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In this thesis we study the chamber graphs of the geometries ΓpA2n�1q, Γp3A7q,
ΓpL2p11qq and ΓpL2p25qq which are related to the Petersen graph [4, 13].

In Chapter 2 we look at the chamber graph of ΓpA2n�1q and see what minimal paths
between chambers look like. Chapter 3 finds and proves the diameter of these cham-
ber graphs and we see what two chambers might look like if they are as far apart as
possible. We discover the full automorphism group of the chamber graph.

Chapters 4, 5 and 6 focus on the chamber graphs of ΓpL2p11qq, ΓpL2p25qq and Γp3A7q
respectively. We ask questions such as what two chambers look like if they are as far
apart as possible, and we find the automorphism groups of the chamber graphs.
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Chapter 1

Introduction

In 1974 Jacques Tits [30] noticed a phenomenon occurring in groups of Lie type which

he referred to as a B,N-pair of the group. That is, he discovered that every group

of Lie type contains two subgroups B and N with certain properties. It was also no-

ticed that groups of Lie type acted in a nice way on things called buildings. Over the

next few years, it turned out that buildings and B,N -pairs are equivalent, with every

B,N -pair corresponding to exactly one building, and each building corresponding to

any number of B,N -pairs.

Buildings (or B,N -pairs) are helpful with groups of Lie type and so people have tried

to find similar things to “explain” the 26 Sporadic simple groups [3, 4, 5, 13, 14, 23].

The definition of a building has changed over the last few years. Occasionally they are

defined as geometries. A few of the geometries related to the Sporadic simple groups

are those related to the Petersen graph [13, 14] on which this thesis is based.

The Petersen graph is shown in Fig.1.1. Around 1898 Julius Petersen [22] presented

Fig. 1.1. The Petersen graph

this graph as the smallest counter-example to the claim that a bridgeless connected

cubic graph has an edge-colouring with three colours. Donald Knuth states that the

9



CHAPTER 1. INTRODUCTION 10

Petersen graph is “a remarkable configuration that serves as a counterexample to many

optimistic predictions about what might be true for graphs in general” [19]. In 1980

Jonathan Hall [10] discovered there are only three locally Petersen graphs (discussed

later). Since then there has been much interest in geometries related to the Petersen

graph. For example, all Petersen geometries Pm have been classified (there are only

nine) by Ivanov and Shpectorov [17].

Many properties about geometries can be expressed using their chamber graphs. For

instance the automorphism group of a chamber graph must contain the automorphism

group of the geometry from which it came. Jacques Tits later studied geometries by

looking at their chamber graphs, or chamber systems (which are the same as chamber

graphs, except adjacencies are labelled by type) [31]. In fact the definition of a build-

ing has sometimes been written in terms of chambers [26, 32]. There has been much

research into the chamber graphs of geometries [2, 24, 27, 28, 29].

This thesis contains results mainly about the diameter and automorphism group of

chamber graphs, and about what pairs of chambers look like if the distance between

them is maximal. For example, each of the locally Petersen graphs discovered by Hall

gives rise to a geometry of rank 3 by taking vertices, lines and triangles as elements of

type 0, 1 and 2 respectively. We will investigate the chamber graphs of each of these

geometries, amongst others.

The rest of the introduction is basically a slightly more detailed version of the above.

1.1 B,N-pairs and buildings

Definition 1.1. The group G is said to have a B,N -pair or pG,B,N, Sq is said to be

a Tits system if

 G � xB,Ny
 B XN CN and the group W � N{B XN has a set S of involution generators.

 If s P S,w P W then sBw � BwB YBswB.

 sBs � B for all s P S.

The group W is the Weyl group of the B,N -pair. The Weyl distance of an element
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w P W is the length of a shortest word equal to w using letters s P S.

The definition of a building varies depending on what book you’re reading. We will

use the following definition: Let S be a simplicial complex of rank n. A sub-simplex

of rank n is called a chamber. A sub-simplex of rank n � 1 is called a panel. Two

chambers C and D of S are said to be adjacent if C XD is a panel. We call S thick

if every panel is contained in three or more chambers. We call S thin if every panel is

contained in exactly two chambers.

Definition 1.2. Let X be a simplicial complex of rank n and A be a set of subcomplexes

of X called apartments. We call ∆ � pX,Aq a building if the following hold:

 X is thick and each apartment is thin.

 Any two subsimplices of X lie in some common apartment.

 The graph of adjacent chambers (the chamber graph) of X is connected.

 Every subsimplex of X is contained in some chamber of X.

 If S and T are both subsimplices of apartments Σ and Σ1 then there is a bijection

between Σ and Σ1 preserving the partial order and fixing ΣX Σ1 pointwise.

Given a building ∆ � pX,Aq, Aschbacher ([1], Chapter 14) defines an equivalence

relation on the elements of X whose equivalence classes are called types. Two elements

are said to be of the same type if they are in the same equivalence class.

Definition 1.3. We say g is a type-preserving automorphism of a building ∆ � pX,Aq
if g is a permutation of the elements of X preserving the partial order, preserving type

(fixing each type setwise) and preserving A setwise.

1.1.1 Correspondence between BN-pairs and buildings

Consider the following situation: Let ∆ be a building. Let C be any chamber in any

apartment Σ. Let G be a group of type-preserving automorphisms of ∆ with the

property that given any chamber C 1 in any apartment Σ1, there exists g P G such that

Cg � C 1 and Σg � Σ1.

Given the situation above, it can be shown that N �StabGpΣq and B �StabGpCq
are a B,N -pair of G ([1], Chapter 14).

Conversely, given a group G with a B,N -pair, we can achieve the building above by
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taking chambers to be the right cosets of B, ∆ � tright cosets of P for all B ¤ P   Gu
with partial order Pg   P 1g1 if P 1g1 � Pg, Σ � tPn for all B ¤ P   G, n P Nu and

apartments are elements of ΣG where G acts by right multiplication on ∆.

The method just described provides each such G with its unique building ∆pGq, and

each ∆ with a group G such that ∆ � ∆pGq. Interestingly, any B ¤ P ¤ G is exactly

generated by B along with some subset of S. It can be seen that statements about

the distance between chambers are essentially equivalent to statements about Weyl

distance, for a pair of adjacent chambers is of the form tC,Csu for some s P S.

Definition 1.4. Let C be a chamber graph whose automorphism group is transitive

on the chambers. Let ∆0pcq � tcu and let ∆ipcq be the set of chambers whose distance

from c is i. These sets form the disc structure of the chamber graph, unique up to

isomorphism. We call ∆ipcq the ith disc of the chamber graph (from c).

1.1.2 An example

Definition 1.5. Let G have a B,N-pair. We usually call B a Borel subgroup of G

and this is unique up to conjugation. Any subgroup P containing a conjugate of B is

called a parabolic subgroup.

Let G � GLnpF q act on V � F n with basis v1 �
�

1
0
0
...

�
, ...,vn �

�
...
0
0
1

�
. Then we

write the “standard” chamber

Vn�1 � xv1, ...,vn�1y � ... � V2 � xv1,v2y � V1 � xv1y

(of rank n� 1) whose stabilizer in G is the subgroup composed of all upper-triangular

matrices. Usually this is chosen as the Borel subgroup B and the subgroup of monomial

matrices is chosen as N .

1.2 The Petersen graph

Definition 1.6. The Petersen graph is the graph whose vertices are elements of the set

tta, bu : a, b P t1, 2, 3, 4, 5uu. Two vertices are incident if and only if they are disjoint.

(See Fig.1.1.)
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Definition 1.7. Let Ω be an m-set. The graph T2pmq is the graph whose vertices are

2-subsets of Ω, where two vertices are incident if and only if they share an element.

Thus in the complement T2pmq of T2pmq two vertices are incident if and only if they

are disjoint.

In Fig.1.2 we meet T2p5q and T2p7q. Notice how we let each straight line represent

the set of pairs containing a particular element, with the pairs distance 1 apart around

the edge. The graphs T2p5q and T2p7q are the complements of these. Note that T2p5q

Fig. 1.2. T2p5q and T2p7q

is the Petersen graph.

The Petersen graph has many interesting properties. For example, it is the unique

smallest cubic graph with girth five [11]. In Fig.1.3 we show five ways of drawing the

Petersen graph. Fig.1.3 is copied from Geoffrey Exoo [8].

Fig. 1.3. Five ways of drawing the Petersen graph

Definition 1.8. A graph Γ is called locally Petersen if for every t P Γ, the graph

induced by Γ on the neighbours of t in Γ is isomorphic to the Petersen graph.

Jonathan Hall [10] showed that there are only three locally Petersen graphs up to

isomorphism:

 The graph T2p7q
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 The Conway-Smith graph.

 The Hall graph.

In fact, the Conway-Smith graph is the graph whose vertices are the elements of type

0 and whose adjacencies are the elements of type 1 described in Chapter 6. This

becomes obvious later in Section 6.3.2.

Similarly the Hall graph is the graph whose vertices are the elements of type 0 and

whose adjacencies are the elements of type 1 described in Chapter 5. This is shown

later in Section 5.6.

1.3 Geometries

Buildings are sometimes expressed as geometries. Definition 1.9 is copied from Ivanov

and Shpectorov [13].

Definition 1.9. pΓ, I, t, T q (or just Γ) is called a geometry of rank n if:

 Γ is a set of vertices with symmetric incidence relation I.

 t is a map from Γ onto T � t0, 1, 2, ..., n� 1u.
 v P Γ is said to be of type i if tpvq � i. Every maximal clique of Γ consists of exactly

one element of each type.

Note that the definition means two vertices of the same type cannot be incident.

A clique of Γ is called a flag. A maximal flag is called a chamber. Two chambers

are i-adjacent if they differ only by their element of type i. A geometry is called thin

(respectively, thick) if every flag of order n � 1 is contained in exactly two chambers

(respectively, three or more chambers). The automorphism group AutpΓq is the set of

all permutations of Γ preserving type and incidence. A geometry is said to be flag-

transitive if its automorphism group is transitive on flags of the same type. In this

thesis we consider only flag-transitive geometries.

Definition 1.10. Let F be a flag of Γ. The residue pΓF , IF , TF , tF q (or just ΓF ) of F

is defined by ΓF � tv P Γ|v R F and F Y tvu is a flag of Γu. As one would expect, we

define TF � tpΓF q and IF and tF are the restrictions of I and t (resp.) to ΓF .

By flag-transitivity, all rank 2 residues of type ti, ju of a geometry are isomorphic.

Call this residue Γij. Jacques Tits realized that a lot can be said about a geometry if
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we know its rank 2 residues.

Definition 1.11. If for every flag F and all distinct i, j P TF , we have that

tv P ΓF |v has type iu Y tv P ΓF |v has type ju

is connected (with the obvious restriction of I) then we say Γ is strongly connected.

In other words, if F Ytx, yu and F Ytu, vu are chambers then F Ytx, yu is adjacent

to another chamber containing F , which is adjacent to another chamber containing

F , etc. until we get to F Y tu, vu. Notice that if Γ is strongly connected then all its

residues must be strongly connected.

Definition 1.12. Let F be a flag with TF � tiu. We say the number of chambers

containing F is qi � 1 (unique by flag-transitivity).

We are now in a position to draw the basic diagram of Γ as a graph. This is

how we draw: Each vertex represents a type from T . Write qi underneath i. The edge

between i and j is labelled by Γij. These are a few of the labels widely used: (although

sometimes authors use different notation)

 Let Γij have every element of type i incident with every element of type j. Then

we draw the empty edge between i and j like so:

 If we have that Γij represents a projective plane of order q. That is,

Any two elements of type i are both incident to exactly one element of type j,

Any two elements of type j are both incident to exactly one element of type i,

Each element of type i is incident to exactly q � 1 elements of type j,

Each element of type j is incident to exactly q � 1 elements of type i,

then we draw:

 Let Γij represent a generalized n-gon. That is, the girth (2n) of the graph Γij is

twice its diameter (n). Let n ¥ 4. Then we draw



CHAPTER 1. INTRODUCTION 16

 Let the elements of Γij of type i and j be the vertices and edges of the Petersen

graph respectively. Then we label the line between them like so:

Definition 1.13. The diagram shown here (of rank n�m� 2) we will call Pm
n .

We usually omit writing n or m if it is equal to zero. Thus the diagram mentioned

just before we simply call P .

An example: Let Γ be the set of points, lines and faces of a cube. To define I, let a

face of the cube be incident to the 4 lines and 4 points around its edge, and let a line

be incident to the 2 points at either end of it (here we see some motivation for the

word “flag”). Let T � t0, 1, 2u with the points, lines and faces having type 0, 1 and 2

respectively. We draw the basic diagram:

More generally, let distpx, yq represent the distance between two vertices x and y in

the graph Γij. Then we draw:

where di � mintmaxtdistpx, yq : y P Γiju : x P Γij|x has type iu
dj � mintmaxtdistpx, yq : y P Γiju : x P Γij|x has type ju
g is half the cardinality of a smallest thin connected subgeometry of Γij.

Such a subgeometry must have even cardinality 2g as it is forced to look like this:

If di � g � dj � n then we simply write n above the edge: This is the diagram for the

n-gon. If n � 3 then we don’t label the edge: This is the diagram for the projective

plane. If n � 2 then we draw the empty edge: All elements of type i are incident to
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all elements of type j. If n � 4 then a double line is sometimes used.

People have searched for geometries whose automorphisms are sporadic simple groups.

For example, let G be a sporadic simple group, let p be a prime dividing |G| and let

B � NGpP q for some Sylow p-subgroup P of G. Ronan and Stroth [25] give a complete

list of all systems tPi : i P t1, 2, ..., nuu (where the Pi are subgroups of G) such that:

1) The n subgroups Pi generate G.

2) No n� 1 subgroups Pi generate G.

3) The largest normal p-subgroup of each Pi is not the identity.

4) B is contained in a unique maximal subgroup of Pi for each i.

5) If I and J are subsets of t1, 2, ..., n� 1, nu then

xPi : i P Iy X xPi : i P Jy � xPi : i P I X Jy

These give rise to geometries by our method described in Section 1.1.1. Ronan and

Stroth assume 1 to 5 because if G is a group of Lie type over a field of characteristic

p then its Borel subgroup and parabolic subgroups satisfy these conditions.

1.4 Petersen geometries

Definition 1.14. In this thesis we define a Petersen geometry to be any flag-transitive

geometry with a diagram Pm
n . (See Definition 1.13). However, the definition varies

from paper to paper.

In 1988 Ivanov and Shpectorov showed that any flag-transitive Petersen geometry

Pm is one of nine geometries [17]. These are normally called [15, 16]:

G pA5q with diagram P

G pM22q, G p3 �M22q with diagram P 1

G pM23q, G pCo2q, G p323 � Co2q, G pJ4q with diagram P 2

G pBMq, G p34371 �BMq with diagram P 3

So called because any group acting flag-transitively on the geometries with diagram

P 2 and P 3 must be the group mentioned in its name. The only groups acting flag-

transitively on G pA5q are A5 and S5. The only groups acting flag-transitively on

G pM22q are M22 and AutpM22q. The only groups acting flag-transitively on G p3M22q
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are 3M22 and 3Aut(M22). We will talk more about G pM22q and G pM23q a bit later.

Thomas Meixner [20, 21] has classified all geometries with diagrams

(Where “c” is the rank 2 geometry where elements of type 0 and 1 are vertices and

edges of an n-clique respectively. In the cases above n � 4.) Only a finite number

of geometries have the diagram on the left. Buekenhout [3] introduced “c” in order

to generalize the notion of a geometry so that we could find more geometries whose

automorphism group is a simple sporadic group.

The Petersen geometries investigated in this thesis are denoted ΓpA2n�1q, Γp3A7q,
ΓpL2p25qq and ΓpL2p11qq. All have been described by Buekenhout [4] (page 24) and

are described in more detail in Ivanov and Shpectorov’s paper [13] (pages 939,944,945).

We copy Table 1.1 from page 934 of this paper. (Since then it has been discovered that

a few of the geometries in this table are residues of larger geometries. For example,

this is true for the geometry of A2n�1, and the geometries of both L2p25q and PSp4p5q
can be expanded by an infinite series.) Our geometries are those in the top two rows

of the table.

1.4.1 A couple of Petersen geometries

Rob Curtis [7] studied the Mathieu groups by considering the 12-dimensional vector

space over F2 generated by the subsets of a 24-set Ω in Fig.1.4, thinking of addition as

symmetric difference. This is usually called the Golay code. This contains the empty

Fig. 1.4

set, Ω, 759 octads (8-sets), 759 octad complements (16-sets) and 2576 dodecads (12-

sets). The 759 octads form the unique Steiner system Sp5, 8, 24q, whose automorphism
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A2n�1

3A7, L2p25q, L2p11q

M11, He, PSp4p5q

M22, 3M22

M23, Co2, J4

F2

McL

HS

J1

O1S,yO1S

Tab. 1.1

group in S24 is M24. In Fig.1.5 we display Curtis’ MOG. Notice the MOG shows us

Fig. 1.5. The MOG

35 copies of Ω, each consisting of a rectangle (Λ1) and a square (Λ2YΛ3). Choose one

of the 35 copies of Ω: Then choose either the white squares or black squares in Λ1 and
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choose either the white squares, black squares, dots or circles in Λ2 Y Λ3. This gives

us an 8-set. Apply any permutation of the Λi from the group generated by

and this gives us one of the 759 octads. All octads may be obtained from the MOG

in this way.

A tetrad is a 4-set of Ω. The symmetric difference of two octads lies in the Golay code

mentioned earlier. This forces their intersection to have order 0, 4 or 8. Five elements

immediately define an octad. Hence a tetrad inside an octad defines a partition of

Ω into six disjoint tetrads (two of which make the octad). This partition is called a

sextet. There are p24
4 q{6 � 1771 sextets. A partition of Ω into three disjoint octads is

called a trio. It can be shown there are 3795 trios.

Consider the geometry whose elements of 0, 1 and 2 are the octads, trios and sex-

tets of the MOG respectively, where incidence is defined in the obvious way. (An

octad is incident to a trio if it is a member of the trio, a trio to a sextet if the tetrads

of the sextet can be paired to make the trio, and an octad to a trio if two tetrads from

the trio can be paired to make the octad). The group M24 is flag-transitive on this

geometry. Its chamber graph was investigated by Peter Rowley [28]. It has diagram

(The square represents something called a “ghost node” [23].)

Consider the following geometry of the group M23 fixing a P Ω: Let the elements of

type 0 be the 506 octads not containing a and let the elements of type 1,2 and 3 be

the 3795 trios, 1771 sextets and 23 elements Ωztau respectively. Elements of type 0,1

and 2 are adjacent to each other in the obvious way (when one is a “sub-partition” of

the other). An element b of type 3 is incident to an element p of type t � 3 if ta, bu
is a subset of one of the partitions of p (or is disjoint to the octad if t � 0). This is a

Petersen geometry with diagram:

There is more about this geometry by Ivanov and Shpectorov [14]. The group M23 is

this geometry’s full automorphism group and acts flag-transitively. Its chamber graph
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was studied by Peter Rowley [27].

Another geometry can be obtained from the one above by taking the residue of type

t0, 1, 2u. Therefore let b P Ωztau: Elements of type 0 are octads disjoint from ta, bu.
Elements of type 1 are all trios with ta, bu a subset of one of its octads. Elements of

type 2 are all sextets with ta, bu a subset of one of its tetrads. This geometry has the

following diagram:

The subgroup M22 ¤M24 fixing ta, bu pointwise acts flag-transitively on this geometry.

The automorphism group AutpM22q of M22 is in fact equal to the setwise-stabilizer of

ta, bu in M24. It turns out AutpM22q is equal to the group of automorphisms of this

geometry [14]. This geometry’s chamber graph has also been studied by Peter Rowley.

1.5 Amalgams

For the purposes of this thesis an amalgam of subgroups of a finite group G is a set

of subgroups tG0, G1, ..., Giu of G which intersect in a certain way. In this thesis we

always have i � 3 and we represent amalgams as shown in Fig.1.6. This is a shortened

Fig. 1.6

definition [12]. We use amalgams to describe geometries in the following way: Given

G0, G1 and G2, elements of type i are the right cosets of Gi for i P t0, 1, 2u. Two

elements of different type are incident if they have non-empty intersection.
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1.6 My results

The main result of this thesis (and the one I am most proud of) is the diameter of the

chamber graph of ΓpA2n�1q (see Theorem 3.38). Chapters 2 and 3 are almost entirely

devoted to this. Table 1.2 shows the diameter and full automorphism group of the

chamber graph of each geometry studied in this thesis.

Geometry Diameter of the cham-
ber graph

Full automorphism group of the
geometry and its chamber graph

ΓpA2n�1q n2 � t2n
3
u S2n�1

ΓpL2p11qq 9 L2p11q
ΓpL2p25qq 18 PΣLp2, 25q

Γp3A7q 20 3S7

Tab. 1.2

In Chapter 2 we investigate what the chamber graph of ΓpA2n�1q looks like. Usually,

there are many minimal paths between any two chambers A and B. In order to make

life easier, we define certain paths which are ordered from A to B. It turns out that

the distance between two chambers A and B can be derived from something we call

their intersection matrix MpA,Bq. Considering the “distance of a matrix” is there-

fore equivalent to considering the distance between two chambers. In this chapter we

discover ways in which we can start minimal paths between chambers with certain

intersection matrices, notably Theorems 2.35, 2.42 and 2.43.

In Chapter 3 we use the results proved in Chapter 2 to find a lower bound of the

diameter. That is, two chambers which are exactly a certain distance apart. We then

focus on finding an upper bound on the diameter. We do this by taking any two

chambers A and B and looking at their intersection matrix MpA,Bq. Our method for

“attacking” MpA,Bq is to split it into smaller matrices. Then we can state bounds

for the smaller matrices by induction. Finally, we find the full automorphism group of

the chamber graph.

