
eTeak: A Data-driven Synchronous Elastic

Synthesiser

Mahdi Jelodari M., Will Toms, Jim Garside

School of Computer Science

University of Manchester

Manchester, UK

{mamagham,tomsw, jdg}@cs.man.ac.uk

Abstract— This paper introduces eTeak, a new design flow

for synthesis of the synchronous elastic systems. The proposed

method inspects synchronous elasticity from asynchronous

perspective and introduces a distributed control scheme on

concurrent data flows specified in higher levels of abstraction. A

compilation method using a new set of components is presented

and future plans for this research are discussed.

Keywords—high level synthesis; synchronous elastic flow;

computer aided design

I. INTRODUCTION

Demand for more complex electronic systems with higher

performance has led to aggressive scaling in semiconductor

technology and it has introduced device parameter variations

and consequently this effect emerges as variations in process,

voltage and temperature [1] and these are responsible for

systematic uncertainties in computation and communication

delays. For example, the increasing ratio between global

interconnect delay and gate delay complicates the design of

clock trees to meet the requirements of the higher clock

frequency [2]. Therefore designers are forced to cope with

variability and challenges in timing closure by considering

margins that could be prohibitive for the system to achieve its

potential performance [3].

Robustness techniques towards variations have been

widely used as advantages of asynchronous circuits [4] but the

lack of mature EDA tools in this area has been the main

reason why designers have been reluctant to adopt this

paradigm. Recently, synchronous elasticity has emerged to

exploit some of the advantages of asynchronous designs in

synchronous systems to transform them to latency insensitive

systems [5]. For this purpose the elastisation protocol [6] has

been developed to synchronise the handshake signals with the

main global clock of the system. In [3] a component set base

on this protocol is introduced which are synthesisable via

conventional EDA tools.

This work introduces eTeak, a high level synthesis flow

for designing synchronous elastic systems. eTeak is developed

based on Teak system [7] which is a token flow

implementation for Balsa language [8]. It’s capable of

generating syntax directed data-driven handshake circuits for

Balsa descriptions using a new target component set. In Teak

networks datapath/control interactions are done through the

local handshaking by forking/rendezvous of control and data

channels. This feature enables the constructs to perform

control interactions using separate ‘go’ and ‘done’ channels.

The separation of go/done channels leads to fine grained

concurrency and allows pipelining techniques to be applied

over the generated circuits. Moreover, decoupling behaviour

of Teak buffers introduces token storage over channels and it

paves the road for further investigation on circuit parallelism.

In light of the mentioned features, Teak was considered as

a desired framework to inspect synchronous elastic flow

(SELF) from high level asynchronous prospective. In [9] a

different high level method for synthesising SELF is proposed

which is a control driven implementation. For reusing

predesigned IP cores major modifications over the control unit

should be considered. To incorporate elasticity in eTeak, the

existing components are adapted to (valid/stop) handshaking

protocol instead of (request/acknowledge) signalling and

buffers are converted to time decoupling controllers to work

based on Elastic protocol [6]. Since the new component set

doesn’t infer any combinational feedback loops within the

network, commercial timing analysis can be used for

optimisation purposes.

Figure 1. one stage synchronous elastic pipeline resulted from a RTL after
conversion of flip-flops to EBs and insertion of J(Join) and F(Fork)
components at decision points. Clock wires are not shown in the figure.

II. SELF PROTOCOL

SELF is a formalised protocol that implements a delay
tolerant communication in a network. In contrast to stoppable
process definition in [5], it emerges as a simple signal level
handshaking between sender and receiver. The same as the
conventional asynchronous protocol’s two wires, Valid(V) and
Stop (S), are used to implement different states of the protocol
and the components should interact in terms of these states:

• (T) Transfer, (V, ¬S): the sender provides valid data
and the receiver accepts it.

• (I) Idle, (¬V): the sender does not provide valid data.

• (R) Retry, (V, S): the sender provides valid data but
the receiver does not accept it.

