
SCALING RELATIONS OF CLUSTERS

OF GALAXIES

A thesis submitted to the University of Manchester

for the degree of Master of Science

in the Faculty of Engineering and Physical Sciences

October 2013

By

David Boulderstone

School of Physics and Astronomy



Contents

Abstract 8

Declaration 10

Copyright 11

Acknowledgements 12

1 Introduction 14

1.1 Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.2 Clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2.1 Properties of clusters . . . . . . . . . . . . . . . . . . . . . . . 15

1.3 Mass estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.3.1 Velocity dispersion . . . . . . . . . . . . . . . . . . . . . . . . 16

1.3.2 Hydrostatic equilibrium . . . . . . . . . . . . . . . . . . . . . 17

1.3.3 Weak gravitational lensing . . . . . . . . . . . . . . . . . . . . 17

1.4 Cluster halo definition . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.4.1 Press-Schechter formalism and the spherical top hat model . . 19

1.5 Cluster mass function . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2 Cluster scaling relations 22

2.1 Self-Similar model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 Derivation of the scaling relations . . . . . . . . . . . . . . . . . . . . 22

2.2.1 Mass-Temperature relation . . . . . . . . . . . . . . . . . . . . 23

2.2.2 Luminosity-temperature relation . . . . . . . . . . . . . . . . . 24

2



2.2.3 Q parameter-mass relation . . . . . . . . . . . . . . . . . . . . 25

2.2.4 Luminosity-mass relation . . . . . . . . . . . . . . . . . . . . . 26

2.2.5 Y parameter-mass relation . . . . . . . . . . . . . . . . . . . . 26

2.3 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4 Summary of observed scaling relations . . . . . . . . . . . . . . . . . 28

2.4.1 M-T data discussion . . . . . . . . . . . . . . . . . . . . . . . 28

2.4.2 L-T data discussion . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4.3 L-M data discussion . . . . . . . . . . . . . . . . . . . . . . . 32

2.4.4 Summary of observed slopes . . . . . . . . . . . . . . . . . . . 33

2.5 Self-similarity breaking . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5.1 Non-gravitational processes . . . . . . . . . . . . . . . . . . . 34

3 Cosmological simulations of clusters 36

3.1 Outline of Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3 N -body Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4 Hydrodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.5 Semi-analytic models . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.6 Halo Finders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.6.1 Friends of friends . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.6.2 SUBFIND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.7 Cluster catalogue generation . . . . . . . . . . . . . . . . . . . . . . . 43

3.8 Estimation of cluster properties . . . . . . . . . . . . . . . . . . . . . 44

3.9 Scaling relations investigated . . . . . . . . . . . . . . . . . . . . . . . 45

3.10 New Millennium Gas Simulation . . . . . . . . . . . . . . . . . . . . . 46

3.10.1 Data Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.10.2 Mass function from the NMGS . . . . . . . . . . . . . . . . . 48

4 Scaling relations at redshift zero 50

4.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.1.1 Best-fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3



4.1.2 Estimating the scatter . . . . . . . . . . . . . . . . . . . . . . 51

4.1.3 Fit parameters errors . . . . . . . . . . . . . . . . . . . . . . . 52

4.2 Results at redshift zero . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2.1 Density contrasts . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3 Correlation analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3.1 Pearson’s correlation coefficient . . . . . . . . . . . . . . . . . 56

4.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.4 Observational data comparisons . . . . . . . . . . . . . . . . . . . . . 57

5 Evolution of the scaling relations with redshift 60

5.1 Self-similar prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.2.1 Luminosity-Mass Relations . . . . . . . . . . . . . . . . . . . . 61

5.2.2 Temperature-Mass Relations . . . . . . . . . . . . . . . . . . . 66

5.2.3 Mgas-Mass relation . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2.4 Y -Mass relations . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2.5 Luminosity-Temperature relations . . . . . . . . . . . . . . . . 77

5.2.6 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6 Conclusion 85

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.2 Future research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

A Appendix 88

A.1 Other catalogues at redshift zero . . . . . . . . . . . . . . . . . . . . 88

4



List of Tables

2.1 Observations of the temperature-mass relation slope . . . . . . . . . . 28

2.2 Observations of the luminosity-temperature relation slope . . . . . . . 30

2.3 Observations of the luminosity-mass relation slope . . . . . . . . . . . 32

3.1 Explanation for catalogue choices . . . . . . . . . . . . . . . . . . . . 43

3.2 Individual scaling relations . . . . . . . . . . . . . . . . . . . . . . . . 46

4.1 Fit parameters for the B catalogue at r=0 . . . . . . . . . . . . . . . 53

4.2 Fit parameters for the C catalogue at r=0 . . . . . . . . . . . . . . . 54

4.3 PPMCC scaling relations . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.1 Scaling relations dependence on E(z) . . . . . . . . . . . . . . . . . . 61

5.2 Luminosity-Mass relation’s fit parameters at different redshifts . . . . 66

5.3 Temperature-Mass relation’s fit parameters at different redshifts . . . 71

5.4 Mgas−Mass relation fit parameters at different redshifts . . . . . . . . 73

5.5 Y -Mass relation’s fit parameters at different redshifts . . . . . . . . . 77

5.6 Luminosity-Temperature relations fit parameters at different redshifts 83

A.1 Fit parameters for the A catalogue at r=0 . . . . . . . . . . . . . . . 88

A.2 Fit parameters for the F catalogue at r=0 . . . . . . . . . . . . . . . 89

A.3 Fit parameters for the D catalogue at r=0 . . . . . . . . . . . . . . . 89

A.4 Fit parameters for the E catalogue at r=0 . . . . . . . . . . . . . . . 89

5



List of Figures

1.1 Mass function from [Voit, 2005] . . . . . . . . . . . . . . . . . . . . . 21

2.1 Scaling relations observational data plots . . . . . . . . . . . . . . . . 33

3.1 An overview of N -body simulations . . . . . . . . . . . . . . . . . . . 37

3.2 Example of a dark matter halo merger tree . . . . . . . . . . . . . . . 40

3.3 Example of the SUBFIND program . . . . . . . . . . . . . . . . . . . 42

3.4 Mass Function of the New Millennium Gas Simulation . . . . . . . . 48

4.1 Observational Comparisons . . . . . . . . . . . . . . . . . . . . . . . 58

5.1 Luminosity-Mass relation’s best fit lines . . . . . . . . . . . . . . . . 62

5.2 Lbol/E(z)7/3 −M∆ fit parameters . . . . . . . . . . . . . . . . . . . . 63

5.3 Lboloutcore/E(z)7/3 −M∆ fit parameters . . . . . . . . . . . . . . . . . 64

5.4 Q−M∆ fit parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.5 Temperature-Mass relation’s best fit lines . . . . . . . . . . . . . . . . 67

5.6 Tm/E(z)2/3 −M∆ fit parameters . . . . . . . . . . . . . . . . . . . . . 68

5.7 Tsl/E(z)2/3 −M∆ fit parameters . . . . . . . . . . . . . . . . . . . . . 69

5.8 Tsloutcore/E(z)2/3 −M∆ fit parameters . . . . . . . . . . . . . . . . . . 70

5.9 Mgas −M200 best fit lines . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.10 Mgas-M fit parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.11 Y -Mass relation’s best fit lines . . . . . . . . . . . . . . . . . . . . . . 74

5.12 YX/E(z)2/3 −M∆ fit parameters . . . . . . . . . . . . . . . . . . . . . 75

5.13 YSZ/E(z)2/3 −M∆ fit parameters . . . . . . . . . . . . . . . . . . . . 76

5.14 Luminosity-Temperature best fit lines . . . . . . . . . . . . . . . . . . 78

6



5.15 Lbol/E(z)− Tsl fit parameters . . . . . . . . . . . . . . . . . . . . . . 80

5.16 Lboloutcore/E(z)− Tsl fit parameters . . . . . . . . . . . . . . . . . . . 81

5.17 Lboloutcore/E(z)− Tsloutcore fit parameters . . . . . . . . . . . . . . . . 82

7



Abstract

Clusters of galaxies are the largest objects to collapse under their own gravity and
virialise. Cluster properties provide a unique way of constraining cosmological pa-
rameters. This is achieved using the mass function via the scaling relations. While
the mass function can be directly related to the cosmology of the Universe, the
scaling relations relate properties of clusters to their mass. The scaling relations
are thus used to place clusters on the mass function by relating mass to another
observational property.

The simplest model of predicting the scaling relations is the self-similar model.
Observational data show, however, that the self-similar model is insufficient, requir-
ing additional processes which are not gravitational in origin.

In this thesis, a new simulation has been studied to investigate the effects of these
non-gravitational processes (specifically, feedback from active galactic nuclei) on the
cluster scaling relations. The results from the scaling relations at redshift zero show
a similar result to the observational data, in that the self-similar relations are broken.
When examining the scaling relations at higher redshifts, the luminosity relations
show an even larger departure from the self-similar predictions in both normalisation
and slope. However, temperature and Y parameter relations show a slow tendency
to the self-similar result in terms of the slope but not in the normalisation. Also
found is a slight departure from self-similarity in the Mgas −M∆ relation slope but
not in the normalisation. I conclude that scaling relations can not all be self-similar,
so a new model for the scaling relations is required.
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Chapter 1

Introduction

1.1 Preface

This chapter is an introduction to galaxy clusters and their properties that describes

how clusters are used to probe cosmology. The various methods of mass estimation

for clusters are reviewed before introducing the mass function. The self-similar

scaling relations are discussed in chapter 2, as they can be used with the mass func-

tion to constrain various cosmological constants, by linking observables with mass.

Observational determinations are then shown, and it is found that the self-similar

predictions for the scaling relations are incorrect. This means that there are other

non-gravitational processes occurring in the cluster, which are significant enough to

break self-similarity. In chapter 3, I explain the new cosmological hydrodynamical

simulation, which will be used in chapters 4 and 5 to examine the scaling relations.

Initially, my results will focus on clusters at redshift zero, to compare the results

from the scaling relations to predictions of the self-similar model. Then I will allow

the redshift to vary, enabling the study of the evolution of the scaling relations with

time. This can be compared to the self-similar model, by removing the self-similar

evolution from the scaling relations. If any evolution is found after the removal then

the scaling relations can be said to be not self-similar

14



CHAPTER 1. INTRODUCTION 15

1.2 Clusters

The largest known gravitationally bound objects are clusters. The collapse of clus-

ters are the largest overdensities in the initial density field. The formation of these

clusters seems to follow a hierarchical model [Press and Schechter, 1974]. The forma-

tion of clusters has occurred through multiple hierarchical galaxy mergers, whereby

galaxies collide and combine to form larger galaxies, and through accretion of smaller

systems, driven by gravity and dominated by dark matter. As the dark matter com-

ponent makes up most the mass of the cluster (1014 − 1015 solar mass (M�) ), it

follows therefore that the cluster formation is modelled as a dark matter collapse,

from the initial cosmological conditions. This massive collapse occurred more re-

cently than most galaxy formation. Clusters are identified at 0 < redshift (z) < 2

[Staniszewski et al., 2009] and are a much less common cosmological feature than

the roughly 50 to 103 galaxies which reside within them, which form much earlier

[Bouwens et al., 2010];[Coe et al., 2012].

To better model cluster formation, supercomputers have been used to generate

large scale numerical and/or hydrodynamical simulations. These simulations cur-

rently model the behaviour and evolution of the dark matter component of clusters

accurately. However, the self-similar predictions [Kaiser, 1986], for results from sim-

ulations, are not as accurate and tend not to agree with the observed values. Some

of the processes involved in galaxy formation must change the state of the intra-

cluster medium (ICM) to account for some of the shortcomings of this simple model.

The processes which have been suggested to account for this are non-gravitational

in origin. This makes the data from observations of clusters an ideal place to test

our models of galaxy formation and their effects on the surrounding ICM.

1.2.1 Properties of clusters

Clusters can be observed in the X-ray and Optical/Near-Infrared spectrum. The

features of which are outlined here.

The colours of galaxies in clusters viewed in the optical tend to be redder than
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other galaxies at a similar redshift [Voit, 2005]. This implies that clusters of galax-

ies have a very low star formation rate. The stripping of the intergalactic gas from

galaxies, when they enter the cluster, is thought to account for this. Other possi-

ble mechanisms include galactic mergers and feedback from active galactic nuclei

(AGN). These factors add little to the hot (107−8 K) and diffuse (electron density

(ne) 10−2) ICM, which is originally heated by gravitational collapse. The high tem-

perature suggests that no or little star-formation is possible, as lower temperatures

are required for the birth of stars.

When clusters are viewed in the X-ray, the luminosity comes from the ICM

trapped in the potential well of the cluster [Voit, 2005]. X-ray emission relies on

the distance and the angular size of the cluster and the central body accounts for

a large part of the X-ray luminosity. This X-ray emission is bremsstrahlung and

it dominates the emission spectrum above 2keV, which is a typical ICM tempera-

ture. Below this, temperature emission lines dominate the emission spectrum. The

extended X-ray emission makes clusters easy to spot, as most X-ray sources are

point-like, and this allows for mass estimation of clusters.

