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ABSTRACT 

The developments of new types of conductors and increase of voltage level have 

driven the need to carry out research on evaluating overhead line acoustic noise. 

The surface potential gradient of a conductor is a critical design parameter for 

planning overhead lines, as it determines the level of corona loss (CL), radio 

interference (RI), and audible noise (AN). The majority of existing models for surface 

gradient calculation are based on analytical methods which restrict their application in 

simulating complex surface geometries. This thesis proposes a novel method which 

utilizes both analytical and numerical procedures to predict the surface gradient. 

Stranding shape, proximity of tower, protrusions and bundle arrangements are 

considered within this model. One of UK National Grid's transmission line 

configurations has been selected as an example to compare the results for different 

methods. The different stranding shapes are a key variable in determining dry surface 

fields. 

The dynamic behaviour of water droplets subject to AC electric fields is investigated 

by experiment and finite element modelling. The motion of a water droplet is 

considered on the surface of a metallic sphere. To understand the consequences of 

vibration, the FEA model is introduced to study the dynamics of a single droplet in 

terms of phase shift between vibration and exciting voltage. Moreover, the evolution 

of electric field within the whole cycle of vibration is investigated. The profile of the 

electric field and the characteristics of mechanical vibration are evaluated. 

Surprisingly the phase shift between these characteristics results in the maximum field 

occurring when the droplet is in a flattened profile rather than when it is ópointedô. 

Research work on audible noise emitted from overhead line conductors is reviewed, 

and a unique experimental set up employing a semi-anechoic chamber and corona 

cage is described. Acoustically, this facility isolates undesirable background noise and 

provides a free-field test space inside the anechoic chamber. Electrically, the corona 

cage simulates a 3 m section of 400 kV overhead line conductors by achieving the 

equivalent surface gradient. UV imaging, acoustic measurements and a partial 

discharge detection system are employed as instrumentation. The acoustic and 

electrical performance is demonstrated through a series of experiments.  Results are 

discussed, and the mechanisms for acoustic noise are considered. A strategy for 

evaluating the noise emission level for overhead line conductors is developed. 

Comments are made on predicting acoustic noise from overhead lines. 

The technical achievements of this thesis are summarized in three aspects. First of all, 

an FEA model is developed to calculate the surface electric field for overhead line 

conductors and this has been demonstrated as an efficient tool for power utilities in 

computing surface electric field especially for dry condition. The second achievement 

is the droplet vibration study which describes the droplets' behaviour under rain 

conditions, such as the phase shift between the voltage and the vibration magnitude, 

the ejection phenomena and the electric field enhancement due to the shape change of 

droplets. The third contribution is the development of a standardized procedure in 

assessing noise emission level and the characteristics of noise emissions for various 

types of existing conductors in National Grid.  
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Chapter 1 Introduction  

1.1 Background and Project Objectives  

Following the rapid increase of voltage level in modern power systems, two 

environmental impacts of transmission lines are acoustic and electrical noise. These 

affect the local community in which plant is located, and vary according to local 

environment, weather conditions and the condition of the plant concerned. The impact 

of such issues is likely to increase as pressure for compacted tower designs increases. 

Two new technical developments have increased the need to understand and predict 

acoustic emissions better. Firstly the development of high temperature low sag 

conductors, with constructions and materials different from traditional designs, and 

secondly new compact towers using composite insulation systems instead of metallic 

construction elements. Each of these will now be considered. 

High Temperature Low Sag (HTLS) conductors entered the transmission and 

distribution market due to their extra power transfer capacity. Figure 1-1 presents the 

structures of three types of conductors (in the order of left to right): traditional ACSR 

(Aluminium Conductor Steel Reinforced), newly developed ACCC/CTC (Aluminium 

Conductor Composite Core) and Gap Type conductor-GZTACSR (Gap Type Super 

Thermal-resistant ACSR).   

