
THE JUSTIFICATORY STRUCTURE

OF OWL ONTOLOGIES

A thesis submitted to the University of Manchester

for the degree of Doctor of Philosophy

in the Faculty of Engineering and Physical Sciences

2013

By

Samantha Patricia Bail

School of Computer Science

Contents

Abstract 9

Declaration 10

Copyright 11

Acknowledgements 12

1 Introduction 13

1.1 Errors in OWL ontologies . 16

1.2 Justification based debugging support 17

1.2.1 Understanding justifications 18

1.2.2 Justificatory structure . 20

1.2.3 Beyond debugging . 22

1.3 Research objectives . 23

1.4 Contributions . 24

1.5 Thesis structure . 25

2 Background and related work 28

2.1 Description logic knowledge bases 29

2.1.1 DL syntax and semantics 29

2.1.2 Standard reasoning services 32

2.1.3 The Web Ontology Language OWL 36

2.2 Errors in OWL ontologies . 39

2.2.1 Logical errors . 40

2.2.2 Non-logical errors . 43

2.2.3 Debugging ontologies . 44

2.3 Justifications for entailments of ontologies 45

2.3.1 Justification based repair 48

2.3.2 Computing justifications 50

2.3.3 Understanding individual justifications 53

2.3.4 Understanding multiple justifications 60

2.4 Alternative approaches to debugging 61

2

2.4.1 Proofs . 62

2.4.2 Ontology revision . 62

2.4.3 Direct computation of diagnoses 63

2.4.4 OntoClean . 64

2.4.5 Ontology comprehension 64

2.5 Summary and conclusions . 65

3 Defining finite entailment sets 67

3.1 Design decisions for finite entailment sets 68

3.1.1 Tautologies . 69

3.1.2 Asserted and inferred axioms 70

3.1.3 Transitivity . 71

3.1.4 Equivalent classes . 74

3.1.5 Strict and non-strict subsumptions 75

3.1.6 Equivalence to top and bottom 76

3.1.7 Axiom and expression types 77

3.1.8 Dealing with ontology imports 79

3.2 A notation for finite entailment sets 81

3.2.1 Introducing the notation 81

3.2.2 Axioms and expressions 82

3.2.3 Wanted and unwanted entailments 82

3.2.4 Sample entailment sets . 83

3.3 Entailments in OWL applications 85

3.3.1 Inferred ontology generation in the OWL API 86

3.3.2 Presenting entailments to end-users 86

3.3.3 Ontology publishing . 87

3.3.4 Metrics and analytical applications 87

3.3.5 Imported and native entailments in BioPortal 88

3.4 Summary and conclusions . 89

4 The justificatory structure of OWL ontologies 91

4.1 Categories of justifications and entailments 92

4.1.1 Self-justifications and self-supporting entailments 92

4.1.2 Atomic subsumption chains 93

4.1.3 Complex justifications . 94

4.1.4 Categorising entailments and ontologies 95

3

4.2 Representing justifications as j-graphs 96

4.2.1 J-graph definition . 96

4.2.2 J-graph generation . 98

4.3 Justificatory structure . 99

4.3.1 Axiom properties . 100

4.3.2 Properties of justifications 103

4.3.3 Relations between justifications 104

4.4 Summary and conclusions . 107

5 Justification isomorphism 109

5.1 Isomorphism . 111

5.2 Subexpression-isomorphism . 112

5.2.1 Representing equivalence classes 117

5.3 Lemma-isomorphism . 119

5.3.1 Restrictions on lemmatisations 121

5.3.2 Lemmatisations and obvious steps 122

5.3.3 Non-transitivity . 124

5.4 Equivalence and superfluity . 125

5.5 Implementing an isomorphism checker 126

5.5.1 Algorithm and implementation 127

5.5.2 Optimisations . 128

5.5.3 Limitations due to syntactical differences 130

5.5.4 Extending the j-graph . 132

5.6 Summary and conclusions . 133

6 Coping strategies 135

6.1 Debugging problems . 136

6.1.1 Defining debugging problems 137

6.1.2 Justification encounters . 138

6.2 Measuring effort . 140

6.2.1 The complexity of individual justifications 140

6.2.2 A model for user effort . 143

6.3 Coping strategies . 144

6.3.1 Characterising justification sets 145

6.3.2 Justification overlap . 146

6.3.3 Isomorphism relations . 149

4

6.3.4 Combining isomorphism and overlap 151

6.4 Summary and conclusions . 152

7 A survey of justificatory structure 153

7.1 The BioPortal corpus . 153

7.1.1 Properties of the corpus 154

7.1.2 Justification corpus preparation 154

7.2 Results of the BioPortal survey 158

7.2.1 Entailment types . 158

7.2.2 Occurrence of multiple justifications 159

7.2.3 Justification overlap . 162

7.2.4 Justification isomorphism 168

7.3 Discussion . 177

7.3.1 Justification types and frequency 177

7.3.2 Overlaps . 178

7.3.3 Isomorphism . 180

7.3.4 Limitations . 181

7.4 Summary and conclusions . 182

8 Conclusions 184

8.1 Summary of contributions . 184

8.1.1 Design decisions for finite entailment sets 184

8.1.2 Justificatory structure and justification isomorphism . . . 185

8.1.3 Reducing user effort . 186

8.1.4 Experimental results . 186

8.2 Significance of results . 187

8.3 Future directions . 189

A Ontologies in the test corpus 213

Word Count: 54,391

5

List of Tables

2.1 ALC constructors and semantics. 32

3.1 Entailment set properties and keys 82

3.2 Ontologies and imported entailments in the NCBO BioPortal. . . 88

7.1 Overview of the data in sets Ssa and Su. 156

7.2 Overview of OWL 2 profiles. 157

7.3 Overview of the basic ontology metrics in the corpus. 158

7.4 Entailment types in sets Ssa and Su. 159

7.5 Root and derived justifications in Ss and Su. 165

7.6 Mean times (in seconds) per ontology for isomorphism detection. . 169

7.7 Template frequency and coverage across the corpus. 173

7.8 Most frequent templates for lemma-isomorphism across the corpus. 176

7.9 Comparison of reductions in Ss and Ssl. 177

6

List of Figures

1.1 Screenshot of multiple justifications in the Protégé 4 ontology editor. 15

2.1 A screenshot of the Explanation tab in Protégé 4. 47

2.2 A screenshot of the Repair tool in Swoop. 49

2.3 Three justification patterns for C1 v C2. 59

3.1 Class graphs representing the transitive reducts of O and O′. . . . 73

3.2 Asserted and inferred class graphs of a toy ontology. 84

3.3 Screenshot of the ‘Selected Entailments’ tab in Protégé 4 87

4.1 A decision tree for categorising entailments. 95

4.2 An example of a j-graph for justifications and entailments. 97

4.3 J-graph illustrating axiom frequency, impact, semantic relevance. . 100

5.1 Three justifications which are s-isomorphic via transitivity. 115

5.2 Parse tree of a justification. 127

5.3 An extended j-graph containing four template nodes. 132

6.1 Different representations of a justification for A1 v A6. 141

7.1 The justification corpus preparation workflow. 155

7.2 Frequency of multiple complex justifications in the corpus. 161

7.3 Axiom frequency, impact, and semantic relevance. 164

7.4 Overlap frequency with and without outlier ontologies. 166

7.5 Comparison of reduction caused by isomorphism types. 171

7.6 Template frequencies for strict and lemma-isomorphism. 174

7

List of key terms

active axiom, 102

activity, 102

alleviation factor a, 142

atomic subsumption chain, 92

bridging axiom, 105

cognitive complexity, 57

debugging problem, 135

diagnosis, 50

effort score c, 140

entailment set εK, 34

fine-grained justifications, 52

frequency, 99

graph component, 103

hitting set, 50

impact, 100

negative, 101

positive, 101

inferential power, 106

isomorphism

lemma-, 120

strict, 110

subexpression-, 112

j-graph, 95

justification J , 44

justification axioms JustAx(εO), 95

justification graph, 95

justification set Justs(η), 44

justificatory redundancy, 102

justificatory structure, 98

laconic justification, 52

masking

cross, 54

external, 54

internal, 54

shared cores, 55

minimal conflict set, 50

overlap, 104

preferred template Θp, 117

proofs, justification based, 56

repair, 47

minimal, 47

root and derived, 60

self-justification, 91

self-supporting entailment, 92

semantic relevance, 101

summarising lemmatisation, 120

surface pattern, 103

template Θ, 112

unwanted entailments ε−O, 82

wanted entailments ε+
O, 82

8

Abstract

The Web Ontology Language OWL is based on the highly expressive description

logic SROIQ, which allows OWL ontology users to employ out-of-the-box rea-

soners to compute information that is not only explicitly asserted, but entailed

by the ontology. Explanation facilities for entailments of OWL ontologies form

an essential part of ontology development tools, as they support users in detect-

ing and repairing errors in potentially large and highly complex ontologies, thus

helping to ensure ontology quality.

Justifications, minimal subsets of an ontology that are sufficient for an entail-

ment to hold, are currently the prevalent form of explanation in OWL ontology

development tools. They have been found to significantly reduce the time and

effort required to debug erroneous entailments. A large number of entailments,

however, have not only one but many justifications, which can make it consider-

ably more challenging for a user to find a suitable repair for the entailment.

In this thesis, we investigate the relationships between multiple justifications

for both single and multiple entailments, with the goal of exploiting this justifica-

tory structure in order to devise new coping strategies for multiple justifications.

We describe various aspects of the justificatory structure of OWL ontologies,

such as shared axiom cores and structural similarities. We introduce a model for

measuring user effort in the debugging process and propose debugging strategies

that exploit the justificatory structure in order to reduce user effort. Finally, an

analysis of a large corpus of ontologies from the biomedical domain reveals that

OWL ontologies used in practice frequently exhibit a rich justificatory structure.

Date of submission: 26/04/2013

9

Declaration

No portion of the work referred to in this thesis has been

submitted in support of an application for another degree

or qualification of this or any other university or other

institute of learning.

10

Copyright

i. The author of this thesis (including any appendices and/or schedules to

this thesis) owns certain copyright or related rights in it (the “Copyright”)

and she has given The University of Manchester certain rights to use such

Copyright, including for administrative purposes.

ii. Copies of this thesis, either in full or in extracts and whether in hard or

electronic copy, may be made only in accordance with the Copyright, De-

signs and Patents Act 1988 (as amended) and regulations issued under it

or, where appropriate, in accordance with licensing agreements which the

University has from time to time. This page must form part of any such

copies made.

iii. The ownership of certain Copyright, patents, designs, trade marks and other

intellectual property (the “Intellectual Property”) and any reproductions of

copyright works in the thesis, for example graphs and tables (“Reproduc-

tions”), which may be described in this thesis, may not be owned by the

author and may be owned by third parties. Such Intellectual Property and

Reproductions cannot and must not be made available for use without the

prior written permission of the owner(s) of the relevant Intellectual Property

and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication

and commercialisation of this thesis, the Copyright and any Intellectual

Property and/or Reproductions described in it may take place is available

in the University IP Policy (see http://documents.manchester.ac.uk/

DocuInfo.aspx?DocID=487), in any relevant Thesis restriction declarations

deposited in the University Library, The University Library’s regulations

(see http://www.manchester.ac.uk/library/aboutus/regulations) and

in The University’s policy on presentation of Theses.

11

http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=487
http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=487
http://www.manchester.ac.uk/library/aboutus/regulations

Acknowledgements

I would like to thank my supervisors Bijan Parsia and Uli Sattler for their support,

enthusiasm, and patience with me throughout this PhD, and the DL-istas in the

IMG and BHIG for their ideas and the many interesting discussions in our office,

in particular Colin Puleston who kindly took on the task of saving my broken

code. I would also like to thank Sebastian Rudolph for contributing a crucial

counter-example, Linda Macauly for the great practice viva, and, of course, my

examiners, Stefan Schlobach and Caroline Jay. And finally, I want to thank my

family who have been so supportive over the course of my seemingly never-ending

studies.

12

Chapter 1

Introduction

Since its standardisation by the W3C in 2004, the Web Ontology Language OWL

[W3C09] has become a widely used language for representing ontological knowl-

edge across a wide spectrum of domains, ranging from chemistry to bio-health

informatics and medical data. In its latest revision, OWL 2 [CHM+08], an OWL

ontology corresponds to a set of axioms in the highly expressive description logic

SROIQ(D) [HKS06] that make statements about the classes, properties, and

individuals in an ontology, as well as the relations between them. OWL ontol-

ogy development often resembles traditional software development: from the first

design to a release candidate, axioms and entities are frequently added, modi-

fied, and removed, with a vast array of tools supporting the ontology engineers

throughout the development process.

Explanation tools provide support to ontology developers attempting to un-

derstand why an ontology entails a certain—potentially incorrect—piece of in-

formation. Explanation fulfil several purposes: first, an explanation can help an

ontology user understand why a certain entailment holds, which may lead to a

better overall understanding of an ontology. Second, explanations are crucial in

the ontology debugging process, as they point the user towards those axioms in

the ontology which are responsible for the error.

Justification based explanation support [SC03, KPSH05, Hor11a] for OWL

ontologies is the most prevalent form of explanation in current OWL development

tools, with editors such as Protégé 4 and Swoop1 providing justification based

debugging tools. A justification J for an entailment η of an ontology O is a

minimal subset ofO which is sufficient for η to hold. Justifications have two major

benefits: the minimality of a justification prevents the tedious process of searching

through the ontology in order to find the responsible axioms, while also allowing

users to focus on a (usually) small subset of the ontology. Furthermore, since a

justification simply consists of axioms occurring in O, ontology developers do not

1https://code.google.com/p/swoop/

13

https://code.google.com/p/swoop/

14 CHAPTER 1. INTRODUCTION

have to learn any additional mechanisms or notations in order to understand the

explanation.

Due to the nature of OWL ontologies, it is possible for any given entailment

to have not only one, but multiple justifications; worse even, we know that an en-

tailment can potentially have exponentially many justifications [BPS07a]. While

we have found that, on average, the number of multiple justifications is well be-

low this exponential threshold [BHPS11], even small numbers of justifications for

an entailment can pose a significant challenge for ontology developers wanting to

understand all the reasons why an entailment holds. More importantly, in order

to remove an unwanted entailment, we need to break all its justifications; a task

which can often be tedious and lead to the loss of wanted entailments due to the

removal of more axioms than necessary.

There exist a number of techniques which aim to support users’ understanding

of single justifications for single entailments: fine-grained justifications [KPC06,

LPSV06, HPS08] reduce the axioms in justifications to their relevant parts and

remove superfluous information; justification based proofs [HP10] provide addi-

tional, intermediate proof steps to explain subsets of justifications; and natu-

ral language proofs [NPPW12a] attempt to improve understandability of an ex-

planation by abstracting from the logical formalism. Furthermore, there have

been several approaches to investigating the cognitive complexity of justifications

[HBPS11a, NPPW12a], with the aim of gaining insights into what causes justifi-

cations to be easy or difficult for human users to understand.

On the other hand, the issue of understanding and repairing multiple justifica-

tions for single or multiple entailments has only received little attention; in OWL

editors, multiple justifications are generally simply displayed as a long, scrollable

list of axiom sets, as shown in Figure 1.1. In order to reduce the effort involved

in repairing multiple justifications, Kalyanpur et al. [KPSH05] introduced root

and derived justifications, where a root justification is a strict subset of a derived

justification. Thus, breaking a root justifications also breaks all justifications

that are derived from it. Kalyanpur [KPSC06] and Lam [Lam07] also introduced

axiom rankings which rank axioms based on their occurrence in multiple justifi-

cations based on the idea that removing or rewriting a single axiom that occurs

in multiple justifications causes less effort while also leading to the loss of fewer

wanted entailments. Both root and derived justifications and axiom rankings

make use of the relations between multiple justifications in the form of subset

15

Figure 1.1: Screenshot of multiple justifications in the Protégé 4 ontology editor.

relationships and shared axioms, respectively. This gives rise to the question

whether there exist other relations between multiple justifications which can be

exploited in order to reduce user effort when attempting to understand or repair

multiple justifications for single and multiple entailments.

The core research objective of this thesis is to identify aspects of the justifi-

catory structure of OWL ontologies, that is, the set of relations and metrics of

justifications for a given set of entailments of an OWL ontologies. These rela-

tions can take the form of justification overlaps of varying degrees and structural

similarity between justifications, while we are also interested in metrics such as

the number of justifications for an entailment or the frequency with which an ax-

iom occurs in multiple justifications. Based on these relations, we then propose

techniques which can reduce the user effort required to understand and repair

multiple justifications. Finally, we investigate the occurrence of these relations in

a large set of OWL ontologies in order to determine whether and to which extent

the proposed measures can be applied to OWL ontologies used in practice.

16 CHAPTER 1. INTRODUCTION

1.1 Errors in OWL ontologies

Due to its foundations in description logics [BCM+03] and the availability of

highly optimised description logic reasoners, OWL ontology modellers and users

can apply automated reasoning techniques to elicit not only explicitly asserted

knowledge in the ontology, but also implicit information which is entailed by the

ontology. This makes it possible to model complex hierarchical relations without

the need to make explicit every single relation between sub- and super-classes.

For example, an ontology which contains the axioms Cat v Carnivore (‘every Cat

is a Carnivore’) and Carnivore v Animal (‘every Carnivore is an Animal’) also entails

the statement Cat v Animal, without having to explicitly state it.

Some OWL ontologies, such as the National Cancer Institute (NCI) Thesaurus

ontology [dCHS+04], undergo a highly dynamic iterative development process,

with a team of developers working to produce monthly updates to the ontology.

As ontology re-use and sharing on the web is highly encouraged, existing OWL

ontologies may be imported, or merged into newly built ones. OWL editing

tools, such as the Protégé 4 editor,2 allow ontology developers to create large

and complex ontologies; we often find OWL ontologies that contain thousands

of classes and axioms which are highly interlinked across the ontology [WPH06,

HPS11].

All these processes can lead to various errors in the resulting ontology. The

type of error we focus on in this thesis is the occurrence of unwanted entailments.

These may either assume the form of unsatisfiable classes and ontology inconsis-

tency, which are generally considered to be errors that should be eliminated from

an ontology, or the presence of an entailment which is considered to be incor-

rect with respect to the domain knowledge modelled in the ontology. Similar to

the debugging process in software development, debugging an OWL ontology in-

volves finding those parts of the ontology that cause the problem, then modifying

or removing them in order to rectify the error.

Due to the large size and often complex structure of OWL ontologies, finding

and repairing these errors without appropriate tool support can be a daunting and

error-prone task: simply removing those parts of the ontology which are suspected

to cause the error may result in a significant loss of relevant information, but is not

guaranteed to sufficiently repair the ontology. This is where explanation comes

2http://protege.stanford.edu/

http://protege.stanford.edu/

1.2. JUSTIFICATION BASED DEBUGGING SUPPORT 17

into play: on an abstract level, an explanation for an entailment of an ontology

is a statement, or a set of statements, which traces the source of the error and

explains to the user what information in the ontology lead to the entailment and

how it does this.

Explanation has a long history in research on intelligent systems (e.g. [Cla81,

BS84a]). It has been considered an important component of expert systems, such

as MYCIN [BS84b], since the early 1980s, not just for the purpose of debugging

a system, but also for tasks such as learning about the information modelled in

the system, and convincing human experts of the system’s correctness. Because

of its role in these tasks, explanation is thought to enhance both the correctness

and the acceptance of an intelligent system. Russell and Norvig [RN03] illustrate

this point with an example of the role explanation facilities play in user-facing

expert systems:

‘A leading expert on lymph-node pathology describes a fiendishly dif-

ficult case to the expert system, and examines the system’s diagnosis.

He scoffs at the system’s response. Only slightly worried, the creators

of the system suggest he ask the computer for an explanation of the

diagnosis. The machine points out the major factors influencing its

decision and explains the subtle interaction of several of the symptoms

in this case. The experts admits his error, eventually.’

1.2 Justification based debugging support

Explanation can assume various forms, such as a trace of rules in rule-based

expert systems [BS84b], or proofs in logic-based systems [BFH99, McG96]. In

OWL tools, explanation generally takes the form of a pinpoint of the set—or

sets—of axioms that cause the entailment to hold, which we commonly denote

as justifications. The following example illustrates the idea of justification based

debugging support:

Example 1.1.

(1) Cat v Carnivore (5) PetOwner ≡ Human u ∃hasPet.Animal

(2) Carnivore ≡ Animal u ∀eats.Animal (6) Cat v ∃eats.Mouse

(3) Plant v ¬Animal (7) SickCat ≡ Cat u ∃eats.Grass
(4) Grass v Plant (8) ∃eats.> v Animal

18 CHAPTER 1. INTRODUCTION

The ontologyO comprising the axioms in the above example makes statements

about the entities in the domain of animals and their eating habits.3 Several

other statements follow logically from O, for example Cat v Animal (‘everything

that is a Cat is an Animal’), and the unsatisfiability of the classSickCat, which is

expressed as SickCat v ⊥ where ⊥ represents the ‘bottom’ concept, or Nothing in

OWL lingo. In ontology development tools, such unsatisfiable classes are usually

highlighted to make the user aware of them, for example by rendering them in

red colour, or arranging them as a subclass of Nothing.

Unsatisfiable classes are commonly regarded as errors, as they cannot have

any instances. An ontology developer would want to repair the error by re-

writing or removing some of the axioms responsible for causing it. Without a

debugging tool, the user has to browse the ontology, find the responsible axioms,

and apply modifications they consider appropriate. Providing a justification for

the entailment, however, allows the user to focus directly on the responsible

axioms, thus clearly reducing the effort involved in finding a suitable repair—and

preventing the user from going down the ‘wrong path’ or giving up their search

for the ‘needle in the haystack’.

In our example ontology, there exists exactly one justification for the en-

tailment SickCat v ⊥, namely the set consisting of the axioms Cat v Carnivore,

Carnivore ≡ Animal u ∀eats.Animal, Grass v Plant, SickCat ≡ Cat u ∃eats.Grass,
and Plant v ¬Animal. The contradiction stems from the fact that Cat is asserted

to be an Animal which only eats other Animals, but SickCat eats Grass, which

is asserted to be a Plant, thus not an Animal. There are different approaches

to repairing this error, such as weakening the restriction that a Carnivore eats

only Animals; however, as we can already see from this small example, finding

an appropriate repair without weakening or sacrificing too much information is

a non-trivial task and requires the user to understand the relations between the

axioms in the justification.

1.2.1 Understanding justifications

Repairing an entailment becomes more challenging as the number of justifications

for an entailment grows. Given the entailment Cat v Animal from the above ontol-

ogy in example, we can find two justifications: the set consisting of the two axioms

Cat v Carnivore and Carnivore ≡ Animal u ∀eats.Animal, and the second, perhaps

3For the purpose of this example, we assume the statement ∃eats.> v Animal to be correct.

1.2. JUSTIFICATION BASED DEBUGGING SUPPORT 19

less obvious, justification containing Cat v ∃eats.Mouse and ∃eats.> v Animal. A

user who wants to understand why Cat v Animal follows from the ontology will

be presented with both justifications; if this entailment was unwanted, the user

would have to understand and break both justifications in order to remove it from

the ontology.

Assume the user is faced not only with a small toy ontology like the one

above, but with a large and complex ontology, containing several thousand classes,

properties, individuals, and axioms. The number of justifications for a single

entailment can grow exponentially in the number of axioms in the ontology, with

several thousand found in some ontologies used in practice [BHPS11]. And still,

if the user wants to ensure that the entailment no longer holds in the ontology,

every single justification has to be broken. While it is possible for a user to inspect

and modify every justification in isolation, this approach is time-consuming and

error-prone. What we need is a strategy that helps users cope with multiple

justifications and supports them in finding an appropriate repair.

The question of how users interact with justifications once they have been

computed has been receiving some attention over the past few years [KPC06,

LPSV06, HPS10b, HBPS11b]. Depending on the respective task, whether the

explanation is requested to fix an error or to aid understanding of an entailment,

this interaction can assume different shapes and objectives. For the purpose of

debugging, users may regard a minimal repair as crucial, that is, removing an

error while losing as little other information as possible. This may be achieved by

modifying the given justifications to make them easier for users to understand,

or, when dealing with multiple justifications, by identifying axioms which occur

across several justifications.

In case of the former, fine-grained justifications [LPSV06, KPC06, HPS08] are

variants of justifications which are as weak as possible and do not contain any su-

perfluous expressions that could possibly distract a user from the actual cause of

the entailment. Such fine-grained justifications have been defined more precisely

as laconic and precise justifications [HPS08], with suitable and efficient algorithms

to compute them for entailments of OWL ontologies. In the above example, the

justification {Cat v Carnivore, Carnivore ≡ Animal u ∀eats.Animal} for the entail-

ment Cat v Animal can be re-written into its laconic version {Cat v Carnivore,

Carnivore v Animal}, which reduces the second axiom to its relevant parts. While

fine-grained justifications might make it easier to understand a single justification,

20 CHAPTER 1. INTRODUCTION

they do not support understanding multiple justifications for an entailment.

Dealing with multiple justifications, either for individual or for multiple en-

tailments, has been somewhat facilitated by the introduction of root and derived

justifications [PSK05] which assist in the repair of multiple unsatisfiable classes: a

root justification is a subset of a derived justification; breaking the root justifica-

tion also breaks all those justifications which are derived from it. As an example,

assume we add the axiom SickCatOwner ≡ PetOwner u ∃hasPet.SickCat to the on-

tology. The class SickCatOwner will then be unsatisfiable, but its unsatisfiability

depends entirely on the unsatisfiabilty of the class SickCat. Thus, SickCatOwner is

a derived unsatisfiable class, whereas SickCat is the root cause. Root and derived

justifications, as used in the ontology editor Swoop, have been successfully shown

to reduce user effort when debugging multiple entailments [KPSH05].

1.2.2 Justificatory structure

The debugging tool in the Swoop editor by Kalyanpur [KPS+06] was the first

attempt to make use of the relations between justifications in order to support

the user in finding a suitable repair for multiple justifications. In addition to root

and derived information, the repair tool also presents metrics for the axioms in

the justifications, such as the axiom frequency (the number of justifications an

axiom occurs in), impact (the number of entailments an axiom affects), and usage

(of terms occurring in the axiom). Based on these metrics, the tool computes a

rank for each axiom, with the lowest ranked axioms being suggested for removal

or modification. This provides users with important guidance on where to start

repairing a set of justifications.

This approach makes use of the fact that there exist structural relations be-

tween justifications, such as shared axioms of various extents, ranging from single

axioms to subset relationships, as in the case of root and derived justifications. In

other words, given a set of entailments of an ontology and their justifications, we

can identify the justificatory structure of the ontology, that is, the set of features

and relations of its justifications.

Despite the potential usefulness for improving debugging support for multiple

justifications and the insights we can gain into the relationships between entail-

ments of OWL ontologies, their justifications, and the axioms they contain, there

has been no further exploration of the justificatory structure of OWL ontologies.

Therefore, one of the main goals of this thesis is to identify the different aspects of

1.2. JUSTIFICATION BASED DEBUGGING SUPPORT 21

justificatory structure of ontologies, to investigate potential applications of these

relations in the debugging process, and to establish how prevalent these structural

aspects are in OWL ontologies used in practice.

Shared axiom relationships, such as root and derived justifications, are only

one aspect of justificatory structure. Another interesting phenomenon we of-

ten find in OWL justifications is the similarity between justifications, as we can

see in the well-known Pizza tutorial4 ontology: take, for example, the entail-

ment Fiorentina v InterestingPizza, which has over 200 justifications. The fol-

lowing example shows three of those justifications; Fiorentina is abbreviated to

Fi, hasTopping to hasTop, InterestingPizza to IP, and > is the description logic

notation for the top concept Thing which stands for ‘any element in the domain’.

Example 1.2.

(1) Fi v NamedPizza Fi v NamedPizza

(2) NamedPizza v Pizza NamedPizza v Pizza domain(hasTop,Pizza)

(3) Fi v ∃hasTop.Tomato Fi v ∃hasTop.Tomato Fi v ∃hasTop.Tomato

(4) Fi v ∃hasTop.Olive Fi v ∃hasTop.Mozzarella Fi v ∃hasTop.Garlic
(5) Fi v ∃hasTop.Spinach Fi v ∃hasTop.Olive Fi v ∃hasTop.Spinach
(6) Spinach v ¬Tomato Mozzarella v ¬Tomato Spinach v ¬Tomato

(7) Spinach v ¬Olive Mozzarella v ¬Olive Spinach v ¬Garlic
(8) Olive v ¬Tomato Olive v ¬Tomato Garlic v ¬Tomato

(9) IP ≡ Pizzau ≥ 3hasTop.> IP ≡ Pizzau ≥ 3hasTop.> IP ≡ Pizzau ≥ 3hasTop.>

While these justifications may look complicated at first, they can all be easily

summarised as follows:

• Axioms 1-2 (2-3 in the last justification): Fiorentina is a Pizza.

• Axioms 3-5: Fiorentina has three kinds of toppings.

•

Axioms 6-8: These three toppings are pairwise disjoint, that is, no ele-

ment in the domain can be a member of several of the listed toppings at

the same time.

•
Axiom 9: Anything that is a Pizza and has at least three toppings is an

InterestingPizza.

Despite the fact that the justifications contain different axioms, we can im-

mediately see that they are very similar and that it suffices to understand the

reasoning in the abstract explanation in order to understand the concrete exam-

ples. Since Fiorentina is defined to have six different toppings, the justifications

4http://owl.cs.manchester.ac.uk/tutorials/protegeowltutorial/

http://owl.cs.manchester.ac.uk/tutorials/protegeowltutorial/

22 CHAPTER 1. INTRODUCTION

for Fiorentina v InterestingPizza are all combinations of three toppings, variations

on the reasons why these toppings are pairwise disjoint, and variations of the

reasons why Fiorentina is a Pizza.

This adds another goal to our investigation of justificatory structure: to deter-

mine a set of equivalence relations that allow us to identify such structural similar-

ities, and to investigate how prevalent these similarities are in OWL ontologies—

or whether the Pizza ontology is just a unique case. The presence of structural

similarity provides us with a starting point for lifting justifications from their ma-

terial form to an abstract explanation template, which could drastically reduce

the cost of understanding the logical structure of each individual justification.

This, in turn, reduces the overall effort a user has to apply in order to debug an

entailment with multiple structurally similar justifications.

1.2.3 Beyond debugging

While we put strong emphasis on the debugging aspect of justifications, we may

also consider their suitability for other purposes in the ontology development

process. In the same way that explanation in expert systems serves multiple

purposes, we can use justifications in OWL ontologies for tasks beyond debug-

ging, such as ontology comprehension and exploration, ontology learning, and

generating ontology metrics.

Ontology comprehension [Kee07, BSP09] describes the process of a person

understanding what knowledge is modelled in an ontology and how it is mod-

elled; this is of particular relevance to users attempting to use or integrate an

existing ontology they are not familiar with. We believe that examining a set of

entailments and their justifications can help users gain insights into the relations

between the pieces of information contained in the ontology, thus enhancing their

understanding of the ontology. Going back to the Pizza example above, we can

see that by inspecting only a small number of justifications and their abstract

template, we already have some understanding of the basic reasoning behind all

classes in the ontology which are entailed to be an InterestingPizza.

Another potentially useful application of justifications is ontology metrics :

ontology editors commonly display a set of metrics of an ontology, such as the

number and types of axioms, the number of entailments, and the logical expres-

sivity based on the constructors used in the ontology. These ontology metrics

allow users to infer information about the size and complexity of the ontology,

1.3. RESEARCH OBJECTIVES 23

its richness of modelling (that is, the level of detail used to describe a class),

and even its general quality [TAM+05, AB06]. Justification based metrics, such

as the numbers of justifications per entailments, the relations between them, and

their structural similarities, add another layer to the existing suite of ontology

metrics. These metrics can be used to compare the quality, uniformity, and ‘inter-

estingness’ of ontologies based on their modelling. For example, we may consider

an ontology which contains multiple justifications for its entailments to be more

‘richly’ modelled than an ontology which only contains single justifications.

1.3 Research objectives

In summary, the main goals of this thesis are to explore the notion of ‘justifica-

tory structure’ of OWL ontologies, to investigate the landscape of justificatory

structure in ontologies used in practice, and to suggest approaches to using the

justificatory structure in order to reduce user effort in the ontology debugging

process.

First, we aim to gain a clearer understanding of the landscape of justifications

in OWL ontologies. Our goal is to determine how prevalent multiple justifications

are in OWL ontologies and what shapes (size, axiom types) these justifications

commonly assume. We want to identify a set of relations between justifications

which go beyond root and derived unsatisfiable classes, taking into account both

shared axioms and shared axiom sets between justifications.

This includes structural similarities between justifications: we want to find

a (reasonable) set of equivalence relations that allow us to capture similarities

between justifications and group them based on their abstract explanation tem-

plates. Taking these relations, we want to know whether they commonly occur

in OWL ontologies found ‘in the wild’ and how prevalent they are in order to see

how effectively they can be used to summarise multiple justifications.

Second, we look at justificatory structure in order to address the problem

of coping with multiple justifications in a debugging and repair scenario. We

first need to pin down the basic notion of effort required to solve a debugging

task involving multiple justifications before we can identify ways of exploiting the

justificatory structure in order to reduce the effort ontology users have to spend

when debugging one or multiple entailments.

24 CHAPTER 1. INTRODUCTION

1.4 Contributions

• We provide a set of design decisions for representing finite sets of entail-

ments of OWL ontologies and discuss the benefits and drawbacks of the

various options. This has practical implications for the display of selected

entailments in OWL editors and for the use of entailments as a measure

of the information content in ontologies. It also informs the generation

and analysis of justifications for finite entailment sets in the context of this

thesis.

• We introduce the notion of the justificatory structure of OWL ontologies

which allows us to characterise structural relations between justifications

for both single and multiple entailments. This includes the characterisation

of various aspects of justificatory structure, such as justification properties,

axiom properties, and axiom overlap between justifications.

• We introduce two relations between justifications, subexpression-isomorphism

and lemma-isomorphism, which group justifications into sets of structurally

similar ones. This grouping then allows us to represent a set of similar jus-

tifications by an abstract justification template, thus reducing the effort

involved in understanding multiple justifications to the effort required to

understand the abstract template.

• We pin down the notion of a debugging problem and present a model of

measuring effort for successfully solving debugging problems using justifi-

cations. We then propose strategies to exploit the justificatory structure

of a set of justifications in order to reduce user effort when dealing with

multiple justifications.

• Finally, we present the results of a survey of the justificatory structure of

OWL ontologies from the NCBO Bioportal. We find that a large num-

ber of OWL ontologies in the test corpus exhibit a very rich justificatory

structure, with frequently occurring multiple justifications, high extents of

overlaps, and high-frequency axioms. Using the newly introduced equiva-

lence relations, we find that the logical diversity of OWL justifications is

significantly lower than their numbers may indicate, with justification sets

being reduced to only 10% of their original size.

1.5. THESIS STRUCTURE 25

1.5 Thesis structure

In this section we give a brief overview of the structure and content of this thesis.

We also list the corresponding publications in peer-reviewed workshops, confer-

ences, and journals, where applicable.

Chapter 2, ‘Background and related work’, introduces the basic notions of de-

scription logic ontologies and the Web Ontology Language OWL. It categorises

the different types of errors users face in OWL ontologies and introduces the no-

tion of justifications as a debugging tool for OWL ontologies. It then presents a

detailed overview of the landscape of research into justifications, focussing on the

issues of justification computation and justification understanding.

In Chapter 3, ‘Defining finite entailment sets’, we will discuss the issue of choos-

ing and representing a finite entailment set of an OWL ontology, which lays the

foundations for the investigation of justifications in the following chapters. How-

ever, the chapter may also be considered as a self-standing contribution which

may be of relevance to future implementations in OWL development tools. Parts

of Chapter 3 have been published in:

[BPS11] Samantha Bail, Bijan Parsia, and Ulrike Sattler. Extracting finite sets

of entailments from OWL ontologies. In Proceedings of the 24th Interna-

tional Workshop on Description Logics (DL-11), 2011.

Chapter 4, ‘The justificatory structure of OWL ontologies’, constitutes one of

the three core chapters in this thesis. We introduce the notion of justificatory

structure and define several aspects of structure using a graph-based representa-

tion of the justifications and axioms occurring in justifications for a given set of

entailments. The work presented in Chapter 4 is based on previous publications:

[BPS10b] Samantha Bail, Bijan Parsia, and Ulrike Sattler. The justificatory

structure of OWL ontologies. In Proceedings of the 7th International Work-

shop on OWL: Experiences and Directions (OWLED-10), 2010.

[BHPS11] Samantha Bail, Matthew Horridge, Bijan Parsia, and Ulrike Sattler.

The justificatory structure of the NCBO Bioportal ontologies. In Proceed-

ings of the 10th International Semantic Web Conference (ISWC-11), 2011.

26 CHAPTER 1. INTRODUCTION

Chapter 5, ‘Justification isomorphism’, continues the investigation of justifica-

tory structure by introducing another relation, namely the structural similarity

between justifications. We first give several examples of structurally similar justi-

fications which motivate different notions of justification isomorphism, discuss the

importance of this similarity relation being an equivalence relation, and present

an algorithm for determining whether two justifications are isomorphic. The work

presented in Chapter 5 is based on the following publications:

[BPS12a] Samantha Bail, Bijan Parsia, and Ulrike Sattler. Diversity of reason:

Equivalence relations over description logic explanations. In Proceedings of

the 25th International Workshop on Description Logics (DL-12), 2012.

[BPS12b] Samantha Bail, Bijan Parsia, and Ulrike Sattler. Declutter Your Jus-

tifications: Determining Similarity Between OWL Explanations. In Pro-

ceedings of the First International Workshop on Debugging Ontologies and

Ontology Mappings (WoDOOM-12), 2012.

In Chapter 6, ‘Justification comprehension’, we discuss how the different aspects

of justificatory structure that were introduced in Chapter 4 and 5 can be used to

reduce effort for users attempting to understand or repair multiple justifications.

We define the notion of a debugging problem and introduce an alleviation factor

which can be used to measure the reduction in effort caused by a debugging strat-

egy. Some of the work in Chapter 6 has been motivated by our previous research

into how OWL users read and understand justifications, and what strategies they

use to help them cope with difficult justifications:

[HBPS11a] Matthew Horridge, Samantha Bail, Bijan Parsia, and Ulrike Sattler.

The cognitive complexity of OWL justifications. In Proceedings of the 24th

International Workshop on Description Logics (DL-11), 2011.

[HBPS11b] Matthew Horridge, Samantha Bail, Bijan Parsia, and Ulrike Sattler.

The cognitive complexity of OWL justifications. In Proceedings of the 10th

International Semantic Web Conference (ISWC-11), 2011.

[HBPS13] Matthew Horridge, Samantha Bail, Bijan Parsia, and Ulrike Sattler.

Toward cognitive support for OWL justifications. Accepted for publication

in: Knowledge-Based Systems, 2013.

Chapter 7, ‘A survey of justificatory structure’, presents an evaluation of the

measures introduced in the previous chapters by investigating the properties of a

large corpus of justifications extracted from OWL ontologies from the biomedical

1.5. THESIS STRUCTURE 27

domain. Our findings confirm that OWL ontologies used in practice often contain

justifications with highly interesting structural relations.

Finally, Chapter 8 concludes the thesis by summarising the main contributions

and discussing the relevance of the findings presented here. We also lay out the

directions for future research, which includes several open questions as well as

possible applications.

Chapter 2

Background and related work

Knowledge representation (KR) is an area of artificial intelligence research which

deals with representing knowledge using symbols, thus allowing the application

of automated reasoning techniques to infer new knowledge from given knowledge

[BL04]. KR forms the basis of knowledge-based systems, ‘intelligent’ systems

which make use of a knowledge base (KB) that contains told facts about some

domain, as well as procedures to reason over these facts and infer implicit knowl-

edge. While there exists a wide range of approaches to implementing knowledge-

based systems, such as logic programming [BG94], frames [Min74], and semantic

networks [Sow87], in this thesis we are dealing with description logics (DLs)

[BCM+03] as the underlying knowledge representation formalism for knowledge

bases. DLs are a family of logics based on a guarded fragment of first-order

logic which is more expressive than propositional logic, while still being decidable

[BCM+03].

This chapter introduces the basic concepts of description logics, which under-

pin the Web Ontology Language OWL [HPSv03, CHM+08]. It outlines the syntax

and semantics of description logics and fixes relevant notions such as axioms and

entailments of an OWL ontology. It also discusses the landscape of logical and

non-logical errors occurring in OWL ontologies, which motivates the need for

tailored debugging support. It then introduces justifications as an explanation

service for entailments of OWL ontologies, and reviews the literature dealing with

justification based explanation. This covers approaches to computing single and

multiple justifications, as well as the issues of understanding justifications, justi-

fication based repair of errors, and coping with multiple justifications, which is

the main focus of this thesis.

28

2.1. DESCRIPTION LOGIC KNOWLEDGE BASES 29

2.1 Description logic knowledge bases

In the first part of this chapter, we will give an introduction to the basic concepts

of description logics, such as the description logic syntax and semantics, and the

standard reasoning services used with description logic knowledge bases. We will

then discuss the relationship between description logics and the Web Ontology

Language OWL, and give a brief overview of the different applications of OWL.

2.1.1 DL syntax and semantics

DL syntax

The main building blocks of DLs are atomic concepts, roles, and individuals. With

respect to their relationship with first-order logic (FOL), concepts correspond to

unary predicates in FOL, roles to binary predicates, and individuals to constants.

These entities are used to create more expressive concept and role expressions

with the help of constructors, whereby the available constructors depend on the

expressivity of the respective DL. As a convention, we will be using the upper-case

letters A and B for atomic concepts and C, D, . . . for possibly complex concepts;

the lower-case letters r, s, . . . for role names, and the lower-case letters a, b, . . . for

individuals.

The basic description logic ALC (‘Attribute Logic with Complement’) [SS91],

which many other more expressive DLs build upon, allows concept expressions

as defined by the following grammar:

C,D ::= > | ⊥ | A | ¬C | C uD | C tD | ∃r.C | ∀r.C

Given a concept expression C, the modal depth of the expression is the max-

imum nesting depth of constructors in C. The length of an expression is the

number of occurrences of concept, role, and individual names, as well as con-

structors. For example, the expression Au∀r.(∃s.(B uC)) has a modal depth of

two and a length of nine.

Axioms

A description logic knowledge base K is generally regarded as a finite set of axioms

which are asserted in the KB. Axioms are sentences that make statements about

30 CHAPTER 2. BACKGROUND AND RELATED WORK

the domain knowledge modelled in the KB. The axioms in a KB are classified

into the sets of TBox, RBox and ABox axioms which are denoted as T , R, and

A, respectively: K = 〈T ,R,A〉. The signature sig(K) of a knowledge base K is

the set of all concept, role, and individual names occurring in K.

A TBox axiom α is either a subsumption (C v D) or equivalence (C ≡ D)

between two (possibly complex) concepts C and D in a knowledge base. A

subsumption axiom expresses that C is a sub-concept of D; that is, every instance

of C is also an instance of D. We can say that C ‘is-a’ D. Equivalence axioms

state that two concepts C and D are equivalent, which corresponds to (and is a

shorter notation for) a bi-directional subsumption C v D and D v C.

Subsumption and equivalence are also possible between roles, which are de-

scribed by RBox axioms:1 r v s specifies that r is a sub-role of s, which means

that every two individuals that have an r-relationship also have an s-relationship

between them. r ≡ s expresses that the two roles are equivalent. Further, we can

specify axioms containing role chains r ◦ s v t, which states that if an individual

a has an r-successor b, and b has an s-successor c, then it also holds that a has a

t-relationship with c.

ABox axioms make statements about the relations between individuals and

concepts, and between individuals and roles: C(a) expresses that the individual

a is an instance of the concept C, and r(a, b) specifies that there exists an r-

relationship between the individuals a and b.

As an example, we use a small knowledge base K = 〈T ,R,A〉 (with an empty

RBox R) that describes the eating habits of animals on an abstract level:

Example 2.1.

T = {Cat v Carnivore,Carnivore v Animal u ∀eats.Animal,

Plant v ¬Animal,Grass v Plant

PetOwner ≡ Human u ∃hasPet.Animal, ∃eats.> v Animal}

A = {Cat(Molly),Human(Alice), hasPet(Alice,Molly)}

The TBox of this example KB consists of axioms that make statements about

the concepts in the domain: cats are carnivores, a carnivore is an animal which

only eats animals, plants are disjoint with animals (i.e. no one thing can be a

1Note that the use of RBox axioms as described here already goes beyond the basic descrip-
tion logic ALC.

2.1. DESCRIPTION LOGIC KNOWLEDGE BASES 31

plant and an animal at the same time), grass is a plant, a pet owner is a human

who has an animal as a pet, and everything that eats something is an animal. The

ABox contains statements about individuals (Molly is a Cat, Alice is a Human),

and the relationship between them (Molly is Alice’s pet).

A TBox is called acyclic if it does not contain any axioms or chains of axioms

where an entity occurs in both the right- and the left-hand side of a subsump-

tion or equivalence. That is, an axiom of the type C v ∃r.C would cause a

TBox to be cyclic. Axioms containing only atomic concepts on the left-hand side

are called definitions, and an acyclic TBox containing only definitions where all

concepts on the left-hand side have unique names is called a definitorial TBox.

General TBoxes may contain general concept inclusion (GCI) axioms, which al-

low complex concept expressions on both the right- and the left-hand side, such

as ∃eats.> v Animal.

Naming conventions

The name of a description logic is generally comprised of mnemonics representing

the available constructors and axiom types in the respective logic: the letters N
and Q stand for unqualified (≥ nr, ≤ nr) and qualified number restrictions

(≥ nr.C, ≤ nr.C), respectively (for n ∈ N), F represents the functionality of

roles (≤ 1r), H stands for role hierarchies (r v s), I is the role inverse r−, R
stands for complex role inclusions of the type r ◦ s v r. The letter O denotes the

presence of nominals, which allows the use of individuals in the place of concepts

in TBox axioms: C v {a}.
Some notable description logics, besides the aforementioned ALC, include

S [HST99] which corresponds to ALC+ (ALC plus role transitivity), the less

expressive EL [Bra04] which allows existential quantifiers and intersection, EL++

[BBL05] which corresponds to EL plus complex role inclusions and nominals, and

the highly expressive logics SHOIN (D) [HPSv03] and SROIQ(D) [HKS06]

which underpin OWL and OWL 2, respectively. In the context of OWL, the

suffix (D) indicates the use of XML Schema2 datatypes.

2http://www.w3.org/TR/xmlschema11-2/

http://www.w3.org/TR/xmlschema11-2/

32 CHAPTER 2. BACKGROUND AND RELATED WORK

Model-theoretic semantics

The semantics of description logics is model-theoretic and given by interpreta-

tions. An interpretation I is a tuple 〈4I , ·I〉, where 4I is the interpretation

domain, that is, a non-empty set of elements, and ·I the interpretation function.

The interpretation function maps concept names A in the knowledge base to sets

AI ⊆ 4I , role names to sets rI ⊆ 4I × 4I , and individuals to elements in

4I . We call the set CI the extension of the concept C in I. The interpretation

function for concepts, roles, and individuals in ALC is defined in Table 2.1.

Table 2.1: ALC constructors and semantics.

Constructor Syntax Semantics

Top concept > 4I

Bottom concept ⊥ ∅
Concept negation ¬C 4I \ CI

Concept intersection (conjunction) C uD CI ∩DI

Concept union (disjunction) C tD CI ∪DI

Existential restriction ∃R.C {x | ∃y.I〈x, y〉 ∈ rI ∧ y ∈ CI}
Universal restriction ∀R.C {x | ∀y.I〈x, y〉 ∈ rI → y ∈ CI}

An interpretation I is a model for an axiom α if it satisfies α; we write I |=
α if CI ⊆ DI in I for a subsumption α = C v D, and if CI = DI in I for α an

equivalence axiom C ≡ D. A model of a knowledge base K is an interpretation I
in which all axioms in K are satisfied: I |= K. A tautology is an axiom which is

always satisfied; for example, the axiom A v A is a tautology, as AI ⊆ AI holds

in all models I of K.

2.1.2 Standard reasoning services

The ability to convey information without having to explicitly state it is one of

the main advantages of logic-based knowledge bases. A description logic reasoner

is a piece of software which implements a decision procedure for the standard

reasoning problems:

Consistency Given a knowledge base K, determine whether there exists an in-

terpretation I for K such that I |= K. If there exists such an interpreta-

tion, return ‘true’ (the KB is consistent), otherwise return ‘false’ (the KB

2.1. DESCRIPTION LOGIC KNOWLEDGE BASES 33

is inconsistent). All other reasoning services can be reduced to consistency

checking in logics that support conjunction and negation.

Satisfiability A concept C is satisfiable if there is some model of K in which C

is not empty: CI 6= ∅ in some I that is a model of K. C is unsatisfiable,

denoted as K |= C v ⊥, if it is mapped to the empty set in all models I of

the knowledge base.

Subsumption One of the main reasoning tasks in DLs is subsumption between

concept expressions, i.e. checking whether the extension of a (potentially

complex) concept C in K is a subset of the extension of another concept D

(CI ⊆ DI). The subsumption between two concepts where C is necessarily

interpreted as a subset of D is denoted as K |= C v D.

Equivalence Two concepts C and D are equivalent in the KB (C ≡ D), if

it holds that all elements of CI are in the set DI and vice versa, i.e. if

CI = DI , in all models I ofK. Equivalence is a special case of subsumption.

Instantiation Instantiation (or instance checking) checks which individuals are

instances of a particular concept: given an individual a, a concept C, and

a KB K, return ‘true’ if aI ∈ CI in all models I of K.

There exist a number of sound, complete, and terminating algorithms for

providing the above reasoning services, which are implemented by description

logic reasoners: Tableaux [DL96, Hor97, HST00, BS00] procedures attempt to

build a finite tree-like model of the concepts in the knowledge base using tableau

rules. The input is first translated into negation normal form (NNF) and then

decomposed according to the respective tableau rules. The nodes and edges in

the tree are labelled with the decomposed concepts and roles, respectively. A

clash in the tree occurs when the algorithm attempts to label a node in the tree

with contradictory concepts, such as an atomic concept A and its negation ¬A.

When no more rules are applicable to the concept fragments, or when a clash

occurs, the algorithm terminates. If some clash-free tree (i.e. some model) can

be found for a concept C, the concept is satisfiable. Likewise, if no clash-free

tree can be found, the concept has no models, i.e. it is unsatisfiable. The types

and usage of constructors in a description logic affect the types of rules used in

a tableau algorithm, which in turn can increase the computational complexity

of the reasoning algorithm. For instance, as some of the tableau rules are non-

deterministic (i.e. involve choice), the algorithm has to perform backtracking if

such a rule has been applied.