In Chapters 4, 5 and 6 we do similar things for the chamber graphs of ΓpL2p11qq,
ΓpL2p25qq and Γp3A7q respectively. The geometries of ΓpL2p25qq and Γp3A7q are easily

defined by the Hall graph and the Conway-Smith graph respectively, and ΓpL2p11qq
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is basically a description of the Petersen design. (A 2-(11,3,3)-design.) We find nice

ways of thinking about these three objects. Chambers of the geometries ΓpL2p25qq
and Γp3A7q which are maximal distance apart look interesting: Those of ΓpL2p25qq
“intersect” in a certain way and those of Γp3A7q are multiples of each other.

Curiously, the disc structures of the chamber graphs of ΓpA7q, ΓpL2p11qq, ΓpL2p25qq
and Γp3A7q are all very similar. (See Table 7.1.) There is probably a very clever reason

for this. Some of the results (for example Figures 2.6, 5.1 and 6.1) give us a hint as

to why this is.

Chapter 7 consists of a few extra results I have found (or disproved) which do not

fit into the other chapters. We end with a conjecture which I am extremely suspicious

is true but have not been able to prove.



Chapter 2

The geometries ΓpA2n�1q

First let’s define ΓpA2n�1q.

Definition 2.1. Let 2n � 1 ¥ 3, Ω � t1, 2, 3, ..., 2n � 1u and let S be the set of all

2-sets of Ω. We define Γi (the elements of type i) as follows:

Γ0 � ttsu|s P Su � ttta, buu|a, b P Ω, a � bu
Γ1 � tts, tu|s, t P S, s and t disjoint u

...

Γi � tts1, s2, s3, ..., si�1u|sj P S and sj and sk disjoint whenever j � ku
for 0 ¤ i ¤ n� 1. We have ΓpA2n�1q �

�
Γi, where two elements of different type are

incident if one is a subset of the other.

We will show later that the automorphism group of the above geometry is S2n�1.

For now it is enough to note that the automorphism group contains S2n�1 so this is a

flag-transitive geometry. We know that ΓpA5q is the geometry formed by the points

and lines of the Petersen graph, shown in Fig.1.1.

2.1 Chambers

Definition 2.2. Throughout this thesis a chamber of the geometry ΓpA2n�1q will some-

times be referred to as an n-chamber. In this chapter a chamber is often assumed to

be an n-chamber unless stated otherwise.

Theorem 2.3. ΓpA2n�1q contains exactly p2n�1q!
2n

chambers.

24
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Proof. By Definition 2.1 S2n�1 acts transitively on the chambers. The stabilizer of a

chamber in S2n�1 has order 2n.

Definition 2.4. Let C be an n-chamber whose element of type i is ci:

c0 � c1 � ... � cn�2 � cn�1

For 1 ¤ i ¤ n� 1, the ith part Cpiq of C is defined as the only element in cn�i which

is not in cn�i�1. We define Cpnq as the only element in c0. Define Cp0q as the unique

element of Ω not contained in any Cpiq for i ¥ 1. We do not call Cp0q a part of C.

Definition 2.5. Let C be an n-chamber. We will write C in the following way:

C � Cp1q|Cp2q|...|Cpn� 1q|Cpnq

It can be tedious to write each Cpiq in the form ta, bu so for the sake of brevity, we will

sometime miss out curly brackets or commas if it doesn’t add confusion. On occasion,

it is convenient to write Cp0q at the beginning, and for some 1 ¤ x ¤ n we sometimes

indicate Cpxq:

C � Cp0q|Cp1q|Cp2q|...|
x

Cpxq|...|Cpn� 1q|Cpnq

For example, in ΓpA5q the chamber

C : tt2, 3u, t1, 4uu � tt2, 3uu

has Cp1q � t1, 4u, Cp2q � t2, 3u and Cp0q � 5. We can write C � 14|23 or 5|14|23.

In ΓpA7q the chamber

D : tt3, 4u, t1, 2u, t5, 7uu � tt3, 4u, t5, 7uu � tt5, 7uu

has Dp1q � t1, 2u, Dp2q � t3, 4u, Dp3q � t5, 7u and Dp0q � 6. We may write

D � 12|34| 3

57 or 6|12|34| 3

57.

All we are doing is writing the omitted parts in order. Notice that there is no ambi-

guity: Each chamber is uniquely defined by this notation.

Recall that two adjacent chambers C and D are said to be i-adjacent if they differ

only by their elements of type i. What do adjacent chambers look like when written

using the notation of Definitions 2.4 and 2.5? This brings us on to Theorem 2.6.
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Theorem 2.6. The n-chamber C has exactly n� 1 neighbours. Of these, n� 1 are of

the form D where for some xp1 ¤ x   nq we have Dpxq � Cpx� 1q, Cpxq � Dpx� 1q
and Cpiq � Dpiq whenever i R tx, x� 1u. That is, D looks like:

Cp2q|Cp1q|Cp3q|Cp4q|...|Cpn� 1q|Cpnq
Cp1q|Cp3q|Cp2q|Cp4q|...|Cpn� 1q|Cpnq
Cp1q|Cp2q|Cp4q|Cp3q|...|Cpn� 1q|Cpnq

...

Cp1q|Cp2q|Cp3q|Cp4q|...|Cpnq|Cpn� 1q
The remaining two are of the form D where Cpiq � Dpiq for i ¡ 1.

Proof. Let C and D be x-adjacent. Let C be the chamber

c0 � c1 � ... � cn�2 � cn�1

If 0 ¤ x ¤ n� 2 then we have that cx�1 � cxYCpn�x� 1q and cx � cx�1YCpn�xq.
This forces D’s element of type x to be cx�1 Y Cpn� x� 1q. This means

Dpn� xq � Cpn� x� 1q
Cpn� xq � Dpn� x� 1q
Cpiq � Dpiq otherwise

On the other hand if x � n� 1 then Cpiq � Dpiq for i ¡ 1. Clearly Dp0q � Cp0q and

so we have two options for Dp1q.

For example, we observe that the chambers adjacent to 12|34|56 are 12|56|34,

34|12|56, 17|34|56 and 27|34|56, shown here:

If we look closely we see that the two type-2-adjacencies are different from the type-

0-adjacency and type-1-adjacency.

Definition 2.7. Let A and B be adjacent chambers. Write A B. We say that A is

a neighbour of B. Furthermore, if Apxq � Bpx�1q we call the adjacency a px, x�1q-
swap. We may say A is a px, x � 1q-swapping of B, or A

x,x�1
B. If Ap0q � Bp0q

we call the adjacency a 0-swap. We may say A is a 0-swapping of B, or A
0
B.
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For example, C � 9|12|34|56|78 is a 1,2-swap of 9|34|12|56|78

a 2,3-swap of 9|12|56|34|78

a 3,4-swap of 9|12|34|78|56

a 0-swap of 1|29|34|56|78

a 0-swap of 2|19|34|56|78

Definition 2.8. An adjacency may be referred to as a jump if it is not a 0-swap. (So

called because two parts “jump” over each other by Theorem 2.6 and Definition 2.4.)

2.2 The Chamber Graph

In Fig.2.1 we draw the chamber graph of ΓpA5q. Notice how this graph consists of

p52q � 10 triangles, and treating each of these as a vertex gives us the Petersen graph.

We state this more generally in Theorem 2.9.

Fig. 2.1. The Chamber Graph of ΓpA5q

Theorem 2.9. Consider the chamber graph of ΓpA2n�1q. Let Λ be a graph of p2n�1
2 q

vertices, each labelled by a pair ti, ju and representing all chambers with nth part ti, ju.
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Let two vertices be joined by an edge whenever a chamber of one is adjacent to a cham-

ber of the other. Then Λ is isomorphic to T2p2n� 1q. The chambers of a particular

vertex are isomorphic to the chamber graph of ΓpA2n�1q.

Proof. The proof follows easily from Theorem 2.6 and Definition 1.7.

2.3 Intersection matrices

Definition 2.10. The intersection matrix MpA,Bq between n-chambers A and B is

defined as the n� n matrix where

MpA,Bqij � |Apiq XBpjq|

Recall that the chambers adjacent to 12|34|56 are 12|56|34, 34|12|56, 17|34|56 and

27|34|56. Thus the intersection matrices of 12|34|56 with its neighbours are shown in

Fig.2.2.

Fig. 2.2

Lemma 2.11. Let A and B be n-chambers. Then MpA,Bq satisfies the following:

 Any entry is either 0,1 or 2.

 The sum of the entries in any column is 1 or 2.

 The sum of the entries in any row is 1 or 2.

 The sum of the entries in MpA,Bq is 2n or 2n� 1.

Definition 2.12. If the entries of the n� n matrix MpA,Bq sum to 2n then we call

MpA,Bq even. We call it odd otherwise. If it is odd then the unique row whose entries

sum to 1 we will call the odd row. Similarly the unique column whose entries sum to

1 we will call the odd column.

The uniqueness of the odd row and odd column is obvious by Lemma 2.11.

Lemma 2.13. Let A and B be n-chambers and g P S2n�1. Then MpA,Bq �MpAg, Bgq.
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Proof. The proof is obvious from Definition 2.10.

We prove Lemma 2.14 for the sake of proving Lemma 2.15.

Lemma 2.14. Let A be an n-chamber and M be an n � n matrix satisfying the

properties stated in Lemma 2.11. Let 1 ¤ k   n and pBjqnj�k�1 be a sequence such that

I. Each Bj is a 2-subset of t1, 2, ..., 2n� 1u.
II. Bi and Bj are disjoint unless i � j.

III. Each Bj intersects A by the required jth column of M . (That is, Mij � |ApiqXBj|
for all 1 ¤ i ¤ n.)

Then there exists Bk such that pBjqnj�k satisfies I, II and III. Let G � S2n�1. If

pCk, Bk�1, ...Bnq fulfills I, II and III then there exists g P StabGpAq such that

pCk�1, Bk, ...Bnqg � pBk�1, Bk, ...Bnq.

Proof. Let the ith part Apiq of A be txi, yiu for all i p1 ¤ i ¤ nq. StabGpAq � xpxi, yiq :

1 ¤ i ¤ ny � Zn2 . Consider the kth column of M . We have six possible cases: (These

are illustrated in Fig. 2.3).

i) Mik � 2 for some 1 ¤ i ¤ n. This forces Bk � Apiq.
For cases ii and iii let Mik � 1 and all other entries of the column be zero.

ii) Mij � 0 for all k   j ¤ n. This forces Bk � txi, Ap0qu or tyi, Ap0qu.
iii) Mij � 1 for some k   j ¤ n. Without loss of generality let xi P Bj. This forces

Bpiq � tyi, Ap0qu.
For cases iv, v and vi let Mik �Mi1k � 1 where i � i1.

iv) Mij � Mi1j � 0 for all k   j ¤ n. This forces Bk � txi, xi1u, txi, yi1u, tyi, xi1u or

tyi, yi1u.
v) Mij � 1 for some k   j ¤ n and Mi1j1 � 0 for all k   j1 ¤ n. Without loss of

generality let xi P Bj. This forces Bk � tyi, xi1u or tyi, yi1u.
vi) Mij � Mi1j1 � 1 for some k   j ¤ n, k   j1 ¤ n. Then without loss of generality

let xi P Bj and xi1 P Bj1 . This forces Bk � tyi, yi1u.

In all six cases we see there are only one, two or four options for Bk. Furthermore, if

Bk and Ck are two options then there exists g P StabGpAq such that Bg
k � Ck and g

fixes Bj for j ¡ k.
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Fig. 2.3. i, ii, iii, iv, v and vi

The idea behind Lemma 2.14 is that, if we want M � MpA,Bq, each Bj is a

possible candidate for Bpjq.

Lemma 2.15. Let A be an n-chamber and M be an n � n matrix satisfying the

properties stated in Lemma 2.11. Then the set

tB : B is an n-chamber such that M �MpA,Bqu

is nonempty. Let G � S2n�1. Then StabGpAq is transitive on this set.

Proof. Let the ith part Apiq of A be txi, yiu for all i p1 ¤ i ¤ nq. StabGpAq � xpxi, yiq :

1 ¤ i ¤ ny � Zn2 . We will inductively define sequences

pBkqnj�k � pBk, ..., Bnq

(1 ¤ k ¤ n) such that conditions I, II and III of Lemma 2.14 are satisfied, as well as

the following condition:

IV. If pCjqnj�k � pCk, ..., Cnq satisfies I, II and III then there exists g P StabGpAq such

that pCk, ..., Cnqg � pBk, ..., Bnq.

To begin the induction, consider the rightmost column of M . Let Bn be a 2-subset of

t1, 2, ..., 2n� 1u which intersects A by this column: That is, let Min � |Apiq XBn| for

1 ¤ i ¤ n. We have three cases:

i): Min � 2 for some 1 ¤ i ¤ n. This forces Bn � Apiq.
ii): Min � 1 for some 1 ¤ i ¤ n and Mjn � 0 whenever i � j. This forces

Bn � txi, Ap0qu or tyi, Ap0qu.
iii): Min � Mjn � 1 for some 1 ¤ i ¤ n, 1 ¤ j ¤ n where i � j. This forces

Bn � txi, xju, txi, yju, tyi, xju or tyi, yju.
In all three cases we see that pBnq is a sequence satisfying I, II and III in Lemma 2.14.

IV is also satisfied.
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Suppose we have a sequence pBjqnj�k�1 (where 1 ¤ k   n) satisfying I, II, III and

IV. By Lemma 2.14 there is a sequence pBjqnj�k satisfying I, II and III. To show it

satisfies IV, let pCjqnj�k be another such sequence. By induction we know there exists

g P StabGpAq such that pCk, Ck�1..., Cnqg � pCg
k , Bk�1, ..., Bnq. By Lemma 2.14 there

exists h P StabGpAq such that pCg
k , Bk�1, ..., Bnqh � pBk, Bk�1, ..., Bnq.

This is true up to k � 1. Define the n-chamber B by Bpiq � Bi for 1 ¤ i ¤ n.

For any other chamber C satisfying M � MpA,Cq, we see there is some element of

S2n�1 fixing A taking C to B.

Lemma 2.16. Let the two matrices M �MpA,Bq and M 1 differ only by their leftmost

column. Then there is a 0-swapping B1 of B such that M 1 �MpA,B1q.

Proof. For 2 ¤ j ¤ n define Bj � Bpjq. We see that A, M 1 and pB2, ..., Bnq satisfy

conditions I, II and III in Lemma 2.14. Hence there is a B1 such that A, M 1 and

pB1, B2, ..., Bnq also satisfy I, II and III. Define the chamber B1 by B1pjq � Bj for

1 ¤ j ¤ n. Then we have that MpA,B1q � M 1 and Bpjq � B1pjq whenever j ¥ 2.

Hence B
0
B1.

Let’s see what happens to MpA,Bq if we replace B with one of its neighbours:

Lemma 2.17. Let A and B be chambers. Then the intersection matrices of A with

any neighbour of B can be obtained from MpA,Bq by either:

 Swapping two adjacent columns (a jump) or

 Changing the entries in the leftmost column to anything that

satisfies the four conditions of Lemma 2.11. (a 0-swap).

Similarly we can see how B intersects a neighbour of A by either,

 Swapping two adjacent rows (a jump) or

 Changing the entries in the top row to anything that satisfies

the four conditions of Lemma 2.11. (a 0-swap).

Proof. Recall Theorem 2.6 and Definition 2.7. The claim about jumps is obvious. By

Lemma 2.15, if a matrix M 1 satisfies the four conditions stated in Lemma 2.11 and

differs from MpA,Bq only by its leftmost column, then by Lemma 2.16 there exists a

chamber B1
0
B such that M 1 �MpA,B1q.
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Note that any change made by a 0-swap always looks like something happening

in Fig.2.4. (We write a zero in the entry defined by the odd row and odd column if

possible.)

Fig. 2.4. Any 0-swap looks like one of these.

Theorem 2.18. Let the chambers A,B,C,D satisfy MpA,Bq � MpC,Dq. Then

distpA,Bq �distpC,Dq.

Proof. We know S2n�1 acts on the chamber graph, preserving distance. There exists

g P S2n�1 such that Cg � A. We have distpC,Dq �distpA,Dgq. By Lemma 2.13 we

know MpA,Bq �MpC,Dq �MpA,Dgq. By Lemma 2.15 there is a permutation fixing

A taking Dg to B. Therefore there exists some element of S2n�1 taking C to A and D

to B. Hence distpA,Bq �distpC,Dq.

2.4 Matrix distance

Following Theorem 2.18 we can now say that any intersection matrix M has its own

unique distance.

Definition 2.19. The distance distpMq of an n�n matrix M satisfying the properties

stated in Lemma 2.11 is the distance between any two n-chambers A and B such that

M �MpA,Bq.

Indeed, for the rest of the thesis we will talk about the distance of a matrix as

much, if not more, as the distance between two chambers.

In Fig.2.5 we represent the distance of all chambers of ΓpA5q from some original cham-

ber 12|34. We do the same for ΓpA7q in Fig.2.6. It is wise at this point to stare at

Figures 2.5 and 2.6 for a few minutes to get an idea of how the jumps and 0-swaps

change our matrices.
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Fig. 2.5

Fig. 2.6

2.5 Minimal paths

How do we find minimal paths between chambers? We are now in a position to state

that if we want to find a minimal path between chambers A and B, one method is

to see how few of the operations described in Lemma 2.17 we can apply to MpA,Bq
until we have diagonal twos. How can we pick out a quickest way? We state the next
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definition bearing in mind Definitions 2.7 and 2.8.

Definition 2.20. Given two chambers A and B, we say MpA,Bq has unjumpable rows

if there is no C
x,x�1

B such that distpA,Cq �distpA,Bq � 1. We say MpA,Bq has

unjumpable columns if there is no C
x,x�1

A such that distpC,Bq �distpA,Bq � 1.

We say MpA,Bq is unjumpable if it has unjumpable rows and unjumpable columns.

2.5.1 Ordered and similar paths

Notation Let x ¡ 0 and y ¡ 0. Let the chambers A and B satisfy Apxq � Bpyq and

distpA,Bq � |x � y|. Then A and B are joined by a minimal path consisting only of

|x� y| jumps. We write A
x,

� � �
,y

B or B
y,

� � �
,x

A. For example, if

we might write A
1,

� � �
,7

B.

Lemma 2.21. Let 1 ¤ i   j ¤ n. If A
i,

� � �
,j

B then

Apkq � Bpkq if k   i or k ¡ j

Apkq � Bpk � 1q if i   k ¤ j

Apiq � Bpjq

Definition 2.22. This is a recursive definition:

A minimal path P of length l ¥ 1 joining A and B is ordered from A to B if there is

a chamber B1 P P such that B
0
B1

1,
� � �

,l
A. (If l � 1 then B1 � A.)

A minimal path P is ordered from A to B if there is a chamber C P P such that P is

ordered from A to C and ordered from C to B.

For example, the following minimal paths are ordered from A to B and C to D (of

length 17 and 8 respectively):
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Definition 2.23. Let P be a minimal path of length l joining chambers A and B.

Write P as the sequence of chambers pPiqli�0 where P0 � A, Pl � B and Pi is adjacent

to Pi�1. We define the subsequence X of P by letting Pi P X if and only if Pi is a

0-swap of some chamber in P . We define the sequence of 0-swaps of P from A to B

to be the sequence pXip1qq.

For example, the sequence of 0-swaps of the above path from A to B and C to D

is pt7, 8u, t7, 15u, t11, 12u, t8, 12u, t13, 14u, t11, 14uq and pt9, 10u, t9, 11u, t3, 4u, t10, 4uq
respectively.

Definition 2.24. Let P and P 1 be two minimal paths between A and B. We say P

and P 1 are similar if the sequence of 0-swaps of P from A to B is equal to the sequence

of 0-swaps of P 1 from A to B.

Definition 2.24 is the same if we interchange A and B. Thus similarity is well-

defined and is an equivalence relation on minimal paths. It is a hard-looking definition

for what is actually very intuitive. For example, the minimal path P is similar to Q

but not R in Fig.2.7. This is because the sequences of 0-swaps (from 12|34|56|78 to

49|32|78|56) are

P,Q : pt1, 2u, t1, 9u, t3, 4u, t3, 2u, t1, 9u, t4, 9uq R : pt3, 4u, t4, 9u, t1, 2u, t3, 2uq

When we say P and Q are similar we are saying they are equal “mod jumps”.

Definition 2.25. A chamber C is said to be in-between A and B if distpA,Cq �
distpC,Bq � distpA,Bq. Let P be a minimal path joining chambers A and B. Let

C,D P P . The path following P from C to D is the subset

PC to D � tE P P : E is in-between C and Du
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Fig. 2.7

2.5.2 Some commuting diagrams

In this thesis we will use the following definition of what it means for a commuting

diagram to hold.

Definition 2.26. We say that the following commuting diagram holds if the existence

of any three of the chambers in it imply the existence of a fourth satisfying it.

Lemma 2.27. Let x ¥ 1, y ¥ 1 and tx, x� 1, y, y � 1u be a 4-set. Then the diagram

on the left holds. Let z ¥ 2. Then the diagram on the right holds:

Proof. We prove the first claim. Let A, B and D satisfy the claims made about them

in the left diagram. Then

Apiq � Dpiq if i R tx, x� 1, y, y � 1u
Apxq � Dpx� 1q Apyq � Dpy � 1q
Dpxq � Apx� 1q Dpyq � Apy � 1q
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This is still achieved if we interchange the px, x � 1q-swap and the py, y � 1q-swap so

the existence of C follows. A similar argument proves the existence of A, B or D given

that the other three exist. Now we prove the second claim. Let A
0
B

z,z�1
D.

This implies

Apiq � Dpiq if i R t0, 1, z, z � 1u
Apzq � Dpz � 1q
Dpzq � Apz � 1q

Therefore if C
z,z�1

A we have that Cpiq � Dpiq whenever i R t0, 1u. A similar

argument proves the existence of A, B or D given that the other three exist.