             

Figure 1-1 Three types of overhead line conductors: a). traditional ACSR (Aluminium Conductor Steel 

Reinforced) conductor (left) and ACCC/CTC (Aluminium Conductor Composite Core) conductor 

(right); b). GZTACSR (Gap Type Super Thermal-resistant ACSR) Conductor [1] 

ACSR has been utilized in power utilities for more than 50 years. It is constructed 

with all round shape strands. The outer strands are aluminium, chosen for its excellent 

a b 
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conductivity, low weight and low cost. The centre strands are of steel for the strength 

required to support the weight. This gives the conductor an overall high tensile 

strength. Gap Type conductor GZTACSR was developed about 30 years ago and has 

been installed for more than 2600 km (up to 2004) around the world. It engineered a 

gap between the inner steel core (round strands) and the thermal-resistant aluminium 

alloy layer (trapezoidal strands). This gap is filled with grease in manufacturing. This 

design enables the outer layer and the inner core to move independently. Under high 

temperature condition the overall design allows the inner core to take all of the 

expansion force, as a result the thermal expansion characteristics of GZTACSR 

becomes that of the steel core. This thus allows extreme low sag at high operation 

temperatures. Most recently developed conductor is ACCC/CTC conductor. It 

employs aluminium outer layers (trapezoidal strands) to carry current and carbon-

glass-fibre composite core to carry the tensioning force. An additional advantage of 

using this hybrid composite core is to improve the conductivity so as to reduce the 

overall loss of the line.  

However, environmental concerns, such as Corona Loss (CL), Radio Interference (RI) 

and Audible Noise (AN), are not well understood due to the conductors' different 

strand shapes and surface conditions (usually filled with silicon oil) compared to 

traditional conductors.  Also the drive to fewer sub-conductors in a bundle at each 

voltage level is pushing the limits of the existing knowledge.  

New towers are being considered to improve the visible aspect of overhead lines. Two 

examples are the T-Pylon from National Grid and WindTrack from Tennet (Figure 

1-2). 

    

Figure 1-2 two innovated pylon design: a). T-Pylon (National Grid); b). WindTrack (Tennet) [2] 

a b 
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There are too many variations to consider all the possibilities, but calculations of 

noise generation have been included in this project. 

A need has been established to be able to reliably predict the acoustic performance of 

new tower and conductor designs. Concerned for these issues, National Grid UK has 

appointed University of Manchester to commit a research project titled 'Acoustic 

Noise Emitted from Overhead Lines'. 

This project proposed to undertake research activities aimed at understanding the 

causes of excessive noise from overhead line conductors and how this might be 

alleviated. The project included materials' scientists studying metal surfaces and 

ageing processes. This thesis reports work in the Electrical and Electronic 

Engineering School characterising noise emissions of conductors. 

1.2 Structure of the Project  

Figure 1-3 lists three typical experimental approaches to study the audible noise from 

overhead line conductors. They are distinguished by the length of the noise sources. 

Surface gradient calculation was the first step for audible noise research within this 

project. Within National Grid, there is an existing software (ELECMDL) package to 

evaluate the surface gradient on overhead line conductors. It was developed in 1992 

and has been used by the asset management department for over 20 years. Since 

computing power has increased dramatically during the last two decades, there is a 

need to study the possibility of improving the accuracy for this software. Another 

driver is the newly emerged methodologies for electric field calculation such as finite 

element methods, which can simulate details of conductor shape and protrusions. 

Driven by these two motivations, a theoretical study is focused on surface gradient 

calculations for overhead line conductors. This is described in Chapter 3. Through the 

theoretical study, the methodologies for the existing tools are understood and their 

accuracy analyzed. A novel method combining both analytical and numerical methods 

is developed to obtain information on the surface gradient distribution. With this 

advanced model, surface stranding shape, protrusions and the effect of the towers can 

be taken into consideration. 
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Figure 1-3 Structure of the Project 

In the second aspect of the project, a small testing rig (a sphere-plane experiment 

introduced in Chapter 4) is designed to study the behaviour of a single droplet under 

AC electric fields. The axisymmetric geometry provides the convenience of being 

able to capture the shape change from one direction using a high speed camera. The 

electric field strength on the surface of the sphere simulates the surface stress on the 

overhead line conductors (17-18 kV/cm under dry conditions). 

