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ABSTRACT 

 

 

The cell cycle is an essential process in all living organisms that must be 

carefully regulated to ensure successful cell growth and division. Disregulation of 

the cell cycle is a key contributing factor towards the formation of cancerous cells. 

Understanding events at a cellular level is the first step towards comprehending how 

cancer manifests at an organismal level. Mathematical modelling can be used as a 

means of formalising and predicting the behaviour of the biological systems 

involved in cancer. In response, cell cycle models have been constructed to simulate 

and predict what happens to the mammalian cell over a time course in response to 

variable parameters. 

Current cell cycle models rarely account for certain precursors of cell growth 

such as energy usage and the need for non-essential amino acids as fundamental 

building blocks of macromolecules. Normal and cancer cell metabolism differ in the 

way they derive energy from glucose. In addition, normal and cancer cells also 

demonstrate different levels of gene expression.  

Two versions of a mammalian cell cycle and metabolism model, based on 

ordinary differential equations (ODEs) that respond to fluctuations in glucose 

concentration levels, have been developed here for the normal and cancer cell 

scenarios. Sensitivity analysis is performed for both normal and cancer cells using 

these cell cycle and metabolism models to investigate which kinetic reaction steps 

have a greater effect over the cell cycle period. Detailed analysis of the models and 

quantitatively assessing metabolite levels at various stages of the cell cycle may offer 

novel insights into how the glycolytic rate varies during the cell cycle for both 

normal and cancer cells. 

The results of the sensitivity analysis are used to identify potential drug 

targets in cancer therapy. Combinations of these individual targets are also 

investigated to compare the different effects of single and multiple drug compounds 

on the time it takes to complete a cell division cycle. 
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Chapter 

ONE 

 

INTRODUCTION 

 

 

1.1 A Systems Biology Perspective of Cancer 

 

 “One day, we imagine that cancer biology and treatment at present, a 

patchwork quilt of cell biology, genetics, histopathology, biochemistry, 

immunology, and pharmacology will become a science with a conceptual 

structure and logical coherence that rivals that of chemistry of physics". 

(Hanahan and Weinberg, 2000) 

 

Cancer cells arise when the conventional restraints on cell division are 

broken and dividing cells are no longer properly controlled by the regulatory 

mechanisms of the cell cycle. The effects of this disease are particularly 

detrimental due to the fact that cancerous cells and their progeny can invade 

and take control of territories that belong to cells with specific and vital 

responsibilities (Alberts et al., 2002). In fact, cancer is one of the leading 

causes of death worldwide, with fatalities occurring predominately through 

cancerous growth of the lung, stomach, liver, colon and breast. In 2007, the 
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World Health Organisation established that cancer was responsible for 7.9 

million deaths, which accounts for approximately 13% of all mortalities 

globally. This figure is expected to increase to 12 million deaths per year by 

2030 (http://www.who.int/cancer/en).  

Conventionally, the treatment of cancer has been through the 

exploitation of radiotherapy, chemotherapy and surgery (DeVita et al., 2001). 

In recent years, the application of network-based drug design has promised 

cancer therapy to employ a more rational approach (Hornberg et al., 2006). 

This has demanded a thorough and solid understanding of the multiple 

genomic events that lead to the origin of the disease. However, an intuitive 

perspective alone would certainly not be enough to comprehend the highly 

complex processes and feedback loops involved. In order to gain novel 

insights into the functional differences between a normal cell and a cancer 

cell, it is extremely important to investigate the extensive cross-talk between 

the overall network of pathways instead of merely observing elements of the 

individual pathways associated with encoding the affected genes 

(Laubenbacher et al., 2009). 

A more effective and tractable approach would be to observe and 

analyse events at a molecular level for the sake of ascertaining how cancer 

manifests at the organismal level. Creating a quantitative model of the 

network of interest could provide a beneficial tool for understanding existing 

biological data, aiding the generation of hypothesis and also helping to guide 

future laboratory experiments. This integration of biological and 

mathematical techniques into one coherent unit, for the purpose of breaking 

through the current constraints of reductionism, is one of the primary goals of 
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systems biology (Kitano, 2002). Around the 1960s, the research community 

began to support the notion that systemic methods were necessary to 

comprehend biological systems (Bertalanffy, 1968; Rosen, 1958a, 1958b). 

For instance, Henrik Kacser proposed the idea of using chemical kinetics to 

understand biological organization (Kacser, 1957, 1960). Systems biology, a 

novel discipline that has only become relatively established around the 

beginning of the 21st century, has already become an influential paradigm for 

biological investigations. The discipline was developed to advocate a 

systems-oriented perspective in order to fundamentally complement the well 

established reductionist approach to research. Furthermore, it accounts for 

systems where component-component interactions play an essential role in 

governing the dynamics that are a consequence of the components 

themselves (Ahn et al., 2006). Therefore, systems biology may provide a 

good framework for studying the complex nature of cancer. 

In the scientific community, the definition of exactly what systems 

biology entails can be rather varied in the details from one fellow academic 

to another. For instance, some view the discipline as the integration of 

experimental and computational research (Kitano, 2002), whilst others assert 

that systems biology involves the formulation of mathematical models that 

exemplify the structure of a biological system in response to individual 

perturbations (Ideker et al., 2001). Nevertheless, the consensus appears to be 

that systems biology is a discipline that aims to clarify the elusive connection 

between molecules and physiology by delving deep into the complete set of 

dynamic interactions amongst system entities (Kitano, 2002; Westerhoff, 

2005; Bruggeman and Westerhoff, 2007). 
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Since the advent of molecular biology in the latter half of the previous 

century, significant advancements have been made in understanding exactly 

how the individual molecule operates. The venture into the molecular 

biosciences has culminated in the successful milestone of the human genome 

project circa 2001, which has enabled the multiple variations of thousands of 

human genes to be entirely mapped and sequenced (Lander et al., 2001; 

Venter, 2001).  

Molecular biology has helped to drive a powerful reductionist 

approach to biological research, which has aimed to elucidate complex 

systemic events by examining the individual components themselves and 

defining their functional properties. In spite of this approach producing 

valuable information for modern medicine, reductionism has a key limiting 

factor in that it does not appreciate the system as a whole and only observes 

the effects when components are working in isolation. Emergent properties, 

that are imperceptible when only the parts are studied, can arise when the 

biological system is viewed in its entirety. These functional properties 

include metabolic steady states and the cell cycle, which must be studied 

carefully to impart the knowledge necessary for manipulating the progression 

of multifactorial diseases such as cancer (Bruggeman and Westerhoff, 2007).  

To put it succinctly, the whole is indeed greater than the sum of the 

parts. Thus, a systems-oriented view is required to provide a satisfactory 

explanation for how function arises from the individual system components, 

which can be achieved by employing aspects of systems biology. 
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In order to put into perspective the high complexity of cancer as a 

disease, consider the following factors that have to be taken into account 

when choosing a potential drug target. 

● Multiple sequential events such as protein binding and allosteric inhibition 

give rise to signalling pathways. These pathways form a large and intricate 

communication network that generates signals essential to cellular activity. 

This non-linear interaction between the signalling pathways often produces 

unpredictability with regards to signal behaviour (Weng, 1999). 

● Feedback loops play an important role in regulatory pathways in that they 

regulate components upstream in the pathway, enabling the coordination of 

cellular signals for division and growth. In particular cases, such as the p53 

pathway which is involved in cell proliferation and apoptosis, many feedback 

loops are present in order to act as a backup system to reduce the phenotype 

of mutations (Harris and Levine, 2005). The existence of multiple feedback 

loops can cause the dynamic complexity of the system to quickly overwhelm 

a biologist's ability to perform the relevant analysis at an intuitive level. 

● The varying features between different cancer cells, which include their 

shape or size and the current phase of the cell division cycle they are 

undergoing, all contribute to the diverse range of responses possible from just 

one specific signal (Hornberg et al., 2006). 

