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Age of Acquisition Effects in Adult Lexical Processing Reflect Loss of
Plasticity in Maturing Systems: Insights From Connectionist Networks
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Early learned words are recognized and produced faster than later learned words. The authors showed
that such age of acquisition effects are a natural property of connectionist models trained by back-
propagation when patterns are introduced at different points into training and learning of early and late
patterns is cumulative and interleaved. Analysis of hidden unit activations indicated that the age of
acquisition effect reflects a gradual reduction in network plasticity and a consequent failure to differ-
entiate late items as effectively as early ones. Further simulations examined the effects of vocabulary size,
learning rate, sparseness of coding, use of a modified learning algorithm, loss of early items, acquisition
of very late items, and lesioning the network. The relationship between age of acquisition and word
frequency was explored, including analyses of how the relative influence of these factors is modulated
by introducing weight decay.

All other things being equal, words learned early in life are
recognized and produced faster and more accurately than words
learned later. This is true for a variety of lexical processing tasks,
including object naming, word naming, visual lexical decision, and
auditory lexical decision (Barry, Morrison, & Ellis, 1997; Carroll
& White, 1973; Ellis & Morrison, 1998; Gerhand & Barry, 1998,
1999a, 1999b; Gilhooly & Gilhooly, 1979; Morrison & Ellis,
1995, 2000; Turner, Valentine, & Ellis, 1998).

Carroll and White (1973) were the first to relate word learning
age to adult processing speed. They showed that object naming
latency correlated .77 with a measure of the age at which children
learn the different object names. In a multiple regression analysis,
age of acquisition was the only significant independent predictor
of naming latency. Their demonstration of an effect of age of
acquisition on object naming speed has been replicated several
times since (e.g., Barry et al, 1997; Cuetos, Ellis, & Alvarez,
1999; Gilhooly & Gilhooly, 1979; Morrison, Ellis, & Quinlan,
1992; Snodgrass & Yuditsky, 1996; Vitkovitch & Tyrell, 1995)
and has been shown to hold when objective measures of the age at
which different words are learned are used in place of subjective
(rated) measures (Ellis & Morrison, 1998; Morrison, Chappell, &
Ellis, 1997). In all of these studies, age of acquisition showed the
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highest correlation with naming latency of any variable investi-
gated. Age of acquisition has also been shown to predict which
objects will prove easy or hard to name for brain-injured patients
with aphasia or semantic dementia (Ellis, Lum, & Lambon Ralph,
1996; Hirsh & Ellis, 1994; Hirsh & Funnell, 1995; Lambon Ralph,
Graham, Ellis, & Hodges, 1998; Nickels & Howard, 1995), as well
as for elderly people experiencing normal, age-related problems
with word finding (Hodgson & Ellis, 1998). In each case, later
learned words were found to be more vulnerable to damage and
decay than early learned words.

Despite the abundant evidence that age of acquisition is an
important determinant of lexical processing speed, Ellis and Mor-
rison (1998) noted a paucity of theoretical proposals for precisely
how age of acquisition might come to influence adult lexical
processing. Gilhooly and Watson (1981) argued that if object
naming latency is affected by age of acquisition rather than word
frequency, then age of acquisition rather than frequency may be
held to determine the thresholds of lexical units involved in word
recognition and production (the logogens of Morton's, 1969, mod-
el). Brown and Watson (1987) proposed that the phonological
representations of early acquired words may be stored in unitary
form but that the phonological representations of later acquired
words may be more fragmentary in nature. The extra processing
time required to assemble the phonological form of a late acquired
word could account for the slower processing of such words. This
proposal is still cited regularly (e.g., Barry et al., 1997; Gerhand &
Barry, 1999b; Morrison & Ellis, 1995) but has never been sub-
jected to direct empirical test.

A form of explanation that has, until now, been Lacking for age
of acquisition is one couched in terms of the performance of
connectionist networks. This situation contrasts starkly with the
ease with which, for example, frequency effects in word recogni-
tion and production have been incorporated into connectionist
theories. Morton's (1969) notion that frequency affected the
thresholds of word recognition units (logogens) could be readily
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translated into the design of early connectionist models using
localist representations (e.g., McClelland & Rumelhart, 1981).
Later models, including those that used distributed rather than
localist representations, generally moved to the position that fre-
quency is embodied in the strength of connections between repre-
sentations, so each encounter with a word strengthens the links
between the different representations (e.g., semantic, phonological,
and orthographic) involved in recognizing and producing the word
(e.g., Plaut, McClelland, Seidenberg, & Patterson, 1996; Seiden-
berg & McClelland, 1989). Spelling-sound regularity and word
imageability are two other factors whose influence on lexical
processing in normal or brain-injured individuals, or both, has
been given a plausible account in terms of connectionist models
(e.g., Plaut & Shallice, 1993; Plaut et al., 1996).

In contrast, age of acquisition effects have been held by some
authors to be positively at odds with current connectionist models
(e.g., Gerhand & Barry, 1998; Moore & Valentine, 1998; Morrison
& Ellis, 1995). This belief has been based on comparisons (which
we now consider to be false) between age of acquisition effects in
humans and the phenomenon of "catastrophic interference" in
neural networks (Lewandowsky, 1991; McCloskey & Cohen,
1989; Ratcliff, 1990; Sharkey & Sharkey, 1995). If neural net-
works are trained on one set of patterns, which are then replaced
in training by a different set of patterns, performance on the first
set suffers. Knowledge of the first set, which is no longer being
trained, is gradually lost as the second set is learned. If the first
training set is held to be analogous to early learned words and the
second set to later learned words, then catastrophic interference
produces exactly the opposite results from human age of acquisi-
tion: The later patterns displace the early ones, whose representa-
tions deteriorate steadily.

But when a child acquires a vocabulary under natural condi-
tions, new words do not supplant and replace preexisting words;
rather, the child's vocabulary grows cumulatively, with new (later
acquired) words being added gradually to the existing stock of old
(earlier acquired) words. Those early acquired words do not cease
to be used or encountered but are interspersed among, and inter-
leaved with, the later acquired words. McClelland, McNaughton,
and O'Reilly (1995) noted the importance of gradual interleaved
learning for effective acquisition of new material by networks
trained by back-propagation. Using a network devised by Rumel-
hart and Todd (1993) that was trained to reproduce the correct
semantic propositions for a small selection of concepts (trees,
flowers, birds, and fish), McClelland et al. (1995) examined the
consequences of introducing a novel concept (penguin) after the
network had been trained. They did this using either focused or
interleaved learning. With focused learning, new knowledge is
presented to the system without interleaving it with old knowledge
and without continued exposure to the earlier training set. Under
such conditions, information about penguins was acquired rapidly
but at a cost to preexisting knowledge. In other words, the model
showed catastrophic interference. If, however, learning was inter-
leaved (or, as stated here, cumulative), with the model being given
continued exposure to the old material alongside the new, then the
new information was acquired without cost to the old.

Catastrophic interference may therefore be avoided in circum-
stances in which learning is cumulative, as is the case with vocab-
ulary acquisition in childhood. For a neural network to provide a
viable and intuitively plausible account of age of acquisition

effects in humans, one would need to train the network on one set
of patterns (early acquired) and then introduce a second set (late
acquired) under conditions of cumulative, interleaved training. It
would be necessary to demonstrate that catastrophic interference
does not occur and that, even after extensive training, the network
processes the early items more efficiently than the later ones.
Those are the aims of this article. We focus our attention on
networks that use distributed representations and in which learning
is accomplished by the application of the back-propagation algo-
rithm, although we argue later that effects of the sort reported here
may prove to be ubiquitous. Distributed memory networks trained
by back-propagation have been widely used to simulate the rec-
ognition, understanding, and generation of words. In contrast to the
claims of Gerhand and Barry (1998), Moore and Valentine (1998),
and Morrison and Ellis (1995), we show that age of acquisition
effects can readily be simulated in such networks. In doing so, we
also show that age of acquisition effects cannot be explained in
terms of differences between early and late pattern sets in their
cumulative frequency of training. We then report analyses based
on hidden unit activations that provide clues as to the origins of
differences between early and late patterns after training on both.
Further simulations explored the effects of varying sparseness of
coding and vocabulary size in the model and the consequences for
the behavior of the model of changing the learning rate and
training with a modified learning algorithm (Quickprop). We then
examine the relationship between the point of entry of pattern sets
into training (age of acquisition) and the frequency with which
those patterns are trained. These simulations included analyses of
what happens when early items are lost from training and when the
mature model is required to learn very late sets of patterns. The
final simulations examined the effects of introducing weight decay
and of damaging the fully trained network. On the basis of these
simulations, we argue that not only do age of acquisition effects
arise as a natural consequence of training with back-propagation,
but such effects may be an inescapable feature of neural networks
that learn by changing weights on connections in such a way that
early training has a greater impact on network structure than later
training.