In [6] elastic blocks (EB) are introduced and decision making
Join/Fork components are described to expand the concept
beyond linear pipelined communication. We can view an EB as
a coupled elastic half blocks (EHB) that each of them is
responsible for managing an individual latch so that data
tokens are decoupled on the basis of half clock cycles. In order
to handle back pressure problems, EBs are considered to take
control of pair of latches. In [10] a straightforward mechanism
of transforming a RTL synchronous design to an elastic
counterpart is described where flip-flops are simply converted
to pair of latches controlled by EBs and Join/Fork components
are inferred at the decision making points. In this method
computational logic associated with each pipeline stage should
be wrapped in between EBs (Fig. 1).

III. ELASTIC MODEL

In this section a model of elastisation is described. Fig. 2

shows a data driven structure which is synthesised from a

‘forever’ loop description in Balsa. This structure is the

primitive model of fine grained elasticity considered by eTeak.

In this model computational logic (C) communicates with the

environment through channels that are controlled by EBs and

Join/Forks. In this model a data token is read from a variable

(V), processed by the logic and finally passed onto the

successor module through a Fork (F) which simultaneously

returns a ‘done’ to the join (J) to be able to receive the next

token. The join component prevents the variable from being

modified until fork returns a ‘done’ control token.

In order to be able to exploit this model and generate more

fine grained pipelined structures ‘fixed’ variables must be

eliminated. As mentioned in [7] retaining ‘fixed’ variables and

mapping them directly onto hardware allows the exploration

of the possible power and area implications but on the other

hand this decision is not reasonable for generating pipelined

structures. Accordingly, to address this problem, networks

should be transformed to static single assignment (SSA) form

or static token (ST) form [11] by breaking down variables into

simple assignments and consequently one write/read port

variables like the one shown in Fig. 2. Besides, another

possibility would be to ‘carry along’ data and try to avoid

generating unnecessary permanent storage structures. The

parallel statements and parallel-written variables are the

obstacles to this solution.

Figure 2. Our Elastisation model. A combinational logic wrapped by a pair of
EBs and a chain of Merge(M)-Join(J)-Fork(F) components to control data flow.
Input/output channels carry control tokens along with data tokens. Clock wires
are not shown in the figure.

IV. SYNTHESIS FLOW

This section explains the synthesis flow of eTeak. The steps
indicated by (*) are not complete yet and they are briefly
discussed in section VI.

1) Parse tree generation: Balsa specification is parsed,

expressions and commands are extracted, and the associated

parse tree is generated. This step is exactly the same as Teak’s.

2) Data driven network generation: each Balsa procedure

is mapped onto a network part and the activation channels

(go/done) are assigned and the associated input/output ports

are generated in the form of channels. Since the network

generation step is done in a syntax directed manner many

redundant components are produced. For removing them there

is a set of peephole optimisations available in [12] which is an

incomplete list and still there are some to be discovered for

achieving better performance.

3) *Latch insertion: Teak is suffering from lack of

systematic latch insertion mechanism. Since the structure of

the eTeak generated networks are different than the Teak’s,

we suspend this step until final optimisations have taken

place. Balancing the pipelines for better throughput is the

major target of this step.

4) Verilog netlist generation: a component set is provided

to translate the network components into verilog netlist.

Handshak Protocol specification and implementation is done

in this step. The new component set is described in section V.

5) *Static Ttiming Analysis is performed on the generated

verilog netlist using the conventional STA tools and critical

paths are identified within the network.

6) *Data path optimisation:The identified paths from the

previous step will be translated to behavioural verilog and

synthesised using CAD tools to generate optimised structures

considering target constraints.

7) *Design space exploration: Datapath optimisations are

applicable at different levels of granularity. Morover, it is

possible to explore various IP cores and consider slack

matching techniques to improve the performance [13].

V. COMPONENTS

All of the seven components of Teak are modified to

adapt synchronous elastic protocol instead of 4-phase

handshake signaling [2]. Therefore, the new set is greatly

simplified in terms of functionality (shown in Fig. 1):

Steer – it works as a data driven de-multiplexer and Teak

maps ‘case’ structures on this component. Each parameterised

output independently matches the conditions of input. When a

‘stop’ happens on any of the output channels, Steer simply

asserts the ‘stop’ for incoming tokens.

