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Abstract 

 

The University of Manchester 

Wan Nur Rahini Aznie Binti Zainudin 

Doctor of Philosophy (PhD) 

Essays on Australian Wholesale Electricity Price Spikes and the Australian Pre-Dispatch 

Process 

September 2013 

 

In the first essay I examine whether the occurrences of the extreme price events display 

any regularities that can be captured using an econometric model. Here I treat these price 

events as point processes and apply Hawkes and Poisson autoregressive models to model 

the dynamics in the intensity of this process. I use load and meteorological information to 

model the time variation in the intensity of the process. The models are applied to data 

from the Australian wholesale electricity market, and a forecasting exercise illustrates both 

the usefulness of these models and their limitations when attempting to forecast the 

occurrence of extreme price events. 

 

In the second essays I explain that in the past doubts have been raised as to whether the 

pre-dispatch process in Australia Electricity Market is able to give market participants and 

market operator good and timely quantity and price information. It is the purpose of the 

second essay to introduce a framework to analyse whether the pre-dispatch process is 

delivering biased predictions of the actual wholesale spot price outcomes. Here I 

investigate the bias by comparing the actual wholesale market spot price outcome to pre-

dispatch sensitivity prices established the day before dispatch and on the day of dispatch. I 

observe a significant bias (mainly indicating that the pre-dispatch process tends to 

underestimate spot price outcomes) and I further establish the seasonality features of the 

bias across seasons and/or trading periods. I also establish changes in bias across the years 

in our sample period (1999 to 2007). In the formal setting of an ordered probit model I 

establish that there are some exogenous variables that are able to explain increased 

probabilities of over- or under-predictions of the spot price. It transpires that 

meteorological data, expected pre-dispatch prices and information on past over- and under-

predictions contribute significantly to explaining variation in the probabilities for over- and 

under-predictions. The results allow me to conjecture that some of the bids and re-bids 

provided by electricity generators are not made in good faith. 

 

Finally, the third essay investigates whether information from this pre-dispatch process can 

be useful when predicting next-day price spikes. In a preliminary analysis I establish the 

effect of pre-dispatch prices on the quantiles of the spot price distribution. A Quantile 

regression approach reveals that higher pre-dispatch prices signal only to a certain extent 

an increased probability of higher spot price outcomes. They also signal a higher 

uncertainty about the resulting spot price outcomes. I further establish whether the 

inclusion of information from the pre-dispatch process can significantly improve the 

predictability of price spikes when these are modelled as a point process (as in the first 

essay). The models used here are Hawkes and Poisson autoregressive models which allow 

for time variation (correlated to exogenous information) in the intensity process that 

governs the occurrence of price spikes. It transpires that the pre-dispatch process of the 

Australian Electricity Market does not provide any information that can be used in a 

systematic manner to help predicting on what days price spikes are more likely to occur.    
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Chapter 1 

 

1. Introduction 

 

1.1. Motivation 

Until the 1990s, the electricity sector in most industrial countries was vertically integrated 

and often in state ownership. This means the electricity had been a regulated natural 

monopoly with a guaranteed rate of return in exchange for an obligation to supply 

electricity to the public. In this setting, the regulators fixed prices as a function of 

generation, transmission and distribution costs. Due to little uncertainty in prices, 

generators could make decisions by only applying standard deterministic valuation tools 

such as discounted cash flow analysis (Heydari & Siddiqui 2010). In recent years, many 

countries have deregulated their electricity sectors with the aim of introducing competition 

in generation and retail activities. One of them is Australia. During the 1990s, the 

Australian electricity market started a gradual deregulation by opening up their electricity 

sectors to competition. By December 1998 a National Electricity Market (NEM) had been 

formed between the regions of New South Wales, Queensland, South Australia and 

Victoria. The electricity grids of these four states were fully connected by February 2001. 

The fifth region, Tasmania joined the NEM by 2005 and operations today are based in five 

interconnected regions (Australian Energy Market Operator 2010).  

 

The transformation from a regulated monopoly to private ownership of generation and 

market liberalisation may result in lower prices and better use of resources (Heydari & 

Siddiqui 2010). For example, in terms of the composition of the supply side, low marginal 

cost of production such as coal-fired generators and hydroelectric production supply 81% 

and 5% of the NEM’s capacity respectively while higher marginal cost of production, gas 

turbines and oil-fired plants supply 12.2% and around 0.2% of the market capacity 

(Australian Energy Market Operator 2010). When deregulation came into place, electricity 

prices in the wholesale market were subject to interaction of supply and demand, which 

now have become highly volatile resulting in unexpected price spikes. These sudden spike 

events may be caused by unexpected increases in temperature, supply or transmission 

shocks. Given that electricity is a necessity commodity for the economy, the general public 

are still insulated from these spikes and pay at a regulated price. As for electricity retailers, 

however, ignoring these spikes event would be costly and results to them incurring huge 
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losses, as they have to purchase electricity on the deregulated wholesale market but sell on 

the regulated retail market.   

 

Wholesale markets for electricity are complex, with electricity demand highly influenced 

by the time of day and weather. The volatility in price is exacerbated by the way 

consumers are usually charged at a fixed retail price, independent of the spot market price 

and hence reducing the effective price elasticity of demand, and the inability to store 

electric power at any significant scale (Anderson et al. 2007). Altogether these factors 

resulted in electricity spot prices that have the following features; seasonality, skewness, 

high and clustering volatility as well as the presence of jumps. In this situation, generators 

reserves play an important role to ensure the stability of the supply and the system operator 

plays a role in balancing the market by dispatching the generators reserves as cost-efficient 

as possible to satisfy the escalating demand.  

 

In the NEM setting, by 12.30pm on the day before dispatch, electricity generators are 

obliged to submit supply schedules for all 48 half hours of the following trading day. These 

supply schedules are then aggregated and matched with demand forecasts to produce 

expected wholesale electricity prices for the next day. Therefore the predicted price is the 

cost of the marginal (most expensive) unit of electricity uses in this matching process. 

 

Within this framework, market participants need to engage in bids and offers in advance of 

real time simply to enable the Australian Energy Market Operator (AEMO) to look ahead 

and ensure physical feasibility of the proposed schedule (Anderson et al. 2007). In order to 

inform AEMO with good and timely quantity and price information (Australian Energy 

Market Operator 2010), they perform a pre-dispatch process. In order to evaluate how 

sensitive the predicted price is with respect to changes in demand, AEMO will repeat the 

matching exercise for different demand quantities (demand forecast +/- 200 MWh) and 

reports the resulting sensitivities of the predicted price outcomes with respect to different 

demand forecast. Generators are allowed to change their bids (re-bidding) after 12.30pm 

on the day before dispatch up until shortly before dispatch. However, any bid or rebid 

made, should reflect the generators “genuine intention to honour” (Australian Energy 

Market Commission, 2013, paragraph 3.8.22A.b) their bid. 

 

In the past doubts have been raised as to whether the pre-dispatch process in NEM is able 

to give market participants and AEMO good and timely quantity and price information. In 
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the Chapter 3 I introduce a framework to analyse whether the pre-dispatch process is 

delivering biased predictions of the actual wholesale market spot price outcome. As I can 

observe in the results of Chapter 3, there are some significant biases in the pre-dispatch 

process, mainly indicating that the predicted prices tend to be lower than the actual spot 

price outcomes. The results from this investigation allow us to conjecture that some of the 

bids and re-bids provided by electricity generators are not made in good faith and it is clear 

that the pre-dispatch prices have clear deficiencies as a price forecast.    

 

The ‘good faith’ requirement was mentioned by the Australia National Electricity Code 

Administrator’s (NECA) in their report published in 2001. In the report, NECA drew 

attention to a number of a very short-term price spikes either directly as a result of 

inefficiencies in the market rules or as a result of individual generators taking advantage of 

those inefficiencies to drive up prices. When a generator has the opportunity to bid higher 

than marginal cost to drive up prices by taking advantage of a poor market design, this 

behaviour is called strategic bidding. NECA concluded some very short-term price spikes 

do not represent a genuine price signal to either the supply side, in terms of the need for 

new investment, or the demand side of the market. In the report, NECA also stated these 

very short-term spikes would be the effects of inappropriate bidding and rebidding 

behaviour. In order to rectify this problem, NECA and the Code Change Panel require 

generators’ bids and rebids to be made in good faith.  

 

Hence, in Chapter 3 I discuss this requirement in full length and how it relates to our 

conjectures that the failure of the generators to comply with the good faith requirement 

means they are practicing inappropriate bidding and rebidding behaviour which causes 

significant biases in the pre-dispatch process. 

 

Since wholesale electricity markets have been deregulated, modelling and forecasting 

wholesale electricity prices has attracted a considerable amount of attention. Most of the 

studies that proposed approaches to model electricity prices focused on modelling the 

trajectory of the spot price or its return across time (Weron 2007). However, studies that 

focus on the price spikes or extraordinary price events are still scarce. Therefore in this 

thesis I focus on one particular aspect of the electricity price distribution, the so called 

price spikes.  
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There is no particular definition of what constitutes a price spike, but for the purpose of 

this thesis I follow the lead of Christensen et al. (2009) who define price spikes as a binary 

variable defined by whether the wholesale price exceeds some price threshold. They found 

evidence of significant persistence in the occurrence of such price spikes. This feature is 

commonly neglected by most traditional price series models since they, if they allow for a 

spike feature, treat these as a memory-less jump process with an intensity which is 

independent of its own history. 

 

More recently, the issue of price spikes has been tackled in a more direct manner by 

defining a binary series that identifies the instances in which the electricity price exceeds a 

certain price threshold and subsequently modelling the dynamics of this series. To the best 

of our knowledge the first study using this approach was Christensen et al. (2009) who 

used a modified Poisson autoregressive (PAR) framework to forecast next day’s price 

spike occurrence. They model and forecast the probability of price spikes (as defined 

through the binary series). In Chapter 2 I tackle the same task using Hawkes models. Both 

approaches essentially allow for the probability of a price spike occurring to vary with 

(weakly) exogenous covariates and to display persistence.  

 

Although I know many of the price spikes are the results of mainly unpredictable event 

(e.g. unexpected generator breakdown), in Chapter 2 I build an econometric models using 

PAR and Hawkes models with the aid of load and meteorological information, in hope to 

find some element of predictability in price spikes. The forecasting exercise illustrates the 

usefulness of these models but perhaps more importantly their limitations when attempting 

to forecast the occurrence of extreme price events. 

 

The pre-dispatch process described above is one element of the NEM architecture that 

aims to increase market transparency and therefore to facilitate the prediction of potential 

price spikes. In our quest to uncover the potential of pre-dispatch information for the spike 

forecasting exercise, in Chapter 4, I initially conduct a preliminary analysis. This consists 

of a careful analysis of correlations and quantile regressions. From the results of this 

analysis I find evidence that pre-dispatch prices are a weak predictor of price outcomes. 

Despite this finding, using the methodology framework set up in Chapter 2, I investigate 

whether information from this pre-dispatch process can be useful when predicting next-day 

price spikes. In the light of our findings in Chapter 3, it is it is possibly not surprising to 

find that the pre-dispatch process of the Australian Electricity Market does not provide any 
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information that can be used in a systematic manner to help predicting on what days price 

spikes are more likely to occur. 

 

1.2. Thesis Structure 

The thesis structure follows the required format by the Manchester Accounting and 

Finance Group, Manchester Business School, at The University of Manchester. The 

structure allows each chapter in the thesis to follow a format suitable for submission and 

publication in peer-reviewed academic journals. Therefore, this thesis is structured based 

on three essays containing original research in chapters 2, 3, and 4. Work presented in 

Chapter 2 had been published in Journal of Energy Market, hence there is great similarity 

of the chapter with the published paper. However, I add further explanations on the figures 

and tables in the chapter where appropriate.    

 

The chapters are self-contained with separate literature reviews, using different dataset and 

have different research objectives. Chapter 2 aims to examine whether the occurrence of 

the spike events display any regularities that can be captured using an econometric model. 

In order to explore the potential lies in the information of pre-dispatch process in 

predicting spike events, in Chapter 3 I introduce a framework to analyse whether the pre-

dispatch process is delivering a good prediction of the actual wholesale spot price 

outcomes. Finally in Chapter 4 I investigate whether information from this pre-dispatch 

process can be useful when predicting spike events.  Chapter 5 concludes. 

 

 

1.3. Summary and Conclusions 

 

This thesis contributes to the emerging literature in three ways: 

 

1. Forecasting price events is a difficult task and neither PAR nor Hawkes models are 

able to predict price events that occurred in isolation. 

 

2. In general the pre-dispatch prices tend to underestimate the actual price outcomes 

of the wholesale spot prices. This allows us to conjecture that some of the bids and 

re-bids provided by generators are not made in good faith as required by the 

National Electricity Rules (Australian Energy Market Commission, 2013, 

paragraph 3.8.22A). 
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3. The pre-dispatch process of the Australian National Electricity Market does not 

provide any information that can be used in a systematic manner to help predicting 

price spikes on the next day. 

 

 

In the empirical chapters I use the term “we” rather than “I”, reflecting that each empirical 

chapter is associated with either a published paper or a working paper co-authored with my 

supervisors: Ralf Becker and Sydney Howell. 
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Chapter 2 

 

2. Modelling electricity price events as point processes 

 

 

 

 

 

ABSTRACT 

 

 

Energy prices are highly volatile and often feature unexpected spikes. It is the aim of this 

chapter to examine whether the occurrence of these extreme price events display any 

regularities that can be captured using an econometric model. Here we treat these price 

events as point processes and apply Hawkes and Poisson autoregressive models to model 

the dynamics in the intensity of this process. We use load and meteorological information 

to model the time variation in the intensity of the process. The models are applied to data 

from the Australian wholesale electricity market, and a forecasting exercise illustrates both 

the usefulness of these models and their limitations when attempting to forecast the 

occurrence of extreme price events. 

 

 

 

Published: joined with Ralf Becker and Adam Clements in: Journal of Energy Markets 

Volume 6/Number 2, Summer 2013 (99–140) 
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2.1. Introduction 

 

Wholesale electricity prices display a number of interesting features. These properties 

include daily, weekly and seasonal cycles, high volatility, mean-reversion and, most 

interestingly, frequent price spikes. The price spikes are the result of a number of factors. 

In the short run demand is largely price-inelastic (Anderson et al. 2007). The electricity 

supply curve, however, is based on increasing marginal production cost. The larger the 

demand for electricity, the more expensive is the marginal unit of electricity. Unlike most 

other commodities, electricity is largely nonstorable (other than through pump-storage 

hydro schemes). These factors, in combination with the requirement that supply and 

demand are matched instantaneously and at all times, explain why significant price 

variations are required to clear the market, resulting in occasional price spikes.  

 

Significant efforts have been made to model the variation in wholesale electricity prices. 

Most of these literatures model the wholesale electricity (spot) price, or its logarithm. 

However, the features of the electricity price series listed above make this a very difficult 

exercise. In this chapter we focus on one particular aspect of the electricity price process: 

the price spikes or extraordinary price events. In the Australian wholesale electricity 

market, for instance, prices for one Megawatt hour (1 MWh) can move very quickly from a 

normal price level of around A$30 to a price of A$10 000. It is the aim of this chapter to 

establish whether the occurrence of price events can be predicted through the time series 

features of the event series itself and/or variation in exogenous variables. To establish an 

appropriate modeling framework, we treat the time-series of (suitably defined) price events 

as a binary series or a point process. 

 

There are only two papers in the literature that adopt this approach: Christensen et al. 

(2012) and Christensen et al. (2009). In the first, Christensen et al. (2009) propose a 

modified Poisson autoregressive (PAR) model to incorporate the historical components of 

the spiking process together with exogenous factors that drive the occurrence and intensity 

of price spikes. The Hawkes (1971) model used in this chapter follows a similar approach 

of modeling price spikes in a binary fashion. The Hawkes model has been applied 

successfully in the context of high-frequency financial econometrics. Both models present 

different technical difficulties and allow for different dynamics in the occurrence of price 

spikes.  
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The objectives of this chapter are 

1. To establish which exogenous variables are relevant to explain variation in the 

intensity of price spikes, 

2. To evaluate the Hawkes model and its merits as compared to the  PAR model 

(Christensen et al. 2009).          

3. To establish a framework in which to compare the forecast performance of these 

models. 

 

This chapter uses data from the Australian National Electricity Market (NEM). This 

market has been operating since mid-1990s and can be considered a mature deregulated 

market for wholesale electricity. The regional markets used for the purpose of this study 

are New South Wales (NSW), Queensland (QLD), Victoria (VIC), and South Australia 

(SA).   

 

The remainder of the chapter is organised as follows. We present a literature review in 

Section 2.2. In Section 2.3, we present the methodology of the univariate Hawkes model as 

it is applied in this chapter, as well as a brief summary of the Poisson autoregressive 

model. The data sets used are presented, together with their descriptive statistics, in Section 

2.4, which also includes a discussion of the covariates that are considered when modeling 

the price event intensities. Section 2.5 presents the estimation results of our chosen models 

and discusses the role of the covariates, while in Section 2.6 the model’s forecast 

performance is discussed. Section 2.7 concludes Chapter 2. 

 

2.2. The Market for Spot Electricity and Literature Review 

 

In the Australian NEM, supply and demand of electricity are matched through a centrally 

coordinated dispatch process. All generators have to bid their supply curves, consisting of 

a maximum of ten price-quantity pairs with a price floor of -A$1000 and a price ceiling of 

A$12 500/MWh (A$10 000/MWh prior to July 1, 2010) before 12.30pm on the day before 

delivery of electricity. The bids placed by generators to sell electricity are then matched 

with the electricity demand. In general the matching occurs such that electricity offered at 

the cheapest prices receives priority in the dispatch process. The dispatch spot price 

represents the cost to supply the last megawatt of electricity to meet demand (Australian 

Energy Market Operator 2010) and is calculated for every half hour. This price is then used 
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to settle all electricity supplied in the half hour and henceforth is called the wholesale spot 

price. 

 

Before discussing the relevant literature, it is important to establish a few stylized facts for 

the Australian NEM wholesale spot price (many of which are replicated in wholesale 

electricity markets in other countries). Figure 2.2-1 displays the weekly profile of median 

spot prices for spring and summer months (September 21 to March 20) and for fall and 

winter months (March 21 to September 20).  A clear weekly and intra-daily pattern can be 

identified, where the latter changes significantly for the different seasons of the year. 

During spring and summer, the highest prices tend to occur during the middle of the day, 

reflecting the increased use of air-conditioners. In fall and winter months, high prices tend 

to occur in the early morning and toward the end of the day as a result of increased 

domestic electricity demand in colder periods. 

 

(INSERT Figure 2.2-1 HERE) 

In Figure 2.2-2 we show the time series of (log) daily average spot prices from 2001 to 

2010 in NSW (the time series of wholesale spot prices for the other regions share the same 

main features). This series displays all the common features of deregulated electricity 

prices, especially the extreme temporary price jumps. It also appears as if there is 

significant temporal dependence in the occurrence of the extreme price events. 

 

The extreme price fluctuations are commonly associated with unplanned generator outages 

or unexpected demand jumps often caused by extreme weather conditions. These abrupt, 

short-lived and generally unanticipated extreme price changes are known as price spikes or 

jumps and have attracted significant attention in the empirical electricity price modelling 

literature (Park et al. 2006; Weron 2009; Weron 2008; Simonsen 2005; Christensen et al. 

2012; Christensen et al. 2009; M. T. Barlow 2002; Jong & Huisman 2002; Lucia & 

Schwartz 2002; Byström 2005; Cartea & Figueroa 2005; Burger, Klar, Müller, et al. 2004).  

 

(INSERT Figure 2.2-2 HERE) 

As we are ultimately interested in the occurrences of these extreme price events we define 

a binary series of price spikes to indicate in which periods the wholesale spot price exceeds 

a certain threshold price (see formal definition in Section 2.3.1). In Figure 2.2-3 we display 

the weekly pattern for the frequency of spot prices exceeding A$100/MWh. It is apparent 

that the general results from Figure 2.2-1 are mirrored in the occurrence of price spikes. In 
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spring and summer months these are more likely to occur in the middle of the day, whereas 

in fall and winter months price spikes are most likely to occur in the early hours of the 

evening. No extreme price events occur during the night. 

 

(INSERT Figure 2.2-3 HERE) 

 

2.2.1. Literature Review 

 

Most papers modeling electricity prices have applied fairly traditional econometric 

techniques, including traditional autoregressive time series models and nonlinear Markov 

switching models, in order to capture the unique features of electricity prices (e.g (Ethier & 

Mount 1998; Huisman & Mahieu 2003; Huisman & De Jong 2003)). A different category 

of approaches has been adapted from the continuous-time diffusion or jump-diffusion 

models often used in financial econometrics (e.g (Deng 2000; Bhanot 2000; Knittel & 

Roberts 2005; Pirrong & Jermakyan 2008; Barone-Adesi & Gigli 2002; Lucia & Schwartz 

2002; M. T. Barlow 2002; Escribano Sáez et al. 2002; and Burger et al., 2008, for a good 

overview of the different approaches)). 

 

However, all of these models operate on the price or log of the price series. When doing so, 

the presence of price spikes constitutes a significant complicating factor and has to be dealt 

with by adding a jump component to the price process (see (Barz & Johnson 1998; Deng 

2000; Deng & Jiang 2005; Huisman & Mahieu 2003; Ethier & Mount 1998)). In doing so 

they regard price jumps as a memory-less process and its intensity as independent of its 

own history.  

 

However, it was established by Christensen et al. (2012) and Christensen et al. (2009) that 

the price spike process contains some significant persistence. In this strand of research they 

concentrate on a binary series of price spikes. In Christensen et al. (2009) a modified PAR 

framework to model price spikes is proposed. Therein the occurrence of a spike is a result 

of the latent arrival and survival of system stresses. Christensen et al. (2012) used an 

autoregressive conditional hazard (ACH) model to treat the conditional intensity of the 

price process as a function of the log duration between previous price spike events. Here 

the approach is to model the durations as an ARMA (p, q) process.   
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In the area of high-frequency finance a related literature has been developing. Financial 

market events such as the occurrence of a transaction or the update of a price quote have 

been successfully modeled as a binary series (or point process) via a time-varying 

intensity-based Hawkes model. Some of the works based on this type of model include the 

autoregressive conditional intensity (ACI) model proposed by Russell (1999) and the 

bivariate ACI model to estimate the arrival of buy and sell trades on a limit order market 

by Hall & Hautsch (2007).  Extensions of the ACI model include the addition of a latent, 

Gaussian autoregressive component to the log intensity by Bauwens & Hautsch (2006). 

Bowsher (2007) proposes an extension of the ACI model by using vector-conditional 

intensity to model the two-way interactions of trades and quote changes in continuous 

time. 

 

2.3. Methodology 

In this section we discuss how price spikes, as a typical feature of deregulated electricity 

prices, can be modelled using a univariate Hawkes point process. The model is also used to 

form predictive probabilities for the potential occurrence of price spikes based on the past 

occurrence of the price events and the values of other exogenous variables. In Section 2.3.2 

we will provide a short introduction to the PAR model, completing the set of models used 

in our forecast evaluation.     

 

2.3.1. Hawkes point process model 

In this chapter, we focus on modelling one particular aspect of the wholesale electricity 

price process: the occurrence of price spikes. Accordingly, let      be the electricity spot 

price for the  th half hour (        ) on the  th day. Here we define the daily series of 

price events as follows: 

    {
                                     

                                  
 (2.3-1) 

where   is a threshold value. Clearly the choice of the threshold is crucial. To enable 

comparison with the work of Christensen et al. (2009), a threshold of A$100/MWh
1
 is 

used.  Under “normal” conditions the spot price fluctuates between A$20 to A$40 per 

MWh, and less than 2% of half-hourly spot prices exceed the threshold of A$100/MWh. In 

what follows, the daily time series of {  }, as defined in (2.3-1), is treated as the dependent 

variable in our analysis. It will also be useful to identify the times at which a price event 

                                                 
1
 For robustness test, we also investigate the impact on the model when different thresholds are used. The 

result is given in Section 2.5.4  
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occurs, with the additional time index {  }          where we assume that   price 

events occurred and    is the time at which the  th price event occurred. Further, we define 

the information set       to consist of all price events up to time     and values for all 

other available exogenous variables   available at time    . 

 

The econometric model presented in this section will model the probability of a price event 

occurring at time  ,  (    |    )    , based on information available at time    . 

The exogenous variables that will later be considered in the modeling of    are the 

unanticipated increase/decrease in electricity load (     ), unusually hot and cold 

temperatures (      and      ), and the number of half-hourly spot prices that exceed 

the threshold (      ). They are further explained in Section 2.4. We will also allow for 

deterministic seasonal variation. 

 

The modelling approach adopted follows that of a self-exciting process, allowing for the 

probability    to be dependent on past event occurrences and on realization of exogenous 

covariates in a way that may cause clusters of events. In particular, we allow the time path 

of    to follow a univariate Hawkes process  

         ∑  (     )

    

 (2.3-2) 

where    is a positive (    ) deterministic function and  (    )    to ensure 

nonnegativity. In the notation of Hawkes processes,    is also called intensity, and for the 

purpose of this chapter we will use the terms “event probability” and “intensity” 

interchangeably
2
. 

 

The intensity    is modeled as the sum of two parts: a predictable or deterministic 

(seasonal) component,  , and a stochastic component, ∑  (     )    , which depends on 

the occurrence of price events (at times     ) that occurred prior to the current time  . We 

will now discuss the specification of the deterministic and stochastic components in turn. 

 

From the initial observation of weekly and annual seasonality in Section 2.2, it appears 

appropriate to allow for some deterministic, seasonal variation in   . Following Lucia & 

Schwartz (2002); Knittel & Roberts (2005); Heydari & Siddiqui (2010) and Becker et al. 

                                                 
2
 Formally, the intensity is defined as the expected number of events in a time interval.  It therefore can 

exceed 1. However, by definition of our series    we have either 0 or 1 event per day. Therefore, 

 (    |    ) = min(  ,1). It will transpire in the empirical application in Section 2.5 that only on very rare 

occasions does     . We shall interpret the intensity as the probability of this event occurring. 
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(2004), we specify    to be the sum of trigonometric functions with frequencies designed 

to allow for a weekly and annual patterns. The trigonometric function is estimated by 

fitting these functions to the binary events series {  } using ordinary least squares. Only 

statistically significant trigonometric functions are retained and incorporated into the 

deterministic components,   , of the Hawkes model
3
. We can express this component as 

            (2.3-3) 

where        is a (     ) vector with the remaining trigonometric terms and   is a 

(     )-parameter vector. This parameter vector will be estimated along with the 

remaining parameters of the Hawkes models described below.  

 

The stochastic component of the intensity,    (in equation (2.3-2)), is defined as follows: 

 

        ∑  (     )

    

 

  (     )       
   (    ) 

(2.3-4) 

 

The intensity process is described by a left-continuous sample path, jumping up by an 

amount    
 in response to the occurrence of a price event at time   . The intensity    then 

decays according to    (    ), until we see another jump in the intensity by      
 as a 

response to the price spike at time     . At any period  , the sum of contributions from past 

price events can introduce persistence into the price events process, as more recent price 

events increase the probability of an event occurring in the next period. 

 

In its basic form, with    
  , the intensity process resembles an autoregressive process in 

which the intensity merely depends on deterministic seasonality and the occurrence of 

previous price spikes. It is, however, plausible to conjecture that the probability of a price 

event will also depend on other (stochastic) covariates. Therefore, Bowsher (2007) 

suggested making the scalar parameter    
 dependent on a set of covariates at time   . We 

consider the (    ) vector    
, which collates the information of    covariates at time,   , 

and specify 

    
   (   

)   (2.3-5) 

    
     

   (2.3-6) 

                                                 
3
 In principle, the selection of the relevant trigonometric terms could be done in the context of the nonlinear 

optimisation of the entire Hawkes model. The latter, however, is a fairly complicated model to optimise, and 

the problem is greatly facilitated by the prior selection of relevant trigonometric terms. 
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where   is a (    ) vector of linear parameters and  ( ) is the standard normal 

cumulative distribution function. Since    
   ,  (   

)  ensures that    
  , which is a 

sufficient condition for the point process to be stationary (see (Ogata 1978)). 

 

In the above specification the influence of covariates is restricted to the times,   , at which 

price events occur. It may be appropriate to let conditioning information play a role outside 

these periods as well. The natural way to achieve this is to let the decay parameter   be a 

function of the conditioning variables as well.  The time-varying decay parameter    is 

then parameterised as 

      (   )  (2.3-7) 

restricting    to be between 0 and 1. The relevant covariates at time   are contained in the 

(    ) vector    and   is the associated (    ) vector of parameters. With this 

parameterization the conditional intensity is reformulated as follows: 

        ∑    
 

    

    ( ∑   

 

    

) (2.3-8) 

The parameter vector   (        )  is estimated by maximising the loglikelihood function 

of the observed price events at times        : 

 

    (       | )

   ∫   

 

 

     ∫ ∑    
    (    )

    

 

 

  

 ∫    (   ∑    

    

    (    ))  ( )
 

 

 

 

(2.3-9) 

where   ( )  is an indicator function that takes a value of 1 if a price event occurred 

during period   and a value of 0 if no price event occurred during period  . 

 

2.3.2. The Poisson autoregressive model 

Christensen et al. (2009) utilizes a PAR model to model the intensity of price events in the 

Australian electricity market. For comparison purposes we will apply this model as well. 

As it turns out, the PAR model will allow for substantially different dynamics of the latent 

intensity process compared with the Hawkes process. We will therefore compare the 

suitability of the two different models for forecasting the price spike process. 
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The full details of the PAR model can be found in Christensen et al. (2009) and in 

Appendix A. Here we will provide an outline of the model’s main components. The model 

is built around the process of a latent variable,      , representing the number of 

stresses in the system. In our example of modeling electricity price spikes, system stresses 

could represent failures of generators or transmission lines, or events that trigger 

unanticipated demands. While this variable is latent, it is linked to the observable variable 

of price events as follows: 

    {
          
          

 (2.3-10) 

Hence, a price event is the result of a minimum of one system stress occurring. What 

remains is the description of the arrival and departure processes (as any existing stress 

factor is allowed to remain for several periods) of these system stresses. The arrival 

process for a system stress is modeled as an independent Bernoulli process, and the 

departure as a binomial thinning process. Both the probability of arrival and the probability 

of departure can be modeled as either fixed probabilities or as functions of exogenous 

variables. In Appendix A we provide details of the somewhat involved recursive 

calculations that are needed to obtain a likelihood function, which is then optimized to 

obtain maximum likelihood parameter estimates. 

 

2.4. Data of Australian National Electricity Market 

During the 1990s, the Australian electricity market started a gradual deregulation by 

opening up their electricity sectors to competition. By December 1998 a National 

Electricity Market (NEM) had been formed between the states of New South Wales, 

Queensland, South Australia and Victoria. The electricity grids of these four states were 

fully connected by February 2001. According to Christensen et al. (2012), the electricity 

price data exhibit significant differences before and after the full interconnection, and 

therefore it seems reasonable to let the investigation period begin on March 1, 2001. The 

data set is then split into two periods. The estimation period begins from March 1, 2001 

and ends on July 31, 2010, and the forecast period begins on August 1, 2010 and ends July 

31, 2012. 

The available data is half-hourly electricity spot prices, system load
4
 and daily maximum 

and minimum temperatures for each state
5
.  

(INSERT Table 2.4-1 HERE) 

                                                 
4
 This data is available for download from the Australian Electricity Market Operator (AEMO) website: 

http://www.aemo.com.au/data/price_demand.html. 
5
 Temperature data was obtained from the Australian Government Bureau of Meteorology (URL: 

www.bom.gov.au). Temperatures were measured in the respective state capitals. 
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The descriptive statistics for the estimation sample in Table 2.4-1 reveal that electricity 

spot prices in all regions have high levels of excess kurtosis and are heavily skewed to the 

right. These are common observations for deregulated electricity prices (Escribano Sáez et 

al. 2002).  It is, of course, the thick right-hand tail that is associated with price events as 

defined in this chapter (ie, days on which the price exceeds A$100/MWh for at least one 

half-hour period). The last row in Table 2.4-1 indicates that price spikes occur on a 

significant number of days. 

 

We observe the daily average spot prices in Victoria seem to have highest skewness and 

kurtosis compared to other regions. According to the State of the Energy Market report 

published by Australian Energy Regulator (AER) in 2011, the baseload coal power plant 

supplies more than 60% of New South Wales and Queensland demand capacity and around 

56% of Victoria demand capacity. This means higher cost power plant such as gas fired 

generation is used to satisfy a larger proportion of demand in Victoria. Given the convexity 

of the electricity supply curve and almost perfectly inelastic electricity demand curve, 

when gas fired generation is the marginal generator even a small increase in demand would 

have caused a large price spikes. This could explain the high skewness and kurtosis in 

Victoria’s daily average spot prices compared to other regions.    

 

While in South Australia, their daily average spot prices produce highest standard 

deviation and proportion of days (17.17%) with price spikes. These price series come 

second after Victoria being second highest in skewness and kurtosis. This is likely due to 

the fact that South Australia relies heavily on peaking gas fired generation and much less 

on baseload coal power plants (supplies only 20% of South Australia demand capacity) 

when compared to the other regions.    

 

Any reasonable forecasting model should take advantage of potential exogenous variables 

that may be related to the occurrence of price events. As the spot price is determined by the 

interactions between electricity supply and demand, variables that determine these are our 

prime candidates for potential covariates.  

 

2.4.1. Electricity load 

It can be seen in Figure 2.4-1 that the daily load series behaves in a very regular way. We 

can clearly discern an overall trend, seasonal fluctuations (with load being generally 

highest in winter and intermediate peaks for the summer period) and a weekly seasonal 
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pattern
6
. Furthermore, there is a vast literature on load forecasting (see Weron (2007) for 

an overview), and many regulators and market participants will have their own 

sophisticated, proprietary load forecasting model. These models will go well beyond 

modeling seasonal regularities and use information that is very specific to the upcoming 

day. For the purpose of modeling the probability of a price event occurring at time   it is 

important to be precise about the load information available at time     that should be 

utilized in such a model. We conjecture that it would be the predicted load for day   that 

exceeds the normally expected load at that time of the year. We are therefore required to 

obtain both load forecasts (at day     for day  ) and a normally expected load. 

 

(INSERT Figure 2.4-1 HERE) 

The normally expected load series,   
 , is constructed as a weighted average of the previous 

seven days of load,            . The weights in this calculation are specific for each day 

of the week and are optimized to minimise the in-sample fit of this series. Unfortunately, a 

series of load forecasts is unavailable at this stage. We therefore use the actual realised 

load series,   , making the assumption that the available proprietary load-forecasting 

models would produce fairly accurate forecasts of these
7
. 

 

In short we calculate 

   ̃         
  (2.4-1) 

As our very simple model that calculates   
  is likely to miss out on some annual 

seasonality,   ̃  is then deseasonalized from annual seasonality by applying the rolling 

volatility technique proposed by Weron (2007), resulting in      . From Figure 2.4-2 it is 

clear that the deseasonalized time series,      , has little apparent seasonality and/or trend, 

making it a plausible candidate to capture the forecast electricity demand that exceeds the 

demand we would usually expect for that day of the week at that particular time of the 

year. This will be the load series used to forecast the intensity at time  . 

 

(INSERT Figure 2.4-2 HERE) 

 

                                                 
6
 The high frequency fluctuations in Figure 2.4-1 reflect that the electricity demand on weekends is 

significantly reduced. 
7
 Admittedly, this is an unattainable (at time    ) proxy to the preferred series of unseasonal load 

predictions. The results here could be interpreted as the maximum attainable forecast performance (in the 

context of the relevant model) if we had extremely good load forecasts available. A similar argument can be 

made for the temperature series in the next subsection. 
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2.4.2. Maximum and minimum daily temperature 

A significant amount of variation in system load is related to variation in the prevailing 

temperature. For instance, in winter, colder days trigger a higher electricity demand 

through additional heating needs. Equally, very hot days in summer increase the demand 

for electricity through additional use of air-conditioning. We would therefore expect to 

find a close (although nonlinear) relation between temperature and load. 