34 CHAPTER 2. BACKGROUND AND RELATED WORK

Entailments

An entailment η of a knowledge base K is an axiom that follows logically from

K. K entails η (K |= η) if η is true in all models I of K. The entailment relation

is monotonic in DLs, which means that entailments are preserved when further

axioms are added to the KB. Every axiom which is asserted in K is an entailment

of the knowledge base, while there are other entailments which represent implicit

knowledge in the KB. For example, the pet KB above explicitly asserts that

Cat v Carnivore and Carnivore v Animal u ∀eats.Animal. From these statements

we can conclude that every Cat is an Animal: K |= Cat v Animal.

Entailments are not restricted to any specific axiom type; for example, the ax-

ioms Cat v Carnivore and Carnivore v Animal u ∀eats.Animal also entail the state-

ment Cat v ∀eats.Animal. The set of all axioms which are valid in a description

logic L and entailed by a KB K is called the deductive closure of K:

Definition 2.1 (Deductive closure). The deductive closure K∗L of a knowledge

base K is the set of L-axioms entailed by K, i.e. K∗L = {α ∈ L | K |= α}. When

clear from the context, the subscript L is dropped.

Even KBs based on weakly expressive DLs have infinitely many entailments

(i.e. the deductive closure is infinite). The simplest example is the empty knowl-

edge base K over a non-empty signature sig(K) = {A} in the logic ALC. The

deductive closure of K then is the infinite set of all axioms that can be formed

using A and the available constructors in ALC:

K∗ = {A v A,A u A v A,A t A v A,A v A u >, . . .}

The term ‘entailment set’ generally refers to the set of all entailments of a

knowledge base K, which corresponds to the deductive closure of K and is poten-

tially infinite. However, the focus when constructing and analysing a knowledge

base often lies on the concept hierarchy of the KB, which is represented by its

entailed atomic subsumption axioms; thus, the term ‘entailment set’ is also fre-

quently used to denote a specific set of entailments of a knowledge base, such

as its entailed atomic subsumptions. In the context of this thesis, we simply

speak of an entailment set to denote a (potentially infinite) set of entailments

of a knowledge base K, which may also be restricted by some criteria such as

‘relevance’ of the axioms to the user:

2.1. DESCRIPTION LOGIC KNOWLEDGE BASES 35

Definition 2.2 (Entailment set). An entailment set εK of a knowledge base K is

a set of axioms {αi | 1 ≤ i ≤ n} ⊆ K∗.

An in-depth discussion of the issue of specifying useful finite entailment sets

follows in Chapter 3.

Incoherence

A concept C is unsatisfiable in a knowledge base K if there is no model I of K in

which CI is non-empty. This means that the concept cannot have any instances.

Unsatisfiability is caused by contradictory statements, such as C v D u ¬D. A

KB that contains some unsatisfiable named concept is called incoherent.

Continuing with the previous example KB, we can induce incoherence in K’

= 〈T ′,A〉 by adding the last TBox axiom which causes the concept SickCat to be

unsatisfiable:

Example 2.2.

T ′ = {Cat v Carnivore,Carnivore v Animal u ∀eats.Animal,

Plant v ¬Animal,Grass v Plant

PetOwner ≡ Human u ∃hasPet.Animal,∃eats.> v Animal,

SickCat ≡ Cat u ∃eats.Grass}

A = {Cat(Molly),Human(Alice), hasPet(Alice,Molly)}

The conflict is caused by the TBox axioms in K’ which entail that Cats are

Carnivores, thus eating only Animals, but that instances of SickCat eat Grass, a

concept which is a subconcept of Plant, thus known to be disjoint with Animal.

As, according to our knowledge base, there cannot exist a Carnivore who also

eats Grass, the concept SickCat cannot have any elements in any model I of K’:

SickCatI = ∅. Therefore, the concept SickCat is said to be unsatisfiable, and the

knowledge base K’ is incoherent.

Inconsistency

While incoherence itself does not cause any reasoner problems (as the concept

simply corresponds to the empty set in all models), instantiation of unsatisfiable

concepts causes the KB to be contradictory. If the axiom SickCat(Molly) is added

36 CHAPTER 2. BACKGROUND AND RELATED WORK

to the KB in which SickCat is unsatisfiable, it is not possible for the KB to have

any model in which this statement is satisfied. Such a knowledge base that has

no models is called inconsistent, which is denoted as K |= > v ⊥.

An inconsistent KB has the property that it entails everything that can be

expressed in the respective logic L—since it is contradictory, it cannot possibly

make any meaningful statements about the knowledge it models. Different ap-

proaches to reasoning with inconsistent knowledge bases have been explored, such

as paraconsistent reasoning [MHL07], or the selection of a consistent subset based

on a relevance function [HvHT05].

2.1.3 The Web Ontology Language OWL

From description logic to OWL

While ‘ontology’ is a term borrowed from philosophy, in computer science it de-

scribes a software artefact representing information about the entities in a domain,

and the relationships between them [Gru93]. In the remainder of this thesis, we

will use the term ontology (denoted by the letter O) to refer to a description logic

knowledge base which is represented in some machine-processable format, such

as OWL.

OWL is a successor of the web ontology language DAML+OIL [Hor02], a de-

scription logic based ontology language with an RDF/XML syntax which evolved

from merging DAML-ONT (a language developed by the DARPA Agent Markup

Language programme) and OIL (Ontology Inference Layer, developed by the Eu-

ropean On-To-Knowledge project). The first version of OWL, which is based on

the expressive description logic SHOIN (D) and was described as a ‘revision’ of

DAML+OIL, became an official W3C recommendation in February 2004.3

OWL may also be regarded as a more expressive successor to RDF (Resource

Description Framework) [W3C04b], a language to describe relationships between

entities using subject-predicate-object style triples, and RDFS (RDF Schema)

[W3C04a], an extension of the RDF vocabulary which introduces ‘meaningful’

predicates such as Class, subClassOf, and domain.

OWL 2, the successor of OWL, was made a W3C recommendation in 2009

[W3C09]. It comprises two species of different expressivities, namely OWL 2 DL

and OWL 2 Full. The underlying formalism of OWL 2 DL is the description logic

3http://www.w3.org/TR/owl-features/

http://www.w3.org/TR/owl-features/

2.1. DESCRIPTION LOGIC KNOWLEDGE BASES 37

SROIQ(D) [HKS06]. This highly expressive DL adds a range of constructors

and axiom types to those of ALC, such as complex role inclusions (represented by

the letter R), nominals (O), inverse roles (I), qualified number restrictions (Q),

and datatypes (D). While OWL 2 DL has the familiar description logic semantics

(Direct Semantics) described above, OWL 2 Full [W3C12] has an RDF-based

semantics, which is a superset of the OWL 2 Direct Semantics.

There exist several syntaxes for OWL [Hor10], such as the human-oriented

Manchester Syntax [HDG+06], various RDF formats, and an OWL/XML serial-

isation. The axiom Carnivore v Animal u ∀eats.Animal from the above example is

written as follows in OWL Manchester Syntax (keywords are set in italics):

Class : Carnivore

SubClassOf : Animal and eats only Animal

In addition to the different syntaxes, OWL also introduces corresponding

terms for the entities used in ontologies: concepts are referred to as classes, roles

become properties, the top concept > is referred to as Thing, and the bottom con-

cept ⊥ as Nothing. For the remainder of this thesis, we will switch to using OWL

lingo to refer to classes, properties, (sub-)expressions, and ontologies. Further, in

the context of this thesis we will simply regard OWL 2 DL as a syntactic variant

of SROIQ, using the name OWL in place of OWL 2 DL, unless otherwise stated.

Usage of OWL

OWL was designed with the aim of providing an expressive machine-processable

ontology language for use in various applications and domains. There exists a

wide array of tools and libraries for creating and editing OWL ontologies, such as

Protégé 4,4 Top Braid Composer,5 Swoop,6 the OWL API,7 a Java library that

gives access to a large number of ontology editing tasks and reasoner interfaces,

a number of highly optimised OWL reasoners, such as Pellet [SPC+07], HermiT

[SMH08], and FaCT++ [TH06], as well as reasoners which are tuned towards

specific subsets of OWL, such as ELK [KKS11], a reasoner for EL++ ontologies.

This broad set of OWL tools allows users to choose a suitable development

4http://protege.stanford.edu/
5http://www.topquadrant.com/products/TB_Composer.html
6https://code.google.com/p/swoop/
7http://owlapi.sourceforge.net/

http://protege.stanford.edu/
http://www.topquadrant.com/products/TB_Composer.html
https://code.google.com/p/swoop/
http://owlapi.sourceforge.net/

38 CHAPTER 2. BACKGROUND AND RELATED WORK

environment for their respective application requirements, and improved tool sup-

port is being regarded as one of the main reasons for the growing use of OWL

ontologies as a knowledge representation mechanism [HPS08].

OWL 2 profiles There exist three named ‘profiles’ for OWL 2, syntactic sub-

sets of OWL 2 DL that are tailored towards different applications, which trade

expressivity of the language for efficient reasoning:

The OWL 2 EL profile is a tractable fragment of OWL 2 which is based

on the description logic EL++ [BBL05]. OWL 2 EL omits some of the more

expressive OWL 2 constructors in favour of efficient reasoning (polynomial time),

which makes it attractive for use in ontologies that ‘contain very large numbers

of properties and/or classes’ [owl09].

OWL 2 QL (Query Language), which is based on the DL-Lite family of de-

scription logics [ACKZ09], has been defined for use in applications which focus

on query answering over large amounts of instance data. The queries executed

against OWL 2 QL ontologies can be rewritten into SQL queries, which allows

storing instance data in a standard relational database, thus significantly im-

proving query performance. OWL 2 QL is used for ontologies in Ontology-Based

Data Access (OBDA) systems, which combine OWL 2 QL reasoning with efficient

querying over relational databases [CGL+11, RMC12].

Reasoning systems for ontologies in the OWL 2 RL (Rule Language) profile

can be implemented using rule-based reasoning engines. Similar to OWL 2 QL,

the profile restricts the use of constructors to certain positions in axioms, e.g.

universal restrictions and negation are only allowed on the RHS of axioms. While

OWL 2 RL allows the use of a wider range of expressive constructors than the

other two OWL 2 profiles, these positional restrictions still yield efficient reasoning

performance.

Semantic Web The idea of a Semantic Web [BLHL01] marks a move away

from a human-oriented ‘web of documents’ towards a machine-oriented ‘web of

data’. By enriching web pages with semantic content we can express relationships

between entities on the web, thus allowing understanding of those relationships

by automated processes rather than direct human processing. This ‘meaningful’

interlinking of web content is thought to improve searching for and integrating

information on the web.

2.2. ERRORS IN OWL ONTOLOGIES 39

As a ‘source of shared, precisely defined terms’ [Hor02], ontologies play a

key role in the Semantic Web, with the majority of ontologies found on the

web using OWL or RDF(S) [Car07]. Examples of prominent OWL ontologies

on the web include the BBC Programmes and Wildlife ontologies,8 and the set

of geographical ontologies created by Ordnance Survey.9 However, while OWL

has been designed specifically as an ontology language for the Semantic Web,

its perceived complexity and unpredictable reasoning performance still prohibit

wider uptake by web application developers, for whom ‘a little semantics’ [Hen07]

in the form of RDF may often seem sufficient.

Medical informatics and life sciences OWL ontologies are frequently used

for the encoding of biological and medical knowledge as part of larger infor-

mation systems. Examples for intensively used and maintained medical OWL

ontologies include the SNOMED CT ontology10 which contains medical termi-

nology used in electronic health records, the OWL version of the International

Classification of Diseases (ICD-10) catalogue11 released by the World Health Or-

ganization (WHO), and the National Cancer Institute (NCI) thesaurus12 which

covers knowledge related to cancer, such as anatomy, findings, drugs, and genes.

There exists a vast array of biological ontologies of varying size and expres-

sivity, such as the Gene Ontology (GO), which aims to ‘standardize the represen-

tation of gene and gene product attributes’, the Experimental Factor Ontology

(EFO) which models variables in biological experiments, and various ontologies

describing the anatomy of species. Finally, the NCBO BioPortal [NSW+09] is a

prominent curated collection of biomedical ontologies that were created by a num-

ber of research groups which has received some attention in recent years as a pop-

ular test corpus for OWL ontology research [BHPS11, HPS11, HPS12, MMIS12].

2.2 Errors in OWL ontologies

OWL is a highly expressive ontology language which offers users a wide range of

constructors for modelling domain knowledge at a high level of precision. The

8http://www.bbc.co.uk/ontologies/
9http://www.ordnancesurvey.co.uk/oswebsite/ontology/

10http://www.ihtsdo.org/snomed-ct/
11http://www.who.int/classifications/icd/en/
12http://ncit.nci.nih.gov/

http://www.bbc.co.uk/ontologies/
http://www.ordnancesurvey.co.uk/oswebsite/ontology/
http://www.ihtsdo.org/snomed-ct/
http://www.who.int/classifications/icd/en/
http://ncit.nci.nih.gov/

40 CHAPTER 2. BACKGROUND AND RELATED WORK

downside of this expressivity is that constructors can be misinterpreted by users,

and combinations of otherwise correct axioms may lead to undesired side-effects.

Beyond side-effects caused by human users, common engineering tasks such as

translation of an ontology into OWL from some other formalism, automated

generation of an ontology using some input source, or integration of an existing

ontology, may also introduce errors into an ontology.

We can distinguish between two different types of errors: logical errors, which

require the use of a reasoner in order to be detected, and non-logical errors,

which include modelling inconsistency, reasoner performance issues, and annota-

tion problems. In this section, we will give an overview of the different errors

users may encounter in the OWL ontology development process, and describe

how these errors are commonly detected and repaired.

2.2.1 Logical errors

Unsatisfiable and tautological classes

A common logical error is the unsatisfiability of a named class A in an ontology

O, which implies that A cannot have any instances. While the unsatisfiability of

a class may be intentional (e.g. for testing purposes as suggested by the Protégé

4 OWL tutorial [Hor11b], to explicitly prohibit a certain definition for a class,

or to introduce a new name for ⊥), it mostly indicates a modelling error caused

by contradictory statements. Unsatisfiable classes are easily detected by a rea-

soner and are commonly highlighted as errors in OWL editing tools, for example

by rendering them in the colour red, or by arranging them as a subclass of ⊥
(Nothing).

Likewise, we call a class B in an ontology O tautological if O entails that

> ≡ B, that is, every class in the domain is entailed to be a subclass of B,

and every individual is entailed to be an instance of B. As with unsatisfiable

classes, a tautological class may be introduced on purpose to achieve that very

same effect. However, we know that tautological classes often occur accidentally

and without ontology users noticing or understanding why something is entailed

to be equivalent to > [HPS09]. This phenomenon may also cause unwanted side

effects, such as the unsatisfiability of a class that is asserted to be disjoint with

the tautological class, as we can find in the Movie ontology example [HPS09]

which we will describe in Section 2.3.3. While tautological classes can also be

2.2. ERRORS IN OWL ONTOLOGIES 41

detected by a reasoner, they are generally not treated as errors in OWL tools.

Inconsistency

By instantiating an unsatisfiable class, i.e. specifying that an individual is an

instance of an unsatisfiable class, an ontology becomes inconsistent, or contra-

dictory. Inconsistency can also be caused by a TBox which contains axioms that

prohibit any class from having a non-empty extension, for example by using an

axiom of the type A t ¬A v B u ¬B. Inconsistency is a severe logical error as

it causes the ontology to entail every axiom, which makes it impossible (under

standard semantics) to infer meaningful information from the ontology; this ren-

ders the ontology useless. In order to prevent the inconsistency of an ontology, it

is highly desirable to repair any unsatisfiable classes as soon as they arise in the

ontology engineering process.

Wrong entailments

Some logical errors, such as incoherence and inconsistency, can be detected using

a reasoner, as detection is simply reduced to entailment. Factual errors (wrong

and unwanted entailments), however, while requiring a reasoner to elicit them,

can only be spotted by a user with the appropriate domain knowledge. There

are various causes of wrong entailments, such as ambiguities in the domain, the

difficulty of modelling certain aspects and having to ‘compromise’, or simply

statements which may be correct in one context, but incorrect if the ontology is

used in some other context.

Furthermore, wrong entailments can also stem from the incorrect use of OWL

constructors. We have a good understanding of the common errors that users

make when constructing OWL ontologies [RDH+04, KPSC06, RCVB09]. For

example, some of these errors include confusing ‘and’ and ‘or’ and the incorrect

use of subsumptions and equivalences. Given a catalogue of such antipatterns, an

OWL tool can point out axioms that are potentially erroneous and provide further

explanation of the semantics to a user. Kalyanpur et al. [KPSC06] use a set of

common modelling errors in a heuristics-based repair tool in the Swoop ontology

editor which suggests removal or modification of axioms based on, amongst other

aspects, the likelihood of them being incorrect.

42 CHAPTER 2. BACKGROUND AND RELATED WORK

Non-entailments

Missing entailments, or non-entailments, are frequently occurring errors in OWL

ontologies which are particularly hard to detect. When constructing an ontology,

developers expect certain entailments, such as an obvious subsumption between

two classes, to be caused by the axioms they add; if an expected (and desired)

entailment does not follow from the ontology, this may be considered an error.

Roussey et al. [RCVB09] found that ontology developers frequently add axioms

to an ontology that either do not have the desired effect, or no effect at all. In

these cases, ontology diff tools (e.g. [FMV10, GPS11b, KŠK11]) can help users

spot whether any modifications to an ontology had the desired effect; beyond the

detection of ineffectual modifications, however, dealing with non-entailments is a

non-trivial task.

A structured approach to eliciting missing entailments and adding them to the

ontology is ontology completion [BGSS07], which is based on methods from the

area of Formal Concept Analysis (FCA) [GSW05]. An ontology completion tool

presents users with a series of potential entailments, e.g. a subsumption between

two classes, asking them to accept or reject the presented entailment. In case of

an accepted entailment, an axiom is added to the ontology to explicitly state the

relationship; otherwise, the tool asks the user to produce a counter-example to

ensure that the axiom is not entailed.

If we look at non-entailments from a different angle, the non-entailment of a

negative entailment may also be considered an error. OWL is based on the Open

World Assumption which means that anything that is not explicitly forbidden is

considered to be a ‘don’t know’ rather than a ‘no’. For instance, in the above

example ontology we did not explicitly state that Human and Cat are disjoint

classes; that is, at a later point, we could add the statement Human(Molly) to the

existing Cat(Molly) without causing a logical error in the ontology. While the error

then falls into the category of unwanted entailments, it may be useful to prevent

such problems before they even occur. Similar to ontology completion, semantic

clarification [Sch05a] aims to prevent unwanted entailments by strengthening the

ontology with disjointness axioms where appropriate.

2.2. ERRORS IN OWL ONTOLOGIES 43

2.2.2 Non-logical errors

Structural irregularities

There exist a number of ontology design patterns [Gan05, AAKS08] which provide

solutions for situations that are difficult to model in OWL, such as representing

n-ary relations. But even without such formal patterns, ontologies often exhibit

syntactic regularities due to habits or training of ontology engineers [MMIS12].

Such regularities include ‘good practice’ strategies such as adding domain and

range axioms for every newly introduced object property. When a specific design

pattern or design style is chosen for an ontology, it should be adhered to across

the ontology in order to maintain a uniform modelling style. Therefore, deviating

from a given structure and existing regularities may be considered an error in the

ontology. Ontology pattern inspection tools, such as the RIO Protégé 4 plugin

[MIS12], can assist ontology developers in detecting regularities and deviations

in OWL ontologies.

Annotation errors

Annotations in OWL ontologies are frequently used to convey information about

an entity and its relations beyond the logical content of the ontology. One such

example is the NCI Thesaurus, in which on average (across a set of 86 subsequent

versions of the ontology) over 84% of the axioms are annotations [GPS11a]. It

is possible for an annotation to be erroneous, for example, by containing false or

missing information about the entity it annotates. Other than manual inspection

(or specifically tailored text processing of the annotation strings), there is no way

to detect an incorrect annotation.

Performance problems

The performance of reasoners for tasks such as classification and query answering

over OWL ontologies is one of the main focus points of OWL research. As with

‘regular’ software, the general user acceptance and usefulness in a production

environment of OWL depends, amongst other reasons, on its efficiency.

However, OWL ontologies often turn out to be rather unstable in terms of

their performance; even minor changes can seemingly randomly lead from short

classification times in the range of seconds to impractical times. Tools which

44 CHAPTER 2. BACKGROUND AND RELATED WORK

detect performance hot spots [LS08, GPS12b] can assist ontology developers in

identifying ontology subsets which cause a steep increase in classification times.

Based upon the hot spot information provided by such a tool, the ontology de-

veloper can then remove or rewrite the hotspot-axioms in order to improve the

reasoner performance.

2.2.3 Debugging ontologies

In the context of OWL ontology engineering, the debugging stage involves the

process of detecting an error in an ontology (e.g. an unsatisfiable class, or an

incorrect entailment), finding the source of the error, i.e. the information stated

in the ontology which causes the error, and finally, repairing the ontology by

modifying or removing (some of) the problematic information. Losing as little

correct information as possible in the repair stage is a key aspect of successful

debugging.

In the case of logical errors, the repair process can be performed manually,

using a reasoner as a tool to classify the ontology, then searching the class hierar-

chy for unwanted entailments (potentially aided by a suitable visualisation in an

ontology editor, such as Protégé 4 which arranges all unsatisfiable classes under

the class Nothing), tracing the source of the error by inspecting related statements

in the ontology, and then modifying those statements that are considered to be

incorrect.

Due to the potential size and complexity of OWL ontologies, this manual ap-

proach quickly leads to a tedious process of searching through the entire ontology.

Moreover, it may lead to non-optimal repairs, where more information than re-

quired is removed or modified for the purpose of fixing the entailment. Anecdotes

of ontology developers ‘ripping out’ parts of the ontology in order to remove an

entailment show that this approach is far from ideal and indicates a clear need

for additional debugging support.

One of the first approaches to explaining subsumption in description logic

ontologies was introduced by McGuinness [McG96] and Borgida [MB95], using

proof-style explanations for entailments of the CLASSIC knowledge represen-

tation system [PSMB+91]. This proof-based approach was later extended by

Borgida [BFH99] to ontologies in the description logic ALC. One of the earliest

implementations of debugging facilities in an OWL ontology editor is the explana-

tion component MEX in the OntoTrack editor [LN04, LvHN05]. MEX presents

2.3. JUSTIFICATIONS FOR ENTAILMENTS OF ONTOLOGIES 45

natural language proof-style explanations which are based on a tableaux trace

as proposed by Borgida et al. [BFH99] and later extended from ALC to cover

nearly the complete OWL Lite sub-language of OWL 1 [LvHN05]. In line with

these proof-based approaches, Deng et al. proposed a resolution based explana-

tion framework [DHS05] which was restricted to unsatisfiability and inconsistency

of ALC ontologies.

However, it was not until the introduction of MUPS (Minimal Unsatisfiabil-

ity Preserving Sub-TBoxes) [SC03], later named justifications, that explanation

support for description logic ontologies became a key aspect of OWL ontology

research, spawning a substantial body of work and several ontology debugging

tools.

2.3 Justifications for entailments of ontologies

Justifications are the most prominent form of debugging support for entailments

of OWL ontologies. They are based on a work by Schlobach and Cornet [SC03,

SHCvH07], who developed a strategy for pinpointing the causes of unsatisfiable

classes in the medical ontology DICE. A justification J for an entailment η of an

ontology O is a minimal subset of O which is sufficient for η to hold:

Definition 2.3 (Justification). J is a justification for O |= η if J ⊆ O,J |= η

and, for all J ′ ⊂ J , it holds that J ′ 2 η.

A justification (J , η) is defined with respect to a single entailment η; in order

to describe the set of all justifications for a single entailment, or for the justi-

fications for all entailments in an entailment set εO, we introduce the notion of

justification sets :

Definition 2.4 (Justification set). Given an ontology O and an entailment η,

the justification set Justs(η) is the set of all justifications {J1 . . .Jn}, Ji ⊆ O,

for η. Likewise, the justification set Justs(εO) of an entailment set εO is the set

of all justifications Ji for all ηk ∈ εO.

While Schlobach and Cornet focused on MUPS and Minimal Incoherence-

Preserving Sub-TBoxes (MIPS), that is, minimal entailing subsets for some cause

of incoherence inO) in unfoldableALC TBoxes, the concept of explanations based

on minimal entailing subsets is applicable to arbitrary entailments. Kalyanpur

46 CHAPTER 2. BACKGROUND AND RELATED WORK

et al. [KPSH05] extended the idea of MUPS to unsatisfiable classes in general

OWL ontologies, presenting users with the sets of support (which were later

named justifications, a term borrowed from belief revision [Gär88, Neb90]) for

an entailment. Beyond its application for OWL ontology debugging, computing

minimal unsatisfiable cores is also a technique for generating proofs in the SAT

community [LMS04].

The minimality of J implies that removing any one of its axioms breaks the

entailment η. For any entailment η of O, η itself is a justification if η is asserted

in O, and there can be multiple justifications (exponentially many [BPS07a]) for

a single entailment.

Recall our example from the animal domain which entails that the class

SickCat is unsatisfiable:

Example 2.3.

T ′ = {Cat v Carnivore,Carnivore v Animal u ∀eats.Animal,

Plant v ¬Animal,Grass v Plant

PetOwner ≡ Human u ∃hasPet.Animal,∃eats.> v Animal,

SickCat ≡ Cat u ∃eats.Grass}

A = {Cat(Molly),Human(Alice), hasPet(Alice,Molly)}

The following axiom set is a justification for K′ |= SickCat v ⊥:

J ={Cat v Carnivore,Carnivore v Animal u ∀eats.Animal,

SickCat ≡ Cat u ∃eats.Grass,Grass v Plant,

Plant v ¬Animal} |= SickCat v ⊥

In addition to limiting the number of axioms a user has to analyse when presented

with a justification, OWL ontology editors generally order and indent the axioms

in justifications as proposed by Kalyanpur [Kal06], which significantly increases

readability. Figure 2.1 shows the above justification as displayed in Protégé 4

with ordered and indented axioms.

The concept of justifications for description logic ontologies has been widely

studied over the past decade, with particular focus on developing efficient al-

gorithms for the computations of all justifications for a given entailment, e.g.

[Sch05b, Sun08, DQJ09]. There also exist a number of debugging approaches

2.3. JUSTIFICATIONS FOR ENTAILMENTS OF ONTOLOGIES 47

Figure 2.1: A screenshot of the Explanation tab in Protégé 4.

that are closely related to justifications, such as the computation of maximally

satisfiable terminologies (MSSs) [MLBP06, MLP06], which is based on a tableau-

like procedure, and the pinpointing formula approach proposed by Baader and

Peñaloza [BPS07b, BP08b, JQH08, PS10].

Rather than directly computing the set of all justifications for an entailment,

a pinpointing formula is a compact representation of the set of all justifications

for an entailment [BPS07b, BP08b, PS10]. A pinpointing formula is a monotone

Boolean formula where each propositional variable represents an axiom in the

ontology. The set of justifications for an entailment can then be derived from

the pinpointing formula as it corresponds to all valuations of the formula. An

example of a pinpointing formula is given in [BPS07b]:

Example 2.4.

(α1) A v ∃r.A

(α2) A v Y

(α2) ∃r.Y v B

(α4) Y v B

The four axioms labelled with α1 to α4 entail A v B. We can find two

justifications for this entailment: J1 = {α2, α4} and J2 = {α1, α2, α3}. If we treat

the axiom labels as propositional variables, the two justifications correspond to

48 CHAPTER 2. BACKGROUND AND RELATED WORK

the ‘true’ valuations of the pinpointing formula α2 ∧ (α4 ∨ (α1 ∧ α3)).

2.3.1 Justification based repair

While justifications offer ontology users a focused view on the subset(s) of the

ontology which are relevant to an entailment, they do not provide much guidance

as to which steps a user has to take in order to repair the erroneous entailment.

Rather, the user is expected to analyse the axioms in the justification and identify

a set of axioms R which can be either removed or modified in order to repair the

entailment. A repair over the set of justifications for an entailment η is defined

as follows [Hor11a]:

Definition 2.5 (Repair). Given O |= η, the set of axioms R is a repair for η in

O if R ⊂ O, O \R 6|= η, and there is no R′ ⊂ R such that O \R′ 6|= η.

More informally, a repair is a hitting set R over the set of justifications for η in

O, i.e. for each justification J for η in O there is at least one axiom in J which is

contained in R. A repair corresponds to the notion of a diagnoses as used in the

context of model based diagnosis, which we will discuss in more detail in Section

2.3.2. As there are multiple possible repairs for a given set of justifications, we

may want to find a minimal repair, that is, a repair R such that there is no repair

R’ with fewer axioms than R, as this implies removing or modifying the smallest

possible number of axioms.

The quality of a repair does not only depend on the number of axioms to be

removed or modified, but also on the amount of useful information in the ontology

which is lost through such modifications. Thus, a suitable repair for an entailment

may not be cardinality-minimal, but rather dependent on the frequency (power,

arity) and impact [KPSC06] of the axioms in the justifications.

The impact [KPSC06] of an axiom in a justification is the number of entail-

ments (from some clearly defined finite entailment set, such as the set of entailed

atomic subsumptions) that are lost when removing the axiom from the ontology.

Given a set of justifications for an entailment (or set of entailments), the frequency

of an axiom is the number of justifications it occurs in, that is, the number of

justifications that can be broken by removing the axiom.

Kalyanpur et al. [KPSC06] approached the problem of finding a suitable repair

for unsatisfiable classes by introducing a ranking on the axioms in justifications.

Axioms are ranked according to their frequency, their impact, manually specified

2.3. JUSTIFICATIONS FOR ENTAILMENTS OF ONTOLOGIES 49

Figure 2.2: A screenshot of the Repair tool in Swoop.

test cases by a user (which is an extension to the default impact in order to

ensure that specific entailments are preserved), provenance information about

the axiom (author, source reliability, time added or modified) and usage of the

terms in the axiom signature across the ontology. The repair tool in the Swoop

[KPS+06] editor allows users to specify the weights of the various ranking features,

then recommends the preservation or removal of high- or low-ranked axioms,

respectively. A screenshot of Swoop’s debugging panel is shown in Figure 2.2.

While this kind of elaborate debugging support sounds promising, there have not

been any in-depth user studies to confirm whether and to which extent ontology

developers use the tool and how they benefit from it.

A similar strategy for guiding users towards a suitable repair using an axiom

‘confidence value’ was proposed by Lam [Lam07]. The author identified a set of

heuristics which users would find relevant when repairing unsatisfiable classes,

such as the class usage, the axiom size, and structural properties of the classes

occurring in the incorrect entailments which would then help identifying the ex-

pressions most likely to be faulty.

50 CHAPTER 2. BACKGROUND AND RELATED WORK

2.3.2 Computing justifications

There exist various approaches to directly computing one or all justifications for

a given entailment, with find all algorithms generally using a find one algorithm

as a subroutine. We categorise these algorithms into glass-box and black-box ap-

proaches [KPSH05]: glass-box techniques generally rely on information provided

by a DL reasoner, which requires modification of reasoner internals in order to

utilise it for justification computation. By contrast, black-box techniques only

use a reasoner as an oracle to perform entailment checks.

Glass-box techniques

Glass-box justification finding techniques generally rely on the modification of

a description logic reasoner to keep track of the axioms required for an entail-

ment to hold, such as those axioms causing a clash in a tableaux procedure.

More precisely, as the problem of explaining arbitrary entailments, e.g. subsump-

tion between classes, can be reduced to a consistency check, this technique can

be applied to find justifications for both unsatisfiable classes as well as arbi-

trary entailments. The tracking strategy applied in glass-box approaches using

tableaux reasoners is known as tracing [KPSH05], which is based on an algo-

rithm first proposed by Baader and Hollunder [BH95]. Beyond tableaux-based

reasoners, approaches extending the EL++ subsumption algorithm [BPS07a] and

automata-based approaches [BP08a, BP10] also fall under the label of ‘glass box’

justification generation. A fair number of approaches to explaining entailments

of description logic KBs uses glass-box techniques to present users with reasoner

traces in the form of axiom sets, natural language, or some form of visualisation

[SC03, LH05, Kwo05, MLBP06].

Black-box techniques

Expand-contract approach A simple technique for finding one justification

for an entailment η of an ontology O is the expand-contract approach [KPHS07]:

in the expansion phase, axioms from the given ontologyO are incrementally added

to an empty ontology O′, performing an entailment check after each addition until

it is found that O′ entails η. In order to generate a minimal justification from

O′, the contraction phase then removes superfluous axioms from O′, performing

an entailment check after each removal. This approach is known as black-box

2.3. JUSTIFICATIONS FOR ENTAILMENTS OF ONTOLOGIES 51

technique, as it only requires an out-of-the-box reasoner to perform the entailment

checks. Optimisations of this algorithm focus on reducing the number of expensive

entailment checks by employing a divide-and-conquer [FS05, SFJ08] or a sliding-

window technique [Kal06] in the contraction phase.

Hitting set tree algorithm In order to find not only one but all justifications

for an entailment, Schlobach [Sch05b] first proposed the use of Reiter’s hitting

set tree (HST) algorithm [Rei87, GSW89] for the computation of MUPS and

MIPS. The algorithm originates from the field of model based diagnosis, which

describes the process of finding diagnoses for faults in a system comprised of

components. A minimal conflict set is a minimal set of such components which

causes a system fault, whereby a diagnosis is a minimal hitting set across the set

of minimal conflict sets. Given a set C of minimal conflict sets, a hitting set for

C is a set H ⊆
⋃
S∈C S such that H ∩ S 6= ∅ for each S ∈ C. Minimal conflict

sets and diagnoses correspond to our notion of justifications and minimal repairs,

respectively.

Reiter’s algorithm constructs a hitting set tree in order to find all minimal

hitting sets over a given set of minimal conflict sets in a diagnosis problem. The

nodes in the HST are labelled with minimal conflict sets, and the edges are

labelled with components (axioms). For the purpose of finding justifications, the

HST algorithm is initialised by computing a single justification using any glass-

box or black-box find one algorithm, which suffices to generate the tree for all

justifications, as shown in [KPHS07].

Optimisations, such as early path termination and justification reuse [KPHS07]

help ensure that the algorithm terminates in practical time. Horridge [Hor11a]

showed that it is possible to compute all justifications for direct atomic subsump-

tions from over 90% of the ontologies in a diverse test corpus; for the remaining

ontologies, however, the algorithm did not terminate in the given time due to the

large size of the constructed HST, or due to a timeout on entailment checks.

Modularisation

A module M of an ontology O is a subset of O which contains all axioms that

are relevant for some seed signature Σ ⊆ sig(O). There exist various types

of modules and algorithms for efficient computation of a module for a given

seed signature; see, for example [CPSK06, CHKS07, SSZ09]. It has been shown

52 CHAPTER 2. BACKGROUND AND RELATED WORK

that syntactic locality based modules are depleting, which means that a module

generated based on the signature of an entailment contains all justifications for

this entailment [CHKS07]. Further, for any given seed signature, there exists a

unique and minimal locality based module [CHKS08].

When used in the justification computation process, a syntactic locality based

module M is computed for the signature of an entailment, and the justification

computation deals only withM rather than the full ontology O [Sun08, DQJ09].

Typically, the number of axioms in a module is small compared to the whole on-

tology [Sun08], which leads to reduced computational load both in the expansion

and contract phases, as well as for entailment checks. A study by Suntisrivaporn

et al. [SQJH08] using randomly selected entailments from three fairly large and

complex OWL ontologies (Galen, NCI, and Gene Ontology) found that the av-

erage size of syntactic locality based modules was only between 0.05% and 1.6%

of the whole ontology. Consequently, the justification computation performance

was drastically improved by around two orders of magnitude, making it possible

to compute justifications even for entailments on which the algorithm using the

full ontology timed out. As the overhead for module computation is negligible

compared to the overall justification computation time, and due to the significant

improvements obtained through modularisation, it is now considered a standard

optimisation used in justification computation approaches for OWL ontologies.

Performance

Generally, glass-box techniques for finding single justifications are considered to

be more efficient than black-box techniques, as the justifications are generated

almost ‘automatically’ as a by-product of the classification process. And indeed,

in an extensive analysis of various justification computation algorithms, Horridge

[Hor11a] found that using a glass-box find one algorithm as subroutine can im-

prove performance by an order of magnitude for some ontologies. However, given

the heavy modifications required to integrate tracing with a reasoner, and the

fact that currently only the Pellet reasoner supports tracing, we may consider

black-box techniques as a more accessible alternative to glass-box approaches.

Regarding the feasibility of computing justifications for OWL ontologies used

in practice, Horridge [Hor11a] found that it is highly likely that we can find all

justifications for an entailment in reasonable time. His study of 72 ontologies

from the NCBO BioPortal showed that for the majority of ontologies in the set

2.3. JUSTIFICATIONS FOR ENTAILMENTS OF ONTOLOGIES 53

(all but 7), all justifications for 99% of the entailed direct atomic subsumptions

could be computed in less than 10 seconds.

2.3.3 Understanding individual justifications

While the main focus of justification research has been on the performance of

justification finding algorithms, in recent years the issue of understanding jus-

tifications has been receiving increased attention. We know that justifications

can significantly reduce user effort by allowing users to focus on a small, relevant

subset of an ontology; and yet, justifications do not always help all users in un-

derstanding the actual reason why an entailment holds and in finding a suitable

repair.

Fine-grained justifications

By definition, a justification is a minimal entailing subset of an ontology; that is, a

justification contains axioms as they are asserted in the ontology. This means that

the axioms in a justification can contain superfluous parts, i.e. subexpressions on

the LHS or RHS of the axiom which do not contribute to the entailment. While

such superfluous parts can distract users from the actual cause of an entailment,

thus making the justifications more difficult to understand, removing axioms

with superfluous parts in the repair process also means a loss of possibly valuable

information.

In order to cope with the issue of superfluity, the notion of fine-grained justifi-

cations was first introduced by Kalyanpur et al. [KPC06]. This approach is based

on the idea of re-writing justification axioms in a normalized form, then splitting

the axioms across intersections and only preserving those axioms which are re-

quired for the entailment in question to hold. The strategy was implemented in

the Swoop editor, using strike-out and colour highlighting to indicate superflu-

ous expressions in axioms—a simple, yet visually effective technique. Lam et al.

[LPSV06] directly integrated the idea of fine-grained justifications into a repair

tool, computing the impact of rewriting each axiom based on the modification of

its subexpressions.

Based on these first attempts, Horridge et al. [HPS08] firstly proposed a def-

inition for laconic justifications: a laconic justification is a justification which

does not contain any superfluous parts, with every subexpression being as weak

54 CHAPTER 2. BACKGROUND AND RELATED WORK

as possible [HPS08]. This implies that every subexpression in a laconic justifica-

tion is relevant to the entailment. The authors [HPS08] also describe a method

to compute the preferred laconic versions of a justification which results in a

unique correspondence between a justification and its laconic variants. In short,

the process

• removes any subexpressions from axioms which are not relevant for the

entailment to hold.

• derives a single subsumption axiom from an equivalence where possible.

• substitutes class names with > where possible.

• weakens number restrictions to the smallest number possible.

Note that the term ‘justification’ is used to refer to laconic justifications by

slight abuse of notation; it is clear that, given the transformation steps, the

resulting laconic justification may no longer be a subset of the original ontology

O.

The following example illustrates several aspects of non-laconicity in a justi-

fication:

Example 2.5.

J = {A v B u ≤ 2r.C, ∃r.C v D} |= A v D

First, we can reduce the intersection in the first axiom to the single expression

≤ 2r.C without affecting the entailment. Second, this expression can then be

weakened to ≤ 1r.C. Third, the class name C in both axioms can be substituted

with >. This results in the laconic justification {A v≤ 1r.>,∃r.> v D}.
A survey [Hor11a] of 72 of OWL ontologies from the NCBO BioPortal revealed

that non-laconic justifications are prevalent across OWL ontologies; indeed, the

majority of the surveyed ontologies (69 out of 72) contained at least some non-

laconic justification for an atomic subsumption, with 29 ontologies containing

over 50% non-laconic justifications.

Masking

Justification masking [HPS08, HPS10a] occurs when the actual number of reasons

why an entailment holds differs from the number of justifications that can be

found for the entailment. There exist different types of masking, which are mainly

caused by axioms containing superfluous expressions, i.e. being non-laconic. The

2.3. JUSTIFICATIONS FOR ENTAILMENTS OF ONTOLOGIES 55

examples given in [HPS10a] focus on unsatisfiable classes; it can easily be shown,

however, that masking also occurs for arbitrary entailments. Internal masking

describes a situation where the justification contains more than one reason why

an entailment holds, which means that there exist multiple laconic versions of the

justification.

Example 2.6.

J = {A v B u C,B t C v D} |= A v D

Example 2.6 shows a justification J for A v D which contains two reasons

for the entailment. The laconic versions of J are:

J1 = {A v B,B v D}

J2 = {A v C,C v D}

External masking involves other axioms from the ontology which do not occur

in any justifications for an entailment.

Example 2.7.

O = {A v C uD,C v D} |= A v D

In the ontology shown in Example 2.7 there exists only one justification for the

entailment A v D, namely the first axiom A v C uD. It is clear to see, however,

that the two axioms in O combined result in another reason for the entailment

via the laconic justification {A v C,C v D}—but the justification comprising

both asserted axioms would violate the minimality condition for justifications.

Cross masking is similar to external masking with the difference that the

axioms involved are from other justifications for the same entailment rather than

non-justification axioms.

Example 2.8.

J1 = {A v C uD}

J2 = {A t C v D}

56 CHAPTER 2. BACKGROUND AND RELATED WORK

In addition to the two justifications J1 and J2 for the entailment A v D,

there exists a third reason why the entailment holds, which comprises parts of

both justifications: {A v C,C v D} |= A v D. Again, this third reason,

comprising both axioms, cannot be a justification, as it is non-minimal.

Shared cores masking occurs when two different justifications have the same

reason why an entailment holds, i.e. they only differ in their superfluous parts.

This implies that the actual number of explanations for an entailment is lower

than it appears.

Example 2.9.

J1 = {A v D}

J2 = {A v D u ∃r.C}

An ontology which contains the two axioms in J1 and J2 has two distinct

justifications for the entailment A v D. However, the actual reasons why the

entailment holds are identical, as the laconic version of J2 is identical to J1.

Masking may cause problems for users attempting to understand or repair

an entailment. When repairing a justification where internal, external, or cross

masking occurs, a user might only notice and modify one of the reasons, expect-

ing the entailment to no longer hold after the modification. That modification,

however, may lead to another justification for the entailment—an effect which

may be rather surprising. Worse even, the justification may interact with several

other axioms to create multiple justifications, a situation which has been found to

occur in the NCI thesaurus [Hor11a]. Furthermore, when analysing justifications

for the purpose of gathering ontology metrics, justification masking may lead to

over- or under-counting the number of actual justifications in an ontology.

It is clear to see that ontology debugging tools need to support users in cases

where masking occurs through non-laconicity. Dealing with superfluity in an

explanation tool, however, makes it necessary to balance two opposing require-

ments: first, we want the user to be presented with the most concise explanation

as to why an entailment holds, and avoid cluttering and distraction caused by

superfluous parts. Second, in order to facilitate understanding and repair, the ex-

planations should directly relate to the asserted axioms in the ontology. Besides

2.3. JUSTIFICATIONS FOR ENTAILMENTS OF ONTOLOGIES 57

the strike-out method implemented in Swoop’s repair tool, there have been no

successful approaches to OWL ontology debugging that meet both requirements.

Justification based proofs

In addition to superfluity, there exist other reasons why a justification can be

difficult to understand. Justifications may contain structural patterns and con-

structors whose implications are unfamiliar or non-obvious to the user. A popular

example from the Movie ontology [HP09] illustrates how even a very small justifi-

cation can be hard or impossible to understand for OWL experts [HP09, HPS10b]:

Example 2.10.

J = {Person v ¬Movie,

RRated v CatMovie,

CatMovie v Movie,

RRated ≡ ∃hasScript.ThrillerScript t ∀hasViolenceLevel.High,

domain(hasViolenceLevel,Movie)} |= Person v ⊥

Example 2.10 shows a justification for the unsatisfiability of the class Person

in the Movie ontology. Axioms 2 to 5 in the justification entail that Movie ≡ >,

which implies that Person v Movie, which, in turn, contradicts the first axiom

that states the disjointness of the classes Person and Movie. When presented

with this justification, subjects tend to give up or question the correctness of the

justification [HPS10b].

Justification based proofs seek to address the problem of understanding such

justifications by providing users with a more detailed explanation which in-

cludes not only the justification axioms, but also intermediate entailments such

as Movie ≡ > in the previous example. Such intermediate entailments, arising

from subsets of a justification J are known as lemmas.

In a similar approach to justification based proofs, Nguyen et al. [NPPW12b]

generate natural language proofs based on justifications by identifying frequent

sub-patterns, or rules, in justifications which lead to such intermediate entail-

ments, then translating the proof trees into natural language. They extracted

patterns, restricted to laconic axioms and a maximum size of four axioms, from

58 CHAPTER 2. BACKGROUND AND RELATED WORK

500 OWL ontologies and identified the 57 most frequent patterns, which are then

used as the basis for natural language proofs.

Cognitive complexity

To date, there have been few attempts at investigating the understandability

of justifications for OWL users. While there exists a number of user studies

to evaluate OWL debugging tools [KPSH05, Lam07], they focus on measuring

the time and success rates of the debugging tools and do not offer any further

insights into how users interact with the explanations. The first major study

on the cognitive complexity of justifications was carried out by Horridge et al.

[HBPS11b] for the purpose of evaluating a complexity model for justifications

which was constructed based on an initial exploratory study [HBPS11a]. The

study involved 14 students from an MSc class who were presented with a set of

items consisting of a set of axioms and alongside a single axiom (the candidate

entailment), and were asked to answer whether the candidate entailment followed

logically from the axiom set or not. It was found that the complexity predicted by

the model coincided partially with the error rate in this task, with some anomalies

in the error rates caused by 1) superfluity in a justification which the model did

not account for, and 2) by a ‘flaw’ in the experiment protocol which meant test

subjects could answer the question correctly, but (presumably) for the wrong

reason.

Building on Horridge’s work on justification based proofs, Nguyen et al.

[NPPW12a] present an investigation of the difficulty users have with understand-

ing various sub-patterns that occur in OWL justifications. The authors conducted

a study on a ‘mechanical turk’ type web platform [BKG11] where test subjects

were presented with a natural language reasoning problem which was directly

based on one of the 51 (out of 57 identified) justification sub-patterns. Each

problem was answered by around 50 people, with correct answers ranging from

100% for the easiest rule to only 2% for the most difficult one. While natu-

ral language based explanation is potentially highly effective for OWL novices,

the resulting proofs are often very large and might be difficult to navigate and

understand themselves.

2.3. JUSTIFICATIONS FOR ENTAILMENTS OF ONTOLOGIES 59

C1 v C3
C3 v C4
C4 v C5
C5 v C6
C6 v C2

(a) Pattern 1

C1 v ∃p1.(C3 u C4)
C3 u C4 v C5
∃p1.C5 v C6 u C7
C6 u C7 v C8
C8 v C2

(b) Pattern 2

C1 v C3
C3 v C4

C1 v ∃ p1.C5
C5 v C6

C4 u (∃p1.C6) ≡ C2

(c) Pattern 3

Figure 2.3: Three justification patterns for C1 v C2.

Reasoning patterns

In order to explore whether and how OWL users read and understand ‘reasoning

patterns’, we performed a pilot study [HBPS13] with two test subjects who had

several years experience in working with OWL ontologies and description logics.

The experiment setup was identical to the complexity model study by Horridge

et al. [HBPS11b] described above, however, the seven justifications were specif-

ically selected to contain one of the three patterns we identified when manually

surveying a large corpus of justifications from ontologies in the OWL 2 EL profile.

In brief, these patterns were:

1. Atomic subsumption chains (Figure 2.3a): the exploratory study presented

in [HBPS11a] indicates that users frequently skip the middle part of such a

chain.

2. Propositional use of complex expressions (Figure 2.3b): complex expressions

in justification axioms that can be substituted with atomic class names

without affecting the entailment relation. For example, in the justification

shown in Figure 2.3b, all occurrences of the conjunctions C3uC4 and C6u
C7 can be substituted with newly introduced variables x and y, respectively,

while the entailment still holds.

3. Comb pattern (Figure 2.3c): taking the last axiom in the justification, a

user has to ‘fill in’ each conjunct (C4 and ∃p1.C6 in the last axiom in

Figure 2.3c) one by one by identifying the corresponding set of axioms in

the remainder of the justification, which requires merely mechanical effort

rather than a semantic interpretation of the axioms and expressions.

In the study, the eye tracker analysis and think-aloud protocol showed that both

test subjects would generally consider atomic subsumption chains to be easy and

jump from the first to the last axiom in the chain. Regarding the ‘comb’ pattern,

60 CHAPTER 2. BACKGROUND AND RELATED WORK

both participants completed a large and seemingly complex justification (19 ax-

ioms) fairly quickly by applying a ‘filling in’ strategy as predicted. Even though

the participants did not seem to recognise the possibility of abstracting from com-

plex expressions, when asked whether highlighting possible abstractions would be

useful both participants agreed, with one stating that it would be ‘tremendously

helpful’.

While this pilot study is obviously very preliminary, it does give us some

insight into possible strategies OWL users may apply when working with jus-

tifications. In particular, we gathered that they draw intermediate conclusions

(lemmas) from justification subsets, they recognise patterns in justifications, and

identify justifications that have a similar pattern. These insights play an impor-

tant role in our definition of justification isomorphism, that is, grouping justi-

fications based on their structural similarity, which we will discuss in detail in

Chapter 5.

2.3.4 Understanding multiple justifications

In many ontologies used in practice, we find that there exist multiple justifica-

tions for a single entailment. While the possible number of justifications per

entailment is exponential in the number of axioms in the ontology [BPS07a],

the average number of justifications found in OWL ontologies is comparatively

small [BHPS11]. However, even for justification counts way below the exponential

threshold, we are often faced with several dozen to several hundred justifications

for a single entailment. When attempting to repair an ontology, such numbers

are clearly not suitable for manual repair by a user; and even with a justification

based repair tool which displays all justifications as a list, there is hardly any

chance of producing a minimal repair.

Ji et al. [JQH08] propose a strategy for reducing the number of justifications

a user is confronted with by only computing justifications that are the most rele-

vant for an entailment. The approach, which was implemented as part of a plugin

to the NeOn Toolkit13 ontology editor, introduces a selection function based on

the amount of signature a justification shares with the entailment. While this

relevance-based approach may be helpful when users require only a few justifica-

tions for understanding an entailment, it does not solve the problem of helping a

user repair all justifications to break an unwanted entailment.

