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Abstract— This paper introduces eTeak, a new design flow 

for synthesis of the synchronous elastic systems. The proposed 

method inspects synchronous elasticity from asynchronous 

perspective and introduces a distributed control scheme on 

concurrent data flows specified in higher levels of abstraction. A 

compilation method using a new set of components is presented 

and future plans for this research are discussed. 
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I.  INTRODUCTION 

Demand for more complex electronic systems with higher 

performance has led to aggressive scaling in semiconductor 

technology and it has introduced device parameter variations 

and consequently this effect emerges as variations in process, 

voltage and temperature [1] and these are responsible for 

systematic uncertainties in computation and communication 

delays. For example, the increasing ratio between global 

interconnect delay and gate delay complicates the design of 

clock trees to meet the requirements of the higher clock 

frequency [2]. Therefore designers are forced to cope with 

variability and challenges in timing closure by considering 

margins that could be prohibitive for the system to achieve its 

potential performance [3]. 

Robustness techniques towards variations have been 

widely used as advantages of asynchronous circuits [4] but the 

lack of mature EDA tools in this area has been the main 

reason why designers have been reluctant to adopt this 

paradigm. Recently, synchronous elasticity has emerged to 

exploit some of the advantages of asynchronous designs in 

synchronous systems to transform them to latency insensitive 

systems [5]. For this purpose the elastisation protocol [6] has 

been developed to synchronise the handshake signals with the 

main global clock of the system. In [3] a component set base 

on this protocol is introduced which are synthesisable via 

conventional EDA tools.  

This work introduces eTeak, a high level synthesis flow 

for designing synchronous elastic systems. eTeak is developed 

based on Teak system [7] which is a token flow 

implementation for Balsa language [8]. It’s capable of 

generating syntax directed data-driven handshake circuits for 

Balsa descriptions using a new target component set. In Teak 

networks datapath/control interactions are done through the 

local handshaking by forking/rendezvous of control and data 

channels. This feature enables the constructs to perform 

control interactions using separate ‘go’ and ‘done’ channels.  

The separation of go/done channels leads to fine grained 

concurrency and allows pipelining techniques to be applied 

over the generated circuits. Moreover, decoupling behaviour 

of Teak buffers introduces token storage over channels and it 

paves the road for further investigation on circuit parallelism. 

In light of the mentioned features, Teak was considered as 

a desired framework to inspect synchronous elastic flow 

(SELF) from high level asynchronous prospective. In [9] a 

different high level method for synthesising SELF is proposed 

which is a control driven implementation. For reusing 

predesigned IP cores major modifications over the control unit 

should be considered.   To incorporate elasticity in eTeak, the 

existing components are adapted to (valid/stop) handshaking 

protocol instead of (request/acknowledge) signalling and 

buffers are converted to time decoupling controllers to work 

based on Elastic protocol [6]. Since the new component set 

doesn’t infer any combinational feedback loops within the 

network, commercial timing analysis can be used for 

optimisation purposes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. one stage synchronous elastic pipeline resulted from a RTL after 
conversion of flip-flops to EBs and insertion of J(Join) and F(Fork) 
components at decision points. Clock wires are not shown in the figure.  



II. SELF PROTOCOL 

SELF is a formalised protocol that implements a delay 
tolerant communication in a network. In contrast to stoppable 
process definition in [5], it emerges as a simple signal level 
handshaking between sender and receiver. The same as the 
conventional asynchronous protocol’s two wires, Valid(V) and 
Stop (S), are used to implement different states of the protocol 
and the components should interact in terms of these states: 

• (T) Transfer, ( V, ¬S ): the sender provides valid data 
and the receiver accepts it. 

• (I) Idle, ( ¬V ): the sender does not provide valid data. 

• (R) Retry, ( V, S ): the sender provides valid data but 
the receiver does not accept it. 

In [6] elastic blocks (EB) are introduced and decision making 
Join/Fork components are described to expand the concept 
beyond linear pipelined communication. We can view an EB as 
a coupled elastic half blocks (EHB) that each of them is 
responsible for managing an individual latch so that data 
tokens are decoupled on the basis of half clock cycles. In order 
to handle back pressure problems, EBs are considered to take 
control of pair of latches. In [10] a straightforward mechanism 
of transforming a RTL synchronous design to an elastic 
counterpart is described where flip-flops are simply converted 
to pair of latches controlled by EBs and Join/Fork components 
are inferred at the decision making points. In this method 
computational logic associated with each pipeline stage should 
be wrapped in between EBs (Fig. 1). 

