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Abstract—
When exploring noisy or visually complex data, such as

seismic data from the oil and gas industry, it is often the
case that algorithms cannot completely identify features of
interest. Human intuition must complete the process. Given
the nature of intuition, this can be a source of differing
interpretations depending on the human expert; thus we do not
have a single feature but multiple views of a feature. Managing
multi-user and multi-version interpretations, combined with
version tracking, is challenging as these interpretations are
often stored as geometric objects separately from the raw
data and possibly in different local machines. In this paper
we combine the storage of the raw data with the storage of
the interpretations produced by the visualization of features by
multiple user sessions. We present case studies that illustrate
our system’s ability to reproduce users’ amendments to the
interpretations of others and the ability to retrace the history
of amendments to a visual feature.

Keywords-geospatial visualization; data acquisition and man-
agement; provenance; data exploration; query-driven visual-
ization;

I. INTRODUCTION

One of the most powerful benefits that visualization brings
to data analysis is the ability to harness the intuition of
the user in the process of understanding the data. Human
visual abilities are particularly tuned to respond to features
embedded in such a space. In this paper, we consider seismic
imaging data which has a natural representation, in the three
dimensions of physical space, of subsurface layers and is
rich of geological features such as horizons and faults.

In many cases, human intuition is supported by algorithms
that help to identify and highlight features of the data.
However, it can often be the case that the algorithms
cannot completely identify the features of interest. Human
intuition must complete the process, and given the nature
of intuition this can be a source of differing interpretations
depending on the human expert. This may occur in data
that is noisy or visually complex. Examples of such data
are found in medical imaging and in the field that is the

topic of this paper, interpretation of geophysical seismic
imaging data [1]. Thus we do not have a single feature
but multiple interpretations of a feature. At some stage,
collaborative visualization may be required for experts to
discuss and reconcile these different interpretations. We
also need to track the provenance of such interpretations;
sometimes earlier interpretations may need to be revisited.
The process can be envisaged in a similar way to the
source trees created by different programmers working on
a large software project and the version control systems
that have arisen to manage the process of collaboration
and integration. Now if the interpretations are stored as
geometric objects (e.g. isosurfaces) separately from the data
and possibly on different local machines, this bookkeeping
becomes very complex and error prone.

In this paper we propose a novel method of creating the
objects that underlie such visual interpretations, in such a
way that the information contained in the interpretation is
directly stored as metadata alongside the original data. In
addition to the ability of users to experiment with local
views of data, this provides a support from the visualization
architecture for the considered results of such experiments to
be stored, shared and re-used. In our proposed architecture,
users’ interpretations can flow in the reverse direction from
the usual pipeline, back from the user’s interaction with
the visual presentation of the objects to the original data
source of the pipeline. We utilize the increased capabilities
of highly parallel databases that allow flexible indexing
and optimised retrieval in response to data queries. Such
databases have been created to solve problems of “big data”
from the commercial world such as customer relationship
management and inventory and asset control.

In this paper, we apply our methods to the problems of
the interpretation of data from geoseismic surveys. This is
a field that has received a great deal of attention in terms of
research (e.g. [2]–[6]) as well as software development such
as Avizo Earth [7], GeoProbe [8] and Petrel [9]. The data in



this field is noisy and the features to be extracted have a very
complex spatial structure owing to processes of buckling,
folding and fracturing [1]. This makes a purely automated
approach to feature extraction very difficult to achieve. The
expert interpretation is very central to the definition of the
features and the considerations outlined above are of critical
importance [10].

The structure of the paper is as follows. In Section II we
review related work. In Section III and IV we show the ab-
stract principles of our extension of current architectures for
visualization. In Section V we describe how we implement
these principles. In Section VI we present the results of our
case studies with some performance measure. Section VII
presents conclusions and plans for future work.

II. BACKGROUND AND RELATED WORK

In this section we first give a background on the concept
of a visualization pipeline and some related work. Then, we
give a brief background about seismic data, the case study
to which our architecture is applied.

A. The Visualization Pipeline

The visualization pipeline builds the visual objects pre-
sented to the user in the form of a data processing workflow
that starts from the original data right to the rendering on
the display device. This basic formulation has proved very
durable and has undergone extensive elaboration since its
formulation for over twenty years [11]. A basic visualiza-
tion pipeline features the following modules in the order
of execution: reader ! geometry generator ! renderer.
Improvements and elaborations have been proposed to ad-
dress variety of issues such as visualizing multiple datasets,
visualizing large datasets and enhancing performance and
efficiency.