13http://www.neon-toolkit.org/

http://www.neon-toolkit.org/

2.4. ALTERNATIVE APPROACHES TO DEBUGGING 61

Root and derived justifications

Root and derived justifications provide an additional form of explanation support

which aims to assist users in the simultaneous repair of multiple entailments. The

idea of unsatisfiable classes depending on the unsatisfiability of another class was

originally mentioned in [Sch05a] and explicitly introduced as root and derived un-

satisfiable classes [KPSH05]. While the initial focus was on entailed unsatisfiable

classes, the concept can be easily extended to arbitrary entailments, as shown

in [MMV10]: given a set of entailments εO and their justifications Justs(εO), a

derived justification JD |= ηD is a justification which is a superset of some other

justification (J , η). Repairing J first (e.g. by removing or modifying an axiom)

will also break JD. Note that there may be additional reasons for ηD to hold,

which are not covered by this process. A root justification is a justification JR in

Justs(εO) which is not a superset of any other justification in Justs(εO).

Definition 2.6 (Root and derived justifications). Let εO be a set of entailments

of interest, and J a justification for an entailment η in εO. J is called a root

justification if there exists no justification J ′ for an entailment in εO such that

J ′ ⊂ J , else, J is called a derived justification.

Kalyanpur et al. [KPSH05] carried out the first user study for explanation

support in OWL, evaluating the debugging facilities of the ontology editor Swoop.

The 12 study subjects were randomly divided into four groups and were given

the task to repair unsatisfiable classes in three OWL ontologies using one of three

types of debugging tools (clash information from the reasoner and sets of support,

root and derived unsatisfiable classes, both), with the fourth group receiving no

debugging support at all. Perhaps unsurprisingly, the study found that the group

using both the clash information, sets of support (i.e. justifications), and root and

derived information performed best (i.e. fastest) in this task.

2.4 Alternative approaches to debugging

Besides justifications (and approaches closely related to the concept of justifica-

tions), there exists a number of alternative approaches to ontology debugging.

While these may not be as prevalent as justifications in OWL ontology tools,

they represent some relevant solutions to the problem of understanding and

debugging formal ontologies, such as proofs, natural language techniques, and

62 CHAPTER 2. BACKGROUND AND RELATED WORK

semi-automated debugging strategies. Under this label, we also gather other ap-

proaches to visualising and understanding ontologies, which, while not explicitly

tailored towards debugging, may be helpful tools for understanding and repairing

entailments.

2.4.1 Proofs

Formal proofs are considered to be the most prevalent alternative form of expla-

nation for logic-based knowledge bases. One of the first approaches to explaining

entailments in the CLASSIC system using proof-like structures was presented by

McGuinness and Borgida [MB95]. The system omits ‘obvious’ intermediate steps

and provides further filtering strategies in order to generate short and simple

explanations. Borgida et al. [BFH99] first introduced a proof-based explanation

system for knowledge bases in the description logic ALC. The system generates

sequent calculus [Fit83] style proofs using an extension of a tableaux reasoning

algorithm, which are then enriched to create natural language explanations. Aim-

ing to ‘provide the simplest explanation possible’, the authors also introduce a

relevance function which simplifies the proofs by omitting ‘irrelevant’ parts. The

consensus of these proof-based approaches seems to be that good proofs ought to

be ‘as simple and short as possible’, yet, there have been no formal investigations

into how ontology developers interact with such proof-based explanations.

While proof presentation in other logics has been well studied (e.g. [FH88]),

surprisingly few authors are concerned with the cognitive aspects of proof under-

standing. There exist formal definitions of obvious proof steps [Dav81, Rud87],

however, these are merely formulated with the goal of creating short proofs and

do not investigate other sources of complexity for human readers. By comparison,

Lingenfelder [Lin89] also considers the skill level of the proof reader to be crucial

in order to determine what can be considered ‘trivial’ in a proof, and emphasises

the need for a user model in order to provide suitable proofs.

2.4.2 Ontology revision

Ontology revision as described by Nikitina et al. [NRG12] follows a semi-automated

approach to ontology repair, with a focus on factually incorrect statements rather

than logical errors. In the ontology revision process, a domain expert inspects

the set of ontology axioms, then decides whether the axiom is correct (should

2.4. ALTERNATIVE APPROACHES TO DEBUGGING 63

be accepted) or incorrect (axiom is rejected). Each decision thereby has conse-

quences for other axioms, as they can be either automatically accepted (if they

follow logically from the accepted axioms) or rejected (if they violate the already

accepted axioms).

The ontology revision system determines the impact a decision has on the

remainder of the axioms (using a ranking function), and presents high impact

items first in order to minimize the number of decisions a user has to make.

Conceptually, this approach is straightforward and easily understandable for a

user, as the cognitive effort is reduced to a simple yes/no decision, and the tool

attempts to minimize the number of decisions that need to be made. In order

to debug unwanted entailments, e.g. unsatisfiable classes, the set of unwanted

consequences can be initialised with those erroneous axioms. The accept/de-

cline decisions are then made in order to remove those axioms which lead to the

unwanted entailments.

2.4.3 Direct computation of diagnoses

The direct diagnoses computation approach [FS05, DS08, SFRF12, RSFF12] is di-

rectly related to justifications, but rather than computing the set of justifications

for an entailment, which is then repaired by removing or modifying a minimal

hitting set of those justifications, the diagnoses (i.e. minimal hitting sets) are

computed directly. The direct computation of diagnoses using the hitting set

tree algorithm was first proposed by Friedrich and Shchekotykhin [FS05]. The

authors argue that debugging large numbers of conflicts and diagnoses by com-

puting justifications poses a computational challenge, while direct computation

of diagnoses provides a more efficient solution.

Both the ontology revision approach by Nikitina et al. and the direct compu-

tation of diagnoses show some advantages over computing justifications in terms

of computational performance. However, the semi-automated repair presented in

[NRG12] means that the user has no direct control over which axioms to remove

or modify in order to repair the unwanted entailments, while the direct compu-

tation of diagnoses aims exclusively at finding a minimal repair, regardless of

the factual correctness or incorrectness of the axioms involved in the diagnoses.

Furthermore, neither of the approaches supports understanding why those entail-

ments hold, as the users are not presented with the actual reasons, but only see

a sequence of axioms or a set of diagnoses, respectively. While both approaches

64 CHAPTER 2. BACKGROUND AND RELATED WORK

aim to reduce the total number of steps taken in the debugging process, they

might still require a user to go through a long and tedious revision process when

repairing a large number of errors.

2.4.4 OntoClean

OntoClean [GW02, GW04] provides a framework for making modelling decisions

in the ontology development process, with a strong focus on correct subumption

relationships. This is motivated by a misuse of subsumptions to express other re-

lations than is-a relationships, for example part/whole relationships. OntoClean

helps users to validate taxonomies by identifying metaproperties of each class,

such as rigidity, identity, unity, and dependency. The framework then specifies

constraints on subsumptions between classes with different properties, such as if

a class A is anti-rigid, i.e. an instance of A can cease to be a member of the class,

then every subclass of A must also be anti-rigid. By applying OntoClean guide-

lines when building taxonomies, ontology developers can prevent subsumption

relationships which may later lead to modelling inconsistencies.

2.4.5 Ontology comprehension

Ontology users often require support in understanding an ontology, or parts of

it, for example, when integrating an existing ontology into a project, which re-

quires the ontology developer to familiarise themselves with the structure of the

adopted ontology. While not specifically aimed at ontology debugging, such com-

prehension and visualisation tools can help users to get a better grasp of the

relationships between entities in an ontology, which may provide support in the

debugging process.

Ontology visualisation tools, such as the OWLViz plugin14 in Protégé 4, the

CropCircles tool [WP06] and the, admittedly rather exotic, music score notation

of Barzdins and Barinskis [BB07], offer ontology users support when exploring

an ontology in order to gain an overview of the relationships between its classes.

Visualisation techniques can also be used for the purpose of model exploration

[BSP09], which can provide support in understanding non-entailment. Users may

want to understand, for instance, why a class is not entailed to be a subclass of

some other—a fact that cannot be explained by justifications, as it is not possible

14http://www.co-ode.org/downloads/owlviz/

http://www.co-ode.org/downloads/owlviz/

2.5. SUMMARY AND CONCLUSIONS 65

to point out a particular subset of the ontology that does not entail something.

The idea underlying model exploration is that seeing (subsets of) the models of

an ontology helps users understand the relations between its classes, which, in

turn, may support them in understanding why an entailment holds or does not

hold in the ontology.

2.5 Summary and conclusions

In this chapter, we have laid out the foundations for the work presented in this

thesis. We introduced the basic concepts of description logic knowledge bases,

such as their syntax, semantics, and standard reasoning services, and introduced

the Web Ontology Language OWL. We discussed the scope of logical and non-

logical errors which can occur in OWL ontologies and introduced justifications

as the currently dominant form of debugging support for entailments of OWL

ontologies. This was followed by a closer look at the strategies for computing jus-

tifications, as well as some of the applications of justifications for repairing errors

in OWL ontologies. Finally, we gave an overview over debugging strategies for

description logic knowledge bases which are not directly related to justifications

or only make indirect use of them, finding that the majority of approaches do not

consider cognitive aspects of how users interact with explanation.

While multiple justifications for entailments of OWL ontologies have been ac-

knowledged as a phenomenon to be found in OWL ontologies, the main focus of

research thus far has been the efficiency of computing multiple justifications. In

contrast, the issue of how users can find a suitable repair once those justifications

have been computed has been largely neglected. There exist some approaches

to making individual justifications easier to understand, such as laconic justifica-

tions and justification based proofs, but the problem of debugging and repair in

the presence of multiple justifications has not been explicitly addressed in prior

research, except for some work looking at root and derived unsatisfiable classes.

Root and derived unsatisfiable classes provide a first level of additional support for

a particular relationship between multiple justifications for multiple entailments;

yet, there have been no investigations into whether root/derived relationships are

indeed a common feature of OWL justifications, what steps can be taken when

this feature is not present, and how users can cope with multiple justifications

66 CHAPTER 2. BACKGROUND AND RELATED WORK

for single entailments. Besides, while root and derived unsatisfiable classes in-

dicate that there exist structural relationships between justifications, there have

not been any investigations into other such relationships and whether they can

be exploited for debugging.

In summary, there does not seem to be a good understanding of how prevalent

multiple justifications are in ontologies used in practice, neither are there sophis-

ticated enough coping strategies to help ontology engineers deal with multiple

justifications efficiently. These insights motivate the research presented in this

thesis, as there is an obvious need for further investigation of the occurrence of

multiple justifications, the relations between them, and techniques for reducing

both mechanical (the number of steps taken to achieve a goal) as well as mental

(the cognitive complexity of the information presented to a user) user effort in

the presence of multiple justifications.

Chapter 3

Defining finite entailment sets

The justificatory structure of an OWL ontology O describes the relationships

between the justifications for some set of entailments of O. However, if we want

to compute the set of justifications for ‘the entailments’ of an ontology, we im-

mediately encounter a problem: recall that the set of entailments of an ontology

O—the deductive closure which we have discussed in Section 2.1.2—is the set

of all axioms α such that O |= α. This set is infinite for OWL ontologies, and

in most cases it does not seem practical to compute and analyse justifications

(other than the empty ontology over a non-empty signature) for an infinite set of

entailments.

Thus, we need to restrict the set of entailments we analyse to some finite sub-

set of the deductive closure of O. Classification of an ontology, that is, computing

all entailed subsumptions and equivalences containing only named classes, is a

standard reasoning task, and the resulting class hierarchy (in the form of either

the atomic subsumption axioms or both subsumption and equivalence axioms) of

the ontology is a commonly used entailment set in OWL applications.

However, even if we restrict our attention to the class hierarchy of an ontology,

we find that there is no standard way of representing this set of axioms. Worse

even, misleading nomenclature in ontology tools, such as the Protégé 4 editor

and the OWL API, as well as anecdotal evidence show that there exist common

misconceptions about the entailments: it is often assumed that only non-trivial

information is contained in the set of entailments, and tautologies such as A v A

are not ‘real’ entailments. On the other hand, however, some OWL tools do

include tautologies of the type A v > for certain named classes. And finally, the

term ‘entailments’ is frequently used to refer to information which is only inferred

but not asserted in the ontology, leading to asserted axioms not being considered

entailments.

This means that, despite having a well-defined finite set of entailments at hand

(the set of all axioms α of type A v B and, if required, A ≡ B for A,B ∈ sig(O),

67

68 CHAPTER 3. DEFINING FINITE ENTAILMENT SETS

possibly A,B ∈ sig(O) ∪ {⊥,>}, such that O |= α), we still obtain different

numbers of entailments for the same ontology depending on the representation

chosen by the application we are dealing with. And while it may not be necessary

to define a single canonical representation of the class hierarchy—after all, axioms

such as A v > can be useful for some applications while they might be superfluous

in others—we need to at least make obvious the different design decisions to be

made when choosing a representation for this entailment set.

In what follows, we will discuss various design decisions for representing fi-

nite entailment sets of consistent OWL ontologies, which take into consideration

relationships such as direct and indirect subsumptions, tautologies, dealing with

unsatisfiable and universal classes, and ontology imports, while paying attention

to the issue of counting entailments. The design decisions presented here largely

focus on the class hierarchy of an ontology, but are applicable to arbitrary entail-

ments, and we will also discuss how we can define finite entailment sets beyond

the simple class hierarchy of an ontology. Finally, we introduce a shorthand no-

tation which allows us to conveniently refer to a specific representation of an

entailment set, and outline some examples of how entailment sets are used in

OWL applications.

While this chapter informs the experiments on justifications presented in the

remainder of this thesis, it may also be regarded as a self-standing discussion with

relevance to applications such as ontology analysis, the OWL API, and ontology

editing tools.

3.1 Design decisions for finite entailment sets

In this section, we will describe a number of design decisions to make when

choosing a representation for a finite entailment set of an OWL ontology. In

other words, given a finite set of entailments, such as the axioms representing the

class hierarchy, we suggest a set of filtering steps which result in an axiom set

that is logically equivalent, but may differ in the number of axioms it contains.

To clarify the distinction between a finite entailment set and its representation,

consider a simple example: given an ontology O = {A v B,B v C}, we are

interested in the set of ‘entailed atomic subsumptions’ of O. Intuitively, we

would choose the finite entailment set εO = {A v B,B v C,A v C}, as this

contains all ‘relevant’ atomic subsumptions between named classes. However, we

3.1. DESIGN DECISIONS FOR FINITE ENTAILMENT SETS 69

may also choose to represent εO by an equivalent, more compact set of axioms

εO’ = {A v B,B v C}, which is logically equivalent to εO, but contains fewer

axioms. On the other hand, we can also represent εO as the equivalent εO” =

{A v B,B v C,A v C,C v >}, as is commonly done by the OWL API. It

is clear to see that all choices lead to equivalent axiom sets, however containing

different numbers of axioms.

Only the choice of entailment types has an effect on the actual size of a finite

entailment set: given two ontologies O and O′ such that O ⊂ O′, we expect the

number of axioms in a finite entailment set of the larger ontology O′ to be the

same or more than that of O. That is, our notion of finite entailment sets must

be stable under the extension of an ontology O; an essential criterion when using

entailment counts for the comparison of two ontologies.

However, as we will see in the following sections, some design decisions for

representations of entailment sets appear to violate the stability of the entailment

set relation by leading to smaller (representations of) entailment sets when adding

axioms to an ontology. Where applicable, we will point out the impact of a

decision on the stability of entailment counts.

3.1.1 Tautologies

A tautology is an axiom such as A v A, A v >, and ⊥ v A for a named class

A ∈ sig(O) which is vacuously entailed by O. Tautologies do not contain any

relevant information and are therefore frequently omitted from the axiom set

representing the class hierarchy of an ontology.

However, in some OWL tools, such as the OWL API and Protégé 4, named

classes that do not have a direct named subsumer are generally included in entail-

ment sets as subclasses of >, possibly in order to ensure that all named classes

in the ontology are present in the entailment set in some way. Note that this

strategy means that only classes which do not have a named subsumer occur in

axioms of the type A v >. This can be problematic if we use the entailment

count to compare the logical strength of two ontologies: take, for instance, two

ontologies over the signature {A,B,C} where O = ∅ and O′ = {A v B}. If we

include axioms of the above type in the entailment set, we get the two entailment

70 CHAPTER 3. DEFINING FINITE ENTAILMENT SETS

sets

εO ={A v >, B v >, C v >}

εO′ ={A v B,B v >, C v >}.

Both entailment sets have the same number of entailments; however, εO′ arguably

contains at least some non-trivial information (namely the subsumption A v B).

While this decision does not affect the monotonicity of the entailment count, it

shows that, if we include tautologies in an entailment set, the size of the set may

not reflect the amount of relevant information it contains.

Since there is no obvious benefit to including most tautologies in a finite entail-

ment set, we will generally consider finite entailment sets to be free of tautologies

in the remainder of this chapter. If required, we may only include axioms of the

type A v > for a named class A which does not have any other named subsumer.

3.1.2 Asserted and inferred axioms

Every axiom that is asserted in an ontology O is trivially entailed by the ontology

and therefore part of the set of entailments of O. However, the main idea behind

logic-based ontologies is the application of automated reasoning to make implicit

knowledge visible; thus, the set of inferred, but not asserted, axioms may be

of much higher relevance to a user. In particular when counting entailments

of an ontology, including asserted axioms in the count may not add any useful

information if the number of asserted axioms of the selected type is already known.

Most OWL tools (e.g. Protégé 4 and the OWL API) take this into account when

representing the class hierarchy of an ontology and return only entailments which

are inferred, but not asserted.

While excluding asserted axioms from an entailment set is a reasonable choice

in user-focused applications, this may lead to a loss of information in analytical

applications, such as justification analysis. An entailment that is asserted in an

ontology may also hold for other, more complex reasons, i.e. it can have justifica-

tions other than the asserted axiom itself. This may be purely accidental and a

side-effect of other axioms in the ontology, or intentional as a result of ontology

developers ‘adding’ inferred entailments into the ontology. Making entailments

explicit has two advantages: first, it may improve reasoner performance when

classifying the ontology, as the reasoner will have to perform fewer subsumption

3.1. DESIGN DECISIONS FOR FINITE ENTAILMENT SETS 71

checks, and second, the information will be visible even when there is no reasoner

available, for example in a web-based ontology browser—and even if these are

not real benefits, users may believe that they are, which encourages them to take

these steps.

When counting entailments, we need to be aware of the effects of excluding

asserted entailments from the entailment set. Take, for example, an ontology

O with n asserted atomic subsumptions and k ≥ 1 inferred (but not asserted)

atomic subsumptions. If we only count entailments which are inferred but not

asserted, the entailment count for O will be k. Now, if we add all k inferred

atomic subsumption axioms to O, we obtain O′ such that O ⊂ O′. Then the

chosen representation εO′ of the entailments of O′ will contain no (inferred but

not asserted) axioms, that is, εO′ ⊂ εO despite O ⊂ O′. This is obviously counter-

intuitive, as we generally expect the number of entailments to grow monotonically

as we add axioms to an ontology.

A more concrete example shows how the distinction between inferred and

asserted entailment makes the entailment count dependent on the syntactical

variations of equivalent axioms: take O = {A v B u C} and O′ = {A v B,A v
C}. O has two entailed atomic subsumptions (A v B, A v C) which are

inferred and not asserted, whereas O′, despite having the same entailed atomic

subsumptions, has no entailments according to our specification.

Of course, in both examples the ‘missing’ entailments are only a deception,

as the two ontologies are logically equivalent, which means they do not actually

differ in terms of their information content; however, if we use the number of

inferred (and not asserted) entailments as an ontology metric to compare the

two ontologies, we can easily see how this situation can quickly lead to counting

errors.

3.1.3 Transitivity

We generally treat the class hierarchy of an ontology as a directed graph, with

nodes representing sets of equivalent classes, and edges representing subsumption

relationships. A direct subsumption between a class A and a class B is repre-

sented by an edge between the nodes labelled with A and B, respectively; this

corresponds to a path of size one. An indirect subsumption is a path between

two nodes of size greater than one. The class graph can be either based on the

asserted ontology, i.e. the class graph is constructed based on the axioms in the

72 CHAPTER 3. DEFINING FINITE ENTAILMENT SETS

ontology, without the use of a reasoner, or the inferred ontology, which means

that the class graph is built according to the subsumptions and equivalences re-

turned by a reasoner. That is, a directed edge between the nodes labelled A and

B is added to the class graph of O if A v B is asserted in (inferred by) O, and a

class name C is added to the label of a node labelled {D} if C ≡ D is asserted in

(inferred by) O. Note that in Protégé 4, the class hierarchy display is generated

using a very simple structural reasoner which, in addition to implementing tran-

sitivity of the subsumption relationship, simply splits conjunctions on the RHS

of subsumption axioms and in equivalence axioms.

The set of all entailed atomic subsumptions, direct and indirect, then corre-

sponds to the transitive closure of the inferred class graph, while the transitive

reduct [AGU72] represents the set of entailed direct subsumptions. The transitive

reduct of a directed acyclic graph G is a graph G′ such that G′ has a directed

path between two nodes u, v whenever there is a path (u, v) in G, and there is no

graph with fewer edges than G′ which fulfils that condition. The abstract concept

of a transitive reduct can be represented as the Hasse diagram1 of an ontology’s

class graph.

There are several scenarios in which we may want to include or exclude indirect

subsumptions in a representation of the class hierarchy. When presenting a set of

entailed axioms to a user, we may assume that the user understands the principle

of transitivity and only requires a small entailment set with relevant information;

in such a case, it seems reasonable to choose a compact representation of the

entailment set by excluding indirect subsumptions. On the other hand, if a

user wants to be presented with all the information entailed by an ontology,

it might be preferable to include indirect subsumptions. For the purpose of

computing and analysing justifications of an ontology, for example, we may want

to include indirect subsumptions in the entailment set, as they may have relevant

justifications which would otherwise be neglected.

With regard to counting the number of entailments of an ontology, care needs

to be taken when dealing with the transitive reduct of the inferred class graph.

Example 3.1 shows how removing axioms from an ontology results in an increase

in the number of entailments.

1See, for example, [JGSV06] for an example of diagrammatic representations of an OWL
ontology.

3.1. DESIGN DECISIONS FOR FINITE ENTAILMENT SETS 73

B

A

X1 X2 X3

(a) Transitive reduct of O.

B

A

X1 X2 X3

(b) Transitive reduct of O′.

Figure 3.1: Class graphs representing the transitive reducts of O and O′.

Example 3.1.

O = {X1 v A,X2 v A,X3 v A

X1 v B,X2 v B,X3 v B,A v B}

Given the above ontology, the number of entailed direct atomic subsumptions,

based on the transitive reduct of the inferred class graph (shown in Figure 3.1a),

is four, as the indirect subsumptions between Xi and B are excluded from the

set: εO = {X1 v A,X2 v A,X3 v A,A v B}. Removing the axiom A v B from

the ontology creates the class graph for the now modified ontology O′ shown in

Figure 3.1b; as we can see, the transitive reduct of the graph has more edges

than the graph for O. Accordingly, the set of entailments based on the transitive

reduct now contains six entailed axioms: εO′ = {X1 v A,X2 v A,X3 v A,X1 v
B,X2 v B,X3 v B }. Thus, the removal of an axiom has led to a seemingly

larger entailment set in this particular representation.

Interestingly, the InferredSubClassAxiomGenerator implemented by the

OWL API exhibits exactly this behaviour; and while this non-monotonicity of en-

tailment counts may be technically correct, it is certainly confusing and counter-

intuitive to a user who has no way of specifying and understanding the exact

settings of an entailment generator.

74 CHAPTER 3. DEFINING FINITE ENTAILMENT SETS

3.1.4 Equivalent classes

While we commonly only deal with entailed atomic subsumptions representing the

class hierarchy, we might also want to include information about the equivalence

between named classes in the ontology in an entailment set. However, dealing

with equivalence axioms as entailments is not as straightforward as it may seem,

as choosing how to represent equivalent classes as well as subsumptions between

equivalent classes and other classes as a set of axioms requires us to make a

number of design decisions.

Representing equivalence as axioms Assume some ontology O entails the

equivalence of the classes A, B, and C. In the class graph of O this can be

easily expressed by a node which is labelled with the three class names. In OWL

applications, however, users are generally presented with a list of entailed axioms

rather than a graph visualisation. We now have to choose how to represent the

equivalence between these three classes in a set of equivalence axioms:

1. As an n-ary EquivalentClasses(A,B,C) axiom, which is possible in OWL.

2. As an exhaustive set of binary equivalence axioms in order to correspond

to DL notation which only allows binary equivalence axioms: {A ≡ B,A ≡
C,B ≡ C}.

3. As a minimal set of binary equivalence axioms. This requires the use of a

function pairwise(n) to return a set of pairwise axioms which suffices to

represent the relation, such as {A ≡ B,B ≡ C}. This method is imple-

mented in the OWL API.

Again, the decision how to represent equivalent classes depends on the ap-

plication of the entailment set. In an OWL context, an n-ary EquivalentClasses

axiom is certainly the most user-friendly way of representing a set of equivalent

classes. When analysing justifications, an exhaustive set of binary equivalence

axioms will capture all justifications, while a set of representative axioms may

be suitable in a user-facing application which only supports binary equivalence

axioms.

Subsumptions between equivalent classes Representing the subsumption

relationships in a class graph between nodes labelled with multiple equivalent

classes poses yet another challenge: given a set of equivalent classes A, B, and

C which are all subsumed by a common superclass D, how can we represent this

3.1. DESIGN DECISIONS FOR FINITE ENTAILMENT SETS 75

relation in a set of axioms?

Yet again, there are multiple approaches, which depend on whether an entail-

ment set explicitly contains equivalence classes axioms, or whether the equivalence

between (sets of) classes may be represented otherwise:

1. Every class in the set of equivalent classes creates a new subsumption axiom

A v D, B v D, C v D. If the chosen entailment set does not include

equivalence axioms, this approach may be suitable, as it explicitly lists

the subsumption relations between all classes and their superclasses.2 The

disadvantage of this strategy is a fast growth of subsumption axioms if both

the subclass and the superclass node contain multiple equivalent classes.

That is, for two nodes labelled with i and j equivalent classes, respectively,

the number of axioms resulting from this approach is i ∗ j.
2. When including equivalence axioms in the entailment set, it may suffice to

select a representative from each of the nodes representing the sub- and

superclasses, respectively. For this purpose, we introduce a new function,

rep(n) which selects a class name from a node n of equivalent classes based

on some user-defined criteria. The knowledge of the equivalence relations

and the subsumption between two of the classes will then be sufficient in-

formation for a user to infer that the other subsumptions follow.

3. Another, less straightforward approach, would be to attempt to represent all

equivalent classes in a node by one newly generated class name, for example

by concatenating the names of the subclasses and presenting the user an

axiom of the type A,B,C v D. This is obviously not standard OWL

notation and might be confusing to a user, yet, it conveniently captures

both the equivalence as well as the subsumption relations in a single axiom.

3.1.5 Strict and non-strict subsumptions

Another issue to consider when computing finite entailment sets is the notion

of representing strict vs. non-strict subsumptions. A strict subsumption is an

axiom A v B such that O |= A v B and O 6|= B v A, i.e. the classes are not

equivalent, whereas a non-strict subsumption is an axiom A′ v B′ or B′ v A′

where O |= A′ ≡ B′.

2Excluding the equivalence axioms in this situation may lead a user to have an incorrect
‘mental model’ of the ontology graph in which the three subclasses are not equivalent.

76 CHAPTER 3. DEFINING FINITE ENTAILMENT SETS

By default, OWL reasoners (when accessed via the OWL API) exclude non-

strict subsumptions when asking for all superclasses of a named class. This may

cause confusion in cases where a user knows that class A should be subsumed

by B, but is not aware of reasons for the equivalence of the two classes; the

subsumption simply appears to be missing from the entailment set. Including

non-strict subsumptions therefore seems reasonable when a user requests only

subsumption axioms and no equivalence axioms in an entailment set. On the

other hand, when including equivalence axioms in an entailment set, non-strict

subsumptions should in turn be excluded from the set in order to avoid duplicating

information in the resulting set.

When counting entailments, we are faced with yet another situation in which

the number of entailments does not grow monotonically in the size of the ontology.

Take the two ontologies O = {A v B} and O′ = {A v B,B v A}. O′ clearly

contains more axioms and is stronger than O, however, if we count only strict

subsumptions in the entailment set (as is the default in the OWL API), the

number of entailments of O′ is less than that of O. As in the previous examples,

the actual number of entailments of O′ as given by the entailment relation |=
is greater than that of O, however, our entailment sets appear to violate the

monotonicity of |=.

3.1.6 Equivalence to top and bottom

Recall that an unsatisfiable class in an ontology is a class which is equivalent

to ⊥, i.e. it is mapped to the empty set in all interpretations. This also means

that any unsatisfiable class is a subclass of any other class in the ontology: if

O |= A ≡ ⊥ for a named class A, it holds that A v B for all named classes

B ∈ sig(O). In ontology editors and in conversational use, however, unsatisfiable

classes are frequently denoted as subclasses of bottom and no subsumptions be-

tween the unsatisfiable class and named classes are included in entailment sets.

For example, the OWL API’s InferredSubClassOfAxiomGenerator only returns

atomic subsumptions involving satisfiable classes.

Similarly, a class which is entailed to be equivalent to > (we may call it a

tautological class) is commonly denoted as superclass of >, and is entailed to

be a superclass of any other named class in the ontology. Interestingly, there is

no symmetry between the treatment of unsatisfiable and tautological classes, as

entailments of the type B v A for a tautological class A ≡ > and a named class

3.1. DESIGN DECISIONS FOR FINITE ENTAILMENT SETS 77

B are commonly displayed in ontology editors and returned by the OWL API.

While these naming conventions are obviously not incorrect, they only show

one direction of the equivalence relationship between the classes, which may be

misleading to users; furthermore, if we exclude non-strict subsumptions from an

entailment set in a principled manner, as discussed in the previous section, we

should also exclude axioms of the type A v ⊥ and > v A, as these are non-strict

subsumptions. On the other hand, it is clear to see that for both > and ⊥ the

subsumption in one direction (⊥ v A, A v >) is trivial, as it always holds true,

and we are really only interested in the other direction of the equivalence. This

is why it seems reasonable to treat equivalences with > and ⊥ separately from

named classes and generally display them as subsumption axioms.

With respect to the different treatment of unsatisfiable and tautological classes,

it is clear to see that a tautological class can introduce more subtle errors in the

ontology, while subsumptions involving unsatisfiable classes do not contain any

relevant information. Take, for instance, the Movie ontology example which we

have shown in Section 2.3.3 in the previous chapter. In this ontology, the class

Person is entailed to be unsatisfiable. This is caused by the fact that the class

Movie is tautological (i.e. ‘everything is a Movie’), but asserted to be disjoint with

Person. Understanding that Movie is a superclass of Person is crucial to under-

standing the cause of the error. This example shows how subsumptions of the

type > ≡ A add important information to an entailment set and should therefore

always be included in an entailment set.

3.1.7 Axiom and expression types

Thus far we have focused on the design decisions which affect the representation

of the class hierarchy of an ontology. However, it is clear to see that an application

might require a finite entailment set which contains axiom and expression types

beyond atomic subsumptions and equivalences. For example, it can be useful to

know how many named classes are subsumed by an expression such as ∃r.B for

an arbitrary named property r and class B, as this can justify the introduction

of a named class for the anonymous expression. This means that we need some

way of restricting the infinite set of entailments of an OWL ontology to a sensible

finite set, which strikes a balance between containing large amounts of irrelevant

information and omitting relevant axioms.

78 CHAPTER 3. DEFINING FINITE ENTAILMENT SETS

Prime implicates [Qui52, Qui59, Jac92, Bie09] fulfil the requirement of pro-

viding a finite representation of the set of entailments of a formula. Initially

defined for propositional formulae, Bienvenu [Bie07] extends the notion of prime

implicates to concept expressions in the description logic ALC. First, literals L,

clauses Cl, and cubal concepts Cb are defined as follows:

L ::=> | ⊥ | A | ¬A | ∀r.Cl | ∃r.Cb

Cl ::=L | Cl t Cl

Cb ::=L | Cb u Cb

A clausal concept Cl is then a prime implicate of a concept expression C if

1. |= C v Cl

2. For any Cl′ such that |= Cl′ v Cl, then |= Cl v Cl′.

Prime implicates are the ‘logically strongest clausal consequences’ [Bie09] of a

formula that do not contain any redundancies; removing any literal from a prime

implicate would cause the clause to no longer be entailed. Prime implicates of

this type do not correspond to our notion of entailments as sets of axioms, but

rather describe subsumptions between expressions. We can obtain a finite set of

axioms, for example, by generating the set of class assertions x : Cl for all x : C,

or the set of subsumption axioms X v Cl for all X v C for x,X ∈ sig(O). As

an example [Bie07], take the following expression:

A u (B t C) u ∃r.> u ∀r.(B u (A t C)) u ∀r.(B tD)

The prime implicates of this expression are the expressions A,BtC, ∃r.(BuA)t
∃r.(B u C),∀r.B, ∀r.(A t C).

While prime implicates provide an elegant way of defining a ‘natural’ finite

set of entailments, the concept has only been extended to concept expressions in

ALC and does not cover the full spectrum of constructors and axioms available in

OWL. We therefore look at simpler, purely syntactical strategies for generating

finite entailment sets.

Similar to restricting the finite entailment set to entailed atomic subsump-

tions, we can specify any other axiom type as well as expression types we want

to consider by providing an entailment pattern. In order to generate entailed

axioms of different types containing only named classes, the OWL API provides

an InferredAxiomGenerator interface whose implementations provide access to

3.1. DESIGN DECISIONS FOR FINITE ENTAILMENT SETS 79

generators for all OWL axiom types, such as InferredDisjointAxiomGenerator

and InferredSubDataPropertyAxiomGenerator.

Beyond atomic entailments, we may also want to include entailments involv-

ing complex expressions, such as existential or universal quantifiers. Entailments

containing complex expressions are currently not supported ‘out-of-the-box’ by

tools such as the OWL API; however, it is certainly possible to programmatically

generate axioms containing complex expressions over the signature of an ontol-

ogy O, check whether these are entailed by O, and if yes, include them in the

entailment set.

In order to guarantee that the entailment set generated that way is indeed

finite, we need to impose restrictions on the types and nesting depths of expres-

sions. For example, we may only include axioms which do not contain any nested

expressions, such as A v ∃r.B, A v ∀r.B, A v B u C, A v B t C, A v ¬B. Fi-

nally, once these complex entailments have been specified, the design decisions we

have discussed thus far can be applied in order to choose a suitable representation

of the set.

3.1.8 Dealing with ontology imports

Another issue that needs to be dealt with when extracting and counting en-

tailments from an ontology is its import structure. An OWL ontology O that

imports another OWL ontology O′ can have different kinds of entailments: those

that hold in O \ O′ (native entailments), those that are entirely from the im-

ported ontology, i.e. they hold in O′ \ O (imported entailments), and those that

are neither native, nor imported, and hold in O ∪ O′ (mixed entailments).

When performing analytical tasks on a corpus of ontologies, disregarding the

issue of imported entailments may in fact lead to significant distortions: imagine

a scenario where each ontology Oi in a test corpus imports another ontology O′,
for instance an upper-level ontology. A finite entailment set of each Oi would

also include all imported entailments of O′, which could skew any analysis of

the corpus towards the entailments of O′. We encountered this situation when

analysing a snapshot of the NCBO BioPortal3 corpus, in which a number of

ontologies had exactly the same set of entailments, as they were all importing the

Basic Formal Ontology4 (BFO).

3http://bioportal.bioontology.org/
4http://www.ifomis.org/bfo

http://bioportal.bioontology.org/
http://www.ifomis.org/bfo

80 CHAPTER 3. DEFINING FINITE ENTAILMENT SETS

In order to resolve this issue, we propose a classification of entailment types

based on the origin of an entailment which is determined by the set of its justi-

fications. We use the following naming conventions:5

• Oroot denotes the ontology document we are analysing, e.g. the .owl file that

has been loaded into an ontology editor.

• O is the import closure of Oroot, i.e. the ontology resulting from transitive

closure of the imports of Oroot.
• O′ denotes an ontology in the import closure of Oroot that is not the root

ontology itself.

Intuitively, a native entailment originates entirely from the root ontology,

that is, all its justifications contain only axioms from the root ontology Oroot. An

imported entailment originates entirely from entailments that are not from the

root ontology, whereas a mixed entailment covers the remaining scenarios:

Definition 3.1. A justification J for an entailment η is a

1. native justification in O if J ∈ Oroot.
2. imported justification in O if J ∩ Oroot = ∅.
3. mixed justification otherwise.

An entailment η is called

1. native if it has only native justifications.

2. imported if it has only imported justifications.

3. mixed otherwise.

We can see straight away that there are several constellations of mixed en-

tailments having native, imported, and mixed justifications. While such a fine-

grained distinction may not be relevant for analytical purposes (it seems more

reasonable to simply include all entailments of a specified type from an ontology

O and its imports closure), we list them here for completeness:

1. Purely mixed: An entailment which has only mixed justifications.

2. Partially mixed: An entailment which has

a) native and imported justifications.

b) mixed and native justifications.

c) mixed and imported justifications.

d) mixed, native, and imported justifications.

5As used in http://www.w3.org/TR/owl2-syntax/#Imports

http://www.w3.org/TR/owl2-syntax/#Imports

3.2. A NOTATION FOR FINITE ENTAILMENT SETS 81

3.2 A notation for finite entailment sets

Based on the design decisions we have discussed in the previous section, we will

now introduce a shorthand notation for the various aspects of finite entailment

sets. The notation will allow us to conveniently refer to specific entailment sets,

for example, in OWL tools, the OWL API, and in experiment descriptions. Fur-

ther, we will also introduce notations for wanted and unwanted entailment sets

to denote partitions of a given finite entailment set. The section is concluded

by several examples of entailment sets to demonstrate how the notation we have

introduced can be applied in practice.

3.2.1 Introducing the notation

Table 3.1 lists the keys and polarities (+ or -) we assign to the individual design

decisions and the defaults. Note the following remarks:

1. The keys for the properties in the top section of the table are constructed

to always assume the negative polarity key as the default where applicable,

e.g. T−. The negative polarity is given simply for completeness reasons and

to specify the default; if clear from the context, we choose to simply drop

the key to assume the default option.

2. 1. implies that when including a certain type of entailment, the + sign indi-

cating positive polarity of the key is not necessarily required; e.g. we could

simply write T to indicate the presence of A v > type axioms. However,

we choose to always include the polarities in order to make the decision

explicit and avoid ambiguity.

3. The exception with regards to polarity is the inclusion of native entailments

by default, indicated by the positive key In+.

4. Keys can be grouped, e.g. the set of atomic subsumptions including asserted

axioms and indirect subsumptions can be referred to as ‘the (AD)+ set of

axioms A v B for all named, satisfiable classes A, B in O’.

5. The decision whether to include unsatisfiable and tautological classes as

either subsumption or equivalence axioms is omitted from the table, as it is

part of the description of the axiom and expression types in an entailment

set specification.

6. The keys Er and N r require the specification of a function pairwise() and

rep(), respectively.

82 CHAPTER 3. DEFINING FINITE ENTAILMENT SETS

Table 3.1: Entailment set properties and keys

Design decision Keys Default

Include / exclude axioms of type A v > T+ / T− T−

Include / exclude asserted axioms A+ / A− A−

Include / exclude indirect subsumptions D+ / D− D−

Include / exclude non-strict subsumptions S+ / S− S−

Representation of equivalent classes

N-ary equivalent classes axioms En X
Exhaustive binary equivalence axioms Ee –
Select pairwise representatives Er –

Subsumptions between equivalent classes

Exhaustive subsumption axioms N e X
Select representative classes N r –
Introduce new name Nn –

Import types

Include / exclude native entailments In+/ In− In+

Include / exclude imported entailments I i+ / I i− I i−

Include / exclude mixed entailments Im+ / Im− Im−

3.2.2 Axioms and expressions

Since the range of possible OWL axiom types and expressions to include in the

entailment set is very broad, these will not be represented by a key, but described

by listing the axiom pattern or expression pattern instead. For example, the set

of entailed atomic subsumptions can be described as ‘axioms of the type A v B

for all named, satisfiable classes A, B in O’. Likewise, we refer to the set of

entailed unsatisfiabilities as ‘axioms of the type A v ⊥ for all named classes A in

O’. This can be easily extended to complex expressions, such as ‘axioms of the

type A v ∃r.B for all named, satisfiable classes A, B and named properties r in

O’.

3.2.3 Wanted and unwanted entailments

In the context of debugging an ontology we usually speak of modifying or re-

moving axioms in order to remove unwanted entailments from the ontology. One

of the main concerns here is to find a modification, i.e. a repair, such that all

3.2. A NOTATION FOR FINITE ENTAILMENT SETS 83

unwanted entailments are removed, but at the same time as few wanted entail-

ments as possible are lost from the ontology. In the most extreme case, a user

could simply remove all axioms from an ontology, which would obviously have the

desired effect of removing the unwanted entailments, but at the same time this

would also remove any relevant information from the ontology. Borrowing some

notation from existing work on revising knowledge bases [SFRF12, NRG12], we

introduce names for the sets of wanted and unwanted entailments of an ontology:

Given a finite entailment set εO = ε+
O ∪ ε

−
O

• ε+
O is the set of wanted entailments

• ε−O is the set of unwanted entailments.

The decision as to which entailments are unwanted lies with the user; a com-

mon choice for ε−O is the set of entailed subsumption axioms of the type A v ⊥
for named classes A of an ontology. Given these two sets, we can make a clear

distinction between modifications which lead to a positive effect (the removal of

entailments in ε−O) and those with a negative effect (the loss of entailments in ε+
O).

Finding a balance between such positive and negative effects is key in the ontol-

ogy debugging process; a detailed discussion of this issue will follow in Section

4.3.1.

3.2.4 Sample entailment sets

The following examples demonstrate the different criteria and their effects on the

size and types of axioms of finite entailment sets for a small ontology.

Example 3.2 (Toy ontology O).

NorthAmericanCougar v Cougar Mammal v Animal

Cougar ≡ MountainLion Puma ≡ Cougar

Puma v Cat Cat v Mammal

The inferred and asserted class graphs of this ontology are shown in Figures

3.2a and 3.2b, respectively.

84 CHAPTER 3. DEFINING FINITE ENTAILMENT SETS

Animal

Mammal

Cat

{Puma,MountainLion,Cougar}

NorthAmericanCougar

(a) Asserted class graph.

Animal

Mammal

Cat

{Puma,MountainLion,Cougar}

NorthAmericanCougar

(b) Inferred class graph.

Figure 3.2: Asserted and inferred class graphs of Example 3.2.

Transitive closure The (AD)+Ee entailment set containing axioms of the type

A v B and A ≡ B for satisfiable classes A, B in sig(O) makes explicit the sub-

sumption and equivalence relationships between every single class in the ontology.

The set shown in Example 3.3 is the largest finite entailment set to be extracted

from the class graph which does not contain any tautologies. The alternative vari-

ant D+(EN)e of this set excluding asserted subsumption axioms simply discards

the six axioms that occur in the original ontology, yielding a set of 12 axioms.

Example 3.3 ((AD)+(EN)e entailment set of O, 18 axioms).

Cougar ≡ MountainLion Cougar ≡ Puma

MountainLion ≡ Puma Puma v Cat

Puma v Mammal Puma v Animal

MountainLion v Cat MountainLion v Mammal

MountainLion v Animal Cougar v Cat

Cougar v Mammal Cougar v Animal

NorthAmericanCougar v Puma NorthAmericanCougar v MountainLion

NorthAmericanCougar v Cougar NorthAmericanCougar v Cat

NorthAmericanCougar v Mammal NorthAmericanCougar v Animal

3.3. ENTAILMENTS IN OWL APPLICATIONS 85

Due to the fast growth in size, such a set of entailments may not be suitable

for user-facing applications. For the purpose of computing justifications, how-

ever, this set set seems most appropriate, as it guarantees that all subsumption

relationships are captured.

Transitive reduct The A+(EN)r entailment set based on the transitive reduct

of the class graph uses representative elements from each node as well as a pair-

wise representation of equivalent classes to produce a minimal image of the class

hierarchy. That is, given this minimal set of axioms, we can still correctly draw

the asserted class graph of the ontology and not miss out any relevant subsump-

tions or equivalences.

Example 3.4 (A+(EN)r entailment set, six axioms).

NorthAmericanCougar v Cougar Cougar ≡ MountainLion

MountainLion ≡ Puma Puma v Cat

Cat v Mammal Mammal v Animal

This entailment set contains all the information that would be necessary for

a user to understand (or be able to infer) the relationships in the ontology. The

class Puma was selected to represent the node labelled with the equivalent classes

{Cougar,Puma,MountainLion}, as the resulting axiom Puma v Cat is part of the

asserted ontology. That is, in this case, the function rep(n) is used to return a

random class name from the node labelled with the equivalent classes, giving pref-

erence to classes that would allow us to generate a subsumption axiom which is

already asserted in O. Defining rep(n) to select any of the two other classes would

have been appropriate, too, but would have resulted in a larger entailment set,

namely the axioms shown in 3.4 plus either Cougar v Cat or MountainLion v Cat.

3.3 Entailments in OWL applications

A number of OWL applications provide methods for generating ‘the inferred’

version of an ontology, or offer views of ‘selected entailments’. From working

86 CHAPTER 3. DEFINING FINITE ENTAILMENT SETS

with these tools, we have found that the notion of entailments does not have a

consistent interpretation across different applications. In this section, we briefly

outline some of the examples of the use of entailments in OWL tools as well

as analytical applications, and show how they would benefit from a flexible and

transparent definition of entailment sets.

3.3.1 Inferred ontology generation in the OWL API

The OWL API provides the Java class InferredOntologyGenerator, which al-

lows users to ‘fill’ a new ontology with the desired type of entailments, such

as inferred atomic SubClassOf axioms. By default, this method only retrieves

the direct named superclasses of a named class when using the OWL API’s

InferredSubClassOfAxiomGenerator; any of the properties discussed in the

above sections cannot be specified when generating entailments. By extending

the InferredAxiomGenerator to accept custom configurations, we can simply

take into account the additional design decisions described above. We have im-

plemented such a custom entailment generator on top of the OWL API which uses

standard configuration files to determine the exact set of axioms to be generated.6

3.3.2 Presenting entailments to end-users

The ontology editor Protégé 4 comes with a ‘selected entailments’ tab which shows

a list of atomic SubClassOf, SubPropertyOf, and Type (class assertion) axioms.

The tool also offers the option to ‘Save inferred axioms as ontology’ which saves

asserted and inferred axioms as a new OWL ontology. Similarly, Top Braid Com-

poser offers to ‘Save [the] inference graph’ as a new file. None of the editors offers

any further explanation to how these entailments were extracted in the classifica-

tion process. It may even seem surprising to the end-user that some tautological

axioms, such as A v >, are displayed in Protégé 4’s ‘selected entailments’ panel

(shown in Figure 3.3) for some classes, while others are missing. The current

settings panel for the entailment tabs provides checkboxes for the desired axiom

types which are then generated by the corresponding InferredAxiomGenerator

implementations in the OWL API. This could be simply extended by integrating

settings options for the design decisions described above, thus offering a more

transparent and flexible view of such ‘selected entailments’.

6http://owl.cs.manchester.ac.uk/entailments

http://owl.cs.manchester.ac.uk/entailments

3.3. ENTAILMENTS IN OWL APPLICATIONS 87

Figure 3.3: Screenshot of the ‘Selected Entailments’ tab in Protégé 4

3.3.3 Ontology publishing

Ontologies that are available on the web may be published as ‘compiled’ versions,

which include the ontology and its entailments of some description. The OWL

version of the National Cancer Institute (NCI) thesaurus, for example, ‘includes

inferred relationships’.7 There is, however, no definition of what is regarded as

an inferred relationship, how these relationships are determined, and what the

selection criteria is. This may leave users wondering what kinds of information

they are dealing with, and what implications this has for their understanding of

the ontology.

3.3.4 Metrics and analytical applications

Analytical applications that consider the number and types of entailments in

order to infer ontology metrics depend on clearly defined finite entailment sets as

the basis of their measurements, i.e. what exactly is measured. The entailment set

used to generate metrics must be well defined and independent from a particular

implementation or individual modifications of results provided by the OWL API.

From anecdotal evidence we know that developers of analytical tools frequently

modify the results of the OWL API’s InferredAxiomGenerator for use in their

7http://evs.nci.nih.gov/ftp1/NCI_Thesaurus/ReadMe.txt

http://evs.nci.nih.gov/ftp1/NCI_Thesaurus/ReadMe.txt

88 CHAPTER 3. DEFINING FINITE ENTAILMENT SETS

application, for example by removing entailments of the type A v >.

One such application is the use of entailment and justification metrics for the

purpose of identifying ontology design styles [MSR11] which ensures transparent

and consistent measurements across different applications by clearly specifying

the type of entailment set to be extracted.

Another example is the counting of entailments which are lost in the debugging

process of the OWL SafeMode tool [Sch11] in order to evaluate the quality of

a repair step, which requires a stable way of counting entailments that is not

sensitive to the irregularities discussed above.

Finally, some approaches to ontology diffs, that is, determining and quan-

tifying the semantic and syntactic differences between two ontologies (e.g. two

versions of an ontology), make heavy use of finite entailment sets. In these ap-

proaches the difference between two ontologies is measured based on the (count-

able) differences in their (finite) entailment sets. Gonçalves et al. [GPS11b,

GPS12a] present several approximations to diffs which are based on increasingly

complex types of entailment sets, such as entailed atomic subsumptions, subsump-

tions between complex class expressions already found in the ontologies, and a

grammar diff which generates new complex expressions to check for entailment.

3.3.5 Imported and native entailments in BioPortal

In a survey of 42 OWL and OBO ontologies from the NCBO BioPortal [BHPS11],

we found that imported entailments (in the (AInim)+ set of atomic subsumptions

of type A v B for satisfiable classes A,B) did in fact have a visible effect on the

number of entailments found in those ontologies. In this corpus, the upper-level

ontology Basic Formal Ontology (BFO) [GSG04] contributed significantly to the

skewing of entailment counts. Table 3.2 shows an overview of the ontologies in

the survey.

Table 3.2: Ontologies and imported entailments in the NCBO BioPortal.

Importing BFO Other imports

Ontologies Total Imported Mixed Total Split No imports

42 7 3 4 7 5 28

Seven ontologies in the sample corpus imported BFO, of which three had

no native entailments at all, but contained 70 imported entailments which all

3.4. SUMMARY AND CONCLUSIONS 89

originated from BFO. A further four ontologies had 70 imported entailments

from BFO, plus additional entailments which were either native or imported from

ontologies other than BFO.

Additionally, a further seven ontologies had imported entailments from on-

tologies other than BFO; for five of these, however, the imports could be at-

tributed to the ontology being intentionally split up over several files with sim-

ilar file names. Examples of these included the Chemical Information ontology

[KDLD08], which had one native entailment, 72 imported entailments from an

ontology titled ‘cheminf-external’, and three entailments from ‘cheminf-core’, or

the Semanticscience Integrated Ontology (SIO),8 which had imported entailments

from an ontology called sio-core.owl.

