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ABSTRACT

The developments of new types of conductors and increase of voltage level have
driven the need to carry out researclewaluating overhead line acoustic noise.

The surface potential gradiewf a conductoris a critical design parameter for
planning overhead lines, as it determines the level of corona loss (CL), radio
interference (RI), and audible noise (AN). The mayooit existing models for surface
gradient calculation are based on analytical methods which restrict their application in
simulating comple suiface geometriesThis thesigproposes a novel method which
utilizes both analytical and numerical proceduresptedict the surface gradient.
Stranding shape, proximity of tower, protrusions and bundle arrangements are
considered within this modelOne of UK National Grid's transmission line
configurations has been selected as an example to compare the resulfferimtd
methods. The different stranding shapes are a key variable in determining dry surface
fields.

The dynamic behaviour of water droplets subject to AC electric fields is investigated

by experiment and finite element modelling. The motion of a wateplet is

considered on the surface of a metallic sphere. To understand the consequences of
vibration, the FEA model is introduced to study the dynamics of a single droplet in

terms of phase shift between vibration and exciting voltage. Moreover, theiewvolu

of electric field within the whole cyelof vibration is investigated.he profile of the

electric field and the characteristics of mechanical vibration are evaluated.
Surprisingly the phase shift betwettiese characteristics results in the maximigia f
occurring when the droplet is in a flatten

Research work on audible noise emitted from overhead line conductors is reviewed,
and a unique experimental set up employing a serachoic chamber and corona
cageis described. Acoustically, this facility isolates undesirable background noise and
provides a fredield test space inside the anechoic chamber. Electrically, the corona
cage simulates a 3 m section of 400 kV overhead line conductors by achieving the
equvalent surface gradient. UV imaging, acoustic measurements and a partial
discharge detection system are employed as instrumentation. The acoustic and
electrical performance is demonstrated through a series of experinfeegslts are
discussed, and the aohanisms for acoustic noise are considered. A strategy for
evaluating the noise emission level for overhead line conductors is developed.
Comments are made on predicting acoustic noise from overhead lines.

The technical achievements of this theses sunmarized in three aspectsirst of all,

an FEA model is developed to calculate the surface electric field for overhead line
conductors and this has been demonstrategha&dficient tool for power utilities in
computing surface electric fiekkpecially for dry condition. Theesond achievement

is the dropletvibration study which describethe droplets' behaviour under rain
conditiors, such as the phase shift between the voltage and the vibration magnitude,
the ejection phenomena and the #ledield enhancement due to the shape change of
droplets. The third contribution is the development of a standardized procedure in
assessing noise emission level and the characteristics of noise emissions for various
types of existing conductors in Natial Grid.
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Chapter 1 Introduction

1.1 Background and Project Objectives

Following the rapid increase of voltage level in modern power systems, two
environmental impacts of transmission lines are acoustcetattrical noise. These
affect the local community in which plant is located, and vary according to local
environment, weather conditions and thaditon of the plat concerned. The impact

of such issues is likely to increase as pressure for comp@aeted designs increases.

Two new technical developments have increased the need to understand and predict
acoustic emissions better. Firstly the development of high temperature low sag
conductors, with constructions and materials different from traditidesigns, and
secondly new compact towers using composite insulation systems instead of metallic

construction elements. Each of these will now be considered.

High Temperature Low Sag (HTLS) conductors entered the transmission and
distribution market due ttheir extra power transfer capacitiyigure 1-1 presents the
structures of three types of conduct@rsthe order of left to right)traditional ACR
(Aluminium Conductor Steel Reinforced)ewy developed ACCC/CTCAluminium
Conductor Composite Coreand Gap Type conducteGZTACSR (Gap Type Super
Thermatresistant ACSIR

Figurel-1 Three types of overhead line conductors: a). traditional A@S$Eninium Conductor Steel
Reinforced)conductor (left) and ACCC/CT@luminium Conductor Composite Corepnductor
(right); b). GZTACSR (Gap Type Super ThermalsistantACSR) Conductof1]