A fuller description of data by metadata enhanced the
power of visualization by allowing a more full-featured view
of the data taking into account its special properties and
allowing users flexibility in creating visual objects. Using
metadata, users can select a region or multiple regions
to process, for example this allowed Ahrens et. al. to
visualize large-scale datasets using parallel data streaming
[12]. In addition to regional information, a time dimen-
sion can be added to metadata, adding time control to
the visualization pipeline [13]. The usefulness of metadata
was further developed with the introduction of query-driven
visualization [14], [15]. Query-driven pipelines require the
following technologies: file indexing, a query language and
a metadata processing mechanism to pass queries. For fast
retrieval, indexing technologies are used, such as FastBit
[16], [17] (based on compressed bitmap indexing) and
hashing functions. To handle massive datasets efficiently,
the visualization pipeline can be executed in parallel over
multiple nodes. This was well illustrated with MapReduce

[18]. Database management systems (DBMS) are also ca-
pable of parallel execution of analysis but were not widely
used for the purpose of visualization. A comparison between
MapReduce and DBMS was presented by Pavlo et. al. [19];
the authors suggest that DBMS has a performance advantage
over MapReduce while the latter is easier to setup and to
use.

Despite such impressive development, the evolution of the
visualization pipeline has not (to our knowledge) developed
a reverse direction to directly link the users’ understanding
of the data back into the dataset. Our contention is that as the
users are interacting with the data they are encoding their in-
tuitive understanding of the features of the data that they are
viewing. This intuition is often lost when the visualization
session ends; it remains in the user’s mental world. We wish
to attempt to find ways to integrate this mental view of the
data with the actual data. We can attempt to record these
private mental views by recording the provenance of the
visualization, i.e. the sequence of operations applied to the
data to create the individual user’s view. The first software
to bring the concept of provenance into visualization was
VisTrails [20], [21]. In VisTrails, the changes to the pipeline
and parameter values are captured, allowing to review and
compare previous versions. We share a similar aim in respect
to maintaining data provenance, but our method differs in the
type of metadata that is being captured from the user’s visual
exploration. Due to the nature of the data we deal with in this
paper, fine details of the user’s selection and manipulation
of the objects being visualized (not only the parameter
values selected, e.g. to define isosurfaces) are required to
identify features. Thus, the extracted feature objects, as a
result of user’s visual interpretations, are explicitly saved. A
categorization of provenance techniques were presented in
surveys by Simmhan et al. [22] and Ikeda et al. [23].

In order to maintain users data provenance coherently with
the data, we need to create data structures that contain both;
thus the original data becomes progressively enhanced as
the users visualize it. An architecture needs to be developed
that can incorporate this enhancement in a scalable manner.
Al-Naser et. al. [24] were first to introduce the concept of
feature-aware parallel queries to a database in order to create
a volume in real time ready for direct volume rendering. In
this approach, features—which are classically represented
by meshes—are stored as points tagged into the database;
thus queries are “feature-aware”. Their work was inspired
by Brooke et al. [25] who discussed the importance of data
locality in visualizing large datasets and exploited the (then)
recently available programmable GPUs for direct rendering
without the creation of geometric objects based on meshing.
This definition of “feature-aware” differs from that used
by Zhang and Zhao [26] in which an approximation is
applied for time-varying mesh-based surfaces to generate
multi-resolution animation models while preserving objects’
features.



With the rapid advances in the capabilities of GPUs, direct
volume rendering techniques such as 3D texture slicing [27]
and GPU-based ray casting [28] have become more efficient
for interactive visualization on a large uniform grid. The
latter was inspired by the introduction of shading languages
such as OpenGL Shading Language (GLSL). We exploit
such standard techniques in our architecture to support the
primary claim in this paper; we plan to utilize other advanced
techniques in future to deal with different data structures,
e.g. unstructured spatial data.

B. Seismic Visualization in the Oil and Gas Industry

In this paper, we apply our method on seismic imaging
data from the oil and gas industry. To acquire seismic
data, acoustic waves are artificially generated on the earth’s
surface and reflect from subsurface geological layers and
structures. Due to the variation of material properties, these
waves are reflected back to the surface and their (1) ampli-
tudes and (2) travel time are recorded via receivers [29]. This
data is then processed to generate a 2D or 3D image illus-
trating the subsurface layers. A 2D seismic profile consists
of multiple vertical traces. Each trace holds the recorded
amplitudes sampled at, typically, every four milliseconds.
Seismic imaging is then interpreted by a geoscientist to
extract geological features such as horizons and faults. This
interpretation potentially identifies hydrocarbon traps: oil
or gas. Due to the continuous demand on hydrocarbon
resources, geoscientists are seeking efficient visualization
which can be centrally managed for greater collaboration
and rapid decision making.

