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a b s t r a c t

Warmer, drier summers brought by climate change increase the potential risk of wildfires on the
moorland of the Peak District of northern England. Fires are costly to fight, damage the ecosystem, harm
water catchments, cause erosion scars and disrupt transport. Fires release carbon dioxide to the
atmosphere. Accurate forecasts of the timing of fires help deployment of fire fighting resources.
A probit model is used to assess the chance of fires at different times of the year, days of the week and
under various weather conditions. Current and past rainfall damp fire risk. The likelihood of fire increases
with maximum temperature. Dry spells or recent fire activity also signal extra fire hazard. Certain days
are fire prone due to visitors and some months of the year are more risky reflecting the changing
flammability of moorland vegetation. The model back-predicts earlier fires during a hot dry summer.
The impact of climate change on fire incidence is not straightforward. Risks may be reduced if wetter
winters and earlier onset of spring add to plant moisture content. Yet a warm spring increases biomass
and potential fuel load in summer. Climate change may cause the timing of moorland wildfires to shift
from a damper and more verdant spring to drought-stressed summer.

� 2009 Elsevier Ltd. All rights reserved.
1. Climate change and moorland wildfires

1.1. Moorland fires

Climate change threatens delicate and cherished landscapes.
This study relates to the moorlands of the Peak District National
Park in the Pennines of northern England (Fig. 1). Rural uplands are
a key visitor attraction in the United Kingdom. Yet they are
particularly vulnerable to climate change (Shackley et al., 1998).
Warmer, drier summers brought by global warming pose a poten-
tial danger of increased frequency of wildfires on moorlands.
Similar concerns have been expressed about increased risk of
wildfires brought by climate change in the forests of Ontario by
Wotton et al. (2003). So the UK Peak District is an exemplar of
a global problem. The degraded peatlands of the Peak District lie at
the southeastern margin of blanket bog in the UK and have the
highest number of visitors of any UK National Park. Under current
x: þ44 161 275 0923.
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climatic conditions the Peak District can be regarded as an analogue
for fire risk on peatlands at higher latitudes during a future drier,
warmer climate. Peat accounts for 51 per cent of the carbon content
of soils in Britain (Milne and Brown, 1997, tables 13,14).

Moorland wildfires are difficult and costly to fight, damage the
ecosystem and cause long-lasting erosion scars (Tallis, 1981; Maltby
et al., 1990; Mackay and Tallis, 1996; Anderson et al., 1997). Much
peat erosion can be traced to exceptional events, either fires or
extreme downpours (Tallis, 1987). Fires can be devastating for small
mammals and ground nesting birds (Anderson, 1986, p. 8).1 Fire-
damaged-peat is eroded and deposited in reservoirs where it
discolours drinking water supplies and reduces water storage
capacity. Heavy metals deposited from airborne industrial pollution
in previous centuries are disturbed by burning and leach into water
catchments from exposed peat (Yeloff et al., 2005; Rothwell et al.,
1 The result of severe fires is a post-Armageddon type landscape with hillocks of
burnt peat, exposed peri-glacial rocks and bygone aircraft wrecks. Burn scars
provide an ecological niche for one species, the Golden Plover, which prefers open
ground for nesting.
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Fig. 2. The occurrence of wildfires.

Fig. 1. Peak district wildfires.
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2005). Large fires may close major roads and force rerouting of
flights to Manchester Airport for short periods at considerable cost.
Peat covering much of the north and eastern parts of the park is an
important carbon store. Burning directly releases carbon to the
atmosphere and contributes to climate change. Other pathways for
carbon loss are triggered by erosion of burnt soil, although evidence
on methane flux from burnt areas is contradictory (Gray, 2006;
Ward et al., 2007).

The moors are a highly managed landscape used for hill farming,
grouse shooting, water catchment and recreation. Gamekeepers
encourage a mosaic of habitats, including old heather to shelter
game-birds and new growth areas. Small patches of heather are
intentionally burnt in winter to promote regeneration of new
heather shoots in spring on which grouse feed. Managed burning is
limited, by law, to the period between 1st October and 15th April
(DEFRA, 1992). Most controlled burning activity takes place in
February and March when the ground is wet and the superficial
vegetation is dry (McMorrow et al., 2009). These burning regimes
usually occur on a 10–20 year cycle. Evidence suggests managed
burning may have increased over time. This adds to risk of acci-
dental fires in spring if burns get out of control, yet reduces fuel
load and fire risk in summer, thereby altering the seasonality of fire
outbreaks over time (Yallop et al., 2006).

Our concern is wildfires. They cause severe and extensive
damage if they set into the underlying peat soil, where they can
continue burning for weeks and cause loss of soil organic matter
and nutrients (Shaw et al., 1996). Wildfires are defined here as
those started accidentally or maliciously, or managed fires that get
out of control. For the most part, human negligence or malice is to
blame for moorland wildfires. Fires due to lightning strikes are rare.
Wildfires are caused by various factors including cigarettes dis-
carded by visitors, poorly extinguished camp fires and barbecues,
the lens effect of glass litter, arson and intentional fires directed at
heather burning which run out of control. The moors may have to
be closed to public access at times of high fire risk.