The term óhum noiseô refers to tonal emission which has a fundamental of twice the 

power frequency, thus 100 Hz in Europe and 120 Hz in North America. Since óhum 

noiseô produced from an overhead line [3] was noticed by Taylor, Chartier and Rice 

in 1960, its physical mechanism remains a mystery. Although a number of scientific 

hypotheses [4-12] have been introduced to explain the nature of this phenomena, 

relevant experimental work is still insufficient to identify the primary cause. Chapter 

5 describes the experimental design. The design was influenced by existing literature 

on audible noise from overhead line conductors (as reviewed in Section 2.2). In 

addition a noise seminar was also organized in the University of Manchester to gather 

experience in this research field. These contributed to the design of experimental set-

up and selection of instrumentations.  
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One difficulty for experimental verification is due to the fact that the 100 Hz content 

cannot be accurately measured in the laboratory environment. This is for following 

two reasons: first of all, the frequency spectrum of the background noise in laboratory 

environment contains peaks at 100 Hz and its harmonics (refer to the background 

noise measurement results in Chapter 5); secondly, the level of óhum noiseô produced 

by transformer increases significantly with the level of the leakage current. In order to 

mitigate the influence of these, an anechoic chamber was commissioned inside the 

high voltage laboratory in the University of Manchester. This pioneering testing 

facility allows accurate detection of the óhum noiseô from overhead line conductors 

and is an effective tool to identify the mechanism of the óhum noiseô. A medium-sized 

testing rig (cage experiment as shown in Figure 1-3) was designed to simulate the 

electric field surrounding the overhead line conductors thus reproducing the audible 

noise levels from the overhead line conductors. The criterion was to control the 

surface gradient to be as same as the overhead line conductors (17-18 kV/cm under 

dry conditions). It was developed for the purpose of characterising the noise 

performance of different types of conductors. 

As introduced in Chapter 6, various samples, in various states of ageing, from various 

suppliers have been fully characterised. Manual spray and continuous spray have been 

used for the experiment. A methodology of comparison (ratings for different 

conductors introduced in Section 6.5.2) has been developed which enables direct 

comparison of conductor types. This part of the work is being utilized by National 

Grid in selecting conductors for new tower. 

Chapter 7 discussed the results generated in Chapter 6. Chapter 8 concludes the 

outcomes of this part of the project and also describes potential future work. A 

comprehensive set of results are presented in Appendix, so that these can be used in 

future for forecasting conductor behaviour. Only illustrative and summaries of results 

are presented in the main text to enable clarity of presentation, and to provide 

supportive examples of work. 
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Chapter 2 Literature Review  

2.1 Introduction  

Research work on audible noise from overhead line conductors can be classified into 

three main areas: surface gradient (surface electric field) calculations, cage 

experiments and physical mechanism studies. Surface gradient calculation is the first 

step for overhead line designs within power utilities. It is critical in assessing the 

potential noise level before an overhead line is commissioned. Cage experiments are a 

well-developed laboratory tool to reproduce the electrical environment of overhead 

line conductors. Physical mechanism studies tend to explain the cause of low 

frequency 'hum noise' (100 Hz, 200 Hz and their harmonic) distinct from the high 

frequency 'crackling noise'. This chapter presents literature reviews from these three 

areas. 

The first section summarizes the main methods employed by previous researchers to 

evaluate transmission line conductor surface voltage gradients. Five major methods 

are reviewed in detail.  

After this, publications about cage experiments and noise prediction methods are 

discussed in the second section. Not only outdoor measurements which are carried out 

close to whole spans of overhead line, but also indoor measurements which employ 

cage configurations to simulate sections of overhead line have been reviewed. 

In the third section, published articles concerning mechanisms of 'hum noise' are 

discussed. 
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2.2 Review of Existing Methods  for Surface Gradient Calculation  

Different methods for calculating field strength are classified as either analytical 

methods or numerical methods according to their principles. 

Analytical methods described here are (in order of increasing complexity): 

¶ Maxwell's Potential Coefficient Method 

¶ Markt and Mengeleôs Method and its Extension 

 

Numerical methods considered are: 

¶ Successive Images Method 

¶ Charge Simulation Method 

¶ Finite Element Method 

2.2.1 Simplified Model  

The major factors affecting conductor surface stress for an overhead line, as shown in 

Figure 2-1, are: 

 

Figure 2-1 Diagrammatic drawing of a transmission line span between two 400kV towers (L6) 

 



Acoustic Noise Emitted from Overhead Line Conductors 

Page 23 
 

¶ Conductor sag 

¶ Proximity of towers 

¶ Uneven ground surface 

¶ Finite ground conductivity 

¶ Conductor stranding and protrusions (such as insects and raindrops) [6] 

By ignoring all the factors listed above, a simplified transmission line model can be 

produced which comprises a series of cylindrical conductors with infinite length, 

parallel to each other and placed above a smooth ground plane. The three-dimensional 

transmission line is thus represented by a two-dimensional model. 