The SEG-Y format has been used by the industry to store
seismic data since mid 1970s. SEG-Y structure consists
of a textual file header, a binary file header and multiple
trace records. Each trace record consists of a binary trace
header and trace data containing multiple sample values;
more details can be found in the SEG-Y Data Exchange
Format (revision 1) [30].

Data in a SEG-Y file is stored sequentially and there-
fore retrieval of seismic data for a 3D visualization could
negatively affect interactivity. For this reason, seismic vi-
sualization and interpretation applications, such as Petrel
[9], offer an internal format which stores seismic data in
multi-resolution bricks for fast access; this is based on
the Octreemizer technique by Plate et. al. [2]. This has
been a successful approach in visualizing very large seismic
data. However, data management is still a challenge, mainly
in managing multi-user interpretations and moving data
between users and applications; this was confirmed to us
through out working with geo-scientists from the oil and gas
industry. Current seismic applications often use proprietary
internal formats and also represent and store interpreted
surfaces such as horizons and faults in separate objects.

III. DATA-CENTRIC VISUALIZATION FRAMEWORK

In this section, we propose a data-centric visualization
framework which stores users’ interpretations back to the
central database for reusability and knowledge sharing. For
this purpose, we build our data structure on a parallel rela-
tional database management system (RDBMS). We call this
spatially registered data structure (SRDS) (Section III-A).
Since our data structure is stored in a relational database
rather than in raw image files and geometric objects, we
require an intermediate stage which builds in real time a
volume in a format which can be directly rendered on
the GPU. We call this a feature-embedded spatial volume
(FESVo) (Section III-B).

A. Spatially Registered Data Structure (SRDS)

Our visual analysis method shifts from the classic static
raw file system into a central data structure built on a
relational database. This is to cater for the highly-structured
relational modeling required by the integrated analytics
paradigm of enterprise-scale business computing. This struc-
ture mainly features: (1) on-the-fly indexing using a hashing
algorithm for direct access to data units and efficient update,
(2) global spatial reference on all datasets (those of one type
resides on a single table), (3) interpretation tagging which
accumulate users’ interpretations into the database and (4)
concurrent access allowing parallel multi-threading queries
from multiple users; this is described as follows.

Figure 1 illustrates the database schema of SRDS. Tables
SRDS TRACE and SRDS hold the datasets of seismic
traces (raw data) and users’ interpretations of features,
respectively. The data is indexed on the combination of (x,y)
coordinate and source ID (src id). A source ID groups data
units of one source under a unified identification (ID). The
property ID (prop id) field describes the type of the property
value (prop val) exists at an (x,y) location. For example,
a property ID of 1 describes a seismic trace type data, a
property ID of 2 describes a horizon geological feature and
a property ID of 3 describes a fault geological feature. The
vertical distance (z) adds a third dimension and timestamp
(ts) allows versioning. The main difference between the two
tables is the type of the property value (prop val) field.
The property value field of SRDS TRACE table is of a
customised binary-based type to hold trace samples; this is
equivalent to 1D data. For SRDS table, the property value
(prop val) field may either represent a single measured value
(e.g. porosity, permeability) or an identification to which
geological body (e.g. horizon) this raw belongs; we adopt
the latter at this stage. Thus, we store users’ interpretations
of geological features as a cloud of points; each point is in
a row.

Table SRC serves as a source metadata table. It identifies
the type of a source (e.g. raw readings, user interpretation,
etc). It also determines the boundary of the dataset and



SRDS

src_id integer

x decimal (18,5)

y decimal (18,5)

z decimal (18,5)

twtt integer

ts timestamp

prop_id integer

prop_val decimal (18,5)

SRC_SRC_GRPING_HIST

src_grp_id integer

src_id integer

src_grp_src_rel_type_cd integer

src_src_grp_eff_ts timestamp(0)

src_src_grp_end_ts timestamp(0)

SRDS_TRACE

src_id integer

x decimal (18,5)

y decimal (18,5)

z decimal (18,5)

twtt integer

ts timestamp

prop_id integer

prop_val WaveletUDT

SRC

src_id integer

src_ds varchar(9000)

src_type_id integer

x_min decimal(18,8)

x_max decimal(18,8)

y_min decimal(18,8)

y_max decimal(18,8)

twtt_min decimal(18,8)

twtt_max decimal(18,8)

amplitude_min decimal(18,8)

amplitude_max decimal(18,8)