 

A significant part of that temperature variation is predictable, in particular, the general 

seasonal pattern. It is expected that in general the generator’s bidding pattern allows for 

these variations and that price spikes will be the result of unexpected or unseasonal 

temperature extremes. 

 

The maximum,       and minimum,      , temperatures series in this chapter are 

designed to capture such unexpected and unseasonal hot days (in the warm seasons of the 

year) and extremely cold days (in the cold season of the year), respectively. Using the 

      series as an example, we therefore consider the absolute difference of the observed 

maximum daily temperature,      
   , from the seasonally expected maximum temperature, 

     
 . The      

  series is obtained by fitting a seasonal pattern of maximum daily 

temperatures, modeled by trigonometric functions
8
. As an unseasonably warm winter day 

is unlikely to have the same impact on the probability of a price spike as a very hot 

summer day, we want to eliminate the former from the       series. This is achieved by 

applying the following definition: 

 

     

 {
|     

          
 |

 
   
         

         
           

   ̅   

         
 

(2.4-2) 

where  ̅    is the average of      
   series. The same considerations are applied to      , 

ensuring that this series captures unseasonably cold days in the winter season only. As a 

result of this operation, we do not expect these series to display any significant (linear) 

correlation with the system load across the entire sample. 

 

As for the load series it is important to carefully consider the timing of the variables to be 

used for forecasting the intensity   . The relevant temperatures will be those on day  . 

These are, however, not available on day     and are as such not useful for building a 

                                                 
8
 We use the same approach to fitting trigonometric functions as that described in Section 2.3.1. Details are 

available upon request. 
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forecast model for intensity   . In practice we would want a temperature forecast for day   

available at day    . No such series are easily available as a long time series and in the 

context of this chapter we shall assume that very precise and unbiased temperature 

forecasts will be available at time    . We therefore use       and       in our 

forecast model for intensity   . 

 

2.4.3. Count 

The fourth covariate used in our models is the        variable. It represents the number of 

half-hourly spot prices,     , that exceed the threshold,   (i.e.          ) on day t. The 

       variable is used as a proxy for the number of price spikes during a day and it may 

well contain valuable information. A high number of such threshold exceedences in a 

particular day might indicate the presence of a more severe system stress that cannot be 

resolved quickly. This may well indicate an increased probability for another price event 

during the following day. 

 

2.4.4. Weekdays 

In Section 2.3.1, we argued that the baseline intensity (the probability of a price event 

occurring) of the Hawkes model may well depend on a deterministic variable such as a 

weekend / no-weekend dummy variable (through a trigonometric series with an 

appropriately chosen frequency). However, the deterministic variable may affect the 

intensity not only through different baseline intensities but perhaps through a time-varying 

intensity decay rate,   . Appropriately defined dummy variables will therefore be 

considered in the estimation process.   

 

(INSERT Table 2.4-2 HERE) 

In Table 2.4-2 we report summary statistics and a correlation matrix for these variables in 

NSW (information for other regions in Table 2.4-3, Table 2.4-4, and Table 2.4-5). It is 

apparent that the correlations between these variables are at most moderate, justifying their 

separate consideration as explanatory variables in our intensity models. 

 

(INSERT Table 2.4-3 TO Table 2.4-5 HERE) 

 

We realise that none of these exogenous variables are incorporating information from the 

electricity supply. Ideally, we would like to use data on reserve margin forecast for this 

purpose (Chen & Bunn 2010; Bunn et al. 2012). However, unlike the UK electricity 
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market where the system operator produces forecasts of the available reserve margin for 

each half-hourly trading period, we cannot find such data available from AEMO. 

Augmenting the conditioning covariates with information on drivers of the reserve margins 

is one of the extensions that we would want to incorporate in the future works on this 

chapter.  

 

2.5. Estimation 

The Hawkes model specifications used in this chapter are the seasonal Hawkes with time-

varying    (and constant  ), which we denote by HAWa, and the seasonal Hawkes with 

time-varying    and   , which we denote by HAWab, where their parameters are defined 

in equation (2.3-5) and (2.3-7). These parameters are estimated by maximising the 

loglikelihood function in equation (2.3-9), while the standard errors of the parameters are 

computed using the typical robust sandwich estimator for standard errors
9
. These models 

are called the seasonal Hawkes models, as they both allow the baseline intensity to vary 

with deterministic functions as described in equation (2.3-3). Further, we will apply the 

PAR model as specified in Section 2.3.2 and Appendix A.  

 

In the remainder of this section we will report the estimation results of the models (Section 

2.5.1 – Section 2.5.3). This is followed by a brief discussion of a small robustness test in 

Section 2.5.4. 

 

 

2.5.1. Hawkes with time-varying   

This is the most basic Hawkes model for which we report results. The intensity process is 

represented by 

   
            ∑    

 

    

   (    ) (2.5-1) 

where “sea” and “tva” indicate that the intensity is seasonally adjusted and allows for a 

time-varying  . 

 

We have considered more basic model specifications, restricting   and   to be time-

invariant. However, these restrictions are comfortably rejected by likelihood ratio tests and 

are therefore not considered here
10

.  

                                                 
9
 We are grateful to Micheal Rockinger for providing a MATLAB code to estimate the standard errors.    

10
 Results are available upon request from the authors. 
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One of the difficult aspects of empirical modeling is determining an appropriate estimation 

period. In the absence of structural breaks we would prefer to estimate on as long a sample 

as possible. However, if there are structural breaks in the sample period, then a shorter 

estimation may be advisable (see Pesaran & Timmermann (2007) for a detailed discussion 

on the issue of optimal estimation window choice). Here we apply a somewhat simplified 

approach. We split the estimation period (March 1, 2001 to July 31, 2010) into three sub-

periods (March 1, 2001 to July 31, 2004; August 1, 2004 to July 31, 2007; August 1, 2007 

to July 31, 2010). We then estimate the model on all these periods and test the null 

hypothesis (no structural breaks) with a likelihood ratio (LR) test. This null hypothesis is 

rejected at all standard significant levels. Therefore, we choose to estimate the models on a 

shorter subperiod beginning with August 1, 2007 to July 31, 2010 for the first forecast.  

 

The explanatory variables used to explain variation in    
 for equation (2.5-1) are the load 

(      
) and temperature variables (      

 and       
) discussed in Sections 2.4.1 and 

2.4.2 as well as the number of half-hourly periods that the wholesale spot price exceeded 

the price threshold (       ; see Section 2.4.3). 

 

The important feature of this model is that the increase in intensity following a price event 

can vary with the conditions that prevailed on the day,   , of the price event. The 

occurrences of a price event therefore increase the intensity for future events, resulting in 

event “clustering”, which is an obvious feature of our electricity price data (Figure 2.2-2). 

If    
 is a constant parameter, each price event carries the same effect on future intensity. 

However, since    
 is determined by a set of covariates, each price event contributes 

differently (depending on the value of covariates at time of the event,   ) to future intensity, 

  . Larger values of    
 result in larger contributions to the intensity of future price events. 

 

(INSERT Figure 2.5-1 HERE) 

This is illustrated in Figure 2.5-1, showing how the contribution of an individual price 

event to the probability of future price events decreases over time. In this example the 

contribution decreases with a constant rate of decay,  , but different initial contributions 

   
 in events 1 - 3.  

 

The result in Table 2.5-1 shows how coefficients of explanatory variables in    
 determine 

the relative importance of particular price events toward the probability of future events. 
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The coefficients to the load (      
) variable are negative and significant in NSW and 

QLD and significantly positive in VIC. This inconsistent result is somewhat difficult to 

explain and may well be due to the fact that the decay is restricted to be constant and the 

model could be misspecified. We therefore suspect that the inconsistency of the estimation 

results for the load variable is due to this misspecification. Indeed, once we relax this 

restriction in the Hawkes model with time-varying beta, the coefficient of load variable is 

consistently negative and significant for all of the regions (refer to Table 2.5-2). 

  

The variable tracking the number of price spikes during a day (       ) is estimated 

consistently positive and significant in QLD and VIC, and thus increases probability of 

future price events through an increase in    
. The coefficients of unpredicted maximum, 

      
 and minimum,       

, temperatures variables are negative and highly significant 

in all regions except in SA. This means both of these variables have a mainly negative 

effect on    
. Therefore, price events that occurred due to extreme and unpredicted 

temperatures cause (ceteris paribus) a smaller increase in the intensity for future price 

events. This result can be interpreted in the following way. Very extreme temperatures 

(high values for       
 and       

) are likely to cause quicker (and possibly more 

radical) adjustments to the supply schedule such that the next periods are less likely to 

exhibit price events.  

 

(INSERT Table 2.5-1 HERE)  

(INSERT Figure 2.5-2 HERE) 

Figure 2.5-2 displays the conditional intensities,   
       

 against the time-series of price 

events,   , for all the regions. By definition, the price events (  ) series equal to 0 if there 

is no event on day,   or 1 if an event occurred, while the conditional intensities series are 

the probability of an event occurring on day  . The figure illustrates how repeated price 

events trigger a sustained rise in the intensity, which only decays to the baseline level 

during a sustained absence of price spikes. Clearly, the seasonality in baseline intensity is 

dominated by the autoregressive feature of the intensity series. These results are 

qualitatively similar across all four states.   

 

2.5.2. Hawkes with time-varying   and    

One limiting feature of the model in the previous subsection is that the influence of 

covariates is restricted to the event times   , as the coefficient    
 is only relevant on the 
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occasion of a price event. By relaxing the assumption of a constant decay parameter,  , it 

is possible to introduce the influence of covariates in any period  . The seasonal Hawkes, 

time-varying   and   model allows for the initial intensity impact of a price event,   and 

the decay parameter,  , to be time-varying and to be related to covariates. The intensity 

process is then represented by 

   
             ∑    

 

    

    ( ∑   

 

    

) (2.5-2) 

where “tvab” indicates that   and   are allowed to vary through time. 

 

Figure 2.5-3 illustrates the effect of changing betas on the contribution of past events to the 

intensity    

 

(INSERT Figure 2.5-3 HERE) 

The explanatory variables contributing to the initial contribution,    
 and time-varying 

decay parameter,    in equation (2.5-2) are as defined in Section 2.5.1 but with the 

addition of a weekend / no-weekend dummy variable in the decay parameter,   . 

 

The result in Table 2.5-2 shows that most of the variables in    
 give consistent results with 

those in the seasonal Hawkes (HAWa) model but now for a consistently negative 

coefficient for the load variable. For the time-varying decay parameter,   , the coefficient 

of electricity load,      , and the number of price spikes in a day,        are negative for 

most of the regions, while the unpredicted minimum temperature,      , and maximum 

temperature,      , are mainly positive, expect for SA. To recall, Figure 2.5-3 illustrates 

the intensity decays at slower rate with lower value of   . Therefore, negative coefficients 

from       and        decrease the contribution to   , resulting in the intensity decaying 

at a slower rate. The intensity that reverts slowly carries longer memory, and thus increases 

probability of future price events. The unexpected increase in load and frequently price 

spikes occurrences within 48 half hours indicates the possible presence of a more severe 

system stress, which cannot be resolved quickly.  

 

(INSERT Table 2.5-2 HERE) 

As discussed in relation to the previous model, larger unseasonal and unpredicted 

temperatures have a smaller impact on future intensity, and this is confirmed by increased 

intensity decay. The           dummy variable proves not to be statistically significant. 
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(INSERT Figure 2.5-4 HERE) 

Figure 2.5-4 displays the conditional   
        

against the time-series of price events,    for 

all regions. The seasonal Hawkes (HAWab) model is still able to produce a sustained rise 

in the intensity after episodes of price events, but once the assumption of a constant decay 

parameter   is relaxed, the intensity tends to rise higher and decays at different rates 

depending on the effects of the explanatory variables on the time-varying decay parameter, 

  . When performing LR tests for the validity of the restriction that all the coefficients to 

the explanatory variables in the decay parameter are equal to zero, this restriction is 

comfortable rejected at any standard significance level
11

.  

 

2.5.3. PAR 

The third model implemented is the PAR model. The covariates used to explain the time 

variation in arrival and survival of system stresses,    
  and    

  in the Christensen et al. 

(2009) modified PAR model are the same set of covariates used in the Hawkes models, 

excluding the        variable
12

. In contrast with Christensen et al. (2009), we are using 

unseasonable load,      , and unpredicted maximum,       
, and minimum,       

, 

temperatures as covariates in arrival and survival of system stresses,    
  and    

 . We argue 

that one of the factors that influences system stresses is unexpected or unseasonable 

variations in these variables. Recall that the variables in     
  are those that control the 

probability of a new event occurring in period  , and the role of the variables in    
  is to 

set the probability of an existing system stress to disappear in period  . 

 

The result in Table 2.5-3 shows the load (     ) and unpredicted maximum and minimum 

temperatures (      and      ) variables of the arrival probability,    remain significant 

in most of the regions with positive coefficient. This suggests the unanticipated increase in 

electricity load and temperature motivate system stresses to happen. However, other more 

applicable explanatory variables are needed to explain variation in the survival probability, 

  , as all the chosen covariates are insignificant.  

 

(INSERT Table 2.5-3 HERE) 

(INSERT Figure 2.5-5 HERE) 

                                                 
11

 For brevity, these results are not reported but are available upon request. 
12

 Including the        variable into the PAR model prevented the optimization from obtaining a global 

maximum.  



35 

 

Figure 2.5-5 shows the conditional intensities of PAR model,   , are more volatile than 

those of both of the Hawkes models. It delivers higher intensities but reverts very quickly 

(if not instantaneously) to a low level after prior events. Since the arrival,   , and survival, 

  , probabilities are conditioned on any time   and determined by a set of covariates, the 

intensity of the PAR model,   , shows more variation during times without price events  

although its persistency would not survive once price events are over.      

 

In Figure 2.5-6 we compare the intensities for each of the models.  

 

(INSERT Figure 2.5-6 HERE) 

All three models are able to produce increasing intensity after a series of price events but in 

some periods the PAR model delivers higher intensity. Although the PAR model produces 

faster intensity jumps and decays, the intensity of Hawkes models has stronger persistency 

even after the price events end. One of the reasons is the arrival,   , and survival,   , 

probabilities of system stresses are conditioned on any time period,  . In the Hawkes 

models, however, the scale parameter,    
, is conditioned at all times on all previous price 

events. During nonprice events or benign periods the intensity of Hawkes models show 

less variation compared to the PAR model. The baseline of the Hawkes models only reflect 

the deterministic, seasonal component,   , while the baseline of the PAR model is 

conditioned on the probability of arrival and survival of system stresses.  

 

As the PAR and Hawkes models allow for such different intensity dynamics (when 

estimated on the same data set) this demonstrates that there is a place for both types of 

models. In other words, one type of model may be better suited for one data set, while the 

other will perform better on another data set. In Section 2.6 we will evaluate which of the 

models is better suited for forecasting price events in the context of our data set. 

 

 

2.5.4. Effects of different threshold levels 

In this section we investigate the impact on the model when a different threshold of price 

exceedance is used. The latest research by Christensen et al. (2012) used an alternative 

threshold of A$300/MWh to define price events. It is equivalent to the strike price of some 

derivative products in the NEM. Similarly, the seasonal Hawkes with time-varying    (and 

constant  ) (HAWa) is re-estimated using a threshold of A$300/MWh instead of 

A$100/MWh. Figure 2.5-7 displays the events and the estimated intensity for the HAWa 
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model applied to the event series based on the two different price thresholds. It is obvious 

from this figure that the series based on the A$300/MWh threshold has much less structure 

(in particular seasonality), although some pattern of persistence remains. Apparently, these 

are series with very different characteristics and in that sense models with different 

thresholds are difficult to compare. It will be an interesting line of future research to 

establish how the characteristics of the event series change as the threshold increases. 

 

(INSERT Figure 2.5-7 HERE) 

 

2.6. Forecasting 

The practical value of any model is usually determined by its ability to give prior warning 

of future price events. In this section, the forecast performances of the models described in 

Section 2.5 are compared. One-day-ahead intensity forecasts are produced for all models. 

Additionally, the parameters used for forecasting purposes are re-estimated every thirty 

days with estimation windows of constant size.  

 

(INSERT Figure 2.6-1 HERE) 

The one-day-ahead forecast intensities for all models (using NSW as an example) are 

demonstrated in Figure 2.6-1. The forecast intensities of HAWab and PAR models deliver 

higher and decay faster after episodes of price events than the HAWa model. The forecast 

intensities by both Hawkes models give a genuine nonprice-event signal during benign 

periods. But the forecast intensity of the PAR model reacts faster once price events have 

happened, even though it also decays much faster once the price events are over. However, 

there are periods when only one price event occurs in isolation, and none of the models 

delivers high forecast intensity for that day. This seems to indicate that, in the main, 

isolated price events cannot be anticipated. Similar features of forecast intensities are 

observed in other regions (Figure 2.6-2, Figure 2.6-3 and Figure 2.6-4).  

 

(INSERT Figure 2.6-2 TO Figure 2.6-4 HERE) 

Following Christensen et al. (2012), the forecast performance of all three models are 

compared against a “naïve” model. The naïve model predicts that spikes that occurred 

during weekdays and weekends persist on the next day only if next day is a weekday. 

Since there are no universally superior measures of forecast accuracy, it is informative to 

evaluate the forecast performance in different ways. If all these measures were to point to 
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one superior model, we would have a more robust result on the model forecasting 

performance. 

 

It would be most useful to implement either a derivatives trading or a hedging strategy 

based on the model’s prediction. A realistic implementation of any such exercise is 

hindered by the following two aspects. First, most exchange traded-energy derivatives 

(certainly in Australia) are based on continuous price outcomes rather than a binary event 

series. Our modelling of a binary series therefore provides insufficient information to fully 

value any such derivatives. For hedging strategies we would have to devise hedging 

strategies for the continuous price process on the basis of the binary event predictions. This 

can be done in many different ways
13

 and results could not be generalised beyond the 

particular implementation. Second, the exchange-traded derivatives market is very thin and 

this makes it difficult to use its prices for a comprehensive pricing comparison (even in the 

context of modeling a continuous price process).  

 

The first class of feasible forecast evaluations uses the intensity measure as a predictor to 

the binary event series. The forecast error (     |    for Hawkes models and      |    

for the PAR model) are summarised using different forecasting measurements, such as 

mean absolute error (MAE), root mean square error (RMSE) and the asymmetric loss score 

(Asym) (see for example, Rudebusch & Williams (2009) and Christensen et al. (2009)). 

 

Based on MAE and asymmetric loss score measurement in Table 2.6-1, the forecast 

intensity from the naïve model consistently outperforms the forecasts of other models 

when evaluated by the MAE and the “Asym” loss functions while the RMSE tends to 

favour the HAWab model.  

 

Comparing the outcome of our event variable with the intensity forecast as done above is 

somewhat limiting and may not be representative of the way in which these models can be 

used in practice. Users are likely to look at the forecast intensity and then judge whether 

the signaled probability of a price event in the next period is significant enough to trigger 

some action, such as an increase in a hedge ratio. Consider that if the forecast intensity 

exceeds a certain threshold value, then the user judges that there is a substantial enough 

probability for an event happening such that they engage in such action. We say that in that 

                                                 
13

 See Christensen et al. (2012) for one example and also a discussion of the limitations of their approach. 
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case the user “predicted” an event. Such a prediction can then turn out to be correct (if an 

events occurs) or false. 

 

The use of the term “predicted” needs to be clarified here. This seems to suggest that the 

user would predict an event if the intensity exceeds a value of 0.5. This is not necessarily 

the case, as a user may think that even a probability of (say) 30% of an event occurring is 

sufficiently large to trigger some sort of action. In fact, the value of this trigger intensity is 

crucial. What should it be? In practice this will depend on how costly it is to miss an event 

(eg, being exposed to a price hike) compared with the cost of making a false event 

prediction/alarm (eg, cost of hedging when in hindsight it turned out to be unnecessary).  

 

(INSERT Table 2.6-1 HERE) 

Therefore, our second forecast-evaluation measure will be based on evaluating the 

frequency of false alarms and missed events (see also Christensen et al. (2012)). In 

particular, we introduce a forecast failure statistic that is defined as  

 forecast failure =               +  (               ) (2.6-1) 

where the number of false alarms is defined as               , and the number missed 

events as                 . We also introduce a scaling factor,  . This scaling factor 

reflects the relative cost of missed events as opposed to false alarms. A value of     

means that missed events are five times more costly than false alarms. Different users will 

have different views on the value of  , and in this chapter we will not take a view on this 

value. However, it is important, as it will have a major impact on the trigger intensity that 

will induce a user to take, say, additional hedging action. Ceteris paribus, the larger the 

value   the smaller will be the trigger intensity. 

 

The approach taken here is, for each model, to find that value for the trigger intensity that 

minimises the forecast failure statistic and to use this value to establish whether or not the 

predicted intensity of a particular model predicts an event. This is done for a range of 

values of   (         ). For     this implies that we find the trigger intensity (for 

each model) that minimizes the total number of missed events and false alarms for any 

model. 

 

Based on this, Figure 2.6-5 to Figure 2.6-10 report each model’s number of missed events 

and false alarms as a function of    as well as the respective numbers for the naïve model. 

The number of missed events and false alarms depends on the trigger intensity and 
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therefore varies with the value of the trigger intensity and hence with  . Generally, larger   

will lead to a lower trigger intensity and hence to more false alarms and fewer missed 

events.   

 

A number of interesting findings transpire from this exercise. In all states except for SA, it 

appears feasible to reduce the number of missed events below that produced by the naïve 

model. However, this can only happen at the expense of producing more false alarms. In 

the case of NSW (Figure 2.6-5) and QLD (Figure 2.6-6), however, only the Hawkes 

models manage to produce a smaller number of missed events (for sufficiently large values 

of  ).  

 

(INSERT Figure 2.6-5 to Figure 2.6-10 HERE) 

For both these states the PAR model is unambiguously worse than the naïve model for 

large   (greater than 5 in NSW and greater than 2 in QLD) as it produces both more missed 

events and more false alarms. For SA (Figure 2.6-7) the trade-off between missed events 

and false alarms is present for all three estimated models. In this case it is indeed the PAR 

model that (at sufficiently large values of  ) can produce the smallest number of missed 

events but again at the price of also producing the largest number of false alarms. For VIC 

(Figure 2.6-11 to Figure 2.6-12), however, the results of the Hawkes models are little 

different from those of the naïve model at all values of  , whereas the application of the 

PAR model appears to be largely ineffective.  

 

The overall finding, in the context of this chapter, is that it is very difficult to predict price 

events even by application of state-of-the-art econometric models. Even a very simplified 

and naïve prediction model is difficult to beat with the set of information used in this 

chapter.  

 

(INSERT Figure 2.6-11 TO Figure 2.6-12) 

 

2.7. Conclusions 

The contributions of this chapter are threefold. First, we are able to establish exogenous 

variables that are relevant to explain variation in the intensity that drives the process of 

price events. These variables include unseasonal loads, maximum and minimum 

temperatures and the number of price events that occurred on the previous day.  However, 

it is certain that this list is incomplete. An interesting line of future research will investigate 
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whether one-day-ahead market scenarios, which are published in near real-time by the 

Australian Electricity Market Operator, contain any information that is useful in predicting 

future price events. 

 

Second, the results and findings in this chapter show significantly different characteristics 

of forecast intensities modeled by Hawkes and PAR models. Although all the models are 

able to produce sustained rises in the intensity after episodes of price events, the PAR 

model produces faster intensity increases and decays, while the Hawkes models deliver a 

more persistent intensity series. During periods with no price events the intensity of the 

Hawkes models show less variation than the PAR model. These significantly different 

model characteristics (when applied to the same series) suggest that there is a place for 

both models, depending on the series modeled. 

 

The last contribution relates to the evaluation of the forecast performance of the models 

estimated in this chapter. Overall it is apparent that forecasting price events is a difficult 

task and neither Hawkes nor PAR models are able to predict price events that occurred in 

isolation. While in some Australian regions some models (in particular, the Hawkes-type 

models) were able to produce a smaller number of missed events than a reasonable but 

simplistic forecasting procedure, this comes at a price of an increased number of false 

predictions.
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Appendix A 

In Christensen et al. (2009) it is assumed that in any period   there can only be one new 

stress. The variable    takes the value 1 if a new stress arrives and 0 otherwise.    is 

assumed to be a sequence of independent Bernoulli random variables: 

  (    )    (2.7-1) 

  (    )      (2.7-2) 

 

The assumption of one new stress per period is necessary to disentangle the arrival and 

departure of the latent process. The departure of a system stress is modeled as a binomial 

thinning process, where each stress factor present at time     (    ) survives with 

probability  . The number of surviving stress factors at time   is therefore determined by 

  
              (    

         ), where    is the binomial thinning operator. The 

number of stress factors at time   is therefore represented by 

                   (2.7-3) 

 

The parameters that describe the dynamics of this model can again be made time-varying 

using the following specifications: 

          (    (     )) (2.7-4) 

          (    (     )) (2.7-5) 

in which     and     are sets of regressors for the arrival and survival of the system 

stresses, respectively, and    and    are (HAWa) the associated parameter vectors.  

 

As illustrated by Christensen et al. (2009), the procedure of calculating the probabilities for 

price spikes depends on the history of the price spike process      {            }. If 

      , then      or      (a maximum of one new arrival of system stress at any  ). 

Therefore, 

 

 
    (    |    )   (    )     

      (    |    )   (    )       
(2.7-6) 

The values of    are required in order to calculate the loglikelihood function in equation 

(2.7-11). The calculation of these values, however, is somewhat more convoluted if there is 

a history of consecutive price events such as        and potentially               

 . 
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If        and       , then    can possibly take the values 0, 1 or 2. In general, if the   

previous days exhibited price events (                   and    (   )   ), 

then there could be anything between a minimum of        and        stresses 

present at time    . The calculation of     (    |    ) in such a case depends on 

 (      |    ) for        , the probability of   system stresses being present at 

time     and  (      |      ) based on the arrival and survival processes of the 

system stresses.  

 

This is calculated as 

 

 (      |    )

 ∑  (      |      ) (    

   

   

  |    ) 

(2.7-7) 

The probabilities  (      |    ) are readily available if        (see above). The 

calculation of probabilities of the type  (      |      ) will be detailed below. 

Once probabilities  (      |    ) are obtained we can continue to calculate 

 

 (    |    )

 ∑  (    |      ) (      |    )

 

   

 
(2.7-8) 

for          , ie, all possible number of stresses at time  . In order to obtain values 

of     (    |    ), required for the calculation of the loglikelihood in equation 

(2.7-11), we need to recognise that     (    |    )     (    |    ) and 

further that      only if     . Hence  

       (    |    ) (2.7-9) 

From the above it is apparent that the calculation of    (when                  

  and    (   )   ) requires a recursive calculation starting at the beginning of the most 

recent price event episode (          (   )   ). 

 

To perform the above calculations we require probabilities of the type 

 (    |      ), which, following the assumptions of the arrival and survival 

processes of the system stresses, are calculated as follows: 
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 (    |      )

 {

                                                          
  

                                                       

 (      )(    )   (        )                                       
(    )

 (    )                                          

 
(2.7-10) 

Here    and    are the arrival and survival probabilities and  (      ) gives the 

probability of drawing   successes in   repeated drawings of a binomial random variable 

with success probability   . 

 

Finally, the loglikelihood function is calculated as 

       ∑          (     )    (    )

 

   

 (2.7-11) 

with            being the sequence of observed price events. The loglikelihood function 

is maximised with respect to the parameter vector   (  
    

 ) . Recall that the parameter 

vectors   
  and   

  are used to parameterise the time-varying arrival (  ) and survival (  ) 

probabilities, respectively.  Once the parameters of the modified PAR are estimated by 

maximising equation (2.7-11), they are used for forecasting purpose in Section 2.6.  
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Figure 2.2-1: This figure is showing a weekly profile (Monday to Friday) of median spot prices for 

autumn and winter months (March 21 to September 20) and for spring and summer months 

(September 21 to March 20). 

 

The weekly series are calculated based on the half-hourly median prices across the 336 half-hour 

periods of the week. The figure displays different season of weekly profiles for median spot prices 

using data between September 21 to March 20 (spring and summer) and March 21 to September 20 

(autumn and winter) separately. The data is New South Wales (NSW) half-hourly price series from 

March 2001 to July 2010 obtained from the Australia Electricity Market Operator (AEMO) website 

(http://www.aemo.com.au/Electricity/Data/Price-and-Demand/Aggregated-Price-and-Demand-

Data-Files). 

  

 

  

http://www.aemo.com.au/Electricity/Data/Price-and-Demand/Aggregated-Price-and-Demand-Data-Files
http://www.aemo.com.au/Electricity/Data/Price-and-Demand/Aggregated-Price-and-Demand-Data-Files
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Figure 2.2-2: This figure is showing the time series of (log) daily average spot prices from 2001 to 

2010 in NSW. 

 

The daily average spot prices are calculated by taking the average of the 48 half-hour spot prices in 

a day. Therefore a total of 165,120 half-hourly spot prices are used to calculate the daily average 

spot prices from March 1, 2001 to July 31, 2010. In order to show the low and high extremity of 

the daily average spot price series, we calculated their 10
th
 and 90

th
 percentiles of the daily average 

series. The 10
th
 percentile of the series is A$18.67/MWh and the 90th percentile of the series is 

$50.49/MWh. The extreme temporary price jumps feature in the price series are made obvious by 

taking the logarithmic of the daily average spot prices. It can be seen that the logarithmic of the 

price series exceeded the logarithmic of the high extremity (90th percentile) values frequently.     
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Figure 2.2-3: This figure is showing a weekly pattern for the frequency of spot prices exceeding 

A$100/MWh. 

 

Using NSW wholesale spot prices, the numbers of hourly prices that exceeds A$100/MwH are 

counted across day of the week. They are counted for spring and summer season (September 21 to 

March 20) and for autumn and spring season (March 21 to September 20).  
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 NSW  QLD  SA  VIC  

Mean 38.7906 35.7624 42.3296 34.5638 

Median   27.1702 25.2533 29.3967 26.8015 

Std. dev. 74.5241 63.6779 103.4392 58.9765 

Skewness 11.8879 13.2374 14.9365 23.8209 

Kurtosis 170.4310 230.7358 265.4799 774.3291 

% spikes days 13.47% 15.25% 17.17% 12.32% 

Table 2.4-1: This table shows the descriptive statistics of the daily average spot prices in four 

regions of the Australia NEM. % spikes days is definite for proportion of days with price spikes.  

The five regions are New South Wales (NSW), Queensland (QLD), South Australia (SA) and 

Victoria (VIC).  

 

These descriptive statistics are using half-hourly wholesale spot prices from March 1, 2001 to July 

31, 2010.  
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Figure 2.4-1: This figure is showing daily electricity consumption from August 1, 2007 to August 

1, 2010 in NSW. 

 

The daily load series are calculated by summing all the 48 half-hour load series in a day. For the 

purpose of illustration, we are using a total of 52,656 half-hourly load series obtained from 

AEMO’s website in Aggregate Price and Demand Data Files 

(http://www.aemo.com.au/Electricity/Data/Price-and-Demand/Aggregated-Price-and-Demand-

Data-Files).  It can be observed from the figure that the daily electricity load series show a clear 

annual and weekly seasonal pattern. 

  

http://www.aemo.com.au/Electricity/Data/Price-and-Demand/Aggregated-Price-and-Demand-Data-Files
http://www.aemo.com.au/Electricity/Data/Price-and-Demand/Aggregated-Price-and-Demand-Data-Files
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Figure 2.4-2: This figure is showing daily deseasonalized load time series,       plotted from 

August 1, 2007 to August 1, 2010 in NSW. 

 

After we have constructed normally expected load series,   
  using weighted average of the previous 

seven days of loads,            , we deducted the actual realised load series,    (as a proxy of 

forecast load available on day,     for day,  ) from the normally expected load series,   
 . In 

doing so, we are able to obtain the forecast electricity demand that exceeds the demand we would 

usually expect for that day of the week at that particular time of the year. However, the residual 

series,   ̃  is further deseasonalized using rolling volatility (Weron 2007) to eliminate any 

remaining annual seasonality in the series. The end-result of these processes is the series shown is 

the figure. They show no obvious trends or seasonality making the       series is a plausible 

candidate to capture the forecast electricity demand that exceeds the demand we would usually 

expect for that day of the week at that particular time of the year.   
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 Correlation Matrix 

Exogenous 

Variables 

                         

      1    

      -0.0024 1   

      0.0530 -0.1416 1  

       0.2646 0.1006 -0.0447 1 

Descriptive Analysis 

Mean -0.0066 0.5507 0.4234 0.5465 

Median 0.0649 0 0 0 

Std. dev. 1.0204 1.6877 0.9767 2.1015 

Skewness -0.2206 4.6215 2.6301 5.1791 

Kurtosis 3.0504 28.6803 9.6966 32.7006 

Table 2.4-2: This table shows the correlations matrix and descriptive analysis of the exogenous 

variables as discuss in Section 2.4 for NSW. They are used as conditioning covariates in the 

parameters of the Hawkes and PAR models.  

 

The information used to measure daily       is half-hourly load series obtained from AEMO’s 

website in Aggregate Price and Demand Data Files 

(http://www.aemo.com.au/Electricity/Data/Price-and-Demand/Aggregated-Price-and-Demand-

Data-Files) and the series are calculated based on the processes discussed in Section 2.4.1.        

is measured using daily maximum temperature series available from The Bureau of Methodology’s 

website (http://www.bom.gov.au/climate/data/) for NSW based on a station number, 66062. The 

      is calculated based on the processes discussed in Section 2.4.2 in order to capture 

unexpected and unseasonal hot days (in the warm seasons of the year). Similar details mentioned 

on       apply to       except it is used to capture unexpected and unseasonal extremely cold 

days (in the cold season of the year).        is measured from the 48 half-hour spot prices in a day. 

It represents the number of half-hourly spot prices,     , that exceed the threshold,   (i.e.       

   ) on day t. All of the data used to measure the exogenous variables in this table start from 

August 1, 2007 to July 31, 2010. 

  

http://www.aemo.com.au/Electricity/Data/Price-and-Demand/Aggregated-Price-and-Demand-Data-Files
http://www.aemo.com.au/Electricity/Data/Price-and-Demand/Aggregated-Price-and-Demand-Data-Files
http://www.bom.gov.au/climate/data/
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 Correlation Matrix 

Exogenous 

Variables 

                         

      1    

      0.0705 1   

      0.0227 -0.1399 1  

       0.1769 0.1043 -0.0381 1 

Descriptive Analysis 

Mean -0.0040 0.3495 0.4799 0.6542 

Median 0.0621 0 0 0 

Std. dev. 1.0108 0.9289 1.2026 2.2309 

Skewness -0.2707 4.5988 3.0739 4.6777 

Kurtosis 3.1356 34.0664 13.5522 28.1624 

Table 2.4-3: This table shows the correlations matrix and descriptive analysis of the exogenous 

variables as discuss in Section 2.4 for QLD. They are used as conditioning covariates in the 

parameters of the Hawkes and PAR models.  

 

Further explanation on this table is similar to the caption of Table 2.4-2, except the daily maximum 

and minimum temperature series for QLD is based on a station number, 40842. 
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 Correlation Matrix 

Exogenous 

Variables 

                         

      1    

      0.1815 1   

      -0.0037 -0.1981 1  

       0.3103 0.4447 -0.0596 1 

Descriptive Analysis 

Mean 0.0327 1.2289 0.5630 0.7354 

Median 0.0608 0 0 0 

Std. dev. 1.1194 2.9840 1.1715 2.8655 

Skewness -0.1484 2.7087 2.2973 6.2571 

Kurtosis 3.3962 9.8944 8.2197 55.5421 

Table 2.4-4: This table shows the correlations matrix and descriptive analysis of the exogenous 

variables as discuss in Section 2.4 for SA. They are used as conditioning covariates in the 

parameters of the Hawkes and PAR models.  

