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Summary
The ubiquitously expressed glucocorticoid receptor (GR) is a major drug target for inflammatory disease, but issues of specificity and
target tissue sensitivity remain. We now identify high potency, non-steroidal GR ligands, GSK47867A and GSK47869A, which induce a

novel conformation of the GR ligand-binding domain (LBD) and augment the efficacy of cellular action. Despite their high potency,
GSK47867A and GSK47869A both induce surprisingly slow GR nuclear translocation, followed by prolonged nuclear GR retention, and
transcriptional activity following washout. We reveal that GSK47867A and GSK47869A specifically alter the GR LBD structure at the
HSP90-binding site. The alteration in the HSP90-binding site was accompanied by resistance to HSP90 antagonism, with persisting

transactivation seen after geldanamycin treatment. Taken together, our studies reveal a new mechanism governing GR intracellular
trafficking regulated by ligand binding that relies on a specific surface charge patch within the LBD. This conformational change
permits extended GR action, probably because of altered GR–HSP90 interaction. This chemical series may offer anti-inflammatory

drugs with prolonged duration of action due to altered pharmacodynamics rather than altered pharmacokinetics.
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Introduction
Synthetic glucocorticoids are potent anti-inflammatory drugs

used to treat multiple conditions including asthma and

rheumatoid arthritis (Schett et al., 2008; Krishnan et al., 2009).

Unfortunately glucocorticoid treatment also carries a wide range

of serious side effects including hyperglycaemia and osteoporosis

(Canalis et al., 2002). In recent years a significant effort has been

made to design dissociative ligands with the anti-inflammatory

potency of conventional glucocorticoids, but with a reduced

spectrum of side-effects (Lin et al., 2002; Bledsoe et al., 2004;

Cerasoli, 2006; Wang et al., 2006; McMaster and Ray, 2007;

McMaster and Ray, 2008; van Lierop et al., 2012).

Glucocorticoid actions are mediated by the ubiquitously

expressed glucocorticoid receptor (GR; NR3C1) a member of

the nuclear hormone receptor superfamily with a conserved

modular structure consisting of an N-terminal regulatory domain,

a DNA-binding domain (DBD) and a C-terminal ligand-binding

domain (LBD) (Hollenberg et al., 1985; Encı́o and Detera-

Wadleigh, 1991). The unliganded GR resides in the cytoplasm in

a complex with heat-shock proteins and immunophilins (Grad

and Picard, 2007). Ligand binding triggers rapid activation of

cytosolic kinase signalling cascades and concomitantly results in

exposure of two nuclear localisation signals (NLS1, and NLS2)

enabling nuclear import (Picard and Yamamoto, 1987). This is

accompanied by replacement of the immunophilin FKBP51 with

FKBP52 (Davies et al., 2002) which associates with dynein to

drive GR along microtubules (Czar et al., 1994; Harrell et al.,

2004). The process of translocation to the nucleus post ligand

binding occurs rapidly, with the majority of cellular GR being

nuclear 30 minutes after treatment with 100 nM Dex (Nishi et al.,

1999). In addition cell cycle phase is able to regulate the

subcellular localisation of unliganded GR, but with far slower

kinetics of nuclear accumulation (Matthews et al., 2011). In the

nucleus GR binds to cis-elements to activate or repress target

gene expression, recruiting co-modulator proteins from distinct

classes to effect chromatin remodelling, and recruitment of the

basal transcriptional machinery (Ford et al., 1997; Jones and Shi,

2003; Ito et al., 2006; Johnson et al., 2008).

GR recruits co-modulator proteins via its transcriptional

activation function domains (AF1, and AF2) (Wärnmark et al.,

2000; Kumar et al., 2001; Bledsoe et al., 2002). The GR AF1 is

the site of various post translational modifications including

phosphorylation, both in the presence and absence of ligand.

(Wang et al., 2002; Ismaili and Garabedian, 2004; Galliher-

Beckley et al., 2008). Phosphorylation directs GR function by

impacting protein stability and recruitment of specific co-

modulator proteins such as MED14 (Chen et al., 2006; Chen

et al., 2008). In addition, co-modulators bind to the GR AF2

domain, within the LBD (Heery et al., 1997). Structural

information about bound ligand is transmitted through

differential folding of the LBD, which directs GR function by

offering differentially attractive signals for co-modulator

recruitment. Both GR agonists and antagonists provoke similar

rapid kinetics of nuclear translocation, but differ in the profile of
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co-modulator proteins recruitment, providing a mechanism for

their different modes of action (Bledsoe et al., 2002; Kauppi et al.,

2003; Stevens et al., 2003).

Here we identify a novel switch mechanism that regulates GR

trafficking in response to ligand binding, distinct from an effect

attributable to ligand potency. We identify two novel, non-

steroidal GR ligands that regulate the GR surface to greatly reduce

rates of nuclear translocation and reduce reliance on heat-shock

protein for continuing activity. The difference in GR conformation

induced by the novel GR ligands reveals a patch of positive charge

on the surface of the LBD. We propose that this prevents efficient

engagement with the active nuclear translocation mechanism,

subsequent export, and protein degradation mechanisms for the

GR. The result is generation of ligands with greatly prolonged

duration of action as a consequence of altered pharmacodynamics

rather than pharmacokinetics.

