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Abstract

In this paper, we introduce a 3-D human-body tracker capable of handling fast

and complex motions in real-time. We build upon the Monte-Carlo Bayesian frame-

work, and propose novel prediction and evaluation methods improving the robust-

ness and efficiency of the tracker. The parameter space, augmented with first order

derivatives, is automatically partitioned into Gaussian clusters each representing

an elementary motion: hypothesis propagation inside each cluster is therefore accu-

rate and efficient. The transitions between clusters use the predictions of a variable

length Markov model which can explain high-level behaviours over a long history.

Using Monte-Carlo methods, evaluation of model candidates is critical for both

speed and robustness. We present a new evaluation scheme based on hierarchical

3-D reconstruction and blob-fitting, where appearance models and image evidences

are represented by mixtures of Gaussian blobs. Our tracker is also capable of auto-

matic initialisation and self-recovery. We demonstrate the application of our tracker

to long video sequences exhibiting rapid and diverse movements.

Key words: Real-Time, Human-Body Tracking, Variable Length Markov Models,

Bayesian, Monte-Carlo, Volumetric Reconstruction, Visual-Hull, Blobs, Entropy,

Kullback-Leibler
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1 Introduction

Full human-body tracking has a wide and promising range of applications.

Movements and gestures are essential vehicles of communication that can be

used to interact with computers in a more natural and expressive way than

current computer-centred devices. The domain of computer interfaces could

be reshaped by gesture-based interactions, allowing users to interact freely

with virtual objects. Video games are an obvious example of application which

would greatly benefit from body tracking to enhance the immersion of players.

Likewise, tracking motions can be used to control realistic avatars in virtual

environments.

With motion analysis, computers could assess the recovery of patients and

help sportsmen improve their performances. Computers could also become

virtual teachers in activities such as dancing or sign-language, capable of both

instructing students and correcting their errors. Last but not the least, the film

industry has been pioneering the need for motion capture since the emergence

of realistic computer graphics. The capture and re-targeting of the movements

of actors towards animated characters is a very important application, used

not only in films, but also in video games and in live broadcasts.

Tracking people is difficult because of the high dimensionality of full body kine-

matics, fast movements and frequent self-occlusions. Moreover, loose cloth-

∗ Corresponding author.
Email address: a.galata@cs.man.ac.uk (Aphrodite Galata).
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ing, shadows or camera noise may further complicate the inference problem.

Despite a very high level of interest in the computer-vision community, the

general human-body tracking problem remains largely unsolved and current

markerless trackers still cannot compete in accuracy and robustness with com-

mercial motion capture systems.

In this paper, we present a full body tracker based on a Monte-Carlo Bayesian

framework. Real-time tracking of challenging human motions is made possible

by novel prediction and evaluation schemes. We use a high-order temporal

model (which we learn automatically) for propagating particles. Our novel

prediction scheme is based on Variable length Markov models (VLMMs) that

can efficiently encode local dynamics as well as long temporal dependencies.

Our novel evaluation scheme is based on volumetric reconstruction and blob-

fitting and allows a large number of model candidates to be tested in a very

efficient manner. The tracker is also capable of self-initialisation and recovery

from tracking failures by using the motion prototypes as new starting points.

After reviewing related work and motivating our approach (Section 2), we in-

troduce in Section 3 our human body model and the Monte-Carlo Bayesian

tracking framework. In Section 4, we show how complex movements are de-

composed into clusters of elementary motions, and how high-order behaviours

are learnt over these clusters. A predictive scheme which utilises the learnt

behaviour model to efficiently propagate particles within the Bayesian frame-

work is presented in Section 5. In Section 6, we introduce a method for fast

evaluation of the particles, and finally, Sections 7 and 8 respectively present

some results and discussion.
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2 Related Work

Tracking is a global optimisation process. Because of kinematic constraints,

even relatively independent limbs must compete to fit onto their own detected

features (image evidence). Hierarchical methods [6,28] fit the torso in a first

stage and then optimise each limb independently. The parameter space is then

partitioned, which drastically reduces the complexity of inference. However,

problems occur when the torso cannot accurately be located on its own. This

can be the case in human body tracking because of self-occlusions, or simply

measurement noise.

One approach to tracking as a global optimisation problem is to start from

image data, trying to detect features independently in each frame. The con-

figuration of the model is then recovered from the “bottom-up” [30], using

nonparametric belief propagation techniques. Since the feature detectors will

inevitably return many false positives, the configuration of the model is glob-

ally optimised by iterating belief propagation in a graph with strong kinematic

and temporal priors [35]. While these techniques are theoretically appealing,

they rely on the detection of specific features, which is not always possible

because of occlusions or loose clothing. Additionally, the computational com-

plexity of the method is currently too high for real-time applications.

Alternatively, one can use the body configuration in the current frame and a

dynamic model to predict the next configuration candidates (motion prior).