Finally, 28 ontologies did not have any imported entailments at all, which

could be either due to them having no imports, the imported ontology having no

entailments that matched our criteria, or missing imports, which were ignored in

the pre-processing stage when downloading the ontologies from BioPortal.

The example of the BioPortal ontologies shows how an analysis or comparison

of ontologies based on the number of entailments and justifications needs to pay

attention to their import structure; in the case of the BFO imports, the three

ontologies which had only entailments from BFO would have appeared to have

exactly the same number of entailments and justifications, and thus might have

been wrongfully classified as similar in terms of their expressivity and inferential

power.

3.4 Summary and conclusions

In this chapter, we presented a discussion of the issues surrounding finite en-

tailments sets for OWL ontologies. While the classification and computation of

inferences is a standard reasoning task in the ontology engineering process, there

exist ambiguities in ontology tools as to what constitutes the ‘set of entailments’

of an ontology. Sections 3.1.1 through 3.1.8 highlighted various design decisions

to be made in order to clearly specify a non-ambiguous representation of a finite

entailment set of an OWL ontology: how to deal with tautologies, whether to in-

clude asserted axioms, how to deal with transitive and non-strict subsumptions,

and how to make the transition from nodes and edges in an abstract class graph

8http://code.google.com/p/semanticscience/wiki/SIO

http://code.google.com/p/semanticscience/wiki/SIO

90 CHAPTER 3. DEFINING FINITE ENTAILMENT SETS

to concrete sets of axioms which are presented to a user or used in an OWL appli-

cation. Regarding the issue of counting the number of entailments of an ontology,

we identified the following pitfalls which may lead to a non-monotonically grow-

ing entailment count, i.e. the apparent loss of entailments when adding axioms

to an ontology:

• Excluding asserted entailments.

• Excluding indirect subsumptions.

• Excluding non-strict subsumptions.

Furthermore, we have shown that including tautologies such as Asubcls> may

cause two ontologies to have identical entailment counts, despite one ontology

having fewer relevant entailments in terms of their information content.

In Section 3.1.8, we discussed the problem of imported entailments and how

these can skew ontology metrics based on entailments, which was demonstrated

using examples from a corpus of biomedical ontologies. The examples found

in this chapter illustrate the wide scope of different entailment sets that can

be specified depending on the application, ranging from minimal representations

which are suitable for user-facing applications, to exhaustive, yet finite, sets which

may be used for analytical purposes.

The outcome of the work presented in this chapter is a deeper insight into what

we mean by the ‘set of entailments’ of an ontology, alongside a set of properties

which can be used to precisely define a finite entailment set that is fit for a specific

purpose. The main benefit of this set of properties is that it is defined from

an application perspective, which makes the effects of individual choices, such

as whether to include indirect subsumptions, easier to understand for a user.

Finally, we have made available a prototypical entailment generator on top of

the OWL API, which allows the straightforward specification of finite entailment

sets using a custom configuration file. The understanding and tools gained here

lay the foundations for our discussion of the relations between justifications for

entailment sets, which will be presented in the following two chapters.

Chapter 4

The justificatory structure of OWL

ontologies

In current ontology explanation tools, justifications are generally represented as

individual entities in relation to a single entailment; recall the list arrangement

of justifications in the Protégé 4 editor, as shown in the screenshot in Figure 1.1.

Previous surveys of OWL ontologies have shown that the majority of ontologies

used in practice contain some entailment which has more than one justification,

with many ontologies generating a few dozen and up to several hundred justifi-

cations for a single entailment [BPS10b, Hor11a, BHPS11].

Furthermore, we know that justifications for single or multiple entailments

are not disjoint subsets of an ontology, but they often overlap to a certain extent,

sharing one or more axioms between them. This is relevant for both understand-

ing as well as repairing the entailments of such justifications: as we have discussed

in Section 2.3.1, shared axioms may1 lead to a smaller hitting set, and therefore

to a smaller repair for a set of entailments. Beyond their suitability for small

repairs, shared axioms may indicate common lemmas [HPS09], i.e. intermediate

entailments, which can assist users in understanding (parts of) multiple justifica-

tions at the same time rather than treating each one independently, thus reducing

the effort required to deal with multiple justifications.

Beyond the known metrics of axiom frequency and impact which we intro-

duced in Section 2.3.1, several other properties of justifications, such as the num-

ber of justifications for an entailment, the size of justifications in an ontology, to

what extent the ontology contains entailments which are entailed only by them-

selves, and what proportion of the ontology participates in justifications, all give

us an insight into structural relationships in the ontology beyond standard met-

rics; we can say that the justifications make the implicit relationships between

1It is important to point out that a shared axiom does not necessarily have to be an incorrect
axiom; therefore, it is not guaranteed to be part of the hitting set that leads to a repair.

91

92 CHAPTER 4. THE JUSTIFICATORY STRUCTURE

the entities and axioms of an ontology explicit.

In this chapter, we will introduce the notion of justificatory structure of an

OWL ontology. First, we present a categorisation of entailments based on the

types of justifications they have in an ontology. We then lay out the motivation

for analysing the relations between justifications in an ontology and define various

structural aspects which may be of interest for ontology development and analysis.

We introduce a graph-based representation of the justifications and entailments

in an ontology and describe the generation and implementation of such a j-graph.

Along with Chapter 5, the work presented in this chapter constitutes the core of

our research into the justificatory structure of OWL ontologies.

4.1 Categories of justifications and entailments

Following on from our discussion of different representations of entailment sets in

Chapter 3, we will now take a closer look at the different types and scenarios of

justifications we encounter when analysing a finite entailment set of an ontology.

While it is certainly the case that all justifications are essentially equal—they are

minimal entailing subsets of an ontology—we may treat them differently depend-

ing on the axioms they contain, and depending on their relation to the entailment

in question.

4.1.1 Self-justifications and self-supporting entailments

Any justification which is simply the entailed axiom itself is classified as a self-

justification:

Definition 4.1 (Self-justification). A justification J for an entailment η is a

self-justification if J = {η}.

We distinguish between entailments which have a self-justification in addition

to other, more complex, justifications, and entailments which have only a self-

justification and no other justifications. Referring back to our discussion of finite

entailment sets in Chapter 3, these entailments are commonly referred to as

‘asserted, but not inferred’; however, in order to avoid ambiguity caused by the

word inferred (as an asserted axiom can also be inferred from an ontology), we

denote such as self-supporting entailments:

4.1. CATEGORIES OF JUSTIFICATIONS AND ENTAILMENTS 93

Definition 4.2 (Self-supporting entailment). An entailment η is self-supporting

if Justs(η) = {{η}}.

There are different reasons why an entailment might have a self-justification

in addition to other justifications:

1. The entailment was not asserted in the ontology to begin with, but ex-

plicitly added after it was found to be inferred. This could be in order to

improve reasoner performance, to make the entailment visible to the devel-

oper without using a reasoner (e.g. if the classification time is very high), or

to make the inferences visible to end-users in an ontology browser interface

which does not support reasoning.

2. The ontology modeller does not use a reasoner during the engineering pro-

cess, thus is not aware that the subsumption is already entailed by the

ontology, which means they might explicitly assert information which al-

ready exists implicitly.

3. The additional justifications are a side-effect of other axioms that were

added to the ontology without the aim of causing the entailment, or with

the aim of causing this and other entailments.

Without additional information, such as axiom annotations or change logs of an

ontology, it is not possible to tell the intentions of an ontology developer when

adding an axiom which causes additional justifications or self-justifications. More-

over, developers may not even be aware of the full impact that a modification has

on the ontology. We therefore treat self-justifications and additional justifications

on a purely logical level, disregarding the reasons for those multiple justifications.

4.1.2 Atomic subsumption chains

An atomic subsumption chain justification in an ontology O is a set of axioms of

the type A1 v A2, A2 v A3, . . . , An−1 v An for an entailment A1 v An where

Ai is a named class in sig(O). It is clear to see that such an atomic subsumption

chain justification of two or more axioms always represents an indirect subsump-

tion, which we have discussed in Chapter 3. Take, for example, the following

ontology:

Example 4.1.

O = {A v B,B v C,A v C}

94 CHAPTER 4. THE JUSTIFICATORY STRUCTURE

The A+D− entailment set of atomic subsumptions is the set {A v B,B v C},
whereas the (AD)+ entailment set is simply O itself. While each entailment in

(AD)+ has a self-justification, the entailment A v C has an additional atomic

subsumption chain justification J = {A v B,B v C}. Despite J being slightly

less trivial than a self-justification, it is still simply based on the transitivity of

subsumption. This implies that the interactions between axioms in the ontol-

ogy (with respect to the class hierarchy) are trivial enough to be inferred by a

structural reasoner.

Note that it is certainly possible for an entailment to have multiple atomic sub-

sumption chain justifications. For example, adding the axioms {A v E,E v C}
to the above example would add another atomic subsumption chain justification

for the entailment A v C.

In our survey of the justificatory structure of OWL ontologies which we will

present in Chapter 7, we find that many ontologies which only contain self-

justifications for direct subsumptions often have only atomic subsumption chain

justifications for indirect subsumptions; that is, the information content of the

ontology does not reach beyond its asserted class graph.

4.1.3 Complex justifications

Finally, we consider all justifications that are not self-justifications or atomic sub-

sumption chains to be complex justifications as opposed to trivial self-justifications

or atomic subsumption chain justifications. It is obvious that the level of com-

plexity can vary strongly between justifications, depending on their size and the

constructors used in their axioms. However, for the purpose of categorising justifi-

cations, such a coarse distinction between self-justifications, atomic subsumption

chains, and other justifications suffices.

It is clear to see that entailments can have both trivial and complex justi-

fications. Assume we add further axioms to the above example ontology O to

obtain O′ = O ∪ {A v ∃r.D,∃r.D v C}. The entailment A v C will then have

another, complex, justification J = {A v ∃r.D,∃r.D v C} in addition to its

self-justification and atomic subsumption chain justification.

4.1. CATEGORIES OF JUSTIFICATIONS AND ENTAILMENTS 95

Does Justs(η) contain. . .

a self-justification?

an atomic subsumption chain?

a complex justification?

η

x T4 T2 T6 T1 T5 T3 T7

n y

n y

n y n y

n y

n y n y

Figure 4.1: A decision tree for categorising entailments.

4.1.4 Categorising entailments and ontologies

If we consider the categorisation of justifications from the point of view of their

corresponding entailments, we can also arrange entailments and ontologies into

a hierarchy based on their justification. This will be of use when analysing the

justificatory structure of an ontology, as it allows us to decide which entailments

and justifications to include in specific metrics. For example, when counting the

numbers of justifications per entailment, we may want to treat trivial and non-

trivial justifications separately in order to ensure that we are comparing equally

relevant justifications.

Figure 4.1 shows a decision tree for categorising an entailment based on its

justifications. Given an entailment, the decision tree accepts a simple yes/no in

the presence/absence of each type of justification, leading the entailment to be

sorted into one of seven categories. We have labelled these categories with types

T1 through T7 based on the number obtained if we regard the respective path in

the decision tree as a (reversed) binary number. This results in odd numbers for

entailments which have self-justifications, and even numbers for those entailments

that have only non self-justifications.

This categorisation process can be applied to ontologies in order to rank them

based on the justification types they contain (given some finite entailment set).

This is of use when analysing the justificatory structure of an ontology, as it allows

us to separate relevant ontologies (those that do contain entailments with complex

justifications) from irrelevant ones (those that only contain trivial entailments).

96 CHAPTER 4. THE JUSTIFICATORY STRUCTURE

4.2 Representing justifications as j-graphs

In order to talk about the justificatory structure of an ontology, we require some

way of representing structural aspects in an accessible way. The set of entail-

ments, their justifications, and the axioms occurring in these justifications can be

easily represented as a graph, which allows us to describe aspects of justificatory

structure using standard graph metrics such as the in- and out-degrees of nodes.

In this section, we first define the terminology for different aspects of entailment

and justification sets, which then allows us to define the justification graph for a

given set of entailments.

4.2.1 J-graph definition

Before defining j-graphs, we need to introduce the building blocks of these graph

representations of justifications. Recall Definition 2.4 in which we defined Justs(εO)

as the set of all justifications for the entailments in a particular entailment set

εO of an ontology O. Furthermore, we define the set of all axioms occurring in

all justifications for a particular entailment set:

Definition 4.3 (Justification axioms).

JustAx(εO) = {α | there is a J ∈ Justs(εO) s.t. α ∈ J }

Based on our definitions of justification sets and justification axioms, we can

now define the justification graph of an ontology O with respect to an entail-

ment set εO: a justification graph (j-graph) G(εO) is a directed graph whose set

of nodes is the union of the set of axioms εO which are entailed by O and the

set JustAx(εO) of axioms that participate in justifications for these entailments,

together with the set of all justifications Justs(εO). The graph does not contain

axioms in O which are neither in the entailment set, nor in JustAx(εO), as these

would not have any incoming or outgoing edges, thus not adding any informa-

tion content. Furthermore, recall that in the context of this thesis we focus on

justifications for finite sets of entailments. Therefore, the justification graph of

an ontology O is defined with respect to a finite entailment set of O:

Definition 4.4 (Justification graph). Given a finite set of entailments εO, their

justifications Justs(εO), and justification axioms JustAx(εO), a justification

graph is a graph G(εO) = (εO ∪ Justs(εO) ∪ JustAx(εO), E1 ∪ E2) where

4.2. REPRESENTING JUSTIFICATIONS AS J-GRAPHS 97

a1

j1

a2

j2

a3 a4

j3

a5 a6

j4

a7

j5

a8 a9

a10 a11

j6

a12

Figure 4.2: An example of a j-graph for justifications and entailments.

• E1 = {(u, v) ∈ εO ∪ JustAx(εO)× Justs(εO) | u ∈ v} and

• E2 = {(v, w) ∈ Justs(εO)× εO | v ∈ Justs(O, w)}.

We can say that the edges (u, v) in E1 represent the relation ‘axiom u occurs

in justification v’, and the edges (v, w) in E2 represent the relation ‘justification

v has entailment w’, where u and w may be the same node.

Figure 4.2 shows a j-graph of the small sample entailment and justification

set in Example 4.2. As we can see in the example graph on nodes a1, a10, a11

and a12, an axiom node in the graph with an in-degree ≥ 1 corresponds to an

entailment in εO. An axiom node with an out-degree ≥ 1 corresponds to an

axiom in JustAx(εO); this node type is represented by nodes a1 through a9 in

the example graph.

Example 4.2.

j1 ={a1} |= a1

j2 ={a2, a3, a4} |= a10

j3 ={a4, a5} |= a11

j4 ={a6, a7, a8} |= a12

j5 ={a7, a8, a9} |= a12

j6 ={a11} |= a11

98 CHAPTER 4. THE JUSTIFICATORY STRUCTURE

A self-justification corresponds to a cycle between an axiom node and a justi-

fication node (which, in turn, only has this one incoming edge), as justifications

j1 and j6 show. A self-supporting entailment (a1 in the example graph) is rep-

resented by an axiom node which has no other incoming edges in addition to the

cycle.

Note that, while some j-graphs may be tripartite (see, for example, the sub-

graph containing the axiom nodes a6 through a9) , an axiom node can be both in

the set JustAx(εO) and in εO, i.e. have an outgoing edge to a justification node

and an incoming edge from a justification node, as we can see from both axioms

a1 and a11 in the example graph. Thus, a j-graph may be but is not guaranteed

to be tripartite.

There exists a unique j-graph for every set of entailments, as the set of jus-

tifications for an entailment set is unique in an ontology, and the edges in the

j-graph follow from these unambiguous relations.

Recall that the number of justifications for an entailment can potentially be

exponential in the number of axioms in O. This affects the completeness of a

j-graph for a given finite entailment set, as it may not be practical to compute

all justifications for all entailments in the set. Despite the general feasibility of

computing justifications, as shown in [Hor11a], computing all justifications for a

large finite entailment set can still require more time than an ontology user may

consider practical.

This means that we either need to sample a subset of entailments, or only gen-

erate a certain number of justifications for each entailment in the given entailment

set—or both. While this omission of information is obviously problematic for

users attempting to find a repair for all justifications for a given entailment set,

the only solution to such computational problems is incremental repair. There-

fore, we only consider the j-graph for an entailment set to represent the particular

set of entailments and justifications that could be processed, even if these are not

all that exist in the ontology.

4.2.2 J-graph generation

Construction Generating a j-graph to represent the justificatory structure of

an OWL ontology is a fairly straightforward process. First, all axioms in the

union of the ontology and the selected entailment set εO are labelled with a

unique identifier ai. We then compute the justifications for the entailments in

4.3. JUSTIFICATORY STRUCTURE 99

εO; the justifications are also labelled with unique identifiers jk. The axiom

labelling can also be performed on an existing set of justifications, which has no

effect on the general structure of the process.

The j-graph is then constructed as follows: generate a node for each axiom

in JustAx(εO) and εO (each justification in Justs(εO)) and label it with the

respective identifier. For each justification node labelled jk, generate an edge

(ai, jk) for each axiom ai in the justification labelled jk; this will create the edges

representing the relation ‘axiom is used in justification’. For each entailment node

ai with a justification jk, generate an edge (jk, ai) which represents the relation

‘justification for entailment’. This construction requires only a single pass over

all given justifications, axioms, and entailments.

Implementation The above algorithm has been implemented using the OWL

API version 3.2.4, and the JGraphT2 version 0.8.3 graph library for representing

the j-graph. Construction of the graph on a set of existing justifications and

entailments is performed quickly, with the average time to construct a graph being

less than ten seconds in a set of ontologies ranging from two to approximately

11,000 justifications.

4.3 Justificatory structure

In summary, the justificatory structure of an ontology O is the set of relations

between and metrics of justifications for a specific finite entailment set of O.

Using the j-graph to describe relations between entailments, their justifications,

and the axioms in the justifications, we can now discuss the various elements of

justificatory structure. In the first instance, the justificatory structure provides

additional ontology metrics; beyond these metrics, insights into the structure can

support user understanding when coping with multiple justifications and/or mul-

tiple entailments. Further, in Chapter 6 we will introduce debugging techniques

that are directly based on the interaction with the j-graph for a user-defined

entailment set.

Note that in this section we refer to ‘the entailments’ and ‘the justifications’

of an ontology, which requires a more precise specification. In what follows,

we assume these entailments to be the (AD)+ set of entailments which includes

2http://jgrapht.org/

http://jgrapht.org/

100 CHAPTER 4. THE JUSTIFICATORY STRUCTURE

...

j4

...

j1

a0

j2 j3...

a4

...

...

a5a1a3 a2

Figure 4.3: J-graph illustrating axiom frequency, impact, and semantic relevance.
Axiom a0 has a frequency of four, impact of five, and semantic relevance of three.

all asserted and inferred native, direct and indirect (non-tautological) atomic

subsumptions of the type A v B for satisfiable classes A,B which are entailed

by O, as this provides a clearly defined and natural starting point for exploring

the properties of an ontology.

For ease of reading, we will use the terms justification, axiom, and entailment

interchangeably with justification node, axiom node, and entailment node in the

remainder of this chapter.

4.3.1 Axiom properties

The axioms occurring in justifications for a given set of entailments can have

different properties, which we denote as axiom frequency, impact, and semantic

relevance; the former two were already introduced in Section 2.3.1. These three

terms describe similar, but slightly distinct, measures of the effect an axiom in

JustAx(εO) has on a set of justifications and entailments. Figure 4.3 shows an

example j-graph which exhibits different values of frequency, impact, and semantic

relevance for the axiom node a0. Blank nodes labelled with ‘. . . ’ indicate the

existence of some additional axiom(s) occurring in a justification, respectively

additional justification(s) for an entailment.

Frequency

The frequency, also referred to as power or arity, of an axiom is the number

of justifications (for a given entailment set εO) the axiom occurs in. Removing

4.3. JUSTIFICATORY STRUCTURE 101

an axiom with frequency n from the ontology will break n justifications for the

entailments in εO. Given that there can exist multiple justifications for an entail-

ment, the frequency of the axioms in a set of justifications does not necessarily

tell us how a removal would affect the actual entailments of those justifications.

In a j-graph, the frequency of an axiom node corresponds to its out-degree; an

axiom with a frequency greater than one corresponds directly to a justification

overlap of size one between the justifications the axiom occurs in:

Definition 4.5 (Frequency). freq(u) = |{v | (u, v) ∈ E1}| for u ∈ JustAx(εO).

The axiom node a0 in Figure 4.3 has edges to four justifications (j1, j2, j3,

j4); thus, a0 has a frequency of four.

Impact

The impact of an axiom is, in some sense, an extension of the axiom frequency.

It refers to the number of entailments in εO that are directly affected by the

axiom, as the axiom occurs in some justification for the entailments. Removing

an axiom with an impact of m from the ontology may break m entailments in

εO, assuming there are no other justifications for those m entailments. Axiom

frequency and impact coincide if each justification that the axiom occurs in has

exactly one (distinct) entailment, and the impact is less than the axiom frequency

if the axiom occurs in multiple justifications for the same entailment.

In a j-graph, the impact of an axiom node u is defined as the sum of entailment

nodes w that have an incoming edge from a justification node v such that (u, v) ∈
E1 and (v, w) ∈ E2:

Definition 4.6 (Impact). impact(u) = |{w | ∃v s.t. (u, v) ∈ E1, (v, w) ∈ E2}| for

u ∈ JustAx(εO).

The axiom node a0 in the j-graph in Figure 4.3 has an impact of five, as it

occurs in the justifications (j1, j2, j3, j4) for all five distinct entailments in the

graph.

In the context of repairing a given set of entailments, we will need to consider

the impact of axioms both with regard to the set of unwanted entailments as well

as the set of wanted entailments: removing a high-impact axiom from an ontol-

ogy may break a large number, or all, unwanted entailments (e.g. unsatisfiable

classes), but it may also lead to the removal of relevant information. Referring to

102 CHAPTER 4. THE JUSTIFICATORY STRUCTURE

our definitions of wanted and unwanted entailment sets in Section 3.2.3, we can

distinguish between the positive and negative impact of an axiom:

Definition 4.7 (Positive and negative impact).

impact−(α) =
∣∣{ηi | ηi ∈ ε+

O, α ∈ JustAx(ε+
O)}
∣∣

impact+(α) =
∣∣{ηi | ηi ∈ ε−O, α ∈ JustAx(ε−O)}

∣∣

In words, the negative impact of an axiom α is the number of wanted entail-

ments that are entailed by the justifications α occurs in, and the positive impact

is the number of unwanted entailments that are entailed by the justifications α

occurs in. Note that the plus and minus signs for positive/negative impact and

wanted/unwanted entailment sets are swapped, i.e. impact− refers to ε+
O, and

vice versa.

Semantic relevance

Finally, the semantic relevance of an axiom, as defined by Kalyanpur [Kal06], is

the number of entailments that are dependent on the axiom. Semantic relevance

is closely related to the impact of an axiom, taking into account only those entail-

ments that have no additional justifications (or only justifications that contain

the axiom). In the context of debugging a set of entailments, the semantic rel-

evance of an axiom is the most meaningful of three axiom measures, as it gives

a clear indication of the effect axiom removal will have on a set of entailments.

Based on the definition given by Kalyanpur [Kal06], the semantic relevance of an

axiom node u labelled with an axiom α in a j-graph is calculated as follows:

Definition 4.8 (Semantic relevance).

SR(u) = |{w | ∃v s.t. (u, v) ∈ E1, (v, w) ∈ E2∧ 6 ∃v′ s.t. (v′, w) ∈ E2 ∧ (u, v′) 6∈ E1}|

for u ∈ JustAx(εO).

Axiom a0 in the j-graph in Figure 4.3 has a semantic relevance of three, as

it occurs in justifications (j1, j2, j3) for exactly three entailments (a1, a2, a3)

which do not have any additional justifications that do not contain a0.

4.3. JUSTIFICATORY STRUCTURE 103

Activity

We can define the activity of an ontology O with respect to a finite entailment

set εO of O. The activity corresponds to the total number of axioms that occur

in justifications which are not self-justifications, that is, the size of the subset of

the ontology which actively participates in entailment:

Definition 4.9 (Activity).

activity(O, εO) =

∑
|Ji|
|O|

where Ji ∈ Justs(εO), Ji is not a self−justification.

Likewise, an active axiom is an axiom which occurs in a justification that is

not a self-justification:

Definition 4.10 (Active axiom). An axiom α ∈ O is active if α ∈ J where

J ∈ Justs(εO), J is not a self-justification.

4.3.2 Properties of justifications

Justificatory redundancy

Following on from the discussion of self-justifications and additional justifications,

we can regard the number of justifications per entailment as an indicator of

justificatory redundancy in the ontology; it demonstrates ‘how often the same

piece of information is expressed in different ways’. Justificatory redundancy is

not to be confused with logical redundancy, as this would imply that it is possible

to remove a set of axioms from the ontology without breaking any entailments.

In the j-graph, an axiom node with an in-degree >1 has redundant justifi-

cations; thus the in-degree (average, median, or maximum) of axiom-nodes in a

j-graph is a metric for determining the level of justificatory redundancy in an

ontology.

Justfication size

The size of a justification is the number of axioms it contains; this corresponds

to the in-degree of a justification node in the j-graph. Justification size gives

us information about the use of entities in an ontology in two ways: first, large

justifications can be caused by signatures which spread across multiple axioms,

104 CHAPTER 4. THE JUSTIFICATORY STRUCTURE

while small justifications indicate that the entities in the ontology are less con-

nected. On the other hand, justifications with small numbers of axioms can

also be caused by long axioms, that is, axioms containing many subexpressions,

whereas justifications with many axioms may be caused by shorter axioms.

4.3.3 Relations between justifications

Structural regularities

Two types of patterns can be identified in the context of the justificatory struc-

ture, namely structural isomorphism between isomorphism and graph surface pat-

terns.

Justification isomorphism [HBPS11b] describes a situation where the axioms

within a set of justifications share an identical structure; for example, the two jus-

tifications J1 = {A v ∃r.B, ∃r.B v C} |= A v C and J2 = {X v ∃s.Y, ∃s.Y v
Z} |= X v Z are isomorphic, as they have the same structure and only differ in

the class and property names used. Justification isomorphism will be discussed

in great detail in Chapter 5; for now we will focus on structural properties of the

j-graph and treat justification axioms as ‘black boxes’.

A surface pattern is a structural similarity between sets of nodes and edges

in the j-graph, such as subgraphs which match based on their node types and

the numbers of ingoing and outgoing edges. Surface patterns in the j-graph re-

veal modelling similarities in the ontology, regardless of whether the axioms and

expressions occurring in the pattern also interact in a similar way. Highlight-

ing a pattern of this type may support user understanding of the modelling in

the ontology, while it may also be an indicator for isomorphic justifications. In

the example j-graph in Figure 4.2, the justifications j4 and j5 both have a sim-

ilar structure (same in and out-degrees, two shared axioms), which may be an

indicator for structurally isomorphic justifications.

Graph components

A graph component is a subset of nodes and edges which forms a disconnected

subgraph. The number of components of a j-graph provides a measure for the

disjointness of justifications in the ontology. The disjointness of justifications

is thought to affect the justification computation process, which makes use of

Reiter’s hitting set tree (HST) algorithm [Rei87] for diagnosis, as discussed in

4.3. JUSTIFICATORY STRUCTURE 105

Section 2.3.2. In the HST, the nodes are labelled with justifications and the

paths constitute hitting sets across the justifications in the tree, i.e. minimal

repairs for the justifications. Optimisations for the HST algorithm are mainly

based on closing a branch in the tree if the path to it is labelled with a superset

of an existing path, which is not possible if the justifications are disjoint. This

is thought to lead to a rapid growth of the HST and have significant negative

effects on the performance of computing all justifications for an entailment.

Arbitrary justification overlap

We have already touched upon the subject of justification overlap in the discus-

sion of axiom frequency, as an axiom with a frequency greater than one simple

corresponds to a single-axiom overlap between the justifications that the axiom

occurs in. The concept of analysing frequently occurring axiom groups in justi-

fications for the purpose of finding a suitable repair was proposed by Schlobach

in the early stages of justification based explanation research [Sch05a]. Due to

a lack of an efficient implementation, however, the experimental analysis of such

maximal arity cores was restricted to single axioms, and has since not received

any significant attention.

In the j-graph, arbitrary overlap between n justifications corresponds to an

intersection of the incoming neighbours Nin of the justification nodes with a

cardinality greater than one. An intersection of size one corresponds to a single

axiom with a frequency of n, thus, we are mainly interested in those overlaps

which contain more than just one axiom.

Note that when we talk about overlaps between justifications there is no

unique overlap that a justification axiom occurs in. Instead, an axiom can occur

in several overlaps of varying sizes between different justification sets. We can

say that an overlapping set has two dimensions: its size, which is the number

of axioms in the overlap, and its frequency, which has the same meaning as the

frequency of a single axiom, that is, the number of justifications the overlapping

axiom set occurs in.

Root and derived justifications

A special case of justification overlap are root and derived justifications, an ex-

tension of Kalyanpur’s root and derived unsatisfiable classes [KPSH05], which we

introduced in Section 2.3.4. A justification J ′ is derived from a justification J

106 CHAPTER 4. THE JUSTIFICATORY STRUCTURE

if J (the root justification) is a strict subset of J ′. Due to the minimality of

justifications, root and derived relations can only occur between justifications for

multiple entailments. In the j-graph, a root and derived relationship between two

justification nodes is defined as a subset relation between the sets of incoming

neighbours of the two nodes (where Nin(v) denotes the set of nodes that have an

outgoing edge to the node v):

Definition 4.11 (Root and derived justifications). A justification v is derived

from a justification v′ if Nin(v′) ⊂ Nin(v), where Nin(v) = {ui} s.t. (ui, v) ∈
E1. A justification which is not derived from any other justification is a root

justification.

Note that root and derived justifications were initially introduced as root

and derived unsatisfiable classes. However, as the concept holds for arbitrary

entailments, we can speak of root and derived entailments in the same way: a

root unsatisfiable class is a class which has only root justifications, and likewise,

an arbitrary entailment is a root entailment if it has only root justifications.

Example 4.3.

O = {A v ∃r.B, ∃r.B v C,B v D,C u ∃r.D v E}

In Example 4.3, the set comprising the first two axioms is a justification J1

for A v C, while the set of all four axioms is a justification J2 for A v E. Here,

J1 is a root justification, and J2 is derived from J1. The two entailments are

clearly related via the two axioms which constitute the root justification; we can

say that J1 is the root of the entailments, while the remaining two axioms act

as a bridge between them. Generally speaking, given a root justification J and

a justification J ’ which is derived from J , we call the set of axioms J ′ \ J the

bridging axioms between the derived and the root justification.

When confronted with a situation such as the justifications in Example 4.3,

addressing the derived justification first may lead a user to modify or remove

the bridging axioms before the root axioms, thus only affecting the derived en-

tailment. This would require the user to repair the root justification in another

step, which would double the effort involved to repair both entailments. This

example shows that when attempting to repair multiple entailments, addressing

4.4. SUMMARY AND CONCLUSIONS 107

root justifications before derived justifications generally requires the inspection

of fewer justifications, thus reducing user effort.

Equality and inferential power

Equality is another special case of justification overlap, where the same subset J
of axioms in an ontology O is a minimal entailing set for several different entail-

ments. We refer to the number of entailments for which J is a justification as the

inferential power of J , answering the question ‘how much can be expressed with

how little?’. It is clear to see that for non-laconic justifications the inferential

power depends largely on the size and complexity of the axioms in the justifica-

tions; we can easily construct an axiom with high inferential power by creating

a large conjunction of subexpressions, where only some of the subexpressions are

relevant for a given entailment. On the other hand, this is not the case for laconic

justifications, as these will not contain any superfluous information with respect

to an entailment.

For justification equality, the j-graph representation has clear benefits over a

representation of multiple justifications as lists of axiom sets. Several justifica-

tions for multiple entailments which are equivalent are simply represented by a

single justification node; the inferential power of a justification corresponds to its

out-degree in the j-graph:

Definition 4.12 (Inferential power). ip(v) = |{w | (v, w) ∈ E2}| for v ∈ Justs(εO).

4.4 Summary and conclusions

This chapter introduced the notion of the justificatory structure of OWL ontolo-

gies. In Section 4.1, we presented a strategy for categorising justifications and

entailments based on whether they were considered ‘trivial’ or ‘complex’. We

then defined a graph-based representation of the justifications and justification

axioms for a set of entailments in Section 4.2, and gave a brief overview of the

implementation of a generator for such graphs. This was followed by an introduc-

tion of various metrics related to the justificatory structure of an ontology for a

given finite entailment set, such as the numbers and sizes of justifications, or the

activity of an ontology, that is, the proportion of ontology axioms that occur in

justifications for an entailment set, which give us insight into the implicit struc-

ture of an ontology, thus extending the standard metrics used to describe OWL

108 CHAPTER 4. THE JUSTIFICATORY STRUCTURE

ontologies.

The second main focus of Section 4.3 was the categorisation of different types

of justification overlap: justifications for both single and multiple entailments

may share some axioms, i.e. the justifications overlap to a certain extent. Justi-

fication overlaps are key in finding good repairs for a set of justifications, as they

may lead to a smaller repair (i.e. hitting set) over the justifications. Furthermore,

overlapping justification subsets may also support users in understanding multi-

ple justifications by generating lemmas, that is, intermediate entailments, which

summarise a recurring set of axioms. In the case of multiple entailments, relations

such as root and derived and justification equivalence even seem crucial to reduc-

ing user effort for justification understanding and repair, as they highlight the

actual (number of) reasons for the entailments to hold. An in-depth discussion of

how justificatory structure can be exploited in the debugging process will follow

in Chapter 6; for now, we will continue our exploration of justificatory structure

by focussing on one particular structural property, namely equivalence relations

over justifications in the form of different isomorphisms.

Chapter 5

Justification isomorphism

In the previous chapter, we introduced the justificatory structure of ontologies

and treated the axioms as anonymous ‘building blocks’ of justifications, without

paying consideration to the subexpressions occurring in them. In this chapter,

we will go one step further and take into account the logical form of the axioms

occurring in justifications.

Given the high expressivity of modern ontology languages, such as OWL, there

is the possibility for great diversity in the logical content of ontologies. The fact

that many naturally occurring entailments have multiple justifications indicates

that ontologies often overdetermine their consequences. However, the multiplicity

of justifications might be mostly due to diverse material, not formal, grounds for

an entailment. That is, the logical form of these multiple reasons could be less

diverse than their numbers suggest. Such logical similarity indicates that it is

possible to group justifications into sets of structurally similar ones by the means

of an equivalence relation.

A well-known syntactical equivalence relation in OWL is structural equiva-

lence. The OWL Structural Specification1 states the condition for two OWL

objects (named classes, properties, or instances, complex expressions, or OWL

axioms) to be structurally equivalent: in short, it defines the objects to be equiv-

alent if they contain the same names and constructors, regardless of ordering and

repetition (in an unordered association). The OWL API implements this notion

of structural equivalence by default.

A second equivalence relation is justification isomorphism2 which was first

introduced in a study of the cognitive complexity of justifications [HBPS11b]:

two justifications are isomorphic if they are structurally identical,3 i.e. the axioms

1http://www.w3.org/TR/owl2-syntax
2Note that, in the spirit of consistent naming, we will use the term ‘isomorphism’ for the

newly introduced equivalent relations despite their not being isomorphisms (i.e. bijective map-
pings) in the true sense.

3Modulo structural equivalence.

109

http://www.w3.org/TR/owl2-syntax

110 CHAPTER 5. JUSTIFICATION ISOMORPHISM

contain the same types of class expressions in the same positions and only differ

in the class, property and instance names. The following example shows two

justifications J1 and J2 which we consider to be isomorphic:

Example 5.1.

J1 = {A v B u ∃r.C,B u ∃r.C v D} |= A v D

J2 = {E v B u ∃s.F,B u ∃s.F v D} |= E v D

It is straightforward to see that in the above justifications the class A in J1

can be mapped to E in J2, the property r to s, and the class C to F in order to

obtain identical justifications.

While justification isomorphism helps to eliminate the effects of diverging

class, property, and instance names, we can also identify types of justifications

which may be considered to be very similar despite their use of different construc-

tors:

Example 5.2.

J1 = {A v B u C,B u C v D} |= A v D

J2 = {A v ∃r.C, ∃r.C v D} |= A v D

In this example, the semantics of the complex class expressions B u C in J1

and ∃r.C in J2 are not relevant for the respective entailment; their occurrences in

the justifications and their entailments can be replaced by freshly generated class

names without affecting the entailment relation. Such a substitution, in turn,

would make the two justifications isomorphic.

Likewise, justifications of different lengths may be considered similar if their

general structure of reasoning is identical:

Example 5.3.

J1 = {A v B,B v C} |= A v C

J2 = {A v B,B v C,C v D} |= A v D

These two justifications clearly require the same form of reasoning from a

user which means we may consider them to be structurally similar in some way.

5.1. ISOMORPHISM 111

Strict isomorphism only applies to justifications which contain the same number

of axioms; it does not cover situations like the ones shown above. However, for

the purpose of structuring sets of justifications and analysing the logical diversity

of a corpus of justifications, capturing those kinds of similarities illustrated in the

above examples would be highly desirable.

In this chapter, we introduce two new relations, subexpression-isomorphism ≈s
and lemma-isomorphism ≈`, between justifications based on the subexpressions

of their axioms and axiom subsets, respectively, and show how these relations can

be used to determine the logical diversity of a set of justifications. We introduce

the notion of a justification template, an abstract justification which acts as a rep-

resentative for a set of structurally isomorphic justifications. Finally, we outline

an algorithm to detect whether two justifications are isomorphic and discuss its

practical implementation as part of the framework for analysing the justificatory

structure of OWL ontologies.

5.1 Isomorphism

Justification isomorphism was first introduced as a way to reduce sampling bias in

a user study to validate a model for the cognitive complexity of OWL justifications

[HBPS11b] which we discussed in Section 2.3.3. When studying the cognitive

complexity of justifications, we can assume that ontology users will perceive iso-

morphic justifications as equally difficult to understand, taking into account some

variation caused by the complexity of class names and domain knowledge. The

ontology corpus from which the justifications in the complexity study [HBPS11b]

were sampled was reduced from 64,800 to 11,600 non-isomorphic justifications,

thus eliminating the risk of sampling bias caused by presenting users with a se-

ries of structurally identical justifications. Recall that a justification J is always

defined with respect to a particular entailment η; thus, we will use the notation

(J , η) to refer to a justification-entailment pair. Justification isomorphism is

defined as follows:

Definition 5.1 (Justification isomorphism). Two justifications (J1, η1), (J2, η2)

are isomorphic ((J1, η1) ≈i (J1, η1)) if there exists a bijective renaming φ which

maps class, property, and instance names in J1 and η1 to class, property, and

instance names in J2 and η2, respectively, such that φ(J1) = J2 and φ(η1) = η2.

112 CHAPTER 5. JUSTIFICATION ISOMORPHISM

Remarks.

1. The relation ≈i is symmetric, reflexive and transitive, from which it follows

that ≈i is an equivalence relation and thus partitions a set of justifications.

Proofs are omitted as these properties are straightforward to see.

2. Justification isomorphism preserves the numbers and types of axioms and

subexpressions in the justifications:

(a) If J1 ≈i J2 then |J1| = |J2|.
(b) Since the mapping φ is bijective, we also have J1 ≈i J2 implies that

|sig(J1)| = |sig(J2)|.
(c) The sets of logical constructs used in J1 and J2 coincide.

5.2 Subexpression-isomorphism

From the above definition of isomorphism it follows that only justifications which

have the same number and types of axioms and subexpressions can be isomor-

phic. It is easy to see, however, that justifications can have a similar struc-

ture despite their use of different class expressions, as demonstrated in Example

5.2. Furthermore, obfuscating complex expressions which can be substituted by

propositional variables reduces superfluous clutter in a justification, thus improv-

ing the readability of a justification akin to laconic justifications. Furthermore,

from the exploratory study we discussed in Section 2.3.3 we have some indication

that 1) OWL users abstract from complex expressions and treat them as ‘black

boxes’ where possible, and 2) that they would find it helpful if such a possible

abstraction was pointed out to them by a tool. These insights motivate a notion

of subexpression-isomorphism, an equivalence relation which allows not only the

mapping of class names, but also that of complex subexpressions.

The idea of finding similarities between concepts in description logics has been

widely explored in the work on unification and matching, e.g. [BN98, BKBM99,

BM09], for the purpose of detecting redundant class descriptions in ontologies.

Given two class expressions C and D, a unification problem C ≡? D asks whether

there exists a substitution σ, that is, a mapping from a set of named classes in

C into the set of class expressions in D, such that σ(C) ≡ σ(D). The aim of

unification is to find a suitable substitution σ which maps an atomic class in C to

a (possibly non-atomic) class in D such that the two classes are made equivalent.

While the basic idea behind subexpression-isomorphism is based on unification

5.2. SUBEXPRESSION-ISOMORPHISM 113

and matching, the concepts are not directly applicable to the given problem of

matching justifications. In our case, the inputs are of a different shape to the

matching problem: the goal is to unify two sets of axioms and the corresponding

entailments, rather than matching a single class expression (a class pattern) that

contains variables to another class expression. That is, we attempt to identify

pairs of possibly complex class expressions that, when replaced with names, result

in isomorphic justifications. This means that the substitution mechanism as used

in unification is not applicable.

We therefore introduce a justification template Θ, which functions as the uni-

fying justification for the isomorphic justifications and two substitutions φ1, φ2 for

use in subexpression-isomorphism. We will use freshly introduced entity names

xi for the named classes, properties, and instances in a template Θ. In order for

subexpression-isomorphism to be transitive, the justifications will have to fulfil

certain side-conditions, which will be used in the proof of Proposition 5.2:

S1 For any C in the range of φ1 (φ2), C is not equivalent to >.

S2 For any C in the range of φ1 (φ2) is satisfiable in a single element of some

interpretation, that is, there is some I such that
∣∣CI
∣∣ = 1.

S3 For any C1, C2 in the range of φ1 (φ2, respectively), it must hold that

sig(C1) ∩ sig(C2) = ∅ and sig(Ci) ∩ sig(Θ) = ∅, that is, the expressions

in the domain and the range of the mappings must be pairwise signature

disjoint.

Definition 5.2 (Subexpression-isomorphism). Two justifications (J1, η1),

(J2, η2) are s-isomorphic ((J1, η1) ≈s (J2, η2)) if there exists a justification tem-

plate (Θ, η) and two injective substitutions φ1, φ2 satisfying S1 to S3, such that

1. Θ |= η

2. φ1(Θ) = J1 and φ2(Θ) = J2

3. φ1(η) = η1 and φ2(η) = η2.

The mappings φ1 and φ2 map class, property, and instance names in the template

(Θ, η) to subexpressions of (J1, η1) and (J2, η2), respectively.

114 CHAPTER 5. JUSTIFICATION ISOMORPHISM

Example 5.4.

J1 = {A v ∃r.B, ∃r.B v C} |= A v C

J2 = {A v B,B v C} |= A v C

Θ = {x1 v x2, x2 v x3} |= x1 v x3

φ1 = {x1 7→ A, x2 7→ ∃r.B, x3 7→ C}

φ2 = {x1 7→ A, x2 7→ B, x3 7→ C}

Example 5.4 demonstrates how two justifications J1 and J2 are subexpression-

isomorphic via a template Θ and two mappings φ1 and φ2 which uses three newly

introduced variables x1 through x3.

Note that in order to be s-isomorphic, the justifications may differ in the

number of subexpressions. As with strict isomorphism, however, they must have

the same number of axioms: J1 ≈s J2 → |J1| = |J2|.

Proposition 5.1. S-isomorphism is a more general case of strict isomorphism:

J1 ≈i J2 → J1 ≈s J2.

Proof. Let (J1, η1) ≈i (J2, η2) via a mapping φ. Then we can consider a template

Θ to correspond to J1, the mapping φ1 is the identity relation id which maps J1

to itself, and φ2 corresponds to the mapping φ used for strict isomorphism. Thus

if J1 ≈i J2 then J1 ≈s J2.

Proposition 5.2. The relation ≈s is reflexive, transitive and symmetric for de-

scription logics without nominals up to SRIQ.

Proof. Reflexivity and symmetry of the relation are straightforward to see; there-

fore we will only prove the transitivity of subexpression-isomorphism for logics

not containing nominals.

Let (Ja, ηa) ≈s (Jb, ηb) via φab1 , φ
ab
2 , (Θab, ηab) and (Jb, ηb) ≈s (Jc, ηc) via

φbc1 , φ
bc
2 , (Θbc, ηbc), respectively. We aim to show that given this case it is al-

ways possible to construct two mappings φac1 , φ
ac
2 and a template (Θac, ηac), such

that (Ja, ηa) ≈s (Jc, ηc) via φac1 , φ
ac
2 and (Θac, ηac), as illustrated in Figure 5.1.

In what follows, we will first describe the construction of (Θac, ηac) and φac1 , φ
ac
2 .

We will then show that the entailment relation Θac |= ηac holds by describing the

5.2. SUBEXPRESSION-ISOMORPHISM 115

(Θab, ηab) (Θbc, ηbc)

(Θac, ηac)

(Ja, ηa) (Jb, ηb) (Jc, ηc)
φab1 φab2 φbc1 φbc2

φac1 φac2

≈s
≈s

≈s

Figure 5.1: Graph representing the relations between three justifications which
are subexpression-isomorphic via transitivity.

steps to extend any model Iac for Θac to a model of ηac by constructing a model

Ia of Ja (or Ic of Jc, respectively)

First, in order to construct Θac and ηac, take Jb, ηb and label each position p

in their parse trees4 with variables

• (x, ab) if φab2 (x) = Jb|p and Θab|p = x

• (x, bc) if φbc1 (x) = Jb|p and Θbc|p = x

and the analogue for ηb, i.e. we mark nodes in the parse trees of (Jb, ηb) with

variables from (Θab, ηab) if applicable. Note that a node in the parse trees may be

labelled with two such variable labels (x, ab), (x′, bc) if φab2 (x) = φbc1 (x′) = Jb|p.
Now (Θac, ηac) is obtained from this labelled tree by

• removing all subtrees below nodes labelled with variables (x, . . .)

• turning the variables x in these labels (x, . . .) into leaf nodes (giving prece-

dence to (x, ab) in the presence of two labels), and

• serialising the result into a justification and entailment template (Θac, ηac).

We then construct the mappings φac1 and φac2 : if a variable x in (Θac, ηac)

originates from a labelling (x, ab) in Jb at position p, then

• φac1 (x) = φab2 (x) and

• φac2 (x) = Jb|p[tj → φbc2 (yj)] for tj the positions in Jb|p that are labelled with

(yj, bc).

and the analogue for variables originating from labellings (x, bc), and for ηb.

Finally, we need to ensure that the resulting Θac indeed entails ηac. We prove

that every model Iac for Θac is a model for ηac by first showing that, for Iac a

4We use standard notations: J |p is the subtree/subexpression of J at position p, and
J [s→ t] the tree obtained by replacing, in J , the subtree at position s with t.

116 CHAPTER 5. JUSTIFICATION ISOMORPHISM

model of Θac, we can extend Iac to a model Ia for Ja (or the analogue for Ic,Jc).
Given a model Iac = (4Iac , ·Iac) of Θac, we construct Ia such that for every x 7→ C

in φac1 it holds that CIa = xIac .

Recall that the expressions in Ja have to fulfil the side conditions S1–S3

mentioned above in order for this construction to be possible. The construction

steps for Ia then are as follows:

• Take a model Iac of Θac.

• For each x 7→ C consider the extension of xIac = {a1, a2, . . .} where
∣∣xIac∣∣ =

k (possibly infinite) and take a model I of C with |C| = 1 to create k

‘copies’ of I. This means we obtain a copy Ii of I for each ai ∈ xIac .
• For each ai ∈ xIac , take Ii (the i-th copy of I) and replace the single element

zi in CIi with ai; in particular, replace (zi, b) ∈ rIi with (ai, b).

• Finally, unite the Iac and the models Ii created in this way by taking their

disjoint union [Lut02, p 191], that is, the union of the domains and the

union of the respective extensions in the models, to obtain a model Ia for

Ja.
With the above steps we have shown that, given any model Iac |= Θac, it is

possible to construct a model Ia such that Ia |= Ja. Since Ja |= ηa, it also holds

that Ia |= ηa. By construction we know that, for every variable x in Θac or ηac,

it holds that (φac1 (x))Ia = xIac and thus Iac |= ηac. This means that every model

Iac for Θac is a model for ηac, thus the entailment relation Θac |= ηac holds. We

have therefore shown that we can always construct a template (Θac, ηac) for the

justifications Ja and Jc, and thus Ja ≈s Jc.

In order to demonstrate the non-transitivity of subexpression-isomorphism in

the presence of nominals, we consider a simple counter-example:

O = {C v {a}, C v {b}, {a} u {b}u ≤ 1r.C v D}

which entails η = C v D. The only justification for η is the set of all axioms in

O. Now modify the ontology to obtain

Oa ={C v A,C v {b}, A u {b} u ≤ 1r.C v D}

Ob ={C v {a}, C v B, {a} uB u ≤ 1r.C v D}.

Both Oa and Ob entail η, and we have that O ≈s Oa and O ≈s Ob. However, if we

5.2. SUBEXPRESSION-ISOMORPHISM 117

substitute the nominals {a} and {b} with atomic concepts X and Y , respectively,

in the template

Θ = {C v X,C v Y,X u Y u ≤ 1r.C v D}

we find that the conjunct ≤ 1r.C is no longer satisfied by all instances of C (and

thus x and y) and Θ does not entail C v D. This shows that the relation ≈s is

not transitive in the presence of nominals.

Finally, note that the substitutions φ1 and φ2 are injective, but not surjective.

As we have shown in the proof of 5.2, injectivity of the mappings is a condition

for the transitivity of subexpression-isomorphism. However, the mappings are

not surjective, as the set of subexpressions in the justifications J1 and J2 can be

of higher cardinality than the set of class names in Θ (unless the justifications

themselves contain no complex expressions). This is illustrated by the following

counter-example of non-surjective mappings:

Example 5.5.

J1 = {A v B,B v C}

J2 = {A v B u ∃r.C,B u ∃r.C v D}

Θ = {x1 v x2, x2 v x3}

φ1 = {x1 7→ A, x2 7→ B, x3 7→ C}

φ2 = {x1 7→ A, x2 7→ B u ∃r.C, x3 7→ D}

The set of all subexpressions of J2 is {A,B, ∃r.C,B u ∃r.C,D}. φ2 maps

only to a subset of these subexpressions; there exists no mapping for the ‘smaller’

expressions B and ∃r.C. This shows that a substitution φ can be non-surjective.