ACSR has been utilized in power utilities for more than 50 years. It is constructed

with all round shape strandBhe outer strands are aluminium, chosen for its excellent
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conductivity,low weight and low cost. The centre strarateof steel for the strength
required to support the weighThis gives the conductaan overall high tensile
strength.Gap Type conductor GZTACSR was developed about 30 years ago and has
been installed for more than 2600 km (up to 2004) around the woddgiheered a

gap between the inner steel core (round strands) and the thresisént aluminium

alloy layer (trapeoidal strands). This gap is filleditiv grease in manufacturinghis

design enables the outer layer and the inner core to move independently. Under high
temperature condition the overall design allows the inner core to take all of the
expansion force, aa result thethermal expansioncharacteristics of GZTACSR
becomedhat of the steel core. This thus allows extreme low sag at high operation
temperatures.Most recently developed conductor is ACCC/CTC conductor. It
employs aluminiumouter layers (trapezdal strands) to carry current and carbon
glassfibre composite cor¢o carry the tensioning force. An additional advantage of
using this hybrid composite core is to improve the conductivity so as to reduce the

overall loss of the line.

However, environmdal concerns, such as Corona Loss (CL), Radio Interference (RI)
and Audible Noise (AN), are not well understood due to the conductors' different
strand shapes and surface conditions (usually filled with silicon oil) compared to
traditional conductors. Atsthe drive to fewer subonductors in a bundle at each
voltage level is pushing the limits of the existing knowledge.

New towers are being considered to improve the visible aspect of overhead lines. Two
examples are the-Pylon from National Grid and WdTrack from Tenne{Figure
1-2).

Figure1-2 two innovated pylon design: a)-Hylon (National Grid); b). WindTrack (Tenngg]
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There are too many variations to consider all the possibilities, but calculations of

noise generation have been included in pinggect.

A need has been established to be able to reliably predict the acoustic performance of
new tower and conductor designs. Concerned for these issatsndl Grid UK has
appointedUniversity of Manchester to ocomit a research project titled\coudic

Noise Emitted from Overhead Lines'

This project proposed to undertake research activities aimed at understanding the
causes of excessive noise from overhead line conductors and how this might be
alleviated. The project included materials' scientistsidying metal surfaces and
ageing processes. his thesis reports work in the Electrical and Electronic

Engineering 8hool characterising noise emissions of conductors.

1.2  Structure of the Project

Figure1-3 lists three typicaéxperimental approaches to stutlg audible noise from

overhead line conductors. Theatistinguished by the lengtti the noise sources.

Surface gradient calculation wése first step for audible noise resgamwithin this
project. Within National @d, there is an existing software (ELECMDL) package to
evaluate the surface gradient on overhead line conductors. It was developed in 1992
and has been used by the asset m@ma&nt department for over 20 years. Since
computing power has increased dramatically during the last two decades, there is a
need to study the possibility of improving the accuracy for this software. Another
driver is the newly emerged methodologies flecic field calculation such as finite
element methods, which can simulate details of conductor shape and protrusions.
Driven by these two motivations, a theoretical study is focused on surface gradient
calculations for overhead line conduatorhis isdescribed irChapter 3Through the
theoretical study, the methodologies for the existing tools are understoatieand
accuracyanalyzed. A novel method combinibgth analytical and numerical methods

is developed to obtain information on the surface gradient distribution. With this
advanced model, surface stramglshape, protrusions and tetectof the towerscan

be taken into consideration.
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Experiment Simulation
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Figure1-3 Structure of the Project

In the second aspect of the projectsraall testing rig & spherelane experiment
introduced inChapter 4 is designed to study the behaviour of a single droplet under
AC electric fiels. The aisymmetric geormatry provides the convenience of being

able tocapture the shape age from one direatin using ahigh speed camera. The
electric field strength on the surface of the sphere simulates the surface stress on the

overhead line conductors (B kV/cm under dry conditica).