Simulations 1 and 2: Consequences for Network
Performance of Entering Patterns Into Training at

Different Points Under Either Cumulative
(Interleaved) or Focused Conditions

Our first set of simulations investigated the effects of introduc-
ing sets of patterns at different points in the training of a standard
three-layer back-propagation network under conditions of either
cumulative, interleaved training, in which the late set was added
into training after a period of training on the early set only
(Simulation 1), or focused learning in which the late set replaced
the early set in training (Simulation 2). Input and output layers of
the network each contained 100 units that were fully connected to
an intermediate, hidden layer containing 50 units. The model was
trained on 200 different patterns (100 early and 100 late). The
input representations were randomly generated, binary patterns
distributed across all 100 input units. Most bits within each pattern
were set to 0, but some were given a value of 1 (with a probability
of .2). Each output pattern was a copy of the corresponding input
pattern after a degree of perturbation had been applied (bit values
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were flipped from 0 to 1, or vice versa, with a probability of .1).
Input and output patterns were therefore correlated. The model was
trained to produce each of the 200 correct output patterns from the
corresponding 200 input patterns. Weights on each connection of
the model were initialized to small random values and were
adjusted in the direction of a maximum of 1 or a minimum of — 1
after the presentation of each pattern with the back-propagation
learning algorithm (using the bp software; McClelland & Rumel-
hart, 1988). Both models were trained with a fixed learning rate
(0.05) and no momentum (i.e., weight change was computed for
the current pattern only without reference to prior weight adjust-
ments). Thus, the parameters that relate to the mechanisms of
learning remained constant from the first epoch of training to the
last. Unless otherwise stated, all of the simulations reported here
used this network and patterns with these characteristics.

The 200 input-output patterns were divided into two sets, 100
early and 100 late. Training was given in two forms. In Simula-
tion 1 (cumulative, interleaved learning), the 100 early patterns
were first trained for 250 epochs (where 1 epoch involves a single
presentation of each pair of input-output patterns). The 100 late
patterns were then added to the early patterns in the training set,
and the model was given another 250 epochs of training on the
combined corpus of 200 patterns. This measure reflects the differ-
ence between the network's output and the ideal response. The
closer the value is to zero, the better the performance of the model.

Learning under cumulative training conditions was compared
with two versions of focused learning. In Simulation 2.1, the 100
early patterns were again presented for 250 training epochs but
were then wholly replaced by the 100 late patterns, which were
trained for a further 250 epochs. Performance of the network was
assessed after 500 epochs, by which point each pattern had been
presented to the network 250 times. In Simulation 1, however, the
early patterns had been presented 500 times by Epoch 500, in
comparison with 250 times for the late patterns. A second version
of focused learning was therefore run (Simulation 2.2) in which the
early patterns were trained for 500 epochs before being wholly
replaced by the late patterns for a further 250 epochs. The perfor-
mance of the network was assessed at 750 epochs, by which time
the total number of presentations of the early and late patterns was
the same as in Simulation 1.

Figure 1 shows the performance of the network after 250 and
500 epochs for Simulation 1 (Figure 1A) and Simulation 2.1
(Figure IB) and after 500 and 750 epochs for Simulation 2.2
(Figure 1C). When the late patterns were added to the early
patterns in a cumulative manner (Simulation 1), the late patterns
were incorporated into the training schedule, and at 500 epochs the
model performed reasonably well on both sets of patterns, al-
though better on the early than the late. This is similar to the
network behavior described by McClelland et al. (1995). In con-
trast, both versions of focused learning caused the model to dem-
onstrate loss of the early learned associations. This was true
whether the early patterns were presented for 250 epochs (Figure
IB) or 500 epochs (Figure 1C) before being replaced by the late
patterns. Had training on the late sets continued in Simulations 2.1
and 2.2 with no further presentations of the early set, knowledge of
the early set would have become progressively weaker; that is, the
loss of early patterns due to interference from the late patterns
would have become catastrophic.

B

C

Figure 1, Effects of order of entry into a distributed network trained by
back-propagation under conditions of cumulative, interleaved learning
with late patterns being introduced after 250 epochs (A; Simulation 1) or
under conditions of focused learning with late patterns being introduced
after either 250 epochs (B; Simulation 2.1) or 500 epochs (C; Simula-
tion 2.2).

Simulation 3: Extended Training on Early and Late Sets
Under Conditions of Cumulative, Interleaved Training

In the cumulative learning situation of Simulation 1, perfor-
mance after 500 epochs was worse on the late patterns introduced
into training after 250 epochs than on the early patterns that had
been trained from the outset. It is possible, however, that learning
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had not yet approached asymptote by 500 epochs and that the
performance on the early and late patterns would converge given
sufficient additional training on both. We would argue that if this
were to happen, it would not provide as plausible an account of age
of acquisition effects in human lexical processing as would a
situation in which the difference between early and late patterns
persisted after extensive further training on both sets. This is
because differences of a few years in the age of acquisition of
words in childhood have consequences that can still be detected
decades later (Ellis et al., 1996; Hodgson & Ellis, 1998; Lambon
Ralph et al., 1998).

Simulation 3 extended Simulation 1 beyond 500 epochs up to
100,000 epochs. As in Simulation 1, the first 250 epochs involved
training on the early set of 100 patterns only. From 250 to 100,000
epochs, the training corpus contained all 200 patterns. The results
are shown in Figure 2. The performance of the network at 250 and
500 epochs was the same as in Figure 1A. The network continued
to learn after 500 epochs, but reductions in error with additional
training declined progressively. Thus, the reduction in error be-
tween 50,000 and 60,000 epochs was only 0.03%, and error
declined by just 0.01% between 90,000 and 100,000 epochs. Even
though error reduction was van i shingly small by 100,000 epochs,
the consequences of a head start of just 250 epochs for the early set
remained substantial; the mean sum-squared error was 0.23 for the
early patterns, as compared with 2.48 for the late patterns,
f(98) = 11.5. (Unless otherwise stated, we assume a significance
level of .001 throughout.) The reduced error for early patterns
trained from the outset relative to patterns introduced later consti-
tutes, we believe, a plausible demonstration of an enduring age of
acquisition effect in a distributed connectionist network of a type
used widely to model adult word recognition and production.

Simulation 4: Age of Acquisition Does Not Reduce to
Simple Differences in the Cumulative Frequency

of Early and Late Patterns

Simulation 3 showed that the age of acquisition effect is not a
simple matter of differences in the total frequencies with which the

early and late sets are presented to the network. After 100,000
epochs of training, the cumulative frequencies for the two sets of
patterns were almost identical (ratio of early to late = 1.003:1), yet
there was a tenfold difference in error scores. The fact of having
been entered early into training imparts an advantage to a set of
patterns that remains more or less constant as long as the relative
frequencies with which the different sets of words are encountered
do not change (see Simulations 11-13 and 15). This implies that
human age of acquisition effects will not reduce in any simple
sense to cumulative frequency or "residence time" in lexical mem-
ory (Gilhooly, 1984; Lewis, 1999) and that once age of acquisition
differences are established in childhood, they are likely to remain
largely unchanged across the adult life span.

Simulation 4 constituted a direct test of the claim that two sets
of patterns may be presented an equal number of times to the
network, but if one set is introduced earlier than the other and
continues to be presented after the second set has been introduced,
then the early set will retain a processing advantage over the late
set. In Simulation 4, the model was first trained on the 100 early
patterns for 1,000 epochs, after which the 100 late patterns were
introduced and trained alongside the early patterns for a fur-
ther 1,000 epochs. The late patterns were, however, presented
twice per epoch between 1,000 and 2,000 epochs while the pre-
sentation rate of the early patterns remained at once per epoch.
After 2,000 epochs, the network had therefore been presented with
each pattern, early or late, 2,000 times. Despite equating of the
cumulative frequency of the early and late patterns, the network
performed significantly better on the early items, with the mean
pattern sum-squared error for the early patterns being 0.4, as
compared with 3.3 for the late patterns, r(198) = 14.8. Thus, the
same amount of training on an input-output pattern has different
effects depending on when that training occurs.

Simulation 5: Staggering the Point of Entry
of Pattern Sets Into Training

Human vocabulary acquisition does not involve learning one set
of words for a period of time and then suddenly adding a second
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Figure 2. Effects of continued training on early and late patterns under conditions of cumulative, interleaved
training (Simulation 3).
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set; rather, natural vocabulary acquisition involves the gradual
accumulation of words with constant interleaving of old with new
items. This article is more concerned with illustrating the principle
that connectionist networks can account for age of acquisition
effects than with producing precise and detailed simulations of
natural vocabulary acquisition. Simulation 5 did, however, exam-
ine the effects of adding patterns into training more gradually, with
one set of very early patterns being followed by three further sets
(early, medium, and late) entered one after the other under condi-
tions of cumulative training.

