

J

È
.OF , (A.11)

with: –ij = (F J Õ.n)
(IÕJ Õ.n)

The last term in Equation (A.11) is added for non-orthogonal grids, where the centre
of the face does not lie at the the midpoint between the cell centres (Figure C.1).

• Second order linear upwind scheme (SOLU)

„ij =

Y
_]

_[

„I + IF .
1
grad f

2

I
, if the flux is positive

„J + JF .
1
grad f

2

J
, if the flux is negative

(A.12)

When using a centred scheme, a “slope test“ (based on the gradient of the variable)
is available in order to stabilise the calculation, by introducing non-linearities in the
convection operator it allows to switch from the centred or SOLU scheme to the first
order upwind scheme without blending. In the present thesis the slope test is activated.

C.2.2 Di�usion terms

The di�usion term on the right hand side of Equation (A.9) is computed as:

ÿ

jœN(i)
�

1
grad „

2

ij
.n.dA =

ÿ

jœN(i)
�„IÕ ≠ „J Õ

I ÕJ Õ .nAij, (A.13)

The values of „IÕ and „J Õ can be computed by using the gradient at the cell centre:

„IÕ = „I +
1
grad „

2

I
I I Õ, (A.14)

C.2.3 Gradient reconstruction

For some of the approximations above (and in assembling source terms for some trans-
port equations), one needs values of the gradient of variables at the cell centres. As
mentioned above in Code_Saturne 2.0, two methods are available:
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• Iterative reconstruction of the non-orthogonalities

• Least squares method based on the first neighbouring cells (those that share a
face)

C.2.3.1 Standard iterative method in Code_Saturne 2.0

The calculation of the gradients is achieved by an iterative solver (see Muzaferija and
Gosman [71]) in which the gradient is expressed as:

1
grad „

2

I
= 1

�

ˆ
�

1
grad „

2
d� = 1

�
ÿ

jœN(i)

ˆ
A

„n dA, (A.15)

The surface integral can be approximated using the midpoint rule so that it becomes:

1
grad „

2

I
= 1

�
ÿ

jœN(i)
„F Aij.n, (A.16)

To obtain the value of „F , a Taylor series expansion can be applied to obtain:

„F = „o + OF
1
grad „

2

o
+ O

1
Î OF Î2

2
, (A.17)

The value of „o can be obtained by a linear interpolation and the gradient at the
same point,

1
grad „

2

o
, from an average between the values of

1
grad „

2

I
and

1
grad „

2

J
.

Finally, the system to solve can be written as:

1
grad „

2

I
= 1

�
ÿ

jœN(i)
[–ij„I + (1 ≠ –ij) „J +

1
2OF

11
grad „

2

I
+

1
grad „

2

J

2
] Aij.n, (A.18)

In the latter equation,
1
grad „

2

O
has been evaluated as 1

2

1
grad „

2

I
+ 1

2

1
grad „

2

J
,

this is su�cient to obtain a second order approximation for „F . Moreover, numerical
experiments carried out on complex industrial cases indicated that this approximation
seemed to provide more robustness than using strict linear interpolation to approximate1
grad „

2

O
.

254



C.2.3.2 Least squares method

Solving Equation (A.18) remains costly. A more direct method has therefore also been
implemented, based on the least squares approach described in Muzaferija and Gosman
[71].

Given a data {(x1, y1) ....., (xN , yN)}, one may define the error associated to saying
y = a.x + b by:

E (a, b) =
Nÿ

n=1
(yn ≠ (axn + b))2 , (A.19)

The goal is to find values a and b that minimise the error.
Within the present code, the error, Equation (A.19), is expressed in Code_Saturne

2.0 as:

E„
I

1
grad„, grad„

2
=

Nÿ

jœN(i)

1
Î IJ Î2

1
„J ≠

1
„I +

1
grad„

2

I
.IJ

222
, (A.20)

Assuming Î IJ Î”= 0, the aim is to determine the value for
1
grad„

2

I
that minimises the

associated error E„
I

1
grad„, grad„

2
. If, for a given cell I, there exist at least three faces

for which the related vectors IJ are linearly independent, the minimisation of Equation
(A.20) has a unique solution.