Results
GSK47867A and GSK47869A are highly potent GR

agonists

There is wide interest in understanding how variation in ligand

structure (Fig. 1A) affects the function of GR. Here, we use novel,

non-steroidal glucocorticoid receptor ligands (NSG) with very

high potency, and specificity for GR to determine how ligand

structure impacts receptor function (Fig. 1B,C; supplementary

material Fig. S1). Transient GR transactivation and transrepression

models in HeLa cells were used initially to compare the NSGs to

conventional synthetic glucocorticoid ligands. We find that both

GSK47867A and GSK47869A were ,30 times more potent that

Dexamethasone (Dex, Fig. 1B,C; Table 1). Similar results were

also obtained using A549 cells with stably integrated GRE-Luc or

NFkB-Luc templates (supplementary material Fig. S2A,B). The

steroidal glucocorticoid Fluticasone Propionate (FP) had similar

potency to GSK47867A and GSK47869A. Hydrocortisone was

significantly less potent than all the synthetic ligands tested

(Fig. 1).

To rationalise subsequent matched analyses, saturating

concentrations of the ligands were selected, calculated as 10

times the measured EC50 for transactivation (Table 1). At these

concentrations all ligands showed similar repression of IL6 and

IL8 secretion (supplementary material Fig. S2C,D), and inhibition

of cell proliferation (supplementary material Fig. S2E,F).

GR crystal structure reveals ligand-specific altered

surface charge

To identify conformational differences in the GR ligand-binding

domain (LBD), we first compared the structures of GR-Dex

(1M2Z) and GR-GSK47866A (3E7C) a non-steroidal GR ligand

similar in structure to GSK47867A (Fig. 1A; Fig. 2). An active

site model derived from the coordinates of deposited structure

3E7C was used to dock GSK47867A and GSK47869A. Both

GSK47867A and GSK47869A are similar to GSK47866A and

gave very high scoring fits in the binding pocket formed by

GSK47866A bound to the GR LBD (supplementary material Fig.

S3). Inspection of the poses showed sensible, well fitting

conformers, indicating that structure 3E7C was a suitable

surrogate to compare with 1M2Z.

Observation of the ligand-binding pocket in each crystal

structure revealed that amino acids in closest proximity to each

ligand demonstrated significant movement compared to Dex at

the head (A ring, Fig. 2C,D) and tail (D ring, supplementary

Fig. 1. GSK47867A and GSK47869A are highly potent GR

agonists. Structure of steroidal and non-steroidal glucocorticoids

(A). HeLa cells were transfected with a positive GR reporter gene

(TAT3-luc) (B) or with a glucocorticoid-repressed NFkB reporter

gene (NRE-luc) (C). At 24 hours post-transfection, NRE-Luc

transfected cells were pre-treated with TNF-a (0.5 ng/ml) for 30

minutes. Subsequently all transfected cells were treated with 0.01–

1000 nM Dex, hydrocortisone (HC), GSK47867A (67A) or

GSK47869A (69A) for 18 hours, and were then lysed and subjected to

analysis using a luciferase assay. The graphs (mean6s.d.) show the

relative light units (RLU) (B) or percentage inhibition (C) from one of

three representative experiments performed in triplicate.

Table 1. Saturating concentration of ligands calculated from EC50

Dex 67A 69A

Average EC50 6.26 0.29 0.28
StDev 63.8 60.13 60.06
106(EC50+StDev) 100 nM 3 nM 3 nM
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material Fig. S4C,D). The greatest displacement was seen in

amino acids Gln570 and Arg611 (Fig. 2C,D). Less displacement

was seen at the opposite end of the ligand; most noticeable here

was the movement of Gln642 (supplementary material Fig.

S4C,D). The effect of residue movements in the GR LBD upon

binding of GSK47866A was examined by visualisation of the

molecular surface (Fig. 3; supplementary material Figs S5, S6).

This revealed a distinct surface electrostatic potential difference,

highlighting a patch of positive charge in the GR-GSK47866A

structure resulting from displacement of Arg611 (Fig. 3B,D).

This demonstrates that the structural difference between Dex

and the NSGs results in a different GR surface charge upon

binding, with potential for altered for protein–protein

interactions.

Fig. 2. Dex and GSK47867A binding induces different GR LBD

structures. (A,B) Comparison of the crystal structures of the GR LBD

bound to Dex (A, purple) and GSK47867A (67A) (B, blue). The

residues in the binding pocket that show significant movement upon

67A binding are highlighted in yellow. When 67A binds to the GR

LBD the head region causes movement of residues Gln570, Met604

and Arg611 (D) when compared with Dex binding (C).

Fig. 3. GR LBD surface charge is altered by

GSK47867A binding. (A,C) The region of the GR LBD

surface where residues Gln570, Met604 and Arg611 are

exposed is highlighted [A, with Dex in purple and C,

GSK47867A (67A) in blue]. (B,D) A close-up of this region

is shown with an electrostatic charge map that reveals the

creation of a patch of positive surface charge due to the

movement of Arg611 upon 67A binding.

Ligand-specific regulation of GR action 3161
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NSG induce different kinetics of endogenous

glucocorticoid target gene regulation

To determine whether the alteration in GR surface charge

upon binding NSG had any functional consequence, transcript

levels of endogenous glucocorticoid induced (GILZ and

FKBP5) and glucocorticoid repressed (IL6 and IL8) target

genes were quantified at multiple time points (Fig. 4A,B;

supplementary material Fig. S7A,B). Both the steroidal and

NSG ligands displayed equivalent kinetics of FKBP5

induction (Fig. 4A). Although NSG treatment did not induce

GILZ transcript at 1 hour, similar induction was observed at

later time points (Fig. 4B). Similarly NSG treatment did not

repress IL6 or IL8 transcripts at 1 hour but comparable

repression was observed at later time points (supplementary

material Fig. S7A,B).

NSG treatment results in delayed kinetics of GR 211

phosphorylation

Transactivation of IGFBP1 is reliant on Ser211 phosphorylation

of the GR, a signal to recruit the co-activator protein MED14.

