Extent, timing and palaeoclimatic significance of Late Pleistocene and Holocene glaciation in the High Atlas, Morocco

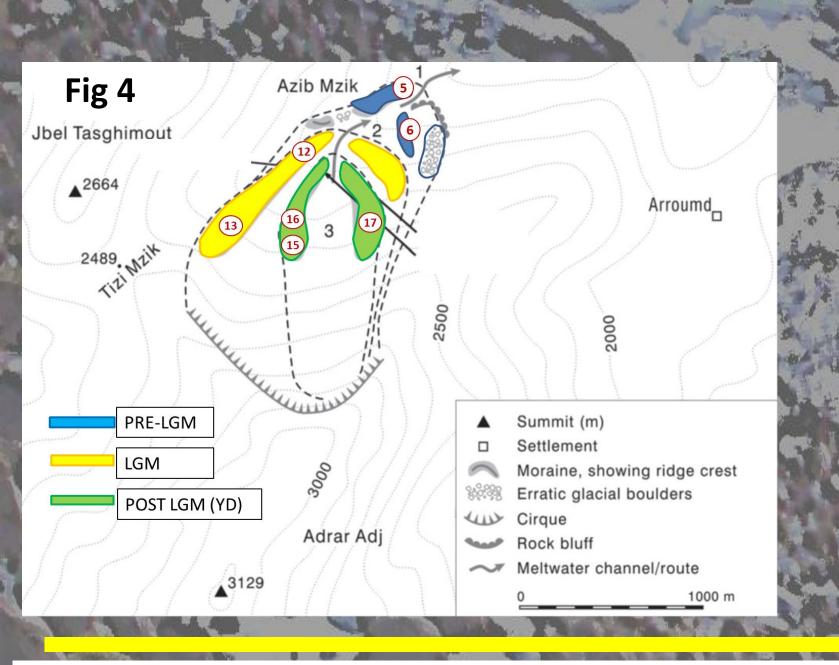
David Fink¹, Philip Hughes² and Cassie Fenton³

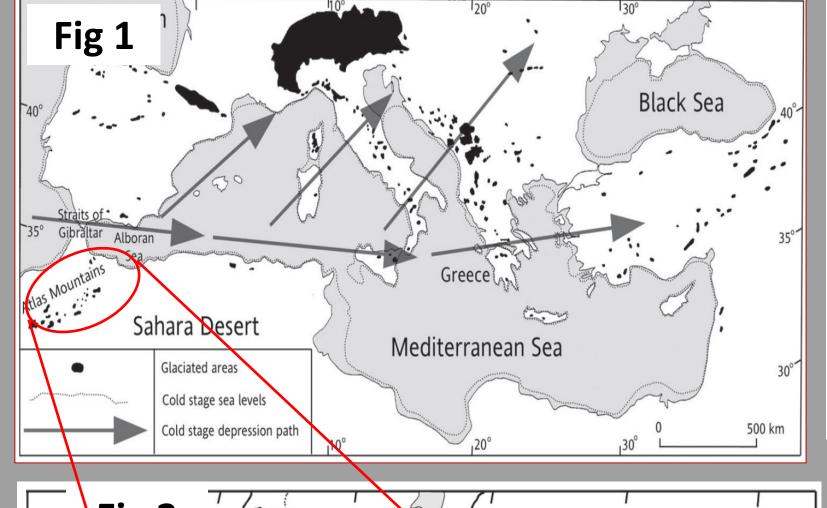
¹ Australian Nuclear Science and Technology Organisation, Sydney Australia, ² School of Environment and Development, University of Manchester, Manchester, UK., ³ Helmholtz-Zentrum Potsdam, D-14473 Potsdam, Germany