Lemma 2.28. Let 1 ¤ i   j ¤ n. If tx, x � 1u and ti, i � 1, ..., j � 1, ju are disjoint

then the diagram on the left holds. If i   x   j then the diagram on the right holds:

Proof. First note that if A
i,

� � �
,j

B then by Lemma 2.21,

Apkq � Bpkq if k   i or k ¡ j

Apkq � Bpk � 1q if i   k ¤ j

Apiq � Bpjq

If tx, x�1u and ti, i�1, ..., j�1, ju are disjoint the diagram on the left holds by Lemma

2.27. Let i   x   j. Assume the existence of A, B and C. Let Apxq � ta, bu and

Apx � 1q � tc, du. Then C � Apa,cqpb,dq. It follows that C
i,

� � �
,j

D � Bpa,cqpb,dq.

We know that Bpx� 1q � ta, bu and Bpxq � tc, du. Therefore B
x�1,x

D. A similar

argument proves the existence of A, B or C given that the other three exist.

Lemma 2.29. Let i ¥ 1 and x ¥ 2. If x ¡ i then the diagram on the left holds. If

x   i then the diagram on the right holds.

Proof. The result follows from Lemmas 2.27 and 2.28.
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Lemma 2.30. Let 1 ¤ k   x ¤ n. Then this commuting diagram holds:

Proof. This can easily be checked using the right-hand diagram of Lemma 2.29.

2.6 Ways of starting minimal paths

For the rest of this chapter let a, b, c, d and e be distinct elements of t1, 2, ..., 2n, 2n�1u.
That is, |ta, b, c, d, eu| � 5.

Lemma 2.31. Let X be an equivalence class of similar minimal paths from A to B.

There exists a path P P X and a chamber C P P such that PA to C is ordered from A

to C and PC to B consists only of jumps. Furthermore, C and PA to C are defined by

X.

Proof. First we prove uniqueness: If we have another path P 1 P X and a chamber

C 1 P P 1 satisfying the theorem, then having P and P 1 similar and ordered means

C � C 1 and PA to C � P 1
A to C1 by Definitions 2.22, 2.23 and 2.24. Therefore we need

only prove existence. We do this by induction on the distance between A and B. If

distpA,Bq � 1 then the result is clearly true. Therefore assume the result is true for

distance less than L and let distpA,Bq � L.

Let P P X and A1 P P be adjacent to A. By induction, we may assume P is ordered

from A1 to some chamber C and consists only of jumps from C to B. Furthermore,

there exist chambers D and D1 such that

P : A A1
i,

� � �
,1

D
0
D1 � � � � � � � � �C

jumpshkkkikkkj
� � � � � � � � �B

We consider two cases:

Case I. A
0
A1. Then we must have that i ¥ 2 and so P is ordered from A to C.

Case II.A
x,x�1

A1. If i � x then P is ordered from A to C. If i � x � 1 then we

have a contradiction. Therefore assume i R tx, x� 1u. By Lemma 2.29 there is a path
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Q : A
i,

� � �
,1

E
0
E 1 D1 � � � � � � � � �C

jumpshkkkikkkj
� � � � � � � � �B

similar to P , where E 1
x,x�1

D1 (if x ¡ i) or E 1
x�1,x�2

D1 (if x   i � 1). By

induction the result holds for Q.

In the proof above we are “applying all of X’s 0-swaps to A as quickly as we can”.

For example, if we apply this method to Fig.2.7 we get:

Lemma 2.32. Let A and B be n-chambers. Let B � a|bc| � � � and no 0-swapping

of B lie in-between A and B. Let the chamber C � B be in-between A and B. If

C � a|bc| � � � then no 0-swapping of C lies in-between A and C.

Proof. Without loss of generality suppose the chamber Cpa,bq
0
C lies in-between A

and C. Then distpB,Cq � distpBpa,bq, Cpa,bqq, giving us distpA,Bpa,bqq   distpA,Bq.
This is a contradiction as Bpa,bq

0
B.

Lemma 2.33. Suppose a P Bpuq (or a � Bpuq if u � 0) and Bpvq � tb, cu where

0 ¤ u   v ¤ n. If tb, cu is not a part of the chamber A then any minimal path P

in-between A and B is similar to some path containing a subpath:

B � � � � � � � � �C
x�1,

� � �
,1

D
0
E � � � � � � � � �A

where a P Cpxq (or a � Cpxq if x � 0) and Cpx� 1q � tb, cu for some x ¥ 0.

Proof. We prove by induction on distpA,Bq. We may claim it is true for distance 0.

Assume it is true for distance less than L and let distpA,Bq � L. By Lemma 2.31 we

may assume P is ordered from B to some B1 and consists only of jumps between B1

and A. Assume A � B1, or the result follows by induction using that distpB1, Bq   L.

If P of the form

B
y,

� � �
,1

A1
0
A

then we must have y � v and the theorem is proved. Therefore P is of the form
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B
y,

� � �
,1

F 1
0
F � � � � � � � � �A

We assume PF to A is not similar to any minimal path having the subpath claimed.

Therefore by induction we must have F 1p1q � tb, cu and F p1q � tb, cu, and so y � v.

(Even if y � 1 this still proves the theorem).

Lemma 2.34. Let A and B be n-chambers. Let B � a|bc| � � � and no 0-swapping of

B lie in-between A and B. If tb, cu is not a part of A then any minimal path between

A and B is similar to a minimal path containing a subpath:

B � � � � � � � � �C
x�1,

� � �
,1

D
0
E � � � � � � � � �A

where C is of the form d| � � � |ae|
x�1

bc | � � � for some 1 ¤ x   n. The following are true:

(1) We have distpA,Dq   distpA,Bq � 2x.

(2) We have distpA,Dpb,dqq ¤ distpA,Dq.
(3) We have distpA,Dq ¤ distpA,Dpb,dqpb,eqq.

Proof. By Lemma 2.33 we know such a path must exist where x ¥ 0. Suppose x � 0.

We must have B � C. This leads to a contradiction by Lemma 2.32. Hence x ¥ 1.

We now prove (1), (2) and (3):

(1) It is clear that distpB,Cq ¥ x� 1 and distpC,Dq ¥ x.

(2) We know this because either E � Dpb,dq, or else D, Dpb,dq and E are all 0-swappings

of each other. Thus we cannot have distpA,Eq   distpA,Dq   distpA,Dpb,dqq.
(3) Consider this path of length x� 1:

C
x�1,x

Cpa,cqpb,eq
x,

� � �
,1

D
0
Dpb,dq

Hence there is a path P of length x joining Cpa,cq and Dpb,dqpb,eq. Note that the distance

between A and B is distpB,Cq � x� distpD,Aq. Using P we see there is a path

Q : B
0
Bpa,cq � � � � � � � � �Cpa,cq � � � � � � � � �Dpb,dqpb,eq � � � � � � � � �A

whose length is at most 1�distpB,Cq�x�distpDpb,dqpb,eq, Aq. Therefore if (3) is false

it follows that Q is minimal. This is a contradiction as Q contains a 0-swapping of

B.

We are now in a position where we can prove Theorem 2.35.
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Theorem 2.35. The following are true: (Let i � 0.)

(i): Let Apiq � ta, bu and B � a|bc| � � � . Then the chamber Bpa,cq
0
B with first part

ta, bu is in-between A and B.

(ii): Let Apxq � Bpiq and Apyq � Bpi�1q where y   x. Then the chamber C
i,i�1

B

is in-between A and B.

(iii): Let Bpiq � Apjq and Bpi � 1q � Apkq for all k p1 ¤ k ¤ nq. Then the chamber

C
i,i�1

B is in-between A and B.

We illustrate the theorem here:

Proof. We prove (i), (ii) and (iii) by induction on the distance of M � MpA,Bq. We

may claim they are true for distance 0. We assume they are true for distance less than

L and that M has distance L.

Proof of (i) for distance L. The matrix MpA,Bq has an odd row whose leftmost

entry is 1. We can make the following assumptions:

 The odd row of M is the top row. That is, i � 1: If i � 1 then A has a neighbour

A1 such that A1pjq � ta, bu for some 1 ¤ j ¤ n, and distpA1, Bq � L� 1. This means,

by induction, that Bpa,cq lies in-between A1 and B.

 There is no chamber B1
0
B in-between A and B: If B1 � Bpa,bq then by Lemma

2.13 the matrix M � MpApa,bq, Bpa,bqq � MpA,Bpa,bqq has length L. The only other

option for B1 is Bpa,cq, as required.

Therefore by Lemma 2.34 there is a minimal path between A and B of the form

B � � � � � � � � �C
x�1,

� � �
,1

D
0
E � � � � � � � � �A

where C is of the form d| � � � |ae|
x�1

bc | � � � and D is of the form d|bc| � � � |x�1
ae | � � � for some

1 ¤ x   n.

We have Dpb,dq � b|dc| � � � |x�1
ae | � � � . There exists F such that

Dpb,dq
x�1,

� � �
,1

F
0
F pb,eq

1,
� � �

,x�1
Dpb,dqpb,eq
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This is illustrated in Fig.2.8. Let θ be the number of entries within the leftmost x

columns of MpA,Dpb,dqq that are equal to 2. We know the following by induction: (We

are allowed to use induction by combining parts (1) and (2) of Lemma 2.34).

distpA,F q ¤ distpA,Dpb,dqq � x� 2θ by (iii)

distpA,F pb,eqq � distpA,F q � 1 by (i)

distpA,Dpb,dqpb,eqq � distpA,F pb,eqq � x� 2θ by (ii) and (iii)

It follows that distpA,Dpb,dqpb,eqq   distpA,Dpb,dqq. This contradicts Lemma 2.34 (2)(3)

Fig. 2.8

and proves (i) for matrices of distance L.

Proof of (ii) for distance L. Let Apxq � Bpiq � ta, bu and Apyq � Bpi�1q � tc, du.
There exists D A such that the matrix MpD,Bq is of length L� 1. Using (i) we

know that D has both parts ta, bu and tc, du. There are two possibilities: The first is

that x � y � 1 and D � Apa,cqpb,dq. In that case, MpD,Bq �MpDpa,cqpb,dq, Bpa,cqpb,dqq �
MpA,Cq and we are done. The second is that Dpxq � Apyq and Dpyq � Apxq. In that

case, (ii) holds by induction.

Proof of (iii) for distance L. There exists D A such that the matrix MpD,Bq
is of length L� 1. Using (i) we know that D has the part Bpiq. There are two possi-

bilities: The first is that we still have Bpi � 1q � Dpkq for all k. In that case, we are

done by induction using (iii). The second is that Bpi � 1q � Dp1q. In that case, we

are done by induction using (ii).

Theorem 2.35 tells us that any unjumpable intersection matrix with entries equal

to 2 is of the form
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Lemma 2.36. We add another statement to our collection in Theorem 2.35.

(iv): Let A � a|bc| � � � . Suppose i ¥ 1, Bpiq � ta, bu and Bpi� 1q is not equal to any

part of A. Then C
i,i�1

B is in-between A and B.

We illustrate the lemma here:

Proof. Theorem 2.35 (i) tells us that D � Apa,cq
0
A is in-between A and B. Note

that the top entry of the ith column of MpD,Bq is equal to 2, and the i� 1th column

still contains no entries equal to 2. Therefore by Theorem 2.35 (iii) we know C is

in-between B and D.

Lemma 2.37. Let P be a minimal path. Let there be some chamber in P with a part

ta, bu. The subset of P consisting of chambers with part ta, bu is itself a minimal path.

Proof. For a contradiction, suppose A, B and C are chambers of P where A and C

have a part ta, bu and B does not, yet B is in-between them and is adjacent to C:

P : � � � � � � � � �A � � � � � � � � �B
0
C � � � � � � � � �

This is obviously a contradiction as Theorem 2.35 (i) states that C is in-between A

and B.

Lemma 2.38. Let ta, a1u ( but not tb, b1u) be a part of A and let tb, b1u (but not ta, a1u)
be a part of B where a, a1, b and b1 are distinct. Let P be a minimal path in-between A

and B containing a chamber which has both parts ta, a1u and tb, b1u. Then P contains

two chambers U and V , where U � � � � |
x

aa1|bb1| � � � and V � � � � |
x

bb1|aa1| � � � where

P : B � � � � � � � � �U
x,x�1

V � � � � � � � � �A

Proof. By Lemma 2.37 the following two sets are subpaths of P :

Pta,a1u � tChambers in P with a part ta, a1uu
Ptb,b1u � tChambers in P with a part tb, b1uu
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Neither of these subpaths are equal to P and their intersection is nonempty. We prove

by induction on the length of P . If P has length 0 we may claim the theorem holds.

Assume the theorem holds up to distance L�1 and let P have distance L. Let B1 P P
be adjacent to B. By induction, the theorem holds unless B

0
B1 � aa1| � � � |bb1| � � � .

By similar reasoning, assume there exists A1 P P where A
0
A1 � bb1| � � � |aa1| � � � .

All chambers of P in-between A1 and B1 have both parts ta, a1u and tb, b1u. Let U

be the closest chamber of P to A1 such that Upxq � ta, a1u and Upyq � tb, b1u where

x   y. Then we must have y � x� 1 and U
x,x�1

V P P .

Recall Definition 2.23. We prove Lemma 2.39 for the sake of proving Lemma 2.40.

Lemma 2.39. Let tApiq : 1 ¤ i ¤ nu � tA1piq : 1 ¤ i ¤ nu and tBpiq : 1 ¤ i ¤
nu � tB1piq : 1 ¤ i ¤ nu. Let P (respectively, P 1) be a minimal path in-between A and

B (respectively, A1 and B1). Let the sequence of 0-swaps of P from A to B be equal

to the sequence of 0-swaps of P 1 from A1 to B1. If P contains a chamber C having

parts Cpxq and Cpyq then P 1 contains a chamber C 1 having parts C 1px1q � Cpxq and

C 1py1q � Cpyq.

Proof. We prove by induction on the length of the sequence S of 0-swaps of P from

A to B. Note that |S| is even. If |S| � 0 then tCpiq : 1 ¤ i ¤ nu is the same for all

C P P Y P 1 and we are done. Assume the result is true up to length 2L � 2 and let

|S| � 2L.

Let P and P 1 be of the form

A � � � � � � � � �D
0
E � � � � � � � � �B and A1 � � � � � � � � �D1

0
E 1 � � � � � � � � �B1

respectively, where P (respectively, P 1) consists only of jumps between A and D (re-

spectively, A1 and D1). Thus S � pDp1q, Ep1q, ...q � pD1p1q, E 1p1q, ...q. By induction,

the lemma is true for PA to D and P 1
A1 to D1 and is true for PE to B and P 1

E1 to B1 .

Lemma 2.40. Let P and P 1 be similar minimal paths joining A and B. If P contains

a chamber C having parts Cpxq and Cpyq then P 1 contains a chamber C 1 having parts

C 1px1q � Cpxq and C 1py1q � Cpyq.

Proof. The lemma follows from Lemma 2.39.

Lemma 2.41 is a slight variation of Lemma 2.34
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Lemma 2.41. Let A � a|bd1| � � � and B � a|bc| � � � (d1 � c). Let no 0-swapping of A

or B lie in-between A and B. There is a minimal path between A and B of the form:

B � � � � � � � � �C
x�1,

� � �
,1

D
0
E � � � � � � � � �A

such that C is of the form d| � � � |ae|
x�1

bc | � � � for some 1 ¤ x   n and the following are

satisfied:

(1) We have distpA,Dq   distpA,Bq � 2x.

(2) We have distpA,Dpb,dqq ¤ distpA,Dq.
(3) We have distpA,Dq ¤ distpA,Dpb,dqpb,eqq.
(4) The leftmost x� 1 columns of MpA,Cq contain no entries equal to 2.

(That is, Cpiq is not a part of A whenever 1 ¤ i ¤ x� 1).

(5) distpCpa,cq, Dpb,eqq � x� 1.

(6) |ta, b, c, d, eu| � |ta, b, c, d1, eu| � 5 (but it is possible that d � d1).

Proof. The existence of such a path satisfying (1), (2) and (3) follows automatically

from Lemma 2.34. (In fact they are implied). It remains to prove we may assume (4),

(5) and (6):

(4): Suppose the leftmost x � 1 columns of MpA,Cq contain θ entries equal to 2.

Consider the set

ti : 1 ¤ i ¤ x� 1|Cpiq P tApjq : 1 ¤ j ¤ nuu

of order θ, not containing x or x � 1. Let θ ¡ 0. Then x ¥ 2. Let k be the largest

element of this set. By Lemma 2.21 we see that Epk � 1q is a part of A and Epiq is

not whenever k � 2 ¤ i ¤ x � 1. Therefore by Theorem 2.35 (iii) we have a minimal

path of the form

B � � � � � � � � �C
x�1,

� � �
,1

D
0
E

k�1,
� � �

,x�1
E 1 � � � � � � � � �A

Therefore by Lemma 2.30 there is a minimal path of the form

B � � � � � � � � �C
k,

� � �
,x

C 1
x�1,x

C2
x,

� � �
,1

D1
0
E 1 � � � � � � � � �A

where x ¥ 2, C2 � d| � � � |ae|
x

bc|Cpkq| � � � and θ � 1 of the leftmost x columns of

MpA,C2q are equal to 2. Hence we may use induction to assume θ � 0.

(5): Consider our path between C and D of length x:

C
x�1,x

Cpa,cqpb,eq
x,

� � �
,1

D
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Hence there is a minimal path of length x� 1 joining Cpa,cq and Dpb,eq.

(6): Note that ta, d1u cannot be a part of C. Otherwise by Theorem 2.35 (i) there is

a 0-swapping Apa,bq of A in-between A and B. Therefore d1 � e.

We are now in a position to prove Theorem 2.42. Before this, let’s look back at

Figures 2.5 and 2.6 and make some observations. Let MpA,Bq be one of the following

four matrices:

In each case there exists A1
0
A and B1

0
B such that MpA1, B1q looks like one of

the following:

Notice that in the three left cases the distance of the matrix has gone down by 2. Thus

A1 and B1 both lie on a minimal path joining A and B. In the other case, however,

the distance has gone down by only 1. Thus A1 and B1 do not lie in-between A and B.

However, we find that every minimal path joining A and B contains some chamber C

with both parts Cpiq � Ap1q and Cpjq � Bp1q.

Theorem 2.42. The following are true:

(v): Let A � a|bd1| � � � and B � a|bc| � � � (d1 � c). Then the chamber Bpa,cq
0
B is

in-between A and B.

(vi): Let A � b|ad1| � � � and B � a|bc| � � � (d1 � c). Then Bpa,cq
0
B. Either:

 distpA,Bpa,cqq � distpA,Bq � 1, or

 distpA,Bpa,cqq � distpA,Bq and every minimal path between A and B contains a

chamber C with both parts Ap1q � ta, d1u and Bp1q � tb, cu.

We illustrate the theorem here:

Proof. We prove (v) and (vi) by induction on the distance of M �MpA,Bq. We may

claim they are true for distance 0. Assume they are both true for distance less than L

and that M has distance L.
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Proof of (v) for distance L. We can make some assumptions:

 There is no chamber B1
0
B in-between A and B: If B1 � Bpa,bq then the result

follows by induction using (vi). The only other option for B1 is Bpa,cq, as required.

 There is no chamber A1
0
A in-between A and B: If A1 � Apa,bq then Bpa,bq is

in-between A and B which cannot happen by our first assumption. If A1 � Apa,d1q �
d1|ab| � � � then by Theorem 2.35 (i) Bpa,cq is in-between A1 and B, as required.

By Lemma 2.41 we may assume there is a minimal path between A and B of the

form

B � � � � � � � � �C
x�1,

� � �
,1

D
0
E � � � � � � � � �A

where C is of the form d| � � � |ae|
x�1

bc | � � � , D is of the form d|bc| � � � |x�1
ae | � � � where x ¥ 1,

and the lemma’s five points (1), (2), (3), (4), (5) and (6) are satisfied.

The chamber Dpb,dq � b|dc| � � � |x�1
ae | � � � is a 0-swapping of D. Let distpA,Dpb,dqq �

distpA,Dq � z1 where z1 �0 or 1 by Lemma 2.41 (2).

There exists F such that

Dpb,dq
x�1,

� � �
,1

F
0
F pb,eq

1,
� � �

,x�1
Dpb,dqpb,eq

Recall by Lemma 2.41 (4) that MpA,Cq has no entries equal to 2 in its leftmost x� 1

columns. The same goes for MpA,Dq. For MpA,Dpb,dqq we have two cases:

Case I: The pair td, cu is a part of A. Then z1 � 1 by Theorem 2.35 (i). In that

case the leftmost x columns of MpA,Dpb,dqq contain exactly one entry (in the leftmost

column) equal to 2. We know the following by induction, Theorem 2.35 and Lemma

2.36: (This is illustrated in Fig 2.9. We are allowed to use induction by combining (1)

and (2) of Lemma 2.41.)

distpA,F q ¤ distpA,Dpb,dqq � x� 2 by (iii)

distpA,F pb,eqq ¤ distpA,F q by (vi)

distpA,Dpb,dqpb,eqq � distpA,F pb,eqq � x� 2 by (iii) and (iv)
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It follows that distpA,Dpb,dqpb,eqq ¤ distpA,Dpb,dqq   distpA,Dq. This is a contradiction

by Lemma 2.41 (3) so we may discount Case I.

Fig. 2.9. Case I.

Case II: The pair td, cu is not a part of A. In that case the leftmost x columns of

MpA,Dpb,dqq contain no entries equal to 2. We know the following by induction, The-

orem 2.35 and Lemma 2.36: (This is illustrated in Fig 2.10. We are allowed to use

induction by combining (1) and (2) of Lemma 2.41.)

distpA,F q � distpA,Dpb,dqq � z2 where z2 ¤ x

distpA,F pb,eqq � distpA,F q � z3 where z3 �0 or 1 by (vi)

distpA,Dpb,dqpb,eqq � distpA,F pb,eqq � x by (iv)

It follows that distpA,Dpb,dqpb,eqq � distpA,Dpb,dqq � z2 � z3 � x. We now have two

Fig. 2.10. Case II.

subcases:

Case II(i) �z1 � z2 � z3   x

Case II(ii) �z1 � z2 � z3 � x

If we have Case II(i) then distpA,Dpb,dqpb,eqq   distpA,Dq, contradicting Lemma 2.41.