These candidates are then tested against image evidence to find the most likely

configuration. Tracking with particle filters works along those lines, approxi-

mating the posterior distribution by a set of representative elements, and up-
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dating these particles with Monte Carlo importance sampling [20]. However, in

full body tracking problems, the dimensionality of the parameter space is far

too high to represent accurately the true posterior distribution everywhere.

Instead, particles tend to concentrate in only a few of the most significant

modes, leading to possible failures when too few particles are propagated to

represent a new peak. A common solution is to reposition particles based on

some importance function. Sullivan and Rittscher [37] and Sminchisescu and

Triggs [36] used a deterministic local search to localise the set of particles

around significant maxima of the importance function. Deutscher et al. pro-

posed annealed particle filtering [13] which is a coarse to fine approach that

can help focusing the particles on the global maxima of the posterior, at the

price of multiple iterations per frame. Alternatively, sophisticated motion prior

models have been proposed [34], trying to predict the subject’s dynamics and

propagating particles around the next expected peaks of the posterior.

Prediction is hard because human dynamics are complex and highly non-

linear. Models of linear dynamics such as Kalman filters suffice to predict

simple linear motions, but for faster, more complex non-linear movements, a

better predictive model is required. Projecting the parameters of the model

onto a lower dimensionality manifold [21] encodes implicitly the correlations

between parameters, and makes linear prediction methods efficient again. Such

methods have shown to predict successfully the walking cycle using Autore-

gressive Models [1]. However, problems reappear with long sequences of com-

plex motions, where the parameters are not sufficiently correlated to give good

predictions under projection.

The main performance bottleneck when using Monte-Carlo methods is the

evaluation of the likelihood function. For each particle, it usually involves

5
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generating a 3-D appearance model from the particle state, projecting this

appearance model onto the available image planes, and finally comparing it

with some extracted image features such as silhouettes or edges. Various sim-

plifications and optimisations [7] have been attempted, but none of them were

able to make full use of image information in real-time.

Tracking using a particle filter in a Bayesian framework has a number of ad-

vantages when compared to earlier systems [31,32,18] that perform tracking

through the optimization of a cost function. The formal statistical foundations

of a bayesian approach ensure that the estimate of the current pose is opti-

mal given all available observations. When confronted with ambiguous image

evidences, a particle-filter based tracker naturally tracks multiple hypothesis

until disambiguation. Finally, particle filters are very flexible and scalable: the

number of particles can be adjusted to match the requirements of the system,

and the computation is easily parallelized over multi-core CPUs, or different

computers.

In this work we address two of the pitfalls commonly associated with particle

filters, namely the high computational cost and the lack of recovery process.

We also show that robustness and accuracy benefit from the predictions of a

learnt high-order dynamic model.

3 Tracking Framework

In this section we describe the parametrisation of the human body model as

well as the features we use to learn the predictive model that will constrain

the search within the Bayesian tracking framework.
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3.1 Kinematic Tree and Constraints

The model of the human body is based on a kinematic tree consisting of 14

segments, as seen in Figure 1. Each pose is represented by a 25-dimensional

vector Ct which consists of the joint angles, as well as the position and orien-

tation of the root of the kinematic tree.

Constraints are placed on joint rotations (expressed as Euler angles) in the

form of bounding values. Redundant configurations and singularities are elimi-

nated by limiting each joint to two degrees of freedom. The constraints restrict

the number of impossible poses, but are insufficient to capture the complex-

ity of human morphological constraints. More advanced constraints schemes

have been proposed [24,12]. In our case, however, a high level behaviour model

learnt from training sets of 3-D human motions (e.g., joint angles over time)

will implicitly play the same role.

3.2 Feature space representation

In order to learn a concise probabilistic model of 3-D human motion, we need

to choose an appropriate feature space. For each body pose, we define a cor-

responding feature vector Xt = (xt, ẋt) consisting of the joint angle vector xt

and its first derivative ẋt. Global position and orientation are omitted from the

chosen feature representation as we do not wish the learnt behaviour model

to be sensitive to them. The inclusion of derivatives helps resolve ambiguities

in configuration space. Moreover, it facilitates the use of models in performing

generative tasks using local dynamics (see Section 5.2).

7
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Human body behaviour may be viewed as a smooth trajectory within the fea-

ture space that is sampled at frame rate, generating a sequence of feature vec-

tors Xt. Each sequence describes the temporal evolution of human body poses,

augmented by the first derivatives of the joint angles: {X1, X2, . . . , Xm}.

3.3 Bayesian Tracking Framework

Using Bayes’ rule, the filtered probability of a model configuration Ct given

all available measurements Zt = {z1, z2, . . . , zt} up to time t is:

P (Ct|Zt)︸ ︷︷ ︸
Posterior

= κ.P (zt|Ct)︸ ︷︷ ︸
Likelihood

.
∫
P (Ct|Ct−1)︸ ︷︷ ︸
Motion Prior

.P (Ct−1|Zt−1)︸ ︷︷ ︸
Previous posterior

dCt−1 (1)

where κ = 1
P (zt|Zt−1)

is a normalising constant. The posterior distribution is

approximated by a set of discrete particles, each representing a body configu-

ration, as illustrated by Figure 1.