Fork – this component can be parameterised to carry any

number of bits from input to output. It is frequently used for

producing control 0 bit ‘done’ tokens from n bit data tokens.

When a ‘stop’ happens on any of the output channels, Fork

deasserts the corresponding output ‘valid’ signal but keeps

sending data to the other available channels independently.

For more details refer to [1].

Merge – this components works as a data driven multiplexer.

Its service on carrying input bits to output is based on first

come first served policy. So inputs should be mutually

exclusive. When it gets a ‘stop’ signal from downstream,

asserts ‘stop’ on every input channel to pause all incoming

tokens.

Join – it’s an unconditional parameterised join. It concatenates

data bits of arriving inputs. A two-way join of n and 0 bits can

be used as a conjunction of data and control tokens. When a

‘stop’ appears on its output channel, asserts ‘stops’ on every

input channel, the same as Merge component, to pause any

incoming token.

Buffer – data storage and channel decoupling. The

implementation detail of this component is presented in [4].

They’re responsible for synchronising valid/stop handshaking

with the main global clock throughout the network. They can

be inserted on channels independently to achieve any desired

degree of storage.

Variable – permanent storage. Basically this component is a

buffer with an extended control over its write and read

activities. While ‘write-go(wg)/write-done(wd)’ and ‘read-

go(rg)/read-done(rd)’ pairs make all data initializations and

terminations possible, the SELF protocol adaption extremely

simplifies it. In order to implement the permanent storage

mechanism a ‘stop’ is asserted after each successful write to

prevent the stored token from being modified. This ‘stop’

would be off whenever a read request (rg) comes up, then the

variable lets the new data token be registered. Where a write

done leads directly to a read go, a variable can be replaced

with a simple buffer.

Operator – the only components that can manipulate data.

Inputs are formed into a single word through a Join. eTeak

generated operators are unoptimised and this affects the

performance. Therefore, further research in this area may

include explorations of the efficient architectures using

commercial synchronous tools.

VI. FUTURE WORK

As mentioned in section IV, the syntax directed translation
infers many redundant components in the network. These
components are responsible for controling the data flow using
asynchronous handshaking but in presence of clock signal most
of them are useless and will be optimised away using
commercial synchronous CAD tools. Moreover, computational
blocks generated by Teak are not effiecient and it is possible to
replace them with efficient IP cores.

In order to achieve our optmisation targets an interfacing
mechanism between eTeak and CAD tools is required. For this
purpose the associated data flow networks with identified
critical paths (section IV, step 5) will be translated to
behavioural verilog specifications. Then the synchronous CAD
tool synthesises the code and delivers efficient strutures to
eTeak to insert them back into the network by preserving the
communication channels between computational units.

A simple example in Fig. 4 demonstrates how the tool is
going to optimise the networks generated in primary steps. It is
an ALU capable of performing logical operations, addition, and
subtraction. Fiq. 4(a) shows the corresponding network
generated by eTeak using the component set described in
section V. In this network the combination of Merge-Join-Fork
is synthesised from a ‘forever’ loop and is responsible for
controling the flow of data as discussed in section III; C3 splits
control and data tokens. Then data token is stored in variable
C6 (for the sake of simplicity gate level details are not shown)
and the associated control waits at C4 to ensure that data is
reqistered in the variable. When C6 recives the data request,
returns a control token to C4 to notify that data has been stored
successfully. Then C5 recieves the contorl token and selects the
corresponding path. Based on the request from C5, data token
in C6 is directed through the associated path and gets
manipulated by the corresponding computational block. When
data arrives at C7, it forwards the token to C8 in order to retrun
a ‘done’ token to C1 to let it know that computation is
completed then C2 allows a new token to pass in.