Therefore assume Case II(ii). We have z3 � 0. But by induction (vi) that means
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all minimal paths between F and A contain a chamber with both parts tb, d1u and

ta, eu. Therefore by Lemma 2.38 all minimal paths between F and A contain a pair

of adjacent chambers U � ...|bd1|ae|... and V � ...|ae|bd1|... (where V is in-between U

and A).

Using z2 � x we see that Dpb,dq lies on a minimal path between A and F . Using

z1 � 0 we may assume E � Dpc,dq lies on this path. Hence Dpc,dq lies on a minimal

path between A and B, and U and V must lie on this path, in-between Dpc,dq and A.

Therefore we have a minimal path

B � � � � � �C
x�1,

� � � � � �
,1

D
0
Dpc,dq � � � � � �U V � � � � � �A

of length L � distpB,Cq � x � distpD,Uq � 1 � distpV,Aq. But we can find another

path of this length joining A and B:

B
0
Bpa,cq � � � � � � � � �Cpa,cq � � � � � � � � �Dpb,eq � � � � � � � � �U pb,eq � � � � � � � � �Apa,d1q

0
A

Using Lemma 2.41 (5), this path has length 1 � distpB,Cq � px � 1q � distpD,Uq �
distpU pb,eq, Apa,d1qq � 1. Using that distpU pb,eq, Apa,d1qq � distpU pb,eqpa,d1q, Aq � distpV,Aq,
we see this is a minimal path containing Bpa,cq.

Proof of (vi) for distance L. First we want to show that if we have a mini-

mal path P between A and B containing a chamber C with both parts ta, d1u and

tb, cu then distpA,Bpa,cqq ¤ distpA,Bq: By Lemma 2.38 there exist adjacent chambers

D � � � � |ad1|bc| � � � and Dpd1,bqpa,cq lying on P , where Dpd1,bqpa,cq is in-between D and A.

Since distpB,Dq � distpBpd1,bqpa,cq, Dpd1,bqpa,cqq, we must have that distpA,Bpd1,bqpa,cqq  
distpA,Bq. However, distpA,Bpd1,bqpa,cqq � distpApd1,bq, Bpa,cqq. Using that Apd1,bq is a

neighbour of A, we have distpA,Bpa,cqq ¤ distpA,Bq, as required.

All that remains is to assume there is a minimal path P which does not contain a

chamber with both parts ta, d1u and tb, cu, and show that Bpa,cq is in-between A and

B as a result. We may assume that any 0-swapping B1 of B is not in-between A and

B: If B1 � Bpa,bq then the result follows by induction using (v). The only other option

for B1 is Bpa,cq, as required.

By Lemmas 2.34 and 2.40 we may assume P contains the subpath:

B � � � � � � � � �C
x�1,

� � �
,1

D
0
E � � � � � � � � �A
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where C is of the form d| � � � |ae|
x�1

bc | � � � and D is of the form d|bc| � � � |x�1
ae | � � � for some

x ¥ 1. We may assume d1 � e, or else C has both parts tb, cu and ta, d1u.

We have Dpb,dq � b|dc| � � � |x�1
ae | � � � . There exists F such that:

Dpd,bq
x�1,

� � �
,1

F
0
F pb,eq

1,
� � �

,x�1
Dpb,dqpb,eq

This is illustrated in Fig.2.11. Let θ be the number of entries within the leftmost x

columns of MpA,Dpd,bqq that are equal to 2. We know the following by induction,

Theorem 2.35 and Lemma 2.36: (We are allowed to use induction by combining (1)

and (2) of Lemma 2.34.)

distpA,F q ¤ distpA,Dpd,bqq � x� 2θ by (iii)

distpA,F pb,eqq � distpA,F q � 1 by (v)

distpA,Dpb,dqpb,eqq ¤ distpA,F pb,eqq � x� 2θ by (iv)

Hence distpA,Dpb,dqpb,eqq   distpA,Dpd,bqq. This contradicts Lemma 2.34 (2)(3) and

Fig. 2.11

proves (vi) for distance L.

Theorem 2.43. Let M be an n � n intersection matrix with top row odd, leftmost

column odd, and M12 � 1. In other words, let M � MpA,Bq where A � b|ad|... and

B � a|bc|de|.... Then either:

 Bpa,cq
0
B lies in-between A and B, or

 B1
1,2

B lies in-between A and B, or both.

Proof. By Theorem 2.42(vi) we have that either Bpa,cq is in-between A and B, or

a minimal path between A and B contains some chamber C with both parts ta, du
and tb, cu. Assume the latter. The leftmost column of MpC,Bq contains a 2 and
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the column next to it does not. By Theorem 2.35 (iii) we have that B1
1,2

B lies

in-between B and C.

Lemma 2.44. Let 1 ¤ p   n. Let A and B be n-chambers and let A1 and B1 be

p-chambers. Let Apiq � A1piq and Bpiq � B1piq when i ¤ p. Let Apiq � Bpiq if i ¡ p.

Then distpA,Bq � distpA1, B1q.

Proof. First we prove that distpA,Bq ¤ distpA1, B1q. Let C 1 be any p-chamber adjacent

to B1. Then define the n-chamber C by Cpiq � C 1piq if i ¤ p and Cpiq � Bpiq
otherwise. Clearly B and C are adjacent. Hence for every minimal path from B1 to

A1 there is a path of the same length from B to a chamber D such that Dpiq � A1piq
whenever i ¤ p and Dpiq � Bpiq otherwise. Hence D � A.

It remains to prove that distpA,Bq ¥ distpA1, B1q. Let P be a minimal path in-between

A and B. By Theorem 2.35 ((ii) and (iii)) we see that every chamber C P P must

have Cpiq � Apiq � Bpiq when i ¡ p. Therefore if C P P is adjacent to B define

the p-chamber C 1 by C 1piq � Cpiq. Clearly B1 and C 1 are adjacent. Hence for every

minimal path joining A and B there is a path of the same length from A1 to B1.

Lemma 2.45. Let 1 ¤ p   n. Let M be an n � n intersection matrix such that

M � P ` 2In�p, where P is a p� p intersection matrix. Then distpMq � distpP q.

Proof. Our matrix M looks like

By Lemma 2.15 M � MpA,Bq where Apiq � Bpiq when i ¡ p. Therefore define

the p-chambers A1 and B1 where A1piq � Apiq and B1piq � Bpiq for 1 ¤ i ¤ p. The

intersection matrix MpA1, B1q is P . By Lemma 2.44 distpA,Bq � distpA1, B1q.



Chapter 3

The diameter and automorphism

group of ΓpA2n�1q

Definition 3.1. Let diampnq be the diameter of the chamber graph of ΓpA2n�1q. Let

diamoddpnq be the largest possible distance of an odd n� n intersection matrix.

Clearly diamoddpnq ¤ diampnq. We prove a lower bound for both in the next

Section.

3.1 A lower bound of the diameter

Theorem 3.2.

diampnq ¥

$'''&'''%
n2 � 2n

3
if n � 0 mod 3

n2 � 2n
3
� 2

3
if n � 1 mod 3

n2 � 2n
3
� 1

3
if n � 2 mod 3

diamoddpnq ¥

$'''&'''%
n2 � 2n

3
� 1 if n � 0 mod 3

n2 � 2n
3
� 2

3
if n � 1 mod 3

n2 � 2n
3
� 1

3
if n � 2 mod 3

Alternatively, diampnq ¥ n2 � t2n
3
u and diamoddpnq ¥ n2 � t2n�1

3
u. Notice our claims

differ only when n � 0 mod 3.

Proof. The theorem is true if n � 1. We prove by induction on n, defining an even

n � n matrix En and an odd n � n matrix On having the distances claimed for each

n ¥ 2. We do so for n � 2, 3 and 4:

52
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E2 � O2 � E3 � O3 � E4 � O4 �
This is enough to show the Theorem is true for n � 2, 3 and 4 using Figures 2.5 and

2.6, Theorems 2.35 and 2.42, and Lemma 2.45. Assume the theorem is true for order

less than n. Now we prove it for matrices of order n ¡ 4. First we define En as the

block diagonal matrix En�3 ` E3. For example,

Next we define On as the block diagonal matrix On�3 ` E3. For example,

We need to prove that En has the distance claimed. By Theorems 2.35 and 2.42 (ap-

plying (v), then (i), then (iii)) and Lemma 2.45 we see that distpEnq �distpOn�1q�2n.

This proves our claim for diampnq. It only remains to show that On has the distance

claimed. Let On �MpA,Bq. We have three cases:

n � 1 mod 3. Applying Theorem 2.35 ((i) then (iii)) and Lemma 2.45 we have

distpOnq � 2n� 1�distpEn�1q. This gives the required result.

n � 2 mod 3. Then by Theorem 2.43 there exists either B1
0
B or B2

1,2
B in-

between A and B.

MpA,B1q is the transpose of MpA,B2q so both are shorter than On. Applying Theo-

rem 2.35 ((i) then (iii)) and Lemma 2.45 we see that the distance between A and B is
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distpOn�1q � 2n. This gives the required result.

n � 0 mod 3. Then by Theorem 2.43 there exists either B1
0
B or B2

1,2
B in-

between A and B.

By applying Theorem 2.35 ((i) then (iii)) to MpA,B1q and MpA,B2q we get two ma-

trices: One is On ` 2I, and the other (as we saw in the previous case n � 2 mod 3)

is shorter than On ` 2I. It follows that B2 lies in-between A and B whereas B1 does

not. We see that the distance between A and B is distpOn�1q�2n�1 by Lemma 2.45.

This gives the required result.

3.2 Sets of parts, AB-sets, and AB-sequences

We have diam(1)=1, diam(2)=5, diam(3)=11, diam(4)=18 and diam(5)=28. This can

be shown using Magma. All the intersection matrices of chambers in ΓpA9q distance

18 apart are displayed in Fig.3.1. All the intersection matrices of chambers in ΓpA11q
distance 28 apart are shown in Fig.3.2.

3.2.1 Introducing sets of parts

Definition 3.3. Let A be an n-chamber. We say X is a set of parts of A if every

element of X is equal to some part Apiq � Ap0q of A. If X has order x we may call

X an x-set of parts of A.

For example, tt3, 4u, t7, 8uu is a 2-set of parts of 1, 2|3, 4|5, 6|7, 8|9, 10.

Definition 3.4. Let X be an x-set of parts of a chamber A. We say A is X-first if

every Apiq P X has 1 ¤ i ¤ x. Similarly, we say A is X-last if every Apiq P X has

n� x   i ¤ n.

For example, 1, 2|3, 4|5, 6|7, 8|9, 10 is tt1, 2u, t3, 4uu-first and tt7, 8u, t9, 10uu-last.
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Fig. 3.1. All 4� 4 intersection matrices of length 18

Fig. 3.2. All 5� 5 intersection matrices of length 28

Definition 3.5. Let A be a chamber and X a set of parts of A, we define the mix of

X in A to be

mixpX,Aq �
¸

ApiqPX
|tj : 1 ¤ j   i and Apjq R Xu|

Equivalently, mixpX,Aq is the minimum distance between A and an X-first chamber

B (this equivalence is proved in Lemma 3.7).
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For example,

mixp tt3, 4u, t7, 8uu , 1, 2|3, 4|5, 6|7, 8|9, 10 q � 1� 2

mixp tt5, 6u, t9, 10uu , 1, 2|3, 4|5, 6|7, 8|9, 10 q � 2� 3

Lemma 3.6. Let A be an n-chamber and X an x-set of parts of A where n � x� y.

Then mixpX,Aq cannot exceed xy.

Proof. By considering Definition 3.5 we see that the maximum value of mixpX,Aq is

xy, when A is X-last.

Lemma 3.7. Let A be an n-chamber and X an x-set of parts of A. Let n � x � y.

There is a unique X-first chamber B distance mixpX,Aq from A, and this is the

closest X-first chamber to A. Similarly, there is a unique X-last chamber C distance

xy �mixpX,Aq from A, and this is the closest X-last chamber to A.

Proof. First note that if X is a set of parts of two chambers, joined by a minimal

path P , then X is a set of parts of every chamber in P by Lemma 2.37. Also note

that if D and E are adjacent and X is a set of parts of both of them then mixpX,Dq
and mixpX,Eq differ by at most 1. First we prove the claim about B. We do this by

induction on mixpX,Aq. The result is clearly true if mixpX,Aq � 0. If it is true for

mixpX,Aq ¤ k � 1 then it follows for mixpX,Aq � k. A similar argument proves the

claim about C by induction on xy �mixpX,Aq.

For example, let C � 1, 2|3, 4|5, 6|7, 8|9, 10 and X � tt5, 6u, t7, 8uu. The nearest

X-first chamber to C is distance mixpX,Cq from C.

3.2.2 Introducing AB-sets

Definition 3.8. Let A and B be n-chambers. We define GpA,Bq as the undirected

graph with coloured edges, whose vertices are elements of the set t1, 2, 3, ..., 2n�1u and

whose red (respectively, blue) edges are the parts Apiq (respectively, Bpiq) for 1 ¤ i ¤ n.

The graph GpA,Bq consists of n red edges and n blue edges. The connected

components look like
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We always have exactly one connected component of odd order greater than or equal

to 1, which contains Ap0q and Bp0q. We prove this formally later.

Definition 3.9. The set of vertices of a particular connected component of the graph

GpA,Bq is called an AB-set. A set is called even (respectively, odd) if its order is even

(respectively, odd).

Consider the matrix MpA,Bq. Each entry equal to 1 in MpA,Bq represents an

element in the same AB-set as an element represented by an entry equal to 1 in the

same row or column. For example, see Fig 3.3.

Fig. 3.3. Three AB-sets of order 4, 5 and 6

3.2.3 Introducing AB-sequences

Definition 3.10. A non-repeating sequence S � pS1, ..., SLq of length L whose ele-

ments are vertices of GpA,Bq is called an AB-sequence if each element in the sequence

is incident to the element before and after it (if these exist). A sequence is called even

(respectively, odd) if its order is even (respectively, odd).

Notice AB-sequences are “ordered bits of AB-sets”. For example, let A � 1, 2|3, 4
|5, 6|7, 8|9, 10 and B � 1, 9|7, 11|6, 8|2, 3|4, 10. Then p7, 8q and p1, 2, 3, 4, 10q are AB-

sequences, illustrated in Fig.3.4.

Lemma 3.11. Let A and B be chambers. Let B and B1 be connected by a path of

jumps. A sequence S is an AB-sequence if and only if it is an AB1-sequence.

Proof. It is enough to note that GpA,Bq � GpA1, B1q.
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Fig. 3.4

Definition 3.12. Let C be an n-chamber and let S be a subset of t1, 2, 3, ..., 2n � 1u
or sequence of elements from t1, 2, 3, ..., 2n� 1u. Define

CS � tCpiq : 1 ¤ i ¤ n|Cpiq � Su

(If S is a sequence, write Cpiq � S to mean “Both elements of Cpiq appear in S”.)

For example, if S is either of the AB-sequences in Fig.3.4 then we shade the rows

of AS and columns of BS here:

Lemma 3.13. The only way a blue edge ta, bu and a red edge ta, bu can both appear

in GpA,Bq is if for some i and j we have Apiq � Bpjq � ta, bu. The only sequences

containing a and b are paq, pbq, pa, bq and pb, aq.

Lemma 3.14. Let S � pS1, S2, ..., SL�1, SLq be an AB-sequence of length L ¥ 3.

 If tS1, S2u and tSL�1, SLu are the same colour then L is even.

 If tS1, S2u and tSL�1, SLu are different colours then L is odd.

Proof. The theorem is true for L � 3 and inductively follows for all higher L.

Lemma 3.15. Let S be an AB-sequence of odd length 2p� 1. Then |AS| � |BS| � p.

Proof. By Lemmas 3.13 and 3.14 the sequence S must be composed of exactly p red

edges (parts of A) and p blue edges (parts of B).

Definition 3.16. We say an AB-sequence S is maximal if there is no AB-sequence

T such that S is a proper subsequence of T .

Note that each maximal AB-sequence corresponds to a particular AB-set.

Lemma 3.17. Let S � pSiqLi�1 � pS1, ..., SLq be a maximal AB-sequence of length

L ¥ 1. Either tS1, SLu is a part of A or B, or tS1, SLu � tAp0q, Bp0qu.
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Proof. Consider GpA,Bq. The lemma follows from the fact that either 2n vertices

have valency 2 and the other has valency 0, or else 2n� 1 vertices have valency 2 and

the others have valency 1.

Lemma 3.18. Let A and B be n-chambers. If Ap0q � Bp0q there is a unique maximal

AB-sequence of odd order, namely pAp0qq � pBp0qq. If Ap0q � Bp0q there are exactly

two maximal AB-sequences of odd order. These are of the form pAp0q, ..., Bp0qq and

pBp0q, ..., Ap0qq.

Proof. Let Ap0q � Bp0q. In that case a maximal AB-sequence S � pS1, ..., SLq �
pAp0qq has length L ¡ 1 and cannot contain Ap0q. Suppose L ¥ 3. By Lemma 3.17

we have that tS1, SLu is an edge. Therefore tS1, S2u and tSL�1, SLu are both edges of

the same colour. It follows that L is even by Lemma 3.14.

Let Ap0q � Bp0q. A vertex in GpA,Bq has valency at most 2. Therefore there is

exactly one maximal AB-sequence of the form pAp0q, ..., Bp0qq and exactly one of the

form pAp0q, ..., Bp0qq. Any other maximal AB-sequence S � pS1, ..., SLq has length

L ¥ 2 and cannot contain Ap0q or Bp0q. By Lemmas 3.14 and 3.17 L is even.

Lemma 3.19. Let A and B be n-chambers. There is exactly one AB-set of odd order.

This contains Ap0q and Bp0q.

Proof. Using that any vertex of GpA,Bq has valency at most 2, it can be shown

that each maximal AB-sequence corresponds to exactly one AB-set, and each AB-set

corresponds to one or more maximal AB-sequences. The result follows from Lemma

3.18.

Lemma 3.20. Let C be a chamber and S be a sequence. Let g P S2n�1. Then

mixpCS, Cq � mixpCg
Sg , Cgq.

Proof. It is enough to notice that Cpiq P CS if and only if Cgpiq P Cg
Sg .

Lemma 3.21. Let S be an AB-sequence. Let g P S2n�1. Then Sg is an AgBg-sequence.

Proof. Obvious when L � 1. Let L ¥ 2. Without loss of generality let S � pSiqLi�1

be composed of the red edges tS2i, S2i�1u from A and the blue edges tS2i�1, S2iu from

B. Then Sg is composed of the red edges tS2i, S2i�1ug from Ag and the blue edges

tS2i�1, S2iug from Bg.
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Lemma 3.22. Let S be an AB-sequence. Let g P S2n�1 fix each element in S. Then:

 S is an AgB-sequence, an ABg-sequence and an AgBg-sequence.

 AS � AgS and BS � Bg
S.

 mixpS,AgSq � mixpS,ASq and mixpS,Bg
Sq � mixpS,BSq.

Proof. Obvious when L � 1. Let L ¥ 2. Without loss of generality let S � pSiqLi�1

be composed of the red edges tS2i, S2i�1u from A and the blue edges tS2i�1, S2iu from

B. Then S is composed of exactly the same red edges tS2i, S2i�1ug from A or Ag and

exactly the same blue edges tS2i�1, S2iug from B or Bg.

Lemma 3.23. Let A and B be chambers. Suppose that:

 A � e|ab| � � � and Bp0q � e.

 S � pSiqLi�1 � pa, b, ......q is an AB-sequence of odd length L ¥ 3.

Then:

 The sequence Spa,eq � pe, b, ......q is an Apa,eqB-sequence.

 BS � BSpa,eq and mixpBSpa,eq , Bq � mixpBS, Bq
 mixpAS, Bq � mixpApa,eq

Spa,eq , A
pa,eqq

Proof. The shorter sequence T � pSiqLi�2 � pb, ......q is an AB-sequence which does not

contain a or e. By Lemma 3.22 T is an Apa,eqB-sequence. Using Apa,eqp1q � te, bu we see

that pe, b, ......q � Spa,eq is an Apa,eqB-sequence. By Lemma 3.15 we have |BSpa,eq | � p

so BS � BSpa,eq and therefore mixpBSpa,eq , Bq � mixpBS, Bq. By Lemma 3.20 we have

mixpApa,eq
Spa,eq , A

pa,eqq � mixpAS, Aq.

Lemma 3.24. Let S be an AB-sequence of length 2p�1. Let Bp1q R BS. Let B1 be a 0-

swapping of B. Then S is an AB1-sequence, B1
S � BS and mixpBS, Bq � mixpB1

S, B
1q.

Proof. Let S � pSiq2p�1
i�1 . If p � 0 then the result is obvious. Let p ¥ 1. Recall

Lemma 3.15: Without loss of generality let S � pSiqLi�1 be composed of the p red

edges tS2i, S2i�1u from A and the p blue edges tS2i�1, S2iu � Bp1q from B. These blue

edges are also parts of B1. Hence S is an AB1-sequence. By Lemma 3.15 |B1
S| � p so

S is composed of exactly the same blue edges tS2i�1, S2iu � B1p1q from B1.

Lemma 3.25. Let S � pa, b, ..., c, dq be an AB-sequence of length 2p�1, where Apxq �
ta, bu and Bpyq � tc, du. Suppose every Apx1q P AS has x ¤ x1 and every Bpy1q P BS
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has y ¤ y1. Consider the subsequence T � pb, ..., cq of S which is two elements shorter.

We have

mixpAT , Aq � mixpAS, Aq � p� x mixpBT , Bq � mixpBS, Bq � p� y

Proof. By Lemma 3.15 we have |AS| � |BS| � p. We have AS � AT Y tApxqu and

BS � BT Y tBpyqu. Hence by Definition 3.5,

mixpAS, Aq �
¸

ApiqPAS

|tj : 1 ¤ j   i|Apjq R ASu|

mixpAT , Aq �
¸

ApiqPAT

|tj : 1 ¤ j   i|Apjq R AT u|

This gives mixpAT , Aq � mixpAS, Aq � pp � 1q � px � 1q. A similar argument applies

to mixpBT , Bq.