The examples above highlight the fact that the occurrence of 

interactivity between biological mechanisms will frequently result in 

unexpected dynamical behaviour. Since cancer itself transpires when 

biological system properties fail to exert themselves properly, studying 
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cancer with a systems biology mindset may significantly benefit the current 

framework of oncological research. 

Generating quantitative models that accurately reflect the dynamics of 

individual pathways and their interactions will enable the cell to be 

represented in silico. Consequently, the model can then be employed to 

examine areas of interest, for instance, identifying which reaction in a 

network possesses the highest control over the system flux. A fundamental 

step towards the creation of a mathematical model would be to acquire a firm 

understanding of the eukaryotic cell cycle process and the regulatory 

mechanisms involved in cell proliferation. This chapter will review the 

relevant background information being applied to the mammalian cell cycle 

and metabolism model being developed, as detailed in chapters 3 and 4. 

 

1.2 Cancer And The Eukaryotic Cell 

 

Eukaryotic cells are composed of several distinct structures including 

the plasma membrane, extracellular polymeric components known as the 

glycocalyx, the cytoplasm, the cytoskeleton and subcellular organelles 

surrounded by a membrane themselves. Some of these organelles possess 

particular functions for the maintenance of cells and the production of 

biological components. For example, the nucleus, containing chromosomes 

and the nucleolus, is where RNA is synthesised. RNA is used to encode the 

information of genes in the DNA in order for proteins to be synthesised in the 

cytoplasm. RNA and proteins are also the building blocks for another 

organelle called the ribosome, which is responsible for the synthesis of 
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proteins. The mitochondrion is another highly important organelle and is 

involved in cellular metabolism. It is responsible for generating most of the 

cell’s energy supply through the production of adenosine triphosphate (ATP). 

The onset and progression of cancers cells arise from a significant 

change in the biomechanical and biophysical properties of cells and their 

subcellullar structures. For instance, genetic mutations may lead to the 

abnormal proliferation of tissues. If these particular cells reside at their initial 

location, then the tumour is referred to as benign. However, a cell becomes 

malignant through a multi-stage process where several crucial traits are 

acquired via the occurrence of numerous different types of mutations 

(Laubenbacher et al., 2009). This results in a change of dynamics for the 

various molecular pathways that have a connection with the mutated gene. 

Consequently, the cell develops the capability to perform certain actions as 

follows. 

● The cell can now completely evade apoptosis, which refers to programmed 

cell death. Apoptosis is essential for maintaining a healthy physiology by 

eliminating old cells or unwanted cells containing damaged DNA. Failure to 

carry out the process of apoptosis could lead to uncontrolled cell growth and 

the formation of tumours. 

● Become insensitive to anti-growth signals that usually prevent cell 

proliferation.  

● Achieve self-sufficiency with regards to growth signals. For example, 

cancer cells have the ability to interact with neighbouring normal cells and 

cause them to yield a very high level of signalling related to growth 

stimulation factors (Skobe and Fusenig, 1998). 
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● Maintain a prolonged process of angiogenesis where the cancerous cells 

are able to spread to other tissue areas through the development of these new 

blood vessels. 

● Acquire the potential to carry out unlimited cellular replications. 

● Gain the ability to penetrate and infiltrate both adjacent and non-adjacent 

tissues through the process of metastasis (Hanahan and Weinberg, 2000). 

These effects can all be traced back to the occurrence of mutations in certain 

genes. A gene that is quiescent most of the time but is capable of giving rise 

to cancer if activated is identified as a proto-oncogene. Oncogenes, the 

carcinogenic form of a proto-oncogene, may arise in a variety of ways. For 

instance, exposure of the cell to ultraviolet radiation or chemical carcinogens 

and the invasion of DNA tumour viruses can all cause genetic damage 

leading to point mutations, which is the alteration of a single nucleotide base 

pair, and the eventual production of a modified protein that can not be 

regulated properly.  Another important gene called a tumour supressor 

encodes for proteins that inhibit cell division. In the event a tumour supressor 

becomes damaged, the downstream signal for halting cell division is lost and 

cells begin to divide uncontrollably leading to the formation of tumours.  

A cancer gene census was compiled in 2004 (Futreal et al., 2004) and 

of the 300 genes currently documented, it was found that most genes were 

implicated in the progression of the cell cycle (Vogelstein and Kinzler, 

2004). As a result, an effective method of restricting the growth of cancer 

cells selectively would be to carefully manipulate aspects of the cell division 

cycle. For example, cancer cells divide at a significantly faster rate than 

cancer cells. Therefore, a drug compound could be designed to increase the 
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duration it takes to complete one full cycle of cell division in cancer cells 

until it is equal to or greater than that of normal cells. 

 

1.3 The Cell Cycle 

 

The ultimate aim of the cell cycle is to divide a single parent cell into 

two daughter cells, complete with their own set of nucleus, cytoplasm and 

genetic components identical to the parent cell. This cycle is divided into 

several well defined stages and is commonly allocated four phases called G1, 

S, G2 and finally M. The cell cycle process is shown in Figure 1.1. 

 

 

 

Figure 1.1. The phases of the mammalian cell cycle. 
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The first phase of the cell cycle, G1, allows for the growth of 

chromosomes and prepares them for the replication of DNA. In the absence 

of sufficient growth factors or nutrients, the cell usually enters into a phase 

called G0, which corresponds to a state of quiescence, although the cell itself 

may still be carrying out certain functions such as defending against 

pathogens. Here, the cell will remain until a certain threshold of internal and 

external growth conditions has been reached, stimulating the cell to re-enter 

and proceed with the cell cycle process once again. The difference between 

normal and cancer cells is that the latter does not enter G0 and repeats the 

cell division cycle for an indefinite period of time. 

Once the first growth phase has been completed, the cell then enters 

into a stage known as S where various cellular material including DNA and 

histones, which aid in the packaging of new DNA, are synthesised. In 

addition, each of the 46 chromosomes are replicated in two sister chromatids 

bound together by cohesin.  

The third phase of the cell cycle, known as G2, involves another 

period of growth and helps the cell prepare for division of the nucleus. Here, 

the chromosomes are subjected to rigorous checks in order to ensure that 

there have been no division errors with repairs being carried out if necessary. 

The final stage of the cell division cycle is called M or mitosis. M 

itself is divided into several phases. The first of these phases is called 

prophase and it takes up over half the period required to complete mitosis. 

During prophase, the mitotic spindle is formed, chromosomes are condensed 

into compact structures and the nuclear envelope breaks down. The next two 
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stages are prometaphase and metaphase, where the chromosomes migrate and 

align at the spindle equatorial plane respectively. Anaphase follows 

metaphase and occupies the least portion of mitosis. The spindle fibres pull 

and separate the sister chromatids, which then move to the opposite ends of 

the cell. The spindle fibres dissolve and the nuclear envelope makes a re-

appearance around the newly formed daughter chromosomes during 

telophase, the final stage of mitosis. Cytokinesis marks the end of the cell 

cycle when the nuclear membrane has properly formed around two identical 

daughter cells, each complete with cytoplasm and nucleus (Alberts et al., 

2002). 

An alternative way of viewing the cell cycle is through a 

mathematical perspective as shown in Figure 1.2. The cell cycle in general 

may be thought of as an alternation between two self-maintaining stable 

steady states: G1 and S-G2-M (Nasmyth, 1996; Tyson et al., 2001). In this 

scenario, the transition from G1 to S-G2-M is defined as “Start” and the 

move from M back to G1 as “Finish”. This view of the cell cycle implies that 

once the cell commits to the phase of DNA replication, the division process 

becomes irreversible. These two stable steady states are sustained primarily 

by the fundamental antagonism between two families of proteins, the cyclins 

and the cyclin-dependent kinases (CDK). The irreversible transition from G1 

to S is due to positive feedback loops in the CDK control system. CDKs are 

enzymes that attach phosphate groups to specific target proteins and only 

become active when combined with cyclins, which act as regulatory subunits 

for CDKs, to form enzymatically active heterodimers.  
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Figure 1.2. The two self-maintaining stable steady states of the cell cycle. 