To illustrate the method, consider system (A.20) on a two-dimensional triangular
cell I. Neighbouring cells are denoted J, K and L. One also defines the unit vector
mIP = 1

ÎIP ÎIP and the scalar quantity gP = „P ≠„I
IP , with P standing for J, K and L

cell centres. Considering these notations, the minimum error reaches zero under the
following condition:

gJ (mIK ◊ mIL) + gK (mIL ◊ mIJ) + gL (mIJ ◊ mIK) = 0, (A.21)

C.3 Time discretization
Code_Saturne 2.0 can solve flows in both steady and unsteady modes. It uses a theta
(◊) scheme for the time discretization. All equations are solved sequentially, in a seg-
regated fashion. Given a time step —t = tn+1 ≠ tn integration of Equation (A.6) leads
to:
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� fl

—t

1
„n+1 ≠ „n

2
+ ◊

Ë
div

1
(flu) „n+1

2
≠ div

1
� grad„n+1

2È
=

≠ (1 ≠ ◊)
Ë
div

1
(flu) „n+1

2
≠ div

1
� grad„n+1

2È
+

�
Ë
Si(f, Ïn)

1
◊„n+1 + (1 ≠ ◊) „n

2
+ [Se (f, Ï)]n+◊

È
, (A.22)

The code allows two options for the constant ◊:Y
_]

_[

◊ = 1, for an implicit first order Euler scheme

◊ = 1/2, for a second order Crank ≠ Nicholson scheme

The system (A.22) is solved in an iterative and incremental manner. Considering k

as the index of the sub-iteration, the increments of a variable „ are presented as:
Y
_]

_[

—„n+1,k+1 = „n+1,k+1 ≠ „n+1,k,

—„n+1,k = „n+1,k ≠ „n+1,0,
(A.23)

with the value at the previous time step is „n+1,0 = „n.

C.4 Pressure-velocity coupling (pressure correction)
Code_Saturne 2.0 achieves time-stepping and velocity-pressure coupling via a fractional
step scheme that can be associated with the SIMPLEC method [87]. The solution
algorithm consists of a prediction-correction method.

In the first step, the momentum equation is solved using an explicit pressure gradient
from the previous time step. In the description below, time step n is considered, of
size —t, extending from t = t(n) to t = t(n+1), with „(n) denoting the value of „ (t)
at time level t(n). Q(n) = flu(n) and P (n) are the momentum and pressure at time
level n respectively. The density is fl can be a function of scalars like temperature1
fl(n) = F

1
T (n)

22
.

The system to solve at the first step of the method is:

�
Qú ≠ Q(n)

—t
+ div

1
uúQ(n) ≠ µ grad uú

2
= ≠grad P (n) + �S(n)

„ , (A.24)

where S includes all source terms that can be made implicit or explicit, i.e. S = A+B.u.

After this prediction step, a new velocity field is obtained (denoted by uú),
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The second step consists of correcting the pressure gradient and velocity fields in order to
satisfy the continuity and momentum equations. This is done by using the momentum
equation (with convection and di�usion variations neglected) to link pressure corrections
to velocity ones, and requiring that the corrected velocity field satisfy the continuity
equation. The system is therefore:

Y
_]

_[

Qúú ≠ Qú = ≠—t grad
1
P úú ≠ P (n)

2
,

div
1
Qúú

2
= 0

(A.25)

One considers —P = P úú ≠ P (n) = P úú ≠ P ú, and combining Equations (A.25) leads
to a Poisson equation for the pressure update, which can be written as:

div
Ë
—t grad (P úú ≠ P ú)

È
= div

1
Qú

2
, (A.26)

Once the updated pressure (P úú), has been obtained, the velocity field is corrected,
via the first expression in Equation (A.25). After the above procedure, the resolution
of turbulent variables is done according to their time scheme.

The third step is to resolve scalar equations (such as temperature T in the present
thesis). Following the same approach as for the velocity, one gets:

�fl(n) T (n+1) ≠ T ú

—t
+ div

1
T (n+1)Qúú ≠ � grad T (n+1)

2
= �S

Õ(n+1)
„ , (A.27)

with T ú = T (n), and the source term S
Õ
„ = A + B.T .