3.3 Split intersection matrices

Definition 3.26. We say the n � n intersection matrix M is split into P and Q if

there exist p and q (where 1 ¤ p   n, 1 ¤ q   n and p � q � n) satisfying all of the

following:

We have Mij � 0 whenever i ¡ q and j ¡ p

We have that P is the p� p intersection matrix defined by Pi,j �Mi�q,j

We have that Q is the q � q intersection matrix defined by Qi,j �Mi,j�p

Definition 3.26 is illustrated in Fig.3.5. Recall Definition 2.12. Notice that if M is

split into P and Q then M is even if and only if P and Q are both even. Also notice

that M has exactly one non-zero entry outside P or Q if and only if P and Q are both

odd. We prove this formally in Lemma 3.28.

Fig. 3.5

Lemma 3.27. Let M be an n� n intersection matrix. Let n � p� q where p1 ¤ p ¤
n� 1q. Let Mij � 0 whenever both i ¡ q and j ¡ p are satisfied. Then M is split into

a p� p matrix P and a q � q matrix Q.
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Proof. Define the p � p matrix P and the q � q matrix Q by Pi,j � Mi�q,j and

Qi,j � Mi,j�p respectively. Any entry Mij of M belongs to one of the four quadrants

in Fig 3.6. Now
°
i¡q,j¡pMij � 0. The bottom p rows must sum to 2p � 1 or 2p.

Fig. 3.6

This forces the entries of P to sum to 2p � 1 or 2p. Each row of P must each sum

to 1 or 2, and each column must sum to 2 or less. This fulfills the requirements of

Lemma 2.11. Therefore by Lemma 2.15 we see P is an intersection matrix. A similar

argument applies to Q.

Lemma 3.28. Let P be a p�p intersection matrix and Q a q� q intersection matrix.

There is exactly one intersection matrix M which is split into P and Q.

Furthermore, if P or Q is even then M has no non-zero entries outside P or Q. If

P and Q are odd then M has exactly one non-zero entry equal to 1 outside P or Q.

This is the entry defined by the odd column of P and odd row of Q.

Proof. Let n � p � q. We are forced to define Mij � 0 whenever i ¡ q and j ¡ p.

We are forced to define Mij � Pi�q,j whenever i ¡ q and j ¤ p. If P is even then°
i¡q,j¤pMij � 2p. As the leftmost p rows can only sum to 2p or 2p � 1, this forces°
i¤q,j¤pMij � 0. The remaining entries of M are defined by Q.

A similar argument can be used when Q is even. Therefore assume both P and Q

are odd. We have
°
i¡q,j¡pMij � 0,

°
i¡q,j¤pMij � 2p� 1 and

°
i¤q,j¡pMij � 2q � 1.

This forces
°
i¤q,j¤pMij � 1 or 2. This sum cannot equal 2 because then the leftmost

p columns sum to more than 2p. Therefore it must equal 1. Due to the uniqueness of

the odd column of P and the odd row of Q, there is only one entry which can equal

1.

Lemma 3.29. Let M �MpA,Bq be split into a p�p matrix P and a q� q matrix Q.

Let C and D be p-chambers such that P �MpC,Dq. Let D1 D and P 1 �MpC,D1q.
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Then there is a matrix M 1 �MpA,B1q split into P 1 and Q for some B1 B.

Proof. Suppose D1
i,i�1

D. Then let B1
i,i�1

B. It follows that MpA,B1q is split into

P 1 and Q. Suppose D1
0

D. By Lemma 3.28 there is a unique matrix M 1 split into

P 1 and Q. The leftmost q columns of M and M 1 are identical. Now P and P 1 differ

only by their leftmost column. In particular, any column (except the leftmost) of P

is odd if and only if the same column in P 1 is odd. Hence M and M 1 differ only by

their leftmost column. By Lemma 2.16 there exists a chamber B1
0

B such that

M 1 �MpA,B1q.

Lemma 3.30. If an n � n intersection matrix M � MpA,Bq is split into a p � p

matrix P and a q � q matrix Q, then distpMq ¤ distpP q � distpQq � pq.

Proof. We prove by induction on distpP q. If distpP q � 0 then the distance between

A and B is equal to pq by Theorem 2.35 (ii) and Lemma 2.45. Therefore assume the

theorem is true whenever distpP q   L and let distpP q � L � 0.

By Lemma 3.29 we see that B is adjacent to a chamber B1 such that MpA,B1q is split

into P 1 and Q where distpP 1q � distpP q � 1. By induction, distpA,B1q ¤ distpP 1q �
distpQq � pq.

An example of Lemma 3.30 working is shown here:

Lemma 3.31. Let M � MpA,Bq be an n � n matrix. Let S be an AB-sequence of

odd length 2p� 1 where 1 ¤ p ¤ n� 1. Let A be AS-last and B be BS-first.

 If Bp0q P S then M is split into an odd p� p matrix and another matrix.

 If Bp0q P S and Ap0q R S then M is split into an odd p � p matrix and an odd

matrix.

Proof. Let Bp0q P S. Without loss of generality let S � p1, 2, ..., 2p, 2p�1q and assume

Bp0q � 1, otherwise we have Bp0q � 2p� 1 and the proof is similar. By Lemma 3.15

we have |AS| � |BS| � p. Let n � p� q. The bottom p rows represent parts

tApiq : q   i ¤ nu � tt1, 2u, t3, 4u, ..., t2p� 1, 2puu
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so their entries must sum to 2p� 1 using Bp0q � 1. The leftmost p columns represent

parts

tBpiq : 1 ¤ i ¤ pu � tt2, 3u, t4, 5u, ..., t2p, 2p� 1uu

Hence
°
i¡q,j¤pMij � 2p � 1 and

°
i¡q,j¡pMij � 0. Thus by Lemma 3.27 M is split

into a p � p matrix P and a q � q matrix Q. The matrix P is odd. Let Ap0q R S.

Then Ap0q � t2p � 1u. This means 2p � 1 P Apiq for some i ¤ p. This gives Mij � 1

for some 1 ¤ i ¤ q, 1 ¤ j ¤ p. Hence by Lemma 3.28 P and Q are both odd.

3.4 An upper bound for diam and diamodd

3.4.1 A few lemmas

These lemmas will prepare us for Theorem 3.37.

Lemma 3.32. Let X be a set of parts of the n-chamber C. Let |X| � p and Cp1q R X.

Let C
1,

� � �
,n

D. Then mixpX,Dq � mixpX,Cq � p.

Proof. By Lemma 2.21 we have Dpiq � Cpi�1q whenever i ¤ n�1 and Dpnq � Cp1q.
By Definition 3.5 we get mixpX,Dq � mixpX,Cq � p.

Lemma 3.33. Let A and B be n-chambers. Let Apnq � Bpnq � t2n, 2n � 1u. Let S

be an AB-sequence not equal to p2nq, p2n� 1q, p2n, 2n� 1q or p2n� 1, 2nq. Define the

pn � 1q-chambers C and D by Cpiq � Apiq and Dpiq � Bpiq for 0 ¤ i ¤ n � 1. Then

distpA,Bq � distpC,Dq. Furthermore, S is a CD-sequence, mixpCS, Cq � mixpAS, Aq
and mixpDS, Dq � mixpBS, Bq.

Proof. We have distpA,Bq � distpC,Dq by Lemma 2.44. Without loss of generality

let S � pSiqLi�1 be composed of red edges tS2i, S2i�1u � Apnq from A and blue edges

tS2i�1, S2iu � Bpnq from B. Hence S is a CD-sequence. Apnq R AS and Bpnq R BS

and so AS � CS and BS � DS.

Lemma 3.34. Let A and B be chambers. Let S � pa, b, ..., c, dq be an AB-sequence of

length 2p�1. Let Bp1q � ta, bu. Let Ap1q R AS and Ap2q � tc, du. Let T � pb, ..., cq be

a subsequence of S of length 2p�1. T is an AB-sequence. If mixpAS, Aq ¡ mixpBS, Bq
then mixpAT , Aq ¥ mixpBT , Bq.
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Proof. By Lemma 3.25 we have mixpAT , Aq � mixpAS, Aq � p � 2 and mixpBT , Bq �
mixpBS, Bq � p� 1.

Lemma 3.35. Let A and B be chambers. Let S � pa, b, ..., c, dq be an AB-sequence

of length 2p � 1. Let Ap1q � ta, bu and Bp1q � tc, du. Let mixpAS, Aq ¥ mixpBS, Bq.
Consider the subsequence T � pb, ..., cq of S of length 2p � 1. T is an AB-sequence

and mixpAT , Aq ¥ mixpBT , Bq.

Proof. By Lemma 3.25 we have mixpAT , Aq � mixpAS, Aq � p � 1 and mixpBT , Bq �
mixpBS, Bq � p� 1.

Before embarking on Lemma 3.36 it is useful to remind ourselves of Definition 3.4.

Lemma 3.36. Let M � MpA,Bq be an n � n matrix. Let S be an AB-sequence of

odd length 2p� 1 where 1 ¤ p ¤ n� 1. Let n � p� q.

If Bp0q P S then

distpA,Bq ¤ mixpBS, Bq �mixpAS, Aq � diamoddppq � diampqq � 2pq

If Bp0q P S and Ap0q R S then

distpA,Bq ¤ mixpBS, Bq �mixpAS, Aq � diamoddppq � diamoddpqq � 2pq

Proof. Let C be the closest AS-last chamber to A andD be the closestBS-first chamber

to B. By Lemma 3.7 we have

distpA,Cq � pq �mixpAS, Aq distpB,Dq � mixpBS, Bq

Now AS � CS, BS � DS and S is a CD-sequence. The chamber C is CS-last and the

chamber D is DS-first. If Dp0q � Bp0q P S then MpC,Dq is split into an odd p � p

matrix P and a q�q matrix Q by Lemma 3.31. This implies distpC,Dq ¤ diamoddppq�
diampqq � pq by Lemma 3.30. If Dp0q � Bp0q P S and Cp0q � Ap0q R S then both P

and Q are odd by Lemma 3.31. This implies distpC,Dq ¤ diamoddppq�diamoddpqq�pq
by Lemma 3.30. This gives the required result.

3.4.2 The upper bound

For the rest of this chapter let a, b, c, d, e and f be distinct elements of t1, 2, ..., 2n�1u.
That is, |ta, b, c, d, e, fu| � 6.
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Theorem 3.37.

diamoddpnq ¤

$'''&'''%
n2 � 2n

3
� 1 if n � 0 mod 3

n2 � 2n
3
� 2

3
if n � 1 mod 3

n2 � 2n
3
� 1

3
if n � 2 mod 3

diampnq ¤

$'''&'''%
n2 � 2n

3
if n � 0 mod 3

n2 � 2n
3
� 2

3
if n � 1 mod 3

n2 � 2n
3
� 1

3
if n � 2 mod 3

Proof. We prove by induction on n. The theorem is clearly true for n � 1, 2 and 3

by Figures 2.5 and 2.6. Therefore assume the result holds for n   k. We prove it for

n � k ¡ 3. Let M � MpA,Bq be an n � n matrix. By induction we may assume

no entries are equal to 2: For if M is even (respectively, odd) and Mij � 2 we have a

path of length pn � iq � pn � jq � diampn � 1q ¤ 2n � 2 � diampn � 1q (respectively,

2n � 2 � diamoddpn � 1q) joining A and B due to Lemma 2.45. Our proof consists of

two parts. We will first prove the claim about diamoddpnq and then the claim about

diampnq.

Proof that diamoddpnq ¤ n2 � t2n�1
3

u for n� n matrices

Let M be odd. Recall Definition 3.9. We have four cases:

Case I. There is more than one AB-set.

Case II. The odd column of M is not the leftmost column.

Case III. The odd column of M is the leftmost column and M21 � 0.

Case IV. The odd column of M is the leftmost column and M21 � 1.

Case I. There is more than one AB-set.

By Lemma 3.18 let S be the unique AB-sequence pAp0q, ..., Bp0qq of length 2p � 1.

Clearly 1 ¤ p ¤ n� 1. Let n � p� q. We have two subcases:

Case I(i): We have mixpAS, Aq ¥ mixpBS, Bq. Using Bp0q P S and Lemma 3.36,

distpA,Bq ¤ mixpBS, Bq �mixpAS, Aq � diamoddppq � diampqq � 2pq

This gives us the required result in all nine cases. (There are three options for n mod 3

and three for p mod 3.)
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Case I(ii): We have mixpAS, Aq   mixpBS, Bq. Using Ap0q P S and Lemma 3.36,

distpA,Bq ¤ mixpAS, Aq �mixpBS, Bq � diamoddppq � diampqq � 2pq

This completes Case I.

An example is illustrated in Fig.3.7. (AS and BS are shaded.)

Fig. 3.7. Case I(i) (left) and I(ii) (right)

During cases II, III and IV we assume M has only one AB-set. In particular, by

Lemma 3.18, we assume any AB-sequence is a subsequence of the only two maximal

AB-sequences pAp0q, ..., Bp0qq and pBp0q, ..., Ap0qq, each of length 2n� 1.

Case II. The odd column of M is not the leftmost column.

Let Bp1q � ta, bu and A have parts ta, cu and tb, du. Without loss of generality, there

exists a unique AB-sequence S � pAp0q, ..., d, bq not containing a, c or Bp0q. Let

|S| � 2p � 1 using Lemma 3.14 where 1 ¤ p ¤ n � 1. Let n � p � q. We have two

subcases:

Case II(i): We have mixpAS, Aq ¤ mixpBS, Bq. Using Ap0q P S, Bp0q R S and

Lemma 3.36,

distpA,Bq ¤ mixpAS, Aq �mixpBS, Bq � diamoddppq � diamoddpqq � 2pq

This proves the result for Case II(i).

Case II(ii): We have mixpAS, Aq ¡ mixpBS, Bq. We know Bp0q cannot be a, b or d.

Consider the chamber Bpb,Bp0qq
0
B. By Lemma 3.24 we have that S is an ABpb,Bp0qq-

sequence and mixpBpb,Bp0qq
S, B

pb,Bp0qqq � mixpBS, Bq. Using Ap0q P S, Bpb,Bp0qqp0q P S
and Lemma 3.36,

distpA,Bpb,Bp0qqq ¤ mixpBpb,Bp0qq
S, B

pb,Bp0qqq�mixpAS, Aq�diamoddppq�diampqq�2pq

This gives us

distpA,Bq ¤ 1�mixpBS, Bq �mixpAS, Aq � diamoddppq � diampqq � 2pq
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This proves the theorem for Case II(ii).

An example is illustrated in Fig.3.8. (AS and BS are shaded.)

Fig. 3.8. Case II(i) (left) and II(ii) (right)

Case III. The odd column of M is the leftmost column and M21 � 0.

We may assume that the odd row is the top one, or we can apply the Case II argument

to the transpose MpB,Aq of M . Therefore M11 � 0 to avoid more than one AB-set.

Therefore let Ap1q � ta,Bp0qu and Ap2q � tb, cu. Let d P Apxq for some 3 ¤ x ¤ n.

Let Bp1q � td,Ap0qu. Without loss of generality, there exists a unique AB-sequence

S � pAp0q, d, ..., b, cq not containing a or Bp0q. Let |S| � 2p � 1 by Lemma 3.14.

Clearly 2 ¤ p ¤ n� 1. Let n � p� q. We have two subcases:

Case III(i): We have mixpAS, Aq ¤ mixpBS, Bq. Using Ap0q P S, Bp0q R S and

Lemma 3.36,

distpA,Bq ¤ mixpAS, Aq �mixpBS, Bq � diamoddppq � diamoddpqq � 2pq

This proves the Theorem for Case III(i).

Case III(ii): We have mixpAS, Aq ¡ mixpBS, Bq.
Consider the subsequence T � pd, ..., bq of S of length 2p� 1. By Lemma 3.34 T is an

AB-sequence and mixpAT , Aq ¥ mixpBT , Bq. We have Ap1q R AT and Bp1q R BT .

Consider the chambers

ApAp0q,aq
0

A BpBp0q,dq
0

B
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Using Lemma 3.24 we see that T is an ApAp0q,aqBpBp0q,dq-sequence, where

mixpApAp0q,aq
T , A

pAp0q,aqq ¥ mixpBpBp0q,dq
T , B

pBp0q,dqq

Now ApAp0q,aqp1q � BpBp0q,dqp1q � tAp0q, Bp0qu, which is not contained in ApAp0q,aq
T or

BpBp0q,dq
T as T contains neither Ap0q or Bp0q.

Consider the chambers A1 and B1:

ApAp0q,aq
1,

� � �
,n

A1 BpBp0q,dq
1,

� � �
,n

B1

T is an A1B1-sequence by Lemma 3.11. By Lemmas 3.15 and 3.32 we have that

mixpA1
T , A

1q ¥ mixpB1
T , B

1q. We have A1pnq � B1pnq � tAp0q, Bp0qu.

Define the pn� 1q-chambers C and D by Cpiq � A1piq and Dpiq � B1piq for i ¤ n� 1.

By Lemma 3.33 distpA1, B1q � distpC,Dq and T is a CD-sequence with mixpCT , Cq ¥
mixpDT , Dq.
We have Cp0q � ApAp0q,aqp0q � a R T and Dp0q � BpBp0q,dqp0q � d P T so by Lemma

3.36,

distpC,Dq ¤ mixpDT , Dq �mixpCT , Cq � diamoddpp� 1q � diamoddpqq � 2pp� 1qq

It can be checked that diamppq � diamoddpp� 1q � 2p. Hence

distpA1, B1q � distpC,Dq ¤ diamppq � diamoddpqq � 2pq � 2p� 2q

Using n � p� q and our paths of length n from A to A1 and B to B1, this proves the

Theorem for Case III(ii).

An example is illustrated in Fig.3.9. (AS, BS, CT and DT are shaded.)

Case IV. The odd column of M is the leftmost column and M21 � 1.

We may assume the top row is odd and M12 � 1, or we simply apply the Case II or

III argument to the transpose MpB,Aq. Let M22 � 0 to avoid more than one AB-set.

Therefore let A � a|bc|de| � � � and B � c|ad|bf | � � � . We know there exists a chamber

C � e|ad|bc|... distance 2 from A and a chamber D � f |ad|bc|... distance 3 from B.

Hence, using Cp0q � Dp0q and Lemma 2.45, distpA,Bq ¤ 5�4pn�2q�diamoddpn�2q.
This proves the result for Cases I,II,III and IV.

An example is illustrated in Fig.3.10.
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Fig. 3.9. Case III(i) (left) and III(ii) (right)

Fig. 3.10. Case IV

Proof that diampnq ¤ n2 � t2n
3
u for n� n matrices

We may assume M is even. We know there are two AB-sets or more as tAp0qu �
tBp0qu is an AB-set. We have three cases:

Case I. There are more than two AB-sets.

Case II. We have M11 � 1.

Case III. We have M11 � 0.

Case I. There are more than two AB-sets.

By Lemma 3.18 choose a maximal AB-sequence S of order 2p where 1 ¤ p ¤ n � 1.

Let n � p � q. Without loss of generality let S � p1, 2, 3, ..., 2pq. We have Ap0q R S
and Bp0q R S. We have |AS| � |BS| � p. Without loss of generality let mixpAS, Aq ¤
mixpBS, Bq. Let C be the closest AS-first chamber to A and D the closest BS-last
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chamber to B.

distpA,Cq � mixpAS, Aq distpB,Dq � pq �mixpBS, Bq

Consider MpC,Dq. Without loss of generality let the top p rows represent parts

tCpiq : 1 ¤ i ¤ pu � tt1, 2u, t3, 4u, ..., t2p� 1, 2puu

and let the rightmost p columns represent parts

tDpiq : q   i ¤ nu � tt2, 3u, t4, 5u, ..., t2p, 1uu

Clearly the intersection of these rows and columns sums to
°
i¤p,j¡qMpC,Dqij � 2p.

Therefore
°
i¡p,j¡qMpC,Dqij � 0. Hence by Lemma 3.27 MpC,Dq is split into a q� q

matrix and a p � p matrix. By Lemma 3.30 its distance cannot exceed diamppq �
diampqq � pq. Therefore,

distpA,Bq ¤ mixpAS, Aq �mixpBS, Bq � diamppq � diampqq � 2pq

This gives the required result. During Cases II and III we may assume there are only

two AB-sets.

Case II. We have M11 � 1.

Let A � a|bc| � � � and B � a|bd| � � � . Let A
0
C � c|ab| � � � and B

0
D � d|ab| � � � .

Note Cp0q � Dp0q. By applying Theorem 2.35(iii) and Lemma 2.45 we know there is

a path of length less than or equal to 2� 2pn� 1q � diamoddpn� 1q joining A and B,

giving us our result.

Case III. We have M11 � 0.

Let Ap1q � ta, bu, Bp1q � tc, du and Ap0q � Bp0q � e. Without loss of general-

ity, there exists a unique AB-sequence S � pa, b, ..., c, dq. Let |S| � 2p � 1 where

2 ¤ p ¤ n� 1 using Lemma 3.14. Let n � p� q.

Without loss of generality let mixpAS, Aq ¥ mixpBS, Bq. Consider Apa,eq
0
A. By

Lemma 3.23 the sequence Spa,eq � pe, b, ..., c, dq is an Apa,eqB-sequence where

mixpApa,eq
Spa,eq , A

pa,eqq ¥ mixpBSpa,eq , Bq. We have Apa,eqp0q R Spa,eq and Bp0q P Spa,eq so

by Lemma 3.36,

distpApa,eq, Bq ¤ mixpBSpa,eq , Bq�mixpApa,eq
Spa,eq , A

pa,eqq�diamoddppq�diamoddpqq�2pq
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Therefore,

distpA,Bq ¤ 1� diamoddppq � diamoddpqq � 2pq

This gives the required result in every case except when n � 1 mod 3 and p �
q � 2 mod 3. Therefore assume that this is the case. Consider the subsequence

T � pb, ..., cq of S which has length 2p � 1 and does not contain a, d or e. T is an

AB-sequence. By Lemma 3.35 we know that mixpAT , Aq ¥ mixpBT , Bq.