 

Further explanation on this table is similar to the caption of Table 2.4-2, except the daily maximum 

and minimum temperature series for SA is based on a station number, 23090. 
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 Correlation Matrix 

Exogenous 

Variables 

                         

      1    

      0.1805 1   

      0.0067 -0.1881 1  

       0.2775 0.3253 -0.0039 1 

Descriptive Analysis 

Mean -0.0058 1.3050 0.5497 0.5338 

Median 0.0641 0 0 0 

Std. dev. 1.0582 3.1260 1.1829 2.1902 

Skewness -0.1912 2.7678 2.4432 7.3709 

Kurtosis 3.1774 10.5875 9.0029 81.1905 

Table 2.4-5: This table shows the correlations matrix and descriptive analysis of the exogenous 

variables as discuss in Section 2.4 for VIC. They are used as conditioning covariates in the 

parameters of the Hawkes and PAR models.  

 

Further explanation on this table is similar to the caption of Table 2.4-2, except the daily maximum 

and minimum temperature series for VIC is based on a station number, 86071. 
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Figure 2.5-1: This figure is used to show the mechanism of    
 as initial intensity jumps.  

 

Following a price event happened at time 0 (  ), using the Hawkes model in equation (2.3-4) we are 

able to calculate future intensity at time 1 ( ). The contribution of a price event at time 0 to future 

intensity starts at time 1 and continue at an increasing lags until time 27 (refer to the x-axis in the 

figure). If    
 is conditioned only by          exogenous variable, this means price event at time 0 

carries the same effect on future intensity. However, Event 1, Event 2 and Event 3 are used to 

illustrate how the contribution of a price event at time 0 changes based on the parameter of    
 that 

are now determined by a set of covariates at time   . The set of covariates at time    follow equation 

(2.3-5) and (2.3-6) with the conditioning covariates for HAWa model are as specified in Table 2.5-

1. Since different event results to different values of    
, the initial impact on the future intensity 

from Event 1 to Event 3 changes from 0.27 to 0.23. It can be observed from the figure that larger 

values of    
(eg. Event 1) gives larger contributions to the probability of future price events since 

the intensity contribution of Event 1 are consistently superior from Event 2 and Event 3 from time 

0 until time 27. For the purpose of this illustration, decay parameter   is set constant (     ).      
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Variable NSW QLD SA VIC 

  ^     

     

   
     

      

         -0.2718* 

(0.0023) 

-0.7501* 

(0.0029) 

-1.3597* 

(0.0084) 

-9.9990* 

(0.0029) 

      
 -0.0989* 

(0.0093) 

-0.3093* 

(0.0008) 

0.2988 

(0.2203) 

5.4033* 

(0.6753) 

      
 -0.5683* 

(0.0088) 

-0.6174* 

(0.0037) 

0.0485* 

(0.0135) 

-1.2018* 

(0.0007) 

       -0.1735* 

(0.0135) 

-0.0285* 

(0.0033) 

0.2648* 

(0.1416) 

0.2076 

(0.7011) 

        0.1362 

(0.1092) 

0.3970* 

(0.1552) 

0.1847 

(0.1493) 

3.0635* 

(0.3691) 

β     

      

         0.0003* 

(0.0001) 

0.0002* 

(0.0001) 

0.0003* 

(0.0001) 

0.0003* 

(0.0001) 

log          -387.8466 -457.7136 -411.2108 -377.3038 

Table 2.5-1: This table presents the coefficients and robust standard errors (in brackets) of 

parameter vector   ((      ) ) used on the conditioning covariates in the initial intensity jumps,    
 

and time-invariant intensity decay,   parameter.  

 

These are the results of the HAWa model for all the regions (NSW, QLD, SA and VIC) during the 

estimation period (August 1, 2007 to July 31, 2010).  ^The coefficients and standard errors of 

parameter vector of the trigonometric term   (allowing for seasonal variations,   ) are not reported 

but are available upon request. All of these parameter vectors are estimated by maximising the 

loglikelihood function in equation (2.3-9). In the bottom row, we report the optimised 

loglikelihood. The covariates conditioned in    
 are an intercept (        ), unseasonal load series 

(      
) as discussed in Section 2.4.1, unexpected increase/decrease in temperatures 

(      ,      
) as discussed in Section 2.4.2 and the number of price spikes during a day 

(       ). While the   remains constant. *Parameters are significant at 10% significant level. 
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Figure 2.5-2: This figure illustrates the in-sample of one-day-ahead conditional intensity forecast, 

  
       

 during the estimation period (August 1, 2007 to July 31, 2010) for each of the regions.  

 

The dependent variables of Hawkes model,    is set to 1 if any of the half-hourly spot prices,      

exceeds           on day t and 0 otherwise.    is labelled as ‘Observed Intensity’ in the 

legend. While, the probability of future price events,   
       

 is labelled as ‘Estimated Intensity’ in 

the legend. Therefore, the y-axis represents event probability. The Estimated Intensity is measured 

based on equation (2.5-1) where the x-axis represents days with a price event. 
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Figure 2.5-3: This figure is used to show the mechanism of time-varying decay parameter, 

   which are used to introduce the influence of covariates in any period   (since   
      ).   

 

For the purpose of this illustration, the initial intensity contribution    
 is set constant 

(   
    ). Therefore each of the events carries the same initial intensity jumps. In 

contrast to HAWa model, in HAWab model the influence of covariates are allow to play a 

role outside the times,   , at which price events occur. Therefore the probability of future 

price events under this model,   
        

 follows equation (2.5-2) and the time-varying 

decay parameter    is parameterised using equation (2.3-7). The added flexibility allows 

for increased or delayed intensity decay due to prior events. In this figure, price event 

happened at time 0, time 5 and time 15 (labelled by     ). In the figure, the contribution of 

past event (at time 0) to the intensity of Event 1 has a decay parameter    that takes a value 

0.3 up to      and 0.1 afterwards. Therefore the contributions to the probability of future 

price events for Event 1 decays at a smaller rate after     . The same situations 

happened for Event 2, the contribution of past event (at time 5) to the intensity of Event 2 

has a decay parameter    that takes a value 0.3 up to      and 0.1 afterwards. Hence it 

become obvious that the contributions to the probability of future price events for Event 3 

decays at slowest rate compared to Event 1 and Event 2. In summary, this means with high 

value of decay parameter   , the intensity will decay at faster rate compared to lower value 

of decay parameter   .  
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Variable NSW QLD SA VIC 

  ^     

     

   
     

      

         0.6162* 

(0.2582) 

0.1813 

(0.1952) 

-0.5811* 

(0.0128) 

-0.9535* 

(0.0127) 

      
 -0.3941* 

(0.0013) 

-0.5552* 

(0.0056) 

-0.1046* 

(0.0061) 

-0.2272* 

(0.0030) 

       -0.7187* 

(0.0072) 

-0.0657* 

(0.0056) 

0.1028* 

(0.0518) 

-0.3996* 

(0.0182) 

      
 -0.2495* 

(0.0020) 

-0.0500* 

(0.0143) 

0.2911* 

(0.1401) 

0.1666 

(0.1527) 

       
 0.0795* 

(0.0004) 

0.0840* 

(0.0037) 

0.1166 

(0.0796) 

0.5765* 

(0.0740) 

       

      

         0.0096* 

(0.0007) 

0.0062 

(0.0042) 

0.0052 

(0.0119) 

0.0023 

(0.0015) 

      -0.0139* 

(0.0047) 

-0.0010 

(0.0110) 

-0.0216* 

(0.0014) 

-0.0066 

(0.0061) 

      0.0187* 

(0.0009) 

0.0084* 

(0.0018) 

-0.0102* 

(0.0035) 

-0.0018 

(0.0075) 

      0.0107* 

(0.0032) 

0.0041 

(0.0090) 

0.0080 

(0.0215) 

0.0060 

(0.0075) 

       -0.1122* 

(0.0020) 

-0.0600* 

(0.0022) 

-0.0850* 

(0.0095) 

-0.0263* 

(0.0054) 

          1.5983 

(2.4725) 

0.4147 

(0.5131) 

1.3669 

(1.4165) 

1.7989 

(1.4864) 

log           -374.2704 -443.2520 -395.1150 -359.6421 

Table 2.5-2: This table presents the coefficients and robust standard errors (in brackets) of 

parameter vector   ((      ) ) used on the conditioning covariates in the initial intensity jumps,    
 

and time-varying decay parameter,   .  

 

These are the results of the HAWab model for all the regions (NSW, QLD, SA and VIC) during the 

estimation period (August 1, 2007 to July 31, 2010).  ^The coefficients and standard errors of 

parameter vector of the trigonometric term   (allowing for seasonal variations,   ) are not reported 

but are available upon request. All of these parameter vectors are estimated by maximising the 

loglikelihood function in equation (2.3-9). In the bottom row, we report the optimised 

loglikelihood. The covariates conditioned in    
 and    are as defined in Table 2.5-1 but with the 

addition of a weekend / no-weekend dummy variable,           in the decay parameter,   .  

*Parameters are significant at 10% significant level. 
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Figure 2.5-4: This figure illustrates the in-sample of one-day-ahead conditional intensity forecast, 

  
        

 during the estimation period (August 1, 2007 to July 31, 2010) for each of the regions.  

 

Further explanation on the y and x-axis are the same with the caption of Figure 2.5-2, except that 

the estimated intensity is measured based on equation (2.5-2).  
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Variable NSW QLD SA VIC 

       

       

         -2.6416* 

(0.1571) 

-2.3216* 

(0.1296) 

-2.9685* 

(0.1854) 

-3.0580* 

(0.1771) 

      0.7355* 

(0.1683) 

0.4992* 

(0.1354) 

0.7742* 

(0.1500) 

0.7185* 

(0.1753) 

      -0.0165 

(0.0751) 

0.1619* 

(0.0601) 

0.1341* 

(0.0386) 

0.1368* 

(0.0275) 

      0.0002 

(0.1365) 

-0.0120 

(0.1017) 

0.1418* 

(0.0829) 

0.1659* 

(0.0884) 

         

       

         -1.4804* 

(0.5939) 

-1.7787* 

(0.7052) 

-1.4428* 

(0.5552) 

-1.0978* 

(0.5938) 

      0.3988 

(0.3007) 

-0.1148 

(0.2779) 

0.2908 

(0.2181) 

-0.0848 

(0.3643) 

      -0.1200 

(0.0955) 

-0.1399 

(0.1713) 

0.0444 

(0.0638) 

-0.1358 

(0.1763) 

      -0.0950 

(0.1934) 

0.0944 

(0.1007) 

0.0814 

(0.1762) 

0.1040 

(0.1411) 

          0.3862 

(0.6733) 

0.8405 

(0.6735) 

-0.1592 

(0.5166) 

-0.1573 

(0.6475) 

log      -355.0726 -425.4564 -346.7250 -332.9346 

Table 2.5-3: This table presents the coefficients and robust standard errors (in brackets) of 

parameter vector,    and    used on the conditioning covariates relating to the variation in 

arrival probability of system stresses,    and in survival probability of system stresses,   .  

 

These are the results of the PAR model for all the regions (NSW, QLD, SA and VIC) 

during the estimation period (August 1, 2007 to July 31, 2010).  All of these parameter 

vectors are estimated by maximising the loglikelihood function in equation (2.7-11). In the 

bottom row, we report the optimised loglikelihood. The covariates conditioned in    are as 

defined for    
 and the covariates conditioned in    are as defined for    but without 

       exogenous variables. *Parameters are significant at 10% significant level. 
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Figure 2.5-5: This figure illustrates the in-sample of one-day-ahead conditional intensity 

forecast,   , during the estimation period (August 1, 2007 to July 31, 2010) for each of the 

regions.  

 

Further explanation on the y and x-axis are the same with the caption of Figure 2.5-2, 

except that the estimated intensity is measured based on equation (2.7-10) in Appendix A 
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Figure 2.5-6: This figure illustrates the in-sample of one-day-ahead conditional intensity forecast of 

all the models,   
       

,   
        

 and     during the estimation period (August 1, 2007 to July 31, 

2010) for NSW. It is apparent from the graph that different models allow for quite different 

features in the intensity series.   
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Figure 2.5-7: This figure illustrates the in-sample of one-day-ahead conditional intensity forecast, 

  
       

 during the estimation period (August 1, 2007 to July 31, 2010) for NSW and based on 

different threshold value,  .  

 

In the first panel, the dependent variables,    is set to 1 if any of the half-hourly spot prices,      

exceeds           on day t and 0 otherwise while in the second panel, the dependent variables, 

   is set to 1 if any of the half-hourly spot prices,      exceeds           on day t and 0 

otherwise.  It can be observed the days with a price event reduces tremendously when the threshold 

value increases from           to          . 
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Figure 2.6-1: This figure illustrates the out-of-sample of one-day-ahead conditional intensity 

forecast for all the models (  
       

,   
        

,   ) during the forecast period (August 1, 2010 to 

July 31, 2012) for NSW.  
 

All the parameters used to forecast future price events for these models are re-estimate every 30 

days. For example, the parameters vectors of all the models are estimated by maximising the 

loglikelihood function in equation (2.3-9) and (2.7-11) using information during the initial 

estimation period (August 1, 2007 to July 31, 2010). These parameters vectors are used to produce 

one-day-ahead conditional intensity forecast from August 1, 2010 to August 30, 2010 using 

equation (2.5-1), (2.5-2) and equation (2.7-10) in Appendix A. The parameters are re-estimate 

every 30 days, meaning that the second estimation window includes data from August 30, 2007 

to August 29, 2010. These updated parameter estimates are then used to produce the next 30 

one-day-ahead conditional intensity forecast from August 31, 2010 to September 29, 2010. This 

process continues until we obtain two years’ worth of intensity forecasts. 
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Figure 2.6-2: This figure illustrates the out-of-sample of one-day-ahead conditional intensity 

forecast for all the models (  
       

,   
        

,   ) during the forecast period (August 1, 2010 to 

July 31, 2012) for QLD.  

 

Further explanation on this figure is similar to the caption of Figure 2.6-1 
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Figure 2.6-3: This figure illustrates the out-of -sample of one-day-ahead conditional intensity 

forecast for all the models (  
       

,   
        

,   ) during the forecast period (August 1, 2010 to 

July 31, 2012) for SA.  

 

Further explanation on this figure is similar to the caption of Figure 2.6-1 
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Figure 2.6-4: This figure illustrates the out-of -sample of one-day-ahead conditional intensity 

forecast for all the models (  
       

,   
        

,   ) during the forecast period (August 1, 2010 to 

July 31, 2012) for VIC.  

 

Further explanation on this figure is similar to the caption of Figure 2.6-1 
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               Model   

Measure Naive HAWa HAWab PAR 

  NSW   

MAE 0.0506 0.1007 0.1077 0.1061 

RMSE 0.2250 0.2062 0.2081 0.2048 

Asym 0.0540 0.0929 0.0945 0.0926 

  QLD   

MAE 0.0917 0.1656 0.1590 0.1613 

RMSE 0.3027 0.2748 0.2689 0.2802 

Asym 0.1019 0.1572 0.1481 0.1573 

  SA   

MAE 0.0985 0.1517 0.1529 0.1539 

RMSE 0.3138 0.2662 0.2624 0.2707 

Asym 0.1081 0.1488 0.1444 0.1478 

  VIC   

MAE 0.0479 0.1010 0.0988 0.1024 

RMSE 0.2188 0.1969 0.1916 0.2091 

Asym 0.0527 0.0883 0.0851 0.0906 

Table 2.6-1: This table presents the forecast evaluation statistics (mean absolute error, MAE; root 

mean square error, RMSE; asymmetric loss score, Asym) for all the regions.  

 

Based Rudebusch & Williams (2009) and Christensen et al. (2009) using forecast error (   
  |   ) of Hawkes models as an example; 

     
 

       
∑ |     |   |

  
    

      

                     √ 
 

       
∑ (     |   )

   
    

  

      
 

       
∑(  (   )  (    )(   ))|     |   |

  

    

 

where    and    denote the beginning and the end of the forecast period and   is equal to 0.5 since 

the failure to predict an actual price event is penalized by three times the rate of predicting a price 

event that does not actually occurred.  

 

This table reports the average value of the respective loss function evaluated for Models Naïve, 

HAWa, HAWab and PAR for the forecast period from August 1, 2010 to August 1, 2012. The bold 

entry indicates which model produces the lowest average loss.  
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Figure 2.6-5 to Figure 2.6-10: This figure illustrates the total number of missed events, 

                and false alarms,                in NSW, QLD and SA.   

 

Both the total number of missed events and false alarms are based on the lowest signal threshold 

that produces lowest forecast failure. Therefore for     this implies that we find the trigger 

intensity (for each model) that minimizes the total number of missed events and false alarms for 

any model. The scaling factor,   on the x-axis is used to reflect the relative cost of missed events as 

opposed to false alarms. For example, when     this means the missed events are five times 

more costly than false alarms. The number of missed events and false alarms depends on the trigger 

intensity and therefore varies with the value of the trigger intensity and hence with  . Generally, 

larger   will lead to a lower trigger intensity and hence to more false alarms and fewer missed 

events. 
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Figure 2.6-11 to Figure 2.6-12:  This figure illustrates the total number of missed events, 

                and false alarms,                in VIC.   

 

Further explanation on this figure is similar to the caption of Figure 2.6-5 to Figure 2.6-10.  
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Chapter 3 

 

3. The Australian Electricity Market’s pre-dispatch process: Some observations on 

its efficiency 

 

 

 

 

ABSTRACT 

 

 

In the past doubts have been raised as to whether the pre-dispatch process in Australia 

Electricity Market is able to give market participants and market operator good and timely 

quantity and price information. It is the purpose of this chapter to introduce a framework to 

analyse whether the pre-dispatch process is delivering biased predictions of the actual 

wholesale spot price outcomes. Here we investigate the bias by comparing the actual 

wholesale market spot price outcome to pre-dispatch sensitivity prices established the day 

before dispatch and on the day of dispatch. We observe a significant bias (mainly 

indicating that the pre-dispatch process tends to underestimate spot price outcomes) and we 

further establish the seasonality features of the bias across seasons and/or trading periods. 

We also establish changes in bias across the years in our sample period (1999 to 2007). In 

the formal setting of an ordered probit model we establish that there are some exogenous 

variables that are able to explain increased probabilities of over- or under-predictions of 

the spot price. It transpires that meteorological data, expected pre-dispatch prices and 

information on past over- and under-predictions contribute significantly to explaining 

variation in the probabilities for over- and under-predictions. The results allow us to 

conjecture that some of the bids and re-bids provided by electricity generators are not made 

in good faith. 

 

 

  



81 

 

3.1. Introduction  

The Australian National Electricity Market (NEM) is an electricity pool into which all 

generators submit bids to supply energy and the Australian Energy Market Operator 

(AEMO)
14

 eventually attempts to meet the demand using the cheapest possible 

combination of generators. All electricity that is supplied is compensated at the price which 

was required for the marginal generator. 

 

In order to give market participants (suppliers and electricity customers) as well as the 

market operator good and timely quantity and price information (Australian Energy Market 

Operator 2010), AEMO performs a pre-dispatch process. By 12.30pm on the day before 

dispatch, electricity generators are obliged to submit supply schedules for all 48 hours of 

the following trading day. These supply schedules are then aggregated and matched with 

demand forecasts to produce expected wholesale electricity prices for the next day, also 

known as pre-dispatch prices for the next day. In order to evaluate how sensitive this 

predicted price is with respect to changes in demand, AEMO repeats this exercise for 

different demand quantities (demand forecast +/- 200 MWh
15

) and reports the resulting 

predicted price outcomes,     and    , also known as pre-dispatch sensitivity prices for 

the next day.  

 

Generators can change their bids (re-bidding) on the quantity but not the price band of their 

supply schedules up until shortly before dispatch. Any bid or rebid, however, should reflect 

the generators “genuine intention to honour” (Australian Energy Market Commission, 

2013, paragraph 3.8.22A.b) their bid. In order to reflect any such changes, the pre-dispatch 

matching process of supply bids and demand forecasts is repeated every 30 minutes up 

until the actual dispatch period. 

 

The availability of these scenarios allows us to place the actual price outcome on the 

dispatch day relative to these pre-dispatch sensitivity prices. For a sensibly working pre-

dispatch system one would expect the price outcomes to mainly fall between the     and 

    prices and occasions on which the actual price exceeds     not too significantly 

outnumber the occasions on which the price outcome is below    . 

 

                                                 
14

 The Australian Energy Market Operator (AEMO) was established in July 2009 to manage NEM and gas 

market and undertake the electricity functions previously carried out by National Electricity Market 

Management Company (NEMMCO) 
15

 In fact they will produce more scenarios (+/- 500 and 1000 MWh) but our analysis will be restricted to +/- 

200 MWh scenarios. 
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If the pre-dispatch price was available
16

 alternative measures of bias could also be 

calculated; such as the average deviation between the pre-dispatch price and the spot price. 

It should be noted, however, that, due to the convexity of the aggregate supply curve we 

would expect such a measure to be positively skewed. Consequently we would likely to 

expect the average deviation to be positive. One advantage of using measures of the spot 

price against the pre-dispatch sensitivity price is that the latter account for this supply 

curve convexity.  

To illustrate this we shall use a simulate example. At the core of this example is a convex 

aggregate supply curve (Figure 3.1-1, Panel B). We assume that the load forecast is 1000, 

resulting in a pre-dispatch price,       and pre-dispatch scenario prices of          and 

        . We now simulate realised demands to investigate the properties of the resulting 

price distribution (Panel C) and the distribution of the discrete price outcomes (Panel D).  

 

The results will, of course, crucially depend on the properties of the demand distribution. 

Here we assume that the demand outcomes are symmetrically distributed around our 

demand forecast of 1000 (Panel A). Based on a review of the large demand forecasting 

literature (see Weron, 2007 for an overview), we could not find any evidence to either 

support or refute this assumption. This literature, almost exclusively, discusses measures 

like the mean absolute percentage error (MAPE) or root mean squared forecast error 

(RMSFE), and do not discuss any measures of symmetry. We could identify only one 

paper (Nowicka-Zagrajek & Weron 2002) in which the actual distribution of demand 

forecast errors was shown. This distribution (referring to a fairly small sample of 

California electricity demand forecasts) did not have any obvious asymmetric properties. 

 

(INSERT Figure 3.1-1 HERE) 

Given the convex nature of the aggregate supply curve (in panel B, top middle), the 

distribution of spot prices (in panel C, top right), are heavily skewed to the right, even 

though we assumed a symmetric demand distribution. If we are, however, merely counting 

the number of occasions on which the actual price,       exceeds          or is smaller 

than          then we obtain (despite the convexity in the supply curve) a symmetric, 

discrete price outcome distribution (Panel D).  

 

                                                 
16

The pre-dispatch prices are available for very recent periods from AEMO website 

(http://www.aemo.com.au/Electricity/Data), but were not included in the historical dataset that we 

obtained from AEMO 

http://www.aemo.com.au/Electricity/Data
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In the past doubts have been raised as to whether this pre-dispatch process meets its 

purpose and indeed changes have and are being proposed as there is doubt whether there 

aren’t electricity suppliers which possess and use excessive market power (see a recent 

proposed rule change to identify generators with market power, Australian Energy Market 

Commission, 2012).  

 

In this context the objectives of this chapter are threefold: First, we will introduce a 

framework in which we propose to analyse whether there is an apparent bias in the pre-

dispatch process in the sense that it systematically under- or overestimates the actual 

electricity price outcomes. Second, we will analyse whether the answer to the first question 

varies systematically across years, seasons and/or trading periods. Third, we will establish 

whether any exogenous variables are relevant to explain variation in the probability of spot 

price outcomes to fall above     or below    .  

 

We find that there is a significant bias in the pre-dispatch process in the sense that the pre-

dispatch process tends to underestimate the actual price outcomes (i.e. dispatch price > 

   ). While there is variation in the extent of the bias the general finding is remarkably 

persistent. We do find that this bias is particularly strong in the morning and evening peak 

periods of the day. We also find that the probability with which the dispatch price exceeds 

    varies significantly with a number of explanatory variables and indeed that there is a 

fair degree of persistence. 

 

The analysis in this chapter is essentially a descriptive analysis and it is impossible to use 

these results to definitively make judgements on the existence of market power of 

individual generators. The findings in this chapter, however, do allow the conjecture that 

some of the bids and re-bids provided by generators are not made in good faith as defined 

by the National Electricity Rules (Australian Energy Market Commission, 2013, paragraph 

3.8.22A).  

 

The remainder of the chapter is as follows. In Section 3.2 we will give a more detailed 

analysis of the institutional settings. In Section 3.2.1 we discuss pre-dispatch rules in NEM 

and their effect on the bidding behaviour together with the empirical properties of a 

functioning pre-dispatch process. In Section 3.2.2  we will give detailed descriptive 

analysis of spot price outcomes using unconditional probabilities on each datasets. We also 

illustrate the bias we observed in the price outcomes. In order to analyse whether any 
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exogenous variables are relevant to explain variation in the probability of spot price 

outcomes (relative to pre-dispatch sensitivities), we use an ordered probit model. This and 

the explanatory variables used are presented in Section 3.3 and 3.4. A summary of the 

results and their discussion are given in Section 3.5 and 3.6. We conclude the chapter in 

Section 3.7. 

 

3.2. The Bidding and Re-Bidding Process in the NEM 

In this Section we will provide some more detail on the NEM pre-dispatch process. The 

electricity pool setup with day-ahead bids and the opportunity for rebids is similar to the 

setup of the Canadian and New Zealand electricity market
17

. In the context of this chapter 

the specifics of the Australian NEM are of importance and we will detail these by 

following an imaginary timeline from 12.30pm on the day prior to dispatch (day    ) to 

the various dispatch periods on the day on which electricity is actually dispatched (day  ). 

The electricity trading day starts at 4.01am in the morning and ends at 4am the next day. It 

is separated into 48 half hour periods. Wholesale electricity prices are set every five 

minutes, by balancing supply and demand, and setting the price of the marginal generator 

as the price to be paid for all electricity supplied in that period. Prices are then averaged 

across the 6 five minute period of every half-hour to obtain the wholesale price for every 

half-hour period.  

 

The pre-dispatch process can be described as below: 

 By 12.30pm on the day before dispatch of electricity (   ), generators need to 

submit their daily bids for all 48 half-hourly trading intervals during the dispatch 

day ( ). Each generator supplies 10 price bands and indicates how much electricity 

they are willing to supply for every 48 half hour periods at each price band. 

AEMO will then aggregate all supply bids and evaluate how the forecast demand (at 

all 48 half hour periods) can be met at the lowest possible price
18

. This will deliver 

the pre-dispatch price and by varying the demand forecast by +/- 200 MWh it will 

also deliver the     and     price sensitivities. 

                                                 
17

 In Ontario, a Region in Canada, the pre-dispatch schedules are published at 11.00am while in New Zealand 

the schedules are produced before and after 1.00pm a day before dispatch. The market participants in both 

markets are allowed to rebids until 2 hours ahead of dispatch.  
18

 In this process AEMO will have to take a number of restrictions into account. For example, some 

generators cannot be switched on and off in quick succession. Details are available in (Gillett & Market 

Operations 2010). 
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 After 12.30pm on day     and up to 3.55am on day  , the generators can change 

their bid information. These are called rebids. The rebids, just as the initial bids, 

have to be submitted in “good faith” which is interpreted as the understanding that 

the bids reflect the “genuine intention to honour that offer [...] if the material 

conditions and circumstances [...] remain unchanged until the relevant dispatch 

interval” (Australian Energy Market Commission, 2013, paragraph 3.8.22A).  All 

rebids have to be accompanied by a justification that outlines the change in 

circumstances that led to the changed bid. Every half hour AEMO will repeat the 

pre-dispatch process and publish the resulting price sensitivities. 

 

 From 3.55am onwards on the dispatch day the generators can continue to submit 

rebids as long as they are submitted a minimum of five minutes before the 

beginning of the 30 minutes dispatch period for which changes in the supply 

schedule are submitted. AEMO will continue to undertake the pre-dispatch process 

and will publish the resulting     and     price sensitivities. 

 

 

 As the actual dispatch interval arrives AEMO will run an optimisation process very 

similar to the pre-dispatch process that identifies the cheapest combination of 

electricity generators to meet the prevalent electricity demand (load), taking into 

account a large range of generator and transmission constraints. 

 

It is useful to illustrate the optimisation process that happens during pre-dispatch and at 

dispatch with a graph. In Figure 3.2-1 we show a stylised aggregate supply schedule, the 

associated demand forecasts and the resulting pre-dispatch prices. It is important to 

understand that this information needs to be indexed with the relevant dispatch period and 

the time at which the pre-dispatch was published. In this figure, for instance, we display the 

supply schedule for the 8.00am dispatch period on day   as available from the pre-dispatch 

published on day     at 15.00pm,           |         . We can also see the equivalent 

demand forecast,         |         , and the resulting pre-dispatch price,         |         . 

Further we can see the equivalent low and high demand scenarios and the resulting     and 

    prices. 

 

(INSERT Figure 3.2-1 HERE) 
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To measure the performance of the pre-dispatch process we will use this information as 

follows. First we restrict our attention to two pre-dispatch periods, the day before dispatch 

(   , 15:00, PD1) and the pre-dispatch on the dispatch day ( ) at 6.00am (PD2). We will 

then compare price outcomes for the half hour dispatch periods starting with the 06:30 and 

ending with the 23:30 period to the respective pre-dispatch prices for these periods. 

 

This is done by comparing the actual wholesale market spot price outcome for the  th sub-

period on day  ,     , with the respective pre-dispatch price sensitivity prices from PD1 and 

PD2. The following ordered categorical variables are created: 

     |  {

             | 
  

         | 
            | 

  

        | 
       

 (3.2-1) 

 

                      and                 . The empirical analysis in this chapter 

will be based on     | . 

 

3.2.1. Pre-Dispatch Rules and Bidding Behaviour 

The value of the pre-dispatch and associated price sensitivities to market participants 

depends on the quality of AEMO’s demand forecasts and on generator’s bids being 

reflective of their actual supply intentions. If the rebids, which are possible up until five 

minutes before the relevant dispatch period, were used strategically, then the value of pre-

dispatch information would be doubtful.  

 

Not long after its formation in 1998 the first doubts about the workings of the pre-dispatch 

system were raised in a Australia National Electricity Code Administrator (NECA)
19

 issue 

paper (National Electricity Code Administrator 2001b; National Electricity Code 

Administrator 2001a) that analysed generator’s rebidding and identified significant 

variations between pre-dispatch and dispatch prices. They were conjectured to be the result 

of rebidding activities. In particular the authors highlight that many rebids happen close to 

dispatch when there is no opportunity for an effective competitive or demand-side 

response. A variety of recommendations to change the re-bidding process were made, of 

which only two were picked up in rule changes in 2002. As a result the “good faith” rule 

referred to earlier (Australian Energy Market Commission, 2013, paragraph 3.8.22A.a) was 

                                                 
19

 As of 1 July 2005 all roles and functions of NECA have been taken over by the Australian Energy Market 

Commission (AEMC) and the Australian Energy Regulator (AER). 
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introduced. Further it is upon the generator that submits a rebid, to provide “a brief, 

verifiable and specific reason for the rebid” and to “substantiate and verify” the reasons if 

so requested by the Australian Energy Regulator (AER) (Australian Energy Market 

Commission, 2013, paragraph 3.8.22). 

 

From this it follows that, as part of our empirical analysis we will investigate whether there 

are any clear changes in the characteristics of our variable     | . Little research has been 

done in this field, although Bardak Ventures Pty Ltd (2005) note that the rule changes have 

not been successful, and fail to detect significant differences in bidding behaviour.   

  

Ideally with demand forecasts and supply bids being updated continuously and promptly 

the pre-dispatch price should be the best possible forecast of the actual dispatch price, at 

any given time. Borrowing ideas from the efficient market hypothesis literature this should 

leads us to the proposition that information available at pre-dispatch should not be useful in 

predicting the outcome of our categorical random variable     | . 

 

If, however, there were generators that could exercise market power, in combination with a 

not strictly enforced or enforceable “good faith” bidding condition, then it may well be 

possible that we may find systematic variation in the conditional distributions of     | . In 

particular generators that posess market power may then be tempted to use initial supply 

bids as merely an “opening gambit”. 

 

There is a significant literature that investigates the issue of market power in electricity 

markets. Studies of market power in Australia by Wolak (2000), Pennsylvania–New 

Jersey– Maryland by Mansur (2007), New England by Bushnell & Saravia (2002), England 

and Wales by Wolak & Patrick (2001) and Sweeting (2007), New York by Saravia (2003), 

Spain by Fabra & Toro (2005), California by Knittel & Metaxoglou (2008) and Texas by 

Hortacsu & Puller (2005) confirm the existence of market power in some restructured 

electricity markets. David & Wen (2000) note that market power can be created or 

strengthened by collusion involving frequently repeated auctions for electricity under 

similar demand and supply conditions and intimate knowledge of a rival’s operating costs 

and almost immediate knowledge of a rival’s actions. 

 

Generators could conjecture from pre-dispatch information how their rivals adjust their 

supply schedules, and this could help generators plan when it is optimal to be marginal 
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generators and bid accordingly. When a generator has the opportunity to bid at prices 

higher than their marginal costs, by taking advantage of a poor market design, then they are 

able to exercise market power. This is called strategic bidding. The literature on strategic 

bidding is vast stating the existence of rich bidding strategies in restructured electricity 

markets such as England and Wales (Wolfram 1999; Wolfram 1998), California 

(Borenstein et al. 2002; Wolak 2003), Pennsylvania–New Jersey– Maryland (Mansur 2001; 

Oh 2003), and Texas (Hortacsu & Puller 2005). 

 

Previous findings by Rodriguez & Anders (2004); Hamidreza Zareipour et al. (2006a); H 

Zareipour et al. (2006) and Kharbach et al. (2010) prove the importance of considering pre-

dispatch prices as additional information in wholesale market price forecast models. The 

aim here is slightly different, as we consider the usefulness of the pre-dispatch prices as the 

forecast itself. To the best of our knowledge, this is the first attempt to study the 

performance of pre-dispatch scenario prices as estimates of future wholesale market spot 

prices
20

 in Australia’s NEM. The results from the analysis of spot price outcomes,     |    

and     |    will not allow us to directly infer anything about the bidding behaviour of 

individual generators. However, we will be able to state whether the combination of the 

collective bidding behaviour with the bidding rules in the NEM make for a useful pre-

dispatch procedure. 

 

While it is not expected that the pre-dispatch (at PD1 or indeed PD2) will provide an exact 

spot price forecast, we would expect a functioning pre-dispatch process to have the 

following empirical properties: 

1. We should expect to see a roughly symmetric distribution for the ordered 

categorical variables     |    and     |   . 

2. We should expect the distribution of     |    to be more centred around 

    |      than     |   . Both the demand forecast as well as the supply 

schedules at PD2 should reflect more precise information for the dispatch 

period     compared to PD1. 

3. If all supply schedules reflect all available information and are made in 

“good faith” we should expect that any information available at PD1 or PD2 

is irrelevant for explaining the outcome of      |    and     |    respectively. 

                                                 
20

 Electricity Market Performance (2012a) discusses on the factors affecting the ability of pre-dispatch as 

forecast of dispatch outcomes 
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In the remainder of the chapter we will be able to establish to what extend the pre-dispatch 

process in Australia is able to match these expectations. 

 

3.2.2. Descriptive analysis of spot price outcomes 

We have data for the wholesale spot prices,     , and the pre-dispatch prices (    | 
       | 

  ) 

from 1 March 1999 to 31 October 2007
21

. These are used, as in equation (3.2-1) to calculate 

our new variable     |   

 

We begin our empirical analysis by reporting the empirical distributions for our variable 

    |  for j = PD1, PD2 and                 . These results are reported in Figure 3.2-2 

in which the results are broken down into 6 subpanels. In Panel A (top left) we can see the 

empirical probabilities of     |   0, 1 or 2 as calculated across all days of the year 2000. 

On the horizontal axis we have the 35 half hour periods from                 .  

 

(INSERT Figure 3.2-2 HERE) 

We can see that for the first (06:30) dispatch period, the probability of      |      

exceeds 60%. This means that in more than 60% of days in 2000 the actual spot price 

outcome exceeded the upper price sensitivity         |   
   at PD1. The probability that the 

spot price is lower than         |   
   is less than 10%. In the remaining approximate 25% of 

days the actual spot price fell between         |   
   and         |   

  . This indicates that the 

pre-dispatch process at 15:00 the day before pre-dispatch (PD1) on average significantly 

underestimates the wholesale price for the 06:30 subperiod. From Panel A it is apparent 

that this bias is obvious for the morning and the evening sub-periods, whereas the pre-

dispatch process does not display such a clear bias for the trading periods in the middle of 

the day. However, even during these mid-day periods  (        |     ) is always about 

10% points larger than  (        |     ). Panels B to F show the equivalent results for a 

range of different sub-samples in 2000, weekdays (Panel B), weekends (C), Winter days 

(D), Summer days (E) and Spring and Autumn days (F). By large the results remain 

unchanged. There are, however, a number of minor variations (for the year 2000). 