The ter m defenstotonabamssod which has a fundamentaafe the
powerfrequency, thus 100 Hz in Europe and 120 HNior t h Amer i c a. Sinc
noi sed6 pr andbwedhead lind3fy wasmoticed by Taylor, Chartier and Rice

in 1960, its physical mechanism remains a mystery. Although d@ewuaf scientific
hypotheseq4-12] have beernintroduced to expia the nature of this phenomena

relevant experimental work is still insufficient to identify the primary eaGapter

5 describes thexperimental desigrhe design was influenced by existing literature

on audible noise from overhead line conductors (as reviewed in Se&fpnin

addition a noise seminar was atsganized in the University of Manchester to gather

experience in this research field. These contributed to the design of experimental set

up and selection of instrumentations.
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One difficulty for experimental verification is due to the fact that the 1@0cBintent

cannot be accurately measured in the laboratory environment. Tiois fadlowing

two reasons: first of all, the frequency spectrum of the background noise in laboratory
environment contains peaks at 100 Hz and its harmdredsr to the backgund

noise measuremengsultsin Chaptery, secondl y, the | evel of O
by transformer increaseggnificanty with the level ofthe leakage current. In order to

mitigate the influence of these, an anechoic chamber was commissioned inside the

high voltage laboratory in the University of Manchester. This pioneering testing
facility all ows accur at e dreetdelicetconductorof t he
and is an effective tool to Anedomsizéddy t he m
testing rig (cage experimenats shown inFigure 1-3) was designed to simulate the

electric field surrounding the overhehle conductors thus reproducitige audible

noise levels from the overhedihe conductors. The criterion wdae control the

surface gradient to be as same as the overhead line conductd® kK\X/em under

dry conditiors). It was developed for thepurpose of characterising the noise

performance of different tygef conductors.

As introduced inChapter 6 various samples, in various states of ageing, from various
suppliers have been fully characterised. Manual spray and continuous spray have been
used for the experiemt. A methodology of comparison (rags for different
conductorsintroduced in Sectior6.5.2 has been developed which enables direct
comparison of conductor typeshis part ofthe work is beingutilized by National

Grid in selecting conductors for new tower.

Chapter 7discussed the results generatedChapter 6 Chapter 8concludesthe
outcomes of this part of the project and also descrgmential future work.A
comprehensive set oésults are presented Appendix, so that these can be used in
future for forecasting conductor behavioOmly illustrative and summaries of results
are presented in the main text ®nable clarity of presentation, and to provide

supportive examples of work.
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Chapter 2 Literature Review

2.1 Introduction

Research work on audible noise from overheaddomuctors can be classified into
three main areas: surface gradient (surface electric field) calcatmage
experimerg and physical mechanism studi€sirface gradient calculation is tfiest

step for overhead line designs within power utilities. It is critical in assessing the
potentialnoise level beforanoverhead line is commissionegdage experimestare a
well-developed laboratory tool to reproduce the electrical environment ofeac

line condictors. Physical mechanism studies tendexplain the cause of low
frequency 'hum noise' (100 Hz, 200 Hz and their harmonic) distinct from the high
frequency 'crackling noiseThis chapter presents literature reviewsnt these three

areas.

The first sectiorsummarizes the main methods employed by previous researchers to
evaluate transmission line conductor surface voltage gradients. Five major methods

are reviewed in detail.

After this, publications about cage experingeahd noise pediction methods are
discussed in the second section. Not only outdoor measuremeich are carried out
close towhole spans of overhead lineut also indoor measurements which employ

cage configurations to simulate sections of overhead line havedsgewed.

In the third section, published articles concerning mechaniginhum noise' are

discussed.
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2.2 Review of Existing Methods for Surface Gradient Calculation

Different methodsfor calculatingfield strength areclassified aseither analytical
methodsor numerical methodaccording to theiprinciples.

Analytical methodslescribed herare (inorder of increaingcomplexity):

1 Maxwell's Potential Coefficient Method

T Markt and MengeéeslEggensonMet hod and i
Numerical methodsonsideredre

1 Successive Images Method

1 Charge Simulation Method

1 Finite Element Method

2.2.1 Simplified Model

The major factors affectingonductorsurface stress fanoverhead lineas shown in
Figure2-1, are

4 4
5] e, .l 2]

Shape of
Strands

|l | = |
= R T =

of Towers =

L3 3P

Uneven Ground Surface

Figure2-1 Diagrammatic drawing of a transmission line span between two 400kV towers (L6)
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Conductor sag
Proximity of towers
Uneven ground surface

Finite ground conductivity

= =2 4 A4 -

Conductor stranding and protrusions (such as insects and rainBjops)

By ignoring allthe factors listed above, a simplified transmission line model can be
produced which comprises series of cylindrical conductors with infinite length,
parallel to each other and placed above a smooth ground plane. Théitheasional

transmission line is thugpresented b two-dimensional model

2.2.2 Maxwell 's Potential Coefficient Method

Thefirst publication on the calculation of conductor surface stnessin1948 when
Temoshok introduced Ma xowxadulatdtse clame demsityi a | Co
for each conductor withim transmission line systefd3]. More systemic processes

for this method candé f ound f r exampleAd a sirgglé conductor

transmission line (1959)14].