Dex treatment resulted in significant induction of IGFBP1

transcript by 1 hour (supplementary material Fig. S8A), but

the NSG ligands failed to induce transcript at this early time

point. This lack of transcript regulation at an early time point

was similarly seen with GILZ, IL6 and IL8. Ligand induction

of GR Ser211 phosphorylation was compared. Treatment with

Dex resulted in rapid phosphorylation of GR at both serine

residues 203 and 211 (supplementary material Fig. S8B). The

NSG ligands induced slower onset of phosphorylation of both

serine residues 203 and 211 (supplementary material

Fig. S8B).

NSG treatment results in slow rate of GR nuclear

translocation

The delay in endogenous gene transactivation and receptor

phosphorylation seen with NSG treatment suggested that nuclear

translocation may also be delayed. Use of a halo tagged GR

clearly demonstrated a slower rate of nuclear translocation with

both GSK47867A and GSK47869A (supplementary material

Movies 1 and 2; Fig. 4C). Ligand-bound nuclear GR has a

signature FRAP signal, with reduced intranuclear mobility

resulting in delayed recovery from photobleaching. FRAP

studies revealed that at 1 hour following NSG treatment

nuclear GR displayed characteristics of an unliganded receptor

(supplementary material Fig. S9A,B). However with 4 hour NSG

treatment nuclear GR displayed the typical signature of liganded

receptor, indicative of a delay in adoption of the activated GR

conformation (supplementary material Fig. S9C,D).

Altered kinetics of GR phosphorylation may explain the

observed differences in nuclear translocation rate and

transactivation of endogenous glucocorticoid target genes.

Therefore, we made GR mutants Ser211Ala (phosphodeficient)

and Ser211Asp (phosphomimetic) to assess the importance of

this phosphorylation site (supplementary material Fig. S10A).

However, the phosphomimetic GR did not significantly increase

the rate of GR translocation with either GSK47867A or

GSK47869A treatment (supplementary material Fig. S10C,D).

Likewise the phosphodeficient GR had no significant impact on

Fig. 4. GSK47867A and GSK47869A induce slow

kinetics of GR activation. HeLa cells were treated with

DMSO vehicle, 100 nM Dex, 3 nM GSK47867A (67A) or

3 nM GSK47869A (69A) for 1, 4 or 24 hours. Cells were

then lysed and RNA was extracted using an RNeasy kit.

RNA was reverse transcribed and subjected to qPCR for

FKBP5 (A) and GILZ (B) using Sybr Green detection in an

ABI q-PCR machine and with data analysed by the DDCT

method. Graphs (mean6s.e.m.) combine data from three

separate experiments and display fold change over that in

vehicle-treated control. (C) Following transfection with

HaloTag-GR, HeLa cells were incubated with 100 nM Dex,

3 nM FP, 3 nM 67A or 69A. Cells were imaged in real-time

at 37 C̊ to determine the subcellular localisation of the GR

(white) at the times indicated. Scale bars: 25 mm. Images are

representative of three independent experiments. (D) HeLa

cells transfected with a TAT3-Luc reporter plasmid were

treated with 100 nM Dex, 3 nM FP, 3 nM 67A or 69A for

up to 24 hours. The production of luciferase was tracked by

measuring the relative light units (RLU) emitted from each

sample; D tracks RLU production over the first 5 hours

following addition of treatment and is representative of

three separate experiments. The time taken to reach half the

maximal light output was measured for all treatments (E).

Statistical significance was evaluated by one-way ANOVA

followed by Tukey post-test. *P,0.005 compared with

control; **P,0.001 compared with Dex.
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the rate of translocation seen with Dex treatment (supplementary

material Fig. S10B,D).

NSG treatment results in slower onset of GR
transactivation

Treatment with NSG results in slowed GR nuclear translocation

and delayed transactivation of endogenous glucocorticoid target

genes. To measure the kinetics of GR transactivation more

precisely, real-time luciferase analysis was used (Meng et al.,

2008; McMaster et al., 2008) (Fig. 4D). This revealed that the

NSG ligands consistently took longer to reach half-maximal

transactivation compared to either Dex, or the higher potency FP

(Fig. 4E). Interestingly all three high potency ligands resulted in

greater maximal transactivation (Fig. 4D).

Delayed action of NSG ligands cannot be explained by
impaired cellular uptake

One possible explanation for these observations is altered ligand

access to the intracellular GR. Initially mass spectroscopy

analysis of cell lysates was performed after 10 minutes ligand

exposure (Fig. 5A). A 10 mM concentration of each ligand was

compared, to permit detection of the ligand by mass spectrometry

in cell lysates. Strikingly, the NSG ligands showed greater than

10-fold increased concentrations within the cells compared to

Dex, effectively ruling out delayed ligand penetration.

To further evaluate cell pharmacokinetics, cells were incubated

with 100 nM Dex or 3 nM FP, GSK47867A or GSK47869A for

10 minutes, washed and then incubated in ligand-free medium

for 4 hours. These samples were compared to cells treated with

ligand continuously for 4 hours (Fig. 5B–D). Short exposure

to both NSG ligands resulted in greater induction of GILZ

and FKBP5 although not IGFBP1 compared to Dex,

again demonstrating rapid cellular accumulation of ligand.

Furthermore cells incubated with NSG on ice for 1 hour to

permit ligand access in the absence of GR activation still showed

delayed nuclear translocation (supplementary material Movies 3

and 4; Fig. 5E,F), implicating a post receptor mechanism of

action. The observed differences could not be attributed to Dex

activation of mineralocorticoid receptor, as the mineralocorticoid

receptor antagonist Spironolactone did not affect the Dex

induction (supplementary material Fig. S11A,B).