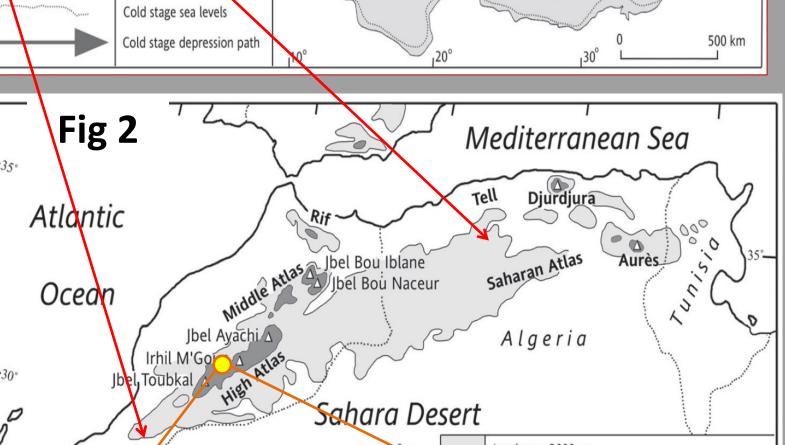
LATE PLEISTOCENE GLACIERS

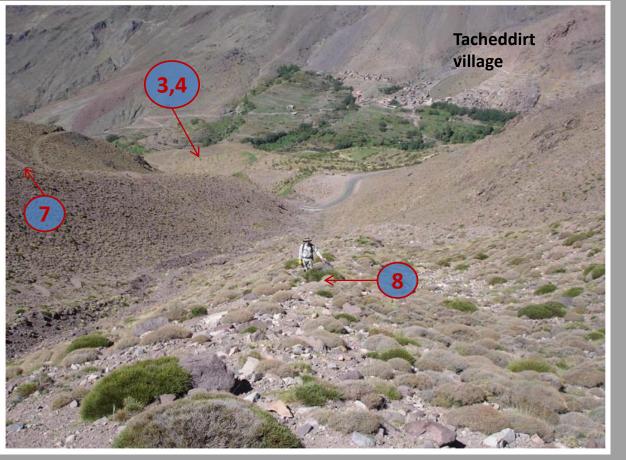
INTRODUCTION:

The Atlas Mountains, Morocco (31.1 N, 7.9 W, Fig 1), display extensive and multiple late Pleistocene glaciations. Their extent is significantly larger than that recognised by previous workers. Glacial geomorphological mapping coupled with ¹⁰Be cosmogenic exposure ages of ~20 erratics from 3 valley systems in the highest peaks of the Atlas Mountains, provide new insights on the history and evolution of the largest desert region on Earth.


RESULTS:

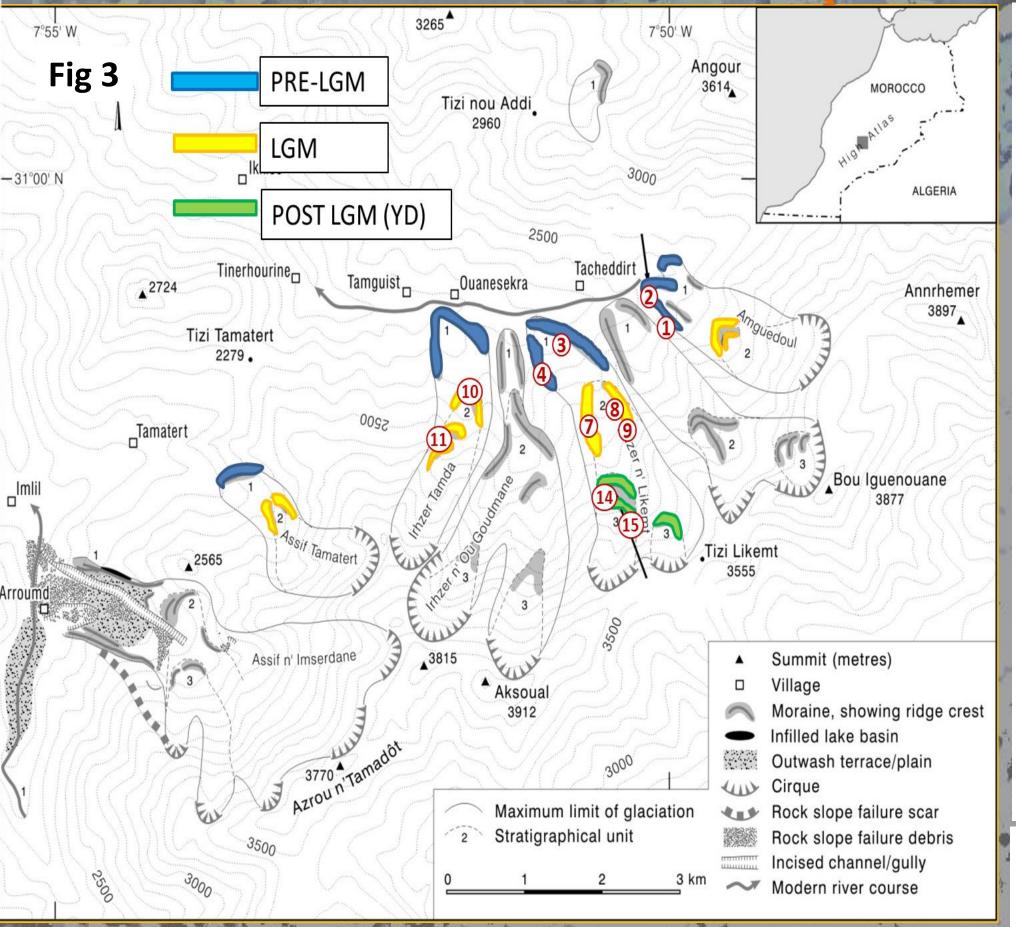

The largest ice field and valley glaciers formed in the Toubkal massif (yellow circle Fig 2). The regions studied are outlet glacial valleys of Mt Aksoual (3912 m) (Fig 3) and northern slopes of Adrar Adj Mt (3129 m) at Azib Mzik (Fig 4). Three distinct phases of glacial advances are evident within the Last Glacial Cycle.


1.Pre-LGM: the oldest moraines occur at the lowest elevations (~2300 m) with 5 ¹⁰Be erratics giving ages ~ 30 to 88 ka (1 outlier)


2.LGM: moraines at intermediate elevations (~2500m) with 5 ages ~15.5 to 24.0 ka (2 outliers) associated to the global LGM (~ 22-20 ka) and Termination-1.

3.Late Younger Dryas: youngest and most elevated moraines (~2900m) with 5 ages peaked from 10.1 to 11.9 ka. Typical sequence (Fig3) varies in elevation range due to strong local topo-climatic controls.

View from Likemt right lateral to Tacheddirt village.



View from below Likemt right lateral to cirque moraine.

DISCUSSION:

The glacial record of the High Atlas reflects moisture supply to the north-western Sahara Desert indicating shifts between arid and pluvial conditions. The low ELA moraine elevations of 2000-2500 m for the MIS 2-4 glacial advances indicates significantly cooler and wetter climates than today. The new evidence on glacial timing and ELAs in the High Atlas has major implications for moisture transfer between North Atlantic depressions and the West African Monsoon during Pleistocene cold stages. This in turn has important bearing on the strengths of meridional vs. zonal circulation at mid-latitudes during pluvial phases.