In order to explain the principle oMaxwell's Poential Coefficent Method an

isolated single conduat casds considered first:

As in Figure2-2, the single cylindrical conductor with radiusand electric potential
U is considered as an isolated dantor (the distance betwe@onductor and the
ground plandeing largecompared t@onductor radius).

urface Gradient

Figure2-2 Isolated single conductor

Any charge on the conductor surfaceassumed to bdistributed uniformly around

the conductor surface as well as along the length of the conductor. The conductor can
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thus be represented by a line chapgiéh the same amount of chargéiytributed o

the catral axis of the conductor

Assume that the density of the line charge-G8/m along the length of conductor.

According to Gaus[d%s | aw (integral form)
6’0 r’jJrfaceECMS :vofj'ne Id\ (2-1)
Y eEQ p = (2-2)

WhereY, is the permittivity of vacuumE is electric field strengthand} is charge
density

The electric stressn the surface ahe conductor igherefore

/
E=_— 2-3
20 @ (2-3)
Assume the electric potentialF . The electric field strength is then:
E= - DF Qd%q (2-4)

Whereu, is the unit vectowhich haghedirectionasE.

Substitutingequatior{2-4) into Equatior{2-3) and integrating with respect tdrom D
(D is the distance fronsonductor surface to ground) to the surfacéhefconductor
ro, the potential of the conductbris obtained as:

“dF .
if——u & = dr (2-5)
p dr Ve

vu= fl Y& LB (2-6)

Woer 2 per,

The electric field strength on the conductor surfaaan be expressed as a function
of potentialU as:

/U
210 g r|n9 (2'7)
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Maxwell's Potential Coefficient Method14] assumesthat surface charges are
distributed uniformly asund each conductor. bhis circumstancea multi-conductor
system with ground plane is equivalent to altrdine charge systenftey~ g-are
defined inFigure2-3). The gound plane acts as a mirror producing a reflection of the

line charges, as shown in Sectig.4

According toEquatior{2-3), the electric field strength can be calculated by charge

densitis &y~ @ Charge densities are calculated from

[/1=[P"[V] (2:8)

Wherethe P matrix is Maxwel's potential coefficient matrixgiven as

Pz 2k 42,01 (29)
k

P.= ! n%,k A,2,.nm £2,.nk n (2-10)

m_ﬂ dkm

In which ka:\/(xk -xm)2 (ty, yﬂzanddkm:\/(xk 'me (i y'W)2

The analytical solution for electric field strengtit any location is thus dhined by

vector superposition.

AY
10U, 1,0V,
/2OU2 /sOus
/3OU3 /GOUG
X
W/ L >
'/3O'U3 '/BO'Ue
-1,0-U, -1s(D- U,
'/1O'U1 '/4©'U4

Figure2-3 Multi conductors above ground
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Unfortunately Maxwell's Potential Coefficient Methasl limited to calculation of
multi-conductor systemwith large spacingusing a single line charge to replaee
conductor'ssurface charge distributiomplies a uniform charge and electric field
distribution around the conductor surface. Such an assumption becomes inadequate in
the case of transmission lines using bundle condsicsomce the subondictor

spacing in a bundle ©f the order obnly 10-40 times the sulbonductor radius.
223 - AOEO AT A -ATCAT A0 - AOGET A

Markt and Mengele[16] were the first to suggest a method of calculating the
conductor surface electric field afoundle conductoin transmission linegl7]. This
method can b&eated as an extension of Maxvsotential Coefficient Methad'he

calculating processan be dividednto threesteps:

Step 1-Replacing sub-conductors by a single conductor

The subconductors within each bundle are initially replaced by a singleumboi
representing the whole bundle, wdh electrically equivalentadius. The equivalent
radius of the bundle is calculated as:

1
_ hY P cN-1 _
g =& O(RP™ % (2-13)

€q

Wherer is the radius of subonductors within the bundler is the radiusof the
bundle as shown iRigure2-4; andn is the totahumberof subconductors within one
bundle

Step 2Calculating charge densities using the Maxwell's Potential Coefficient Matrix

The line charge density is calculated gsihe same proceduas the previous method

(Maxwell's Potential Coefficient Methodghown inEquatior§2-8).