1.3 Mass estimation

In this section the methods for measuring mass are outlined. Mass estimation is

included here to show how to determine the mass function, which is useful as it can

be used to link observable features of clusters to their mass. This can then be used

to constrain cosmological parameters. Whilst easy in theory to perform, this is very

expensive, and the solution of course is to use a simulation to generate the mass

function and then, by using the scaling relations, find the cluster’s mass.

1.3.1 Velocity dispersion

The virial theorem can be used to infer the virial masses of galaxies or clusters (Mvir)

from their dispersion velocities (σ). This is possible so long as the object in question
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is spherical and in virial equilibrium,

2Ke + Ug = 0 (1.1)

which simplifies to

σ2 ≈ GMvir

Rvir

(1.2)

where Ke is the total kinetic energy, Ug is the total gravitational potential energy

and Rvir is the virial radius. Early observations by [Zwicky, 1933] of Abell 1689

found higher than expected kinetic energy for the mass observed. This lead to the

postulation that invisible matter existed in and around the galaxies. In fact, about

80% of the matter in the cluster is invisible. This ’missing’ matter is called dark

matter.

1.3.2 Hydrostatic equilibrium

By assuming that the ICM in clusters may be in hydrostatic equilibrium, a mass

estimation can be taken. This estimation is good enough because it will provide a

rough value for mass. By assuming hydrostatic equilibrium for a cluster, we find

the relation,

∇Peq = −ρgΦ (1.3)

where ∇Peq is the change in equilibrium pressure, ρg is the gas density and Φ is the

total gravitational potential. [Chiu and Molnar, 2012] finds that this is an acceptable

method of testing cluster mass, when compared to other methods.

1.3.3 Weak gravitational lensing

Weak gravitational lensing is another method to estimate the mass of clusters, first

suggested by [Zwicky, 1937]. This technique, which was not possible until recently, is

sensitive to the projected cluster’s radius r⊥ and the deflection angle of the deflected

photons [Tyson et al., 1990].



CHAPTER 1. INTRODUCTION 18

This method of mass measurement often agrees with mass estimates from X-

ray emission. Furthermore, the advantage of this method is that it doesn’t re-

quire assumptions about the geometry or equilibrium state to be made. The as-

tronomers who use this model [Shan et al., 2012] claim that future surveys (DES,

LSST, KDUST and EUCLID) will be able to provide more effective mass estima-

tions for more clusters and will be able to further constrain current cosmological

models [Dietrich and Hartlap, 2010].

1.4 Cluster halo definition

A method of defining the mass of a cluster in a simulation or observation is called the

spherical overdensity (SO). It is based on the spherical top hat model of collapse and

assumes that most of the mass is found at centre of the cluster. The SO equation,

M(< r) = (4/3)πr3∆ρcr(z) (1.4)

is used to solve for M(< r) is the total mass profile within radius r and ρcr(z) is

the critical density at that particular redshift z. This then allows for the growth of

dark matter spheres until the mean internal density is equal to a factor ∆ times the

critical density. Using the Friedmann equation,

ρcr(z) =
3H2

0

8πG
E2(z), (1.5)

where H0 is the Hubble constant and E(z) for a flat Universe is given by,

E2(z) = ΩM(1 + z)3 + ΩΛ (1.6)

where ΩM = ρm/ρcr and ΩΛ = ρλ/ρcr. The advantage of the SO model is that it

is a simple way to define the mass and size of a cluster, which allows observed and

simulated clusters to be compared easily [Hoekstra, 2007]. This comparison is done

to see if simulated data on the mass matches up with observational data. If not,
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the dynamical processes used in the simulation can be improved upon to better

represent the growth and evolution of clusters. This in turn betters the use of the

observational data as a probe of cosmology.

1.4.1 Press-Schechter formalism and the spherical top hat

model

Here, a quick run through of how simulations can be used to compute the mass

function, which can be used with the scaling relations to compare the cluster count

to the observational cluster count.

[Press and Schechter, 1974] (PS) formalised the growth of structure as hierar-

chical linear growth of a density perturbation in the dark matter field. PS was the

first to relate the spherical top-hat model collapse and the growth factor, which

led to the semi-analytical method, using the cluster mass function to constrain the

cosmological parameters [Eke et al., 1996].

The spherical top-hat collapse model evolves with respect to the top-hat radius

[Gunn and Gott, 1972]. A one dimensional density perturbation with a radius R, a

density ,ρ, an overdensity, δ, which is greater than zero, and a mass, M , modelled

by

M = (4π/3)(1 + δ)ρR3 (1.7)

The growth of the perturbation is defined by the growth equation, which comes

from the idea that large scale structure in the Universe arises from small quantum

fluctuations (perturbations) in the very early Universe, which are then enlarged

during the inflation era. The overdensity,

δ(x, t)→ D(t)δ0(x, t) (1.8)

where D(t) is the linear growth factor. This shows that the small perturbations

continue to grow in size and the areas where there are negative perturbations (un-

derdensities) continue to shrink in terms of density, as redshift decreases. However,
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as this growth is occurring, there is a slow decrease rate in radius. This behaviour

continues until it reaches the turnaround epoch, the point at which the perturba-

tions collapses and begins to virialise. The time-scales of the turnaround epoch are

set by the initial conditions in which the perturbation formed. This growth effect

gives rise to dark matter haloes, that form structure, and voids, which are empty

regions in the Universe.

The critical density, the density at which the overdense regions form clusters, will

give an indication of the number of haloes present in the Universe at that redshift.

To measure this requires the use of simulations, which models a small box in the

Universe. The simulation, which models cluster formation and evolution, uses the

linear theory prediction which predicts δcritical = 1.686 for all redshifts. This can be

used to compute the mass function at that particular redshift.

1.5 Cluster mass function

The cluster mass function describes the number of dark matter haloes (clusters) in

unit volume and unit mass. This gives a measure of the number of clusters present

in a Universe for a given cosmological model. The mass function’s only variables are

mass and redshift, which make it easy to compare simulated data with observational

data.

Figure 1.1 shows that the mass function determines cosmology of the Universe.

To use the mass function, we need observable quantities which link with mass, such

as luminosity, temperature, gas mass etc, these links are called scaling relations.

In summary, cluster scaling relations are required to constrain cosmological pa-

rameters. We now go on to discuss the self-similar model, which outlines a simple

model for the scaling relations.
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Figure 1.1: The mass function can be used to compare cosmological models. In
each panel the ΛCDM model is compared against another competing cosmological
model. In the top left is the standard cold-dark-matter model (SCDM), in the top
right the low density model (OCDM), in the bottom left a fixed power spectrum
model(τCDM), and finally in the bottom right is the dark energy model (wCDM)
[Voit, 2005].
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Cluster scaling relations

2.1 Self-Similar model

The ”self-similar” scaling relations were first described by [Kaiser, 1986]. They are

useful because they provide a link between an observable quantity to mass and hence

the scaling relations can be used with the mass function to constrain cosmological

parameters.

The self-similar scaling relations developed by [Kaiser, 1986] are based on three

key assumptions. The first assumption is that the Universe is an Einstein-de Sitter

Universe, Ωm = 1, and that the clusters have formed through gravitational collapse.

The next assumption is that the initial perturbations present in the early Universe

do not have a pre-set or preferred scale; this allows scale-free or self-similar per-

turbations (beyond gravitational collapse and shock heating), to evolve and grow.

The final, and perhaps most interesting, assumption is that other physical processes,

which shape the formation of clusters, do not interfere with formation nor do they

introduce their own scaling into the model.

2.2 Derivation of the scaling relations

Below, cluster mass M∆ is defined to be the mass in a spherically symmetric region

with radius r∆ which has a mean density, < ρ >= ∆ρ.

22
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M∆ = (4/3)πr3∆ρcr(z) (2.1)

Therefore,

r∆ ∝
(

M∆

∆E2(z)

)1/3

(2.2)

assuming the virial theorem, which relates kinetic energy Ke and potential energy

U holds,

2Ke + U = 0, (2.3)

and for intra-cluster gas,

Ke ∝ T, (2.4)

the temperature, T , scales with mass and radius as,

T ∝M∆/r∆ (2.5)

These equations will be used to derive the individual scaling relations.

2.2.1 Mass-Temperature relation

From equations 2.5 and 2.2, the temperature is predicted to scale with mass as:

T ∝ (∆ρcr)
1/3M2/3, (2.6)

where T is the temperature measured within the radius R. Equivalently:

M ∝ T 3/2E(z)−1∆−1/2, (2.7)

the predicted value of the slope of the M − T relation is 3/2. In the simulations

the relation will be temperature-mass, so the gradient is just 2/3 for the self-similar

model. Furthermore the temperature mass relation will be split up into two different

components, the mass weighted temperature and the spectroscopic like temperature

(see chapter 3 for more detail).
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2.2.2 Luminosity-temperature relation

The bolometric X-ray luminosity, LX, is defined as,

LX =

∫
V

ε(T (n))dV (2.8)

where ε is the emissivity, V is volume and n is the gas density. If the particles only

interact collisionally, then

ε(T, n) = n2Λ(T, Z) (2.9)

where Λ(T, Z) is a cooling function. Substituting this back into the equation 2.8

gives

LX =

∫
V

n2Λ(T, Z)dV (2.10)

Assuming the cluster is isothermal and T � 107K, giving Λ(T, Z) → Λ0T
1/2, then

the above expression can be rewritten as

LX = Λ0T
1/2

∫
n2dV. (2.11)

Assuming a spherically symmetric cluster, the volume element dV = 4πr2dr gives

LX = Λ0T
1/24π

∫ r∆

0

n2r2dr. (2.12)

Using x = r/r∆ gives,

r2dr = r3
∆x

2dx (2.13)

Further assuming that n(r) = ρ(r)/µmH, where µ ' 0.59 is the mean molecular

weight of ionised gas, and ρ(r) can be written as ρ(r) = f(x)∆ρcr(z)fgas, equation

2.12 can be rewritten as

LX =
4πΛ0T

1/2r3
∆∆2ρ2

crf
2
gas

(µmH)2

∫ 1

0

x2f 2(x)dx (2.14)
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For self-similar clusters the integral is a constant and the gas fraction, fgas, is inde-

pendent of mass. This expression simplifies to the following scaling relation

LX ∝ T 1/2r3
∆∆2E4(z)f 2

gas. (2.15)

Using equation 2.2, we have

r3
∆ =

M∆

E(z)2∆
. (2.16)

Substituting this back into equation 2.15 gives

LX ∝ T 1/2M∆E(z)2∆f 2
gas. (2.17)

Using equation 2.7 this simplifies to

LX ∝ T 2∆1/2E(z)f 2
gas (2.18)

The prediction from self-similar model gives the slope of the L-T relation at 2. This

can be compared to the observational data to see if the model matches.

2.2.3 Q parameter-mass relation

The integral in equation 2.14 is known as the Q parameter, which is a dimensionless

emission measure, or clumping factor. This measures the effect of changes in the gas

in density structure as a function of mass, which is related to the cluster’s luminosity

[Stanek et al., 2010]. For a self-similar clusters, Q is a constant. This is a theoretical

relation and we are unable to compare this relation directly to observational data.

However, it provides an interesting insight into the non-self similar structure of

clusters.
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2.2.4 Luminosity-mass relation

Starting from, the L− T relation,

LX ∝ T 2∆1/2E(z)f 2
gas (2.19)

and using equation 2.6 gives

Lbol ∝M4/3∆7/6E(z)7/3f 2
gas (2.20)

The gradient of the L−M relation is, therefore, predicted to be 4/3.

2.2.5 Y parameter-mass relation

The YSZ parameter is the observable associated with the global thermal Sunyaev-

Zel’dovich (SZ) effect [Zeldovich and Sunyaev, 1969], which is caused by the ICM’s

electrons interacting with the cosmic microwave background radiation (CMB). This

interaction occurs through inverse Compton scattering, where the CMB photons gain

energy from collisions with the electrons within the ICM. The resulting effect is a

distortion of the CMB photons which can be used to locate density perturbations,

such as clusters.

A related quantity, YX but based on X-ray data and the spectroscopic temper-

ature, YX ∝ TXMgas, whereas the SZ version is YSZ ∝ TmMgas and is based on the

mass weighted temperature Tm.

Beginning with defining Y ,

Y ∝MgasT (2.21)

and using Mgas = fgasM∆ gives

Y ∝M∆fgasT. (2.22)

Further, using

T ∝M
2/3
∆ E2/3∆1/3 (2.23)
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gives the Y −M relation

Y ∝ fgasM
5/3
∆ E2/3∆1/3 (2.24)

which predicts the value of slope to be 5/3.

2.3 Observations

This section discusses the observed scaling relations. The observational data is used

to test the self-similar model, to discover if the self-similar relations are an accurate

representation of the cluster population. If the observational data disagrees with

the self-similar model, which models gravity alone, then other, non-gravitational

processes must be taking place inside the cluster’s ICM.

