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Abstract  

 
This thesis with the title:”Logical models of DNA damage induced pathways to 
cancer” was completed by Kun Tian for his PhD degree in the University of 
Manchester and submitted in October 2013. Chemotherapy is commonly used 
in cancer treatments, however only 25 % of cancers are responsive and a 
significant proportion develops resistance. The p53 tumour suppressor is 
crucial for cancer development and therapy, but has been less amenable to 
therapeutic applications due to the complexity of its action reflected in 67,000 
papers describing its function. Here we provide a systematic approach to 
integrate this information by constructing large-scale logical models of the p53 
interactome using extensive database and literature integration. Initially we 
generated models using manual curation to demonstrate the feasibility of the 
approach. This was followed by creation of the next generation models by 
automatic text mining results retrieval. Final model PKT205/G3 was generated 
by choosing the size of the interactome that could be analysed with current 
available computing power and by linking upstream nodes to input 
environmental signals such as DNA damage and downstream nodes to output 
signal such as apoptosis. This final version of the PKT205/G3 model contains 
205 nodes representing genes or proteins, DNA damage input and apoptosis 
output, and 677 logical interactions. Predictions from in silico knock-outs and 
steady state model analysis were validated using literature searches and in 
vitro experiments. We identify an up regulation of Chk1, ATM and ATR 
pathways in p53 negative cells and 58 other predictions obtained by knockout 
tests mimicking mutations. The comparison of model simulations with 
microarray data demonstrated a significant rate of successful predictions 
ranging between 52 % and 71 % depending on the cancer type. Growth 
factors and receptors FGF2, IGF1R, PDGFRB and TGFA were identified as 
factors contributing selectively to the control of U2OS osteosarcoma and 
HCT116 colon cancer cell growth. In summary, we provide the proof of 
principle that this versatile and predictive model has vast potential for use in 
cancer treatment by identifying pathways in individual patients that contribute 
to tumour growth, defining a sub population of “high” responders and 
identification of shifts in pathways leading to chemotherapy resistance. 
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Chapter 1  Introduction 

1.1 Systems biology and cancer modelling 

1.1.1 General systems biology approaches 

With the development of research techniques, biological research has 

encountered more and more challenges. The traditional approaches mainly 

based on experimentation, which focus on empirical and isolated descriptions 

of biological phenomena without the help of mathematics, could not cope with 

increasing challenges in biological research (Wang, 2010). For instance, these 

approaches could not capture the dynamic mechanisms of complex molecular 

pathways which result in cancer. Therefore, the improvement of 

high-throughput data collection and interpretation is necessary to understand 

better complex diseases such as cancer (Wang, 2010). The traditional biology 

approaches were not able to cope with this vast amount of high-throughput 

data. However, the system biology approach which relies on the combination 

of experimentation with mathematical modelling and the aid of computational 

tools, enabled researchers to deal with those complex biological networks and 

high-throughput datasets. Moreover, with the assistance of computational 

technologies, risk in clinical trials for the development of new drugs for cancer 

treatments could be decreased by system biology approaches (Wang, 2010). 

Because of those promising advantages for cancer research, the system 

biology approach was used in my project.  

 

In general, available approaches for pathway modelling rely on the systems 

biology theory. There are two traditional approaches to investigate biological 

systems: the top-down and the bottom-up approaches. Figure 1.1 shows the 
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mechanism of these general approaches. Based on large-scale observations 

of correlated molecular behaviour observed in lab work studies, top-down 

systems biology identifies molecular interaction networks. On the other hand, 

the mechanisms through which functional properties arise in the interactions of 

known components are examined by bottom-up systems biology (Figure 1.1). 

 

The top-down approach generates abstract properties of the system from 

detailed experimental data that were measured at the genome-scale. An 

iterative cycle is utilized to generate new molecular mechanisms from 

experimental data. These data will be analysed and an integration of the data 

will be obtained from the results of analysis. For example, Guda et al 

established a probabilistic model to predict domain-domain interaction (DDI) 

by a top-down approach (Guda et al, 2009). This model considered 5 scoring 

features and was generated on the basis of a protein-protein interaction data 

set comprising 2,735 species. The high confidence DDI dataset prediction 

produced by this model furthered their knowledge of DDI for biomedical 

research (Guda et al, 2009). 

 

In contrast, the bottom-up systems biology approach starts from equations 

modelling individual reactions, and assembles them to predict systemic 

properties. The details of the functional properties can be characterized and 

each biological process will be modelled using abstract equations in various 

conditions. For example, Chang et al utilized the bottom-up approach for the 

research of breast cancer survival (Chang et al, 2005). They modelled the 

wound-response signature at first, then validated this signature using clinical 

data of 295 breast cancer patients and confirmed the useful role of this 

wound-response gene expression signature in the early stage of breast cancer 

treatment (Chang et al, 2005) . 
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Figure 1.1: The top-down and bottom-up approach to systems biology  

In bottom-up systems biology, models are constructed according to general rules which are 

represented by equations describing the molecular properties. From the models constructed, 

predictions for the experimental results will be made for the biological system. In contrast, the 

top-down approach will construct general models according to the experimental data 

measured. By the use of abstract models, general rules for the biological systems will be 

represented as equations, which describe molecular properties for the biological systems. 

Molecular species such as enzymes transcription factors or metabolites are represented as 

coloured shapes, while reactions are displayed as full arrows and dashed arrows depict 

regulatory influences (e.g. inhibitory allosteric feedback interactions) (Bruggeman & Westerhoff, 

2007). 

 

 

1.1.2 Overview of modelling techniques 

A model usually represents objects or processes in an abstract form, through 

which their features can be illustrated (Klipp et al, 2009). An object or a 

process could be represented by different types of models. For instance, the 

cellular process through which human cells produce proteins could be 

represented in various forms. This process could be represented by a mental 

model(Klipp et al, 2009), which conceptually describes how different enzymes 

work in the researchers’ brain. The interactions between proteins produced 

inside the human cell could be represented by a network model (e.g. protein A 

activates protein B). The same process could also be represented by a 

process model in which all chemical processes are represented by equations 

and listed individually. Moreover, the dynamic mechanisms inside the process 

could be represented by a dynamic model. As a result, the same biological 

process or object could be investigated by different modelling techniques. For 
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example, the effects and relationships between small molecules by chemical 

reactions in a cell could be investigated at a microscopic level. For a 

biochemical network, the network structures, dynamics and function can be 

investigated to analyze the features of the network. 

 

Those biochemical reactions can be represented and illustrated 

mathematically by stochastic or deterministic modelling approaches. In a 

stochastic model, the states of the system depend on a probability distribution. 

Stochastic models treat biochemical reaction systems as random processes, 

and analyze them by calculating mean values, fluctuations, and correlations of 

system states (Klipp et al, 2009). Stochastic modelling approaches are more 

computationally expensive than deterministic approaches, especially for 

nonlinear systems, in which the steady states of system switched randomly 

and are determined by probability distributions. These techniques have been 

widely utilized for biochemical systems. For instance, the complex pathway 

simulator (COPASI) is implements stochastic modelling approaches that allow 

simulations and analysis of biochemical networks. Another application of 

stochastic model was realized by Twycross et al (2010) to investigate the role 

of auxin, which was important for the plant growth (Twycross et al, 2010). A 

stochastic model was constructed and simulations were performed by a 

multi-compartment stochastic P system framework. Auxin movements at the 

molecular scale were analyzed by the stochastic model simulations. Variability 

of the auxin-transport system was investigated and the potential extreme 

behaviours of auxin were detected by simulation results (Twycross et al, 

2010).  

 

In contrast to stochastic models, previous or current state values determine 

the states of variables in deterministic models. Parameters and variables are 



26 
 

utilized to describe the quantities in the system. The difference between 

parameters and variables is that parameters have a given value but values of 

variable are changeable over time. In the next sections we describe some of 

the deterministic models utilized in the research of cancer, such as ordinary 

differential equation (ODE) models and Boolean network models. In this thesis, 

deterministic models were utilized to analyze the p53 pathways induced by 

DNA damage. These models were realized using Boolean networks described 

in the next sections. 

 

 

1.1.2.1 Ordinary differential equation (ODE) and partial differential 

equation (PDE) techniques 

Several modelling techniques have already been used for cancer research 

using the systems biology approach, for example ordinary differential equation 

(ODE) modelling techniques, partial differential equations (PDEs), Petri nets, 

cellular automata (CA), agent-based modelling (ABM) techniques, hybrid 

approaches (Materi & Wishart, 2007), π-calculus (Klipp et al, 2009), and 

Boolean modelling techniques. 

 

The ODE modelling technique has been the most widely utilized to describe 

biochemical system kinetics (de Jong, 2002). All states depend on a single 

variable, and time is usually the dynamic variable in ODE models. The 

advantage of ODE models is that they are able to provide detailed dynamics of 

the molecular processes and they can be tested by quantitative experimental 

measurements (Albeck et al, 2008; Rehm et al, 2006). On the other hand, 

ODE models necessitate a large number of parameters, many of which are not 

accessible experimentally. In addition, ODE models become very complex and 
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difficult to run when there are large numbers of compounds and interactions. 

The exploration of systems properties is difficult with ODE models because the 

model space, kinetic parameter space and the initial condition space cannot 

be systematically spanned (Mai & Liu, 2009).  

 

In contrast to ODEs, PDEs depend on more than one independent variable 

and are more feasible than ODE modelling techniques in the case of spatial 

models. For instance, Marciniak-Czochra and Kimmel used PDEs to establish 

an early tumour development process, which considered a tumour cell 

population in a linear or tubular structure (Marciniak-Czochra & Kimmel, 2007). 

These models provided simulation of tumour evolution at an early stage and 

the cell production was examined by linear or tubular structure models. Two 

PDE equations were utilized to represent cell growth and growth factor 

production. The receptor particle production was treated as a Markov process. 

Possible reasons were inferred to explain why cancer cells grow in an 

exponential manner and their invasion was shown to be temporarily stable by 

model simulations (Marciniak-Czochra & Kimmel, 2007).     

 

1.1.2.2 Petri nets 

Petri nets represent parallel and discrete systems using a mathematical 

graphic formalism. They usually consist of places, transitions and arcs in the 

graph (Klipp et al, 2009). Petri nets have been frequently utilized to simulate 

metabolic networks. A metabolic network consists of metabolites and reactions 

(Klipp et al, 2009), which are represented by different components in the Petri 

net. For example, metabolites in the metabolic network can be represented by 

places in the Petri net, reactions between metabolites by transitions, and the 

stoichiometric coefficients by arc weight values. For instance, 
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Zevedei-Oancea et al (2011) performed a topological analysis of the 

Trypanosoma brucei metabolic network with the help of the Petri net technique 

(Zevedei-Oancea & Schuster, 2011). Trypanosoma brucei is a parasite whose 

cellular structure is similar to other eukaryotes and its metabolism must be 

understood to develop drugs against African trypanosomiasis (sleeping 

sickness). Topological analysis of Petri net models were performed to 

investigate the function of triose phosphate isomerase (TPI) in Trypanosoma 

brucei metabolism and Petri net techniques showed their efficiency in the 

simulation of metabolic networks (Zevedei-Oancea & Schuster, 2011).  

 

1.2.2.3 Cellular automata (CA) 

Cellular automata (CA) perform simulations for temporal or spatio-temporal 

processes. The objects in a CA are called cells and connected to their 

neighbour’s cells. The state of a cell changes in a synchronous manner over 

time and its state at the current time point depend on the states of its 

neighbour cells at the previous time point (Hasty et al, 2001). Dynamic Cellular 

Automata (DCA) allow cell movements over time in molecules (Materi & 

Wishart, 2007). This modelling technique has been widely applied in biological 

research, for instance, an automata model of enzyme kinetics was established 

by Kier et al (1996) and this application of DCA modelling played an important 

role in enzyme kinetics research (Kier et al, 1996). This CA model focused on 

a reaction between an enzyme and a substrate in water. Predictions that 

enzymes behave less reactively in the presence of hydrophobic substrates 

were obtained by model simulations (Kier et al, 1996).  
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1.2.2.4 Agent-based models (ABMs) 

Agent-based models (ABMs) are similar to DCA and agents are utilized to 

represent metabolites, genes, proteins or even entire cells. However, ABMs do 

not restrict the spatial grids or synchronize properties (Materi & Wishart, 2007). 

One application of this technique was implicated in the research for bacterial 

chemotaxis (Emonet et al, 2005). This model, named as AgentCell, was 

established to simulate the behaviour of Escherichia coli bacteria. Each single 

bacterium was defined as an agent and the simulations were performed to 

predict Escherichia coli cell behaviours. Experimental data for single cell 

population behaviour were utilized to validate simulation results and it was 

found that this agent-based modelling was a powerful technique to study 

cell-to-cell communications (Emonet et al, 2005). 

 

1.1.2.4 Hybrid approach 

The hybrid approach was described to be a mixture of discrete and continuous 

modelling (Materi & Wishart, 2007; Sorger, 2005). For instance, an application 

of hybrid approaches was utilized by Osborne et al (2010) for a healthy crypt in 

solid tumours (Osborne et al, 2010). Multi-scale models were utilized to 

investigate dynamic mechanisms for both healthy and mutant colorectal crypt 

invasion. These multi-scale models consist of both a continuous model for the 

cell-centre and a discrete model for the cell-vertex model. Both cell-centre and 

cell vertex models treated cells as discrete entities, but parameters 

represented in their motion equations were determined by continuous 

changes of time (Osborne et al, 2010). These multi-scale models furthered our 

understanding of crypts and played an important role in the detection of new 

cancer therapeutic targets and prediction of their impact (Osborne et al, 2010). 
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1.1.2.5 π-calculus technique 

The π-calculus (pi-calculus) technique describes a process for channel 

communication. It was applied by Regev et al.(2001) in the research of the 

RTK-MAPK signal transduction pathway for molecular cancer research 

(Regev et al, 2001). This pi-calculus model was run by a computer simulation 

system named PiFCP to perform various bimolecular process simulations for 

the PTK-MAPK signal transduction pathway (Regev et al, 2001). 

 

Although the above modelling techniques are powerful in certain research 

fields, the Boolean modelling approach has its own advantages. The most 

attractive one is that Boolean modelling does not need a large amount of 

detailed input information and can be established on the basis of available 

experimental data, which may be incomplete or less quantitative (Wang, 2010). 

Boolean modelling only requires the identification of interactions, the 

characterisation of relationships between nodes and the effects of input 

signals. Boolean modelling facilitates the exploration of the dynamics of a 

complex gene expression network and focuses on its global features. The 

details of Boolean modelling will be described in the section 1.1.3.1. As we aim 

to gain an insight into the interaction network of p53, the Boolean modelling 

approach is more feasible than other modelling approaches to obtain data on 

the basis of limited information. 
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1.1.3 Logical modelling techniques 

Although computational simulation technologies have been recently 

developing at a remarkable speed, the modelling of biological systems with 

realistic size and complexity using a molecular dynamic approach is still a 

challenge. As a result, models are usually built at a higher level by removing 

many details of the biological system. As cancer is regarded as a complex 

disease, network approaches are often utilized as an abstraction of this 

complexity. A network approach could help us to investigate a biological 

system with little information known it (Klipp et al, 2009). Similar to an adage 

saying:”A picture is worth a thousand words”, a network is able to provide a 

more comprehensive and direct description for the system than a long 

paragraph of text explanations (Klipp et al, 2009). Moreover, the mathematical 

relationships in the network could help us further our understanding of the 

significance of the network structure.  

 

A mathematical graph is utilized to represent a complex network. In the graph, 

nodes represent genes and edges represent interactions in the cellular 

network.  Analysis of the cellular network topologies is performed to discover 

the significant features of the network. For example, the degree of a node i 

corresponds to the number of edges connected to this node and the 

distribution of node degrees (the number of edges connected to this node) can 

reveal the structure of a network (Klipp et al, 2009). Based on their structure, 

there are several main types of networks: random, scale-free and small-world 

networks. The construction of a random network (the Erdös-Rényi model) is 

made by adding edges with a probability, which is randomly determined. In a 

random network, degrees of nodes follow a Poisson distribution which means 
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that nodes in the random network are not highly connected and most of them 

have the same degree (Barabási & Oltvai, 2004). As a result, the mean path 

length of a random network depends on the logarithm value of the network 

size (Barabási & Oltvai, 2004). In a scale-free network, the distribution of node 

degrees obeys a power law which indicates that a few nodes have high 

degree and the majority of other nodes have a low degree (Klipp et al, 2009). A 

small-word network has a clustered structure and small distance for the short 

path between any two nodes. A clustered structure means that neighbouring 

nodes are more likely to connect to each other rather than other arbitrarily 

selected nodes (Klipp et al, 2009). Biological networks often combine the 

scale free and small world properties. The PKT205 models described in 

Chapter 5 adhere to the small-word property. 

 

Since various types of biochemical processes are active in a biological cell, 

different networks are generally utilized to represent different functions of the 

cellular network, such as metabolic networks, transcription networks and 

protein-protein interaction networks (Klipp et al, 2009).  

 

Metabolic networks include metabolites and chemical reactions between them 

to represent metabolic pathways in a cell. They represent the process of 

transformation from metabolites to their products, where each node represents 

a metabolite and each edge represents a reaction. The network analysis of 

metabolic networks focused on the hub nodes and the exchange fluxes. For 

instance, Wagner and Fell (2001) constructed a metabolic network model for 

Escherichia coli (E.coli) metabolism (Wagner & Fell, 2001). They analyzed the 

properties of the metabolic network. They found that it was a small-world 

network and the metabolite degrees follow a power law (Wagner & Fell, 2001). 

. 
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Transcription networks represent the transcription processes occurring 

between transcription factors and genes. Each node represents a protein and 

edges represent transcription processes by which transcription factors bind to 

a gene. Such networks frequently contain several network motifs such as 

auto-regulation and feed-forward loop. For instance, Lee et al in 2002 

investigated the transcription regulation in the eukaryote Saccharomyces 

cerevisiae (Lee et al, 2002). 141 transcriptional regulators for yeast cells were 

selected from database and systematic genome-wide location analysis for 

transcriptional regulators was performed. 2343 promoter regions were found 

to bind 106 transcription factors and the yeast regulatory networks were 

constructed. The function of network motifs in the yeast network was analyzed 

through small transcription network models. Knowledge about eukaryote 

evolution was obtained during the network motif analysis. Moreover, it was 

found that transcription factors facilitated connections between eukaryotic 

cellular functions (Lee et al, 2002).. 

  

Protein-protein interaction networks represent physical interactions or causal 

influences between proteins. For instance, Barabási and Oltvai (2004) utilized 

a protein-protein interaction network (Figure 1.2) to represent interactions in 

Saccharomyces cerevisiae (Barabási & Oltvai, 2004). This network was 

obtained by yeast two-hybrid measurements and it was found that a few highly 

connected nodes hold the network together. The PKT38 models mentioned in 

Chapter 3 was an example of this protein-protein interaction network.  
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Figure 1.2: An example of protein-protein interaction network. 

It shows protein-protein interactions in Saccharomyces cerevisiae and different colours of 

nodes represent their phenotypic effect once they were deleted. Red colour means lethal. 

Green means non-lethal. Orange means slow growth and yellow means that the effect was 

unknown (Barabási & Oltvai, 2004; Jeong et al, 2001). 

 

1.1.3.1  Boolean modelling 

The Boolean network (BN) is a modelling technique used for biological 

molecular networks. The advantage of Boolean networks is that they are much 

easier to construct and faster to operate than ODE models. Furthermore, in 

contrast to ODE models the extensive exploration of the model space can be 

achieved with a BN. BNs allow the systematic determination of logical steady 

states or cycles of the biological system. In that, they are able to capture the 

essential dynamic properties of the biological system. Because of the 
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complexity of the p53 network and the lack of kinetic parameters necessary for 

the use of ODE models, these ODE modelling techniques would be extremely 

difficult to use for p53 pathways (Mai & Liu, 2009). Both problems will be 

accommodated by the use of Boolean networks and for those reasons we 

chose BN to model the p53 pathway. 

 

The use of Boolean networks in cancer research has been reported in a few 

other studies. For example, Schlatter’s group(2009) constructed a Boolean 

network based on literature searches and described the behaviour of both 

intrinsic and extrinsic apoptosis pathways in response to diverse stimuli 

(Schlatter et al, 2009). Their model revealed the importance of crosstalk and 

feedback loops in controlling apoptotic pathways (Schlatter et al, 2009). 

Rodríguez et al (2012) constructed a large Boolean network for the FA/BRCA 

(Fanconi Anemia/Breast Cancer) pathway and simulated the repair of DNA 

ICLs (interstrand cross-links). This model revealed the relationship between 

the activated DNA repair pathway and defects in the FA/BRCA pathway 

(Rodríguez et al, 2012). 

 
 

1.1.3.2  Network formalisms for Boolean modelling 

Graph theory is the basis of a network model. There are two different graphic 

formalisms to represent Boolean networks: interaction graphs and interaction 

hypergraphs. The basic difference between a graph and a hypergraph is the 

ability to deal with multiple connections. In the example shown in Figure 1.3 

the interaction graph treats the connection between receptor (Rec) and ligand 

(Lig) as two independent processes (a), while the interaction hypergraph 

regards the connection as a synchronous process (b), which means that both 

Rec and Lig are simultaneously needed to activate the receptor-ligand 
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complex (RecLig*). 

 

 

Figure 1.3: (a) Interaction graph and (b) logical interaction hypergraph 

representation of a simple interaction between receptor (Rec) and ligand 

(Lig).  

This figure shows difference between interaction graph and logical interaction hypergraph 

(Klamt et al, 2006). 

 

 

Although interaction graphs can represent feedback loops and pathways 

between any two molecular species, they cannot capture complex logical 

relationships in which species are connected by Boolean operators such as 

“AND”, “OR”,”NOT”. These Boolean operators obey three-valued logic rule 

and these logical relationships occur frequently in real networks. As a result, 

interaction hypergraphs are better suited to model signalling networks, since 

all the arcs whose targets are the same species and which need to interact 

synchronously can be concatenated. These logical interaction hypergraphs 

make logical steady state analysis (LSSA) possible (Figure 1.4), as indicated 

by Klamt et al. (Klamt et al, 2006). 
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Figure 1.4: Example of interaction graph 

Each number represents a reaction in the network. The red arcs represent inhibitions and the 

black arcs represent activations (Klamt et al, 2006). 

 

An example of successful application of logical hypergraphs in BN was for the 

T-cell receptor signalling network (Klamt et al, 2006). The interaction 

hypergraph was utilized to facilitate a structural analysis for the T-cell receptor 

signalling network. This work provides a methodology to deal with complex 

mechanisms involving more than two proteins.  
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1.1.3.3  Matrix formalism for Boolean modelling 

Boolean networks can be conveniently represented by matrix formalism. The 

functional state of genes that are controlled by transcriptional regulatory 

networks (TRN) can be represented by a Boolean network in which each 

vector of the Boolean network represents the state of a gene (1 if it is 

transcribed, 0 if not). External signals can furthermore be linked with a TRN, 

forming a transcriptional regulatory system (TRS). The transcription regulatory 

network matrix form was defined as R by Gianchandani et al (2006) and it can 

be used to investigate the functional states of the system extensively 

(Gianchandani et al, 2006). There are at least three states in the matrix 

formalism for TRS: -1, 0, and +1. For reactions that occur inside the system, 0 

means that it is inactive, and 1 means that it is active. In other reactions which 

cross the system boundary, -1 means that the row of the reaction flows into the 

system, +1 indicates a flow out of the system, and 0 means that the production 

of the component is neither increased nor decreased. Consequently, the 

relationships between components of a network can be described by a 

network map. Although a network map cannot calculate functional states, the 

TRS can achieve this goal. TRS can be represented by in silico expressions 

so that all the possible environments and consequent systemic interpretations 

can be enumerated (Figure 1.5).  
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Figure 1.5: Formation of the TRN Matrix 

(A) The environmental cues are defined as the inputs, in which the presence and absence of 

metabolites, reaction fluxes, and specific conditions are included. The output is the 

transcription state. These outputs are obtained according to the combination of the input with 

certain rules. (B) shows a situation with the logical relationship AND: Metabolite A AND 

Metabolite B are bound to Gene 1. (C) illustrates a situation where Metabolite C OR Metabolite 

D can be bound to Gene 2, by which, the inputs have a logical relationship OR. (D) depicts the 

rule matrix for the situation in 7(B) and 7(C) (Gianchandani et al, 2006). 
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1.1.3.4  Modelling approach using CellNetAnalyzer 

CellNetAnalyzer (Klamt et al, 2006) is a computational tool to construct 

signalling and regulatory logical models and perform functional analysis. This 

computation tool was utilized by Klamt et al. (Klamt et al, 2006) in the analysis 

of different types of interaction networks, which may consist of mass flow or 

signal flow. A metabolic network is represented by a mass-flow (stoichiometric) 

network. On the other hand, a signalling or regulatory network is better 

represented by a signal-flow network. Interaction graphs and hypergraphs are 

supported by CellNetAnalyzer to represent the signal-flow interaction network. 

An interaction matrix is produced to represent the participating species and 

reactions. Then feedback loops, crosstalk, signalling pathways of interest, and 

minimal cut sets can be identified graphically. Moreover, the dependency 

relationships between any pair of molecular species can be explored using the 

dependency matrix. Those dependency matrixes are calculated on the basis 

of the shortest positive or negative pathway distance between nodes (see 

Methods). The internal changes of the interaction network in response to 

perturbations can be investigated and predicted by in silico knock-out or 

knock-in tests. The logical behaviours of all nodes of the network can be 

analyzed by logical steady state analysis (Klamt et al, 2006). 

 

CellNetAnalyzer has been used in several model applications. For instance, a 

logical model of T-cell receptor signalling was constructed by Klamt et al (2006) 

(Klamt et al, 2006). This model consisted of 40 nodes and 49 hyper arcs. Two 

input signals were added in the model, one for TCR (T-cell receptor) and the 

other for CD4 (CD4 molecule), as well as four output nodes defined by CRE 

(cAMP response element), API (activator protein 1), NFAT (Nuclear factor of 
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activated T-cells) and NF-κB. The state of negative feedback loops was 

predefined to be either activated or inactivated and the dependency matrix 

was calculated in those two scenarios. According to the difference between 

these dependency matrices, changes in dependency relationships were 

revealed. The minimal cut sets which determined all possible pathways from 

input to output were explored and essential nodes for the whole T-cell 

activation were highlighted. Logical steady state analysis was also performed 

for three scenarios at different time scales. CellNetAnalyzer was found to be 

applicable for the complex T-cell signalling pathway and the analysis results 

matched current knowledge for the T-cell signalling cascade. A more recent 

application of CellNetAnalyzer in the research of p53 pathways was a dynamic 

model of the p53 and NF-κB pathways in response to DNA damage (Plotz & 

Naumann, 2012). This dynamic model utilized a Boolean network to represent 

the apoptosis pathway in which p53 and NF-κB were involved. In silico 

knock-out tests of p53 were performed and novel predictions for certain gene 

functions such as cell cycle arrest, apoptosis and other gene expression levels 

were obtained. The dependency matrix was also calculated and core sub 

networks were generated from the full network so as to identify potential target 

genes for carcinogenesis therapies. Moreover, simulations about particular 

gene disorders were performed and events which contributed to 

carcinogenesis caused by activation or inactivation of certain genes were 

explored. Another application of CellNetAnalyzer was a metabolic model of the 

Smith-Lemli-Opitz syndrome (SLOS), which consisted of 44 metabolites and 

40 reactions. Flux balance analysis (FBA) was performed by CellNetAnalyzer 

to investigate drugs which exerted effects on the biosynthetic pathway of 

photosensitivity in SLOS (Eapen, 2007). Through the FBA results, zaragozic 

acid with cholesterol supplementation was predicted to be a potential 

treatment target for photosensitivity in SLOS.  
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1.1.4 Text mining 

Data mining plays an important role in biological research (Harmston et al, 

2010). For a long time, manually curated protein-protein interactions were 

regarded as a golden standard to determine effects between proteins and 

increase the knowledge of signaling pathways. However, manual curation has 

poor performance in dealing with the rapidly increasing number of publications 

(Harmston et al, 2010). As a result, there is an increasing requirement to find 

automated methods to extract information from the substantial numbers of 

scientific publications in systems biology.  

 

Text mining, which is also known as data mining, automatically retrieves high 

quality information from text and makes it easier for biologists to retrieve such 

information from literature. Biomedical text mining is focused on the following 

areas: named entity recognition, text classification, terminology extraction, 

relationship extraction and hypothesis generation (Cohen & Hersh, 2005). The 

aim of named entity recognition is to identify the name of a specific entity from 

a collection of text. For example, the tumour suppressor p53 protein should be 

identified as such by text mining, but page numbers (“page 53”), which are 

shortened as “p53” in the text, should not be misinterpreted as proteins. The 

recognition of named entities and their normalization are the basis of text 

mining algorithms, which are able to recognise the labels of target entities and 

relationships between them. Text classifications determine whether the 

candidate documents match the topic of interest for the user. Terminology 

extraction, also known as synonym and abbreviation extraction, solves the 

problems caused by multiple names of the same entity. For example, PTGS2 

(prostaglandin-endoperoxide synthase 2) is also known as COX-2, GRIPGHS, 
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PGHS-2, PHS-2 and hCox-2. Relationship extraction aims to detect the 

relationship between a pair of entities according to their co-occurrence in the 

text. Hypothesis generation aims to predict the relationship between a pair of 

entities (Cohen & Hersh, 2005). Currently, the most important techniques used 

in text mining are natural language processing (NLP), information retrieval (IR), 

machine learning (ML), and statistic and computational linguistics technology 

(Harmston et al, 2010). 

 

1.1.4.1 Natural language processing technique 

Natural language processing (NLP) belongs to the computer science research 

field and focuses on interactions between human language (natural language) 

and computers. Although modern natural language processing uses machine 

learning techniques, machine learning does not cover all fields of natural 

language processing. For example, EAGi (http://eagl.unige.ch/EAGLi), is a 

biomedical question answering system  that determines a short precise 

answer for a question by natural language processing techniques (Bauer & 

Berleant, 2012). For example, if the question “what activates p53” is asked by 

user, EAGi analyzes it semantically and provides a list of target answers from 

abstracts in PubMed.  
  

http://eagl.unige.ch/EAGLi
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1.1.4.2 Information retrieval technique 

Information retrieval (IR) focuses on searching and retrieving information and 

relies on natural language processing methods. For example, document 

retrieval is the main task of IR. The retrieval results are limited by unstructured 

text where information may be hidden in unstructured sentences. However, 

natural language processing methods can help to solve those problems by 

stemming word, syntax analysis, semantic parsing, sentence boundary 

detection and other functions in both the sentence level and whole text 

(Konovalov et al, 2010; Nadkarni et al, 2011; Thessen et al, 2012). 

 

1.1.4.3 Machine learning technique 

Machine learning means that a computer program learns from training data 

and uses this experience to make predictions for new data. Machine learning 

applications are widely utilized in system biology text mining. Although some 

machine learning applications utilize natural language processing for text 

mining, there are also statistical machine learning applications that do not 

employ natural language processing techniques. For example, protein-protein 

relationships can be inferred by detecting co-occurrence of named entities in 

text, as done by Marcotte et al (2001) who developed a Bayesian model to 

determine interactions between yeast proteins (Marcotte et al, 2001). They 

determined the protein-protein interactions between yeast proteins in 2000 

Medline abstracts using 80 selected words from 260 trained abstract 

examples and a likelihood score that could evaluate the probability of selected 

word co-occurrence in abstracts. Another machine learning application was 

developed by Stapley et al (2000) (Stapley & Benoit, 2000). They established 
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a co-occurrence data matrix to measure the dissimilarity of gene pairs that 

co-occurred in the trusted Medline literature, and extracted them to generate 

an interaction graph.   

 

1.1.4.4Statistic and computational linguistics technique 

Statistic and computational linguistics techniques were utilized to explore 

information in unstructured text by syntactic or semantic parsing using 

computational tools (Zhou & He, 2008). Here parsing refers to determining the 

structure of a sentence or analysing its meaning. Syntactic parsing is to 

analyse sentences in the text according to grammatical constituents in the 

sentences and identify syntactic relations. In contrast to syntactic parsing, 

semantic parsing maps a sentence into a formal representation in term of its 

meaning. In terms of linguistics complexity, there are two types of parsing 

methods: partial parsing (shallow parsing) and full parsing (deep parsing). Full 

parsing focuses on the structure of whole sentences whereas partial parsing 

focuses on the reliability and efficiency of the syntactic information analysis 

regardless of the completeness of the sentences. However, those two 

methods can be combined together for text mining. For example, Santos et al 

(2005) combined partial and full parsing methods to extract knowledge for the 

Wnt pathway (Santos et al, 2005). They developed a natural language 

processing system to analyze Wnt signaling pathway according to 3369 

PubMed and 1230 full text papers. Full parsing was utilized to explore 

protein-protein interactions and partial parsing was utilized to identify name 

entities.  
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1.1.4.5Text mining and protein-protein interaction retrieval for p53 

Compared with 67,000 papers about p53 published in PubMed and the 

frequency of new reports about p53 published, our knowledge about p53 was 

far away from fully understood. The population of published papers about p53 

is increasing every year (Table 1.1). It was found that thousands of papers 

about p53 have been published every year in the last 15 years. There was an 

increasing strand in the last 15 years (Table 1.1).  