With the same network as before, the 200 input-output patterns
were divided into four sets of 50. The very early set was trained
from the outset. The early set was added into training after 200
epochs, whereas the medium and late sets were added into training
after 400 and 600 epochs, respectively. Figure 3 shows the per-
formance of the network up to 5,000 epochs, by which time it had
virtually stabilized. The consequence of each additional delay of
200 epochs was an average increase in mean pattern sum-squared
error for that set of 1.16 at 5,000 epochs. A one-way analysis of
variance carried out on the error scores at 5,000 epochs confirmed
that the difference in error between sets was significant, F(3,
196) = 68.5, MSE = 113.6. Tukey's honestly significant differ-
ence post hoc comparisons between each set and the next were also
significant. Thus, adding patterns gradually to the network results
in a steady worsening of final performance on later relative to
earlier sets.

How Does Age of Acquisition Affect
Network Performance?

We have established that patterns on which the network is
trained from the outset develop representations that generate better
performance in the mature network than patterns entered later.
This is true even when the difference in the delay between entering
the early and the late patterns is small relative to the period for
which the network is subsequently trained on both sets. The
present section is concerned with trying to understand why it is
that a small head start given to one set of patterns has such lasting
consequences for the behavior of the network and makes it very

200 400 600 800 1,000 1,250 1,500 2,500 5,000

No. of training epochs

Figure 3. Effects of staggering the order of entry of pattern sets under
cumulative training conditions (Simulation 5).

difficult for patterns entered later to develop representations of
equivalent quality.

The analyses presented in this section included two measures of
network performance in an effort to illuminate the effects of early
versus late entry into training. The first was a measure of the extent
to which the network learns to differentiate patterns belonging to
early and late sets. This was based on analyses of the hidden unit
activations to early and late patterns. The second measure was one
that attempts to capture network plasticity after varying amounts of
training on an early set of patterns. We show here that as training
on an early set proceeds, the network becomes increasingly com-
mitted to representing those patterns and, as a result, Less and less
able to assimilate new, late patterns. It is this decline in plasticity
with training that, we believe, underlies the effects of age (or
order) of acquisition under conditions of cumulative learning. We
would argue that a similar decline in plasticity in the human lexical
processing networks underlies age of acquisition effects in adult
lexical processing.

Age of Acquisition and Pattern Differentiation at the
Hidden Units (Simulation 6)

Two sets of 50 input-output patterns (A and B) were used for
this analysis. The properties of the patterns and of the network
were the same as before. The response of the network to the two
sets was compared under three conditions. In Simulation 6.1, the
network was trained on Set A alone for 500 epochs, at which point
its response to Sets A (trained) and B (untrained) was assessed.
Simulation 6.2 resembled Simulation 1 in that the patterns of Set
A (early) were trained from the outset, whereas the patterns of Set
B (late) were entered at 250 epochs. Both sets were then trained to
500 epochs. In Simulation 6.3, both sets were trained together from
the outset, and the response of the network was determined at 500
epochs.

After 500 epochs of training, the levels of activation were
determined for each of the 50 intermediate (hidden) units in the
network for each of the Set A and Set B patterns in each of the
three simulations. The similarity of the intermediate unit activa-
tions generated by all 100 patterns was then compared for each
simulation by computing the Euclidean distances between them.
This yielded three similarity matrices for the patterns, one for each
simulation. A multidimensional scaling procedure was then ap-
plied to each matrix to express its similarity structure in two-
dimensional form. The result of this procedure is a graph of the
form shown in Figure 4, in which clustering of points around the
origin indicates a lack of differentiation between patterns (i.e.,
poor learning), whereas optimal learning results in a wide circle of
points denoting well-differentiated patterns.

Figure 4A, Figure 4B, and Figure 4C show the results of the
multidimensional scaling analysis of intermediate unit activations
for Sets A and B at 500 epochs for Simulations 6.1, 6.2, and 6.3,
respectively. In Simulation 6.1 (Figure 4A), the network was
trained on Set A only for 500 epochs, at which point its responses
to Sets A and B were assessed. As would be expected, the trained
patterns of Set A (solid diamonds) achieved good differentiation
(mean distance to origin: 1.81), whereas the untrained patterns of
Set B (open squares) remained clustered around the origin (mean
distance to origin: 0.79). In Simulation 6.2 (Figure 4B), the early
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Figure 4. Differentiation of early and late patterns. Shown are the results
of a multidimensional scaling analysis of intermediate unit activations for
two sets of patterns, A and B, under three training conditions: trained on
Set A only for 500 epochs (Simulation 6.1; A), trained on Set A for 250
epochs and then on Sets A and B to 500 epochs (Simulation 6.2; B), or
trained on Sets A and B together for 500 epochs (Simulation 6.3; C). Set
A = solid diamonds; Set B = open squares.

patterns of Set A again spread out to form a well-differentiated
ring of points with a mean distance to origin of 1.62. In contrast,
the late patterns of Set B (introduced after 250 epochs) tended to
form a ring within that created by the early set with a mean
distance to origin of 1,14. In other words, the late patterns strug-
gled to achieve the same degree of differentiation as the early
patterns. The difference between the distances from the origin of
the early and late patterns was significant, ?(98) = 12.1, and at 500
epochs the mean sum-squared error on the output layer was also
significantly lower for the early set (0.5) than for the late set (2.5),
r(98) - 10.3. Finally, in Simulation 6.3 (Figure 4C), in which both
sets were trained together from the outset, the points for the two
sets formed overlapping rings with similar mean distances from
the origin (Set A = 1.49, Set B = 1.31).

Age of Acquisition and Network Plasticity

In Simulation 4, early patterns fared better than late patterns,
even when the late patterns were trained at a higher frequency to
the point where both sets had been trained equally often. Thus,
there is more to age of acquisition effects in the network than
simple cumulative frequency of training: The point at which pat-
terns are entered into training is critical, so that if a set of addi-
tional patterns is entered after extensive training on other patterns,
the network struggles to learn those new patterns. Thus, as the
model learns the appropriate mappings for one set of patterns, it
becomes increasingly stable and rigid, showing a resultant de-
crease in its capacity to assimilate new patterns.

This reduced plasticity in the network can be traced directly to
the nature of learning in such networks. Distributed processing
networks trained by back-propagation reduce the error between the
observed pattern of activation and the target pattern by gradually
changing the weights within the network. This is achieved by
computing the activations of all units in the network, passing
activation forward from the input units to the hidden layer and then
to the output layer. During learning, the network computes an error
signal for each unit at the output layer and propagates this error
back through the network, first to the hidden units and then to the
input layer. Over time, this iterative process gradually adjusts the
weights between the layers such that the output of the model
comes closer and closer to the ideal target.

When back-propagation is combined with a logistic activation
function for each unit, it can be shown that the error signal for each
unit in the network is proportional to the function a(\ — a), where
a is the activation of that unit (see McClelland & Rumelhart, 1988,
pp. 126-132; Rumelhart, Hinton, & Williams, 1986). With ran-
dom initial weights, the activations of all units within the network
begin at a value close to 0.5. The consequence of this is that, at the
start of training, the rate of weight change is at its maximum. As
training proceeds, unit activations for particular patterns gradually
move away from 0.5 toward either 0 or 1, and the rate of change
gradually reduces. Of course, if the unit value reached 0 or 1, no
error would be back-propagated through the network, and no
further learning would occur. Thus, a(l —a) reaches its maximum
at a = 0.5 and approaches its minimum as a approaches 0 or 1.
Because the amount of change in a given weight is proportional to
a(l — a), weights will be changed most for those units that are
nearest to their midrange. Weights will be changed least for units
whose activation functions have approached 0 or 1 and have thus
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become effectively committed to being either on or off (see Mc-
Clelland & Rumelhart, 1988, p. 132). As learning proceeds, units
shift in one direction or the other, and the amount of weight change
gradually reduces. When late patterns are entered into the training
process, the rate of change has already fallen from its maximal
value, and so those patterns are always at a disadvantage through-
out any amount of additional training.

Plasticity and training. Further analyses of Simulation 6.1
illustrate this more concretely. In that simulation, Set A patterns
were trained alone up to 500 epochs. Set B patterns remained
untrained and therefore undifferentiated when tested at 500 epochs
(see Figure 4A). We were interested in analyzing the extent to
which the network would have been receptive to Set B patterns at
different stages throughout its training on Set A. We computed a
measure of network plasticity, or receptivity, by testing the hidden
unit activations generated by the untrained patterns of Set B after
no training on Set A, 50 epochs of training on Set A, 100 epochs
of training on Set A, and so on up to 500 epochs of training on Set
A. The activation value on each hidden unit for each of the Set B
patterns was entered into the function a(l — a), and resultant
figures were then averaged across the items to produce a measure
of the plasticity of the hidden units. Figure 5 shows the mean
plasticity values for the hidden units when responding to the
untrained patterns of Set B as training proceeded on Set A. The
figure shows how the plasticity of the network—that is, its respon-
siveness to untrained Set B when first presented—declined as the
network learned to differentiate and represent the Set A patterns. A
one-way analysis of variance confirmed the reduction in plasticity
during training, F(l, 450) = 205.9, MSE = 0.0013.