Astronomers have used a variety of satellites to gather X-ray observational data,

these are discussed below. When the observations took place is important, because

that determines which satellite was used. Instruments on-board the satellites have

improved over the years, so we may expect to see a change in the observed scaling

relations as the equipment improves.

• GINGA, Japanese for galaxy, was an X-ray astronomy satellite which oper-

ated from 1987 to 1991. It contained the Large Area Proportional Counter,

All-Sky Monitor and Gamma-ray Burst Detector.

• ROSAT , short for Röntgensatellit, was a German designed X-ray telescope,

which was used between 1990 and 1999. ROSAT contained two Position-

Sensitive Proportional Counter (PSPC), this instrument conducted an all sky

survey in which many clusters were observed.

• ASCA, or Advanced Satellite for Cosmology and Astrophysics, was commis-

sioned by Japan but the United States provided the scientific equipment, and

was in use from 1993 to 2001. ASCA was the first satellite to use CCDs

for X-ray astronomy, which greatly improved the observation results. ASCA

could also measure temperatures of X-ray sources and so the ASCA satellite

was widely used for these features.



CHAPTER 2. CLUSTER SCALING RELATIONS 28

• ChandraX-ray Observatory, Chandra, is an X-ray satellite which was launched

in 1999. Chandra is a powerful X-ray source detector, finding X-ray sources

about 100 times fainter than previous X-ray telescopes. The high resolution

of Chandra also helped improve the quality of the observational data.

• XMM−Newton, X-ray Multi-Mirror Mission Newton, is an X-ray observatory

launched by ESA in 1999. XMM −Newton was used to perform a survey of

cluster structure (REXCESS), which we will use to compare with our simulated

data.

2.4 Summary of observed scaling relations

2.4.1 M-T data discussion

Value for the M-T slope Error Paper name

1.98 0.18 [Mohr et al., 1999]
1.94 n/a [Neumann and Arnaud, 2001]
1.78 0.01 [Finoguenov et al., 2001]
1.74 0.09 [O’Hara et al., 2007]
1.65 0.26 [Zhang et al., 2008]
1.53 0.08 [Vikhlinin et al., 2009]
1.59 0.18 [Eckmiller et al., 2011]

Table 2.1: Observational data for the temperature-mass relation slope, with the
self-similar result being 1.5.

Table 2.1 summarises various observational determinations of the slope of the

M − T relation, which we discuss below.

• [Mohr et al., 1999] studied 45 galaxy clusters’ ICM temperature between 2.4−5

keV, using ROSAT (PSPC) data to determine the values for the M − T

slope. The paper includes the comparisons between the observational data and

simulations of cluster structure formation and feedback from galactic winds in

the ICM. The paper then goes on to acknowledge that their observed values

for the scaling relations are steeper than the self-similar prediction.
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• [Neumann and Arnaud, 2001], again using ROSAT (PSPC), examine a sample

of clusters with T > 3.5 keV and at redshifts between 0.04 < z < 0.06. These

were taken from the Abell catalogue, which contains 4073 rich clusters of

galaxies. This paper also finds that clusters break from the self-similar scaling

of [Kaiser, 1986].

• [Finoguenov et al., 2001] fitted M − T relations for two cluster samples. The

first sample contained 63 clusters. The second, which was not flux limited,

contained 88 clusters and was used as a comparison to the first sample in terms

of the scaling relations. Both samples are from the ROSAT All-Sky Survey

with ASCA used to find the temperatures of the X-ray sources. From these

samples, the observed slope of the M-T scaling relation calculated differed from

both the self-similar collapse predictions and hydrodynamical simulations.

• [O’Hara et al., 2007], using Chandra, studied a sample of 70 galaxy clusters

at redshifts from 0.18 to 1.24. They then used observables from clusters which

had their core subtracted. They found that excluding cluster cores results in a

slope more consistent but still steeper than the self-similar model. They also

find that both observed M-T relations evolves more than the slowly at high

redshift than was previously predicted in the self-similar model [Kaiser, 1986].

• [Zhang et al., 2008] analysed 37 clusters at redshifts 0.14 to 0.3 from XMM −

Newton data to compare with self-similar scaling relations. The paper finds

that all relations based on the X-ray data are consistent the self-similar model.

• [Vikhlinin et al., 2009] used 42 clusters at temperatures above 4.5 keV from

Chandra, which were first identified from the ROSAT (PSPC) All-Sky survey.

Then they measured the evolution of the scaling relations with redshift. They

find that their results agree with the self-similar model with minor corrections.
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Value for the L-T slope Error Paper name

3.37 0.004 [David et al., 1993]
2.64 0.27 [Markevitch, 1998]
2.88 0.27 [Arnaud and Evrard, 1999]
2.47 0.14 [Ikebe et al., 2002]
2.35 0.33 [O’Hara et al., 2007]
2.70 0.24 [Pratt et al., 2009]
2.52 0.10 [Eckmiller et al., 2011]
2.51 0.29 [Maughan et al., 2012]

Table 2.2: Observational data for the luminosity-temperature relation slope, with
the self-similar result being 2.

2.4.2 L-T data discussion

Table 2.2 summarises various observational determinations of the slope of the L−T

relation, which we discuss below.

• The [David et al., 1993] value came from 104 clusters and is interesting as

this value differs greatly from the self-similar model and has a very low error.

In this paper they challenged the value of the L − T slope made by [Kaiser,

1986] and pointed out that the data gathered so far [Edge et al., 1990] by

the satellites at the time (ROSAT and GINGA) disagreed with his scaling

relations. He also stated that there is a decrease in the X-ray luminosity of

clusters measured above redshift 0.06.

• The [Markevitch, 1998] value for the L−T slope was gathered by usingROSAT

for temperatures of 3.5 to 10 keV, which were measured by ASCA, and this

paper’s value was much closer to the expected value. They stated that their

value for the slope could be compared to models of the scaling relations which

do not include radiative cooling.

• [Arnaud and Evrard, 1999] studied 24 clusters that came from GINGA, and

showed an absence of strong cooling flows. Both cool core cluster and non cool

core clusters were sampled to investigate whether the steepening of the L− T

relation was caused by the morphology of the cluster.

• [Ikebe et al., 2002] used 61 galaxy clusters with temperatures of 1.4 to 11 keV
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from the ROSAT data - again ASCA was used to measure their temperatures -

to estimate the scaling relations. They find a close fit to the self-similar model.

• [Pratt et al., 2009] studied 31 clusters from the XMM − Newton Cluster

Structure Survey (REXCESS), which extends to lower mass clusters with its

improved resolution. He used temperatures between 2 to 9 keV and there

was no bias towards cluster morphological type. The results contained slopes

which were also much steeper than the [Kaiser, 1986] self-similar values and

they claimed this was due to the robust non-biased approach, because cool

core and morphologically disturbed clusters were included in the results.

• [Eckmiller et al., 2011] recognised that a break in the self-similar model exists

due to the effects of non-gravitational processes. The goal of this paper was

to test this break on 26 clusters and groups and attempt to find the most

reliable mass estimate for future research. Using the Chandra satellite again,

a steepening in the L−T slope is found for T < 3keV. However, the paper then

states that only a small change is found for the other relations and that this

does not have a strong effect on the self-similar scaling relations. His values

agreed with the expected values from the self-similar model.

• [Maughan et al., 2012] used data from Chandra satellite and REXCESS at

redshifts between 0.1 and 1.3. Then they divided clusters by morphology,

cool core clusters and non-cool core clusters, to test the effect of cool cores

on the scaling relations. They found that in the most gravitationally relaxed

clusters the self-similar model holds true. However, using REXCESS data, the

results indicated that the self-similar relations for the most relaxed clusters

and non cool core clusters break at a temperature of 3.5 keV, dropping below

the self-similar value for the slope. Interestingly, the cool core and unrelaxed

clusters also break the scaling relations, as they appear to have a steeper slope

then the self-similar model. The paper then suggested that this is due to non-

gravitational heating in the form of central heating with entropy enhancements

from galaxy merger shocks (see the next section).
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2.4.3 L-M data discussion

Value for the L-M slope Error Paper name

1.84 0.09 [Reiprich and Böhringer, 2002]
1.90 0.49 [Maughan et al., 2006]
1.63 0.08 [Maughan, 2007]
2.33 0.70 [Zhang et al., 2008]
1.90 0.11 [Pratt et al., 2009]
1.44 0.06 [Eckmiller et al., 2011]

Table 2.3: Observational data for the luminosity-mass relation slope, with the self-
similar result being 1.33.

Table 2.3 summarises various observational determinations of the slope of the

L−M relation, which we discuss below.

• [Reiprich and Böhringer, 2002] used the ROSAT All-Sky Survey and PSPC to

model the ICM density profile of 106 clusters. They used the X-ray luminosity

to find the L−M relation and produced some cosmological constraints. The

paper suggested that the values differ from the scaling relations due to pos-

sible systematic uncertainties and attempts to solve for them. However, the

paper did not resolve these systematics, so necessarily their final value remains

different to the self-similar value.

• [Maughan et al., 2006] examined 11 clusters, observed with XMM −Newton

and/or Chandra, at high redshift, 0.6 < z < 1.0, and found that the scaling

relations strongly disagree with the self-similar prediction, suggesting that

non-gravitational heating, is occurring at redshift 1 or higher, and this is

responsible for the steepening of the relations.

• [Maughan, 2007] analysed, using XMM−Newton and/or Chandra, 115 clus-

ters from a large range of redshifts, 0.1 < z < 1.3, to probe the scaling

relations. The results suggested that cluster masses, estimated from simple

luminosity measurements, are inaccurate. The paper accounted for this by

excluding the cores of clusters from the observational data, and found that

the scaling relations were closer to the self-similar model.
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• Results from [Zhang et al., 2008], [Pratt et al., 2009] and [Eckmiller et al.,

2011] are discussed in sections 2.4.1 and 2.4.2.

2.4.4 Summary of observed slopes

Figure 2.1: The central red line in all three graphs is the observed gradient of the
scaling relations over time, with the self-similar model plotted as a solid black line
for comparison. The yellow shading represents the error of each point. The left
panel shows the L− T relation, the middle panel shows the M − T relation and the
right panel shows the L−M relation.

It is clear from figure 2.1 that the observed values for the slope of the L −

T scaling relation have never been in agreement with self-similar model, whereas

recent observations of the M −T relation are closer to self-similar model after some

time, and that the L −M relation did not match self-similar model. Many of the

observations excluded cluster cores producing results closer to the self-similar model.

2.5 Self-similarity breaking

The observed scaling relations are not self-similar, as seen from observational data,

especially for luminosity and when cluster cores are included. This suggests that

non-gravitational heating processes affect the ICM. Such processes can be explored

with cosmological simulations to test whether the modified scaling relations agree

with observational data.
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2.5.1 Non-gravitational processes

The observational data points to a non-gravitational process increasing the entropy

of the ICM. This entropy is the cause of the break in self-similarity [Voit et al., 2005].

Possible mechanisms by which entropy is introduced into the ICM are pre-heating,

radiative cooling, supernovae feedback and AGN feedback. These mechanisms are

included in simulations (e.g. see [Borgani et al., 2006] and [Kravtsov et al., 2006]).

However, due to the computational expense, it is only recently that a detailed com-

putational study of clusters with these mechanisms has been possible.

The first method of accounting for entropy is assuming some sort of pre-heating

occurred at an earlier epoch for all clusters [Kaiser, 1991];[Evrard and Henry, 1991].

This introduces a minimum level of entropy before the ICM collapsed into the clus-

ter’s gravitational potential well. This implies that there must be fairly high entropy

at the cluster’s core that is more significant in low mass systems. This minimum

level produced a better value for slope of the L − T relation. However, [Böhringer

et al., 2002] showed, using X-ray data from XMM −Newton, that there is a defi-

ciency in the expected cool cores in host galaxies. Also, as shown by [Shang et al.,

2007], the Lyα absorption lines push the time when preheating can occur into only

very high redshifts, which means that the pre-heating model could not have enough

time to heat the gas, unless pre-heating only occurred in the most dense regions of

the intergalactic medium.

Radiative cooling was originally suggested by [Bryan, 2000] to fix the entropy

problem. Radiative cooling removes the low-entropy gas from the ICM and leaves

the high entropy gas with a longer cooling time, to be observed in X-rays. This

provides an accurate picture of the entropy and is supported by hydrodynamical

simulations [Pearce et al., 2000];[Muanwong et al., 2001];[Ettori and Brighenti, 2008].

Unfortunately, radiative cooling converts too large a fraction of ICM into stars, and

most observations of clusters suggest that only a small amount of the total baryonic

content is in stars [Balogh et al., 2001]. Another problem with radiative cooling

is that it quickly increases the ICM temperature at the centre of clusters [Borgani

et al., 2004].
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Supernovae driven winds could account for the entropy seen in the ICM [Met-

zler and Evrard, 1994] [Davé et al., 2008]. However, the sheer amount of energy

required to heat the ICM to the required level is far too large to be provided by

supernovae feedback [Kravtsov and Yepes, 2000]; [Kay et al., 2004], as almost all of

the supernovae energy would have to be converted directly into thermal energy.