 

 

Cell cycle progression can be controlled by ordered activations of 

cyclin/CDKs in response to specific stresses. During G1, cyclin production is 

inhibited leading to their rapid degradation. As a consequence, CDK activity 

becomes low due a lack of available cyclin partners. Conversely, the Start 

transition is facilitated by an increase in CDK activity as a result of cyclin 

synthesis being promoted. The high level of CDK activity is maintained 

throughout the S to M phases of the cell cycle to cater for the requirements of 

DNA replication until Finish is reached. Finish is accomplished by the 

activation of the anaphase promoting complex (APC), a piece of proteolytic 

machinery, and the aid of two helper molecules (or auxiliary proteins), Cdc20 

and Cdh1. Towards the end of the cell cycle, the combined efforts of APC 

and Cdc20/Cdh1 label cyclins in order to target them for degradation. 

Consequently, APC and CDK themselves are mutually antagonistic proteins. 

The APC inhibits CDK activity by destroying its cyclin partners, whereas the 

cyclin/CDK complex phosphorylates Cdh1 to limit the activity of the APC. 

An over-abundance of cyclin/CDK can also be resolved by the stoichiometric 

binding with a cyclin-dependent kinase inhibitor (CKI). In particular, p27 
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plays an important role in controlling cell cycle progression at G1 by binding 

to and preventing the activation of cyclin E/CDK2 or cyclin D/CDK4 

complexes. The expression of this inhibitory subunit is tightly coupled to cell 

growth and it is often referred to as a cell cycle inhibitor protein because its 

major function is to slow or halt the cell division cycle (Alarcón et al., 2004). 

 

1.4 Regulation Of The Cell Cycle 

 

The time taken to complete a single cell cycle varies between 

different cell types. For instance, embryonic cells have the ability to finish a 

whole cycle in minutes while some liver cells can take up to a year to 

complete the division process. Even cells that are genetically identical may 

exhibit heterogeneity with regards to the timing of their cell cycle 

progression (Smith, 2005). In general, the length of the cell cycle for fast-

dividing mammalian cells is approximately 24 hours in accordance with 

circadian rhythms (Alberts et al., 1997). Regardless of duration, it is 

imperative that cell cycle events transpire in a specific order for successful 

cell division to occur. To ensure this, the cell has a checkpoint system in 

place. Checkpoints in G1 and G2 verify whether or not damage has occurred 

to DNA. Damage to DNA before the cell enters S leads to CDK2 activity 

being inihibited, which halts the cell cycle until the problem is rectified or 

triggers entry into apoptosis if damage is too severe. Damage to DNA after S 

impedes CDK1 action and prevents the cell from entering M. Another type of 

checkpoint available are the spindle checkpoints, which detect if the spindle 

itself has been improperly aligned and blocks entry into cytokinesis. 
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In mammalian cells, the G1 checkpoint is known as the restriction 

point (RP) and is vital in controlling the progression from G1 to S. The RP is 

defined as a point in the cell cycle that separates two functionally different 

parts of G1 in continuously cycling cells, the postmitotic interval (G1-pm) 

and pre-S phase interval (G1-ps) of G1. Under suboptimal growth conditions 

the cell will exit the cell cycle at the RP and remain in G0 until a critical level 

of mitogenic stimulants is restored (Pardee, 1974). Thus, the RP acts a 

mechanism for survival under nutritional and growth factor deprivation. 

Cell size, cell-cell interaction and the presence of nutrients all factor 

in the manipulation of signals that coordinate the shift between a proliferative 

and quiescent state. Experiments performed by Zetterberg and Larsson 

confirmed the existence and precise location of the RP (Zetterberg and 

Larsson, 1995). Cycloheximide (CHX), a biological compound that inhibits 

protein biosynthesis by blocking peptide chain elongation on eukaryotic 

ribosomes, was used in these experiments to ascertain the RP position. Table 

1.1 demonstrates how the position of the restriction point was defined by 

treating the cell with CHX at three major treatment points during the cell 

cycle. 
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Table 1.1. Effect of cycloheximide on the cell cycle during different 

treatment times. 

 

 

 

A breakdown in the regulatory network that controls the RP may 

eventually lead to the malignant transformation of cells i.e. those that should 

be quiescent now actively proliferate. Failure of regulatory mechanisms can 

be instigated by a variety of factors such as a loss of CDK activity, 

overexpression of cyclins and the mutation or deletion of the p53 gene, a 

tumour supressor. Restoring proper RP control to cancerous cells could 

enable them to return to a quiescent state. However, an alternative strategy 

for the treatment of cancer may be to use cytotoxic compounds that 

specifically target malignant cells by exploiting their uncontrolled 

proliferative nature in order to facilitate apoptosis. Employing a mathematical 

model that effectively predicts the biological behaviour of the cell cycle 
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should aid the development of existing treatment strategies and help 

researchers develop novel ones as well. A discussion of cell cycle models is 

given in Chapter 2. 

 

1.5 Cell Metabolism And Growth 

 

Successful growth and division of cells requires certain precursors. 

For instance, energy is necessary to drive the whole proliferation process and 

non-essential amino acids are needed to act as biological building blocks for 

macromolecules. In order to supply the cell with energy, cells must undergo 

multiple enzyme catalysed chemical reactions, collectively referred to as 

cellular metabolism. 

Metabolic pathways contain two fundamental types of interdependent 

reactions. Catabolic reactions result in the release of energy when a larger 

complex organic compound is degraded into smaller constituents. Anabolic 

reactions are those that involve the assemblage of smaller simpler compounds 

into larger macromolecules. This type of constructive metabolism, also called 

biosynthesis, essentially depends on an input of energy in order to function 

properly. In general, the products obtained after catabolism will be required 

during anabolism. 

 

 Adenosine Triphosphate: 

 

One of the primary sources of energy for cells comes in the form of 

the molecule specialised in storing energy after its release during catabolic 
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reactions and is known as adenosine triphosphate or ATP. Adenosine 

triphosphate is a nucleotide that is synthesised in the mitochondria. ATP is 

formed from a nitrogenous base, adenine and ribose sugar, which is bound to 

a chain of three phosphate groups. This highly important macromolecule acts 

as the energy currency for cells and is responsible for driving a myriad of 

processes related to transport, mechanical and chemical reactions. Through 

the process of phosphorylation, ATP transfers a phosphate group to another 

biomolecule to yield energy needed for cellular activities. The loss of the 

phosphate group renders the molecule to adenosine disphosphate (ADP), 

which contains only two phosphate groups, unlike ATP that has three. ADP 

is recharged into ATP through coupling to catabolic reactions, mostly in 

glycolysis (in the cytoplasm) or oxidative phosphorylation (in the 

mitochondrion). 

 

 Glycolysis: 

 

The catabolic process of glycolysis is critical to mammalian cells for 

the release of energy. Glycolysis is ubiquitous to virtually all living cells. In 

eukaryotic cells, it is carried out in the cytoplasm. The aim of glycolysis is to 

convert a single molecule of glucose into two molecules of pyruvic acid, two 

energy-rich electron carrying molecules called nicotinamide adenine 

dinucleotide (NADH) and two molecules of ATP.  

The metabolic pathway of glycolysis contains a series of enzymatic 

reaction steps. The first of these steps involves an enzyme called hexokinase 

catalysing the conversion of glucose into glucose-6-phosphate. ATP 
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phosphorylates glucose resulting in a sugar phosphate. Due to the negative 

charge of the phosphate, the sugar phosphate is unable to move through the 

plasma membrane. This effectively forces the glucose molecule to remain 

inside the cell. Phosphoglucose isomerase catalyses the second step of 

glycolysis where glucose 6-phosphate is converted into fructose 6-phosphate.  