Consider Bpc,eq
0
B. By Lemma 3.24 T is an ABpc,eq-sequence and mixpAT , Aq ¥

mixpBpc,eq
T , B

pc,eqq. We have Ap0q R T and Bpc,eqp0q P T so by Lemma 3.36,

distpA,Bpc,eqq ¤ mixpBpc,eq
T , B

pc,eqq �mixpAT , Aq�
diamoddpp� 1q � diamoddpq � 1q � 2pp� 1qpq � 1q

Therefore,

distpA,Bq ¤ 1� diamoddpp� 1q � diamoddpq � 1q � 2pp� 1qpq � 1q

where p� 1 � 1 mod 3 and q � 1 � 0 mod 3. This completes the proof for Case IV.

An example is illustrated in Fig 3.11 (using S on the top, T on the bottom).

Fig. 3.11. Case III

The following theorem immediately arises from Theorems 3.2 and 3.37.
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Theorem 3.38. Let n ¥ 2.

diampnq �

$'''&'''%
n2 � 2n

3
if n � 0 mod 3

n2 � 2n
3
� 2

3
if n � 1 mod 3

n2 � 2n
3
� 1

3
if n � 2 mod 3

diamoddpnq �

$'''&'''%
n2 � 2n

3
� 1 if n � 0 mod 3

n2 � 2n
3
� 2

3
if n � 1 mod 3

n2 � 2n
3
� 1

3
if n � 2 mod 3

In other words, diampnq � n2 � t2n
3
u and diamoddpnq � n2 � t2n�1

3
u. Notice our

claims differ only when n � 0 mod 3.

3.5 The automorphism group of the chamber graph

Lemma 3.39 applies to geometries in general and is used in other chapters.

Lemma 3.39. Suppose Γ is a flag-transitive geometry of rank n whose types are 0,

1, 2, ..., n � 1. Suppose each element of type i is a pi � 1q-set, and two elements of

different type are incident if one is a subset of the other. If the chamber graph has

valency n� 1, then:

(1) Any automorphism of the chamber graph preserves adjacency type.

Consider the subgraph of the chamber graph consisting of all chambers with a particu-

lar element of type 0. If this subgraph is connected, then:

(2) Any nontrivial automorphism of the chamber graph acts as a nontrivial permuta-

tion on the points (elements of type 0).

Proof. First prove (1). Let C be a chamber and denote its element of type i by

tCk : 1 ¤ k ¤ i� 1u. C is of the form:

tC1u � tC1, C2u � tC1, C2, C3u � � � � � tC1, ..., Cn�1u � tC1, ..., Cnu

Therefore C has exactly one i-adjacent neighbour if i � n � 1 and must have two

pn� 1q-adjacent neighbours. Thus pn� 1q-adjacencies form cliques of size 3. Observe

that no subgraph of the chamber graph is a clique of size 3 unless its chambers are

pn� 1q-adjacent. Thus pn� 1q-adjacencies are preserved.
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Let i � j. Let A be i-adjacent to B, and B be j-adjacent to C. This is a minimal

path of length two. The following are true:

 If i � j � 1 and i � j � 1 then there exists another minimal path between A and C,

for if A is j-adjacent to B1 it follows that B1 is i-adjacent to C.

 If i � j � 1 or i � j � 1 then there is only one minimal path joining A and C.

Hence, starting from pn� 1q, we see by induction that i-adjacencies are preserved for

0 ¤ i ¤ n� 1.

To prove (2), suppose two chambers A and B have Ai � Bj. Then there is a chamber

C distance i� 1 from A with C1 � Ai. Similarly there is a chamber D distance j � 1

from B with D1 � Bj. There exists some (not necessarily minimal) path between C

and D such that every chamber E on this path has E1 � Ai � Bj. Any automorphism

g takes this path to another path of the same type. Hence, Agi � Bg
j .

The other lemmas in this section apply only to our geometries ΓpA2n�1q.

Lemma 3.40. Let g be an automorphism of the chamber graph of ΓpA2n�1q. Then

MpA,Bqij � 2 if and only if MpAg, Bgqij � 2.

Proof. This follows from Definition 2.4 and Lemma 3.39 (2).

Lemma 3.41. If MpA,Bq is odd then there is a path P :

B
i,

� � �
,1

C
0
D

where MpA,Dq contains a 2 in its leftmost column and MpA,Cq does not. If MpA,Bq
is even there is no such path.

Proof. Let MpA,Bq be odd. Then it has a row whose entries sum to 1. Let the ith

entry along this row be equal to 1. Then the existence of such a path is obvious. Let

MpA,Bq be even. Every row sums to 2. We see that it is impossible to construct the

above path.

Lemma 3.42. Let g be an automorphism of the chamber graph of ΓpA2n�1q. Then

MpA,Bq is odd if and only if MpAg, Bgq is odd.

Proof. Observe by Lemma 3.39 (1) that g takes the path described in Lemma 3.41

to another path of the same type. The lemma follows easily from Lemmas 3.40 and

3.41.
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Theorem 3.43. The automorphism group G of the chamber graph of ΓpA2n�1q is

S2n�1.

Proof. We know that G contains a subgroup S � S2n�1. For a contradiction suppose

S   G. By transitivity of S, there exists g P GzS fixing some chamber C. Recall

Theorem 2.3. We will inductively prove that g acts as a permutation on each of the

following sets of chambers

T1, T2, T3, ..., Tx, ..., T p2n�1q!
2n

for 1 ¤ x ¤ p2n�1q!
2n

where T1 � tCu, Tx is connected and has order x and Tx � Tx�1.

Clearly g acts as a permutation on T1. Assume g acts as a permutation h P S on Tx.

We may assume g fixes every chamber in Tx (or else consider gh�1 R S). Consider a

chamber B P Tx adjacent to some chamber B1 R Tx.

If B
i,i�1

B1 then g fixes B1 by Lemma 3.39 and we can define Tx�1 � Tx Y tB1u.
Therefore let Bp1q � t1, 2u, Bp0q � 3 and B1 � Bp1,3q. The three chambers B, B1 and

Bp2,3q form a clique. If g fixes B1 then we define Tx�1 � Tx Y tB1u. Therefore assume

g swaps Bp1,3q and Bp2,3q. Using that Tx is connected we have only two cases:

Case I : There exists a chamber A P Tx with Ap0q � 1 or 2.

Case II: Every chamber in Tx has a part equal to t1, 2u.

Case I : Without loss of generality let Ap0q � 2. Notice that MpA,Bp1,3qq is odd

and MpA,Bp2,3qq is even. By Lemma 3.42, Bp1,3q and Bp2,3q cannot be swapped by g.

Case II: Let Tx�1 � Tx Y tB1u. Then g acts as the permutation p1, 2q on Tx�1.

Hence by induction we see g acts as a permutation on T p2n�1q!
2n

as required.



Chapter 4

The Petersen geometry ΓpL2p11qq

Consider the amalgam of subgroups of G � L2p11q shown in Fig.4.1. There are 330

Fig. 4.1

chambers (flags of type t0, 1, 2u) and G is transitive on these. There are 110 flags of

type t0, 1u, 165 flags of type t0, 2u and 165 flags of type t1, 2u. The group L2p11q has

exactly one conjugacy class of subgroups isomorphic to D12 and two conjugacy classes

of subgroups isomorphic to A5.

4.1 The group G � L2p11q acting on 11 elements

Ivanov and Shpectorov give a definition of this geometry [13] (page 942). Let L2p11q
act faithfully on the 11-set Ω � t1, 2, ..., 11u. Let the elements of type 0 be the

eleven 1-subsets of Ω. Let the elements of type 1 be the fifty-five 2-subsets of Ω. The

involutions of L2p11q form a single conjugacy class of length 55 with cycle type 24.

Let the elements of type 2 be the fifty-five 3-subsets of Ω fixed by such an involution.

Two elements of different type are adjacent if one is contained in the other.

76
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4.1.1 The chamber graph

We can see that the elements of type 2 form a 2�p11, 3, 3q-design whose automorphism

group in S11 is isomorphic to L2p11q [18] (page 8). It is straightforward for Magma to

compute the chamber graph. We show the disc sizes in Table 7.1. The chamber graph

has valency 4 and diameter 9. Let C be the chamber tau � ta, bu � ta, b, cu. Then

there are thirty-two chambers txu � tx, yu � tx, y, zu distance 9 from C: Thirty with

ta, b, cu X tx, y, zu � H and two with ta, b, cu X tx, y, zu � tcu � tzu. The stabilizer

StabGpCq has sixteen orbits on these thirty-two chambers, each of length two.

Theorem 4.1. The automorphism group of the chamber graph of ΓpL2p11qq is L2p11q.

Proof. Each chamber has four neighbours. It can be seen by Magma that the subgraph

of chambers with a particular element of type 0 is connected. By Lemma 3.39 we see

that any nontrivial automorphism of the chamber graph of ΓpL2p11qq is a nontrivial

permutation on the eleven points. Khosrovshahi and Tayfeh-Rezaie [18] (page 8)

show that the largest possible automorphism group of a 2� p11, 3, 3q-design has order

660.

4.2 The group G � L2p11q acting on 12 elements

Let G � L2p11q � tt�M,�Mu : M P SL2p11qu. Let Ω � F11zt0u. Then we denote

Ω2 � t1, 3, 4, 5, 9u and Ω5 � t1, 10u. The group G acts on the projective space V �
t0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,8u where

λ � telements of the form pλii qu for all λ P F11, and

8 � telements of the form pi0qu.

We define the following permutations (acting on the right) of V (using 1
8 � 0 and

1
0
� 8):

τ : xÑ �1

x
�m : xÑ mx � c : xÑ x� c

where m, c P F and m � 0. We will mostly consider G as the group of permutations

G :� x τ , �4 , �1 y
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We are allowed to do this by a paper of Conway [6]. We use the following notation for

the four groups

M � x�2y M2 � x�4y M5 � t�1,�10u C � x�1y

of order 10, 5, 2 and 11 respectively. The order of the group MC is 110. We define

Y :� x MC , τ y

of order 1320. We have that G is a normal subgroup of Y of index 2. In fact, G is all

even permutations of Y . Thus M2 is a subgroup of G, whereas M5 is not.

4.3 Elements of type 0

There are two conjugacy classes of subgroups isomorphic to A5 in L2p11q, each of

length 11. Consider the eleven permutations of the form �2 � c. Each one fixes 8
and �c and acts as a 10-cycle on the other elements. For each permutation �2� c we

construct two block systems. We do this by defining blocks of the form t�c,8u and

tλ, 2λ� cu. These block systems are:

t0, cu t1, 2u tc, 3cu t2, 4u
t3c, 7cu t4, 8u t7c, 4cu t8, 5u
t4c, 9cu t5, 10u t9c, 8cu t10, 9u
t8c, 6cu t9, 7u t6c, 2cu t7, 3u
t2c, 5cu t3, 6u t5c, 0u t6, 1u
t�c,8u t8, 0u t�c,8u t8, 0u
when c � 0 when c � 0

The stabilizer of each of these twenty-two block systems is a subgroup A5. The group

M2C acts transitively on each conjugacy class of subgroups of type 0 by conjugation.

Therefore define B0 as the block system above containing t0,8u and t1, 2u. We have

StabMCpB0q �M2. We define G0 as the stabilizer in G of B0. We may label our eleven

elements of type 0 as the blocks Bc � B0 � c (containing tc,8u).
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4.4 Elements of type 1 and 2

Consider the pair tB0, B3u. Its stabilizer G1 in G is isomorphic to D12. Now G is

2-transitive on elements of type 0. Therefore we label elements of type 1 by pairs

tBi, Bju.
Let G2 be the stabilizer in G of the triple tB0, B3, B10u.

t1, 2u t4, 5u t0, 1u
t4, 8u t7, 0u t3, 7u
t5, 10u t8, 2u t4, 9u
t9, 7u t1, 10u t8, 6u
t3, 6u t6, 9u t2, 5u
t8, 0u t8, 3u t8, 10u

This triple has an orbit of length 55 under G. There are p11
3 q � 55 � 110 remaining

triples which themselves form an orbit under G. One of is these is tB0, B1, B10u.

B1 � t t2, 3u, t5, 9u, t6, 0u, t10, 8u, t4, 7u, t8, 1u u

Notice that t9, 7u P B0, t4, 7u P B1 and t4, 9u P B10. Also t0,8u P B0, t8, 1u P B1

and t0, 1u P B10. We can find a pair from each Bi such that their union is a 3-set.

This is not possible with tB0, B3, B10u. In fact the 55 elements of tB0, B3, B10uM2C

are all triples without this property, and the remaining 110 triples are those with the

property. Label elements of type 2 by the 55 triples without this property.

There are 55 subgroups of G isomorphic to D12, all conjugate in G. All G’s elements

of order 6 are of the form t�� x y
xp5�xq�1

y
5�x
�
,�� x y

xp5�xq�1
y

5�x
�u where x, y P F11, y � 0.

This element acts as the permutation

p0, y
5�x ,

y
7�x ,

y
8�x ,

y
9�x ,

y
0�xqp y

4�x ,
y

2�x ,
y

10�x ,
y

6�x ,
y

3�x ,
y

1�xq

Let a subgroup D12 in G contain elements g and g�1 of order 6. Then the subgroup is

the stabilizer in G of each of the fourteen block systems shown in Fig.4.2.

4.5 Incidence of this geometry

It can be verified by Magma that G0, G1 and G2 form the amalgam required. By

flag-transitivity, two elements of the geometry are adjacent if and only if they are of
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Fig. 4.2

different type and one is contained in the other.

4.5.1 A way of labelling with pairs pa, bq

The group C is transitive on the elements of type 0 and M2C is transitive on the

elements of type 1 and 2. Therefore

We may label elements of type 0 by tp1, cq0 : c P F11u
We may label elements of type 1 by tpm, cq1 : m P Ω2, c P F11u
We may label elements of type 2 by tpm, cq2 : m P Ω2, c P F11u
where pm, cqi represents �m� c applied to the element of type i described earlier. For

example p3, 1q1 represents tB0, B3u � 3� 1.

If we use the above notation, then (by Magma):

p1, bq0 is adjacent to pc, dq1 if and only if d�b
c
P t0, 8u.

p1, bq0 is adjacent to pc, dq2 if and only if d�b
c
P t0, 1, 8u.

pa, bq1 is adjacent to pc, dq2 if and only if c � a and d � b, or

c � 3a and d � b� c, or

c � 9a and d � b� c.

4.6 Magma code

4.6.1 On 11 elements

/*
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www-ATLAS of Group Representations.

L2(11) represented as permutations on 11 elements.

*/

G<x,y>:=PermutationGroup<11|\[

1,10,4,3,9,7,6,8,5,2,11]

,\[

2,11,5,4,10,8,7,9,6,3,1]

>;

print "Group G is L2(11) < Sym(11)";

///////////////////////////////////////////////////////////////////Define elements of type 0,1 and 2

type0:={1..11};

type1:=Subsets(type0,2);

G!(1,5)(3,8)(4,10)(7,9) in G;

x:={2,6,11};

type2:={x^g:g in G};

////////////////////////////////////////////////////////////////////////Define an original chamber

original_chamber:={ {2} , {2,6} , {2,6,11} };

chambers:={original_chamber^g:g in G}; #chambers; /// 330

////////////////////////////////////////////////////////////////////////////////////////Find discs

All_discs:=[];

disc0:={original_chamber}; previous_discs:=disc0;

for n in {1..9} do

discn:={x:x in (chambers sdiff previous_discs) |#{d:d in previous_discs|#(x meet d) eq 2} ne 0

};

Include(~All_discs,discn);

previous_discs:=previous_discs join discn;

end for;

4.6.2 On 12 elements

//////////////////////// writing infinity as 11, let S be all permutations of the projective space

S:=Sym( {0,1,2,3,4,5,6,7,8,9,10,11} );

// now we define G as a subgroup of S

add1:= S!(1,2,3,4,5,6,7,8,9,10,0);

times2:= S!(1,2,4,8,5,10,9,7,3,6); minus:=times2^5;

inverse:= S!(0,11)(2,6)(3,4)(5,9)(7,8);

C :=sub< S | add1 >;

M :=sub< S | times2 >; MC :=sub< S | M ,C >;

M2:=sub< S | times2^2>; M2C:=sub< S | M2,C >;

G :=sub< S | M2,C, minus*inverse >;

Y :=sub< S | M ,C, minus*inverse >;

////// define the block systems of type 0,1 and 2
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B0:={ {1,2},{4,8},{5,10},{9,7},{3,6},{0,11} };

B1:=B0^add1; B3:=B0^(add1^3); B10:=B0^(add1^10);

//////////////////////////////////////////////////////////////////////////////////Define subgroups

G0:=sub < G | {g: g in G | B0 ^g eq B0 } > ;

G1:=sub < G | {g: g in G | {B0,B3} ^g eq {B0,B3} } > ;

G2:=sub < G | {g: g in G | {B0,B3,B10}^g eq {B0,B3,B10} } > ;

//////////////////////////////////////////////////////////////////Make sure these form the amalgam

H:=CyclicGroup(2); H2:=DirectProduct(H,H);

IsIsomorphic(G0 ,Alt(5) );

IsIsomorphic(G1 ,DihedralGroup(6));

IsIsomorphic(G2 ,DihedralGroup(6));

IsIsomorphic(G0 meet G1 ,DihedralGroup(3));

IsIsomorphic(G0 meet G2 ,H2 );

IsIsomorphic(G1 meet G2 ,H2 );

IsIsomorphic(G0 meet G1 meet G2,H );

////////////////////////////////////////////////////////////////////Labelling elements of type 0,1,2

type0:={B0^g:g in G}; #type0; /// 11

type1:=Subsets(type0,2); #type1; /// 55

type2:={ {B0,B3,B10}^g : g in G }; #type2; /// 55

/////////////////////////////////////////////////////////////////////////G has 2 orbits on triples

#{ {B0,B1,B10}^g : g in G }; /// 110

/////////////////////////////It only remains to back up our claim that this is a Petersen geometry

//////////////////////////////////////////////////////////////find elements of type 1 adjacent to B0

for m in M2 do for c in C do

if {g*m*c : g in G1} meet {g: g in G0} ne {} then

print [1^m,0^c];

end if;

end for; end for;

//////////////////////////////////////////////////////////////find elements of type 2 adjacent to B0

for m in M2 do for c in C do

if {g*m*c : g in G2} meet {g: g in G0} ne {} then

print [1^m,0^c];

end if;

end for; end for;

//////////////////////////////////////////////////////////////find elements of type 2 adjacent to B1

for m in M2 do for c in C do

if {g*m*c : g in G2} meet {g: g in G1} ne {} then

print [1^m,0^c];

end if;

end for; end for;



Chapter 5

The Petersen geometry ΓpL2p25qq

Consider this amalgam of L2p25q � t t�M,�Mu : M P SL2p25qu :

This gives rise to a flag-transitive geometry consisting of 65 elements of type 0, 325

elements of type 1, 325 elements of type 2, 650 flags of type t0, 1u, 975 of type t0, 2u,
975 of type t1, 2u, and 1950 chambers.

5.1 The Field of order 25

In this chapter we will write the field F25 as the set

ta� b
?

2 : a, b P F5u

and we define the operations � and � by

pa� b
?

2q � pc� d
?

2q � pa� cq � pb� dq?2

pa� b
?

2q � pc� d
?

2q � pac� 2bdq � pad� bcq?2

Let Ω � F25 zt0u. Then:

We see Ω2 is the 12-set ta� ab
?

2 : a P t1, 2, 3, 4u, b P t0, 1, 4uu.
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We see Ω3 is the 8-set ta� b
?

2 : a, b P F5, ab � 0u zt0u.
We see Ω4 is the 6-set t�1,�p2� 2

?
2q,�p2� 3

?
2qu.

We see Ω6 is the 4-set t1, 2, 3, 4u.
Let f � 1� 2

?
2. Powers of f are listed here:

f 0 � 1 f 6 � 3 f 12 � 4 f 18 � 2

f � 1� 2
?

2 f 7 � 3�?
2 f 13 � 4� 3

?
2 f 19 � 2� 4

?
2

f 2 � 4� 4
?

2 f 8 � 2� 2
?

2 f 14 � 1�?
2 f 20 � 3� 3

?
2

f 3 � 2
?

2 f 9 � ?
2 f 15 � 3

?
2 f 21 � 4

?
2

f 4 � 3� 2
?

2 f 10 � 4�?
2 f 16 � 2� 3

?
2 f 22 � 1� 4

?
2

f 5 � 1� 3
?

2 f 11 � 3� 4
?

2 f 17 � 4� 2
?

2 f 23 � 2�?
2

There are only two automorphisms of this field: The identity and the map a�b?2 ÝÑ
a� b

?
2.

5.2 The Group G � L2p25q

G acts on the projective space V � t0, f 0, f 1, f 2, ..., f 22, f 23,8u, where

λ � telements of the form pλii qu for all λ P V zt8u, and

8 � telements of the form pi0qu.

We define the following permutations acting on the right of V (using 1
8 � 0 and

1
0
� 8):

τ : xÑ 1

x
�m : xÑ mx � c : xÑ x� c

for m, c P F25, m R t0,8u, c � 8. We define the groups

M � x�fy C � x�1,�
?

2y

of order 24 and 25 respectively. Note that M has six proper subgroups x�f 2y, x�f 3y,
x�f 4y, x�f 6y, x�f 8y, x�f 12y and C also has six. The group MC has order 24� 25 �
600. We will mostly consider G as the group of permutations

G :� x τ , �f 2 , C y

G is in fact the group of all even permutations of Y , where

Y :� x MC , τ y

of order 15600.
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5.3 Elements of type 0

There are two conjugacy classes of subgroups S5 in G, each of length 65. Let P �
t0, 1, 2, 3, 4,8u. We have StabGpP q � x�f 6,�1, τy. This is a subgroup S5 acting on

the 5-set

ttt,8u, tt� 1, t� 4u, tt� 2, t� 3uu : t P t0, 1, 2, 3, 4u u

Denote the field automorphism a � b
?

2 ÝÑ a� b
?

2 � a � b
?