Sample_Interval decimal(18,8)

Samples_per_Trace integer

1

n

1

n

1

n

Figure 1. This diagram illustrates SRDS database schema. Abbreviations used here are as follows; src id: source identification; src ds: source description;
twtt: two-way-travel time; ts: timestamp; prop: property; rel type cd: relation type code; eff ts: effective timestamp; end ts: end timestamp.

range of the amplitude values in the trace sample. Ta-
ble SRC SRC GRPING HIST (source-to-source group-
ing history) allows data provenance. The table links related
interpretations and determines the relation type: e.g. inser-
tion or deletion. The different source ID for each source of
an interpretation and the timestamp field make this operation
possible. In Section IV-B we discuss how we utilize the
above structure allowing multi-user interpretations.

Using a hashing algorithm [31], the location of the re-
quired row can be determined through hashing functions
without a construction or storage complexity. This allows
retrieval and writing back from and to the database at a
complexity that is proportional only to the working dataset
(the size of the dataset being retrieved or written back) and
not to the total size of the tables.

B. Feature-Embedded Spatial Volume (FESVo)

The indexing and parallel capabilities of the data structure
(SRDS) is utilized to perform parallel queries, and an on-the-
fly downsampling if a lower resolution is required, resulting
in an intermediate volume which can be directly rendered
on the GPU. We call this mechanism a feature-embedded
spatial volume (FESVo). We use a standard rendering tech-
nique to visualize this volume which is the data supplied by
SRDS format.

In FESVo, a loading mechanism is required to map
between the different coordinate systems: (1) geographical
coordinate in SRDS, (2) intermediate volume coordinate
in FESVo and (3) texture coordinate in the GPU. The
dimension of the intermediate volume (FESVo) is calculated
based on user requests of what region to fetch and thus
visualize. We explain these processes in Section IV-A.

IV. ARCHITECTURE

In this section we explain how we use our framework
in an architecture to visualize as well as store back users’
interpretations of an exploratory spatial dataset.

As illustrated in Figure 2, the architecture links the
SRDS on a database to one or more on-the-fly created
FESVo through parallel feature-aware and global spatially-
referenced queries which results in a parallel streaming of
data units. FESVo, on the other side, is linked to a rendering
engine. Users’ interpretations are stored back to SRDS. In
our current work, we directly store interpretations to SRDS
and rebuild the intermediate local volume (FESVo) with the
newly added data; in future work we can optimize this by
caching users’ interpretations in FESVo then later store it
into SRDS.

A. Data Loading

The following processes take a place within the archi-
tecture during data loading. A rendering engine requests a
ready texture buffer to be directly rendered from FESVo
based on a user request of desired datasets. Inside FESVo, a
data loader calculates FESVo’s current dimension (Section
IV-A1) and performs coordinate mapping (Section IV-A2)
between SRDS, FESVo and the GPU texture buffer. Upon
the user’s request, the data loader works out the data units
required to build the texture buffer. For each data unit, it first
checks its internal cache. The data unit, if found, is placed
in the texture buffer at the computed (mapped) position. If a
data unit is, otherwise, not cached, the unit is added to one of
a number of queues in a load balancing manner. Each queue
is associated with a thread. After completing the search in
the internal cache of FESVo, the threads start, each with
its queue of data units (locations) to be concurrently fetched
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Figure 2. This is a conceptual diagram of a data-centric visual analysis
architecture which consists of three loosely coupled components. The (1)
spatially registered data structure (SRDS) on a centrally located database is
linked to multiple on-the-fly created (2) feature-embedded spatial volume
(FESVo) through parallel connections. FESVo is linked to (3) a renderer
engine. Users’ interpretations are directly fed back to SRDS; FESVo is
then refreshed. Dashed arrows indicate SQL queries from FESVo to SRDS
(0.2–0.7KB each) or requests for a texture buffer from a renderer to FESVo.
Full arrows indicate data units transfer from the database to FESVo (around
4KB each), a texture buffer from FESVo to a renderer (multiple of mega
bytes) or updates from users to SRDS.

from the database. Each fetched data unit is loaded to FESVo
and placed in the texture buffer at the computed position.
As we are using a hashing algorithm to index the dataset,
data retrieval is performed at a complexity of O(k), where k
is the number of data units being fetched from the database;
this is independent of the total size of the table (dataset).