 

For instance the bias of the pre-dispatch system towards underestimating the actual spot 

price outcomes appears stronger on weekends as compared to weekdays, in particular in the 

mid-day dispatch periods. The same bias is also stronger during winter as compared to 

                                                 
21

 Details on the data sources can be found in Appendix C  
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other seasons (but particularly summer days) in the morning and mid-day dispatch periods. 

In fact the summer mid-day periods are the only ones in which the bias is reversed (i.e. the 

pre-dispatch, PD1, seems to overestimate the spot price outcomes, although this bias is 

rather modest). 

 

Next, we plot the equivalent unconditional probabilities for     |   . As discussed 

previously we should expect the distribution of      |    to be more centered around 

    |      as the PD2 uses more up to date (relative to the actual dispatch time) 

information than PD1. Further, this information advantage is larger for the early morning 

dispatch periods. These results again presented for the year 2000 only and with the same 

subsampling in Figure 3.2-3. 

 

(INSERT Figure 3.2-3 HERE) 

In general it is apparent that the pre-dispatch process at 06:00 on the dispatch day (PD2) 

produces less biased results than PD1. The proportion of outcomes of     |      has 

increased significantly and now frequently represents the most likely outcome. In general, 

however, there is still some bias with  (        |     ) exceeding  (        |     ) in 

the morning and evening dispatch periods (see Panel A). In terms of the differences 

between the different sub-samples nothing much has changed with respect to the outcomes 

discussed for PD1. The relative frequencies of     |      and     |      remain 

basically unchanged and therefore, even at PD2 we can still see the tendency of the pre-

dispatch process to underestimate the price outcome, especially in the morning and evening 

sub-periods.  

 

There are two more aspects of these results that are worth highlighting. The improvement 

in terms of stronger centering (higher probability of     |     ) is clearest in the morning 

periods. This seems to imply that the information gained between PD1 and PD2 is most 

significant for the morning periods. In a way this is not surprising as the time between 

06:00 (PD2) and the actual morning dispatch is very limited and one would expect not 

much more new information to become available in that time. However, it is noticeable that 

despite PD2 being very close in time to the morning dispatch there is still a noticeable bias 

with price outcomes still being significantly more likely to exceed the higher scenario price 

than being smaller than the lower scenario price. This seems to suggest that even between 
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PD2 and the morning dispatch periods there appears to be significant and price relevant re-

bidding activity
22

. 

 

Next we will investigate whether the above features of the distributions of      |  change 

significantly throughout our sample period from 1999 to 2007. To facilitate this 

investigation we decided to split the investigated trading interval into morning (06:30 to 

09:30 dispatch intervals,    ), daytime (10:00 to 17:30,    ) and evening (18:00 to 

23:30,    ) sub-periods. When averaging across the years we now average across all 

trading intervals in, say, the morning sub-period, rather than only a particular half-hour 

dispatch period as we did for the previous results. These sub-periods were created by 

subsuming those sub-periods that appear to have similar characteristics (as judged from the 

previous two Figure 3.2-2 and Figure 3.2-3). 

 

Figure 3.2-4 presents two characteristics of the distributions of     |  for         and 

          as they change through the years (horizontal axis). In the left column we 

show  (    |   ) as an indication of how many of the spot price outcomes land between 

the two pre-dispatch scenario prices. The second feature is  (    |   )   (    |   ) 

giving an indication of the bias. The larger this value the more does the pre-dispatch 

process underestimate the actual spot price outcome. The three rows in Figure 3.2-4 

represent the morning, daytime and evening sub-periods respectively. 

 

 (INSERT Figure 3.2-4 HERE) 

As reported for the year 2000, we can see that in all years and in all sub-periods PD2 

produces more price outcomes between the two scenario prices, indicating that PD2 is 

indeed better than PD1. The improvement is clearly largest for the morning sub-period 

and barely noticeable for the evening sub-period. The results are very stable across the 

years although a downward trend for  (    |   ) is noticeable.  

 

The biasedness indicator,  (    |   )   (    |   ), takes almost exclusively positive 

values, indicating that the previously discussed tendency to underestimate the spot price is 

a persistent feature in our dataset. The only exception to this is the year 2001 during 

which there is no clear bias for the daytime and evening sub-periods. This measure, as 

discussed in Figure 3.2-2 and Figure 3.2-3, is smallest for the daytime period. Again, the 

                                                 
22

 Re-bidding can happen until up to 5 minutes before the start of the dispatch activity. 
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bias does reduce from PD1 to PD2, mostly so for the morning period and hardly for the 

evening sub-period. However, even at PD2 the bias in the morning period is still 

substantial and larger than 20% points (but for 2001). Importantly, and corresponding to 

the decline in  (    |   ), this bias appears to increase with time, indicating that the pre-

dispatch process is getting worse towards the end of our sample period. Although not 

presented here, it should be noted that the general thrust of these results remain 

unchanged when investigating the (weekend/weekday and seasons sub-samples).  

 

It was the reports by National Electricity Code Administrator (2001a); Australia 

Competition & Consumer Conmission (2002) and Australian Competition & Consumer 

Commission (2002) that highlighted the issue of late re-bidding activity meaning that there 

would be no opportunity for an effective competitive or demand-side response and, so 

suspected the report’s authors, contributed to very short-term price spikes events. None of 

the substantial proposed changes (e.g. no re-bidding in the last three hours prior to 

dispatch) were actually implemented, although the previously cited sections that spell out 

the meaning of “good faith” were clarified. It should be noted that the NECA report used 

data prior to 2001.  

 

It is interesting to note that the one year in which there was least evidence of a pre-dispatch 

bias was indeed the year 2001 in which the more wide ranging changes were being 

discussed. The implementation of the clarifications in 2001 did not result in an “improved” 

pre-dispatch process. In contrast, and as discussed previously, a clear trend to more severe 

under-prediction of the spot price is discernible. 

 

 

3.3. Methodology  

 

3.3.1. Ordered probit model for spot price outcomes 

There is a small literature by Rodriguez & Anders (2004); H Zareipour et al. (2006); 

Hamidreza Zareipour et al. (2006a) and Kharbach et al. (2010) that uses pre-dispatch 

information as an explanatory variable in models to forecasts spot price outcomes in 

Ontario, a market in which there are similarities (but also important differences) in the pre-

dispatch process. In this literature it transpires that pre-dispatch price information is indeed 

informative with respect to spot price outcome and that it becomes more informative for 

more recent pre-dispatch information (Hamidreza Zareipour et al. 2006a). 
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This is, of course, not surprising given the advanced amount of supply and demand 

information that is used in the pre-dispatch process. Interestingly, however, there is also 

evidence that the pre-dispatch prices in Ontario (at least for the early sample period) tends 

to overestimate the actual spot market outcome, a result that is very different to our finding 

of under-prediction of the pre-dispatch process in New South Wales. One obvious 

explanation is that the Ontario electricity market incorporates a financial compensation 

mechanism that covers profit shortfalls of suppliers (when compared to the predicted 

profits from pre-dispatch) as discussed in Zareipour et al. (2007). 

 

In contrast to the above literature we do not aim to provide a forecasting model for spot 

price outcomes. Rather it is our aim to understand the circumstances in which the pre-

dispatch process tends to produce pre-dispatch information that tends to underestimate the 

market outcomes. To this end we will estimate an ordered probit model (Wooldridge 2002) 

for the ordered categorical variables,     |  used in our previous empirical analysis. We will 

establishe whether there are any (weakly) exogenous variables that are useful in predicting 

the outcomes of     | .  

 

The time-varying ordered probit model for the  th sub-period on day   is based on a latent 

variable     | 
  which is related to a (   ) vector of explanatory variables     |  via the 

following linear relationship 

     | 
     |    | 

     |      |   

 

where   |  is a scalar constant,   |  is a (   ) coefficient vector and     |  is assumed to 

be normally distributed. For ease of notation we subsume the constant into     |  

(      |  )  and define   |  (  |    | 
 )   and hence 

     | 
     | 

     |      |  (3.3-1) 

This model is estimated for any combination of dispatch period (       ) and pre-

dispatch period (         ). The latent index     | 
  and     |  in turn are related via 

     |  {

        | 
     | 

            | 
     | 

           | 
 

 (3.3-2) 

with     and    being threshold parameters, which are collected in   |  (     ) . To 

complete the model it is necessary to specify the distribution of the error term     | . In the 
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context of the ordered probit model this is defined to follow a standard normal ( (   )) 

distribution. This is a standard modelling technique for ordered categorical variables. The 

specification allows the calculation of conditional category probabilities  (    |   |    | ), 

which in turn allow us to specify a log-likelihood function (see Section 3.5). The model 

parameters (  |    | ) that maximise that log-likelihood function are the Maximum 

Likelihood (ML) parameter estimates.  

 

3.4. Explanatory variables 

The explanatory variables considered for inclusion in     |  fall into two categories. Those 

variables that remain the same for any sub-period   or pre-dispatch period  . Amongst these 

are seasonal variables and weather characteristics for day t. The second set of variables will 

differ with   and  . As argued before, it is the aim of these models to explain why the pre-

dispatch process frequently delivers under-estimated spot prices and to identify the market 

conditions under which this is more likely. Therefore, some of the variables will relate to 

information only available on the dispatch day  . They will therefore not be available at the 

time of PD1 (15:00 on day    ) or PD2 (06:00 on day  ) and consequently the estimated 

models should not be understood to be forecast models. We will now introduce the 

explanatory variables. 

 

3.4.1. Seasonal variables 

In Section 3.2.2, we discussed that   (    |    ) and   (    |    )     (    |    ) 

may well depend on the weekday and the annual seasons. Hence, it is appropriate to 

include   
     

      
    in the model. The base case is therefore a weekday during either 

spring or autumn.  

 

 

3.4.2. Load Error and Forecast  

As previously discussed, the pre-dispatch process is the result of combining the most up to 

date demand and supply information at PD1 and PD2. If one wants to build a forecasting 

model for wholesale spot electricity prices, and the pre-dispatch process was delivering 

unbiased spot price forecasts, one would not expect any additional demand (load) 

information to be relevant in our ordered probit model
23

.  

                                                 
23

 Also see Hamidreza Zareipour et al. (2006a) who establish that the inclusion of pre-dispatch information 

renders many other variables irrelevant. 
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Here, however, we start from the presumption (supported by our results in Section 3.2.2) 

that the pre-dispatch process is not delivering such unbiased outcomes and it is our desire 

to characterise when this process is more likely to deliver under-predicted spot prices. We 

therefore include two load related variables. First, we include a simple load forecast 

available using     information,   
 . Ideally we would use the load forecast used in the 

pre-dispatch process, but these data are not available in our dataset. We therefore build an, 

admittedly simplistic, but useful load forecast along the lines of Weron’s ((Weron 2007), 

Section 3.4.1 similar day method, this was also used in Chapter 2). We are attempting to 

establish whether high load days are more likely to deliver biased pre-dispatch outcomes. 

 

The second load related variable included is the difference between the actual load on day 

 ,   , and the above load prediction,   
 . This series,    ̃, is de-seasonalised using the rolling 

volatility method described in ((Weron 2007), Section 2.4.5). Using this variable will help 

to identify the days on which the actual load outcomes were unexpectedly high or low. We 

would expect that on days with unexpectedly high load we can see an increased probability 

for     |    .  

 

3.4.3. Temperature Data 

It is well known that electricity load is closely related to ambient temperatures, mainly 

through heating and air-conditioning activities. Given the availability of fairly accurate 

weather forecasts, it is expected that the load forecasts used in the pre-dispatch process will 

be reflective of that information. However, given the existing bias of the pre-dispatch 

process it is interesting to establish whether the probability to underestimate the spot price 

does depend on any meteorological information. We use the same       and       

variables as in by Chapter 2.        is defined as follows: 

 

     

 {
|     

          
 |

 
   
         

         
           

   ̅   

         
 

(3.4-1) 

where      
    is the realised maximum temperature series on day t 

                 
  is the seasonal pattern of maximum temperature series, modelled by    

                      a trigonometric function 

             ̅    is the average of the      
   series 
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Hence       is non-zero only on unseasonably hot days in summer while       is 

defined similarly and only captures unseasonably cold days in winter.  

 

3.4.4. Spot price outcome persistency  

It is our conjecture that the outcomes for     |  may largely be driven by generator’s re-

bidding behaviour. A paper on modelling spike occurrences by Eichler et al. (2012) finds 

that price spikes in the NEM are often followed by further spikes. This suggests that some 

aspects of generator’s bidding behaviour are persistent. It seems therefore reasonable to 

establish whether the outcomes of     |  also display persistent characteristics. We therefore 

include the following explanatory variables 

       | 
   {

                   |     

                                  
 (3.4-2) 

       | 
   {

                   |   

                                  
 (3.4-3) 

 

These are dummy variables which indicate whether one trading period prior (      | 
 ) or 

one day prior (      | 
 ) the spot price outcome was placed either above the upper scenario 

(   ) or below the lower scenario price (   ). 

 

We expect there to be significant persistence with respect to the one trading period (30 

minutes) lag, as it is likely that any unexpected events (e.g. supply shortfall) may persist 

beyond one dispatch period. More interestingly we will examine whether there is 

persistence across days. A properly working pre-dispatch process should be expected to 

adjust for any information available the day before dispatch and hence there is no reason to 

expect there to be persistence that extends across days. 

 

3.4.5. Expected pre-dispatch price 

The pre-dispatch prices will give us an advanced knowledge of spot price fluctuations and 

signal the upcoming demand and supply response; for example when pre-dispatch price 

published 30 minutes before dispatch increased, industrial consumers with real-time meters 

would reduce their consumption while the generators would either bids at the lower supply 

schedule to ensure their power plants are called for dispatch or withdraw some of the lower 

supply schedule and bid at higher marginal price to increase the price further. As stated in 

Section 3.2.1, if the pre-dispatch prices deliver good forecasts of actual dispatch price, the 

above variables should be insignificant in explaining variation in     | .  
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Since the price series is not easily available, we proxy the pre-dispatch price using the 

following equation: 

     |  (    | 
         | 

         | 
         | 

    )   (3.4-4) 

This concludes the list of explanatory variables used in the ordered probit model. 

 

As discussed in Section 2.4.4 it would be desirable to have further supply side information 

available. In particular a measure of the reserve margin, as this was found to be an 

important factor in Chen & Bunn (2010) and Bunn et al. (2012). Such a series is, however, 

not available at the necessary frequency. 

 

3.5. Estimation 

The model parameter vector (  |    | ) in the model described by equation (3.3-1) and 

(3.3-2) can be estimated by maximum likelihood. The log-likelihood function is  

 

    | (  |    | )

      [ (    |   |    |    |    | )] 

      [ (    |   |    |    |    | )]  

      [ (    |   |    |    |    | )]    

(3.5-1) 

where     (    |   ) is an indicator function which equals one in case     |    is true 

and 0 otherwise. At the heart of the likelihood calculation is the calculation of the category 

probabilities  (    |   |    |    |    | ), which are calculated as  

 

 (    |   |    |    |    | )     

   (    | 
     | |    |    |    | )

    (   |    | 
     | ) 

 

 

 (    |   |    |    |    | )  

  (       | 
    |    |    |    | )  

  (   |    | 
     | )   (   |    | 

     | ) 

 

 

 (    |   |    |    |    | )

  (       | 
 |    |    |    | )

  (   |    | 
     | ) 

(3.5-2) 

 

where   represents the standard normal CDF. The log-likelihood function can be 

optimised by any standard nonlinear optimiser as long as    |   is constrained to be smaller 



98 

 

than    | . Asymptotic standard errors for the estimated ML parameter estimates 

( ̂ |   ̂ | )  are calculated based on the basis of the expected inverse Hessian Matrix of the 

variance covariance matrix (see e.g. Martin et al. (2012), Chapter 3)
24

. 

 

3.5.1. Marginal effects 

In binary response model, as the one estimated here, the primary interest lies in the effects 

of a change in an explanatory variable on the category probabilities 

 (    |   |    |    |    | ),        ⁄ , where     is the k element of     | . In what 

follows conditionality on  |  is suppressed for notational simplicity only.        ⁄  is a 

nonlinear function of all parameters (   ) and the values of   . The parameter coefficients 

values themselves are not easily interpreted and will only be looked at in the context of 

       ⁄ . The sign of the kth coefficient in  ,   , however, will determine how the 

probabilities for the extreme categories changes. In particular, if      then 

         ⁄  and           ⁄ . A value of      indicates that the kth explanatory 

variables is irrelevant. 

 

The conditionality on    is typically overcome in one of two ways (Wooldridge 2002). 

Either the marginal effects are calculated for all observed values of    and one 

subsequently calculates the average value across these effects (mean marginal effect), or 

alternatively the marginal effect is calculated at the mean value  ̅ (marginal effect at 

mean). Here we apply the former and present the mean marginal effects. The calculation of 

these marginal effects        ⁄  also depends on whether     is a continuous or discrete 

variable. 

 

For continues exogenous variables, the mean marginal effect of     on the response 

probabilities for the central category is derived as follows: 

 

 (
   (    |       ) 

    
)

   (
   (     

    |       ) 

    
)  

   (
   (       )   (       ) 

    
)

  (    (       )   (       ) ) 

(3.5-3) 

                                                 
24

 The models were estimated in MATLAB using the ORDER_PROBIT function written by Hang Qian, 

Iowa State University available from http://www.public.iastate.edu/~hqi/ 
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Here   represents the standard normal density and hence the term in square brackets can 

be either positive or negative resulting in the sign of the mean marginal effect being 

potentially different to the sign of   . The mean marginal effects for the extreme categories 

(     and     ) can be derived accordingly. In these cases only one density term will 

survive and as the density is always positive the respective mean marginal effects will be 

unambiguously determined by the sign of   . If     is positive then 

 (   (    |       )      )    and  (   (    |       )      )   .  The mean 

marginal effects are then estimated by calculating the term inside the expectations operator 

for all observed values of    and subsequently computing the average. 

 

For binary exogenous variables, the calculation of the mean marginal effect is somewhat 

more straightforward as one merely has to consider the change in category probabilities as 

    changes from 0 to 1:  

 

 (
   (    |       ) 

    
)

     (    |     )

  (    |     )  

(3.5-4) 

where the category probabilities  (    |     ) are used as defined in equation (3.5-2). 

As for the case of continuous exogenous variables the sign of    will clearly determine the 

sign of the changes in the category probabilities of the extreme categories: 

 (   (    |       )      ) will have the same sign as    and 

 (   (    |       )      ) will have the opposite sign of   . Again, the sign of the 

effect on the intermediate category probability ( (    |       )) is undetermined and 

depends on the particular set of observations at hand. 

 

3.6. Results 

In this Section we will present the results obtained from estimating the ordered probit 

model parameters in equation (3.3-1) and (3.3-2) by ML. The dependent variable of the 

models,     | , is indexed by the trading sub-period   ,                 , for which the 

spot price is compared against the pre-dispatch prices of the   th pre-dispatch,   

       . This implies that we can estimate a model for each (   ) combination. In order 

to economise on the number of models to be estimated and analysed we grouped the data 

into three daily sub-periods as mentioned before with         for morning (06:30 to 
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09:30), day evening (10:00 to 17:30) and evening (18:00 to 23:30) sub-periods
25

. We shall 

therefore refer to      as the model estimated for sub-period   using pre-dispatch    

 

Next, we need to determine an optimal estimation period. Our nine year sample period is 

from 1 January 1999 to 31 December 2007. In order to allow for structural changes in the 

relationships we are interested in, we estimate the ordered probit model for yearly sub-

samples,       ,              . As it turns out the restriction that the models are 

identical across the years can be rejected for all different (   ) combination. All p-values 

of the relevant Likelihood-Ratio (LR) tests are smaller than 0.01 

 

While it would be, in principle, possible to apply a search procedure to identify the number 

and locations of possible structural breaks, this is not done here. The computational effort 

required to achieve this in nonlinear models, such as the ordered probit model, is 

significant and stands in no relation to the limited additional insights.  

We therefore estimate 54 (   years    daily sub-periods    pre-dispatch periods) 

models. The number of observations used in each model is equal to the number of half 

hours included in the particular sub-period times the number of days in the particular year. 

By way of example,           uses 7 (seven half hours              ) times 365 

(=2555) observations. 

 

In particular we will be interested in how changes in explanatory variables affect the 

category probabilities, e.g. under what conditions is it more likely to find spot price 

outcomes,     , exceeding the relevant high demand pre-dispatch scenario price,     | 
   (e.g. 

    |   ). Any such findings will be presented in Section 3.6.1 by summarising the 

relevant mean marginal effects. As discussed previously these are (nonlinear) functions of 

the estimated model parameters, which by itself are of limited interest.    

 

We will initially present the results for two of these models (1999, m, PD1 & PD2). This 

will serve to explain the available results. As presenting the results for all 54 models is not 

particularly informative we will, here, merely present results for two of these models. We 

will then continue to summarise and discuss the substantial results that arise from the 

estimation of all the 54 models
26

 in Section 3.6.1. 

                                                 
25

 These categories were established to encompass broadly similar periods of pre-dispatch price behaviour 

(relative to spot price outcomes) 
26

 Detailed results for all 54 models are available in Appendix B  
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 (INSERT Table 3.6-1 HERE) 

The results for              and              are presented in Table 3.6-1. The first three 

results columns refer to the model that uses spot price outcomes evaluated against the pre-

dispatch scenarios at PD1 as the dependent variable (           ), whereas the final three 

columns represent results for            . In the left hand column we find the exogenous 

variables that are used to explain variation in the category probabilities of      |   , 

           . In the second row we can see the unconditional category probabilities. 

When the spot prices are compared to the pre-dispatch scenarios at PD1 in the morning 

sub-period in year 1999, we find that in 20% of cases the wholesale spot price ends up 

being smaller than the low scenario pre-dispatch price, in 37% of cases it lies between the 

low and high pre-dispatch scenario price and in the remaining 44% of cases it exceeds the 

high scenario price
27

.  

 

In each model we estimate one coefficient for each of the specified explanatory variables. 

Only estimated coefficients that are statistically significant from 0 at 5% level are reported 

in the respective columns (       ) in Table 3.6-1. These columns show the calculated 

mean marginal effects from equations (3.5-3) and (3.5-4) for continuous and binary 

variables respectively. Mean marginal effects based on parameters that were not found to 

be significantly different from 0 are not shown (blank cell entries).   

 

Let’s consider the effect of the weekend dummy variable,   
  . The largest positive mean 

marginal effect falls to the probability of the upper category  (    |     ). On average, 

the probability of spot prices exceeding the high pre-dispatch (PD1) scenario increases by 

8.5% (points) on weekends when compared to weekdays (largest increase is shown in 

bold). Note that the corresponding decreases in probabilities for the central and lower 

categories (-1.1% and -7.4%) ensure that the sum of all these three changes is 0. By 

construction the sum of all marginal effects equal to 0 as at any stage the sum of all the 

conditional probabilities,  (    |     |    |    |    | ) have to sum to 1.  

 

From these results we can infer that the estimated parameters for the    
   explanatory 

variable is positive, showing the same sign as the probability change for the higher 

category (or opposite sign of the probability change in the lower category).  

                                                 
27 

These statistics correspond to the values reported for year 1999 in Panels A and B of Figure 3.2-4 
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The entries for the other explanatory variables can be interpreted in a similar manner, e.g. a 

one unit increase in the load forecast,   
 , has a statistically significant effect on the 

conditional outcome probabilities. More specifically, a higher load forecast (ceteris 

paribus) increases the probability of spot price outcomes exceeding the high scenario pre-

dispatch price (PD1) by 12.7% (points)
28

. 

 

From the results in Table 3.6-1, we can draw a number of conclusions. As discussed 

previously, it is apparent that the outcome distribution is more focused on the central 

category for PD2 compared to PD1 (49% of     |      as compared to 37% of 

    |     ). Also we can see that there are fewer significant explanatory variables that 

can explain variation in conditional probabilities. In particular the expected pre-dispatch 

price and the load variables are no longer significant in explaining response probabilities at 

PD2. It is also apparent from these results that there is a fair degree of persistence in the 

spot price outcomes. The probability of     |    at PD1 (PD2) increases by 27.2% (31%) 

if the spot price outcomes in the previous half-hour is       |    and by 7.6% (11.3%) if 

48 half-hours prior       |   . This clearly indicates that high spot price outcomes are 

likely to be followed by further high spot price outcomes. The significant effect of 

      |    is not surprising as any unanticipated (at PD1) event that may cause the spot 

price at 08:30 to exceed the high scenario, is likely to still be in place at 09:00. However, 

the fact that the previous days spot price exceeded the high scenario (for sub-period  ) is 

known at the time of the pre-dispatch (certainly for PD2 and also for all morning periods at 

PD1). As such this information should have been worked into the pre-dispatch. The fact 

that this variable still has a sizeable and statistically significant effect on the category 

probabilities is one indication for the pre-dispatch process not incorporating all relevant 

information. 

 

Interestingly, the equivalent persistence effect of       | 
  and        | 

  on the conditional 

category probability   (    |   ) is also statistically significant but not quite as strong as 

the persistence for the highest category. The effect is weaker than the high category 

persistence at both lags (half-hour and 48 half-hours) and at both PD1 and PD2.  

 

                                                 
28

 For readability we will omit the “points” clarification in what follows. 
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3.6.1. Findings 

When evaluating the results of all 54 estimated models a number of general findings arise. 

These are now discussed in turn. 

 

3.6.1.1. Stronger persistence for      |    and      |    

 

(INSERT Figure 3.6-1 HERE) 

There is strong positive persistence for the spot price outcomes to be placed in the same 

outcome categories as it was in previous half hour in     and   periods for both PD1 and 

PD2. As these results do not qualitatively differ either across years or the periods of the 

day (    and  ) we present, in Figure 3.6-1, results for mean marginal effects that are 

averaged across these two dimensions. 

 

As for the results for             and              we can clearly discern that the 

persistence is much stronger for the half hour lag (Panels A and B) as compared to the 48 

half hour lag (Panels C and D). For instance, knowing that the spot price outcome is in the 

low category increases the probability of ending up in the low category, in the next half 

hour, (ceteris paribus) by about 30% (panel A). Similarly, if the current spot price is in the 

high category this will increase the probability of next half hour’s spot price being in the 

high category by about 35% (panel B). The 48 half hour persistence is much lower at about 

3.5% (for the low category, in panel C) and 4% (high category, in panel D) respectively. 

We can still detect a slight asymmetry in the sense that the persistence is somewhat larger 

for the high category.  

 

 

3.6.1.2. Strategic bidding  

 

(INSERT Figure 3.6-2 HERE) 

Next we discuss mean marginal effects when the demand one would expect for that day of 

the week,    ̃ increases by 1MwH. A 1MWh change is in fact a very small variation in 

load, in particular when considering that the low and high pre-dispatch scenarios are 

generated by changing the load forecast by +/- 200MWh. As such it is unlikely that any 

variations in category probabilities reported, as a result of this marginal change, is actually 

due to the change in the load. They are more likely to be the result of re-bidding activity 

triggered by the conditions that make the actual load exceed the load forecast.  
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In the rows of Figure 3.6-2 we can see the different results for the morning ( ), day time 

( ) and evening ( ) sub-periods. In the left column we present the results for PD1 and 

those for PD2 on the right. We can see that the increase in the category probability for 

    |   , as a result of the small increase in    ̃, is in the order of 10% (points). Taking 

into account the size of the change considered this seems very high. In fact this value 

increases to an increase of about 15% (points) for the PD2 model for the morning period. 

This seems to indicate that conditions in which actual load exceeds the load forecast trigger 

more significant re-bids for the morning dispatch period.  

 

This may be due to the fact that the time left to the morning dispatch periods (recall that 

PD2 represents the 6am pre-dispatch on the dispatch day) is very short. This is a scenario 

in which strategic rebidding appears quite fertile as it leaves little to no opportunity for an 

effective competitive response to any rebids, either by generators or indeed from the 

demand side. Indeed it was highlighted by National Electricity Code Administrator 

(2001b); Australia Competition & Consumer Conmission (2002) and Australian 

Competition & Consumer Commission (2002) that such late re-bidding activity plays an 

important role in causing the short-term price spikes. 

 

3.6.1.3. Temperature  

Of the temperature variables, only the unseasonably cold days in winter variable,      , 

could explain any of the variation in the spot price outcomes during the morning ( ) 

period. For the daytime ( ) period, however, both the       and       variables were 

significant. The spot price outcomes in the evening ( ) period, were independent of the two 

temperature variables. This pattern illustrates that the pre-dispatch process seems to 

anticipate and incorporate all the temperature information relevant to spot price outcomes 

in the evening periods into the pre-dispatch process, even at PD1. Logically, it is the 

daytime period that is most exposed to extreme temperature variations. 

 

Where these variables are significant it appears as if more extreme temperatures, sensibly, 

increase the probability of the wholesale spot price being larger than the high pre-dispatch 

scenario price. This is illustrated in Figure 3.6-3 in which we can see that more extreme 

values in       and       result in an increase in the probability for the high category. 

  

 (INSERT Figure 3.6-3 HERE) 
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3.6.1.4. Expected pre-dispatch price 

 

 (INSERT Figure 3.6-4 HERE) 

Last we investigate whether the category probabilities depend on the value of the expected 

pre-dispatch price level as measured by     | . In Figure 3.6-4, we observe that if     |  

increases, there is a significantly lower probability for     |    and a higher probability of 

the spot price being below the PD1 low scenario price. The coefficients to the     |  

variable are significant during the morning (m) period on PD1 and the evening (e) period 

on PD1 and PD2. Notably, when the pre-dispatch is close to dispatch (m, PD2) the 

variation in the spot price outcomes to be placed in any of the categories does not vary 

with     |  anymore. This indicates that supply and demand adjustment for the morning 

trading period have taken place by 6.00am (the time of PD2). This could be the result of 

demand elasticity (consumers decreasing their consumption) as a response to the high 

prices signal or rebidding mechanism by the generators resulting to cheaper power plants 

being made available or supply schedules being adjusted downwards. 

 

 

3.7. Conclusions 

The aim of this chapter was threefold. First, to introduce a framework in which we can 

analyse whether the pre-dispatch process, as operated by the AEMO, delivers unbiased 

predictions of the actual wholesale spot price outcomes. This was achieved by 

investigating the statistical properties of a categorical, ordinal variable based on high and 

low pre-dispatch scenarios. It transpired that in general the pre-dispatch process is 

downward biased, i.e. underestimates the actual price outcomes of the wholesale spot 

prices.  

 

Second, we investigate whether this bias varies systematically across years, seasons and/or 

trading periods. There is strong evidence that the pre-dispatch process seems to 

underestimate the actual price outcomes more severely for the morning and evening peak 

periods of the day. This finding is remarkably persistent throughout our sample period. If 

at all this bias becomes stronger for the later sample. When comparing the properties of the 

pre-dispatch process undertaken on the afternoon of the day prior to dispatch (PD1) to that 

undertaken at 6am on the day of dispatch (PD2) it becomes apparent that the latter is 

indeed more precise in the sense that we find a higher proportion of spot price outcomes 
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between the pre-dispatch’s high and low scenario price. Having said that, at PD2 there is 

still a strong downward bias even for the morning trading period.  

 

Third, by modelling our categorical, ordered outcome variable with an ordered probit 

model, we are in a position to investigate whether there are any exogenous variables that 

are able to explain the variation in the probability of spot price outcomes to fall above 

(below) the high (low) pre-dispatch scenario prices. Exogenous variables included are 

seasonal variables (to allow for systematic variations observed), load forecasts and load 

forecast errors, temperature data and expected pre-dispatch prices. We also include 

variables designed to investigate whether spot price outcomes (relative to pre-dispatch 

scenario prices) show any persistence. While such persistence is clearly expected (and 

indeed observed) in the very short run it is somewhat surprising to find this persistence to 

still be statistically significant across a full day. This clearly indicates that the pre-dispatch 

process, as operated in New South Wales, fails to fully accommodate all information 

available on the day prior to dispatch. Further results demonstrate that there is some 

indication of market participants adjusting their behaviour to the price signal delivered by 

the pre-dispatch process. Higher price signals result in increased probabilities for price 

outcomes below the low pre-dispatch scenario price. From the data available here it is 

impossible to say whether these adjustments are driven by demand or supply side 

adjustments. 

 

These results improve our understanding of the strengths and weaknesses of the pre-

dispatch process in the Australian Electricity Market. We identified circumstances when 

the pre-dispatch process tends to produce biased price forecasts but also found evidence 

that it does fulfil some of its signalling function and allows market participants to adjust 

their behaviour. The results obtained (in particular the persistence of the overall bias) allow 

us to conjecture that some of the bids and re-bids provided by generators are not made in 

good faith as required by the National Electricity Rules (Australian Energy Market 

Commission, 2013, paragraph 3.8.22A).   

 

In order to substantiate such a conjecture the analysis would have to analyse firm and bid 

specific information. This information is in principle available and we anticipate that it will 

provide a fertile ground of future research. 
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Appendix B 

 
Table B-1: This table is used to show the mean marginal effect,        in year (1999),   during morning ( ), daytime ( ) and evening ( ) sub-periods,   for 

both dispatch periods,  ; the day before dispatch (   , 15:00, PD1) and on the dispatch day ( ) at 6am (PD2). The unconditional probability of PD1 and 

PD2 for each of the spot price outcomes;   (    |  {     }) are reported in the third row. While the mean marginal effects of the explanatory variables 

listed in first column are display in the remaining rows.   
     

      
    are the dummy variables giving value of 1 when day   is weekends, winter, 

summer or 0 otherwise.    ̃, is de-seasonalised load forecast error and   
  is load forecast as discussed in Section 3.4.2.       and       are unseasonably 

temperature as discussed in Section 3.4.3.        | 
 ,      | 

        | 
  and       | 

  are dummy variables which indicate whether one trading period prior 

(      | 
 ) or one day prior (      | 

 ) the spot price outcome was placed either above the upper scenario (   ) or below the lower scenario price (   ). 

And lastly,     |  is the expected pre-dispatch price calculated using equation (3.4-4). The mean marginal effects for continuous and binary variables are 

calculated based on equation (3.5-3) and (3.5-4) respectively. All the mean marginal effects displayed are based on the significant estimated parameters,   

and   at 5% level. The insignificant ones are not shown (blank cell entries). Only the highest positive mean marginal effects are bolded.  

 

 

                              

 

                                    

  0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 

  (    |    ) 20% 37% 44% 12% 49% 39% 27% 36% 36% 29% 41% 31% 31% 34% 35% 28% 39% 33% 

  
   -7% -1% 8% -3% -2% 5% -4% -1% 5% -3% 0% 3% -4% -1% 5% -3% 0% 3% 

  
    8% 1% -9% 2% 1% -3% 5% 1% -6% 2% 0% -2% 9% 1% -10% 6% 0% -6% 

  
                                        

      | 
  23% 3% -26% 21% -1% -20% 49% -7% -42% 50% -30% -20% 38% -3% -35% 39% -14% -25% 

      | 
  5% 1% -6% 5% 2% -7%       1% 0% -1% 5% 1% -6% 2% 0% -2% 

      | 
  -21% -6% 27% -13% -18% 31% -27% -23% 50% -28% -12% 40% -25% -12% 37% -27% -14% 41% 

      | 
  -7% -1% 8% -6% -5% 11% -3% -1% 4% -3% 0% 3% -5% -1% 6% -4% 0% 4% 

    |  2% 0% -2%                   1% 0% -1% 2% 0% -2% 

   ̃ 
-9% -1% 10%       -10% -3% 13% -7% 0% 7% -13% -2% 15% -6% 0% 6% 

  
  -11% -2% 13%       -7% -1% 8%       -8% -1% 9% -5% 0% 5% 

      
-2% 0% 2% -1% -1% 2%                         

                  
-1% 0% 1% -1% 0% 1%             
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Table B-2: This table is used to show the mean marginal effect,        in year (2000),   during morning ( ), daytime ( ) and evening ( ) sub-periods,   for 

both dispatch periods,  ; the day before dispatch (   , 15:00, PD1) and on the dispatch day ( ) at 6am (PD2). 