Once this step has been completed, the other physical properties of the fluid may also
be updated and the whole process can then start again.
Rhie & Chow interpolation [77] is used when evaluating fluxes in the pressure correction
equation in order to avoid oscillations that can otherwise occur.

C.5 Linear system solution algorithm
The full flow solution algorithm comprises a large iterative loop:

• Calculate the physical properties (fl, ‹t...)

• Calculate predicted velocities (in a segregate fashion)

• Compute the updated pressure equation
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• Correct velocities to ensure mass conservation

• Calculate turbulent and other scalar variables (in a segregate fashion)

• Begin next iteration.

The default treatment is to use the Jacobi method for convected quantities, and alge-
braic multigrid method for pressure (with a conjugate gradient). These methods are
detailed in the book of Ferziger and Peric [40].

C.6 Boundary Conditions
Two major kinds of boundary conditions are:

• Dirichlet boundary conditions: The value of the variable is fixed at the boundary
face.

• Neumann boundary condition: The normal gradient of the variable at the bound-
ary face is fixed.

In order to solve the flow field, boundary conditions need to be applied for each variable.
In terms of the discretized equations, quantities on boundaries that need to be evaluated
include:

• The convective term, Equation (A.8), a boundary value is required for the term1
flu(n).n

2
„;

• The di�usion term, Equation (A.9), a boundary value is necessary for the term
�

1
grad „.n

2
;

• The source term, Equation (A.6), if this depends on grad „, a boundary value is
required when computing the gradient at cell centres;

• The pressure gradient term grad
1
P úú ≠ P (n)

2
.n in Equation (A.25).

• Boundary values of the terms (—T grad —P.n) and (
1
Qú.n

2
) in the Poisson Equa-

tion (A.26);

The boundary treatment of the terms mentioned above is detailed hereafter for inlets,
outlets, walls and symmetry conditions.
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C.6.1 Inlet

At an inlet boundary, a Dirichlet condition is prescribed for all transported variables
(velocity, scalars, turbulent variables ...). The boundary conditions for discrete terms
in Equation (A.6) are built under the following assumptions:

• The inlet boundary value for the convection flux,
1
fl u(n).n

2
„, is

1
fl u(n)

inlet.n
2

„n+1
inlet.

• For di�usion terms, the inlet boundary value for the flux is calculated as:

1
grad „.n

2

inlet
= �

„(n+1)
inlet ≠ „ú

IÕ

I ÕF.n
, (A.28)

• For source terms which require the computation of the gradient of a variable „,
the value „(n+1)

inlet is used as a boundary face value.

In order to compute the pressure gradient, a homogeneous Neumann condition (zero
flux) is imposed although an extrapolation from interior nodes is possible.

When solving the Poisson Equation (A.26), the term —t grad —P.n is set to zero on
the boundary, while the boundary value of the term fl uú.n is computed as fl(n+1)

inlet u(n+1)
inlet n.

When updating the momentum at cell centres, via Equation (A.25), the required pres-
sure gradient is extrapolated (first order approximation in space) from the cell value of
—PI taking into account the assumption —t grad —P.n = 0 on the boundary.

C.6.2 Outlet

At an outlet, a homogeneous Newman condition is imposed on the velocity, scalars and
turbulent variables. Dirichlet conditions are applied to pressure, P (n+1)

outlet . The boundary
values for discrete terms in Equation (A.6) are set as:

• The boundary value for the convective flux
1
fl u(n).n

2

outlet
„ú is prescribed, using

the homogeneous condition for „, as
1
fl u(n).n

2

outlet
„ú

IÕ .

• The boundary values for the di�usion fluxes (�
1
grad „

2
.n) are set to zero.

• In source terms a first order approximation is used to set boundary values of
„ = „IÕ . The Dirichlet condition for pressure provides the boundary value used
for the computation of the pressure gradient.

The Dirichlet condition is used to prescribe the term —P in the Poisson Equation
(A.26). In the momentum correction Equation (A.25), the boundary value for —P is
set to zero.
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C.6.3 Walls

For both walls and symmetries the following assumptions are made:

• Zero mass flow rate normal to walls and symmetry planes.