 

Since the information retrieval is time consuming and the conclusion of 

interaction type is limited by current experimental conditions, there is an urgent 

requirement for automated retrieval of p53 interaction information by text 

mining tools or other approaches.  

 

Since there were many types of text mining tools and databases for protein 

interactions available, it was found that 17 candidate protein-protein 

interaction databases and provided information about interactions with p53 

(Table 1.2).  
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Year Publications about p53 per year 

1998 2959 (publications) 

1999 3200 (publications) 

2000 3416 (publications) 

2001 3390 (publications) 

2002 3462 (publications) 

2003 3414 (publications) 

2004 3469 (publications) 

2005 3435 (publications) 

2006 3506 (publications) 

2007 3508 (publications) 

2008 3663 (publications) 

2009 3809 (publications) 

2010 3923 (publications) 

2011 4210 (publications) 

2012 4339 (publications) 

 

Table 1.1:  Number of publications about p53 published per year for the 

last 15 years 

Column 1 shows the year. Column 2 shows the publication population about p53 in PubMed in 

that year. 
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Table 1.2:  A survey of candidate text mining tools and databases 

describing p53 interactions  

Table 1.2 lists all potential interaction databases we found on line.  

 

By comparing the performance of these 17 candidate ones, we found that only 

5 showed the nature of interaction: STRING, GeneGO, KEGG, iHOP and 

Reactome. KEGG and GeneGO provided pathway maps about p53. However, 

maps in KEGG were not updated frequently. Considering the cost of the fee for 

GeneGO license, we excluded it. The search engine, iHOP is a free tool for 

text mining of interactions from publications and all sentences included the 

target gene name listed in the web page; p53 was found to interact with 1558 

human proteins in 44277 sentences (12768 abstracts). However, some of 

these protein-protein interactions were not represented by sentences in iHOP. 

For example, iHOP found an interaction between p53 and TBP, but this 

interaction was not clearly justified. Although iHOP highlights the possible 

verbs representing the interaction with p53, such as enhance, suppress, 

promote, repress, associate, etc, some of those protein-protein interaction 

conclusions were still ambiguous due to the variety of language. For example, 

iHOP found a sentence about the interaction between XIAP (X-linked inhibitor 

of apoptosis) and p53 reported (Carter et al, 2010), but the context was 

extremely complex and it was difficult to draw a conclusion for the nature of 

this interaction.  

 

Although Reactome contained 699 reactions and 501 pathways about p53, 

some of them are not directly related to p53. For example, “Cell Cycle arrest” 

is contained in the pathway results, but there were only three terms shown in 

the pathway browser: “cell cycle/mitotic”, “cell cycle checkpoints”, and 
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“chromosome/maintenance”. These terms do not reveal any interaction with 

p53. Another example is that Netrin-4 binds to DCC/UNC5A, but this reaction 

does not have any direct relationship with p53. For these reasons, Reactome 

was not considered to be a suitable database to retrieve protein-protein 

interactions with p53.  

 

On the other hand, STRING illustrated the type of interaction in a list of protein 

actions and all interactions were represented by a fixed format, which allowed 

automatic extraction of interaction information. Moreover, STRING has a 

clearer schema than iHOP to represent the confidence level of protein-protein 

interactions. The confidence score schema of STRING facilitated the 

estimation of the confidence quality of these interactions recorded by STRING 

(Jensen et al, 2009). Another advantage of the STRING database was that 

STRING provided protein-protein interaction information from three main 

resources: natural language processing from MEDLINE and other databases, 

high throughput experimental data and protein-protein interaction predictions. 

Those three resources included the majority of available approaches to 

retrieve protein-protein interaction information. The frequency of data update 

is twice a year, which guarantees that the interaction information is not out of 

date.  
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1.2 Cancer 

Cancer is a disease which leads to the dysregulation of cell growth. It is 

caused by environmental factors and gene defects, with the environmental 

factors contributing to 90% -95% of cancer cases (Anand et al, 2008). As a 

result, the population of cancer patients increased globally with the changes of 

life style in the modern world and it was regarded as one of the top causes of 

death in the human population (Jemal et al, 2011). Currently there are more 

than 200 different types of cancer (Ainhoa et al, 2007). It was estimated that 

there were about 12.7 million cancer cases and 7.6 million cancer caused 

fatalities worldwide in 2008 (Jemal et al, 2011). There are several different 

treatments depending on the type of cancer but surgery, radiation and 

chemotherapy have been widely used. However, only 25% of cancer is 

responsive to treatment based on chemotherapy. As a result, there is an 

increasing interest in the research that would improve the efficiency of cancer 

treatment. 

 

In cancer, uncontrolled growth and proliferation of cells leads to the formation 

of a tumour. There are six functional hallmarks of cancer which are required for 

the malignancy: growth signal independent of growth factor, evasion of growth 

suppressor signal, evasion of apoptosis, unlimited replication, stimulation of 

angiogenesis, induced invasion and metastasis (Hanahan & Weinberg, 2011; 

Pecorino, 2005). Moreover, there are two emerging hallmarks, deregulating 

cellular energetics and avoiding immune destruction, that were recently 

identified by Hanahan and Weinberg (Hanahan & Weinberg, 2011). It was 

found that thousands of mutated genes were involved in the development of 

cancers through different genetic pathways (Wang, 2010). The accumulated 
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DNA mutations and other genetic alternations promoted the transformation 

from normal cells to the cancer cells (Jaramillo & Tibiche, 2010).  

 

Most of somatic gene mutations occur in two different types of genes. The first 

type of mutation is found in oncogenes and causes GOF (gain of function) to 

enhance cell growth, like in the case of Myc (Felsher & Bishop, 1999) and 

RAS (Bos, 1989). Oncogenes are those genes which when incorrectly 

activated can cause development of cancer cells. This is usually due to 

mutations or expression at high levels in cancer cells and because these 

genes mediate the regulation of cell growth, for instance, ARF (CDKN2A) and 

MYC. ARF is a protein that can bind MDM2 directly and affects the p53 protein 

indirectly. The ubiquitination of p53 will be inhibited by the interaction between 

ARF and MDM2 and p53 protein will accumulate as a result of the binding 

(Vousden, 2000). MYC is involved in the cell proliferation process and 

apoptosis (Li & Hann, 2009). 

 

The second type of mutation occurs on tumour suppressor genes and in this 

case both copies of the gene must be inactivated for the full effect to take 

place. There are several examples of tumour suppressor genes, the most 

studied are retinoblastoma mutation causing a tumour of the eye and p53 

tumour suppressor loss of function in cancer cells. The p53 protein has been 

regarded as “a Guardian of the Genome”(Lane, 1992; Levine, 1997). 
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1.3The p53 tumour suppressor 

Since the discovery of p53, mutations of p53 were found in more than 50% of 

human tumours (Soussi, 2000). The p53 has a crucial role in cancer 

development and therapy. It is considered in the development of potential 

strategies utilized in clinical treatment of cancer, such as the isolation of p53 

target proteins, genes which regulate the expression of p53 or certain modules 

in the p53 pathway (Gudkov, 2005).  The first chemotherapy based on 

recombinant adenovirus encoding the p53 target gene, rAd-p53 was approved 

in the treatment of head and neck cancer in China in 2004 (Peng, 2005). 

There are two homologues of p53: p63 and p73, which also act as tumour 

suppressor. Mutation and lack of p63 and p73 were found in many tumour 

cells. They induce apoptosis in a similar way as p53 (Jung et al, 2001). TAp63 

and TAp73 are two full length transactivation isoforms of p63 and p73, which 

were found to transactivate BAX, PUMA and NOXA as well as p53 (Melino et 

al, 2004; Mundt et al, 2010). 

 

In response to a variety of cellular stresses, activated p53 leads to cell cycle 

arrest and cell death (Khoury & Bourdon, 2011). Those pathways were 

stimulated by several cellular stress signals, for instance, the phosphorylation 

of p53 by ATM in response to DNA damage. These post-translational 

modifications, protein-protein interactions and protein stabilization are found to 

be crucial levels of control of the activity of p53. Moreover, p53 is involved in 

various pathways either caused by normal physiological response to growth 

factor, or abnormal oncogenic stimuli; for example, Myc oncogene activation 

can affect p53 function by the basic-helix-loop-helix recognition motif to induce 

the p53 promoter (Reisman et al, 1993). In the early stage of p53 studies, p53 

was suspected to be an oncogene (Lane & Benchimol, 1990), but now it was 

confirmed that p53 is a tumour suppressor (Levine & Oren, 2009). 
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1.3.1 Introduction to the p53 protein 

1.3.1.1  P53 structure 

The tumour suppressor protein p53 is a tetramer consisting of four polypeptide 

chains (Joerger & Fersht, 2010) and has a short half life (Giaccia & Kastan, 

1998). There are 393 amino acids in human p53 (Figure 1.6). All of its amino 

acids are assembled into five structurally and functionally different domains: 

Transactivation domain (1-42), SH3 (Src homology 3-like (SH3) domain) 

(63-97), DNA binding domain (102-292), TET (tetramerization) domain 

(323-356) and REG (regulatory) domain (363-393) (Anderson & Appella, 2002) 

(Figure 1.6). The transactivation domain is involved in transcriptional 

regulation, mediates interactions with numerous proteins involved in 

transcriptional control and is intensively modified by phosphorylation (Figure 

1.7). The interaction between p53 and other proteins with the SH3 domain 

may be regulated through protein ligand which contains the SH3 domain. For 

instance, the c-terminus of p53BP2 (tumour suppressor p53-binding protein 2), 

which contains the SH3 domain, bind to p53 to promote apoptosis 

(Samuels-Lev et al, 2001). The DNA binding domain is located in the centre 

and mediates specific DNA binding to p53 target genes. It was reported that 

95% of mutations in p53 occurred in the DNA binding domain and those 

mutations lead to the loss of p53 wild type function (Sigal & Rotter, 2005). The 

tetramerization domain (TD) of p53 is important for p53 binding and the 

oligomerization of p53 is allowed by it. It was reported that TD exerted effects 

on the strength of interaction and enhanced DNA binding (Chène, 2001). The 

presence of residues from 334 to 354 in TD was essential for the 

phosphorylation of p53 by Chk1 (Shieh et al, 2000). Multiple post translational 

modifications occurred in the regulatory region of p53, which was also called 
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the C-terminal Basic Region. For instance, Sir2 (silencing information 

regulator 2) deacetylated p53 at position 382 in the regulatory region of p53 in 

vivo and yeast Sir2 was involved in double strand DNA repair (Langley et al, 

2002). 

 

 
Figure 1.6: Representation of the domain structure of the p53 protein 

This figure shows protein domains in p53 according to their known function. 

1.3.1.2  Levels of control of p53 activity 

Multiple protein complexes interact with p53 at different regions (Figure 1.7). 

The activation and stabilization of p53 includes several modifications, such as 

phosphorylation, acetylation, and ubiquitylation. 
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Figure 1.7: Domains and posttranslational modifications of the p53 

protein  

Different posttranslational modifications of p53 occur on different sites of p53. Five regions of 

p53 are shown: Transactivation domain (1-42), SH3 (Src homology 3-like (SH3) domain 

(63-97), DNA binding domain (102-292), TET (tetramerization) domain (323-356) and REG 

(regulatory) domain (363-393) (Anderson & Appella, 2002). 

 

Those modifications are a major level of control and occur at different serine, 

threonine, and lysine residues of p53 (Levine et al, 2005). The 

phosphorylation of p53 occurs at the N-terminal domain, which is mostly 

induced by DNA damage and mediated by several kinases such as p38, JNK 
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(Jun NH2-terminal kinase), ATM (ataxia telangiectasia mutated), and ATR (AT 

and Rad3-related.). For instance, ATM phosphorylates p53 at serine 15 (Banin 

et al, 1998), CHEK1 (Chk1) phosphorylates p53 at serine 20 (Zhao & 

Piwnica-Worms, 2001). However, some phosphorylations also occur at other 

amino acid residues of the C-terminal and the mechanism of control is still 

unknown. 

 

The post-translational modifications of p53 play a critical role in both p53 

stabilization and p53 activation. For example, the phosphorylation of serine 20 

by CHK1 and CHK2, which is a response to ionizing radiation, exerts effects 

on the interaction between p53 and Mdm2. This phosphorylation on serine 20 

of p53 plays an important role in the stabilization of p53 (Unger et al, 1999). It 

has been reported that ATM and ATR phosphorylation on serine 15 of p53 and 

the phosphorylation on serine 20 of p53 by Chk1 and Chk2 inhibits the 

MDM2-p53 interaction and the p53 degradation caused by MDM2, resulting in 

increased p53 stability in response to DNA damage (Shieh et al, 1997). 

  

The acetylation of p53 is another important modification for p53 which was 

found to stimulate the transactivation of the target genes which are 

downstream of p53. What is more, acetylation plays an important role in the 

regulation of p53. Those target genes mostly acetylated p53 at its C terminal, 

for example, p300/CBP mediates the acetylation of p53 at lysine 370, 372, 373, 

381 and 382, and PCAF acetylates p53 at lysine 320 (Liu et al, 1999; 

Sakaguchi et al, 1998; Wang et al, 2003). 

 

The phosphorylation and acetylation of p53 are interdependent and these 

modifications are able to activate p53 and induce several DNA events, such as 

cell cycle arrest, apoptosis, DNA repair, the inhibition of angiogenesis and 
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other signalling pathways.  

 

P53 activity also depends and is regulated through DNA binding. The p53 

binds to a consensus DNA sequence, in which  two half-sites of sequence 

5’-Pu-Pu-Pu-C-(A/T)-(T/A)-G-Py-Py-Py-3’ are included. This sequence is 

separated by 0 to 13 base pairs (Pu in this sequence represents purine. A 

represents adenine, T represents thymine, and Py represents pyrimidine). The 

loss of p53 affinity is caused by delicate changes in those motifs (el-Deiry et al, 

1992). The p53 protein acts as a transcription factor and is able to both 

activate and inhibit transcriptions. For example, p53 acts as transcription 

activator of p53AIP1 once p53 was phosphorylated at serine 46 in response to 

DNA damage. The p53AIP1 gene functions as a pro-apoptotic gene and 

induces apoptosis (Oda et al, 2000). Meanwhile, p53 represses the 

transcription of Bcl2, which prevents the process of apoptosis.   

 

It should be recognised that the p53 modifications are inter-dependent and 

regulation in one domain can profoundly influence other domains. 

Posttranslational modifications can also control interactions with other 

macromolecules that are of great significance. In addition, p53 interacts with a 

wide range of proteins, facilitating both the regulation of p53 activity and the 

control of its concentration by the control of its degradation (Prives & Hall 

1999). 
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1.3.2  Structure of the p53 network 

As we mentioned before, the mutation of oncogenes and tumour suppressor 

genes result in cancer and those genes constitute a complex network through 

cellular signalling pathways. The p53 tumour suppressor plays an important 

role in the control of DNA damage in response to various cellular stress 

signals. These signals include DNA damage, oncogene activation, hypoxia, 

nucleotide depletion, and depending on the strength of the damage could lead 

to p53-mediated cell cycle arrest, apoptosis, angiogenesis, DNA repair, 

senescence and other cellular responses (Moll & Concin, 2005). These p53 

pathways are very complex and can be divided into several layers (Figure 1.8): 

the upstream layer of p53, in which DNA damage, aberrant growth signals 

oncogene activation and cell stress are included; the central layer where p53 is 

regulated by MDM2, and the downstream layer where cell cycle arrest, 

apoptosis, DNA repair and inhibition of angiogenesis are included. The central 

protein-protein interaction is the p53 interaction with Mdm2. This p53-MDM2 

feedback loop is a key signalling pathway to p53. Moreover, p53 receives and 

integrates these numerous upstream signals and translates them into a 

cellular response by regulating downstream target genes, resulting in growth 

arrest and apoptosis. 
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Figure 1.8: Structure of a simplified p53 network 

This figure shows a simplified representation of the p53 network, which is composed of three 

layers: the upstream of p53 layer contains for example extracellular signals such as ultraviolet 

light that triggers ATR activation. Then, these signals affect p53 which is the core of the 

network, with the regulation of p53 by MDM2 at the centre. Then the downstream layer where 

the target genes p21, GADD45, 14-3-3sigma and processes like apoptosis and growth arrest 

are included (Hasty et al, 2001; Vogelstein et al, 2000). 

 

1.3.3  Upstream molecular pathways of p53 activation 

The half life of the tumour suppressor protein p53 is 6 to 20 minutes in 

cells(Levine et al, 2005). However, once p53 was induced by cellular stress 

signals, such as DNA damage, hypoxia, nitric oxide signalling or oncogenes, 

the half life of p53 increases and the p53 protein is accumulated (Levine et al, 

2005). The p53 protein is activated by different types of stress signals such as 



63 
 

UV (ultraviolet radiation) and IR (ionizing radiation), which cause DNA damage. 

The DNA damage is detected by stress responsive kinases, which deliver the 

stress signals to p53. There are three independent molecular pathways 

utilized to signal cellular distress: DNA damage, oncogene activation, and 

other types of cell stress like hypoxia (Figure 1.8). As previously mentioned, 

phosphorylation, acetylation and sumoylation occur on more than 20 sites of 

p53 and those modifications lead to a cellular response, for instance, 

apoptosis, cell cycle arrest and other cellular outcomes (Anderson & Appela, 

2005). Globally, these stress signals inducing p53 activation can be classified 

into two categories: genotoxic stress and non-genotoxic stress. Genotoxic 

stress includes UV and IR, while oncogenes induction, hypoxia, osmotic shock 

and microtubule disruption constitute the non-genotoxic stress signals 

(Anderson & Appela, 2005).  

 

1.3.3.1 DNA damage 

There are several types of DNA damage, for instance DNA double-strand 

breaks (DSBs) caused by ionising radiation (IR) and DNA single-strand breaks 

(SSBs) caused by ultraviolet radiation (UV). DBSs activate specific stress 

response kinases such as ATM. This activation results in several 

phosphorylation events on p53, for instance ATM phosphorylates p53 directly 

at serine 15 in response to DSBs and increases p53 protein stability. There are 

several kinases that are members of the same family that respond to DNA 

damage including ATM, ATR (Figure 1.9) and DNA-PK. After DNA damage, 

the p53 phosphorylation will lead to its activation and increase in protein 

stability. The regulation of cell growth and cell death also involves p53 (Prives 

& Hall 1999). It was found that ATM was activated with exposure to DNA 

damage and ATM dependent phosphorylation of p53 occurred on serine 9, 

serine 20, serine 46 and threonine 18 (Anderson & Appela, 2005). ATR is 
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another important kinase, which functions upstream of p53. ATR is found to be 

induced in response to UV light or other chemical agents. The activated ATR 

phosphorylates p53 directly at serine 15 in vitro as well as ATM (Anderson & 

Appela, 2005). ATM is a Ser/Thr protein kinase (Banin et al., 1998; Canman et 

al., 1998; Khannak et al., 1998) and plays a key role in DNA DSB 

(double-stand break) repair. The difference between ATM and ATR is that ATM 

is mostly responsive to IR whereas ATR responds to UV. Both ATM and ATR 

kinases phosphorylate p53 as well as other kinases such as Chk2 and Chk1 

respectively and these kinases then target p53 as described above.  

 

Moreover, in addition to the regulation of p53 protein stability and p53/MDM2 

interaction, posttranslational modifications affect the target gene selectivity of 

p53. For example, DYRK2 phosphorylates p53 at serine 46 and this 

phosphorylation leads to the activation of p53AIP1, which promotes apoptosis 

(Taira et al, 2007). Furthermore, the pro-apoptotic gene BAX is induced once 

p53 was acetylated by PCAF at lysine 320 and by p300 at lysine 373. Either of 

those two acetylation result in the activation of CDKN1A (p21) (Roy & 

Tenniswood, 2007). The ubiquitylation of E4F1(E4F transcription factor 1) at 

lysine 320 of p53 induced CDKN1A, CCNG1 (cyclin G1) and GADD45A to 

block the cell cycle (Murray-Zmijewski et al, 2008). Taken together, these 

reports indicate that posttranslational modifications on different sites of p53 

lead to the induction of different p53 target genes and therefore cause different 

biological processes. 
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Figure 1.9: DNA damage induced pathway. 

ATM and ATR are induced by DNA damage stress and stimulate p53 phosphorylation directly 

and through CHEK1 (Chk1) and CHEK2 (Chk2). This figure was adapted from Donzelli’s 

paper (Donzelli & Draetta, 2003) 

 

 

Moreover, there exist other genes which function as upstream regulators of 

p53, such as AURKA (Aurora kinase A), PRKDC (DNA-PK) and MAPK1 

(p38MAPK) in response of DNA damage. AURKA was reported to 

phosphorylate p53 at serine 315 and this phosphorylation promoted MDM2 

ubiquitination on p53, causing the degradation of p53. The down-regulation of 

AURKA results in G2/M cell cycle arrest through its inhibition on p53 through 

MDM2 (Katayama et al, 2004). PRKDC functions as an upstream regulator of 



66 
 

p53 and phosphorylates p53 at serine 15 and serine 37 in vitro, repairing the 

degradation of p53 caused by MDM2 inhibition (Shieh et al, 1997). The p53 

protein was also phosphorylated by p38MAPK at serine 38 and serine 46 in 

response to UV light (Bulavin et al, 1999). If the p53 mutation occurred on 

these sites with the exposure of UV light, the apoptosis process regulated by 

p53 were prevented (Anderson & Appela, 2005) 
 
 
1.3.3.2  Oncogene activation 

The stabilization of p53 can be induced by several oncogenes through ARF. 

ARF is a protein that can bind MDM2 directly and affect the p53 protein 

indirectly. The ubiquitination of p53 will be inhibited by the interaction between 

ARF and MDM2, and the p53 protein will accumulate as a result of the binding. 

The ARF level and p53 level is very low in normal cells. There are diverse 

ways to activate ARF, for example by dentin matrix acidic phosphoprotein 

1(DMP1) and E2F1, which are transcription factors that regulate ARF gene 

expression (Vousden, 2000). Moreover, ARF stabilizes p53 by repressing 

MDM2 and promotes c-Myc triggered apoptosis in both p53 dependent and 

p53 independent manner (Gregory et al, 2005). Another oncogene is the RAS 

family, which contains HRAS (v-Ha-ras Harvey rat sarcoma viral oncogene 

homolog), KRAS (v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog), and 

NRAS (neuroblastoma RAS viral (v-ras) oncogene homolog). Activated RAS 

was found to promote cell proliferation through the RAF-MEK-ERK signalling 

pathway. This pathway mediated MDM2 regulation in the absence of ARF to 

suppress p53 and played an important role in p53 dependent apoptosis (Ries 

et al, 2000). Moreover, it was found that p53 could be activated by oncogenic 

RAS through the MAP kinase signal pathway and induced cellular senescence 

(Ferbeyre et al, 2002).   

  



67 
 

1.2.3.3  Other types of stress 

Other cellular stresses such as hypoxia and total lack of oxygen (anoxia), as 

well as oncogene activation, induce p53 activation by less known mechanisms 

(Gallagher et al, 2006; Hubert et al, 2006). Hypoxia results in CDKN1A (p21) 

(Koshiji et al, 2004) and CDKN1B (p27) (Gardner et al, 2001) regulated cell 

cycle arrest and the expression of CDKN1A and CDKN1B is mediated by 

HIF1A (Goda et al, 2003). Moreover, p53 mediates cell senescence through 

interaction with HIF1A (Welford & Giaccia, 2011). In addition, p53 induces 

different signalling pathways in response to different levels of oxidative stress. 

In low levels of oxidative stress, p53 promotes C12orf5 (TIGAR) and results in 

the accumulation of NAPDH to repress ROS (reactive oxygen species) levels 

whereas p53 induces BAX and PUMA to promote apoptosis in response to a 

high dose of oxidative stress  (Liu & Xu, 2011). There are other types of 

stress mediated p53 activation, such as oxidative stress (Liu & Xu, 2011), nitric 

oxide ribonucleotide depletion (Linke et al, 1996), DNA replication stress 

(Burhans & Weinberger, 2007), mitotic apparatus dysfunction (Aylon et al, 

2006), telomere erosion (Preto et al, 2004) and nutrition depletion (Wanka et al, 

2012). 

 

1.3.4  Regulation of p53 by MDM2 

In normal cells, p53 can inhibit the growth of damaged cells and its activity is 

tightly controlled. According to this phenomenon, the potential cancer cells 

that will mutate can be controlled through the activity and expression level of 

the p53 protein. An important finding is that the level of p53 protein is 

regulated by the interaction with a particular protein, MDM2 (Dimitriadi et al, 

2008). MDM2 is an E3 ligase whose targets are p53 and itself for 

ubiquitination. The function of p53 is regulated by MDM2 and vice versa 
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forming a negative feedback loop. There are two promoters on the MDM2 

gene: P1 and P2, and the transcription from P2 is under the control of p53 

(Dimitriadi et al, 2008). Depending whether DNA damage is present or not, 

MDM2 is able to regulate the response of p53. If DNA damage is absent, 

MDM2 will bind to the N-terminal of p53 to promote p53 degradation by 

complex mechanisms. In the presence of DNA damage, both MDM2 and p53 

will be phosphorylated and p53 will up-regulate MDM2 transcription.  

 

As a result of this mechanism, the p53 protein level is suppressed by MDM2. If 

p53 responds to DNA damage, hypoxia, oncogene activation and other 

cellular stresses, the p53 protein will be phosphorylated and stabilization of 

p53 will occur. The interaction between p53 and MDM2 will be blocked as well. 

If the levels of p53 become higher, p53 will initiate a cell death, cell-cycle 

arrest or senescence program. It was found that p53 can be exported from the 

nucleus to the cytoplasm, and this will lead to the ubiquitination of p53 

(Momand et al, 2005). The p53 proteins that are ubiquitinated by MDM2 will be 

targeted by the proteasome and degraded (Momand et al, 2005) 

 

The p53-MDM2 feedback loop is a key signalling pathway to p53. In addition 

to being activated by p53, the MDM2 gene is also transactivated 

independently by the Ras-driven RAF-MEK-MAP kinase pathway. However, 

the RAF-MEK-MAPK pathway influences the level of p53 by activating 

expression of the MDM2 inhibitor ARF. Therefore, it is not surprising that Ras 

activates the ARF-p53 pathway to suppress epithelial cell transformation. The 

oncogenic protein Myc also activates the ARF-p53 pathway (Lin & Lowe, 

2001). In addition, Ras can also activate PML(promyelocytic leukaemia), 

which cross-talks with p53 to increase transactivation of specific genes and 

recruits p53 to nuclear bodies (Bargonetti & Manfredi, 2002; Vogelstein et al, 
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2000). Since the protein-protein interaction can be disrupted by the peptide, 

biologists focused on the peptide acting on the interaction between MDM2 and 

p53 in order to find potential anticancer targets. A D-peptide inhibitor of the 

p53-MDM2 interaction was identified by Liu et al. and this D-peptide 

functioned as an activator of p53 (Liu et al, 2010). Another peptide, named as 

MIP (MDM2 Inhibitory Peptide), which binds to MDM2, was found by Shiheido 

et al. It represses the MDM2-p53 and MDMX-p53 interactions to activate p53 

efficiently (Shiheido et al, 2011).  

 

1.3.5 Molecular pathways downstream of p53 leading to diverse cellular 

effects 

The p53 protein exerts its tumour suppressor effects by inducing the 

expression of its target genes to prevent carcinogenesis by two main 

processes in response to DNA damage: p53 promotes apoptosis through the 

regulation of its target genes or stimulates DNA repair during the cell 

cycle(Smith et al, 2000). However, p53 is also involved in other cellular 

processes such as antioxidant defense, energy metabolism, stem cell renewal, 

neurodegenerative diseases, reproduction endosome/exosome production 

and so on(Feng & Levine, 2010). In this section, we mainly focus on those 

effects induced by target genes of p53: the inhibition of cell cycle, which is also 

known as cell cycle arrest, DNA repair, apoptosis, repression of angiogenesis 

and cellular senescence and will describe them one by one in the following 

paragraphs. 
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1.3.5.1 Control of cell cycle arrest  

The cell cycle consists of four phases: G1 phase (Gap 1), S phase (DNA 

synthesis), G2 phase (Gap 2) and M phase (mitosis) (Figure 1.10). The cell 

starts to increase in size in the G1 phase. The S phase contains DNA 

synthesis, during which DNA replication occurs. Once the S phase has 

terminated, the cell enters into the G2 phase and increases its size. Then in 

the mitosis phase cell growth terminates and division starts. There exist 

positive feedback loops among the retinoblastoma protein (Rb), E2F1 and 

Cyclin E-CDK2. Rb is inhibited by the complex CDK4/6 and Cyclin D1 through 

the phosphorylation of Cyclin D1. Rb phosphorylates E2F1 to disturb its 

accumulation. E2F1 activates the Cyclin E and CDK2 complex, which 

represses Rb. Meanwhile E2F1 induces G1/S genes such as TK (thymidine 

kinase) and DHFR (dihydrofolate reductase) to trigger the G1-S cell cycle 

transition (Levine et al, 2005). In order to repair the DNA damage before the 

next round of replication, cell cycle arrest in response to DNA damage is 

caused by activated p53. If the DNA lesion was repaired successfully, the 

damaged DNA will not be replicated and passed on to daughter cells 

(Pecorino, 2005). The p53 protein mediates the growth arrest through its 

target genes, for instance, CDKN1A (p21), 14-3-3σ, and GADD45 (growth 

arrest and DNA damage-inducible protein 45). CDKN1A (p21) regulates the 

cell cycle in the G1 phase through multiple mechanisms, for instance p21 

regulates cell cycle arrest through inhibition of cyclin-CDK4 and cyclin-CDK6. 

But it also inhibits PCNA to prevent DNA synthesis (Rousseau et al, 1999). 

 

The DNA damage activates p53 through activation of ATM/ATR kinases and 

DNA-dependent protein kinases, and then p53 increases the gene expression 

of p21, and p21 binds to cyclin-CDK complexes to induce cell cycle arrest 
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(Coqueret, 2003). p21WAF1/CIP1 is a protein regulated by p53 that can inhibit the 

activity of CDK. It was demonstrated that p21 is needed for the p53-dependent 

G1 checkpoint following genomic damage and p21 can mediate the action of 

p53 in the G1 phase (Walaman, 1995). In addition, 14-3-3σ is induced by p53 

as a response to DNA damage and results in blocking the G2 phase. Gadd45 

is another p53-regulated protein and it was identified by Kastan and 

colleagues that wild type p53 binds to a conserved element in the Gadd45 

gene so as to control cell cycle arrest that follows DNA damage (Kastan, 1992). 

The p16 protein represses the complex formed by Cyclin D1, CDK4 

(cyclin-dependent kinase 4) and CDK6 (cyclin-dependent kinase 6) as well as 

CDKN1B (p27). It was reported that p16 and p27 were induced by p53 and 

they resulted in blocking cell cycle progression (McConnell et al, 1999) 

 

Figure 1.10: Cell cycle phases and p53. 

This figure shows the process of cell cycle and p53 regulating the cell cycle arrest through its 

target gene p21 (Nita et al, 2002). 
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1.3.5.2 Control of DNA repair 

DNA damage lesions are strongly implicated in carcinogenesis if they are not 

repaired before the division of a cell with mutated DNA. There are five different 

types of DNA repair: one-step repair, nucleotide excision repair, base excision 

repair, mismatch repair and recombination repair (Pecorino, 2005). 

 

The p53 gene plays an important role in the process of nucleotide excision 

repair (Smith et al, 2000). The gene XPC (xeroderma pigmentosum, 

complementation group C), which is involved in nucleotide excision repair, is a 

well studied case. XPC gene has a p53 response element in its promoter that 

renders this gene subject to p53 control. However, if the damage cannot be 

repaired, the cell will die. It was found that p53 can inhibit a cellular factor 

which replicates DNA (Dutta et al, 1993). This conclusion was reached 

according to the interaction between p53 and the simian virus 40 

(SV40)-encoded protein T antigen (Levine et al, 2005). Many checkpoint 

functions for the cell cycle are executed by p53. Martinez et al. reported that 

wild type p53 protein can block the replication of cells at the G1/S border so 

that the cell can repair the damaged DNA (Martinez et al, 1991). XPC is 

involved in nucleotide excision repair (NER) and regulated by p53 through 

BRCA1, which is a breast cancer tumour suppressor. BRCA1 was found to be 

repressed by p53 in p53 wild type cells and induces XPC and DDB2 

(damage-specific DNA binding protein 2, 48kDa), which are global genomic 

repair (GGR)-specific damage recognition genes (Adimoolam & Ford, 2003). 