The whole set of particles is resampled at each frame using the Sample Im-

portance Resampling (SIR) algorithm [20], which prevents sample impover-

ishment, and has a linear complexity with respect to the number of particles.

While the distribution of the posterior may well be multimodal, the tracked

position at each frame is defined as the global maximum of the posterior (ap-

proximated by the particle with highest weight).

In Sections 4 and 5, we shall describe a behaviour-based motion prior using

VLMMs for prediction. The choice of a VLMM as a mathematical framework

for modelling complex non-linear human activities is based on its ability to

capture dependencies at variable temporal scales in a simple and efficient

manner. Unlike previous work [26,23,8,29] that use first order dynamic models
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for prediction, our motion prior is a high-order predictive model. The size and

complexity of our model is automatically learnt from the training data. We also

present a fast way of evaluating the likelihood using volumetric reconstruction

and blob-fitting in Section 6.

4 Learning Dynamics

4.1 Clustering the Feature Space

Due to the complexity of human dynamics, we break down complex behaviours

into elementary movements for which local dynamic models are easier to infer.

The problem is then to automatically find, isolate and model these elementary

movements from the training data. We achieve this by clustering the feature

space into Gaussian clusters using a variant of the EM algorithm proposed by

Figueiredo and Jain [14]. Their proposed method automatically addresses the

main pitfalls of traditional EM, that is, the delicate initialisation, the arbitrary

choice of the number of components, and the possibility of singularities. Body

configurations sampled from a few clusters of ballet-dancing data are shown

in Figure 2.

4.2 Learning High-Level Behaviour with VLMMs

Complex human activities such as dancing (or even simpler ones such as walk-

ing) can be viewed as a sequence of primitive movements with a high level

structure controlling the temporal ordering.

9
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By incorporating probabilistic knowledge of the underlying behavioural struc-

ture in the way we propagate our particles, we can explore only the plausible

directions of the parameter space. Accurate predictions can drastically reduce

the number of required particles. An informed predictive model is also critical

for robustness, as poor image evidence can then be disambiguated. A suitable

way to obtain such knowledge is variable length Markov models (VLMMs) [33].

Variable length Markov models deal with a class of random processes in

which the memory length varies, in contrast to an n-th order Markov mod-

els. They have been previously used in data compression [10] and language

modelling domains [33,22]. More recently, they have been successfully intro-

duced in the computer vision domain for learning stochastic models of human

activities, with applications to behaviour recognition and behaviour synthesis

[17,16,3,15].

In this paper we extend our previous work [17,16,15] and utilise the generative

capabilities of variable length Markov models for the purpose of improving the

robustness and efficiency of object tracking systems. In particular, we integrate

annealed particle filtering with a VLMM in such a way that both continuous

movements and a discrete representation of structured behaviour are jointly

represented. The VLMM in the particle filter effectively constraints the space

of plausible body postures and body posture transitions for specific activities.

The advantage of VLMMs over a fixed memory Markov model is their ability

to locally optimise the length of memory required for prediction. This results in

a more flexible and efficient representation, which is particularly attractive in

cases where we need to capture higher-order temporal dependencies in some

parts of the behaviour and lower-order dependencies elsewhere. A detailed

10
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description on building and training variable length Markov models is given

by Ron et al. [33].

A VLMM can be thought of as a probabilistic finite state automaton (PFSA)

M = (Q,K, τ, γ, s), where K is a set of tokens that represent the finite alpha-

bet of the VLMM, and Q is a finite set of model states. Each state corresponds

to a string in K of length at most NM (NM ≥ 0), representing the memory for

a conditional transition of the VLMM. The transition function τ , the output

probability function γ for a particular state, and the probability distribution

s over the start states are defined as:

τ : Q×K → Q γ : Q×K → [0, 1] s : Q → [0, 1]

An illustration is given in Figure 3(a). The VLMM is a generative probabilistic

model: by traversing the model’s automaton M we can generate sequences of

the tokens in K. By using the set of Gaussian clusters as the alphabet, we

can capture the temporal ordering and space constraints associated with the

primitive movements. Consequently, traversing M will generate statistically

plausible examples of the behaviour.

Recall that we break down complex behaviours into elementary movements by

clustering the feature space into Gaussian clusters (Section 4.1). Next, for each

frame in a particular training sequence, we identify which gaussian cluster kri

the observed model configuration Xt belongs to. An image sequence is thus

represented as a sequence gaussian cluster labels. These sequences are then

used for training the VLMM.

The memory size wM and threshold ε parameters are used to control the

actual VLMM construction, depending on the nature of the training data. The

11
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choice of values for these parameters can be based on a measure of how well

the learned model describes the training data. One such measure, traditionally

used in text compression [2] and language modelling [22,25], is the model cross-

entropy rate (or model entropy) [11,25] ĤM .