• A Dirichlet condition is set for the tangential velocity and scalars (in case of fixed
values) at the walls and a homogeneous Neumann condition at symmetry planes.

• Pressure gradient normal to the face is set to zero, although it can also be com-
puted via an explicit extrapolation of the value at the boundary cell.

• The boundary value for the convective flux in Equation (A.6) is set to zero.

• For di�usive fluxes in Equation (A.6), if a Neumann condition applies to the
variable „, this is used to evaluate the boundary value for �

1
grad „Ê.n

2
. If a

Dirichlet condition applies, the boundary value is then computed in a similar way
as for inlets (Equation (A.28)).

• When computing gradients, for which a value of „ is required at the boundary,
the treatment again depends on the boundary condition applied to „. If a homo-
geneous Neumann condition is imposed, the boundary value is extrapolated from
the boundary cell centre value.

• For the pressure gradient calculation, if the flux of the variable at the face is
prescribed, the boundary value is:

„Êall = „IÕ + I
Õ
F

1
grad „.n

2
, (A.29)

To solve the Poisson Equation (A.26), the boundary values of �t grad —P.n and fluú.n

are set to zero. For the momentum correction Equation (A.25), the boundary value for
—P is obtained from the adjacent cell centres values assuming that: �t grad —P.n = 0.

For turbulent flows, the boundary conditions at the walls are detailed in sections
4.3.1 and 4.3.2.
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Appendix D

Grid sensitivity tests

Seven di�erent grids have been used to explore grid sensitivity and decide upon an
optimal grid resolution for the computations using high-Re models and the standard
“two-velocity-scale wall function”. These include uniform and non-uniform meshes,
varying both the interior mesh sizes and the near-wall cell sizes, giving di�erent values
of the dimensionless near-wall node distance y+. The grids are shown in Figure A.1
and their parameters are summarised in Table (A.1).

Grid 1
(a)

Grid 2
(b)

Grid 3
(c)

Grid 4
(d)

Grid 5
(e)

Grid 6
(f)

Grid 7
(g)

Density 80 ◊ 20 80 ◊ 20 80 ◊ 22 100 ◊ 22 50 ◊ 50 80 ◊ 20 80 ◊ 40

Y 0.004 0.007 0.1 0.002 0.002 0.002 0.002

Y + [min, max] [3, 11] [2, 8] [3, 8] [3, 7.5] [0.5, 25] [0.5, 11] [0.5, 11.5]

Table A.1: Parameters of computational grids used for 2-D grid sensitivity tests.

Profiles of mean temperature, vertical velocity, rms fluctuating velocity at three
heights across the cavity, and local Nusselt number distribution, are presented in Figures
A.2 to A.5, for three heights inside the vertical cavity. Results obtained using the seven
grids mentioned earlier, are compared with experimental data of Betts and Bokhari [11].
Comparisons show that thermal and dynamic results are dependent on grid refinement.
The uniform mesh (Grid 1) 80◊20 resolution is considered su�cient to solve the problem
for high-Reynolds-number models. At this resolution the value of dimensionless distance
from the wall, y+, to the first inside node next to the wall is around 10 (See Figure
A.6). However, the rest of the grids (Grids 2 to 7) show discrepancies comparing with
experimental data and therefore they are not used in the present thesis.
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Figure A.1: 2-D computational meshes used for grid sensitivity tests.
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Figure A.2: Mean temperature profiles at three heights inside the vertical cavity. Com-
parison between di�erent 2-D computational meshes.

Figure A.3: Mean velocity profiles at di�erent heights inside the vertical cavity. Com-
parison between di�erent 2-D computational meshes.
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Figure A.4: Rms velocity fluctuation profiles at di�erent heights inside the vertical
cavity. Comparison between di�erent 2-D computational meshes.

Figure A.5: Local Nusselt number distribution along heated wall of the vertical cavity.
Comparison between di�erent 2-D computational meshes.
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Figure A.6: Dimensionless distance (y+) distribution along horizontal and vertical walls
of the the tall cavity. Comparison between di�erent 2-D computational meshes.
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