Phosphofructokinase is the enzyme involved in the third step of 

glycolysis and aids in the transformation of fructose 6-phosphate into 

fructose 1,6-biphosphate. The resulting product is a double phosphorylated 

six-carbon sugar that is separated during step four of glycolysis by the efforts 

of fructose biphosphate aldolase into two three-carbon molecules known as 

dihydroxyacetone phosphate and glyceraldehydes 3-phosphate. Only the 

latter product is allowed to automatically progress through glycolysis, 

whereas the former compound has to undergo a further step where it is 

transformed into its isomeric form, glyceraldehyde 3-phosphate, by the 

actions of triose phosphate isomerase. Glyceraldehyde 3-phosphate 

dehydrogenase catalyses the next reaction step that forms 1,3-

biphosphosphoglycerate.  

The first of the ATP molecules generated during glycolysis appears as 

a side-product in the reaction that has 1,3-biphosphoglycerate being 

converted into 3-phosphoglycerate by the enzyme, phosphoglycerate kinase. 

Phosphoglycerate mutase then helps transform 3-phosphoglycerate into 2-

phosphoglycerate. In the penultimate step of glycolysis, water is removed 

from 2-phosphoglycerate in combination with the enzymatic actions of 

enolase to form phosphoenolpyruvate. The second ATP molecule is obtained 

during the final stage of glycolysis that has pyrvuate kinase catalysing the 
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conversion of phosphoenolpyruvate into pyrvuate (Alberts et al., 2002). This 

results in the net gain of two ATP molecules from a single molecule of 

glucose. 

 

Non-Essential Amino Acids: 

 

In addition to a requirement for energy, cell growth also require 

amino acids to serve as the basic units of proteins. Amino acids are classified 

as either nutritionally essential or non-essential. Essential amino acids are 

also referred to as indispensable because they are not synthesised by human 

cells and therefore must be introduced by dietary means. The group of 

essential amino acids consists of isoleucine, leucine, lysine, methionine, 

phenylananine, threonine, tryptophan, valine, histidine and arginine. It should 

be noted that arginine is considered nutritionally essential only in young and 

growing mammals and not in adults. In contrast, non-essential or dispensable 

amino acids can be produced in the eukaryotic body from different carbon 

and ammonia sources (Lehninger, 1982). The mammalian cell cycle and 

metabolism model described in chapter 3 focuses on non-essential amino 

acids in particular. 

Non-essential amino acids play important roles in cell signaling, 

regulating the expression of genes and can also function as a major source of 

metabolic fuel. Glutamate, glutamine and proline are three prominent 

examples of non-essential amino acids.  

Glutamate is a negatively charged amino acid that is often involved in 

active or protein-binding sites as their negatively charged nature enables 
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them to interact with positively charged amino acids, creating stabilising 

hydrogen bonds that are critical to protein stability. It is actually the ionic 

form of glutamic acid after the removal of the proton. The final step in the 

formation of glutamate is carried out by the enzyme, glutamate 

dehydrogenase, from ammonia and 2-oxoglutarate, also referred to as alpha-

ketoglutarate.  

Glutamine is the most abundantly occurring amino acid in the 

mammalian body and can be found in all the organs and muscles. It has 

various functions including building protein in muscles, restoring glycogen 

levels and maintaining the immune system. Glutamine synthetase, also called 

glutamate-ammonia ligase, is the allosteric enzyme that transforms glutamate 

into glutamine. 

Proline is also an eventual product of glutamate. It plays an important 

role in intracellular signaling. Glutamate is first converted into glutamate 5-

semialdehyde, which is then reduced to lead to the production of proline. The 

relationship between glutamate, glutamine and proline is shown in the 

biosynthetic pathway diagram in Figure 1.3. 
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Figure 1.3. The biosynthetic pathway of glutamate, glutamine and proline. 

 

 

Alanine and aspartate are two other non-essential amino acid 

synthesised in mammals. They are both the result of transaminations from 

glutamate. A transamination reaction is where an amino acid and keto acid 

exchange an amine for a keto group. Consequently, the amino acid now 

becomes a keto acid and vice versa. Alanine is a an amino acid with a 

hydrophobic side-chain that is generated by the reductive amination of 

pyruvate. Aspartate is converted from oxaloacetate by a transaminase 

enzyme. In mammalian cells, another non-essential amino acid called 

asparagine is derived from aspartate, catalysed by the ATP-dependent 

enzyme known as asparagines synthetase. 
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Serine, glycine and cysteine are non-essential amino acids that share a 

common biosynthetic pathway as shown in Figure 1.4. Serine 

phosphorylation facilitates the signal transduction process, while glycine and 

cysteine act as biosynthetic intermediates to various macromolecules. The 

formation of serine starts with the conversion of 3-phosphoglycerate, an 

intermediate of glycolysis, into 3-phosphohydroxypyruvate aided by 

phosphoglycerate dehydrogenase. Phosphoserine aminotransferase then 

catalyses the reaction involved in transforming this particular substrate to 

yield 3-phosphoserine. Phosphoserine phosphatase carries out hydrolysis to 

convert 3-phosphoserine into serine. From this point, serine acts as a 

precursor to glycine and cysteine and requires the enzymatic actions of serine 

hydroxymethyltransferase and cystathionine beta/gamma-lyases respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4. The biosynthetic pathway of serine, glycine and cysteine. 
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The final non-essential amino acid that has not been mentioned so far 

is tyrosine. It plays a structural role in almost every protein found in 

mammalian bodies. Although tyrosine itself is non-essential, it is actually 

formed from the essential amino acid, phenylalanine, with 

phenylalanineoxygenase catalysing the reaction. Therefore, tyrosine has not 

been included in the group of non-essential amino acids employed in the 

model of mammalian cell cycle and metabolism. 

 

1.6 Normal vs. Cancer Cell Metabolism 

 

An important distinction between normal and cancer cells is the 

dynamics involved in their metabolic pathway. Normal cells and cancer cells 

differ in the method they obtain the energy required for cellular processes 

from glucose. Most differentiated cells derive their energy through a 

combination of glycolysis and mitochondrial oxidative phosphorylation, 

whereas tumour cells predominantly utilise glycolysis with significantly 

reduced oxidative phosphorylation for the metabolism of glucose.  

The majority of differentiated cells convert glucose to carbon dioxide 

by oxidising pyruvate in the tricarboxylic acid cycle (TCA), commonly 

referred to as the citric acid cycle, which then produces the reduced form of 

NADH necessary to drive the oxidative phosphorylation process (Alberts et 

al., 2002). Lactate production is minimised for normal cells when there is 

ample oxygen available. Only a high level of lactate is produced when the 

differentiated cell is subjected to an anaerobic environment. For tumour cells 

on the other hand, there is a stark contrast to the dynamics of normal cell 
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metabolism in that large amounts of lactate are synthesised regardless of the 

presence or absence of oxygen. This preference of cancer cells to rely heavily 

on glycolysis even in the presence of high levels of oxygen has been shown 

to be a near-universal characteristic of cancer cells (Gatenby & Gillies, 

2010). The phenomenon of the upregulation of glycolysis in tumour cells is 

known as the Warburg effect and is also referred to as aerobic glycolysis. A 

diagram illustrating the main differences between normal and cancer cell 

metabolism is shown in Figure 1.5. 

 

 

Figure 1.5. Diagram illustrating the differences between the metabolic          

          pathways for normal and cancer cells. 
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For both normal and cancer cells, ATP is necessary for the transport 

of chemical energy within cells. During normal cell metabolism, oxidative 

phosphorylation generates 36 molecules of ATP per molecule of glucose, 

whilst 2 ATP molecules are produced from glycolysis. This means that for 

every glucose molecule, a total of 38 ATP molecules are generated. For 

tumour cells on the other hand, most of the glucose substrate is converted 

into lactate regardless of the level of oxygen. This process of aerobic 

glycolysis generates ATP in an inefficient manner with only 2 ATP 

molecules produced per molecule of glucose (Heiden et al., 2009). However, 

aerobic glycolysis is a much faster process of producing ATP than is 

oxidative phosphorylation. This high ATP turnover rate may then be 

advantageously utilised by cancer cells to quickly fuel the conversion of 

important nutrients into the cellular biomass required for cell growth and 

proliferation. 