Over a 27 year period ending on 1st August 2004 there were 353
moorland wildfires in the Peak District National Park Fire Rangers’
Log (Appendix 1). These logs record fires of all sizes and causes,
though some fires in remote locations may burn out unreported.
Nearly one third of all fires took place during just four individual
months within our sample: the very hot, dry summer of July and
August 1976, and the dry spring of March and April 2003 (Fig. 2).
Records are sketchy before 1976. In 1959, before our sample begins,
the Derbyshire fire brigade alone received 700 reports of moorland
fires between September 1st and 11th – an under-estimate of fires
at the time since the Peak District is also covered by neighbouring
fire authorities (Radley, 1965). A small change in the weather can
alter the chance of a wildfire occurring from a rare event to
a commonplace and severe nuisance.

Few attempts have been made to assess systematically the effect
of weather, soil and plant conditions and visitor numbers upon the
prevalence of wildfires in the UK. A study of Peak District fires by
Anderson (1986) concludes rainfall deficit during recent months
relative to what might have been expected for the time of year is
a good predictor of wildfires. More generally, Palutikof (1997) finds
a positive relationship between the number of ‘‘secondary fires’’
(including category 2: grassland fires) and temperature, and
a negative relationship between such fires and rainfall, across
England and Wales over the period 1984–1995. Secondary fire
increases due to the hot, dry summer of 1995 occurred mainly in
grass and heathland, the landscape of concern here.



2 Bank holidays are statutory holidays in the UK, usually occurring on a Monday
in Spring and Autumn.
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The impact of weather and human activity on fire risk has to be
established in order to forecast the effect of changing visitor
numbers and climate. Development of statistical models allows us
to assess the efficiency of existing prediction models based on
meteorological considerations. Accurate forecasts of the likely
timing and location of fires help deployment of fire fighting
resources.

1.2. The impact of climate change

Climate change models for Northwest England suggest the
climate will get milder (Hulme et al., 2002). The UK Meteorological
Office Hadley Centre climate models suggest a warming of the
average summer maximum temperature by up to 5 �C by the 2080s
(2071–2100), depending on the level of future emissions. This
means average summer maximum temperature is likely to increase
from 18 �C (1961–1990 average) to about 23 �C in the Northwest of
England (McEvoy et al., 2006). Additionally, changes in rainfall are
expected to be considerable, with up to 45% decrease in summer
rain and 23% increase in winter precipitation by the 2080s.

The potential effect of climate change on wildfire risk is not
straightforward. Plants adapt to environmental conditions. The
vulnerability of the Peak District to wildfires alters from day to day
with plant phenology. Water held in plants strongly influences fire
behaviour (Davies, 2005, ch.2). Increased winter precipitation means
plants and soil will be wetter in spring. When spring arrives, new
green shoots supplant fire prone dead plant tissue from the previous
year. Higher maximum temperatures raise the risk of fire, but at the
same time, higher minimum temperatures advance plant growth.
The advance of spring should not be exaggerated as plant growth
also depends upon duration of daylight (Sparks et al., 2000). Precise
dates for the onset of spring vary with altitude. As plants progress
through into summer the amount of fuel accumulated in biomass is
correspondingly higher at a time when seasonal availability of water
is reduced. Warmer, drier summers mean soil moisture will fall and
evapotranspiration from vegetation will rise. So, climate change may
cause the timing of moorland wildfires to shift from a damper and
more verdant spring to drought-stressed summer.

Climate change is likely to extend the length of the fire season.
The high risk period for fires on the moors will spread into autumn
as soil moisture takes longer to recover after warmer, drier
summers. Models of the incidence of forest fires show that
a doubling of carbon dioxide levels in the atmosphere significantly
lengthens the fire season (Wotton and Flannigan, 1993).

Warmer, drier summers and milder winters may encourage
tourism and outdoor recreation, though the evidence is equivocal.
Aylen et al. (2006) find visits to a country leisure site are unaffected
by temperature. Rainfall merely switches visitors from wet days to
dry days. Other research suggests the UK tourism industry benefits
from warm summers (Giles and Perry, 1998). In the same vein,
Agnew (1997) estimates 5% more domestic holidays and 30% more
short breaks were taken in the hot summer of 1995.

1.3. The structure of the paper

This paper reports development of a probability model to assess
the chance of fires at different times of the year, different days of
the week and under various weather conditions, allowing for sea-
sonality in the data.

In Section 2, the sample of wildfires and its seasonal character is
discussed. Section 3 analyses the time series properties of the data.
Section 4 outlines a probit model for the likelihood of moorland
wildfires and Section 5 discusses the general to specific method-
ology used and estimation of results. This model is tested out-of-
sample against a data set for the severe fire year 1976/7 in Section 6.
We consider extensions of the model in Section 7 and draw
conclusions about the implications of climate change for wildfires
in Section 8.

2. The seasonal nature of wildfires

Our sample of daily fires is drawn from record books on fire
incidents kept by rangers in the Peak District National Park. Data is
available for the period 1st June 1976 to 1st August 2004, though
we retain the data for 1976/7 for out-of-sample forecasting. Record
books may understate fires if incidents are dealt with locally and
pass unreported. There is spatial bias in reporting. Fires are more
likely to occur close to roads and footpaths and these are also more
likely to be recorded.