Step 3-Calculating electric field within each bun dle

Subconductors within a bundle are assumed to be placeshtargh aparthateach
can beapproximatedoby a line charge located at the central pahtthe cylinder
(Figure2-4).
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Figure2-4 Quad bundle conductor

Sincethe radius ofthe bundle is much larger than the radius of a single conductor
(R>>r), the field strengtlinduced by other conductorE(34) on conductor an be
approximated t@ superimposed electric field. As shownFigure2-4, P is a point
locatedat thesurface ofconductorl. The electric field strength at P can thus be
calculated by vector superposition Bf 34 and E; which is obtained by Huation
(2-12):

/

E =_"'n )
Ty (2-12)

WhereE, is the field at a distana# created by the line charge

Mar kt and Me nsgvelllkreownsas avi edcurate danalytical method for field
calculation in transmission lines. Howevert higher voltage leved, bundle
conductors are widely utilized in modern transmission line design. The distance
between sultonductors is relatively small comparediie distance between different
phasesAs aresult line-charge simplification introducdarge erros in calculding
electric field distributios within bundles. Further improvementof calculation

accuracyis thusrequiredfor bundle conductar

An improvementwasintroduced by Kingvho suggested that the line charge used to
replace each sutonductorshouldnot be locatedat its central point buat a small

distance away from its central poifit8]. This small distance is a function of the
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bundl ebs geometry. King furtheterconduoigrmr oved t

by two line charges symmetricaltiisplaced from the centre of the condugtsj.

2.2.4 Successive Images Method

Thel mage Met hod <comes f r onf20Liro 1848 wKealhesri nb6s p
discovered that the electric field of a charge in front of a conducting plane can be
calculated by the charge and its mirror image. By using this basic idea of the image
method, Hammongi21] presented a cylindrical conductor example which connected

t he O0i ma g eransm@ssidnadiree dieldtcalculdtions. Based on this, Sarma and
Janischewskyj published a pad@?2] in 1969 on electrostatic field calculatidar

parallel cylindrical conductors. This is alsecognized as the most classic publication

onthe Successive Images Method

a)4EAT OU T £ O30AAAOOEOA )i ACAO - AOET AS

The successive image methottially usesthe central line chargeimplification,
introduced i n Maxwwlcdlcalate theachasge densayl of esloht h o d
conductor,and thenconsides the nonuniform distribution of those charges around

the surface of each conductdkn iterative method isemployedto approach the

correct value of thelectric field.

The theory behid the SuccessivdmagesMethod isthe Uniqueness heoremwhich
can be stated as: if orean find a solution which meets the Poisson Equation or
Laplace Equation with boundary conditions satisfied, this will be the only solution for

the specific electrostias problem23].

An explanation of the Uniqueness Theonsrthat conductie materiakcan be used to
fill the inside of any volume surrounded bgn equalpotential surface without
modifying theelectric field outside the equpbtential surfacetlje netchargeof that

volume must remain the sajne

Az Az Az

equal potential surface S. The electric field distribution outside the surface S will
remainthes ame i f the inside of S iged24.i 11 ed with
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2% @ Z>% @
Gy o) ) - ¥
Da, éqn @, A

Figure2-5 Application of6 u ni q u e n e-fllequipdieatial swefacé with a conductor

This general conclusion can bgplied tothe cylindrical conductor case as igure
2-6: the nonuniformly distributed charges otne conductor surface can be replaced
by a line chargeadocatedat a distancé =*D awayfrom its centre The electric field
outside the cylindrical conductor cdhus be calculated byconsideration ofline

chargest aand-adnstead

Figure2-6 Line charge near a cylindrical conductor

. @: <) : =

Figure2-7 Equalpotential for line charge antylindrical conductor (left) and two line charges (right)