There have been several explanations proposed as to why cancer cells 

prefer to heavily rely on glycolysis even in the presence of oxygen. Otto 

Warburg believed that the increase in glycolytic rates were due to irreversible 

damages to oxidative phosphorylation, which could have been caused by 

mitochondrial mutations. However, recent studies showed that inhibiting 

glycolysis in cancer cells may upregulate oxidative phosphorylation activity, 

which suggests that these malfunctions may not actually be irreversible. 

Another explanation that has been proposed is that cancer cells persist with 

glycolysis because this results in environmental acidosis, which is toxic to 
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normal cells whereas cancer cells remain unaffected, providing them with a 

significant proliferation advantage (López-Lázaro, 2008). 
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Chapter 

TWO 

 

MODELS OF THE CELL CYCLE 

 

 

2.1 Modelling The Cell Cycle 

 

Understanding the molecular mechanisms involved in the cell 

division cycle and its regulation from a purely intuitive perspective is 

difficult due to the complexity of the regulatory system. However, a 

mathematical and computational approach may be applied towards 

comprehending the regulatory networks of the cell cycle in order to gain 

qualitative and quantitative insights into their method of functioning.  

In general, models of the cell cycle and the mechanisms involved with 

its regulatory networks usually entail three stages. The initial stage is a phase 

of model design where the biological problem to be investigated is first 

identified and formulated into a well-defined mathematical model. This is the 

most crucial phase in the modelling process and can often be difficult and 

demanding. It consists of determining which pieces of information are 

relevant to the construction of the model and which ones are not important 
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and therefore should be omitted. The middle stage involves implementing the 

model using computational means to observe the effects on the biological 

system in response to various conditions. The information and data gathered 

should then be analysed to draw conclusions about the dynamic behavior of 

the cell cycle process. The final stage is model verification or validation, 

where the simulation results from the mathematical model are compared 

against the results from existing theoretical and experimental studies related 

to the current investigation but which had not been used to construct the 

model (Fuβ et al., 2005). 

 

 Model Design: 

 

The first detailed step in the modelling process would be to create a 

mathematical model that provides a relatively accurate reflection of what is 

actually occurring within the cell cycle. This theoretical model should be able 

to reproduce certain aspects of existing experimental observations to the best 

of its ability. For example, a few key ideas that should be implemented in a 

basic cell cycle model include the following points. 

● The model should be able to accurately reflect the response to checkpoint 

controls throughout the cell division cycle. For example, a lack mitogenic 

signaling would cause the cell to enter into a quiescent state until certain 

conditions are satisfied once again. 

● The S phase of the cell cycle must always precede mitosis. 

● Once the cell cycle passes “Start”, it must commit to the DNA replication 

process until complete as the transition from G1 to S is irreversible. 

http://bib.oxfordjournals.org/search?author1=Hendrik+Fu%CE%B2&sortspec=date&submit=Submit
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● A commitment must be made to remain in the mitosis phase until 

completion once the cell transitions from G2 to M. 

● The cell should exit from mitosis at “Finish” 

● For normal cells, simulations of the cell cycle time course should 

demonstrate balanced growth and division. For instance, the completion of a 

full cell cycle should result in the cell mass being halved to account for the 

new daughter cells. 

 Model formulation should always begin with a statement of the 

objective of the investigation by identifying the problem and determining any 

potential causes if possible. 

During construction of a mathematical model, the system boundaries 

and components must be well-defined and any theoretical assumptions that 

are made to simplify the model should be within reason. Parameters and 

initial conditions should be specified during the model building process.  

Cell cycle data for the mathematical model can be acquired from 

various sources. This includes reviewing existing literature relevant to the 

subject or gathering detailed information, such as the name of genes being 

expressed in a particular pathway, from online biological databases, such as 

the Kyoto Encyclopedia of Genes and Genomes (KEGG), and molecular 

interaction maps (Kanehisa, 1996; Kohn, 1999; Le Novère et al., 2009).  

  

 Model Simulation And Analysis: 

 

Computational tools can be employed to run simulations of the 

theoretical model in order to visualise the predictions made by the 



41 
 

mathematical model. Simulation can be a very powerful tool for studying and 

analysing complex systems. A simulation model imitates the operation of a 

real biological system as it evolves over time and is based on the form of a 

set of assumptions about the operation of the system. These assumptions are 

expressed as logical or mathematical relations between the system objects 

being investigated. One benefit of utilising a simulation model is the ability 

to calculate extreme values in addition to expected values. Hence, simulation 

can be used to gain a better understanding of the expected performance of the 

biological system and to determine the effectiveness of the design of the 

system.  

A dynamic simulation, representing a biological system as it evolves 

over time, can be classified into two distinct types, deterministic or 

stochastic. A deterministic model contains no random variables, whereas a 

stochastic simulation model contains one or more random variables and can 

capture the effects of extrinsic and intrinsic noise. In most cases involving 

cell cycle research, the deterministic model is the preferred choice as it is 

usually sufficient enough to represent the general behaviour of the system, 

while a stochastic model is much more computationally intense. 

A common problem with the formulation of a model is the lack of 

available information on the parameters needed to generate quantitative 

predictions of the behavior of the biological system. This ambiguity may be 

partially overcome by the use of parameter estimation techniques where 

information contained in accessible experimental data is used to extrapolate 

model parameters. However, a thorough and systematic review of existing 
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information is necessary to build a comprehensive and accurate model of the 

biological system.  

In certain cases, researchers might not actually be aiming to 

investigate the behavior of the system based on specific parameters. They 

may be more interested in studying how the system is affected qualitatively 

when perturbations are applied to the parameters of interest. This particular 

investigation into how perturbed parameters influence and change the 

qualitative dynamical behaviour of a biological system is known as 

bifurcation analysis (Angeli et al., 2004; Blüthgen et al., 2001; Feller, 1994; 

Swat et al., 2004; Tyson et al., 2001).  

Sensitivity analysis of model parameters has become another widely 

used technique in computational systems biology (Perumal and Gunawan, 

2011). This technique has been employed in various fields of biological 

study, such as chemical kinetics, environmental modelling and the analysis of 

biological models (Horberger and Spear, 1981; Rabitz et al., 1983; Rabitz, 

1989; Saltelli et al., 2005; Zheng and Rundell, 2006; Zi et al., 2008). 

Sensitivity analysis involves the use of sensitivity coefficients or 

values to observe the dependence of the mathematical model on the 

parameters involved. The sensitivity coefficients measure the ratio between 

the magnitudes of the resulting change in the model and the perturbations 

applied to the parameters that bring about this change. If the parameters have 

been subjected to infinitesimal perturbations, then the sensitivity analysis is 

referred to as local.  

Global sensitivity analysis refers to a finite perturbation being applied 

to the model parameters and also allows all parameters to change 
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simultaneously (Marino et al., 2008). The magnitude of the sensitivity values 

provides information on whether or not specific parameters heavily influence 

the behaviour of the biological system. A sensitivity value with a high 

magnitude would imply that the parameter has a great level of control over 

the cellular processes or pathway involved. Sensitivity analysis may provide 

potentially useful insights into the robustness of the mathematical outputs 

with respect to the varying model inputs and help identify the key factors 

affecting the model result. It can also be used to help determine the type of 

parameters estimation to be performed and to guide the design of future 

experimental work (Bentele et al., 2004; Ingalls, 2008; Raue et al., 2011, 

Rodriguez-Fernnandez et al., 2006). 

 

 Model Verification And Validation: 

 

 Once the analytical model is complete, the in silico results performed 

by the chosen simulation tool can be verified and validated by comparing 

them with existing information and data obtained from in vivo or in vitro 

experiments. This can help determine whether the mathematical model has 

worked as intended and if it is a credible representation of an actual 

biological system. After performing the comparison, the mathematical model 

can then be iteratively revised and adapted until a validated model of the 

dynamical system is accomplished. 