Effects of different delays between early and late patterns on
error, differentiation, and plasticity. The analysis of network
plasticity suggests that the age of acquisition effect in the differ-
ential error scores on the output layer of the network should be
directly related to the delay before the late patterns are entered. We
compared three simulations that varied the delay between early
and late patterns to assess network plasticity for late patterns as a
function of delay or the degree of head start given to early items.
Simulation 6.2, like Simulation 1, used a 250-epoch delay between
early and late patterns, which were then trained together to 500
epochs. This was compared with a simulation in which the late

patterns were entered into training after 100 epochs (Simula-
tion 6.4) and a simulation in which late patterns were entered into
training after just 50 epochs (Simulation 6.5). The mean sum-
squared error for the early and late patterns at 500 epochs in each
simulation is shown in Figure 6A. Analysis of variance revealed an
effect of age of acquisition, F(U 98) = 84.4, MSE = 103.3, with
early patterns producing lower error scores than later ones, and an
effect of delay, F(2, 196) = 80.1, MSE = 18.1, such that error
across the early and late sets combined was less for shorter delays
than for longer delays. But there was also a significant interaction
between the variables, F(2, 196) = 63.5, MSE = 14.3, such that
the difference between early and late sets increased with the size of
the delay. The longer the delay in introducing the late set, the
higher the error on that set after further training.

Figure 6B shows the results of the differentiation analysis on
early and late patterns with the three different delays. Rather than
showing the results as a two-dimensional scatterplot (as in Figure
4), we show the mean distance to the origin for the early and late
patterns at each delay. As would now be predicted, the pattern
differentiation (the diameter of the circle of points) was signifi-
cantly greater for the early than the late sets, F(i, 98) = 123.0,
MSE = 10.5. Although the main effect of delay was not signifi-
cant, F(2, 196) < 1, there was a significant interaction between
delay and age of acquisition, F(2, 196) = 24.2, MSE = 0.18, such
that the difference between early and late patterns increased with
the size of the delay. As delay increased, the capacity of the
network to differentiate the late patterns decreased.

Figure 6C is based on Simulation 6.2 in which the entry of Set
B was delayed until 250 epochs. It shows the plasticity of the
network—that is, the mean of the hidden unit a(l - a) values—for
Set B patterns after 50, 100, and 250 epochs of training on Set A
(i.e., at the points where the Set B patterns were entered into
training in Simulations 6.5, 6.4, and 6.2, respectively). Network
plasticity declined with training because the network became in-
creasingly committed to differentiating patterns trained from the
outset. The result was that the network became less and less able
to achieve optimal differentiation of the later patterns (Figure 6B)
and error for the late patterns became increasingly great, even after
training on both sets (Figure 6A),

100 200 300 400 500

Epoch

Figure 5. Mean plasticity of hidden units for the untrained patterns of Set B as a function of the extent of
training on Set A (Simulation 6.1; see text for details).
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Simulation 7: Sparseness of Coding

Simulations 7 to 10 explored the consequences for the network
age of acquisition effect of varying certain characteristics of the

patterns and the learning procedure. The characteristics concerned
were the sparseness of the patterns (Simulation 7), the size of the
early and late pattern sets (vocabularies) that the network was
required to learn (Simulation 8), the learning rate used in the model
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(Simulation 9), and the form of the learning algorithm (Simulation
10). Consideration of the effects of introducing weight decay into
the system (Simulations 14 and 15) is deferred until after the
presentation of simulations concerned with the joint effects on
learning of age of acquisition and frequency of training (Simula-
tions 11 to 13).

The patterns used in the simulations reported thus far all in-
volved relatively sparse coding, with each pattern being distributed
across 100 input or output units but with only 20% of units on
average being on (i.e., set from 0 to 1). Simulation 7 examined the
consequences of varying the sparseness of coding on the age of
acquisition effect. In each simulation, 100 early patterns were
trained from the outset, and 100 late patterns were entered into
training after 250 epochs. All patterns were presented once per
epoch. Performance of the network was examined after 500 ep-
ochs. Sparseness of coding was varied systematically. The sparsest
pattern sets, used in Simulation 7.1, were those in which input and
output units were set from 0 to 1 with a probability of ,1, meaning
that the average 100-unit pattern had only 10 units set to 1. The
probability of switching was then increased by increments of .1,
from .2 (Simulation 7.2) up to .9 (Simulation 7.9).

Figure 7 shows the performance of the network on the early
and late sets at 500 epochs for each of the nine levels of sparse-
ness. An analysis of variance was carried out on the error
scores for each pattern after 500 epochs of training, with age of
acquisition (two levels) and sparseness of coding (nine levels)
as variables. This analysis revealed significant effects of age of
acquisition, F(l, 1782) = 2,804.2, MSE = 4,968.0, and sparseness,
F(l, 1782) = 3.7, MSE = 6.5, but no interaction, f ( l , 1782) < 1.
Overall, learning was worst for patterns in which the probability of
a unit being switched from 0 to 1 was .5. Learning was best when
the patterns were effectively very sparse, that is, at .1 or .9 (note
that for Simulation 7.9, the patterns were differentiated by the
small number of zeros rather than the small number of ones, as for
Simulation 7,1). There was a clear age of acquisition effect at all
levels of sparseness of coding.

Simulation 8: Effects of Varying Vocabulary Size

The consequences of changing vocabulary size were investi-
gated in Simulation 8. The same network and pattern characteris-
tics were used as in Simulation 1, with early patterns being trained
from the outset and late patterns being introduced after 250 epochs.
Training was continued to 500 epochs. The smallest vocabulary
used had 50 patterns divided into 25 early and 25 late patterns
(Simulation 8.L). The same two sets of 25 patterns were included
as subsets in larger vocabularies that had 100,150, or 200 patterns,
half early and half late in each case (Simulations 8.2 to 8.4, the last
being a replication of Simulation 1).

Figure 8 shows the performance of the network on the early and
late sets at 500 epochs for each vocabulary size. An analysis of
variance was carried out on the error scores after 500 epochs of the
subset of 25 early and 25 late patterns shared across the simula-
tions; age of acquisition (two levels) and vocabulary size (four
levels) were variables. There were significant effects of age of
acquisition, F( 1,48) = 170.9,MS£ = 305.62, with error being less
to early than late patterns, and vocabulary size, F(3,144) = 34.6,
MSE — 24.56, with error at 500 epochs increasing with the total
number of patterns to be learned. The interaction between age of
acquisition and vocabulary size was also significant, F(3,
144) == 14.9, MSE = 10.62, reflecting the fact that the difference
between early and late patterns increased with increasing vocab-
ulary size. This was particularly reflected in worse performance on
the late patterns as vocabulary size increased.

This effect can also be shown to be related to reducing plasticity
with increased training. Hidden unit values for the late patterns
were recorded at 250 epochs (the point at which these patterns
were entered into training) for the four different vocabulary sizes
used in the simulation. The average hidden unit plasticity was
calculated in the same way as before. The values are plotted in
Figure 9, where it can be seen that the more early patterns the
network is exposed to, the less plasticity it shows for patterns
introduced later. The decline in plasticity as a function of early
vocabulary size was significant, F(3, 147) = 24.7, MSE = 0.0087.
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Figure 7. Effects of different degrees of sparseness of coding on early and late patterns (Simulation 7).
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Figure 8. Effects of vocabulary size on early and late patterns (Simulation 8).

Simulation 9: Effects of Varying Learning Rate

In all of the simulations reported thus far, the learning rate
parameter of the model was fixed at a value of 0.05. The learning
rate parameter governs how much the weight values in the network
are adjusted after each pattern is presented during training. A
smaller value means that the weights are changed by a lesser
amount each time they are updated.

Simulation 9 used the same 100 early and 100 late patterns as in
Simulation 1, with the late set being entered after 250 epochs and
network performance being tested at 500 epochs. Values of the
learning rate parameter were varied from 0.01 to 1.0. Analysis of
variance on the error data at 500 epochs showed significant effects
of age of acquisition, F(l, 198) - 499.9, MSE = 10,030.5, and
learning rate, F(14, 2772) = 191.9, MSE = 173.8, together with a
significant interaction between the two, F(14, 2772) = 9.9,
MSE = 8.95. Figure 10 shows that increasing learning rate from
the very low level of 0.01 to 0.1 improved the efficiency with
which the network could learn both sets of patterns by 500 epochs.
Thus, error on the early patterns declined from 4.25 to 0.42 over

that range of values of learning rate, whereas error on the late
patterns declined from 7.28 to 3.87. As learning rate increased
further from 0.1 to 0.5, error on the early patterns continued to
decline down to 0.28, but error on the late patterns increased
to 4.25. Over this range, better learning of the early set over the
first 250 epochs came at the cost of a reduced capacity to learn the
late set when introduced into training. Finally, learning rates
above 0.5 were increasingly deleterious to the learning of early and
late sets alike. (It is well known that if learning rate is set too high,
learning by back-propagation becomes inefficient.) Importantly,
variations in learning rate had only minor consequences for the age
of acquisition effect over the range of learning rates that brought
about effective learning of both pattern sets. Our standard value for
learning rate (0.05) falls within this range.