The seasonal nature of fires is complex. The occurrence of fires
varies with the time of year and even within each week. The peak
months for fires are April and May (Fig. 2). The chance of a fire in
April or May is approaching one in ten. But this conceals fluctua-
tions from year to year. Nearly one third of all the 353 moorland
wildfires in the Peak District in our database took place during just
four individual months: the very hot, dry summer of July and
August 1976 – which is outside the sample used for estimation –
and during the dry spring of March and April 2003.

More fires are reported at weekends and bank holidays,
reflecting the impact of recreation activity.2 (There may be
a distinction between the ignition of a fire and the date it is
reported. It is said weekend fires are often reported on a Monday.
We find no statistical confirmation of this particular fire lore.) There
is no direct evidence on variations in visit levels since the Peak
District National Park is open to public access and crossed by major
roads. So we proxy visit levels by days of the week, with extra
dummy variables for bank holidays and school holidays. Fire
occurrence is not confined to warm days. A single fire in January
ignited at a temperature of �0.5 �C. Fires can burn across dry
winter vegetation above frozen soil, although these are likely to be
controlled surface burns used by land managers to renew heather.

3. Analysis of time series properties

Our weather data are daily precipitation and temperature from
Buxton, a town close to the centre of the Peak District National Park.
Assessing climate trends is highly controversial as Kallache et al.
(2005) show in the context of flood behaviour. A surprising feature
of Buxton weather data is its long run stability. Climate change may
be defined, in time series terms, as a persistent change in the first
two moments (mean and standard deviation) of meteorological
data (i.e. covariance non-stationarity). Non-stationarity implies
long run climate behaviour dominates the impact of short-run
weather effects (Woodward and Gray, 1995). Yet we find the impact
of climate is no more than the sum of short-run responses to daily
and seasonal weather variation. There is no evidence of climate
change in our data apart from a shift in the seasonal distribution of
rainfall. We concur with Kallache op.cit. that climate change may
only be observable with a time delay and with complex patterns.
Daily weather data is a poor basis for discerning underlying climate
trends.

Taking monthly data, the weather in the Peak District appears
stationary over the 27 year period. That is to say neither the average
nor the variance in the level of temperature and precipitation alters
significantly over time. Winter weather at Buxton appears to have
got slightly warmer over time – at least since 1987 – but this is not
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statistically significant. Autocorrelation functions show no
evidence of a unit root at regular intervals in the residuals of
a seasonally adjusted auxiliary regression equation, for rainfall,
maximum or minimum temperature, or temperature range (Fig. 3).
There are no significant seasonal unit roots. These findings are
consistent with Thompson (1999) who finds no particular trend to
precipitation in Britain over the last 150 years, although there have
been substantial variations from year to year.

Osborn et al. (2000) and Osborn and Hulme (2002) suggested
daily precipitation has become more intense in winter and less
intense in summer over the period 1961–2000. This enhanced
seasonal cycle of increasing winter precipitation, heavier down-
pours and drier summers with fewer wet days and lighter rainfall
may reflect changes in the mid-latitude westerly circulation
(Mayes, 1996). Mayes shows there has been more rainfall in
Northwest England in early spring, which would damp the moors
ahead of the high risk fire season in April and May. Subsequent
results from Maraun et al. (2008) confirm growing rainfall intensity
in winter and spring for the UK, but suggest changes in summer
rainfall intensity show no long run trend. These results are crucial
for modelling incidence of moorland fires as more intermittent and
less intense summer rainfall may increase the risk of fire.
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Fig. 3. Autocorrelation functions of monthly averages of weather variables: residuals
from auxiliary regressions on monthly seasonal dummy variables.
4. Modelling the probability of fires

One approach to modelling ecological disturbances such as
wildfire events relies on a Poisson process for extreme values (e.g.
Dayananda, 1977; Mandallaz and Ye, 1997; Wotton et al., 2003).
Extreme event studies consider observable distributions (e.g.
Gaines and Denny, 1993). For example, Davison and Smith (1990)
and Katz et al. (2005) appeal to a Pareto distribution of extreme
outcomes to model infrequent but unusual events. Poisson models
are an ideal way to model the number of fires.

Instead, the approach here is to consider the chance of a wildfire
breaking out on a given day. In these circumstances a stochastic
binary model, such as probit, is applicable. Other probability based
models of wildland fire adopt a similar technique, logit analysis, for
computational reasons (Martell et al., 1987; Vega Garcia et al., 1995;
Preisler et al., 2004). In practice, modelling using Poisson regression
gives very similar results to probit, but slightly less accurate out-of-
sample forecasts (results are available from the authors.)