AGN feedback is due to accretion of the ICM onto the supermassive black holes;

this has an observed effect on clusters [McNamara and Nulsen, 2007]. The energy

generated by AGN accretion is enough to heat the ICM to nullify the effects of

cooling. AGN heating is responsible for keeping the gas warm in clusters containing

cool cores, which should otherwise cool to lower the temperature quickly, because

the high density gas in the centre of the cool core clusters has a short cooling time.

AGN are also thought to quench star formation in clusters and to provide hot gas

fractions found in the centre of clusters [Sun, 2008].

AGN, however, do have problems which need to be understood. Some of the

first models show jets from AGN forming bubbles of hot gas/plasma. However,

these superheated plasma bubbles do not appear to being expanding fast enough

to account for the heat of the ICM; worse still, the bubbles seem to be the same

temperature as the ICM. Also, if AGN heat only the centre of a cluster then, with

strong AGN feedback, the cluster should have a flat entropy gradient. This would

indicate that heat is moving away from the cluster’s centre. However, this is not

the case, as observations disagree [David et al., 2001]. Another problem is that at

large radii, the amount of AGN feedback predicted is greater than what is currently

observed [Voit et al., 2005]. These are problems of AGN feedback that need to be

worked out, if AGN feedback is to be included in the new simulations. However, due

to its energy output, AGN feedback must be included in the simulations of cluster

core regions, cool cores, and the ICM, for at least smaller mass clusters.

Scaling relations from models that attempt to account for these dynamical pro-

cesses are known as modified scaling relations. Modified scaling relations may de-

pend on the redshift at which these dynamical processes take place. Such modifica-

tions may also be seen in the redshifts evolution of cluster scaling relations.
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Cosmological simulations of

clusters

3.1 Outline of Simulations

The purpose of this chapter is to outline how the simulations are performed and

how cluster properties are measured. Firstly, the physics going into the simula-

tion is explained, which include gravity, hydrodynamics and other processes such

as radiation cooling, star formation and feedback. Next, the methodology of the

simulation is presented; this includes the initial conditions, time-stepping, softening

and a basic flowchart of the simulation. Finally, the Millennium Gas simulations

are described, including the various parameters for the cosmology of the Millennium

Gas simulations, the halo finder used, and how the cluster properties are obtained.

This outline is intended to inform the reader about how current simulations work.

3.2 Simulations

Simulations are used to test our understanding of cosmological structure formation;

here they are specifically used to study clusters in a cosmological context. In these

simulations, complicated effects inside clusters such as mergers, where galaxies inside

the clusters collide, and other physical processes are modelled directly. This can

36
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be used to test theories about the mass function and the scaling relations (see

chapter 2). The upcoming sections introduce the different aspects of the methods

used to simulate clusters and their properties. These include N -body simulations,

hydrodynamics, semi-analytics, halo finders and the generation of cluster properties

and catalogues.

3.3 N-body Simulations

Cosmological N-body simulations are used to analyse the development of non-linear,

perturbations in the density field and the behaviour of large scale structure forma-

tion. These simulations are used to test models of structure formation. If the simu-

lation or model is incorrect, then they can be refined, so our models and simulations

can more accurately reflect reality.

Figure 3.1: An overview of N -body simulations [Kay, 2013].
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The simulation starts with a set of initial conditions (see figure 3.1), these are

normally set by a cosmological model. These start with an unperturbed distribution

of N points, referred to as particles. These particles are placed into a cube with

periodic boundary conditions applied to satisfy the cosmological principle. The

particles are perturbed using an input power spectrum. Then the gravitational force

calculations are done, usually in co-moving co-ordinates. Finally, the integration of

accelerations and velocities of the particles are done at each timestep (∆t), chosen

such that,

∆t = α
√
ε/|ẍ| (3.1)

where α is a parameter which affects the accuracy of integration of the particles, ε

is the gravitational smoothing coefficient (this reduces the likelihood of the particles

from scattering off one another when in close proximity) and ẍ the acceleration of

the particles, found by solving the equation of motion:

ẍ = −2Hẋ− 1

a2
∇xδφ (3.2)

where H is the Hubble parameter, ẋ the velocity of the particles, a = 1/(1 + z)

and δφ the gravitational field strength. The calculation of the acceleration ẍ can

be done with several different methods: direct summation, particle-mesh method

and/or oct-tree.

• Direct summation is the sum of the contributions from all the particles in the

simulation. However, it is computationally expensive, scaling as the number

of particles squared.

• Particle-mesh method uses a cubic mesh and solves the Poisson equation to

compute the movements of the particles in the simulation.

• Finally an oct-tree breaks up the simulation into boxes and solves for each

particle group inside, ignoring details inside distant particle groups.

It is through these methods or some combination thereof that the growth and evolu-

tion of dark matter haloes are modelled in a simulation. These haloes are expected
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to mimic those in reality, however these methods do not model the gas physics

present in galaxy and cluster formation. The solution is to include hydrodynamics.

3.4 Hydrodynamics

Hydrodynamical simulations are able to simulate both the dark matter and the gas.

The dark component is simulated using the N -body method and the gas is added

into the simulation, whose motion is solved by treating it as a fluid. The equation

to solve for the gas physics is a modified Euler equation:

δv

δt
+ (v.∇)v +

∇P
ρ

+∇φ = 0 (3.3)

where v is the velocity vector of the gas, t is time, P is gas pressure, ρ is gas density

and φ is the gravitational field strength. Two different methods for solving this are

mesh codes and smoothed particle hydrodynamics.

Mesh codes treat the gas as a fluid and find its properties on a system of fixed

points. This code has well-defined boundary conditions, can adequately capture

shocks and fluid discontinuities and can be adaptive, if necessary, in the simulation.

However, it does not conserve momentum well, due to the fact that the properties

of particles must be evaluated on a fixed grid.

Smoothed particle hydrodynamics calculates the fluid properties using a set of

particle. This is done by smoothing the particles with a kernel,

〈A(r)〉 =

∫
A(r′)W (|r− r′|, h)d3r′ (3.4)

where 〈A(r)〉 is the estimated quantity at particle position r, W is a kernel, h is a

chosen width and the integral is performed over all other points,r . One example is a

Gaussian window function with h = σ. This allows for a solution which is adaptive,

fast, memory efficient and has no preferred direction. Unfortunately, this solution

does not have well-defined boundary conditions and it models gas shocks less well.

Instead, kernels with compact support (such as spline kernels) are used. The sum
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is then performed over a fixed number of neighbours.

Equation 3.3 is adequate for following the initial collapse and accretion of gas in

clusters. However, radiative cooling is required to properly simulate the formation

of galaxies and clusters. The inclusion of feedback is also important and is included

in the simulation used in this work. Unfortunately, much of the other physics is not

well modelled. This is due to the low resolution of the simulation, which prohibits

detailed modelling of star formation, within galaxies.

3.5 Semi-analytic models

Semi-analytic models can also be used to simulate clusters, but are not used in the

results presented here. These semi-analytic models are very efficient at generating

large amounts of galaxies, by using a dark matter halo merger tree. When using a

halo merger tree a cluster’s gas physics, dark matter component and satellites can

be traced back through time, in the simulation.

Figure 3.2: Example of a dark matter halo merger tree [Baugh, 2006].

A basic outline of a semi-analytic model is as follows:

• Input a cosmological model, with cosmological parameters.
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• Then the dark matter halo merger trees are constructed.

• The gas physics are then run through. These processes include gas cooling,

galaxy mergers, star formation, feedback, star bursts, chemical evolution, stel-

lar populations and dust extinction [Cole et al., 2000].

• The galaxy and cluster observables can now be created.

3.6 Halo Finders

The haloes in simulations are found using three methods: Friends of friends, SUB-

FIND and spherical overdensity. These are now discussed.

3.6.1 Friends of friends

The Friends of Friends (FoF) algorithm, has historically been used to define haloes

in simulated data [Press and Davis, 1982]. The FoF algorithm works by taking two

particles from the simulation and grouping them, so long as they are separated by

no more then a set length. This set length is known as the linking length. This

process is then repeated on all the particles in the groups, until there are no more

”friends” of particles with separation less than the linking length left. This process

is favourable because there is only one parameter to set, the linking length, which

does not assume any given shape for the dark matter halo.

However, the FoF algorithm is unsuccessful at determining the different sub-

haloes inside a large halo, which would be useful as these subhaloes can be galaxies

or clumps of dark matter moving through the ICM of a cluster. Nor is it efficient at

separating haloes from each other, as some particles in one halo may have ”friends”

in another halo, which leads to some clusters lying within one another. This problem

increases with redshift which leads to questionable values for some cluster mass esti-

mates [More et al., 2011]. It is for this reason that other methods of mass estimation

are used, so that a comparison can be made to verify the FoF mass estimation.
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3.6.2 SUBFIND

Figure 3.3: This figure shows an example output of the SUBFIND program. The
top left panel is a friends of friends group identified as a cluster, the top right panel
is the cluster with sub haloes removed, the bottom left is the sub haloes only, and
the bottom right shows particles which are not bound to any subgroup [Springel
et al., 2001].

SUBFIND is a program which separates out substructure from FoF groups. Within

simulations, a substructure is a local overdensity, self-bound particle group within

a parent group [Springel et al., 2001]. This removal is done by considering the

most bound particle group, the input group, and comparing it with others in the

FoF group. For all particles in the input group, a local estimate of the density at

their positions is computed. This is done by setting the local smoothing scale to

the distance of the nearest neighbour particle, then kernel interpolation is used to

estimate the density over these neighbours. SUBFIND then ranks them in order
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of decreasing binding energy, with subgroup 0 being the main cluster, and the re-

maining being substructure. This procedure allows the centre of the clusters to be

accurately measured.

3.7 Cluster catalogue generation

To generate a cluster catalogue, the FoF algorithm is first used. This finds the dense

regions of dark matter in the simulation. This is then passed to SUBFIND. A sphere

radius r is then placed the centre of subgroup 0. This sphere is then grown until

the total mass (M∆) in radius (r∆), is found whose mean density is ∆ · ρcr. Where

the critical density ρcr(z), is

ρcr(z) = ρcr,0 · E(z)2 (3.5)

The value of ∆ defines each of our catalogues. By setting a size and radius for the

clusters enabling analysis of the clusters in the simulation, relationships can then

be drawn between cluster mass and observables. We study several values, see table

3.1.

Label ∆ Reason for inclusion

A ∆v ∼ 100 Virial radius from SO modela

B 200 Alternative to A
C 500 Observer datab

D 1000 Observer datab

E 2500 Observer datab

F 180 Alternative to Ab

Table 3.1: Explanation for catalogue choices are as follows:
a Virial radius from the spherical top-hat model, using the formula from [Bryan and
Norman, 1998].
b Cluster properties are more easily observed at this choice of ∆ so comparisons to
simulated data are easily done.
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3.8 Estimation of cluster properties

Once the haloes have been found, calculating their bulk properties can occur. For

particles within r∆ observable and structure properties are calculated by assuming∫
dV ρn →

∑
imiρ

n−1
i [Stanek et al., 2010], where V is the volume of the cluster, ρ

is the gas density of particle i and mi is its mass. In this way we can estimate the

following properties as:

• Lbol, the bolometric X-ray luminosity, is calculated as

Lbol =

∫
V

dV ρ2Λ(T )→
N∑
i=1

miρiΛ(Ti) (3.6)

where Λ(T ) is the cooling function [Sutherland and Dopita, 1993] and Ti the

temperature of gas particle i. Only then gas particles with Ti > 106K are

considered.

• The mass weighted temperature, Tm is calculated as

Tm =
1

Mgas

∫
v

dV ρT → 1

Mgas

N∑
i=1

Timi (3.7)

where Mgas is the mas of hot gas in the cluster. Since mi is a constant, Tm is

therefore an average of the temperatures of the particles in a specific halo.

• The spectroscopic-like temperature, Tsl, is calculated as

Tsl =

∫
ρ2T

1/4
i dV∫

ρ2T−3/4dV
→

N∑
i=1

miρiT
1/4
i

N∑
i=1

miρiT
−3/4
i

, (3.8)

following [Mazzotta et al., 2004]. The spectroscopic temperature is useful

since it closely matches the X-ray temperatures from the observational data,

for clusters with a kT > 2keV.

• The global thermal SZ signal, YSZ, parameter is calculated in the following
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way,

YSZ =
kBσT

mec2

∫
v

dV neTe →
kBσTTmMgas

µemHmec2
(3.9)

where Mgas is the mass of the gas in the cluster, Tm is the mass weighted

temperature, mH is the mass of a hydrogen atom, kB is Boltzmann’s constant,

σT is the Thomson cross-section, µe is the mean molecular weight per free

electron and me is the electron mass. We also calculate YX, by replacing Tm

with Tsl.