In our case, given a sequence of length n of gaussian cluster labels, an estimate

of model entropy for the learnt VLMM model is given by [15]:

ĤM = −1

n

n∑
i=1

logP(kri
|qri

). (2)

where P(kri
|qri

) = γ(qri
, kri

).

Calculating the model entropy (Eq. 2) over the training data gives a measure

of how well the learned VLMM describes the training data. A good aproxi-

mation of observed behaviour is indicated by a low model entropy value. In

the general case, an increase in the value of ε will result in an increase of

the model’s entropy whereas an increase on the model’s maximum memory

wM will decrease the model entropy (however, increasing wM does not always

guarantee lower model entropy, see [22,25] and [15] for details.)

The performance of the model can then be measured by the model entropy over

the test data. A model that has achieved a good generalisation of the observed

behaviour, will have very close model entropy values over both the training

and test data. Otherwise, significantly different values indicate a model that

is overfitted to the training data and thus more training is required.

12
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5 Predictions using the Dynamic Model

Particles are accurately propagated using both the VLMM for high-level pre-

dictions and the Gaussian clusters for local dynamics. Figure 3 gives a simpli-

fied overview of this prediction scheme.

5.1 Particles Transitions Between Clusters using the learnt VLMM

The particles are augmented with their current VLMM state qt, from which

the cluster kt they belong to is easily deduced. Transitions (or jumps) between

clusters are conditional on the particle’s feature vector Xt as well as the tran-

sition probabilities γ in the VLMM. The probability of transition towards a

new Gaussian cluster kt+1 of mean µkt+1 and covariance Σkt+1 is:

P (kt+1 | Xt, qt) ∝ P (Xt | kt+1).P (kt+1 | qt)

=
1√

(2π)d
∣∣∣Σkt+1

∣∣∣ .e
− 1

2
.(Xt−µkt+1

)T ·Σ−1
kt+1

·(Xt−µkt+1
)
.γ(qt, kt+1)

(3)

At each frame, the state transition is chosen according to the above proba-

bilities for each neighbouring cluster. In practice, only a few transitions are

encoded in the VLMM, making the evaluation efficient. If the same cluster is

chosen (kt+1=kt), the particle is propagated using local dynamics, as formu-

lated in the next section. If a new cluster is selected, the particle’s parameters

are re-sampled from the new Gaussian cluster.

13
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5.2 Local Dynamics

Inside each Gaussian cluster, a new model configuration can be stochastically

predicted from the previous feature vector Xt. Since the Gaussian clusters in-

clude derivatives, the prediction effectively behaves like a second-order model.

Let us consider a Gaussian cluster of mean µ =
(

µX

µẊ

)
and covariance matrix

Σ =
(

ΣXX ΣXẊ

ΣT
XẊ

ΣẊẊ

)
. The noise vector is directly sampled from the cluster’s covari-

ance matrix with an attenuation coefficient λ, leading to the formulation:

ẋt = ẋt−1 + λ.dẋt

xt = xt−1 + ẋt + λ.dxt

with



dxt

dẋt


 ∼ N (0,Σ) (4)

The random noise vector is drawn as
(

dxt

dẋt

)
=

√
Σ ·X with X ∼ N (0, I). The

square-root of the covariance matrix is computed by performing the eigenvalue

decomposition, Σ = V ·D · V T , and taking the square root of the eigenvalues

on the diagonal of D, so that
√
Σ = V · √D · V T .

This predictive model should be understood in the context of Monte-Carlo

sampling, where noise is introduced to model uncertainty in the prediction:

the properties of the noise vector are therefore almost as important as the

dynamics themselves. The covariance matrix of the current cluster provides a

good approximation of this uncertainty, and sampling the noise vector from

the cluster itself makes propagation of uncertainty much closer to the training

data than uniform Gaussian noise. Kinematic constraints are also implicitly

encoded because particles are only propagated in valid directions of the pa-

rameter space, as learnt from the training data.

14
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To keep the behaviour model independent of the global position and orienta-

tion of the subject, the six global parameters are not modelled by the Gaussian

clusters, and are therefore propagated with uniform Gaussian noise.

6 Fast Evaluation of the Likelihood

Using the dynamic model introduced in Section 5, the particles are propagated

in the parameter space. As new observations zt become available at each new

frame, the particles are re-weighted according to the likelihood function. This

is usually done by generating an appearance model for each particle, and

comparing it to image evidence. When dealing with large amounts of particles,

the computational cost involved with this evaluation process can easily become

prohibitive.

This section introduces an efficient scheme to evaluate the particles against

image evidence, by adopting a compact common representation for both the

candidate model configurations and the current observation zt. As illustrated

by Figure 4, we first perform a hierarchical volumetric reconstruction to merge

information from all views and resolve spatial ambiguities. The data is then

summarised by fitting a mixture of Gaussian blobs, using the predictions of

the dynamic model. Finally, as a candidate appearance model is generated

for each particle, it is evaluated against the current observation. Both the

appearance model generated for the particle and the current observation are

mixtures of non-overlapping Gaussian blobs. The two mixtures are efficiently

compared using a closed form solution of their relative entropy.