The simulation result(from COMSOL) presented inFigure 2-7 verfies the
conclusion that the electric field remains the same when using a line charge to replace

the conductor. An egtpotential plot is employed to reflect the electric field
distribution.
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This conclusion can be easily extendethcaseof isolated wo-conductor bundke

St
<

O

)
y

Figure2-8 isolated tweconductor bundle

As shown in Figure2-8, if the distancd® betweenwo conductorss much larger than
their radius D»r), these two conductors can be represented as two line charges

located at their centre-(3; this conalision is obtained from the followirdgrivation

From theUniqueness Theem the solution of this electric field problem is to find a
charge distribution which maintains the potentiathefground planet zero andhat
of theconductorsA andB to beU.

Assumethe charge density of each conductor is\When consideringhe potential of
theground planethetwo conductors can kapproximatedisa single line charge with
charge density 2 andlocated infinitdy distantfrom it. According to image theory,
charges induced on the ground plane will htve sameeffect as a2 aeflection
situated under the ground plane, amfthitely apart fromA andB. By introducing this
-2 #ine chargethe potential of the ground plane is maintained at zero., Neweed
to maintain the surface éf andB at potentiall. For conductoA, there are two line
charges outside its surface: the image with a ch&gand the net charge &with
value+ a-Both charges can be considered to be a long distance awayfidsing
the proven conclusion abovdiné-charge induced charges dhe surface ofa
cylindrical conductor can be replaced by a charfgéne opposite polarity and located
U =’4D from the centre the image-2 anduces a charge 2 at distanceli from the
centre ofA (in the casai=0) while the net charge @, + &introduces a&harge-a-at
the distanceli from the centre ofA. As DY D ,UY 0, so thetotal introduced charge is
+ 2-a=+ alocated at the centre 8f By the same derivatiothere is+ docated at the

centre ofB as well.
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If the situation becomes more complex,dmysidering thab/ri Hwe have the same
image line charge2 aAs conductor\ andB are now closer together, the derivation

changes to the following

We now need to maintain theurfaces ofA andB to be equipotential. BecausB»r is
no longertrue, we have now 2 lacated at the centre éfandB after considering the
ground pl an e 0 srdecthmmaingid to dd efjupatential(we assume
is initially in the same situationjan imagechargeof -2 alocatedty=r%/D from the
centre ofA, is introducedNow conductoA0 s s u r f raamed ati equpotamtial
by thesdine charges: twor 2 kne charges in theentres of A andB, -2 dine charge
locatedat th=r%/D from the centre oA. In order to maintain conductd at anequi-

potentid, we have to introducanother two line charges? docatedih=r%/D from the

r r?
centre ofB and+ 2 mcatedat d, = = 5 from the centre oB. These
D-d D */D

line charges maintaithe equal potential surfacef B while modifying the equi
potential situation of conductd, so another two line charges have to be introduced

insideA, and so oné

By reiterativédy maintainingA and B to be equipotential surfaces, a series of line
charges can be introduced inside each conduétssume that &ér n times of
iteration, the distance betwedine last two images becomes negligibl&-{i.1a0),
thenadding another two image8 and+ 2 B equivalent amdding no charge, and
does not changthe charge distribution. This procesanthus be terminatedt an
appropriate level of accuraciiowever, the net charge must maintaired at+a-in
each conductor. We caachievethis by adding+ea-at U, apart from tkeir centres in

both conductors akeeffectcan be cancelled by their images.

Simulationswerecaried outin order to verify this method. As shawn Figure2-9, a
series of line chargesereemployed to represent the conductor surface charge. The
black circles inthe simulation results are conductors, the green contours are potential
contours. It can be seerfrom the simulation results that the contour néae
condudor surface (green circlehasa good fit withthe conductor surface (black
circle). This isa good evidence of the applicability tife Successiverhage Method

It is also demonstrated in simulation that for a typical National Grid twin bundle (400
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mm spacing)after the first seof fictitious line charges are introduced, another step of

iterationonly contributes less than 1% improvement in terms of the accuracy.