After model verification and validation has been carried out, further 

analysis of the simulation results may help to identify potential new areas of 

theoretical study or suggest further experimental work to be carried out. The 
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model may be used to perform further simulations to explain non-intuitive 

problems about the biological system in question. In addition, predictions can 

be made to help guide future experiments by determining what areas need to 

be examined in more detail and what type of work should be carried out in 

the laboratory. A schematic diagram of the workflow involved in the cell 

cycle modelling process is shown in Figure 2.1. 
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Figure 2.1. Schematic workflow of a cell cycle modelling process. 

 

 

 

Collect existing information and 

data on the cell cycle by 

literature review or from online 

databases 

Create a mathematical model of 

the cell cycle 

Input parameters based on 

theoretical assumptions and/or 

previous experimental work 

Use computational tool to run 

simulations of the mathematical 

model 

Analyse and verify the 

predictive data produced by the 

computational simulations 

Identify further areas of 

theoretical work if 

necessary 

Determine potential 

areas of experimental 

work 
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One major advantage of utilising mathematical modelling and 

computational techniques to observe the behavior of biological systems in 

silico is cost-effectiveness, compared to potentially expensive experimental 

work. In cancer therapy, a computational model can be used to predict the 

effects of drug compounds in order to determine which anti-cancer drug has 

the most influence over its intended target (Robert et al., 2004). The model 

may also be used to rule out drug compounds before focusing on those that 

will target the pathway of interest. This is a much more effective and 

economical method than having to test the response of every drug compound 

in various in vivo trials. However, it is important is to note that a 

mathematical model is only a representation of the biological system and that 

a certain degree of realism is usually lost during the construction process. 

Another benefit is the fact that mathematical models can be used to gain a 

better understanding of the system. Without a quantitative model, it would be 

impossible to comprehend in the inner workings of some non-linear systems. 

The simulation results of a mathematical model enables researchers to 

view exactly what happens over a period of time for the concentrations of the 

molecular species being investigated. One mathematical technique that can 

be employed to formulate the dynamical behavior of the cell cycle is the use 

of ordinary differential equations (ODEs), which are used in chemical kinetic 

theory to express the interactions between species related to the cell division 

cycle (Tyson et al., 1996).  
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 Ordinary Differential Equations: 

 

Ordinary differential equations (ODEs) can be used to represent the 

deterministic relationship between the concentration of the species involved 

in the cell cycle and its regulatory networks, and their rate of change as time 

passes. If we define x to be the concentration of a certain species and t as 

time, then x(t) can be used to denote the concentration of species x at time t. 

Now let F to be a given function of x, t and the derivatives of x. If the 

function F depends on more than one integration variable, the differential 

equation is then referred to as a partial differential equation (PDE). PDEs 

arise when we consider spatial location as well as time. If the location is 

ignored, then it means that the model assumes concentrations to be uniformly 

distributed in all of the space. PDEs require detailed information of the 

geometry of the spaces considered and it involves orders of magnitude with 

more degrees of freedom than ODEs and hence require greater computational 

power. Therefore, for this research project, as in most published cell cycle 

models, the attention will be restricted to ODE models. 

The general form of the ODE describing what happens to a certain 

concentration over time can be expressed as equation (2.1). 
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 ( )( )   {   ( )   ( )    ( )    (   )( )}  (2.1) 

 

t = The independent variable denoting time 

x = The dependent variable denoting the concentration of a species 

n = The order of the ordinary differential equation 

 

Here, x’(t) is the derivative of x with respect to time and x’’(t) is the second 

derivative of x with respect to time. In general, x
(n)

(t) represents the derivative 

of order n for x with respect to time.  

For a number of coupled ODEs that involve first order derivatives and 

represent multiple species with a role in the cell cycle, the system of 

equations can be expressed in column vector form by equation (2.2). 

 

[

  
 ( )

  
 ( )
 

  
 ( )

]  [

  {   ( )   ( )   ( )     ( )}

  {   ( )   ( )   ( )     ( )}
 

  {   ( )   ( )   ( )     ( )}

] (2.2) 

 

S = The number of species being modelled 

 

The system of ODEs can be solved using integration to obtain 

equations that describe the value of the dependent variable, x, as a function of 

the independent variable, t, given the value of x for a defined value of t. The 

resulting constants of integration are determined by taking into account the 

initial conditions defined in the mathematical model of the cell cycle. 
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Ordinary differential equations are classified as either linear or non-

linear. A differential equation is linear when the dependent variable occurs 

only to the first power, as does its derivative. The solutions to linear type 

ODEs generate a vector space. Non-linear ODEs can be far more complicated 

to solve because they involve terms that include a dependent variable or the 

derivative of that particular variable to a power greater than one. The 

solutions obtained from non-linear ODEs can range from simple, complicated 

to chaotic. 

In the event that it is not possible for an exact solution of an ODE can 

be obtained, numerical computation may be used to approximate the solution. 

Examples of numerical integration techniques include the Euler method for 

first order ODEs and Runge-Kutta for ODEs with a higher order (Atkinson, 

1989; Butcher, 2003). 

 

2.2 From Yeast To Mammalian Cell Cycle Models 

 

At present, more is known in detail about the molecular machinery of 

cell cycle control for the unicellular organism, budding yeast or 

Saccharomyces cerevisiae, than any other eukaryotic organism. This 

experimental data-rich field makes budding yeast an ideal model organism 

for laying the foundations of mathematical modelling work for mammalian 

cells. In addition, studying the cell division cycle in yeast cells could 

potentially offer insights into the mutations that are the cause of cancer in 

humans due to similarities in the yeast and human cell cycles (Hartwell, 

2002; Pray, 2008). 



50 
 

 

 Kohn’s Molecular Interaction Maps:  

 

Kurt W. Kohn stated that “depicting the molecular networks involved 

in signaling pathway that regulate the cell function has proven challenging, 

due to the enormous amount of information that needs to be conveyed for 

each participant in the network and the cross-connection between pathways. 

This challenge must nevertheless be addressed in order to understand the 

underlying design of such networks, and to utilise the findings of modern 

biology most effectively to combat diseases…Another difficulty is that 

bioregulatory networks are replete with interconnections that make intuition 

about network  function unreliable ” (Kohn and Aladjem, 2006a).  

Kohn’s statement refers to the fact that diagrams representing 

bioregulatory networks are often incomplete and ambiguous. For instance, 

simply having an arrow between two components to highlight their 

relationship may not detail the underlying mechanism involved, such as one 

component affecting the molecular state or quantity of the other. A complete 

and comprehensive diagram of complex bioregulatory networks must take 

into account three key ideas as follows. 

 ● The binding of regulatory macromolecules such as proteins leads to 

 new multi-compounds that may exhibit distinctive interaction behaviours. 

● Enzymes used to catalyse specific chemical reactions are frequently found 

to be the substrates to other enzymes found in the network, irrevocably 

linking an interdependent system of enzymes together. 
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● Network molecules often undergo some form of modification such as being 

phosphorylated. This significantly affects their ability to bind to each other or 

to catalyse certain reactions. 

In order to address the issue of comprehending the interactions 

between various elements of a complex biological system, Kohn developed a 

convention for molecular interactions maps that was capable of representing 

complex bioregulatory networks (Kohn, 1999). These molecular interactions 

maps employ specially designed and standardised notation. Each single 

molecular species in the diagram is represented at a unique location. Two 

types of interactions, the reactions and the contingencies, are denoted by 

well-defined arrowed or end-barred lines that connect the two species that are 

interacting. Reactions include processes such as the binding or cleaving of 

molecules. Events such as the stimulation and inhibition of enzymatic 

activity are referred to as the contingencies. Monomolecular species that bind 

together to form multi-complexes are represented by nodes, which are 

connected to each other by reaction or contingency lines. These resemble a 

large dot placed in the middle of the interaction line. A few examples of the 

notation used by Kohn to denote the interactions between species are given in 

Table 2.1. 