2. The set Q � tz{z :

z P Ωu is a group by multiplication of order 6. Define G0:

Q � tf 0, f 4, f 8, f 12, f 16, f 20u G0 � StabGpQq

Subgroups S5 in G have two orbits under conjugation by MC. One orbit consists of

30 subgroups stabilizing elements of PMC . The other consists of 100 subgroups stabi-

lizing elements of QMC . Under conjugation by G we end up with two orbits of length

65, one containing G0 and the other containing StabGpP q. These two partitions cut

each other 152.502. Labelling the 65 cosets of G0 in G is made difficult by the fact

that no coset takes Q to P . Therefore we will label the cosets of G0 by

f iP � c where i P t1, 3, 5u and c P t0, 1, 2, 3, 4u.
f iQ� c where i P t0, 2u and c P F25.

This is how we label our elements of type 0.

(The stabilizer in G of any 6-set fixed by some element g P G of order 6 is S5.)

5.4 Elements of type 1

Let G1 � D24 be the stabilizer in G of tQ, 2Qu. Notice the two elements of this pair

are disjoint. Cosets of G1 in G may be labelled by elements of tQ, 2QuG. By Magma,

we see that this is in fact all 325 pairs of disjoint elements of type 0.

There are 26�25
2

� 325 subgroups D24 in G. These form a single conjugacy class

in G. Let P1 � t0,8u and Q1 � t1, 4u. The stabilizer of P1 in G acts as D24 on Ω,

while stabilizing the set t0,8u. The group G is 2-transitive so each subgroup is the
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stabilizer in G of some pair ta, bu. The stabilizer of Q1 consists of the twenty-four

elements of the form �� a bb a � and �� �a b�b a
�

in G.

5.5 Elements of type 2

Let G2 � S4 be the stabilizer in G of tQ, 2Q,?2P u. Note that any two elements of

this triple are disjoint. The 325 cosets of G2 in G may be labelled by elements of

tQ, 2Q,?2P uG. By Magma, we see that this is in fact all 325 triples of type 0 such

that any of its two elements are disjoint.

There is a single conjugacy class of subgroups S4 in G. One subgroup is the sta-

bilizer in G of tt0,8u, t1, 4u, t2, 3uu. Recall that this is one of the five elements of the

set mentioned in Section 5.3. This subgroup consists of all maps x ÞÝÑ λx, all maps

x ÞÝÑ λ
x

and all maps x ÞÝÑ λx�c
x�c where λ, c P t1, 2, 3, 4u.

Let a, b, c, d, e, f, x, y P V . Interestingly, it turns out that a subgroup D24 ¤ G stabi-

lizing tx, yu intersects a subgroup S4 ¤ G stabilizing tta, bu, tc, du, te, fuu by D8 (as

required in our amalgam) if and only if tx, yu P tta, bu, tc, du, te, fuu.

5.6 A way of describing this geometry

One amalgam satisfying our requirements is tG0, G1, G2u. The group G is flag-

transitive. We have already labelled our elements of type 0 by elements of QG. Label

the 325 elements of type 1 by the disjoint pairs of elements of type 0 and label the

325 elements of type 2 by the disjoint triples of elements of type 0. Two elements of

different type are incident if one is contained in the other.

We wish to show that the graph whose vertices are elements of type 0 and whose ad-

jacencies are elements of type 1 is locally Petersen. To do this, observe that tQ, 2Qu,
tQ,Q� 2

?
2u, t?2P,Qu and t?2P,Q�?

2u are elements of type 1. The neighbours

of
?

2P are:
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Let i be odd and j be even. Elements of type 1 are all of the form

tf iP � a, f jQ� bu where a� b P f iP 150 of these

tf jQ� a, f jQ� bu where a� b P f j�3Q 150 of these

t Q� a, 2Q� bu where a � b 25 of these

5.7 Chambers

Clearly we have six chambers for each element of type 2. From now on we will write

the chamber

tQu � tQ, 2Qu � tQ, 2Q,
?

2P u

using the notation
?

2P |2Q|Q. Its neighbours in the chamber graph are
?

2P |Q|2Q
(0-adjacent), 2Q|?2P |Q (1-adjacent) and fP |2Q|Q and f 5P |2Q|Q (both 2-adjacent).

Definition 5.1. Let Ct be C’s element of type t. Let Cp3q be the only element of C0,

let Cp2q be the element of C1 which is not Cp3q, and let Cp1q be the element of C2

which is not Cp2q or Cp3q. The intersection matrix MpC,Dq between chambers C and

D is defined by MpC,Dqij � |Cpiq XDpjq|.

We know our chamber graph has valency 4. We have just shown that if two ele-

ments are distance 2 apart then they intersect by one of:

Using Magma it can be checked that if MpA,Bq � MpC,Dq then distpA,Bq �
distpC,Dq but I have been unable to give a computer-free proof. The disc sizes are

shown in Table 7.1. Magma also shows an element of type 0 can only intersect an

element of type 2 by p1, 1, 1q, p0, 2, 2q, p0, 0, 6q, p1, 2, 2q, p0, 0, 2q or p1, 1, 2q. It turns
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out the distance between C and D is 18 if and only if MpC,Dq is the matrix shown

on the far right of Fig.5.1.

Fig. 5.1

5.7.1 The automorphism group

It has been shown [9, 10] that the automorphism group of the locally Petersen graph

whose vertices are elements of type 0 and lines are elements of type 1 is PΣLp2, 25q,
the group of order 15600 generated by L2p25q along with the field automorphism

a� b
?

2 ÝÑ a� b
?

2.

Theorem 5.2. The automorphism group of the chamber graph of ΓpL2p25qq is PΣLp2, 25q.
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Proof. Each chamber has four neighbours. Because the Hall graph is locally Petersen,

we know that the subgraph of chambers with a particular element of type 0 is con-

nected. By Lemma 3.39 the automorphism group of the chamber graph of ΓpL2p25qq
is a permutation group on the points. Elements of type 1 and 2 are defined by their

incident elements of type 0.

Recall that we are allowed to assign each intersection matrix MpC,Dq the dis-

tance distpC,Dq. Let C be a chamber and M an intersection matrix such that

distpMq R t11, 12, 13, 14, 15u. It can be shown by Magma that the set of chambers

tD : MpC,Dq � Mu is an orbit under StabPΣLp2,25qpCq. In total, there are 279 inter-

section matrices and 288 such orbits. The difference between matrices and orbits in

discs 11, 12, 13, 14, 15 is 1, 2, 3, 2, 1 respectively.

5.8 Magma code

We denote a� b
?

2 by [a,b] and 8 by [5,5].

F:={[a,b]:a in {0..4},b in {0..4}}; F:=F join {[5,5]}; S:=SymmetricGroup(F);

add1:=S!

([0,0],[1,0],[2,0],[3,0],[4,0])

([0,1],[1,1],[2,1],[3,1],[4,1])

([0,2],[1,2],[2,2],[3,2],[4,2])

([0,3],[1,3],[2,3],[3,3],[4,3])

([0,4],[1,4],[2,4],[3,4],[4,4]);

addroot2:=S!

([0,0],[0,1],[0,2],[0,3],[0,4])

([1,0],[1,1],[1,2],[1,3],[1,4])

([2,0],[2,1],[2,2],[2,3],[2,4])

([3,0],[3,1],[3,2],[3,3],[3,4])

([4,0],[4,1],[4,2],[4,3],[4,4]);

timesf:=S!([1,0],[1,2],[4,4],[0,2],[3,2],[1,3],[3,0],[3,1],[2,2],[0,1],[4,1],[3,4],

[4,0],[4,3],[1,1],[0,3],[2,3],[4,2],[2,0],[2,4],[3,3],[0,4],[1,4],[2,1]);

inverse:=S!([1,3],[2,4])([3,3],[3,2])([3,1],[4,2])([0,2],[0,4])([2,3],[2,2])([3,4],[4,3])

([1,2],[2,1])([2,0],[3,0])([1,4],[4,4])([4,1],[1,1])([0,3],[0,1])([0,0],[5,5]);

outer:=S!([1,1],[1,4])([1,2],[1,3])

([2,1],[2,4])([2,2],[2,3])

([3,1],[3,4])([3,2],[3,3])

([4,1],[4,4])([4,2],[4,3])

([0,1],[0,4])([0,2],[0,3]);
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G:=sub<S|add1,timesf^2,inverse>; Y:=sub<S|G,outer>;

M :=sub<S|timesf>;

C :=sub<S|add1,addroot2>; MC :=sub<S|M ,C>;

M2:=sub<G|timesf^2 >; M2C:=sub<S|M2,C>;

/////////////////////////////////////////////////////////////////////////////////////////P and Q

P:={[0,0],[1,0],[2,0],[3,0],[4,0],[5,5]};

Q:={[1,0],[3,3],[2,3],[3,2],[4,0],[2,2]};

///////////////////////////////////////////////////////////////////////////////Define an amalgam

c0:={Q^(timesf^2) }; G0:=sub<G|{g:g in G|c0^g eq c0}>;

c1:={Q^(timesf^2),Q }; G1:=sub<G|{g:g in G|c1^g eq c1}>;

c2:={Q^(timesf^2),Q,P^(timesf^3)}; G2:=sub<G|{g:g in G|c2^g eq c2}>;

//////////////////////////////////////////////////////////////////////Make sure it is an amalgam

H:=CyclicGroup(2);

IsIsomorphic(G0, Sym(5) );

IsIsomorphic(G1, DihedralGroup(12) );

IsIsomorphic(G2, Sym(4) );

IsIsomorphic(G0 meet G1, DirectProduct(DihedralGroup(3),H));

IsIsomorphic(G0 meet G2, DihedralGroup(4) );

IsIsomorphic(G1 meet G2, DihedralGroup(4) );

IsIsomorphic(G0 meet G1 meet G2, DirectProduct(H,H) );

///////////////////////////////Work out disjoint pairs and disjoint triples of elements of type 0

type0:={Q^g:g in G};

#type0; ///// There are 65 elements of type 0

disjointpairs:={{x,y}:x in type0,y in type0|#(x meet y) eq 0};

#disjointpairs; ///// There are 325 disjoint pairs from type0

disjointtriples:={x join y:x in disjointpairs,y in disjointpairs|(x sdiff y) in disjointpairs};

#disjointtriples; ///// There are 325 disjoint triples from type0

//////////////////////////////////////////It turns out this is a convenient way to label cosets

c2 in disjointtriples; ///// true

#(c0^G); /// 65

#(c1^G); /// 325 so must be equal to disjointpairs. We can label cosets this way.

#(c2^G); /// 325 so must be equal to disjointtriples. We can label cosets this way.

///////////////////////////////////////////////////////////////////////////////////////Chambers

c:=[P^(timesf^3),Q^(timesf^2),Q];

chambers:={c^g:g in G};

c^(timesf^12) eq c;

c^inverse eq c;

c^outer eq c;

/////////////////////////////////////////////////////////////////////////Construct discs from c

All_discs:=[];
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////////////////////////////////////////////////////////////////////////////////// the 0th disc

disc0:={c};

previous_discs:=disc0;

////////////////////////////////////////////////////////////////////////////////// the nth disc

for n in {1..18} do

disc_n:={d: d in (chambers sdiff previous_discs) | [d[2],d[1],d[3]] in previous_discs or

[d[1],d[3],d[2]] in previous_discs or

#{x:x in previous_discs| x[2] eq d[2] and x[3] eq d[3]} gt 0

};

Include(~All_discs , disc_n );

previous_discs:=previous_discs join disc_n;

end for;

////////////////////////////////////////////////////////////////Work out matrices for each disc

AllMatrices:=[];

for disc in All_discs do

matrices:={Matrix(IntegerRing(),3,3,[#(c[1] meet d[1]),#(c[1] meet d[2]),#(c[1] meet d[3]),

#(c[2] meet d[1]),#(c[2] meet d[2]),#(c[2] meet d[3]),

#(c[3] meet d[1]),#(c[3] meet d[2]),#(c[3] meet d[3])])

:d in disc };

Include(~AllMatrices , matrices);

end for;



Chapter 6

The Petersen geometry Γp3A7q

Consider the following amalgam of 3A7:

We use Rob Wilson’s definition of 3A7 [34]. Let ω � e2πi{3 � �1
2
�

?
3

2
i. Thus ω � ω2.

Consider the nine vectors given by

p2, 0, 0, 0, 0, 0q p0, 0, 1, 1, 1, 1q p0, 1, 0, 1, ω, ωq

and their multiples by ω and ω. Consider the group G2 � S4 generated by the following

coordinate permutations of order 2 and 3:

Let Ω63 be the union of orbits of the nine vectors above under this group. Then Ω63 is

a set of sixty-three vectors. We define 3A7 as the set of symmetries in GL6pCq of Ω63.

6.1 Introducing Z, Ω21 and Ω7

The center of 3A7 is the group Z � tI, ωI, ωIu. Thus Ω63 may be partitioned into 21

Z-orbits, each of length 3. Let Ω21 be all of these. Let 1 be the following 6-subset of

92
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Ω21:

1 � t p2, 0, 0, 0, 0, 0qZ , p0, 0, 1, 1, 1, 1qZ ,
p0, 1, 0, 1, ω, ωqZ , p0, 1, 1, 0, ω, ωqZ ,
p0, 1, ω, ω, 1, 0qZ , p0, 1, ω, ω, 0, 1qZ u

That is, the set containing p2, 0, 0, 0, 0, 0qZ along with the five other Z-orbits (not

containing vectors with a coordinate 2) whose dot product with p2, 0, 0, 0, 0, 0qZ is

zero. Under G, 1 has an orbit Ω7 of order 7, consising of

8 � t p2, 0, 0, 0, 0, 0qZ , p0, 0, 0, 2, 0, 0qZ ,
p0, 2, 0, 0, 0, 0qZ , p0, 0, 0, 0, 2, 0qZ ,
p0, 0, 2, 0, 0, 0qZ , p0, 0, 0, 0, 0, 2qZ u

and i (1 ¤ i ¤ 6), where i contains exactly one Z-orbit containing a vector whose ith

coordinate is 2. Then G acts as A7 on 1, ..., 6 and 8. Note that each element in Ω21

is the intersection of a unique pair i and j.

6.2 Elements of ΓpA7q

We look back briefly at the elements of ΓpA7q. A subgroup of type 0 is StabA7t1, 2u �
S5 acting on the 5-set t3, ..., 7u. A subgroup of type 2 is StabA7tt1, 2u, t3, 4u, t5, 6uu �
S4 acting on the four elements

(We draw squares to emphasize when the two numbers have been swapped). A sub-

group of type 1 is StabA7tt1, 2u, t3, 4uu � p3� 22q2, as we see here:

Hence ΓpA7q consists of p72q � 21 elements of type 0,
p72qp52q

2
� 105 elements of type 1,

and
p72qp52qp32q

3!
� 105 elements of type 2.
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6.3 Elements of Γp3A7q

Our group 3A7 contains exactly one conjugacy class of subgroups S5, one conjugacy

class of subgroups p3�22q2 (satisfying D6�2   p3�22q2, as required in our amalgam),

and four conjugacy classes of subgroups S4. As S4 and S5 have only the identity as

their center and p3� 22q2 has a center of order 2, these must intersect Z trivially.

6.3.1 Elements of type 0

There are 21 subgroups isomorphic to S5 in 3A7. The pointwise stabilizer in G of

x P Ω21 is S5, for x is the intersection of a unique pair i and j. Thus the stabilizer acts

as S5 on Ω7zti, ju. We may represent our 63 elements of type 0 by elements x P Ω63.

6.3.2 Elements of type 1

We may represent the 315 cosets of a subgroup p3 � 22q2 ¤ 3A7 by all pairs tx, yu
where x, y P Ω63 such that there is some permutation in G swapping x and y, and no

i contains both x and y. We define two elements of 3A7 of order 2 and 3 respectively:

M � 1

2

� 2 0 0 0 0 0
0 0 1 1 1 1
0 1 0 1 ω ω
0 1 1 0 ω ω
0 1 ω ω 1 0
0 1 ω ω 0 1

�
N �

� 0 1 0 0 0 0
0 0 1 0 0 0
1 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 ω 0
0 0 0 0 0 ω

�

We compute all the elements of type 1. Recall the group of coordinate permutations

G2. All 2-subsets of p1, 1, 1, 1, 0, 0qG2 are of type 1. This gives us 9 elements under ZG2.

The stabilizer StabG2ptp0, 1, 0, 1, ω, ωq, p1, 0, 1, 0, ω, ωquq has order 4, so this gives us

18 elements under ZG2.

p0, 0, 0, 0, 0, 2qM � p0, 1, ω, ω, 0, 1q p0, 0, 0, 0, 0, 2qN � ωp0, 0, 0, 0, 0, 2q
p0, 0, 1, 1, 1, 1qM � p0, 2, 0, 0, 0, 0q p0, 0, 0, 0, 2, 0qN � ωp0, 0, 0, 0, 2, 0q
p1, 1, 1, 1, 0, 0qM � p1, 1, 1, 1, 0, 0q p0, 0, 1, 1, 1, 1qN � p1, 0, 0, 1, ω, ωq
p0, 0, 2, 0, 0, 0qM � p0, 1, 0, 1, ω, ωq pω, ω, 0, 1, 0, 1qN � ωp0, 1, ω, ω, 0, 1q

pω, ω, 1, 0, 1, 0qN � ωpω, ω, 1, 0, 1, 0q

Using M :

StabG2tp0, 0, 0, 0, 0, 2q, p0, 1, ω, ω, 0, 1qu is the identity, giving us 72 elements.
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StabG2tp0, 2, 0, 0, 0, 0q, p1, 1, 1, 1, 0, 0qu has order 2, giving us 36 elements.

StabG2tp1, 1, 1, 1, 0, 0q, p0, 1, 0, 1, ω, ωqu has order 2, giving us 36 elements.

Using N :

StabG2tωp0, 0, 0, 0, 0, 2q, p1, 0, 0, 1, ω, ωqu has order 2, giving us 36 elements.

StabG2tωp0, 0, 0, 0, 2, 0q, p1, 0, 0, 1, ω, ωqu has order 2, giving us 36 elements.

StabG2tωp0, 1, ω, ω, 0, 1q, ωpω, ω, 1, 0, 1, 0qu is the identity. This gives us 72 elements.

Thus we may define our elements of type 1 as all pairs tu, vu where u, v P Ω63 such

that:

 Every coordinate of u� v is an integer multiple of 1, ω or ω.

 Every coordinate of u� v is non-zero or there is a coordinate equal to 3, 3ω, or 3ω.

Another way of labelling

Using the 1-to-1 corresspondence between Ω21 and pairs ti, ju � Ω7 we may label

the elements of Ω63 by t1, 2u � p0, 0, 1, 1, 1, 1q, t1, 3u � p0, 1, 0, 1, ω, ωq, t1,8u �
p2, 0, 0, 0, 0, 0q and their images under ZG2. Re-labelling by this notation gives us the

following elements of type 1:

along with their images under ZG2. That is, the following and their multiples by ω

and ω: (let dots be elements of t1, 2, 3, 4, 5, 6u � ta, b, c, d, e, fu and write a b if and

only if ta, bu � t2k � 1, 2ku)
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6.3.3 Elements of type 2

We may represent the 315 cosets of the subgroup G2 � S4 by triples tu, v, wu where

u, v, w P Ω63 such that any 2-subset of the triple is an element of type 1. Elements of

type 2 are the orbits of the following under ZG2:

Another way of labelling

If we use the notation mentioned earlier,

and their orbits under ZG2. Let dots be elements of ta, b, c, d, e, f, gu � t1, ..., 6,8u.
Write a b if and only if ta, bu � t2k � 1, 2ku. Then the elements of type 2 are
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and their multiples by ω and ω.

Two elements in the geometry Γp3A7q are incident if they are of different types and

one is contained in the other.

6.4 Chambers

We have 6 chambers for each element of type 2. The disc structure of the chamber

graph from some chamber C is shown in Table 7.1. Interestingly, the diameter is 20

and the 20th disc is tωC, ωCu. From now on we omit the underlining when writing

elements of Ω7.

Definition 6.1. Write the chamber

C : tωzte, fuu � tωytc, du, ωzte, fuu � tωxta, bu, ωytc, du, ωzte, fuu

as C � ωxab|ωycd|ωzef .

Lemma 6.2. If Ω7 � ta, bu Y tc, du Y te, fu Y tgu then

 There exist x, y and z such that C � ωxab|ωycd|ωzef is a chamber. If, respectively,

x1, y1 and z1 fulfill the same property then x� x1 � y � y1 � z � z1 mod 3.

 C has 4 neighbours: The chamber ωuag|ωycd|ωzef (2-adjacent)

The chamber ωvbg|ωycd|ωzef (2-adjacent)

The chamber ωycd|ωxab|ωzef (1-adjacent)

The chamber ωxab|ωzef |ωycd (0-adjacent)

Proof. The Lemma is clearly true if we take ta, bu � t1, 2u, tc, du � t3, 4u and te, fu �
t5, 6u. By flag-transitivity, we see it must be true for all possible ta, bu, tc, du and

te, fu.

In Definition 6.3 we factor out vertices of the chamber graph of Γp3A7q by multiples

of 1, ω and ω.

Definition 6.3. Let T be the graph whose vertices are the triples tC, ωC, ωCu for

all chambers C, two vertices adjacent if and only if an element of one is adjacent to

an element of the other in the chamber graph of Γp3A7q. This means two triples are
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adjacent if and only if each chamber in one is adjacent to exactly one chamber in the

other, all three adjacencies being of the same type. Therefore we label the edges of T

uniquely with type 0,1 or 2.

Lemma 6.4. The graph T of Definition 6.3 is isomorphic to the chamber graph of

ΓpA7q. The isomorphism preserves the type of adjacency.

Proof. By Lemma 6.2 there is a 1-to-1 correspondence between the vertices of T and

the chambers ab|cd|ef from ΓpA7q. Vertices are adjacent if and only if their correspond-

ing chambers are adjacent, and adjacency type is preserved by Definition 6.3.

The next lemma is similar to Theorem 2.9.