There have been many applications of the Successive Images Method during the last
40 yeard25-27].
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Figure2-9 Equipotential plot foisolated tweconductor bundle
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imagesintotal -

Step 2Consider one conductosy(
in Figure 2-10), there are 13 line l

I

I

. 13*13imagesin I

charges in total osgide the eachconductor I
I
I

. . . . . .. g =-T " T/ === 1
Application to Transmission Line Calculation : o/, |
| I
A single conductor transmission line is employed to | |
explain the calulating processes: : o/, [ ¢® :
, . | I
Step 1 Use Maxwell's Potentia 13imagesin : I
Matrix to calculate the net charg ©2¢nconductor By ;T
2 5

of each conductor. 7 line charg: ’ il :
and 7 images are obtained : |
- I

shown inFigure2-10. ]
1314=182 L2 [ 40
I
I
I
I
I
I
I

conductor surface In order to ’

maintain the surface at aequal

potential, 13 imageare introduced

inside &. The same process i 13'13"14=2366
images in total

applied to the other conductor

182 images in total are obtaine

after the first iteration while 236t

images in total are obtained aft

the second iteration process.

Step 3As line charge densities are obtained as ab

an analytical solution fotthe electric field strength ol

any location is thusbtained by vector superpositic

from:

E:#

2p ¢

A certain number of points can be selected on

surface of each conductor to repredbtsurface field _ o i
P Figure2-10 Transmission Line Case

distribution.

The above process demonstrates calculating procedure for a certain time instance.

Since the whole calculation is time dependent, this procedure is repeated.
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2.2.5 Charge Simulation Method

The ChargeSimulation Method(CSM) has been commonly employed to analyze
electric field problems in high voltage insulation systems. The method dates back to
1969 when Abou Seada and Nasser employed CSM to evaluate the field strength in a
twin cylindrical conductor[28]. Subsequently, Singer, Steinbigler and Weiss
published acomprehensivepaper[29] on the details of CSM. They extended the
applicability of CSM from two dimensions to three dimensions, and gave an example
of the calculation of electric field strength near a transmission line tower, using CSM.
O0An optimi zed ¢ har ge dissusseruby arializis, Kuffehand h o d 6
Alexander in 197830], and techniques for optimizing calculation speed by flexibly
selecting simulation chargehapes were presented. More recent work employing
CSM calculates thesurface field ofa 8800 kV UHVDC transmission line in China

[31].

The principle of theCharge Simulation Method an be expl ained as
fictitious charges to replace the noniformly distributed surface ehr (28|60 Like

the Successive Images Method, itisiumerical method based on fictitious charges.
However, the difference is that the images introduced inSthecessive Images
Methodare fixed at a certain position with a certain shape and charge density, while
the fictitious charges introduced in CSMeaflexible in both location and shape.
Providing the fictitious charges have been set up, the charge densities can be
calculated so that their integrated effect satisfies the boundary conditions. This is

explained through a simplified example as follows:

As shown inFigure2-11, N line chargesave been introducdd simulate the surface
charge distributiof a twin cylindrical bundleThe boundary cattions aresatisfied
by selecting N tespoints on the surface (red points)d assuming thepotentialto
bethec o nd uct orAsdshe potetialsaof the tepbints can be calculated by
superposition of fictitious line charges, éduationscan this be constructed with N

unknown variables (fictitious line charge densities):
[PI[/]=[V] (2-13)

The line charge densities canfoendby matrix inversion:
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[/1=[P] *[U] (2-14)

The electric field can thus lmalcdated from Equatiof2-3).

Figure2-11lisolated tweconductor bundle

2.2.6 Software Methods

Two software packages, ELECMODL and SERVIRO, have the capability to
calculate surface electric stress for transmission lines. ELECMODL was written by
Richard Stone fronNational Grid in 1992. They af1S-DOS program especially
designed for surface field calculation. Configurations such as height of each phase,
bunde spacing, conductor radiugre input parameters. Average and maximum
surface gradient for each sabnductor ee the outpwd. The interface is showin
Figure2-12.

SESENVIRO was designed as anadytical tool for estimatingnvironmental impact

on the surroutings of overhead lines. It was developed to evaluate environmental
emissions from overhead lines such as: Audible Noise, Radio Interference, and
Corona Loss. The sumodule within SESEENVIRO calculates the surface stress as an

input for awlible noise angkis.

a b
Figure2-12 Interfaces of ELECMODLa). input parameters; b). results
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