SAMPLE #	SAMPLE NAME	VALLEY (atoms/g-		error Q) x 1E6	ERR	(m)	(deg)		age (ka)	(ka)	(ka)	AIVIS LAB
Glaci	al Unit 3	pre-LGM										
1	AMEG-1	Ameguedoul	(36CI)						87.3		9.1	SUERC
2	AMEG-2	Ameguedoul	1.91	0.056	2.9%	2480	31.16	0.961	88.1	2.7	8.3	SUERC
3	LIKEMT-9	Irhzer Likemt	0.561	0.019	3.3%	2309	31.15	0.950	28.2	0.9	2.7	ANSTO
4	LIKEMT-10	Irhzer Likemt	0.202	0.009	4.5%	2274	31.15	0.945	10.4	0.5	1.0	ANSTO
5	AM-2	Azib Mzik	0.796	0.029	3.6%	2063	31.13	0.942	48.3	1.8	4.6	SUERC
6	AM-3	Azib Mzik	0.552	0.019	3.5%	2063	31.13	0.884	35.5	1.3	3.4	SUERC
Glaci	al Unit 2	LGM										
7	LIKEMT-5	Irhzer Likemt	0.147	0.005	3.3%	2553	31.14	0.961	6.3	0.2	0.6	ANSTO
8	LIKEMT-7	Irhzer Likemt	0.114	0.008	7.4%	2583	31.14	0.937	4.8	0.4	0.5	ANSTO
9	LIKEMT-8	Irhzer Likemt	0.481	0.018	3.7%	2576	31.14	0.937	21.6	0.8	1.9	ANSTO
10	TAM-2	Irhzer Tamda	0.237	0.008	3.3%	2154	31.15	0.821	15.5	0.5	1.5	SUERC
11	TAM-4	Irhzer Tamda	(36CI)						16.5		1.8	SUERC
12	AM-7	Azib Mzik	0.435	0.015	3.5%	2125	31.13	0.965	24.0	0.9	2.3	SUERC
13	AM-10	Azib Mzik	0.241	0.006	2.7%	2122	31.13	0.711	19.6	0.5	1.3	ANSTO
Glacial Unit 1		YD										
14	LIKEMT-1	Irhzer Likemt	0.352	0.019	5.3%	2940	31.14	0.976	11.7	0.6	1.2	SUERC
15	LIKEMT-2	Irhzer Likemt	0.347	0.013	3.7%	2940	31.14	0.976	11.9	0.5	1.1	ANSTO
16	AM-4	Azib Mzik	0.155	0.008	4.8%	2023	31.13	0.913	10.5	0.5	1.0	SUERC
17	AM-8	Azib Mzik	0.173	0.007	3.8%	2129	31.13	0.941	10.1	0.4	1.0	SUERC
18	AM-9	Azib Mzik	0.192	0.009	4.4%	2079	31.13	0.933	11.5	0.5	1.1	SUERC
Samples were precessed and measured at SUEDC and ANSTO, All 10De expecure ages												

Samples were processed and measured at SUERC and ANSTO. All ¹⁰Be exposure ages based on ¹⁰Be/⁹Be ratios normalised to NIST-SRM-4325 with ¹⁰Be/Be = 27, 900x10⁻¹⁵ and a production rate of 4.60 at/g/y using Stone scaling.