Despite the mappings being non-surjective, we require each subexpression

to either have a corresponding variable in Θ which maps to it directly, or to

occur as part of a larger subexpression which has a corresponding variable in

Θ. This guarantees that the isomorphic justifications have the same number of

subexpressions which correspond to variables in Θ.

5.2.1 Representing equivalence classes

Transitivity of the isomorphism relations we introduce in this chapter is of partic-

ular interest to us because, along with symmetry and reflexivity, it ensures that

118 CHAPTER 5. JUSTIFICATION ISOMORPHISM

the relations are equivalence relations. That is, they partition a given set of justi-

fications into equivalence classes, i.e. sets of structurally isomorphic justifications,

which can then be represented by a single representative justification.

Such a representative could either be a concrete justification that is randomly

selected from the equivalence class, or an abstract ‘justification’ (by slight abuse

of the term) which uses new names in the place of expressions and concept names.

For example, the template Θ = {x1 v x2, x2 v x3} |= x1 v x2 in Example 5.4

functions as an abstract representative for the equivalence class to which the

subexpression-isomorphic justifications J1 and J2 belong. Likewise, the strictly

isomorphic justifications J1 and J2 in Example 5.1 can be represented by an

abstract justification Θ = {x1 v x2 u ∃p1.x3, x2 u ∃p1.x3 v x4} |= x1 v x4.

In the remainder of this thesis, we will generally use the term template to refer

to such a representative justification (concrete or abstract) for an equivalence

class. In Section 6.3.3, we will discuss in more detail how justification templates

can be used to reduce the user effort required to understand a set of structurally

similar justifications.

Preferred templates

Given a pair of s-isomorphic justifications, the template Θ which we use to repre-

sent the equivalence class and the substitutions φ1, φ2 are not necessarily unique;

there can be multiple possible substitutions, as demonstrated in Example 5.6.

The substitutions differ in the level of granularity, that is, how large a subexpres-

sion a variable in Θ is mapped to. Keeping in mind our eventual goal of helping

users cope with justifications, we introduce preferred templates which reduce the

amount of unnecessary detail in a justification template as far as possible. This

means that a preferred template Θp contains the smallest possible expressions,

i.e. atomic variable names if possible. In turn, a substitution φi maps a variable

in a preferred Θp to the largest possible subexpression in its corresponding jus-

tification Ji. Assuming that Θ,Θp are valid templates for a pair of justifications

(J1, η1), (J2, η2), and sig(Θ) ∪ sig(η) is the set of all variables occurring in a

template (Θ, η), we can define preferred templates as follows:

Definition 5.3 (Preferred template). A template (Θp, ηp) is a preferred template

if there is no template (Θ, η) such that (sig(Θ) ∪ sig(η)) ⊂ (sig(Θp) ∪ sig(ηp)).

We illustrate the concept of preferred templates with the following example:

5.3. LEMMA-ISOMORPHISM 119

Example 5.6.

J1 = {A v B u C uD,B u C uD v E}

J2 = {A v B u ∃r.C,B u ∃r.C v D}

Θ = {x1 v x2 u x3, x2 u x3 v x4}

φ1 = {x1 7→ A, x2 7→ B, x3 7→ C uD, x4 7→ E}

φ2 = {x1 7→ A, x2 7→ B, x3 7→ ∃r.C, x4 7→ D}

In the above example, the template Θ contains a conjunction x2 u x3, which

means that only parts of the conjunctions in the justifications J1 and J2 are

substituted by variables. It is straightforward to see, however, that there exists

an alternative Θp and substitutions φ′1, φ′2 which substitute larger expressions in

the two justifications:

Example 5.7.

Θp = {x1 v x2, x2 v x3}

φ′1 = {x1 7→ A, x2 7→ B u C uD, x3 7→ E}

φ′2 = {x1 7→ A, x2 7→ B u ∃r.C, x3 7→ D}

The template Θp in Example 5.7 has a smaller signature size than Θ; it is

therefore the preferred template for this pair of justifications. Note that we sim-

ply use newly introduced variable names for the justification templates here; in

Section 6.3.3 in the next chapter we will give an overview of possible naming

conventions for preferred templates which may lend additional support in under-

standing the template and the justifications it represents.

5.3 Lemma-isomorphism

While s-isomorphism covers a number of justifications that can be regarded as

equivalent due to them requiring the same type of reasoning to reach the en-

tailment, it only applies to justifications which have the same number of axioms.

S-isomorphism does not take into account cases where the justifications differ only

120 CHAPTER 5. JUSTIFICATION ISOMORPHISM

marginally in some subset, but where the general reasoning may be regarded as

similar nonetheless. We therefore introduce the notion of lemma-isomorphism,

which extends subexpression-isomorphism with the substitution of subsets of jus-

tifications through intermediate entailments, so-called lemmas, which we intro-

duced with the Movie ontology example in Section 2.3.3. The general motivation

behind lemma-isomorphism is demonstrated by the following example:

Example 5.8.

J1 = {A v B,B v C} |= A v C

J2 = {A v B,B v C,C v D} |= A v D

It is straightforward to see that both J1 and J2 require the same type of

reasoning from a human user. As the justifications only differ in the length of the

atomic subsumption chains that lead to the entailment, we can certainly consider

them to be similar with respect to some similarity measure. However, the two

justifications are not considered isomorphic with respect to the definitions for

strict isomorphism or subexpression-isomorphism. We therefore introduce a new

type of isomorphism which takes into account the fact that subsets of justifications

can be replaced with intermediate entailments which follow from them.

A lemma λ for a justification J is an entailment of a subset S of J . In order to

define lemma-isomorphism, we need to introduce two more concepts: tidy axiom

sets, and justification lemmatisations, that is, justifications which are enriched

with lemmas, as defined by Horridge [Hor11a].

Tidy axiom sets prevent meaningless lemmatisations by ensuring that the set

S that generates a lemma is consistent and does not entail synonyms for > or ⊥.

They are defined as follows [Hor11a, p 252]:

Definition 5.4 (Tidy axiom sets). A set of axioms S is tidy if S 6|= > v ⊥,

S 6|= A v ⊥ and S 6|= > v A for all A ∈ sig(S).

The following definition of summarising lemmatisations is based on the defi-

nition of lemmatisations given by Horridge [Hor11a, p 253], however, with some

modifications: first, Horridge’s definition considers the cognitive complexity of a

lemmatisation in order to ensure that a lemmatisation is easier to understand

than the justification it is based on. As the complexity of a lemmatisation is not

relevant for lemma-isomorphism, we drop this condition. Second, the original

5.3. LEMMA-ISOMORPHISM 121

definition is too weak for use in lemma-isomorphism, as we will show with an

example below; thus, we introduce a new condition for the justification subset

S which ensures that the lemmas used for the lemmatisation are summarising.

And finally, we simplify the definition to omit some unneeded details:

Definition 5.5 (Summarising lemmatisation). Let (J , η) be a justification, let

S =
⋃
Si be a set of tidy subsets of J , and let ΛS =

⋃
λi be a set of lemmas such

that Si |= λi. The set J ΛS = (J \S)∪ΛS is called a summarising lemmatisation

of J if

1. J ΛS is a justification for η,

2. Si are pairwise disjoint.

If clear from the context, a summarising lemmatisation J ΛS may also be called

a lemmatised justification.

Proposition 5.3. Given a Si ∈ S that is substituted with a lemma λi in a

summarising lemmatisation J ΛS , there is no set S ′ ⊂ Si such that S ′ |= λi.

Proof. This proposition follows from the minimality condition for justifications:

given a justification (J , η), we remove a subset Si ⊆ J and replace it with a

lemma λi such that (J \Si)∪{λi} is a justification for η. If there exists a subset

S ′ ⊂ Si such that S ′ |= λi, then it also holds that (J \ Si) ∪ S ′ |= η. Therefore,

the axioms Si \S ′ are redundant with respect to the entailment η, which violates

the minimality condition for J ΛS .

Given the definitions for lemmatisations, we can now define lemma-isomorphism

as an extension to subexpression-isomorphism:

Definition 5.6 (Lemma-isomorphism). Two justifications (J1, η1), (J2, η2) are

`-isomorphic ((J1, η) ≈` (J2, η)) if there exist summarising lemmatisations J ΛS1
1 ,

J ΛS2
2 which are s-isomorphic: J ΛS1

1 ≈s J ΛS2
2 .

5.3.1 Restrictions on lemmatisations

Lemma-isomorphism using arbitrary summarising lemmatisations as defined above

carries two undesirable properties: first, the lemmatised justifications might differ

strongly from the original justifications; in the most extreme case, the lemmatisa-

tion of a justification can be the entailment itself. We therefore have to introduce

an additional constraint that ensures that a lemmatisation is understandable to a

122 CHAPTER 5. JUSTIFICATION ISOMORPHISM

user. And second, we cannot guarantee that lemma-isomorphism using arbitrary

lemmas is in fact transitive, which means that lemma-isomorphism would lose

the desirable property of being an equivalence relation. In what follows, we will

first introduce the notion of obvious proof steps and suggest one particular type

of lemmatisations, maximal atomic subsumption chains, which we use to demon-

strate lemma-isomorphism in the remainder of this thesis. We will then illustrate

the issue of non-transitivity of lemma-isomorphism using an example, and briefly

discuss how to further restrict lemmatisations in order to preserve transitivity.

5.3.2 Lemmatisations and obvious steps

The notion of obvious logical inferences [Dav81] describes how proof steps which

are obvious for a reader can be omitted without losing information that may be

important for understanding the proof. We adapt this notion of obvious steps

in order to allow only lemmatisations which are easily understandable for a hu-

man reader, that is, lemmas which follow from a subset of a justification in a

straightforward fashion.

While research on human understanding of description logic is fairly limited,

the works by Horridge [HBPS11b] and Nguyen [NPPW12a] which we introduced

in Section 2.3.3 provide us with two different models for determining the cognitive

complexity of certain reasoning patterns found in justifications. Any of these

complexity models could function as the basis for determining the obviousness of

a lemmatisation if we assume that the entailment of a reasoning pattern which is

‘easy’ to understand corresponds to an obvious lemmatisation.

However, while the rankings determined by Nguyen et al. [NPPW12a] seem to

cover the most frequently occurring justification subset patterns, they do not in-

clude atomic subsumption chains of the type S = {A0 v A1, A1 v A2 . . . An−1 v
An}, which are one of the most prevalent and easiest recognizable patterns as

found by Horridge [HBPS11b] and in our exploratory study of reasoning pat-

terns (Section 2.3.3). For the purpose of demonstrating the effects of lemma-

isomorphism in this thesis, we therefore focus on atomic subsumption chains.

Atomic subsumption chains

Given an atomic subsumption chain S = {A0 v A1, A1 v A2 . . . An−1 v An} in

a justification, often only the relation between the subclass A0 in the first axiom

5.3. LEMMA-ISOMORPHISM 123

and the superclass An in the last axiom is relevant for understanding how the

chain contributes to the justification. That is, the subsumption chain produces

a summarising lemma A0 v An which is the only piece of information required

for the justification. The step from the subclass to the final superclass was found

to be obvious for OWL users who were presented with justifications containing

ordered and indented subsumption chains of this type [HBPS11b]. Therefore, a

suitable lemmatisation of a justification containing an atomic subsumption chain

is the justification obtained by substituting the chain with its conclusion in the

form of a single axiom A0 v An.

Maximal atomic subsumption chains Recall that we require the lemmati-

sations used for lemma-isomorphism to be summarising, that is, the subsumption

chain can be substituted by a single axiom and the entailment of the justification

still holds. We call an atomic subsumption chain S = A0 v . . . v An maximal if

there is no longer chain S ′ = A0 v . . . v An+k for k ≥ 1.

It is possible for a set of axioms to form an apparently maximal subsumption

chain in which only a subset of the chain can be substituted by a summarising

lemma, as shown in the following example:

Example 5.9.

J ={A v ∃r.C,A v B,B v C,C v D,C u ∃r.D v E} |= A v E

The axiom set S ′ = {A v B,B v C,C v D} in Example 5.9 is a maximal

atomic subsumption chain in J which entails A v D. It is clear to see, however,

that the entailment does not hold in the lemmatisation J \ S ∪ {A v D} as the

important lemmas A v C and C v D would be lost; that is, the lemmatisation

based on S ′ is not summarising. We can only substitute the non-maximal chain

S = {A v B,B v C} with its entailment A v C in order to obtain a summarising

lemmatisation.

While substituting non-maximal chains is not problematic in itself, there exists

a practical reason for restricting lemma-isomorphism to maximal chains: in an

implementation of the atomic subsumption chain lemmatisation, detecting non-

maximal chains would require searching through all subchains of the maximal

atomic subsumption chain in order to find a suitable, substitutable, chain. The

search space of this operation and thus the number of lemmatisation attempts

124 CHAPTER 5. JUSTIFICATION ISOMORPHISM

would simply be too large to be practical in an implementation. Therefore, our

current implementation only attempts to substitute maximal chains, which may

lead to false negative results when attempting to compare two justifications which

are only lemma-isomorphic through lemmatisations using non-maximal chains.

5.3.3 Non-transitivity

Allowing arbitrary summarising lemmatisations for lemma-isomorphism can lead

to non-transitivity of the relation, as is shown in the following example:

Example 5.10.

Ja |= X v Y Jb |= X v Y Jc |= X v Y

X v (A0 uA2) u (∀r.A0 u ∀s.A4) X v (B0 uB2) u (∀r.B0 u ∀s.B4) X v (C0 u C2) u (∀r.C0 u ∀s.C4)

(A1 uA5) u (∀r.A3 u ∀s.A5) v Y (B1 uB5) u (∀r.B3 u ∀s.B5) v Y (C1 u C5) u (∀r.C3 u ∀s.C5) v Y

A0 v A1 B0 v B1 C0 v C3

A2 v A5 B1 v B2 C4 v C5

B2 v B3

B3 v B4

B4 v B5

In the above example, the three axiom sets are justifications for X v Y . It

holds that Ja ≈` Jb and Jb ≈` Jc via lemmatisations J λ1
b and J λ2

b , respectively.

While the set of atomic subsumption axioms in Jb appears to be a single con-

tinuous atomic subsumption chain, it cannot be substituted with a single lemma

without breaking the entailment. In J λ1
b the atomic subsumption chain B0 . . . B5

is substituted with the two lemmas λ11 = B0 v B1, λ12 = B2 v B5, which makes

the lemmatisation strictly isomorphic to Ja. The analogue holds for J λ2
b which

is strictly isomorphic to Jb via the two lemmas λ21 = B0 v B3, λ22 = B4 v B5.

However, Ja and Jc are clearly not s-isomorphic, that is, the relation ≈` is not

transitive in this given example.

While we do not have a complete proof for the transitivity of l-isomorphism

under certain side conditions as we have for s-isomorphism, we believe that the

reason for the non-transitivity lies in the presence of internal masking in the jus-

tification Jb: the justification contains two distinct reasons why the entailment

X v Y holds, and each of the lemmatisations J λ1
b and J λ2

b ‘removes’ one of these

reasons. As a result, the two lemmatisations contain different reasoning patterns

and are therefore isomorphic to the two justifications Ja and Jc, respectively,

which have entirely different reasoning patterns from each other. Clearly, these

5.4. EQUIVALENCE AND SUPERFLUITY 125

two distinct justifications should not be considered to be ‘similar’ to each other,

and in turn, Jb should not be considered isomorphic to either of them. Thus,

disallowing justifications with internal masking would prevent these kinds of sit-

uations. However, whether this is the only restriction we have to apply in order

to preserve the transitivity of lemma-isomorphism remains an open question.

For the time being, we treat all results of the lemma-isomorphism implemen-

tation as possible approximations. This means that it is possible that some sets

of justifications may be considered to be non-isomorphic when they actually are.

Hence, we may potentially over-estimate the logical diversity of a corpus of justifi-

cations and under-estimate the effects of lemma-isomorphism, which we consider

acceptable for the purpose of demonstrating the concept of lemma-isomorphism

in this thesis.

5.4 Equivalence and superfluity

For the purpose of analysing the diversity of reasons why an entailment holds in

an ontology, we need to take into account another aspect of justifications, namely

the superfluousness of subexpressions in an axiom. Since justifications are sets

of axioms as they are asserted in the ontology, it is possible for such an axiom

to contain parts which are not relevant with respect to the entailment. This can

have several possible effects: 1) A justification can contain multiple reasons for

an entailment to hold (internal masking, as mentioned in the previous section).

2) Two justifications can have exactly the same reason why an entailment holds

and only differ in their superfluous parts; this results in fewer logical reasons than

material justifications. 3) A justification can have parts which interact with other

axioms in the ontology to form entirely new justifications. These phenomena are

also known as facets of justification masking [HPS10a] which was introduced in

Section 2.3.3. In order to take into account the effects of masking in justifications

and to eliminate potentially distracting superfluous expressions, Horridge et al.

[HPS08] defined laconic justifications which we also introduced in Section 2.3.3.

We already discussed the effect of internal masking on the transitivity of lemma-

isomorphism in the previous section; however, there are other ways in which

superfluity and justification masking affects our isomorphism relations.

For example, it is clear to see that superfluity can lead to justifications be-

ing considered non-isomorphic, despite them being identical ‘in principle’ and

126 CHAPTER 5. JUSTIFICATION ISOMORPHISM

requiring the same reasoning strategy. Take the following two justifications:

J1 ={A v B u C,B v D} |= A v D

J2 ={A v B,B v D} |= A v D

Both justifications only require atomic subsumption chain reasoning; the con-

junct C in J1 is superfluous as it does not affect the entailment. However, the

justifications could not be considered to be isomorphic with respect to any of our

relations. Note that the superfluity itself is not the culprit here, since a simi-

larly superfluous conjunct in J2 would cause the justifications to be (strictly or

subexpression-) isomorphic nonetheless. It is the superfluity (or lack thereof) in

different positions which causes the structural similarity of the justifications to

be concealed.

We know that non-laconic justifications are highly prevalent in OWL ontolo-

gies, as shown by a study of 72 BioPortal ontologies in which over 82% of the

justifications were found to contain superfluous expressions [Hor11a]. This indi-

cates that in order to obtain a more accurate picture of the logical diversity of

a set of justifications we may choose to identify isomorphic justifications based

on their laconic versions. Note that due to internal masking, a justification can

have multiple laconic versions. This means that a necessary condition for the

justifications to be considered isomorphic is that all their laconic versions have

to be isomorphic.

5.5 Implementing an isomorphism checker

Having introduced the basic notions of isomorphism in the previous section, we

will now discuss our approach to implementing an isomorphism checker which

covers all three types of isomorphism. We outline the algorithm for detecting

isomorphism which is based on a comparison between the parse trees of the

justifications to be matched, and discuss some of the basic optimisations that

can be applied to improve the performance of the isomorphism checker. Finally,

we describe how the j-graph introduced in Chapter 4 can be extended to include

justification templates for structurally isomorphic justifications.

5.5. IMPLEMENTING AN ISOMORPHISM CHECKER 127

J

v v v

A ∃
r B

B C ∃
r C

D

Figure 5.2: Parse tree of J = {A v ∃r.B,B v C, ∃r.C v D} |= A v D.

5.5.1 Algorithm and implementation

The general idea behind the implementation of a program to check whether two

justifications are isomorphic is the comparison of the parse trees of the two jus-

tifications. Each axiom in a justification is parsed into its parse tree where the

nodes are labelled with either entity names (properties or classes), OWL con-

structors, or integers (in the case of cardinality restrictions). The parse tree of a

justification simply contains each axiom parse tree as child of a blank root node.

To simplify the algorithm, the respective entailments are treated separately from

the justification parse trees, as this allows us to treat every axiom subtree in the

justification parse tree equally. An example of a justification parse tree (without

the respective parse tree of the entailment) is shown in Figure 5.2.

Given the parse trees of two justifications (J1, η1), (J2, η2), the algorithm an-

swers ‘true’ if the justifications are isomorphic with regard to one of the given

definitions for isomorphism, and ‘false’ otherwise. While there exist algorithms

for tree-isomorphism (e.g. [ST99]), we chose to implement a naive matching algo-

rithm, as this would allow us to extend the algorithm from strict to subexpression-

isomorphism in a straightforward fashion.

For strict isomorphism, the algorithm answers ‘true’ if it can construct a

mapping φ (that is, a set of pairs (n1, n2)) which maps nodes n1 in the parse

trees of J1 and η1 to nodes n2 in J2 and η2 such that φ(J1) = J2 and φ(η1) = η2.

For subexpression-isomorphism, we deviate from the given definition and attempt

to find only a single mapping φ which maps subtrees in J1 and η1 to subtrees in J2

and η2, respectively. Finally, as lemma-isomorphism is based on subexpression-

isomorphism, we first lemmatise the justifications, then apply the algorithm for

detecting subexpression-isomorphism to the lemmatised justifications.

An outline of the algorithm for strict isomorphism and its subroutines are

given in Algorithms 5.1 and 5.2, whereby childCount(), removeChild(), and

128 CHAPTER 5. JUSTIFICATION ISOMORPHISM

getChildAt() can be interpreted as standard operations on a tree structure.

The algorithm traverses the parse trees of J1 and J2 (denoted by e1 and e2 in the

pseudocode) depth-first, left to right, and attempts to construct a set Mappings

of candidate mappings. It checks at each node whether the nodes at this position

in the parse trees are compatible in the context of the current mapping φ. Note

that the parse trees of the entailments are not considered here; they only come

into play in the final call to isCorrectMapping()

The subroutine compatible() returns ‘true’ if a) the nodes are both labelled

with the same constructor (sameOperator() holds true) and have the same

number of children, or b) the nodes are leaf nodes and respect the existing map-

ping φ, that is, the exact pair t1, t2 either exists already in φ or neither t1 nor t2

occur in φ. Otherwise, compatible() returns ‘false’. If a match is found (i.e. the

nodes are compatible), then we add the pair to the existing mapping and continue

with the children and the siblings of t1. Finally, if a set of candidate mappings

is found, the substitutions are applied to the justifications and entailments and

an entailment check is performed in order to verify whether the substitutions

preserve the entailment. If such a mapping is found, the algorithm returns ‘true’.

Algorithm 5.1 Isomorphic(e1, e2)

1: t1← getParsetree(e1)
2: t2← getParsetree(e2)
3: φ← ∅
4: Mappings← match(t1, t2, φ)
5: for φ ∈Mappings do
6: if isCorrectMapping(φ, t1, t2) then
7: return true
8: end if
9: end for

10: return false

5.5.2 Optimisations

There are several optimisations to the implementation of the generic tree com-

parison algorithm which can be used to reduce the number of comparisons, thus

improving performance. The optimisations can be categorised into a) filtering

prior to starting the tree comparison, and b) early termination of the comparison

algorithm. Some of these optimisations depend on the respective isomorphism

5.5. IMPLEMENTING AN ISOMORPHISM CHECKER 129

Algorithm 5.2 Subroutines to Algorithm 5.1

1: function Match(t1, t2, φ)
2: if (t1, t2) ∈ φ then
3: return matchChildren(t1, t2, φ)
4: end if
5: if compatible(t1, t2, φ) then
6: φ← φ ∪ {(t1, t2)}
7: return matchChildren(t1, t2, φ)
8: end if
9: return ∅

10: end function

11: function MatchChildren(t1, t2, φ)
12: if childCount(t1) = 0 then
13: return φ
14: end if
15: Mappings← ∅
16: FirstChild← getChildAt(t1, 0)
17: ReducedT1← removeChild(t1, F irstChild)
18: for Child ∈ t2 do
19: ReducedT2← removeChild(t2, Child)
20: for φ ∈ match(t1, t2) do
21: Mappings ∪matchChildren(ReducedT1, ReducedT2, φ)
22: end for
23: end for
24: return Mappings
25: end function

26: function Compatible(t1, t2, φ)
27: if childCount(t1) 6= childCount(t2) then
28: return false
29: else if sameOperator(t1, t2) then
30: return true
31: else if respectsMapping(t1, t2, φ) then
32: return true
33: end if
34: return false
35: end function

130 CHAPTER 5. JUSTIFICATION ISOMORPHISM

type that is being checked for.

Strict isomorphism optimisations Before starting the tree comparison, we

can filter out non-matching justifications based on

1. the number of axioms in the justifications,

2. the number of different axiom types,

3. the signature size of each justification,

4. the number of different constructor types used in the axioms.

We only perform a full tree comparison if these values match for both justifica-

tions.

Subexpression- and lemma-isomorphism optimisations As subexpression-

isomorphism allows mappings between complex expressions, the types and num-

bers of constructors can differ between the two justifications. Thus, we can only

apply optimisations 1) and 2) which compare the number and types of axioms.

As lemma-isomorphism reduces to subexpression-isomorphism after the lemma-

tisation stage, we can apply the same optimisations.

General optimisations In addition to the specific optimisations described

above, the most obvious cheap check is a check for equality of the justifications

before calling the tree algorithm. Further, we can apply an ordering on the ax-

ioms in the (lemmatised) justification when generating the parse tree. As only

axioms of the same type can potentially be considered isomorphic, ordering the

children in the justification tree based on their axiom type prevents the algorithm

from matching incompatible axiom types in the first place, thus gaining a small

advantage over a random comparison between axiom parse trees.

5.5.3 Limitations due to syntactical differences

Many constructors and axiom types in OWL have an abstract, frame-like syntax,

which can be used interchangeably with their symbolic description logic syntax.

For example, one of the most common variants can be found for domain axioms,

since domain(r, C) can also be written as ∃r.> v C.

Beyond notational variants, we also need to take into account the equivalence

of expressions. For example, the expression ¬∃r.A is equivalent to ∀r.(¬A), and

5.5. IMPLEMENTING AN ISOMORPHISM CHECKER 131

we can certainly imagine ontology developers unknowingly using both notations

in an ontology.

Given our current equivalence relations, justifications containing equivalent

axioms with alternative syntaxes or equivalent expressions would not be consid-

ered isomorphic. The question arises whether we can (or should) consider those

alternative notations to be isomorphic.

On the one hand, the semantics of the alternative notations are identical;

for the purpose of analysing the logical diversity of a corpus of ontologies, the

material form of an axiom is clearly not relevant. By introducing a normalisation

step prior to computing the equivalence classes on a corpus of justifications, we

can convert each such axiom into our preferred notation and partially eradicate

the issue of seemingly diverse justifications.

On the other hand, however, we may argue that, from a user perspective,

there exists a clear difference between the syntactical variants. In description

logic syntax, a justification of type {A v ∃r.B, ∃r.> v C} |= A v C can be

solved by a human user through simple pattern matching, as the RHS of the

first axiom closely resembles the LHS of the second axiom. While it does require

the user to understand that ∃r.B is subsumed by ∃r.>, the similarity between

the expressions can support understanding of the relation between the axioms.

Comparing this to the more abstract notation {A v ∃r.B, domain(r, C)} |= A v
C, the user first needs to interpret the domain axiom correctly, which in turn

seems to have little connection to the first axiom. This can potentially complicate

the process of understanding the justification, making the abstract syntax quite

different from the symbolic notation. A counter-argument for this is the fact that

pointing out the equivalence of two different looking expressions may help the

user in understanding unfamiliar notation; this, however, is more of a general

representational issue.

Thirdly, taking into account the experience or preferences of a user, a nor-

malisation towards the user’s preferred notation may in fact be beneficial for

supporting their understanding of justifications. Furthermore, in OWL editors

such as Protégé 4, users generally only encounter the abstract syntax, with no

obvious facilities to construct subsumption axioms with a complex LHS. This

supports the argument for a normalisation of syntactical variants to match the

preferred syntax of a user.

We conclude that, while syntactical variants may differ in their complexity for

132 CHAPTER 5. JUSTIFICATION ISOMORPHISM

human users, the normalisation of such equivalent notations can give us a more

homogeneous picture of the logical diversity of a corpus of justifications.

5.5.4 Extending the j-graph

Extending the j-graph we have introduced in Chapter 4 to take into account iso-

morphism relations between sets of justifications can be done in several different

ways: first, we could substitute the isomorphic justifications with an entirely new

node labelled with the respective template, preserving the incoming and outgoing

edges of the justification nodes. Second, we can label each justification node with

its template. And third, we can create a new template node for each template

with outgoing edges to the corresponding isomorphic justifications.

a1

j1

a2

j2

a3a4

j3

a5 a6

j4

a7

j5

a8 a9

a10a11

j6

t1 a12

t4

t2t3

Figure 5.3: An extended j-graph containing four template nodes t1 through t4.

Since it is desirable to preserve the relationship between the justification ax-

ioms, justifications, and their entailments, a complete substitution as suggested

by the first approach seems unsuitable. Adding an additional template label to

each justification node may be a straightforward solution, but it does not give

us direct access to metrics such as the number of templates in the j-graph, or

the number of justifications for each template. We therefore choose to represent

isomorphic justifications by a newly introduced template node; this allows us to

conveniently count the number of templates which corresponds to the number

of nodes labelled with a template, and identify the number of justifications for

each template, which is simply the out-degree of a template node. In addition,

5.6. SUMMARY AND CONCLUSIONS 133

this approach lets us represent template nodes for each isomorphism type in the

graph, without running the risk of adding too many labels to a single node.

Figure 5.3 shows the example j-graph from Figure 4.2 extended with an ad-

ditional four template nodes for one type of isomorphism. From left to right, the

grey shaded nodes represent templates for justifications j1 and j6 (t1), j2 (t2),

j3 (t3), and j4 and j5 (t4), respectively. The one piece of information we are

missing out is the relation between isomorphic axioms in a set of justifications.

It would certainly be possible to further extend the graph with additional axiom

template nodes for each justification template, with outgoing edges to the justifi-

cation template node; however, in order to avoid cluttering of the graph, we omit

this information for now.

5.6 Summary and conclusions

Motivated by the apparent structural similarity of distinct justifications, we intro-

duced two new equivalence relations that extend strict justification isomorphism:

subexpression-isomorphism, as discussed in Section 5.2 covers justifications which

contain complex expressions that could be substituted by variable names, that

is, the semantics of the expression is not relevant to the entailment. Lemma-

isomorphism, which we introduced in Section 5.3, goes one step further and al-

lows us to consider justifications to be isomorphic if there exist lemmatisations of

the justifications which are subexpression-isomorphic. We presented definitions

for these new relations and presented a proof for the (non-obvious) transitivity

of subexpression-isomorphism in description logics without nominals. In Section

5.2.1, we also discussed the notion of justification templates which represent a

set of structurally isomorphic justifications and defined how to determine a pre-

ferred template in the presence of multiple possible templates. Finally, we gave

an overview of an algorithm to detect isomorphism between two justifications and

discussed possible optimisations for an implementation.

The work presented in this chapter is an important step on the way to gain-

ing a better understanding of how we can define and detect similarity between

justifications in OWL ontologies. This is relevant in two respects: first, the types

and numbers of justification templates for a finite entailment set of an ontol-

ogy provides us with a metric to measure the logical diversity—and the logical

uniformity—of an ontology, which adds another aspect to our suite of metrics of

134 CHAPTER 5. JUSTIFICATION ISOMORPHISM

the justificatory structure of OWL ontologies. And second, if confronted with

multiple justifications, these relations allow us to point out structural similarities

to the user, thus potentially reducing the effort required to understand all jus-

tifications; further, subexpression- and lemma-isomorphism reduces the general

diversity of expressions and axioms in a justification, which has a similar effect

as ‘laconicising’ a justification in order to remove superfluous parts. A detailed

discussion of how we can exploit isomorphism in the debugging process follows

in the next chapter.

Chapter 6

Coping strategies

In the previous chapters we introduced the basic elements of the justificatory

structure of an OWL ontology, such as overlap between justifications and justi-

fication isomorphism. In this chapter, we will characterise different scenarios of

how OWL ontology users encounter justifications, and how justificatory structure

plays a role in those encounters. There are several possible scenarios in which

ontology users could use justifications:

• Information: understanding why an entailment holds in an ontology, e.g.

for learning purposes or to verify the correctness of the ontology.

• Debugging: modifying an ontology such that one or several erroneous en-

tailments are no longer entailed.

• Analysis: obtaining metrics about the justificatory structure of an ontology,

e.g. for comparing two ontologies.

• Ontology comprehension: understanding the structure of an ontology, e.g.

for learning purposes or to be able to integrate or modify the ontology.

The term ontology comprehension is frequently used in a rather broad sense

to refer to the user understanding entities and their (intended) relations in an

ontology in order to be able to use them correctly [GWS07, BSP09]; however,

ontology comprehension is neither a clearly defined task, nor is understanding

easy to measure; see, for example, [HBPS11b] for a discussion of the challenges

faced when designing user studies on justification understanding. In contrast,

generating justification based metrics does have a clearly defined outcome (the

correct metrics), but does not require any additional user support beyond the

suitable representation of those metrics. Using justifications for information pur-

poses is very similar to debugging; however, rather than all justifications, it often

only requires small numbers of (or even just one) justifications to provide the re-

quired information to the user. Thus, we focus on the case of debugging erroneous

entailments which is a clearly defined task with a measurable goal.

135

136 CHAPTER 6. COPING STRATEGIES

In the context of ontology debugging we now ask how the justificatory struc-

ture of an ontology can be exploited to improve the debugging and repair process

for OWL ontology developers. While we commonly speak of the debugging pro-

cess, it is clear that this is not a single task, but rather that there are many

different facets to the act of detecting errors in an ontology and modifying it

to remove these errors. Thus, the measures taken to improve debugging sup-

port depend on the task, e.g. whether the user wants to repair one or multiple

entailments, and the occurrence of single or multiple justifications.

The central focus point of this thesis has been the occurrence of multiple

justifications in OWL ontologies, and how we can ‘reduce user effort’ in a situation

where a user encounters multiple justifications. In this chapter, we will define the

notion of a successful debugging solution which then allows us to pin down what

exactly we mean by the effort a user has to apply in the debugging process, and

how we can measure this effort.

We will then discuss approaches to improving debugging support using the

aspects of justificatory structure we have introduced in the previous chapters. The

main idea behind these techniques is to either reduce the number of items (axioms,

justifications) a user has to inspect, or to make the justifications they do encounter

easier to understand. The goal of this chapter is to gain a better understanding

of the various situations in which users encounter justifications, and to provide

an analysis of the impact potential interventions have on a user’s effort when

dealing with justifications. Additionally, it lays the foundations for implementing

the suggested techniques in an OWL debugging tool and for measuring the effect

these techniques have on ontology users.

6.1 Debugging problems

In this section, we discuss the notion of a debugging problem and the various

scenarios in which users encounter justifications in the debugging process. These

scenarios include both the number of entailments and justifications in the given

task, as well as the relations between the justifications, if applicable. We will

then define the success of a debugging problem based on a minimum loss solution

measure for debugging a set of entailments.

6.1. DEBUGGING PROBLEMS 137

6.1.1 Defining debugging problems

Our definition of a debugging problem is based on the commonly used informal

notion of ontology debugging: given an ontology and some erroneous entailments,

rewrite or remove axioms in the ontology such that the errors are removed. First,

recall that in this context we focus on finite entailment sets, that is, we only

consider a finite entailment set εO of an ontology O of a specific type, such as the

set of entailed direct atomic subsumptions involving satisfiable and unsatisfiable

classes. As we discussed in Chapter 3, we can partition εO into the set of unwanted

entailments ε−O and the remainder, the set of wanted entailments ε+
O.

In order to allow us to talk about the effort required to solve a debugging

problem, we separate the informal notion of debugging into its two aspects: the

debugging problem and the debugging task. Generally speaking, the debugging

problem consists of an ontology O and a set ε−O of unwanted entailments which

the user considers to be erroneous. The debugging task is to find a solution to the

debugging problem. A solution is simply a modification mod such that applying

mod to O yields a new ontology mod(O) ⊆ O which entails none of the axioms

in ε−O. It is clear to see, however, that accepting any such solution can lead to

undesirable effects: in the most extreme case, simply removing all axioms from

the ontology would be a solution for a debugging problem.

We therefore place an additional constraint on the acceptable solutions to a

debugging problem: a modification mod must not only remove all errors, but also

try to preserve the correct entailments in ε+
O; that is, an acceptable solution is a

minimum loss solution. Since it may not be possible to preserve all entailments in

ε+
O (since, for example, some wanted entailments might entail unwanted ones), we

loosen this restriction to preserve a maximal subset ε∗ of ε+
O. A debugging problem

then considers not only the ontology and the set of unwanted entailments, but

also includes the set of correct entailments ε+
O, and the debugging task is extended

to finding a minimum loss solution.

In summary, a debugging problem D = 〈O, ε+
O, ε

−
O〉 consists of an ontology O

and two sets of entailments ε+
O and ε−O, such that O |= α for all α ∈ ε+

O ∪ ε
−
O.

The debugging task is to find a minimum loss solution to the given debugging

problem:

Definition 6.1. A solution to a debugging problem D = 〈O, ε+
O, ε

−
O〉 is a modifi-

cation mod such that mod(O) ⊆ O and mod(O) 6|= α for all α ∈ ε−O. A mimimum

138 CHAPTER 6. COPING STRATEGIES

loss solution to a debugging problem D is a modification mod such that

• mod is a solution to D,

• mod(O) |= α for all α ∈ ε∗ where ε∗ ⊆ ε+
O,

• and there is no solution mod′ such that mod′(O) |= α′ for all α′ ∈ ε′O where

ε′O ⊂ ε∗.

Note that in general we may consider a modification mod to be a series of

manipulation steps including axiom or subexpression rewritings, removals, or

additions. However, for the purpose of defining debugging effort in this chapter,

we restrict modifications to the removal of axioms. This is in line with the

concept of finding minimal repairs (i.e. finding a minimal hitting set across a set

of justifications and removing it) and allows us to fix the subset relation between

the original ontology O and the repaired ontology O′ which would not be possible

if we allowed additions and rewritings. Fixing this subset relation is necessary to

allow us to preserve not only the entailments in ε+
O, but also any other entailments

in the deductive closure of O without explicitly specifying them in ε+
O. Otherwise,

rewriting O to yield ε+
O would always be the considered the ideal solution, but

this could lead to an ontology that is vastly different from the original O, which

is obviously undesirable.

Finally, we can pin down the notion of a successful solution of a debugging

problem: if the user can find a minimum loss modification mod, we consider the

debugging problem to be solved successfully. A debugging problem is not solved

if after applying a modification it still holds that O |= ε−O for some entailments

in ε−O, and solved unsucessfully if the applied modification is not a minimum loss

modification, that is, more entailments were removed from ε+
O than necessary. Of

course, there are other aspects to a successful and good repair strategy, such as

the cognitive effort and time required to find a specific solution, which we have

not yet considered in this definition.

6.1.2 Justification encounters

Now that we have defined what we mean by a debugging problem, we proceed with

an analysis of the different scenarios in which single and multiple justifications

can occur in debugging problems. This includes a description of (simple) reading

strategies users apply in order to find a suitable modification for a given scenario.

1. Single entailment

6.1. DEBUGGING PROBLEMS 139

(a) Single justification There exists only a single justification for the

entailment.

Strategy The entailment is repaired by removing one erroneous ax-

iom (or several, if the error is caused by a set of incorrect state-

ments) in the justification.

(b) Multiple justifications There exist j distinct justifications for the

entailment, some of which may have common axioms.

Strategy Inspect and remove an axiom from every justification in-

dividually in a linear fashion. The user might attempt to find

common axioms in order to obtain a smaller repair, for example

by jumping back and forth between the justifications and memo-

rising which axioms are shared.

2. Multiple entailments

(a) Single justification Each of the k entailments has exactly one justi-

fication.

Strategy Consider each entailment and its justification in isolation.

If the tool re-computes the entailments after an axiom removal, a

single modification might affect other justifications, thus reducing

the total number of justifications to inspect. Otherwise, the user

has to inspect every justification once and remove each incorrect

axiom.

(b) Multiple justifications Each of the k entailments has ji justifica-

tions.

Strategy Inspect and modify every justification for each entailment

individually. Again, the user might attempt to find common ax-

ioms between the justifications for a single entailment by jump-

ing (scrolling) back and forth between the justifications. Current

explanation tools (e.g. in Protégé 4), however, do not support

switching between the justifications for different entailments.

In summary, the number of justifications a user encounters using a straightfor-

ward linear reading strategy is determined as follows: given a set of k entailments

where the i-th entailment has ji justifications, the number of justifications requir-

ing inspection is
∑

1≤i≤k
ji.

1

1For legibility reasons, we will drop the limit 1 ≤ i ≤ k from the sum in the remainder of
this chapter and generally assume that i ranges over the number of entailments.

140 CHAPTER 6. COPING STRATEGIES

6.2 Measuring effort

Our main goal is the reduction of user effort in the debugging process when

confronted with justifications for single or multiple entailments. While we have

some intuitions about the notion of user effort—the time taken to find a repair,

the cognitive difficulties in finding a repair—we have not yet pinned down what

exactly we mean when we talk about the effort required to solve a debugging

problem, and how we can measure such effort. In what follows, we outline the

different facets of user effort, and define a simple model for measuring effort for

a given debugging problem.

6.2.1 The complexity of individual justifications

The cognitive complexity of OWL justifications has gained some attention in re-

cent years, with some investigations into typical errors users make [RCVB09,

CRVBP09] and user studies to test directly which types of justifications users

find easy or difficult to deal with [HPS09, HBPS11a, NPPW12a]. For example,

the study presented by Nguyen et al. [NPPW12a], which we briefly discussed in

Section 2.3.3, ranks frequently occurring axiom subsets in justifications accord-

ing to the number of study participants who correctly interpreted the natural

language representation of the justification. However, the authors do not further

investigate what properties cause these justifications to be difficult to understand

for the study subjects.

In contrast, the complexity model constructed by Horridge et al. [HPS09]

is based on various justification features and can be applied to any OWL jus-

tification, resulting in a complexity score which ranges from 0 (‘very easy’) to

2000 (‘very hard’) and beyond for ‘naturally occurring’ justifications. The model

components are based on features, such as the different axiom types and class con-

structors found in the justification, and certain phenomena, for example whether

the justification entails > ≡ A for some class A in its signature.

These approaches to determining the cognitive complexity of a justification

are based on the idea that we can identify certain features of justifications, such

as a specific reasoning pattern or metrics, which are easy or difficult for people

to understand. Given such a set of features, we can assign a justification a

complexity score which gives some indication of the difficulty a user may have in

trying to understand the justification.

6.2. MEASURING EFFORT 141

A3 v A4

A5 v A6

A2 v A3

A4 v A5

A1 v A2

(a) Unordered justification.

A1 v A2

A2 v A3

A3 v A4

A4 v A5

A5 v A6

(b) Ordered and indented justification.

Figure 6.1: Different representations of a justification for A1 v A6.

Representation of justifications We have to bear in mind, however, that the

difficulty of understanding a justification does not only depend on its intrinsic

complexity (i.e. its complexity score), but also on the experience level of the user,

as well as its presentation. A user familiar with certain phenomena may delib-

erately search for such a phenomenon when trying to understand a justification,

whereas a novice may not have this kind of coping strategy at their disposal. Re-

garding the presentation of a justification, the usual visual aids (e.g. in Protégé

4) when displaying OWL justifications on a screen are:

• Ordering [Kal06]: in simplified terms, given two axioms α and α′, if α

contains entities on the RHS which occur in the LHS of α′, then α is placed

before α′ (assuming the axiom list is read left-to-right or top-to-bottom).

All other axioms are placed at the end. Overall, the justification axioms

are ordered to contain the RHS of the entailment at the beginning, and the

LHS of the entailment at the end.

• Indentation: assuming that α′ follows after α in a list of axioms which is

ordered according to the above principles, α′ is indented. Axioms which do

not have any predecessors that share expressions are not indented.

• Syntax highlighting: keywords in the OWL Manchester syntax are high-

lighted in colour to stand out from the entity names.

There have been no direct investigations into the effects of these visual aids

on understanding OWL justifications. However, in the exploratory study which

formed the basis for the complexity model, Horridge [Hor11a] found that users

often skip steps in atomic subsumption chains, a technique which is greatly sup-

ported by ordering and indentation. As an example, consider an atomic sub-

sumption chain as shown in the example in Figure 6.1a and 6.1b.

If the chain is unordered and not indented, the user will have to search through

the chain, jumping back and forth between the axioms, and memorise which

concept they are looking for. While not complex, such a justification could still

142 CHAPTER 6. COPING STRATEGIES

be considered challenging, whereby the challenge lies with the general difficulty

of navigating in a non-linear fashion (see, for example, [JL80] for a discussion of

the effects of sentence ordering on spatial reasoning). In contrast, if the chain

is ordered and indented accordingly, a user—especially if familiar with this type

of representation—will be able to recognise the chain structure and spot the

entailment at a glance. The lack of ordering and indentation does not change the

reasoning required to understand the justification, but it makes the justification

as it is presented to the user more difficult to understand.

Furthermore, since syntax highlighting (as well as line indentation) has long

been a default feature of programming environments, it seems an obvious step to

apply it to human-readable OWL syntax. In summary, we can reasonably assume

that visual aids such as ordering, indentation, and syntax highlighting improve

the way users navigate through axioms, thus reducing the difficulty a user has in

understanding a justification.

From complexity score to effort We have not yet answered the question of

how to measure the effort a user has to apply in order to successfully understand

and debug an entailment using a single justification. As there is no practical2 way

to measure the cognitive effort required by a person to solve a reasoning task,

we have to base our measurements on more tangible metrics. Studies on human

reasoning performance (e.g. [NBH+06]) commonly infer the complexity of a task

from two values: the frequency of test subjects coming to an erroneous solution,

and the time required to come to a solution.

Thus, we can assign an effort (or complexity) score c to each justification

which is provided by some complexity model and corresponds to two factors:

1. The likelihood of the user finding an unsuccessful solution or not solving the

debugging problem at all. An indicator for this is the number of incorrect

modifications a user makes before finding a correct solution.

2. The time required to find a successful solution.

2This is not taking into account the possibility of measuring brain activity during problem
solving using an fMRI procedure. See, for example, the prediction of brain activities using the
ACT-R system: http://act-r.psy.cmu.edu/actrnews/index.php?id=34.

http://act-r.psy.cmu.edu/actrnews/index.php?id=34

6.2. MEASURING EFFORT 143

6.2.2 A model for user effort

Following on from the complexity of single justifications, it is straightforward

to see that multiple justifications generally increase the effort a user has to put

into debugging one or multiple entailments—if the justifications are considered in

isolation, as we will assume in this effort model for dealing with multiple justifi-

cations. Recall our discussion of the number of justifications a user has to inspect

in different scenarios of justification and entailment encounters (Section 6.1.2),

which range from exactly one to the sum of all justifications for all entailments

in a set of multiple entailments.

Now assume that each justification we encounter has a complexity score c

which is provided by some complexity model and the times and error rates as-

sociated with the score. Not taking into account effects caused by learning (i.e.

inspecting multiple justifications which contain a recurring pattern), fatigue, or

representational issues (e.g. scrolling down a long list) when inspecting multiple

justifications, we expect the total effort to be the sum of the individual justi-

fication effort measures. For example, if justification J1 requires the user two

minutes to find a correct modification, and J2 requires four minutes, we expect

the overall debugging process to require six minutes. Likewise, if a user is likely

to solve J1 at the first attempt and requires three attempts at modifying J2, the

overall number of incorrect modifications will be four.

Based on these assumptions, we define our model for measuring user effort for

a given debugging problem as a straightforward sum of the individual complexity

scores for the justifications encountered: given a set of k entailments with ji

justifications each, the overall complexity is
∑
cij for 1 ≤ i ≤ k, 1 ≤ j ≤ ji,

where cij denotes the complexity score of a justification Jij for an entailment ηi.

This is obviously only a worst case approximation, as we assume that a) the user

deals with each justification individually, and b) the justifications are disjoint,

that is, a modification of one justification does not affect any other justification.

However, since we do not yet have a sufficiently good understanding of how

users interact with justifications and what strategies they commonly apply, this

approximation will have to suffice for our purposes.

Reducing user effort Given this effort model, we can now also define the goal

of ‘reducing user effort’: to exploit the justificatory structure of an ontology in

order to reduce the overall time and error rates compared to those given by our

144 CHAPTER 6. COPING STRATEGIES

effort model for encountering multiple justifications. This reduction may occur

in two ways:

1. Introduce an alleviation factor aij < 1.0 that represents the reduction in

complexity cij of a justification Jij caused by some additional support pro-

vided to the user. The reduced complexity of Jij is then cij ∗ aij.
2. Lower the number of justifications a user has to inspect. The reduction

of the number of justifications can be represented by an alleviation factor

of aij = 0 for a justification Jij that does not have to be ‘touched’ in the

debugging process.

Note that for the purpose of defining the effort model, we assume that a user

has to understand the justification in order to find a suitable repair; that is, the

user has to inspect every axiom in the justification and apply mental reasoning

strategies in order to understand how the axioms lead to the entailment. However,

depending on the debugging strategy applied, the user may not have to inspect

every axiom in order to find a suitable repair. Minimising the number of axioms

encountered is a strategy mostly applied by semi-automated repair tools, such as

the ontology revision tool proposed by Nikitina et al. [NRG12] (see the discussion

of the revision approach in Section 2.4.2), in which users are presented with a

series of axioms and have to make a simple accept/reject decision for each axiom.

Reducing the number of axioms encountered is also one of the key aspects of the

axiom ranking and the root and derived mechanism used in Kalyanpur’s repair

tool [Kal06]: by suggesting low-ranked axioms in (root) justifications for removal,

the tool prevents the user from manually inspecting every axiom in a justification

or set of justifications. In our effort model, a reduction in the number of axioms

to inspect in a justification can also be represented by the alleviation factor aij,

since fewer axioms to inspect can simply be regarded as a reduction in the overall

complexity of the justification.

6.3 Coping strategies

Having defined how to measure a reduction in the user effort required to debug

a set of justifications, we will now discuss a number of strategies which exploit

the justificatory structure of an ontology in order to reduce the effort required by

a user to debug one or multiple entailments. We will first outline the scenarios

in which justifications can share axioms or be isomorphic, before moving on to

6.3. COPING STRATEGIES 145

suggestions of how the structural properties of a justification set can reduce user

effort.

6.3.1 Characterising justification sets

In our analysis of justification encounters and debugging effort in the previous

sections in this chapter we treated justifications as entirely independent entities,

paying no attention to the structural relations between them. But we already

know that there exists a variety of relations between them, such as overlap and

structural isomorphism which we discussed in detail in Chapters 4 and 5. Before

proceeding with a discussion of potential interventions to mitigate the effects of

multiple justifications, we will give an overview of the structural characteristics of

justification sets. This will allow us to clearly identify those situations in which

our proposed interventions will help, and those in which users need to fall back

onto other strategies.

Given a set of multiple justifications, the set can have the following properties:

1. All justifications are disjoint and structurally different.

(a) If the justifications are individually easy, there is no additional support

required. While potentially tedious, users may eventually arrive at a

suitable solution to the debugging task by dealing with the justifica-

tions one by one.