III. ELASTIC MODEL 

In this section a model of elastisation is described. Fig. 2 

shows a data driven structure which is synthesised from a 

‘forever’ loop description in Balsa. This structure is the 

primitive model of fine grained elasticity considered by eTeak.  

In this model computational logic (C) communicates with the 

environment through channels that are controlled by EBs and 

Join/Forks. In this model a data token is read from a variable 

(V), processed by the logic and finally passed onto the 

successor module through a Fork (F) which simultaneously 

returns a ‘done’ to the join (J) to be able to receive the next 

token. The join component prevents the variable from being 

modified until fork returns a ‘done’ control token.   

In order to be able to exploit this model and generate more 

fine grained pipelined structures ‘fixed’ variables must be 

eliminated. As mentioned in [7] retaining ‘fixed’ variables and 

mapping them directly onto hardware allows the exploration 

of the possible power and area implications but on the other 

hand this decision is not reasonable for generating pipelined 

structures. Accordingly, to address this problem, networks 

should be transformed to static single assignment (SSA) form 

or static token (ST) form [11] by breaking down variables into 

simple assignments and consequently one write/read port 

variables like the one shown in Fig. 2. Besides, another 

possibility would be to ‘carry along’ data and try to avoid 

generating unnecessary permanent storage structures. The 

parallel statements and parallel-written variables are the 

obstacles to this solution.  

 

 

 

 

 

 

 

 

 
Figure 2. Our Elastisation model. A combinational logic wrapped by a pair of 
EBs and a chain of Merge(M)-Join(J)-Fork(F) components to control data flow. 
Input/output channels carry control tokens along with data tokens. Clock wires 
are not shown in the figure. 

IV. SYNTHESIS FLOW 

This section explains the synthesis flow of eTeak. The steps 
indicated by (*) are not complete yet and they are briefly 
discussed in section VI. 

1) Parse tree generation: Balsa specification is parsed, 

expressions and commands are extracted, and the associated 

parse tree is generated. This step is exactly the same as Teak’s. 

2) Data driven network generation: each Balsa procedure 

is mapped onto a network part and the activation channels 

(go/done) are assigned and the associated input/output ports 

are generated in the form of channels. Since the network 

generation step is done in a syntax directed manner many 

redundant components are produced. For removing them there 

is a set of peephole optimisations available in [12] which is an 

incomplete list and still there are some to be discovered for 

achieving better performance.  

3) *Latch insertion: Teak is suffering from lack of 

systematic latch insertion mechanism. Since the structure of 

the eTeak generated networks are different than the Teak’s, 

we suspend  this step until final optimisations have taken 

place. Balancing the pipelines for better throughput is the 

major target of this step.  

4) Verilog netlist generation: a component set is provided 

to translate the network components into verilog netlist. 

Handshak Protocol specification and implementation is done 

in this step. The new component set is described in section V. 

5) *Static Ttiming Analysis is performed on the generated 

verilog netlist using the conventional STA tools and critical 

paths are identified within the network. 

6) *Data path optimisation:The identified paths from the 

previous step will be translated to behavioural verilog and 

synthesised using CAD tools to generate optimised structures 

considering target constraints. 

7) *Design space exploration: Datapath optimisations are 

applicable at different levels of granularity. Morover, it is 

possible to explore various IP cores and consider slack 

matching techniques to improve the performance [13].  

V. COMPONENTS 

All of the seven components of Teak are modified to 

adapt synchronous elastic protocol instead of 4-phase 



handshake signaling [2]. Therefore, the new set is greatly 

simplified in terms of functionality (shown in Fig. 1): 

Steer – it works as a data driven de-multiplexer and Teak 

maps ‘case’ structures on this component. Each parameterised 

output independently matches the conditions of input. When a 

‘stop’ happens on any of the output channels, Steer simply 

asserts the ‘stop’ for incoming tokens. 

Fork – this component can be parameterised to carry any 

number of bits from input to output. It is frequently used for 

producing control 0 bit ‘done’ tokens from n bit data tokens. 

When a ‘stop’ happens on any of the output channels, Fork 

deasserts the corresponding output ‘valid’ signal but keeps 

sending data to the other available channels independently. 

For more details refer to [1]. 

Merge – this components works as a data driven multiplexer. 

Its service on carrying input bits to output is based on first 

come first served policy. So inputs should be mutually 

exclusive. When it gets a ‘stop’ signal from downstream, 

asserts ‘stop’ on every input channel to pause all incoming 

tokens. 