Lemma 6.5. There are 63 subgraphs of the chamber graph of Γp3A7q isomorphic to

the chamber graph of ΓpA5q. Each consists of all chambers ω� � �|ω� � �|ωxij for

some ωxti, ju.

Proof. This can be verified for the case ti, ju � t2k�1, 2ku by looking back at Section

6.3.3. All other cases follow by flag-transitivity.

For the rest of this Section let C � 12|34|56. From Section 6.3.3 recall ab|cd|ef is a

chamber whenever ta, bu, tc, du or te, fu is of the form t u. Therefore, looking back

at Fig.2.6, we see the chambers distance less than 6 from C are all of the form ab|cd|ef
and behave exactly like chambers of ΓpA7q. This is illustrated in discs 1 to 5 of Fig.6.1.

We have C � 12|34|56. To understand Fig.6.1 completely we need Definition 6.6.

Definition 6.6. Let D � ωxd1d2|ωyd3d4|ωzd5d6. The intersection matrix MpC,Dq
is defined by MpC,Dqij � |t2i � 1, 2iu X td2j�1, d2ju|, with ωx written above the first

column, ωy written above the second and ωz written above the third. For example,

letting D � 28|ω35|ω46 gives MpC,Dq �

We usually omit writing ω0. A matrix is called odd if the sum of its entries is odd. It

is called even otherwise.

Lemma 6.7. The distance between C and D can be determined from MpC,Dq.
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Proof. It is enough to show that H � Stab3A7pCq � xp1, 2qp3, 4q, p3, 4qp5, 6qy is transi-

tive on the set X of chambers E satisfying MpC,Eq � MpC,Dq � M . Looking back

at Section 6.3.3 we see that the number of different powers of ω written along the top

of M is determined by whether M contains a 2 and is even or odd, for we have four

cases and an example of each is shown here (let tx, y, zu � t1, ω, ωu):

If M contains an entry equal to 2 then H is certainly transitive on X and we are

done. Therefore consider the three remaining cases where every entry of M is 0 or 1:

In each we see that there are six possible ways of writing the powers of ω at the top:

Specifically, there are two ways modulo multiplication by some power of ω. It follows

that X has order 8
2
� 4 and H is transitive on X.

Theorem 6.8. The diameter of the chamber graph of Γp3A7q is 20. Two chambers A

and B are distance 20 apart if and only if A � ω�1B.

Proof. This is a combinatoric sketch-proof. In Fig.6.1 we show all intersection ma-

trices of chambers distance ¤ 10 from C. Now the first disc containing a chamber

C 1, such that ωC 1 or ωC 1 can be found in the same disc or the previous disc, is the

tenth disc. This is enough to show that the distance between C and ω�1C is 20 (by

flag-transitivity C is “as close to halfway as possible” along a minimal path from some

chamber to its multiple by ω). Now we need to show that the distance between any

other chamber and C is ¤ 19. To do this, notice that some matrices in Fig.6.1 are

shaded (with distances ¤ 14). Each of these shows a matrix MpC,Dq where D is

of the form ω� � �|ω� � �|ωxij. This is true for every ωxti, ju except x � �1 and

ti, ju � t5, 6u. Therefore, unless E is of the form ω� ��|ω� ��|ω�156, the distance

between C and E is ¤ 14 � 5 � 19 (using Lemma 6.5 and that the diameter of the

chamber graph of ΓpA5q is 5).

Therefore assume E is of the form ω� � �|ω� � �|ω�156. Then from Fig.6.1 we

see that the only matrices left to consider are X � and Y � . If MpC,Dq � X

then we draw a minimal path in Fig.6.1 between C and D of length 19.
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Fig. 6.1. Making things look more complicated than they need to be!
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6.5 The automorphism group of ChpΓp3A7qq

Let G be the automorphism group of the chamber graph of Γp3A7q.

Lemma 6.9. The triples tC, ωC, ωCu are G-blocks.

Proof. Obvious by Theorem 6.8.

Lemma 6.10. The group G preserves the type of adjacency between chambers.

Proof. Each chamber has four neighbours. The result follows using Lemma 3.39.

Lemma 6.11. The subgroup H of G fixing every triple setwise is Z.

Proof. Let h P H. Two triples are adjacent if and only if they can be written as

tA, ωA, ωAu and tB,ωB, ωBu such that ωiA is adjacent to ωiB for each i. Therefore

the cycle type of the action of h on each triple tC, ωC, ωCu is identical. We need to

show h cannot be composed of 2-cycles.

Let C � 12|34|56 and assume h acts as pωC, ωCq on CZ . Let D � ω18|35|46. By

Fig.6.1 we see distpC,Dq � distpC, ωDq � 10, whereas distpC, ωDq ¥ 11. Therefore h

acts as pD,ωDq on DZ . Now there is a chamber F � 12|35|46 type-2-adjacent to D,

lying in-between C and D. The chamber F h is a multiple of F by some power of ω

and is type-2-adjacent to ωD. By our assumption this chamber must lie in-between

C and ωD, but this is not true by Fig.6.1.

Theorem 6.12. The automorphism group G of the chamber graph of Γp3A7q is 3S7.

Proof. By Theorem 3.43 and Lemmas 6.4 and 6.9 we know that G acts as either A7

or S7 on T . To prove it is S7, consider the following automorphism g acting as (1,2)

on T :

ta, bug � tap1,2q, bp1,2qu ωta, bug � ωtap1,2q, bp1,2qu ωta, bug � ωtap1,2q, bp1,2qu

To show this is an automorphism, it suffices to show that the adjacencies in Section

6.3.2 are preserved.
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6.6 Magma code for Γp3A7q

/*

www-ATLAS of Group Representations.

3.A7 represented as permutations on 63 elements.

*/

G<x,y>:=PermutationGroup<63|\[

2,4,8,1,13,16,19,10,23,3,25,27,14,5,29,18,9,6,20,7,15,33,17,38,26,

11,28,12,21,35,45,41,36,43,44,22,51,39,24,37,46,31,49,30,42,32,58,47,34,50,

40,52,62,53,55,56,57,48,59,63,60,54,61]

,\[

3,6,9,11,1,17,2,13,15,14,23,4,30,31,5,19,21,20,34,35,7,8,29,10,27,

28,42,43,12,37,40,16,18,47,48,50,22,52,25,24,26,53,54,36,38,57,32,33,46,60,

51,61,39,41,44,45,63,58,49,55,56,62,59]

>;

print "Group G is 3.A7 < Sym(63)";

//////////////////////////////////////////////////////////We define the 7-set on which G acts

set7:={

{

{ 9, 17, 23 },

{ 50, 52, 57 },

{ 36, 38, 46 },

{ 22, 32, 39 },

{ 1, 2, 4 },

{ 24, 33, 41 }

},{ /// <-- these two defined by {1,2,4}

{ 44, 45, 49 },

{ 55, 56, 59 },

{ 31, 35, 43 },

{ 30, 34, 42 },

{ 1, 2, 4 },

{ 15, 21, 29 }

},{

{ 44, 45, 49 },

{ 36, 38, 46 },

{ 40, 48, 54 },

{ 3, 6, 11 },

{ 37, 47, 53 },

{ 5, 7, 12 }

},{ /// <-- these two defined by {3,6,11}

{ 50, 52, 57 },

{ 60, 61, 63 },

{ 8, 16, 25 },

{ 3, 6, 11 },

{ 10, 18, 26 },

{ 15, 21, 29 }

},{
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{ 9, 17, 23 },

{ 14, 20, 28 },

{ 60, 61, 63 },

{ 55, 56, 59 },

{ 13, 19, 27 },

{ 5, 7, 12 }

},{ /// <-- these two defined by {14,20,28}

{ 51, 58, 62 },

{ 14, 20, 28 },

{ 40, 48, 54 },

{ 31, 35, 43 },

{ 10, 18, 26 },

{ 24, 33, 41 }

},{

{ 51, 58, 62 },

{ 30, 34, 42 },

{ 22, 32, 39 },

{ 8, 16, 25 },

{ 37, 47, 53 },

{ 13, 19, 27 }

}

};

set7^G eq {set7};

//////////////////////////////////////////////////////////////////////////////Find an amalgam

G0:=Stabilizer(G,1);

G1:=Stabilizer(G,{1,3});

G2:=Stabilizer(G,{1,3,20});

A7:=Alt(7); k:={{1,2},{3,4}};

H:=CyclicGroup(2);

D6:=DihedralGroup(3);

D8:=DihedralGroup(4);

IsIsomorphic(G0 ,Sym(5) );

IsIsomorphic(G1 ,sub<A7|{g:g in A7|k^g eq k}>);

IsIsomorphic(G2 ,Sym(4) );

IsIsomorphic(G0 meet G1 ,DirectProduct(D6,H) );

IsIsomorphic(G0 meet G2 ,D8 );

IsIsomorphic(G1 meet G2 ,D8 );

IsIsomorphic(G0 meet G1 meet G2 ,DirectProduct(H,H) );

/////////////////////////////////////////////////////we can use {1,3} but not {1,6} or {1,11}

#Stabilizer(G,{1, 6}); //// is 12

#Stabilizer(G,{1,11}); //// is 12

///////////////////////////////////////////////////we can use {3,20} but not {3,14} or {3,28}

#Stabilizer(G,{1, 6}); //// is 12

#Stabilizer(G,{1,11}); //// is 12
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////////////////////////////////////////////////////////////////what’s different about {1,3}?

//////// there is some g swapping 1 and 3:

#{g: g in G | 1^g eq 3 and 3^g eq 1}; ///not zero

#{g: g in G | 1^g eq 6 and 6^g eq 1}; ///zero

#{g: g in G | 1^g eq 11 and 11^g eq 1}; ///zero

///////////////////////////////////////////////////////////////what’s different about {3,20}?

//////// there is some g swapping 3 and 20:

#{g: g in G | 3^g eq 20 and 20^g eq 3}; ///not zero

#{g: g in G | 3^g eq 14 and 14^g eq 3}; ///zero

#{g: g in G | 3^g eq 28 and 28^g eq 3}; ///zero

////////////////////////////////////////////////////////////////////////////////Chamber graph

V:={[1,3,20]^g:g in G};

E:={ {C,D} : C in V, D in V| C ne D and

( (C[1] eq D[1] and C[2] eq D[3] and C[3] eq D[2]) or

(C[1] eq D[2] and C[2] eq D[1] and C[3] eq D[3]) or

(C[2] eq D[2] and C[3] eq D[3]) )

};

G,V,E := Graph< V| E >; Diameter(G);

x:=Representative(V);

[ #y : y in DistancePartition(x) ];
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Other results

7.1 Disc Structures

Recall Definition 1.4. In Fig.7.1 we look at the disc sizes of the chamber graphs of

some of the geometries in this thesis, worked out using Magma. Most of these can be

found in Peter Rowley’s paper [29].

Disc 1 2 3 4 5 6 7 8 9 10 11
ΓpL2p11qq 4 8 15 26 42 58 76 68 32

ΓpA7q 4 8 15 26 42 58 76 104 136 144 16
Γp3A7q 4 8 15 26 42 58 76 104 136 176 192

ΓpL2p25qq 4 8 15 26 42 58 76 104 136 176 192

Disc 12 13 14 15 16 17 18 19 20
ΓpL2p25qq 216 256 256 232 100 44 8

Γp3A7q 216 256 256 192 68 36 18 8 2

Tab. 7.1. Disc sizes of the chamber graphs of some geometries in this thesis.

7.2 A few extra results

Recall Definition 2.20. Fig.7.1 shows us all unjumpable n � n intersection matrices

not containing a 2 for n � 2, 3 and 4.

Before proving Theorems 7.1 and 7.2 it is wise to go back and remind ourselves of

the notation in Definitions 2.7 and 2.22, as well as Lemma 2.31 and Theorem 2.35.

Theorem 7.1. Let M �MpA,Bq be an n�n intersection matrix with Mn1 �Mn2 �

105
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Fig. 7.1

1. That is, let Apnq � ta, bu, Bp1q � ta, cu and Bp2q � tb, du. Consider the chamber

C where B
0
B1

1,2
B2

0
C and Cp1q � ta, bu. The chamber C is in-between A

and B.

Proof. We prove by induction on n and then distpMq. The result is true for n �1 and

2 by inspection. Assume it is true for matrices of order less than n. We now prove it

for matrices of order n. We will do this by induction on the distance of MpA,Bq. We

may claim it is true for distance 0. Assume it is true for n � n matrices of distance

less than L and let M be an n� n matrix of distance L. We may assume M contains

no entries equal to 2 by Theorem 2.35(iii) and Lemma 2.45 or the result follows for M

by induction.

If there exists a chamber A1 A in-between A and B with A1pnq � Apnq then the

result is true by induction. Therefore by Lemma 2.31 assume a minimal path from

A to B begins by A
n,

� � �
,1

D where Dp1q � ta, bu. Using Theorem 2.35(i) we

know that distpD,Cq ¤ distpD,Bq � 1 � 1 � 1. Then by Theorem 2.35(iii) we have

that distpA,Cq � distpD,Cq � n� 1. We are working with n ¥ 3 so the result follows

by induction. The proof is illustrated in Fig.7.2.

Fig. 7.2
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Theorem 7.2. Let MpA,Bq be an n � n matrix whose bottom row is odd. That is,

Apnq � ta, bu, a P Bpiq and Bp0q � b. There exists C
0
C 1

1,
� � �

,i
B where

Cp1q � ta, bu. The chamber C is in-between A and B.

Proof. We prove by induction on n and then distpMq. The result is true for n �1 and

2 by inspection. Assume it is true for matrices of order less than n. We now prove it

for matrices of order n. We will do this by induction on the distance of MpA,Bq. We

may claim it is true for distance 0. Assume it is true for n � n matrices of distance

less than L and let M be an n� n matrix of distance L. We may assume M contains

no entries equal to 2 by Theorem 2.35(iii) and Lemma 2.45 or the result follows for M

by induction.

If there exists a chamber A1 A in-between A and B with A1pnq � Apnq then the

result is true by induction. Therefore by Lemma 2.31 assume a minimal path from

A to B begins by A
n,

� � �
,1

D where Dp1q � ta, bu. Using Theorem 2.35(i) we

know that distpD,Cq ¤ distpD,Bq � pi � 1q � 1. Then by Theorem 2.35(iii) we have

that distpA,Cq � distpD,Cq � pn� 1q ¤ L� 2n� i ¤ L� i. Yet B is distance i from

C, so C is in-between A and B. The proof is illustrated in Fig.7.3.

Fig. 7.3

Let C be a chamber with no part ta, bu. It is easy to see that there is a unique

minimal path joining C to the unique nearest chamber D to C having a part ta, bu.
Moreover, this path is ordered from C to D (recall Definition 2.22).

The next theorem is a generalization of Theorem 7.2. It is helpful now to remind

ourselves of Lemma 2.31 and Theorem 2.35.
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Theorem 7.3. Let M � MpA,Bq be an n � n intersection matrix with its ith row

odd (Mij � 1 and Mik � 0 for all k � j) such that Mgh � 0 if g ¥ i and h ¤ j. The

unique closest chamber C to B with first part Apiq is in-between A and B.

Proof. We prove by induction on n and then distpMq. The result is true for n �1 and

2 by inspection. Assume it is true for matrices of order less than n. We now prove it

for matrices of order n. We will do this by induction on the distance of MpA,Bq. We

may claim it is true for distance 0. Assume it is true for n � n matrices of distance

less than L and let M be an n� n matrix of distance L. We may assume M contains

no entries equal to 2 by Theorem 2.35(iii) and Lemma 2.45 or the result follows for M

by induction.

By Lemma 2.31 the theorem is proved unless A
i,

� � �
,1

D begins a minimal path

from A to B, where Dp1q � ta, bu. By Theorem 2.35(i) distpD,Cq ¤ distpD,Bq�j�2.

By Theorem 2.35(iii) A lies in-between C andD. Hence distpA,Cq ¤ distpA,Bq�2i�j.
Our reasoning is illustrated in Fig.7.4. If i ¥ j then distpA,Cq ¤ distpA,Bq � j,

Fig. 7.4

which proves our theorem. Therefore assume i   j. But then we have a contradiction:

For the leftmost j�1 rows of M must sum to 2j�2 or 2j�3. But all non-zero entries

of these columns are contained in the top i � 1 rows, which must sum to 2i � 2. If

i   j this is impossible.

Theorem 7.4. Let A and B be n-chambers. There is only one minimal path between

chambers A and B if and only if:

i) A
i,

� � �
,j

B

ii) A
i,

� � �
,1

C
0
D

1,
� � �

,j
B.

iii) MpA,Bq � `2In�2 or `2In�2.
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iv) MpA,Cq � `2In�2 where C
2,

� � �
,i
B for some i p2 ¤ i ¤ nq.

v) MpC,Bq � `2In�2 where C
2,

� � �
,i
A for some i p2 ¤ i ¤ nq.

We show some examples in Fig.7.5.

Fig. 7.5

Proof. The theorem can be proved by simple inspection if n � 1 or 2. Therefore as-

sume n ¥ 3. It is easy to prove that i, ii, iii, iv or v implies only one minimal path

by looking at Fig.2.5 and considering Theorem 2.35. It remains to prove that if we

do not have i, ii, iii, iv or v then there is more than one minimal path. We do this

by induction on the distance of M �MpA,Bq. The result is clearly true for matrices

of distance 1. Therefore assume the result is true for matrices of distance less than L

and let distpMq � L. We consider the following cases:

The matrix M has a 2 in every row. Then we must have i.

The matrix M has a 2 in exactly n� 1 rows. Then we must have ii.

The matrix M has a 2 in every row and column except two rows (a and a1) and two

columns (b and b1). Let N be the 2� 2 submatrix of M defined by a, a1, b and b1.

If N � then there is more than one minimal path. (See Fig.2.5)

If N � or then we can find more than one minimal path, unless a � b � 1 and

a1 � b1 � 2. This gives us iii.

If N � then there is more than one minimal path, unless a � 1, a1 � 2 and b � 1.

This gives us iv.

If N � then we have v by similar reasoning.

Lastly, consider the case where M has three rows or more without entries equal to



CHAPTER 7. OTHER RESULTS 110

2. By induction it easily follows that there is more than one minimal path between A

and B.

7.3 Two (probably false) conjectures.

In this section we state two conjectures which I tried to prove for a long time. The

first one I disproved and the second one is very probably false.

First (definitely false) conjecture: Every unjumpable (recall Definition 2.20) n�n
intersection matrix M �MpA,Bq has either:

i) Mn1 � 1 and the bottom row is odd, or

ii) Mn1 �Mn2 � 1.

The idea behind this is that for every matrix there is some row which we can put a 2 in

as fast as possible and doing so begins a minimal path by Theorems 7.1 and 7.2. The

conjecture is true for n � 1, 2, 3 and 4 as we can see by Fig.7.1. However for n � 5 we

have the counter-example shown in Fig.7.6. This is an unjumpable 5� 5 intersection

matrix which disproves the conjecture.

Fig. 7.6

The second conjecture is a generalization of the first:

Second (probably false) conjecture: Every unjumpable intersection matrix M �
MpA,Bq has either:

i) MpA,Bq is split into a p� p matrix P and a q � q matrix Q.

ii) MpA,Cq is split into a p� p matrix P and a q � q matrix Q for some chamber C

in-between A and B where B
0
B1

1,
� � �

,p�1
C.

Informally, the second is claiming that an unjumpable matrix looks like a matrix

from either Fig 3.5 or Fig 7.7. The first false conjecture is the special case p � 1.

Due to Theorems 2.35, 2.42 and 7.1, it only takes a matter of time to find the distances

of the (almost certainly unjumpable) matrices shown in Fig.7.8.

Therefore I am extremely suspicious that the matrix shown in Fig.7.9 is unjumpable
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Fig. 7.7

Fig. 7.8

of length 51. This would disprove the second conjecture. I have not proved this, and

it is hard for today’s computer to show using brute force. If the question is of interest

in a few years, however, computers then should easily be able to find the answer. I

Fig. 7.9

am eager to state these conjectures because I spent about a year trying to prove them.

Writing them here might stop someone else spending so long.

7.4 A conjecture

Definition 7.5. Let M � MpA,Bq be an n� n matrix. Let p and q be integers such

that 1 ¤ p, 1 ¤ q, p� q � n and Mij � 0 whenever we have both i ¤ p and j ¡ p. Let

P be the submatrix of M defined by the leftmost p columns and top p rows, and Q be

the submatrix of M defined by the bottom q rows and rightmost q columns. Then M

is big-split into P and Q.

In Fig.7.10 we show examples for p �1, 2, 3 and 4.
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Fig. 7.10

Conjecture: If M is big-split into P and Q then distpMq � distpP q � distpQq � 2pq.

It is obvious that distpMq is less than or equal to this by Lemma 3.30. I am convinced

that equality is true, but I have only been able to prove this for p � 1 (Theorem 2.35)

and q � 1 (Theorem 7.2):

We give the following “sketch-proof” for p � 2 (although I am convinced a more

beautiful proof exists). We use induction on n and then distpMq. Let the claim be

true for matrices of order k   n as well as n� n matrices of distance less than d. Let

M �MpA,Bq be an n� n matrix of distance d.

If P � or then we are done by Theorem 2.35(i).

If P � then we may assume the only way to start a minimal path from B to A is

B
3,

� � �
,1

C
0
D. Let D

1,
� � �

,3
E. It is obvious that MpA,Eq is shorter

than MpA,Bq so our result applies by induction. Yet MpA,Eq is big-split into P and

Q1, where Q1 must be one shorter than Q. The result follows:

If P � then we may assume the only adjacent chamber to A lying in-between A and

B is a 0-swap of A, or we may use the argument used in the case of P � . Either it

is A1 or A2 (both shown below). In both cases the result follows by Theorem 2.42.
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If P � then we may assume the only adjacent chamber to A lying in-between A and

B is a 0-swap of A, or we may use the argument used in the case of P � . Either it

is A1 or A2 (both shown below). If it is A2 then we are done by Theorem 2.42. If it

is A1 then let C
1,2

B. By Theorem 2.43 either there exists D
0
A1 or there exists

E
1,2

A1 lying in-between A1 and C. In either case the result follows.
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