 

Symbol Representation 

 
Monomolecular species A 

 

Non-covalent interaction 

between species A and B (node 

in the middle represents the 
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A:B complex) 

 

A:B is denoted by x 

 

Species A contributes peptide 

that binds to receptor site on 

species B 

 

States x and y combine to form 

state z 

 
Degradation products 

 
Stimulation 

 
Inhibition 

 

Transcriptional activation 

 
Transcriptional inhibition 

 

Table 2.1. Examples of the notation utilised in the molecular   

       interaction maps by Kohn. 

 

The molecular interactions maps allow the extensive protein-protein 

interactions and protein modifications to be expressed as well-defined 

canonical representations. Although this type of representation does not allow 

for explicit displays of temporal processes, Kohn's intricate biological circuit 
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enables proteins with functionally similar roles in both yeast and mammalian 

cells to be identified.  

Since the publication of the widely cited 1999 paper, updates have 

been made to the notation used in the molecular interaction maps and 

published in a subsequent paper by Kohn and other researchers (Kohn et al., 

2006b). Recently, Kohn’s notation has become obsolete and the current 

accepted standardised notation for representing information about 

biochemical pathways is now the Systems Biology Graphical Notation 

(SBGN), for which Kohn is also a signatory. SBGN uses graphical 

representations to describe process descriptions, entity relationships and 

activity flows for the interactions of a biological network (Le Novère et al., 

2009). The objectives of SBGN are to be as simplistic and unambiguous as 

possible when representing the network of interest; be computationally 

tractable; make it convenient for researchers to draw the diagram by hand; be 

reproducible in black and white; allow for incomplete information and to 

follow accepted conventions whenever possible. These graphical 

representations act as a visual aid to help researchers understand what 

interactions are occurring and enable the information contained within the 

biological network to be summarised concisely. 

 

 The Chen et al. Yeast Cell Cycle Models: 

  

The model presented by Chen et al. in 2000 elucidates the cell cycle 

of budding yeast by applying previously developed methods, such as 

ordinary differential equations, and drawing on the extensive data available 
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on this particular organism (Chen et al., 2000). This biochemical kinetic 

model is used to describe how controlling protein concentrations vary during 

a proliferation cycle.  

A set of 10 non-linear ODEs based on chemical kinetic rate equations 

govern the time-evolution for cell mass, the cyclins and their associated 

proteins. Three additional algebraic functions describe transcription factors. 

Events are also implemented to determine exactly when DNA synthesis, 

budding and spindle assembly should be triggered. The effect of the 

asymmetric division of the yeast cell mass once a full cell cycle has been 

completed is included in the model.  

This model of kinetic equations comprises of around 50 parameters 

that include rate constants, binding constants, thresholds and relative 

efficiencies. Many of the parameters were derived from existing experimental 

data on kinetics, while others were manually fitted to training data reflecting 

genetic perturbations to the length of G1 and the cell mass at different times 

in the cycle. The aim of the budding yeast model was to have the equations 

and parameter set provide a reasonable and explicit explanation for the 

various properties of cell cycle control.  

This model was able to reproduce a great deal of the observed 

physiology of in vivo cells, especially with regards to cell cycle regulation. 

Chen et al. predicted that the cell cycle exhibits hysteresis and bistability. In 

a more recent paper, Cross et al. showed this hypothesis to be true (Cross et 

al., 2002). In particular, similar to the views of Nasmyth (1996) and Tyson et 

al. (2001), Chen et al. proposed that the G1 and S-G2-M phases were two 

alternative self-maintaining steady states. Cyclin-dependent kinases (CDKs) 
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drive the transition between the two states based on whether the 

concentration of cyclins available is high or low. This is caused by the mutual 

antagonistic relationship amongst the cyclin B-dependent kinases and their 

adversarial proteins, Sic1 and Cdh1. 

Hysteresis was predicted in the transition between G1 and S-G2-M 

and vice versa. This means that the current state is dependent on the history 

of the previous state. Events that drive the transition between the two states, 

such as the interaction between the cyclins and APC/Cdh1, must exert 

themselves properly before the irreversible progression from one state to the 

next occurs. 

The model developed by Chen et al. in 2000 provides an adequate 

representation of the transition from G1 to S. However, since its publication, 

additional information about the transition from M to G1, also known as the 

exit from mitosis, has arisen. These new pieces of information were added to 

the model by Chen et al. in 2000 and formulated into an improved version of 

the original model in 2004. This more recent model is able to quantitatively 

depict what is happening during all the stages related to the chromosome 

replication-segregation cycle in eukaryotic cells (Chen et al., 2004). 

The version of the budding yeast cell cycle model published in 2004 

incorporates 36 ordinary differential equations containing 148 constants, in 

addition to algebraic equations. This particular model describes cell mass, 

DNA content, protein concentrations, the actions of the mitotic spindle, and 

details about the state of the emerging bud. 

Chen et al. found that after subjecting some of the model parameters 

to manual fitting, simulations of the dynamical system behaviour were rather 
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adept at expressing properties of cell growth and division for wild-type cells.  

Another promising find was that the model was relatively effective in 

representing the phenotypes of more than 100 mutant strains with regards to 

certain experimental observations, such as the growth rate of the cell. 

However, in certain cases where specific parameters are modified to concur 

with existing experimental data on mutant cells, the effects on other mutants 

could be unexpected and unpredictable.  

It is important to note here that in general, both the selection of a 

model for a particular biological system and parameter estimation of the 

chosen model must be dealt with carefully. For instance, the objective 

function, which is the sum of squared deviations between the predictive 

results and the experimental observations, may have multiple local optima in 

the parameter space. A specific set of parameters may offer a good model fit, 

but if this set contains parameter values that are actually unrealistic 

representations of their real-world counterparts, then the model might 

generate erroneous results when tested against data with different conditions. 

 

 The Novák and Tyson Mammalian Cell Cycle Model:  

 

Novák and Tyson created a model for the restriction point control of 

the mammalian cell cycle by extending upon the Chen et al. budding yeast 

cell cycle model and exploiting the deep similarities between the CDK 

regulatory systems of yeast and mammalian cells as identified from Kohn's 

molecular interaction maps (Novák and Tyson, 2004).  
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This mammalian cell cycle model, consisting of 18 ODEs, is capable 

of recreating several cellular physiological responses such as the restriction 

point and the transient halting of cell growth through the inhibition of protein 

synthesis by the effects of cycloheximide. In addition, it takes into account 

the antagonism between p27 and the cyclin E/CDK 2 and cyclin A/CDK2 

complexes.  

Following on from the experimental work carried by Zetterberg and 

Larsson (1995), a term representing the effects of cycloheximide was 

included in the model in order to locate the position of the restriction point. 

Recently, Yao et al. proposed that the RP is regulated by a bistable 

switch resulting from the interactions between the retinoblastoma protein 

(Rb) and E2F transcription factor (Yao et al., 2008). Yao et al. of researchers 

discovered that if this particular bistable switch is on, a cell will continue to 

divide regardless of whether the cell is damaged or the growth signal has 

disappeared. In the Novák and Tyson mammalian cell cycle model, the Rb-

E2F interactions are expressed as steady state algebraic equations. The model 

also satisfies the requirement of Cyclin E/Cdk2 oscillating in phase with the 

inactivated and phosphorylated form of Rb (pRb). 

Several assumptions are made for the mammalian cell cycle model. 

Firstly, the ODEs are written exclusively for proteins while mRNAs are 

ignored because the mRNAs are always in steady state due to the postulated 

rapid message turnover. Secondly, the level of cyclin-dependent kinases 

(Cdk) are always assumed to be significantly higher than their cyclin partners 

so that they are not the limiting factor in the configuration of cyclin/Cdk 

complexes. Therefore, every cyclin/Cdk complex is defined by its cyclin 
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subunit and Cdk terms do not appear in the ODEs. Another assumption made 

is the existence of an intermediary enzyme (IE) that is responsible for causing 

a delay in the time it takes to accumulate Cyclin B before Cdc20 is activated. 