Simulation 10: Learning With Quickprop

With standard back-propagation, the activation functions of
units can go all the way from their initial value of about 0.5 to their
maximum or minimum value of 1 or 0. Once an activation function
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Figure 9. Effects of total vocabulary size on network plasticity (based on Simulation :
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Figure 10. Effects of varying learning rate on network performance for early and late items (Simulation 9).

has approached 1 or 0, it becomes very difficult for further training
to pull it back again. Hence, back-propagation networks show a
tendency toward progressive entrenchment and rigidification as
learning proceeds.

Fahlman (1989) developed a variant of back-propagation called
Quickprop, which reduces this tendency by preventing plasticity
from ever falling to extremely low levels. This was done by adding
a small constant to the expression a(\ — a) when calculating the
derivatives of the output and hidden units. This modification of the
back-propagation algorithm was shown to improve learning of sets
of associations in which some items were intrinsically easier to
learn than others, although it has also been reported to increase the
tendency of a network to become stuck in local minima in the
course of learning (Veitch & Holmes, 1991).

Simulation 10 repeated Simulation 1, but with the Quickprop
algorithm in place of standard back-propagation. The results are
shown in Figure 11, where the jc-axis shows the parameter qpoffset,
which determines the value of the constant added to a{\ — a).

Analysis of variance showed significant effects of age of ac-
quisition, F(l, 198) = 582.0, MSE = 8,204.5, and qpoffset, F(9,
1782) = 356.0, MSE = 347.3, together with a significant interac-
tion between the two variables, F{9, 1782) - 46.7, MSE = 45.6.
Figure 11 shows, however, that the age of acquisition effect was
relatively constant across those values of qpoffset over which
effective learning occurred within 500 epochs. (Note that learning
with qpoffset set at 0 is learning with standard back-propagation,
so these data points are replications of Simulation 1.)

One might suspect that effects of variations in the learning
algorithm could reveal themselves over longer periods of training.
To check this, we allowed Simulation 10 to continue running
to 10,000 epochs with qpoffset values of 0,0.02, and 0.04. Learn-
ing was slightly faster with Quickprop than with standard back-
propagation, but performance on the early and late sets at 10,000
epochs was virtually the same, as was the difference between
performance on early and late pattern sets. Hence, Quickprop did
not turn out to influence the age of acquisition effect to any
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Figure 11. Performance on early and late patterns using the Quickprop learning algorithm (Simulation 10; see
text for details).
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significant extent. This implies that the effect does not rely on
hidden unit activations reaching extreme values close to 0 or 1.
Note, however, that hidden unit activation follows a sigmoid
function, so early movements away from a midvalue of approxi-
mately 0.5 are greater than later movements that occur when the
function has moved toward 0 or 1. Progressively later training has
progressively smaller effects, and hence there is a loss of plasticity
long before minimum or maximum values are reached. Note also
that training of early and late patterns is constantly interleaved so
that once the late patterns have entered into training, the early
patterns are presented along with them in every epoch. Quickprop
prevents plasticity from dropping to 0, leaving the model to back-
propagate error forever; it will continue to back-propagate error for
both sets of patterns, however, so the difference inherited by the
early patterns remains intact.

Simulation 11: Combining Age of
Acquisition and Frequency

The simulations reported thus far have shown that age of ac-
quisition effects are perfectly compatible with connectionist net-
works trained by back-propagation. Effects of different points of
entry into training cannot be reduced to simple differences in
cumulative frequency (Simulations 3 and 4). But frequency of
presentation does, in fact, have an effect on network performance:
The more often a network is trained on a particular pattern (or
association between patterns), the stronger the resulting represen-
tation becomes (e.g.f Plaut et al., 1996; Seidenberg & McClelland,
1989).

There has been some debate in the experimental literature over
whether frequency effects in word recognition and production
actually survive the experimental control of age of acquisition or
its factoring out by statistical means in regression analyses (e.g.,
Gerhand & Barry, 1998; Gilhooly & Watson, 1981; Morrison &
Ellis, 1995). There seems to be a growing consensus, though, that
both the age at which a word is learned and the frequency with
which it is subsequently encountered affect reaction time in adult
object naming (e.g., Barry et al., 1997; Ellis & Morrison, 1998),
word naming (Gerhand & Barry, 1998, 1999a; Morrison & Ellis,
2000), and visual lexical decision (Butler & Hams, 1979; Morrison
& Ellis, 1995; Nagy, Anderson, Schommer, Scott, & Stallman,
1989). The literature on human lexical processing is, however,
ambiguous as to the nature of the interaction between these two
factors. Some studies have reported stronger frequency effects for
early than late acquired words (Barry et al., 1997; Gerhand &
Barry, 1999a), whereas others have reported additive effects (Ger-
hand & Barry, 1998).

Simulations 11.1 and 11.2 used the same network and the same
200 input-output patterns as in Simulation 1. Training was always
cumulative and interleaved. To manipulate frequency of presenta-
tion, we randomly divided the sets of 100 early and 100 late
patterns into two subsets of 25 and 75 patterns each. In recognition
of the fact that there are more low-frequency than high-frequency
words in the language, the subsets of 25 patterns were trained with
higher frequencies than the subsets of 75 patterns. The early sets
were trained from the outset, whereas the late sets were entered
into training after 750 epochs. Two differences in frequency of
training were compared. In Simulation 11.1 the high-frequency

patterns were presented 3 times per epoch, whereas in Simula-
tion 11.2 the high-frequency patterns were presented 10 times per
epoch. The low-frequency patterns were presented once per epoch
in each case. Training was once again by standard back-
propagation. The network stabilized by approximately 3,000 ep-
ochs, and performance on the four pattern sets in each simulation
was assessed after 5,000 epochs of training.

Figure 12A and Figure 12B show the mean pattern sum-squared
error scores at 5,000 epochs for the early and late high- and
low-frequency sets of Simulations 11.1 and 11.2, respectively.
These error scores from the two simulations were entered into an
analysis of variance with age of acquisition (early or late entry),
pattern frequency (low or high frequency), and frequency differ-
ence (3 or 10 presentations per epoch for the high-frequency
patterns) as variables. The results showed a significant effect of
age of acquisition, F(l, 196) = 225.2, MSE = 684.1, with error
being less to early than late patterns, and a significant effect of
pattern frequency, F(l, 196) = 15.3, MSE = 46.3, with error being
less to high- than low-frequency patterns. The main effect of
frequency difference was not significant, F{\, 196) < 1, meaning
that overall learning by 5,000 epochs was similar whether the
frequency differential was 3:1 or 10:1. The interaction between age
of acquisition and pattern frequency was not significant, F(l,
196) = 1.4, MSE = 4.2, p = .24, but the three-way interaction
among age of acquisition, pattern frequency, and frequency dif-
ference approached significance, F(l, 196) = 3.4, MSE = 4.0, p =
.07. As Figure 12A suggests, there was no interaction between
frequency and age of acquisition when the high-frequency patterns
were presented only 3 times per epoch, F(\, 196) < 1, but the same
interaction depicted in Figure 12B approached significance when
the high-frequency patterns were presented 10 times per epoch,
F(l, 196) = 3.3, MSE = 8.2, p = .07. This result implies that the
interactivity of age of acquisition and frequency in human lexical
processing experiments may depend on the strength of the fre-
quency manipulation (and also, perhaps, on the strength of the age
of acquisition manipulation).

By 5,000 epochs, the late, high-frequency patterns in Simula-
tion 11.2 (Figure 12B) had each been presented 42,500 times in
training. The early, low-frequency patterns had been presented
only 5,000 times each by the same point. Nevertheless, the head
start of 750 epochs given to the early, low-frequency patterns
meant that they continued to outperform the late, high-frequency
patterns at 5,000 epochs, even though the late, high-frequency
patterns had been presented 8.5 times as often.

Simulation 12: From High to Low Frequency—
Simulating the Loss of "Childish" Words

The vast majority of words learned in childhood continue to be
used in adulthood. Some words, however, occur more often in the
experience of the average child than in the experience of the
average adult. Examples are words such as potty and nappy!diaper,
or words that are largely confined to certain nursery rhymes or
children's stories (the fleece of Mary's little lamb or the pail that
Jack and Jill carried up the hill). Except when adults are them-
selves engaged in caring for children, the frequency of such words
will be lower in adulthood than it was in early childhood.