15
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6.1 Volumetric Reconstruction

Our volumetric reconstruction method follows the shape-from-silhouette paradigm

where the visual-hull of the subject is defined as the maximal volume explained

by all silhouettes. Background subtraction is a central piece of all shape-from-

silhouette methods, but is often performed as a binary segmentation on each

camera view. Our contribution consists in merging silhouette extraction and

volumetric reconstruction into a single hierarchical algorithm. Our algorithm

uses robust pixel statistics on sets of pixel samples, allowing the use of un-

constrained (cluttered) environments, and improving computational efficiency

compared to previously reported reconstruction methods [9,28,4]. We also re-

cover colour information, making the reconstructed volume an appropriate

basis for tracking.

As illustrated in Figure 5, the tracking space is initially subdivided into a

coarse voxel grid (typically 16×16×16). Each voxel is successively projected

onto the available image planes, and sets of pixels are uniformly sampled from

the corresponding projected areas. In our implementation, the number of pixel

samples k is the square root of the number of pixels covered by the projected

area.

Our algorithm involves an initial stage during which a model of the background

is acquired. Background pixels are individually modelled by a full Gaussian

distribution in YUV colour-space. Shadows are handled by creating a second

Gaussian distribution for each pixel, with a mean shifted by 10% in the lu-

minance (Y) chanel. Either the shadowed or unshadowed Gaussian model can

therefore be selected by a simple test on the luminance chanel of the current

16
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pixel.

The Mahalanobis distance dM(si) between a pixel and the selected Gaussian

model follows a Chi-Square (χ2) distribution with 3 degrees of freedom (di-

mensionality of the colour-space). If all the k pixels sampled from the projected

area of a given voxel are part of the background, the sum of their Mahalanobis

distances also follows a χ2 distribution, but with 3.k degrees of freedom. We

define a classification threshold Tk(α) as:

∫ Tk(α)

0
χ2

3k(t)dt = α ⇒ P (
k∑

i=1

dM(si) ≤ Tk(α)) = α (5)

where α is the confidence level wanted for classification (in practice, we choose

α=0.99). At runtime, we approximate the thresholds Tk by fitting a second

order polynomial in k. The projected area is then classified according to Equa-

tion 6, where edges are distinguished from foreground areas using per-sample

thresholds.

if
k∑

i=1

dM(si) ≤ Tk(α)




then background

else if ∀i, dM(si) > T1(α)



then foreground

else edge

(6)

The whole voxel is discarded if it is classified as background in at least one

view, and reconstructed if classified as foreground from all views. Otherwise,

the voxel is subdivided and the algorithm is recursively applied on each oc-

tant until a maximal depth is reached. When a voxel is reconstructed, colour

information is added for each view as the mean colour of the pixel samples.

Results of reconstruction are shown in Figure 6.
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6.2 Acquiring and Generating Gaussian Blobs

A coloured Gaussian blob is fully defined by a 6-dimensional mean and a 6×6
covariance matrix. We attach such blobs to the bones of the skeletal model. A

mixture of blobs is then readily generated from any set of kinematic parameters

using forward kinematics. Blobs are generated in the local coordinate system

of each body part, therefore only four free spatial parameters need to be

retained: a single offset value which summarises the mean along the first axis

of the bone on which the blob is attached, and the three eigenvalues which

fully describe the spatial part of the covariance matrix.

The attributes of the blobs are incrementally learnt from the voxel data dur-

ing the first frames of the tracking process. Since the colour of each blob is

unimodal, clothing with multiple colours must be handled by a mixture of

blobs. Starting with a single blob for each body-part, a “split and merge” pro-

cess ensures an optimal description of the data (see Figure 7). The criterion

used to decide whether a blob should be split is the colour variance along the

main spatial axis of the blob. This measurement is obtained by projecting the

3×3 mixed covariance matrix between spatial and colour information onto the

direction of the current bone in the kinematic model, and taking the norm of

the resulting vector.

6.3 Fitting the Gaussian Blobs onto the Voxels with K-Means

Following the volumetric reconstruction, the large amount of voxel data still

prevents the efficient evaluation of the particles. In order to get a representa-

tion of the image observations that be can efficiently compared to the model
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parameters, we summarise these image observations by fitting the Gaussian

blobs introduced in the previous section onto the reconstructed voxels. As

illustrated in Figure 8, during the E-step each voxel is first assigned to the

closest blob using the Mahalanobis distance on both position and colour. In

the M-step, the attributes of the blobs are then re-evaluated from the set of

voxels that were assigned to them.

Initialising the blob-fitting from the last tracked model configuration can prove

insufficient for fast movements, causing some blobs to converge (“snap”) to

incorrect body parts. Also, if the mixture of blobs was simply left to converge

from a single initial position, all the benefits of the Bayesian framework would

be diminished at this stage, reducing the system to a somewhat complex di-

rected search.