Moreover, GADD45, which is a target gene of p53, was also found to 

contribute to the NER process (Smith & Kumar, 2010). It was also found that 

p53 induces the base excision repair (BER) process in vitro through the AP 

endonuclease (APE) and DNA polymerase β (Pol β) (Zhou et al, 2001). 
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1.3.5.3  Control of apoptosis 

Apoptosis is a form of cell death distinct from necrosis and autophagy. It has 

been regarded as a tumour suppression process (Levine & Oren, 2009) and 

this process is important for the elimination of tumour cells with damaged DNA 

(Debridge et al, 2012).  

 

There are two different types of signals that induce apoptosis: intrinsic and 

extrinsic signals (Klipp et al, 2009). DNA damage, oxygen stress, nutrient and 

other cellular stress signals are intracellular signals. The extrinsic signals are 

induced by the death receptor ligand, for example TNF (tumour necrosis 

factor), which is a member of the tumour necrosis factor protein family. As a 

result, there are two main pathways to commence the apoptosis process 

(Figure 1.11) (Debridge et al, 2012; Mai & Liu, 2009). The intrinsic pathway 

includes the regulation of Bcl2, which is repressed by p53 target genes like 

BBC3 (PUMA, p53 unregulated modulator of apoptosis). Those genes repress 

the expression of Bcl2 family members, for example Bcl2. The Bcl2 down 

regulate the pro-apoptotic genes BAX and BAK, which stimulate cytochrome c 

release to enhance the apoptosis outcome through the activation cascade of 

caspase 9 to caspase 3, caspase 6 and caspase 7. The extrinsic pathway is 

altered by extrinsic signals from the death receptors ligand and is also called 

death receptor pathway. In this pathway, TNF (tumour necrosis factor receptor) 

induces the expression of TRADD (TNFRSF1A-assocaited via death domain). 

The activated TRADD promotes the induction of caspase 8, which induces 

apoptosis through the activation of caspase 3, 6 and 7. Those two signalling 

pathways cross talk through caspase 3, 6, and 7 to enhance apoptosis. The 

inhibitors of apoptosis (IAP) proteins were found in both extrinsic and intrinsic 

apoptosis pathways, such as XIAP (X-linked inhibitor of apoptosis), Surviving 
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and others (Vucic & Fairbrother, 2007). They were found to prevent cellular 

death in response to various stimuli, sustain tumour cellular survival and block 

cell death. As a result, eliminating IAP protein function was regarded to be a 

therapeutic target to improve cancer treatment (Hunter et al, 2007; Vucic & 

Fairbrother, 2007). The apoptosome is a multisubunit protein complex and is 

induced by the interaction between Cytochrome c and Apaf-1 (apoptosis 

protease activating factor-1). The activation of apoptosome plays an important 

role in the activation of caspase to trigger apoptosis. As a result, the activation 

of apoptosome was regarded as a cancer treatment target to promote tumour 

cell death (Ledgerwood & Morison, 2009). 

 

The tumour suppressor protein, p53 is crucial for the apoptosis process 

because it regulates numerous intracellular pathways. As p53 accumulates in 

normal cells in response to DNA damage and other cellular stress signals, p53 

enhances the expression of numerous pro-apoptotic genes, like BAX, Noxa 

and PUMA to promote the apoptosis process. However, the loss of p53 

function and the inactivation of p53 in tumour cells prevent the replication of 

DNA lesions, and therefore mutated p53 promotes cell proliferation and 

survival. The prevention of apoptosis leads to the development of cancer 

(Brown & Attardi, 2005). With the purpose of facilitating tumour cell death, the 

recovery of wild type p53 function to enhance cellular apoptosis was regarded 

as a potential target of cancer treatment (Gudkov, 2005).  

 

Moreover, recent research found that the p53 target gene CDKN1A (p21) 

functioned as an anti-apoptotic gene in certain conditions. Figure 1.12 shows 

the different behaviours of p21 in p53 wild type cells (Figure 1.12 A) and solid 

tumour cells (Figure 1.12B). When p53 wild type cells were affected by 

ionizing radiation at the early state (less than 24 hours), ATM induced the 
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activation of p53, WRN (Werner’s syndrome protein), DNA-PKcs (DNA 

dependent protein kinase catalyse) and other genes. Those proteins promoted 

DSB repair while p21 repressed apoptosis and inhibited the cell cycle 

transition. There exist positive feedback loops between p21 and ATM, p21 and 

p53 to enhance cell proliferation. However, if the solid tumour cells was 

exposed to the ionizing radiation for a long time, p21 repressed apoptosis, and 

then induced the SIPS (stress-induced premature senescence) programme 

(Mirzayans et al, 2012). 

 
Figure 1.11: Two major signalling pathways that induce apoptosis. 

Two crucial pathways start the apoptosis process: the pathway on the left is induced by 

intracellular signals and the one on the right is stimulated by extrinsic signals (Debridge et al, 

2012; Mai & Liu, 2009). 
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Figure 1.12: ATM-p53-p21 pathways in p53 wild type cells and solid 

tumour cells in response to DNA damage. 

The left picture shows the short stage activity of ATM-p53-p21 pathways in response to DNA 

damage in p53 wild type cells. The right picture describes a long stage activity of 

ATM-p53-p21 signalling pathways in solid tumour cells (Mirzayans et al, 2012)   

 

 

1.3.5.4 Control of angiogenesis 

Angiogenesis is a process of the growth of new blood vessels from existing 

ones which plays an essential role in the growth and metastasis of tumours. 

As tumours need oxygen and nutrients to survive, which are provided by the 

network of blood vessels, new blood vessels promote the survival of the 

tumour. Previous studies of p53 found that the angiogenesis process was 

regulated by p53 through its control of p53 target genes, for example TSP1 

(Thrombospondin-1), which would inhibit cancer angiogenesis and metastasis 

(Harris et al., 2005). There are three main mechanisms by which p53 regulate 
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angiogenesis. The first mechanism is to mediate the regulation of target genes 

which affect angiogenesis in response to hypoxia (Teodoro et al, 2007). For 

instance, HIF1A is a subunit of the hypoxia inducible factor and is repressed 

by the p53 protein in the presence of hypoxia(Teodoro et al, 2007). HIF1A 

mediates the angiogenesis process through the pathways in which the 

vascular endothelial growth factor takes part (Teodoro et al, 2007). The 

second mechanism is the repression of those genes that activate the process 

of angiogenesis (Teodoro et al, 2007). For example, p53 mediates the 

inhibition of angiogenesis by the regulation of VEGF (vascular endothelial 

growth factor) and PTGS2 (COX-2). VEGF and PTGS2 are down regulated by 

p53 and they are reported to enhance the angiogenesis process (Teodoro et al, 

2007). The third mechanism is through the induction of angiogenesis 

repressors. For instance, TSP1 is up regulated by p53 and the migration and 

proliferation of endothelial cells is inhibited by TSP1 to inhibit angiogenesis 

(Ren et al, 2006). All those three mechanisms together allow p53 to prevent 

angiogenesis in normal cells. The loss of p53 function in p53 mutated cells will 

promote the angiogenesis and lead to the accumulation of tumours (Teodoro 

et al, 2007) . 

 

1.3.5.5  Control of other cellular process 

The tumour suppressor p53 is also involved in the regulation of other 

biological process, such as senescence, autophagy, metabolism, and 

inflammation. The tumour suppressor p53 was identified as a major regulator 

of cell senescence. It induces human cell senescence through CDKN1A (p21) 

and pRB in response to DNA damage. The p53-p21-pRB pathway could be 

promoted by ARF (Dimri, 2005). Autophagy is a catabolic mechanism that 

recycles cell organelles (Lin et al, 2012). It was reported that p53 both 
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activates and inhibits autophagy through different mechanisms, for instance 

p53 stimulates autophagy in both transcription dependent and independent 

manner. Moreover, some p53 target genes such as CDKN1A (p21) and BAX 

activate autophagy separately, whereas another p53 target gene, C12orf5 

(TIGAR) prevents autophagy by the regulation of glycolysis and inhibition of 

ROS (reactive oxygen species) (Sui et al, 2011). 

 

As well as autophagy, the cell metabolism was found to be regulated by p53. 

The p53 protein mediates energy metabolism, oxidative stress, and amino 

acid metabolism through complex mechanisms. Metabolic stress signals 

stimulate p53 and p53 regulates glycolysis and oxidative phosphorylation 

(OXPHOS). It was found that p53 mediates autophagy through the mTOR 

(mammalian target of rapamycin) and DRAM1 (damage-regulated autophagy 

modulator 1) pathways (Zhang et al, 2010). 

 

The tumour suppressor protein p53 also represses the inflammation process. 

This inhibition is performed through an interaction with NF-κB using a complex 

mechanism (Gudkov et al, 2011). It was reported by Komarova et al. that 

inflammatory mice cells invaded more rapidly in response to ionizing radiation 

in p53-/- mice than in p53 wild type mice cells (Komarova et al, 2004).  

 

1.4  Aims and objectives 

We aimed that by using a systems biology approach to establish logical 

models of p53 action, our understanding of p53 function could be furthered 

and the unknown dynamic mechanisms of the p53 signalling pathway induced 

by DNA damage could be revealed. The overall objective of this project is to 

analyze DNA damage inducible p53 signalling pathways and the role of the 
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tumour suppressor p53 in the development of cancer. We aimed to reconstruct 

in silico protein-protein interaction networks of p53 on the basis of massive 

interaction information retrieved from text mining results. Predictions produced 

by the model simulations can be validated by experiments in vivo and vitro to 

estimate the performance of our models and improve them. By the analysis 

and simulation of this network, key genes and network features in the p53 

network were expected to be identified. 

 

In the first instance, our objective was to generate two models: one basic 

model with high level of certainty (five or more publications describing the 

interaction are shown in Additional Table 1) and one all inclusive model with 

low level of certainty (all interactions we found by text mining are included in 

Additional Table 3). Model construction would be initially based on literature 

curation. The analysis of those two models would provide a general overview 

of the p53 network.  

 

Secondly, we aimed to extract massive interaction information from databases 

using a java programmed application interface and create a logical model in 

CellNetAnalyzer. Moreover, this interaction network would be connected with 

input signals and outcomes of biological processes on the basis of the 

literature survey, so as to explore the effects exerted by this interaction 

network and predict new findings on the dynamic mechanism of p53 pathways 

induced by DNA damage. 

 

Finally, we aimed to validate those predictions through various approaches, 

such as western blotting experimental data (it occupied more than 25% of time 

spent in the validation work), genome wide experimental data (microarray and 

ChIP-seq data) (it occupied more than 50% of time spent in the validation 
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work), and literature survey (it occupied less than 25% of time spent in the 

validation work). The predictive strength of my model was aimed to be 

measured by those approaches. The results and predictions of this project are 

expected to be helpful for cancer therapy design and production of new drugs. 

 

The combination of top-down and bottom-up systems biology approaches is 

the ultimate goal to establish comprehensive models. In this project, the 

top-down approach will be utilized first according to the information obtained 

from the literature to establish an abstract model of p53 pathways. Through 

the top-down approach, the global properties of the p53 pathway will be 

explored and predictions for the p53 pathway will be drawn from the model. 

Then the generic model for p53 will be tested and adjusted by the bottom-up 

approach. Moreover, by comparing the expected results with the experimental 

data obtained from lab work, the model will be adjusted according to the actual 

results. As a result, the combination of these steps constitutes an iterative loop 

to improve modelling and understanding of p53 pathways. 

 

This thesis contains 7 chapters. Chapter 1 gives basic background knowledge 

about p53 and system biology. Chapter 2 presents the materials and methods 

used in this thesis. Chapter 3 describes the generation of p53 interactome 

models using manual literature survey. Chapter 4 describes early versions of 

the PKT205 model based on interaction information retrieved automatically 

from the STRING database. Two large models based on automatic retrieval of 

interaction information, the PKT1377 and PKT2275 models, are presented. 

Chapter 5 describes results for the final PKT205 model and its analysis by 

CellNetAnalyzer. In this chapter, three versions of the PKT205 model and their 

dependency matrix and logical steady state analysis are illustrated. The third 

version, the PKT205/G3 model was selected as the final version of our 
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PKT205 model. Chapter 6 shows various approaches to validate predictions 

from the PKT205/G3 model and lists the results obtained by comparing our 

predictions to literature, western blotting experiments, and microarray and 

ChIP-seq datasets. Chapter 7 discusses all results described in previous 

chapters and gives directions for model improvement in the future. 
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Chapter 2  Materials and Methods 

2.1  Cell culture and maintenance 

2.1.1  Cell lines and media 

The p53 wild-type cell line U2OS (p53 +/+) and p53 mutant SAOS2 (p53 -/-) 

human osteosarcoma cell line were cultured in Dulbecco’s Modified Eagle’s 

Medium (DMEM, Sigma-Aldrich) supplemented with 10 % fetal bovine serum 

(FBS), 1 % penicillin and streptomycin (Lonza) and 2mM L-Glutamine. These 

two cell lines were used to provide suitable p53 positive and negative system 

suitable for validation of model prediction. These cells and media were utilized 

in western blotting and genome wide microarray experiments. 

 

2.1.2  Cell maintenance 

 

75 cm2 vented tissue culture flasks were used to maintain those two cell lines. 

Cells were incubated in a 5 % CO2 incubator at 37°C. They were cultured for 2 

to 3 days until 80% confluent. Cell culture experiments were performed in 

class II safety cabinet to ensure sterile environment. To subculture the cells, 

media was aspirated, cells were rinsed with 3ml Trypsin-EDTA (Lonza) and 

then split by incubating in 1 ml Trypson-EDTA Trypsin at 37℃ for 3 min. Cells 

were detached by tapping and fresh media was added to dilute and stop 

trypsin action. Cells were passaged usually at 1:5 ratios. Cells were seeded in 

100 mm plates until 80% confluent for western blot, microarrays and chromatin 

immunoprecipitation assays.   
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2.1.3  Freezing the cells 

In order to freeze the cells, they were centrifuged at 12000 rpm (revolutions 

per minute) for 3 min (Hermle, Z300 centrifuge). Pellets were resuspended in 

1ml of FBS and 1ml of 20% FBS in DMSO (dimethyl sulfoxide) to prevent cell 

death. Cryovails (Nalgene) were used and cell suspension stored at -80℃

overnight and then transferred to the liquid nitrogen containers (-196℃).  

 

2.1.4  Thawing the cells 

 

To obtain fresh cell stock, cells were thawed rapidly by addition of warm media 

to prevent formation of ice crystals (Ryan, 2004). Cells were transferred to a 

25 cm2 flask and incubated at 37℃ for 3-4 hours. After cell attachment, media 

was changed. When cells reached 70-80% confluence; they were transferred 

into the 75 cm2 flask. 

 

2.2  Antibodies  

Following antibodies were used in this study. Antibodies used in the western 

blotting experiment were: β-Actin (Abcam, UK), Chk1 (DCS-300, sc56290, 

Santa Cruz Biotechnology, Santa Cruz, CA, USA), Phospho Chk1 (Ser 345, 

sc17922, Santa Cruz Biotechnology, Santa Cruz, CA, USA), ATM (ATM 11g12, 

monoclonal antibody, sc53173, Santa Cruz Biotechnology, Santa Cruz, CA, 

USA ), ATR (2790 S, NEW ENGLAND BioLabs), ECL mouse IgG(NA931, 

Amersham Biosciences (UK)), ECL rabit IgG (NXA931, Amersham 

Biosciences (UK)) .  
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2.3  Immunoblotting 

2.3.1 Protein extraction 

U2OS cells and SAOS2 cells lines were seeded in 100mm culture plates and 

treated with 10µM etoposide for indicated times (Sigma, UK) that causes 

double strand DNA damage by inhibiting topoisomerase II (Zhou et al, 1999). 

Then the media was aspirated from the plates and cells were washed twice 

with 10 ml 1X cold PBS buffer. 250 µl of High Salt Lysis Buffer with freshly 

added protease (PI) and phosphatase inhibitors) (Table 2.1) was added to the 

cells and the cells were scrapped at 4℃ using cell scraper. Then the lysates 

were placed into eppendorf tubes and rotated for 20 minutes at 4℃. After the 

rotation, the tubes were centrifuged at 4℃ for 15 minutes at 13000 rpm. The 

supernatant was transferred into new tubes after the centrifugation and kept 

on ice. 
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Buffer Composition 

3X SDS sample buffer 187mM Tris, 30% Glycerol, 6%SDS, 

15% 2-mercapto ethanol, 0.01% 

bromophenoblue 

5% milk  PBS buffer 5 g milk in 10 ml PBS 

High Salt  Lysis Buffer 45mM Hepes, 400mM NaCl, 

1mMEDTA, 10% glycerol(VWR), 0.5% 

Igepal and added fresh: 1µg/ml 

protease inhibitor cocktail 

(aprotinin,leupeptin and pepstatin 

A),1M DTT, 1 mM PMSF, 2 mM 

sodium orthovanadate, 5mM sodium 

pyrophosphate and 20 mM β 

glycerophosphate, 

PBS 125mM NaCl, 3mM NaH2PO4.H20, 7 

mMNa2HPO4 anhydrous 

2.5% milk PBS/Tween buffer 0.25 g milk, 10 ml PBS/Tween-20 

Reference Cuevette H2O and Biorad 

PBS /Tween PBS+0.1%Tween-20 

Stripping Buffer 100 mM 2-Mercaptoethanol, 

2% SDS 

62.5 mM Tris-HCL pH6.7 

10X SDS running buffer 0.25M Tris, 1.9M glycine, 30mM SDS 

Western transfer buffer 150mM Glycine, 25mM Tris-HCI 

pH8.3, 20% methanol. 

Table 2.1: List of buffers and solutions for SDS PAGE and western 

blotting experiment 

Column 1 shows the name of buffers or solutions. Column 2 lists the composition. 
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2.3.2  Protein concentration determination  

Protein concentration in cellular extracts was determined using Bio-Rad 

Protein Assay reagent based on (Bradford, 1976). This essay is based on the 

change of colour after reagents dye binds to arginine and lysine residues in 

the protein resulting in the shift of absorbance from 465 to 595nm, which is 

determined by spectrophotometer. 

 

800µl H2O was mixed with 200µl Biorad reagent (1:5 dilution) in the reference 

cuvette and incubated for 5 minutes at room temperature. The absorbance of 

the samples was measured in spectrophotometer at 595nm optical density. 

Spectrophotometer was normalized using diluted reagent without the sample. 

Equal amount of protein was calculated from these values, mixed with 3XSDS 

sample buffer (Table 2.1) and loaded on SDS PAGE for analysis.  
 
 

2.3.3  SDS-PAGE  

The electrophoresis was performed by SDS-PAGE (SDS-poly acrylamide gel 

electrophoresis) protocol to separate proteins according to their molecular 

weight. This method is widely used to separate proteins according to their 

molecular weight. Polyacrylamide is used as a supporting material and SDS 

has a purpose of denaturing proteins. The gels were prepared as described in 

the Table 2.2. The resolving gel was prepared first using Biorad Mini Protean 2 

apparatus and immediately overlayed with isopropanol. Once set, isopropanol 

was removed and the stacking gel was poured and combs inserted to for wells 

for loading. Gels were either used immediately or stored at 4℃ up to 3 days.  
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Gels were run using Biorad Mini Protean 2 running apparatus in the tanks filled 

with 1xSDS running buffer (Table 2.1). The samples were boiled at 95℃ for 5 

minutes, centrifuged at 13000 rpm for 1 minute. 5 µl molecular weight markers 

was used to estimate the size of analysed proteins. The gels were run at 80 

volts until samples reached the resolving gel. Then the voltage was increased 

to 110 volts for 1 hour or until samples were resolved. 

 
 

Solutions 7.5% 

Resolving gel 

7.5% 

Stacking gel 

Distilled water 13.3 ml 6.73 ml 

Acrylamide 7 ml 1.67 ml 

1.5M Tris pH 8.95 7 ml - 

1M Tris pH 6.95 - 1.25 ml 

0.2M EDTA 280µl 100µl 

10% SDS 280µl 100µl 

10% APS 157µl 100µl 

TEMED 17µl 10µl 

 

Table 2.2: The composition of polyacrylamide gels  

Column 1 lists the name of solutions used. Column 2 shows volume of this solution added for 

resolving solution. Column 3 lists the volume of this solution added for stacking solution. 
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2.3.4  Western transfer and detection of proteins 

The resolved proteins were transferred from the gel onto a polyvinylidene 

fluoride (PVDF) membrane (Millipore, UK) using following procedure. Western 

transfer cassettes (Biorad) were assembled and set up with sponges, blotting 

paper, gel and membranes in certain order. PVDF membranes were soaked in 

methanol for 30 seconds and 2 sponges were soaked in the transfer buffer 

(Table 2.1). Then these cassettes were placed in the tank on a stirrer and the 

transfer was performed using electric current at 0.4 amps for 90 minutes with 

ice packs, which was changed every 45 minutes. Once the protein was 

successfully transferred to the membranes, the membranes were blocked at 

normal temperature in 5% milk/PBS buffer (0.5 g powdered milk with 10 ml 

PBS) for 1 hour. Then the membranes were incubated with 2.5% milk/PBS 

Tween 20 buffers (0.25 g milk with 10 ml PBS/Tween 20) where the first 

antibodies were added. These membranes with first antibodies in 2.5% milk 

PBS buffer were incubated at 4℃ overnight.  

 

Then, these membranes were washed by PBS/Tween 20 buffer for 10 minutes 

and the washing was repeated three times. After washing, they were 

incubated at room temperature for 1 hour with secondary antibody. The 

secondary antibodies were relevant anti-rabbit or anti-mouse IgG secondary 

antibodies in 2.5% milk/PBS/Tween buffer. When the incubation was finished, 

the membranes were washed 3 times again with PBS/ Tween buffer for 10 

minutes. Then 500µl of One Step ECL (Chembio, UK) was added on the 

membranes. The membranes were incubated at room temperature for 5 

minutes and then the proteins visualized by exposure to medical X-ray films 

(Fujifilm, UK) by the Compact X4, Xograph imaging system. This western 
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blotting approach was utilized to validate predictions of the PKT205/G3 

models and these results are described in the Chapter 6. 

 

 

2.3.5  Striping the membrane 

Once the primary protein was detected, antibody was striped from the 

membrane, which facilitated the reuse of the membrane to detect the new 

primary protein. The membranes were incubated with stripping Buffer (Table 

2.1) and incubated at 50℃ water bath for 30 minutes with occasional shaking  

Then the membranes were washed three times by 10 ml PBS/Tween buffer 

(PBS with 0.1% tween-20) to discard the stripping buffer. After washing, the 

membranes were blocked for 1 hour with 5% milk PBS (0.5 g milk powder in 

10 ml PBS). This blocking was performed on a rocking platform at room 

temperature. Then the new primary antibody was added into a new 5% 

milk/PBS buffer and the membranes were incubated in this buffer overnight at 

4℃ for new western transfer. 

 

2.4  Microarray analysis 

The samples for microarray analysis were prepared from U2OS and SAOS2 

cells treated with vehicle or with 10 µM etoposide for 16 hours. Total RNA was 

extracted from U2OS and SAOS2 cells using RNeasy plus mini columns 

(Qiagen, UK) according to the manufacturer’s recommendations. For each 

hybridization, 100 ng of total RNA was used in the Affymetrix GeneChip 

Two-Cycle Target Labeling kit and in the Ambion MEGAscript T7 kit before 

hybridizing to the GeneChip human genome U133 Plus 2.0 array (Affymetrix) 

according to manufacturer's instructions (Tian et al, 2013). The microarray 
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hybridization was performed by the Core Facility staff in the University of 

Manchester and data provided as excel files.  Then analysis was performed 

by the software Genesis and DAVID (The Database for Annotation, 

Visualization and Integrated Discovery). The heat map of microarray data was 

created by use of Genesis software, which allows hierarchal clustering and 

other functional analysis (Sturn et al, 2002), and cluster analysis was 

performed according to this heat map. Functional annotation analysis for 

microarray experimental results was performed using DAVID, meanwhile, the 

validation of model predictions by microarray experiment result were 

performed by the Java-based interface as described in the 2.6 paragraph 

below. This analysis approach was utilized to validate predictions of the 

PKT205/G3 models and these results are described in the Chapter 6. 

 

2.5  Chromatin immunoprecipitation followed by sequencing analysis 

(ChIP-Seq) 

It has been described that different p53 modified isoforms may have altered 

interaction with a selected subset of proteins or genes by literature, in order to 

detect how these p53 isoforms selectively control downstream targets,  we 

turned to the ChIP-seq analysis. The process of ChIP-sequencing includes 

two main steps: ChIP and Sequencing. First, p53 is cross-linked to DNA. Then 

chromatin is isolated and DNA sheared. The p53 protein is precipitated with 

antibody specific for total p53 or for modified p53. This step is followed by 

reverse cross-linking and digestion of the protein. Here we used ChIP-Seq 

data obtained for total p53 and published by Smeenk et al.(Smeenk et al, 2011) 

The analysis of the overlapping data from ChIP-seq results and the model was 

performed by the Java-based interface generated here. This analysis 

approach was utilized to validate predictions of the PKT205/G3 models and 
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results are described in Chapter 6. 

  

 

2.6  Computational methods 

2.6.1 Text mining approaches for literature search of p53 interactions 

With the purpose of establishing p53 network model based on literature survey, 

we used various text mining approaches and tools to perform the literature 

search for p53 pathway. Here we mainly used three different text mining tools 

for p53 interaction information retrieval in Chapter 3 and a trusted database in 

Chapter 4, and 5. For example, the first search engine one was MEDIE, which 

retrieved information from publications in PubMed. The second tool was to 

gather literature evidence by plugins provided for Cytoscape (Shannon et al, 

2003; Smoot et al, 2011). The third one was KEGG (Kyoto Encyclopedia of 

Genes and Genomes), which was utilized to check p53 pathway maps 

(Kanehisa & Goto, 2000; Kanehisa et al, 2012). These three text mining tools 

were utilized to construct the PKT38 and the PKT62 models and results are 

described in Chapter 3. The trusted database was STRING (Search Tool for 

the Retrieval of Interacting Genes/Proteins) database (Jensen et al, 2009; 

Szklarczyk et al, 2011). This database was utilized to construct the PKT1377 

and the PKT2275 model and results are described in Chapter 4. It was also 

utilized to construct the PKT205 models and results are described in Chapter 

5. 
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2.6.1.1 MEDIE 

MEDIE (Tsujii Laboratory, 2013) is a search engine which retrieves 

biochemical information from the data base MEDLINE (Medical Literature 

Analysis and Retrieval System Online)(U.S.National Library of Medicine, 

2013), where millions of biomedical journal citations and abstracts of 

publications are stored. MEDIE (http://www.nacterm.ac.uk/medie/) performs 

semantic search by identifying semantics of relevant words. We performed 

semantic search through the MEDIE engine to retrieve relevant information, 

for example, what was inhibited by MDM2 in Homo sapiens (Figure 2.1).  

There were three optional input areas provided by MEDIE to type in the key 

words: subject of a sentence, verb of the sentence and object of the sentence. 

Once the key word was typed in the target area, the search task was executed 

by clicking the “search” button. Then a summary result was displayed and the 

details were listed in the bottom of the screen. The text mining results were 

represented by three different types: sentences, articles, and tables. The 

results represented in the format of sentences listed sentences, in which 

words semantically correlated to the key word were filtered form abstracts in 

MEDLINE database. Moreover, those correlated words in sentences were 

highlighted by different colours. In the format of article, each result listed the 

title and an abstract of publications. The relevant gene names and other 

relevant verbs were highlighted with different colours. All the sentences and 

abstracts included in the results of MEDIE are from papers cited in 

PubMed(U.S.National Library of Medicine, 2013). PubMed 

(http://www.ncbi.nlm.gov/pmc/) was served by NCBI (National Center for 

Biotechnology Information) Entrez retrieval system. The Entrez system which 

is located at the U.S National Institutes of Health (NIH) is a text-based search 

http://www.nacterm.ac.uk/medie/
http://www.ncbi.nlm.gov/pmc/
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and retrieval system. It provides services to PubMed, Nucleotide and Protein 

Sequences, Protein Structures, Complete Genomes, Taxonomy, OMIM 

(Online Mendelian Inheritance in Man) and others. The results were also 

represented by format of tables which included four columns. The first 

columns listed the title of publications found by search engine by natural 

language process technologies. The second column listed the entities of the 

relevant subjects and the gene names indentified were marked by red colours. 

The third column showed the entities of the relevant verbs in a darker 

background, and the forth column listed the entities of the relevant objects. 

This database was accessed to construct the PKT38 model and the PKT62 

model, whose results are described in Chapter 3. 

 

The advantage of MEDIE is that the result displayed facilitated analysis of the 

relevant interaction information and publications in PubMed. The sorted order 

of the results could be adjusted by setting rank related or published date of 

journals.  
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Figure 2.1: An example of MEDIE search result  

The upper area in the web page has three optional input areas: subject, verb and object and 

the bottom area lists sentences from abstract retrieved, which contained the key word 

“MDM2_Human” and “inhibit”. The gene name and the verb word which was synonyms of the 

key word “inhibit” were highlighted with different colours. 

 

 

2.6.1.2  Cytoscape and AgilentLiteratureSearch Plugin 

Cytoscape (Shannon et al, 2003) is open source software for biologists to 

provide an overview of visual molecular interaction networks. Complex 

analysis and visualization can be processed using the Cytoscape platform 

(Shannon et al, 2003). The AgilentLiteratureSearch is a plugin developed for 

Cytoscape to establish network model, which includes target genes which we 



95 
 

were interested in, on the basis of literature search. For example, in order to 

establish the network model that contained p53, MDM2 and ATM for human 

cells. This plug in could be started by clicking “Agilent Literature Search” in the 

menu “Plugins” of Cytoscape to run the Agilent Literature Search 2.77. After 

the terms “p53”, “mdm2” and “ATM” were typed in the area of “Terms” (Figure 

2.2A), then this plugin performed a search for these three key words in 

PubMed and edited the query automatically. As a result, a network model with 

41 nodes and 84 edges was established (Figure 2.2A), and literature search 

results were listed in the bottom area of “Query Matches” in this plug in 

interface (Figure 2.2B). Through the evidence gathered by the 

AgilentLiteratureSearch plug in, it is more convenient to check literature 

evidence about each interaction included in the network. However, the 

disadvantage of the plug in is that it is not able to provide the most updated 

literature evidence for the interactions for the p53 network constructed by 

Cytoscape. In addition, sometimes, there is no evidence for particular 

interactions. As a result, this plug in is a candidate tool to help cross check the 

network constructed by Cytoscape in Chapter 3. This plugin was utilized to 

construct the PKT38 and PKT62 models and Cytoscape was utilized to 

represent their network maps, whose results are described in Chapter 3. 

Besides, Cytoscape was also utilized to represent the PKT205/G1, 

PKT205/G2 and PKT205/G3 models which are described in the Chapter 5. 
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B 

 

 

Figure 2.2:  An example of AgilentLiteratureSearch plug in for p53 

network 

Figure 2.2A shows an example of p53 network constructed by AgilentLiteratureSearch plug in. 

Figure 2.2B shows the interface of AgilentLiteratureSearch and a list of sentences which 

contains the associations between p53, MDM2 and ATM. 
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2.6.1.3  Literature searches from other databases 

The third text mining tool used to analyse p53 pathways was KEGG (Kanehisa 

& Goto, 2000; Kanehisa et al, 2012). KEGG is a bioinformatics resource for 

the biological research and we performed literature search through a unit of 

KEGG, KEGG PATHWAY(Kanehisa & Goto, 2000; Kanehisa et al, 2012), 

which provided pathway maps and pathway modules. Several network maps 

relevant to p53 were found by KEGG PATHWAY. The type of results were 

represented by pathway maps and the results contained the key words, “p53” 

and ”human”. This software was utilized for literature work to construct the 

PKT38 model and the PKT62 model, whose results were described in Chapter 

3. For example, one pathway map showed on the summary result page: 

hsa04115, which was a map of p53 signalling pathway for Homo sapiens 

(Figure 2.3). 23 pathways about p53 were identified using KEGG, and the 

interactions were mainly from map04115 (p53 signalling pathway) and 

map04110 (cell cycle).  