 

Further explanation on this table is similar to the caption of Table B-1 

 

 

 

 

 

 

 

 

                              

 

                                    

  0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 

  (    |    ) 19% 34% 47% 15% 47% 38% 30% 33% 38% 31% 37% 32% 24% 33% 43% 22% 37% 41% 

  
   -6% -3% 9% -7% -2% 9% -2% -1% 3% -4% 1% 3%       

  
          

-2% 0% 2% -2% 0% 2%       

  
          3%  0%  -3%    2%  0%  -2% 2%  0%  -2%              

      | 
  28% -2% -26% 20% -7% -13% 50% -27% -23% 51% -38% -13% 36% -17% -19% 37% -28% -9% 

      | 
  6% 2% -8% 5% 0% -5% 1%  1%  -2%           

      | 
  -21% -15% 36% -15% -6% 21% -29% -9% 38% -30% 4% 26% -26% -6% 32% -25% 8% 17% 

      | 
  -3% -2% 5% -5% -1% 6% -2% 0% 2% -1% 0% 1% -5% 0% 5% -3% 1% 2% 

    |                       0.4% 0% -0.4% 0.3% -0.1% -0.2% 

   ̃ 
-10% -5% 15% -13%  -2%  15%  -5% -1% 6% -5% 1% 4%       

  
                 3% -1% -2% 

      
-3% -1% 4% -3% 0% 3% 1%  0%  -1%         -1% 0%  1%  -1%  0%  1%  

                  
-1% 0% 1% -0.5% 0.1% 0.4%             
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Table B-3: This table is used to show the mean marginal effect,        in year (2001),   during morning ( ), daytime ( ) and evening ( ) sub-periods,   for 

both dispatch periods,  ; the day before dispatch (   , 15:00, PD1) and on the dispatch day ( ) at 6am (PD2). 

 

Further explanation on this table is similar to the caption of Table B-1 

  

 

                              

 

                                    

  0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 

  (    |    ) 21% 30% 49% 22% 43% 35% 39% 26% 35% 42% 32% 27% 38% 24% 38% 39% 26% 34% 

  
   -9% -5% 14% -5% -1% 6% -2% 0% 2% 

   
      

  
    7% 3% -10%   5% 1% -6%       6% -1% -5% 6% -2% -4% 

  
               2%  0%  -2% 3%  -2%  -1%              

      | 
  24% 5% -29% 22% -2% -20% 47% -32% -15% 52% -45% -7% 41% -17% -24% 43% -28% -15% 

      | 
  4% 2% -6% 9% 1% -10%       5%   0% -5% 5% -1% -4% 

      | 
  -23% -15% 38% -19% -8% 27% -39% 14% 25% -37% 22% 15% -31% 1% 30% -33% 11% 22% 

      | 
  -4% -2% 6% -5% -1% 6% -3% 0% 3% -4% 2% 2% -4% 0% 4% -3% 1% 2% 

    |                          0.5% -0.1% -0.4% 

   ̃ 
-11% -5% 16% -8%  -2%  10%  -3% 0% 3%          

  
        3% 0% -3% 4% -2% -2%       

      
-1% -1% 2% -2% 0% 2%                

                   -1%  0%  1%  
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Table B-4: This table is used to show the mean marginal effect,        in year (2002),   during morning ( ), daytime ( ) and evening ( ) sub-periods,   for 

both dispatch periods,  ; the day before dispatch (   , 15:00, PD1) and on the dispatch day ( ) at 6am (PD2). 

 

Further explanation on this table is similar to the caption of Table B-1 

  

 

                              

 
                                    

  0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 

  (    |    ) 12% 24% 64% 17% 46% 37% 26% 25% 49% 32% 31% 37% 26% 26% 48% 29% 28% 44% 

  
   -3% -1% 4% -6% -4% 10%    

   
      

  
         5% 3% -8% -2% -2% 4% -2% 0% 2% 4% 1% -5% 4% 1% -5% 

  
          2% 1% -3%   3%  2%  -5% 3%  0%  -3%              

      | 
  20% 5% -25% 32% 4% -36% 39% -10% -29% 48% -27% -21% 35% 3% -38% 41% 2% -43% 

      | 
     2% 1% -3% 2% 1% -3% 3% 0% -3% 5%   1% -6% 3% 1% -4% 

      | 
  -21% -8% 29% -16% -18% 34% -30% -14% 44% -31% -4% 35% -27% -16% 43% -27% -13% 40% 

      | 
  -2% -1% 3% -3% -2% 5% -1% -1% 2%    -4% -1% 5% -3% 0% 3% 

    |  2% 0% -2% 1%  1%  -2%              2% 1% -3%    2% 0% -2% 

   ̃ 
-7% -2% 9% -13%  -9%  22%  -5% -4% 9% -6% 0% 6% -9% -2% 11% -9% -2% 11% 

  
  -6% -2% 8% -7% -5% 12%       -4% -1% 5% -6% -1% 7% 

      
   -2% -1% 3%                

                      
-0.4% -0.3% 0.7% -0.4% 0.0% 0.4%       0.5%  0.1%  -0.6%  
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Table B-5: This table is used to show the mean marginal effect,        in year (2003),   during morning ( ), daytime ( ) and evening ( ) sub-periods,   for 

both dispatch periods,  ; the day before dispatch (   , 15:00, PD1) and on the dispatch day ( ) at 6am (PD2). 

 

Further explanation on this table is similar to the caption of Table B-1 

 

 

 

 

 

                              

 

                                    

  0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 

  (    |    ) 12% 22% 66% 15% 40% 45% 24% 25% 51% 29% 29% 42% 20% 22% 57% 21% 27% 53% 

  
   -5% 3% 2% -6% 0% 6% -2% -1% 3% -2% -1% 3%       

  
    6% -3% -3% 7% 0% -7%             

  
    

   

   3% 2% -5% 3% 1% -4% 

   
2% 1% -3% 

      | 
  20% -12% -8% 26% 1% -27% 37% -1% -36% 44% -13% -31% 31% 9% -40% 27% 3% -30% 

      | 
  2% -1% -1% 4% 0% -4%    2% 0% -2% 2% 1% -3% 2% 1% -3% 

      | 
  -19% 14% 5% -16% -1% 17% -28% -21% 49% -30% -15% 45% -23% -21% 44% -25% -20% 45% 

      | 
  -2% 1% 1% -2% 0% 2% -3% -2% 5% -2% 0% 2% -4% -2% 6% -3% -2% 5% 

    |  2% -1% -1%    1% 1% -2% 1% 0% -1%       

   ̃ 
-9% 5% 4% -16% -1% 17% -5% -3% 8% -6% -1% 7% -8% -4% 12% -7% -3% 10% 

  
  -10% 6% 4% -10% -1% 11%             

      
-1.4% 0.8% 0.6% -1% 0% 1%    

   
-1% 0% 1% -1% 0% 1% 

      
   

-1% 0% 1% 
-1% 0% 1% -1% 0% 1% 
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Table B-6: This table is used to show the mean marginal effect,        in year (2004),   during morning ( ), daytime ( ) and evening ( ) sub-periods,   for 

both dispatch periods,  ; the day before dispatch (   , 15:00, PD1) and on the dispatch day ( ) at 6am (PD2). 

 

Further explanation on this table is similar to the caption of Table B-1 

 

 

 

 

 

 

                              

 

                                    

  0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 

  (    |    ) 10% 18% 72% 14% 35% 50% 22% 22% 56% 25% 29% 46% 20% 21% 59% 23% 25% 53% 

  
   -4% -4% 8% -3% -3% 6% -2% -2% 4% -3% -1% 4%       

  
    4% 4% -8% 3% 2% -5% 1% 1% -2% 2% 1% -3% 3% 1% -4% 3% 1% -4% 

  
    2% 2% -4%    3% 2% -5% 3% 1% -4% 3% 1% -4% 2% 1% -3% 

      | 
  16% 12% -28% 19% 6% -25% 34% 5% -39% 38% -3% -35% 30% 10% -40% 33% 7% -40% 

      | 
  4% 4% -8% 3% 2% -5% 2% 2% -4% 2% 1% -3% 2% 1% -3% 3% 1% -4% 

      | 
  -18% -20% 38% -17% -17% 34% -28% -25% 53% -28% -24% 52% -23% -18% 41% -24% -16% 40% 

      | 
  -3% -3% 6% -4% -3% 7% -1% -1% 2%    -4% -2% 6% -3% -1% 4% 

    |  1% 1% -2%       3% 1% -4% 1% 0% -1% 1% 0% -1% 

   ̃ 
-5% -5% 10% -12% -10% 22% -5% -4% 9% -8% -2% 10% -8% -3% 11% -8% -3% 11% 

  
  -3% -3% 6%       -3% -1% 4% -4% -2% 6% -5% -2% 7% 

      
      0.5% 0.4% -0.9% 1% 0% -1%       
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Table B-7: This table is used to show the mean marginal effect,        in year (2005),   during morning ( ), daytime ( ) and evening ( ) sub-periods,   for 

both dispatch periods,  ; the day before dispatch (   , 15:00, PD1) and on the dispatch day ( ) at 6am (PD2). 

 

Further explanation on this table is similar to the caption of Table B-1 

 

 

                              

 

                                    

  0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 

  (    |    ) 11% 14% 74% 15% 32% 54% 18% 17% 65% 22% 27% 51% 18% 18% 64% 22% 23% 55% 

  
   -2% 1% 1%    -2% -1% 3% -3% -1% 4%       

  
    3% -1% -2%                

  
        2%    -1%   -1% 3% 2% -5%   2%  1%  -3% 3%  0%  -3%        

      | 
  12% -5% -7% 18% 8% -26% 30% 14% -44% 35% 6% -41% 23% 10% -33% 28% 1% -29% 

      | 
     4% 3% -7%       3%   2% -5% 4% 2% -6% 

      | 
  -23% 11% 12% -17% -14% 31% -26% -26% 52% -28% -18% 46% -25% -18% 43% -26% -13% 39% 

      | 
  -3% 1% 2% -3% -2% 5% -1% -1% 2%    -5% -3% 8% -2% -1% 3% 

    |              0.3% 0.2% -0.5%    

   ̃ 
-8% 3% 5% -6%  -4%  10%  -7% -4% 11% -10% -2% 12% -6% -4% 10% -6% -3% 9% 

  
  -6% 2% 4%  -6%  -4%  10% -2% -1% 3% -6% -1% 7%       

      
      1% 0% -1% 1%  0%  -1%        
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Table B-8: This table is used to show the mean marginal effect,        in year (2006),   during morning ( ), daytime ( ) and evening ( ) sub-periods,   for 

both dispatch periods,  ; the day before dispatch (   , 15:00, PD1) and on the dispatch day ( ) at 6am (PD2). 

 

Further explanation on this table is similar to the caption of Table B-1 

 

 

                              

 

                                    

  0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 

  (    |    ) 10% 21% 70% 11% 37% 52% 21% 23% 56% 20% 27% 53% 20% 21% 59% 20% 23% 58% 

  
   -1% -2% 3%    -3% -1% 4% -2% -2% 4%       

  
                2% 1% -3% 2% 1% -3% 

  
            2%  0%  -2% 1%  1%  -2%    3%     1%            -4% 3% 2% -5% 

      | 
  19% 14% -33% 17% 6% -23% 30% 7% -37% 36% 0% -36% 27% 7% -34% 27% 6% -33% 

      | 
  2% 2% -4%    2% 0% -2%    3%   1% -3% 3% 2% -5% 

      | 
  -18% -22% 40% -16% -20% 36% -29% -28% 57% -25% -27% 52% -24% -13% 37% -25% -20% 45% 

      | 
  -2% -2% 4% -3% -3% 6% -1% -1% 2% -2% -1% 3% -4% -1% 5% -3% -2% 5% 

    |  1% 1% -2%          1% 0% -1%  0.1% 0% -0.1% 

   ̃ 
-3% -3% 6% -4%  -5%  9%  -9% -2% 11% -8% -6% 14% -5% -1% 6%    

  
  -3% -3% 6%    -4% -1% 5%    -5% -1% 6%    

      
-1% -1% 2% -2% -2% 4% 1% 0% -1%          

                      
0.4% 0.1% -0.5% 0.3% 0.2% -0.5%       
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Table B-9: This table is used to show the mean marginal effect,        in year (2007),   during morning ( ), daytime ( ) and evening ( ) sub-periods,   for 

both dispatch periods,  ; the day before dispatch (   , 15:00, PD1) and on the dispatch day ( ) at 6am (PD2). 

 

Further explanation on this table is similar to the caption of Table B-1 

 

 

 

 

 

 

 

 

                              

 

                                    

  0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 

  (    |    ) 10% 17% 73% 17% 37% 46% 25% 19% 56% 25% 28% 48% 27% 20% 53% 24% 23% 53% 

  
   -5% 3% 2% -3% -2% 5% -3% 0% 3% -3% 0% 3% -2% 0% 2%    

  
    5% -3% -2%    2% 0% -2%          

  
            6%  0%  -6% 7%  0%  -7%    2%     0%            -2%    

      | 
  10% -6% -4% 17% 6% -23% 32% 1% -33% 35% 2% -37% 31% 4% -35% 32% 3% -35% 

      | 
  3% -2% -1% 3% 2% -5%       5%   0% -5% 2% 1% -3% 

      | 
  -22% 16% 6% -20% -15% 35% -31% -2% 33% -27% -5% 32% -31% -10% 41% -28% -16% 44% 

      | 
  -3% 2% 1% -3% -2% 5% -3% 0% 3% -3% 0% 3%    -2% -1% 3% 

    |  0.4% -0.2% -0.2%    0.4% 0% -0.4% 0.3% 0% -0.3% 0.1% 0% -0.1%    

   ̃ 
-5% 3% 2% -10%  -5%  15%  -8% 0% 8% -11% -1% 12% -6% -1% 7%    

  
  -7% 4% 3%  -5% -3% 8% -6% 0% 6% -8% 0% 8% -5% 0% 5%    

      
   -1% -1% 2%             
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Appendix C 

 

Variable Description Source 

     The actual wholesale market spot price outcome for the  th sub-period on day   http://www.aemo.com.au/Electricity/Data/Price-

and-Demand/Aggregated-Price-and-Demand-

Data-Files 

    | 
   ,     | 

   The pre-dispatch price sensitivity prices between +/- 200 MWh scenarios on the 

day before dispatch (   , 15:00, PD1) and on the dispatch day ( ) at 6am (PD2) 

http://www.aemo.com.au/Electricity/Market-

Operations/Dispatch/PreDispatch-Sensitivities 

 

http://www.aemo.com.au/Electricity/Data/Market-

Management-System-MMS#Predispatch 

  
     

      
    These are dummy variables that takes a value of 1 when day   is weekends, winter 

or summer and 0 otherwise 

 

  
 ,    ̃ Both of these variables are calculated from the actual load on day  ,     http://www.aemo.com.au/Electricity/Data/Price-

and-Demand/Aggregated-Price-and-Demand-

Data-Files 
      and 

      

Both of these variables are calculated from the actual maximum and minimum 

temperature on day  ,      
    and      

    

http://www.bom.gov.au/climate/data/ 

 

Station number for NSW is 66062 

 

Table C-1: This table is used to show details on the source of data used in Chapter 3

http://www.aemo.com.au/Electricity/Data/Price-and-Demand/Aggregated-Price-and-Demand-Data-Files
http://www.aemo.com.au/Electricity/Data/Price-and-Demand/Aggregated-Price-and-Demand-Data-Files
http://www.aemo.com.au/Electricity/Data/Price-and-Demand/Aggregated-Price-and-Demand-Data-Files
http://www.aemo.com.au/Electricity/Market-Operations/Dispatch/PreDispatch-Sensitivities
http://www.aemo.com.au/Electricity/Market-Operations/Dispatch/PreDispatch-Sensitivities
http://www.aemo.com.au/Electricity/Data/Market-Management-System-MMS#Predispatch
http://www.aemo.com.au/Electricity/Data/Market-Management-System-MMS#Predispatch
http://www.aemo.com.au/Electricity/Data/Price-and-Demand/Aggregated-Price-and-Demand-Data-Files
http://www.aemo.com.au/Electricity/Data/Price-and-Demand/Aggregated-Price-and-Demand-Data-Files
http://www.aemo.com.au/Electricity/Data/Price-and-Demand/Aggregated-Price-and-Demand-Data-Files
http://www.bom.gov.au/climate/data/
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Figure 3.1-1: In panel A to illustrate the deviations of actual demand from the demand forecast is symmetric,  we add a variation drawn from normally 

distributed pseudorandom numbers to demand forecast which is set to be 1000MwH and plot their histogram. An electricity supply curve is illustrated in 

panel B to show their influence on the skewness of the spot price distribution in panel C, even though these spot prices are based on symmetric demand 

distribution assumption. Hence, with this assumption, we expect an equal numbers of these spot prices (     ) from the symmetric distributed demand to 

appear below          and above          resulting to the distribution of the discrete price outcomes to be symmetric (in panel D).    
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Figure 3.2-1: This figure is used to show the optimisation process during pre-dispatch and at 

dispatch.  

 

In the figure,           |          is a stylised supply schedule for dispatch period 08:00 on day   as 

produced from the 15:00 pre-dispatch on day     and         |          is the demand forecast 

(for the 08:00 period on day  ) as of 15:00 on day    . The intersection of the supply and demand 

curves resulting to pre-dispatch price denoted by         |          on the y-axis.  

   on the x-axis is used to represent the demand variation considered in the sensitivity scenarios. In 

the case of the NSW electricity market,   is equivalent to 200 MWh. Therefore, if the demand 

forecast increases/decreases by  , this means the pre-dispatch price changes to         |         
   or 

        |         
   (as shown in the x-axis).         |         

  and         |         
   are also known as 

pre-dispatch scenarios prices. 
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Figure 3.2-2: In Panel A, we report the empirical distribution for           |    in year 2000 by plotting their empirical probabilities, 

  (          |      ) in the y-axis as a percentage with respect to 35 half-hour in a day,                 (1
st
 half-hour,…,35

th
 half-hour).  

The   (          |    {     }) with respect to 35 half-hour in a day are as labelled by the legend of the graphs. To calculate   (              |     ) 

  (              |      )   (
∑          |      

   
   

   
)        

            |       {
                      |      

                     
 

In Panel B, we are only looking at the empirical distributions of     |    during weekdays,   (               |      ), panel C during weekends, 

  (               |      ), in panel D during winter,   (            |      ), in Panel E during summer   (           |      ) and in Panel F 

during other seasons   (                    |      ).  
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Figure 3.2-3: In Panel A, we report the empirical distribution for           |    in year 2000 by plotting their empirical probabilities, 

  (          |      ) in the y-axis as a percentage with respect to 35 half-hour in a day,                 (1
st
 half-hour,…,35

th
 half-hour).  

The   (          |    {     }) with respect to 35 half-hour in a day are as labelled by the legend of the graphs. To calculate   (              |     ) 

  (              |      )   (
∑          |      

   
   

   
)        

            |       {
                      |      

                     
 

 

In Panel B, we are only looking at the empirical distributions of     |    during weekdays,   (               |      ), panel C during weekends, 

  (               |      ), in panel D during winter,   (            |      ), in Panel E during summer   (           |      ) and in Panel F 

during other seasons   (                    |      ).    



126 

 

 

 

 
Figure 3.2-4: In panel A, we plotted a yearly unconditional probability of the spot price outcomes that land between the two pre-dispatch scenario 

prices,   (    |    ) from 1 March 1999 to 31 October 2007 in morning sub-period (06:30 to 09:30 dispatch intervals,    ). In this figure the 

yearly unconditional probability are reported for both dispatch periods; the day before dispatch (   , 15:00, PD1) and on the dispatch day ( ) at 

6am (PD2). The respective yearly unconditional probability for PD1 and PD2 are as labelled in the legend. As follows; panel C show the 

  (    |    ) in daytime sub-period (10:00 to 17:30,    ) and panel E in evening sub-period (18:00 to 23:30,    ).  

While Panel B, D and F, the yearly unconditional probability,  (    |   )   (    |   ) are giving an indication of the bias to be placed in the     |  

  according to the sequence of sub-periods. The larger this value the more does the pre-dispatch process underestimate the actual spot price outcome. 
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  0 1 2 0 1 2 

  (    |    ) 20% 37% 44% 12% 49% 39% 

  
   -7% -1% 8% -3% -2% 5% 

  
    8% 1% -9% 2% 1% -3% 

  
                

      | 
  23% 3% -26% 21% -1% -20% 

      | 
  5% 1% -6% 5% 2% -7% 

      | 
  -21% -6% 27% -13% -18% 31% 

      | 
  -7% -1% 8% -6% -5% 11% 

    |  2% 0% -2%       

   ̃ -9% -1% 10%       

  
  -11% -2% 13%       

      -2% 0% 2% -1% -1% 2% 

                  

 

Table 3.6-1: This table is used to show the mean marginal effect,        in year (1999),   during morning ( ) sub-period,   for both dispatch periods,  ; the 

day before dispatch (   , 15:00, PD1) and on the dispatch day ( ) at 6am (PD2). The unconditional probability of PD1 and PD2 for each of the spot price 

outcomes;   (    |  {     }) are reported in the second row. While the mean marginal effects of the explanatory variables listed in first column are 

display in the remaining rows.   
     

      
    are the dummy variables giving value of 1 when day   is weekends, winter, summer or 0 otherwise.    ̃, is 

de-seasonalised load forecast error and   
  is load forecast as discussed in Section 3.4.2.        and       are unseasonably temperature as discussed in 

Section 3.4.3.       | 
 ,      | 

        | 
  and       | 

  are dummy variables which indicate whether one trading period prior (      | 
 ) or one day prior 

(      | 
 ) the spot price outcome was placed either above the upper scenario (   ) or below the lower scenario price (   ). And lastly,     |  is the 

expected pre-dispatch price calculated using equation (3.4-4). The mean marginal effects for continuous and binary variables are calculated based on 

equation (3.5-3) and (3.5-4) respectively. All the mean marginal effects displayed are based on the significant estimated parameters,   and   at 5% level. 

The insignificant ones are not shown (blank cell entries). Only the highest positive mean marginal effects are bolded. 
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Figure 3.6-1: These are the mean marginal effects of       | 
  (panel A and B) and       | 

  

(panel C and D) averaged across two dimensions; the years and all trading intervals and for 

both PD1 and PD2.  
 

On average, the probability of     |    increases by 31% if the spot price outcomes in the 

previous half-hour is       |    (in panel A). To calculate the probability, we take an average of 

all the mean marginal effects of       |   
  and       |   

  from 1999 to 2007 for all the subperiods. 

Note that the corresponding decreases in probabilities for the central and upper categories (-3% and 

-28%) ensure that the sum of all these three changes is 0. By construction the sum of all marginal 

effects equal to 0 as at any stage the sum of all the conditional probabilities, 

 (    |   |    |    |    | ) have to sum to 1.  
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Figure 3.6-2: These are the mean marginal effects of    ̃ averaged across the years. The left-

side is based on PD1 while the right side is based on PD2. For mean marginal effect of 

   ̃       in the first panel, we take an average of all the mean marginal effects of 

   ̃       from 1999 to 2007.  
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Figure 3.6-3: These are the mean marginal effects of       and       averaged across the 

years and all trading intervals for both PD1 and PD2. For these mean marginal effects, we 

take an average of all the mean marginal effects of       and       from 1999 to 2007 

for all the sub-periods. 
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Figure 3.6-4: These are the mean marginal effects of     |  averaged across the years. The 

left-side is based on PD1 while the right side is based on PD2. For mean marginal effect of 

    |        in the first panel, we take an average of all the mean marginal effects of 

    |         from 1999 to 2007. 
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Chapter 4 

4. Does information from the pre-dispatch process help predicting price spikes in the 

Australian Electricity Market? 

 

 

 

 

ABSTRACT 

 

The pre-dispatch process is an important element of Australia Electricity Market operation, 

intended to provide market participants with useful and accurate information for next-day’s 

trading period.  It is the purpose of this chapter to investigate whether information from 

this pre-dispatch process can be useful when predicting next-day price spikes. In a 

preliminary analysis we establish the effect of pre-dispatch prices on the quantiles of the 

spot price distribution. A Quantile regression approach reveals that higher pre-dispatch 

prices signal only to a certain extent an increased probability of higher spot price 

outcomes. They also signal a higher uncertainty about the resulting spot price outcomes. 

We further establish whether the inclusion of information from the pre-dispatch process 

can significantly improve the predictability of price spikes when these are modelled as a 

point process (as in Chapter 2). The models used here are Hawkes and Poisson 

Autoregressive Models which allow for time variation (correlated to exogenous 

information) in the intensity process that governs the occurrence of price spikes. It 

transpires that the pre-dispatch process of the Australian Electricity Market does not 

provide any information that can be used in a systematic manner to help predicting on what 

days price spikes are more likely to occur.   
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4.1. Introduction  

Until the early 1990s the electricity sector has been a vertically integrated industry, often 

under state control, in virtually all countries. Regulators were responsible to fix prices and 

did so considering the costs of generation, transmission and distribution costs. This central 

price setting process resulted in fairly stable electricity prices. 

 

In recent years electricity markets have been deregulated in many countries. Deregulation 

aims to introduce competition in generation and supply activities, with transmission and 

distribution often still regarded as a natural monopoly. This is done by unbundling the 

generation activity from transmission and distribution as a separate business. While this 

unbundling is common to almost all deregulation processes, the process which determines 

the market price of electricity differs substantially between countries
29

. Most deregulated 

markets are organised by power pools and managed by an independent electricity operator 

(see eg. (Weron 2007)). In such markets electricity suppliers are required to submit offers 

to sell electricity while the wholesale buyers submit bids to buy electricity.  

 

An independent electricity operator receives these bids and the market prices will be 

determined through some pricing algorithm that matches the resulting supply with the 

system demand in the most cost efficient way. The market price is then the cost of the 

marginal (most expensive) unit of electricity used in this matching process.  

 

Electricity is a homogenous commodity with physical characteristics unlike other 

commodities. In order to maintain the stability of the electricity network the market needs 

to clear at any moment in time. The ‘non-storability’ of electricity means that inventories 

cannot be used to ‘smooth’ out supply
30

. This causes substantial intra-day price 

seasonality, mainly driven by the typical daily electricity demand pattern. As retail prices 

are regulated it is typical to find a very low price elasticity of demand. This, in 

combination with a highly convex supply curve, results in a very volatile price process.  

 

In fact, the electricity price time-series exhibits more extreme and more frequent price 

spikes than even financial data. In the electricity market price spikes are large upward 

jumps of electricity prices which will usually return to the normal price level very quickly.  

                                                 
29

 In most countries the retail market is still heavily regulated. In what follows “electricity market”, if not 

made explicit otherwise, refers to the wholesale electricity market. 
30

 Pump-storage reservoirs can, to a certain extent, be seen as inventories. 
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Due to the complex empirical properties of electricity prices (seasonality, time-varying 

volatility, jumps) in deregulated markets the process of modelling these in an econometric 

model has proven challenging. Consequently forecasting electricity prices is at least 

equally as complex a task (Bunn 2000; Song & Wang 2003). In this chapter we are 

interested in a particular aspect of the price process, the sudden and very large jumps of the 

spot price, also known as “price spikes”. The Federal Energy Regulatory Commission 

(1998) concluded that these price events can mainly be attributed to unusually hot weather, 

equipment outages, transmission congestion and retail price inflexibility.  

 

Figure 4.1-1 shows the time-series of daily average prices (on a logarithmic scale) on the 

New South Wales
31

 wholesale electricity market. It is immediately apparent that price 

spikes are a prominent feature of this time-series. Price spikes in this particular market 

feature prices that are several orders of magnitude higher than normal price levels, jumping 

back down swiftly to a normal price range. While the above features of the electricity 

market can be made partly responsible for the prevalence of price spikes in the Australian 

National Electricity Market (NEM), Kwoka (2012) conjectures that a fair proportion of 

these price spikes are due to strategic bidding behaviour.  

 

(INSERT Figure 4.1-1 HERE) 

 

Kwoka (2012) discusses situations in which opportunities for strategic bidding arise. The 

most obvious is when an individual supplier is critical in order to ensure that the electricity 

demand can be met by the supply side. In such situations this suppliers has an incentive 

and the ability to manipulate the market clearing price by potentially withholding 

generation capacity. These situations are more likely to arise when the market demand gets 

close to the generation capacity. In the absence of effective behavioural controls on 

electricity supplier’s bidding behaviour this is likely to contribute to the high frequency 

and size of price spikes in the NEM. 

 

Extraordinary price events represent a significant source of risk to retailers. In deregulated 

market, retailers buy electricity from a grid at spot price but are required to sell them to end 

user at a heavily regulated price. Hence, it is important for retailers to predict (if and where 

this is possible) these extreme events and hedge them accordingly. 

 

                                                 
31

 The New South Wales region is one of several, connected regions in the Australian Electricity Market.  
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One element in the setup of the NEM that is meant to increase market transparency and 

therefore to facilitate the prediction of potential price events is the pre-dispatch process. In 

this process electricity suppliers provide the Australian Energy Market Operator (AEMO) 

with their day-ahead supply curves. The market operator will aggregate these to a market 

supply curve and match it with its best possible demand forecast. The result of this exercise 

is the market operator’s prediction of the next day’s wholesale market price.  

 

It is the main aim of this chapter to incorporate information from this pre-dispatch process 

into price spike models. To the best of our knowledge no such attempt has been made in 

the literature. Methodologically our chapter follows those of Christensen et al. (2012), 

Christensen et al. (2009) and Chapter 2 in which price events are defined as a binary series 

or a point process. These papers investigate whether the occurrence of the price events can 

be predicted through variation in exogenous variables (such as meteorological or load 

information) and the history of the binary event series features itself. The contribution of 

this chapter is therefore the inclusion of pre-dispatch information into the relevant 

information sets. 

 

In a preliminary analysis we investigate some fundamental features of the relationship 

between pre-dispatch prices and the wholesale market price outcomes. In this preliminary 

analysis, which consists of a careful analysis of correlations and quantile regressions, we 

find evidence that pre-dispatch prices are a surprisingly week predictor of price outcomes. 

This allows the conjecture that electricity generators have the tendency to change their 

supply bids substantially between their initial submission and the actual dispatch. In the 

light of these findings it is not surprising to find that the pre-dispatch information does not 

have any substantial explanatory power for price spikes. 

 

The remainder of this chapter is structured as follows; in Section 4.2 we discuss the state of 

the literature in modelling the time-series of wholesale market electricity prices, putting a 

particular emphasis on those papers that focus on price spikes. The methodology used to 

investigate the relationship between pre-dispatch prices and the wholesale market price 

outcomes and the point process models used to predict price spikes are discussed in 

Section 4.3. A brief description on the structure of Australia National Electricity Market 

(NEM), pre-dispatch process and the conditioning covariates is presented in Section 4.4. 

Later in Section 4.5, we discuss the result from our preliminary analysis, the estimation 
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and forecasting exercise using the point process models and conditioning covariates 

discuss previously. Finally in Section 4.6, we conclude this chapter.   

 

4.2. Literature review 

Since wholesale electricity markets have been deregulated modelling and forecasting 

wholesale electricity prices has attracted a considerable amount of attention. 

Understanding the behaviour of future electricity prices is particularly important for market 

participants which are, due to the market design, exposed to large price variations. In the 

case of the NEM these are electricity retailers as they have to purchase electricity from the 

deregulated wholesale market but sell this electricity on a regulated retail market. Price 

distribution forecasts will inform the hedging strategies of these retailers. On the other 

side, Arciniegas & Arciniegas Rueda (2008) argue that electricity suppliers with a superior 

understanding of future market conditions and prices can implement more profitable 

bidding strategies. 

 

Due to the complexity of the electricity price process (such as seasonality, skewness, high 

and clustering volatility as well as the presence of jumps
32

) the modelling and forecasting 

process is not straightforward and many different methodologies have been proposed. Most 

of the studies that proposed approaches to model electricity prices focused on modelling 

the trajectory of the spot price or its return across time and by so doing attempt to deal with 

most or all of the above properties (Amjady & Keynia 2008; Geman & Roncoroni 2006; 

M. Barlow 2002; Mount et al. 2006; Bunn 2000; De Jong & Huisman 2002; Amjady & 

Keynia 2009). The methodology adopted by these studies include time series based models 

such as; traditional autoregressive time series models, nonlinear time series models such as 

Markov-Switching models, continuous-time diffusion or jump-diffusion models and 

artificial intelligence models such as neural networks, structural models, machine learning 

models, and hybrid models (see Weron (2007) for discussions on a range of these models).  

 

In this chapter we focus on one particular aspect of the electricity price distribution, the so 

called price spikes. There is no particular definition of what constitutes a price spike, but 

for the purpose of this chapter we follow the lead of Christensen et al. (2009) who define 

price spikes as a binary variable defined by whether the wholesale price exceeds some 

price threshold. Christensen et al. (2009) found evidence of significant persistence in the 

                                                 
32

 These features have been documented in a number of papers. See inter alia (Wu & Shahidehpour 2010; 

Aggarwal et al. 2008; Catalão et al. 2007; Nogales & Contreras 2002; Duan n.d.; Burger, Klar, M ller, et al. 

2004; Conejo et al. 2005). 
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occurrence of such price spikes. This feature is commonly neglected by most traditional 

price series models since they, if they allow for such a feature, treat these as a memory-less 

jump process with an intensity which is independent of its own history. 

 

In order to rectify this shortcoming more recent studies turn their attention to the feature of 

price spikes and attempt to model these either directly or indirectly. The latter category 

consists of a range of papers who recognise that the electricity price process can come 

from distinctly different distributions. One of these distributions is seen as generating 

extreme price events. Kanamura & Ōhashi (2008), Mount et al. (2006) and Becker et al. 

(2004) all propose to allow for time-varying transition probabilities in a regime switching 

model that allows for electricity prices to be drawn from different distribution. These 

papers identify variables which can explain systematic variations in the implied transition 

probabilities and therefore allow the practitioner to improve her ability to predict whether 

next day’s electricity price is likely to come from the regime that is more likely to produce 

price spikes. 

 

More recently, the issue of price spikes has been tackled in a more direct manner by 

defining a binary series that identifies the instances in which the electricity price exceeds a 

certain price threshold
33

 and subsequently modelling the dynamics of this series. Research 

papers in this vein are in Chapter 2, Christensen et al. (2012), Christensen et al. (2009), 

Clements et al. (2012) and Eichler et al. (2012). It is the essence of these papers that they 

model and forecast the probability of price spikes (as defined through the binary series). 

The papers differ in the precise way in which they do model this binary series. To the best 

of our knowledge the first study using this approach was Christensen et al. (2009) who 

used a modified Poisson autoregressive (PAR) framework to forecast next day’s price 

spike occurrence. In Chapter 2 we tackle the same task using Hawkes models. Both 

approaches essentially allow for the probability of a price spike occurring to vary with 

(weakly) exogenous covariates and to display persistence. The latter has been recognised 

as an important stylized fact when analysing the occurrence of electricity price spikes on a 

daily basis
34

. Any sensible model should be able to replicate this feature of the data. 

 

                                                 
33

 A related paper is by Zhao et al. (2005). They also define price spikes as a binary series, but do allow for a 

time varying threshold price. While there is some appeal to their logic, this approach complicates the 

modelling and forecasting exercise significantly, as one needs to forecast the threshold price and the 

probability of the actual price exceeding that level. It is our view that fixing the threshold allows for a better 

focus on the dynamics of the probability of exceeding that threshold. 
34

 See Section 4.3 for details on how these papers derived a daily binary series from the half-hourly series of 

electricity prices. 
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While the papers above focus on a derived daily price spike series, the papers by 

Christensen et al. (2012) and Eichler et al. (2012) model a half-hourly, binary price spike 

series. The approaches chosen in this context are the Autoregressive conditional hazard 

model (Christensen et al. 2012) and a dynamic logistic regression model (Eichler et al. 