In order to take full advantage of our probabilistic framework, we exploit the

learnt behaviour model to initialise the blob-fitting with mixtures of blobs

generated from predicted body configurations. To achieve this, we determine

the support of each cluster after propagation of the particles by computing

the ratio of particles they contain. The means of the clusters with significant

support are used as candidate initialisation for the blob-fitting. In practice,

only a few clusters are selected so that real-time performance is not threat-

ened. After the blob-fitting from all selected motion prototypes, the mixture

of blobs maximising the likelihood of the voxels is retained as the new “image

evidence”.

This blob-fitting procedure has the important advantage of detecting tracking

failures: if the best mixture of blobs provides a poor likelihood, the tracker

is lost and needs re-initialisation. Unlike most other trackers, automatic re-
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covery from failures is then possible because the parameter space is clustered

in motion prototypes. The VLMM state of all particles is then reset, which

has the effect of spreading the particles across the clusters. Performing the

blob-fitting from all clusters might provoke a noticeable lag, depending on the

total number of motion prototypes, but has a high chance to return a good

fit.

Further details about the volumetric reconstruction and the blob fitting pro-

cess can be found in earlier work [6,5].

6.4 Particle Evaluation with Relative Entropy Measure

A model configuration (particle) is evaluated by first generating an appearance

model from the particle state, and then comparing the produced blobs with

those obtained from the image evidence. Let us note F =
∑

i αifi the mixture

generated from the model and G =
∑

i βigi the one corresponding to image

evidences. The Kullback-Leibler (KL) divergence can be used to measure the

cross-entropy between the two mixtures:

DKL(F‖G) =
∫
F ln

F

G
=
∑

i

αi

∫
fi lnF −∑

i

αi

∫
fi lnG (7)

Using the approximation proposed by [19] for non-overlapping clusters:

DKL(F‖G) �∑
i

αi

∫
fi lnαifi −

∑
i

αi max
j

∫
fi ln βjgj

=
∑

i

αi min
j
(DKL(fi‖gj) + ln

αi

βj
)

(8)

Correspondence between blobs is maintained under the form fi ↔ gπ(i), so

that the complexity of the run-time evaluation function is linear with respect
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to the number of blobs:

DKL(F‖G) �
n∑

i=1

αi

(
DKL(fi‖gπ(i)) + ln

αi

βπ(i)

)
(9)

This last formulation can be efficiently computed using the closed form solu-

tion of the KL divergence between two Gaussian blobs f ∼ N (µf ,Σf ) and

g ∼ N (µg,Σg):

DKL(f‖g) =
∫

x∈Rd
P (x|f) ln P (x|f)

P (x|g)dx

=
1

2

(
ln

|Σf |
|Σg| − d+ tr(Σ−1

f Σg) + (µg − µf)
TΣ−1

f (µg − µf)

) (10)

where d is the dimensionality of the Gaussian blobs f and g. The weighting

of a particle is proportional to the inverse of the relative entropy DKL(F‖G)
between the particle and the mixture of blobs corresponding to image evidence.

The proportionality factor is unimportant since the weights are normalised

before resampling.

7 Results

7.1 Description of the Training and Test Data

Ballet dancing is an interesting application for the evaluation of human-body

tracking algorithms because of its diverse body postures, and its fast and chal-

lenging choreographies. Ballet dancing is also a structured activity, allowing

some predictability in the succession of the movements, therefore making the

learning of behaviours patterns possible.

We evaluated our tracking algorithms on sequences performed by ballet danc-

ing students. Our setup was composed of 5 firewire webcams, capturing images
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at 30fps in a resolution of 320×240. The dancers performed 2 exercices, com-

posed of approximately 700 frames each. Our test sequence features the full

choreography (2 exercices), while the training sequences consist of 3 repetitions

of each dance exercice.

The data used respectively for training and quantitative evaluation were ob-

tained by manual annotation of the video sequences. The 2-D locations of 12

body parts were first annotated for each frame of the sequence. The 3-D loca-

tions of the body parts were then computed as a linear optimisation problem,

minimising the re-projection error. The trajectories of the body parts were

smoothed with a Gaussian kernel and interpolated from with cubic splines.

The joint angles parameters were finally recovered using inverse kinematics.

By oversampling and varying the amount of smoothing for each training se-

quence, we obtained a total of 13, 000 frames for training.

We automatically clustered the parameter space into clusters of elementary

movements, as described in Section 4.1. The optimal number of clusters was

found to be 122 for the full sequence (both dance exercices), which can seem

quite high but actually reflects the underlying complexity of the motions.

As a comparison, the same clustering on a simpler “arms pointing” sequence

returned only 5 clusters. We then learnt a VLMM over the Gaussian clusters

using various maximal memory lengths. Using a maximal memory length of

10, the VLMM learnt 948 distinct states. This number of states rose to 2890

with a maximal memory length of 30.
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7.2 Qualitative results

Figure 9 shows the tracking of the first dance exercice, superimposed on one of

the 5 input views. Despite poor image evidences, the tracking was successful

over the whole sequence.