 

The advantage of KEGG was that these results about p53 pathways from 

databases provided a more global view to investigate p53 networks and 

contributed to improvement of the construction of the p53 network. However, 

the drawback of KEGG was that some literature evidence to support these 

data was out of date and not precise for interaction nature. Moreover, KEGG 

was not updated frequently.   
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Figure 2.3: A screenshot of KEGG about p53 network maps in human 

cells   

Figure 2.3 shows a p53 signalling pathway map for human provided by KEGG. 

 

2.6.1.4  STRING database 

The trusted database we utilized in Chapter 4 and 5 was the STRING 

database (Szklarczyk et al, 2011). STRING is a protein-protein interaction 

database which encompasses protein interactions from four sources: genomic 

context, high throughput experiments, conserved co-expression and previous 

knowledge by natural language processing (Szklarczyk et al, 2011). The 

protein-protein interaction results were web accessible by being visualized as 

network map with the requirement of users. For example, the results displayed 

should not exceed 10 interactors. The interface of STRING was user friendly 

and allowed adjustment of the type of interactions of interest. For example, we 

could select the interaction map for which certain a confidence score is 

assigned by STRING and also the nature of the interaction (activation or 

inhibition) is provided by STRING and included in the network map. STRING 
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established a confidence score schema to evaluate the confidence level of 

protein-protein interactions using four sources mentioned above (genomic 

context, high throughput experiments, conserved co-expression and previous 

knowledge by natural language processing). Data was updated frequently to 

replace out of date interactions with the new ones.  Although, the drawback 

of STRING was the limitation of results displayed in the web page graphically 

(the network should include no more than 50 interactors), STRING provided 

protein action file which contained all protein-protein interaction records, to 

download. As a result, STRING was selected as the main source of data for 

model construction. The confidence score is a value between 0 and 1; a 

confidence score of more than 0.7 (the probability that the interaction was true 

was more than 70%), is regarded as a high confidence level. Using these 

criteria, we extracted all high confidence (human) protein interactions using a 

custom designed Java interface (described below). All interaction records 

were subsequently manually curated by surveying associated literature 

references and searching for additional evidence wherever necessary. For 

example, there were 677 interactions in the PKT205/G3 model (details were 

described in Chapter 5): (1) all direct interactions with p53 (225 interactions), 

(2) all interactions between genes/proteins that interact with p53. These 

interaction records were listed in a text file, which was further processed into a 

node transcript and a reaction transcript readable by CellNetAnalyzer. The 

node transcript includes gene names and the reaction transcript includes 

interaction types (activation or inhibition) and the names of the two genes 

participating in the interaction. This database was utilized to extract interaction 

information automatically to construct series of models, such as the 

PKT1377model and the PKT2275 model, whose results were described in 

Chapter 4, the PKT205/G1 model, the PKT205/G2 model and the PKT205/G3 

model which were described in the Chapter 5. 
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2.6.2  Java programme interfaces to automatically import STRING 

records into the CellNetAnalyzer 

During the course of this study, several Java based interfaces were 

constructed serving different purposes: the first one was used to extract 

interaction information from data in STRING database and convert them into 

input files for CellNetAnalyzer to calculate the dependency matrix; the second 

one was generated to compare two different dependency matrixes for in silico 

knock-out tests; the third interface was created to compare the simulation 

prediction with the microarray experimental data. 

 

The protein action file from the STRING database was downloaded and then 

all interaction records were filtered by a Java based programme interface (as 

described below) to retrieve interactions involving p53 (Figure 2.4) (Tian et al, 

2013). Since all interaction records were represented in a fixed form (Table 

2.3), we designed a Java based programme interface to retrieve these 

interactions (Additional File 2). The mechanism of interaction retrieval was 

illustrated in previous section. Once the interaction data were downloaded 

from STRING database, the interaction records for Homo sapiens interactants 

were filtered by selecting the appropriate organism identifier using a Java 

programme interface.  
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Table 2.3: An example of the protein-protein interaction record 

downloaded from the STRING database  

Column 1 shows the id of species A in STRING. Column 2 shows the id of species B in 

STRING. Column 3 defines the type of the mode, the values of mode included binding, 

expression, activation, reaction. Column 4 defines the type of actions; the values included 

activation and inhibition. Column 5 defines the direction of the interaction. If the value is “1”, it 

means the interaction is from species A to species B. Column 6 defines the confidence score. 

Column 7 defines the text mining source where the STRING extracted the information. 

Column 8 defines the other resource transferred. 

 

The filtered interactions were then further classified for the interaction type. All 

interaction records whose mode type was “ptmod” (posttranslational 

modification) or whose action type was “activation”, or “inhibition” were 

selected. The remaining interactions were imported into the interaction 

direction identifier unit to remove duplicate records. Since an activation or 

inhibition involves two interaction partners and can be represented in either 

direction, these duplicate records were eliminated by checking the interaction 

direction. These original interaction records were further filtered using the 

confidence scheme defined in STRING. They were classified into different 

confidence score categories through the score classifier unit. Those 

interaction results enabled us to create p53 networks with different confidence 

levels. Using the confidence score scheme defined by the STRING database, 

we created two different types of models: the first model included all 

interaction records with a confidence score higher than 0.700 (such as the 

PKT1377 model, the PKT205/G1 model, the PKT205/G2 model, and the 

PKT205/G3 model) and the second model included all interactions with a 

confidence score between 0 and 1(for example, the PKT2275 model). This 

confidence score was defined by the developer of STRING database and 
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showed a probability of the interaction prediction found in trusted evidence 

from literature or experiment data (Jensen et al, 2009; Szklarczyk et al, 2011). 

  

This interface application was utilized to extract interaction information 

automatically to construct series of models, such as the PKT1377model and 

the PKT2275 model, whose results were described in Chapter 4, the 

PKT205/G1 model, the PKT205/G2 model and the PKT205/G3 model which 

were described in the Chapter 5. 
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Figure 2.4: Process diagram of interaction information retrieval 

It shows the process to extract interaction information automatically from STRING database 

by the interface. Interactions were filtered by certain criteria and finally listed in a text table 

which could be imported into CellNetAnalyzer. 
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2.6.3  Functional analysis by CellNetAnalyzer  

CellNetAnalyzer is a powerful analysis tool for signal flow models, which 

accepts two types of interactions: activation and inhibition (Klamt et al, 2007). 

We used two techniques provided by CellNetAnalyzer (v. 9.8) to analyze our 

model. The first technique is the calculation of the dependency matrix, which 

represents the effects between pairs of nodes in the model. CellNetAnalyzer 

calculates positive and negative paths between two nodes i and j and 

identifies six types of effects in the dependency matrix: no effect, ambivalent 

factor, weak inhibitor, weak activator, strong inhibitor, strong activator defined 

below: 

 

If there is neither a positive nor negative path from node i to node j, node i 

has no effect on node j; 

 

If there is both a positive and negative path from node i to node j, node i is 

an ambivalent factor of node j; 

 

If there are only negative paths from node i to node j and negative 

feedback loops are present in these negative paths, node i is a weak inhibitor 

of node j; 

 

If there are only positive paths from node i to node j and negative 

feedback loops are present in these positive paths, node i is a weak activator 

of node j; 

 

If there are only negative paths from node i to node j and negative 

feedback loops are absent in these negative paths, node i is a strong inhibitor 

of node j; 



107 
 

 

If there are only positive paths from node i to node j and negative 

feedback loops are absent in these positive paths, node i is a strong activator 

of node j.  

 

The second approach used was logical steady state analysis. In logical steady 

state analysis, each scenario is set where input signals are initiated by 

different values (“0” means inactivated, “1” means activated and “NaN” means 

undetermined). Then CellNetAnalyzer calculates the state of each node and 

each interaction in the network model by logical operation and produces a list 

of node states and interaction states in the whole model (Klamt et al, 2006). 
  



108 
 

 

2.6.4  Java programme interfaces to automatically compare 

dependency matrixes obtained by knock-out tests 

After the transcript files for nodes and reactions were imported into the empty 

signalling flow network project constructed by CellNetAnalyzer, the p53 

Boolean network model was established. Then we performed in silico 

knock-out tests by deleting individual nodes (such as the p53 node) and new 

dependency matrix was compared with the one in the p53 wild type 

model(Tian et al, 2013). Those two dependency matrixes were compared by 

the second Java based interface (Additional File 2). This interface compared 

the remaining effect cells in the dependency matrix of the knock-out test with 

the default dependency matrix in the p53 wild type model. The changed effect 

cells were classified into different categories: for example, category 1 is for all 

of effect cells in the dependency matrix of p53 wild type model changed to no 

effect elements in the dependency matrix of the knock-out test model. In this 

way, effect cell changes were classified into 6 different categories (no effect, 

ambivalent factor, weak inhibitor, weak activator, strong inhibitor, and strong 

activator). This interface was utilized to estimate predictions produced by 

knock-out tests for the following models: the PKT38 model in the Chapter 3, 

the PKT205/G1 model, the PKT205/G2 model and the PKT205/G3 model 

mentioned in Chapter 5 and validate predictions of the PKT205/G3 model, 

which were described in the Chapter 6. 
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Figure 2.5: Process diagram of dependency matrix comparison 

Figure2.5 shows an example of the process to compare dependency matrixes in the in silico 

p53 knock-out test. The dependency matrix of the knock-out tests was analyzed by the 

approach that each effect cells between two genes in the matrix were compared with the one 

in the dependency matrix of p53 wild type. Those two elements should correspond to the 

same gene pairs (the row for a gene and the column for a gene should be same). 
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2.6.5  Microarray processing and analysis 

The samples for microarray analysis were extracted from U2OS and SAOS2 

cells and treated with 10 µM etoposide for 16 hours. The microarray 

experimental results were obtained from the Core Facility and exported to 

excel files. Then analysis was performed by the software Genesis (Sturn et al, 

2002) and the Database for Annotation, Visualization and Integrated 

Discovery (DAVID) (Huang et al, 2009). The heat map of microarray data was 

created by use of Genesis software, which allows hierarchal clustering and 

other functional analysis (Sturn et al, 2002), and cluster analysis was obtained 

according to this heat map. Functional annotation analysis for microarray 

experimental results was performed using DAVID (Huang et al, 2009), 

meanwhile, the validation of model predictions by microarray experiment result 

were performed by the Java-based interface. 

 

DAVID is a web accessible database for functional annotation analysis and 

facilitates understanding of biological meaning behind large gene lists (Huang 

et al, 2009). Functional annotation analysis for the gene lists obtained from 

genome microarray experimental data was performed to explore biological 

meaning behind these gene lists. Since DAVID is able to indentify enriched 

Gene Ontology terms, find enriched functional-related gene groups and 

cluster redundant annotation terms, it was used for functional annotation 

analysis for the gene lists from microarray data. The functional annotation 

tools provided gene-annotation enrichment analysis and functional annotation 

clustering analysis on the uploaded gene list. The detailed functional 

enrichment analysis of results relevant to Gene Ontology (GO) terms was 

investigated by selecting the annotation categories relevant to GO terms. For 

example, the GO terms relevant to apoptosis. We sorted all selected 

annotation report results by the Benjamini-Hochberg False Discovery Rate 



111 
 

(FDR) from smallest to largest. Then we exported and saved the annotation 

result by predefined criteria, for example, all annotation charts with GO terms 

should have the Benjamini-Hochberg FDR less than 41.0 10−×  (1.0E-4). The 

population of genes found relevant to the GO terms, the percentage of them 

out of the total genes and their modified Fisher Exact P-Value were also 

exported and saved. DAVID used Fisher Exact P Value to measure 

significance of association with the selected GO terms. This software was 

utilized to estimate predictions produced by the PKT205/G3 model which were 

mentioned in Chapter 5 and validate predictions of the PKT205/G3 model. Its 

validation results were described in the Chapter 6. 

 

 

2.6.6  Model evaluation from microarray data  

Here we compared our predictions obtained by in silico deletion of p53 to in 

vitro generated microarray data from p53 positive (for example, U2OS and 

HCT116 p53+/+) and p53 negative (for example, SAOS2 and HCT116 p53-/-) 

cell lines treated by the DNA damaging compound etoposide. Logical steady 

state analysis produces a steady state in each scenario, and changes of gene 

states can be compared between model predictions and experimental data 

(Christensen et al, 2009). For a node i , the predicted state of i  in the p53 

wild-type was defined as ( )wtS i , which could take values of 0, 1 or NaN. In the 

p53 mutant, the state of node i  was defined as ( )muS i , which could take the 

same values (Tian et al, 2013). The value of modE was defined to represent the 

predicted change of gene state from p53 wild-type to mutant in all 9 types of 

possible situations as indicated below: 
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mod 0E = , if ( ) 1wtS i =  and ( ) 1muS i = ; 

mod 0E = , if ( ) 0wtS i =  and ( ) 0muS i = ; 

mod 0E = , if ( )wtS i NaN= and ( )muS i NaN= ; 

mod 1E = , if ( ) 0wtS i =  and ( ) 1muS i = ; 

mod 1E = , if ( ) 0wtS i =  and ( )muS i NaN= ; 

mod 1E = , if ( )wtS i NaN=  and ( ) 1muS i = ; 

mod 1E = − , if ( ) 1wtS i =  and ( ) 0muS i = ; 

mod 1E = − , if ( ) 1wtS i =  and ( )muS i NaN= ; 

mod 1E = − , if ( )wtS i NaN= and ( ) 0muS i = . 

 

Another parameter expE  was defined to represent the change trend of 

expression levels from experimental validation(Tian et al, 2013). Those 

validations were from experimental results of literature survey or microarray 

analysis result. For experimental results from literature survey:  

If the expression level of gene i  was considered as up-regulated, 

exp 1E = ;  

If the expression level of gene i  was considered as down-regulated, 

exp 1E = − ; 

If the expression level of gene i  was considered as unchanged, exp 0E = . 

 

For the microarray data, the gene fold change ( )FC i  was determined by the 

following equation: 

1( )
( )

2( )
M i

FC i
M i

=  
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Where 1( )M i is the median of expression values in the target scenario and 

2( )M i is the median of expression values in the source scenario.  

 

In order to normalize the distributions of expression profiles for different types 

of cells, the 10log value of all fold changes ( )FC i  were calculated and two 

thresholds ( maxθ and minθ ) were chosen to determine whether each gene was 

considered up-regulated, down-regulated or unchanged (Schwartz et al, 2007). 

The thresholds were determined using the mean value ( X ) and the standard 

deviation (σ ) of the distribution of 10 (FC(i))log  as follows: 

max Xθ σ= + ; 

min Xθ σ= −  

Next, we determined whether the gene was considered up-regulated, 

down-regulated or unchanged as follows: 

 

If max10
(FC(i))log θ> , gene i  was considered as up-regulated, exp 1E = ;  

If 
10 min(FC(i))log θ< , gene i  was considered as down-regulated, exp 1E = − ; 

If 
10min max(FC(i))log θθ << , gene i  was considered as unchanged, exp 0E = . 

 

The difference between modE  and expE  was evaluated by the expression 

mod expE E−  (Tian et al, 2013). This difference can take three possible values: 0, 

1 or 2. Here, a value of 0 meant that the simulation prediction matched the 

experimental result; 1 meant that there was a small error between the 

simulation prediction and the experimental result; 2 meant that there was a 

large error between the simulation prediction and the experimental result, the 
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model predicting an opposite direction of change than experimental results. 

This approach was utilized to validate logical steady state analysis predictions 

produced by the PKT205/G3 model which were mentioned in Chapter 5. The 

validation results were described in the Chapter 6. 

 

 

2.6.7  Java programme interface to automatically validate the model 

prediction using microarray data as a source 

The third interface was established with the purpose of model validations 

(Additional File 2). By this interface, the logical steady state analysis 

simulation result was translated into different lists with gene name and their 

states. For example, the state of ATM in the p53 wild type cells was activated, 

which was represented as ON, when the input signal, DNA damage was 

predefined as “ON” (activated). Then two lists for different conditions were 

compared and the change trend was classified into three values: “1” (which 

represented up-regulation),”0” (which represented no change), and “-1” (which 

represented down-regulation). For example, the comparison of logical steady 

state simulation from the p53 wild type model with DNA damage ON with the 

logical steady state simulation of p53 minus model with DNA damage ON, the 

state of ATM remained “ON” and the change trend value was “0”(unchanged). 

Then the Java based interface compared the change trend of model 

simulation with the change trend value of microarray experimental data, and 

performed the statistical calculation of the percentage distribution of correct 

prediction, small errors and large errors. This interface was utilized to validate 

predictions produced by logical steady state analysis for the PKT205/G3 

model, which was mentioned in Chapter 5 and validation results were 

described in the Chapter 6. 
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2.6.8  High performance computation 

The structure of the model was so complex that the simulation computation 

time consumed increased exponentially with the increase of the model size. 

During the computation process of the PKT1377 model, it was observed that 

the local desk-top computer could not afford the computation task of the 

dependency matrix and the computer indicated the state of busy and stopped 

responding. As a result, the high performance computation tools were used to 

solve this problem (Smolinski, 2010).  

 

After the local computer was already connected to the server agent, 

CellNetAnalyzer API (application programming interface) commands were run 

in local computer to calculate the dependency matrix. The dependency matrix 

result was exported into a text file which was downloaded to local computer by 

the SSH Tectia software, and the time consumed by different algorithms was 

recorded for further comparison. Results of high performance computation 

were described in Chapter 4. 
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Chapter 3  Generation of p53 interactome using manual 

literature survey 

3.1  Introduction  

Since mutations of p53 are found in more than 50% of malignant tumours 

(Tang et al, 2007), there is an increasing interest to study p53 function and the 

dynamic mechanisms of the way it controls pathways to cancers and response 

to chemotherapy. The regulatory network of p53 is regarded as a 

transcriptional regulatory system and in order to increase our understanding of 

p53 in the development of cancer, systems biology approaches were adopted. 

We aimed to get an insight into p53 pathways involved in cancer development 

and treatment using a Boolean network models. In those Boolean networks, 

the signalling pathway was simplified and nodes in the network were 

representing genes or proteins which interact with p53. Those nodes were 

connected by Boolean functions to represent the nature of their relationships. 

This approach is expected to further our understanding of the mechanisms for 

the p53 pathways and make predictions for their functions. In this chapter, two 

p53 models constructed by manual literature survey and the results of their 

functional analysis are described. The first section is about the construction of 

the PKT38 model (PKT is short for p53 network model constructed by Kun 

Tian and the number indicates the number of protein or gene nodes included 

in the model) and its simulation results. The second section is about the 

PKT62 model and its simulation results. Only interaction graphs were utilized 

to represent the p53 regulatory network in my project because of the lack of 

quantitative experimental evidence about relationships involving more than 

two species in the p53 network. 
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As described in the Method chapter, different approaches were utilized to 

construct these two initial models of p53. Using text mining tools mentioned in 

previous chapter, the p53 interactome information was retrieved manually from 

more than 500 papers published in PubMed (Additional Table 1 and Additional 

Table 3), where there are more than 21 million biomedical literature citations 

included in PubMed. All those literature citations were from the database 

MEDLINE and the population of citations were constantly increasing. The 

PKT38 model was constructed to demonstrate feasibility of model generation 

and provide preliminary data of its usefulness and predictive power. The model 

was generated based on interactions of p53 which are documented in five or 

more than five published papers in PubMed where the number five was set 

arbitrarily (Additional Table 1). On the other side, the PKT62 model includes 

p53 interactions that have been demonstrated in at least one paper published 

in PubMed (Additional Table 3). This criterion to define an established 

interaction was set as an arbitrary value in order to construct a simple initial 

model and demonstrate feasibility of modelling techniques applied to p53 

network, given the fact that analysis of all 64,000 publications (accessed on 

Dec 6th, 2012) was not possible in a manual way. The PKT38 model also 

included interactions found from other database resources, such as MEDIE 

search engine and KEGG pathway introduced in the method chapter.  

 

3.2  The PKT38 model 

In this section, the construction process of the PKT38 model was described 

and the structure of this model was illustrated. The PKT38 model was 

established by CellNetAnalyzer for functional analysis and the network map 

was represented by Cytoscape.  There are 38 nodes and 62 edges included 

in the PKT38 model (Figure.3.1; Additional Table 1). All interactions were 

represented by the interaction matrix (Figure 3.2A).The interaction matrix 
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represented the role of each node in the interaction. One column displayed an 

interaction in the network model and one row showed one node in the network. 

If the node did not participate in the interaction, it was marked by black colour. 

Otherwise, they were marked by three different colours to represent their role. 

The first example in the Figure 3.2A represented the inhibition of apoptosis by 

TIGAR. The source node of this inhibition, TIGAR was marked by red colour, 

and the target node of the inhibition, apoptosis was marked by blue colour. 

The second example of the interaction matrix in the Figure 3.2A represents the 

activation of p21 (CDKN1A) by p53. The source node of this activation, p53 

was represented by green colour, and the target node, p21 was marked by 

blue colour. These four elements were marked by red circles (Figure 3.2A) 

 

According to the function of nodes in the PKT38 model, they were divided into 

five layers: the input signals, the upstream of p53, p53 and MDM2, the 

downstream of p53 and the outputs. There are three input nodes linked to 

genes or proteins in this model to represent the stress signals onto the model: 

UV, IR and oncogenes and four output nodes: Apoptosis, Angiogenesis, DNA 

repair and Cell Cycle Arrest lined as the cellular response to stress. 
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Figure 3.1: The PKT38 model network map  

The input nodes of PKT38 were represented by green colours, the medium nodes of the 

model were represented by yellow colour, and the output nodes were marked as blue 

colour. Because of the central role of MDM2 and p53 in numerous feedback loops, it was 

marked by red colour. PKT38 model has two different interactions: activations which are 

represented by blue arrows, and inhibitions, which are represented by red arrows. 
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Figure 3.2: Analysis result of the PKT38 model by CellNetAnalyzer 

In Figure 3.2 A, each row in the interaction matrix represents a node in the p53 network and 

each column represents an interaction edge in the p53 network and marked by a number. The 

green colour elements in the interaction matrix represent the activation input, while the red 

colour elements represent an inhibition input for the interaction displayed in the column; the 

blue colour elements in the interaction matrix represent the output of the interaction, and 

black colour indicates that the node does not participate in this interaction. In Figure 3.2 B, 

each row and each column represent a node in the p53 network. Each row of the dependency 

matrix shows how the corresponding species influences the other nodes and each column 

shows how the corresponding species is influenced by the others.  The colour of the 

dependency matrix element eAB indicates one of the 6 possible types of dependency: 1) the 

black means A has no influence on B; 2) yellow means A has activating and inhibiting effect 

on B; 3) pink means A is a weak inhibitor of B; 4) turquoise green means that A is a weak 

activator of B; 5) red means A  is a strong inhibitor of B; 6) dark green means A is a strong 

activator of B.  

 

 
3.3  Analysis of dependencies in the PKT38 model 

As described above, the PKT38 model was divided into five layers according 

to the function of the nodes. In this section, we performed the analysis of 

dependencies in the PKT38 model. We investigated the dependencies 

relationship between nodes in the PKT38 model at first. Then two types of in 

silico knock-out tests were performed. The dependency relationship between 

nodes was explored by the dependency matrix of the model, which was 

calculated by CellNetAnalyzer. Certain nodes or interactions were selected to 

be depleted from PKT38 model so as to obtain an insight into their role in the 

whole p53 network. 

 

According to the in silico simulations, dependency matrix for the PKT38 model 
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in Figure 3.2B was calculated, the relationship between input nodes and 

output nodes was obtained and described below. Six different types of effect 

elements in the dependency matrix were observed, for example, IR was strong 

activator of ATM. The effect cell from IR onto ATR was marked by dark green 

colour in the row of IR and the column of ATM. 

 

In order to investigate the dependencies between the input signals from 

environment and the outputs from the network onto the environment, the effect 

cells in the dependency matrix of the PKT38 model were investigated. The 

global dependency relationship between the input nodes and the output nodes 

in the PKT38 model were explained and classified into four groups depending 

on the type of target nodes: 

   

The first group is that oncogenes is an ambivalent factor for Cell Cycle Arrest, 

UV is a weak activator of Cell Cycle Arrest, and IR is a weak activator of Cell 

Cycle Arrest; 

 

The second group is that oncogenes is an ambivalent factor for DNA repair, 

UV is a weak activator of DNA repair, and IR is a weak activator of DNA repair; 

 

The third group is that oncogene is an ambivalent factor for Apoptosis, UV is 

an ambivalent factor for Apoptosis, and IR is an ambivalent factor for 

Apoptosis; 

 

The fourth group is that oncogene is an ambivalent factor for Angiogenesis, 

UV is a weak inhibitor of Angiogenesis, and IR is a weak inhibitor of 

Angiogenesis.  
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Those four groups of dependency relationships were obtained from the 

dependency matrix of the PKT38 model. It indicated that different stimuli exert 

different effects on the outcome of biological processes in the p53 network. 

With the purpose of exploring the internal relationship between genes or 

proteins in the PKT38 model, we performed in silico knock-out tests of 

selected genes or interactions. We performed two types of in silico knock-out 

tests. The first one was to remove selected node from the PKT38 model, 

calculate the new dependency matrix and compare it with the default 

dependency matrix shown in Figure 3.2B. The second one was to remove 

selected interactions and compare the new dependency matrix with the default 

one for the p53 wild type. The comparison results were described in the 

section 3.3.2.  

 

3.3.1  in silico knock-out tests for selected node depletion  

In the previous section, the internal relationship between input nodes and 

output nodes in the PKT38 model were explored. Here the focus is on role of 

other nodes in the PKT38 model. Since there were three layers in the medium 

nodes of the PKT38 model: the upstream of p53, p53 and MDM2 and the 

downstream of p53, certain nodes were selected from those three different 

layers to investigate their role in the whole model. As shown below (Table 3.2), 

selected nodes were removed from the PKT38 model and new dependency 

matrix was calculated for these new modified models. The result of the six 

different effect element populations was listed in Table 3.2. 
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Node 

removed 

from the 

PKT38 

model 

Total 

dependency 

effect 

elements 

No 

Effect 

Ambivalent 

Factor 

Weak 

Inhibitor 

Weak 

Activator 

Strong 

Inhibitor 

Strong 

Activator 

Null 1444 926 150 101 242 3 22 

P53 1369 1327 0 7 5 5 25 

MDM2 1369 1017 13 85 226 4 24 

ATM 1369 883 149 96 219 3 19 

BAX 1369 869 145 99 232 3 21 

P38MAPK 1369 924 142 64 214 3 22 

TIGAR 1369 869 133 101 242 2 22 

 

Table 3.2: Effect numbers of dependency matrix for the in silico 

knock-out tests of the PKT38 model  

Column 1 lists the selected gene for depletion; column 2 displays the total population of effect 

elements in the dependency matrix; column 3 shows the population of no effect elements in 

the dependency matrix; column 4 displays the total population of ambivalent factor elements 

in the dependency matrix; column 5 displays the population of weak inhibitor elements in the 

dependency matrix; column 6 shows the population of weak activator elements in the 

dependency matrix; column 7 displays the population of strong inhibitor  elements in the 

dependency matrix and column 8 shows the population of strong activator elements in the 

dependency matrix. The value “null” in the column 1 represent the unmodified PKT38 model. 

The value “Null” in the selected gene column represents the wild-type. 
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The population of effect elements in the p53-null model was compared to the 

p53 wild type PKT38 model and it was found that there was no ambivalent 

factors in the dependency matrix of p53-null model, and the majority of effect 

elements turned to no effect because p53 was connected with the majority of 

nodes in the model and most of pathways were through p53 node. These 

finding indicates the central role of p53 on the whole network since all pathway 

from input signal to output effect of the model must contain p53. MDM2 was 

the second most connected node in the PKT38 model and its depletion 

caused fewer changes than the depletion of p53. ATM and p38MAPK 

functioned  upstream of the p53 (Roos & Kaina, 2013), while BAX and TIGAR 

functioned  downstream of the p53 (Chiu et al, 2003). However, those four 

nodes had less connectivity than MDM2 and the change of effect elements 

was less than the removal of MDM2. This phenomenon indicated that the 

node at the boundary of the network model had less effect on the whole 

network than those nodes which were located in the centre of the network. 

The position of the node determined the effect it caused onto internal 

dependency relationships inside the whole network 

 

3.3.2  The in silico knock-out test for selected edges 

In the next series of experiments the in silico knock-out tests for individual 

interaction depletion in the PKT38 model were performed. There were three 

main negative feedback cycles in the PKT38 model: p38-Wip-1-p53, 

p53-MDM2, and p14ARF-MDM4-p53-p21-CDK2-MDM2. Two types of 

interactions were classified in the PKT38 model according to the relationship 

with the negative feedback loop: the interaction involved in the negative 

feedback loops or the interaction not involved in the negative feedback loops. 

We aimed to perform two different types of knock-out test for selected edges 
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with this interaction classification. The first one is to investigate the effect of 

removal of interactions that are not involved in feedback loops, for example, 

the interaction that ATM activates p53 (Fig 3.3B) (Prives & Hall 1999).  

 
Figure name Edge removed Is this edge 

involved in 
negative 
feedback 
loops? 

The negative feedback loop 
involved 

Figure 3.3A Null No  

Figure 3.3B ATM activates p53; No  

Figure 3.4 P38MAPK activates p53; 

P53 activates Wip-1; 

Wip-1 inhibits P38MAPK; 

Yes P38MAPK-p53-Wip-1 

Figure 3.5 p53 activates MDM2; 

MDM2 inhibits p53; 

Yes p53-MDM2 

Figure 3.6 MDM4 inhibits p53; 

P53 activates MDM2; 

MDM2 inhibits p53; 

p53 inhibits p14ARF; 

MDM4 activates MDM2; 

MDM2 inhibits MDM4; 

CDK2 inhibits MDM2; 

P21 inhibits CDK2; 

P14ARF inhibits MDM2; 

Yes P14ARF-MDM4-p53-p21-CDK2-MDM2 

Figure 3.7 P38MAPK activates p53; 

P53 activates Wip-1; 

Wip-1 inhibits P38MAPK; 

MDM4 inhibits p53; 

P53 activates MDM2; 

MDM2 inhibits p53; 

p53 inhibits p14ARF; 

MDM4 activates MDM2; 

MDM2 inhibits MDM4; 

CDK2 inhibits MDM2; 

P21 inhibits CDK2; 

P14ARF inhibits MDM2; 

Yes P38MAPK-p53-Wip-1; 

P14ARF-MDM4-p53-p21-CDK2-MDM2 

 



127 
 

Table 3.3: Knock-out tests for selected edges. 

Table 3.3 lists 5 knock-out tests for selected edges. Column 1 lists the figure name 

corresponding to the knock-out test. Column 2 shows interactions removed from the PKT38 

network. Column 3 shows the relationship between removed interactions and negative 

feedback loops. Column 4 shows negative feedback loops which contain removed 

interactions. 

 

Those interactions, which were not involved in negative feedback cycles, were 

mostly connected with nodes whose connectivity degree was low, for example 

DNA damage activates ATM, ATM activates p53, p53 activates BAX and BAX 

activates apoptosis. Figure 3.3B was compared with Figure 3.3A either 

visually or by Java programme interfaces. There was no change in the effect 

elements because the row of ATM and the column of p53 were removed from 

the default dependency matrix (Figure 3.3A) and the other dependency 

relationships remained in Figure 3.3B for other genes were not affected by this 

depletion. As a result, these interactions not involved in feedback loops may 

not be the most important edges in the p53 network.  
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Then the second in silico knock-out tests were focused on interactions 

involved in these three negative feedback cycles mentioned above. In order to 

explore the role of negative feedback loops play in the p53 pathway, knock-out 

tests for these three feedback loops individually were performed at first, and 

then we removed all those three negative feedback cycles. 

 

In the first knock-out test for negative feedback loop depletion, we removed 

the negative feedback loops, p38MAPK1-p53-Wip-1 from the PKT38 model. 

Table 3.4 lists all the interactions removed in order to knock out the negative 

feedback loop of p38MAPK-p53-Wip-1 and the major changes in effect cells 

were listed in Table 3.4 below. One major change was found that the effect cell 

from UV onto p38 MAPK changed from ambivalent factor in the p53 wild type 

to strong activator in the modified model when the negative feedback loop of 

p38MAPK-p53-Wip-1 was removed. The distribution of the effect changes was 

shown in Fig 3.4C. 

 

Source node 

of deleted 

interaction 

Target node of 

deleted 

interaction 

Deleted 

interaction 

type 

P38MAPK P53 +1 

P53 Wip-1 +1 

Wip-1 P38MAPK -1 

 

Table 3.4:  Edges removed from the PKT38 model for the model in Fig 

3.4A 

Table 3.4 lists three interactions removed from the PKT38 model so as to remove the negative 

feedback loop of p38MAPK-p53-Wip-1. Column 1 shows the name of the source node of the 

deleted interaction; column 2 shows the name of the target node of the deleted interaction and 
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column 3 list the interaction type. 