2012). By modelling the half-hourly series these papers need to tackle the thorny issue of 

significant intra-daily seasonality. This makes the two problems of forecasting electricity 

price spikes half an hour ahead or a day ahead two significantly different problems. In this 

chapter we will focus on the one day ahead forecasting. 

 

Our intention is not to introduce a new forecasting method for the daily price spike series, 

but to analyse whether information from the pre-dispatch process is able to improve on 

forecast of price spikes. The type of information that was used in the previously discussed 

papers is either information on the system load or meteorological information like 

temperatures. To the best of our knowledge, the existing literature (apart from two papers 

by Zareipour & Bhattacharya (2006) and Hamidreza Zareipour et al. (2006b)) does not 

consider information from any pre-dispatch process in their forecasting models. Details of 

the pre-dispatch process and its importance for price spike modelling are discussed in 

Section 4.4. 

 

4.3. Methodology  

The wholesale electricity price in the NEM is settled as the price of the most expensive 

unit of electricity that is needed to satisfy the current level of demand (load). This is done 

every five minutes, but AEMO calculates an average of all five minutes intervals in a half 

hour to arrive at a half-hourly series of wholesale electricity prices. This is the price paid 

for all units of electricity supplied in that half hour. 

 

As we are interested in price spikes only we need to define such events. Let      be the 

electricity spot price for the  -th half hour (        ) on the  -th day. We define a price 

event on day   as having occurred whenever any of the half-hour spot prices exceeds a 

threshold price,    of A$100/MwH.  

 

    {
                                      

                                   
 (4.3-1) 
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The new series    is a binary series which takes the value 1 for all days in which      

exceeded    for at least one half hour. The threshold has been set to A$100/MwH in order 

to facilitate a comparison of these results to those in Chapter 2. It is, of course an arbitrary 

value although it seems widely used
35

. The timing of the price spikes is an important 

element in our modelling strategy and for this purpose we define the time index {  }   

      as the time when the  -th price event occurred.  Here we assume that in our sample 

we observed   price events. 

 

Both approaches used, the PAR and the Hawkes models, model the probability or intensity 

of a price event occurring at time  ,  (    |    )    . The intensity    is modelled 

based on information available at time    ,     . This information consists of all the price 

events occurring up to time     and exogenous variables that are available at time,    .  

Both these approaches are introduced in subsections 4.3.2. 

 

4.3.1. Relationship between Pre-dispatch Prices and Price Outcomes 

It is the main contribution of this chapter to introduce a novel set of explanatory variables 

into models for electricity price spikes. As a pre-cursor to this analysis we will investigate 

the relationship between pre-dispatch prices,     | , and actual price outcomes,     , more 

generally
36

. This is done initially with some simple correlation analysis. However, as we 

are mainly interested in the more extreme, higher, percentiles of the price distribution, a 

correlation analysis may not reveal all. Acknowledging that the relationship between pre-

dispatch prices,     | , and price outcomes,     , may be different in the tails of the price 

distribution, naturally leads to Quantile Regressions (refer to Bunn et al. (2012) and 

Koenker & Jr (1978) for an application in the context of predicting electricity prices) as a 

methodology of choice. Here we will relate the logarithmic (log) of price outcomes, 

    (    ), and the logarithmic (log) of the pre-dispatch price,     (    | ), linearly, 

     (    )           (    | )         (4.3-2) 

but acknowledge that the parameters describing this relationship may differ at different 

quantiles,  . This setup will allow us to examine the effect of pre-dispatch prices on the 

entire distribution of spot prices, by establishing the form of conditional quantiles of 

    (    ).  

                                                 
35

 Eichler et al. (2012) also provide a brief discussion on this threshold level. 
36

 The exact definition of pre-dispatch prices will be discussed in Section 4.4.2.5. The subscript   will index 

the different times at which the pre-dispatch prices for period  , subperiod   is formed. 
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Here we will briefly outline the estimation strategy used to obtain the sample estimates for 

 ̂  and  ̂ 
37. Let   (    (    )|    (    | )) be the  -th (              ) quantile of the 

conditional distribution of     (    ) given     (    | ). Using the linear specification we 

know that 

   (    (    )|    (    | ))          (    | ) (4.3-3) 

The quantile loss function for the  -th quantile can be defined as follows: 

 

  (    (    )   (    (    )|    (    | )))

 {
  (    (    )    (    (    )|    (    | )))           (    )    (    (    )|    (    | ))

(   )(  (    (    )|    (    | ))      (    ))                                                   
 

(4.3-4) 

The estimates  ̂  and  ̂  are obtained by minimising this loss function (evaluated at all   

observations) at every  :  

 
      (   ∑   (    (    )    (    (    )|    (    | ) ))

 

   
)

(     )
 (4.3-5) 

If      , then we are minimising the expected absolute loss. The resulting 

    (    (    )|    (    | )) is the predicted median of the conditional distribution. Using 

     , we obtain the estimated 90
th

 percentile of the conditional distribution, 

    (    (    )|    (    | )). 

 

The results from this analysis will establish the effect of changes in the pre-dispatch prices 

on the respective conditional quantiles and therefore will shed light to what extend high 

pre-dispatch prices actually signal subsequent high price outcomes. 

 

4.3.2. Hawkes point process model 

In order to model the point process of actual price spikes we follow an approach that was 

first introduced by Hawkes (1971). The attraction of Hawkes models is that they provide a 

natural modelling framework in which the intensity of events can depend on the timing of 

previous occurrences. Such models have recently attracted renewed attention in the 

financial econometrics literature where they have been used to model the arrival of trades 

or orders (see e.g. Bauwens & Hautsch (2006) for an overview). The Hawkes model is 

particularly appropriate when events, such as the electricity price spikes, cluster in time. 

This implies that there is a degree of persistence in the process intensity,   , and a 

univariate Hawkes process captures such persistence by specifying    as follows 

                                                 
37

 For a detailed discussion of estimation strategies one can refer to Perlich et al. (2007). The estimation 

results shown in our chapter are produced by STATA 
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         ∑  (     )

    

 (4.3-6) 

Both,    and the function w(∙) need to be non-negative to avoid negative intensities. The 

intensity,   , is decomposed into two components, a deterministic (seasonal) component, 

  , and the stochastic component, ∑  (     )    , the roles of which will now be 

explained.  

 

The electricity price is known to have distinct seasonal patterns. In the main they are a 

weekly pattern (with weekends usually displaying lower load and prices) and an annual 

pattern where loads and prices vary with the different climatic conditions throughout the 

year. Therefore, the deterministic component is used to capture any variations which can 

be ascribed to these seasonalities. We use trigonometric functions (as in Lucia & Schwartz 

(2002), Heydari & Siddiqui (2010) and Becker et al. (2004)) to model the weekly and 

annual seasonality in   . As in Chapter 2 a range of trigonometric functions with 

frequencies chosen to fit weekly and annual variations is fit to the observed series of price 

spikes,     Only the trigonometric functions that are statistically significant are then 

included in the further analysis. More precisely, we use            , where        is a 

row vector that contains the relevant values of these significant trigonometric functions at 

time   and   is an appropriately sized column vector of parameters. The parameter vector 

  is estimated alongside all other model parameters as discussed below
38

. 

 

The intensity at time  ,   , depends on all the occurrences of price events that occurred at 

times,   , before the current time,  (    ). The stochastic component of a Hawkes process 

is then defined as; 

 

 

        ∑  (     )

    

 

 (     )       
   (    ) 

(4.3-7) 

Each price event that occurred before   contributes to the intensity at time  . A price spike 

at time    has an initial contribution to the intensity of    
, but its contribution to the 

intensity at time   is dampened by the decay factor    (    ). 

 

                                                 
38

 In order to simplify the exposition below we shall keep the term    in the discussion below. 
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In this specification a price spike’s initial contribution is indexed by   , the time at which 

the price spike occurred. This is to indicate that we allow this initial contribution
39

 to vary 

with covariates available at time   ,    
. This will, e.g. allow the intensity contribution to be 

different for weekend spikes as opposed to middle of the week price spikes. To ensure the 

point process complies with stationary conditions (see; Ogata (1978))    
 is defined as 

follows;   

    
   (   

)    (4.3-8) 

    
     

  (4.3-9) 

since    
   , and  ( ) being the standard normal cumulative distribution,  (   

)    

ensures that    
  . This model allows for the impact of covariates on the intensity for 

price spikes, but only of covariates at price spike times   . This model will be labelled 

HAWa. 

 

In order to allow covariates at any time influence the intensity for price spikes, in Chapter 

2 we make the decay parameter,  , dependent on exogenous variables as well. Therefore in 

the second model, the decay parameter is parameterised to be time varying,   , as 

follows
40

:  

      (   ) (4.3-10) 

where    is restricted to be between 0 and 1 via  ( ). The (    ) vector,   , contains the 

relevant covariates conditioned at time   and   is the appropriate (    ) parameter 

vector. This modelled will be called HAWab. 

 

The parameter vector,   (        )   is estimated by maximising the log-likelihood 

function (LLF) in equation (4.3-11) based on the observed price events at time        ; 

 

    (       | )

  ∫   

 

 

    ∫ ∑    
    (    )

    

 

 

   

                         ∫    (   ∑    

    

    (    ))  ( )
 

 

 

(4.3-11) 

where   ( ) denoted as an indicator function taking a value of 1 if a price event occurred 

during period   and a value of 0 if no price event occurred during period,  .
41

 

                                                 
39

  Refer to Figure 2.5-1 on the the mechanism of    
 

40
  Refer to Figure 2.5-3 on the the mechanism of     

41
 For the first model in which only the initial intensity increase parameter α is covariant dependent,   

(     )  . The changes to the LLF are straightforward. 
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4.3.3. The Poisson Autoregressive Model 

The last model to be considered here is the model that was introduced in Christensen et al. 

(2009) as their model of choice for the intensity of electricity price events. In contrast to 

the Hawkes model, the PAR model allows for different dynamics in the latent intensity 

process
42

. The PAR model is based on the process of a latent variable,       defined as 

the number of system stresses. An example of system stress could be any events that could 

trigger unanticipated demand or events that cause a drop in supply, e.g. a generator failure. 

The latent variable is related to the observed price events as follows: 

    {
               
                

 (4.3-12) 

In the PAR model we infer from the presence of a price event that at least one system 

stress occurred. The model is built around the arrival and departure process of system 

stresses. Importantly any existing system stress is allowed to persist for several periods and 

at any period there could be more than one stress present (    ). The arrival of the 

system stress is modelled by an independent Bernoulli process while the departure of the 

system stress is modelled by a binomial thinning process. The probabilities of the arrival 

and departure for the system stresses can be modelled as functions of the conditioning 

covariates. These covariates are set to be the same as in the Hawkes models.  

 

The arrival of a system stress is modelled by assuming that at any period,  , there can only 

be one new stress, defined by (    ) and this arrival process is assumed to follow an 

independent Bernoulli process: 

  (    )                           (4.3-13) 

  (    )                        (4.3-14) 

Limiting this arrival process to only one new stress is necessary to disentangle the arrival 

and departure of the latent process.  

 

The departure of the system stress is modelled as a binomial thinning process whereby the 

number of stress factors surviving from time     to time  , is equal to   
        

      (    
         ) where    is the binomial thinning operator and   is the 

probability of each stress factor present at time     (    ) surviving. The number of 

stress factors at time   is therefore represented by 

                                                 
42

 It is apparent from the empirical work in Chapter 2 that the intensities implied by the PAR model exhibit 

less persistence than the Hawkes models. 
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                   (4.3-15) 

The time-varying arrival and survival of the system stresses is conditioned by the 

exogenous variables as follows; 

          (    (     )) (4.3-16) 

          (    (     )) (4.3-17) 

in which     and     are sets of regressors for the arrival and survival of the system 

stresses respectively and    and    are the associated parameter vectors that produce the 

scalar weighted values       and      .  

 

This model is suitable to model the probability of a price spike occurring  (    |    ) 

as that is equivalent to  (    |    ). Similar to the Hawkes model, the probability of 

the price spikes depend on the history of price spikes process,      {            }. 

For example, if        then we know that         and therefore       or   as we 

limited system stress arrival to one new arrival at any time. This feature has an interesting 

implication. In the case that       , the relevant information set reduces to           

and the probability of a price event is simply the probability of a new system stress 

arriving, 

     (    |      )   (    )     (4.3-18) 

In fact, the relevant information set always reaches back to the last period in which we did 

not have any price spike. Consider the following history of price events,           

         and    (   )   . The relevance of this history is that at time    , there 

was certainly at least one system stress present, but it could have been up to   stresses in 

the case in which the last   periods each produced a new stress and none of the existing 

ones disappeared. 

 

The probability required for the calculation of the likelihood function, and hence to 

estimate parameters, is     (    |    )     (    |    ). It is the calculation 

of the latter that is somewhat involved. Consider the above case in which during the last   

periods price spikes were observed. Then we know that at time     there was anything 

between 1 and   stresses present. If we knew that there were   stresses the probability of 

 (    |           )=  (    |           ) could easily be calculated as 

(    )
 (    ), i.e. the probability that all existing stresses disappear, (    )

 , times 

the probability of not seeing a new stress in time  , (    ). But we need to allow for the 
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possibility that      could take any value between 1 and  . This leads to the following 

approach  

 
 (    |    )  ∑  (      |      

 

   

) (      |    ) 

 

(4.3-19) 

Finally, to calculate  (      |    ) we require a recursive calculation starting from   

periods back, which is the last period where we were certain about the number of system 

stresses (          (   )   ⇒       ). The details of this recursive calculation are 

outlined in Appendix A. 

  

The result of this recursive calculation is  (    |    ) which is then used to calculate 

    (    |    )     (    |    ). This allows the formulation of the 

following log likelihood function (LLF)  

     (            )   ∑          (     )    (    )

 

   

 (4.3-20) 

where {          } is the sequence of observed price events and as mentioned 

previously the parameter vector   (  
    

 )  is used to parameterise the time-varying 

arrival (  ) and survival (  ) probabilities respectively(as outlined in equations (4.3-16) 

and (4.3-17)). The parameters are estimated by maximising the LLF. 

 

4.4. Overview of the Australian New Electricity Market (NEM) and the Data 

In this Section we will give a short overview of the Australian National Electricity Market 

(NEM) with a particular focus on the pre-dispatch process. This is followed by the 

description of the data used.  

 

4.4.1. The Australian NEM and the Pre-Dispatch Process 

The restructuring of the electricity market in the regions of Australia happened in different 

periods of time. The Australia NEM wholesale market was first organised into two 

separate electricity pools in the states of Victoria and New South Wales. In the mid-1990s 

this was followed by two more regions, Queensland and South Australia, which were then 

connected to the Australia National Electricity Market (NEM). The NEM began operating 

on December 13, 1998 as a pooled market in which the market operator, AEMO, is 
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responsible to ensure that all the available supplies are aggregated to meet the demand as 

cost efficient as possible
43

.   

 

On the dispatch day, AEMO is responsible to give dispatch instruction to generators to 

meet the prevailing demand as cost effective as possible in every five minute interval. 

Hence, the dispatch price is determined by the bid price of the marginal generator 

dispatched into production. In the NEM, there are 48 half-hourly intervals in a day with 

each half-hour is divided into six five-minute dispatch intervals. The half-hourly spot price 

is calculated as an arithmetic mean of the six five-minute dispatch prices within half hour.  

 

As part of the restructuring process, AEMO is responsible to provide generators with 

sufficient information to indicate whether their capacity would be called for dispatch. One 

of these pieces of information is the pre-dispatch price. The daily supply bids, submitted by 

generators at 12.30pm a day before dispatch, are matched against the regional demand 

forecast to produce pre-dispatch prices for all half hour periods in the next day. Pre-

dispatch sensitivities are published together with pre-dispatch prices. These indicate how 

prices are expected to change if the demand was somewhat higher or lower than currently 

expected. These are denoted by     and     respectively44. 

 

The day-ahead market (pre-dispatch) is based on current supply bids and demand forecasts, 

and it can be seen as a short-term forecast of the wholesale electricity price for the 

respective dispatch periods on the next trading day (Andalib & Atry 2009) and will help to 

plan the volume expected to be supplied through the interconnectors between regions 

(Australian Energy Market Operator 2010). The quality of these pre-dispatch prices relies 

on the quality of the matching mechanism
45

, the accuracy of demand forecasts (which are 

commonly accepted to be good and unbiased, (Australian Energy Market Operator 2013; 

Electricity Market Performance 2012c; System Operations 2011a; System Operations 

2011b)) and the reliability of the supply bids made. Acknowledging the critical nature of 

this last point, the Australian Energy Market Commission (AEMC) has mandated that the 

                                                 
43

 In May 1996, the government of Australia formed two companies to operate the NEM. They are the 

National Electricity Market Management Company Limited (NEMMCO) and National Electricity Code 

Administrator Limited (NECA). However, on 1 July 2009 the operation of NEMMCO was ceased and all 

their roles and responsibilities are now being replaced by the Australian Energy Market Operator (AEMO); 

(see; Chevallier (2010)). 
44

 AEMO produces +/- 200, 500 and 1000 MWh scenario prices but our analysis uses +/- 200 MWh scenario 

prices only. 
45

 The task of finding the most cost effective combination of suppliers to meet the demand under a range of 

constraints is delegated to a computer algorithm. While there are slight differences between the algorithm 

used in the pre-dispatch periods and that used for the actual dispatch period (Electricity Market Performance 

2012b) these differences are minor and are not expected to lead to any systematic biases. 
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initial bids and subsequent rebids have to be submitted in “good faith” which means the 

bids have to reflect the “genuine intention to honour that offer [...] if the material 

conditions and circumstances [...] remain unchanged until the relevant dispatch interval” 

(Australian Energy Market Commission, 2013, paragraph 3.8.22A). 

 

The pre-dispatch information will help generators to anticipate whether and if so how 

much of their offered generation will be dispatched. Market participants will also use this 

information as a basis of rebids which can be submitted until approximately five minutes 

before dispatch. But as indicated above, any such bids have to be justified on the basis of 

changed circumstances. The pre-dispatch price and its sensitivities prices are updated and 

published every half-hour for the rest of the current day and throughout the dispatch day. 

The pre-dispatch prices and sensitivities will change as the demand forecasts and supply 

bids change. 

 

In earlier work in Chapter 3 some aspects of the relationship between pre-dispatch prices 

and dispatch price outcomes on the dispatch day are investigated. In Chapter 3 our aim is 

to analyse whether there is an apparent bias in the pre-dispatch process; such that the pre-

dispatch prices are systematically under- or overestimating the actual electricity price 

outcomes. We also analyse whether there is any systematic variation in the bias across 

years, seasons and/or trading periods and whether there are exogenous variables that could 

explain the systematic variation. We find that there is a significant bias in the pre-dispatch 

process. Overall, the pre-dispatch process tends to underestimate the actual price outcomes 

(i.e. price outcomes tend to exceed    ). In addition, the variation in the probabilities of 

price outcomes to be more than     or less than     (high or low boundary) are 

remarkably persistent across the years. Further, the bias is particularly strong in the 

morning and evening peak periods of the day.  

 

Following the findings in Chapter 3, in this chapter we wish to investigate whether any 

pre-dispatch information can be used in modelling and predicting price spikes. There are 

several studies in the deregulated electricity market of Ontario (Canada) that included pre-

dispatch information in their forecast models producing favourable forecasting results. In a 

pair of papers by Zareipour & Bhattacharya (2006) and Hamidreza Zareipour et al. (2006b) 

the authors use pre-dispatch price and demand information as exogenous variables and find 

an improvement in the accuracy of short-term hourly Ontario electricity price (HOEP) 

forecast. This pre-dispatch information is used as exogenous information in nonlinear time-
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series models of the HOEP. It is conjectured that the value of this information lies in its 

complex information content, as it is based on actions of market participants. Interestingly, 

however, the authors also state that this information does not seem to foreshadow extreme 

price movements. 

 

4.4.2. The Data 

In this study we are using New South Wales (NSW) regional market data.  

 

4.4.2.1. Wholesale Electricity Prices 

The half-hourly spot electricity prices used in this study are obtained from the AEMO 

website. The price is defined in Australian Dollars per Megawatt Hour ($/MWh). The data 

cover the period from 2 March 1999 to 31 October 2007. Since we have a missing 

observation from January 1 to 31, 2003 and July 2 to August 1, 2005 this delivers a sample 

size of 148,992 half-hourly observations or 3135 daily observation. This price series is 

used to define the dependent price spike variable as in equation (4.3-1).  While it is the aim 

of this chapter to predict the probability of a price spike occurring on a particular day, the 

series of price spikes is a derivative of the actual price series. Descriptive statistics for the 

daily spot prices (averages of the 48 half hour periods in a day) are therefore shown in 

Table 4.4-1. 

 

 

(INSERT Table 4.4-1 HERE)  

From Table 4.4-1, we can observe the median of daily time series of spot prices are 

consistent throughout the years except for 2007 where it increases to $51.14/Mwh. While 

high standard deviation can be observed particularly from 2004 onwards. The price spikes 

seem to jump highest on 2004 with based on its 99
th

 percentile value that is more than 

$800/Mwh. There are also a high proportion of days with price spikes (45.14%) in 2004. 

Although the magnitude of the price spikes jump ($589.90/Mwh) on 2007 is lower than on 

2004, they have highest proportion of days (72.88%) and half-hour (51.14%) with price 

spikes and mean values (4.924) of Count Data among all the years.  

 

We will now discuss the potential exogenous variables that maybe related to the 

occurrence of price events. These variables are used as they will all potentially contribute 

to extreme price events. 
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4.4.2.2. The System Load 

It is known that electricity load is a main driver on the movement of the electricity spot 

price in deregulated markets (Moghram & Rahman 1989; Wu & Shahidehpour 2010; 

Vucetic 2001). Therefore it is important to use them as an input variable in building a price 

model. We illustrate the behaviour of NEM load series in Figure 4.4-1. The daily load 

series shows day-of-week and month-of-year seasonality and a clear upwards trend over 

the years. 

 

(INSERT Figure 4.4-1 HERE) 

As in Eichler et al. (2012) we aim to produce a forecast of electricity demand that exceeds 

the demand that one would normally expect for that day of the week at that particular time 

of the year. That is the demand measure we believe is likely to contain most information 

for price spikes. We therefore need two elements. First, the normally expected load series, 

which is constructed by weighting the average load from the previous seven days (see; 

Chapter 2). This series as available at time     for time  . Second, we would ideally use 

the load forecast for day   available on day    . However we do not have that series 

available. Instead we use the actual realised load series on day   as a proxy of the forecast 

load series on day     for day  . This approach comes with the caveat that the 

information extracted from this series is an upper-limit of the information actually 

achievable
46

.  

 

Before we include the difference between realised load and normally expected load in the 

price model, the series needs to be de-seasonalised from annual seasonality by applying a 

rolling volatility technique proposed by Weron (2007). The resulting series is illustrated in 

Figure 4.4-2 and label as   . 

 

(INSERT Figure 4.4-2 HERE) 

4.4.2.3. Temperature Data 

A significant part (but not all) of the variation in system load is due to variation in the 

weather. Extreme weather conditions could result to high electricity demand which 

translates into high electricity price since high-cost generators need to be activated to 

satisfy the escalating demand. The most obvious cases of extreme weather are very high 

and low temperatures as these may trigger extra demand for cooling or heating 

respectively. 

                                                 
46

 We feel that this approach, despite its obvious shortcomings is appropriate as it is well known that AEMO 

(and generators) have excellent and detailed load forecasts available. 
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Temperature data are available from Australian Bureau of Methodology on daily basis.  

There is, of course, a large degree of seasonality in the temperature data. We are not really 

interested in the main seasonal pattern as this is unlikely to be correlated to finding any 

extreme price events. What we want to identify are temperature extremes. Here we are 

using the same approach as in Chapter 2. We consider the absolute difference of the 

observed temperature series from the seasonally expected temperature which is modelled 

by a trigonometric function. Furthermore we differentiate between un-seasonally hot and 

un-seasonally cold days by creating two time-series,       and      . The details of the 

calculations are discussed in Chapter 2, but it is important to note that these series only 

capture un-seasonally hot days in summer and un-seasonally cold days in winter. This is in 

acknowledgement that a very warm winter day is unlikely to produce the same demand 

pressure on the wholesale electricity market as would a hot day in summer. 

 

In our models, which use information available at time     to predict price events at time 

 , we would of course want to have forecasts for these variables for day  . We have no 

series of historical temperature forecasts available. This leaves us with one of three 

options. We could ignore the temperature information, but we think that the potential 

importance of this information rules this out as an option. We could also attempt to build a 

basic temperature forecasting model based on historical information. However, it is 

unlikely that any such attempt would get even close to the accuracy of actual temperature 

forecasts. We therefore feel that the only viable option is to use actual realised temperature 

data instead, acknowledging that any significant effect of such a variable would likely 

appear somewhat more significant than that which could be realised with forecasts. 

 

4.4.2.4. Count Data 

From Figure 4.1-1 it was apparent that price spikes, even at a daily level, are highly 

persistent. This is, of course the feature that is exploited by both the Hawkes and PAR 

models to predict the occurrence of price spikes. The models build in this chapter, 

however, work on daily data, despite the price series being a half-hourly series. The 

aggregation process from equation (4.3-1) used here masks some variation in the price 

process. Indeed    could take a value of 1 if            for only one half-hour. It will 

equally take a value of one if the price exceeded the threshold in all 48 half hours of a day.  
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In order to capture this intra-daily information, that may capture, to some extent, the 

severity of the price spike, we define a new variable counting the number of times the half-

hourly spot prices exceeds the threshold    during day  ,   . A high value of this variable 

indicates the presence of more severe system stress and may be more likely to increase the 

probability of another price event. 

 

4.4.2.5. Pre-dispatch information 

 This section outlines the new covariates derived from pre-dispatch information. These 

covariates are for use in the information set    used to predict price spikes at time    . 

As discussed previously, the pre-dispatch process for day   starts on the day before 

dispatch, i.e. day    , but continues all through the actual dispatch. Therefore, the pre-

dispatch information used in this chapter includes information from the pre-dispatch at 

15:00 on    , (denoted as PD1) but also of the pre-dispatch on day   at 06:00 (PD2) and 

the pre-dispatch 30-minutes prior to the actual dispatch (PD3)
47

. PD1 and PD2 gather 

information for all dispatch sub-periods   at one point in time (15:00 on     and 06:00 

on day   respectively). PD3 however, collects pre-dispatch information at a different time 

for each sub-periods  . 

 

The first piece of information that uses the pre-dispatch is the relative position of the actual 

spot price outcome relative to the respective pre-dispatch information. In our study on the 

performance of the pre-dispatch process in Chapter 3 we placed the spot price outcome 

relative to the pre-dispatch scenarios. Following that approach the spot price outcome on 

day  , sub-period  , relative to pre-dispatch   (where                   ) is defined as 

follows: 

     |  {

             | 
  

         | 
            | 

  

        | 
       

 (4.4-1) 

We use this measure for sub-periods          (              ) only to ensure that we 

have an equal amount of information available for all  .  

 

We then generate a daily measure by comparing the number of sub-periods for which the 

actual wholesale spot price outcomes,      , on the dispatch day are higher than     | 
   and 

lower than     | 
   , for                    : 

                                                 
47

 It should be noted that the PAR and Hawkes models that are designed to produce intensity forecasts for 

time  , conditional on information at time    , only used PD1. 



152 

 

     |  ∑  (    |   )   ∑  (    |   ) 
      

 (4.4-2) 

We interpret this measure as a measure of bias. From the work in Chapter 3 it is apparent 

that the relative performance of the pre-dispatch process differs for different periods in the 

day. We therefore produce this measure for the following three distinctive sub-periods. The 

morning (06:30 to 09:30 dispatch intervals -  7 trading intervals,    ), the daytime 

(10:00 to 17:30 - 16 trading intervals,    ) and evening (18:00 to 23:30 - 12 trading 

intervals ,    ).  

 

In Figure 4.4-3, we display the time-series of     |   . If the total of      |    is equivalent 

to 16, then this implies that on that particular dispatch day, , all actual wholesale spot price 

outcomes,     , from 10:00 to 17:30 are larger than the corresponding than     |   
  . 

However, if      |    is equal to -16, this implies that on the particular dispatch day,  , all 

price outcomes,      from 10:00 to 17:30  are less than     |   
  .  

 

(INSERT Figure 4.4-3 HERE) 

Despite the apparent volatility in the series, there is also a fair degree of underlying 

persistence, which is best seen from the 50 day moving average that is superimposed. 

While this series fluctuates around 0 in the early part of the sample, there is a clearly 

discernible upwards drift in the latter part, indicating that there is a tendency for the pre-

dispatch process on the day before dispatch (PD1), to underestimate the actual spot price 

outcomes. Similar observation as in Figure 4.4-3 can be observed for the time-series of 

    |    (hence not shown here) indicating not many significant adjustment have been 

made on the supply bids and demand forecast from a day before until 06:00 on the day of 

dispatch.  

 

However, from Figure 4.4-4, which shows     |   , it becomes apparent that this bias has 

disappeared 30 minutes before dispatch. Not surprisingly we get much lower variation in 

the series, as 30 minutes to dispatch most relevant information has been worked into the 

dispatch via adjusted supply bids and updated demand forecasts. It is perhaps somewhat 

surprising that we still get a significant number of dates on which |    |   | exceeds 5 

which is indicative of days during which we get a significant amount of sluggishness in 

supply bid adjustments
48

.  

                                                 
48

 This assumes that the centrally administered demand forecasts do quickly adjust to any new information. 
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(INSERT Figure 4.4-4 HERE) 

A similar summary can be applied to time-series of      |  and      |  whereby the pre-

dispatch process on the day before dispatch (PD1) and on dispatch day at 06:00 (PD2) tend 

to underestimate the actual spot price outcomes and this bias only disappeared 30 minutes 

before dispatch (PD3). Later in Section 4.5.3.2, we will use the     |    time-series as 

conditioning variables in our point process models.  

 

The second set of pre-dispatch information used is the pre-dispatch price. While we only 

have data on the pre-dispatch scenarios, we decided to proxy the actual pre-dispatch prices 

from a supply curve inferred from the available pre-dispatch scenarios (sensitivities),     

and    . In Figure 4.4-5 you can see an example of six available pre-dispatch prices 

(                                    ) at their respective relative load offset values 

(-500, -200, -100, 100, 200, 500). These load offset values are relative to the load forecast 

for a particular period. A cubic spline connects these 6 points with piece-wise cubic 

functions where the parameters of these functions are chosen in such a way to ensure that 

the two neighbouring functions which meet in one of the four inner points (at 

offsets -200, -100, 100, 200) have equal  first and second order derivatives (Brandimarte 

2013). Once these parameters have been calculated they can be used to infer any pre-

dispatch price at any relative load value. We are interested in the pre-dispatch price at the 

actual load forecast, E(Dd) (i.e. at a load offset value of 0), which, in the example 

displayed in Figure 4.4-5 is A$16.80. For illustration purpose in Figure 4.4-5, the estimated 

pre-dispatch price  ̂       |    is specific for the fifth sub-period (09:00) on one particular 

dispatch day   dated March 2, 1999 and conditioned during pre-dispatch process on PD1.  

 

(INSERT Figure 4.4-5 HERE) 

To show estimated pre-dispatch price on PD1, PD2 and PD3 on the fifth sub-period for all 

3166 days, we plot the logarithmic series of the  ̂       |   ,  ̂       |   ,  ̂       |    in  

Figure 4.4-6. Except for one large jumps in the logarithmic series of the  ̂       |    there is 

not much difference between the estimated pre-dispatch price on PD1, PD2 and PD3 on 

the fifth sub-period.  

 

(INSERT Figure 4.4-6 HERE) 
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In Table 4.4-2 to Table 4.4-4 we report summary statistics for the estimated pre-dispatch 

prices and, for comparison reason, the equivalent dispatch spot prices. We can see that the 

descriptive statistics display a significant amount of variation across the years.  

 

(INSERT Table 4.4-2 to Table 4.4-4 HERE) 

Figure 4.4-7 compares the median of the spot prices (broken down by years and for trading 

sub-periods p = m, d and e) with those from the three pre-dispatch processes. We can see 

that on average all pre-dispatch processes underestimate the spot price outcomes. The 

tendency to underestimate is somewhat stronger in the later years of our sample. It also 

apparent that in general, the pre-dispatch information improves from PD1 to PD2 and to 

PD3. For the morning periods PD2 and PD3 have very similar characteristics, whereas 

from 2003 onwards for the daytime and evening sub-periods PD2 looks more like PD1 

than PD3. 

 

(INSERT Figure 4.4-7 HERE) 

The cubic spline interpolation is clearly an approximation to the prevalent supply curve 

only, as the latter is known to be a step function. Apart from being used to derive an 

estimate of the pre-dispatch price level we also use it to derive an estimate of the slope or 

first derivative of the supply curve at  ̂   | ,  ̂   | . The reason for using this variable as a 

potential explanatory variable in our point process models is that the slope is a potential 

indicator for how sensitive the equilibrium price is to an event that either shifts the 

electricity supply or demand.  

 

The above calculations resulted in variables  ̂   |  and  ̂   |  which were available for any 

trading interval   and for the different pre-dispatches                   . As the 

Hawkes and PAR models are models estimated on the basis of daily observations, this 

information has to be distilled into daily variables. Here we are interested in modelling 

extreme price events and therefore we decided to use the average of the 5 largest values of 

 ̂   |  and  ̂   |  across all          on any day  . The resulting daily series are labelled 

    |  and     | .  

 

In order to get a first impression of how these series relate to the spot price outcomes we 

present six scatterplot in Figure 4.4-8. In order to show this relation better, the scatterplot is 

using the logarithmic series of daily spot prices,    and logarithmic series of daily     |  

and     |  on PD1, PD2 and PD3. From our understanding of the convex nature of 



155 

 

supply curves, it is not surprising to find that the estimates for its slope,     | , are highly 

correlated to those of the expected price,     |  and therefore its positive correlation to 

the actual spot price outcomes is equally intuitive. 

 

(INSERT Figure 4.4-8 HERE) 

 

4.5. Empirical Analysis 

In this Section we will present the empirical analysis in which we attempt to establish 

whether information from the pre-dispatch process can be utilised to inform any prediction 

model of price spikes. The initial analysis will focus on the relationship between the pre-

dispatch prices and actual price outcomes (Sections 4.5.1 and 4.5.2). Finally we will 

incorporate pre-dispatch information into the Hawkes and PAR point process models. 

 

4.5.1. Correlation Analysis 

To understand the relationship between pre-dispatch and spot prices, we decided to 

calculate the correlation between half-hourly logarithmic series of pre-dispatch,    ( ̂   | ), 

and spot prices,    (    ). We use the logarithmic series to mitigate the extreme skewness 

observed in the raw series.  

 

(INSERT Figure 4.5-1 HERE) 

First we calculate the correlation of the logarithmic series of pre-dispatch prices with 

respect to logarithmic series of spot prices separately for every half hour trading period 

across all 3166 days in the sample. The resulting correlation profile (across the final 35 

half hour trading periods of a trading day) can be seen in Figure 4.5-1 for the correlations 

between spot price outcomes and PD1 pre-dispatch prices. Two observations can be made. 

Overall we find a fairly high level of correlation between    ( ̂   |   ) and    (    ) (refer to 

the blue line in the first panel of Figure 4.5-1). The level of correlation is lowest for the 

trading periods in the middle of the day (                ), dropping to around 0.7.   

 

As it is our final aim to investigate whether pre-dispatch information has any explanatory 

power on extreme price events, we also split our data according to whether the spot price is 

above or below A$50
49

, and subsequently calculate the corresponding correlation profile 

for both these datasets. These correlation profiles can be seen along the correlation profile 

                                                 
49

 The sample split according to the spot price has no real economic meaning and is merely done for 

illustrative reasons. 



156 

 

calculated for the full dataset in Figure 4.5-1 for all three pre-dispatch periods, PD1 (refer 

to first panel of Figure 4.5-1), PD2 (refer to second panel of Figure 4.5-1) and PD3 (refer 

to third panel of Figure 4.5-1).  