4.1. Probit

Probit analysis offers a convenient functional form for esti-
mating a probability model with an observed dependent variable, y,
of either zero (‘‘no fire’’) or one (‘‘fire or fires occur’’) where yi is the
outcome of a binomial process on the ith day. (See, for example,
Johnston and DiNardo, 1997). We can define an implicit latent
variable y*, such that:

yi ¼
�

1; if y*
i ¼ Xibþ 3i > 0

0; else
; (1)

where X is a vector of observable explanatory variables (Appendix
2); 3i is an unobservable aleatoric element, which we assume is
independently normally distributed with a mean of zero and
a standard deviation of s; y* is normally distributed, conditional on
X, and b can be estimated using maximum likelihood estimation.
Therefore,

Prðyi ¼ 1Þ ¼ F
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4.2. Capturing seasonality

Seasonality can take a number of forms in time series models
(e.g. Franses, 1996). Stochastic seasonality, (or seasonal unit roots,
Hylleberg et al., 1990), is ruled out by the fact that we find the data
are stationary. We assume seasonal fluctuations in daily fires can be
represented deterministically using seasonal dummy variables.
These dummy variables include the month of the year, the day of
the week, the presence of a bank holiday and school holidays. These
dummy variables are intended to capture a shift in the mean
probability of a fire for those days over and above other factors at
work. Deterministic seasonality is a special case of a broader group
of seasonal models (Albertson and Aylen, 1996). Alternative speci-
fications are not readily handled with daily data. Nor is there reason
to suppose seasonal effects, such as weekend peaks in visitors, vary
from year to year. However, we do find periodic seasonality in the
relationship between maximum and minimum temperature over
the course of a year.

4.3. Variable specification

Temperature is specified in terms of both maximum daily air
temperature and minimum temperature, which usually occurs at
night, in degrees Celsius. Precipitation is accumulated rainfall or
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snowfall in the past 24 h measured in millimetres of moisture at
0900 GMT.

High temperatures and low precipitation have a cumulative
effect on fire risk. Moisture evaporates and is transpired from
plants. A moisture deficit builds up. The water table drops in peat
bogs leaving a baked and cracked surface held together by plant
mass. Dry vegetation and peat is more likely to ignite. So we are
concerned to capture two related concepts: the cumulative effect of
weather on local conditions and the idea of a ‘‘dry spell’’, or ‘‘hot
spell’’. In turn, these biophysical hazards interact with human risk
because there are likely to be more people on the moors in hot dry
weather, giving rise to more likelihood of ignition and more chance
of a fire being reported.

The cumulative effect of precipitation and temperature is
expressed through rainfall and temperature temporal shadows –
the lagged effect of recent weather. To calculate rainfall shadow, for
example for the past week, we proceed as follows: Firstly, we take
seven day moving averages across the whole sample period and
calculate the typical moving average for each date in the year. (On
leap years, 29th February is assumed to be the average of 28th
February and 1st March). This captures the idea of ‘‘typical
weather’’ for the time of year. Secondly, daily rainfall shadow is the
actual moving average precipitation ending on that day, minus the
typical moving average for those dates across all years in the
sample. This gives an indicator of departures from usual weather
over the past week. Fourteen, twenty-one and fifty-six day rainfall
and temperature shadows are calculated in a corresponding way.
Longer rainfall shadows encompass shorter shadows in order to
capture the cumulative effect of dry weather. This creates potential
multicollinearity which implies caution when interpreting coeffi-
cients, but is less of a problem when using the model for its
intended purpose of forecasting. Rainfall and temperature shadows
are eliminated hierarchically by testing restrictions on the longest
shadows first.

The distribution of daily rainfall both for the Peak District and
the British Isles resembles a gamma distribution (Coe and Stern,
1982; Stern and Coe, 1984; Chandler and Wheater, 1998; Spanos,
1999, ch.3). On a typical day, precipitation is less than 1 mm.
Median rainfall at Buxton is only 0.7 mm. Average rainfall is much
higher at 3.6 mm as the mean is pulled upward by extreme events,
such as torrential downpours, that occur from time to time.

Bearing this in mind, dry spells are defined in terms of the
deciles of the rainfall distribution. If the rainfall in the past seven
days is in the bottom decile for that time of year, we set an indicator
variable for a dry period at 1. Once classified as unity, the indicator
dummy remains such until there is a seven day period of above
average rainfall for that time period.3 The same approach is adopted
to categorise an ‘‘hot spell’’. (Temperature is easier to handle
statistically.) Surprisingly, 26% of days fall into ‘‘dry spell’’ clusters
as defined here. The frequency of dry spells reflects the episodic
nature of rainfall. Indeed, the problem of moorland wildfires would
barely exist if rainfall was evenly distributed over time.

There is an added complication that precipitation levels do not
capture the duration of daily rainfall. The surface of dry peat
becomes ‘‘hydrophobic’’. Intense storms may run off quickly and
barely reduce fire vulnerability (McMorrow et al., 2006). Prolonged
gradual rainfall is required to soak vegetation and soil.

The dummy variables ‘‘fireweek’’ and ‘‘multifire’’ reflect the
occurrence of fires in the previous seven days. These can be inter-
preted as the difficulty of fully dousing a fire that has set into peat
3 Alternative specifications for these hot spell and dry spell clusters were tested
and gave almost identical results, suggesting the model is robust with respect to
these variables.
subsoil; the persistence of circumstances favouring a fire over time;
or a symptom of spatial autocorrelation in our data as new fires
flare up near previous incidents (for instance due to wind-blown
cinders). Spatial autocorrelation may manifest itself as time series
autocorrelation if adjacent fires are sparked on successive days.
Those with local knowledge of fire behaviour advise that fires in
peat reappear again in the same location after smouldering for long
periods, although the process of slow, sustained combustion in the
presence of limited oxygen is not fully understood. So in statistical
terms, concealed combustion is likely to appear as time series
autocorrelation.