 
 

Source 

node 

Target node Effect cell in 

the p53 wild 

type of the 

PKT38 model 

Effect cell in the in 

silico knock-out test 

when the negative 

feedback loop of 

p38MAPK-p53-Wip-1 

was removed 

UV p38MAPK Ambivalent 

Factor 

Strong activator 

 

Table 3.5:  Effect elements changed from graphic view in Figure 3.4B 

when the p38-p53-WIP-1 negative feedback loop was removed.  

This table lists the change of effect element observed for the in silico knock out test described 

in Figure 3.4B. Column 1 shows the name of the source node of the deleted interaction; 

column 2 shows the name of the target node of the deleted interaction; column 3 shows the 

effect cell in the p53 wild type of the PKT38 model and column 4 list the effect cell in the in 

silico knock-out test when the negative feedback loop of p38MAPK-p53-Wip-1 was removed. 
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Figure 3.3: in silico knock-out of nodes not involved in negative 

feedback loops 

Figure 3.3A shows the dependency matrix corresponding to the unmodified PKT38 model and 

Figure 3.3B shows the dependency matrix corresponding to the PKT38 model when the 

interaction that ATM activates p53 was removed. There were no major changes found in 

Figure3.3B. 



131 
 

 

 



132 
 

 

Figure 3.4: Knock-out tests for the p38MAPK-p53-Wip-1 negative 

feedback cycles 

Figure 3.4A shows a network map showed the PKT38 model without the negative feedback 

loop of p38MAPK-p53-Wip-1. Figure 3.4B shows the dependency matrix corresponding to the 

modified PKT38 model when the negative feedback loop of p38MAPK-p53-Wip-1was deleted 

from the PKT38 model and the major change was marked by a red circle. Figure 3.4C shows 

the distribution of effect changes between the default dependency matrix and the new 

dependency matrix when the negative feedback loop p38MAPK-p53-Wip-1 was removed from 

the PKT38 model. The gray circle represents no effect elements, the yellow circle represents 

ambivalent factors, the turquoise green circle represents weak activators, the pink circle 

represent weak inhibitors, the red circle represents strong inhibitors, and the dark green circle 

represents strong activators; the direction of the arrow represents the direction of changes in 

the knock-out. 
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In the second type of knock-out test with individual negative feedback loop 

depletion, the edge between p53 and MDM2 was removed from the PKT38 

model so that there was no negative feedback loops between MDM2 and p53. 

Table 3.6 lists all the interactions removed in order to knock out the negative 

feedback loop of p53-MDM2. 

 

Source node 

of deleted 

interaction 

Target node 

of deleted 

interaction 

Deleted 

interaction 

type 

MDM2 P53 -1 

P53 MDM2 +1 

 

Table 3.6:  Edges removed from the PKT38 model for the model in 

Figure 3.5A 

Table 3.6 lists two interactions removed from the PKT38 model so as to remove the negative 

feedback loop of p53-MDM2.  

 

By comparing the dependency matrix for the modified model (Fig 3.5B) with 

the unmodified model Fig 3.3A), it was found that only 108 ambivalent factors 

changed to weak inhibitor or weak activator (Fig3.3C), and  none of the effect 

cells changed to no effect cells (Fig 3.5C). As a result, we found that the 

negative feedback loop between p53 and MDM2 kept a large amount of 

dependency relationships between nodes at a stable state, which was 

represented by ambivalent factors in the dependency matrix. 
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Figure 3.5: Knock-out tests for the p53-MDM2 negative feedback cycles 

Figure 3.5A shows the PKT38 model without the negative feedback loop of p53-MDM2. Figure 

3.5B shows a dependency matrix for the modified PKT38 model to investigate the role of the 

p53-MDM2 negative feedback loop. Figure 3.5C shows the distribution of effect changes 

between the default dependency matrix and the new dependency matrix when the negative 

feedback loop p53-MDM2 was removed from the PKT38 model. 

 

Then we removed seven edges to determine the role of extended p14ARF- 

MDM4-p53-p21-CDK2-MDM2 negative feedback loop in p53 function. Table 

3.7 below listed all the interactions removed in order to knock out the negative 

feedback loop of p14ARF- MDM4-p53-p21-CDK2-MDM2. 
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Source node 

of deleted 

interaction 

Target node 

of deleted 

interaction 

Deleted 

interaction 

type 

P53 MDM2 +1 

MDM2 P53 -1 

P53 P14ARF -1 

MDM4 MDM2 +1 

MDM2 MDM4 -1 

CDK2 MDM2 -1 

P21 CDK2 -1 

P14ARF MDM2 -1 

MDM4 P53 -1 

 

Table 3.7:  Edges removed from the PKT38 model for the model in Fig 

3.6A 

Table 3.7 lists eight interactions removed from the PKT38 model so as to remove the 

negative feedback loop of p14ARF- MDM4-p53-p21-CDK2-MDM2.  

   

As there were more interactions involved in this negative feedback loop than 

the previous two negative feedback loops, the population of effect changes 

increased when compared with the knock-out tests of these previous two 

negative feedback loops and two major changes were found (Table 3.8). The 

effect from oncogenes onto p14ARF was strengthened from weak activator to 

strong activator. The effect from p21 onto cell cycle arrest was enhanced from 

ambivalent factor to strong activators. 
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Figure3.6: Knock-out tests for the p14ARF- MDM4-p53-p21-CDK2-MDM2 

negative feedback cycles  

Figure 3.6A shows the PKT38 model without the negative feedback loop of 

p14ARF-MDM4-p53-p21-CDK2-MDM2. Figure 3.6B shows a dependency matrix for the 

modified PKT38 model to investigate the role of the p14ARF- MDM4-p53-p21-CDK2-MDM2 

negative feedback loop. Two major changes were marked by red circles. Figure 3.6C shows 

effect change distribution was shown the distribution of effect changes between the default 

dependency matrix and the new dependency matrix when the negative feedback loop of 

p14ARF- MDM4-p53-p21-CDK2-MDM2 was removed from the PKT38 model. 
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Source node Target node Effect cell in 

the p53 wild 

type of the 

PKT38 

model 

Effect cell in the in 

silico knock-out 

test when all  

negative feedback 

loops were 

removed 

Oncogenes P14ARF Weak 

Activator 

Strong Activator 

P21 Cell Cycle 

Arrest 

Ambivalent 

Factor 

Strong Activator 

 

Table 3.8:  Effect elements changed from Figure 3.7C when the 

p14ARF- MDM4-p53-p21-CDK2-MDM2 negative feedback loop was 

removed from the PKT38 model  

This table list all major changes observed from the in silico knock-out test with depletion of 

the p14ARF- MDM4-p53-p21-CDK2-MDM2 negative feedback cycles.. 

 

 

Moreover, in order to determine the role of all negative feedback loops in p53 

function, a sub network from the PKT38 model was constructed without all 

negative feedback loops. Table 3.8 lists all the interactions removed in order to 

knock out all the negative feedback loops in the PKT38 model. 
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Source node 

of deleted 

interaction 

Target node 

of deleted 

interaction 

Deleted 

interaction 

type 

P38MAPK P53 +1 

P53 Wip-1 +1 

Wip-1 P53 -1 

P53 MDM2 +1 

MDM2 P53 -1 

P53 P14ARF -1 

MDM4 MDM2 +1 

MDM2 MDM4 -1 

CDK2 MDM2 -1 

P21 CDK2 -1 

P14ARF MDM2 -1 

MDM4 P53 -1 

 

Table 3.9:  Edges removed from the PKT38 model for the model in Fig 

3.7A 

Table 3.9 lists eleven interactions removed from the PKT38 model so as to remove all the 

negative feedback loops.  

 

 

Additional Table 2 shows the major effect changes from the default 

dependency matrix in Figure 3.3A to the dependency matrix of modified model 

in Figure 3.7B.It is found that population of ambivalent factors decreased 

faster than the decrease of the weak inhibitor and weak activators. 
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Figure 3.7: The knock-out tests without all negative feedback loops 

Figure 3.7A shows the PKT38 model without all negative feedback loops. In Figure 3.7B, 

removing all feedback loops transforms weak activatory and inhibitory effects into strong 

ones. These results suggest that the inhibitions that are included in the feedback loops make 

the network more stable. Figure 3.7C shows the distribution of effect changes between the 

default dependency matrix and the new dependency matrix when all the negative feedback 

loops were removed from the PKT38 model. 
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Comparing the modified dependency matrix of the PKT38 model without 

feedback loops with the default one in p53 wild type (compare Figure 3.7B to 

Figure 3.3A and see Additional Table 2), we can conclude that the feedback 

loops in the p53 network play an essential role in keeping the network more 

stable to external perturbations. As a result, disturbing negative feedback 

loops in the p53 pathway may increase the sensitivity of cells to cancer 

treatments, such as UV and other anticancer drugs. Targeting on negative 

feedback loops in the p53 pathway may contribute to the improvement of 

cancer treatment and therapy design. Some of those applications were 

already identified and revealed a useful role for clinical use (Lu, 2010). For 

example, the peptides inhibit MDM2 described in the introduction, such as 

D-peptide inhibitor, and MIP (MDM2 inhibitory peptide) which target on the 

negative feedback loop between p53 and MDM2 to activate p53 as a tumour 

suppressor. 
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3.4  The PKT62 model 

In the previous section, we constructed the PKT38 model and carried out the 

in silico knock-out analysis. Exploration of the pathways described in the 

PKT38 model indicated that more interactions needed to be included in order 

to represent realistically the complexity of the p53 pathway. Therefore more 

extensive literature searches were performed and a new model PKT62 was 

constructed. Here we describe the construction of the PKT62 model, its 

structure and the in silico analysis results. All interactions included in this 

model were investigated in at least one paper from the PubMed database. 

Figure 3.8 describes the PKT62 model and this network is based on the 

literature survey of more than 500 papers (Additional Table 3). Some genes or 

proteins, for example, DDR1 (discoidin domain receptor 1), which is 

represented as a node in the network above, was found to interact with p53 in 

only two published papers from PubMed. However for other interactions such 

as p21(CDKN1A)-p53 interaction, there was 8195 papers in PubMed, which 

both mentioned p53 and p21 and 306 papers stating that p53 activates p21. 

There were 62 nodes and 109 interaction edges included in the PKT62 (Figure 

3.8 and Additional Table 3). This PKT62 model has three input nodes, which 

were DNA damage, other cellular stress, and oncogenes, and four output 

nodes: apoptosis, angiogenesis, DNA repair and cell cycle arrest. As MDM2 

had negative two step feedback loops with p53, it was represented by red 

colour to indicate its role in the whole network.   
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Figure 3.8:  Network map of the PKT62 model  

Figure 3.8 shows a network map of the PKT62 model. Three input nodes were marked by 

green colour and all inter medium nodes were marked by yellow colour except MDM2, which 

was marked by red colour. The four output node was marked by blue colour. 
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Next, the interaction and dependency matrix for PKT62 model was calculated 

to obtain a global view for the trend of the p53 network when the network 

became more complex than the PKT38 model towards construction of 

complete model describing p53 interactome (Figure 3.9A). In the Figure 3.9B, 

it is found that the majority of effect elements are no effect and the population 

of strong inhibitor and strong activator is quite small, compared with the 

population of weak inhibitor and weak activator. Moreover, the in silico 

knock-out tests were also performed to investigate the role of p53 and MDM2 

(Figure 3.10, Figure 3.11). According to these two dependency matrices, two 

results were obtained. The first one is the important role of p53 effect onto the 

whole network. Comparing the dependency matrix in Figure 3.10 with Figure 

3.9B, it was found that the majority of effect cells in the dependency matrix of 

the p53 null model became no effect. The effect cells of strong inhibitor and 

strong activator were still remaining in the dependency matrix. We could refer 

that those dependency relationships were independent of the p53 presence, 

for example, the effect from DNA damage onto ATM was strong activator and 

this relationship remained the same in the dependency matrix when p53 was 

removed. The second finding was that the depletion of MDM2 caused less 

changes than the removal of p53 on the whole network. Comparing Figure 

3.10 and Figure 3.11, a large amount of effect cells remained the same in the 

knock-out test of MDM2 as in the dependency matrix of the p53 wild type. The 

node of p53 took part in 51 interactions in the PKT62 model, whereas MDM2 

was only connected with 7 interactions. It indicated that the node with high 

connectivity degree may affect more onto the dependencies relationship 

between nodes in the network. This phenomenon was explored further in the 

next chapter of results. 

 

The results shown in Figure 3.9, 3.10 and 3.11 confirmed features of the p53 
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pathway uncovered by the PKT38 model and highlighted the importance of 

p53 presence for the robustness of the whole network.  
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Figure 3.9: Analysis result of the PKT62 model by CellNetAnalyzer 

Figure 3.9A describes the interaction matrix of p53 network at low confidence level, which 

was constructed by CellNetAnalyzer. Figure 3.9B shows the dependency matrix of the 

PKT62 model in Figure 3.8. 
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Figure 3.10:  The default dependency matrix of the PKT62 model in the 

absence of p53.  

This dependency matrix is respond to the PKT62 model when p53 and all interactions with 

p53 were removed from this model. 

 

 
Figure 3.11:  The default dependency matrix of the PKT62 model 

without MDM2.  

This dependency matrix based on the PKT62 model was calculated when MDM2 and all 

interactions with MDM2 were removed from this model. 
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3.5  Discussion 

In order to understand the cellular functions and interactions of p53 tumour 

suppressor, simple models for p53 pathways, PKT38 and PKT62 were built to 

investigate all the interactions in p53 pathways from manual literature 

searches. The dependency relationships between those models were 

analyzed using the interaction matrix and dependency matrix. In a global view 

of the PKT38 and PKT62 models, the number of strong inhibitor cells and 

strong activator cells constituted a minority part of the total effect elements in 

the dependency matrix. As a result, the changes which affected creation of 

strong inhibitors and strong activators were a hallmark to monitor the changes 

of network caused by perturbations in the network. Focusing on changes to 

strong inhibitor cell and strong activator cells facilitated the investigation of 

changes in dependency relationship in response to perturbations caused by 

modifications in the network structure.   

 

The advantage of the PKT38 model and PKT62 models is that they provide a 

small-scale view of p53 network structure: input signals, upstream of p53, p53 

and MDM2, downstream of p53 and output of the network based on the 

manual literature survey. In silico knock-out tests were performed on this 

model and the analysis result revealed the role of certain nodes and edges in 

the network model. Those manually curated models provide evidence that it is 

feasible to make p53 interactome with predictive properties from selected 

databases using text mining or other tools.  Moreover, it revealed the crucial 

role of negative feedback loops for the robustness of the p53 whole network to 

perturbations according to the in silico knocks-out tests. By comparing the 

dependency matrix of modified PKT38 model with the unmodified one, we can 
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conclude that the negative feedback loops keep the network less sensitive to 

changes of the input signals. Similarly, Zhang (2011) in his paper pointed that 

more negative feedback loops of p53 increased the robustness of the p53 

oscillation (Zhang et al, 2011). Their finding supported our conclusion that 

negative feedback loops with p53 make the whole network more robust to the 

perturbation. As MDM2 was the second most connected node in the PKT38 

model, the knock down of it lead to more changes in the dependency 

relationships between other genes in the PKT38 model than the depletion of 

ATM or BAX. The in silico knock out test for the negative feedback loop 

between p53 and MDM2 indicated that this negative feedback loop functioned 

to keep the effects between other proteins in a balanced state. This finding 

demonstrated that the negative feedback loop between p53 and MDM2 make 

the whole network robust to experimental perturbations under the 

environmental of DNA damage (Wagner et al, 2005).   

 

The process of PKT38 model and PKT62 model building demonstrated the 

feasibility of using a system biology approach to investigate the p53 pathway. 

The advantage of those two models was that the dependency matrix of in 

silico knock-out tests provided a direct view of the global effect changes. 

However, for larger networks it is impossible to see such changes visually. 

Once the scale of the model increased from 38 nodes to 62 nodes, it became 

difficult to identify all changed effects from the dependency matrix figures. 

Moreover, although more than 500 papers were manually curated to construct 

the basic model PKT38 and PKT62, the structure of these models is quite 

simple when compared with the real p53 pathway. Those models did not 

consider all possible interactions relevant to p53 and the genes or proteins 

that interact with p53.  
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Chapter 4  Early versions of the PKT205 model based on 

interaction information retrieved automatically from STRING 

 

4.1 Introduction 

In the previous chapter, the PKT38 model described the structure of the p53 

pathways and revealed the crucial role of p53 and negative feedback loops in 

the whole system. However, this model was small and limited by the literature 

based information retrieval. Compared with 67000 papers about p53 

published in PubMed and the frequency of new reports about p53 published, 

this simple model has limited use in contributing to further understanding of 

the p53 pathway mechanisms and to provide continuous updates with the 

increasing speed of new papers about p53 published. The population of 

published papers about p53 is increasing every year (Table 1.1). It was found 

that thousands of papers about p53 have been published every year in the last 

15 years. There was an increasing strand in the last 15 years (Table 1.1). 

Since the information retrieval is time consuming and the conclusion of 

interaction type is limited by current experimental conditions, there is an urgent 

requirement for automated retrieval of p53 interaction information by text 

mining tools or other approaches. As a result, various text mining tools and 

databases were investigated and a Java based programme was designed to 

retrieve interaction information automatically from selected database.  

 

We assumed that there existed databases which were able to provide 

datasets with high confidence interaction information involving p53. The 

hypothesis was that large numbers of p53 interactions could be retrieved by 

natural language processing tools and enables us to construct a “complete” 
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model, which would be a better representation of the real network than the 

previous models. The investigation process was divided into four main steps: 

 

At the first step, we investigated all available protein-protein databases which 

provided interactions with p53. Their performances were compared by the 

following criteria:  

 

Firstly, the database should provides p53 protein-protein interactions records. 

Secondly, the database should provide convincing literature evidence for 

these interactions; thirdly, those interactions should indicate the nature of the 

relationship between proteins (activation or inhibition). Then certain databases 

were selected among the candidate ones as our resource for interaction 

information.  

 

At the second step, we constructed logical Boolean models for p53 which 

included protein-protein interactions relevant to p53, according to the selected 

database.  

 

The third step was to perform analysis using CellNetAnalyzer to explore the 

features of the model.  

 

The fourth step was to improve the model using feedback from the analysis 

results so that predictions could be made for the biological functions of p53 

pathways. 
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4.2  Construction of the PKT205 model by automatic information 

retrieval from STRING  

In Chapter 1, STRING was chosen as a database most suitable for extraction 

of interaction information relevant to p53. Here the p53 interactions were 

automatically retrieved and classified in order to generate a draft of p53 

interactome, using logical Boolean models. After STRING was selected as the 

main resource of interaction information, the process flow of interaction 

extraction, model construction and analysis was designed as shown below 

(Figure 4.1).  

 

 
Figure 4.1: Process flow chart for the PKT205 model construction and 

improvement.   

Figure 4.1 shows the process of model construction, simulation and analysis. Java interface 

programs were created to extract p53 interactions from the STRING database.  

 

We then manually curated the data and used Gene Ontology annotations to 

connect the network to DNA damage input and apoptosis output. 

CellNetAnalyzer was used for analysis and simulations, and the results were 

validated using literature surveys and experimental approaches including 
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western blotting and microarray analysis. 

 

Since some important protein-protein interaction were identified as post 

translational modification by STRING, we also turned to other available on line 

text mining tools, like PubMed and KEGG, to confirm the nature of these 

posttranslational modifications. For example, the interaction between ATM and 

p53 is a phosphorylation, and this phosphorylation leads to the accumulation 

of p53. As a result, we assumed that the interaction from ATM to p53 is 

activation and included it as such in our model. 

 

 

4.3 Six type of errors caused by text mining 

During the process of manual curation, six types of errors caused by text 

mining were found and they were sorted according to their frequency of 

occurrence in text mining: 

 

- The first error was wrong gene name recognition. Most errors were of this 

type; 

- The second one was wrong target recognition; 

- The third error was a general term appearing in a complex context; 

- The fourth error was negation and negative words not recognized by text 

mining; 

- The fifth error was wrong relationship; 

- And the sixth error was speculation or question. 

 

There are several possible reasons that cause errors during the period of 

natural language processing. The incorrect protein-protein interaction in 
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STRING is the major factor that disturbed the construction of the novel p53 

network models. The incorrect interactions may affect the global effect 

between nodes in the dependency matrix and lead model predictions to an 

unknown direction. 

 

The first error, wrong gene name recognition, is the most common error we 

found in the extracted interaction records. The reasons causing this error are 

various: the same alias names can be used for different genes, the incorrect 

identification of chemical compound or drug name, etc. For example, STRING 

predicted that ELA2 activates p53 and showed the evidence highlighted by 

yellow colour (Laurora et al, 2005). However, ELA2 is ELANE (elastase, 

neutrophil expressed) in PubMed and has an alias name, HNE. However, HNE 

(4-Hydroxynonenal) in the evidence abstract was IL8 (interleukin 8).  

 

The second error is wrong target recognition and a general term appears in 

complex context. This error occurred in the capture of target gene name 

during natural language processing. The search engine ignored some nouns 

which followed the gene name. For example, the noun, “target” was ignored. 

STRING predicted that RITA (ZNF331) activates p53. However, when we 

analyzed the evidence provided by STRING for further validation, the actual 

sentence was that RITA activates p53 targets (Zhao et al, 2010).  

 

The third error is that a general term appears in a complex context, which 

prevented the text mining tools from parsing word accurately. Some genes 

were connected together by “-“, however, the text mining tools were not 

capable to indentify this connection. For example, STRING made a prediction 

that EP400 (p400) inhibits p53. In the evidence, it reported that the p53—p21 

transcription was inhibited by p400 (Chan et al, 2005). STRING did not identify 
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the combined protein name”p53—p21” accurately and treated it as p53. 

  

The fourth error is that the negation and negative words were not recognized 

by text mining. We found four examples of these negation and negative words: 

the first one is the negative word, “nor” was present in the sentence but the 

text mining tools did not recognize it. For example, STRING predicted that p53 

activates HDAC5, however, the evidence reported that ”…nor was HDAC5 

mRNA promoted by p53” (Huang et al, 2002). The second one is the use of 

“small interference RNA (siRNA)”. It is predicted that CDC20 activates p53 by 

STRING. However, the evidence provided by STRING indicated that small 

interference RNA (siRNA)-mediated silencing of p53 induced CDC20 

(Kidokoro et al, 2008), which is opposite to the prediction that p53 activates 

CDC20.The third one is that the text mining tool ignored the removal of the 

gene. STRING predicted that TOPBP1 activates p53, but the evidence 

showed that the depletion of TOPBP1 up-regulated p53 target genes (Liu et al, 

2009). The fourth one is that the word “the dominant negative form” was 

ignored by STRING. STRING predicted that MAPK9 inhibits PTGS2 but the 

evidence indicated that the dominant negative form of JNK1 (MAPK9) 

repressed Cox-2 (PTGS2) (Guan et al, 1998).  

 

The fifth one is the wrong relationship identified for the interaction. STRING 

ignored the logical relationship between two genes which interact with a same 

gene together. For example, STRING predicted two protein-protein 

interactions that FOS (c-fos) inhibits ICAM1 and JUN (c-jun) inhibits ICAM1 

individually. However, in the evidence, c-fos and c-jun attenuated the quercetin 

which had negative effect on ICAM1 (Ying et al, 2009). STRING treated this 

interaction as two individual interactions. 
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The sixth one is the speculation or question. The text mining tools did not 

parse the word “may”, which occurred in the extracted sentence. For example, 

it was predicted by STRING that POU4F1 (Brn-3a) inhibited BRCA1. However, 

the evidence only referred that Brn-3a may mediate the regulation of BRCA-1 

(Budhram-Mahadeo et al, 2001).Therefore STRING reported speculation as a 

fact. 

 

 

4.4  The PKT1377 and the PKT2275 model 

In this chapter the details of the PKT1377 model and PKT2275 model 

construction are illustrated. Using a confidence score as the criteria, two 

models were constructed. If the confidence score of interaction record is more 

than 0.700 (the probability that the interaction was true was more than 70%), it 

was labelled as high confidence level; if the score is more than 0.400 and less 

than 0.700, it is at medium confidence level; and if the score is less than 0.150, 

it is at low confidence level. It was planned that all possible interactions which 

had direct or indirect relationship with p53 from the STRING database were 

included and the models were sorted in three layers the first layer included all 

interactions of genes or proteins that interact with p53; the second one is all 

interactions between those genes or proteins which interact with p53 directly; 

the third layer included all interactions which interacted with genes or proteins 

in the second layer. As a result, two models were constructed: PKT1377 and 

PKT 2275. The PKT1377 has 1377 nodes and 3612 interaction edges whose 

confidence score was more than 0.800, and the PKT2275 is the full extending 

model which included all interactions retrieved from STRING and has 2275 

nodes and 13158 interaction edges. The population of different effect cells in 

the dependency matrix of the PKT1377 model and the PKT2275 model were 
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listed in Table 4.1.  

 

Model Name Total number 

of 

dependency 

effect cells 

Number of No 

Effect cells 

Number of 

Ambivalent 

Factor cells 

Number of 

Weak 

Inhibitor 

cells 

Number of 

Weak 

Activator 

cells 

Number 

of Strong 

Inhibitor 

cells 

Number of 

Strong 

Activator 

cells 

PKT1377 1896129 1219766 669276 3171 3824 33 59 

PKT2275 5175625 3273525 1892802 3820 5285 87 106 

 

Table 4.1: Effect cell population result of dependency matrix for PKT1377 

and PKT2275 model  

This table lists number of different dependency cells found in the dependency matrix of the 

PKT1377 model and the PKT2275 model. 

 

 

4.5  Time measurement of dependency matrix calculation 

In this section, the problem caused by time cost of dependency matrix analysis 

and the solution of this problem is described. CellNetAnalyzer provided three 

different algorithms to calculate the shortest pathway for dependency matrix: 

exhaustive algorithm, approximative algorithm, and two-step algorithm 

described below. Since the complexity of these models was high, high 

performance computation power (the details of using high performance 

computation was illustrated in the method chapter) was used.  

 

The questions that were drawn during the calculation are: why approximative 

algorithm was appropriate whereas the exhaustive and two-step algorithms 
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were not capable of calculating the dependency matrix? What prevented 

CellNetAnalyzer from calculating the dependency matrix using the other two 

algorithms? CellNetAnalyzer provided three different algorithms to calculate 

the shortest path distance between two nodes, which determined the effect 

type in the dependency matrix. Since these three algorithms had different 

strategies to calculate the shortest pathway distance between nodes, the 

PKT1377 model was analysed by all three algorithms to determine whether 

there was a difference between the dependency matrixes. However, during 

the process of dependency matrix calculation, it was observed that only the 

approximative algorithm had the capability to calculate the dependency matrix. 

The programme by the other two algorithms in CellNetAnalyzer stopped 

responding and the calculation failed. We suspected that the main reason is 

the PKT1377 model was too large to calculate all possible shortest paths 

between nodes. As a result, a test was designed for estimate the size of 

network model so that currently available computer power was capable to 

execute the calculation task. A consuming time test was processed with a 

different sub network model of PKT1377 to investigate the computer power 

cost of three different algorithms for dependency matrix calculation. Five sub 

network models were selected from the PKT1377 model with different number 

of nodes and edges (Table 4.2) and their dependency matrix were calculated 

by those three different algorithms.  
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Sub 

network 

name 

Number 

of nodes 

Number of 

edges 

Time 

consumed by 

exhaustive 

depth-first 

traversal 

algorithm 

(minutes) 

Time consumed 

by approximative 

algorithm 

(minutes) 

Time 

consumed by 

two-step 

algorithm 

(minutes) 

t500 500 739 3 minutes 1 minutes 1 minutes 

t525 525 786 3 minutes 1 minutes 2 minutes 

t550 550 828 4 minutes 1 minutes 2 minutes 

t575 575 890 13 minutes 1 minutes 4 minutes 

t600 600 955 99 minutes 1 minutes 12 minutes 

 

Table 4.2: Statistic time cost of dependency matrix calculation.  

The table lists time cost of dependency matrix calculation with different algorithm for sub 

network of the PKT1377 model. 

 

At first, the first 500 nodes were selected (we assumed that all nodes have the 

same priority and selected the first 500 nodes listed in the metabolite 

parameter file) out of the total 1377 nodes in the PKT1377 model by 

CellNetAnalyzer, kept their own interactions between those 500 nodes and 

calculated the dependency matrix by those three different algorithms. The 

consumed time records were listed in the Table 4.2. Next, the sub network was 

enlarged to the first 550 nodes in the PKT1377 model, added new interactions 

between them and recalculated the dependency matrix to obtain the time 

record for three different algorithms. In this way, the time necessary to 

calculate dependency matrix for the sub network model with 550 nodes, 575 
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nodes and 600 nodes was measured. Since the computer power could not 

afford the calculation of the model with more than 600 nodes and stopped 

responding, the measurement terminated at the scale of 600 nodes. 

Considering saving time for dependency matrix calculation, it was decided that 

the approximative algorithm should be used as the default algorithm to 

calculate the dependency matrix and the other two were utilized to investigate 

the result of dependency matrix in the in silico knock-out tests of PKT205/G1 

model and PKT205 model in G2 version (described later), no difference was 

detected in the dependency matrix by those three algorithms. 

 

It was inferred that negative feedback loops may cause time-consuming 

problem for different algorithms. Our network models were represented as 

interaction graph in the CellNetAnalyzer and those interaction graphs were 

directed signed graphs, for example, “ATM activates p53” and the edge 

representing this activation was from ATM to p53. CellNetAnalyzer calculated 

the shortest positive or negative path from ATM to p53 and according to the 

shortest positive and negative path distance determined the global effect from 

ATM onto p53. As illustrated in the methods chapter, CellNetAnalyzer defined 

six types of effect elements in the dependency matrix. Those six types were 

determined by three main factors: whether there existed shortest pathway 

from ATM to p53, whether this shortest pathway was negative pathway or 

positive pathway, and whether these pathways touched negative feedback 

loops. CellNetAnalyzer provided three different algorithms to calculate the 

shortest distance of positive pathway or negative pathway between nodes. 

These three algorithms had different time costs due to their different 

mechanisms to calculate the shortest pathway distance. According to the time 

test shown in Figure 4.2, the computation time of the dependency matrix by 

the exhaustive algorithm increased exponentially with the size of the model. 
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The main reason is that an exhaustive search with the depth-first algorithm is 

required to access all possible pathways between each two nodes by 

enumeration. Klamt (2009) pointed that the rise in network size led to an 

exponential increase of the number of feedback loops (Klamt & von Kamp, 

2009). As a result, the calculation of dependency matrix was time consuming 

due to the amount of feedback loops and cycles in the network. 
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C 

 
 

Figure 4.2: Duration of dependency matrix calculation consumed by 

three different algorithms for the p53 network in different nodes scale  

Figure 4.2A shows the time consumed trend of the dependency matrix calculation by the 

exhaustive depth-first traversal algorithm. Figure 4.2B shows the time consumed trend of the 

dependency matrix calculation by the approximative algorithm. Figure 4.2C shows the time 

consumed trend of the dependency matrix calculation by the two-step algorithm. 

 

However, the approximate algorithm utilizes a different strategy, double-label 

algorithm with cycle check (DLACC). DLACC algorithm is based on the 

Dijkstra’s shortest path algorithm and the results were calculated in polynomial 

time. The effect of negative feedback loops or cycles decreased by the cycle 

check, but sometimes, the real shortest pathway with cycles may be missed.  

As a result, the approximate algorithms produce the results which were 

approximate or even equal to the real values. But this approximative algorithm 

was more suitable and less time-consuming for large network model which 

had hundreds of nodes and edges. This phenomenon was demonstrated by 

the time test for PKT1377 model (Figure4.2B) 
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The two-step algorithm is the combination of exhaustive search and DLACC. 

This algorithm has better performance than the exhaustive search with 

depth-first traversal algorithm in the responding time. However, the exhaustive 

search also affected the performance of shortest pathway calculation and the 

time cost of the calculation (Figure 4.2C). 