2.2.2 Maxwell 's Potential Coefficient Method  

The first publication on the calculation of conductor surface stress was in 1948 when 

Temoshok introduced Maxwellôs Potential Coefficient to calculate the charge density 

for each conductor within a transmission line system [13]. More systemic processes 

for this method can be found from Adamsô example of a single conductor 

transmission line (1955) [14]. 

In order to explain the principle of Maxwell's Potential Coefficient Method, an 

isolated single conductor case is considered first: 

As in Figure 2-2, the single cylindrical conductor with radius r0 and electric potential 

U is considered as an isolated conductor (the distance between conductor and the 

ground plane being large compared to conductor radius). 

 

Figure 2-2 Isolated single conductor 

Any charge on the conductor surface is assumed to be distributed uniformly around 

the conductor surface as well as along the length of the conductor. The conductor can 

l 
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thus be represented by a line charge (with the same amount of charge) distributed on 

the central axis of the conductor. 

Assume that the density of the line charge is ɚ C/m along the length of conductor. 

According to Gaussôs law (integral form) [15], 

 0
surface volume

E ds dve rÖ =ñ ñ  (2-1) 

 0 2E re p lÝ Ö = (2-2)  

Where Ў0 is the permittivity of vacuum, E is electric field strength, and ɟ is charge 

density. 

The electric stress on the surface of the conductor is therefore: 
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Assume the electric potential is F. The electric field strength E is then: 
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Where ur is the unit vector which has the direction as E. 

Substituting Equation(2-4) into Equation(2-3) and integrating with respect to r from D 

(D is the distance from conductor surface to ground) to the surface of the conductor, 

r0, the potential of the conductor U is obtained as: 
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The electric field strength on the conductor surface E can be expressed as a function 

of potential U as: 
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Maxwell's Potential Coefficient Method [14] assumes that surface charges are 

distributed uniformly around each conductor. In this circumstance, a multi-conductor 

system with ground plane is equivalent to a multi -line charge system (ɚ1~ɚ6 are 

defined in Figure 2-3). The ground plane acts as a mirror producing a reflection of the 

line charges, as shown in Section 2.2.4. 

According to Equation(2-3), the electric field strength can be calculated by charge 

densities ɚ1~ɚ6. Charge densities are calculated from: 

 [][][]
1

P Ul
-

=  (2-8) 

Where the P matrix is Maxwell's potential coefficient matrix, given as: 
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The analytical solution for electric field strength at any location is thus obtained by 

vector superposition. 

 

Figure 2-3 Multi conductors above ground 
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Unfortunately Maxwell's Potential Coefficient Method is limited to calculation of 

multi-conductor systems with large spacing. Using a single line charge to replace a 

conductor's surface charge distribution implies a uniform charge and electric field 

distribution around the conductor surface. Such an assumption becomes inadequate in 

the case of transmission lines using bundle conductors since the sub-conductor 

spacing in a bundle is of the order of only 10-40 times the sub-conductor radius. 

2.2.3 -ÁÒËÔ ÁÎÄ -ÅÎÇÅÌÅȭÓ -ÅÔÈÏÄ 

Markt and Mengele [16] were the first to suggest a method of calculating the 

conductor surface electric field of a bundle conductor in transmission lines [17]. This 

method can be treated as an extension of Maxwell's Potential Coefficient Method. The 

calculating process can be divided into three steps: 

Step 1-Replacing sub-conductors by a single conductor  

The sub-conductors within each bundle are initially replaced by a single conductor, 

representing the whole bundle, with an electrically equivalent radius. The equivalent 

radius of the bundle is calculated as: 

 ()
1

1n n

eqr n r R
-è ø= Ö Ö

ê ú
 (2-11) 

Where r is the radius of sub-conductors within the bundle; R is the radius of the 

bundle as shown in Figure 2-4; and n is the total number of sub-conductors within one 

bundle. 