(b) In the worst case, the justifications are individually hard and there

are no structural relations to take advantage of such that the justifi-

cations need to be tackled individually. Here, aids for understanding

individual justifications, such as justification based proofs or natural

language explanations which we have introduced in Sections 2.3.3 and

2.3.3, may help reduce the complexity of the individual justifications.

(c) If some justifications are easy and others hard, ranking them based on

some complexity model and presenting the easiest justifications first

may decrease the likelihood of the user giving up immediately, while

also taking advantage of learning effects over time. Further, complex

justifications will benefit from the additional support mentioned in (b).

2. Some of the justifications overlap.

(a) If all justifications overlap in some axioms and no two are disjoint,

focus on the most frequent overlaps, e.g. by identifying an error in the

shared axiom set, or by generating relevant lemmas to support users

146 CHAPTER 6. COPING STRATEGIES

in understanding the overlapping subsets. This technique is discussed

in Section 6.3.2.

(b) If there are some overlapping and some independent justifications, fo-

cus first on those which overlap, then continue as outlined in 1.

3. Some justifications are isomorphic.

(a) Group isomorphic justifications in order to support the user in under-

standing the justification template first before tackling the individual

justifications. The effect of isomorphic justifications is discussed in

Section 6.3.3.

(b) If there exist isomorphic justifications which also overlap in some ax-

ioms, apply both grouping and lemmatisation of the shared axiom set.

This is further discussed in Section 6.3.4.

(c) Treat independent justifications individually as outlined in 1.

6.3.2 Justification overlap

Single-axiom overlap Justification overlap containing only single axioms, as

discussed in Section 4.3.1, has been one of the key aspects of reducing debugging

effort since the early days of justification based explanation [SC03, Kal06]. Shared

axioms are essential to finding minimal repairs, that is, minimal hitting sets

across a set of justifications. The ontology editor Swoop uses the frequency of

an axiom to compute a rank for the axiom, with high frequency axioms being

recommended for removal, while the explanation tab in Protégé 4 displays the

number of justification an axiom occurs in next to each axiom; screenshots of

these two tools displaying axiom metrics were shown in Figures 2.2 and 1.1.

Single-axiom overlap can reduce user effort in several ways: first, indicating

the frequency of an axiom may provide some hints towards a potentially erroneous

axiom. If this is truly the case and an axiom occurring in
∑
ji justifications turns

out to be erroneous, the effort for successfully repairing the unwanted entailment

is reduced to the effort required to understand and modify or remove this one

axiom.

Second, if the high-frequency axiom itself is considered to be correct, it may

still cause an error by interacting with other, incorrect axioms in the justification

set. In this case, the number of justifications that need to be inspected remains

at
∑
ji, however, the number of axioms that the user encounters is lowered. This

means that pointing out the shared axiom indirectly reduces the effort required to

6.3. COPING STRATEGIES 147

understand each one of the justifications, as the user is already ‘familiar’ with the

shared axiom and only needs to understand how it interacts with the remaining

axioms in each justification. Hence, we can introduce an alleviation factor a

which indicates the reduction in effort required to understand the individual

justifications. The overall effort is then reduced from
∑
cij to

∑
ci,j ∗ aij for

aij < 1.0.

And third, the high-frequency axiom may only occur as a ‘bridging’ axiom

which does not play a role in the actual conflict that leads to the unwanted en-

tailment. This is the case, for example, in root and derived justifications for

unsatisfiable classes, where the cause of the unsatisfiability of the classes lies

within the root justification, whereas the remaining axioms in a derived justifica-

tion simply ‘bridge’ the relationship between the classes, as discussed in Section

4.3.3. If the shared axiom is a bridging axiom, the reduction of effort is similar to

the previous case: the effort required to understand each justification is reduced

by a factor aij due to the reduction of the number of axioms the user encounters.

Justification equality The most striking effect of exploiting justificatory struc-

ture on the effort required for debugging a set of entailments is the case of justifi-

cations which are simply the same set of axioms; a justification property which we

introduced as justificatory redundancy in Section 4.3.2. Breaking a single justifi-

cation instantly repairs all entailments that depend on it and have no additional

justifications. Considering the user effort based on our simple effort model, given

k entailments to debug with a single justification each, a user would have to in-

spect k justifications to debug all entailments. This is where the model is rather

inaccurate, as we can assume that typical user behaviour would be to inspect one

justification, apply a modification to it, then move on to the next justification,

rather than inspecting all justifications first before applying a modification to one

justification. If, after applying a modification, a reasoner is used to classify the

ontology, the user would then immediately notice the repair effect on the other

entailments. On the other hand, we can imagine that a user actively tries to

find a minimal repair, thus inspecting all justifications first before applying any

modification. In this case, the effort model still applies.

Regardless of the original effort to start with, it is straightforward to see that

pointing out the equality between multiple justifications reduces the number of

justifications to inspect from
∑
ji to one in the case where the entailments do

148 CHAPTER 6. COPING STRATEGIES

not have any additional justifications. That is, the total effort required for the

debugging task will be based on the complexity cij of that one justification, plus

that of any additional justifications.

Root and derived justifications We already discussed root and derived jus-

tifications in detail in Section 2.3.4. Even if the justifications are not strictly

equal, the existence of subset relationships can significantly reduce user effort in

the debugging process. A straightforward application of subset relationships in

a list-based justification representation is the ordering of justifications to present

users with the root justifications first. Using a j-graph representation for a set of

entailments and justifications, for example, the root justifications could simply

be highlighted (for example by rendering them in colour) to signify to the user

that these justifications need to be dealt with first.

Regarding the reduction in user effort caused by root and derived justifica-

tions, consider a set of k entailments with a total of j justifications. Assume the

set of justifications is partitioned into a set of root justifications Justsr and a set

of derived justifications Justsd, that is, |Justsr|+ |Justsd| = j.

In the presence of root and derived justifications, the number of justifications a

user has to repair in order to find a suitable repair for all entailments corresponds

to the number of root justifications |Justsr|. Given that |Justsd| > 0, the number

of justifications to inspect will always be lower than the initial number given by

our model, with the reduction in effort depending on the ratio between root and

derived justifications. As an effect, we can simply introduce an alleviation factor

of aij = 0 for all derived justifications Jij.

Arbitrary overlap While the effects of justification equivalence and root and

derived justifications are immediate, arbitrary justification overlap has a more in-

direct impact on debugging effort. As we have shown in Section 4.3.3, arbitrary

overlap can generate a relevant lemma, that is, an intermediate entailment of a

subset of a justification. Such a common lemma which occurs in multiple justifi-

cations can support a user in understanding multiple justifications by prompting

chunking, an effect commonly described in cognitive science [Mil56, GLC+01].

The restricted working memory of humans is known to be a limiting factor

for a person’s ability to process information. Cognitive science research widely

agrees that the number of items a human can hold in their working memory at any

time is fairly small, with figures commonly ranging from four items [HBMB05]

6.3. COPING STRATEGIES 149

to ‘the magical number seven’ [Mil56].3 The process of chunking, however, helps

mitigate this limitation by grouping multiple items into one single chunk, which

corresponds to a single item held in memory. Thus, chunking practically increases

the number of items a human can deal with at the same time.

Lemmatisation of an overlapping justification subset corresponds to such chunk-

ing, as it groups a number of items—the individual axioms—into a chunk of which

only the lemma is relevant to the user. This reduces the overall complexity of

the justification set in two ways: first, the lemmatisation makes each individual

justification easier to understand. And second, the complexity of understanding

each justification is further reduced due to the lemma reoccurring in the justifi-

cation set. Thus, while the number of justifications to inspect remains the same,

the complexity of each justification is reduced by a factor aij.

6.3.3 Isomorphism relations

We consider the isomorphism relations introduced in the Chapter 5 to be equiva-

lence relations, that is, they partition a set of justifications into subsets of struc-

turally similar justifications. This effect can be used to provide improved de-

bugging support by grouping justifications into their equivalence classes and pre-

senting the user with the abstract template for each group, as shown in Section

5.2.1. Given a set of justifications for a single or multiple entailments, we first

partition the justifications into the sets of isomorphic justifications according to

some notion of isomorphism. These subsets are then arranged to show the user

the template Θ to give an abstract explanation of the entire set of structurally

similar justifications.

Similar to the exploitation of arbitrary overlap, such a grouping technique

does not directly reduce the number of justifications to be inspected, but it re-

duces the overall complexity of the justification set the user is dealing with: by

understanding the template first, we expect the user to spend less time and have

less difficulty when repairing each individual justification. As we cannot apply a

repair to a template (since it does not correspond directly to any material axioms

in the ontology), the user will still have to repair each justification; the effort for

3Note that Miller’s ‘magical number’ paper has been frequently mis-used to generalise to
entirely unrelated problems such as text comprehension. See, for example, Edward Tufte’s
archive page [Tuf] on misinterpretations of Miller’s paper.

150 CHAPTER 6. COPING STRATEGIES

this repair then depends on the overlap relations between the justifications. How-

ever, understanding the template first will reduce the overall effort from
∑
cij to∑

cij ∗ aij, where aij < 1.0 for the justifications Jij covered by the template.

Entity naming in justification templates In the examples for subexpression-

isomorphism in Chapter 5, we used freshly introduced variable names for the ab-

stractions from class, property, and individual names in a template. While this

is straightforward to understand, there may be alternative ways of presenting

these abstractions to a user which may be more suitable for understanding the

similarity between the justifications. Given a set of classes (properties) in strictly

isomorphic justifications which are mapped to a newly introduced variable x in

a template Θ, the following strategies4 can be used for naming x:

1. If the classes (properties) have a common named superclass Cs (superprop-

erty ps) use this to represent x; this superclass is also known as the least

common subsumer [BKM99] (which we restrict to a named class in our

case). Alternatively, as the least common subsumer may be too general,

use a good common subsumer [BST07], i.e. a superclass which is not the

least common subsumer, but the most representative and informative for a

user.

2. If there is no common superclass or superproperty, we can attempt to gen-

erate a new entity name by simply listing all entity names, e.g. as a comma

separated list.

In the case of subexpression- and lemma-isomorphism, the approaches to naming

abstract entities in Θ are less straightforward. For subexpression-isomorphism,

we can attempt to find a common subsumer of the complex subexpressions that

are mapped to a variable x. The situation is similar for lemma-isomorphic justi-

fications: assume a set of justifications is lemma-isomorphic, that is, there exist

lemmatisations of the justifications that are subexpression-isomorphic. Even in

this case we can attempt to find common subsumers for the entities occurring

in the lemmas to represent the entities in Θ. In either case, if there is no such

common named subsumer, the naming has to default to using freshly generated

variable names.

4The naming problem we are facing here is similar to that presented in Section 3.1.4 where
we looked at suitable representations for subsumption relationships between equivalent class
nodes in a class graph.

6.3. COPING STRATEGIES 151

Levels of abstraction In Section 5.2.1 we established the notion of a pre-

ferred template Θp which is the smallest possible abstract representation of a

set of isomorphic justifications. The type of isomorphism hereby determines the

level of abstraction of the preferred template: strict isomorphism results in a

template which is structurally identical to the original justifications, whereas

subexpression- and lemma-isomorphism abstract from the actual structure of the

justification axioms, resulting in a more high-level view.

Note that there is no strict ordering of abstraction levels between subexpression-

isomorphism and lemma-isomorphism: it is certainly possible for two justifica-

tions to be nearly strictly isomorphic with the exception of a subset S (such as a

short atomic subsumption chain) in one of the justifications, such that the justifi-

cations are ‘only’ lemma-isomorphic. The template Θp will then, again, be struc-

turally identical to the justification not containing S. In contrast, subexpression-

isomorphism (on which lemma-isomorphism is based) may unite justifications

that use a range of widely differing constructors; thus, the level of abstraction de-

pends entirely on the numbers and types of transformations for each justification

set, rather than the type of isomorphism.

In line with the idea behind laconic justifications—presenting users with as

little unnecessary detail as possible—it seems reasonable to use only preferred

templates in a user-facing application. However, which level of abstraction is

suitable to best support a user in understanding and repairing a justification is

unclear: a high-level, abstract representation of the justification (in some sense

an ‘explanation of the justification’) may help the user grasp the basic reasoning

behind the justification, which can be useful in getting them ‘on the right path’.

On the other hand, when it comes to modifying the justification in order to

remove the entailment, a detailed understanding of the expressions and axioms

may be of more use, as this will help finding an appropriate modification. This was

indeed one of the main concerns in the definition of preferred laconic justifications:

to contain no superfluous parts, while being as close to the original justification as

possible [HPS08]. However, what level of granularity for justification templates

is appropriate in a debugging context remains an open question.

6.3.4 Combining isomorphism and overlap

Finally, we can also combine isomorphism and justification overlap: it is possible

for a set of justifications to be structurally isomorphic, i.e. differ within most of

152 CHAPTER 6. COPING STRATEGIES

its entity names, but have a common axiom set which results in a relevant lemma.

In this case, the user can be presented with the justification template Θ of the

isomorphic justifications, whereby the common axioms are represented by their

concrete lemma rather than their abstract template.

Combining isomorphism and overlap to create lemmatised templates reduces

the effort required to understand the set of justifications in two ways: first, the

overall effort to understand all justifications is reduced due to the abstract tem-

plate. Second, the complexity of the template is then further reduced by lem-

matising it. That is, as previously, the overall effort is reduced from
∑
cij to∑

cij ∗ aij for aij < 1.0. However, due to the presence of a lemma, we expect the

factor aij to be smaller compared to isomorphism without overlap.

6.4 Summary and conclusions

In this chapter, we have proposed different approaches to exploiting justificatory

structure in order to reduce user effort in the ontology debugging process. In

Section 6.1 we first defined a debugging problem as the problem of finding a

minimum loss modification which can be applied to an ontology in order to remove

all unwanted entailments, while retaining as much wanted information as possible.

Using this definition of a debugging problem, we introduced a model (Section

6.2.2) for measuring the effort required to solve a debugging problem, which is

based on the number of justifications and axioms that need to be inspected in

order to find a suitable modification. By introducing an alleviation factor aij to

be applied to the complexity of an individual justification, we can then quantify

the reduction in effort achieved by individual coping techniques.

In Section 6.3, we then presented a number of coping strategies that make use

of different aspects of justificatory structure, and outlined how these strategies

would affect the effort required to repair single or multiple entailments. While we

do not have any experimental results on the effectiveness of the proposed mea-

sures, these suggestions lay out the different paths that can be taken in order to

improve justification based debugging support by exploiting justificatory struc-

ture, while also proposing a way to measure the success of such strategies. While

we have set the foundations for structure-based debugging support, it is clear to

see that the application of such interventions in ontology tools will require further

research into the way OWL developers read and understand justifications.

Chapter 7

A survey of justificatory structure

Following on from the introduction of various aspects of the justificatory structure

of OWL ontologies and interventions for justification encounters in the previous

chapters, this chapter presents a survey of the justificatory structure of a set of

ontologies from the NCBO BioPortal, a curated collection of over 300 ontologies

from the biomedical domain. Given the proposed structure-based coping strate-

gies, we now want to know which structural aspects indeed occur in ontologies

used in practice, and to what extent. While we have some knowledge about

the occurrence of multiple justifications and some of the structural phenomena

found in OWL justifications, e.g. [KPHS07, Lam07, Sun09, HBPS11b], to date

there has been no thorough investigation of the complex relationships between

justifications in a large, independently motivated ontology corpus.

This chapter presents an investigation of the applicability of the theoretical

concepts and interventions we have proposed in the previous chapters. The sur-

vey presented here indicates the significance of both the suggested sources of

difficulties, as well as the proposed structure-based interventions. In our case,

we claim that the significance of phenomenon and intervention corresponds to its

prevalence in OWL ontologies used in practice: given some OWL ontology, how

likely is it for an ontology developer to encounter a source of difficulty, and how

likely is it that structure-based coping strategies exist that can be exploited to

reduce this difficulty?

7.1 The BioPortal corpus

In this section, we will describe the properties of the test corpus used in our survey,

and outline the justification generation process. The entailment extraction and

justification generation comprises several filtering steps, which are motivated by

the different types of entailments and justifications we have presented in Chapters

153

154 CHAPTER 7. A SURVEY OF JUSTIFICATORY STRUCTURE

3 and 4: if we simply treated all justifications and entailments equally, regard-

less of their origin (native, mixed, or imported) or complexity (self-justification,

atomic subsumption chain, or complex), we would run the risk of over- or under-

stating features of the justificatory structure of the ontologies in our corpus. We

therefore filter out entailments—and ontologies—which would skew the justifica-

tion analysis towards irrelevant types of justifications.

7.1.1 Properties of the corpus

The purpose of this survey is to analyse the justificatory structure of a set of OWL

ontologies which is representative for the range of ontologies used in practise. This

would exclude tutorial and toy ontologies, such as the well-known Pizza and Koala

ontologies, which were specifically built for the purpose of demonstrating certain

OWL features, or might be very small and inexpressive. In order to prevent bias

through hand-picking ‘suitable’ ontologies, our aim was to use an independently

motivated corpus of ontologies. Thus, the choice was between a random sample

of web ontologies (e.g. obtained from a web crawl) and an existing ontology

repository. As the NCBO BioPortal ontology repository contains a large number

of actively used and well-studied ontologies which cover a broad spectrum of size

and expressivity, it seemed a suitable choice for an extensive survey of justificatory

structure.

BioPortal is a web-based ontology repository which provides over 300 ontolo-

gies published by research groups from the biomedical domain. It also includes

the full set of OBO Foundry1 ontologies, which use a flat-file format that can

be translated into OWL 2; therefore, the OBO ontologies were included in the

corpus. The activity of the repository varies throughout the ontologies: while

some are updated (if only sporadically) and offer several prior versions, others

have not been modified since their first upload. The repository has seen some

visible growth in recent years, with the number of downloadable OWL and OBO

ontologies increasing from 218 in March 2011 [BHPS11] to 256 in May 2012.

7.1.2 Justification corpus preparation

Ontology corpus At the time of downloading (May 2012), 322 OWL and OBO

files were listed in BioPortal, of which 256 could be downloaded via the BioPortal

1http://www.obofoundry.org/

http://www.obofoundry.org/

7.1. THE BIOPORTAL CORPUS 155

BioPortal download:
256 OWL ontologies

Entailment extrac-
tion: 209 processed

Self-supporting entailment
pruning: 197 ontologies

Justification compu-
tation: 190 processed

Imported entailments
pruning: 187 ontologies

J-graph generation
for complex justifica-
tions: 78 ontologies

Figure 7.1: The justification corpus preparation workflow.

REST interface and successfully parsed by the OWL API. The main reasons for

download failures of the remaining ontologies were 403 (‘forbidden’) server errors,

parser problems caused by actual errors in the ontology file, and the ontology not

being available at the given URL. Each downloadable ontology was merged with

its imports closure and serialised as an OWL/XML file. Imported axioms were

being annotated with their source ontology URI, while missing imports were

ignored. A diagram of the full corpus preparation workflow is shown in Figure

7.1.

Stage 1: entailment extraction Due to the small number of ‘naturally oc-

curring’ unsatisfiable classes in published OWL ontologies, it seems reasonable to

extend our analysis from obvious ‘errors’, that is, unsatisfiable classes, to include

atomic subsumptions which represent the class hierarchy of an ontology. We com-

puted entailment sets for the 256 downloaded ontologies including entailments of

the following two types: 1) the (ADInim)+ entailment set of atomic subsump-

tions of type A v B for named, satisfiable classes A and B of each ontology,

including self-supporting entailments, and excluding tautologies such as A v >,

as well as all 2) the (ADInim)+ set of atomic subsumptions of the type A v ⊥
for unsatisfiable classes A in the ontology. The entailments were generated as

follows:

1. Perform consistency check on the ontology.

2. Classify: precomputeInferences(InferenceType.CLASS HIERARCHY).

3. Extract entailed subsumption axioms using InferredAxiomGenerator.

For practical reasons, the processing times for the entailment generation was

limited to a reasoner timeout (for consistency checking and classification) of 20

156 CHAPTER 7. A SURVEY OF JUSTIFICATORY STRUCTURE

Table 7.1: Overview of the data in sets Ssa and Su.

Ssa Su

Ontologies 187 10

Justifications 307,422 10,352

Entailments 110,333 419

minutes. The overall timeout per ontology for each experiment in Stages 1 to

3 was set to 90 minutes. The reasoners used were JFact version 0.9 and Pellet

version 2.3.0. All experiments were run on a Mac Mini with a 2.7 GHz Intel Core

i7 processor, with 16 GB RAM assigned to the JVM.

In this stage, a total of 209 ontologies could be processed successfully using

either Pellet or JFact, with the remaining 47 ontologies suffering from various er-

rors such as inconsistency (7 ontologies), classification timeouts on both reasoners

(9 ontologies), as well as UnsupportedFeatureException and OutOfMemory er-

rors (13 ontologies) in the reasoners. 18 of these ontologies were discarded due

to them containing no logical axioms, which was most likely caused by errors in

the OWL/XML serialisation stage. For the remaining 209 ontologies, a total of

8,351,061 entailments were computed.

Stage 2: self-supporting entailments removal In order to limit the justifi-

cation generation and analysis to an interesting set of entailments, we pruned all

self-supporting entailments (type T1, according to the classification introduced

in Chapter 4), from the over 8 million entailments generated in Stage 1. This

was simply done by removing the asserted axiom from the ontology, then per-

forming an entailment check to see whether the axiom was still entailed, i.e. to

see whether there were other non-self justifications. At this stage, 204 ontologies

could be processed entirely without reasoner timeouts, whereas some of the on-

tologies contributing the most entailments timed out. Of the remaining 3,837,219

entailments, roughly one tenth (465,364) was found to have only self-justifications,

and a total of 7 ontologies that contained only self-supporting entailments were

discarded from the set. This resulted in 197 ontologies that contained 3,371,855

entailments that had some non-self justification.

Stage 3: justification generation and filtering In the next stage, the justi-

fications were generated for the remaining entailments. The high runtime of the

7.1. THE BIOPORTAL CORPUS 157

Table 7.2: Overview of OWL 2 profiles.

Profile Ontologies

OWL 2 Full 15

OWL 2 DL 162

OWL 2 EL 92

OWL 2 QL 53

OWL 2 RL 40

justification generation process made it necessary to limit the number of justifica-

tions generated to a reasonably large sample. Thus, the justification generation

was restricted to a random sample of 1,000 entailments per ontology and 500

justifications per entailment, which, based on previous studies [BHPS11], was

expected to yield a good balance between efficiency and size of the data set. The

timeouts were set to 5 minutes per justification and 90 minutes per ontology.

In this stage, justifications could be generated for 115,675 entailments from

190 ontologies. 84 of these ontologies contained more than 1,000 entailments

in which case we generated the justifications for a random sample of 1,000 en-

tailments. These data were then filtered to discard imported justifications, re-

sulting in the removal of 4,923 purely imported entailments and 3 ontologies

which contained only imported entailments. The final entailment set consisted

of 317,774 native and mixed justifications for 110,752 entailments from 187 on-

tologies, including 419 unsatisfiable classes from 10 ontologies. For the purpose

of analysing the corpus, it was split into the sets of all justifications for entailed

atomic subsumptions involving satisfiable classes (Ssa) and those involving unsat-

isfiable classes (Su). Table 7.1 shows an overview of the numbers of entailments,

justifications, and ontologies in the two sets.

Ontology properties The 187 ontologies in the corpus span a broad spectrum

of sizes and expressivities, ranging from ontologies with only 4 classes and 5

logical axioms to as many as 12,195 classes and 79,180 axioms. Some of the

basic metrics for the ontologies in the corpus are shown in Tables 7.2 and 7.3.

A complete list of the relevant ontologies (i.e. those containing some complex

justifications) including their metrics can be found in Appendix A.

Regarding their expressivity, 162 of the 187 ontologies are OWL 2 DL ontolo-

gies, of which 92 are in the OWL 2 EL profile, 53 in OWL 2 QL, and 40 in OWL

158 CHAPTER 7. A SURVEY OF JUSTIFICATORY STRUCTURE

Table 7.3: Overview of the basic ontology metrics in the corpus.

Mean Median Min Max

Classes 2,206 395 5 38,640

Object properties 22 6.5 0 431

Data properties 10 0 0 488

Individuals 160 0 0 7,559

Logical axioms 4,857 810.5 19 79,180

Entailments (sampled) 609 710.5 1 1,000

2 RL. The remaining 15 ontologies were OWL 2 Full. Note that the three OWL

2 profiles are not exclusive, that is, an ontology can fall into several profiles. The

description logic complexity in the corpus ranges from EL++ (the 92 ontologies in

the OWL 2 EL profile) to full OWL 2 DL expressivity (SROIQ, 5 ontologies),

with 14 ontologies being in a highly expressive description logic (SHQ or SRQ
including either inverse properties I or nominals O).

7.2 Results of the BioPortal survey

In this section we will present the results of several experiments carried out on the

BioPortal ontology corpus. The survey covers the most relevant aspects of justifi-

catory structure we have introduced in the previous chapters: types and numbers

of justifications, overlap (equality, root and derived, arbitrary overlap, axiom fre-

quency) between justifications, and justification isomorphism. A discussion of

the results follows in the next section.

7.2.1 Entailment types

In order to determine the distribution of entailment types in the corpus, the set of

justifications was partitioned into self-justifications, atomic subsumption chains,

and complex justifications, and their corresponding entailments. Table 7.4 shows

the distribution of entailment types over the 110,333 entailments in Ssa and the

419 entailments in Su. Note that a small number of entailments appears to be of

type T1 (as defined in Chapter 4) despite the previous removal of self-supporting

entailments; this is caused by the fact that we could not compute additional

justifications for these entailments (e.g. due to timeouts).

7.2. RESULTS OF THE BIOPORTAL SURVEY 159

Table 7.4: Entailment types in sets Ssa and Su.

Type Description Ssa Su

T1 self-justifications only 23 0

T2 atomic subsumption chains only 90,464 0

T3 self-justifications and atomic subs. chains 74 0

T4 complex justifications only 4,985 419

T5 self-justifications and complex 1,043 0

T6 atomic subsumption chains and complex 13,558 0

T7 all justification types 186 0

total entailments 110,333 419

We can clearly see that the majority of entailments in Ssa (82%) has only

atomic subsumption chain justifications. This also affects the majority of on-

tologies in the corpus: 109 out of the 187 ontologies for which we generated

justifications in Ssa contained no complex justifications at all, but only atomic

subsumption chain justifications and small numbers of self-justifications. While

ranging in size from 5 to over 77,000 axioms, most of these ontologies are only

of weak expressivity: 79 (72.4%) of the 109 ontologies that contain only trivial

entailments and justifications are in the description logic EL++, 3 are in SHI,

SHIF , and SRIQ, respectively, and the remaining 27 ontologies are in varia-

tions of AL. On the other hand, 19,772 (17.9%) of the entailments in Ssa have

at least one complex justification.

All entailments involving unsatisfiable classes in Su have only complex jus-

tifications. Presumably this is because self-justifications or atomic subsumption

chain justifications for an unsatisfiable class would require an axiom of typeA v ⊥
to be asserted in the ontology, which is unlikely.

Note that due to the small number of entailments and ontologies in Su and the

domination of one ontology (322 of the 419 entailments are contributed by the

Animal Natural History ontology), the results for Su in this section are mainly

given for completeness where appropriate.

7.2.2 Occurrence of multiple justifications

One of the main issues we have set out to explore in this thesis is the occurrence

of multiple justifications in OWL ontologies: given an entailment of an ontology,

160 CHAPTER 7. A SURVEY OF JUSTIFICATORY STRUCTURE

how likely is it that this entailment has several justifications, and what are the

chances of encountering an entailment with a high number of justifications? We

generated the j-graphs for the complex justifications of the entailments of types

T4 through T7 in sets Ssa and Su. The average time taken to compute each j-

graph using the existing justifications was fewer than 10 seconds. This resulted

in j-graphs for a total of 145,689 complex justifications for 19,772 entailments

from 78 ontologies in set Ssa, which is an average of 253 entailments and 1,868

justifications per ontology. In the remainder of this section, we will use Ss to

refer to the set of complex justifications in Ssa. Note that the justification count

indicates the number of justification nodes in the j-graph, which takes into account

the fact that some justifications have multiple entailments.

The average number of (complex) justifications per entailment in Ss is sur-

prisingly high, with 7.8 justifications (standard deviation σ = 26.1, median m =

3) and a maximum of 500 generated justifications for 17 entailments in 4 ontolo-

gies. Figure 7.2 shows the frequency of multiple justifications for the entailments

and ontologies in Ss.
2 Approximately one third (30.0%) of the entailments in

the corpus have exactly one justification, whereas 18.1% have exactly 2 justifica-

tions; half of the entailments (52%) have 3 or more justifications, and a significant

proportion (15.7%) of the entailments reach 10 or more justifications.

The ontology frequency plot in Figure 7.2 shows that these numbers are not

only caused by single ontologies which happen to have unusually large numbers of

justifications. 69 out of the 78 ontologies (88.5%) in the set contain entailments

with 2 or more justifications, 58 ontologies have entailments with 3 or more justifi-

cations, and 19 ontologies contain some entailment with 10 or more justifications.

Interestingly, 8 ontologies in the set contain only multiple justifications for their

entailments.

In Su, the average number of justifications per entailment is 24.1 (σ = 12.8,

m = 32), with a maximum of 55 justifications for entailments in the Quantitative

Imaging Biomarker ontology. 7 of the 10 ontologies contain only entailments

with exactly 1 justification, whereas the remaining 3 ontologies contain only en-

tailments with multiple justifications.

While we might expect to see a correlation between the size of an ontology

and the number of complex justifications it generates, we found that there are

no obvious indicators for the occurrence of multiple justifications in an ontology.

2Note that the ‘long tail’ of the plot has been cut off for presentation purposes.

7.2. RESULTS OF THE BIOPORTAL SURVEY 161

Figure 7.2: Frequency of multiple complex justifications in the corpus.

The Spearman rank coefficient3 ρ = 0.09 (p = 0.43) indicates no correlation

between the number of logical axioms in an ontology in set Ss and the number

of justifications per entailment. Due to the small number of ontologies in Su, the

correlation analysis was only performed for Ss.

Ontology activity and axiom power The 145,689 complex justifications

in Ss contain a total of 22,371 axioms, with an average size of 7.9 axioms per

justification (σ = 4.3, m = 7). On average, one fifth of the axioms in an ontology

(22.2%, σ = 20.4%, m = 15.1%) are active in complex justifications for their

entailed atomic subsumptions, with some ontologies having as many as 75.5% of

their axioms participating in justifications. Note that the small number of axioms

compared to the number of justifications indicates a high amount of shared axioms

in the corpus; we will focus on the matter of axiom overlap below.

Intuitively, we would expect to see an obvious correlation between the number

of entailments in an ontology and its activity (the proportion of active axioms),

since more entailments would imply more justifications and axioms occurring in

them; this is somewhat confirmed by ρ = 0.49 (Pearson’s correlation coefficient)

indicating a weak linear correlation (p < 0.001).

3A coefficient ρ of +1 (-1) indicates a strong positive (negative) correlation between two
variables, whereas a ρ of 0 indicates no correlation.

162 CHAPTER 7. A SURVEY OF JUSTIFICATORY STRUCTURE

Graph components In order to determine the overall connectedness of justi-

fications, we consider the number of connected components in each j-graph. On

average, each graph contains 4.6 (σ =9.8, m =2) connected components, but al-

most half of the graphs in Ss (37 out of 78) consist of exactly one component.

The largest number of components can be found in the International Classifica-

tion for Nursing Practice ontology, which has 1,063 complex justifications for 762

entailments that are split up over 68 components.

As we have mentioned in previous chapters, the justification finding algorithm

uses the Hitting Set Tree algorithm, which depends on optimisations such as

justification reuse. This implies that largely disjoint justification sets may have

a negative impact on the performance of the ‘find all’ algorithm. However, there

seems to be no correlation between the number of components in a j-graph and

the average time required to find a justification (ρ = 0.13, p = 0.25), or the

number of components and the number of calls to the ‘find one’ subroutine (ρ =

0.06, p = 0.58).4

7.2.3 Justification overlap

Inferential power of justifications While multiple justifications per entail-

ment occur very frequently in the corpus, the number of justifications with mul-

tiple entailments is comparatively low, with only 709 justifications in Ss having

out-degrees ≥ 2 in the j-graph. On average, a justification in Ss has 1.1 entail-

ments (σ = 2.2, m = 1), with a maximum of 120 entailments for 16 fairly small

justifications (containing 5 to 7 axioms) in the SNP ontology. Across the corpus,

only 17 out of the 78 ontologies contain justifications with multiple entailments.

There is no correlation between the size of a justification and its number

of entailments (ρ = -0.07, p < 0.001). In fact, the justifications with higher

inferential power tend to be smaller : the average size of justifications that have

only one entailment is 7.9, with some of the largest justifications (20 and more

axioms) having only one entailment, whereas the average size of a justification

with multiple entailments is 4.2 axioms.

Axiom frequency, impact, and semantic relevance Regarding the fre-

quency, impact, and relevance of the axioms in the corpus, we want to find out

4Note, however, the high p-values which indicate that these findings are not statistically
significant.

7.2. RESULTS OF THE BIOPORTAL SURVEY 163

how frequently axioms occur in multiple justifications, and how many entailments

these axioms affect. On average, an axiom occurs in 51.3 justifications (σ = 242.1,

m = 5) of the 1,868 justifications per ontology in set Ss, with some key axioms

in several ontologies occurring in thousands of justifications. The impact values

are close to the frequency, with an average of 53.2 entailments (σ = 254.1, m =

5) per axiom (out of 253 entailments per ontology). Regarding their semantic

relevance, almost half (48.4%) of the axioms in Ss do not have any dependent

entailments, whereas 51.6% have some entailments which could be broken by

removing the single axiom. Interestingly, for nearly all of these axioms (9,328

out of 11,552) all the entailments they affect are dependent on them; in other

words, high-frequency axioms tend to occur in all justifications for an entailment.

Figures 7.3a, 7.3b, and 7.3c show the distribution of axiom frequency, impact,

and semantic relevance values across the justification axioms in Ss, where each

data point represents the number of axioms (y-axis) that have a certain values

(x-axis).

Interestingly, all the ontologies in the corpus (even those that contain only

small numbers of justifications) contain some axiom which occurs in multiple

justifications, and 23 ontologies contain some axiom which occurs in over 50% of

the justifications in the ontology. On average, the one axiom with the highest

frequency in an ontology occurs in 36.3% of all justifications of an ontology.

An example of such a high-frequency axiom is the simple atomic subsumption

Disease v Disposition which is used in 3,119 (96.5%) of the 3,232 justifications

in the NIF Dysfunction ontology and affects 423 entailments. Another example

is the domain axiom domain(measuredBy,MentalConcept) in the Cognitive Atlas

ontology, which occurs in 92.5% of the 830 justifications for 126 entailments.

Root and derived justifications Root and derived relationships occur fre-

quently across the corpus: 73.4% of the justifications in Ss are derived, and 7.4%

of the justifications are root justifications which have derived justifications. The

remaining 19.2% are root justifications that do not have any justifications that

are derived from them, that is, they are either additional independent justifi-

cations for derived entailments, or justifications for entirely independent root

entailments. Table 7.5 gives an overview of the root and derived relationships

in the corpus; root justifications that are subsets of derived justifications are de-

noted by Justsrsub, root justifications that are not subsets are denoted by Justsr,

164 CHAPTER 7. A SURVEY OF JUSTIFICATORY STRUCTURE

(a) Distribution of axiom frequency values.

(b) Distribution of axiom impact values.

(c) Distribution of semantic relevance values.

Figure 7.3: Distributions of axiom frequency, impact, and semantic relevance.

7.2. RESULTS OF THE BIOPORTAL SURVEY 165

Table 7.5: Root and derived justifications in Ss and Su, in number of justifications
and proportion of the total.

Justsrsub Justsd Justsr

Set Total Count % Count % Count %

Ss 145,689 10,723 7.4% 107,002 73.4% 27,964 19.2%

Su 10,352 115 1.1% 10,184 98.4% 53 0.5%

and derived justifications are denoted by Justsd.

Looking at the repair impact of root justifications, we find that a justification

in Justsrsub has 17 justifications on average which are derived from it (σ = 92.8,

m = 3), and 5.4 entailments (σ = 19.5, m = 2) out of the 253 entailments per

ontology that are entailed by these derived justifications. In other words, while

a root justification may have a fairly large number of justifications (17) that are

derived from it, the number of entailments that can be repaired by fixing a single

root justification is comparatively low (5.4).

The subset relationship between root and derived justifications is also visible

in the size of justifications: on average, a root justification contains 4.7 axioms,

whereas a derived justification has a size of 8.4 axioms. 7.6% of the root justi-

fications are indeed single axiom justifications which occur in a large number of

derived justifications. However, while we may expect a small justification to be

more likely to be contained in derived justifications, there is only a weak correla-

tion between the size of a root justification and the number of justifications that

are derived from it (ρ = −0.26, p < 0.001).

70 of the 78 ontologies in Ss contain some derived justifications. 6 of of the

8 remaining ontologies only contain very small numbers of justifications, which

do not lend themselves to subset relationships, whereas the Cancer Research and

Management ontology and Gene Ontology Extension contain no derived justifi-

cations despite having 348 and 6,421 justifications, respectively.

In the set Su, the effect of root and derived justifications is even more pro-

nounced: 98.4% of the justifications are derived from only 1.1% of the justifi-

cations, and the remaining 0.5% are root justifications which have no derived

justifications. On average, a root justification has 88.6 derived justifications (σ

= 208.6, m = 2) which have 48.8 entailments (σ = 109.3, m = 2). Note how this

stands in contrast to the rather small number of entailments (5.4) that depend

166 CHAPTER 7. A SURVEY OF JUSTIFICATORY STRUCTURE

(a) Overlap frequency for all ontologies
in Ss.

(b) Overlap frequency excluding Amino
Acid and Basic Vertebrate Anatomy.

Figure 7.4: Overlap frequency with and without outlier ontologies. Bubble size
indicates frequency.

on root justifications in Ss. 5 of the 10 ontologies in Su contain root and derived

unsatisfiable classes, whereas the remaining 5 ontologies contain only very few

unsatisfiable classes (up to 4) at all.

Arbitrary overlap In order to determine the numbers and sizes of justification

overlaps with more than a single axiom, we applied the Formal Concept Analysis

(FCA) [GSW05] ‘next concept’ algorithm to the j-graphs in sets Ss and Su. This

algorithm (often simply referred to as ‘Ganter’s algorithm’) provides an efficient

means for computing the largest shared axiom sets between justifications. The

ToscanaJ FCA framework5 includes a straight-forward implementation of Gan-

ter’s algorithm, which we used for overlap detection. Using the FCA algorithm,

the justifications correspond to the objects in a context, and the axioms corre-

spond to the attributes. Due to performance issues, the experiment was restricted

to a random sample of maximum 5,000 edges per graph.

Across the ontologies in Ss, overlaps between justifications occur frequently,

with an average size of 10.8 shared axioms (σ = 5.7, m = 11) and an average

frequency of 11.9 justifications (σ = 11.8, m = 9) that the shared axiom set

occurs in, i.e. on average, 11.9 justifications share the same axiom set. Figures

7.4a and 7.4b show the frequency of overlap of different size and frequency across

the corpus including and excluding the two ontologies which contribute the largest

numbers of overlaps. For presentation purposes, the values on the y-axis (i.e. the

5http://toscanaj.sourceforge.net/

http://toscanaj.sourceforge.net/

7.2. RESULTS OF THE BIOPORTAL SURVEY 167

number of justifications an overlap of a certain size occurs in) were binned in 10th

percentile steps, leading to all overlaps with a frequency greater than 24 falling

into the top-most bin.

The plot shows that the majority of overlaps (i.e. the largest bubbles) have a

size of around 5 axioms and occur in up to 5 justifications. However, there are

also overlapping cores of around 15 to 20 axioms which occur fairly frequently

in up to 18 justifications; as we can see if we compare 7.4a to 7.4b, these large,

high-frequency overlaps are almost exclusively contributed by the Amino Acid

and Basic Vertebrate Anatomy ontologies. If we exclude these two ontologies

from the set, the overlaps are reduced to an average of 5.5 axioms (σ = 2.5, m =

5) and a frequency of 7.8 justifications (σ = 14.3, m = 4).

Nearly all ontologies in Ss (75 out of 78) contain at least some overlapping

justification subset, with two ontologies standing out as extreme outliers. The

Amino Acid ontology contributes over half of the found overlaps in the corpus,

which is rather surprising, as with 112 entailments, 477 axioms, and a description

logic expressivity of ALCF , this ontology could be considered fairly inexpressive.

However, if we take a closer look at the Amino Acid ontology, we find that

it contains an axiom of the type AminoAcid ≡ A t C t D . . . t Y with 20 named

classes in the disjunction. This axiom, in turn, leads to a large number of justifica-

tions (2,652) containing subsumption axioms for each operand in the disjunction,

plus a small number of ‘bridging’ axioms that cause the entailment to hold. For

1,782 of the 2,562 justifications, this axiom pulls in a large core of up to 29 other

axioms, thus leading to the large numbers of overlaps observed in the ontology.

A similar effect can be seen in the Basic Vertebrate Anatomy ontology, another

fairly small ontology (99 classes, 386 axioms, SHIF) which, however, has a high

number of object properties (74 compared to an average of 22.2). The ontology

contains a number of axioms describing the relations between its object properties

as part-whole relationships, such as has subdivision v has determinate part and

is subdivision of ≡ has subdivision−. Again, these property axioms pull in other

‘bridging’ axioms which leads to cores of up to 17 axioms occurring in large

numbers of justifications.

Both of these outlier ontologies have high degrees of overlaps between multiple

justifications for single entailments, but only small numbers of overlaps between

justifications for several different entailments. This agrees with the general trend

in the corpus, where on average those justifications which do share an overlap only

168 CHAPTER 7. A SURVEY OF JUSTIFICATORY STRUCTURE

have between 1 and 2 entailments (mean = 1.9, m = 1, σ = 5.1). In other words,

overlap tends to occur mainly between justifications for the same entailment.

7.2.4 Justification isomorphism

In order to determine the frequency of isomorphic justifications in the corpus, we

analysed the complex justifications for the entailments in set Ss and Su in three

different experiments:

Exp. 1: justifications for a single entailment.

Exp. 2: justifications for all entailments within an ontology.

Exp. 3: justifications for all entailments of all ontologies across the corpus.

The isomorphism statistics were generated for all three types of isomorphism,

that is, strict, subexpression-, and lemma-isomorphism.

Due to performance issues, justifications containing more than 10 axioms or

conjunctions/disjunctions with more than 5 operands were excluded from this

part of the study. This excluded some dominant justifications (such as those

containing the large disjunction axiom in the Amino Acid ontology mentioned

above), but still resulted in a set of 141,560 justifications for 19,097 entailments in

Ss, which is an average of 7.4 justifications per entailment (compared to 7.8). Note

that this also means that the total numbers of justifications given in this section

for some of the ontologies will differ from the number of complex justifications

listed in the overview table in Appendix A.

The mean times required to determine isomorphism between justifications for

each of the three types (including parsing the justifications and existing tem-

plates from file) are listed in Table 7.6. Note that the experiments for the three

isomorphism types were run in parallel, which could potentially cause a drop

or fluctuations in performance (as the ‘Within ontology’ times for strict ver-

sus subexpression-isomorphism show). Furthermore, the checks within ontologies

and across the corpus each reuse the templates found in the previous stage, which

drastically reduces the number of comparisons that have to be carried out.

Exp. 1: Individual entailments

Strict isomorphism Due to restrictions on the types of justifications used in

the isomorphism experiments, the number of justifications for the entailments in

this subset of Ss is marginally lower than in the j-graph analysis, with an average

7.2. RESULTS OF THE BIOPORTAL SURVEY 169

Table 7.6: Mean times (in seconds) per ontology for isomorphism detection.

Size Iso S-iso L-iso

Exp. 1: Individual entailments 22.8 48.5 100.8

Exp. 2: Within ontology 103.8 99.2 192.3

Exp. 3: Across corpus 24.6 42.3 97.7

of 7.4 justifications per entailment. Strict isomorphism reduces this number to

an average of 4.9 templates per entailment (σ = 9.5, m = 2), which is a reduction

of 33.7% compared to the full corpus.

On average, a template covers 1.5 justifications (σ = 2.3, m = 1), with some

ontologies containing entailments with large numbers of isomorphic justifications.

One such example is the Orphanet Ontology of Rare Diseases, whose dominating

templates are of the type

Θ1 = {C1 v C2, C2 v ∃p1.C4, domain(p1, C3)} |= C1 v C3

with atomic subsumption chains of arbitrary size in place of the first subsumption

axiom, and some variations that include subproperty axioms. Two of the tem-

plates of this type cover the majority (110 and 105 justifications, respectively) of

the 220 justifications each for several entailments in the ontology. From personal

contact with the Orphanet developers we have learned that this OWL ontology is

in fact generated automatically from an existing medical database, which explains

the frequent occurrences of uniform justifications.

Subexpression-isomorphism Subexpression-isomorphism across the justifi-

cations of individual entailments only affects a very small number of entailments

in the corpus. The average number of templates per entailment, compared to the

full corpus, remains the same when rounded,6 at 4.9 templates per entailment

(σ = 9.5, m = 2). Compared to strict isomorphism, the number of templates is

reduced by only 0.3%. This small reduction does not affect the average number

of justifications per entailment, which remains the same at 1.5 justifications.

Only 166 entailments (0.9% of the total corpus) from 15 of the 78 ontologies

are affected by subexpression-isomorphism; the remaining 63 ontologies contain

the same number of templates as for strict isomorphism. For those ontologies

6The precise number of templates is 4.915 for strict and 4.903 for subexpression-isomorphism.

170 CHAPTER 7. A SURVEY OF JUSTIFICATORY STRUCTURE

that are affected, the decrease in templates compared to strict isomorphism is an

average of 19.8%, reaching up to 50% for 9 entailments in the Bleeding History

Phenotype ontology.

Lemma-isomorphism While subexpression-isomorphism does not have a strong

effect on individual entailments, lemma-isomorphism shows a more visible reduc-

tion in template numbers.7 On average, the justifications are reduced to 4.7

templates per entailment (σ = 8.8, m = 2), which is reduction of 4.1% compared

to both strict and subexpression-isomorphism.

A total of 1,492 entailments (7.8% of the total corpus) from 43 ontologies are

affected by lemma-isomorphism, with an average reduction of 30.3% compared to

strict isomorphism for those entailments. The strongest effects can be seen in the

Fission Yeast Phenotype ontology, where the justifications for several entailments

only differ in the length of their atomic subsumption chains and thus are each

reduced to a single template of the type

Θ2 = {C1 v . . . v Cn, Cn ≡ C2 u . . .} |= C1 v C2.

Exp. 2: Isomorphism within ontologies

Across the justifications for all entailments of an ontology, the reductions caused

by the three equivalence relations are more clearly visible than for individual en-

tailments. Figure 7.5 shows an overview of the effects of the different isomorphism

types for the 25 ontologies containing the largest numbers of justifications in the

corpus. Each cluster represents an ontology, with the ontologies ordered by the

number of justifications they contain. Each bar in a cluster represents the reduc-

tion compared to the previous equivalence relation (that is, we compare strict

isomorphism with the full set of justifications, s-isomorphism with strict isomor-

phism, and l-isomorphism with s-isomorphism). We can see that the effects of the

relations differ strongly across the ontologies, with strict isomorphism generally

having the strongest impact, and subexpression-isomorphism having the lowest

impact.

Overall, only three ontologies show no effect of any of the three types of

isomorphism; two of these contain only a single justification (which means there

7Note that Ss and Su do not contain any justifications that consist entirely of atomic sub-
sumption chains. That is, all atomic subsumption chains that are affected by l-isomorphism
will be strict subsets of the complex justifications in the corpus.

7.2. RESULTS OF THE BIOPORTAL SURVEY 171

Figure 7.5: Comparison of reduction caused by isomorphism types. Each cluster
represents an ontology. Ontologies are ordered by number of justifications.

is no reduction possible), while one ontology (OBOE SBC) contains 5 distinct

justifications.

Strict isomorphism Compared to the results for individual entailments, the

effects of the equivalence relations are much more significant if we consider the

justifications for all entailments in an ontology. On average, an ontology in Ss

contains 1,814.9 justifications; these are reduced to 436.1 templates through strict

isomorphism, which is an average reduction of 73.1%.

4 ontologies with small numbers of justifications (less than 10) are not affected

by strict isomorphism, while the remaining 74 ontologies show reductions of up

to 99.6%. Even more strikingly, 28 of the ontologies are reduced to less than

10% of their justification corpus. With an average number of 3,092 justifications

per ontology, these reductions reveal significant numbers of structurally similar

justifications.

The templates cover an average of 8.2 justifications each (σ = 22.4, m =

2), with some of the highest coverage occurring in the Orphanet ontology. The

3,948 justifications in this ontology can be reduced to only 14 templates, which

are all variations (featuring atomic subsumption chains of varying length) of the

template Θ2 we have shown above.

172 CHAPTER 7. A SURVEY OF JUSTIFICATORY STRUCTURE

Subexpression-Isomorphism Subexpression-isomorphism reduces the justi-

fications in the corpus by an average of 74% per ontology, which is only a small

change (0.9%) compared to strict isomorphism. The number of justifications

covered by a single template is slightly increased to 8.8 (σ = 23.5, m = 2) justi-

fications per template.

Again, the majority of ontologies (44 of 78) are not affected by subexpression-

isomorphism, whereas 5 ontologies show reductions of between 20% and 38.3%

compared to strict isomorphism. This includes the Bleeding History Phenotype

ontology (1,158 justifications, 60 isomorphism templates, 37 s-isomorphism tem-

plates), which contains a number of justifications of the type

{C1 v ∃p1.(C2 t C3), domain(p1, C4)} |= C1 v C4

which is subexpression-isomorphic to justifications which contain a named class

in place of the disjunction C2 t C3 in the subsumption axiom, thus matching

template Θ1.

Closer inspection of the Lipid ontology (3,258 justifications as shown in Figure

7.5, 1,762 isomorphism templates, 1,471 s-isomorphism templates) reveals that a

large number of justifications in the ontology consist of a single equivalence axiom

of the form C1 v C2 u x with the entailment being C1 v C2. The remainder of

the conjunction, represented by x, consists of a number of complex expressions

of varying length and nesting depth. While s-isomorphism captures these types

of justifications (since the remainders x can all be matched against each other),

the actual reason for their similarity lies in their identical cores C1 v C2, with

the remainder x being a superfluous part; that is, the justifications exhibit shared

cores masking.

Lemma-isomorphism As for single entailments, lemma-isomorphism has a

more significant effect on the justification corpus than subexpression-isomorphism

when applied across each ontology. L-isomorphism reduces the justifications in

an ontology by an average of 78.2%, which is 4.2% higher than the reduction

caused by subexpression-isomorphism.