 

 

4.6  Discussion 

In summary, we discuss feasible solutions to avoid the errors caused by text 

mining and feasible improvements in future work. Currently, the most feasible 

solution to avoid the insertion of incorrect interaction information was by 

manual cross checking to validate these interactions by other reliable 

databases and publications. In the future, the improvement of the text mining 

results will require the improvements in text mining algorithms. Various efforts 

are being made to improve the accuracy and efficiency of text mining 

techniques for protein-protein interaction extraction (Zhou & He, 2008). For 

instance, Ananiadou et al (2010) insisted that database curation was needed 

so as to improve the efficiency and accuracy of the protein-protein interaction 

(PPI) extraction. They preferred deep parsing for the syntactic analysis in text 

mining, which considers potential relationships between entities recognized for 

protein-protein interaction prediction and not directly from the sentences 

(Ananiadou et al, 2010). Tsai (2012) utilized an integrated global association 

score to improve the accuracy of protein pair recognition. Not only the 

correlation score between proteins in each protein pair, but also the global 

correlations of the targeted protein with other proteins extracted from the 

whole article were considered in the global association scores. This method 

revealed its powerful role for the curation of  protein-protein interactions (Tsai, 
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2012). Krallinger et al (2012) designed a text mining approach by associating 

ontology data such as the Gene Ontology (GO) and the molecular interaction 

ontology (PSI-MI), with protein-protein interactions and utilized an evaluation 

system named as BioCreative initiative (Critical Assessment of Information 

Extraction Systems in Biology) to test this approach. The precision of the 

outcome was quite high but the performance of this approach was limited by 

the specificity of ontology terms to match the interaction activity extracted from 

literature (Krallinger et al, 2012). 

 

Algorithms for text mining will be improved resulting in better performance in 

the syntactic analysis and semantic analysis of large texts in publications in 

the next ten years. Zhou et al (2008) illustrated three major methodologies 

utilized for protein-protein interaction extraction work: the computational 

linguistics-based approach, the rule-based approach and the 

machine-learning approaches and compared their performance by each 

approach (Zhou & He, 2008). The possible solution illustrated by Zhou et al 

(2008) was to overcome the limitation of text mining by improving the 

identification of ontology terms and terminological lexicons identification, 

making the entity names of gene or proteins not changed frequently, 

establishing a confidence score scheme, advancing the validation rules for 

better evaluation and so on (Zhou & He, 2008). Currently the only possible 

approach applicable to this investigation to optimize the accuracy of 

protein-protein interaction results is to accept all interaction records having the 

high confidence score provided by STRING, validating each of them manually 

and regularly checking for changes with updates of STRING.       
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Chapter 5  Final version of the PKT205 model and analysis 

results  

5.1  Introduction 

As mentioned in the previous chapter, we have built a model of the p53 

interactome but encountered two problems. First, simulations could not be 

performed because of the large size of the model that required excessive 

computation time. Second, we detected errors caused by text mining that 

needed to be excluded from the model. Therefore, in order to overcome these 

difficulties we decreased the size of the model to create a new model, the 

PKT205/G1 model and manually curated all records found in the PKT1377 

model. 

 

5.2  Creation of the PKT205/G1 (manual curation of protein-protein 

interaction records) 

 

In order to address the time consuming problem encountered during 

dependency matrix calculations and simulations described above, the 

following research strategy was devised.  Construction of the G1 version of 

the PKT205 model started by confirming manually all interactions using 

publications from PubMed so as to avoid the inclusion of incorrect interactions 

that could affect the model. According to run-time measurements, it was found 

that the time needed for calculating the dependency matrix increased sharply 

with the increase in network size when the shortest paths were calculated by 

the exhaustive depth-first traversal algorithm or two-step algorithm. With the 
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purpose of avoiding the inclusion of incorrect protein-protein interaction 

records extracted by STRING and the limitation of computer power for 

dependency matrix calculation, new constraints were defined to decrease the 

scale of the model. For this purpose incorrect interactions were not included 

and only two interaction layers were used including direct interactions with p53 

and interactions between those genes that interact with p53 such as MDM2 

and MDM4, which were p53 gene targets and were connected by a two step 

negative feedback loop, in which MDM4 activates MDM2 and MDM2 inhibits 

MDM4. The new model included p53 node and 201 other nodes which 

represents genes or proteins to interact with p53 at the high confidence score 

(more than 0.700) and all these interactions with p53 were confirmed manually 

by literature search. Then interactions between these 201 nodes at high 

confidence score were extracted from STRING, and included into the 

PKT205/G1 model. This PKT205/G1 model has 202 genes and 535 

interactions. All nodes in Additional Table 4 represent genes or proteins which 

interact with p53 and obtained from STRING database. All interactions in 

Additional Table 4 were manually curated by literature search in PubMed or 

other on-line text mining tools. Those interactions were mainly from two main 

resources: the interaction information retrieved automatically from the 

STRING database and the interactions from the PKT38 model. They were 

combined together to create of the PKT205/G1 model whose interactions are 

described in Additional Table 4 below. The new model included 201 nodes 

which interact with p53 at the high confidence score (more than 0.700) and all 

these interactions with p53 were confirmed manually by literature search 

(Figure 5.1). Then interactions between these 201 nodes at high confidence 

score were extracted from STRING, and included into the PKT205/G1. This 

PKT205/G1 has 202 nodes and 535 interactions. Those interactions were 

mainly from two main resources: the interaction information retrieved 
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automatically from the STRING database and the interactions from the PKT38 

model. They were combined together to create of the PKT205/G1. 
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Figure 5.1: PKT205/G1 network map 

202 nodes and interactions between them are shown on the map. P53 and MDM2 are 

represented in red colour. All activations are represented in blue colour and all inhibitions were 

represented in red colour.  

 

 

5.3  In silico simulation of PKT 205 model in G1 version 

After constructing the G1 version model in the previous section, we performed 

in silico knock-out tests in order to analyze the PKT205/G1 model. We 

performed in silico knock-out tests for selected genes to explore their role in 

the network by the comparison of dependency matrix before and after deletion. 

This comparison was achieved by a customs designed Java-based 

programme (Figure 2.5). According to the network analysis results presented 

in the previous chapter, it was found that individual genes or proteins were 

affected differently in the PKT205/G1 model depending on their connectivity 

degree and whether they were involved into negative feedback loops.  Table 

5.1 shows the connectivity degree of these 202 nodes. Table 5.2 and Figure 

5.2 show the distribution of nodes with different connectivity degree in the 

PKT205/G1 model (Figure 5.2). It was found that only p53 participated in more 

than 100 interactions, which was the most connected node in the 

PKT205/G1model, 25 nodes took part in more than 10 interactions and the 

majority of nodes were connected with less than 10 interactions. According to 

the results of knock-out tests based on the PKT38 model, the effect of node 

deletion was related to its connectivity degree. We performed 30 knock-out 

tests for single node depletions: p53, 25 nodes with type 2 connectivity degree 

in Table 5.1, and four nodes with type 3 connectivity degree: ATM, 

BRCA1,PTEN, and CDKN1A. 
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Figure 5.2: Connectivity degree distribution in the PKT205/G1 model 

Both axes of the figure are in logarithmic scale and the scatter plot indicates the connectivity 

degree distribution. 

 

From the statistical analysis in Table 5.1 and Table 5.2, it was found that nodes 

with higher connectivity degree such as p53 lead to more substantial changes 

in the effect cells of the dependency matrix when compared with the 

dependency matrix of T0, which represented the p53 wild type. Comparing the 

distribution of dependency cell changes in those 31 knock-out tests above with 

different gene deletion, we found six types of distributions (Table 5.2) 

 

Type 

number 

Connectivity degree 

range 

Population of 

nodes of 

interacted type 

Percentage 

of nodes 

out of total 

nodes 

1 Connectivity >100 1 0.49% 

2 10≤Connectivity ≤100 25 12.38% 

3 0<Connectivity <10 176 87.13% 
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Table 5.1: Distribution of nodes with different connectivity degree for the 

G1 model version 

Column 1 shows the number of types. Column 2 lists the connectivity degree scale. Column 3 

shows the population of nodes with certain connectivity degree. Column 4 shows the 

percentage out of total 202 nodes.  

 

Model 

Name 

Gene 

deletion 

Total 

number 

of effect 

cells 

Number 

of No 

Effect 

cells 

Number of 

Ambivalent 

Factor cells 

Number 

of Weak 

Inhibitor 

cells 

Number 

of Weak 

Activator 

cells 

Number 

of Strong 

Inhibitor 

cells 

Number 

of Strong 

Activator 

cells 

T0 Null 40804 23511 14958 1109 1213 4 9 

T1 P53 40401 34621 5623 53 75 9 20 

T2 TGFB1 40401 23693 14245 1176 1274 4 9 

T3 MDM2 40401 23375 14313 1296 1404 4 9 

T4 MMP2 40401 23219 14850 1109 1213 4 6 

T5 CCND1 40401 23683 14021 1262 1412 4 9 

T6 CXCR4 40401 23534 14511 1117 1226 4 9 

T7 IL6 40401 23375 14664 1120 1229 4 9 

T8 FGF2 40401 23375 14717 1094 1202 4 9 

T9 ABCB1 40401 23216 14850 1109 1213 4 9 

T10 PRKCA 40401 23480 14582 1111 1213 4 11 

T11 FOS 40401 23534 14445 1141 1268 4 9 

T12 HIF1A 40401 23797 14274 1109 1207 4 10 

T13 BCL2 40401 23375 14459 1247 1307 4 9 

T14 MMP1 40401 23218 14850 1109 1213 3 8 

T15 PTGS2 40401 23534 14354 1174 1326 4 9 

T16 PTEN 40401 23375 14465 1124 1224 4 9 

T17 VEGFA 40401 24211 13387 1323 1461 6 13 
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T18 MYC 40401 23534 14450 1145 1259 4 9 

T19 E2F1 40401 23587 14322 1180 1297 4 11 

T20 IFNA1 40401 23269 14798 1109 1213 4 8 

T21 RAS 40401 23375 14639 1135 1239 4 9 

T22 MAPK8 40401 23268 14798 1109 1213 4 9 

T23 CSNK2 40401 23270 14798 1109 1213 4 7 

T24 ATM 40401 23269 14798 1109 1213 4 8 

T25 BRCA1 40401 23375 14690 1109 1214 4 9 

T26 CDKN1A 40401 23375 14691 1108 1214 4 9 

T27 IGF1R 40401 23375 14717 1094 1202 4 9 

T28 EGFR 40401 23693 14375 1108 1212 4 9 

T29 CCNA 40401 23375 14661 1123 1229 4 9 

T30 CDK2 40401 23534 14530 1108 1216 4 9 

T31 CDKN1B 40401 23375 14688 1111 1214 4 9 

 

Table 5.2:  Results of in silico knock-out tests for PKT205/G1.  

Column 1 lists the model name. Column 2 shows the name of genes deleted from the model. 

Column 3 shows the total number of effect cells in the dependency matrix. Column 4 lists the 

number of no effect cells in the dependency matrix. Column 5 lists the number of ambivalent 

factor cells in the dependency matrix. Column 6 lists the number of weak inhibitor cells in the 

dependency matrix. Column 7 lists the number of weak activator cells in the dependency 

matrix. Column 8 lists the number of strong inhibitor cells in the dependency matrix. Column 9 

lists the number of strong activator cells in the dependency matrix. The value ”Null” indicates 

that no nodes was removed from the PKT205/G1 model. 

 

The first type of distribution is that ambivalent factors in the dependency matrix 

of p53 wild type were changed to the other five types of effects in the 

dependency matrix of the deletion model. Moreover, there were changes from 
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weak activator to no effect, from weak inhibitor to no effect, from weak inhibitor 

to strong inhibitor and from weak activator to strong activator, for example, 

when the p53 wild type model was compared with p53 mutant model (Figure 

5.3). 

 

 
 

Figure 5.3: Distribution of changes in the dependency matrix of the p53 

in silico knock-out compared to the wild-type PKT205/G1model  

The gray circle represents no effect elements, the yellow cycle represents ambivalent factors, 

the turquoise green circle represents weak activators, the pink circle represent weak inhibitors, 

the red circle represents strong inhibitors, and the dark green circle represents strong 

activators; the direction of the arrow represents the direction of changes in the knock-out. 

 

The major changes observed in the p53 knock-out test revealed genes whose 

activity changes strongly in the mutant p53 cells. Those predictions based on 

major changes motivated us to identify genes that are potential target for 
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cancer therapy. For example, model predicted that the CHEK1 activity was 

enhanced by ATM in the p53 negative cells. CHEK1 plays an important role in 

the control of the cell cycle arrest (Macip et al, 2006). As a result, certain drugs 

that alter the activity of CHEK1 in p53 mutant cells may be used to prevent 

tumour cell growth. 

 

The second type of distribution change is that ambivalent factors were 

changed to the other five types of effects. There were changes from weak 

activator to no effect, from weak inhibitor to no effect, and from weak inhibitor 

to strong inhibitor. For example, these changes were found when the wild type 

model was compared to the model that had VEGFA removed (Figure 5.4).  

 

The depletion of VEGFA also caused perturbations in the PKT205/G1 model. 

For example, it was predicted that the expression of BAX was induced by 

activated FOXM1 when VEGFA was absent. This prediction may provide a 

potential way to foster accumulation of the pro-apoptotic gene BAX to promote 

tumour cell death. 
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Figure 5.4: Distribution of changes in the dependency matrix of the 

VEGFA in silico knock-out compared to the wild-type for the PKT205/G1 

model. 

A node, VEGFA was removed from the PKT205 model. Colours symbolize the same effects as 

in the Figure 5.3. 

 

The third type of change is that ambivalent factors were changed to no effect, 

weak inhibitor and weak activator. There were also changes from weak 

inhibitor to no effect. The in silico knock-out test of CXCR4 (Figure 5.5) is an 

example of this type. 
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Figure 5.5: Distribution of changes in the dependency matrix of the 

CXCR4 in silico knock-out compared to the wild-type for the PKT205/G1  

CXCR4 was removed from the PKT202 model. Colours symbolize the same effects as in the 

Figure 5.3. 

 

The depletion of CXCR4 was predicted to result in diverse changes in p53 

pathways. For example, activated p53 promoted the expression of 

TNFRSF10B (DR5) and DR5 was reported to induce apoptosis in p53 wild 

type cells (Wu et al, 1999). So this depletion may provide a direction to 

stimulate tumour cell death.  

 

The fourth type of change is that ambivalent factors were changed to the other 

four types of effects excluding strong inhibitor. The in silico knock-out test of 

E2F1 (Figure 5.6) is an example of this type. 
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Figure 5.6: Distribution of changes in the dependency matrix of the E2F1 

in silico knock-out compared to the wild-type for the PKT205/G1 model  

E2F1 was removed from the PKT202 model. Colours symbolize the same effects as in the 

Figure 5.3. 

 

It was predicted from the E2F1 knock-out test that activated ATM will strongly 

enhance CHEK2 in the absence of E2F1. So depletion of E2F1 may help p53 

to be stabilized and function as a tumour suppressor protein.   

 

The fifth type of distribution is that ambivalent factors were only changed to 

weak activator and weak inhibitor. The in silico knock-out test of MDM2 below 

(Figure 5.7) is an example of this type.   
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Figure 5.7: Distribution of changes in the dependency matrix of the 

MDM2 in silico knock-out compared to the wild-type for the PKT205/G1. 

MDM2 was removed from the PKT202 model. Colours symbolize the same effects as in the 

Figure 5.3. 

 

As there was a negative feedback loop between MDM2 and p53, the absence 

of MDM2 results in the instability of p53 network. The absence of MDM2 

caused similar levels of both positive and negative perturbations in the 

network. So removing MDM2 may be not an ideal target for cancer treatment. 

 

The final type of distribution is that there was no change found when the 

dependency matrix in the knock-out test was compared to the dependency 

matrix in the p53 wild type. For example, the effect elements in the 

dependency matrix of ATM depletion remained the same as in p53 wild type. 

The main reason is that ATM has a low connectivity degree (less than 10) in 
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the PKT205/G1 model. According to the distribution of changes, we can 

conclude that the depletion of nodes with higher connectivity degree affects 

more substantially the dependency relationship between remaining nodes. We 

also observed that most deletions result in a transformation of ambivalent 

factors into other types of interactions. This can be explained by the reduced 

number of feedback loops in deletion networks, which disrupts the wild-type 

balance and leads to more direct effects. These predictions demonstrated that 

the p53 network model like PKT205/G1 could provide predictions for dynamic 

mechanisms of p53 pathways. We could utilize the PKT205/G1 model to 

predict internal p53 pathway behaviour under perturbations by carrying out in 

silico knock-out tests. The major changes in the dependency matrix could 

further our understanding of gene activities in response to mutations, such as 

the absence of p53 or other components of the network, and facilitates the 

exploration of potential targets for cancer treatment. 

 

 

5.4  Logical steady state analysis of the PKT205/G1 

After the in silico knock-out tests, logical steady state analysis was performed 

to determine regulatory mechanisms governing the stability of the PKT205/G1 

interactome. In order to investigate the details of p53 pathway mechanisms, 

the 202 nodes were classified into three layers: upstream of p53, p53 itself, 

and downstream of p53. It was found that 65 nodes functioned as upstream of 

p53 in the PKT205/G1 model, and 144 nodes functioned as downstream of 

p53. Because of feedback loops present in the system, 8 nodes functioned as 

both upstream and downstream of p53. Since there were many nodes that 

functioned upstream of p53, their role was tested by Logical Steady State 

(LSS) Analysis. 
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An input signal was added into the PKT205/G1 model to explore the role of 

these 65 upstream nodes on the whole network by logical steady state 

analysis. This input signal was connected to these nodes individually. For each 

node, two scenarios were predefined using a different value of the input signal. 

For example, ATM is an upstream node of p53. The input signal DNA damage 

was connected to ATM by activation (see the next chapter). The state of this 

input signal was preset to “ON” or “OFF”, respectively, and then the state of 

ATM was defined. Then logical steady state analysis was processed and 

states of the other 201 nodes were calculated by CellNetAnalyzer. The results 

for the logical steady state analysis of these 65 upstream nodes are listed in 

Table 5.3 below.  

 

 

Name of node A Population of nodes 

with determined state 

in Scenario 1: node A 

is preset to ON 

Population of nodes 

with determined 

state in Scenario 2: 

node A is preset to 

OFF 

HOXA11 1 155 

NTN1 1 155 

PSMD10 1 155 

TGFB1 154 151 

AATF 156 2 

LTF 154 154 

BCL6 155 155 

SOX4 155 1 

SERPINF1 154 154 

MDM2 154 154 
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DDX5 155 1 

ELAVL1 155 155 

IGF1R 154 1 

ERBB2 154 154 

MYCN 154 154 

HSPA4 154 154 

ZMAT3 155 1 

NCL 155 155 

KLF4 156 156 

PPM1A 155 1 

PLAUR 1 154 

HTATIP2 155 155 

PTTG1 157 155 

E2F1 154 152 

TIAF1 155 1 

CIAPIN1 1 155 

BRCA1 154 1 

PARK2 1 155 

BTG2 155 155 

SGK 1 154 

MUC1 155 155 

MCTS1 155 155 

FAS 154 1 

YBX1 154 1 

HDAC1 1 155 

ID3 1 154 

PADI4 1 155 

POU4F1 155 1 
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MYC 154 154 

RREB1 155 1 

IFNA1 156 158 

CHEK2 154 2 

AXIN1 154 155 

H2AFZ 1 155 

MAPK1 154 154 

VRK1 155 1 

RAF1 154 1 

CSNK2 158 158 

HIPK2 156 156 

CDK2 154 154 

CHEK1 155 155 

HIPK4 155 1 

CDK5 155 1 

PPM1D 155 156 

AURKA 1 155 

PRKD1 155 1 

DYRK2 155 1 

MAPK9 155 1 

CDK9 155 1 

MAPK8 156 156 

EIF2AK2 155 1 

ATM 157 2 

ATR 156 1 

PRKDC(DNA-PK) 155 1 

MDM4 154 154 
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Table 5.3: List of node population with determined states for the 

simulation of G1 version of the model  

Column 1 lists the name of nodes. Column 2 shows the population of nodes with determined 

state when the node in column 1 is ON.  Column 4 shows the population of nodes with 

determined state when the node in column 1 is OFF. 

 

According to the result of logical steady state analysis (Table 5.3), these 65 

nodes were classified into 3 different types:  

 

The first type of result had more than 100 determined states when the input 

signal or state of the node was either OFF or ON and only 1 or 2 determined 

state once the input signal switched to the opposite state. For example, this 

was the case for ATM and ATR. This type of result applied to 36 out of total 65 

upstream nodes. 

 

The second type had the same population of determined states in both 

scenarios. There were 23 nodes of this type, for example, MDM2. 

 

The third type had more than 100 determined states in both scenarios and the 

number of nodes with determined states was different from previous two types. 

There were only 6 nodes in this type: TGFB1, BCL6, PTTG1, E2F1, AXIN1 

and IFNA1. 

 

The factors leading to this phenomenon are complex: the connectivity of 

nodes in the PKT205/G1 model, the position of the node in the whole network, 

whether this node has ambivalent interactions with other nodes, and the 

relationship between the node and negative feedback loops. As a result, we 

decided to investigate by literature search the link between these 65 nodes 
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and an external input signal, DNA damage, which were added into the 

PKT205/G1 model. DNA damage was used as its effects of p53 interactome 

are well studied and it is the most relevant environmental signal for the 

function of p53, development and treatment of cancer.  

 

 

5.5  Construction of the PKT205/G2 model 

In the previous section, we found that the G1 version of the model did not offer 

the opportunity to explore the relationship between the model and external 

signals. As a result, we constructed the PKT205/G2 model. Considering the 

effect from stress signals and the cellular response, we added an input node, 

DNA damage, and an output node, apoptosis to the network model. All 65 

upstream nodes were analysed manually by Gene Ontology (GO) terms to 

confirm the links from DNA damage; the same was done for downstream 

nodes and apoptosis. Apoptosis was chosen as it is one of the main effects of 

p53 activation in response to excessive DNA damage and is the most relevant 

for clinical use of chemotherapeutic compounds.  All GO terms relevant to 

those effects were analysed manually using PubMed documents and other 

online text mining tools (Additional Table 5 and 6). Since the negative 

feedback loop, p53 - MAPK14 (p38) - PPM1D played an important role in the 

PKT38 model, we added a new node MAPK14 and all confirmed interactions 

with it to finalize the network, PKT205/G2. There were 205 nodes and 673 

interactions in the PKT205/G2 model (Figure 5.8).  
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Figure 5.8: Network map of the PKT205/G2 model. 

Input node, DNA damage was represented by turquoise green colour, and output node, 

apoptosis was represented by orange colour. The p53 and MDM2 were marked by red colour 

and the other nodes which interact with p53 were represented by yellow colour. 
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5.6  In silico knock-outs of the PKT205/G2 model  

In this section we describe the details of the process of in silico knock-out tests 

in PKT205/G2 (Table 5.4). Since there were many different effect changes 

found in the in silico knock-out tests of the PKT202 model, we mainly focused 

on the in silico knock-out tests of p53, MDM2, MDM4, ATM, ATR, and BBC3 

(PUMA). Moreover, dual gene depletion was considered for BBC3 and 

CDKN1A (p21). However, it was found that the depletion of CDKN1A did not 

have a strong effect on the BBC3 negative model. The main reason is that 

CDKN1A has a low connectivity degree in the PKT205/G2 and was 

downstream of p53. 

 

There were four types of effect change distribution found in knock-out tests 

described in Table 5.4. The first one is the most complex, in which effects 

changed from ambivalent factor to all other types of effects, weak inhibitor 

changed to no effect or strong inhibitor, and weak activator changed to no 

effect or strong activator. The p53 in silico knock-out test was an example of 

this type (Figure 5.9). 

 

As p53 is the most connected node in the PKT205/G2 model, its depletion 

results in the instability of the whole network. This was described in section 5.3 

and the simulation results above verified it. For example, it was predicted that 

the activated ATM enhanced the expression of CHEK1 strongly in response to 

DNA damage in the p53 mutant model. This prediction was obtained from the 

major change that ATM become a strong activator of CHEK1 in the p53 null 

model and it was validated by experimental data in next chapter.  
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Gene deletion Total 

number of 

dependency 

effect cells 

Number 

of No 

Effect 

cells 

Number of 

Ambivalent 

Factor cells 

Number of 

Weak 

Inhibitor 

cells 

Number 

of Weak 

Activator 

cells 

Number 

of Strong 

Inhibitor 

cells 

Number of 

Strong 

Activator 

cells 

Null 42025 23468 16294 1051 1141 20 51 

P53 41616 35036 6364 46 70 31 69 

MDM2 41616 23443 15797 1119 1184 20 53 

MDM4 41616 23336 16016 1052 1141 20 51 

ATM 41616 23231 16126 1051 1141 18 49 

ATR 41616 23229 16126 1051 1141 20 49 

BBC3 41616 23170 16209 1040 1127 20 50 

BBC3 and CDKN1A 41209 23039 15933 1039 1128 20 50 

 

Table 5.4: Statistical result of in silico knock-out tests for PKT205/G2  

Column 1 shows the name of genes deleted from the model. Column 2 shows the total 

number of effect cells in the dependency matrix. Column 3 lists the number of no effect cells in 

the dependency matrix. Column 4 lists the number of ambivalent factor cells in the 

dependency matrix. Column 5 lists the number of weak inhibitor cells in the dependency 

matrix. Column 6 lists the number of weak activator cells in the dependency matrix. Column 7 

lists the number of strong inhibitor cells in the dependency matrix. Column 8 lists the number 

of strong activator cells in the dependency matrix. ”Null” means no gene was removed from 

the PKT205/G2 model. 
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Figure 5.9: Distribution of changes in the dependency matrix of the p53 

in silico knock-out compared to the wild-type for the PKT205/G2  

P53 was removed from the PKT205/G2 model. Colours symbolize the same effects as in the 

Figure 5.3. 

 

The second type of change distribution was that ambivalent factors only 

changed to no effect, weak inhibitor, weak activator and strong activator; the 

MDM2 knock-out test was an example of this type (Figure 5.10). With an input 

node and output node added in the PKT205/G2 model, the absence of MDM2 

caused more changes in the PKT205/G2 model than in the PKT205/G1 model. 

But the number of major changes was less than the p53 knock-out test. 
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Figure 5.10: Distribution of changes in the dependency matrix of the 

MDM2 in silico knock-out compared to the wild-type for the PKT205/G2  

MDM2 was removed from the PKT205/G2 model. Colours symbolize the same effects as in 

the Figure 5.3. 

 

The third type of change distribution was found in the ATM knockout, whose 

depletion caused a single change, displayed in the Figure 5.11. The MDM4 

knock-out test and ATM knout-out test had this change distribution. The final 

type of change distribution was that no change was found when wild type and 

mutant networks were compared, such as the ATR and BBC3 knock-out tests.  

Since ATM is poorly connected in the PKT205/G2 model, the depletion of ATM 

was found to only result in the abolishment of BCL6 down regulation by DNA 

damage. 
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Figure 5.11: Distribution of changes in the dependency matrix of the ATM 

in silico knock-out compared to the wild-type for the PKT205/G2  

ATM was removed from the PKT205/G2 model. Colours symbolize the same effects as in the 

Figure 5.3. 

 

 

5.7  Logical steady state analysis of the PKT205/G2 

In order to determine how node states changed upon perturbations caused by 

environmental stress signals and learn more about factors contributing to the 

stability of the system, a logical steady state analysis for this model was 

performed (Table 5.5). Logical steady state analysis simulations were 

performed to further the understanding of the p53 function in the PKT205/G2 

model. It was found that the system in the p53-null model was less stable than 

in the p53 wild type model according to the decreasing number of nodes with 
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determined states in the p53–null model (Table 5.5). Since ATM functioned as 

an upstream node of p53 and was induced by DNA damage in PKT205/G2, 

simulations were also processed in the ATM null model. The comparison 

between p53 negative and ATM negative scenarios indicated that the 

population of nodes with determined states was linked to the connectivity of 

the node removed from the PKT205/G2 model. The p53 node has much 

higher connectivity degree than the ATM node, and as a result, the depletion 

of p53 led to the decreased stability of the whole system according to the 

number of nodes that changed from determined states in Table 5.5. The 

second finding was that in the simulation of the p53 knock-out tests, the state 

of some genes remained the same as in the p53 wild type model. Here we can 

draw a conclusion that the states of those genes were independent of the p53 

state. The third observation was relevant to changes in the state of MDM4 that 

depends on p53 status. MDM4 had determined states in the simulation of the 

p53 wild type model. However, when p53 was removed, the MDM4 state 

changed to undetermined when DNA damage was ON. Therefore our 

prediction is that in cells exposed to DNA damage the stable state of MDM4 

depends on the state of p53.  
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Scenario 

name 

Input signal Model type Population 

of 

determined 

states 

Percentage 

of 

determined 

nodes 

Scenario 1 DNA 

damage  

ON 

P53 wild-type 180 87.8% 

Scenario 2 DNA 

damage  

OFF 

P53 wild-type 181 88.3% 

Scenario 3 DNA 

damage  

ON 

P53 knock-out 92 45.1% 

Scenario 4 DNA 

damage  

OFF 

P53 knock-out 92 45.1% 

Scenario 3 DNA 

damage  

ON 

ATM knock-out 178 87.3% 

Scenario 4 DNA 

damage  

OFF 

ATM knock-out 179 87.7% 

 

Table 5.5: List of scenarios in the logical steady state analysis for the G2 

version model  

Four scenarios of logical steady state analysis with different input signals are defined with their 

input signal, model type and percentage of nodes having a determined state. 
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5.8  Construction of the finalized PKT205 model (PKT205/G3) 

We made further improvements to the PKT205/G2 model following an update 

of the STRING database. As a consequence of this update, we re-evaluated 

all protein-protein interactions manually and corrected some of them. The final 

list of interactions is shown in Additional Table 7.  

 

We identified 202 genes or proteins that interacted with p53 in the final 

PKT205/G3 model and this version of the PKT205 model was used for 

analysis and validation in the next chapters.  With the connection of DNA 

damage input node and apoptosis output node; this PKT205 model included 

205 nodes and 677 interactions (Figure 5.12). As described in previous 

chapters, we merged some genes into single nodes when they could not be 

distinguished according to literature evidence: the genes HRAS, KRAS, NRAS 

and RASD1 were regarded as a single node; RAS. CCNA1 and CCNA2 were 

combined into a single node, CCNA; CSNK2A1 and CSNK2A2 were 

combined into a single node, CSKN2. The finalized PKT205 model inherited 

the confirmed links to DNA damage and apoptosis from the G2 version. There 

were 20 upstream nodes of p53 linked to DNA damage node directly. 17 out of 

them were stimulated by DNA damage and the other 3 were inhibited by this 

input node. We found 30 two-step negative feedback loops in the PKT205 

model and p53 participated in 14 of them. Since the negative feedback loop 

between p53 and MDM2 was located in the centre of the whole network, they 

were marked by red in Figure 5.12. There were 77 genes in the PKT205/G3 

model linked to apoptosis with 95 interactions. 56 out of these 95 interactions 

were pro-apoptotic, and 39 were anti-apoptotic. As a result, 18 genes 

functioned as ambivalent factor of apoptosis, for instance, FGF2 both 
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activated and inhibited the apoptosis process. 

 

With the purpose of exploring the internal dependency relationship between 

nodes, we calculated the dependency matrix of the PKT205/G3 model by 

CellNetAnalyzer and performed in silico knock-out tests with particular gene 

deletions. For the wild-type PKT205/G3 model, we found 42025 effect cells in 

the dependency matrix. 23191 were of no effect type, 16,425 were of 

ambivalent factor type, 1,100 were weak inhibitors, 1,240 were weak 

activators, 20 were strong inhibitors and 49 effect cells were strong activators.  

With the aim of exploring the role of single gene on the whole network, we first 

investigated the connectivity of those 205 nodes. The connectivity calculation 

was performed by the NetworkAnalyzer plugin of Cytoscape (Assenov et al, 

2008; Shannon et al, 2003). The results shown in Figure 5.13 revealed the 

distribution of connectivity for 205 nodes in the PKT205/G3 model. The only 

node with more than 100 interactions was p53. 29 nodes had between 10 and 

100 interactions, including DNA damage and apoptosis. The remaining 173 

genes or proteins had fewer than 10 interactions. 
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Figure 5.12: Final PKT205/G3 model network map 

Nodes with different functions were represented by different colours. The green node was the 

input node, DNA damage. The light yellow nodes were the upstream nodes of p53. The p53 

and MDM2 were marked by red. The light green nodes were the other downstream nodes of 

p53 and the output node apoptosis in the bottom was shown by orange. 

 

 

 

Figure 5.13: Connectivity degree distribution in the PKT205/G3 model  

Both axes of the figure are in logarithmic scale and the scatter plot indicates the connectivity 

degree distribution. 

 

 

5.9  In silico knock-outs of the finalized PKT 205 model  

As mentioned in the previous section, the extent of perturbation caused by 

gene deletion was highly affected by the connectivity degree of the gene 

removed. We mainly focused on p53 and those 29 genes whose connectivity 



198 
 

was between 10 and 100. 30 in silico knock-out tests were performed (Table 

5.6). In each knock-out test, one gene was removed from the PKT205 model 

and dependency matrix calculated. It was found that 11 out of 30 in silico 

knock-out tests had major changes in the new dependency matrix when a 

certain node was removed (Table 5.6 and Table 5.7). As a result, we identified 

58 potential predictions of major changes in dependency cells. The validation 

of those 58 predictions is illustrated in the next chapter. 