• Following [Stanek et al., 2010] the clumping factor, Q, which is the effect of

variations in density structure upon the halo luminosity, is defined as:

Q =
1

V

∫
f 2(x)dx→ V

M2
gas

N∑
i=1

miρi (3.10)

where x = r/r∆ and f(x) =
ρ(x)V

Mgas

.

Now we shall discuss the simulation which was used to generate the data pre-

sented in the chapters that follow.

3.9 Scaling relations investigated

In the next two chapters, results from the simulated data will be presented, with

the scaling relations for the most part being versus mass. These relations are the

most relevant for cosmology. Included are relations which examine outcore clusters

where we have removed cores (r > 0.15r∆). These are included so that the effects

of the clusters’ core can be analysed.
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Scaling relation Note Self-Similar slope

Lbol vs M∆ Bolometric 4/3

Lboloutofcore vs M∆ Lbol(r > 0.15r∆) 4/3

Tm vs M∆ Mass weighted temperature 2/3

Tsl vs M∆ Spectroscopic-like temperature 2/3

Tsloutofcore vs M∆ Tsl(r> 0.15r∆) 2/3

Mgas vs M∆ Mgas = hot gas fraction×M∆
b 1

YX vs M∆ X-ray YX ∝MgasTsl 5/3

YSZ vs M∆ SZ YSZ ∝MgasTm 5/3

Q vs M∆ Clump factorb 0

Lbol vs Tsl Important for evolutiona 2

Lbol vs Tsloutofcore For completiona 2

Lboloutofcore vs Tsloutofcore Out of core regionsa 2

Table 3.2: Individual scaling relations that will be investigated. All luminosities are
in X-ray and bolometric.
a These scaling relations are important for discussion in the evolution section.
b These relations are unlike the others as they do not link an observable with mass;
instead these relations link structural proprieties to mass. These relations are in-
cluded for analysis of the cluster’s structure.

3.10 New Millennium Gas Simulation

Results in this thesis are from the New Millennium Gas Simulation (NMGS) which

is based on the earlier Millennium Simulation (MS) and Millennium Gas Simulations

(MGS).

The original Millennium simulation, MS, was a dark matter only N -body sim-

ulation ([Springel et al., 2005]), which used the WMAP 1 cosmology (Ωm = 0.25,

ΩΛ = 0.75 and σ8 = 0.9). It used a 500Mpc/h box, and 21603 dark matter particles.

The galaxy properties were generated using a semi-analytic galaxy formation models

[Guo et al., 2011].

The MGS [Stanek et al., 2009];[Hartley et al., 2008];[Kay et al., 2012];[Short et al.,
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2010] had the same initial conditions as the MS, which includes the same haloes

forming. However, it had lower resolution. The MGS also had the same box size

and cosmology as the MS but it included gas physics (5× 108 dark matter particles

and 5×108 gas particles). Three versions of the MGS were run: a gravitational only

(GO) run, a preheating (PC) run which included heating from stars and supernovae

and cooling, and a model containing feedback (FO) from galaxies.

The NMGS had different initial conditions following the WMAP 7 cosmology

(Ωm = 0.27, ΩΛ = 0.73 and σ8 = 0.81). It was run with two different box sizes, a

500Mpc/h box and a 250Mpc/h box, and its resolution was approximately the same

as the MS, with 1×1010 dark matter particles. It also utilised a feedback only (FO)

model, including AGN feedback, which worked by:

• First running the dark matter only simulation, which generates the halo cat-

alogues (galaxies and clusters).

• Next a semi-analytic model is run on the haloes, which involves merger trees

to calculate the feedback from each galaxy (AGN, supernovae and metals).

• Finally the simulations are rerun with gas and uses the feedback tables to

inject energy into the gas in haloes. A caveat; the gas gravitational effect

is ignored, therefore, the dark matter particles alone determine the size and

position of the haloes.

Full details of the model can be found in [Short et al., 2013].

3.10.1 Data Selection

Finally, this section outlines how I selected the clusters from the NMGS for my

analysis.

• A mass limit was imposed, so that only the most massive clusters were found by

my program. The minimum selected mass was 1× 1014M� and the maximum

was 2× 1015M�. The maximum limit was only imposed so that no data with

erroneously high mass could be part of the data analysis.
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• Through the use of SUBFIND, only subgroup 0, i.e. the parent group, is se-

lected for data analysis, the catalogues also store the other massive subgroups.

• A temperature minimum (2.0 keV) was used so that clusters emitting only

in bremstrahlung radiation were selected for data analysis. This removed a

group of anomalous clusters which were skewing the co-variance matrix, see

chapter 4. It is also require for accurate calculation of Tsl.

• Use of minimum hot gas fraction was imposed, fgas 10%, so as a handful of

erroneous objects appeared in the data, which had very low gas fractions. This

filters them out.

Once the selections had been processed, the analysis of the mass function and the

scaling relations can begin.

3.10.2 Mass function from the NMGS

Figure 3.4: The graph shows two mass functions taken from the NMGS; the left panel
shows the mass function at various redshifts and the right shows a comparison of
different box sizes, at redshift zero.

Shown in figure 3.4 are the cluster mass functions of the NMGS, determined

by taking dark matter haloes which have masses of 1014 − 1015M�, to ensure a

mass function containing clusters only. The right panel shows that the redshift

scales inversely with the number of clusters, because of the collapse time-scale. This

means that clusters form near the end of the simulation. When comparing this to
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observations, clusters have only been observed relatively recently at z = 0 − 2, so

this matches the expectation, qualitatively.

The left panel just plots a larger simulated box size (500Mpc/h) on top of another

simulated box which is half the size (250Mpc/h), both box sizes are at redshift zero.

The larger simulated box size is less noisy, as it contains a larger number of clusters

than the smaller simulated box. This shows that the 500Mpc/h box is a more

effective place to draw the cluster scaling relations from, since the data will produce

statistically more robust results.



Chapter 4

Scaling relations at redshift zero

This chapter is concerned with the scaling relations obtained from the NMGS, pri-

marily focused on the relations that scale with mass; beginning with a brief ex-

planation of the code methodology. One important detail is describing how the fit

parameters, α, β and σ, and their associated errors are found. These are broken

down into fitting the normalisation, α, and slope, β, of the relations, scatter, σ,

analysis and error estimation. Then the main results at redshift zero are shown,

for different density contrasts. Afterwards, the scaling relations are compared to

each other through a correlation analysis, using Pearson’s coefficient. Finally the

relations are compared to observational data, to see if the results are similar.

4.1 Methodology

This section is a brief overview of the methods used in the code written to analyse

and extract the best-fitting parameters describing the scaling relations. This is

shown so that the tables and graphs in the later sections have context, as discussion

of the technical details will be involved.

50
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4.1.1 Best-fitting

The scaling relations are assumed to take a simple power-law form

O ∝Mβ
∆, (4.1)

where O is the observable quantity (such as Lbol,Loutofcore,Tm,etc), M∆ is the mass

of the cluster and β is the power law index. This can be rewritten as

O = α(M/Mpivot)
β
∆ (4.2)

where Mpivot is a pivot mass, the pivot mass is chosen to be the median of all the

selected cluster masses, see section 3.10.1. Having a pivot point in the middle of the

data minimises the co-variance between the parameters α and β.

Once the masses had been normalised in this way, the data were then fitted with

a line of best fit

loge(O) = loge(α) + β loge(X), (4.3)

where X = M/Mpivot, α is the normalisation and β is the slope. The best fit lines

where plotted in the code, using a IDL’s LINFIT function.. LINFIT uses linear

model to fit data, this is done by minimising the least-square error statistic. This

is how the data in section 4.2 were calculated. The next part of the code is the

generation of the scatter data.

4.1.2 Estimating the scatter

The scatter was obtained by first taking the least squares fit and calculating the

residual for each data point.

δ loge Y = loge[Yi(Xi)]− loge[Ybf (Xi)] (4.4)

where Yi(Xi) is the value of each data and Ybf (Xi) is the best fit value for the same

(Xi). A histogram is then constructed δ loge Y , with 50 bins. A Gaussian function
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is then fitted to the histogram, the Gaussian form being,

f(δ loge Y ) = A exp−((δ loge Y )2/2σ2) (4.5)

where σ provides an estimate of the intrinsic scatter and A is the normalisation

of the Gaussian. The next step in the code is calculation of the errors for each

parameter.

4.1.3 Fit parameters errors

To account for statistical errors in the simulated data, the bootstrap method is used.

The bootstrap method works as follows:

1. Create a new sample of data, sample i, by randomly picking out the same

number of clusters (Ncls) from the original sample. For bootstrapping it is

important to note that duplication can and will occur.

2. Perform the fitting as before to get values for α, β and σ, for each scaling

relation.

3. Repeat 1 and 2 many times to make a list of the fit parameters.

4. Assume that this list of fit parameters, comprised of many independent reali-

sations of the same experiment, then find an acceptable number of realisations

to perform.

5. This is done by comparing the mean value of the list of fit parameters to the

true value of the parameter. The bootstrapped data will tend to the actual

value after a certain number of realisations and that is the ideal number, X,

of realisations to perform.

6. It is then possible to calculate the mean and standard deviation, or error, of

the list of fit parameters. The standard deviation is taken as the error.

The errors of α, β, and σ are labelled as σα,σβ and σσ respectively. Now the results

from redshift zero can be analysed.
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4.2 Results at redshift zero

This section shows the scaling relations at redshift zero, taken from the NMGS,

using the method described in the section 4.1 to obtain the fit parameters. The

catalogues chosen from the NMGS are the B (∆ = 200) and C (∆ = 500) catalogues

the other catalogues are available in Appendix A.1, which are chosen to allow for a

more accurate comparison to observations and the self-similar predictions.

4.2.1 Density contrasts

In tables 4.1 and 4.2, the fit parameters for the scaling relations from the two

catalogues B and C are shown with their associated errors. The B catalogue contains

more clusters and, therefore, the tables show that the errors in B are lower than

that of C. This is another reason not to use the catalogues with larger ∆, because

the errors increase with lower cluster count.

Scaling relation loge(α) β σ

Lbol -0.81 ± 0.01 1.60 ± 0.02 0.28 ± 0.01
Lboloutcore -0.75± 0.03 1.58 ± 0.01 0.18 ± 0.01
Tm 0.82 ± 0.009 0.58 ± 0.004 0.06 ± 0.002
Tsl 0.87 ± 0.009 0.56 ± 0.008 0.14 ± 0.004
Tsloutcore 0.79 ± 0.010 0.57 ± 0.007 0.11 ± 0.003
Mgas 30.8 ± 0.017 1.13 ± 0.005 0.06 ± 0.002
YX -12.1 ± 0.028 1.69 ± 0.010 0.16 ± 0.004
YSZ -12.1 ± 0.003 1.70 ± 0.006 0.10 ± 0.003
Q 0.97 ± 0.01 0.06 ± 0.02 0.19 ± 0.01

Table 4.1: Fit parameters for the B catalogue, with 939 clusters and 10,000 realisa-
tions used with a pivot mass of 1.96× 1014 solar masses. Relations are in the form
of O ∝M200.

The results can now be compared to the self-similar predictions for β, see table

3.2, and the other fit parameters can also be discussed. We discuss each relation in

turn:

• The Lbol −M∆ relation for B has a β of 1.6 disagreeing with the self-similar

prediction of 4/3; this is the same result as for C which has only a slightly lower
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Scaling relation loge(α) β σ

Lbol -0.13 ± 0.010 1.52 ± 0.023 0.23 ± 0.010
Lboloutcore -0.34 ± 0.007 1.54 ± 0.019 0.18 ± 0.008
Tm 1.07 ± 0.002 0.58 ± 0.005 0.07 ± 0.002
Tsl 1.08 ± 0.003 0.54 ± 0.010 0.10 ± 0.004
Tsloutcore 1.04 ± 0.003 0.55 ± 0.008 0.08 ± 0.004
Mgas 30.5 ± 0.002 1.13 ± 0.005 0.06 ± 0.002
YX -12.2 ± 0.004 1.67 ± 0.012 0.12 ± 0.005
YSZ -12.2 ± 0.003 1.70 ± 0.007 0.08 ± 0.003
Q 0.58 ± 0.007 0.09 ± 0.017 0.17 ± 0.008

Table 4.2: Fit parameters for the C catalogue, with 684 clusters and 10,000 realisa-
tions used with a pivot mass of 1.53× 1014 solar masses. Relations are in the form
of O ∝M500.

β of 1.5. This suggests that the lower mass clusters have a lower luminosity

than expected as required to match observational data.

• When subtracting the core luminosity from the total luminosity of the cluster,

Lboloutcore−M∆, it is found that in catalogue B, β is only slightly lower than the

original Lbol result. We also find a lower scatter in the Lboloutcore result. Since

β does not change much, this suggests that most of the non-similar behaviour

is not due to the core.