NSG bound GR shows prolonged nuclear retention

As treatment with both NSG ligands results in delayed nuclear

translocation, we investigated whether nuclear export of GR may

also be slower. To measure GR export HeLa cells were treated

with 100 nM Dex or 3 nM NSGs for 1 hour then washed and

placed in serum free media and imaged over 24 hours

(supplementary material Fig. S12A). In cells treated with

NSG the GR-GFP was not exported from the nucleus during

Fig. 5. GSK47867A and GSK47869A rapidly accumulate

in cells. A549 cells were treated with 10 mM Dex, FP,

GSK47867A (67A) or GSK47869A (69A) for 10 minutes and

subsequently washed and lysed. The cell samples were

analysed for ligand uptake by mass spectrometry (A). HeLa

cells were treated with DMSO vehicle (not shown), 100 nM

Dex, 3 nM FP, 3 nM 67A or 3 nM 69A either for 4 hours or

for 10 minutes followed by washout (WO) and culture in

ligand-free medium for 4 hours. Subsequently cells were lysed

and RNA extracted using an RNeasy kit. RNA was reverse

transcribed and subjected to qPCR for GILZ (B), FKBP5 (C)

and IGFBP1 (D) using Sybr Green detection in an ABI q-PCR

machine and data were analysed by the DDCT method. Graphs

(mean6s.e.m.) combine data from three separate experiments

and display percentage induction compared with the

equivalent 4 hours of constant treatment. (E,F) Following

transfection with HaloTag-GR HeLa cells were placed on ice

for 10 minutes and subsequently incubated with 100 nM Dex,

3 nM FP, 3 nM 67A or 69A for 1 hour on ice. Following

treatment, cell images were captured in real-time at 37 C̊ to

determine the subcellular localisation of the GR (white, E).

Scale bars: 25 mm. F displays the average time (mean6s.e.m)

to exclusively nuclear GR following 1 hour with ligand on ice,

calculated from three separate experiments. Statistical

significance was evaluated by one-way ANOVA followed by

Tukey post-test. *P,0.001 compared with Dex.

Ligand-specific regulation of GR action 3163
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the 24-hour wash-out period, but Dex treated cells exported GR

from the nucleus within 6 hours (supplementary material Movies

5 and 6; Fig. S12B).

Structural modelling suggests that NSGs modify the
HSP90 interaction surface

Our data clearly demonstrates that when bound to NSG there is

altered interaction of GR with the translocation machinery

resulting in delayed nuclear import, delayed transcriptional

activity and receptor export. The chaperone heat shock protein

90 (HSP90) is known to play key roles in this aspect of GR

biology, including maintaining GR structure, ligand-binding

activity, and trafficking of GR between nucleus and cytoplasm

(Segnitz and Gehring, 1997; Tago et al., 2004; Kakar et al., 2006;

Grad and Picard, 2007; Echeverrı́a et al., 2009). GR residues

identified by Ricketson and co-workers (Ricketson et al., 2007)

as important for HSP90 interaction were mapped onto the crystal

structure of GR bound to Dex (Fig. 6A). Surface map analysis of

GR following replacement of Met604 with Thr604, which has

been shown to inhibit HSP90 recruitment, was in the same part of

the GR structure that was differentially affected by NSG binding

(Fig. 6B,C).

Microtubule disruption improves nuclear translocation rate

HSP90 anchors the GR to the microtubule network, so permitting

rapid, energy-dependent nuclear translocation. HSP90 antagonism

slows the rate of nuclear translocation (Galigniana et al., 1998).

However, in addition, GR can translocate using a diffusion

mechanism (Nishi et al., 1999). Disruption of the microtubule

network using colcemid restores rapid GR translocation even in the

presence HSP90 inhibitor geldanamycin (Segnitz and Gehring,

1997; Galigniana et al., 1998). Therefore, we used colcemid to

determine if the microtubule architecture was slowing NSG

mediated nuclear translocation. Colcemid significantly increased

Fig. 6. Disruption of the microtubule network increases the

rate of GR translocation in a ligand-specific manner. (A) The

ribbon structure of the GR LBD bound to Dex. The residues

highlighted in yellow were identified by Ricketson et al.

(Ricketson et al., 2007) as important for interaction between GR

and HSP90. (B) The region of the GR LBD surface where the

NSGs cause an alteration in surface charge. (C) The region of the

GR LBD surface where Met604 is exposed is highlighted in

yellow. This area overlaps the region identified as having altered

surface charge upon binding NSG, supporting the lack of HSP90

engagement with NSG treatment. (D) Untreated HeLa cells with

GFP-labelled microtubules. Incubation for 1 hour with 2 mM

colcemid disrupts the microtubule network (E). Following

transfection with a halo-tagged GR, HeLa cells were incubated

with 2 mM Colcemid for 1 hour then subsequently co-treated

with 100 nM Dex, 3 nM FP, 3 nM GSK47867A (67A) or 3 nM

GSK47869A (69A) (F). Cells were imaged in real-time and

analysed for subcellular localisation of the GR (white). Scale

bars: 25 mm. (G) The average time taken (mean6s.e.m) for the

GR to be exclusively nuclear. Statistical significance was

evaluated by one-way ANOVA followed by Tukey post-test.

*P,0.005 compared with treatment without colcemid.

Journal of Cell Science 126 (14)3164
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the rate of NSG-driven nuclear translocation, but had no effect on

that promoted by Dex (supplementary material Movies 7 and 8;
Fig. 6D–G), suggesting a diffusion mechanism for translocation.