The moors are occasionally closed to public access due to high
fire risk. The moors were also shut due to the outbreak of foot and
mouth disease from late February to late May 2001 – potentially
a time of high fire risk. These closure days are accounted for by
a dummy variable, although data on closure dates is incomplete.
There is no guarantee these emergency restrictions are observed by
the public. In any event, most fires start close to public rights of way
that cannot be closed. Roads through the park also remain open
which means the moors are still vulnerable to cigarettes discarded
from cars.

Monthly dummies may capture both changes in plant
phenology with the time of year and seasonal shifts in visitor
behaviour. Dummy variables for days of the week, bank holidays
and school holidays relate to visitor activity.
5. Methodology and estimation

5.1. The general to specific approach

All estimates were arrived at using a ‘‘general to specific’’
approach to model evaluation associated with David Hendry
(Davidson et al., 1978; Gilbert, 1986). This involves estimation of
a very general model for the occurrence of fires encompassing
a wide range of weather and visitor related explanatory variables,
and testing successive restrictions on these variables. Relative
importance of effect is determined by absolute values of t-ratios.
General to specific modelling which successively eliminates
explanatory variables is the opposite approach to stepwise
regression which successively adds variables, used for instance by
Martell et al. (1987).

The resulting model should be consistent with knowledge about
physical processes and human behaviour and also account for the
underlying statistical properties of the data set. The final model in
Tables 1 and 2 began with 33 variables. Successive tests of restric-
tions reduced this to a final set of 15 explanatory factors. Taking, for
instance, days of the week; only Friday, Saturday and Sunday turn
out to be significantly different in terms of explaining fire incidence
from Wednesday, the initial base case.

Models are estimated using daily data beginning 1st February
1978 to 1st August 2004. The second half of 1976 and the first half of
1977 is set aside for model validation. Multi-fire days are counted
simply as fire days (i.e. yi¼ 1). November, December and January
are eliminated from the estimation period as there is only one fire
recorded during these winter months across the whole sample
period. For some of the time the moors would have been snow
covered and not susceptible to fire. In the forecast function, the
probability of wildfires in these months is assumed to be negligible.

The use of ‘‘seasonal’’ dummy variables implies selection of an
initial base, with which other ‘‘seasons’’ (holidays, days and/or
months in our case) may be compared. We select as our base
a Wednesday in October (neither a bank holiday nor a school
holiday) for which there was no fire in the previous week and not in
a dry spell.



Table 1
Final Probit model of the likelihood of moorland wildfire day. Estimated in levels.
Sample period 1st February 1978 to 1st August 2004. Daily observations from
February to October.

Variable Coefficient b Standard error z Pr> j z j

Fire past week 0.463 0.107 4.31 0.000
Precipitation �0.080 0.023 �3.47 0.001
Minimum temp �0.082 0.016 �5.21 0.000
Maximum temp 0.108 0.013 8.51 0.000
Bank holiday 0.606 0.158 3.85 0.000
Friday �0.300 0.142 �2.11 0.035
Saturday 0.250 0.104 2.42 0.016
Sunday 0.280 0.101 2.76 0.006
April 0.592 0.116 5.10 0.000
May 0.442 0.103 4.30 0.000
R21 �0.101 0.037 �2.74 0.006
R56 �0.111 0.046 �2.43 0.015
IR7 0.237 0.092 2.57 0.010
T28 0.094 0.027 3.46 0.001
Constant �3.51 0.164 �21.5 0.000

Estimated using maximum likelihood; No. of Observation¼ 7287; Log like-
lihood¼�614.1; Likelihood Ratio c2(14)¼ 525.4; Prob> c2¼ 0.0000; Pseudo
R2¼ 0.2996.
z is the test statistic for the null-hypothesis ‘‘the true coefficient value is not
significantly different from zero’’, normally distributed if the null is true and Pr> jzj
is the probability of wrongly rejecting the null-hypothesis. A coefficient is signifi-
cantly different from zero if Pr< 0.05. The Likelihood Ratio gives a test of the null
‘‘none of the coefficients differ significantly from zero’’ and Prob> c2 represents the
probability of wrongly rejecting that null-hypothesis.
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5.2. Results – the probability of a ‘‘fire day’’

Results of the probit model are given in Tables 1 and 2. The
dependent variable being explained is ‘‘the probability of a fire or
fires occurring that day’’. We report both the coefficients of the
estimated model which determine the probit ‘‘score’’ (Table 1) and
the change in probability associated with a small change in the
explanatory variable from its mean (Table 2). In the case of dummy
variables, coefficients represent the change in probability of a fire
resulting from a switch in value from zero to one, keeping other
variables at their mean and other dummies at zero. For example,
Table 2 suggests a typical Friday is 0.3 per cent less likely to have
a fire (meaning, of course, it is not a bank holiday, does not fall in
April or May, did not witness a fire in the past week and is not in an
unusually dry period.)
Table 2
Probit model of the likelihood of moorland wildfire (P) calculated at mean values
and dummy variables set at zero.