• For temperature weighted mass, Tm, both catalogues have a very similar β

value, which are found to be lower than the self-similar result. This suggests

that the temperature is higher in lower mass clusters than the self-similar

model predicts, again required by observations.

• For Tsl − M∆ we find a lower β than the Tm for both catalogues, however,

C has a lower β than B, but this is not particularly significant. When both

catalogue’s β are compared to the self-similar model, the same result as Tm is

found. The lower value of β would suggest that the temperature is directly

affected by the feedback in the NMGS. Furthermore the fact that Tsl and Tm

are very similar suggests that the clumping factor is not a function of mass. A

difference between Tsl and Tm is found in the scatter, σ, with Tsl being noisier

than Tm.
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• Tsloutcore −M∆ is very similar to the Tsl −M∆ result with slightly less scatter,

as with Lboloutcore result.

• Although Mgas−M∆ is not directly observable, it can nevertheless be deduced

from the soft X-ray surface brightness profile, it still exhibits some shift away

from the self-similar prediction of β = 1. Both catalogues agree on the value

of β being slightly larger than unity. This is due to feedback heating the gas

and expanding it, leading to lower gas fractions in lower mass clusters (where

feedback is more effective).

• For YX−M∆ from the C catalogue, β agrees with the self-similar predictions,

however, the β from the B catalogue is slightly larger. This suggests that

feedback heats the gas (increasing T ) and decreasing Mgas. The two effects

partly cancel each other out. We find the YSZ −M∆ values very similar.

• ForQ−M∆, while not an observable, does depend on mass, contrary to the self-

similar model, suggesting that cluster’s density structure is mass dependent.

In conclusion, the main result of this section is that most of the scaling relations

tend to deviate from the self-similar model. This is akin to observational data in

the section 2. A breakdown of the scaling relations is now performed to see if any

of the deviations in properties are correlated with one another.

4.3 Correlation analysis

Correlation analysis is used to compare two scaling relations to one another, allowing

for analysis on the interdependence of the scaling relations. Another good reason

for using correlation analysis is that it allows for a direct comparison with [Stanek

et al., 2010], who presented the covariance matrices for the GO and PC simulations.

Here, the details of the correlation analysis is presented alongside the results from

the NMGS, before comparing with [Stanek et al., 2010].
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4.3.1 Pearson’s correlation coefficient

For the correlation analysis we calculate rij, the Pearson product-moment correlation

coefficient (PPMCC):

rij =
Z̄ij
σiσj

, (4.6)

where Z̄ij is,

Z̄ij = 〈δiδj〉 − 〈δi〉〈δj〉 (4.7)

and

σ2
i = 〈δi2〉 − 〈δi〉2 (4.8)

where δi and δj are δ loge values for the two scaling relations, and the σ values are

the Gaussian fits for the scatter. The return from the PPMCC ranges from 1, which

means the residuals δi and δj are well correlated, to -1 (anti-correlated) and a value

of zero signifies being no correlation at all.

4.3.2 Results

Scaling relation Lbol Lboloutcore Tm Tsl Tsloutofcore Mgas YX YSZ Q

Lbol ... 0.90 0.46 0.76 0.68 0.63 0.89 0.75 0.94
Lboloutcore 0.90 ... 0.40 0.58 0.59 0.66 0.75 0.73 0.81
Tm 0.46 0.40 ... 0.82 0.87 0.06 0.71 0.73 0.48
Tsl 0.76 0.58 0.82 ... 0.96 0.22 0.92 0.72 0.78
Tsloutcore 0.68 0.59 0.87 0.96 ... 0.17 0.87 0.72 0.70
Mgas 0.63 0.66 0.06 0.22 0.17 ... 0.57 0.72 0.33
YX 0.89 0.75 0.71 0.92 0.87 0.57 ... 0.88 0.78
YSZ 0.75 0.73 0.73 0.72 0.72 0.72 0.88 ... 0.56
Q 0.94 0.81 0.48 0.78 0.70 0.33 0.78 0.56 ...

Table 4.3: Here the scaling relations are compared with one another, via the
PPMCC. This uses redshift zero data taken from the C catalogue with a cluster
count of 684. The C catalogue was used because it is the same catalogue [Stanek
et al., 2010] used for their simulated results.

Here, in table 4.3, it can be seen that the relations with obvious dependence like Q

and Lbol (see section 2.2.3) have high values for PPMCC, whereas the scatter in Mgas

and Tsloutcore are almost uncorrelated. Scaling relations with high interdependence

cause deviation from self-similar in one to appear in the other, even ones which are
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structure relations like Q.

This data seems to agree reasonably well with the results from the [Stanek et al.,

2010] paper, although we tend to find stronger correlation with Q. In that paper

the preheating model (PC) was being used, which simulates the gas physics with

additional energy at high redshift. This model compares well to our feedback only

simulation, NMGS. However, the [Stanek et al., 2010] paper also includes a GO

model, MS, which is not as similar to the data. This is due to the additional gas

physics present in our model.

The extra gas physics are the feedback from AGN, supernovae feedback and

metals present in the ICM. A way to test the data gathered here is to compare the

scaling relations to observational data.

4.4 Observational data comparisons

This should provide evidence that the data gathered from NMGS is an accurate

representation of clusters. This is the only method of testing our relations left, since

both the observational data and the scaling relation data from the NMGS seem to

deviate from the self-similar model.
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Figure 4.1: In this figure clusters are plotted as red plus signs, the line of best fit, see
section 4.1, is plotted in black and the observational data is plotted in blue and green
respectively. The data was taken from the 500 Mpc/h box and is the C catalogue.
The top left panel shows Lbol−M500 relation, the blue line is the observational result
from [Pratt et al., 2009]. The top right panel is Lbol−Tsl relation, with the blue line
from [Pratt et al., 2009]. The bottom left panel shows the Tsl −M500 relation, with
the blue line from [Arnaud et al., 2005] and the green line from [Vikhlinin et al.,
2009]. The bottom right panel shows the YSZ −M500 relation, with the green line
taken from [Planck Collaboration et al., 2011].

In figure 4.1 the scaling relations chosen are Lbol−M500, Lbol−Tsl, Tsl−M500 and

YSZ−M500. These were chosen due to the ability to compare them to observational

data. One issue with observational results is that they use different units and pivot

points, which must be converted in order to compare them with our results. So in

the interest of time, only the C catalogue was used. We discuss the results listed
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here:

• The top left panel of figure 4.1 is the Lbol −M500 relation, with results from

the [Pratt et al., 2009] paper plotted as the blue line. The [Pratt et al., 2009]

data agree well with our data for low mass clusters, however, not as well for

high mass clusters.

• The Lbol − Tsl relation is in the top right panel, with the result from the blue

line again from [Pratt et al., 2009]. The [Pratt et al., 2009] result shows a

slightly higher temperature than our results.

• The bottom left panel contains the Tsl − M500 relation, with the blue line

from [Arnaud et al., 2005] and the green line from [Vikhlinin et al., 2009].

The [Vikhlinin et al., 2009] results agree well at lower mass but deviates at

higher masses. The result from [Arnaud et al., 2005] shows that the clusters

they selected have a higher temperature but a similar β to our data, which is

encouraging.

• We find for the bottom right panel, the YSZ −M500 relation, with the green

line taken from the [Planck Collaboration et al., 2011] paper. We find that

our result is in agreement with a recent instrument.

Our data seem to not agree well with the observational results, particularly the

Lbol − Tsl relation from [Pratt et al., 2009]. The results are similar to FO data at

redshift zero from [Short et al., 2010]. They find that the scaling relations match the

ones taken from clusters in the REXCESS sample, once they accounted the observed

lower cluster mass bias (10-20%). This is caused by the assumption that the clusters

are in hydrostatic equilibrium.

The extra non-gravitational heating found in the NMGS is able to break self-

similarity. In order to further analyse the scaling relations we have applied the same

methodology with a few tweaks to find results at higher redshift.



Chapter 5

Evolution of the scaling relations

with redshift

This chapter examines the scaling relations at different redshifts. The individual

results for the scaling relations with redshifts are shown in groups, so relations that

are similar can be compared with one another. A discussion of the results finishes

this chapter. However, firstly the self-similar dependence is examined, so that the

results are presented relative to these predictions.

5.1 Self-similar prediction

The self-similar model predicts the slope to remain constant and only the normalisa-

tion to vary with redshift. Non-self-similar behaviour could result in both a varying

slope and a different redshift dependence for the normalisation. To test the scaling

relations against the self-similar, the scaling relations are normalised,

Y

E(z)d
∝ Xβ (5.1)

where Y is the observable of the clusters, d is the power-law index of the E(z)

dependence and X is mass (or temperature). The values of d of each scaling relation

are shown in table 5.1.

60
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Scaling relation d

Lbol vs M∆ 7/3
Lboloutofcore vs M∆ 7/3
Tm vs M∆ 2/3
Tsl vs M∆ 2/3
Tsloutofcore vs M∆ 2/3
Mgas vs M∆ 0
YX vs M∆ 2/3
YSZ vs M∆ 2/3
Q vs M∆ 0
Lbol vs Tsl 1
Lbol vs Tsloutofcore 1
Lboloutofcore vs Tsloutofcore 1

Table 5.1: The scaling relations dependence on the power-law index of the E(z)

In the next sections the scaling relations will be investigated at different red-

shifts, these results show the relations after correction for the expected self similar

evolution. The results have a pivot mass of 1.96 × 1014 for the B catalogue and

1.53× 1014 for the C catalogue.

5.2 Results

The redshift range is from 0 to 1, with 24 separate redshifts in total. The same

methodology is used for the redshift zero data ( see section 4 for the fitting method).

The maximum redshift is justified by the limited cluster count, which drops from

around 103 clusters, in the B catalogue at redshift 0, to ' 64, in the C catalogue at

redshift 1. Any statistical analysis, such as bootstrap, is unlikely to produce reliable

results when the cluster counts are too low. Similar scaling relations are grouped

together so that related quantities can be readily compared.

5.2.1 Luminosity-Mass Relations

This section presents the relations which relate luminosity and mass; Lbol −M∆,

Lboloutofcore−M∆ and Q−M∆. Figure 5.1 shows the best fit lines for each relation at

three different redshifts, based on catalogue B. The relations cover a smaller mass

range as redshift increases, because it takes time for clusters to accrue mass, so
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there are fewer high mass clusters at high redshift. All the relations tend to evolve

even after self-similar evolution has been removed, with Q−M∆ evolving the most.

Clearly the luminosity increases with redshift, this is related to AGN feedback, since

feedback increases the temperature of the ICM and makes the ICM more diffuse with

decreasing redshift. Q−M∆ evolves which suggests, as with the redshift zero results,

that it is dependent on mass. This is different to [Stanek et al., 2010] who find a

weaker correlation of Q−M∆ then this result.

Figure 5.1: This figure shows the best fit line at redshift 0, 0.5, and 1 for the scaling
relations that relate temperature to mass, Lbol−M∆, Lboloutcore−M∆ and Q−M∆

respectively. The black line represents the result at redshift zero, the blue line
redshift 1/2 and pink for redshift one.
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The following graphs are the result of examining whether the fit parameters of

the scaling relations discussed previously evolve over redshift.

Figure 5.2: This figure shows the fit parameters for Lbol/E(z)7/3 vs M∆ at 24 dif-
ferent redshifts on the x-axis, from two catalogues B (Lbol/E(z)7/3 vs M200) and C
(Lbol/E(z)7/3 vs M500) in the left and right columns respectively. The intercept, α,
is shown in the top two graphs, where the y-axis is α normalised by the result at
redshift zero and the self-similar model prediction is represented by the black line.
The slopes, β, are plotted in the middle two graphs, with the self-similar model
prediction represented by the black line. The bottom graphs are the scatter, σ, at
each redshift. All subsequent figures in this section follow the same layout.
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Figure 5.3: This figure shows the fit parameters for Lboloutcore/E(z)7/3 vs M∆ at
24 different redshifts from two catalogues B (Lboloutcore/E(z)7/3 vs M200) and C
(Lboloutcore/E(z)7/3 vs M500) in the left and right columns respectively.
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Figure 5.4: This figure shows the fit parameters for Q vs M∆ at 24 different redshifts,
from two catalogues B (Q vs M200) and C (Q vs M500) in the left and right columns
respectively.

Table 5.2 serves as a summary for graphs 5.2, 5.3 and 5.4. We find that the

normalisation, α, for all the relations from both catalogues show a similar evolution,

with the Q −M∆ relation being slightly lower. This disagrees with the self-similar

predictions. The Q −M∆ relation also differs from the other luminosity relations

for it has a flat scatter, which implies that the number of the clusters does not

effect the scatter of the Q −M∆ relation. When examining the slopes, β, of the

luminosity relations it is found that they tend to the self-similar result as redshift

increases. This is for the same reason as previously mentioned, it is caused by the



CHAPTER 5. EVOLUTIONOF THE SCALING RELATIONSWITH REDSHIFT66

AGN feedback.