Simulation 12 examined the effect of reducing the frequency of
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Figure 12. Performance on early and late patterns given high-frequency or low-frequency training with
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presentation of a set of early, high-frequency patterns after the
network had learned them. As in Simulation 11.2, the network was
trained from the start on two sets of early patterns, 25 with high
frequency (10 presentations per epoch) and 75 with low frequency
(1 presentation per epoch). At 750 epochs, two more sets of late
patterns were introduced, with one set of 25 patterns being trained
with a high frequency and one set of 75 patterns with a low
frequency. In Simulation 12.1, presentation of the early, high-
frequency set continued at its original rate of 10 per epoch,
effectively a replication of Simulation 11.2. In the other versions
of Simulation 12, the frequency of presentation of the early,
high-frequency set was reduced at the point where the two late sets
entered into training. Presentations of the early, high-frequency set
were reduced from 10 to 3 per epoch in Simulation 12.2 and
from 10 to 1 per epoch in Simulation 12.3. In Simulation 12.4, the
frequency of presentation of the early, high-frequency set was
reduced to 0 (i.e., the early, high-frequency patterns were not
trained at all after 750 epochs). Training was continued to 5,000
epochs in all simulations.

Figure 13 shows the mean pattern sum-squared error at 5,000
epochs for each pattern set in each simulation. Simulation 12.1
replicated the results of Simulation 11.2, with performance on the
four sets stabilizing by about 3,000 epochs, after which a constant
differential between sets was maintained. Reducing presentations
of the early, high-frequency set from 10 per epoch to 3 (Simula-
tion 12.2) or even to 1 (Simulation 12.3) at the point when the late
patterns were introduced (750 epochs) did not impair performance
on that early set, which showed no increase in error from 750
to 5,000 epochs and continued to outperform the late, high-
frequency set. Only when the early, high-frequency set stopped
being trained altogether after 750 epochs did it show an increase in
error (catastrophic interference).

These simulations show that once an early set of patterns has
been well learned by the network, a presentation frequency much
less than the original one will serve to maintain the quality of the
representations. Only if the early patterns cease to be trained at all
do their representations suffer. The low frequency with which most
adults encounter and use words such as potty and fleece may
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nevertheless suffice to keep those words recognizable and acces-
sible despite their low frequency in adulthood.

Simulation 13: Very Late Acquisition of Vocabulary

Human vocabulary acquisition slows down in adulthood but
never stops completely. In recent decades, information technology,
for example, has been a fruitful source of new words that may in
some cases attain quite high frequencies. The word computer is
late acquired for anyone more than 40 years of age or so, whereas
the word email is probably late acquired for most people more
than 20 years of age. Both are, however, of high frequency for
many people.

Simulation 13 examined the effect of introducing a new set of
very late patterns into training long after the network had stabilized
on both the normal early and late sets. Simulation 11.2 was used as
the basis for this (early vs. late patterns separated by a delay of 750
epochs with 10 presentations per epoch for high-frequency pat-
terns and 1 per epoch for low-frequency patterns). A very late set

of 25 new patterns was introduced at 5,000 epochs with frequen-
cies of 1 (Simulation 13.1), 10 (Simulation 13.2), 100 (Simula-
tion 13.3), or 1,000 (Simulation 13.4) presentations per epoch. The
combined total of 225 patterns was trained for a further 5,000
epochs. One might question the psychological plausibility of the
last two simulations—the frequency of very late acquired words
will rarely, if ever, exceed that of earlier learned high-frequency
words—but they were included here for reasons that are clear from
Figure 14, which shows the error scores for the five sets of patterns
at 10,000 epochs. With presentation frequencies of 1 or 10 per
epoch, the very late patterns never became as well represented as
earlier learned patterns. With 100 presentations per epoch, the very
late patterns compared in accuracy to the late, low-frequency
patterns (trained at 1 presentation per epoch). Only with 1,000
presentations per epoch did the mean error score for the very late
patterns fall below that of the normal late, low-frequency patterns
entered at 750 epochs and trained once per epoch thereafter. Error
scores for the very late patterns were still higher than those for the
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late, high-frequency set or either of the early sets. Thus, once the
network has become committed to one set of patterns and has been
trained to the point at which it has lost much of its plasticity,
considerable effort (training) is required to imprint new patterns
and bring them to the condition where their representations are
comparable to those established by the earlier patterns.

Simulation 14: Change and Decay—The Effects of
Introducing Weight Decay

If weight decay is introduced into a connectionist network, then
connection strengths gradually and spontaneously decay back to
resting level unless their values are maintained by training. This
means that weight decay acts against any tendency a network
might have toward overleaming, that is, toward becoming exces-
sively rigid in the course of training. One consequence of this is
that the capacity of the network to generalize to new inputs is
improved (Hinton, 1989). Thus, Plaut et al. (1996) introduced
weight decay into some of their simulations of reading aloud to
improve the ability of a network trained to associate written with
spoken word forms to generalize that knowledge to pronouncing
nonwords.

We have argued that age of acquisition effects arise precisely
because of the tendency of networks to rigidify with training. The
introduction of weight decay into our simulations might thus be
expected to reduce the extent to which plasticity is lost in the
course of training and hence reduce the effects of age of acquisi-
tion on learning. Simulation 14 used the same network and patterns
as Simulation 1 (100 early and 100 late patterns, with the late set
being introduced into training after 250 epochs). But whereas
Simulation 1 (like all of the other simulations reported thus far) did
not involve weight decay, Simulation 14 compared network per-
formance on the early and late pattern sets at 500 epochs with no
weight decay (Simulation 14.1, a replication of Simulation 1) and
with five levels of increasing weight decay ranging from a low
of 0.000001 (Simulation 14.2) to a highest level of 0.001 (Simu-
lation 14.6). These values may appear very small, but note that
weight decay is applied after each pattern has been presented.
Small values of weight decay therefore have cumulative effects
across an epoch. If weight decay was being applied only at the end
of each epoch, these values of weight decay would be correspond-
ingly larger.

The results are shown in Figure 15 in terms of mean pattern
sum-squared error for the early and late patterns at 500 epochs with
the six levels of weight decay. The main effect of weight decay was
significant, F{5, 990) = 898.0, MSE = 231.6, as was the main
effect of age of acquisition, f ( l , 198) - 275.7, MSE = 1,955. The
interaction between weight decay and age of acquisition was also
significant, F(5, 990) = 175.6, MSE = 45.3, reflecting the reduc-
tion in the age of acquisition effect as weight decay increased.
With zero or very low levels of weight decay, age of acquisition
effects were large, but as weight decay increased, the age of
acquisition effect began to diminish. Note, though, that with higher
levels of weight decay, the network learned both early and late
pattern sets less well by 500 epochs. At the higher levels, weight
decay was acting against learning, and the network began to
unlearn as fast as it learned. Importantly, all levels of weight decay
that permitted the network to learn both the early and the late
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Figure 15. Effects of different levels of weight decay on network per-
formance (based on Simulation 1).

patterns by 500 epochs resulted in the network continuing to show
an age of acquisition effect.

Simulation 15: Longer Term Consequences of Weight
Decay for Age of Acquisition and Frequency Effects

Simulation 11 looked at the effects of combining differences in
the point at which pattern sets entered into training (age of acqui-
sition) with differences in the frequency with which they were
trained thereafter. We showed that both factors exerted an influ-
ence on the performance of the mature network. Weight decay
serves to undo the effects of training unless that training is rein-
forced by further encounters with the patterns. It might thus be
expected that low-frequency patterns would be more affected by
weight decay than high-frequency patterns, because the high-
frequency patterns have more opportunities to counteract the ten-
dency of weight decay to shift weights back toward resting level.
This in turn could alter the balance of power between patterns that
have the benefit of early training but are trained only at low
frequencies and patterns that are introduced later into training but
are trained with high frequency thereafter.

Simulation 15 was a repeat of Simulation 11.2 with the addition
of weight decay. One hundred early patterns were trained from the
outset, and 100 late patterns were introduced after 750 epochs. The
early and late sets were each divided into subsets of 75 patterns
trained with low frequency (once per epoch) and 25 patterns
trained with high frequency (10 times per epoch). The network was
assessed after 5,000 epochs of training. There were five levels of
weight decay ranging from 0 (Simulation 15.1, a replication of
Simulation 11.2) to 0.0001 (Simulation 15.5). Figure 16 shows the
mean error scores at 5,000 epochs for each pattern set for the
different levels of weight decay. Note that the v-axis in Figure 16
starts below 0 to show the very low error rates to early high-
frequency patterns with low levels of weight decay.