1) Calculation of Volume Dimension: In this section,
we assume that the data has been loaded in SRDS format
into the database. At the launch of a visualization session,
metadata of the region of interest is retrieved; a region of
interest can be determined via the source ID in SRDS.
Since datasets in SRDS are stored and retrieved through
their global geographical locations, we divide the region of
interest into global cells which have a real-world dimension.
Seismic data is often regularly distributed and thus we aim
to divide the region such that each global cell contains one
spatial data unit that corresponds to one cell (voxel) in the
local volume.

We calculate the dimension of the global cells based on
the raw data; features data is neglected for this calculation.
For this we use the original SEG-Y file’s header (as ex-
plained in Section II-B) to indicate the dimension of the
region as: inlines (number of traces in the X direction) ⇥
cross-lines (number of traces in the Y direction) ⇥ samples
per trace (trace length). We also use the headers information
to calculate the dataset width and depth by knowing the
Cartesian coordinates of the four vertices that make the
rectangle shape of the top view, and using the Euclidean
distance between two points formula. Thus, we can find the
global cells width and depth as follows, using the ceiling
function to round up:

GlobalCellWidth = dRegionWidth

CrossLines

e (1)

GlobalCellDepth = dRegionDepth

InLines

e (2)

2) Coordinate Mapping and Levels-of-Detail: The archi-
tecture deals with three coordinate systems: (1) texture coor-
dinate (s, t, r)—as in OpenGL, (2) local volume coordinate
(localX, localY, localZ) per level-of-detail and (3) global
geographical coordinate (x, y, z).

The mapping between coordinates takes place on the top
view X-Y plane. At this stage of our work, no mapping is
performed on the z-axis; a seismic trace is fully loaded to
a 1D texture location (s, t). This is because the trace length
of raw seismic data is, usually, fixed across one dataset and
relatively small, around 200 to 2000 samples per trace; each
sample is a 4-byte floating point.

As each global cell corresponds to one cell (voxel) in the
local volume, these local cells become the highest resolution
level (LOD0). Each subsequent level halves the dimension
of its previous one; i.e. we rely on a decimation-based
technique for downsampling. Since SRDS and, thus, the
calculated global cells are regularly structured, a low reso-
lution image can be obtained through direct downsampling;
cells of higher levels-of-detail (lower resolution) are mapped
to cells at LOD0 based on a regular decimation. Only one
resolution version (the highest) of the dataset exists and real-
time mapping is performed for lower resolution levels.

3) Data Lookup: A global cell, in our seismic case,
represents a subsurface dataset from a rectangular area (e.g.
12⇥12 meter square) in the real-world. In texture world, this
is mapped to a single 1D dataset. To search inside a global
cell in the database, we can choose between two modes:
(1) general discovery mode and (2) specific cached mode.
We maintain both modes and perform one depending on the
task.

In the first mode, we have no knowledge in advance about
the exact coordinates of the data units; thus, it is a discovery
mode. To query the database for a dataset which lies in a
global cell, we explicitly query every possible location (x,y)
with a minimum step (e.g. 1 meter). The reason why explicit
values of x and y are provided in the query is to perform
hash-based point-to-point queries and avoid a full table scan
by the database. Due to the massive size of seismic datasets
and because we place all raw seismic datasets in a single
table for multi-datasets access, we always attempt to avoid
a full table scan which leads to a performance proportional
to the table size.

In the specific mode, we pre-scan the tables for the
required region and dataset source(s) and then cache all
the (x,y) coordinates, using a sorted table. Starting with the
texture coordinate we need to load, the mapped geographical
coordinate is calculated: (xInitial, yInitial). As all valid data
coordinates are cached on the client, we can efficiently look
for a point (xTrue, yTrue) which lies on the location of the
current global cell. Having a valid and explicit coordinate,
a point-to-point query is executed per required global cell.



This mode overall performs at a complexity of O(k), where
k is the number of data units returned; this is regardless of
the table size and number of datasets in the table.

B. Multi-user Input with History Tracking

Using the structure explained in Section III-A, multiple
users can interact by adding or changing others’ interpre-
tations while maintaining data provenance. For a user to
insert some interpretations as an extension to another user’s
work, we do the following. We create a new entry in the
grouping table linking the user’s source ID to the source
ID of the original interpretation to which the extension is
applied. In this entry we insert a timestamp and the relation
type of this grouping which is insertion in this case, since
the user is inserting a new interpretation. Then, we insert
the points which form the user’s new interpretation into the
features table with his/her user ID and the earlier timestamp
inserted in the grouping table. In the case of deleting a
previously created interpretation, the relation type would be
deletion instead and we insert the points which the user
wants to delete in the features table with his/her ID and
the grouping timestamp. By doing so, we accumulate users’
interpretations and do not physically delete but tag as deleted
so users can roll back chronologically.