Scaling relation Redshift (α/α0)B (α/α0)C βB βC σB σC

Lbol vs M∆ 0.0 1.00 1.00 1.39 1.52 0.26 0.23
Lbol vs M∆ 0.5 1.56 1.50 1.36 1.56 0.23 0.23
Lbol vs M∆ 1.0 2.09 1.99 1.01 1.25 0.16 0.20
Lboloutofcore vs M∆ 0.0 1.00 1.00 1.48 1.54 0.16 0.17
Lboloutofcore vs M∆ 0.5 1.49 1.48 1.47 1.57 0.17 0.18
Lboloutofcore vs M∆ 1.0 2.15 2.07 1.31 1.40 0.17 0.16
Q vs M∆ 0.0 1.00 1.00 0.06 0.09 0.19 0.16
Q vs M∆ 0.5 1.31 1.20 0.14 0.20 0.19 0.18
Q vs M∆ 1.0 1.63 1.39 -0.08 0.08 0.13 0.18

Table 5.2: Fit parameters for the scaling relations which relate luminosity to mass,
where (α/α0)B is α normalised by α at redshift zero, α0, for catalogue B and (α/α0)C

is α normalised by α at redshift zero for catalogue C.

5.2.2 Temperature-Mass Relations

This section analyses the relations which relate temperature to mass: Tm − M∆,

Tsl − M∆ and Tsloutofcore − M∆. Figure 5.5 shows the lines of best fit for those

relations at three different redshifts. Very little evolution is found in the Tsl−M∆ and

Tsloutofcore −M∆ relations, however,Tm −M∆ shows some slight evolution. Because

self-similar evolution has been removed from these lines of best fit, this must be

caused feedback from AGN.
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Figure 5.5: This figure shows the best fit line at redshift 0, 0.5, and 1 for the scaling
relations that relate temperature to mass, Tm −M∆, Tsl −M∆ and Tsloutofcore −M∆

respectively. The black line represents the result at redshift zero, the blue line
redshift 1/2 and pink for redshift one.

These next graphs are the product of examining whether the fit parameters of

the scaling relations, which relate temperature to mass, evolve over redshift.
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Figure 5.6: This figure shows the fit parameters for Tm/E(z)2/3 vs M∆ at 24 dif-
ferent redshifts on the x-axis, from two catalogues B (Tm/E(z)2/3 vs M200) and C
(Tm/E(z)2/3 vs M500) in the left and right columns respectively. The intercept, α,
is shown in the top two graphs, where the y-axis is α normalised by the result at
redshift zero and the self-similar model prediction is represented by the black line.
The slopes, β, plotted in the middle two graphs, with the self-similar model predic-
tion is represented by the black line. The bottom graphs are the scatter, σ, at each
redshift. All subsequent figures in this section follow the same layout.
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Figure 5.7: This figure shows the fit parameters for Tsl/E(z)2/3 vs M∆ at 24 different
redshifts from two catalogues B (Tsl/E(z)2/3 vs M200) and C (Tsl/E(z)2/3 vs M500)
in the left and right columns respectively.
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Figure 5.8: This figure shows the fit parameters for Tsloutcore/E(z)2/3 vs M∆ at
24 different redshifts from two catalogues B (Tsloutcore/E(z)2/3 vs M200) and C
(Tsloutcore/E(z)2/3 vs M500) in the left and right columns respectively.

Table 5.3 serves as a summary for graphs 5.6, 5.7 and 5.8. Again from the

normalisation, α, it is seen that spectroscopic temperatures are flat and have no

evolution, whereas the Tm −M∆ relation has some slight evolution from the self-

similar prediction. AGN feedback must lower the mass of the cluster slightly to alter

this relation. Furthermore, the Tm −M∆ has the lowest scatter, σ, of the relations.

We find very little evolution in the slopes, β, of any of the temperature mass

relations, the relations tend to lie slightly below the self-similar prediction. Similar

to the redshift zero results, we see that the C catalogue results are lower than B but
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this is not particularly significant. The same result holds from redshift zero, with

Tm −M∆ and Tsl −M∆ very similar, implying that the ICM is not very clumpy in

this model even at high redshift.

Scaling relation Redshift (α/α0)B (α/α0)C βB βC σB σC

Tm vs M∆ 0.0 1.00 1.00 0.55 0.58 0.05 0.04
Tm vs M∆ 0.5 1.08 1.05 0.55 0.58 0.06 0.06
Tm vs M∆ 1.0 1.22 1.15 0.51 0.51 0.06 0.08
Tsl vs M∆ 0.0 1.00 1.00 0.46 0.54 0.11 0.09
Tsl vs M∆ 0.5 1.01 0.99 0.43 0.55 0.13 0.13
Tsl vs M∆ 1.0 1.00 0.96 0.26 0.38 0.10 0.14
Tsloutofcore vs M∆ 0.0 1.00 1.00 0.48 0.55 0.09 0.08
Tsloutofcore vs M∆ 0.5 0.99 0.98 0.46 0.55 0.11 0.12
Tsloutofcore vs M∆ 1.0 1.01 0.97 0.33 0.40 0.09 0.13

Table 5.3: Fit parameters for the scaling relations which relate temperature to mass,
where (α/α0)B is α normalised by α at redshift zero, α0, for catalogue B and (α/α0)C

is α normalised by α at redshift zero for catalogue C.

5.2.3 Mgas-Mass relation

Here the results for Mgas −M200 and Mgas −M500 are analysed. Figure 5.9 shows

the lines of best fit for Mgas −M200 at three different redshifts. The results show

a flat evolution of the Mgas −M200 relation, which is in good agreement with the

self-similar prediction.

Figure 5.9: This figure shows the best fit line at redshift 0, 0.5, and 1 for the scaling
relations that relate gas mass to mass, Mgas −M200. The black line represents the
result at redshift zero, the blue line redshift 1/2 and pink for redshift one.

The following graph is the result of examining whether the fit parameters of the

Mgas −M∆ relation evolves over redshift.
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Figure 5.10: This figure shows the fit parameters for Mgas vs M∆ at 24 different
redshifts on the x-axis, from two catalogues B (Mgas vs M200) and C (Mgas vs M500)
in the left and right columns respectively. The intercept, α, is shown in the top
two graphs, where the y-axis is α normalised by the result at redshift zero and self-
similar model prediction is represented by the black line . The slopes, β, are plotted
in the middle two graphs, with the self-similar model prediction represented by the
black line. The bottom graphs are the scatter, σ, from each redshift.

When breaking down the results into the fit parameters, see table 5.4, the nor-

malisation, α, only evolves very weakly with redshift, with the C catalogue showing

only a slightly stronger evolution. The slopes, β, tend away from the self-similar

model prediction as redshift decreases, however, this evolution is only slight. This

implies that AGN feedback is heating the gas and expanding it, leading to lower gas
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fractions in lower mass clusters, this effect smooths out the Mgas-Mass relation.

Scaling relation Redshift (α/α0)B (α/α0)C βB βC σB σC

Mgas vs M∆ 0.0 1.00 1.00 1.10 1.13 0.05 0.06
Mgas vs M∆ 0.5 1.09 1.12 1.04 1.10 0.04 0.05
Mgas vs M∆ 1.0 1.13 1.20 1.01 1.03 0.03 0.04

Table 5.4: Fit parameters for the scaling relations which relate gas mass to mass,
where (α/α0)B is α normalised by α at redshift zero, α0, for catalogue B and (α/α0)C

is α normalised by α at redshift zero for catalogue C.

The scatter, σ, decreases as redshift increases, contrary to all the other relations.

This is caused by the reduction in the range of masses of clusters, because as redshift

increases the number of clusters decreases and more importantly the total mass of

clusters decreases. So since the Mgas-Mass relation is based on the fraction of the

total mass which is gas and the total mass, the scatter decreases.

5.2.4 Y -Mass relations

Here we present the results from the Y -Mass relations. Figure 5.11 shows the best

fit lines for YX−M∆ and YSZ−M∆ at three redshifts. The best fit lines are shorter

as redshift increases because there are fewer high mass clusters at high redshifts,

due to the time taken for clusters to accrue mass and a lower cluster count. There

is little evolution in the YSZ −M∆best fit lines and even less in the YX −M∆. As

self-similar evolution has been removed, from the best fit lines this means that the

best fit lines agree with the self-similar model.
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Figure 5.11: This figure shows the best fit line at redshift 0, 0.5, and 1 for the scaling
relations that relate the Y parameter to mass, YX−M200 and YSZ−M200 respectively.
The black line represents the result at redshift zero, the blue line redshift 1/2 and
pink for redshift one.

These next graphs are the result of examining whether or not the fit parameters

of the scaling relations evolve over redshift.
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Figure 5.12: This figure shows the fit parameters for YX/E(z)2/3 vs M∆ at 24 dif-
ferent redshifts on the x-axis, from two catalogues B (YX/E(z)2/3 vs M200) and C
(YX/E(z)2/3 vs M500) in the left and right columns respectively. The intercept, α,
is shown in the top two graphs, where the y-axis is α normalised by the result at
redshift zero and the self-similar model prediction is represented by the black line
. The slopes, β, are plotted in the middle two graphs, with the self-similar model
prediction represented by the black line. The bottom graphs are the scatter, σ, from
each redshift. All subsequent figures in this section follow the same layout.
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Figure 5.13: This figure shows the fit parameters for YSZ/E(z)2/3 vs M∆ at 24
different redshifts from two catalogues B (YSZ/E(z)2/3 vs M200) and C (YSZ/E(z)2/3

vs M500) in the left and right columns respectively.

Table 5.5, is a summary of graphs 5.12 and 5.13. We find that the normalisations

for YX−M∆ shows very little evolution in either the B or the C catalogue. However,

there is a slight evolution in the normalisation for the YSZ−M∆ relation. This may

be caused by the results from Tm −M∆ relation, see section 5.2.2, as YSZ −M∆ is

dependent on the results from the Mgas −M∆ and Tm −M∆ relations. This may

also account for the low scatter of this relation, σ, as both of the reliant relations

are calculated from the mass content. On the other hand, the less flat and more

scattered result for YX −M200 is due to the flat result from Tsl −M∆ relation.
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Scaling relation Redshift (α/α0)B (α/α0)C βB βC σB σC

YX vs M∆ 0.0 1.00 1.00 1.56 1.67 0.14 0.11
YX vs M∆ 0.5 1.10 1.11 1.48 1.64 0.13 0.14
YX vs M∆ 1.0 1.13 1.16 1.27 1.41 0.11 0.15
YSZ vs M∆ 0.0 1.00 1.00 1.65 1.70 0.08 0.08
YSZ vs M∆ 0.5 1.18 1.18 1.59 1.67 0.08 0.07
YSZ vs M∆ 1.0 1.38 1.38 1.53 1.54 0.08 0.09

Table 5.5: Fit parameters for the scaling relations which relate the Y parameter to
mass, where (α/α0)B is α normalised by α at redshift zero, α0, for catalogue B and
(α/α0)C is α normalised by α at redshift zero for catalogue C.

When looking at the slopes, β, the YX −M∆ relation from catalogue B is never

self-similar and tends away from the self-similar prediction, whereas the YX −M∆

relation from catalogue C is close to the self-similar model until redshift one. This

result is repeated in the YSZ −M∆ relation, however, again it is flatter and slightly

closer to the self-similar prediction for the same reasons as before.

5.2.5 Luminosity-Temperature relations

One of the reasons to include the L-T results, is to compare our results from the

NMGS with the observational results from [Hilton et al., 2012]. [Hilton et al.,

2012] take their data from XMM Cluster Survey and they find a negative evolution

of the normalisation of the Lbol − Tsl relation, which favours models with energy

injection at high redshift. Negative evolution of the normalisation, means that the

redshift evolution of the normalisation is weaker than self similar. Therefore, if the

normalisation is plotted against redshift, the normalisation should be equal to one

at redshift zero, the same as the self-similar result, but below one at higher redshift.

The NMGS simulates AGN feedback at all redshifts, unlike the [Hilton et al.,

2012] models. Most of the energy injection in the NMGS occurs at low redshift

where AGN feedback is more effective, as seen in figure 5.14.
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Figure 5.14: This figure shows the best fit line at redshift 0, 0.5, and 1 for the
scaling relations that relate luminosity to temperature, Lbol − Tsl, Lbol − Tsloutofcore

and Lboloutofcore − Tsloutofcore respectively. The black line represents the result at
redshift zero, the blue line redshift 1/2 and pink for redshift one.

Figure 5.14 shows the best fit lines for the luminosity temperature relations at

three redshifts, which were taken from catalogue B. The best fit lines have much

smaller temperature ranges as redshift increases, due to the time taken for clusters

to accrue mass and a lower cluster count. Here there is an obvious evolution away

from the result at redshift zero, for all the relations. This disagrees with the self-

similar prediction, as self-similar evolution has been factored out of these lines best

fit. Indeed, for all three relations we see a lower temperature and an increase in
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luminosity then predicted at higher redshift. This is caused by the AGN feedback,

for as the redshift decreases the effect of AGN feedback increases which causes the

ICM to get hotter and less dense; this leads to an increase in temperature and a

decrease in luminosity. Table 5.6 shows the fit parameters for the same relations,

whose fit parameters are shown below.