Since the computational blocks are not optimised, timing
analysis tools identifys them as potential critical paths. The
grey area in Fig. 4(a) illustrates the critical path for this
network and it is a candidate for further optimisations. Fig. 4(b)
shows the corresponding behavioural verilog code for the
critical path. Based on the structure of the network,
input/output ports, data/control token widths, control points,
and functional units are extracted. After synthesising the
verilog code C3 to C7 will be optimised away and a
combinational unit will be delivered to eTeak to wrap it by EBs
and insert it back to the network.

Elastistic systems exhibit potential benefits in terms of
modularity. This feature enables a wide range of exploration in

Figure 3. eTeak Components

(a)

(b)

Figure 4. (a) shows an ALU, synthesised by eTeak. The grey area specifies a potential critical path identified by a STA tool. (b) shows the corresponding behavioural

verilog code for the critical path generated by eTeak.

terms of power, performance, and area by utimilsing efficient

predesigned IP cores. Moreover, elastisation is applicable at

different levels of granularity. One option is to generate large

clusters of synchrnous blocks with elastic channels between

them to reduce the overhead of elasticity and exploit corse

grained voltage/frequnecy scaling. On the other extreme, it is

possible to view the design as a set of gates. Inserting

handshake at this level of granularity would be prohibitive due

to the costs of large EBs.

ACKNOWLEDGMENT

This work is supported by the Engineering and Physical
Science Research Council of the UK, through Grant
EP/I038306/1. The authors would like to thank Andrew
Bardsley for clarifications on using Teak system and Francis
Southern for his useful remarks

REFERENCES

[1] S. Borkar, T. Karnik, S. Narendra, J. Tschanz, A. Keshavarzi, and V.
De, “Parameter variations and impact on circuits and microarchitecture,”
in DAC, 2003, pp. 338–342.

[2] E. G. Friedman "On-chip interconnect: The past, present, and future",
Proc. Netw. Chip Workshop, 2006

[3] J. Carmona, J. Cortadella, M. Kishinevsky, and A. Taubin. Elastic
circuits. IEEE Trans. Comput.-Aid. Design 28, 10, 1437–1455, 2009.

[4] J. Sparsø and S. Furber. Principles of Asynchronous Circuit Design - a
Systems Perspective. Kluwer Academic Publishers, Boston, 2001.

[5] L. P. Carloni, K. L. McMillan, and A. L. Sangiovanni-Vincentelli.
Theory of latency-insensitive design. IEEE Transactions on Computer-

Aided Design of Integrated Circuits, 20(9):1059–1076, September 2001.

[6] J. Cortadella, M. Kishinevsky, and B. Grundmann. Self: Specification
and design of synchronous elastic circuits. In TAU ’06: Proceedings of
the ACM/IEEE International Workshop on Timing Issues 2006.

[7] A. Bardsley, L. Tarazona and D. Edwards, Teak: A Token-Flow Imple-
mentation for the Balsa Language. In: Proc. of ACSD, 2009, 23-31

[8] Bardsley. Balsa:An Asynchronous Circuit Synthesis System. Master’s
thesis (1998), Department of Computer Science, The University of
Manchester,UK.

[9] G. Hoover and F. Brewer, “Synthesizing synchronous elastic flow
networks,” in Design, Automation and Test in Europe, 2008. DATE ’08,
10-14 2008, pp. 306 –311.

[10] J. Cortadella, M. Kishinevsky and B. Grundmann, “Synthesis of
synchronous elastic architectures” Proc. Des., Autom. Conf., pp. 657-
662, 2006

[11] J. Teifel, R. Manohar, “Static tokens: Using dataflow to automate
oncurrent pipeline synthesis” Proc. ASYNC, pages 17–27, Heraklion,
Crete, Greece, April 2004.

[12] L. Tarazona, “Performance-oriented syntax-directed synthesis of
asynchronos systems” PhD thesis (2010), School of Computer Science,
University of Manchester, Manchester, UK

[13] P. Beerel , J. Cortadella and A. Kondratyev "Bridging the gap between
asynchronous design and designers" Proc. VLSI Des. Conf., pp. 18-20,
2004