To retrieve a geological feature which involved multiple
users in interpretation, we query the database such that we
add points of an insertion relation type and subtract points
of deletion relation type. Such points can be identified via
the source ID and timestamp, linked to the grouping table. A
pseudo query is presented in Section V-B. We can roll back
and visualize how a feature was interpreted chronologically
by controlling the timestamp in the query.

V. IMPLEMENTATION

At the current stage, referring to Figure 2, SRDS is
implemented on a Teradata database virtually running on a
64-bit Windows Server 2003 and both FESVo and the ren-
derer engine are deployed on laptop and desktop machines
equipped with graphics cards of 256MB to 1GB of memory.
We use standard SQL for queries and data updates.

In addition, the implementation provides functionalities
including the following:

1) Selection of a seismic survey and available interpreted
geological features based on user IDs.

2) Setting parameters prior to loading such as local
texture size and number of parallel threads.

3) Visualization of the selected datasets using a basic
texture mapping rendering technique.

4) Amendment to a horizon object collaboratively.
5) The ability to go back in history to view how a feature

object was formed by different users.
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Figure 3. Seismic datasets on the database is initially prepared from SEG-
Y files for raw data and geometry files for geological features. Amendment
to feature objects (addition/deletion) is later updated directly from users to
the database.

A. Data Input into SRDS

In our case, the data is initially prepared from SEG-Y
files and geometry as illustrated in Figure 3. We start from
post-stack 3D seismic conventional files (SEG-Y format) and
extract traces, which are 1D vertical subsurface readings of
amplitude values. The trace data is loaded into the database
tagged with its geographical location, which is extracted
from the trace header. Geological features, which were
previously interpreted by users, are obtained in the form of
geometry. This is converted into an (x,y,z) cloud of points
and loaded into the database. Then, the on-going users’
amendments to the features are directly stored in the same
format, as a cloud of points with proper tagging.

B. Data Query

Referring to Section IV-B, we retrieve a geological fea-
ture, which was interpreted by multiple users, by performing
the following pseudo query, where ts means timestamp.

SELECT p o i n t s from SRDS
WHERE s o u r c e i d = <b a s e l i n e >

UNION
SELECT p o i n t s from SRDS
JOIN g r o u p i n g t a b l e
ON s o u r c e i d

AND t s



AND r e l a t i o n t y p e = INSERTION

EXCEPT
SELECT p o i n t s from SRDS
JOIN g r o u p i n g t a b l e
ON s o u r c e i d

AND t s
AND r e l a t i o n t y p e = DELETION

In this query, the baseline is the original interpretation
which was first imported from an external source. We control
the history tracking by manipulating the timestamp value.

C. Rendering Engine

At this stage, we adopt a back-to-front textured slice
mapping rendering technique [27] along with a shader
program, using OpenGL Shader Language (GLSL). Two
texture objects (buffers) exist at any time: one for seismic
raw data (volumetric datasets) and the other one is for all
geological features.

VI. RESULTS AND CASE STUDIES

The following are case studies illustrating the proposed
architecture. In these cases, we assume that the feature
extraction process, which often involves human interactions
with some automations, are provided from an external
source. These cases were performed by geoscience literate
postgraduate students and senior staff. To them, these cases
are simple tasks that may take part in their interpretation
work flow. We selected these tasks only for the purpose
of demonstrating the functionality of our architecture, such
that provenance of users’ interpretations is maintained using
a two-way visualization pipeline with a central relational
database. In the following, we define a case then explain
how technically it is achieved on our architecture.

A. Case 1: Horizon Time Shifting

In this case study, the user can adjust a horizon by shifting
its two-way-travel time (TWTT). Graphically, this time is
the z axis of an early-stage seismic imaging data; it is later
converted into real depth. The process of time shifting a
horizon can be done in several ways in respect to selecting
where the shift is applied. In our implementation, we allow
the user to select the following:

1) the horizon to which the shift is applied
2) a seed point
3) a shift value (+/-) (e.g. 50 milliseconds)
4) a diameter value to which the shifting is applied (e.g.