Step 2-Calculating charge densities using the Maxwell 's Potential Coefficient Matrix  

The line charge density is calculated using the same procedure as the previous method 

(Maxwell's Potential Coefficient Method) shown in Equation(2-8). 

Step 3-Calculating electric field within each bun dle 

Sub-conductors within a bundle are assumed to be placed far enough apart that each 

can be approximated by a line charge located at the central point of the cylinder 

(Figure 2-4). 
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Figure 2-4 Quad bundle conductor 

Since the radius of the bundle is much larger than the radius of a single conductor 

(R>>r ), the field strength induced by other conductors (E2,3,4) on conductor 1 can be 

approximated to a superimposed electric field. As shown in Figure 2-4, P is a point 

located at the surface of conductor 1. The electric field strength at P can thus be 

calculated by vector superposition of E2,3,4 and E1 which is obtained by Equation 

(2-12): 
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Where En is the field at a distance dn created by the line charge ɚn. 

Markt and Mengeleôs Method is well known as an accurate analytical method for field 

calculation in transmission lines. However, at higher voltage levels, bundle 

conductors are widely utilized in modern transmission line design. The distance 

between sub-conductors is relatively small compared to the distance between different 

phases. As a result, line-charge simplification introduces large errors in calculating 

electric field distributions within bundles. Further improvement of calculation 

accuracy is thus required for bundle conductors. 

An improvement was introduced by King who suggested that the line charge used to 

replace each sub-conductor should not be located at its central point but at a small 

distance away from its central point [18]. This small distance is a function of the 
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bundleôs geometry. King further improved this method by replacing a sub-conductor 

by two line charges symmetrically displaced from the centre of the conductor [19].  

2.2.4 Successive Images Method 

The Image Method comes from Lord Kelvinôs publication [20] in 1848 when he 

discovered that the electric field of a charge in front of a conducting plane can be 

calculated by the charge and its mirror image. By using this basic idea of the image 

method, Hammond [21] presented a cylindrical conductor example which connected 

the óimage methodô to transmission line field calculations. Based on this, Sarma and 

Janischewskyj published a paper [22] in 1969 on electrostatic field calculation for 

parallel cylindrical conductors. This is also recognized as the most classic publication 

on the Successive Images Method. 

a) 4ÈÅÏÒÙ ÏÆ Ȭ3ÕÃÃÅÓÓÉÖÅ )ÍÁÇÅÓ -ÅÔÈÏÄȭ 

The successive image method initially uses the central line charge simplification, 

introduced in Maxwellôs Potential Method, to calculate the charge density of each 

conductor, and then considers the non-uniform distribution of those charges around 

the surface of each conductor. An iterative method is employed to approach the 

correct value of the electric field. 

The theory behind the Successive Images Method is the Uniqueness Theorem, which 

can be stated as: if one can find a solution which meets the Poisson Equation or 

Laplace Equation with boundary conditions satisfied, this will be the only solution for 

the specific electrostatics problem [23].  

An explanation of the Uniqueness Theorem is that conductive material can be used to 

fill the inside of any volume surrounded by an equal potential surface without 

modifying the electric field outside the equal potential surface (the net charge of that 

volume must remain the same).  

As shown in Figure 2-5, the arbitrary charges: óq1ô, óq2ô, óq3ôé óqnô determine an 

equal potential surface S. The electric field distribution outside the surface S will 

remain the same if the inside of S is filled with a conductor charged óq1+q2ô[24]. 



Acoustic Noise Emitted from Overhead Line Conductors 

Page 29 
 

      

Figure 2-5 Application of óuniqueness theoremô-fill equipotential surface with a conductor 

This general conclusion can be applied to the cylindrical conductor case as in Figure 

2-6: the non-uniformly distributed charges on the conductor surface can be replaced 

by a line charge -ɚ located at a distance ŭ=r
2
/D away from its centre. The electric field 

outside the cylindrical conductor can thus be calculated by consideration of line 

charges +ɚ and -ɚ instead. 

 

Figure 2-6 Line charge near a cylindrical conductor 

                                               

Figure 2-7 Equal potential for line charge and cylindrical conductor (left) and two line charges (right) 

The simulation result (from COMSOL) presented in Figure 2-7 verifies the 

conclusion that the electric field remains the same when using a line charge to replace 

the conductor. An equi-potential plot is employed to reflect the electric field 

distribution. 
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This conclusion can be easily extended to the case of isolated two-conductor bundles. 