Variable (x) vP/vx Mean value ðxÞ Proportion of days
in sample where
dummy takes value 1

Fire past week 0.010a dummy variable 4.8%
Precipitation �0.001 3.3 mm
Minimum temp �0.001 6.1 �C
Maximum temp 0.001 13.0 �C
Bank holiday 0.017a dummy variable 2.6%
Friday �0.003a dummy variable 14.3%
Saturday 0.004a dummy variable 14.3%
Sunday 0.005a dummy variable 14.3%
April 0.014a dummy variable 11.1%
May 0.009a dummy variable 11.5%
R21 �0.001 �0.002
R56 �0.001 �0.007
IR7 0.004a dummy variable 26.3%
T28 0.001 �0.006

P h Pr(yi¼ 1) see equation (2).
Observed probability of fire on a typical day in our estimation period P¼ 0.0259;
Predicted P¼ 0.0042 at mean.

a Discrete change of dummy variable from 0 to 1.
It is apparent some factors contribute more fire risk than others,
especially the influx of visitors to the area as proxied by the day of
the week and occurrence of bank holidays. It is human impact,
rather than meteorological pressure that emerges as the main
villain of the peace. Daily precipitation, past rainfall (R21, R56) and
temperature (T28) shadows and the ‘‘dry spell’’ indicator function
(IR7) are significant – all of which point to the role of moisture in
damping down fire risk. But these variables have relatively slight
effect. A typical British bank holiday is almost five times more
perilous than seven days of dry weather.

Higher maximum temperatures are clearly associated with
greater fire risk, reflecting the dangers of hot, sunny days in
sparking fires. Conversely higher minimum temperatures are asso-
ciated with a lower fire risk. Minimum temperature at night is
a proxy for the onset of spring (Watt, 1954). Warmer days and the
absence of night frost trigger plant growth: greener vegetation is
less prone to fire than old, dry, shrivelled plants that survive winter
by withdrawing moisture from their stems. Growth of vegetation in
spring is one reason April is 1.6 times riskier than May, holding
everything else equal.

Bank holidays are risky, with the added chance of 1.7 in a 100 of
a fire at the mean, over and above the underlying level of risk for
that day. School holidays are included as a potential explanatory
variable because arson by children is reputed to be a cause of
wildfires (McMorrow et al., 2006). There is no statistical evidence to
support this view. Either the observation is apocryphal, junior
arsonists are persistent truants, or the activities of juveniles are
restricted to localities outside the Peak District. Moor closure made
no significant difference to the prevalence of fires, perhaps due to
shortcomings in the data: Some closure dates are unrecorded;
there is no evidence on compliance, with one fire occurring while
the moors were officially closed. We cannot draw conclusions about
the effectiveness of closure as a policy to reduce fire risk.

Inclusion of a dummy taking the value unity if there was one or
more fire in the previous week suggests either circumstances
conducive to a fire, or possibly time series or spatial autocorrelation
between local fire incidents. A similar result is reported by Man-
dallaz and Ye (1997). ‘‘Hot spells’’ are not significant, although dry
spells remain in the final model. Inspection of the data suggests hot
spells are characterised by occasional thunderstorms and torrential
rain.
6. Forecasting outbreaks of fires

6.1. The risk of fire

The potential impact of global warming is illustrated by
considering Spring Bank Holiday in May (Fig. 4).4 This is a high risk
day used to illustrate the workings of the model. In 1978 there were
seven fires on Spring Bank Holiday – the hottest such day in our
sample, with a temperature of 22.5 �C. Our data shows, under
current climate conditions, the risk of a fire (or fires) on this
particular day is observed to be about 8%. We evaluate the probit
function for the average climate on such a day, with maximum
temperature rising from 8 �C to 25 �C and thus consider the like-
lihood of a fire (or fires) being reported. We allow for the corre-
sponding rise in minimum temperature, which has both
a deterministic and a periodic relationship with maximum
temperature across the year.
4 The cumulative normal density function is difficult to evaluate (see Burington,
1973, table 18, pp.424–7). Excel subroutine NORMSDIST calculates the area under
a cumulative normal standardised distribution, converting a probit z score into
a probability that a dependent variable is less than a given value.
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Fig. 4. Probability of a fire on a Spring Bank Holiday: variation with temperature.

K. Albertson et al. / Journal of Environmental Management 90 (2009) 2642–26512648
The average maximum temperature for Spring Bank Holidays in
our sample is 14.87 �C. The ex-post risk of a fire that particular day is
2/26¼ 7.7%. Our model predicts an 8% chance of a fire at the average
temperatures prevailing on a typical Spring Bank Holiday. The
probability of a fire rises non-linearly from 3% at 8 �C, to 26% at
25 �C, with a confidence range from 15% to 39% (Fig. 4)

The overall fit of our model can be re-expressed using a contin-
gency table. We apply our probit model to 26 years of data, including
the winter months in which we predict no fires (there is only one
winter fire recorded in 27 years) (Table 3). As the probit model
forecasts probability of a fire, we choose a threshold level for
declaring a particular day a fire risk. A higher threshold means fewer
false alarms, but more fires un-forecast. Here we define a chance of
fire that day of 5% or greater as representing a serious risk.

Naturally, it is easy to predict ‘‘no fire days’’ as they are prevalent.
The usefulness of the model comes in predicting ‘‘fire days’’. A
prediction of an outbreak of fire is correct one in seven times (i.e.
14%). This is a function of the cautious threshold chosen for alerts.
Expressed in annual terms, we correctly predict five out of seven
wildfires in a typical year. In practical terms, there is a trade-off
between unanticipated wildfires and the cost of deploying fire
watchers and keeping fire crews on standby. If fire crews were
alerted to standby on the basis of these forecasts, typically for 36
days a year, they would anticipate nearly three quarters of the fires.