NSGs mediate prolonged duration of action
The duration of ligand-dependent activity depends on continuing
presence of ligand, and maintaining GR in a ligand-binding

compatible conformation. To investigate these phenomena we
initially undertook washout studies, using real time reporter gene
luciferase analysis. These revealed a striking prolongation of

transactivation following NSG ligand withdrawal compared to
either Dex or FP, which was not explained by increased ligand
potency (Fig. 7A).

To corroborate these observations with endogenous genes a 2-
hour ligand exposure was chased with a 24-hour washout before
measurement of GILZ and FKBP5 transcripts (Fig. 7B,C). There
was significantly enhanced preservation of transactivation seen

with both the NSGs compared to the potency matched control
steroid FP.

To determine the role of HSP90 in mediating prolonged GR

transactivation, geldanamycin was used. As HSP90 activity is
required for initial GR ligand binding, these studies were
performed sequentially, adding geldanamycin after ligand

activation. The geldanamycin was added to cells at the time of
maximal transactivation, in the presence of continuing ligand
exposure (Fig. 7D). Both FP and Dex showed exponential decay

of transactivation, as predicted. However, the NSG ligands
showed a striking biphasic response, with initial potentiation,
followed by decay (Fig. 7D).

As HSP90 is also essential for maintaining GR protein stability
investigation of receptor abundance and phosphorylation was
undertaken. Inhibition of HSP90 preserves GR protein levels
following Dex treatment for 4 hours (Fig. 7E), but not at a later

time point (Fig. 7F). Strikingly, the NSG ligands did not show
such a ligand-dependent loss of GR protein (Fig. 7E,F), again
identifying differences in HSP90 interaction with the novel

NSGs. Additionally treatment of cells with Dex in the presence of
geldanamycin results marked dephosphorylation of GR at serine
211 (Fig. 7E). However treatment with the NSG was protective

for serine 211 phosphorylation (Fig. 7E). Collectively, these
studies suggest that GR-HSP90 interactions can be modulated by
ligand structure, to influence the properties of the glucocorticoid

response.

Discussion
Understanding how the GR interprets its ligands to permit
appropriate cellular responses is of vital interest in both
physiology and pharmacology, as the GR remains an important
drug target in inflammation and malignancy (Barnes, 2011; De

Iudicibus et al., 2011). The advent of drug design based on the
crystal structure predicted pharmacophore has permitted new
generations of ligands to be synthesised, including those studied

here (Kauppi et al., 2003; Bledsoe et al., 2004). Our initial
findings identified that although highly potent, the NSG ligands
surprisingly result in slowed kinetics of GR phosphorylation,

nuclear import and delayed onset of GR-dependent gene
transactivation. Our data suggests that the NSG ligands
fundamentally alter the mechanism of GR activation.

A possible explanation for the delayed kinetics of cellular
response to GSK47867A and GSK47869A is reduced efficiency
of cellular uptake of ligand. Although the NSGs retain the highly

lipophilic characteristics of steroidal ligands, they may interact
differentially with membrane components. However our mass

spec studies in fact showed an accelerated ligand accumulation
with the NSGs compared to Dex. We also undertook a functional
assay, washing off ligand after a short incubation, and tracking
response of glucocorticoid target genes. Again, the NSGs

produced enhanced target gene transactivation compared with
Dex, indicating rapid ligand accumulation. Furthermore
treatment of cells with ligand for 1 hour on ice allowed for

saturation of the receptor without translocation. When the cells
were returned to 37 C̊ the GR rapidly translocated with both Dex
and FP but translocation was slower for both the NSG ligands,

supporting defective interaction with the nuclear translocation
machinery post ligand binding.

To explain these observations we interrogated the crystal
structure of GR LBD bound to GSK47867A and GSK47869A.

This revealed a very similar conformation to that seen with Dex,
but there was a single difference, namely the addition of a patch
of positive charge on the external surface of the LBD. Ricketson

and co-workers were able to demonstrate, through amino acid
substitution, that this surface is required for HSP90 interaction
(Ricketson et al., 2007). HSP90 recognises the GR LBD through

two, defined hydrophobic sites and binds to a solvent accessible
major groove maintaining GR stability and permitting high-
affinity ligand binding (Fang et al., 2006), as depicted in Fig. 7G.
Following ligand binding, HSP90 undergoes a conformation

change to bind to the same region of the GR LBD, but with a
different motif. This is required to couple the GR to the dynein
active transport mechanism through the bridging effect of

immunophilins (Harrell et al., 2004) (Fig. 7G). HSP90 remains
associated with the GR in the nucleus, where binding to the major
groove of the GR LBD competes with recruitment of co-

activators (Caamaño et al., 1998; Kang et al., 1999; Fang et al.,
2006), and also promotes nuclear retention (Tago et al., 2004;
Kakar et al., 2006). Binding of NSGs to the GR LBD forces the

movement of Arg611, leading to the creation of a novel
interaction surface which could be the mechanism by which
interaction with HSP90 is altered. Therefore, we measured the
impact of HSP90 manipulation on GR function with both the

steroidal ligands, and NSGs.

GR is anchored to the microtubule network through
interaction with HSP90 to facilitate nuclear translocation.