A template covers an average of 12 justifications (σ = 38, m = 3) in each ontol-

ogy, which is a visible increase from the 8.8 justifications covered by subexpression-

isomorphism. 13 ontologies (with an average of only 32.1 justifications) show no

7.2. RESULTS OF THE BIOPORTAL SURVEY 173

Table 7.7: Template frequency and coverage across the corpus.

Template coverage

Type Count % of Ss Mean Median Min Max

all 141,560 100% - - - -

strict 12,527 8.8% 11.3 2 1 2,072

subex 10,952 7.8% 12.9 2 1 2,128

lemma 5,487 3.1% 25.8 3 1 7,490

reaction to l-isomorphism, whereas 12 ontologies containing large numbers of jus-

tifications (mean = 1,555.8) see a reduction of 41.7% and more, up to 82.1%

compared to subexpression-isomorphism.

Exp. 3: Isomorphism across the corpus

In the final stage of our analysis of isomorphism in the BioPortal corpus, we will

look at the templates spanning all justifications for all entailments across the

ontologies in the corpus. While we have seen that isomorphic justifications occur

frequently within an ontology, we now analyse the structural similarity of justi-

fications across multiple ontologies. Table 7.7 gives an overview of the numbers

of templates in Ss for the three isomorphism types against the full justification

corpus, as well as the coverage (number of justifications) per template.

Strict isomorphism The 141,560 justifications in Ss are reduced to only 12,527

templates, which is a reduction of 91.2%. On average, 11.3 justifications (σ =

54.3, m = 2) share the same template, with the 8 most frequent templates cov-

ering over 1,000 justifications each. The most frequent templates (by numbers of

justifications covered) are all variations of the template Θ1, that is, a combination

of a domain axiom and a subsumption axiom with an existential restriction on

the RHS, including some additional subsumption axioms, an equivalence axiom

in place of a subsumption, or variations of the filler.

Nearly half of all templates (41.3%) in the corpus cover exactly one justifica-

tion in a single ontology. We might expect larger templates to be more ‘specific’

to a particular ontology, thus covering fewer justifications overall, and conversely,

a smaller template might be more ‘generic’, thus covering more justifications.

However, the size (number of axioms) of a template seems to be no indicator for

174 CHAPTER 7. A SURVEY OF JUSTIFICATORY STRUCTURE

(a) Template frequency for strict iso. (b) Template frequency for l-iso.

Figure 7.6: Template frequencies for strict and lemma-isomorphism.

the number of justifications it covers: the average size (7.3 axioms) of a template

covering multiple justifications is only marginally lower than of those templates

covering a single justification (7.5 axioms).

If we look at the spread of templates across the ontologies in the corpus, we

find that only 8.7% of the templates cover justifications in multiple ontologies,

with a maximum spread of 26 ontologies for two templates which are, again,

variations of Θ1. Figure 7.6a shows the frequency distributions of the justification

templates across the justifications and ontologies in Ss. The y-position of a data

point indicates the number of justifications a template covers, and the bubble

size indicates the number of ontologies a template occurs in.

We can see that a small number of templates covers large numbers of justifi-

cations, with a steep drop to 10 and fewer justifications per template around the

2,000 mark. If we take a closer look at the numbers, we find that the majority

of justifications in the corpus (81.2%) are covered by the 2,000 most frequent

templates (out of 12,527), and a third (33.1%) of justifications are even covered

by the 100 most frequent templates.

Subexpression-isomorphism The effects of s-isomorphism across the corpus

are only marginal compared to strict isomorphism. The justifications are reduced

to 10,952 templates, which is an overall reduction of 92.2% and a 1% difference

compared to strict isomorphism. The number of justifications covered by a single

template is slightly increased with an average of 12.9 justifications (σ = 59, m =

2) per template.

The most frequent template (by numbers of justifications) is again Θ2, which

7.2. RESULTS OF THE BIOPORTAL SURVEY 175

covers 2,128 (1.5% of the total set) justifications in 26 ontologies. If we consider

the template that occurs in the most ontologies in the corpus, the most frequent

template can be found in 28 of the 78 ontologies. This template is a single

equivalence axiom which we have already seen in the Lipid ontology:

Θ3 = {C1 ≡ C2 u x} |= C1 v C2

The superfluous part x matches a number of operands such as atomic classes and

existential restrictions. Interestingly, while this template occurs in the highest

number of ontologies, it only covers 573 justifications across the corpus.

Lemma-isomorphism Across all justifications in the corpus, l-isomorphism

has a clearly visible impact. The 141,560 justifications are reduced to only 5,487

templates, which is less than half as many templates as the strictly isomorphic

ones, and an overall reduction of 96.9%. Figure 7.6b shows the frequency of

templates for lemma-isomorphism.

On average, a template covers 25.8 justifications (σ = 208.5, m = 3); how-

ever, the large standard deviation shows that the distribution of justifications

per template has shifted towards a few very frequent templates, whereas there

is still a ‘long tail’ of 1,878 templates which match only a single justification. If

we consider the distribution of justifications per template over the quartiles of

the corpus, 25% of the justifications in Ss can be covered by the 8 most frequent

templates, 50% by the 44 most frequent templates, and 75% by the 277 (out of

5,487) most frequent templates.

The most frequent templates, by number of justifications they cover, are all

subtle variations of a template containing only two or three axioms. Some of

these templates, alongside their frequencies (number of justifications the template

covers and number of ontologies the template occurs in), are listed in Table 7.8.

Note that any subsumption axiom in the templates Θ4 through Θ7 corresponds

to an atomic subsumption chain of arbitrary length.

If we look at the number of ontologies a template occurs in, the most frequent

templates are Θ3 and Θ5, both of which can be found in 28 of the 78 ontologies

in the corpus. However, as with strict and subexpression-isomorphism, only a

fraction of the templates (8.5%) occur in multiple ontologies, while the majority

of templates (5,018 out of 5,487) can only be found in a single ontology.

176 CHAPTER 7. A SURVEY OF JUSTIFICATORY STRUCTURE

Table 7.8: Most frequent templates for lemma-isomorphism across the corpus.
#J = number of justifications, #O = number of ontologies.

ID Template #J #O

Θ4 {C1 v C2, C3 ≡ C2 t C4, C3 v C5} |= C1 v C5 7,490 27

Θ5 {C1 v C2, C5 ≡ C2 t C3} |= C1 v C5 6,425 28

Θ6 {C1 v C2, C3 ≡ C2 t C4 t C6, C3 v C5} |= C1 v C6 6,135 26

Θ7 {C1 v C2, C5 ≡ C2 t C3 t C4} |= C1 v C5 4,206 25

Isomorphism and superfluity

As we have already seen in our discussion of subexpression-isomorphism, a justi-

fication can potentially be non-isomorphic only due to it containing superfluous

subexpressions that do not contribute to the entailment.

In order to determine the extent to which superfluous parts affect isomor-

phism, we computed the laconic versions of justifications in Ss, which resulted

in a corpus Ssl containing 47,667 laconic justifications, of which 31.6% were now

atomic subsumption chain justifications or even self-justifications. The number

of laconic justifications is significantly than in Ss for two reasons: first, due to the

high runtime of the laconic justification generation mechanism, some justifications

could not be computed; hence, due to timeouts, the number of entailments in Ssl

is only 18,300 (compared to 19,097 in Ss). More striking, however, is the effect of

removing superfluous expressions on the equality between justifications: multiple

regular justifications for individual entailments frequently resulted in the same la-

conic justification, which drastically reduces the number of justifications despite

the difference in the number of entailments being only small. Table 7.9 shows a

comparison of the cross-corpus reductions for laconic and regular justifications in

Ss and Ssl, respectively.

Across Ssl, strict isomorphism reduces the justifications to 3,653 templates,

which is a reduction to 7.6% (compared with 8.8% for the regular justifications

in Ss). 8 out of the 10 most frequent templates (by number of justifications they

cover) are atomic subsumption chains between 1 and 8 axioms. Interestingly,

this also indicates that, despite the apparent complexity of many justifications in

the corpus (recall that we only computed the laconic versions of complex justifi-

cations), the actual reasoning behind those justifications comes down to simple

atomic subsumption.

7.3. DISCUSSION 177

Table 7.9: Comparison of reductions in Ss and Ssl.

Ss (regular) Ssl (laconic)

Type Count % of Ss Count % of Ssl

all 141,560 100% 46,667 100%

strict 12,527 8.8% 3,653 7.8%

subex 10,952 7.8% 2,036 6.2%

lemma 5,487 3.1% 1,789 3.8%

Perhaps unsurprisingly, subexpression-isomorphism only has a small effect on

Ssl. The laconic justifications are reduced to 2,936 templates, which is a reduction

to 6.2% of the corpus. Just as with strict isomorphism, this is only a marginally

stronger reduction compared to the corpus of regular justifications (7.8%).

Finally, lemma-isomorphism reduces the laconic justifications in Ssl to only

1,789 templates, which is an overall reduction to 3.8% of the set of laconic jus-

tifications. In terms of the overall proportion this is a smaller reduction than

for lemma-isomorphism in regular justifications (3.1%). However, since the set

Ssl is only roughly a quarter of the size of Ss, this smaller relative reduction is

not too surprising. As we could already expect based on the prevalent templates

we found for strict isomorphism, the most frequent template is a single atomic

subsumption axiom, which covers atomic subsumption chain justifications of arbi-

trary length. This template covers the 15,066 justifications (31.6%) in the corpus

we have already mentioned above, and can be found in 61 of the 78 ontologies.

7.3 Discussion

Having presented the major results of our survey of the BioPortal ontologies in

the previous section, we will now discuss the significance of the results and the

conclusions we can draw from them with respect to the application of structure-

based coping strategies for the purpose of ontology debugging.

7.3.1 Justification types and frequency

One of the findings that stands out is the prevalence of atomic subsumption

chain justifications: 82% of the entailments in the set of atomic subsumptions

178 CHAPTER 7. A SURVEY OF JUSTIFICATORY STRUCTURE

and 109 out of 187 ontologies were found to have only atomic subsumption chain

justifications, while another 12% have atomic subsumption chain justifications in

addition to complex justifications. We have seen that ontologies in the weakly

expressive OWL 2 EL profile are more likely to contain only trivial entailments.

However, DL expressivity alone is not an indicator for complexity, as a number

of OWL 2 EL ontologies also produce complex justifications, while some highly

expressive ontologies contain no complex justifications.

One explanation for this high number of trivial justifications is the selection

of indirect atomic subsumptions in the entailment set: as we have shown in 4.1.3,

any ontology which is trivial enough to contain only self-justifications for direct

atomic subsumptions will only contain atomic subsumption chain justifications

for indirect subsumptions. This means that, in general, a large number of jus-

tifications a user is likely to encounter will only be trivial self-justifications or

atomic subsumption chain justifications.

However, we found that approximately one third of the entailments in the

corpus have multiple complex justifications, with an average number of nearly

eight justifications per entailment and maximal numbers of up to several hundred

(and possibly more). These findings indicate that, while multiple non-trivial

justifications are not highly prevalent across the corpus, users have a one in

three chance of facing fairly high numbers of non-trivial justifications. As we

know from previous research [HBPS11b], even single justifications can be very

hard or impossible for users to understand; combined with our insights into the

occurrence of multiple justifications, we can conclude that, for the purpose of

improving ontology debugging, it is worth focusing on debugging techniques for

both individual and multiple justifications.

7.3.2 Overlaps

We found a surprisingly high number of high-frequency axioms across the on-

tologies in the corpus, with all ontologies containing some axiom which occurs in

multiple justifications. While the high average frequency of over 50 justifications

per axiom (out of an average of 1,868 justifications per ontology) is caused by a

few high-frequency axioms, the median frequency of five justifications shows that

shared axioms between justifications are still a frequent occurrence. Regarding

justificatory redundancy, however, we have found that the majority of justifica-

tions only has a single entailment; thus, this justification feature is unlikely to

7.3. DISCUSSION 179

affect the overall complexity score of a set of justifications.

Root and derived justifications, on the other hand, are prevalent across the

corpus. We have seen that almost three quarters (73.4%) of the justifications in Ss

are derived from only a small set of root justifications. The number of entailments

that depend on a root justification in Ss is comparatively small (5.4 entailments

per root justification), whereas the number of unsatisfiable classes that depend on

a root justification in Su is significantly higher (48.8 entailments). This confirms,

in some sense,8 our existing knowledge of root and derived unsatisfiable classes,

which often cites the example of the Tambis ontology in which only three root

unsatisfiable classes were the cause of 144 derived unsatisfiable classes [KPSC06].

On the other hand, the finding also indicates that root and derived justifications

have less of an impact on entailments involving satisfiable classes.

Regarding the reduction in user effort caused by root and derived justifica-

tions which we discussed in Section 6.3.2, these results indicate that, given a set

of justifications for multiple entailments, we can (on average) introduce an allevi-

ation factor aij = 0 for around three quarters of the justifications, thus reducing

the total number of justifications to inspect to only one quarter of the original

set.

Our analysis of arbitrary justification overlaps has shown that overlaps with

a size and frequency of at least two (axioms and justifications, respectively) are

frequent occurrences in OWL justifications. The majority (96.1%) of ontologies

in the test corpus samples contained some overlap between complex justifications,

with an average overlap size of 5.5 axioms and an average overlap frequency of

7.8 justifications, not taking into account the two ontologies which contribute a

large number of high-axiom, high-frequency overlaps.

In summary, the frequent occurrence of both single-axiom, root and derived

relationships, and arbitrary overlap in the corpus indicates that overlap-based

debugging techniques, such as highlighting and lemmatising overlaps, will be ap-

plicable to a large number of justifications and ontologies. However, we have

also seen that the overlaps are mainly restricted to single entailments. Consider-

ing our goal of using such shared cores for debugging purposes, this means that

any overlap-based techniques would be mainly applicable for repairing multiple

justifications of single entailments.

8Taking into account the very small size of Su and the bias towards one ontology.

180 CHAPTER 7. A SURVEY OF JUSTIFICATORY STRUCTURE

7.3.3 Isomorphism

Across all three experiments—within entailments, within ontology, and cross-

corpus—we have found that strict isomorphism clearly is the most summaris-

ing of the isomorphism relations. This shows that a large number of (complex)

OWL justifications are structurally identical, with many ontologies containing up

to 99% structurally identical justifications which can be represented by only a

handful of justification templates.

Subexpression-isomorphism, on the other hand, has only a small impact on

the landscape of justification templates. If we look at the analysis of laconic

justifications, only 717 laconic justifications (1.4% of the justifications in Ssl)

contain constructs (complex expressions that can be substituted by variables)

that are affected by subexpression-isomorphism. Note that, since the axioms

contain no superfluous parts, any differences in justifications which may have

been caused by superfluous expressions no longer hold for this set. This implies

that, while subexpression-isomorphism may be helpful in some situations, it is

generally not applicable to most justifications. Finally, the finding also indicates

that subexpressions are not used propositionally in otherwise structurally identi-

cal justifications. If we consider the application of isomorphism-based debugging

techniques in OWL tools, the high cost of detecting subexpression-isomorphism

(up to two times slower than strict isomorphism) may not be worth paying due to

its rather weak effect. However, while propositional of expressions may not be rel-

evant for structurally similar justifications, it is still possible that subexpressions

are used in a propositional way in independent justifications. A straightforward

implementation of an ‘abstraction checker’ that tests whether subexpressions can

be substituted by variables would reveal whether such a technique has wider

applicability than subexpression-isomorphism.

Lemma-isomorphism using atomic subsumption chain lemmatisations, on the

other hand, has a more visible effect on justifications. This is particularly sig-

nificant in our cross-ontology analysis, where lemma-isomorphism reduces the

number of templates to only half of those found for strict isomorphism. In par-

ticular, we found that 75% of the 141,560 justifications in the corpus can be

covered by only 277 of the most frequent templates, which is a rather stunning

result. This clearly shows that justifications which differ in size often only differ

in the length of the atomic subsumption chains they contain, but are otherwise

strictly isomorphic.

7.3. DISCUSSION 181

For application in OWL debugging tools, we can conclude that both strict

isomorphism and lemma-isomorphism seem promising as the basis for the debug-

ging techniques we have proposed in the previous chapter, while subexpression-

isomorphism is only applicable in a small number of ontologies. While we cannot

infer any specific instantiations of the alleviation factor aij from these results, we

have reason to assume that the effort required to understand several structurally

isomorphic justifications after inspecting their justification template is very small.

That is, given an arbitrary set of entailments and justifications from an ontology,

for around three quarters of the justifications (based on the average reduction of

78.2% caused by lemma-isomorphism) the alleviation factor aij will be close to

zero, that is, the overall effort will be reduced to a quarter of its original score.

7.3.4 Limitations

Threats to internal validity Due to the high runtime of the various tasks

in the analysis process, it was not possible to obtain complete datasets for all

ontologies in practical time. We therefore had to restrict the analysis to random

samples and impose timeouts at several stages, which—while statistically signif-

icant in terms of numbers—may have caused us to miss some relevant data from

ontologies and entailments which were discarded in the process.

First, during the entailment generation process, several ontologies could not

be classified in the given time of 20 minutes using the Pellet or JFact reasoners,

while for some it was not possible to generate the full set of entailments of the

selected type.

In the justification generation stage, the large numbers of entailments for

some ontologies, and the performance of the Hitting Set Tree algorithm used

in the implementation of the justification generator made it necessary to take a

random sample of 1,000 entailments per ontology and generate a maximum of

500 justifications per entailment. The entailment sampling affected 85 of the 187

ontologies that were processed in the justification generation stage.

Further, the overlap analysis was restricted to a sample of 5,000 edges per

graph, as for some ontologies the concept lattice generation did not terminate

within 24 hours due to the large numbers of connections in the graph.

These sampling strategies affect some of the conclusions we can draw with

respect to the justificatory structure of some of the ontologies in the corpus. Take,

for example, the Bone Dysplasia ontology, a large and expressive (44,683 axioms)

182 CHAPTER 7. A SURVEY OF JUSTIFICATORY STRUCTURE

SHIF ontology in the corpus, for which we generated over 100,000 entailments.

Due to the sampling process, the analysis covered only 800 entailments whose

justifications contained 882 axioms. It is clear to see that we cannot make any

conclusive statements about certain metrics, such as the activity of this ontology,

based on the small sample obtained, since the activity is based on the total

number of justification axioms.

Finally, as we have discussed in Chapter 5, we have not yet shown that lemma-

isomorphism (restricted to maximal atomic subsumption chains) is in fact tran-

sitive. This means that we might potentially over-estimate the logical diversity

of a corpus and under-estimate the effects of lemma-isomorphism. However, we

can simply treat the results as a lower bound to the reductions caused by l-

isomorphism without running risk of reporting results that are ‘too good’.

Threats to external validity While the BioPortal corpus does contain a num-

ber of interesting (in terms of size and complexity) ontologies, it may not be

representative for most OWL ontologies used in practice. Due to their intended

application in research and their being made available in a curated portal it is

certainly possible that these ontologies are potentially larger and crafted more

‘carefully’ (i.e. use more complex constructors) than most OWL ontologies found

on the web. Indeed, a random sample of ontologies obtained from a web crawl

[GMPS13] was found to contain a significantly smaller number of axioms (m =

57) than the BioPortal ontologies. On the other hand, the BioPortal ontologies

have been developed by several different individual authors and teams, they span

a fairly diverse range of topics (e.g. software engineering, anatomy, biology, ge-

netics, etc.), and differ vastly in both size and expressivity. Thus, we believe that

the statistics obtained from the BioPortal corpus allow us to draw conclusions

regarding general trends in the justificatory structure of OWL ontologies that

were (mainly) authored manually for use in realistic applications.

7.4 Summary and conclusions

In this chapter, we have presented a survey of the landscape of justificatory struc-

ture in OWL ontologies. Using an initial set of over 300 ontologies from the NCBO

BioPortal which was reduced to 78 ontologies containing complex justifications,

we analysed the frequency and extent of various features of justificatory structure.

7.4. SUMMARY AND CONCLUSIONS 183

We have found surprisingly high degrees of overlap between the justifications for

single entailments, with an average overlap frequency of 11 justifications and an

average size of 12 justifications per overlap. Likewise, we have seen that root

and derived relationships occur frequently across the corpus, but mainly affect

justifications for individual entailments.

Strict justification isomorphism was shown to be prevalent throughout the

corpus, as a large number of strictly isomorphic justifications cause a reduc-

tion of the justification corpus to less than 10% of its original size. In con-

trast, subexpression-isomorphism has the least effect on the justifications, with

only marginal differences between strict and subexpression-isomorphism, whereas

lemma-isomorphism captures isomorphic justifications in the majority of ontolo-

gies in the corpus.

These results are highly significant, as they demonstrate that OWL ontologies

used in practice can—and do—indeed have a very rich justificatory structure,

with frequent overlaps at surprisingly large degrees, high-frequency axioms, and

structural similarity. On the other hand, we have also seen that some of the

proposed interventions may not be applicable in some cases; for example, the

number of justifications that have multiple entailments is fairly low and affects

only a fraction of the ontologies in the corpus, while overlap between justifications

occurs mainly for single, but not multiple entailments.

Chapter 8

Conclusions

In this final chapter, we will summarise the work and results presented in this

thesis. We will discuss the main contribution of this thesis and the significance of

the results and insights gained, while also highlighting some open issues. Finally,

we will give an outlook on future directions for further research into the logical

and cognitive aspects of justifications for entailments of OWL ontologies.

8.1 Summary of contributions

In summary, this thesis introduced the notion of justificatory structure, provided

definitions for the different aspects of structure, proposed strategies for exploiting

the justificatory structure of an ontology in order to provide improved debugging

support, and analysed a set of ontologies from the bio-medical domain to deter-

mine the prevalence and extents of structural phenomena in OWL ontologies used

in practice.

8.1.1 Design decisions for finite entailment sets

We first discussed the issue of limiting the infinite set of entailments of an ontology

to a finite entailment set and proposed several design decisions to be made in order

to arrive at a sensible representation of a finite entailment set. These design

decisions were largely motivated by the issue of counting entailments, e.g. for

the purpose of comparing the inferential power of two ontologies, which requires

the number of entailments to grow monotonically when adding axioms to the

ontology.

We found that certain design decisions cause the number of entailments to

grow non-monotonically: not including asserted axioms or indirect subsumptions

in a finite entailment set, for instance, can lead to fewer entailments in the set if

we add axioms to an ontology. We also provided a practical definition for distin-

guishing imported, mixed, and native entailments based on their justifications.

184

8.1. SUMMARY OF CONTRIBUTIONS 185

Finally, we provided a shorthand notation for referring to a specific represen-

tation of a finite entailment set and demonstrated the effect of different design

decisions with toy examples and real-life applications of finite entailment sets of

OWL ontologies.

8.1.2 Justificatory structure and justification isomorphism

In Chapters 4 and 5, we introduced the notion of justificatory structure using a

graph representation of the justifications, justification axioms, and entailments

for a given set of entailments and justifications in an ontology. Structural aspects

include graph metrics such as the in- and out-degrees of justification and axiom

nodes, graph components, and overlap of varying degrees. Overlap between jus-

tifications, that is, shared axiom sets, are of particular interest in the context of

ontology debugging, as they potentially lead to smaller repairs, while also helping

the understanding of multiple justifications through lemmas.

We then moved on to discuss the issue of structural similarities between justi-

fications and extended the existing notion of justification isomorphism to two new

equivalence relations, subexpression-isomorphism≈s and lemma-isomorphism≈`.
Under (strict) isomorphism, we consider two justifications to be equivalent if they

use the same constructors and axiom types and only differ in the class, property,

and individual names they use. Subexpression-isomorphism extends this notion

to cover justifications which differ in the expressions they use if those expressions

can be substituted by freshly generated variable names; that is, if their complex

subexpressions are used in a propositional way. Lemma-isomorphism applies the

principle of subexpression-isomorphism to a lemmatised justifications, that is, a

justification in which a subset S was replaced with an entailment λ of S.

The two new notions of isomorphism were designed to be ‘upwards-compatible’,

i.e. (strictly) isomorphic justifications are s-isomorphic, and s-isomorphic jus-

tifications are considered to be l-isomorphic. We showed that subexpression-

isomorphism is indeed an equivalence relation under certain (non-obvious) side

conditions, and provided a proof for the transitivity of subexpression-isomorphism.

186 CHAPTER 8. CONCLUSIONS

8.1.3 Reducing user effort

In Chapter 6, we looked at the problem of debugging erroneous entailments in

OWL ontologies, providing a definition for ‘debugging problems’ and how to de-

termine whether a modification successfully solved the debugging problem. We

constructed a simple model for measuring the effort involved in solving a de-

bugging problem using justification based explanation tools. This model also

allows us to measure whether a debugging strategy reduces the effort involved in

debugging a set of entailments by introducing an alleviation factor a.

We proposed several strategies for exploiting the justificatory structure of an

ontology in order to reduce the user effort when faced with multiple justifications.

These strategies include presenting the user with high-frequency axioms, enriching

justifications with common lemmas originating from overlaps, and presenting the

user with an abstract justification template of isomorphic justifications.

8.1.4 Experimental results

Finally, we presented a survey of OWL and OBO ontologies from the NCBO Bio-

Portal. We found that the majority of justifications for direct and indirect atomic

subsumptions between satisfiable classes can be classified as ‘atomic subsumption

chain’ justifications, whereas the number of ‘complex’ justifications found across

the corpus is comparatively low. For those entailments that do have complex

justifications, the number of justifications per entailment was found to be sur-

prisingly high, with an average of 8 justifications per entailment and 70% of the

entailments in the corpus having multiple complex justifications. Shared axioms

and axiom sets were found to occur frequently across the corpus: over 73% of the

justifications in the corpus were derived from some other justification (which may

be partially due to the inclusion of indirect subsumptions in the entailment set).

Arbitrary overlap between justifications for single entailments is highly prevalent

in the corpus, with the majority of overlaps having a size of around 5 axioms and

occurring in around 5 justifications.

Our analysis of justification isomorphism in the BioPortal corpus revealed

that justification isomorphism between justifications for individual entailments

occurs fairly frequently: Strict isomorphism applied to justifications for individ-

ual entailments causes an average reduction from justifications to templates by

8.2. SIGNIFICANCE OF RESULTS 187

33%, whereas subexpression-isomorphism has only marginal effects in some on-

tologies. However, if we consider the logical diversity of all justifications for all

entailments in the corpus, strict isomorphism and lemma-isomorphism have a

significant impact: the 141,560 justifications in the corpus are effectively reduced

to just over 12,500 templates (a reduction of 91.2%) by strict isomorphism, and

lemma-isomorphism finally reduces this number to only 5,487 templates. More

strikingly, we have found that 75% of the justifications in the corpus can be cov-

ered by only 277 of the most frequent templates for lemma-isomorphism. Across

the set of laconic versions of the justifications in the corpus, the relative effects of

the three isomorphism types are roughly the same; however, the final number of

templates for lemma-isomorphism is considerably lower at only 1,789 templates.

This shows that the logical diversity of justifications is far lower than their ma-

terial manifestiations, as removing all superfluous parts in a corpus of 141,560

regular (complex) justifications reduces it to just over 1% of its original size.

8.2 Significance of results

Against the backdrop of justification based debugging support, this thesis has

advanced the state of knowledge we have of the relations between justifications

in OWL ontologies. It highlighted possible new strategies for generating OWL

ontology metrics and for providing improved debugging support, which lays the

foundations for future approaches to building user-friendly and efficient OWL

ontology tools for both ontology analysis and ontology development.

First, the design decisions we provided for generating and representing finite

entailment sets draw from the multitude of modifications and ‘hacks’, as well

as misunderstandings we have encountered in OWL tools and analytical appli-

cations. Previously, there has been no clear account of the various factors that

have an impact on the size of entailment sets, and no convenient way of referring

to a certain type of entailment set, which we believe we have rectified with the

design decisions and shorthand notation provided in this thesis.

This has been the first in-depth investigation of the justificatory structure of

OWL ontologies. In our survey of the BioPortal ontologies, we have found that,

while a large number of entailments only have trivial atomic subsumption chain

justifications, a significant number of entailments indeed has multiple complex

justifications. This finding shows that improved debugging support for dealing

188 CHAPTER 8. CONCLUSIONS

with multiple justifications is clearly necessary, as users have a high chance of

encountering an entailment that has multiple non-trivial justifications.

While root and derived justifications and axiom frequency have been (some-

what implicitly) used in justification based debugging tools, there has been no

extension of these relations to cover arbitrary overlap. There have been some

previous experiments regarding root and derived relationships between justifica-

tions [KPSH05, MMV10], however, the survey presented in this thesis is the first

large-scale experiment investigating the occurrence of both root and derived jus-

tifications and arbitrary justification overlap in OWL ontologies. We have found

that all types of overlap occur frequently, which provides us with important knowl-

edge of the structural relations between justifications and informs future ontology

debugging tools, which can make use of these structural aspects.

Thus far, justification isomorphism has only been mentioned in the context

of sampling justifications for a user study [HBPS11b]. The results presented in

our survey of justification isomorphism in the BioPortal corpus confirms that

a) isomorphic justifications can be determined in practical time even using a

naive implementation, and b) a large number of justifications are structurally

isomorphic. This shows that template-based debugging support is both feasible

for and widely applicable to justifications found in practice.

However, we have also found that the newly introduced relations, subexpression-

isomorphism and lemma-isomorphism, do not have as big an impact on the Bio-

Portal justifications as we would have hoped. S-isomorphism in particular only

affects a fraction of the justifications in the corpus, whereas lemma-isomorphism

occurs in most ontologies, but only in small numbers. This implies that, for most

justifications, strict isomorphism may already be sufficient for finding a common

template. On the other hand, the small effect of s-isomorphism also shows us that

there exists real logical diversity in the modelling of ontologies, and that com-

plex subexpressions are generally not used in a propositional way. Furthermore,

while we could successfully prove the transitivity of s-isomorphism, the transitiv-

ity of l-isomorphism and the selection of suitable lemmatisations remains an open

question. In order to make l-isomorphism useful in OWL applications, we need

to further explore potential lemmatisations which are guaranteed to preserve the

transitivity of l-isomorphism.

With the exception of root and derived justifications and a focus on mini-

mal repairs, most of the existing justification based debugging techniques do not

8.3. FUTURE DIRECTIONS 189

consider the issue of multiple justifications for repair and treat justifications as

isolated entities. By suggesting structure-based coping strategies for multiple

justifications we have made a step towards improved debugging support which

is targeted at multiple justifications. The introduction of a model for measur-

ing and quantifying the success of a coping strategy in particular paves the way

for principled empirical research into the effects of different justification based

debugging techniques.

8.3 Future directions

While we have covered a broad range of topics in this thesis, it is clear that

there is plenty of room for future work. In this section we will outline potential

extensions of this work, which cover the theoretical foundations of justificatory

structure, further experiments, as well as applications of the strategies proposed

in this thesis.

Lemma-isomorphism

We have made some progress towards defining lemma-isomorphism and finding

suitable lemmatisations; however, there are still some open questions remain-

ing. First of all, we have restricted the lemmatisations to (maximal) atomic

subsumption chains in order to demonstrate the concept of l-isomorphism, which

has already had some visible effects. On the other hand, if we think back to the

original motivation for l-isomorphism—the Pizza ontology in which there exists

several similar reasons for why some Pizza is a subclass of InterestingPizza—we

can see that atomic subsumption chain lemmatisations do not cover the justifi-

cations we can find there. Thus, extending the set of lemmatisations to be used

in l-isomorphism based on their obviousness for OWL users seems to be an im-

portant next step, in particular since we have shown that over three quarters of

the justifications in the test corpus could be covered by a strikingly small number

of templates for lemma-isomorphism. Adding only a small number of additional

lemmatisations may already be sufficient to cover the vast majority of justification

shapes found in OWL ontologies.

However, since we have seen that preserving the transitivity of our isomor-

phisms is rather non-trivial, this will also require a thorough investigation of the

190 CHAPTER 8. CONCLUSIONS

conditions lemmatisations have to meet in order for l-isomorphism to be transi-

tive.

Dealing with masking and superfluity

While we discussed issues such as non-laconic justifications and justification mask-

ing where applicable, our introduction to justificatory structure and the survey

of the BioPortal ontologies did not fully explore the effects of masking and super-

fluity. We know that masking and superfluity are frequent occurrences in OWL

ontologies [Hor11a] and that superfluous parts may cause users difficulties in un-

derstanding justifications [HBPS11b]. In our analysis of isomorphism we also

found that a large number of justifications are considered to be non-isomorphic

due to them containg superfluous parts, and that laconicising justifications signifi-

cantly reduces the overall diversity of justifications. A more in-depth comparison

between the justificatory structure of non-laconic and laconic justification sets

will help us gain a better understanding of how these phenomena affect the jus-

tificatory structure of an ontology, and to what extent this has an impact on the

debugging process.

Effects on justification computation

Another open question that arises from the work presented in this thesis is the ef-

fect of justificatory structure on justification computation, and, in a wider sense,

reasoning performance. While we took a brief glance at the effects of graph

components on the performance of justification computation, we omitted an in-

depth investigation of the relations between structure, hitting set tree size, calls

to a ‘find one’ subroutine, and computation times. This will require further ex-

periments and artificial generation of justifications to test the effects of various

degrees of justification overlap, activity, and graph structure in isolation. Further

insights into the relation between justificatory structure and justification compu-

tation would potentially allow us to generate guidelines, ontology design patterns,

or even automated tool features to yield easily computable justifications. Such

guidelines might either be in line with existing ontology design patterns, or po-

tentially require users to sacrifice some aspects of ‘good modelling’ for the sake

of easy justification computation; thus, an investigation of the interplay between

existing ontology design patterns and justificatory structure is another aspect of

justificatory structure worth exploring.

8.3. FUTURE DIRECTIONS 191

Further, since justifications are, in some sense, responsible for the subsump-

tion relationships in an ontology and therefore its class hierarchy, we may also ask:

how does the justificatory structure of an ontology affect the classification perfor-

mance of an OWL reasoner? We have made some steps into this direction with

JustBench [BPS10a], a justification based micro-benchmarking tool for OWL rea-

soners; however, in JustBench we only used justification-entailment pairs in order

to measure the performance of entailment checking on naturally arising ontology

subsets, which did not involve any analysis of justificatory structure.

Visualisation and user interaction

Possibly one of the most intriguing directions for future work is the exploration of

user interaction mechanisms to exploit the strategies presented in this thesis for

implementation in OWL tools. We have made a first attempt at outlining inter-

action mechanisms for multiple justifications in Chapter 6. However, the design

and implementation of a useful OWL debugging tool will require significantly

more research into the cognitive aspects of how users read and understand OWL

constructs and axioms, starting with the fundamental question of whether OWL

users build mental models [JL80] of the information they digest, or whether they

apply rules and symbol manipulation in order to understand reasoning processes,

and to which extent this behaviour depends on the user profile and their specific

task. While we have gained some insights in recent years into how people process

OWL and what causes them difficulties in understanding, we are far from having

a clear picture of the cognitive processes associated with interacting with OWL

ontologies.

Once we have a better understanding of these cognitive processes as well as the

demands and requirements of OWL users with different backgrounds, we need to

identify a suitable approach to visualising and interacting with OWL ontologies

and justifications. There have been various visualisation tools for (particular

aspects of) OWL ontologies, such as OWLViz1 and CropCircles [WP06] which

visualise the class hierarchy of an OWL ontology, SuperModel [BSP09] which

displays segments of a model of the ontology, and DeMost [DKP+11], which

represents the atomic decomposition of an ontology as a graph of axioms and

axiom sets.

However, none of these approaches (with the exception of CropCircles perhaps

1http://www.co-ode.org/downloads/owlviz/

http://www.co-ode.org/downloads/owlviz/

192 CHAPTER 8. CONCLUSIONS

which uses a non-standard rendering of nested circles to represent subsumption

relationships) seems to have grown out of a focussed investigation of the suitabil-

ity of different interaction mechanisms for the task at hand; we may argue that

graph-based approaches were chosen because they are simply the most straight-

forward way of representing the types of relations occurring in an OWL ontology.

Given the progress made in interactive data visualisation tools, such investiga-

tions would be both highly interesting and worthwhile, as improved tools for OWL

ontology building and debugging may well contribute to the wider acceptance and

propagation of OWL.

Applications of justifications

Finally, another topic we have only touched upon in this thesis is the application

of justifications beyond debugging and repair. One of these areas is ontology

comprehension and learning, that is, OWL users wanting to familiarise them-

selves with an unknown ontology, or OWL novices attempting to understand the

implications of reasoning in OWL ontologies. We have seen that many aspects

of justificatory structure, such as justification overlap and isomorphism, reveal

deeper insights into the interactions between axioms in an ontology, while also

providing information akin to ontology patterns. We can imagine using aspects of

justificatory structure to teach and learn ‘reasoning patterns’ in OWL ontologies,

which may support OWL novices in building ontologies.

Further, the justificatory structure of an OWL ontology, such as the number

of justifications, the number and sizes of overlaps, and the structural similarities

between justifications, provides us with implicit ontology metrics. The number

of justifications per entailment has already been used as an ontology metric to

determine the justification richness of an ontology [MSR11], and we have shown

how two seemingly similar ontologies with approximately the same number of

classes and axioms can differ vastly in their justificatory structure [BHPS11].

Integrating justification based metrics into OWL tools will make these differences

visible to OWL developers, allowing them to compare and rank ontologies based

on an extensive set of both explicit and implicit metrics.

Bibliography

[AAKS08] Mikel Egaña Aranguren, Erick Antezana, Martin Kuiper, and Robert

Stevens. Ontology design patterns for bio-ontologies: a case study on

the cell cycle ontology. BMC Bioinformatics, 9(S-5), 2008. (Cited on

page 43.)

[AB06] Harithand Alani and Christopher Brewster. Metrics for ranking on-

tologies. In Proceedings of the 4th International Workshop on Evalu-

ation of Ontologies for the Web (EON-06), pages 24–30, 2006. (Cited

on page 23.)

[ACKZ09] Alessandro Artale, Diego Calvanese, Roman Kontchakov, and Michael

Zakharyaschev. The DL-Lite family and relations. Journal of Artificial

Intelligence Research, 36:1–69, 2009. (Cited on page 38.)

[AGU72] Alfred V. Aho, Michael R. Garey, and Jeffrey D. Ullman. The tran-

sitive reduction of a directed graph. SIAM Journal on Computing,

1(2):131–137, 1972. (Cited on page 72.)

[BB07] Martins Barinskis and Guntis Barzdins. Satisfiability model visual-

ization plugin for deep consistency checking of OWL ontologies. In

Proceedings of the 3rd International Workshop on OWL: Experiences

and Directions (OWLED-07), 2007. (Cited on page 64.)

[BBL05] Franz Baader, Sebastian Brandt, and Carsten Lutz. Pushing the EL

envelope. In Proceedings of the 19th International Joint Conference

on Artificial Intelligence (IJCAI-05), pages 364–369, 2005. (Cited on

pages 31 and 38.)

[BCM+03] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele

Nardi, and Peter F. Patel-Schneider, editors. The Description Logic

Handbook: Theory, Implementation, and Applications. Cambridge

University Press, 2003. (Cited on pages 16 and 28.)

193

194 BIBLIOGRAPHY

[BFH99] Alex Borgida, Eric Franconi, and Ian Horrocks. Explaining ALC sub-

sumption. In Proceedings of the 12th International Workshop on De-

scription Logics (DL-99), 1999. (Cited on pages 17, 44, 45, and 62.)

[BG94] Chitta Baral and Michael Gelfond. Logic programming and knowl-

edge representation. The Journal of Logic Programming, 19–20, Sup-

plement 1:73–148, 1994. (Cited on page 28.)

[BGSS07] Franz Baader, Bernhard Ganter, Baris Sertkaya, and Ulrike Sattler.

Completing description logic knowledge bases using formal concept

analysis. In Proceedings of the 20th International Joint Conference

on Artificial Intelligence (IJCAI-07), pages 230–235, 2007. (Cited on

page 42.)

[BH95] Franz Baader and Bernhard Hollunder. Embedding defaults into ter-

minological knowledge representation formalisms. Journal of Auto-

mated Reasoning, 14(1):149–180, 1995. (Cited on page 50.)

[BHPS11] Samantha Bail, Matthew Horridge, Bijan Parsia, and Ulrike Sattler.

The justificatory structure of the NCBO bioportal ontologies. In Pro-

ceedings of the 10th International Semantic Web Conference (ISWC-

11), 2011. (Cited on pages 14, 19, 25, 39, 60, 88, 91, 154, 157, and 192.)

[Bie07] Meghyn Bienvenu. Consequence finding in ALC. In Proceedings of the

20th International Workshop on Description Logics (DL-07), 2007.

(Cited on page 78.)

[Bie09] Meghyn Bienvenu. Prime implicates and prime implicants: From

propositional to modal logic. Journal of Artificial Intelligence Re-

search, 36:71–128, 2009. (Cited on page 78.)

[BKBM99] Franz Baader, Ralf Küsters, Alex Borgida, and Deborah L. McGuin-

ness. Matching in description logics. Journal of Logic and Computa-

tion, 9(3):411–447, 1999. (Cited on page 112.)

[BKG11] Michael Buhrmester, Tracy Kwang, and Samuel D Gosling. Ama-

zon’s mechanical turk: A new source of inexpensive, yet high-quality,

data? Perspectives on Psychological Science, 6(1):3–5, 2011. (Cited

on page 58.)

BIBLIOGRAPHY 195

[BKM99] Franz Baader, Ralf Küsters, and Ralf Molitor. Computing least com-

mon subsumers in description logics with existential restrictions. In

Proceedings of the 16th International Joint Conference on Artificial

Intelligence (IJCAI-99), volume 16, pages 96–103, 1999. (Cited on

page 150.)

[BL04] Ronald J. Brachman and Hector Levesque. Knowledge Representation

and Reasoning. The Morgan Kaufmann Series in Artificial Intelligence.

Elsevier Science, 2004. (Cited on page 28.)

[BLHL01] Tim Berners-Lee, James Hendler, and Ora Lassila. The Semantic

Web. Scientific American, 284(5):34–43, 2001. (Cited on page 38.)

[BM09] Franz Baader and Barbara Morawska. Unification in the descrip-

tion logic EL. In Proceedings of the 20th International Conference

on Rewriting Techniques and Applications (RTA-09), pages 350–364,

2009. (Cited on page 112.)

[BN98] Franz Baader and Paliath Narendran. Unification of concept terms

in description logics. In Proceedings of the 13th European Conference

on Artificial Intelligence (ECAI-98), pages 331–335, 1998. (Cited on

page 112.)

[BP08a] Franz Baader and Rafael Peñaloza. Automata-based axiom pinpoint-

ing. In Proceedings of the 4th International Joint Conference on

Automated Reasoning (IJCAR-08), pages 226–241, 2008. (Cited on

page 50.)

[BP08b] Franz Baader and Rafael Peñaloza. Axiom pinpointing in general

tableaux. Journal of Logic and Computation, 2008. (Cited on page 47.)

[BP10] Franz Baader and Rafael Peñaloza. Automata-based axiom pinpoint-

ing. Journal of Automated Reasoning, 2010. (Cited on page 50.)

[BPS07a] Franz Baader, Rafael Peñaloza, and Boontawee Suntisrivaraporn. Pin-

pointing in the description logic EL+. In Proceedings of the 22nd

AAAI Conference on Artificial Intelligence (AAAI-07), pages 52–67,

2007. (Cited on pages 14, 46, 50, and 60.)

196 BIBLIOGRAPHY

[BPS07b] Franz Baader, Rafael Peñaloza, and Boontawee Suntisrivaraporn. Pin-

pointing in the description logic EL+. In Proceedings of the 30th An-

nual German Conference on Artificial Intelligence (KI-07), pages 52–

67, 2007. (Cited on page 47.)

[BPS10a] Samantha Bail, Bijan Parsia, and Ulrike Sattler. Justbench: A frame-

work for OWL benchmarking. In Proceedings of the 9th International

Semantic Web Conference (ISWC-10), 2010. (Cited on page 191.)

[BPS10b] Samantha Bail, Bijan Parsia, and Ulrike Sattler. The justificatory

structure of OWL ontologies. In Proceedings of the 7th International

Workshop on OWL: Experiences and Directions (OWLED-10), 2010.

(Cited on pages 25 and 91.)

[BPS11] Samantha Bail, Bijan Parsia, and Ulrike Sattler. Extracting finite

sets of entailments from OWL ontologies. In Proceedings of the 24th

International Workshop on Description Logics (DL-11), 2011. (Cited

on page 25.)

[BPS12a] Samantha Bail, Bijan Parsia, and Ulrike Sattler. Declutter your jus-

tifications: Determining similarity between owl explanations. In Pro-

ceedings of the First International Workshop on Debugging Ontologies

and Ontology Mappings (WoDOOM-12), 2012. (Cited on page 26.)

[BPS12b] Samantha Bail, Bijan Parsia, and Ulrike Sattler. Diversity of reason:

Equivalence relations over description logic explanations. In Proceed-

ings of the 25th International Workshop on Description Logics (DL-

12), 2012. (Cited on page 26.)

[Bra04] Sebastian Brandt. Polynomial time reasoning in a description logic

with existential restrictions, GCI axioms, and—what else? In Pro-

ceedings of the 16th European Conference on Artificial Intelligence

(ECAI-04), pages 298–302, 2004. (Cited on page 31.)

[BS84a] Bruce G. Buchanan and Edward H. Shortliffe. Explanation as a topic

of AI research. In Bruce G. Buchanan and Edward H. Shortliffe,

editors, Rule-Based Expert Systems. Addison-Wesley, 1984. (Cited on

page 17.)

BIBLIOGRAPHY 197

[BS84b] Bruce G. Buchanan and Edward H. Shortliffe, editors. Rule-Based

Expert Systems. Addison-Wesley, 1984. (Cited on page 17.)

[BS00] Franz Baader and Ulrike Sattler. Tableau algorithms for description

logics. In Proceedings of the International Conference on Automated

Reasoning with Analytic Tableaux and Related Methods (TABLEAUX-

00), pages 1–18, 2000. (Cited on page 33.)

[BSP09] Johannes Bauer, Ulrike Sattler, and Bijan Parsia. Explaining by ex-

ample: Model exploration for ontology comprehension. In Proceedings

of the 22nd International Workshop on Description Logics (DL-09),

2009. (Cited on pages 22, 64, 135, and 191.)

[BST07] Franz Baader, Baris Sertkaya, and Anni-Yasmin Turhan. Computing

the least common subsumer w.r.t. a background terminology. Journal

of Applied Logic, 5(3):392 – 420, 2007. (Cited on page 150.)

[Car07] Jorge Cardoso. The semantic web vision: Where are we? IEEE

Intelligent Systems, 22(5):84–88, 2007. (Cited on page 39.)

[CGL+11] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maur-

izio Lenzerini, Antonella Poggi, Mariano Rodriguez-Muro, Riccardo

Rosati, Marco Ruzzi, and Domenico Fabio Savo. The MASTRO sys-

tem for ontology-based data access. Semantic Web Journal, 2(1):43–

53, 2011. (Cited on page 38.)

[CHKS07] Bernardo Cuenca Grau, Ian Horrocks, Yvgeny Kazakov, and Ulrike

Sattler. Just the right amount: Extracting modules from ontologies.

In Proceedings of the 14th International World Wide Web Conference

(WWW-05), 2007. (Cited on pages 51 and 52.)

[CHKS08] Bernardo Cuenca Grau, Ian Horrocks, Yevgeny Kazakov, and Ulrike

Sattler. Modular reuse of ontologies: Theory and practice. Journal of

Artificial Intelligence Research, 31, 2008. (Cited on page 52.)

[CHM+08] Bernardo Cuenca Grau, Ian Horrocks, Boris Motik, Bijan Parsia, Pe-

ter F. Patel-Schneider, and Ulrike Sattler. OWL 2: The next step for

OWL. Journal of Web Semantics, 2008. (Cited on pages 13 and 28.)

198 BIBLIOGRAPHY

[Cla81] William J. Clancey. The epistemology of a rule-based expert system:

a framework for explanation. Technical report, Stanford University,

Stanford, CA, USA, 1981. (Cited on page 17.)

[CPSK06] Bernardo Cuenca Grau, Bijan Parsia, Evren Sirin, and Aditya Kalyan-

pur. Modularity and web ontologies. In Proceedings of the 10th Inter-

national Conference on the Principles of Knowledge Representation

and Reasoning (KR-06), 2006. (Cited on page 51.)

[CRVBP09] Oscar Corcho, Catherine Roussey, Luis Manuel Vilches-Blázquez,

and Iván Pérez. Pattern-based OWL ontology debugging guidelines.

In Proc. of WOP-09, 2009. (Cited on page 140.)

[Dav81] Martin Davis. Obvious logical inferences. In Proceedings of the 7th

International Joint Conference on Artificial Intelligence (IJCAI-81),

pages 530–531, 1981. (Cited on pages 62 and 122.)

[dCHS+04] Sherri de Coronado, Margaret W. Haber, Nicholas Sioutos, Mark S.

Tuttle, and Lawrence W. Wright. NCI Thesaurus: Using science-

based terminology to integrate cancer research results. Studies in

Health Technology and Informatics, 107(1), 2004. (Cited on page 16.)

[DHS05] Xi Deng, Volker Haarslev, and Nematollaah Shiri. A framework for

explaining reasoning in description logics. In Working Notes of the

AAAI Fall Symposium on Explanation-aware Computing, 2005. (Cited

on page 45.)

[DKP+11] Chiara Del Vescovo, Pavel Klinov, Bijan Parsia, Ulrike Sattler, and

Thomas Schneider. DeMoSt: a tool for exploring the decomposition

and the modular structure of OWL ontologies. In Proceedings of

the 10th International Semantic Web Conference (ISWC-11), 2011.

(Cited on page 191.)

[DL96] Giuseppe De Giacomo and Maurizio Lenzerini. Tbox and Abox rea-

soning in expressive description logics. In Proceedings of the 5th In-

ternational Conference on the Principles of Knowledge Representation

and Reasoning (KR-96), pages 316–327, 1996. (Cited on page 33.)

BIBLIOGRAPHY 199

[DQJ09] Jianfeng Du, Guilin Qi, and Qiu Ji. Goal-directed module extraction

for explaining OWL DL entailments. In Proceedings of the 8th Inter-

national Semantic Web Conference (ISWC-09), pages 163–179, 2009.

(Cited on pages 46 and 52.)

[DS08] Jianfeng Du and Yi-Dong Shen. Computing minimum cost diagnoses

to repair populated DL-based ontologies. In Proceedings of the 17th

International World Wide Web Conference (WWW-08), 2008. (Cited

on page 63.)

[FH88] Amy Felty and Greg Hager. Explaining modal logic proofs. In Pro-

ceedings of the IEEE 1988 International Conference on Systems, Man,

and Cybernetics, 1988. (Cited on page 62.)

[Fit83] Melvin Fitting. Proof Methods for Modal and Intuitionistic Logics.

Springer, 1983. (Cited on page 62.)

[FMV10] Enrico Franconi, Thomas Meyer, and Ivan Varzinczak. Semantic diff

as the basis for knowledge base versioning. In Proc. of NMR-10, 2010.