6.2. Out-of-sample fit

A key test of the specification of our probit model is its ability to
predict a virgin data set. Here we use backcasting – checking the
validity of our model using data prior to our estimation period.
Backcasting, or backdiction as it is sometimes known, gives the
same results in trials as forecasting against hold out data (Scott
Armstrong, 2001). In this case it is particularly appropriate given
Table 3
Contingency table for moorland wildfires (25th November 1977 through 1st August
2004).

Probit Forecast ‘‘Fit’’

PF PNF PF PNF
F 14% 1% 71% 29% 100%
NF 86% 99% 9% 91% 100%

100% 100%

Based on n¼ 9747 days, 190 of which are ‘‘fire days’’.
PF refers to a day on which a fire is predicted, where the probit function indicates
there is a ‘‘significant’’ (5% threshold) probability of a fire.
F refers to a day on which there is a fire: Similarly PNF and NF refer to days on which
no fire is predicted, and when there is no fire respectively. Thus, for example, the ex-
post proportion of in-correct predictions of ‘‘No Fire’’, is 1%.
the extreme weather during the summer before our estimation
interval.

We use the model estimated between 1978 and 2004, as out-
lined in Table 1, to predict fire days for the second half of 1976 and
the first half of 1977 (temperature data is missing for Buxton from
1st June to 29th August 1977). This is a tough but appropriate test as
the hot summer of 1976 was a bad time for fires. The model must
forecast satisfactorily out-of-sample in these circumstances if it is
to be applied to analyse the impact of a hotter climate in future. The
year 1976 is an appropriate analogy for climate change as many of
the fires occurred late in the summer. Recall, climate change indi-
cates shifts towards wetter winters, earlier springs, and hotter and
drier summers.

A backcast on the hold out sample using our probit model shows
we predict the precise timing of fire days 63% of the time (Table 4).
We over-predict the total number of fire days at the 5% threshold,
anticipating 55 fire days when there were only 40 actual fire days.
This is to be expected as visitors to the moors are specifically
encouraged to be more careful in their behaviour at times of
extreme fire risk such as 1976. It is said, but we cannot substantiate,
that an emergency order was issued to close the moors on safety
grounds that year. Visual inspection of the predictions shows the
probit model is very good at anticipating high risk periods but the
precise timing of the forecast fire day is often out by just a day or
two (Fig. 5). High fire probability days are usually associated with
multiple fires.

In order to assess goodness-of-fit of our forecasts, we also
compare the backcast predictions with a naı̈ve seasonal model of
the ex-ante probability of a fire in any given month (Table 4).
Consider the ex-post probability of a fire in month m, pm. A fire is
‘‘forecast’’ by the naı̈ve model on day t if Ut< pm where Ut w U[0,1].
Thus, fires are ‘‘forecast’’ at random, in such a way that the
proportion of ‘‘forecast’’ fires in a month is determined by the ex-
post proportion of actual fire days.

Considering days when fires occurred in our hold out sample,
only 5% were forecast by the naı̈ve model compared to 63% forecast
by the probit model. Conversely, if the probit model predicts ‘‘no
fire’’ it is 95% accurate, while a naı̈ve prediction of no fire is only 89%
accurate.

7. Further research

The probit model has wider application in forecasting similar
spatially distributed hazards such as forest fires, where there is
a need to manage prescribed burning and alert recreation visitors
and local residents to dangers posed by wildfires (Morehouse,
2001.) A local forecasting systems based on expert judgement of the
sort outlined by Abramson et al. (1996) could predict extreme
weather conditions likely to induce fires.

There is more than one fire on some days. The largest number of
daily fires reported during the estimation period is seven. Ordered
Table 4
Backcasts of wildfires (1st June 1976 through 31st May 1977).

Probit Model

PF PNF PF PNF
F 45% 5% 63% 38% 100%
NF 55% 95% 9% 91% 100%

100% 100%
Naı̈ve Seasonal Model for comparison
F 20% 11% 5% 95% 100%
NF 80% 89% 2% 98% 100%

100% 100%

Based on n¼ 365 days, 40 of which are ‘‘fire days’’.
Refer to Table 3 for key.



Fig. 5. Backcasts of the probability of a fire compared with actual number of fires.
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probit could predict the number of fires, assuming occurrence of
fires on any given day is independent. We assume an arsonist on
the Peak would not light more than one fire on each day.

In the absence of information on fire severity, the area of a fire
can be a proxy for the damage caused. The potential size of fires
could be forecast using Tobit analysis (Tobin, 1958; Johnston and
DiNardo,1997, 13), taking account of additional factors such as wind
strength and direction. Predictions of fire severity would help
deployment of fire fighting resources such as back-up fire tenders,
static reservoirs or hydrants. There are statistical difficulties asso-
ciated with censored regression models of this sort (e.g. Maddala,
1983). Modelling size of fires is also subject to sample selection bias.
Small fires are likely to be omitted from the data. The area of very
large fires may be under-recorded as it is difficult to estimate
coverage of a blaze. There is considerable variation in the precision
of estimated areas and fire records do not always include estimates
of the size and location of fires. The tapered Pareto distribution is
preferred for modelling wildfire size in California (Schoenberg
et al., 2003), so assumptions of normality underlying the Tobit
model may not be valid with regard to fire area, as opposed to
frequency.