 

Figure 2-8 isolated two-conductor bundle 

As shown in Figure 2-8, if the distance D between two conductors is much larger than 

their radius (D»r), these two conductors can be represented as two line charges 

located at their centre (+ɚ), this conclusion is obtained from the following derivation: 

From the Uniqueness Theorem, the solution of this electric field problem is to find a 

charge distribution which maintains the potential of the ground plane at zero and that 

of the conductors A and B to be U. 

Assume the charge density of each conductor is +ɚ. When considering the potential of 

the ground plane, the two conductors can be approximated as a single line charge with 

charge density +2ɚ and located infinitely distant from it. According to image theory, 

charges induced on the ground plane will have the same effect as a -2ɚ reflection 

situated under the ground plane, and infinitely apart from A and B. By introducing this 

-2ɚ line charge, the potential of the ground plane is maintained at zero. Now, we need 

to maintain the surface of A and B at potential U. For conductor A, there are two line 

charges outside its surface: the image with a charge -2ɚ, and the net charge on B with 

value +ɚ. Both charges can be considered to be a long distance away from A. Using 

the proven conclusion above, 'line-charge induced charges on the surface of a 

cylindrical conductor can be replaced by a charge of the opposite polarity and located 

ŭ=r
2
/D from the centre', the image -2ɚ induces a charge +2ɚ at distance ŭ from the 

centre of A (in the case ŭ=0) while the net charge of B, +ɚ, introduces a charge -ɚ at 

the distance ŭ from the centre of A. As DŸÐ, ŭŸ0, so the total introduced charge is 

+2ɚ-ɚ=+ɚ located at the centre of A. By the same derivation, there is +ɚ located at the 

centre of B as well. 
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If the situation becomes more complex, by considering that D/rÍÐ, we have the same 

image line charge -2ɚ. As conductors A and B are now closer together, the derivation 

changes to the following: 

We now need to maintain the surfaces of A and B to be equi-potential. Because D»r is 

no longer true, we have now +2ɚ located at the centre of A and B after considering the 

ground planeôs charge effect. In order to maintain A to be equi-potential (we assume B 

is initially in the same situation), an image charge of -2ɚ, located ŭ1=r
2
/D from the 

centre of A, is introduced. Now conductor Aôs surface is maintained at equi-potential 

by these line charges: two +2ɚ line charges in the centres of A and B, -2ɚ line charge 

located at ŭ1=r
2
/D from the centre of A. In order to maintain conductor B at an equi-

potential, we have to introduce another two line charges: -2ɚ located ŭ1=r
2
/D from the 

centre of B and +2ɚ located at 
2 2

2 2

1 /

r r

D D r D
d

d
= =
- -

 from the centre of B. These 

line charges maintain the equal potential surface of B while modifying the equi-

potential situation of conductor A, so another two line charges have to be introduced 

inside A, and so oné 

By reiteratively maintaining A and B to be equi-potential surfaces, a series of line 

charges can be introduced inside each conductor. Assume that after n times of 

iteration, the distance between the last two images becomes negligible (ŭn-ŭn-1å0), 

then adding another two images -2ɚ and+2ɚ is equivalent as adding no charge, and 

does not change the charge distribution. This process can thus be terminated at an 

appropriate level of accuracy. However, the net charge must be maintained at +ɚ in 

each conductor. We can achieve this by adding +ɚ at ŭn apart from their centres in 

both conductors as the effect can be cancelled by their images. 

Simulations were carried out in order to verify this method. As shown in Figure 2-9, a 

series of line charges were employed to represent the conductor surface charge. The 

black circles in the simulation results are conductors, the green contours are potential 

contours. It can be seen from the simulation results that the contour near the 

conductor surface (green circle) has a good fit with the conductor surface (black 

circle). This is a good evidence of the applicability of the Successive Image Method. 

It is also demonstrated in simulation that for a typical National Grid twin bundle (400 
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mm spacing), after the first set of fictitious line charges are introduced, another step of 

iteration only contributes less than 1% improvement in terms of the accuracy. 

There have been many applications of the Successive Images Method during the last 

40 years [25-27]. 
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Figure 2-9 Equipotential plot for isolated two-conductor bundle 
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Application to Transmission Line Calculations 

A single conductor transmission line is employed to 

explain the calculating processes:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The above process demonstrates calculating procedure for a certain time instance. 