 

Selected 

Gene 

Total 

effect 

elements 

No 

Effect 

Ambivalent 

Factor 

Weak 

Inhibitor 

Weak 

Activator 

Strong 

Inhibitor 

Strong 

Activator 

Null 42025 23191 16425 1100 1240 20 49 

P53 41616 34709 6690 44 79 28 66 

MYC 41616 23228 15894 1135 1289 21 49 

VEGFA 41616 23935 15159 1137 1307 22 56 

PTGS2 41616 23229 15806 1161 1351 20 49 

CCND1 41616 23395 15554 1216 1381 21 49 

TGFB1 41616 23503 15545 1181 1316 20 51 

IL6 41616 23061 16118 1111 1257 20 49 

MDM2 41616 23169 15925 1166 1285 20 51 

E2F1 41616 23489 15522 1188 1336 20 61 

IFNA1 41616 22952 16256 1100 1240 20 48 

EGFR 41616 23395 15813 1099 1239 21 49 

FOS 41616 23229 15979 1100 1239 20 49 

BCL2 41616 23061 16059 1155 1272 20 49 

CDKN1B 41616 23061 16145 1101 1240 20 49 

RAS 41616 23061 16119 1111 1256 20 49 

FGF2 41616 23061 16173 1084 1229 20 49 
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MMP2 41616 22898 16314 1100 1240 20 44 

PRKCA 41616 23061 16142 1100 1244 20 49 

MAPK8 41616 23061 16095 1127 1264 20 49 

HIF1A 41616 23502 15708 1100 1234 20 52 

ESR1 41616 23171 16010 1116 1250 20 49 

CXCR4 41616 23228 15956 1108 1254 20 50 

CDK2 41616 23228 15977 1099 1242 21 49 

ABCB1 41616 22893 16314 1100 1240 20 49 

MMP1 41616 22895 16314 1100 1240 19 48 

BRCA1 41616 23061 16145 1100 1241 20 49 

PTEN 41616 23061 16119 1116 1251 20 49 

CCNA 41616 23061 16115 1114 1257 20 49 

CSNK2 41616 22953 16256 1100 1240 20 47 

ATM 41616 22955 16256 1100 1240 18 47 

 

Table 5.6: Distribution of effect changes in the dependency matrix upon 

in silico knock-out tests 

Each row in the table corresponds to a single gene deleted from the PKT205/G3 model for 

knock-out test. The value “Null” in the selected gene column represents the wild-type. 
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Table 5.7: 58 predictions obtained by in silico knock-out tests. 
58 major changes from 11 in silico knock-out tests are listed from page 200 to page 204. 

 

In the PKT205/G3 model, negative feedback loops and ambivalent 

interactions between two nodes played an important role to make the whole 

system less sensitive to the external perturbations. For instance, 30 negative 

feedback loops and 39 pairs of ambivalent interactions (39 activations and 39 

inhibitions) were found in the PKT205/G3 model. The participation of negative 

feedback loops may affect the stability of the model more than the ambivalent 

interactions due to their relationship with p53.  
 
According to the number of major changes calculated by CellNetAnalyzer, it 

was found that the depletion of two-step negative feedback loops results in 

more perturbations than the absence of ambivalent interactions in the 

PKT205/G3 network.  
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Deleted 

edges 

Total 

number 

of effect 

elements 

No 

Effect 

Ambivalent 

Factor 

Weak 

Inhibitor 

Weak 

Activator 

Strong 

Inhibitor 

Strong 

Activator 

Null 42025 23191 16425 1100 1240 20 49 

56 

interactions 

for 30 two 

step 

negative 

feedback 

loops 

42025 25650 13992 1084 1205 25 69 

78 

interactions 

for 39 pairs 

of 

ambivalent 

interactions 

42025 23691 15916 1100 1244 22 52 

 

Table 5.8: In silico knock out tests for two-step negative feedback loops 

and ambivalent interactions 

This table lists the number of dependency cells calculated in two in silico knock-out tests for 

particular interaction depletion. 
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5.10  Logical steady state analysis of the finalized PKT 205 model  

As we aimed to investigate the change of gene expression level under 

different environments in response to the change of DNA damage stress, 

logical steady state were performed to determine the state of nodes in the 

PKT205 model. Here we defined four different scenarios with different input 

signals and the state of p53 (Table 5.9). The state of node in those four 

scenarios was shown in Figure 5.14. It was observed that once p53 was 

absent, a large amount of nodes switched from “ON” or “OFF” to 

undetermined state (Figure 5.14 C, Figure 5.14 D and Table 5.9). This finding 

revealed that the whole p53 network became less stable with the absence of 

p53. As we calculated in Table 5.10, more than 50% of nodes remained 

unchanged between two scenarios; the number of genes down regulated was 

larger than the number of genes up regulated when p53 was removed from 

the PKT205 model. The simulation in Table 5.10 predicted that once the cells 

were stimulated by DNA damage, the majority of genes did not switch states. 

 

Scenario name Input signal Model type Percentage of 

determined 

nodes 

Scenario 1 DNA damage ON P53 wild-type 87.8% 

Scenario 2 DNA damage OFF P53 wild-type 88.3% 

Scenario 3 DNA damage ON P53 knock-out 45.6% 

Scenario 4 DNA damage OFF P53 knock-out 46.1% 

 

Table 5.9: List of scenarios for the logical steady state analysis 

Four scenarios of logical steady state analysis with different input signals are defined with their 

input signal, model type and percentage of nodes having a determined state. 
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Source 

Scenario 

Target 

Scenario 

Total 

number 

of  

genes for 

prediction 

Number of 

genes up 

regulated 

Number of 

genes  

unchanged 

Number of 

genes down 

regulated 

P53 wild 

type with 

DNA 

damage 

P53 

mutant 

with DNA 

damage 

202 29 (14%) 113 (56%) 60 (30%) 

P53 wild 

type 

without 

DNA 

damage 

P53 

mutant 

with DNA 

damage 

202 30 (15%) 112 (55%) 60 (30%) 

P53 wild 

type 

without 

DNA 

damage 

P53 wild 

type with 

DNA 

damage 

202 5 (2%) 185 (92%) 12 (6%) 

P53 

mutant 

without 

DNA 

damage 

P53 

mutant 

with DNA 

damage 

202 7 (3%) 181 (90%) 14 (7%) 

Table 5.10: Statistic results of Logical Steady State Analysis  

The distribution of number for 202 p53 interacting genes with different change between 4 

different scenarios was listed. 
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Figure 5.14: Logical steady state analysis result of four scenarios 

The logical steady states of nodes in four scenarios are shown respectively: (a) P53 wild type 

when DNA damage was ”ON”; (b) P53 wild type when DNA damage was ”OFF”; (c) P53 

mutant when DNA damage was ”ON”; (d) P53 mutant when DNA damage was ”OFF”. The 

nodes with state “ON” were represented by green, the nodes with state ”NaN” (un determined) 

were represented by orange, and the nodes with state “OFF” were represented by red. 

 

In order to obtain further insight into the dynamic changes in apoptosis, we 

distinguished the number of 39 anti-apoptotic genes (Table 5.11) and 56 

pro-apoptotic genes (Table 5.12) with different change in the comparison of 

different scenarios. 

 

The changes in the state of anti-apoptotic genes are shown in Table 5.11 and 

those of pro-apoptotic genes are listed in Table 5.12 below. This distribution 

illustrates the reason why the apoptosis output node was also activated in p53 

mutant cells. The majority of those 56 pro-apoptotic genes in Table 5.12 and 

39 anti-apoptotic genes in Table 5.11 had no change once they were treated 

by DNA damage. The absence of p53 caused obvious changes of both 

pro-apoptotic and anti-apoptotic genes once the cells were treated with DNA 

damage. The number of pro-apoptotic and anti-apoptotic genes which were up 

regulated or down regulated increased with the depletion of p53. Among 39 

anti-apoptotic genes, the expression of BCL3, PDGFRB, WWP1, IGF1R, 

PRSS50, EPHB4 and CKS2 was up regulated from p53 wild type to p53 

mutant cells after treatment of DNA damage. The up regulation of 7 

anti-apoptotic genes was also found from p53 wild type to p53 mutant cells 

without DNA damage treatment. Notably, IGF1R (insulin-like growth factor 1 

receptor) and PDGFRB (platelet-derived growth factor receptor, beta 

polypeptide) were up regulated in p53 minus scenarios, which together with 
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FGF2 changes highlights that growth factor mediated signalling pathways are 

important factors contributing to survival of these tumours. Strategies targeting 

on inhibiting those growth factors may promote the death of tumour cells with 

p53 mutation and inhibitors of those anti-apoptotic genes may be suited for 

anti-cancer agents. Among those 56 pro-apoptotic genes, the expression of 27 

genes (Table 5.12) was down regulated from p53 wild type cells to p53 mutant 

cells when those cells were treated by DNA damage and 29 p53 genes (Table 

5.12) were repressed from p53 wild type cells to p53 mutant cells without DNA 

damage. The promotion of those pro-apoptotic genes may be a potential 

strategy for cancer treatments. Moreover, it was found that FAS and p53AIP1 

were up-regulated in p53 mutant cells when treated by DNA damage. FGF2 

(fibroblast growth factor 2(basic)) had both pro-apoptotic and anti-apoptotic 

function in the PKT205/G3 model and it was down-regulated in p53 wild type 

cells or p53 mutant cells in the presence of DNA damage. Approaches that will 

decrease expression of anti-apoptotic genes and increase expression of 

pro-apoptotic genes would improve cancer therapy and therefore these genes 

represent potential therapeutic targets.  
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Table 5.11: Number of anti-apoptotic genes with altered expression 
depending on p53 and DNA damage 

The distribution of anti-apoptotic genes in the PKT205 model that change their expression 

between four different scenarios were calculated by comparing the steady state of the source 

and the target scenario. 
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Table 5.12: Number of pro-apoptotic genes with altered expression 

depending on p53 and DNA damage 

The distribution of pro-apoptotic genes in the PKT205 model that change their expression 

between four different scenarios were calculated by comparing the steady state of the source 

and the target scenario. 

 

5.11  Discussion 

The construction process of the PKT205/G1 model revealed six different types 

of errors caused by text mining. Those errors indicated that there was a 

requirement for manual curation to avoid the inclusion of incorrect interactions 

when the size of our model increased. However, it was also clear that 

automated extraction substantially decreased the time required to build the 

model and provided the only feasible solution of generating the complete p53 

interactome. It also highlighted the need for building databases with better 

NLP (Natural Language Processing) and text mining techniques to avoid those 

artifacts and allow automated extraction for any process with minimal curation.  

 

The simulation results of the PKT205/G1 model indicated that the change of 

dependency relationships between nodes in the model was substantially 

affected by the connectivity degree of the genes. The genes with higher 

connectivity had more significant effect on the internal relationships between 

remaining genes in the model. Those genes which were at the lowest 

connectivity level had no or small effect on the model. The two step negative 

feedback loops and ambivalent interactions between two genes played an 

important role to make the whole system robust to external perturbations; for 

instance, there were both positive and negative pathways between DNA 

damage and apoptosis. The involvement of two step feedback loops may 
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increase the stability of the model compared to ambivalent interactions due to 

their relationship with p53, according to the knock-out tests of two step 

feedback loops in the PKT205/G3 model (Table 5.8). Due to the complexity of 

the network, only two step feedback loops and ambivalent interactions were 

considered here. As we reported in the in silico knock-out tests, p53 was the 

most important factor and the presence of p53 made the whole network more 

stable (Table 5.9). The p53 node was involved in 47% of the two-step negative 

feedback loops but the ambivalent interactions occupied a minority of 

interactions connected to p53 (less than 10%). 

 

By logical steady state analysis, it was found that those upstream genes had 

different effects in determining the state of other nodes and this finding may 

help us evaluate the global effects of these p53 upstream genes onto the 

whole network.  

 

When the DNA damage input signal was switched from ON to OFF, the state 

of the output node, apoptosis was always ON. Once upstream nodes which 

were connected to negative feedback loops or had ambivalent interactions 

were induced by input signals, the majority of nodes in the model had 

determined states irrespectively of the state of the input signal.  This finding 

above indicated the importance of input node selection and the limits of the 

PKT205/G1 model, which was an isolated system and could not communicate 

with the environment. As a result, the PKT205/G1 model was extended into 

PKT205/G2. The advantage of PKT205 in G2 version is that the input signal, 

DNA damage and the output signal, apoptosis were connected to the model 

using Gene Ontology (GO) terms, text mining and manual curation so that the 

effects from the model onto external signals could be investigated. Through 
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the logical steady state analysis of the PKT205/G2, it was found that the whole 

system became less stable when p53 was removed from the network.  

 

The achievement of the PKT205/G1 model was feasibility of the approach to 

construct a p53 complex network model from vast amounts of interaction 

information. The same approach can be used to create an interactome for any 

other gene. The disadvantage of PKT205/G2 is that this was a limited model 

and it only considered the genes or proteins which interact with p53 directly. 

The potential effect from other genes or proteins which interact with p53 

indirectly was ignored. By the investigation of the logical steady state analysis 

in the PKT205/G1model, it was found that the connectivity of nodes played an 

important role in the stability level of the whole network model. Those 

interactions not included in the PKT205/G2 model may have potential effects 

on determining the state of other genes or proteins in the p53 pathways. This 

factor may weaken the predictive power of PKT205/G2 and may cause errors 

in predictions when the simulations are compared with the experimental data. 

In order to improve the PKT205 model, we developed the G3 version of this 

model and finalized PKT205/G3 as the PKT205 model. Table 5.11 and 5.12 

revealed genes that may be targeted as potential cancer strategies. As I 

mentioned in the previous sections, in cells with mutant p53 not treated with 

chemotherapy inducing DNA damage, 29 out of 58 pro-apoptotic genes were 

down regulated, 22 pro-apoptotic genes did not change and only 5 

pro-apoptotic genes were up regulated (Table 5.12). Meanwhile, 38 out of 39 

anti-apoptotic genes remained the same and only FGF2 was down-regulated 

(Table 5.11). This finding illustrated that in tumour cells with p53 mutant, the 

probability of apoptosis was decreased and cells survived. As a result, those 

genes promoting cell death were regarded as potential chemotherapy target. 

For example, we found that 2 pro-apoptotic genes, FAS and p53AIP1 became 
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up regulated, and lead to an increase in apoptosis probability to promote 

tumour cell death (Table 5.12), when cells with the mutant p53 were treated by 

DNA damage. They may be selected as potential target of cancer treatment. 

Several important predictions were obtained from our model, which will help us 

to get deeper insights into the mechanisms of p53 pathways. 
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Chapter 6  Validation of model predictions 

6.1  Introduction 

As described in previous chapters, we finalized the PKT205 model and 

performed in silico analysis. A large amount of predictions were produced from 

the analysis results. With the purpose of measuring the predictive strength of 

our model and validating the simulation predictions we compared those 

predictions with results obtained through literature survey, western blotting 

experiments, microarray expression profiles and ChIP-sequencing data.  

6.2  In silico knock-out predictions and literature validation 

 

Since we performed 30 in silico knock-out tests for the finalized PKT205 model 

presented in the previous chapter, 58 predictions were obtained from those 11 

in silico knock-out tests which had major changes in strong inhibitor or strong 

activator activities (Table 6.1). All those 58 predictions were investigated 

manually by PubMed and Google on line searching. Changes that we didn’t 

confirm through this approach were named potentially novel predictions (PNP) 

reflecting limitations of manual searches of the vast p53 related literature. We 

were able to confirm 4 out of these 58 predictions through literature searches, 

focusing on major changes caused by the p53 deletion which were expected 

to have strong experimental effects and they are listed below: 

 

1. The effect of DNA damage onto FAS (Fas (TNF receptor superfamily, 

member 6)) changed from an ambivalent factor in the p53 wild-type model to a 

strong activator when p53 was removed. Manna et al (2011) have determined 

that in p53 minus cells, Fas protein levels are elevated under DNA damage 

compared to p53 wild-type cells, which is in agreement with our prediction 



223 
 

(Manna et al, 2011). 

 

2. Similarly to FAS, the effect of LATS2 (LATS, large tumor suppressor, 

homolog 2 (Drosophila)) onto apoptosis was changed from an ambivalent 

factor in the p53 wild-type model to a strong activator when p53 was removed. 

It was found that in both p53 wild-type (A549) and p53 minus cells (H1299), 

LATS2 was able to induce apoptosis and that apoptosis is slightly increased in 

H1299 as measured by PARP and caspase 9 cleavage (Ke et al, 2004). 

 

3. We observed that the effect of DNA damage onto CHEK1 (checkpoint 

kinase 1) changed from an ambivalent factor in the p53 wild-type to a strong 

activator when p53 was removed. CHEK1 protein levels were found to be 

higher in p53 -/- cells than in p53 +/+ HCT116 colorectal cancer cells treated 

by daunorubicin (Gottifredi et al, 2001), which also matches our predictions 

(Table 6.1). 

 

4. It was reported that KLF4 (Kruppel-like factor 4(gut)) caused more reduction 

of CCNB1 (cyclin B1) expression in p53 -/- HCT116 than in p53 +/+ HCT116 

cells (Yoon & Yang, 2004), which matched our model prediction.  

 

However, one prediction out of those 58 predictions was found opposite to the 

literature evidence. The prediction pointed out that IFNA1 (interferon, alpha 1) 

enhanced TLR3 (toll-like receptor 3) in p53 mutant cells compared to p53 wild 

type cells. But this was opposite to the fact reported by Taura et al that IFNA1 

with the effect of DNA damaging drug 5-fluoro-uracil(5-FU) reduced the 

expression of TLR3 in p53 -/- HCT116 cell compared to p53 +/+ HCT116 cells 

(Taura et al, 2010). 
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Table 6.1: Validations of model predictions of the in silico knock-out test  

This table lists 58 predictions in the selected gene deletion background. Some of these 

predictions were verified by existing literature survey or laboratory based experiments, and the 

other was potential novel predictions (PNP). 

 
 

6.3  Western blotting validation 

In the previous section, we investigated 58 potential predictions by literature 

survey, and found that four predictions were confirmed by literature evidence, 

whereas one prediction was opposite to the literature evidence. We performed 

lab experiments for further validations, which enabled us to confirm 2 

predictions by western blotting. As seen in Table 6.1, once p53 was absent, 

the stimulation of CHEK1 by ATM or ATR was enhanced by its phosphorylation. 

The western blotting experiments obtained are displayed (Figure 6.1C) and 

have validated those two predictions as CHEK1 phosphorylation on ATM/ATR 

specific site increased in SAOS2 cells that are p53 deficient when compared 

with U2OS cells that have wild type p53.The bars representing stimulated 

CHEK1 expression were marked in a red rectangle (Figure 6.1C). These 

results also demonstrated that ATM and ATR maybe more active in p53 minus 

background. Figure 6.1 explains this change by presenting a subset of our 

model structure. With the presence of p53, there were both positive and 

negative paths from ATM to CHEK1. The negative path through p53 made 

ATM to be an ambivalent factor of CHEK1. Once p53 was deleted, only the 

positive path from ATM to CHEK1 remained and the expression level of 

CHEK1 was stimulated by the activation of ATM. 
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Figure 6.1: Positive and negative pathways from ATM/ATR to CHEK1 

(a) Positive and negative pathways from ATM/ATR to CHEK1 in p53 wild type cells as known 

from literature survey; (b) Positive and negative pathways from ATM/ATR to CHEK1 in p53 

minus cells; (c) Chk1 (CHEK1) activation is increased in p53 negative background. U2OS 

cells that have functional p53 and SAOS2 cells that lack functional p53 were treated with 

10 µM etoposide for 16 hours. Cell extracts were analyzed by SDS PAGE and western blot 

analysis using antibodies against total Chk1, ATR and ATM. ATM phosphorylated Chk1 at 

serine 1981 and ATR phosphorylated Chk1 at serine 345. 
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.  

6.4  Genome wide experimental validation 

Although we verified those potential predictions by literature survey and 

western blotting, those confirmed predictions constituted a small percentage of 

the total predictions. As a result, we turned to genome wide experiments for 

further validation of the predictive strength of our model. Here microarray 

experimental data in three different types of cell lines were utilized for 

validation: U2OS human osteosarcoma cells, SAOS2 cells are also human 

osteosarcoma cells, and HCT116 human colon carcinoma cells. U2OS human 

osteosarcoma cells were p53 wild type; SAOS2 cells had non-functional p53. 

HCT116 human colon carcinoma cells included two different types for p53: 

p53+/+ and p53-/-. Results of microarray experiments in colon cancer cells 

were obtained from results published in GSE10795 from PubMed (Wilhelm et 

al, 2008). All microarray results described in this study will be deposited in 

publicly accessible database. We compared our model prediction from logical 

steady state analysis with microarray experimental data for those four cell 

lines. DNA microarray data provides gene expression data at a steady state 

rather than in a dynamic process and it is difficult to obtain time series data in 

certain situations (Siegel et al, 2006), such as the research of individual 

cancer patients. As a result, DNA microarray data was regarded as qualitative 

data and we assigned finite signs to represent the gene expression level so as 

to compare gene expression between different cell lines or samples. 

Meanwhile, logical steady states include finite state values and those states 

were correlated or determined by logical functions such as AND, OR and NOT. 

This simplification facilitates the comparison of gene expression between 

different cells or samples. As we mentioned in the method chapter, we used an 

approach to compare model predictions and microarray expression data.  
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Firstly, the distribution of genome wide gene expression changes between 

different cell lines either treated by DNA damage or not was investigated. Then 

the median of expression values for genes corresponding to multiple probes 

was calculated, in order to reduce noise. The fold changes between different 

scenarios were calculated according to the approach described in the method 

chapter to measure the gene expression change. The heat map of median 

expression value were represented by Genesis (Figure 6.2) (Sturn et al, 2002). 

The gene expression profile was analysed by fold changes and p-values. 

These data were provided by the Faculty of Life Science Microarray Core 

Facility. All expression profiles were filtered by fold change more than 1.5 and 

p-value less than 0.05.  

 

After significant genes whose expression level were up regulated or down 

regulated, were identified, the functional annotation analysis of those probe ids 

was performed using DAVID (Huang et al, 2009) (Additional Table 8) to 

explore the biological functions of activated genes which interact with p53. 

 

Those GO terms detected by DAVID in Additional Table 8 indicated that the 

target genes of p53 exert diverse biology activities in the p53 wild type cells in 

response to DNA damage. Once p53 lost its function and was absent in the 

p53 mutant cells, the whole network became instable and biological functions 

occurring in normal cells were disturbed in the p53 mutant cells. Additional 

Table 8 revealed a shift in apoptosis, cell cycle, genes senescence and DNA 

repair process which p53 target genes were involved in, when p53 was 

deficient. 
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Figure 6.2: Genome-wide analysis of p53 targets in U2OS and SAOS2 

cells 

In Figure 6.2A, fold change of U2OS cells treated with etoposide versus untreated U2OS cells 

(first column), and fold change of SAOS2 cells treated with etoposide versus untreated 

SAOS2 cells (second column). Enlargements show 30 genes with the largest positive (top) 

and negative (bottom) fold change. In Figure 6.2B, fold change of U2OS cells treated with 

etoposide versus untreated U2OS cells (first column), and fold change of SAOS2 cells treated 

with etoposide versus untreated SAOS2 cells (second column). Enlargements show 30 genes 

with the largest positive (top) and negative (bottom) fold change. In Figure 6.2C, fold change 

of untreated SAOS2 cells versus untreated U2OS cells (first column), and fold change of 

SAOS2 cells treated with etoposide versus U2OS cells treated with etoposide (second 

column). Enlargements show 30 genes with the largest positive (top) and negative (bottom) 

fold change. In Figure 6.2D, fold change of untreated SAOS2 cells versus untreated U2OS 

cells (first column), and fold change of SAOS2 cells treated with etoposide versus U2OS cells 

treated with etoposide (second column). Enlargements show 30 genes with the largest 

positive (top) and negative (bottom) fold change. 

 

 

As it was found that there exists different biological function between the 

microarray experimental data and the prediction of the PKT205/G3 model 

(Additional Table 8), it was necessary to compare the gene expression 

changes in microarray experimental data with the PKT205/G3 model to 

evaluate the predictive strength of my model.  

 

Our model simulation results were compared with the microarray experimental 

data mentioned in the beginning of this section. Predictions were classified as 

true, small error or large error as described in Materials and Methods (section 

2.6.6).  
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Table 6.2: Model evaluation by logical steady state and microarray 

analysis by approach described in method chapter 

The changes of gene expression in experimental microarray data were compared with model 

simulation results. The number of true predictions, small errors, large errors and their 

percentage were calculated and listed. 

 

The true prediction percentage ranged from 52% to 71% and the large error 

predictions occupied less than 6% of the total (Table 6.2). These notable 

results revealed the strong predictive strength of my model and provided 

positive feedback to test our hypothesis that a Boolean model is an efficient 

tool to investigate p53 pathways induced by DNA damage will contribute to 

knowledge. It was found that the comparison between experimental 

microarray data in different cell types and model simulations produced 

different evaluation results. Although there may be noise affecting the 

microarray experiments under different conditions, one possibility is that some 

of those 202 genes which interact with p53 in the PKT205/G3 model may be 

cell specific. 

 

For further exploration, we classified the number of pro-apoptotic and anti 

apoptotic genes verified in those microarray data with the different change 

trends (Table 6.3). 

 

Pro-apoptotic and anti-apoptotic genes from the PKT205 model were 

identified in microarray analysis of U2OS (p53 positive), SAOS2 (p53 negative) 

human osteosarcoma cell line (200 genes from the model were analysed), and 

HCT 116 (p53 positive and negative) human colon cancer cell lines (169 

genes from the model were analysed). The changes of these genes between 

different samples were classified into three categories: gene expression level 
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up regulated, gene expression level unchanged, gene expression level down 

regulated. It was found that most of these genes fall in to the category of gene 

expression unchanged. Then the behaviour of 77 genes that regulate 

apoptosis in the PKT205/G3 model among those genes selected from the 

experimental data was investigated. Comparing microarray data for U2OS 

cells with DNA damage to SAOS2 cells with DNA damage, eight pro-apoptotic 

genes (FGF2, CD44, DUSP2, FDXR, PEG3, DFNA5, FAS, and TNFRSF10B) 

were found to be down regulated and four anti-apoptotic genes (IGF1R, 

DDIT4, AR, and C12orf5) were found to be up regulated. Activating these eight 

pro-apoptotic genes and inhibiting of those four anti-apoptotic genes may be 

targets of anti cancer agents to promote tumour cell death in p53 mutants. 

Comparing microarray data for SAOS2 cells without DNA damage with 

SAOS2 cells with DNA damage, 11 pro-apoptotic genes (BAX, TLR3, CDC25A, 

DDIT4, SIVA1, COL18A1, BBC3, ATF3, NOTCH1, DKK1, and AR) were found 

to be up regulated and 7 anti-apoptotic genes (DUSP4, IL6, PDGFRB, CD44, 

PRKCA, TGFA and VEGFA) were found to be down regulated. Those genes 

may be utilized as potential markers to monitor p53 mutant tumour cell death 

for cancer patients with UV or IR treatment. Remarkably, the growth factors 

and receptors FGF2 and IGF1R were identified as common factors, and 

PDGFR and TGFA as specific factors, contributing to U2OS human 

osteosarcoma and HCT116 colon cancer cells growth, respectively (Table 6.3). 

For example, IGF1R is an anti-apoptotic gene up regulated in SAOS2 cells 

when compared to U2OS cells, whereas FGF2 which can be both pro and 

anti-apoptotic is up regulated in SAOS2 cells. In HCT116 cells with mutant p53 

similar to SAOS2, there is up regulation of anti-apoptotic IGF1R, but PDGFRB 

and TGFA (transforming growth factor, alpha) are also up regulated and FGF2 

does change in these cells (Table 6.3), indicating that both general (IGF1R) 

and cell type specific (PDGFRB and TGFA) pathways were uncovered by the 
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model. These results provide a genome wide validation of the model and the 

first evidence of its potential use as a therapeutic tool in cancer care. 
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Table 6.3: Number of pro- and anti-apoptotic genes with altered 

expression depending on p53 and DNA damage in human osteosarcoma 

and colon cancer cell lines. 

Table 6.3A lists all genes from the PKT206 model were identified in microarray analysis of 

U2OS (p53 positive), SAOS2 (p53 negative) human osteosarcoma (200 genes from the model 

were analysed) and HCT116 (p53 positive and negative) human colon cancer cell lines (169 

genes from the model were analysed). Table 6.3B lists pro-apoptotic genes from the PKT206 

model identified in microarray analysis. Table 6.3C shows anti-apoptotic genes from the 

PKT206 model identified in microarray analysis. Results were obtained by comparing the 

steady state of the source and target scenario. 

 

6.5  ChIP-seq result validation 

In order to refine the model and increase its predictive powers we wanted to 

determine the differences of p53 isoforms interactions that have been 

phosphorylated or acetylated in response to DNA damage. Many 

posttranslational modifications of p53 have been described (Figure 1.7) and 

are a results of activation of upstream regulators and in response to cellular 

stress. The novel technique ChIP-seq has the capacity to differentiate 

between activities of different p53 isoforms. These isoforms of p53  are 

created by posttranslational modifications by several enzymes like kinases 

including ATM, ATR, DNA-PK for serine 15 (Tibbetts et al, 1999), HIPK2 

(homeodomain interacting protein kinase 2) (Hofmann et al, 2002), DYRK2 

(dual-specificity tyrosine-phosphorylation-regulated kinase 2) (Taira et al, 

2007), AMPKα (AMP-activated protein kinase catalytic subunit α) (Okoshi et al, 

2008) and MAPK14 (p38 mitogen activated protein kinase) (Perfettini et al, 

2005) for serine 46. But mainly S15 is targeted by ATM/ATR kinases in 

response to DNA damage and S46 is involved in p53AIP1 induction of 
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apoptosis (Oda et al, 2000). ChIP-seq is a high-throughput sequencing 

technology and consists of the following steps using the SOLiDTM system: at 

first, the DNA-binding protein is cross-linked to DNA, secondly, chromatin was 

isolated and DNA was sheared, then chromatin was precipitated with protein 

specific antibody, after that, the cross-link was reversed and the protein was 

digested (Tallack et al, 2010). The SOLiD fragment library was constructed 

and certain adapters were ligated to DNA fragment. We analysed previously 

published data (GSE22186) that describes how total p53 genome occupancy 

changes comparing to p53 phosphorylated on serine 15 and serine 46 in 

U2OS cells treated with etoposide (Smeenk et al, 2011). Smeenk et al (2011) 

treated U2OS cells by Actinomycin D and Etoposide to explore cell cycle 

arrest and apoptosis caused by phosphorylation of serine 15 of p53 and serine 

46 of p53. According to comparison results from ChIP-seq analysis, they found 

that phosphorylation of serine 46 of p53 has a stronger effect on apoptosis 

than phosphorylation of serine 15. We compared the p53 target genes using 

their official gene symbol, which is a simplification of gene name description in 

different ChIP-sequencing samples respectively in Table 6.4. We obtained  

ChIP-seq results from GSE22186 in PubMed, which were reported by Smeenk 

et al, identified  genes or proteins included in the PKT205 model (Smeenk et 

al, 2011).  

 

I compared the genes reported as targets in U2OS cells exposed to certain 

treatments listed in Table 6.4, with 202 gene nodes in our PKT205 model. 

Those 177 genes found in the experiment of U2OS cell treated with Etoposide 

where p53 –DO1 antibody was used for immunoprecipitation are shown in 

Table 6.4, 13 out of 177 genes matched the name of nodes in our PKT205 

model in Table 6.4 below. Comparing the 13 genes found in the experiment of 

U2OS cells with Etoposide treatment with 77 genes which regulate apoptosis 
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in the PKT205/G3 model, it was found that 9 out of those 13 matched my 

model prediction as regulators of apoptosis in p53 wild type cells in response 

to DNA damage. However, the other 4 genes below: ZMAT3, RRM2B, DDB2, 

and EDA2R were not found in the PKT205/G3 model. Those 4 genes may be 

potential apoptosis regulators predicted by the ChIP-seq experimental data. 

 

Compared with previous results for ChIP-seq data of U2OS cells with 

Etoposide and p53-DO1 antibody treatment, PCNA was a new gene found to 

be involved in apoptosis. We can infer that PCNA is specific to the 

phosphorylation of serine 46 of p53 and is involved in the apoptosis activity 

caused by this phosphorylation. 