Moisture in both vegetation and soil influences flammability. An
explanatory variable such as the Keech–Byram drought index for
soil moisture deficit might prove a predictor of fire risk. The index is
designed to capture the net effect of evapotranspiration and
precipitation at the surface and in upper soil layers. However, the
UK Meteorological Office (Met Office, 2005; Kitchen et al., 2006)
dismiss models based on soil moisture deficit, emphasising fires
occur in the spring when ground is wet. Ground moisture levels
might be multicollinear with other explanatory variables, notably
daily maximum temperature or past rainfall.

8. Conclusions and qualifications

A probit model is used to forecast the likelihood of wildfires in
the English Peak District National Park at different times of the year,
days of the week and under various weather conditions. Current
and past rainfall damps fire risk. The chance of fire appears to
increase with maximum temperature. Dry spells or recent fire
activity may also signal extra fire hazard. Certain days of the week
seem more fire prone due to human activity and some months of
the year are more risky reflecting the changing flammability of
moorland vegetation. The model backcasts the wildfire events of
the summer of 1976 successfully.

Climate change is likely to bring wetter winters, but hotter and
drier summers to the UK. The probit model suggests incidence of
wildfires in the Peak District is likely to be episodic, coinciding with
dry spells and hot intervals, especially in summer. Increased winter
rainfall may damp down the risk of fires in spring. The impact of
climate change may be alleviated if earlier onset of spring adds to
plant moisture content. So the incidence of severe fires could shift
from spring towards summer.

These results point to a variety of management solutions to
reduce the outbreak of fires, to fight fires more effectively and to
restore land damaged by wildfire outbreaks. Education of footpath
users is a priority. Managed fires might reduce fuel loads and the
hazard of wildfire (Davies et al., 2008). The probability model
demonstrates global warming may have a damaging effect on
a sensitive landscape if adaptation strategies are not pursued.

Simulations suggest changes in climate variability and weather
extremes matter more than slight changes in average temperatures
or rainfall. The non-linear relationship between the risk of wildfires
and key weather variables such as temperature implies that a slight
increase in the frequency of isolated periods of hot dry weather
might have disastrous impact. Conversely a gentle rise in mean
temperature over a long time period may have negligible effect on
fire risk, especially if spring starts earlier.
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Appendix 1. Data

The sample of fires is drawn from record books on the incidence
of fires maintained by rangers for the Peak District National Park
Authority. The data omits most local grass fires on the urban
periphery outside the Park boundary. The majority are moorland
fires, falling within the statutory boundary of ‘‘section 3 moorland’’
(Fig. 1). Daily data on the occurrence, number and size of fires runs
from June 1976 to July 2004. The period February 1978 to July 2004
was used for estimation. We retain the data for 1976 and 1977 for
out-of-sample forecasting to validate the model.
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Weather data is for Buxton (NGR SK 058734; latitude 53.257,
longitude �1.913), from the UK Meteorological Office Land Surface
Observation Stations database, kindly provided through the British
Atmospheric Data Centre (http://badc.nerc.ac.uk) (A full series of
data is not available for the preferred moorland weather station,
Holme Moss.)

School holiday dates are for a primary school in the City of
Salford, one of many in the visitor catchment area. Data was ana-
lysed using SPSS version 11.0 and Stata release 8.2
Appendix 2. Explanatory variables

Fire past week a dummy variable which takes the value ‘‘1’’ if there has
been a fire in the previous seven days

Multifire a dummy variable which takes the value ‘‘1’’ if there has
been a multi-fire day in the previous seven days

Precipitation daily precipitation (mm)
Minimum temp daily minimum temperature (�C)
Maximum temp daily maximum temperature (�C)
Temp range maximum temp minus minimum temp
Bank holiday dummy variable which takes the value ‘‘1’’ on a bank

holiday
School holiday dummy variable which takes the value ‘‘1’’ on a school

holiday
Monday – Sunday day of week dummy variables, excluding Wednesday base

day
February – September month dummy variables, excluding October base month
R7 The difference between the (total of the) last seven days’

precipitation (including this day) and the (total) level
expected for that week (the average for this week across
the data set).

R14, R21, R28, R56 are similarly defined.
T7 The difference between the (average of the) last seven

days’ temperature (including this day) and the (average)
level expected for that week (the average for this week
across the data set).

T14, T21, T28 and T56 are similarly defined.
IR7 An event dummy which switches ‘‘on’’ (takes the value

‘‘1’’) if weekly average precipitation is 1.28 standard
deviations below average for the time of year (the bottom
decile). Once activated, the indicator remains ‘‘on’’ until
a week’s rainfall is above the average.

IT7 An event dummy which switches ‘‘on’’ (takes the value
‘‘1’’) if weekly average maximum temperature is 1.28
standard deviations above average for the time of year
(the top decile). Once activated, the indicator remains
‘‘on’’ until a week’s maximum temperature is above the
average.

Note weather data was obtained for dates prior to the sample period to calculate the
relevant rainfall and temperature shadows.
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