A three-way analysis of variance was carried out on the error
scores at 5,000 epochs with weight decay, age of acquisition, and
frequency as variables. There were significant main effects of
weight decay, F(4t 784) = 206.7, MSE = 242.4; age of acquisi-
tion, F(i, 196) = 80.7, MSE = 364.0; and frequency, ^(1 , 196) =
307.7, MSE = 1,387.7. The interaction between age of acquisition
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Figure 16. Effects of different levels of weight decay on pattern sets varying in age of acquisition and
frequency. The network was trained to 5,000 epochs (based on Simulation 11.2). HF = high frequency; LF =
low frequency.

and frequency approached significance, F(l, 196) = 3.5,
MSE - 15.0, p = .06, indicating that frequency effects tended
overall to be greater for late than early acquired patterns. There
were also significant first-order interactions between weight decay
and age of acquisition, F(4, 784) = 28.8, MSE = 33.7, and
between weigh! decay and frequency, F(4, 784) = 215.1, MSE =
252.2. The second-order interaction among weight decay, fre-
quency, and age of acquisition was not significant, F(4, 784) < 1.
The interactions of weight decay with age of acquisition and
frequency show that as weight decay increased, the relative influ-
ences of age of acquisition and frequency changed. With low
levels of decay, point of entry into training was very important (as
in Simulation 11); with higher levels of decay, frequency of
training became more important (because there was a need for
continued training to battle against the tendency of weights to
revert to their initial levels unless constantly refreshed). With the
highest level of weight decay (0.0001), the network failed to learn
either of the sets of low-frequency patterns by 5,000 epochs.

Separate analyses of variance were carried out on the error
scores at 5,000 epochs for the different levels of weight decay that
permitted the network to learn all four sets to a reasonable extent
by 5,000 epochs (0 to 0.000075). Even though the balance of
influence between them changed with the addition of weight
decay, there were significant effects of both age of acquisition and
frequency on error scores at all four levels of decay.

Simulation 16: Lesioning the Network

Age of acquisition has been shown to affect the accuracy with
which normal elderly people, patients with poststroke aphasia, and
patients with semantic dementia can name objects. These groups
all fail to name objects with late acquired names that young,
normal adults name correctly (Ellis et al., 1996; Hirsh & Ellis,
1994; Hirsh & Funnell, 1995; Hodgson & Ellis, 1998; Lambon
Ralph et al., 1998; Nickels & Howard, 1995).

We studied the effect of "lesioning" a trained network by
resetting a proportion of connections to and from the hidden units
to zero. The starting point was the network from Simulation 3 that
had been trained on 100 early and 100 late patterns up to 5,000

epochs, with the late patterns being introduced into training after
250 epochs. The network was lesioned by reducing the connection
strengths (weights) to zero with probabilities of .05, .10, .15, and
.20. The results are shown in Figure 17. Error increased as the
network was lesioned more. If an arbitrary threshold is set, above
which the network was deemed not to be able to generate the
required output pattern for a given input pattern, then it is clear
from Figure 17 that a damaged network would always be better
able to generate correct responses to early than late items, as
humans can.

Genera] Discussion

Simulations 1 and 2 showed that analogies drawn in the past
between age of acquisition effects in adults and catastrophic in-
terference in connectionist networks were misguided. Interference
with consequent loss of representations occurs when one set of
items entirely replaces another in training (Simulation 2) or when
items cease to be presented in training (Simulation 12.4). But when
items introduced early into training are then joined by later sets
that are trained alongside them in a cumulative and interleaved
manner, the performance of the network continues to favor the
early set (Simulations 1 and 3). The advantage for early acquired
patterns cannot be explained simply in terms of differences be-
tween early and late sets in cumulative frequency of training
(Simulations 4 and 11).

The age of acquisition effect does not simply reflect an advan-
tage for items trained from the outset over other items: If the point
of entry into training of different pattern sets is staggered, then
performance of the network after extensive training reflects the
order of entry of the patterns in training (Simulation 5). If differ-
ences in the order of entry of pattern sets into training are com-
bined with differences in the frequency with which patterns are
trained, then the final performance of the network reflects both
factors (Simulation 6).

Analysis of network performance provides some insights into
why it is that the network struggles to leam patterns introduced
into training once it has been trained on earlier patterns. If the
network is to learn the association between input and output
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Figure 17. Effects on error scores for early and late patterns of lesioning a trained network by resetting weights
to zero with probabilities ranging from .05 to .20 (Simulation 16).

patterns, it has to adjust the weights between units in the different
layers. This tends to shift the activations of units in the interme-
diate layer away from the starting value of 0.5 toward either 0 or 1.
Early training moves the function away from the initial value more
than later training can. The result is that the intermediate units
become progressively committed to achieving maximum differen-
tiation between the patterns introduced at the outset of training.
This commitment comes at a cost, which is that the structure of the
network loses plasticity and becomes less and less efficient at
learning and representing associations introduced later (Simulation
6). Loss of plasticity does not, however, require that unit activa-
tions reach maximum or minimum values: Use of a modified
version of back-propagation that prevents this (Quickprop) did not
significantly reduce the difference in the network's response to
early and late pattern sets (Simulation 10). The fact that early
movements of the activation function away from resting level are
greater than later movements appears sufficient to bestow an
advantage on early patterns.

Further simulations with standard back-propagation showed that
age of acquisition effects are characteristic of patterns with varying
degrees of sparseness of coding (Simulation 7), increase with
increasing vocabulary size (although they are present for all vo-
cabulary sizes; Simulation 8), and occur for all values of the
learning rate parameter sufficient to induce learning in the network
(Simulation 9). The point at which items are entered into training
(age of acquisition) is not, of course, the only factor that affects
network performance. The frequency with which patterns are
trained also influences network structure. Simulation 11 showed
that the contributions of age of acquisition and frequency can
appear additive or interactive depending on the strength of the
frequency manipulation (and, presumably, the strength of the age
of acquisition manipulation). Once the model had been trained, the
frequency with which early patterns that were originally of high
frequency continued to be presented to the mature network could
be reduced considerably without any increase in the error associ-
ated with those patterns. In the absence of weight decay, it was
only when training ceased altogether that performance on early,
high-frequency patterns declined (Simulation 12).

It is hard to teach old networks new tricks. Patterns entered into
training after the network had more or less stabilized needed to be
presented at very high frequencies indeed before their representa-
tions became comparable to those of earlier acquired patterns
(Simulation 13). In human terms, this predicts that words acquired
in adulthood will struggle to develop representations comparable
to those of words learned in childhood. Examples might be words
entering the language as a result of technological developments or
words associated with particular adult occupations.

The behavior of the network was altered to a degree if it was
trained with an element of weight decay. When weight decay is
present, connections that are not continually refreshed decay back
toward their starting levels. Simulation 14 showed a tendency for
weight decay to reduce (but not eliminate) age of acquisition
effects. Simulation 15 examined the way in which the introduction
of weight decay alters the balance of influence between age of
acquisition and frequency. The presence of weight decay means
that training has to combat the tendency for weights to return to
resting levels through decay. High-frequency training is better able
to do this than low-frequency training. As weight decay increases,
frequency of training tends to become more important in deter-
mining eventual error scores, and age of acquisition becomes less
important. Thus, when weight decay was absent in Simulation 14
or very small, early low-frequency patterns trained once per epoch
had lower error scores after extensive training than late patterns
trained 10 times per epoch (Simulations 11.2, 15.1, and 15.2). As
weight decay increased, frequency of training became more influ-
ential in determining final error scores (Simulations 15.3
and 15.4). This represents only a modulation of age of acquisition
and frequency effects, however: Both effects were present and
influenced network structure to a significant degree at all levels of
weight decay that allow the network to learn all patterns in the
training set.

It is possible that by reducing the tendency of a network to
become rigid, weight decay may make it more receptive to very
late items. Simulation 13 suggests that it would be extremely
difficult for an adult to acquire new vocabulary. We have little
doubt that acquisition of new vocabulary is harder for adults with
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their mature networks than for children with their immature net-
works, but it is perhaps not quite as hard for an adult to learn new
words as Simulation 13 might imply. An element of weight decay
should make a mature network more receptive to new information
as well as improving its capacity to generalize old learning to new
inputs (Plaut, 1997; Plaut et al., 1996). That said, the consequences
of reducing the training of early, high-frequency patterns (Simu-
lation 12) would also be expected to be more severe with the
addition of weight decay than without, so the improved receptive-
ness of the mature network could come at a cost to information that
is acquired early but not regularly refreshed thereafter.

Finally, the lesioned network showed lower error to early than
late acquired items (Simulation 16). This may help to explain the
effects of age of acquisition on word retrieval in normal aging
(Hodgson & Ellis, 1998) and after brain damage in adulthood
(Ellis et al., 1996; Hirsh & Ellis, 1994; Hirsh & Funnell, 1995;
Lambon Ralph et al., 1998).