Antagonism of HSP90 therefore reduces the rate of GR
nuclear translocation and can be overcome by disrupting the
microtubule network (Galigniana et al., 1998; Nishi et al.,

1999). Here we show that the absence of an intact microtubule
network significantly increases the rate of GR translocation in
response to the NSGs but not Dex, which suggests an impaired
interaction of GR-NSG with HSP90. Evidence has emerged that

persisting glucocorticoid action requires cycles of dissociation,
and re-binding of ligand to the GR, which occurs in a HSP90-
dependent manner (Stavreva et al., 2004; Conway-Campbell

et al., 2011) (Fig. 7G). To test the role of HSP90 we used the
inhibitor geldanamycin (Segnitz and Gehring, 1997). As
predicted, geldanamycin curtailed the glucocorticoid

transcriptional response rapidly, irrespective of ligand potency,
for the two steroid agonists. However, in keeping with the
hypothesis that HSP90 binding was disrupted by

the final conformation adopted by the NSG bound GR there
was greatly prolonged transactivation observed, with a gradual
decay likely due to degradation of GR protein. It was, however,
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Fig. 7. Antagonism of HSP90 has less impact on the activity of NSG ligands. (A,D) HeLa cells transfected with a TAT3-Luc reporter plasmid were

treated with 100 nM Dex, 3 nM GSK47867A (67A) or 3 nM GSK47869A (69A) for 24 hours. Subsequently cells were either co-treated with 10 mM

geldanamycin (GA) (D) or washed (WO) and placed in serum-free recording medium (A) for a further 24 hours. The production of luciferase was tracked by

measuring the relative light units (RLU) emitted from each sample. Graphs tracks RLU production for 24 hours following GA addition or ligand removal.

Graphs are representative of three separate experiments. (B,C) HeLa cells were treated with DMSO vehicle (not shown), 100 nM Dex, 3 nM FP, 3 nM 67A or

3 nM 69A for 24 hours or 1 hour followed by washes (WO) and then cultured in ligand-free medium for 24 hours. Subsequently cells were lysed and RNA was

extracted using an RNeasy kit. RNA was reverse transcribed and subjected to qPCR of GILZ (B) and FKBP5 (C) using Sybr Green detection in an ABI q-PCR

machine and data analysed by the DDCT method. Graphs (mean6s.e.m.) combine data from three separate experiments and display percentage induction

compared with the equivalent constant treatment for 24 hours. HeLa cells were treated with 100 nM Dex, 3 nM 67A or 69A for 2 hours and then co-treated with

10 mM GA for a further 2 hours (E) or 22 hours (F), and a constant 4-hour or 24-hour treatment was used as a comparison. Following treatment, cells were lysed

in RIPA buffer containing phosphatase and protease inhibitors and analysed by immunoblotting for GR abundance and GR Ser211 phosphorylation. a-Tubulin

was used as a loading control. Statistical significance was evaluated by one-way ANOVA followed by Tukey post-test. *P,0.01 compared with both Dex and FP.

(G) Mechanism of GR action. Upon binding glucocorticoids (Gc) (1) the GR interacts with the translocation machinery enabling nuclear import (2). In the

nucleus, GR binds to cis-elements to activate or repress target gene expression (3). The GR undergoes dynamic cycles of dissociation, and re-binding of ligand,

which occurs in an HSP90-dependent manner (4). Interaction with PP5 facilitates nuclear export of the GR (5) enabling it to be recycled or targeted for

degradation by the proteasome (6).

Journal of Cell Science 126 (14)3166



J
o
u
rn

a
l
o
f

C
e
ll

S
c
ie

n
c
e

striking that the pattern of response for both NSGs included an

initial augmentation of response, which is compatible with

displacement of HSP90 from the major groove, and subsequent

promotion of co-activator recruitment. It is also possible that

disruption of the HSP90 interaction surface also affects

interaction between GR, and co-modulator protein partners

(Caamaño et al., 1998; Kang et al., 1999; Fang et al., 2006).

Altered NSG-driven nuclear translocation, and interaction

with HSP90 may also affect GR nuclear export, and the duration

of cellular response. Indeed, our washout studies showed a

dramatic difference between the steroidal and NSG ligands, with

marked reduction in GR export rate and prolongation of action

seen with the NSGs, observed with both transfected reporter

genes, and endogenous gene transcripts. A similar prolongation

of action was seen in cells treated with geldanamycin which

may result from stabilised GR-ligand interaction, due to altered

engagement with HSP90, and its associated protein complex,

including enzymes such as protein phosphatase 5 (PP5). PP5 is

responsible for removing phosphate modification from GR

Ser211, and promoting GR nuclear export (DeFranco et al.,

1991; Silverstein et al., 1997; Galigniana et al., 2002; Hinds and

Sánchez, 2008) (Fig. 7G).

Geldanamycin treatment resulted in loss of the Dex ligand-

dependent GR Ser211 phosphorylation. However NSG-liganded

GR was not dephosphorylated under the same conditions, implying

altered recruitment of PP5. PP5 also associates with HSP90 as part

of the chaperone complex (Silverstein et al., 1997; Hinds and

Sánchez, 2008) (Fig. 7G), and contains a peptidylprolyl isomerase

domain that is capable of dynein interaction and therefore forming

a bridge between the GR and the nuclear export machinery

(DeFranco et al., 1991; Galigniana et al., 2002) (Fig. 7G).

Therefore, as PP5 has been implicated in the nuclear export of

the GR, the lack of dephosphorylation seen with NSG treatment is

compatible with a broader change in protein recruitment with the

NSG ligands. Interestingly, it was also observed that NSG

treatment preserved GR protein expression compared with Dex

treatment. This would further suggest that the conformation

adopted by GR following NSG binding decouples protein

recruitment required for terminating the GR transcriptional

signal (Nawaz and O’Malley, 2004) (Fig. 7G).