Join – it’s an unconditional parameterised join. It concatenates 

data bits of arriving inputs. A two-way join of n and 0 bits can 

be used as a conjunction of data and control tokens. When a 

‘stop’ appears on its output channel, asserts ‘stops’ on every 

input channel, the same as Merge component, to pause any 

incoming token. 

Buffer – data storage and channel decoupling. The 

implementation detail of this component is presented in [4]. 

They’re responsible for synchronising valid/stop handshaking 

with the main global clock throughout the network. They can 

be inserted on channels independently to achieve any desired 

degree of storage.  

Variable – permanent storage. Basically this component is a 

buffer with an extended control over its write and read 

activities. While ‘write-go(wg)/write-done(wd)’ and ‘read-

go(rg)/read-done(rd)’ pairs make all data initializations and 

terminations possible, the SELF protocol adaption extremely 

simplifies it. In order to implement the permanent storage 

mechanism a ‘stop’ is asserted after   each successful write to 

prevent the stored token from being modified. This ‘stop’ 

would be off whenever a read request (rg) comes up, then the 

variable lets the new data token be registered. Where a write 

done leads directly to a read go, a variable can be replaced 

with a simple buffer.  

 

 

 

 

 

 

 

 

 

 

 

 

Operator – the only components that can manipulate data. 

Inputs are formed into a single word through a Join. eTeak 

generated operators are unoptimised and this affects the 

performance. Therefore, further research in this area may 

include explorations of the efficient architectures using 

commercial synchronous tools. 

VI. FUTURE WORK 

As mentioned in section IV, the syntax directed translation 
infers many redundant components in the network. These 
components are responsible for controling the data flow using 
asynchronous handshaking but in presence of clock signal most 
of them are useless and will be optimised away using 
commercial synchronous CAD tools. Moreover, computational 
blocks generated by Teak are not effiecient and it is possible to 
replace them with efficient IP cores.  

In order to achieve our optmisation targets an interfacing 
mechanism between eTeak and CAD  tools is required. For this 
purpose the associated data flow networks with identified 
critical paths (section IV, step 5) will be translated to 
behavioural verilog specifications. Then the synchronous CAD 
tool synthesises the code and delivers efficient strutures to 
eTeak to insert them back into the network by preserving the  
communication channels between computational units. 

A simple example in Fig. 4 demonstrates how the tool is 
going to optimise the networks generated in primary steps. It is 
an ALU capable of performing logical operations, addition, and 
subtraction. Fiq. 4(a) shows the corresponding network 
generated by eTeak using the component set described in 
section V. In this network the combination of Merge-Join-Fork 
is synthesised from a ‘forever’ loop and is responsible for 
controling the flow of data as discussed in section III; C3 splits 
control and data tokens. Then data token is stored in variable 
C6 (for the sake of simplicity gate level details are not shown) 
and the associated control waits at C4 to ensure that data is 
reqistered in the variable. When C6 recives  the data request, 
returns a control token to C4 to notify that data has been stored 
successfully. Then C5 recieves the contorl token and selects the 
corresponding path. Based on the request from C5, data token 
in C6 is directed through the associated path and gets 
manipulated  by the corresponding computational block. When 
data arrives at C7, it forwards the token to C8 in order to retrun 
a ‘done’ token to C1 to let it know that computation is 
completed then C2 allows a new token to pass in.  

Since the computational blocks are not optimised, timing 
analysis tools identifys them as potential critical paths. The 
grey area in Fig. 4(a) illustrates the critical path for this 
network and it is a candidate for further optimisations. Fig. 4(b) 
shows the corresponding behavioural verilog code for  the 
critical path. Based on the structure of the network, 
input/output ports, data/control token widths, control points, 
and functional units are extracted. After synthesising the 
verilog code C3 to C7 will be optimised away and a 
combinational unit will be delivered to eTeak to wrap it by EBs 
and insert it back to the network. 

Elastistic systems exhibit potential benefits in terms of 
modularity. This feature enables a wide range of exploration in  

Figure 3. eTeak Components 
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Figure 4. (a) shows an ALU, synthesised by eTeak. The grey area specifies a potential critical path identified by a STA tool. (b) shows the corresponding behavioural 

verilog code for the critical path generated by eTeak.  

 

terms of power, performance, and area by utimilsing efficient 

predesigned IP cores. Moreover, elastisation is applicable at 

different levels of granularity. One option is to generate large 

clusters of synchrnous blocks with elastic channels between 

them to reduce the overhead of elasticity and exploit corse 

grained voltage/frequnecy scaling. On the other extreme, it is 

possible to view the design as a set of gates. Inserting 

handshake at this level of granularity would be prohibitive due 

to the costs of large EBs. 
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