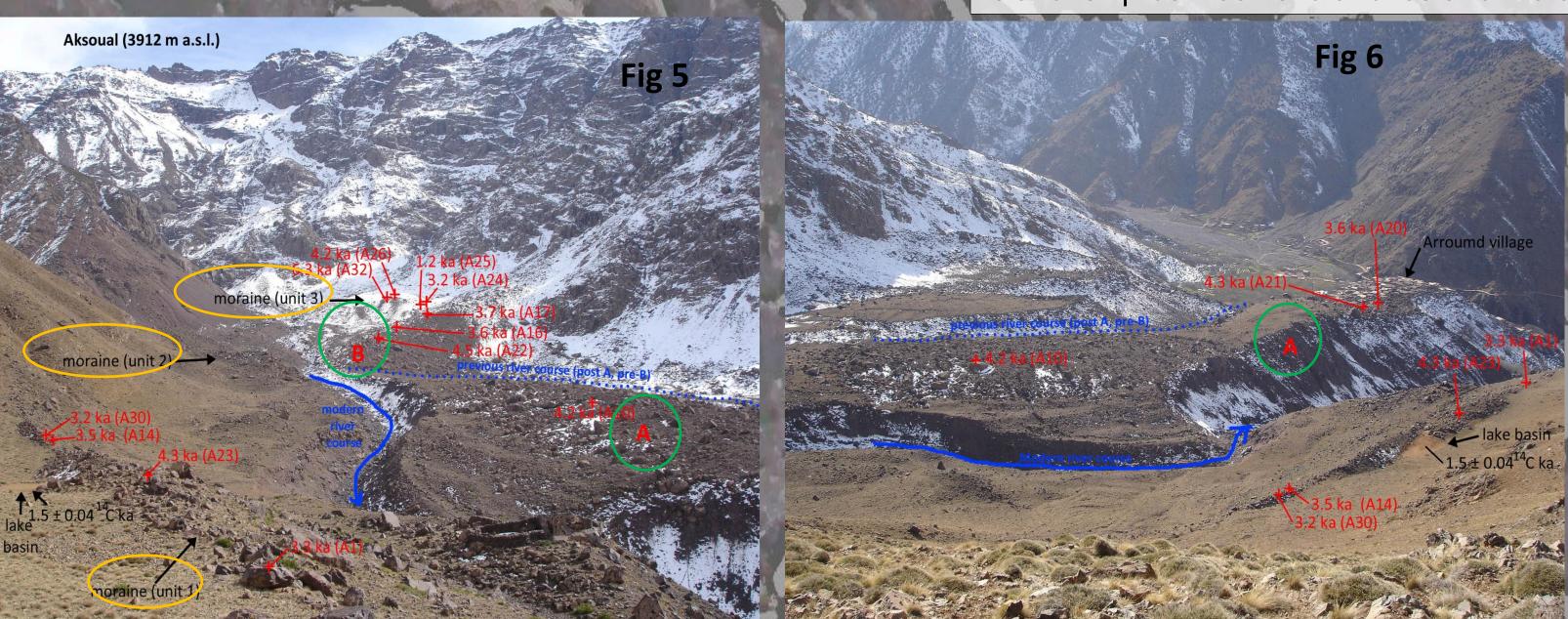
HOLOCENE GLACIERS & ROCK-SLOPE FAILURE

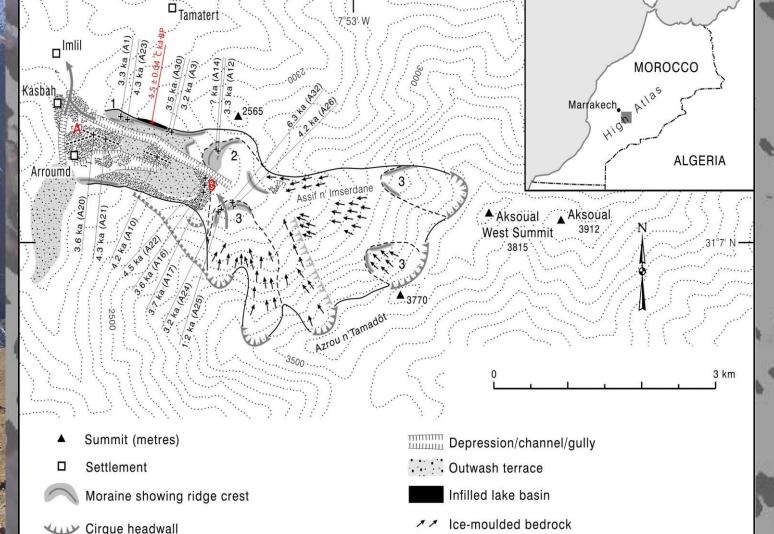
INTRODUCTION:

To the west of Mt Akousal and its Pleistocene glacial record near the village of Arrmoud, geomorphic mapping of n'Imserdane valley has identified massive landslide debris intermixed with glacial moraine ridges. The slope derived rock avalanche debris consists of two lobes — unit A at lower valley elevations (~2100) underlying Arrmoud village (~1700), and a smaller cross valley lobe, unit-B, at ~2300-2400 m. Three apparent glacial units are defined - #1 on the northern flank, #2, adjacent to avalanche unit-B and #3 at ~2500 above avalanche unit-B (Figs 5 & 6).