A subject performing the second dance exercice is tracked in Figure 10. This

second dance exercice is particularly challenging because the limbs tend to

stay close to the body during fast rotations (pirouette). In this case, impor-

tant self-occlusions combined with motion blur are taking place, and the re-

constructed volume provides poor image evidence. The learnt motion model

is fully exploited, providing good initialisations for the blob-fitting procedure,

and constraining the poses of the model to the learnt configurations. The abil-

ity of the particle filter to keep track of multiple hypothesis is also important

for automatic recovery after short periods of ambiguous likelihood function.

7.3 Accuracy and Robustness

Using manually annotated test sequences, we present comparative error mea-

surements between our method and other standard algorithms based on par-

ticle filters. The CONDENSATION [27] algorithm propagates particles with

a Gaussian noise, while Annealing [13] iterates a propagation-evaluation loop

over multiple layers, in a “coarse to fine” manner. Having no informed (as op-

posed to random) predictive model, these two methods are unable to provide

a good initialisation for the blob-fitting procedure. Even with 5000 particles

evaluations, they both quickly loose track when used in our “blobs evaluation”

framework, as illustrated in Figure 11. Our algorithm, however, maintains a
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good overall accuracy with only 1000 particles. A momentary tracking failure

around frame 420 is automatically detected and recovered from by reinitialis-

ing the VLMM.

To keep the comparison focused on the dynamic models, we use the same

likelihood distribution for all three algorithms (CONDENSATION, annealing

and our method). At each frame, the blob-fitting procedure is initialised from

the annotated ground-truth pose of the model. This provides a good, but also

realistically noisy, likelihood function for all three algorithms. Results are re-

ported in Figure 12. Even using 5000 particles, CONDENSATION is unable to

explore the parameter-space in all appropriate directions, resulting in a poor

overall accuracy. The Annealed particle filter uses only 1000 particles, but

because of the 5 layers of annealing, the computational cost remains equiva-

lent to CONDENSATION. Annealing produces relatively accurate results in

most of the test sequence, although it is still distracted by the noisy likelihood

function. Annealing also tends to focus particles on a single mode of the pos-

terior, limiting the ability of the tracker to recover from ambiguous situations.

We tested our propagation method with only 200 particles. Despite having

25 times less particle-evaluations than the two other methods, accuracy and

robustness were maintained throughout the sequence.

Figure 13 compares the prediction accuracy using various memory lengths for

the VLMM and only 200 particles. A memory of 1 frame (first order Markov

model) is insufficient to capture the complexity of the succession of movements,

and wastes particles by propagating them to the wrong clusters. With a longer

memory, the propagation of the particles is more focused, and the overall

accuracy is improved.
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7.4 Performance

Table 1 reports performance measurements on a 2GHz Pentium 4. The max-

imal recursive depth of the 3-D reconstruction has a strong influence on the

processing time because it conditions directly the amount of voxels generated.

The performance, however, is not significantly influenced by the number of

camera-views used for reconstruction. This is due to the per-sample image

segmentation scheme, which leaves large portions of the input images unin-

spected when voxels are already discarded from a previous view. As expected,

the number of particles has a linear influence on performance, but even with

1000 particles, real-time performance is achieved.

7.5 Scalability Issues

Although our test sequences exhibit diverse and challenging movements, more

tests are needed to confirm the generality and applicability of our method

to different types of behaviour. Atomic and cyclic activities, such as walking,

should be straightforward to learn because of their simple dynamics. A more

interesting and challenging task, however, would be to test the performance

of our tracking system when learning multiple and diverse classes of motion;

further research is needed to investigate this scenario. In this section, we dis-

cuss the potential limitations and benefits of our predictive framework, when

confronted with larger sets of motions.

Clustering the parameter space into atomic behaviours will become more com-

putationally expensive as the training data set grows. However, since some

atomic movements will be common and recurrent between different types of
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behaviour, the number of clusters will not necessarily grow linearly with the

size of the data-set. The process of learning transitions between clusters should

also scale naturally to a larger dataset. The variable length Markov models

are designed to locally optimise their memory length, so the size of the VLMM

remains manageable (please refer to Section 4.2 for details).

As the number of clusters increases, the computational cost of learning a

VLMM would increase. However, acquiring a VLMM of diverse and com-

plex activities would have an advantage over a corresponding first-order learnt

Markov model since the longer history utilised for prediction by the VLMM

allows it to differentiate between behaviours and give more accurate predic-

tions. Also, it is worth noting that although the computational cost of learning

a VLMM would increase, the computational cost of predicting using the more

complex (with respect to the number of states and state connectivity) VLMM

would remain largely unaffected. This is due to the fact that the VLMM is

conveniently represented by a probabilistic finite state automaton (PFSA):

the longest (and optimal) history of atomic behaviours needed for prediction

at each time step is actually pre-computed into the states of the PFSA [33,22].