 

When comparing the two correlation profiles for the split data-sets it is immediately 

obvious that the correlation between    ( ̂   |   ) and    (    ) is fairly strong across all 35 

subperiods of the day when the eventual spot price remains low (refer to the green line in 

the first panel of Figure 4.5-1). For high spot price outcomes, however, the (linear) 

relationship between    ( ̂   |   ) and    (    ) is much less obvious and the correlation 

coefficient drops to values mainly between 0.3 and 0.6 (refer to the red line in the first 

panel of Figure 4.5-1). Only for the early morning periods (07:30 to 08:30) does this 

correlation exceed 0.6. But notably, the lowest correlation (conditional on          ) is 

observed for the first period of the day analysed, the 06:30 period. This seems to indicate 

that price events at the very beginning of the day are the predicted the least reliably. 

 

This main pattern of results can also be observed when analysing the correlation profiles at 

PD2. That is the pre-dispatch at 6am in the morning of the dispatch day. While the overall 

level of correlation has increased somewhat (by about 0.1 correlation units) (refer to the 

blue line in the second panel of Figure 4.5-1), we can still see a very significant correlation 

drop-off for high spot price outcomes (refer to the red line in the second panel of Figure 

4.5-1). Again we see a general U-shape in the correlation profile and a correlation peak in 

the morning periods even for the correlation conditional on high price outcomes. Directly 

following this peak, however, is a very steep drop in correlations (conditional on high 

prices for the late morning periods (10:00 to 11:00 sub-periods)). It is worth noting that the 

time between the pre-dispatch (6am) and the actual dispatch varies for the correlations in 

this Figure. There is significantly more time left between the pre-dispatch and the 18:00 

dispatch period than there is between pre-dispatch and the, say 10:00 dispatch. One would 

therefore expect that, ceteris paribus, the pre-dispatch process for the 10:00 dispatch period 

should be more precise than that for the 18:00 dispatch period. That, however, does not 

seem to be the case, as all correlations are larger for the 18:00 dispatch period. 

 

The PD3 pre-dispatch uses pre-dispatch information recorded 30 minutes before the 

beginning of every dispatch period. These results are therefore to be interpreted in a 

slightly different way than the previous correlations as they use a fixed time difference 

between pre-dispatch and dispatch. In fact the data for the 06:00 dispatch period are 
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identical to these in PD2, but all others differ. The correlation across all data exceeds 0.9 in 

all dispatch intervals (refer to the blue line in the third panel of Figure 4.5-1). The 

correlation profile based on low price outcomes mimics that profile very closely (refer to 

the green line in the third panel of Figure 4.5-1). As far as the correlation for the high price 

outcomes (refer to the red line in the third panel of Figure 4.5-1) are concerned, we can see 

that 30 minutes before dispatch most of these prices seem to be well anticipated by the pre-

dispatch, with correlations generally being between 0.7 and 0.9, but still markedly lower 

than for lower price outcomes. Exceptions here are those that have already been pointed 

out for the PD2 data. High prices in the 06:30 dispatch period are badly anticipated with 

the correlation being smaller than 0.3. This seems to indicate that the time period between 

06:00 and 06:30 is characterised by either the emergence of significant new information 

and/or the prevalence of significant re-bidding information. One may explain this with the 

fact that the dawn of a new day may indeed bring to light new situations (not least weather 

outcomes) that could not be observed previously. A similar explanation however seems 

rather implausible to explain the dip in correlation (for high price outcomes) that occurs for 

the late morning periods (10:00 to 11:00). On the occasions in which the price outcomes 

are on the high side, significant activity appears to occur in the 30 minutes prior to 

dispatch. 

 

 

4.5.2. Quantile regression  

Before applying the quantile regression approach to the relation between spot and pre-

dispatch data it is worth discussing what one would expect. 

 

In this section, we propose a simple linear model that relates spot to pre-dispatch prices  

     (    )         ( ̂   | )         (4.5-1) 

where     (    ) is the logarithm of the spot price for the  -th half hour 

(                  ) on the  -th day and     ( ̂   | ) is the corresponding logarithm of 

the pre-dispatch price at                   . 

 

As     ( ̂   | ) are essentially system predictions of the spot prices,     (    ), equation 

(4.5-1) can be interpreted as a Mincer-Zarnowitz type forecast evaluation regression. If the 

pre-dispatch process delivered an unbiased and efficient forecast (see; Mincer (1969) and 

Newbold & Harvey (2002)) we would expect  (    (    )|    ( ̂   | ))      ( ̂   | ) and 
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hence the above regression relation should deliver the following estimated ordinary least 

square regression model: 

  (    (    )|    ( ̂   | ))          ( ̂   | ) (4.5-2) 

It will now be interesting to see in what sense the data deviate from this optimal forecast 

relationship and whether the deviations differ with respect to the quantile we are looking 

at. 

 

Below we will report estimated quantile regression coefficients, but to start with we will 

provide a brief graphical analysis of the pre-dispatch and dispatch prices relationship for 

the 09:00 and 15:00 dispatch periods. First we concentrate on the 09:00 dispatch period 

using the log of spot price,     (        ) and the log of pre-dispatch price,     ( ̂       |   ). 

If     and     , the log of pre-dispatch price was an unbiased forecast of the log of 

spot prices. This idealistic relationship is represented by the solid line in in the first panel 

of Figure 4.5-2. That panel also features a scatter plot of all pairs of (    (        ), 

    ( ̂       |   )) observations. 

 

(INSERT Figure 4.5-2 HERE) 

The data points of the scatter plot should be scattered close to that line if the 

    ( ̂       |   ) delivered efficient and unbiased forecasts for the     (        ). Although 

we observe a clear and strong positive correlation between pre-dispatch and spot prices, the 

    ( ̂       |   ) series mostly seems to underestimate the     (        ). The scatter points 

have an increased density above the line representing forecast unbiasedness. 

 

In the second and third panel of Figure 4.5-2 we show the respective scatter plots for pre-

dispatches at PD2 and PD3. The scatter plot for PD2 shows some changes to that at PD1. 

The dispersion has reduced slightly and the underestimation bias is less clearly visible. 

When considering the scatter plot for PD3 (the third panel of Figure 4.5-2) we can see 

another tightening of the scatterplot around the no-bias regression line. It therefore appears 

as if, when considering the 09:00 dispatch period, both intervals, between 15:00 on the day 

before dispatch and 06:00 on the dispatch day, as well as that between 06:00 and 08:30 

(PD3) on the dispatch day, see the arrival of relevant new pre-dispatch information
50

. As 

                                                 
50

 What we mean here is the new arrival of either information that changes the demand forecasts or the 

arrival of new supply bids, whether they arise because of genuine new information or as a result of strategic 

re-bidding not backed by new information.  
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we get closer to dispatch, the pre-dispatch process delivers more accurate dispatch 

forecasts. 

 

Next we consider the 15:00 dispatch period, and evaluate the relationship between the 

    (        ) and     ( ̂       |   ) for PD1 in the first panel of Figure 4.5-3. Compared to 

09:00 morning dispatch period, the ability of the pre-dispatch prices to predict the next 

day’s spot price outcomes at 15:00 deteriorates further. The most obvious indication for 

this is the vastly increased dispersion of the scatter diagram around the no-bias line. There 

is, however, no clear bias visible from the scatter plot. Another marked difference to the 

09:00 dispatch is that the pre-dispatch hardly improves between PD1 and PD2 (in the 

second panel of Figure 4.5-3). There is little visible change in the dispersion. Only when 

we consider the PD3 data (in the third panel of Figure 4.5-3) can we see a very clear 

tightening around the no-bias line. This indicates that a significant amount of new 

information enters into the pre-dispatch process between 06:00 and 14:30 (the time of the 

PD3 pre-dispatch for the 15:00 dispatch period) on the dispatch day. 

 

(INSERT Figure 4.5-3 HERE) 

This may be seen as an early indication for pre-dispatch information on the day before pre-

dispatch to have only limited informational value in the context of price spike prediction. 

In order to shed more light on this issue we will now estimate the quantile regression 

parameters    and    in 

    (    )          ( ̂   | )         (4.5-3) 

Following the previous example, we first explain the relation between the     (    ) and the 

    ( ̂   | ) on all of dispatch days   (1
st
 to 3166

th
) at           (upper panel of Figure 

4.5-4) and 15:00 (lower panel of Figure 4.5-4).  The estimated values for  ̂ , for    

           , are displayed in Figure 4.5-4. Their placement on the horizontal axis is 

determined by the corresponding values of the unconditional deciles for     . For 

comparison purposes, the OLS coefficient estimate of   is shown with its 95% confidence 

interval as a horizontal line.  

 

(INSERT Figure 4.5-4 HERE) 

From these figures we can draw a number of interesting conclusions. At almost all deciles 

  we find  ̂  to be smaller than one. This suggests that a 1 unit increase in the logarithm of 

the pre-dispatch price does not result in an equivalently large increase in the resulting 
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conditional quantiles. Only the 90
th

 conditional percentile (9
th

 decile) has a  ̂    close to or 

exceeding 1. Also, the estimated coefficients  ̂  increase in  . This indicates that the 

conditional confidence intervals tend to increase with increasing pre-dispatch price.  

 

(INSERT Figure 4.5-5 HERE) 

This can best be illustrated referring to Figure 4.5-5. In that Figure we display percentiles 

for the dispatch price conditional on the relevant pre-dispatch price. The percentiles 

displayed are the 10
th

, 25
th

, 50
th

, 75
th

 and 90
th

. It is clear that all these conditional 

percentiles increase with the pre-dispatch price, but the increase is much slower for the 

lower percentiles. This, of course, corresponds to smaller values of  ̂  for smaller values of 

 . A result of this is that any confidence interval for the dispatch price becomes larger with 

increasing values of the pre-dispatch price. 

 

This, by itself, indicates that larger pre-dispatch values are associated with a larger degree 

of uncertainty with respect to the actual dispatch price outcome. As we know that 

electricity prices are positively skewed we would certainly expect that a certain degree of 

heteroscedasticity may be caused by the possibility of large price outcomes, even for the 

logarithm of prices
51

. This should show in  ̂  for large   that are much larger than 1. 

However, the type of heteroskedasticity we can see here is mainly due to the fact that the 

lower percentiles stay very low (values of  ̂  for small   that are much lower than 1). It is 

the  ̂  for the large values of   that are close to 1 which indicates that the upper percentiles 

of the confidence interval increase more or less in step with increases in the logarithm of 

the pre-dispatch prices. 

 

As could be seen from the lower panel of Figure 4.5-4 the  ̂  values for the 15:00 dispatch 

period have a larger range (from 0.5 to 1.1) than those for the 09:00 dispatch period. This 

results in the conditional confidence interval for    (    ) fanning out even more as 

   ( ̂   | ) increases. This is clearly demonstrated in the lower panel of Figure 4.5-5. It is 

very clear that high pre-dispatch prices signal only to a certain extend an increased 

probability of higher spot prices, but they also signal a higher uncertainty about the 

resulting spot prices.  

 

                                                 
51

 The logarithm of the spot prices is still positively skewed (see Table 4.4-1) although the degree of 

skewness has decreases substantially. 
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(INSERT Figure 4.5-6 TO Figure 4.5-7 HERE) 

We will now discuss how these findings change as we move from the pre-dispatch at PD1 

to that at PD2 (Figure 4.5-6) and PD3 (Figure 4.5-7). In Figure 4.5-6 we can see the 

estimated coefficients  ̂  for the 09:00 dispatch period (upper panel) and 15:00 dispatch 

period (lower panel) when pre-dispatch prices from PD2 are used in the quantile 

regression. For the 09:00 dispatch period we can see that, compared to the results using the 

PD1 information (refer to Figure 4.5-4), the estimated coefficients move somewhat closer 

to 1 which in turn results in a tightening of the conditional confidence intervals (as shown 

in the first panel of Figure 4.5-5). However, as for the PD1 results, all coefficients stay 

below the value of 1. As this is true even for the highest quantile this indicates that even 

large pre-dispatch prices cannot be taken to give rise to significant price spike probabilities 

at the 09:00 dispatch period. When considering the PD3 results for the 09:00 dispatch 

(Figure 4.5-7, upper panel) we can see another slight move of these coefficients towards 1 

with the 90
th

 percentile coefficient now being very close to 1. In fact the quantile 

regression coefficients have now moved fairly close to the OLS coefficient value of 

approximately 0.94 for most quantiles. The most obvious deviation is for the 10
th

 

percentile where the coefficient is close to 0.8. Altogether it appears as if both periods 

(between PD1 – 15:00 on     – and PD2 – 06:00 on   – as well as between PD2 and 

PD3 – 08:30 on  ) deliver new information to the pre-dispatch process for the 09:00 

dispatch interval.  

 

The same conclusion cannot be drawn when considering the results for the 15:00 dispatch 

period. There are hardly any changes in the estimated quantile regression coefficients when 

moving from PD1 (Figure 4.5-4, lower panel) to (Figure 4.5-6, lower panel) PD2. This 

mirrors the absence of any qualitative change in the scatter plots in Figure 4.5-3. Even at 

PD2 the quantile regression coefficients vary from about 0.53 to 1.18 (Figure 4.5-6, lower 

panel). As discussed previously this implies that there is a large degree of uncertainty 

about the actual dispatch price outcomes when pre-dispatch prices (at PD2) are large. It is 

therefore obvious that, as far as the 15:00 dispatch is concerned, the pre-dispatch process 

will still have to absorb a significant amount of information and very little new information 

has arrived between PD1 and PD2. By 14:30 (the time of PD3 for the 15:00 dispatch 

period) the situation has changed very significantly. The range of quantile coefficients has 

now tightened to a range from 0.82 to 1.08 (Figure 4.5-7, lower panel). In fact, at the 

Median the coefficient is  ̂          But even at this stage the range of the coefficients 



162 

 

suggests that larger pre-dispatch prices are also indicative of larger conditional confidence 

intervals.   

 

To illustrate the large qualitative change of conditional confidence intervals we plot the 

conditional quantiles for the 15:00 dispatch period for PD1 and PD3 in Figure 4.5-8
52

. We 

can see a substantial tightening of the conditional confidence interval which suggests that 

the pre-dispatch information available on day     may only be of limited value as far as 

price event forecasting is concerned. 

 

(INSERT Figure 4.5-8 HERE) 

Given the convex nature of the electricity supply curves it is not necessarily surprising to 

find the type of heteroskedasticity observed in the above results. Ceteris paribus, higher 

pre-dispatch prices imply that we are operating in a steeper part of the supply curve and 

hence the same change in demand will result in larger absolute changes of the wholesale 

electricity price.  

 

It is one of the aims of this chapter to establish whether pre-dispatch information can be 

used to predict extreme price events. In the context of our point process models this would 

require that information available on day     has useful informational content relating to 

extreme price events on day  . Two aspects of the results presented in this Section make 

this seem unlikely. First, large pre-dispatch prices (in particular at PD1) seem to signal a 

large amount of uncertainty about dispatch price outcomes. The increased conditional 

confidence intervals are not particularly skewed towards high price outcomes. This makes 

it impossible to interpret high pre-dispatch prices as a clear signal for possible large price 

outcomes. Second, the pre-dispatch prices at PD1 seem to be fairly imprecise (best 

illustrated by the wide spread observed in the scatter diagrams of Figure 4.5-2 and Figure 

4.5-3 in the first panel). The closer we move to the dispatch time the more relevant 

information is worked in to the pre-dispatch price. This makes the PD1 fairly 

uninformative.  

 

Despite this pessimistic outlook it is, of course, necessary to test whether the inclusion of 

any pre-dispatch information does make a significant contribution in the Hawkes or PAR 

models used to predict extreme price events. The information from the pre-dispatch 

process that we use are the estimated pre-dispatch price (used as the explanatory variable 

                                                 
52

 The conditional quantiles for PD2 are very similar to those from PD1 in the upper panel of Figure 4.5-8 

and therefore are not shown here. 
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in the above quantile regressions),  ̂   | , as well as the estimated slope  ̂   |  of the supply 

curve. As discussed in Section 4.4.2.5 the characteristics of the wholesale electricity supply 

curve mean that these will be highly correlated
53

. In addition to these pieces of information 

we shall also use the variable     |  as described in Section 4.2.5. 

 

4.5.3. Hawkes and PAR Models 

In this Section we will establish whether extending the Hawkes and PAR models estimated 

in Chapter 2 with information from the pre-dispatch process delivers any insights. Here we 

will re-estimate the Hawkes models (HAWa and HAWab). The former allows the initial 

spike in intensity due to a price event to vary with covariates while the latter also allows 

the intensity decay to vary with covariates. In addition to the Hawkes models we will also 

re-estimate the PAR model. The basic models will use   ,      ,        and    as 

covariates to control the time variation of intensity in the Hawkes models and the 

probability of event arrival and disappearance in the PAR model. 

 

4.5.3.1. Model Specification 

In this chapter we will extend these models with variables derived from the pre-dispatch 

process. The variables considered are those discussed previously. First we use the variable 

that measures bias in the pre-dispatch prices,     | . As discussed in Section 4.4.2.5 this 

gives a measure of how biased the pre-dispatch process for period   (      for day times 

or e for evenings
54

) of day   was, where                   . These measures are 

available on day  . 

 

Further we use measures of the expected price (the value of the supply curve at the 

expected load) and the slope of the supply curve (at the expected load). In Section 4.4.2.5 

we described how we estimated these measures on the basis of the available pre-dispatch 

scenarios. This resulted in the variables  ̂   |  and  ̂   |  which were available for any 

trading interval   and for the different pre-dispatches                   . As the 

Hawkes and PAR models are models estimated on the basis of daily observations, this 

information had to be distilled into daily variables. Here we are interested in modelling 

extreme price events and therefore we decided to use the average of the 5 largest values of 

                                                 
53

 This is confirmed in the summary statistics reported in Table 4.5-1  

54
 Since the pre-dispatch information is closely related (multicollinearity), we decided to apply a principal 

component analysis (PCA) to explain the variation amongst these variables. Based on the results, we decided 

to eliminate the measures of bias in the pre-dispatch prices during morning,     | , as it does not provide any 

information in addition to the respective daytime and evening measures. 
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 ̂   |  and  ̂   |  across all          on any day   and then take the logarithmic of the 

daily average series. The resulting daily series are labelled    (    | ) and    (    | ).  

 

The timing of these variables is important, as we need to distinguish between the time at 

which the pre-dispatch information is available and dispatch day to which the pre-dispatch 

relates. Our convention here is that we will refer to the dispatch on day     (as we will 

want to forecast the probability of a price event on day    ). Of course, the PD1 pre-

dispatch for     is available on day   and that is what we will use in the subsequent 

estimating exercise as it is focused on forecasting performance.   

 

In Table 4.5-1 we report the correlation matrix of the explanatory variables derived from 

pre-dispatch information. These variables are uncorrelated to any of the variables in our 

Base Model (  ,      ,        and   ) and hence it is well worth considering this extra 

information
55

. There are a number of variables amongst the pre-dispatch variables that are 

correlated with each other. The bias variables     |  and     |  are correlated at pre-

dispatches PD1 (correlated at 0.6016) and PD2 (correlated at 0.5482). This is not the case 

at PD3 (correlated at 0.1064), at which these bias variables appear fairly uncorrelated. This 

leads us to never include both bias variables for               . Further we find that our 

variables capturing the expected pre-dispatch price information,     | , and the slope of 

the supply curve at the expected load,     | , are strongly correlated at all    

                 (correlated at 0.8913, 0.8796, 0.8752). This is not surprising as we 

know the supply curve to be convex. This then implies that we will include only one of 

these two variables. 

 

(INSERT Table 4.5-1 HERE) 

The Hawkes and PAR models used in this chapter are models that are highly nonlinear in 

their parameters. It is therefore difficult to implement a comprehensive general to specific 

search strategy. Hence we will implement the following estimation strategy. Each of our 

three point process models (HAWa, HAWab and PAR) will be estimated in 4 different 

versions. These models use the basic covariates   ,      ,        and    and then 4 

additional sets of variables derived from pre-dispatch information. The details of the 

covariate choice are provided in Table 4.5-2. 

 

                                                 
55

 To conserve space these correlations are not reported here but are available on request. None of these 

correlations is larger than 0.1 (in absolute terms).  
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(INSERT Table 4.5-2 HERE) 

At this stage we limit our covariates to those that are useful in forecasting models. While 

we will introduce the forecasting setup below, it is important to be clear about the timing 

of the variables. We are building models that build a probability for the occurrence of price 

spikes at time     using information available at time  . Therefore we need to ensure that 

all variables are available at time t, and therefore we restrict ourselves to        . 

 

By way of example, Model 1 uses     |    and    (    |   ) as additional covariates. For 

the HAWa this implies that these variables are used to explain variation in    
 as per 

equation (4.3-8). In the case of the HAWab model the covariates are used to allow 

variation in    
 and    as outlined in equations (4.3-8) and (4.3-10). In the PAR model the 

covariates control variation in the probability of stress arrival    (equation (4.3-16)) and 

the binomial thinning parameter    (equation (4.3-17)). 

 

4.5.3.2. Estimation Results 

In this section, we turn our attention to the estimation results for the models outlined 

above. We are not really interested in identifying one best model, but rather in whether the 

inclusion of the pre-dispatch information is valuable. We will therefore analyse whether 

the inclusion of the pre-dispatch information into our models delivers significant findings 

that are robust across our different models. 

 

In the first instance we shall analyse the signs of the estimated parameters. As it turns out, 

the estimated signs are quite consistent across the different specifications for the HAWab 

and the PAR models. This is not the case, however, for the HAWa model (Table 4.5-3). 

We are including the extra coefficients into the information set that controls by how much 

a new price event increases (initially) the intensity of another price event for subsequent 

days.  

 

(INSERT Table 4.5-3 HERE) 

The inclusion of the bias variables results in a mixture of negative and positive coefficients 

for the day-time bias variable,     |    and the evening sub-periods bias variable,     |   . 

The coefficients are clearly not significantly different from zero and hence we judge that 

the bias variables do not contribute significantly to explaining variation in the intensity. 

The inclusion of the expected pre-dispatch price variable    (      |   ) and the supply 
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curve slope variable,    (      |   ), also result in a mixture of positive and negative 

coefficients, and again they are all statistically insignificant. 

 

In order to analyse the collective importance of pre-dispatch information in each of the 

models, we use the likelihood ratio (LR) test. The optimised log-likelihood and LR test 

results for each model are displayed in the bottom rows of the respective results table. 

Models 1 to 4 are compared to the basic model to establish whether the inclusion of the 

extra pre-dispatch variables add a significant amount of information. As it turns out Model 

3 (at the 5% significance level) and Model 4 (at 1%) prove to be significant improvements 

to the Basic model despite the individual parameters not being significant.  

 

It is possible that any correlation between the unseasonal load (    ) and unexpected 

increase/decrease in temperatures (       ,        ) variables and the pre-dispatch 

variables may mask the significance of the pre-dispatch information in these models. We 

therefore re-estimate the models without     ,          and         variables in order 

to establish whether, the pre-dispatch variables alone prove to be significant. The resulting 

models are, predictably, worse, and moreover even the removal of these variables do not 

render the pre-dispatch variables to be statistically significant. 

 

The next set of results in Table 4.5-4 shows the results for the extended HAWab models. 

The pre-dispatch variables are included into both the    
 and    time-varying parameters. 

Here the inclusion of the pre-dispatch variables results in a very consistent signs but also 

insignificant parameters. In general the pre-dispatch variables are particularly insignificant 

in those models (Models 1 and 2) in which the expected pre-dispatch price variable, 

   (      |   )  are included. In terms of estimated signs, we find that both the variables 

based on the expected pre-dispatch price,    (      |   ) and the supply curve slope, 

   (      |   ) enter    
 with a negative and    with a positive sign.    

 

This seems to indicate that events that occur on days for which high prices were expected 

(and the expected load intersected the supply curve in a relatively steeper part) have a 

smaller impact on subsequent intensity; and that on such days the intensity decays at a 

higher rate (larger   ). The bias variables (    |   and     |   ) also enter    positively as 

do the evening sub-periods bias variable,     |    into    
. The day-time bias variable, 

    |    are negative in the    
 specification, but are also very close to 0. 
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(INSERT Table 4.5-4 HERE) 

The likelihood ratio tests are insignificant at any conventional significance level and we 

therefore conclude that the inclusion of the pre-dispatch variables does not significantly 

improve the in-sample fit for the HAWab models. 

 

(INSERT Table 4.5-5 HERE) 

When including the pre-dispatch variables into the PAR model we find that their inclusion 

produces some individually significant coefficients and models which are significantly 

improved compared to the basic model. In the PAR model the time varying parameters    

and    control the arrival and the survival probability of latent system stresses. First we 

will evaluate the effect of the pre-dispatch variables on the arrival probability   . The 

variables based on the expected pre-dispatch price,    (      |   ) and the supply curve 

slope,    (      |   ) enter negatively into the arrival probability
56

. This seems to 

indicate that stresses are less likely to arrive in days in which high prices are anticipated. 

One interpretation would be that extreme price events are mainly due to stresses that are 

not anticipated in the pre-dispatch, or, expressed somewhat differently, that a market that 

already expects high prices may be in a better position to absorb any further adverse events 

without extreme price events. However, these coefficients are at most marginally 

significant. The inclusion of the bias variables (    |    and     |   ) proves more 

significant. They all enter positively implying that if the pre-dispatch process 

underestimated the dispatch price outcomes for day t, then it is more likely that we will see 

a new system stress on day t+1. 

 

The inclusion of the pre-dispatch variables in the specification for the stress survival 

probability    results in negative coefficients for bias, expected pre-dispatch price and 

slope variables. The only coefficients that are statistically significant, however, are those of 

the day-time bias,     |   . This implies that, ceteris paribus, a larger under-estimation of 

the dispatch prices on day t (i.e. larger values for     |   ), results in a smaller survival 

probability for stresses at time t+1. There is no immediately obvious interpretation of this 

result.  

 

                                                 
56

 Given the particular specification for    (see equation (4.3-16)) and    (see equation (4.3-17)), the partial 

derivative of these terms with respect to a particular variable, has the same sign as the respective coefficient.

  
 (      (    (  )))

  
      (    (  )    ) 

Which will take the same sign as   as     ( ) is positive. 
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When evaluating the statistical significance of the inclusion of the four pre-dispatch 

variables into Models 1 to 4 of PAR model, we find all LR statistics to be significant at 5% 

but not at 1%. We therefore conclude that while the inclusions seem to be marginally 

significant, these effects do not appear dramatic. 

 

 

 

4.5.3.3. Forecasting 

 

In this section we want to investigate whether pre-dispatch information is able to improve 

the ability of Hawkes and PAR models in predicting next-day price event.  

 

In the forecast exercise, the intensities of next-day price events are calculated during the 

forecast period from October 31, 2005 to October 31, 2007. The parameters used for the 

forecast are re-estimated every 30 days. We use a sliding estimation window of constant 

size. For example, the parameters vectors of all the models are estimated by maximising 

the log-likelihood function in equations (4.3-11) and (4.3-20) using information from the 

initial estimation period (March 2, 1999 to October 30, 2005). These parameters vectors 

are then used to produce one-day-ahead conditional intensity forecast from October 31, 

2005 to November 29, 2005 using equation (4.3-7) and equation (2.7-10). The one-day-

ahead conditional intensity forecast for the Hawkes model is denote by   |    while for 

PAR model is denote by   |   . This first set of estimated model parameters is used in the 

calculation of the first 30 one-step-ahead intensity forecasts. The parameters are re-

estimated every 30 days, meaning that the second estimation window includes data from 

March 31, 1999 to November 29, 2005. These updated parameter estimates are then used 

to produce the next 30 one-day-ahead conditional intensity forecast from November 30, 

2005 to December 29, 2005. This process continues until we obtain two years’ worth of 

intensity forecasts.  

 

We are also using a ‘naïve’ model to compare the forecast performance of Hawkes and 

PAR models. As mentioned in Chapter 2, the naïve model predicts spikes on day,   only if 

there is a spike on day     and the next day,   falls on a weekday. In this case the one-

day-ahead conditional intensity forecast of the naïve model takes a value of 1. If the 

condition is not satisfied, the intensity forecast is equal to 0.  The forecast model 

specification follows Table 4.5-2. By comparing the forecast performance of the Basic 
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models with those models which include pre-dispatch information in the conditioning 

covariates set, we are able to determine whether pre-dispatch information carry valuable 

information that could improve forecast of the next day price spikes intensities. 

 

The forecast performance of the models is measured using Mean Absolute Error (MAE), 

Root Mean Square Error (RMSE) and the Asymmetric loss score (ASYM) (see; Rudebusch 

& Williams (2009) and Christensen et al. (2009)). All of these measurements are based on 

the forecast error (     |   ) of Hawkes and (     |   ) PAR models.  

 

(INSERT Table 4.5-6 HERE) 

When comparing the forecast performance of the models that include pre-dispatch 

information with the basic models, it transpires that it is only the HAWab model that 

responds positively to the inclusion of the pre-dispatch variable. This result mirrors the 

previous finding that indicated the collective significance of the pre-dispatch variables was 

largest for the HAWab class of models. For neither the PAR nor the HAWa models can we 

see any discernible difference in forecasting performance.  

 

When including the naïve model into the forecasting performance comparison, the results 

are even more disappointing as the basic price spike prediction rule outlined above 

produces the lowest forecast MAE criterion. The fact that the naïve model does worst for 

the RMSE criterion indicates, however, that it does tend to make more larger mistakes 

which are more heavily penalised in a criterion using a squared measure. That is due to the 

fact that the naïve model, by design takes extreme intensity predictions. 

 

 

In the light of our findings in Chapter 3, it is it is possibly not surprising to find that the 

pre-dispatch process of the Australian Electricity Market does not provide any information 

that can be used in a systematic manner to help predicting on what days price spikes are 

more likely to occur. 
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4.6. Conclusions 

 

Following our work in Chapter 3, where we analyse whether there is an apparent bias in 

the pre-dispatch process; in this Chapter we investigate whether information from the pre-

dispatch process can be useful in forecasting next-day price spikes. In our quest to uncover 

the potential of pre-dispatch information in a forecasting context, we conducted several 

preliminary analyses. These analyses consist of a careful analysis of correlations and 

quantile regressions. From the results of these analyses we find evidence that pre-dispatch 

prices are a surprisingly week predictor of price outcomes.  

 

Despite the finding, we test whether the inclusion of any pre-dispatch information does 

make a significant contribution in the Hawkes or PAR models used to predict extreme 

price events. In doing so, we are not really interested in identifying one best model, but 

whether the inclusion of the pre-dispatch information into the models is valuable. For the 

HAWa models, the pre-dispatch variables are included into    
 time-varying parameter 

which control by how much a new price event increases (initially) the intensity of another 

price event for subsequent days. While for the HAWab models, the pre-dispatch variables 

are included both into the    
 and    time-varying parameters. Finally in the PAR model 

we evaluate the effect of the pre-dispatch variables into the time varying parameters    and 

   that control the arrival and the survival probability of latent system stresses. 

 

As it turns out the best forecast performance comes from models without inclusion of pre-

dispatch information in their conditioning covariates set. This means the inclusions of the 

pre-dispatch information into these point process models do not deliver significant findings 

that are robust across different models. Hence, it transpires that the pre-dispatch process of 

the Australian New Electricity Market does not provide any information that can be used in 

a systematic manner to help predicting price spikes on the next day. These findings are, of 

course, conditional on the specific information extracted from the pre-dispatch process. It 

is possible that different pieces of information embodied in that rich data-set may be more 

useful. It is, however, not obvious what that information should be. 
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Figure 4.1-1: This figure is showing the time series of (log) daily average spot prices from 1999 to 

2007 in NSW. 

 

The daily average spot prices are calculated by taking the average of the 48 half-hour spot prices in 

a day. Since we have a missing observation from January 1 to 31, 2003 and July 2 to August 1, 

2005 a total of 148,992 half-hourly spot prices are used to calculate the daily average spot prices 

from March 2, 1999 to October 31, 2007. In order to show the low and high extremity of the daily 

average spot price series, we calculated their 10
th
 and 90

th
 percentiles of the daily average series. 

The 10
th
 percentile of the series is A$17.39/MWh and the 90th percentile of the series is 

$51.45/MWh. The extreme temporary price jumps feature in the price series are made obvious by 

taking the logarithmic of the daily average spot prices.  

It can be seen that the logarithmic of the price series exceeded the logarithmic of the 90
th
 percentile 

value frequently.     
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 1999 2000 2001 2002 2003 2004 2005 2006 2007 

Mean 22.92(3.08) 35.63(3.40) 33.27(3.40) 39.76(3.48) 24.37(3.00) 45.14(3.41) 35.83(3.24) 31.01(3.25) 72.88(4.01) 

Median 21.16(3.05) 26.31(3.27) 28.15(3.34) 28.29(3.34) 18.45(2.92) 28.08(3.34) 23.02(3.14) 24.72(3.21) 51.14(3.93) 

Std.Dev 7.99(0.30) 29.49(0.53) 30.47(0.36) 41.62(0.51) 35.35(0.42) 118.38(0.57) 83.09(0.52) 64.58(0.40) 92.40(0.61) 

Skewness 2.96(0.70) 5.28(0.97) 8.19(3.33) 4.40(2.45) 7.96(4.35) 8.90(3.61) 8.45(4.36) 17.03(3.69) 5.46(1.57) 

90
th
 prctile 32.99(3.50) 60.27(4.10) 39.76(3.68) 48.56(3.88) 25.71(3.25) 45.96(3.83) 33.67(3.52) 37.76(3.63) 102.37(4.63) 

95
th
 prctile 36.32(3.59) 70.38(4.25) 44.98(3.81) 112.62(4.72) 34.91(3.55) 62.36(4.13) 53.56(3.98) 43.44(3.77) 185.44(5.22) 

99
th
 prctile 47.61(3.86) 154.18(5.04) 184.36(5.22) 265.11(5.58) 240.03(5.48) 855.12(6.65) 487.10(6.18) 104.81(4.65) 589.90(6.37) 

% days prcspikes 22.92 35.63 33.27 39.76 24.37 45.14 35.83 31.01 72.88 

% hh prcspikes 21.16 26.31 28.15 28.29 18.45 28.08 23.02 24.72 51.14 

              0.049 0.809 0.384 0.753 0.171 0.915 0.540 0.430 4.924 

Table 4.4-1: This table shows the descriptive analysis of a daily average spot prices and its logarithmic series (in bracket) for each year throughout the 

investigation period (02/03/1999 to 31/10/2007)
57

 in $/Mwh unit.  

 

The daily prices are calculated by taking an average of 48 half-hour spot prices in a day. Once the daily series is obtained the descriptive analysis shown in 

the table are calculated. We then take a logarithmic on the daily series to produce the descriptive analysis shown in bracket.  

 

Std.Dev is standard deviation and 90
th
 prctile, 95

th
 prctile and 99

th
 prctile is the 90

th
, 95

th
 and 99

th
 percentile of the daily average spot prices.  

 Then the ninth and tenth rows used to display the proportion of days and half-hour with price spikes (% days prcspikes, % hh prcspikes) is in percentage 

unit. Using year 2000 as an example, they are calculated as follows: 
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)        

 

 

In the last row,               is a mean of Count Data for each year.  The Count Data is measured by counting the number of times the half-hourly spot 

prices exceeds A$100/MwH during a day. Further discussion on the Count Data is available in Section 4.4.2.4 

 

                                                 
57

 The calculated descriptive analysis in the year 1999, 2003, 2005 and 2007 are based on less than a year daily spot prices since in year 1999, the observation starts on 

March 2 and in year 2007, the observation ends on October 31. While in 2005 and 2007 we have a missing observation from January 1 to 31, 2003 and July 2 to August 1, 

2005 
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Figure 4.4-1: This figure is showing 3166 daily electricity consumption from March 2, 1999 to 

October 31, 2007 in NSW 

  

The daily load series are calculated by summing all the 48 half-hour load series in a day. For the 

purpose of illustration, we are using a total of 151,968 half-hourly load series obtained from 

AEMO’s website in Aggregate Price and Demand Data Files 

(http://www.aemo.com.au/Electricity/Data/Price-and-Demand/Aggregated-Price-and-Demand-

Data-Files).  

http://www.aemo.com.au/Electricity/Data/Price-and-Demand/Aggregated-Price-and-Demand-Data-Files
http://www.aemo.com.au/Electricity/Data/Price-and-Demand/Aggregated-Price-and-Demand-Data-Files
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Figure 4.4-2: This figure is showing daily deseasonalized load time series,    plotted from March 

2, 1999 to October 31, 2007 in NSW. 