400 meters)
After setting these parameters, we start a deletion type

grouping in SRDS linked to the original interpretation source
ID and tagged with this user ID and a current timestamp.
Then, all points lying within the selected diameter are
inserted into the database in parallel threads, tagged with

1.#Dele$on'grouping'
Original#&#User’s#Source#IDs#

Timestamp#=#t1#

2.#Affected'Points'
User’s#Source#ID#
Timestamp#=#t1#

3.#Inser$on'grouping'

Original#&#User’s#Source#IDs#
Timestamp#=#t2#

4.#New'Points'
User’s#Source#ID#
Shi?ed#TWTT#
Timestamp#=#t2#

Grouping)
Table)

Features)
Table)

Figure 4. This figure shows the steps taken in interaction with the database
for a user to shift a previously interpreted horizon.

User: A
Time: t1
User: A
Time: t1 User: B

Time: t2

User: A
Time: t1

Figure 5. The left screenshot shows an interpreted horizon by user A at
time t1. The right screenshot shows a partially shifted horizon by user B
at time t2.

the user ID and the timestamp. Next, we end the deletion
type grouping and start an insertion type grouping in SRDS
with the same user ID but a new current timestamp. Then,
all points laying within the selected diameter are inserted
into the database in parallel threads, with a new time value
calculated in respect to the original value (this calculation
is performed on the database) and tagged with the user ID
and the new timestamp. Then we end the grouping. Thus,
user amendment is saved while the original interpretation is
maintained centrally with the original dataset. These steps
are illustrated in Figure 4.

As described in Section V-B, using an SQL statement
which links the features table with the grouping table, we
can query the latest form of the feature; see Figure 5. At
this stage, we do not cache users’ amendments into FESVo.
Thus, we clear FESVo and reload it.

In current seismic visualization applications, any small
adjustment to a feature object means a new whole object
to be saved. In our case, we just apply the process on the
affected area and then build the form of the current version.

B. Case 2: Deletion of an Interpreted Object with History
Tracking

In this case study, we assume that two users have added
into an existing interpretation of a horizon from a particular
source. A senior (more expert) user later visualized both



interpretations and decided that one is more accurate than
the other and therefore wanted to delete the less accurate
interpretation.

The expert user can select a session with a data insertion
tag to delete. As in Case 1, we start a deletion type grouping
in SRDS tagged with this user ID and a current timestamp.
Then, a single update query containing the user ID and
timestamp of the session to be deleted is executed. This
results in re-inserting the points of this session but tagged
with the expert user’s ID and a timestamp of the created
deletion type grouping. We then end this grouping.

As in Case 1, we refresh FESVo and reload the latest
version of interpretations which includes the original (previ-
ously existed) version and the additional interpretation by
the more accurate user; see Figure 6. In current seismic
visualization applications, we would face a similar issue as
pointed in Case 1.

As we record a timestamp when starting a grouping
between different interpretation sources, we can go back
in history to visualize earlier versions. In this case study,
as well as the first one, users can get a list of previous
interpretations. Upon selecting one, the user has a choice
of either visualizing only the selected version or an accu-
mulation of the previous sessions until the selected one.
The timestamp of the selected version is the key of the
SQL statement explained in Section V-B. In current seismic
visualization applications, users extract a complete version
of their interpretations (usually in files) and thus it is
challenging to walk through subversions by different users.

C. Performance Measure
Our current aim is to achieve data provenance with an

acceptable performance. Our tests and cases were performed
on laptop and desktop machines equipped with graphics
cards of 256MB to 1GB of memory. The database was
running virtually on a 64-bit Windows Server 2003. The total
size of the tables, which mainly include seismic imaging
datasets and users’ interpretations, were around 35GB.

Over a local area network (LAN), we were able to initially
load the seismic traces at a level of detail with a lower
resolution of one seismic volume in around 7 to 8 seconds;
this level had a size of 38MB. The feature object (horizon)
was loaded in around 1 to 2 second(s); both traces and
the feature object forms the output is illustrated in Figures
5 or 6. The loading process used 4 threads concurrently.
Each SQL command is a multi-statement request consists
of a maximum of 16 point-to-point queries. Each query is a
fetch request of a macro previously set up to query a single
trace or a set of feature points against a unique geographical
location (x,y). It appeared to us that the fetching time from
SRDS is less than fetching a SEGY file located remotely in
a network storage; see Table I.