(Cited on page 42.)

[FS05] Gerhard Friedrich and Kostyantyn Shchekotykhin. A general diag-

nosis method for ontologies. In Proceedings of the 4th International

Semantic Web Conference (ISWC-05), pages 232–246, 2005. (Cited

on pages 51 and 63.)

[Gan05] Aldo Gangemi. Ontology design patterns for semantic web content.

In Proceedings of the 4th International Semantic Web Conference

(ISWC-05), pages 262–276, 2005. (Cited on page 43.)

[Gär88] Peter Gärdenfors. Knowledge in Flux: Modeling the Dynamics of Epis-

temic States. MIT Press, 1988. (Cited on page 46.)

[GLC+01] Fernand Gobet, Peter C.R. Lane, Steve Croker, Peter C-H. Cheng,

Gary Jones, Iain Oliver, and Julian M. Pine. Chunking mechanisms

in human learning. Trends in Cognitive Sciences, 5(6):236–243, 2001.

(Cited on page 148.)

[GMPS13] Rafael S. Gonçalves, Nicolas Matentzoglu, Bijan Parsia, and Uli Sat-

tler. The empirical robustness of description logic classification. In

200 BIBLIOGRAPHY

Submitted to International Joint Conferences on Artificial Intelligence

(IJCAI), 2013. (Cited on page 182.)

[GPS11a] Rafael S. Gonçalves, Bijan Parsia, and Ulrike Sattler. Analysing the

evolution of the NCI thesaurus. In Proceedings of the 24th IEEE In-

ternational Symposium on Computer-Based Medical Systems (CBMS-

11), 2011. (Cited on page 43.)

[GPS11b] Rafael S. Gonçalves, Bijan Parsia, and Ulrike Sattler. Categorising

logical differences between OWL ontologies. In Proceedings of the

20th ACM International Conference on Information and Knowledge

Management (CIKM-11), 2011. (Cited on pages 42 and 88.)

[GPS12a] Rafael S. Gonçalves, Bijan Parsia, and Ulrike Sattler. Concept-based

semantic difference in expressive description logics. In Proceedings of

the 25th International Workshop on Description Logics (DL-12), 2012.

(Cited on page 88.)

[GPS12b] Rafael S. Gonçalves, Bijan Parsia, and Ulrike Sattler. Performance

heterogeneity and approximate reasoning in description logic ontolo-

gies. In Proceedings of the 11th International Semantic Web Confer-

ence (ISWC-12), 2012. (Cited on page 44.)

[Gru93] Thomas Gruber. Towards principles for the design of ontologies used

for knowledge sharing. In Formal Ontology in Conceptual Analysis

and Knowledge Representation, 1993. (Cited on page 36.)

[GSG04] Pierre Grenon, Barry Smith, and Louis Goldberg. Biodynamic ontol-

ogy: applying the bfo in the biomedical domain. In D. M. Pisanelli,

editor, Ontologies in Medicine. IOS Press, 2004. (Cited on page 88.)

[GSW89] Russell Greiner, Barbara A. Smith, and Ralph W. Wilkerson. A cor-

rection to the algorithm in Reiter’s theory of diagnosis. Artificial

Intelligence, 41(1):79–88, 1989. (Cited on page 51.)

[GSW05] Bernhard Ganter, Gerd Stumme, and Rudolf Wille. Formal Concept

Analysis: Foundations and Applications. Springer, 2005. (Cited on

pages 42 and 166.)

BIBLIOGRAPHY 201

[GW02] Nicola Guarino and Christopher A. Welty. Evaluating ontological de-

cisions with ontoclean. Commun. ACM, 45(2):61–65, 2002. (Cited on

page 64.)

[GW04] Nicola Guarino and Christopher A. Welty. An overview of ontoclean.

In Handbook on Ontologies, pages 151–172. Springer, 2004. (Cited on

page 64.)

[GWS07] Andrew Gibson, Katy Wolstencroft, and Robert Stevens. Promotion

of ontological comprehension: Exposing terms and metadata with

web 2.0. In Proceedings of the Workshop on Social and Collabora-

tive Construction of Structured Knowledge (CKC 2007), 2007. (Cited

on page 135.)

[HBMB05] Graeme S. Halford, Rosemary Baker, Julie E. McCredden, and

John D. Bain. How many variables can humans process? Psycho-

logical Science, 16(1):70–76, 2005. (Cited on page 148.)

[HBPS11a] Matthew Horridge, Samantha Bail, Bijan Parsia, and Ulrike Sattler.

The cognitive complexity of OWL justifications. In Proceedings of the

24th International Workshop on Description Logics (DL-11), 2011.

(Cited on pages 14, 26, 58, 59, and 140.)

[HBPS11b] Matthew Horridge, Samantha Bail, Bijan Parsia, and Ulrike Sattler.

The cognitive complexity of OWL justifications. In Proceedings of

the 10th International Semantic Web Conference (ISWC-11), 2011.

(Cited on pages 19, 26, 58, 59, 104, 109, 111, 122, 123, 135, 153, 178,

188, and 190.)

[HBPS13] Matthew Horridge, Samantha Bail, Bijan Parsia, and Ulrike Sattler.

Toward cognitive support for OWL justifications. Knowledge-Based

Systems (accepted), 2013. (Cited on pages 26 and 59.)

[HDG+06] Matthew Horridge, Nick Drummond, John Goodwin, Alan L. Rector,

Robert Stevens, and Hai Wang. The manchester owl syntax. In Pro-

ceedings of the 2nd International Workshop on OWL: Experiences and

Directions (OWLED-06), 2006. (Cited on page 37.)

[Hen07] James Hendler. The dark side of the semantic web. IEEE Intelligent

Systems, 22(1):2–3, 2007. (Cited on page 39.)

202 BIBLIOGRAPHY

[HKS06] Ian Horrocks, Oliver Kutz, and Ulrike Sattler. The even more irre-

sistible SROIQ. In Proceedings of the 10th International Conference

on the Principles of Knowledge Representation and Reasoning (KR-

06), 2006. (Cited on pages 13, 31, and 37.)

[Hor97] Ian Horrocks. Optimising Tableaux Decision Procedures for Descrip-

tion Logics. PhD thesis, University of Manchester, 1997. (Cited on

page 33.)

[Hor02] Ian Horrocks. Daml+oil: a description logic for the semantic web.

IEEE Data Engineering Bulletin, 25(1):4–9, 2002. (Cited on pages 36

and 39.)

[Hor10] Matthew Horridge. Owl syntaxes. http://ontogenesis.

knowledgeblog.org/88 [Online. last-accessed: 2012-06-19 16:13:48],

2010. (Cited on page 37.)

[Hor11a] Matthew Horridge. Justification Based Explanation in Ontologies.

PhD thesis, The University of Manchester, 2011. (Cited on pages 13,

48, 51, 52, 54, 56, 91, 98, 120, 126, 141, and 190.)

[Hor11b] Matthew Horridge. A practical guide to building OWL on-

tologies using Protégé 4 and CO-ODE tools, edition 1.3.

http://owl.cs.manchester.ac.uk/tutorials/protegeowltutorial/, 2011.

(Cited on page 40.)

[HP09] Matthew Horridge and Bijan Parsia. From justifications to proofs for

entailments in OWL. In Proceedings of the 6th International Workshop

on OWL: Experiences and Directions (OWLED-09), 2009. (Cited on

page 57.)

[HP10] Matthew Horridge and Bijan Parsia. From justifications towards

proofs for ontology engineering. In Proceedings of the 12th Interna-

tional Conference on the Principles of Knowledge Representation and

Reasoning (KR-10), 2010. (Cited on page 14.)

[HPS08] Matthew Horridge, Bijan Parsia, and Ulrike Sattler. Laconic and

precise justifications in OWL. In Proceedings of the 7th International

Semantic Web Conference (ISWC-08), pages 323–338, 2008. (Cited

on pages 14, 19, 38, 53, 54, 125, and 151.)

http://ontogenesis.knowledgeblog.org/88
http://ontogenesis.knowledgeblog.org/88

BIBLIOGRAPHY 203

[HPS09] Matthew Horridge, Bijan Parsia, and Ulrike Sattler. Lemmas for justi-

fications in OWL. In Proceedings of the 22nd International Workshop

on Description Logics (DL-09), 2009. (Cited on pages 40, 91, and 140.)

[HPS10a] Matthew Horridge, Bijan Parsia, and Ulrike Sattler. Justification

masking in OWL. In Proceedings of the 23rd International Work-

shop on Description Logics (DL-10), 2010. (Cited on pages 54, 55,

and 125.)

[HPS10b] Matthew Horridge, Bijan Parsia, and Ulrike Sattler. Justification ori-

ented proofs in OWL. In Proceedings of the 9th International Semantic

Web Conference (ISWC-10), pages 354–369, 2010. (Cited on pages 19

and 57.)

[HPS11] Matthew Horridge, Bijan Parsia, and Ulrike Sattler. The state of bio-

medical ontologies. In Proceedings of the 2011 ISMB Bio-Ontologies

SIG, 2011. (Cited on pages 16 and 39.)

[HPS12] Matthew Horridge, Bijan Parsia, and Ulrike Sattler. Extracting jus-

tifications from BioPortal ontologies. In Proceedings of the 11th In-

ternational Semantic Web Conference (ISWC-12), 2012. (Cited on

page 39.)

[HPSv03] Ian Horrocks, Peter F. Patel-Schneider, and Frank van Harmelen.

From SHIQ and RDF to OWL: The making of a web ontology lan-

guage. Journal of Web Semantics, 1(1):7–26, 2003. (Cited on pages 28

and 31.)

[HST99] Ian Horrocks, Ulrike Sattler, and Stephan Tobies. Practical reasoning

for expressive description logics. In Proceedings of the 6th Interna-

tional Conference on Logic for Programming and Automated Reason-

ing (LPAR-99), pages 161–180, 1999. (Cited on page 31.)

[HST00] Ian Horrocks, Ulrike Sattler, and Stephan Tobies. Practical reasoning

for very expressive description logics. Logic Journal of the IGPL,

8(3):239–264, 2000. (Cited on page 33.)

[HvT05] Zhisheng Huang, Frank van Harmelen, and Annette Teije. Reasoning

with inconsistent ontologies. In Proceedings of the 19th International

204 BIBLIOGRAPHY

Joint Conference on Artificial Intelligence (IJCAI-05), 2005. (Cited

on page 36.)

[Jac92] Peter Jackson. Computing prime implicates. In Proceedings of the

1992 ACM annual conference on Communications, pages 65–72, 1992.

(Cited on page 78.)

[JGSV06] Cliff Joslyn, Damian Gessler, Stefan Schmidt, and Karin Verspoor.

Distributed representations of bio-ontologies for semantic web services.

In Bio-Ontologies, 2006. (Cited on page 72.)

[JL80] Philip N. Johnson-Laird. Mental models in cognitive science. Cognitive

Science, 4(1):71–115, 1980. (Cited on pages 142 and 191.)

[JQH08] Qiu Ji, Guilin Qi, and Peter Haase. A relevance-based algorithm for

finding justifications of DL entailments. Technical report, University

of Karlsruhe, 2008. (Cited on pages 47 and 60.)

[Kal06] Aditya Kalyanpur. Debugging and Repair of OWL Ontologies. PhD

thesis, University of Maryland at College Park, 2006. (Cited on

pages 46, 51, 102, 141, 144, and 146.)

[KDLD08] Mykola Konyk, Alexander De Leon, and Michel Dumontier. Chemi-

cal knowledge for the semantic web. In Data Integration in the Life

Sciences, pages 169–176. Springer Berlin / Heidelberg, 2008. (Cited

on page 89.)

[Kee07] C. Maria Keet. Enhancing comprehension of ontologies and conceptual

models through abstractions. Proceedings of the 10th Conference of

the Italian Association for Artificial Intelligence (AI*IA-07), pages

813–821, 2007. (Cited on page 22.)

[KKS11] Yevgeny Kazakov, Markus Krötzsch, and Frantisek Simancik. Unchain

my el reasoner. In Proceedings of the 24th International Workshop on

Description Logics (DL-11), 2011. (Cited on page 37.)

[KPC06] Aditya Kalyanpur, Bijan Parsia, and Bernardo Cuenca Grau. Beyond

asserted axioms: Fine-grain justifications for OWL-DL entailments. In

Proceedings of the 19th International Workshop on Description Logics

(DL-06), 2006. (Cited on pages 14, 19, and 53.)

BIBLIOGRAPHY 205

[KPHS07] Aditya Kalyanpur, Bijan Parsia, Matthew Horridge, and Evren Sirin.

Finding all justifications of OWL DL entailments. In Proceedings of

the 6th International Semantic Web Conference (ISWC/ASWC-07),

pages 267–280, 2007. (Cited on pages 50, 51, and 153.)

[KPS+06] Aditya Kalyanpur, Bijan Parsia, Evren Sirin, Bernardo Cuenca Grau,

and James Hendler. Swoop: A web ontology editing browser. Journal

of Web Semantics, 4(2):144–153, 2006. (Cited on pages 20 and 49.)

[KPSC06] Aditya Kalyanpur, Bijan Parsia, Evren Sirin, and Bernardo Cuenca

Grau. Repairing unsatisfiable concepts in OWL ontologies. In Pro-

ceedings of the 3rd European Semantic Web Conference (ESWC-06),

pages 170–184, 2006. (Cited on pages 14, 41, 48, and 179.)

[KPSH05] Aditya Kalyanpur, Bijan Parsia, Evren Sirin, and James Hendler. De-

bugging unsatisfiable classes in OWL ontologies. Journal of Web Se-

mantics, 3(4):268–293, 2005. (Cited on pages 13, 14, 20, 46, 50, 58,

61, 105, and 188.)

[KŠK11] Petr Kr̆emen, Marek Šmı́d, and Zdenek Kouba. OWLDiff: A practical

tool for comparison and merge of OWL ontologies. In Proceedings of

the 22nd International Conference on Database and Expert Systems

Applications (DEXA-11), 2011. (Cited on page 42.)

[Kwo05] Francis Kwong. Practical approach to explaining alc subsumption.

MPhil thesis, The University of Manchester, 2005. (Cited on page 50.)

[Lam07] Joey Sik Chun Lam. Methods for Resolving Unsatisfiable Ontologies.

PhD thesis, University of Aberdeen, 2007. (Cited on pages 14, 49, 58,

and 153.)

[LH05] Thorsten Liebig and Michael Halfmann. A tableau-based explainer for

DL subsumption. In Proceedings of the 14th International Conference

on Automated Reasoning with Analytic Tableaux and Related Methods

(TABLEAUX-05), pages 323–327, 2005. (Cited on page 50.)

[Lin89] Christoph Lingenfelder. Structuring computer generated proofs. In

Proceedings of the 11th International Joint Conference on Artificial

Intelligence (IJCAI-89), pages 378–383, 1989. (Cited on page 62.)

206 BIBLIOGRAPHY

[LMS04] Inês Lynce and João Marques-Silva. On computing minimum un-

satisfiable cores. In Int. Symposium on Theory and Applications of

Satisfiability Testing, pages 305–310, 2004. (Cited on page 46.)

[LN04] Thorsten Liebig and Olaf Noppens. OntoTrack: Combining brows-

ing and editing with reasoning and explaining for OWL lite ontolo-

gies. In Proceedings of the 3rd International Semantic Web Conference

(ISWC-04), pages 244–257, 2004. (Cited on page 44.)

[LPSV06] Joey Sik Chun Lam, Jeff Z. Pan, Derek Sleeman, and Wamberto Vas-

concelos. A fine-grained approach to resolving unsatisfiable ontologies.

In Proceedings of the 5th IEEE/WIC/ACM International Conference

on Web Intelligence (WI-06). Springer, 2006. (Cited on pages 14, 19,

and 53.)

[LS08] Harris Lin and Evren Sirin. Pellint - a performance lint tool for Pellet.

In Proceedings of the 5th International Workshop on OWL: Experi-

ences and Directions (OWLED-08EU), 2008. (Cited on page 44.)

[Lut02] Carsten Lutz. The Complexity of Description Logics with Concrete

Domains. PhD thesis, RWTH Aachen, 2002. (Cited on page 116.)

[LvHN05] Thorsten Liebig, Friedrich von Henke, and Olaf Noppens. Expla-

nation support for OWL authoring. In International Symposium

on Explanation-aware Computing (ExaCt 2005), pages 86–93, 2005.

(Cited on pages 44 and 45.)

[MB95] Deborah L. McGuinness and Alex Borgida. Explaining subsumption

in description logics. In Proceedings of the 14th International Joint

Conference on Artificial Intelligence (IJCAI-95), pages 816–821, 1995.

(Cited on pages 44 and 62.)

[McG96] Deborah L. McGuinness. Explaining reasoning in description logics.

PhD thesis, Rutgers University, 1996. (Cited on pages 17 and 44.)

[MHL07] Yue Ma, Pascal Hitzler, and Zuoquan Lin. Algorithms for paracon-

sistent reasoning with OWL. In Proceedings of the 4th European Se-

mantic Web Conference (ESWC-07), pages 399–413, 2007. (Cited on

page 36.)

BIBLIOGRAPHY 207

[Mil56] George A. Miller. The magical number seven, plus or minus two:

some limits on our capacity for processing information. Psychological

Review, 63(2):81–97, 1956. (Cited on pages 148 and 149.)

[Min74] Marvin Minsky. A framework for representing knowledge. MIT-AI

Laboratory Memo 306, 1974. (Cited on page 28.)

[MIS12] Eleni Mikroyannidi, Luigi Iannone, and Robert Stevens. Rio: The

regularities inspector for ontologies plugin for protégé-4. In ICBO,

2012. (Cited on page 43.)

[MLBP06] Thomas Meyer, Kevin Lee, Richard Booth, and Jeff Z. Pan. Finding

maximally satisfiable terminologies for the description logic ALC. In

Proceedings of the 21st National Conference on Artificial Intelligence

(AAAI-06), pages 269–274, 2006. (Cited on pages 47 and 50.)

[MLP06] Thomas Meyer, Kevin Lee, and Jeff Pan. Computing maximally sat-

isfiable terminologies for the description logic ALC with cyclic defini-

tions. 2006. (Cited on page 47.)

[MMIS12] Eleni Mikroyannidi, Nor Azlinayati Abdul Manaf, Luigi Iannone, and

Robert Stevens. Analysing syntactic regularities in ontologies. In

Proceedings of the 9th International Workshop on OWL: Experiences

and Directions (OWLED-12), 2012. (Cited on pages 39 and 43.)

[MMV10] Thomas Meyer, Kodylan Moodley, and Ivan Varzinczak. First steps in

the computation of root justifications. In Proc. of ARCOE-10, 2010.

(Cited on pages 61 and 188.)

[MSR11] Eleni Mikroyannidi, Robert Stevens, and Alan L. Rector. Identifying

ontology design styles with metrics. In 7th International Workshop on

Semantic Web Enabled Software Engineering (SWESE), 2011. (Cited

on pages 88 and 192.)

[NBH+06] Stephen E. Newstead, Peter Brandon, Simon J. Handley, Ian Dennis,

and Jonathan St. B. T. Evans. Predicting the difficulty of complex

logical reasoning problems. Psychology Press, 12:62–90, 2006. (Cited

on page 142.)

208 BIBLIOGRAPHY

[Neb90] Bernhard Nebel. Reasoning and Revision in Hybrid Representa-

tion Systems, volume 422 of Lecture Notes in Artificial Intelligence.

Springer-Verlag, 1990. (Cited on page 46.)

[NPPW12a] Tu Anh T. Nguyen, Richard Power, Paul Piwek, and Sandra

Williams. Measuring the understandability of deduction rules for

OWL. In Proc. of WoDOOM-12, 2012. (Cited on pages 14, 58, 122,

and 140.)

[NPPW12b] Tu Anh T. Nguyen, Richard Power, Paul Piwek, and Sandra

Williams. Planning accessible explanations for entailments in owl on-

tologies. In Proc. of INLG, pages 110–114, 2012. (Cited on page 57.)

[NRG12] Nadeschda Nikitina, Sebastian Rudolph, and Birte Glimm. Interactive

ontology revision. Journal of Web Semantics, 12:118–130, 2012. (Cited

on pages 62, 63, 83, and 144.)

[NSW+09] Natalya F. Noy, Nigam H. Shah, Patricia L. Whetzel, Benjamin Dai,

Michael Dorf, Nicholas Griffith, Clement Jonquet, Daniel L. Rubin,

Margaret-Anne Storey, Christopher G. Chute, and Mark A. Musen.

Bioportal: ontologies and integrated data resources at the click of

a mouse. Nucleic Acids Research, 37:W170–W173, 2009. (Cited on

page 39.)

[owl09] OWL 2 profiles. http://www.w3.org/TR/owl2-profiles/, 2009.

(Cited on page 38.)

[PS10] Rafael Peñaloza and Baris Sertkaya. Complexity of axiom pinpoint-

ing in the DL-Lite family of description logics. In Proceedings of the

19th European Conference on Artificial Intelligence (ECAI-10), 2010.

(Cited on page 47.)

[PSK05] Bijan Parsia, Evren Sirin, and Aditya Kalyanpur. Debugging OWL

ontologies. In Proceedings of the 14th International World Wide Web

Conference (WWW-05), pages 633–640, 2005. (Cited on page 20.)

[PSMB+91] Peter F. Patel-Schneider, Deborah L. McGuinness, Ronald J. Brach-

man, Lori Alperin Resnick, and Alexander Borgida. The CLASSIC

http://www.w3.org/TR/owl2-profiles/

BIBLIOGRAPHY 209

knowledge representation system: Guiding principles and implemen-

tation rationale. SIGART Bulletin, 2(3):108–113, 1991. (Cited on

page 44.)

[Qui52] Willard Van Orman Quine. The problem of simplifying truth func-

tions. The American Mathematical Monthly, 59(8):521–531, 1952.

(Cited on page 78.)

[Qui59] Willard Van Orman Quine. On cores and prime implicants of truth

functions. The American Mathematical Monthly, 66(9):755–760, 1959.

(Cited on page 78.)

[RCVB09] Catherine Roussey, Oscar Corcho, and Luis Manuel Vilches-Blázquez.

A catalogue of OWL ontology antipatterns. In Proceedings of the 5th

International Conference on Knowledge Capture (K-CAP-09), pages

205–206, 2009. (Cited on pages 41, 42, and 140.)

[RDH+04] Alan L. Rector, Nick Drummond, Matthew Horridge, Jeremy Rogers,

Holger Knublauch, Robert Stevens, Hai Wang, and Chris Wroe. Owl

pizzas: Practical experience of teaching owl-dl: Common errors &

common patterns. pages 63–81, 2004. (Cited on page 41.)

[Rei87] Raymond Reiter. A theory of diagnosis from first principles. Artificial

Intelligence, 32(1):57–95, 1987. (Cited on pages 51 and 104.)

[RMC12] Mariano Rodriguez-Muro and Diego Calvanese. Quest, an OWL 2

QL reasoner for ontology-based data access. In Proceedings of the

9th International Workshop on OWL: Experiences and Directions

(OWLED-12), 2012. (Cited on page 38.)

[RN03] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern

Approach. Pearson Education, 2003. (Cited on page 17.)

[RSFF12] Patrick Rodler, Kostyantyn M. Shchekotykhin, Philipp Fleiss, and

Gerhard Friedrich. RIO: Minimizing user interaction in ontology de-

bugging. CoRR, abs/1209.3734, 2012. (Cited on page 63.)

[Rud87] Piotr Rudnicki. Obvious inferences. Journal of Automated Reasoning,

3(4):383–393, 1987. (Cited on page 62.)

210 BIBLIOGRAPHY

[SC03] Stefan Schlobach and Ronald Cornet. Non-standard reasoning services

for the debugging of description logic terminologies. In Proceedings

of the 18th International Joint Conference on Artificial Intelligence

(IJCAI-03), pages 355–362, 2003. (Cited on pages 13, 45, 50, and 146.)

[Sch05a] Stefan Schlobach. Debugging and semantic clarification by pinpoint-

ing. In Proceedings of the 2nd European Semantic Web Conference

(ESWC-05), pages 226–240, 2005. (Cited on pages 42, 61, and 105.)

[Sch05b] Stefan Schlobach. Diagnosing terminologies. In Proceedings of the

20th National Conference on Artificial Intelligence (AAAI-05), pages

670–675, 2005. (Cited on pages 46 and 51.)

[Sch11] Thomas Scharrenbach. End-User Assisted Ontology Evolution in Un-

certain Domains. PhD thesis, University of Zurich, Faculty of Eco-

nomics, 2011. (Cited on page 88.)

[SFJ08] Kostyantyn Shchekotykhin, Gerhard Friedrich, and Dietmar Jannach.

On computing minimal conflicts for ontology debugging. In Proceed-

ings of the Workshop on Model-Based Systems (MBS-08), 2008. (Cited

on page 51.)

[SFRF12] Kostyantyn M. Shchekotykhin, Philipp Fleiss, Patrick Rodler, and

Gerhard Friedrich. Direct computation of diagnoses for ontology de-

bugging. CoRR, abs/1209.0997, 2012. (Cited on pages 63 and 83.)

[SHCvH07] Stefan Schlobach, Zhisheng Huang, Ronald Cornet, and Frank van

Harmelen. Debugging incoherent terminologies. Journal of Automated

Reasoning, 39(3):317–349, 2007. (Cited on page 45.)

[SMH08] Rob Shearer, Boris Motik, and Ian Horrocks. HermiT: A highly-

efficient OWL reasoner. In Proceedings of the 5th International Work-

shop on OWL: Experiences and Directions (OWLED-08EU), 2008.

(Cited on page 37.)

[Sow87] John F. Sowa. Semantic networks. In S. C. Shapiro, editor, Ency-

clopedia of Artificial Intelligence 2. Journal of Web Semantics, 1987.

(Cited on page 28.)

BIBLIOGRAPHY 211

[SPC+07] Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur,

and Yarden Katz. Pellet: A practical OWL-DL reasoner. Journal of

Web Semantics, 5(2):51–53, 2007. (Cited on page 37.)

[SQJH08] Boontawee Suntisrivaraporn, Guilin Qi, Qiu Ji, and Peter Haase. A

modularization-based approach to finding all justifications for OWL

DL entailments. In Proceedings of the 3rd Asian Semantic Web

Conference (ASWC-08), volume 5367, pages 1–15, 2008. (Cited on

page 52.)

[SS91] Manfred Schmidt-Schauß and Gert Smolka. Attributive concept de-

scriptions with complements. Artificial Intelligence, 48(1):1–26, 1991.

(Cited on page 29.)

[SSZ09] Ulrike Sattler, Thomas Schneider, and Michael Zakharyaschev. Which

kind of module should I extract? In Proceedings of the 22nd Inter-

national Workshop on Description Logics (DL-09), 2009. (Cited on

page 51.)

[ST99] Ron Shamir and Dekel Tsur. Faster subtree isomorphism. Journal of

Algorithms, 33(2):267–280, 1999. (Cited on page 127.)

[Sun08] Boontawee Suntisrivaraporn. Module extraction and incremental clas-

sification: A pragmatic approach for EL+ ontologies. In Proceedings of

the 5th European Semantic Web Conference (ESWC-08), pages 230–

244, 2008. (Cited on pages 46 and 52.)

[Sun09] Boontawee Suntisrivaraporn. Polynomial-Time Reasoning Support for

Design and Maintenance of Large-Scale Biomedical Ontologies. PhD

thesis, Technische Universität Dresden, 2009. (Cited on page 153.)

[TAM+05] Samir Tartir, I. Budak Arpinar, Michael Moore, Amith P. Sheth,

and Boanerges Aleman-Meza. OntoQA: Metric-based ontology quality

analysis. In Proc. of KADASH-05, 2005. (Cited on page 23.)

[TH06] Dmitry Tsarkov and Ian Horrocks. FaCT++ description logic rea-

soner: System description. In Proceedings of the 3rd International

Joint Conference on Automated Reasoning (IJCAR-06), 2006. (Cited

on page 37.)

212 BIBLIOGRAPHY

[Tuf] Edward Tufte. The magical number seven, plus or minus two:

Not relevant for design. http://www.edwardtufte.com/bboard/

q-and-a-fetch-msg?msg_id=0000U6. (Cited on page 149.)

[W3C04a] W3C. RDF vocabulary description language 1.0: RDF schema.

http://www.w3.org/TR/rdf-schema/, 2004. (Cited on page 36.)

[W3C04b] W3C. Resource description framework (RDF): Concepts and ab-

stract syntax. http://www.w3.org/TR/rdf-concepts/, 2004. (Cited

on page 36.)

[W3C09] W3C. OWL 2 web ontology language. http://www.w3.org/TR/owl2-

overview/, 2009. (Cited on pages 13 and 36.)

[W3C12] W3C. OWL 2 web ontology language RDF-based semantics (second

edition). http://www.w3.org/TR/owl2-rdf-based-semantics/, 2012.

(Cited on page 37.)

[WP06] Taowei David Wang and Bijan Parsia. CropCircles: Topology sensi-

tive visualization of OWL class hierarchies. In Proceedings of the 5th

International Semantic Web Conference (ISWC-06), pages 695–708,

2006. (Cited on pages 64 and 191.)

[WPH06] Taowei David Wang, Bijan Parsia, and James Hendler. A survey of

the web ontology landscape. In Proceedings of the 5th International

Semantic Web Conference (ISWC-06), pages 682–694, 2006. (Cited

on page 16.)

http://www.edwardtufte.com/bboard/q-and-a-fetch-msg?msg_id=0000U6
http://www.edwardtufte.com/bboard/q-and-a-fetch-msg?msg_id=0000U6

Appendix A

Ontologies in the test corpus

O
N

T
E

N
C

J
U

C
D

L
E

L
Q

L
R

L
C

L
O

P
D

P
IN

D
T

A
X

D
L

a
d

v
er

se
ev

en
t

re
p

o
rt

in
g

3
9

0
3

7
7

7
2
7
5

5
9

4
2
5

2
5
3
7

S
R

O
IQ

a
m

in
o

a
ci

d
1
1
2

2
6
5
2

0
3

7
7

7
4
6

5
1

0
1

4
7
7

A
L

C
F

b
a
si

c
fo

rm
a
l

o
n
to

lo
g
y

1
1
6

4
5
9

0
3

7
7

7
3
9

0
0

0
0

9
5

A
L

C

b
a
si

c
v
er

te
b

ra
te

a
n

a
to

m
y

2
9
2

7
1
8
6

0
3

7
7

7
9
9

7
4

0
0

0
3
8
6

S
H

IF

b
io

a
ss

a
y

1
6
7

3
0
7

0
7

7
7

7
1
2
9
3

1
2
0

1
3

4
5

4
1
7
9
1

S
R

O
IQ

b
io

lo
g
ic

a
l

im
a
g
in

g
m

et
h

o
d

s
9
5

3
1
1

0
3

3
7

7
5
1
7

1
0

0
0

5
4
8

E
L

+
+

b
io

p
a
x

1
0

1
2

0
7

7
7

7
7
0

5
5

4
1

0
5

3
9
9

S
H

IN

b
le

ed
in

g
h

is
to

ry
p

h
en

o
ty

p
e

4
2
1

1
3
1
3

0
3

7
7

7
5
4
4

3
3

5
0

2
1
9
2
5

A
L

C
IF

b
o
n

e
d

y
sp

la
si

a
8
0
0

1
1
1
4

0
3

7
7

7
1
3
8
3
9

2
8

6
9

3
4
4
6
8
3

S
H

IF

b
re

a
st

ca
n

ce
r

g
ra

d
in

g
1
0
9

1
0
9

0
7

7
7

7
1
3
4

5
6

2
7

1
9
3

6
1
0
3
4

S
H

O
IN

ca
n

ce
r

re
se

a
rc

h
1
0

3
7
8

0
3

7
7

7
1
7
7
0

2
4
2

1
5

6
1

8
5
5
2
2

S
R

O
IQ

ca
o

7
6
7

5
8
0
0

0
3

7
7

7
2
0
4

3
5

2
0

2
4
4
2

S
H

IQ

ce
re

a
l

p
la

n
t

g
ro

ss
a
n

a
to

m
y

2
5
0

7
2
9

0
3

3
7

7
1
1
8
1

3
0

0
0

2
0
9
1

E
L

+
+

ce
re

b
ro

te
n

d
in

o
u

s
x
a
n
th

.
1
4

1
5

0
7

7
7

7
2
9
2

2
2

1
1

2
8
2

6
1
9
7
2

A
L

C
O

IN

ch
em

ic
a
l

in
fo

rm
a
ti

o
n

1
3
2

1
9
6
2

4
3

7
7

7
5
7
9

5
9

6
2
2

9
1
2
3
0

S
H

O
IN

co
g
n

it
iv

e
a
tl

a
s

1
4
6

8
1
0

0
3

7
7

7
1
7
0
1

6
5

1
6
9
7

1
8
7
9
1

A
L

C

co
g
n

it
iv

e
p

a
ra

d
ig

m
4
0
6

4
2
5
2

0
3

7
7

7
3
5
5

4
9

4
2
2

2
6
8
2

S
H

O
IN

co
m

p
a
ra

ti
v
e

d
a
ta

a
n

a
ly

si
s

1
2
1

5
3
2

1
7

7
7

7
1
2
7

7
4

1
1

8
7

8
1
3

S
R

O
IQ

co
m

p
u

ta
ti

o
n

a
l

n
eu

ro
sc

ie
n

ce
2
0

8
6

0
3

7
7

7
2
1
4

1
0

4
1
6
5

2
1
2
4
1

A
L

C
O

I

d
en

d
ri

ti
c

ce
ll

1
4
2

1
4
3

0
3

7
7

7
1
4
8

9
0

0
0

3
1
3

A
L

C

d
ik

b
ev

id
en

ce
1
1
3

1
2
4

0
7

7
7

7
1
2
4

7
0

3
7

8
6

6
4
5

A
L

C
H

O
IN

ea
g
le

i
re

se
a
rc

h
re

so
u

rc
e

6
6
2

1
2
2
2
7

0
3

7
7

7
2
2
3
9

1
0
3

5
4

2
2

2
3
1
1
4

S
H

O
IF

el
ec

tr
o
ca

rd
io

g
ra

p
h
y

3
7

7
3

0
3

7
7

7
1
0
9
8

2
0

2
4

0
1

1
2
7
4

A
L

C
IF

em
o
ti

o
n

4
2
3

1
5
5
8

0
3

7
7

7
4
0
4

6
0

4
2
0

2
6
9
8

S
H

O
IQ

en
v
ir

o
n

m
en

t
6
9

1
3
8

0
3

3
7

7
1
5
3
8

7
0

0
0

1
8
0
7

E
L

+
+

en
zy

m
e

m
ec

h
a
n

is
m

1
9

1
0
4

0
3

7
7

7
2
6
0

3
2

1
5
0

1
9
3
1

A
L

C
R

Q

ev
id

en
ce

co
d

es
4
4
1

6
6
2

0
3

3
7

7
2
6
8

1
0

0
0

3
4
5

E
L

+
+

T
ab

le
A

.1
:

O
N

T
=

on
to

lo
gy

n
am

e,
E

N
=

#
en

ta
il
m

en
ts

,
C

J
=

#
co

m
p
le

x
ju

st
ifi

ca
ti

on
s,

U
C

=
#

u
n
sa

t.
cl

as
se

s,
D

L
/E

L
/Q

L
/R

L
=

O
W

L
2

p
ro

fi
le

,
C

L
=

#
cl

as
se

s,
O

P
=

#
ob

je
ct

p
ro

p
er

ti
es

,
D

P
=

#
d
at

a
p
ro

p
er

ti
es

,
IN

=
#

in
d
iv

id
u
al

s,
D

T
=

#
d
at

at
y
p

es
,

A
X

=
#

lo
gi

ca
l

ax
io

m
s,

D
L

=
D

L
ex

p
re

ss
iv

it
y

213

214 APPENDIX A. ONTOLOGIES IN THE TEST CORPUS
O

N
T

E
N

C
J

U
C

D
L

E
L

Q
L

R
L

C
L

O
P

D
P

IN
D

T
A

X
D

L

fa
m

il
y

h
ea

lt
h

h
is

to
ry

5
2
2

6
6
5

0
7

7
7

7
2
3
9

4
3
1

1
1
2

1
1
1
1
1

A
L

C
H

IF

fi
ss

io
n

y
ea

st
p

h
en

o
ty

p
e

7
7
0

1
0
6
3
0

0
3

3
7

7
1
5
7
1

2
0

0
0

0
2
2
5
7

E
L

+
+

g
en

e
o
n
to

lo
g
y

ex
te

n
si

o
n

3
2

6
4
2
1

0
3

3
7

7
3
2
8
4
1

6
0

0
0

6
8
7
7
7

E
L

+
+

g
en

e
re

g
u

la
ti

o
n

5
6
4

1
1
6
7

0
7

7
7

7
5
0
8

2
4

5
4

2
9
6
2

A
L

C
H

IQ

g
en

er
a
l

fo
rm

a
l

o
n
to

lo
g
y

1
6

2
1

0
3

7
7

7
4
5

4
1

0
0

0
2
1
2

S
H

IQ

h
o
st

p
a
th

o
g
en

in
te

ra
ct

io
n

s
6
6
9

4
0
5
6

0
3

7
7

7
2
7
8

3
0

0
0

0
4
0
3

S
H

I

im
g
t

4
2
3

0
3

7
7

7
2
9
2

2
3

4
0

1
2
1
1
4

S
H

IN

in
fe

ct
io

u
s

d
is

ea
se

8
2
1

7
5
7
0

0
3

7
7

7
5
0
9

4
1

0
1
9

0
1
2
4
5

S
R

O
IF

in
fo

rm
a
ti

o
n

a
rt

if
a
ct

2
1
8

1
1
4
9

0
3

7
7

7
1
1
6

3
6

1
3
3

1
3
1
4

S
H

O
IN

in
t.

cl
a
ss

.
n
u

rs
in

g
p

ra
ct

ic
e

7
6
2

8
6
3

0
3

7
7

7
3
2
9
0

3
3

0
0

0
1
1
8
9
1

S
H

IF

in
te

ra
ct

io
n

n
et

w
o
rk

2
9
3

1
0
6
3

0
3

7
7

7
9
7
8

0
0

0
0

1
0
3
4

A
L

C

k
in

et
ic

si
m

u
la

ti
o
n

a
lg

o
ri

th
m

2
0
2

2
6
1
7

0
3

7
7

7
2
2
4

9
2

0
4

7
0
6

A
L

C
R

IQ

li
p

id
6
6
5

4
7
2
4

0
3

7
7

7
7
1
6

4
6

0
0

0
2
3
7
5

A
L

C
H

IN

m
a
h

co
a
n

m
h

c
1
7
8

2
2
7
9

0
3

7
7

7
7
9
2
9

8
3

0
1

1
3
7
8
1

A
L

C
IQ

m
g
ed

8
5

1
6
1

0
7

7
7

7
2
3
7

8
1

4
5

7
1
3

5
1
4
7
8

A
L

E
O

F

n
a
n

o
p

a
rt

ic
le

4
3

6
3
3

0
3

7
7

7
1
8
1
6

5
0

8
0

2
1
6
2
6
7

S
H

IN

n
eo

m
a
rk

o
ra

l
ca

n
ce

r
5
0
5

2
3
6
5

0
3

7
7

7
3
2
5

2
6

0
0

0
3
9
9

S
H

IQ

n
eu

ra
l

el
ec

tr
o
m

a
g
n

et
ic

2
3
8

1
3
3
8

0
3

7
7

7
1
6
3
3

8
9

4
5
6

3
2
6
8
1

S
H

IQ

n
if

d
y
sf

u
n

ct
io

n
4
6
1

1
7
9
0

0
7

7
7

7
1
8
6
0

4
4

1
2

1
7
8

2
2
6
9
6

S
R

O
IF

n
m

r
in

st
ru

m
en

t
sp

ec
ifi

c
co

m
p

.
4
2
3

3
1
1
9

0
3

7
7

7
4
8
1

9
9

3
2

2
6
7
6

S
H

n
o
n

ra
n

d
o
m

.
co

n
tr

o
ll
ed

tr
ia

ls
5
3
0

2
2
7
5

5
3

7
7

7
1
5
6

4
5

3
1

3
5
0
8

A
L

C
O

F

o
.

fo
r

d
ru

g
d

is
co

v
er

y
in

v
es

ti
g
.

1
3
8

0
3

7
7

7
6
5
9

6
0

4
2
0

2
1
0
0
1

S
H

O
IN

o
.

fo
r

g
en

er
a
l

m
ed

ic
a
l

sc
ie

n
ce

7
0
9

1
4

0
3

7
7

7
1
3
3

0
0

1
9

0
2
1
6

A
L

C
O

o
.

fo
r

g
en

et
ic

in
te

rv
a
l

2
2
4

7
0

7
7

7
7

2
1
2

5
1

1
4

2
2

4
5
2
4

S
H

IN

o
.

fo
r

m
ic

ro
rn

a
ta

rg
et

p
re

d
.

8
4

1
0

3
7

3
7

3
2
0

1
6

2
0

2
4
1
5

A
L

C
I

o
.

o
f

a
d

v
er

se
ev

en
ts

o
a
e

2
2
8

6
9
9
3

0
3

7
7

7
6
5
3

2
8

0
0

0
8
0
7

S
H

I

T
ab

le
A

.1
:

O
N

T
=

on
to

lo
gy

n
am

e,
E

N
=

#
en

ta
il
m

en
ts

,
C

J
=

#
co

m
p
le

x
ju

st
ifi

ca
ti

on
s,

U
C

=
#

u
n
sa

t.
cl

as
se

s,
D

L
/E

L
/Q

L
/R

L
=

O
W

L
2

p
ro

fi
le

,
C

L
=

#
cl

as
se

s,
O

P
=

#
ob

je
ct

p
ro

p
er

ti
es

,
D

P
=

#
d
at

a
p
ro

p
er

ti
es

,
IN

=
#

in
d
iv

id
u
al

s,
D

T
=

#
d
at

at
y
p

es
,

A
X

=
#

lo
gi

ca
l

ax
io

m
s,

D
L

=
D

L
ex

p
re

ss
iv

it
y

215

O
N

T
E

N
C

J
U

C
D

L
E

L
Q

L
R

L
C

L
O

P
D

P
IN

D
T

A
X

D
L

o
.

o
f

cl
in

ic
a
l

re
se

a
rc

h
o
cr

e
2
0
8

1
1
6
3

0
7

7
7

7
1
3

1
3

2
0

1
5
1

A
L

C
H

IF

o
.

o
f

ex
p

.
v
a
ri

a
b

le
s

a
n

d
v
a
lu

es
1

1
1
4
7

0
3

7
7

7
3
9

2
2

2
0

1
4
7

5
4
8
7

A
L

C
O

o
.

o
f

p
h
y
si

cs
fo

r
b

io
lo

g
y

1
0
0

9
8
3
2

0
3

7
7

7
2
9
7

5
3

0
1

4
4
7

A
L

C
H

IQ

o
b

o
e

3
6

7
8
0

0
3

7
7

7
4
0

3
2

1
0

0
4

2
6
5

S
R

IQ

o
b

o
e

sb
c

1
2

4
0

3
7

7
7

6
2
9

2
6

6
0

4
1
3
5
9

S
R

IQ

o
n
to

lo
g
ia

p
ro

j
a
lt

er
n

a
ti

v
a

4
7
4
7

0
7

7
7

7
2
2

2
0

6
8

2
5

2
8
8

A
L

U
IN

+

p
a
ra

si
te

ex
p

er
im

en
t

o
.

1
8
7

4
0
6
4

0
3

7
7

7
1
4
4

2
6

1
9

2
7

5
3
4
8

A
L

C
H

Q

p
a
th

o
g
en

tr
a
n

sm
is

si
o
n

1
1

0
3

3
3

3
2
5

0
0

0
0

2
4

E
L

+
+

p
h

a
rm

a
co

v
ig

il
a
n

ce
1
4
0

1
4
0

0
3

3
3

3
3
3

0
0

0
0

2
4

E
L

+
+

p
h

en
o
ty

p
ic

q
u

a
li
ty

1
8

4
4

0
3

3
7

7
1
4
0
4

1
2

0
0

0
1
8
8
4

E
L

+
+

p
h

en
x

to
o
lk

it
2
9
5

1
3
5
4

0
3

3
3

3
4

0
0

2
0

5
E

L
+

+

p
la

n
t

en
v
ir

o
n

.
co

n
d

it
io

n
s

1
5

4
5

0
3

3
3

3
4
8
3

0
0

0
0

4
9
9

E
L

+
+

p
la

n
t

g
ro

w
th

a
n

d
d

ev
.

st
a
g
e

1
0
7

3
7
9

0
3

3
7

7
2
3
9

1
0

0
0

2
4
0

E
L

+
+

p
ro

te
in

m
o
d

ifi
ca

ti
o
n

1
6
5

3
7
4

0
3

3
7

7
1
3
1
3

4
0

0
0

1
9
8
6

E
L

+
+

sm
o
k
in

g
b

eh
a
v
io

r
ri

sk
2
9
0

1
9
7
1

0
3

7
7

7
1
2
1

1
2

0
0

0
1
8
5

A
L

E
I+

sn
p

1
8
2

9
3
5

0
7

7
7

7
2
2
5
8

1
0
1

1
2

4
3

1
1
1
9
9

S
H

O
IN

so
la

n
a
ce

a
e

p
h

en
o
ty

p
e

5
8
4

3
3
6

0
3

3
3

7
3
8
0

1
0

0
0

4
1
1

E
L

+
+

so
y
o
n
to

lo
g
y

6
4
5

9
4
0

0
3

3
3

3
1
8
1
7

0
0

0
0

1
8
1
6

E
L

+
+

st
u

d
en

t
h

ea
lt

h
re

co
rd

1
9
6

2
5
5

0
3

7
7

7
3
4
4

3
6

2
0

2
4
1
8

A
L

H

sy
n

a
p

se
5
0
8

1
0
6
2
4

0
3

7
7

3
6
4
6
4

1
0

0
0

6
7
4
3

A
L

F

te
le

o
st

ta
x
o
n

o
m

y
2

4
0

3
3

3
3

3
8
6
4
0

0
0

0
0

3
8
6
3
9

E
L

+
+

tr
a
n

sl
a
ti

o
n

a
l

m
ed

ic
in

e
2
1
6

1
6
9
7

0
3

7
7

7
3
0
0

3
3

6
1
5

6
5
0
2

S
R

IN

v
er

te
b

ra
te

a
n

a
to

m
y

5
2
8

2
8
6
7

0
3

3
7

7
2
3
0

1
3

0
0

0
3
9
2

E
L

+
+

v
iv

o
1
6
8

9
0
7

0
3

7
7

7
2
1
7

2
2
0

1
7
8

3
8
8

8
1
7
1
2

A
L

E
H

IN
+

ze
b

ra
fi

sh
a
n

a
t.

a
n

d
d

ev
.

2
0

3
2

0
3

3
7

7
2
7
4
0

5
0

0
0

1
0
4
9
5

E
L

+
+

T
ab

le
A

.1
:

O
N

T
=

on
to

lo
gy

n
am

e,
E

N
=

#
en

ta
il
m

en
ts

,
C

J
=

#
co

m
p
le

x
ju

st
ifi

ca
ti

on
s,

U
C

=
#

u
n
sa

t.
cl

as
se

s,
D

L
/E

L
/Q

L
/R

L
=

O
W

L
2

p
ro

fi
le

,
C

L
=

#
cl

as
se

s,
O

P
=

#
ob

je
ct

p
ro

p
er

ti
es

,
D

P
=

#
d
at

a
p
ro

p
er

ti
es

,
IN

=
#

in
d
iv

id
u
al

s,
D

T
=

#
d
at

at
y
p

es
,

A
X

=
#

lo
gi

ca
l

ax
io

m
s,

D
L

=
D

L
ex

p
re

ss
iv

it
y

	Abstract
	Declaration
	Copyright
	Acknowledgements
	Introduction
	Errors in OWL ontologies
	Justification based debugging support
	Understanding justifications
	Justificatory structure
	Beyond debugging

	Research objectives
	Contributions
	Thesis structure

	Background and related work
	Description logic knowledge bases
	DL syntax and semantics
	Standard reasoning services
	The Web Ontology Language OWL

	Errors in OWL ontologies
	Logical errors
	Non-logical errors
	Debugging ontologies

	Justifications for entailments of ontologies
	Justification based repair
	Computing justifications
	Understanding individual justifications
	Understanding multiple justifications

	Alternative approaches to debugging
	Proofs
	Ontology revision
	Direct computation of diagnoses
	OntoClean
	Ontology comprehension

	Summary and conclusions

	Defining finite entailment sets
	Design decisions for finite entailment sets
	Tautologies
	Asserted and inferred axioms
	Transitivity
	Equivalent classes
	Strict and non-strict subsumptions
	Equivalence to top and bottom
	Axiom and expression types
	Dealing with ontology imports

	A notation for finite entailment sets
	Introducing the notation
	Axioms and expressions
	Wanted and unwanted entailments
	Sample entailment sets

	Entailments in OWL applications
	Inferred ontology generation in the OWL API
	Presenting entailments to end-users
	Ontology publishing
	Metrics and analytical applications
	Imported and native entailments in BioPortal

	Summary and conclusions

	The justificatory structure of OWL ontologies
	Categories of justifications and entailments
	Self-justifications and self-supporting entailments
	Atomic subsumption chains
	Complex justifications
	Categorising entailments and ontologies

	Representing justifications as j-graphs
	J-graph definition
	J-graph generation

	Justificatory structure
	Axiom properties
	Properties of justifications
	Relations between justifications

	Summary and conclusions

	Justification isomorphism
	Isomorphism
	Subexpression-isomorphism
	Representing equivalence classes

	Lemma-isomorphism
	Restrictions on lemmatisations
	Lemmatisations and obvious steps
	Non-transitivity

	Equivalence and superfluity
	Implementing an isomorphism checker
	Algorithm and implementation
	Optimisations
	Limitations due to syntactical differences
	Extending the j-graph

	Summary and conclusions

	Coping strategies
	Debugging problems
	Defining debugging problems
	Justification encounters

	Measuring effort
	The complexity of individual justifications
	A model for user effort

	Coping strategies
	Characterising justification sets
	Justification overlap
	Isomorphism relations
	Combining isomorphism and overlap

	Summary and conclusions

	A survey of justificatory structure
	The BioPortal corpus
	Properties of the corpus
	Justification corpus preparation

	Results of the BioPortal survey
	Entailment types
	Occurrence of multiple justifications
	Justification overlap
	Justification isomorphism

	Discussion
	Justification types and frequency
	Overlaps
	Isomorphism
	Limitations

	Summary and conclusions

	Conclusions
	Summary of contributions
	Design decisions for finite entailment sets
	Justificatory structure and justification isomorphism
	Reducing user effort
	Experimental results

	Significance of results
	Future directions

	Ontologies in the test corpus