RESULTS:

Within the analytical age errors per sample (~0.1 to 0.4 ka) and inherent geologic variability per unit, timing of rock wall collapse and glacial advances are coeval. All 7 (of 9) moraine boulder ages and 6 avalanche ages peak between 3.1 to 4.5 ka.




				The same	
		*	Part of the last	AI	& A23
and The same		AR TO			7.
		A-0.04		是可是	
				1	
3 10	No. of the last of			\bar{bar}{se}	asal lake diment ¹⁴ C
				A3	
	A30				
	ASU			A COM	
		是 於 1			
	CO CONTRACTOR		1.46		
	STATE OF THE PARTY	7 10 70 3			
	lacial Unit #1 2 1 to	4 3 ha			
Arrmound G	lacial Unit #1 3.1 to	4.3 Ka	and the same of	-	100000

1000		10Be	10Be		ALI	LAI	sniag	MIII	Error	Error	
(1)	SAMPLE	conc	error	%				exposure	analytical	total	AMS LAB
	#			error				age			
4/4		(atoms/g-0	Q)x(1E6)		(m)	(deg)		(ka)	(ka)	(ka)	
ALC: U	ROCK AV	/ALANCHE	Α								
	A10	0.076	0.004	5.9	2167	31.13	0.974	4.2	0.2	0.4	ANSTO
	A20	0.062	0.004	5.7	2071	31.13	0.980	3.6	0.2	0.4	ANSTO
1	A21	0.073	0.004	5.1	2070	31.13	0.980	4.3	0.2	0.4	ANSTO
	ROCK AV	/ALANCHE	В								
	A16	0.068	0.003	3.7	2222	31.12	0.951	3.6	0.1	0.3	ANSTO
1000	A17	0.072	0.003	4.1	2260	31.12	0.950	3.7	0.2	0.4	ANSTO
100	A22	0.084	0.003	4.1	2217	31.12	0.951	4.5	0.2	0.4	ANSTO
W.	GLACIAL	UNIT 1									
2	A1	0.055	0.003	6.1	2125	31.12	0.973	3.3	0.2	0.3	SUERC
11	A3	0.051	0.006	11.7	2133	31.12	0.928	3.1	0.4	0.5	SUERC
7	A23	0.077	0.005	6.2	2125	31.12	0.969	4.3	0.3	0.5	ANSTO
-	A30	0.063	0.010	15.8	2135	31.13	0.928	3.5	0.6	0.6	ANSTO
	GLACIAL	UNIT 2									
1	A12	(36CI)						3.3		0.5	SUERC
AS	GLACIAL	UNIT 3									
De.	A24	0.066	0.002	3.7	2354	31.12	0.925	3.2	0.1	0.3	ANSTO
	A25	0.026	0.001	5.2	2368	31.12	0.925	1.2	0.1	0.1	ANSTO
2.00	A26	0.086	0.004	5.1	2356	31.12	0.925	4.2	0.2	0.4	ANSTO
W-1	A32	0.128	0.006	4.7	2350	31.12	0.925	6.3	0.3	0.6	ANSTO
06.0											

DISCUSSION:

Glacial units (#1,2,3) show distinct moraine morphology. Moraine ages, ~ 4ka, appear to be unequivocally mid-late Holocene. However to date, Holocene moraines ages are not observed elsewhere in Toubkal. Absence of Pleistocene age on glacial units may be the result of their modification and/or destruction by repetitive rock-wall failure events from over-steepened flanks following major glacial retreat (10-20ka). The most recent avalanche,~4 ka, is likely due to seismic activity (Tizi n'Test fault,1 km distant and a major fault of Toubkal Massif). Either rock-fall events have altered all the glacial record, or specific local parameters enable preservation of Holocene glaciers. The relationship between avalanches and moraine assemblages is complex and the subject of ongoing research.

Rock slope failure scar (approximate)

Rock slope avalanche debris (dashed line: ridge crest)

TITT Major rock ridge (dividing cirque basins)

Meltwater channel/route