 

In summary, this ChIP-seq data from literature (Smeenk et al, 2011) verified 

that some of the p53 target genes in the PKT205/G3 model functioned as 

regulators of apoptosis and new genes involved in apoptosis were revealed, 

which were uncovered in the PKT205/G3 model. Moreover, PCNA was found 

to be specific to the apoptosis caused by the phosphorylation of serine 46 of 

p53.   
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Number of 

significant 

genes in the 

experiment 

Cell type in the 

experiment 

Treatment 

utilized in the 

experiment 

The 

significance 

criteria 

Number of 

genes found in 

the PKT205 

model 

177 U2OS cell Etoposide 

treatment and 

p53-DO1 

antibody 

Expression  

changed more 

than 1.7 fold 

13 

(BTG2; 

ATF3; 

TGFA; 

ZMAT3; 

TLR3; 

CDKN1A; 

TP53INP1; 

RRM2B; 

FAS; 

TCF7L2; 

DDB2; 

SERPINB5; 

EDA2R) 

 

94 U2OS P53-pS46 

antibody 

More than1.2 

fold in 

expression 

between 

Actinomycin D 

and Etoposide 

8 

(GADD45A; 

TGFA; 

FHL2; 

ZMAT3; 

CDKN1A; 

DDB2; 

PCNA; 

EDA2R) 
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Table 6.4: P53 target gene verified by ChIP-seq data 
This table shows p53 target genes verified by ChIP-seq experimental data (Smeenk et al, 

2011). 

 

6.6  Discussion 

By performing in silico knock-out tests, 58 novel predictions were produced.  

Four predictions out of them were confirmed by previous literature evidence 

and one of them did not agree with predictions. Two predictions were verified 

by western blotting experiments. The other predictions were consistent with 

literature work or potential novel prediction. Taking into account the limitation 

of text mining methods from literature, these novel predictions can be used for 

developing novel targets in cancers carrying mutations mimicked in the in 

silico knock-out tests. Furthermore, combining multiple mutations in silico to 

match mutations found by tumour genome sequencing will provide exciting 

opportunities for personalizing treatment specifically for each individual patient 

or tumour. During the literature search, evidence for p53 knock-out test 

predictions were easier to find than for other gene knock-out test. This may be 

due to particularly strong interest in this gene and current research 

achievements on cancer research. 

   

Our findings highlighted the possibility of using CHEK1 modulators as a novel 

cancer therapy. Since there are defects in p53 pathways of most tumour cells, 

the CHEK1 kinase plays an important role to mediate cell cycle arrest in those 

tumour cells that lost p53 function. It was found that tumour cells are deficient 

in the G1 checkpoint, and arrest in S and G2 check points to repair DNA 

damage. The S and G2 checkpoint is mediated by CDC25A (cell division cycle 

25 homolog A (S. pombe)), which is a target of CHEK1; siRNA (small 

interfering RNA) targeting CHEK1 was able to prevent the degradation of 
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CDC25A and led to abrogation of the checkpoint (Chen et al, 2006). Our 

model suggested that upon DNA damage, ATM, ATR and CHEK1 were all 

up-regulated in the absence of p53, and that CHEK1 inhibits CDC25A. Those 

predictions from our model can better explain why CHEK1 pathway are 

regarded as a potential chemotherapeutics target for cancer treatments (Chen 

et al, 2009). Furthermore, these predictions indicate that any potential 

treatment should take into account whether the tumour is p53 positive or 

negative.  

 

To verify our model prediction by additional method to literature survey, we 

turned to genome experimental data for validations. The comparison between 

model simulation results and microarray experimental data were designed to 

estimate the predictive strength of our model. As there is a difference in gene 

expression levels in different cell lines, a dynamic threshold which was 

determined by the mean value and standard deviation value of the log ratios 

was defined. Then the mean value and standard deviation of fold change 

distribution in comparisons between different scenarios was calculated. But a 

larger difference was found between two samples from different cell lines were 

compared. For instance, the mean value of the fold change of gene 

expression in U2OS compared to SAOS2 not treated by etoposide was 3 and 

the standard deviation value was 15.9. This indicated that there was a large 

difference between the expression levels in U2OS and SAOS2, which is the 

reason why distributions of expression values had to be normalised. As we 

found in Table 5.14, more than 50% of genes in our model simulation did not 

change between different scenarios. However, overall model was a success 

and true prediction ranged from 52% to 71% depending on the cancer cell 

type used for validation. 
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For further validation of our model structure, we utilized ChIP-sequencing data 

to verify the p53 target genes. According to the comparison results between 

different samples, the binding regions of p53 target genes differed with 

different antibody treatment. This finding revealed the difference in p53 

isoforms and is important for the establishment of sub network model from the 

PKT205 model corresponding to different types of cancer cells (Figure 6.3). 

Figure 6.3 shows a sub network of the p53 pathway for p53 regulated cell 

cycle arrest in response to DNA damage (UV and IR). This model will be 

analysed by simulations with input signals which are predefined by random 

states so as to explore the dynamic activity of genes that are involved in cell 

cycle arrest. Considering the isoforms of p53, the PKT205 model may be 

improved in two different directions: the first one is to divide the node of p53 

into several nodes, which correspond to the isoforms of p53. For instance, the 

ATM can phosphorylate p53 at serine 15 and this phosphorylation will be 

linked to the node representing the isoforms of p53 phosphorylated at serine 

15 (Figure 6.3). This improvement may help us obtain further understanding of 

the mechanisms in contrast with the current situation where all interactions 

were linked to the same node, p53. Main point of making models specific for 

p53 isoforms is to increase selectivity of the flow of information from the 

environmental signal to the cellular process. At the moment apoptosis 

prediction relies on the dependency matrix calculations and number of 

pro-apoptotic and anti-apoptotic genes. The power of ChIP-seq 

superimposition to the model is that it will identify specific upstream signals 

(for example, facilitate development/use of chemotherapy compounds) that 

will selectively target kinases that phosphorylate S46 on p53 to only activate 

subset of genes specific for that isoforms.  

 

 



257 
 

 
 

Figure 6.3: Sub network established on the basis of the PKT205/G3 

model 

The input nodes of this sub network were represented in green colour and the output node 

was marked in orange colour. The other nodes in the network were represented in yellow 

colour. The node”p53Ser15” represents phosphorylation of serine 15 of p53 and the 

node ”p53Ser20” represents phosphorylation of serine 20 of p53. They are connected by 

activation links which are represented in blue colour.  

 

The second improvement is to establish a sub network of the PKT205 model 

which is cell specific. For example, we could generate a p53 network model 

specific for breast cancer cells. Genes can be chosen according to clinical 

microarray or ChIP-seq experimental data and the interactions could be 

introduced into this sub network model on the basis of interactions included in 
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the PKT205/G3 model. This may reduce the noise caused by the complexity of 

the network, in which some interactions may be cell specific, and will facilitate 

further simulations. 
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Chapter 7  Discussion 

7.1  Use of logical models in cancer research 

The use of Boolean networks in cancer research has been reported in a few 

other studies. For example, Ghaffari et al (2011) designed a Boolean model of 

gastrointestinal cancer comprising 17 genes (Ghaffari et al, 2011), whereas 

Chaves et al (2009) constructed a Boolean network with 20 nodes to 

investigate the dynamics of the NF-κB (nuclear factor 

kappa-light-chain-enhancer of activated B cells) pathway in controlling 

apoptosis (Chaves et al, 2009). Calzolari et al (2007) designed a Boolean 

network with 47 genes that regulate apoptosis and investigated the 

relationship between genes and selective control of cell populations (Calzolari 

et al, 2007). Zhang et al (2008) constructed a Boolean network for T cell large 

granular lymphocyte (T-LGL) survival (Zhang et al, 2008), which consisted of 

58 nodes and 123 edges and provided an insight into the long-term survival of 

cytotoxic T lymphocyte (CTL) in T-LGL leukaemia. Mai et al (2009) constructed 

a Boolean network including 40 nodes involved in apoptotic pathways and 

demonstrated that apoptosis is an irreversible process (Mai & Liu, 2009). Ge 

et al (2009) constructed Boolean networks to investigate the dynamics of 

negative feedback loops of p53 pathways. They compared the dynamics of a 

stochastic versus deterministic model and showed that the Boolean model 

was able to predict the dominant process in the system (Ge & Qian, 2009). 

 

There were two new published research articles for p53 that used network 

modelling approaches. The first one utilized Boolean modelling approach to 

investigate the p53 and NF-κB pathway in response to DNA damage (Plotz & 
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Naumann, 2012). This Boolean network consists of 96 nodes and 98 

interactions and represents the p53 and NF-κB pathway to induce apoptosis in 

response to SSBs (DNA single strand breaks) and DSBs (DNA double-strand 

breaks) stress signals. Predictions from models with p53 presence and p53 

absence were both validated by literature work and experimental results. In 

this report, a core regulatory network was generated by decreasing the size of 

the original network and simulations were performed to identify candidate 

target proteins for cancer therapies. In addition, simulations of certain genetic 

disorders were performed and predictions were produced. The 117 protein 

defects which contributed to carcinogenesis were explored on the basis of 

simulations. Comparing with this achievement, the PKT205 model has more 

extensive coverage of p53 pathways and includes the most complete p53 

interactome to date. In addition, the PKT205/G3 model provides evidence of 

its potential use in individualized cancer therapy through assessment of 

apoptotic potential of chemotherapy in osteosarcoma and colon cancer. The 

second one was reported by Isik et al and they investigated cyclic pathways in 

which p53 was involved, by using a newly designed score flow algorithm (Isik 

et al, 2012). A Cytoscape plug-in was developed on the basis of this algorithm 

and was used to analyse 30 KEGG pathways. The initial raw data for input for 

network models was based on ChIP-seq experimental data and microarray 

experimental data, which were utilized to predefine the score of nodes. They 

also performed in silico knock-out tests for p53 and verified that apoptosis 

activity was prevented by the absence of p53. These simulation results 

indicated that the signal transduction score flow algorithm played a useful role 

for the improvement of drug design to promote apoptosis and disturb cell cycle 

in tumour cells. This Cytoscape plug-in provides an alternative way to validate 

my PKT205 model and is useful for further improvement and analysis, it will 

help me to gain more details about p53 biological activities in response to 
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diverse cellular stress stimuli, such as DNA damage.   

 

The simulations using the PKT38 model indicated different effects on the 

outcome of cellular stress signals, which were obtained by the analysis of 

dependency matrix in section 3.3. Different input signals exerted different 

effects on the same output node. Since we established the PKT38 and PKT62 

models using manual literature surveying, the model simulation results 

revealed that extracting interaction information from literature to construct a 

p53 pathway model is a promising approach to investigate dynamic 

mechanisms in p53 pathways induced by DNA damage, but also requires the 

assistance of computational tools to extract protein-protein interaction 

information more efficiently. This led us to creating an interface program for 

automated extraction of literature from STRING database that has confidence 

score schema using existing databases. This substantially accelerated the 

literature survey and generation of the final model. Analysis of this small 

network also indicated that the negative feedback loops play an important role 

in decreasing the sensitivity of the p53 network to external environmental 

stress signals and retain the stability of p53 network. 

  

p53 acts as a tumour suppressor and plays a crucial role in protecting cells 

against cancer and genetic instability caused by DNA damage (Brown & 

Attardi, 2005). The loss of p53 function is common in many cancer cells, 

highlighting its importance for medicine. However, the vast number of reports 

presents a problem for selecting and extracting relevant p53 related 

information. In order to overcome this problem, we surveyed protein-protein 

interaction databases, and selected the STRING database as the main data 

resource to extract protein-protein interactions as it provided information about 

the nature of interactions (activation or inhibition) and was frequently updated. 
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During the manual curation of interaction records, we found six types of errors 

in the STRING database. Because of the variety of natural language, which 

makes it challenging to extract protein-protein interaction information from 

publications accurately and efficiently and limits the performance of text 

mining tools, manual curation was performed for all automatically extracted 

information so as to reduce the perturbations caused by text mining errors.  

 

Since there are thousands of reported gene interactions with p53, we 

automatically extracted all genes interacting with p53 from the STRING 

database. This led to a model with more than 2000 nodes that included 

several layers of direct and indirect p53 interactants. According to 

measurements of simulation times, it was found that a large amount of 

feedback loops in the p53 interaction network was the major barrier which 

prevented CellNetAnalyzer from producing functional analysis results in a 

reasonable amount of time. This model was simplified by eliminating indirect 

interactants, and further manual curation resulted in the generation of the 

present PKT205 model.  

 

Once the protein-protein interaction information relevant to p53 was 

successfully retrieved and curated, the PKT205/G1 model and the PKT205/G2 

models were constructed. The advantage of PKT205/G1 model is that it 

facilitates the simulation and functional analysis by reducing the network size 

and provided a series of predictions resulting from in silico knock-out tests. 

However, the PKT205/G1 model lacks the communication with environmental 

factors, which is why it was extended into the PKT205/G2 model. This model 

included the interaction links with DNA damage and apoptosis. Since the 

STRING database had been updated in the meantime, we further updated this 
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model and created the PKT205/G3 model. In the analysis of these three 

versions of the PKT205 model,  

PKT205/G3 is the final version of the PKT205 model, and was used for in 

silico knock-out tests and for the logical steady state analysis in order to 

predict the dynamic changes of the p53 pathways in response to particular 

gene depletion perturbations. Those predictions furthered our understanding 

of the role of p53 target genes in the apoptosis process, such as p53AIP1, 

which induced apoptosis (Oda et al, 2000), and FGF2 which both promotes 

(Kim et al, 2004) and inhibits apoptosis (Karsan et al, 1997). The major finding 

obtained through knock-out tests and experimental validations are discussed 

in the next sections. 

 

 

7.2  Prediction of logical steady states in p53 knock-out test 

Knock-out simulations allowed us to mimic p53 mutants potentially found in 

cancer and generate predictions of the effects of DNA damage on cellular fate. 

The percentage of change for pro-apoptotic and anti-apoptotic genes is shown 

in Table 5.11 and Table 5.12. These distributions of changes in Table 5.11 and 

Table 5.12 illustrate the probability of cell death and potential mechanisms of 

cancer treatment. For instance, in cells with mutant p53 not treated with 

chemotherapy inducing DNA damage, 29 out of 58 pro-apoptotic genes were 

down-regulated, 22 pro-apoptotic genes do not change and only 5 

pro-apoptotic genes were up-regulated. Meanwhile, 38 out of 39 anti-apoptotic 

genes remained the same and only FGF2 was down-regulated. This finding 

illustrated that in tumour cells with p53 mutations, the probability of apoptosis 

process was decreased and cells survived. When cells with the mutant p53 
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were treated by DNA damage, only two pro-apoptotic genes, FAS and 

p53AIP1 became up-regulated, and led to an increase in apoptosis probability.  

 

Analysis of the expression changes of genes that control apoptosis using 

steady state comparisons between different scenarios, in silico and in two 

different types of cancer cell types (Tables 5.11-5.12, Table 6.3), produced 

several important predictions that may have direct therapeutic implications. 

First, FGF2 which can both inhibit and activate apoptosis is the only factor 

altered in DNA damage treated cells that do not have its p53 status altered, 

indicating its important role in p53 mediated apoptosis and highlighting its 

therapeutic potential. Furthermore, this type of analysis identified seven 

anti-apoptotic genes that are up regulated in the p53 mutant scenario and 

potentially contribute to the proliferative and resistant phenotype of p53 minus 

tumours (Table 5.11). Therefore these genes should be targeted with inhibitors 

to successfully treat cancer carrying p53 mutations. On the other hand, a large 

number of pro-apoptotic genes are down regulated in p53 mutant cells 

according to the model, identifying them as potential therapeutic targets for 

activation (Table 5.12).  Further analysis of the subset of genes relevant to 

the model that we found changed in microarray data revealed that the loss of 

p53 up regulates the IGFR1 gene in both osteosarcoma and colon cancer cell 

lines. Remarkably, our data identify growth factors as a major level of control 

of anti-apoptotic activities in p53 negative cells irrespectively of DNA damage. 

IGF1R is up regulated in silico in both SAOS2 and HCT116 p53 minus cells 

(Table 6.3). In addition, PDGFRB, IGFR1R and TGFA are all up regulated in 

HCT116 p53-/- cell lines when compared to the HCT116 p53+/+ plus cell lines 

(Table 6.3). Our analysis highlighted one factor (IGF1R) that is found up 

regulated in p53 negative cells in the model and at least two different cancer 

cell lines, and in addition indicated that different cell lines may have additional 
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growth factor combinations and dependencies, as colon cancer cells not 

exposed to DNA damage had up regulated PDGFR whereas SAOS2 cell did 

not, when compared to their p53 positive counterparts. This, together with the 

mentioned role of FGF2 highlights the crucial role of growth factors and their 

receptors as therapeutic targets in p53 negative cancer.  

 

 

7.3  Experimental validations of predictions 

As the system biology approach is a combination of computational and 

experimental methodologies, several diverse experimental approaches were 

used to validate the predictions generated from my model simulations. Those 

validations consist of literature based validations, protein measurement 

(western blotting) result validation, microarray experimental validation and 

ChIP-seq analysis validation. These approaches all have their own 

advantages and disadvantages. 

 

 

7.3.1  Literature based validations 

58 predictions were produced according to the in silico knock-out tests and 25 

out of them were derived in the absence of p53. Combining this distribution 

with the survey of gene depletion effect in the PKT205/G1 model, we could 

conclude that the depletion of a gene or protein that has high connectivity 

degree affects more strongly the whole p53 network than those with low 

connectivity degree. The advantage of literature based validation was that it 

provided direct evidence from publications to validate the model predictions. 
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However, this literature survey is time consuming and limited by current large 

number of p53 related publications. For instance, in those 58 predictions, 

there were four confirmed predictions and one prediction was found opposite 

to the literature evidence; they were all relevant to the research of p53 

knock-outs. However, the evidence of other gene knock-outs was still not clear. 

It is also difficult to validate these predictions because of the vast literature that 

needs to be analysed for most of these predictions, which strengthens the 

case for development of better text mining tools. 

 

 

7.3.2  Validations by protein measurement 

The extent of the knock-out effects depends on the connectivity and position of 

the knocked-out protein in the network. For example, ATM is upstream of p53 

with a connectivity of ten, and it does not involve feedback loops. Therefore, 

the knock-out of ATM resulted in few changes in the dependency matrix. 

However, predictions of knock-out tests identified genes which have a 

significant effect on the whole p53 network. Some of them have been used as 

cancer drug targets, for example, ERBB2 (v-erb-b2, erythroblastic leukemia 

viral oncogene homolog 2, neuro/glioblastoma derived oncogene homolog 

(avian)), and EGFR (epidermal growth factor receptor) are targets in breast 

cancer treatment (Cameron & Stein, 2008).  This experimental approach 

provided an alternative way to validate our model prediction and is not limited 

to previous publications. However, the limited availability of resources and 

time prevented us to validate all predictions by western blots. Therefore we 

turned to a genome-wide type of validation. 
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7.3.3  Validation by microarray analysis 

Logical steady state analysis in the p53 knock-out indicated that negative 

feedback loops are crucial for the robustness of the p53 system to external 

perturbations. The results of logical steady state analysis indicated that state 

changes between different DNA damage input conditions and different p53 

status could be predicted with significantly better precision than random. The 

correct prediction percentage was ranging between 52 % and 71 % depending 

on the cancer type which substantially exceeds the expected probability of 

33.3 %. All the combined percentages of true predictions and small errors 

were over 90 %, compared to an expected probability of 66.7 % (Table 6.3). 

The microarray experimental data provided high through-put genome data to 

estimate the prediction strength of the model. But the limitations of microarray 

technology may affect the results as well; for example, discrepancies between 

model predictions and microarray data may be caused by the fact that only 

one probe is available for CKM (creatine kinase, muscle) in the microarray 

platform used (indicated in material and methods), thus suggesting the need 

for more a reliable estimate of the expression of this gene. 

 

 

7.3.4  Validation by ChIP-seq analysis 

My model was also validated by published ChIP-seq experimental data from 

literature (Smeenk et al, 2011). The comparison confirmed nine gene nodes in 

the PKT205/G3 model, which regulated apoptosis activity. Moreover, this 

ChIP-seq data revealed that the apoptosis regulator function of four genes 

was uncovered in my model and PCNA was specific to regulate apoptosis in 

response to the phosphorylation of serine 46 of p53. This finding 

demonstrated the possibility to improve the PKT205/G3 model by combining it 
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with high through-put experimental data, such as ChIP-seq data, in future work. 

For example, Nikulenkov et al performed ChIP-seq analysis on p53 induced by 

nutlin3a, RITA and a drug 5-fluorouracil (5-FU). The treatment of nutlin3a was 

known to cause growth arrest. The drug 5-FU could induce DNA damage and 

result in G1/S arrest. RITA (reaction of p53 and induction of tumour cell 

apoptosis) was able to induce apoptosis. Comparing the peak of binding sites 

in MCT7 cells treated by those three molecules, they found binding sets that 

were common under these three treatments at high confidence level and that 

the p53 binding activity acted as a ‘p53 default program’. They found that the 

degradation of AURKA is activated by p53 in MCF7 (human breast carcinoma 

line) and colon carcinoma HCT116 cells with these three treatments. This 

interesting finding indicated that the level of p53 target gene, AURKA was 

decreased (Nikulenkov et al, 2012). But my current PKT205/G3 model only 

includes the interaction that AURKA inhibits p53. Combining pathways 

generated from the PKT205/G3 model and literature work, I inferred two 

negative pathways from p53 to AURKA in Figure 7.1 below. ERK2 (MAPK1) 

was reported to activate AURKA (Frau et al, 2010) and p53 may inhibit 

AURKA through MAPK1. 
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Figure 7.1: Possible p53 pathway to inhibit AURKA 

This figure depicts the negative pathway from p53 to AURKA. The activation that MAPK1 

activates AURKA was represented by a dashed line arrow. 

 

 

7.4  Significance and future applications of the PKT205 model 

In summary, I have presented a series of logical models for p53 pathways 

induced by DNA damage in this thesis. My analysis results highlighted the 

important role of p53 in these signalling pathways and provided new insight 

into the dynamic mechanisms of p53 pathways using model simulation 

combined with microarray and ChIP-seq experimental data. Predictions 

produced by model simulation revealed that p53 target genes such as p53 

AIP1, FGF2, PDGFRB, IGFR1R and TGFA may be potential targets to 

promote tumour cell death in p53 mutated cells. In summary, the simulation 

results verified the strength of this approach to establish interaction network 

models for particular genes or proteins on the basis of automatic retrieval of 

interaction information from databases. Although challenges to describe the 
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cellular signalling pathways more accurately by text mining results still remain, 

due mainly to the limitation of text mining techniques, cancer researchers 

could establish protein-protein interaction network models for other genes or 

proteins of interest by this same approach. In silico knock-out tests for 

selected genes or interactions furthered my understanding of functions of 

genes which interact with p53 in response to external perturbations and led to 

a deeper insight into the role of feedback loops and effects exerted by those 

hub-nodes in the p53 pathway. As is known, computation model simulation 

makes it easy to perform in silico experiments instead of time consuming and 

expensive experiments performed in the lab. These in silico model simulations 

are able to predict targeted gene activity for cancer treatment. Although the 

high predictive strength of predictions for genome wide gene expression 

indicated that my PKT205 model was reliable and promising to predict 

genome wide gene activities, those simulation results still need to be further 

validated. Combining high through-put experimental data such as microarray 

data and ChIP-seq data with my model simulations will improve the predictive 

performance of the model and make it more representative of the real p53 

signalling pathways. Moreover, model simulations could be utilized to reveal 

potential targets for cancer therapy, test whether particular drugs, which target 

p53 or its target genes, are effective for cancer treatment, and measure the 

effects of cancer treatments. Due to the complexity of cancer, this combined 

analysis by model simulations and high through-put experimental data could 

help researchers to explain the reason why these drugs mentioned above did 

not perform as expected by model simulations.   

 

As we mentioned in Chapter 6, the correct prediction percentage of my model 

prediction ranged between 52% and 71%. Given the qualitative nature of our 

model, these are very promising values which show that this model is a useful 
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tool to predict p53 target gene expression changes under different conditions, 

dynamic behaviour in response to external perturbations, explore the role of 

two step feedback loops for the robustness of the network in response to 

external perturbations and gain an deeper insight into the dynamic mechanism 

of p53 pathways in response to DNA damage. Some negative errors are 

unavoidable due to the fact that a Boolean network is an approximation of the 

real system. It does not take into account continuous changes in gene 

expression levels and time delays caused by feedback loops. However, the 

consideration of different time scales could be included in the future and the 

modelling simulations could consider the time delay occurring in different 

pathways so as to make the model more descriptive of the real network 

dynamics. Nevertheless the advantage of the Boolean network approach is its 

completeness, since it would be unrealistic to model the exact dynamics of so 

many proteins using differential equations. But we can also consider adding 

weight values to interactions and more state values to nodes, so as to make 

the Boolean model more sensitive to expression levels. For instance, if ATR is 

activated and the inhibition pathway to repress ATR is inactivated, the state of 

ATR would be represented by “2” to interpret its high activated state. 

Otherwise, the state of activated ATR would be represented by “1” to stand for 

a lower level of ATR expression. This will help us to distinguish between 

different levels of gene expression as well as link the model to the dose of the 

drug or strength of DNA damage 

Additionally, our model uses an interaction graph where only two genes are 

involved in each interaction, but some interactions may require the action of 

more than two genes. In the future, these factors should be considered to 

refine and develop enhanced versions of the PKT205 model that are based on 

hypergraphs and are specific for p53 post translational modification isoforms, 

different cell or cancer types, and other types of input and output signals. The 
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PKT205 model will also have to be improved by taking into account the target 

genes specificity in response to different environmental stress signals. In this 

improved model, p53 will be divided into several connected nodes to represent 

the different binding regions of p53. For instance, ATM will activate the node 

p53S15, which represents the phosphorylation of ATM at serine 15 of p53, 

while p300/CBP will activate the p53K382 node, which represents the 

acetylation of p300/CBP at lysine 382 of p53. This will further our 

understanding of particular pathway selectivity in response to environmental 

signals and reveal key mechanisms in the targeted biological process. This 

modelling approach will have to be supported by series of experimental 

approaches using ChIP-Seq and different DNA damage signals activating 

different pathways (for example, UV treatment will activate ATR, hydroxy urea 

will activate DNA-PK, c-Myc activation will affect ARF and so on.)  

 

Several important predictions were obtained from our model, which will help us 

to get deeper insight into the mechanisms of p53 pathways. These findings 

highlighted the possibility of using CHEK1 pathway as a target for novel 

cancer therapy. Since there are defects in p53 pathways of most tumour cells, 

the CHEK1 kinase plays an important role to mediate cell cycle arrest in those 

tumour cells that lost p53 function. It was found that tumour cells are deficient 

in the G1 checkpoint, and arrest in S and G2 checkpoints to repair DNA 

damage. The S and G2 checkpoints are mediated by CDC25A (cell division 

cycle 25 homolog A), which is a target of CHEK1; siRNA (small interfering 

RNA) targeting CHEK1 was able to prevent the degradation of CDC25A and 

led to abrogation of the checkpoint (Chen et al, 2006). One of the model 

predictions was that upon DNA damage, ATM, ATR and CHEK1 were all 

up-regulated in the absence of p53, and that CHEK1 inhibits CDC25A. Those 

predictions from our model can better explain why CHEK1 inhibitors are 
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regarded as a potential chemotherapeutics target for cancer treatments (Chen 

et al, 2009). Furthermore, these predictions indicate that any potential 

treatment should take into account whether the tumour is p53 positive or 

negative.  

 

Moreover, we could also improve the current model efficiency by testing the 

model on more cell lines in the future. All interactions relevant to p53 could be 

retrieved from the STRING database and other online resources to establish a 

“complete” network model, to include all interactions retrieved from databases, 

whose structure would be similar to the PKT2275 model described in Chapter 

4. However, the interactions included in this PKT2275 model need to be 

updated because STRING was updated from version 8.3 to version 9.05. In 

addition, manual curation is required to confirm all interactions included. 

Those new added interactions in the model can be manually curated at the 

moment so as to provide a convincing interaction “pool” for users to choose 

interactions which were relevant to particular genes they are interested in, or 

according to individual genome-wide changes in the patient’s 

genome/transcriptome/proteome profile. This interaction information from 

STRING database could be combined with information from other reliable 

databases, such as Gene Ontology terms, by a more advanced approach to 

cross check interaction massively and automatically with the assistance of 

certain computation tools. These confirmed interactions will help establish a 

candidate network, and then this candidate network will be combined with high 

through-put experimental data for individual tumour cells to provide potential 

personalised treatment strategies for individual cancer patients.  
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Additional Files 

 

Additional File 1: Combined supporting information file containing 

Additional Tables 1-8. 

This file contains Additional Tables 1-8 as support information. 

 

Additional File 2: Java programme code 

This file includes the Java programme codes mentioned in Chapter 2 and are 

stored in a CD. 

 

Interface 1(P53Extraction): this programme is the Java programme 

interfaces to automatically import STRING records into the CellNetAnalyzer 

(Figure 2.4). It includes the following classes: 

 

Idsearcher.java: this class finds all genes which interact with p53 from the 

protein action file downloaded from STRING database. It produces a list of ids 

for all genes which interact with p53; 

 

CompleteSearcher.java: this class searches all interaction records from the 

protein action file, which contains the name of Ids shown in the output of 

Idsearcher.java; 

 

getActivation.java: this class filters all interactions whose interaction type 

(the value of “action” in Table 2.3) was “activation” or “inhibition”; 

 

getActivationDirection.java: this class filtered all duplicate activation or 

inhibition records according to their direction (the value of “a_is_acting” in 
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Table 2.3); 

 

getPtmod.java: this class filters all posttranslational modifications whose 

interaction type (the value of “mode” in Table 2.3) was “ptmod”; 

 

getPtmodDirection.java: this class filters all duplicate posttranslational 

modification records according to their direction (the value of “a_is_acting” in 

Table 2.3); 

 

getHighScore.java: this class classifies all remained activation, inhibition and 

posttranslational modification records in to two different groups: one lists 

records at high confidence score (≥700) and the other lists records at low 

confidence score (<700);  

 

setMetabolite.java: This class translates all gene names into a text file which 

can be imported into the node input file for CellNetAnalyzer; 

 

setReaction.java: This class translates all interaction names into a text file 

which can be imported into the edge input file for CellNetAnalyzer. 

 

Interface 2(comparingmatrix): this programme is the Java programme 

interfaces to automatically compare dependency matrixes obtained by 

knock-out tests (Figure 2.5) and contains following classes: 

 

dmsearcher.java: this class retrieves information of effect cells in the 

dependency matrix; 

 

getid.java: this class returns a pair of gene names which are corresponding to 
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a dependency effect in the model;  

 

getnewposition.java: this class finds the corresponding effect cells in the 

dependency matrix of the p53 wild type; 

 

comparingmatrix.java: this class compares the effect cells between two node 

in those two dependency matrix; 

 

getresult.java: this class merges previous results and lists both types of effect 

cells in the dependency matrix of the knock-out test and the p53 wild type 

model. Each line in the results corresponds to a dependency relationship 

between two genes; 

 

finddifference.java: this class lists effects changes of dependency matrix 

from the p53 wild type model to the knock out tests. They are classified into 6 

groups according to the type of effects in the dependency matrix of knock-out 

test. 

 

Interface 3(microarrayAnalysis): this programme is the Java programme 

interface to automatically validate the model prediction using microarray data 

as a source. It contains flowing classes: 

 

getlss.java: this class translates logical steady state analysis results produced 

by CellNetAnalyzer to a text table for comparison; 

 

getYmod.java: this class compares gene states in two different scenario 

simulations and lists their change trend(up-regulated, no change or 

down-regulated); 
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Evaluation.java: this class compared the difference of gene state change 

trend between model simulation (Ymod.text) and microarray experimental 

data (ExpOutput.text) obtained from Additional file 4. The number of true 

predictions, predictions with small error and predictions with large errors are 

calculated.  

 

Additional File 3: Interaction data for the PKT1377 model and the 

PKT2275 model 

All interaction data retrieved for the PKT1377 model and the PKT2275 model 

from the STRING database are included in this file. They are stored in the CD 

due to large size. 

 
Additional File 4: Gene expression data. 
This file contains all microarray experimental data for validation in Chapter 6. 

The median values of gene expression levels in microarray experimental data 

are listed: the data for U2OS and SAOS2 cells are on Sheet 1 and the data for 

HCT116 cells on Sheet 2. Fold changes for different comparisons and their 

log10 are given. They are also stored in the CD. 

 
Additional File 5: Kun Tian’s article published for new results. 
This paper (Tian et al, 2013) described a new model PKT206 model, which 

was extended from the PKT205/G3 model and further analysis results based 

on previous finding. The contributions made by authors were clearly explained 

in the end. 