By experiment, we found that the number of threads to
run concurrently is preferred to be multiple of the database’s

Data Source Fetching Time
Local Drive 2.6s

NAS 1 38.4s
NAS 2 76.7s
SRDS 29.0s

Table I
THE TABLE SHOWS THE FETCHING TIME FOR A 155MB-DATASET FROM
FOUR DIFFERENT SOURCES: USING A CONVENTIONAL SEGY FILE ON A

LOCAL DRIVE AND NETWORK ATTACHED STORAGES ON TWO
DIFFERENT LOCATIONS (NAS1 AND NAS2), AND USING OUR

ARCHITECTURE WITH SRDS WHICH WAS PHYSICALLY LOCATED NEAR
NAS2.

!77.81!!

!45.36!!

!32.75!! !31.17!! !31.44!! !30.84!!

!20.00!!

!30.00!!

!40.00!!

!50.00!!

!60.00!!

!70.00!!

!80.00!!

1! 2! 3! 4! 5! 6!
Av

er
ag
e'
Ti
m
e'
Pe

r'S
ta
te
m
en

t'(
m
s)
'

Number'of'Threads'

Effect'of'Threads'on'Average'Time'Per'Statement'

Figure 7. The number of threads to run concurrently is preferred to be
multiple of the database’s parallel modules. Using a high speed connection
and a database with 4 parallel modules, the throughput becomes stable
after 4 concurrent threads. This test was using the general query mode as
explained in Section V-B.

parallel units, known by Teradata1 as Access Module Pro-
cessor (AMP) [32]. The database used in our tests has
four AMPs. Thus, as shows on the graph of Figure 7, the
throughput becomes stable when using four threads or more.
This would only be the case when performing the queries
on a fast connection, as is the case with the test of Figure
7. When using a slower connection, more threads, up to a
limit, would boosts the overall throughput as the number of
threads overcomes the slowness in connections.

VII. CONCLUSION AND FUTURE WORK

In this paper we have demonstrated a proof of concept
of our data-centric approach to data provenance in feature-
rich visualization, applying this to seismic imaging data
as a case study. Our method represents and accumulate
users’ interpretations of geological features as metadata and
combine it with the raw seismic data into one storage. We
link this to a renderer through a loading mechanism and also
allow users’ amendments of interpretations to flow back as
new metadata to the data storage. In this paper, we have
presented case studies that illustrated the system’s ability of
allowing users to amend others’ interpretations and trace the
history of amendments.

1Teradata: a data warehousing company (www.teradata.com)



Original Source
User: A
Time: t1
[insertion]

User: B
Time: t2
[insertion]

User: A
Time: t1
[insertion]

User: A
Time: t1
[insertion]

User: C
Time: t3
[deletion]

Figure 6. From left, the second screenshot shows some interpretation added to the original one (first one from left) by User A at time t1. The third
screenshot shows more contribution by User B at time t2. The fourth screenshot, an expert user (User C) decided to delete the interpretation by User A
due to, for example, lack of accuracy. The interpretation of User A is in fact not deleted but tagged as deleted. Users, therefore, can go back in history
and visualize previous versions of interpretations.

Our plan for the future is to integrate our architecture
with feature extraction methods. In the case studies of this
paper, we assumed that the feature extraction process are
provided from an external source. As a future work, we plan
to integrate feature extraction techniques, such as the work
presented by Höllt et. al. [6], into our architecture. Also, we
plan to extensively evaluate our architecture with users.

In addition, it is vital to test our methods on massive
datasets due to the nature and demand of the oil and
gas industry. At this stage, we have tested our method
on a data of around 35GB in size; this includes seismic
imaging datasets and multiple users’ interpretations. Our
methods are currently working with a relational database
that is capable of supporting four concurrent threads without
performance degradation due to time slicing. As discussed
in the background section, parallel databases have shown
reliable performance results. Based on this, we plan to
scale our implementation into massive parallel processing
databases to support massive datasets at a high performance.

Finally, in this paper we have considered only seismic
imaging datasets. However, our method can potentially be
extended to support other types of data, such as oceano-
graphic. We plan to explore this in future.
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treemizer: a hierarchical approach for interactive roaming
through very large volumes,” in Data Visualisation. Eu-
rographics Association, 2002, pp. 53–60.

[3] L. Castanie, B. Levy, and F. Bosquet, “VolumeExplorer:
Roaming Large Volumes to Couple Visualization and Data
Processing for Oil and Gas Exploration,” in IEEE Visualiza-
tion, vol. im. Ieee, 2005, pp. 247–254.

[4] J. C.-R. Lin and C. Hall, “Multiple oil and gas volumetric
data visualization with GPU programming,” Proceedings of
SPIE, vol. 6495, pp. 64 950U–64 950U–8, 2007.

[5] D. Patel, O. y. Sture, H. Hauser, C. Giertsen, and M. Eduard
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