The Relationship Between Age of Acquisition and
Frequency Effects

Each time a pattern is presented to the network, it has the
opportunity to influence network structure. The more often a
pattern is presented, the more influence it has, so patterns trained
with high frequency are learned better than patterns trained with
low frequency. Final performance on a given pattern (association)
is not, however, a simple reflection of the number of times that
pattern has been trained. This is because early presentations have
a greater impact on final network structure than later presentations.
Whereas frequency of training is well established in the literature
as a general factor underlying learning in connectionist models
using distributed representations, the present work shows that the
state of the system at the point when training occurs (age of
acquisition) is another. Factors such as the presence and strength of
weight decay modulate the relative influences of frequency and
age of acquisition on the performance of the network, but both
factors exert a significant effect under all circumstances that al-
lowed the network to learn the full set of training patterns. As far
as we are aware, no one has previously drawn attention to the fact
that age of acquisition effects emerge out of the basic properties of
distributed memory networks at least as naturally as frequency
effects do.

The fact that training has more influence when the network is
young than when it is old means that age of acquisition and
frequency effects cannot be combined in terms of simple cumula-
tive frequency (cf. Gilhooly, 1984; Lewis, 1999). That said, the
simulations reported here suggest that it may be possible to ac-
commodate age of acquisition and frequency within a single
framework. The point of entry of a pattern into training is one
factor that affects the ultimate quality of its representation; another
is the frequency with which it is trained. Much has been made in
the past of the parallel between frequency effects in connectionist
networks and in human performance (e.g., Monsell, 1991; Plaut et
al., 1996; Seidenberg & McClelland, 1989), even though many of
the classic experimental studies of frequency effects were con-
founded by differences in age of acquisition (Morrison & Ellis,
1995).

Within the type of network used here, differences in the point of
entry of patterns into training (age of acquisition) and differences

in the frequency with which patterns are subsequently trained
affect network structure in essentially the same way: by influenc-
ing the extent to which weights change in response to training.
Early training results in larger weight changes, as does frequent
training. Network structure is determined by point of entry into
training and frequency of training, so patterns entered late or
trained with low frequency struggle to reconfigure the network in
ways that would optimize their representation. Thus, although we
have shown that age of acquisition effects cannot be reduced to
simple cumulative frequency, a common account may nevertheless
be possible for the two effects.

We have shown that the precise nature of the interaction be-
tween age of acquisition and frequency is affected by such factors
as the differential between high and low frequency (Simulation 11)
and the presence and strength of weight decay (Simulation 15).
Note, though, that the ways in which age of acquisition and
frequency affect the network remain the same in all of these
simulations: The presence or absence of a statistical interaction
between two variables cannot be taken as providing any clear
evidence that the variables in question affect the same or different
processing levels or mechanisms, at least not in the case of
artificial neural networks. The present analyses also cany the
strong implication that any task that is affected by age of acqui-
sition will also be affected by frequency, and vice versa. It has
sometimes been claimed that certain tasks are affected by one of
these factors and not the other, but subsequent research has tended
to support the view that both exert an influence. For example, early
studies of object naming by Carroll and White (1973), Gilhooly
and Gilhooly (1979), Morrison et al. (1992), and others often
reported effects of age of acquisition but not frequency, but more
recent studies that have typically involved more items and better
measures of word frequency have usually revealed effects of both
variables (e.g., Barry et al., 1997; Ellis & Morrison, 1998;
Snodgrass & Yuditsky, 1996). Similarly, some studies of word
naming have reported effects of age of acquisition but not word
frequency (e.g., Brown & Watson, 1987; Morrison & Ellis, 1995),
but more recent studies again indicate that both variables exert an
effect (Gerhand & Barry, 1998, 1999a, 1999b; Morrison & Ellis,
2000). The account offered here would predict that future studies
will show that tasks affected by one factor will also be affected by
the other.

Generality of Age of Acquisition Effects

We have demonstrated that age of acquisition effects are a
fundamental property of a type of connectionist network that has
been widely used to model human cognitive processes and that
these effects emerge out of network principles at least as naturally
as effects of frequency, imageability, or spelling-sound regularity.
This property appears not to have been commented on before or
linked to age of acquisition effects in human lexical processing,
presumably because simulations have usually involved training
networks from the outset on all of the patterns to be learned (or
entirely replacing one set of patterns with another in the case of
simulations relating to learning and catastrophic interference).
Much human learning, however, is cumulative, including human
vocabulary acquisition, and if networks are to simulate natural
learning, they need to be trained cumulatively.



AGE OF ACQUISITION AND CONNECTIONIST NETWORKS 1121

We used a three-layer network involving back-propagation
partly because it is such a widely used species of network and
partly because some authors have claimed that age of acquisition
effects are incompatible with back-propagation networks (Gerhand
& Barry, 1998; Moore & Valentine, 1998; Morrison & Ellis,
1995). We suspect, however, that age of acquisition effects will be
found to characterize a wide range of artificial neural networks.
Specifically, age of acquisition effects will be found whenever
early training has more of an impact on network structure than
later training. Under those circumstances, any network will be-
come more rigid and less plastic as learning proceeds, with the
consequence that material introduced late into training will be
more difficult to learn than material introduced early (cf. Munro,
1986). It may be possible to lessen this tendency in various ways,
but we would argue that the strength of the evidence for the
existence of age of acquisition effects means that the psychological
relevance of any network or learning algorithm that fails to man-
ifest such effects must be called into question.

Self-organizing (Kohonen) networks have attracted growing
interest in recent years (e.g., Anderson, 1999; Luckman, Allinson,
Ellis, & Flude, 1995; MacWhinney, 1998). A self-organizing
network is an unsupervised neural network that uses competitive
learning to create a two-dimensional topographic map of the input
in which similar input patterns are represented by units that are
physically close together on the map and dissimilar input patterns
are pushed apart (Kohonen, 1984, 1990; Ritter, 1995). Morrison
(1993), Morrison and Ellis (1995), and Ellis and Morrison (1998)
suggested that patterns introduced early into the training of self-
organizing networks will colonize the entire map, with the result
that patterns introduced later will have to be squeezed in around
them and will develop less effective representations. Thus, in
self-organizing networks, differences in age of acquisition might
be shown to affect the representations themselves, not just the ease
with which representations at one level can activate associated
representations at other levels (as is the case for the simulations
reported here). If future research were to support Brown and
Watson's (1987) conjecture that the phonological representations
of late acquired words are more fragmented than those of early
acquired words, then self-organizing networks might offer some
insights into how this could come about.

Although age of acquisition effects have largely been docu-
mented in the domain of word recognition and production, there is
nothing in the account of age of acquisition effects we have offered
here to suggest that such effects will be confined to that domain.
In fact, our account reveals quite the opposite: Age of acquisition
effects should occur whenever networks with certain basic prop-
erties are required to learn and represent associations between
input and output patterns in a cumulative and interleaved manner.
Those associations that are able to influence the structure of a
relatively unformed network will have a greater impact on its final
structure than associations learned by a network that has already
acquired some knowledge and consequent organization.

Munro (1986) suggested that the critical periods seen in a range
of developmental domains (for example, in ocular dominance in
the visual cortex) might reflect progressive reductions in neural
plasticity under conditions of cumulative learning. Age of acqui-
sition effects have recently been reported in situations that do not
involve recognizing and producing words. Vitkovitch and Tyrell
(1995) reported that age of acquisition of abject names predicted

speed of responding in a task in which participants had to indicate
whether pictured objects were real or unreal (chimeric combina-
tions of two halves of different objects). They suggested that age
of acquisition of object names is likely to correlate with the age at
which the objects themselves are encountered (so that one learns
the early word sheep around the time when one first sees a real or
pictured sheep, and one learns the word microscope around the
somewhat later time when one first sees a real or pictured micro-
scope). Moore and Valentine (1999) likewise reported an age of
acquisition effect in a task requiring participants to judge faces as
familiar (celebrity faces) or unfamiliar. Reaction times were faster
for the faces of celebrities that participants rated as having been
learned early in life than for the faces of equally familiar celebri-
ties rated as having been learned more recently. Similarly, Lewis
(1999) had participants classify characters from two well-known
television soap operas according to which program they appeared
in and reported an effect of age of acquisition (time since the
character entered the soap opera) over and above an effect of
frequency of appearance.

If our analysis is correct, then age of acquisition effects should
occur whenever learning is cumulative and accompanied by a
gradual decline in the plasticity of the network responsible for
learning patterns and associations. Factors yet to be investigated
may influence the impact that network structure created by early
patterns exerts on the assimilation of later patterns. For example,
when mappings between input and output patterns are highly
consistent, as in the reading of English words with predictable
spelling-sound correspondences or almost all words in languages
such as Italian or Spanish, age of acquisition effects may be
reduced because late acquired words should be able to exploit the
network structure generated by early words. In contrast, when late
words require new or different input-output connections, as in
reading late acquired exception words in English or learning new
object names in any language, age of acquisition should be a major
factor in determining processing speed and accuracy. The adult
human lexical system, like the human object and face recognition
systems, is created by a process of gradual, cumulative learning
within a neural network. It is our contention that networks trained
in this way preserve within their structure the vestiges of their
creation, vestiges that reveal themselves in adulthood as age of
acquisition effects.
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