CHAPTER 5. EVOLUTIONOF THE SCALING RELATIONSWITH REDSHIFT80

Figure 5.15: This figure shows the fit parameters for Lbol/E(z) vs Tsl at 24 different
redshifts on the x-axis, from two catalogues B (Lbol/E(z) vs Tsl) and C (Lbol/E(z)
vs Tsl) in the left and right columns respectively. The red line in the centre being
the value of that fit parameter at that redshift, the yellow representing the error
for each result and the red lines on the outside are the limits of those errors. The
intercept, α, is shown in the top two graphs, where the y-axis is α normalised by
the result at redshift zero and the self-similar model prediction is represented by the
black line. The slopes, β, are plotted in the middle two graphs, with the self-similar
model prediction represented by the black line. The bottom graphs are the scatter,
σ, from each redshift. All subsequent figures in this section follow the same layout.
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Figure 5.16: This figure shows the fit parameters for Lboloutcore/E(z) vs Tsl at 24 dif-
ferent redshifts from two catalogues B (Lboloutcore/E(z) vs Tsl) and C (Lboloutcore/E(z)
vs Tsl) in the left and right columns respectively.
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Figure 5.17: This figure shows the fit parameters for Lboloutcore/E(z) vs Tsloutcore
at 24 different redshifts from two catalogues B (Lboloutcore/E(z) vs Tsloutcore) and C
(Lboloutcore/E(z) vs Tsloutcore) in the left and right columns respectively.

Table 5.6 provides a summary at three redshifts of the fit parameters from the

graphs 5.15, 5.16 and 5.17. We find that the normalisation, α, in catalogue B

evolves away from the self-similar prediction, however, the Lbol − Tsloutofcore shows

a slightly slower evolution than the other two relations. In the C catalogue, the

normalisations tend to evolve faster and at a similar rate, which is interesting as

AGN heating occurs mostly in the core of the cluster. We would expect that once

we exclude the core the temperature would decrease, however, that is not seen the

C catalogue. This maybe caused by the lower cluster count at redshift one for the
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Scaling relation Redshift (α/α0)B (α/α0)C βB βC σB σC

Lbol vs Tsl 0.0 1.00 1.00 2.71 2.61 0.21 0.20
Lbol vs Tsl 0.5 2.31 2.33 2.53 2.45 0.21 0.20
Lbol vs Tsl 1.0 6.21 9.43 2.05 1.67 0.26 0.24
Lbol vs Tsloutofcore 0.0 1.00 1.00 2.72 2.59 0.22 0.19
Lbol vs Tsloutofcore 0.5 2.25 2.43 2.53 2.37 0.27 0.24
Lbol vs Tsloutofcore 1.0 4.92 9.60 2.24 1.59 0.32 0.28
Lboloutofcore vs Tsloutofcore 0.0 1.00 1.00 2.63 2.53 0.27 0.21
Lboloutofcore vs Tsloutofcore 0.5 2.41 2.56 2.34 2.25 0.34 0.27
Lboloutofcore vs Tsloutofcore 1.0 6.37 9.91 1.88 1.54 0.39 0.30

Table 5.6: Fit parameters for the scaling relations which relate the luminosity to
mass, where (α/α0)B is α normalised by α at redshift zero, α0, for catalogue B and
(α/α0)C is α normalised by α at redshift zero for catalogue C.

C catalogue, which is only 64.

When comparing the simulated slopes to the observed data from [Hilton et al.,

2012], we find evolution the Lbol − Tsl relation, where they do not. Furthermore,

we find a positive evolution in the normalisation, which agrees with their simulated

data, of a 250 Mpc/h box, but again, not with their observed data. This may

be due to the XMM Cluster Survey first data release, XCS-DR1 data, from which

[Hilton et al., 2012] takes their data. XCS-DR1 favours feedback models with energy

injection high redshift. However, the NMGS injects feedback at all redshifts which

may cause this discrepancy.

We also find that the slopes, β, of the L-T relations (in both catalogues) tend

to deviate from the self-similar model at low redshifts, but then approach the self-

similar prediction at higher redshift. When removing the luminosity from the clus-

ters’ cores, Lboloutcore−Tsl, the relation no longer shows a tendency to the self-similar

prediction, however, removing both the luminosity and the temperature from the

clusters’ cores restores the tendency to self-similarity. This shows that the NMGS

agrees with the self-similar model at high redshift, but in the run up to redshift

zero, the scaling relations tend to evolve away from the self-similar model.
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5.2.6 Overview

From the previous graphs, it is clear that, as redshift increases the error in all the

fit parameters increases, this is due to the decrease in cluster count with increasing

redshift. This is also seen in the σ as well, more deviation from the line of best fit,

which shows that our estimate of σ becomes more uncertain as redshift increases.

This verifies the methodology, for this is what was expected with a lower cluster

count.

The normalised scaling relations seem to evolve negatively with respect to the

self-similar slope, with Tm being the weakest with cosmology; [Vikhlinin et al., 2009]

find a similar result. When comparing to previous theoretical work, [Short et al.,

2010] finds positive evolution in their FO model for YX−M , Lbol−M and Lbol−Tsl.

This may be due to the more accurate prediction of AGN feedback found in in the

NMGS.

[Kay et al., 2012] finds a flatter evolution for the YX − M relation. Our re-

sults show a more negative evolution. This maybe due to the use of a different

cosmological model.

Previous simulations which provide redshift data of the same scaling relations

suggested that AGN heating was required at higher redshift to account for the scaling

relations evolution as seen in these models. This result agrees with observational

data from [Böhringer et al., 2012]. This is what our results have shown, because

most of the scaling relations tend to the self-similar model at high redshift. A couple

of exceptions occur in the YX and Tsl case. Interestingly, the results excluding the

core in figure 5.3 seem to evolve onto from the self-similar slope. We still, however,

find a divergence from the self-similar model, in section 5.2.5.



Chapter 6

Conclusion

6.1 Summary

This thesis has presented results from the analysis of cluster scaling relations, using

a new cosmological simulation which includes the effects of feedback from AGN.

Cluster scaling relations are used with the mass function to constrain cosmological

parameters. Starting from the basic assumption that the scaling relations are self-

similar and that the only important physical process is gravity, simple predictions

(power-law relations) for the scaling relations can be made. Through reviewing

observational determinations, we can show that these relations are do not agree with

the self-similar predictions. This is caused by non-gravitational physics, with AGN

feedback being the largest problem. We model AGN feedback through a new, large,

cosmological hydrodynamical simulation. Then we compare the scaling relations at

redshift zero with observations, before investigating their evolution with redshift.

Our data, at redshift zero, predict:

• Lower mass clusters have lower luminosity than expected, due to the feedback

from AGN. This leads to a steeper Lbol−M∆ and Lbol−Tsl than predicted by

the self-similar model.

• Comparing the mass-weighted and spectroscopic-like temperatures, our results

suggest that the ICM is not particularly clumpy in the simulation.
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• The Mgas relation suggests that the feedback heats the ICM and expands it,

leading to a lower gas fraction in lower mass clusters.

• The Y parameter relations are only slightly steeper than the self-similar model

prediction. The increase in the temperature of the ICM by feedback is partly

offset by the decrease in the Mgas relation.

We then test the scaling relations at higher redshifts. Here we have compared our

results to the self-similar model, which predicts no evolution in the slopes of the

relations. We find that most of the scaling relations show evolution in both slope

and normalisation. However, the temperature and the Y parameter relations show

no evolution in either.

6.2 Future research

Since modelling cluster scaling relations can be used to constrain cosmological pa-

rameters, future observations coupled with results from newer simulations will pro-

vide new insights into cosmology. Give the limited time available, further analysis

on the scaling relations would include:

• Correlation fitting, similar to the redshift zero results, could have been per-

formed on the scaling relations at each redshift, to further analyse the inter-

dependence of the scaling relations.

• Since the scaling relations are interdependent, more analysis could be done

to break down them into interrelated parts. The effect of individual cluster

properties could then be more effectively analysed.

• The higher redshifted data could have been compared to observational results

to see if our simulation agrees with observations at higher redshifts.

• A quadratic fit to the scaling relations could have been used instead of a linear

one, to see if that would better fit the data.
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It is clear that in order to use clusters to measure cosmological parameters, it is

important that the scaling relations are accurately measured as a function of redshift,

as it is not simple to predict them from a physical model.



Appendix A

Appendix

A.1 Other catalogues at redshift zero

Other catalogues at redshift zero are shown, for completeness, here.

Scaling relation loge(α) β σ

Lbol -0.08 ± 0.009 1.29 ± 0.024 0.27± 0.012
Lboloutcore -0.68 ± 0.007 1.43 ± 0.018 0.16 ± 0.007
Tm 0.78 ± 0.002 0.54 ± 0.007 0.08 ±0.002
Tsl 0.95 ± 0.004 0.42 ± 0.012 0.13± 0.006
Tsloutcore 0.79 ± 0.004 0.46 ± 0.011 0.11 ± 0.005
Mgas 31.2 ± 0.001 1.05 ± 0.003 0.05 ± 0.001
YX -11.6 ± 0.005 1.47 ± 0.013 0.15 ± 0.006
YSZ -11.7 ± 0.003 1.60 ± 0.008 0.09 ± 0.004
Q 1.40 ± 0.008 0.06 ± 0.019 0.21 ± 0.009

Table A.1: Fit parameters for the A catalogue, with a cluster count of 810 and
10,000 realisations used with a pivot mass of 2.70× 1014 solar masses. Relations are
in the form of O ∝Mvir.
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Scaling relation loge(α) β σ

Lbol -0.24 ± 0.009 1.37 ± 0.021 0.26 ± 0.010
Lboloutcore -0.66 ± 0.006 1.47 ± 0.015 0.16 ± 0.007
Tm 0.84 ± 0.002 0.54 ± 0.006 0.07 ± 0.002
Tsl 0.94 ± 0.004 0.45 ± 0.010 0.12 ± 0.005
Tsloutcore 0.84 ± 0.003 0.48 ± 0.009 0.10 ± 0.004
Mgas 30.9 ± 0.002 1.09 ± 0.003 0.06 ± 0.001
YX -11.9 ± 0.005 1.55 ± 0.011 0.14 ± 0.006
YSZ -12.0 ± 0.003 1.64 ± 0.006 0.09 ± 0.003
Q 1.03 ± 0.007 0.06 ± 0.016 0.19 ± 0.008

Table A.2: Fit parameters for the F catalogue, with a cluster count of 921 and
10,000 realisations used with a pivot mass of 2.05× 1014 solar masses. Relations are
in the form of O ∝M180.

Scaling relation loge(α) β σ

Lbol 0.35 ± 0.012 1.41 ± 0.042 0.18 ± 0.015
Lboloutcore 0.22 ± 0.011 1.45 ± 0.036 0.14 ± 0.012
Tm 1.35 ± 0.004 0.60 ± 0.011 0.06 ± 0.004
Tsl 1.33 ± 0.004 0.55 ± 0.011 0.07 ± 0.003
Tsloutcore 1.31 ± 0.003 0.56 ± 0.012 0.06 ± 0.003
Mgas 30.4 ± 0.003 1.10 ± 0.012 0.06 ± 0.003
YX -12.0 ± 0.005 1.65 ± 0.017 0.09 ± 0.007
YSZ -12.0 ± 0.006 1.70 ± 0.016 0.08 ± 0.006
Q 0.43 ± 0.009 0.01 ± 0.027 0.13 ± 0.011

Table A.3: Fit parameters for the D catalogue, with a cluster count of 264 and
10,000 realisations used with a pivot mass of 1.45× 1014 solar masses. Relations are
in the form of O ∝M1000.

Scaling relation loge(α) β σ

Lbol 1.45 ± 0.057 1.50 ± 0.272 0.12 ± 0.038
Lboloutcore 1.37 ± 0.060 1.50 ± 0.291 0.10 ± 0.042
Tm 1.88 ± 0.023 0.59 ± 0.135 0.05 ± 0.025
Tsl 1.84 ± 0.013 0.62 ± 0.073 0.03 ± 0.013
Tsloutcore 1.83 ± 0.013 0.62 ± 0.075 0.03 ± 0.014
Mgas 30.5 ± 0.018 1.12 ± 0.098 0.05 ± 0.024
YX -11.4 ± 0.025 1.74 ± 0.146 0.04 ± 0.023
YSZ -11.3 ± 0.035 1.70 ± 0.189 0.05 ± 0.044
Q 0.30 ± 0.022 0.02 ± 0.118 0.08 ± 0.024

Table A.4: Fit parameters for the E catalogue, with a cluster count of 15 and 10,000
realisations used with a pivot mass of 1.68× 1014 solar masses. Relations are in the
form of O ∝M2500.
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