In conclusion we have identified two NSGs that bind to GR

with high specificity but paradoxically result in profoundly

slowed kinetics of cellular response. Analysis of the structural

effects of these NSGs bound to GR suggests a change to the GR

surface, through the movement of Arg611 in the ligand-binding

pocket of the GR, resulting in an alteration in the GR surface

charge. The change in electrostatic charge is close to the known

binding site for HSP90, and co-modulator proteins. This

alteration carries with it the consequence of delayed GR

phosphorylation and nuclear translocation, which in turn results

in delayed early glucocorticoid target gene regulation. The ability

to manipulate the kinetics of GR activation by designing novel

NSGs has implications for therapy, by targeting cellular

pharmacodynamics rather than organismal pharmacokinetics.

Materials and Methods
Anti-hGR (clone 41, BD Biosciences, Oxford, UK); anti-phospho-(Ser211)-GR,
anti a-tubulin (Cell Signalling Technology, MA, USA); Horseradish peroxidase
conjugated anti-mouse and anti-rabbit (GE Healthcare, Buckinghamshire, UK);
dexamethasone, hydrocortisone and Fluticasone Propionate (Sigma, Dorset, UK).
TAT3-Luciferase, and NRE-luciferase have been previously described (Matthews
et al., 2008; Matthews et al., 2009).

Cell culture and maintenance

HeLa cells and A549 cells (ATCC, Teddington, UK) were cultured in low glucose

(1 g/l) Dulbecco’s modified Eagle’s medium (DMEM; PAA, Yeovil, UK)

supplemented with stable 2 mM glutamine (PAA) and 10% heat inactivated

fetal bovine serum (FBS; Invitrogen, Paisley, UK) or 10% charcoal dextran
stripped fetal calf serum (sFCS; Invitrogen). A549’s stably transfected with GRE-

Luc and NRE-Luc were also supplemented with 1% Non-essential amino acid

(NEAA; Invitrogen) and 1% Geneticin (Invitrogen). All cells were grown in a
humidified atmosphere of 5% carbon dioxide at 37 C̊.

Immunoblot analysis

Following treatment cells were lysed in RIPA buffer [50 mM Tris-HCl pH 7.4, 1%

NP40 (Igepal), 0.25% Na-deoxycholate 150 mM NaCl, 1 mM EDTA] containing

protease and phosphatase inhibitors (Sigma), and 10 mg protein was

electrophoresed on Tris/Glycine 4–12% gels (Invitrogen) and transferred to
0.2 micron nitrocellulose membranes (BioRad Laboratories, Hertfordshire, UK)

overnight at 4 C̊. Membranes were blocked for 2 hours (NaCl 0.15 M, 2% dried

milk, 0.1% Tween 20) and incubated with primary antibodies (diluted in blocking
buffer) overnight at 4 C̊. After three 10-minute washes (88 mM Tris pH 7.8,

0.25% dried milk, 0.1% Tween 20), membranes were incubated with a species-

specific horseradish peroxidase-conjugated secondary antibody (diluted in wash
buffer) for 1 hour at room temperature, and washed a further three times, each for

10 minutes. Immunoreactive proteins were visualised using enhanced

chemiluminescence (ECL Advance, GE Healthcare).

Reporter gene assays

HeLa cells seeded in DMEM containing sFCS were co-transfected with 2 mg

reporter gene and 0.5 mg CMV-renilla luciferase (to correct for transfection
efficiency) using Fugene 6 (Roche Diagnostics, West Sussex, UK) at a ratio of 3:1

(v/w). 24 hours post transfection, cells were treated as specified in results prior to

lysis, then assayed for luciferase activity using a dual-luciferase reporter assay

system following the manufacturer’s instructions (Promega, Southampton, UK).

Stable A549 GRE-Luc or NRE-Luc cells were seeded in DMEM containing

sFCS into 96-well plates and incubated overnight. Cells were treated as specified
in results and 18 hours later each well washed twice with PBS (first without Mg2+,

Ca2+, then with Mg2+, Ca2+). Renilla Glo (Promega, E2720) or Bright Glo

(Promega E2620) lysis buffer was added to the GRE cells or the NRE cells
respectively according to the manufacturer’s instructions. Cell lysates were read

using a luminometer (Wallac 1450 MicroBeta Trilux Liquid Scintillation counter

and luminometer). Ten 1-second reads were taken per well and the average RLU

determined.

Immunofluorescence

Fixed cells: Following 24 hours in DMEM containing sFCS, HeLa cells were
transfected (Fugene 6) with hGR-GFP and treated as specified in results. Cells

were fixed with 4% paraformaldehyde for 30 minutes at 4 C̊, and subsequently

stained with Hoeschst (Sigma) in PBS (2 mg/ml) for 20 minutes at 4 C̊. Following
three 5 minute washes in PBS, coverslips were mounted using Vectamount AQ

(Vector Laboratories, Peterborough, UK). Images were acquired on a Delta Vision

RT (Applied Precision, GE Healthcare) restoration microscope using a 406/0.85

Uplan Apo objective and the Sedat Quad filter set (Chroma 86000v2, VT, USA).
The images were collected using a Coolsnap HQ (Photometrics, AZ, USA) camera

with a Z optical spacing of 0.5 mm. Raw images were then deconvolved using the

Softworx software (GE Healthcare) and average intensity projections of these
deconvolved images processed using Image J (Rasband, 1997).