Predicting forward simply involves traversing from one state of the PFSA to

the other.

Problems will still appear for movements previously unseen in the training

data. In the current implementation of the system, nothing is done to handle

these cases, and the tracker has to be re-initialised. As long as the total num-

ber of clusters remains significantly lower than the number of particles, this

simple re-initialisation of the VLMM works well. However, for larger pools of

diverse movements, a simple re-initialisation can prove both computationally

expensive and inefficient. Unfortunately, switching back to a stochastic prop-
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agation method is not a viable option, as we demonstrated in this chapter

that such methods are incapable of exploring the whole parameter space. This

difficult problem is left open for future research.

8 Discussion

The main challenge in human-body tracking is the high dimensionality of

the parameter space, making the search for the correct pose a hard problem.

Using Monte-Carlo methods, the number of required particles tends to become

very large, and even if methods such as annealing improve convergence, the

computational cost remains too high for real-time applications.

In this paper, we have demonstrated an algorithm using high-level behaviours

to track challenging movements in real-time. Contributions reside in the pre-

diction scheme which uses VLMMs and in a fast evaluation method based

on volumetric reconstruction and blob-fitting. By focusing the propagation

of particles towards predicted directions, the number of particles required for

robust tracking is kept low, and in conjunction with a fast evaluation scheme,

real-time performance is achieved on commodity hardware.

The work presented in this paper was primarily targeted at human-computer

interaction and motion capture setups. Tracking multiple subjects simultane-

ously has not yet been fully investigated. Given that our current volumetric

reconstruction method is based on a shape-from-silhouette algorithm, we ex-

pect that partial occlusions and occlusions between multiple objects will pose

problems to the current implementation of our tracking system. Increasing the

number of cameras would limit the generated occlusions, but in the general
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case, further research is needed to extend our system to handle these kind of

scenarios.

As future research directions, we intend to investigate and evaluate various

dimensionality reduction methods, in an effort to make the learning of clus-

ters more efficient. Online learning, where unseen sequences are incrementally

integrated into the behaviour model, would also represent a worthy contribu-

tion.
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3-D Reconstruction Blobs Particle Filter

3 views 4 views 5 views Fitting 500 1000

Max. Depth 6 11.0ms 11.1ms 12.8ms 3.1ms

Max. Depth 7 24.1ms 22.8ms 28.1ms 14.8ms 20.7ms 45.3ms

Max. Depth 8 73.5ms 66.0ms 78.6ms 74.1ms

Table 1

Performance measurements

Fig. 1. Kinematic model and Bayesian tracking framework. (top-left) The kinematic

model with the joint constraints and (bottom-left) the set of weighted particles

approximating the posterior. (right) The particles approximating the distribution

of the posterior in the previous frame are successively resampled, propagated and

evaluated. The new set of particles approximates the posterior for the new frame.
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mean of the first derivatives is represented with a green arrow at the hands and the

feet. Note that the training data for head movements were not available.

Fig. 3. (a) Example of VLMM over an alphabet K = {k1, k2, k3} with maximal
memory NM = 3. The transition probabilities γ and initial probabilities s are

represented by the width of the arcs. (b) Local dynamics inside the Gaussian clusters

(corresponding to the ones visualised in Figure 2) where particles are propagated

with the uncertainty modelled by the cluster itself.

Fig. 4. Overview of the evaluation process.
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Fig. 5. Volumetric reconstruction: starting from a coarse subdivision of the tracking

space, each voxel is projected onto the image planes and pixel samples are uni-

formly sampled from the projected area. The voxel is then robustly classified using

a statistical distance for sets of samples.

Fig. 6. Volumetric reconstruction from 4 camera views with (left) the pixel samples

used during the reconstruction process and (right) the voxel-based volume from 3

arbitrary viewpoints.
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Fig. 7. Automatic acquisition of the blobs models over 20 frames. Note that the

initial global position and orientation of the model are computed from the mean

and the principal axes of the voxels distribution.

Fig. 8. Fitting Gaussian blobs onto the voxels data with K-Means. The algorithm

is initialised with a predicted model configuration, for which a mixture of blobs

is generated. In the E-step, voxels are assigned to the nearest blob using Maha-

lanobis distances between blobs and voxels on both colour and position. The means

and covariances of the blobs are re-evaluated in the M-Step from the set of voxels

previously assigned to them.
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Fig. 9. Tracking the first dance exercice using a VLMM with a maximal history of

20 frames and 1000 particles. The images shown are sampled approximately every

300ms.
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Fig. 10. Tracking the second dance exercice using a VLMM with a maximal history

of 20 frames and 1000 particles.
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Fig. 11. Accuracy comparison between the particles propagation schemes of CON-

DENSATION, annealing, and our method. The RMS joint position error with the

manually annotated ground truth is shown for the dance first exercice.
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Fig. 12. Accuracy comparison between the particles propagation schemes of CON-

DENSATION, annealing, and our method. The RMS joint angle error with the

manually annotated ground truth is shown for the dance first exercice.
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