 

Details explanation on the construction of the series is as explained in the caption of Figure 2.4-2. 

The daily    series show no obvious trends or seasonality making the series is a plausible candidate 

to capture the forecast electricity demand that exceeds the demand we would usually expect for that 

day of the week at that particular time of the year.   
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Figure 4.4-3: This figure is showing a daily time-series of     |    and its 50 day moving average 

series. 

 

The daily time-series of     |    are calculated as in equation (4.4-2) during daytime period or 

equivalent to 16 trading interval. In constructing this series we are using 16 half-hourly 

observations from 10:00 to 17:30 of electricity spot prices,      and the pre-dispatch +/- 200 MWh 

scenario prices on PD1,     |   
  . A 50 day moving average series are superimposed on the graph to 

highlight longer term trends of     |    series.  

 

A gap that we observed in the figure is caused by missing observation as mention in the caption of 

Figure 4.1-1.   
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Figure 4.4-4: This figure is showing a daily time-series of     |    and its 50 day moving average 

series. 

 

Details explanation on the construction of the series is as explained in the caption of  Figure 4.4-3 

except that scenario prices are on PD3. A gap that we observed in the figure is caused by missing 

observation as mention in the caption of Figure 4.1-1.   
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Figure 4.4-5: This figure is showing a cubic spline function,  ( ) connecting six available pre-

dispatch prices (                                    ) at their respective relative load offset 

values (-500, -200, -100, 100, 200, 500). 

 

In the figure,  ( ) is used to proxy the actual pre-dispatch prices from a supply curve inferred from 

   . The pre-dispatch price is interpolated at the intersection of the supply curve and a load offset 

value of 0. For illustration purpose in this figure, the estimated pre-dispatch price  ̂   |  is specific 

for the fifth sub-period (09:00) on dispatch day   and formed during pre-dispatch on PD1.  
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Figure 4.4-6: This figure is showing a logarithmic series of the  ̂       |   ,  ̂       |   , 

 ̂       |   . 

 

To construct the series in the first panel, we take the fifth sub-period (09:00) of the estimated pre-

dispatch price,  ̂       |    from March 2, 1999 to October 31, 2007. The estimated pre-dispatch 

price of the fifth sub-period (09:00) on one particular dispatch day   is calculated based on the 

approach describe in Figure 4.4-5. In order to make the features of the time-series more prominent, 

we takes the logarithmic of the daily  ̂       |   . A gap that we observed in the figure is caused by 

missing observation mentioned in the caption of Figure 4.1-1. Same description applies for the 

construction of the series in the second and third panels except they are based on pre-dispatch 

process during PD2 and PD3.  
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     1999 2000 2001 2002 2003 2004 2005 2006 2007 

Mean 26.28 43.18 31.00 29.50 19.59 28.86 23.29 25.28 60.56 

Median 22.55 28.75 29.71 28.16 18.66 27.19 21.78 23.18 47.53 

Std.Dev 29.12 71.84 10.06 8.71 5.46 9.48 6.68 8.34 43.64 

90
th
 prctile 38.71 66.02 41.83 40.69 25.63 41.67 30.63 35.91 99.10 

95
th
 prctile 43.05 86.90 47.09 46.12 31.36 46.84 34.79 40.52 151.98 

99
th
 prctile 53.50 366.33 63.85 58.27 37.34 57.83 54.79 54.38 252.93 

 ̂   |             

Mean 22.31 31.71 31.46 25.91 17.36 23.82 20.55 22.46 47.06 

Median 20.40 26.43 27.71 24.37 17.05 22.64 19.08 20.38 40.40 

Std.Dev 7.84 23.50 45.07 7.41 3.84 6.83 6.94 8.04 27.03 

90
th
 prctile 33.37 53.19 39.24 35.53 21.60 33.40 26.69 30.90 78.97 

95
th
 prctile 38.52 62.04 43.10 38.28 24.13 36.16 30.06 33.15 94.55 

99
th
 prctile 44.37 92.49 66.44 52.11 28.91 44.72 42.29 43.65 155.81 

 ̂   |             

Mean 22.37 34.24 30.45 28.45 18.65 26.52 22.11 23.50 55.67 

Median 20.31 27.34 29.20 27.03 17.87 24.72 20.49 21.54 44.70 

Std.Dev 8.79 41.26 10.48 8.10 4.64 8.14 6.53 7.20 37.06 

90
th
 prctile 35.18 55.85 40.76 38.71 23.67 37.37 29.45 32.49 96.33 

95
th
 prctile 40.65 63.59 47.40 43.28 28.21 40.82 33.41 35.99 124.00 

99
th
 prctile 52.08 82.60 57.94 54.82 34.31 54.07 53.66 45.50 216.96 

 ̂   |             

Mean 22.70 36.32 30.18 28.66 19.07 27.43 22.38 24.65 56.30 

Median 20.36 27.94 29.11 27.48 18.08 25.69 20.84 22.41 45.27 

Std.Dev 8.89 48.35 10.61 8.12 5.05 8.98 6.31 8.53 36.95 

90
th
 prctile 35.59 59.34 40.89 39.01 24.29 38.82 30.62 34.07 95.35 

95
th
 prctile 40.56 67.42 45.54 42.35 30.05 45.09 33.09 41.30 128.81 

99
th
 prctile 49.61 110.39 67.77 56.15 36.02 53.21 49.72 55.49 222.98 
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Table 4.4-2: This table shows the descriptive analysis of a daily average spot prices for each year in the morning sub-period,      (06:30 to 09:30 dispatch 

intervals -  7 trading intervals,    ) and the corresponding estimated pre-dispatch prices at                    in the morning sub-period,  ̂   | . 

The daily prices are calculated by taking an average of 7 half-hour spot prices in a day. Once the daily series is obtained the descriptive analysis shown in 

the table are calculated.  

Std.Dev is standard deviation and 90
th
 prctile, 95

th
 prctile and 99

th
 prctile is the 90

th
, 95

th
 and 99

th
 percentile of the daily average spot prices. Then the ninth 

and tenth rows used to display the proportion of days and half-hour with price spikes (% days prcspikes, % hh prcspikes) is in percentage unit. 

 

Further explanation on this table is similar to the caption of Table 4.4-1, except        (              ) 
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     1999 2000 2001 2002 2003 2004 2005 2006 2007 

Mean 23.81 39.37 43.15 37.38 20.73 78.64 60.30 40.33 79.37 

Median 21.99 30.98 29.75 30.89 18.80 28.38 23.88 26.65 56.47 

Std.Dev 7.80 54.67 79.46 40.87 7.13 347.08 247.72 187.20 83.84 

90
th
 prctile 34.71 61.40 51.38 46.70 27.33 67.00 41.12 41.45 127.27 

95
th
 prctile 39.89 74.94 70.75 59.93 35.10 94.13 57.82 58.32 209.45 

99
th
 prctile 47.41 152.46 478.60 152.26 55.80 2426.06 1407.47 141.28 534.67 

 ̂   |             

Mean 22.85 42.85 56.84 36.56 19.75 82.37 25.71 26.36 63.28 

Median 20.96 30.40 29.18 27.96 17.42 25.05 20.78 23.64 51.92 

Std.Dev 7.73 153.86 245.14 59.70 11.94 393.33 19.25 14.77 61.89 

90
th
 prctile 32.63 55.93 61.12 47.02 25.64 45.70 35.52 33.97 95.51 

95
th
 prctile 38.82 70.23 82.72 66.14 30.01 91.76 43.63 45.65 128.65 

99
th
 prctile 49.53 155.33 224.68 173.50 46.55 2031.46 157.42 73.46 263.17 

 ̂   |             

Mean 23.51 45.73 53.54 37.95 19.99 66.31 29.68 26.81 78.76 

Median 21.24 31.22 30.16 30.15 17.89 25.93 22.26 24.16 53.89 

Std.Dev 8.23 186.36 215.85 48.59 7.06 298.33 45.48 19.12 188.41 

90
th
 prctile 33.82 55.91 62.13 52.26 26.44 53.44 37.63 34.69 109.58 

95
th
 prctile 42.09 67.51 86.74 77.50 30.33 103.61 43.87 41.87 138.93 

99
th
 prctile 51.97 158.67 334.63 132.44 48.48 1003.93 174.11 84.92 313.57 

 ̂   |             

Mean 23.69 39.41 42.07 36.70 20.70 95.89 60.96 49.10 75.00 

Median 21.88 30.92 29.97 31.55 18.58 28.64 24.11 26.25 55.72 

Std.Dev 7.88 69.80 78.75 39.12 7.11 458.53 224.90 243.96 94.75 

90
th
 prctile 35.24 56.50 51.69 48.17 26.46 64.50 41.29 41.71 116.48 

95
th
 prctile 38.87 69.69 64.32 58.38 33.61 126.09 55.81 52.61 164.02 

99
th
 prctile 49.44 145.88 260.53 122.07 52.79 2403.60 1387.04 392.50 341.33 
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Table 4.4-3: This table shows the descriptive analysis of a daily average spot prices for each year in the daytime sub-period,      (10:00 to 17:30 dispatch 

intervals -  16 trading intervals,    ) and the corresponding estimated pre-dispatch prices at                    in the daytime sub-period,  ̂   | . 

The daily prices are calculated by taking an average of 16 half-hour spot prices in a day. Once the daily series is obtained the descriptive analysis shown in 

the table are calculated.  

Std.Dev is standard deviation and 90
th
 prctile, 95

th
 prctile and 99

th
 prctile is the 90

th
, 95

th
 and 99

th
 percentile of the daily average spot prices. Then the ninth 

and tenth rows used to display the proportion of days and half-hour with price spikes (% days prcspikes, % hh prcspikes) is in percentage unit. 

 

Further explanation on this table is similar to the caption of Table 4.4-1, except         (              ) 
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     1999 2000 2001 2002 2003 2004 2005 2006 2007 

Mean 25.09 38.10 33.29 70.07 42.58 37.10 30.11 35.77 111.59 

Median 22.25 26.30 30.51 31.76 20.18 31.49 25.15 24.99 51.85 

Std.Dev 10.58 47.67 31.10 141.17 137.94 50.24 26.77 59.93 283.23 

90
th
 prctile 38.16 63.95 42.81 92.87 33.17 50.27 40.49 52.69 130.83 

95
th
 prctile 43.02 73.41 46.87 231.29 54.41 59.25 48.72 67.35 247.95 

99
th
 prctile 61.65 181.21 55.33 860.10 896.61 123.25 120.41 133.88 1784.63 

 ̂   |             

Mean 24.30 35.42 31.92 70.55 28.28 29.35 25.14 29.54 64.78 

Median 21.22 24.21 30.80 29.61 18.57 26.87 20.88 22.26 47.44 

Std.Dev 9.65 39.00 10.22 163.39 70.65 11.14 14.35 17.17 78.48 

90
th
 prctile 39.30 56.96 43.11 104.46 30.22 43.98 32.89 50.58 113.78 

95
th
 prctile 42.19 66.04 46.67 255.12 38.12 48.44 39.49 66.98 145.26 

99
th
 prctile 50.06 178.10 66.35 898.34 394.62 71.99 93.12 90.93 230.53 

 ̂   |             

Mean 24.40 35.07 32.45 73.29 35.32 30.38 26.81 29.77 87.11 

Median 20.72 24.80 30.83 31.32 18.86 27.94 21.93 22.18 49.03 

Std.Dev 9.73 48.23 13.46 180.52 149.53 12.16 18.02 29.64 241.91 

90
th
 prctile 38.34 59.12 43.69 92.28 31.21 43.68 34.86 48.25 119.02 

95
th
 prctile 44.73 70.73 48.42 141.16 38.10 49.62 42.15 54.45 167.94 

99
th
 prctile 52.62 134.46 57.65 916.11 662.62 78.20 136.55 75.77 1498.58 

 ̂   |             

Mean 24.87 35.13 35.40 76.14 57.61 35.86 28.30 31.07 104.08 

Median 21.91 26.25 30.38 31.72 19.94 31.27 23.87 24.36 52.43 

Std.Dev 10.17 29.58 80.11 182.57 219.29 34.06 18.51 18.33 266.80 

90
th
 prctile 37.49 59.16 42.34 97.08 31.75 50.35 37.89 51.87 122.69 

95
th
 prctile 44.18 69.60 46.45 225.93 44.67 57.01 45.85 66.62 218.68 

99
th
 prctile 65.10 138.60 58.90 1066.38 1436.26 117.86 114.28 101.61 1769.08 
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Table 4.4-4: This table shows the descriptive analysis of a daily average spot prices for each year in the evening sub-period,      (18:00 to 23:30 dispatch 

intervals -  12 trading intervals,    ) and the corresponding estimated pre-dispatch prices at                    in the evening sub-period,  ̂   | . 

The daily prices are calculated by taking an average of 12 half-hour spot prices in a day. Once the daily series is obtained the descriptive analysis shown in 

the table are calculated.  

Std.Dev is standard deviation and 90
th
 prctile, 95

th
 prctile and 99

th
 prctile is the 90

th
, 95

th
 and 99

th
 percentile of the daily average spot prices. Then the ninth 

and tenth rows used to display the proportion of days and half-hour with price spikes (% days prcspikes, % hh prcspikes) is in percentage unit. 

 

Further explanation on this table is similar to the caption of Table 4.4-1, except          (              ) 
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Figure 4.4-7: This figure is showing the median of the daily average spot prices,         and 

estimated pre-dispatch prices,  ̂      |  for each year and trading sub-periods (         ) during 

each pre-dispatch processes (             ). The first panel is the median series for the 

morning sub-period, the second panel is the median series for the daytime sub-period and the third 

panel is the median series for the evening sub-period.   

 

The         series in the first panel is the median of spot prices calculated for each year from 1999 

to 2007 for the morning sub-period,    . Using an example of          , to calculate 

median of         , we first take the average of the 7 half-hour (06:30 to 09:30) spot prices in a day 

to construct 366-days daily  time-series. Then by calculating the median of the 366-days daily time-

series we obtain value for median of         . The same process applies for the median of other 

estimated pre-dispatch prices,  ̂      |   ,  ̂      |      ̂      |    except they are using the 

estimated pre-dispatch prices as discuss in Section 4.4.2.5 instead of spot prices.  
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Figure 4.4-8: This figure is showing a scatter plot between     (  ) and     (    | ) in Panel A, B 

and C and a scatter plot between     (  ) and     (    | ) in Panel D, E and F.   

 

The logarithmic series of daily average spot prices,     (  ) used for the data of the y-axis are 

calculated by taking the average of the 35 half-hour spot prices in a day and then taking the 

logarithmic of the average series. While the logarithmic series of daily     |  and     |  on 

PD1, PD2 and PD3,     (    | ) and     (    | ) used for the data of the x-axis on the respective 

sub-plot are calculated by taking the average of the 5 largest values of  ̂   |  and  ̂   |  across all 

         on any day   and the logarithmic of the average series. 
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Figure 4.5-1: This figure is showing the 35 half hour correlation between logarithmic series of pre-

dispatch and spot prices from March 2, 1999 to October 31, 2007.  

 

In the first panel of this figure, the three distinctive line (with different colours) is used to illustrate 

the 35 half hour correlation between logarithmic series of pre-dispatch,    ( ̂   | ), and spot prices, 

   (    );    (    )    ( ̂   | )
 plotted using blue line, 35 half hour correlation between logarithmic 

series of pre-dispatch,    ( ̂   | ), and spot prices that is above A$50,    (        ); 

   (        )    ( ̂   | )
 plotted using red line and lastly 35 half hour correlation between logarithmic 

series of pre-dispatch,    ( ̂   | ), and spot prices that is below A$50,    (        ); 

   (        )    ( ̂   | )
 plotted using green line.  

The second and third panel are used to display the 35 half hour correlation on PD2 and PD3.  

Using      (at      ) as an example, the correlation of one half-hour is calculated as follows: 

   (     )    ( ̂    |   )   (   (     )    ( ̂    |   ))                 
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Figure 4.5-2: This figure is used to demonstrate the relationship between     (        ) and 

    (        | ) during PD1, PD2 and PD3 at        . 

 

In the first panel, the scatter points represent all pairs of     (        ) and     (        |   ) in our 

sample period (from March 2, 1999 to October 31, 2007). The solid line represents the idealistic 

relationship between of     (        ) and     (        |   )  in case the latter provides an unbiased 

forecast for the logarithm of the spot price. This relationship is represented in equation (4.5-2). The 

same description applies to the second and third panel except that they are related to the pre-

dispatch process at PD2 and PD3.  
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Figure 4.5-3: This figure is used to demonstrate the relationship between     (        ) and 

    (        | ) during PD1, PD2 and PD3 at        . 

 

In the first panel, the scatter points represent all pairs of     (        ) and     (        |   ) in our 

sample period (from March 2, 1999 to October 31, 2007). The solid line represents the idealistic 

relationship between of     (        ) and     (        |   )  in case the latter provides an unbiased 

forecast for the logarithm of the spot price. This relationship is represented in equation (4.5-2). The 

same description applies to the second and third panel except that they are related to the pre-

dispatch process at PD2 and PD3.  
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Figure 4.5-4: This figure is showing the quantile regression coefficients    calculated using 

equation (4.3-5) for PD1 at τ = 09:00 and 15:00 are accompanied by 95% confidence intervals for 

the each quantile (               in increments of 0.1). The estimated coefficients are plotted 

against the unconditional   deciles of      (as indicated by the positions of the *).  

The horizontal line represents the least squares (conditional mean) estimate and its 95% confidence 

interval. 

 



197 

 

 

 

Figure 4.5-5: This figure is showing the estimated series of   ̂   . 

 

 The raw series of  ̂    is constructed by taking an exponential of      ( ̂   ) series. The     ( ̂   ) 

series is estimated using log of pre-dispatch prices at 09:00 and 15:00 during PD1 with respect to 

equation (4.5-2) and quantile regression for   {                     } as discussed in Section 

4.3.1. 
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Figure 4.5-6: This figure is showing the quantile regression coefficients    calculated using 

equation (4.3-5) for PD2 at τ = 09:00 and 15:00 are accompanied by 95% confidence intervals for 

the each quantile (               in increments of 0.1). The estimated coefficients are plotted 

against the unconditional   deciles of      (as indicated by the positions of the *).  

The horizontal line represents the least squares (conditional mean) estimate and its 95% confidence 

interval. 
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Figure 4.5-7: This figure is showing the quantile regression coefficients    calculated using 

equation (4.3-5) for PD3 at τ = 09:00 and 15:00 are accompanied by 95% confidence intervals for 

the each quantile (               in increments of 0.1). The estimated coefficients are plotted 

against the unconditional   deciles of      (as indicated by the positions of the *).  

The horizontal line represents the least squares (conditional mean) estimate and its 95% confidence 

interval. 
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Figure 4.5-8: This figure is showing the estimated series of  ̂   . 

 

The raw series of  ̂    is constructed by taking an exponential of      ( ̂   ) series. The     ( ̂   ) 

series is estimated using log of pre-dispatch prices at 15:00 during PD1 and PD3 with respect to 

equation (4.5-2) and quantile regression for   {                     } as discussed in Section 

4.3.1. 
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Table 4.5-1: This is a correlation matrix for pre-dispatch variables as discussed in Section 4.4.2.5.  

This correlation matrix is calculated using daily information throughout the investigation period (02/03/1999 to 31/10/2007).    (    | ) and    (    | ) 

are  the logarithmic series of the average of the 5 largest values of  ̂   |  and  ̂   |  at the respective pre-dispatch processes ( ). While     |  is a daily 

measure on the respective trading periods ( ) and pre-dispatch processes ( ). 
 

    (    |   )    (    |   )    (    |   )    (    |   )    (    |   )    (    |   )     |        |        |        |        |        |    

   (    |   ) 1            

   (    |   ) 0.8913 1           

   (    |   ) 0.8781 0.7869 1          

   (    |   ) 0.7788 0.7996 0.8796 1         

   (    |   ) 0.7125 0.6381 0.7852 0.7099 1        

   (    |   ) 0.6434 0.6556 0.7053 0.7331 0.8752 1       

    |    -0.1549 -0.1742 -0.0186 -0.0412 0.1989 0.1651 1      

    |    -0.1812 -0.1741 -0.0746 -0.0719 0.1284 0.1205 0.6016 1     

    |    -0.0885 -0.1088 -0.1005 -0.1193 0.1751 0.1453 0.7748 0.4677 1    

    |    -0.1194 -0.1125 -0.1450 -0.1289 0.0948 0.1076 0.4487 0.8019 0.5482 1   

    |    -0.0442 -0.0408 -0.0563 -0.0404 0.0656 0.1150 0.4219 0.2201 0.5356 0.2802 1  

    |    0.0095 0.0339 -0.0140 0.0140 -0.0285 0.0738 -0.0079 0.2778 -0.0070 0.3325 0.1064 1 
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 Models 

Variables 1 2 3 4 

      Y Y Y Y 

    |  PD1  PD1  

    |   PD1  PD1 

   (    | ) PD1 PD1   

   (    | )   PD1 PD1 

 

Table 4.5-2: This is a covariate specification for Models 1 to 4.  

The variables in the “Basic” category are   ,      ,        and   . The cell entries in the rows 

for     |  ,     | ,    (    | ) and    (    | ) indicate from which pre-dispatch (j) the information 

is taken.  Empty cells indicate that the respective variable is not included in the model. 
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Variable Basic Model Model 1 Model 2 Model 3 Model 4 

  ^      

      

   
      

       

Constant 1.1484 

(1.7075) 

4 

(12.8103) 

4 

(21.9613) 

6 

(7.8319) 

3.5487 

(6.7298) 

     -0.0806 

(1.5453) 

-0.4543 

(3.3691) 

-0.5651 

(4.1289) 

2.7963 

(3.8443) 

-6 

(8.8080) 

       
 -0.0590 

(0.3285) 

0.1201 

(0.9184) 

0.1287 

(1.3995) 

-1.4489 

(2.1208) 

1.9086 

(3.0865) 

       
 -0.1983 

(0.4452) 

-0.3475 

(0.4947) 

-0.3272 

(0.4970) 

4.4537 

(3.3444) 

-2.5220 

(4.2436) 

   -0.0613 

(0.2641) 

-0.2448 

(1.2916) 

-0.2638 

(1.8843) 

-0.3915 

(0.5773) 

-3.1681 

(4.7011) 

    |     -0.0125 

(0.0966) 

 0.4906 

(0.5936) 

 

    |      0.0039 

(0.1720) 

 0.2113 

(0.3814) 

   (      |   )  -0.5542 

(1.9876) 

-0.5337 

(3.8001) 

  

   (      |   )    0.5210 

(0.7307) 

-4.9207 

(7.2668) 

β      

       

Constant 0.1352* 

(0.0387) 

0.1306* 

(0.0345) 

0.1317* 

(0.0328) 

0.1180* 

(0.0217) 

0.1246* 

(0.0246) 

Log         -792.004 -790.43 -790.463 -788.799 -786.373 

LR test  3.148 3.082 6.410** 11.262*** 

 

Table 4.5-3: This table presents the coefficients and robust standard errors (in brackets) of 

parameter vector   ((      ) ) used on the conditioning covariates in the initial intensity jumps,    
 

and time-invariant intensity decay,   parameters.  

 

These are the results of the HAWa model for NSW during the estimation period (March 2, 1999 to 

October 30, 2005).  ^The coefficients and standard errors of parameter vector of the trigonometric 

term   (allowing for seasonal variations,   ) are not reported but are available upon request. All of 

these parameter vectors are estimated by maximising the log-likelihood function in equation 

(4.3-11). In the bottom row, we report the optimised log-likelihood and the results of the likelihood 

ratio test. The covariates conditioned in    
 are an intercept (        ), unseasonal load series 

(    ) as discussed in Section 4.4.2.2, unexpected increase/decrease in temperatures 

(       ,        ) as discussed in Section 4.4.2.3, the number of price spikes during a day (  ) 

as discussed in Section 4.4.2.4,  daily measure in the daytime and evening sub-periods of     |    

and     |    and the logarithmic series of the average of the 5 largest values of  ̂   |    and  ̂   |    

during PD1 (   (    | ) and    (    | )) as discussed in Section 4.4.2.5. While the   remains 

constant.  

*Parameters are significant at 10% significant level. 

**Significant at 5% level 

***Significant at 1% level 
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Variable Basic 

Model 

Model 1 Model 2 Model 3 Model 4 

        

      

   
      

       

Constant 0.6038* 

(0.3487) 

1.5380 

(0.9766) 

1.4460 

(1.1641) 

-0.2935 

(0.4606) 

-0.2466 

(0.5477) 

     0.4405 

(0.3699) 

0.4023 

(0.2596) 

0.6500 

(0.5042) 

0.4072* 

(0.2490) 

0.6415 

(0.5271) 

       
 -0.1100 

(0.1046) 

-0.1442 

(0.0929) 

-0.1787 

(0.1466) 

-0.1569* 

(0.0936) 

-0.1828 

(0.1637) 

       
 1.6925 

(1.4291) 

0.0834 

(0.1791) 

2.0513 

(1.3480) 

0.1032 

(0.1819) 

1.9754 

(1.5647) 

   0.2446* 

(0.1145) 

0.2118 

(0.1401) 

0.2266 

(0.2654) 

0.2052 

(0.1644) 

0.2179 

(0.3271) 

    |     -0.0039 

(0.0219) 

 -0.0020 

(0.0211) 

 

    |      0.0672 

(0.0554) 

 0.0675 

(0.0532) 

   (      |   )  -0.2982 

(0.2080) 

-0.2685 

(0.2558) 

  

   (      |   )    -0.2167 

(0.1404) 

-0.2131 

(0.1632) 

        

       

Constant 1.4850* 

(0.5690) 

-0.0320 

(1.0796) 

0.9284 

(1.3628) 

1.2659 

(0.8073) 

1.5711* 

(0.6584) 

     -0.9692* 

(0.2155) 

-0.7013* 

(0.2065) 

-0.8976* 

(0.2291) 

-0.6898* 

(0.2145) 

-0.8575* 

(0.2223) 

       
 0.0334 

(0.0511) 

0.2901* 

(0.1693) 

0.0551 

(0.0673) 

0.3186 

(0.2311) 

0.0673 

(0.0707) 

       
 0.2025 

(0.1629) 

0.1178 

(0.1341) 

0.2227 

(0.1702) 

0.1008 

(0.1240) 

0.1868 

(0.1729) 

   -0.0922* 

(0.0258) 

-0.3373* 

(0.1723) 

-0.0949* 

(0.0331) 

-0.3570* 

(0.2092) 

-0.1010* 

(0.0383) 

    |     0.0227 

(0.0155) 

 0.0225 

(0.0157) 

 

    |      0.0060 

(0.0276) 

 0.0050 

(0.0268) 

   (      |   )  0.1706 

(0.2532) 

0.0838 

(0.2318) 

  

   (      |   )    0.1917 

(0.1846) 

0.1198 

(0.1243) 

Log          -747.234 -746.239 -746.156 -745.936 -746.077 

LR test  1.990 2.156 2.596 2.314 
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Table 4.5-4: This table presents the coefficients and robust standard errors (in brackets) of 

parameter vector   ((      ) ) used on the conditioning covariates in the initial intensity jumps,    
 

and time-varying decay parameter,   . 

 

These are the results of the HAWab model for NSW during the estimation period (March 2, 1999 

to October 30, 2005).  ^The coefficients and standard errors of parameter vector of the 

trigonometric term   (allowing for seasonal variations,   ) are not reported but are available upon 

request. All of these parameter vectors are estimated by maximising the log-likelihood function in 

equation (4.3-11). In the bottom row, we report the optimised log-likelihood and the results of the 

likelihood ratio test. The covariates conditioned in    
 and    are as defined in the caption of Table 

4.5-3   

  

*Parameters are significant at 10% significant level. 
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Variable Basic 

Model 

Model 1 Model 2 Model 3 Model 4 

        

        

Constant -3.1834* 

(0.1535) 

-2.2681* 

(0.6520) 

-2.4031* 

(0.6060) 

-3.7509* 

(0.3705) 

-3.7601* 

(0.3630) 

        0.7914* 

(0.1496) 

0.8266* 

(0.1484) 

0.7997* 

(0.1452) 

0.8218* 

(0.1468) 

0.7967* 

(0.1437) 

       
 0.1297* 

(0.0331) 

0.1308* 

(0.0312) 

0.1335* 

(0.0339) 

0.1308* 

(0.0309) 

0.1339* 

(0.0335) 

       
 0.1549 

(0.1073) 

0.1645 

(0.1033) 

0.1718* 

(0.1033) 

0.1619 

(0.1036) 

0.1685* 

(0.1036) 

    |     0.0172* 

(0.0088) 

 0.0169* 

(0.0088) 

 

    |      0.0346* 

(0.0119) 

 0.0349* 

(0.0118) 

   (      |   )  -0.2752 

(0.1812) 

-0.2472 

(0.1679) 

  

   (      |   )    -0.1404 

(0.0882) 

-0.1323 

(0.0864) 

          

        

Constant -0.2549* 

(0.1426) 

0.0791 

(0.5028) 

0.1362 

(0.5295) 

-0.4045 

(0.3309) 

-0.4116 

(0.3306) 

        0.1371 

(0.1098) 

0.1262 

(0.1119) 

0.1139 

(0.1152) 

0.1288 

(0.1118) 

0.1172 

(0.1147) 

       
 -0.2008* 

(0.0729) 

-0.2196* 

(0.0804) 

-0.2115* 

(0.0822) 

-0.2211* 

(0.0802) 

-0.2131* 

(0.0815) 

       
 0.0016 

(0.0778) 

-0.0089 

(0.0793) 

-0.0078 

(0.0800) 

-0.0078 

(0.0790) 

-0.0067 

(0.0797) 

    |     -0.0143* 

(0.0088) 

 -0.0144* 

(0.0088) 

 

    |      -0.0140 

(0.0146) 

 -0.0133 

(0.0144) 

   (      |   )  -0.0747 

(0.1337) 

-0.0880 

(0.1369) 

  

   (      |   )    -0.0622 

(0.0852) 

-0.0659 

(0.0845) 

log      -680.431 -675.441 -674.28 -675.58 -674.313 

LR test  9.980** 12.302** 9.702** 12.236** 

Table 4.5-5: This table presents the coefficients and robust standard errors (in brackets) of 

parameter vector,    and    used on the conditioning covariates relating to the variation in arrival 

probability of system stresses,    and in survival probability of system stresses,   . 

 

These are the results of the PAR model for NSW during the estimation period (March 2, 1999 to 

October 30, 2005).  All of these parameter vectors are estimated by maximising the log-likelihood 

function in equation (4.3-20). In the bottom row, we report the optimised log-likelihood and the 

results of the likelihood ratio test. The covariates conditioned in    are as defined for    
 and the 

covariates conditioned in    are as defined for    but without    exogenous variable.  

*Parameters are significant at 10% significant level. 

**Significant at 5% level 
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  HAWa 

Measure Naive Basic M1 M2 M3 M4 

MAE 0.1929 0.2290 0.2392 0.2327 0.2481 0.2502 

RMSE 0.4392 0.3383 0.3468 0.3414 0.3476 0.3608 

Asym 0.2319 0.2306 0.2461 0.2334 0.2658 0.2719 

  HAWab 

MAE 0.1929 0.2641 0.2608 0.2379 0.2443 0.2371 

RMSE 0.4392 0.3747 0.3621 0.3420 0.3444 0.3411 

Asym 0.2319 0.2934 0.2743 0.2470 0.2503 0.2469 

  PAR 

MAE 0.1929 0.2298 0.2299 0.2313 0.2317 0.2331 

RMSE 0.4392 0.3506 0.3518 0.3525 0.3522 0.3530 

Asym 0.2319 0.2526 0.2523 0.2543 0.2543 0.2563 

 

Table 4.5-6: This table presents the forecast evaluation statistics (mean absolute error, MAE; root 

mean square error, RMSE; asymmetric loss score, Asym) for all models.  

 

Based on Rudebusch & Williams (2009) and Christensen et al. (2009) using forecast error (   
  |   ) of Hawkes models as an example; 

     
 

       
∑ |     |   |

  
    

      

                     √ 
 

       
∑ (     |   )

   
    

   

      
 

       
∑(  (   )  (    )(   ))|     |   |

  

    

 

where    and    denote the beginning and the end of the forecast period and   is equal to 0.5 since 

the failure to predict an actual price event is penalized by three times the rate of predicting a price 

event that does not actually occurred.  

 

This table reports the average value of the respective loss function evaluated for Models Naïve, 

HAWa, HAWab and PAR for the forecast period from October 31, 2005 to October 31, 2007. The 

bold entry indicates which model produces the lowest average loss.  



208 

 

Chapter 5 

 

Summary and suggestion for a future research 

 

In this thesis, I investigate whether information from the NEM pre-dispatch process can be 

useful when predicting spike events. This is done in the context of based on the 

methodology framework of PAR and Hawkes models, which allow for covariate driven 

time-variation in the probability of price spikes occuring. The purpose is to find model 

specifications and covariates that are able to predict on what days price spikes are more 

likely to occur. The overall conclusion is that forecasting is a difficult task, neither PAR 

nor Hawkes models are able to predict price events that occurred in isolation. Even AEMO 

price forecast information from pre-dispatch process does not add much useful information 

to the price spikes forecast.   

 

Chapter 2 examines whether the occurrence of these extreme price events displays any 

regularities that can be captured using an econometric model. Here I treat these price 

events as point processes and apply Hawkes and Poisson autoregressive models to model 

the dynamics in the intensity of this process. I use load and meteorological information to 

model the time variation in the intensity of the process. The models are applied to data 

from the Australian wholesale electricity market, and a forecasting exercise illustrates both 

the usefulness of these models and their limitations when attempting to forecast the 

occurrence of extreme price events. 

 

 Chapter 3 introduces a framework to analyse whether the pre-dispatch process delivers 

biased predictions of the actual wholesale spot price outcomes. Here I investigate the bias 

by comparing the actual wholesale market spot price outcomes to pre-dispatch sensitivity 

prices established the day before dispatch and on the day of dispatch. I observe a 

significant bias (mainly indicating that the pre-dispatch process tends to underestimate spot 

price outcomes) and I further establish the seasonality features of the bias across seasons 

and/or trading periods. I also establish changes in bias across the years in my sample 

period (1999 to 2007). In the formal setting of an ordered probit model I establish that 

there are some exogenous variables that are able to explain increased probabilities of over- 

or under-predictions of the spot price. It transpires that meteorological data, expected pre-

dispatch prices and information on past over- and under-predictions contribute 

significantly to explain variation in the probabilities for over- and under-predictions. The 
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results allow me to conjecture that some of the bids and re-bids provided by electricity 

generators are not made in good faith. 

 

Finally, Chapter 4 investigates whether information from this pre-dispatch process can be 

useful when predicting next-day price spikes. In a preliminary analysis I establish the 

effect of pre-dispatch prices on the quantiles of the spot price distribution. A Quantile 

regression approach reveals that higher pre-dispatch prices signal only to a certain extend 

an increased probability of higher spot price outcomes. They also signal a higher 

uncertainty about the resulting spot price outcomes. I further establish whether the 

inclusion of information from the pre-dispatch process can significantly improve the 

predictability of price spikes when these are modelled as a point process (as in Chapter 2). 

The models used here are Hawkes and Poisson Autoregressive Models which allow for 

time variation (correlated to exogenous information) in the intensity process that governs 

the occurrence of price spikes. It transpires that the pre-dispatch process of the Australian 

Electricity Market does not provide any information that can be used in a systematic 

manner to help predicting on what days price spikes are more likely to occur.   

 

Even though I find that pre-dispatch information does not have much use for the purpose 

of forecasting price spikes, I believe the information may be useful for more generic price 

forecasting such as price volatility forecasting. Apart from pre-dispatch information, 

AEMO also publishes individual bids data which contain offers/bids and rebids made by 

generators and dispatchable loads for each half-hour on the dispatch day. Together, these 

individual bids and pre-dispatch information could provide a potential avenue for research 

in the bidding behaviour of generators in the Australian Electricity Market. 

 

 

 