Live cells: Following 24 hours in DMEM containing sFCS, HeLa cells were

transfected (Fugene 6) with 5 mg GR-GFP and transferred to glass-bottomed 24-
well plates. Alternatively HeLa cells were plated into a glass-bottomed 24-well

plate in DMEM containing sFCS. Each well was transfected (Fugene 6) with

0.5 mg HaloTag-GR (Catalog number FHC10483, Promega) and incubated for
16 hours with 0.25 ml Halo ligand (HaloTag TMRDirect, Catalog number

G2991, Promega) to enable visualisation. Subcellular GR trafficking was tracked

in real-time at 37 C̊ with 5% CO2. Images were acquired on a Nikon TE2000
PFS microscope using a 606/1.40 Plan Apo or 406/1.25 Plan Apl objective and

the Sedat filter set (Chroma 89,000). The images were collected using a Cascade

II EMCCD camera (Photometrics). Raw images were then processed using

Image J.

Fluorescent recovery after photobleaching (FRAP)

HeLa cells were transfected (Fugene 6) with 5 mg hGR-GFP then seeded into a
glass bottomed 24-well plate. Cells were maintained at 37 C̊ and 5% CO2 and

images collected on a Leica TCS SP5 AOBS inverted confocal (Leica, Milton

Keynes, UK) using a 636/0.50 Plan Fluotar objective and 76confocal zoom. The

confocal settings were as follows, pinhole 1 airy unit, scan speed 1000 Hz
unidirectional, format 102461024. Images were collected using the following

detection mirror settings; FITC 494–530 nm using the 488 nm (13%).
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MTS Assay

Cells were seeded into a 96-well plate were treated as described in the results.
Upon completion of the treatment 10 ml of MTS reagent (Promega) was added to
each well. Cells were incubated for 4 hours, reading at 490 nm every hour.

Q-RTPCR

Cells were treated as required, then lysed and RNA extracted using an RNeasy kit
(Qiagen). 10 ng RNA was reverse transcribed, and subjected to qPCR using Sybr
Green detection in an ABI q-PCR machine (Applied biosystems, CA, USA) and
data analysed by ddCT method (Livak and Schmittgen, 2001).

Bioluminescence real-time recording

HeLa cells transfected (Fugene 6) with 2 mg TAT3-luc plasmid were grown to
80% confluency in 35-mm tissue culture dishes in phenol red free DMEM with
10% FCS and 1% glutamine. Prior to the experiment, cells were supplemented
with 0.1 mM Luciferin substrate (Izumo et al., 2003; Yamazaki and Takahashi,
2005). Each dish lid was replaced with a glass cover then sealed with vacuum
grease before being placed in a light-tight and temperature-controlled (37 C̊)
environment. Light emission (bioluminescence) was measured continuously using
a Photomultiplier tube (PMT, H6240 MOD1, Hamamatsu Photonics,
Hertfordshire, UK). Baseline measurements (photon counts per minute) were
taken for each PMT prior to treatment and then deducted from the experimental
values attained.

Measurement of ligand uptake using mass spectroscopy

A549 cells were grown to 90% confluency in 6-well plates. Following treatment
the media was removed from the cells and retained for analysis. The cells were
washed three times with PBS and lysed in 300 ml of M-Per mammalian protein
extraction reagent (#78503, Thermoscientific, Essex, UK) on the shaker at
750 rpm at room temperature for 5 minutes. The whole cell lysate was collected,
then centrifuged at 10,000 rpm for 10 minutes, then the supernatant collected and
analysed by mass spectrometry.

Measurement of cytokine production

A549 cells were seeded into a 96-well plate into DMEM with 10% FCS and
incubated overnight. In order to slow cell proliferation and prevent any interference
from steroid present in FCS the media was changed to DMEM with 1% sFCS prior to
ligand treatment. Following treatment supernatents were collected and assayed for
IL6 and IL8 concentration using a Luminex 100 (Merck Millipore, MA, USA) with
StarStation software according to the manufacturer’s instructions.

Computational modelling of GR crystal structure

Crystal structures of GR bound to Dex (1M2Z) and GSK47866A (3E7C) (Madauss
et al., 2008) were downloaded from the RCSB Protein Data Bank (PDB) (Berman
et al., 2007). The structures were imported into Maestro (Schrodinger, 2012) and
prepared using the Protein Preparation module. Each Ligand was extracted and
scrambled conformationally before docking back into the native active site models
to verify that the docking program (GLIDE) (Schrodinger, 2009) was competent at
reproducing the X-ray pose for each complex.

Models of compounds GSK47866A, GSK47867A and GSK47869A (S-isomers)
were prepared using the Ligprep module and a set of 272 conformers generated
using the confgen module of Maestro. This set of conformers was docked in the
3E7C active site model yielding 62 successful poses. Again, as found in the
bootstrapping exercise, GSK47866A best scoring pose was extremely close in
conformation and position within the active site pocket (RMSD ,0.2), indicative
of a robust model.

Crystal structures 1M2Z and 3E7C were superposed and conformations of
residues within 6 Angstrom of the Dex ligand in 1M2Z were compared visually. Any
differing substantially were coloured differently (Fig. 2A,B), and these atom colours
projected onto a molecular surface to reveal regions of the protein surface impacted
by the residue movements induced by binding of GSK47866A (Fig. 3A,C). The
regions of surface modification thus highlighted guided where to look for differences
in electrostatic potential, projected onto the same molecular surface (Fig. 3B,D).

Modelling of GR mutant with impaired HSP90 interaction

The original 1M2Z X-ray coordinates, already optimised for use with the OPLS
forcefield in Maestro, were used to mutate M604 to Threonine. The built-in residue
mutation building tool was employed for this. The mutated structure was optimised
using the Protein Preparation Wizard option to perform a restrained, all-atom
minimisation. Surface and electrostatic potential colouring was calculated as for all
other examples, ensuring a consistent range of electrostatic potential values of
20.2 to 0.2 for the blue-white-red colour ramp.
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