Since the whole calculation is time dependent, this procedure is repeated. 

 1l  

 2l  

 3l  

 7l  

 6l  

 5l  

 4l  

 4l-  

 5l-  

 6l-  

 1l-  

 2l-  

 3l-  

Step 1 Use Maxwell's Potential 

Matrix to calculate the net charge 

of each conductor. 7 line charges 

and 7 images are obtained as 

shown in Figure 2-10. 

Step 2 Consider one conductor (ɚ1 

in Figure 2-10), there are 13 line 

charges in total outside the 

conductor surface. In order to 

maintain the surface at an equal 

potential, 13 images are introduced 

inside ɚ1. The same process is 

applied to the other conductors. 

182 images in total are obtained 

after the first iteration while 2366 

images in total are obtained after 

the second iteration process. 

Step 3 As line charge densities are obtained as above, 

an analytical solution for the electric field strength of 

any location is thus obtained by vector superposition 

from: 

 

A certain number of points can be selected on the 

surface of each conductor to represent the surface field 

distribution. 
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Figure 2-10 Transmission Line Case 
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2.2.5 Charge Simulation Method  

The Charge Simulation Method (CSM) has been commonly employed to analyze 

electric field problems in high voltage insulation systems. The method dates back to 

1969 when Abou Seada and Nasser employed CSM to evaluate the field strength in a 

twin cylindrical conductor [28]. Subsequently, Singer, Steinbigler and Weiss 

published a comprehensive paper [29] on the details of CSM. They extended the 

applicability of CSM from two dimensions to three dimensions, and gave an example 

of the calculation of electric field strength near a transmission line tower, using CSM. 

óAn optimized charge simulation methodô was discussed by Yializis, Kuffel and 

Alexander in 1978 [30], and techniques for optimizing calculation speed by flexibly 

selecting simulation charge shapes were presented. More recent work employing 

CSM calculates the surface field of a ±800 kV UHVDC transmission line in China 

[31]. 

The principle of the Charge Simulation Method can be explained as óusing discrete 

fictitious charges to replace the non-uniformly distributed surface chargeô [28]. Like 

the Successive Images Method, it is a numerical method based on fictitious charges. 

However, the difference is that the images introduced in the Successive Images 

Method are fixed at a certain position with a certain shape and charge density, while 

the fictitious charges introduced in CSM are flexible in both location and shape. 

Providing the fictitious charges have been set up, the charge densities can be 

calculated so that their integrated effect satisfies the boundary conditions. This is 

explained through a simplified example as follows: 

As shown in Figure 2-11, N line charges have been introduced to simulate the surface 

charge distribution of a twin cylindrical bundle. The boundary conditions are satisfied 

by selecting N test points on the surface (red points) and assuming their potential to 

be the conductorôs voltage. As the potentials of the test points can be calculated by 

superposition of fictitious line charges, N equations can thus be constructed with N 

unknown variables (fictitious line charge densities): 

 [][][]P Ul=  (2-13) 

 The line charge densities can be found by matrix inversion: 
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 [][][]
1

P Ul
-

=  (2-14) 

 The electric field can thus be calculated from Equation(2-3). 

 

Figure 2-11 isolated two-conductor bundle 

2.2.6 Software Methods  

Two software packages, ELECMODL and SES-ENVIRO, have the capability to 

calculate surface electric stress for transmission lines. ELECMODL was written by 

Richard Stone from National Grid in 1992. They are MS-DOS programs especially 

designed for surface field calculation. Configurations such as height of each phase, 

bundle spacing, conductor radius are input parameters. Average and maximum 

surface gradient for each sub-conductor are the outputs. The interface is shown in 

Figure 2-12. 

SES-ENVIRO was designed as an analytical tool for estimating environmental impact 

on the surroundings of overhead lines. It was developed to evaluate environmental 

emissions from overhead lines such as: Audible Noise, Radio Interference, and 

Corona Loss. The sub-module within SES-ENVIRO calculates the surface stress as an 

input for audible noise analysis. 

  

Figure 2-12 Interfaces of ELECMODL: a). input parameters; b). results 

a b 








































































































































































































































































































