The phosphorylated version of IE, IEP, becomes dephosphorylated again by 

the actions of a phosphatase that is directly dependent on the efficiency of 

translation. For example, if the translation efficiency is working at half its 

potential full capacity, the activity of the phosphatase targeting the IE is also 

halved. 

 

 

 

2.3 A Mammalian Cell Cycle Model 

 

The mammalian cell cycle and metabolism model discussed in 

chapters 3 and 4 extends and builds upon the foundations of the work carried 

out by Conradie et al. (2010), Therefore, the focus of this particular section 

will be on detailing what is involved with their model of the mammalian cell 

cycle. 

The mammalian cell cycle model developed by Conradie et al. is an 

extension of the mathematical model developed by Novák and Tyson. 

Certain techniques are used to formulate a method of using control analysis 

in order to identify which reaction steps were the most influential over the 

positioning of the restriction point (Conradie et al., 2010). This model 

consists of a system of 23 coupled non-linear ODEs, each describing the rate 

of change of an important species involved in the mammalian cell cycle. The 
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concentrations of cyclins, p27, early response genes, delayed response genes 

and cell mass are amongst the variables being modelled to observe how they 

evolve over a period of time. 

The increase in the number of ODEs found in this model compared to 

the 18 ODEs presented by Tyson and Novák is due to the fact that the Rb and 

E2F transcription factor interactions are now being expressed directly as 

ODEs instead of just steady-state algebraic equations. Rb is a tumour 

suppressor protein that binds to and inhibits E2F, which positively regulates 

many of the genes required for entry into the S phase of the cell cycle. The 

sequestering of E2F is carried out by cyclin D/CDK4 that phosphorylates Rb 

until it becomes inactive. E2F can then be released to enable the activation of 

genes required for initiation into the phase of DNA synthesis. Cyclin D 

production itself is controlled by a signal transduction pathway involving 

growth factors (GF), early response genes (ERG) and delayed response 

genes. This particular GF-ERG-DRG pathway is carefully regulated through 

the stimulation of the growth factors.  

A combination of GF stimulation and the transcriptional induction of 

ERGs and DRGs results in a change of state for the cells found in the G0 

phase. This allows the previously quiescent cells to re-enter the cell cycle to 

continue onwards with cellular growth and proliferation. This high level of 

feedback regulation required for proper cell growth and an ODE concerning 

the mass of the cell has been incorporated into the Conradie et al. model. 

One similar aspect of the Conradie et al. model to the Tyson and 

Novák model is the involvement of 52 reaction steps contained within these 

ODEs. The series of equations utilise mass action kinetics to elucidate a 
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functional unit within the cell cycle network. Around 70 parameters are 

employed in the model to characterize rate constants, relative efficiencies and 

binding constants.  

All the terms related to the rate of synthesis for proteins have a factor, 

ε, which denotes the translation efficiency of the ribosomes. This particular 

term is affected by translation inhibitors and growth factors. It is used to 

represent ribosomal activity in response to cycloheximide exposure. The 

value of ε ranges from zero to one. A very low value close to zero denotes 

low translation efficiency, while a value of one implies that the ribosome is 

working at full translation efficiency. 

 

 Conradie et al. Model Assumptions: 

 

Several key model assumptions, inherited from the model developed 

by Novák and Tyson (Novák and Tyson, 2004), are made when deriving 

equations of the model. 

● Binding and release reactions are relatively fast compared to the 

phosphorylation and dephosphorylation reactions. 

● Cdc20 synthesis is assumed to be dependent on the level of cyclin B in 

order to model the effect of Cdc20 accumulating during the S-G2-M phases 

and receding during G1. 

● The cyclin/CDK complexes involving cyclins A, B, D, and E all contribute 

towards phosphorylating Rb. 
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● The total levels of E2F and Rb (which includes both the 

hypophosphorylated and phosphorylated forms) remain constant during the 

cell cycle process. 

● Messenger RNA (mRNA) is not allocated an ODE as rapid message 

turnover is assumed i.e. mRNAs are considered to be in steady state 

constantly. 

● The levels of CDKs are assumed to be always higher than their cyclin 

counterparts. This abundance of CDKs compared to cyclins means that the 

formation of cyclin/CDK complexes is not dependent on the rate of CDK 

production. 

● The value of the cell mass is exactly halved when the concentration of 

Cdh1 becomes greater than a critical value. 

 

Conradie et al. Model Reactions Steps: 

 

The 52 reaction steps and their corresponding rate equations used by 

Conradie et al. to construct their model of the mammalian cell cycle and its 

regulatory mechanisms are given in Table A.1 found in Appendix A, with Vr 

describing the rate equation for reaction step r.  

In order to reproduce certain time course results from the paper by 

Novák and Tyson, Conradie et al. actually used a time re-scaling factor of 10, 

meaning that all ODEs of the system should be multiplied by ten. This factor 

is not displayed in the rate equations as shown in Table A.1, but it is 

important to note that the eventual time course plots generated by Conradie et 
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al. through simulation of the model record the units of the species 

concentration and time in arbitrary units and hours respectively.  

Species such as Cyclin A, B, D and E are abbreviated to CYCA, 

CYCB, CYCE, CYCD respectively. The complexes formed by the cyclin and 

Kip1, which is the cyclin-dependent kinase inhibitor in G1, are denoted by 

CA, CE and CD with regards to the respective cyclins A, E and D. The 

concentration of a phosphatase is represented as PPX. 

 

 

Conradie et al. Model ODEs: 

 

 

ODEs used in this particular mammalian cell cycle model are shown 

in Appendix A. The NDSolve function and the Event-Locator method were 

employed in Mathematica, version 6.0 (Wolfram Research, Champaign, IL, 

USA, http://www.wolfram.com) to numerically solve the ODEs. Refer to 

Table A.1. for the relevant rate equations. 

 

 

Conradie et al. Model Parameter Values: 

 

 

The parameter values found in the Conradie et al. (2010) model are 

inherited from the mammalian cell cycle model by Novák and Tyson (2004). 

These particular parameters themselves were either taken from earlier models 

of yeast and frog cell cycles developed by Novák and Tyson or chosen to 

give an approximation of the in vivo mammalian cell cycle activity (Novák 
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and Tyson, 1993; Novák et al., 1998, 1999). The values of the parameters are 

given in Appendix A. 

 

An ODE For The Cell Mass: 

 

The ODE that describes the cell mass over time, as given by equation 

(2.3), implies that the cells are accumulating cytoplasmic mass at an 

exponential rate before each subsequent cell division. There is an event 

implemented in the model that once the concentration of Cdh1 passes a 

certain threshold value, in this case 0.2, the value of the cell mass is to be 

divided by a factor of 2. This is to reflect the exact point in time during the 

cell cycle at which a mother cell divides into two identical daughter cells. 

 

         (2.3) 

 

µ = Growth rate 

ε = Translational efficiency 

GM = General machinery for protein synthesis 

 

Metabolic Control Analysis: 

 

 Metabolic control analysis (MCA) was developed in 1973 by Kacser 

and Burns to act as a rigorous framework for the purpose of assessing the 

behaviour of reaction steps in the context of a pathway (Kacser and Burns, 

1973). 

]GM[**
]Mass[


dt

d
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In mathematical terms, MCA is a 1st order sensitivity analysis in the 

areas around a stable, and structually stable, fixed point. A control 

coefficient, as defined by equation (2.4), measures the relative steady state 

change in a system variable, such as the flux or species concentration, in 

response to a relative change in a parameter e.g. enzyme activity. 

 

          
          

     (        )

     (         )
      (2.4) 

 

Conradie et al. (2010) implemented an extension to MCA by using a 

perturbation method to quantify the control of certain reactions steps 

involved in the cell cycle pathway on the time the restriction point occurs. 

With this method of control analysis in place, they concluded the restriction 

point is most sensitive to perturbations made to the cyclin E/CDK2:p27 (CE) 

complex. It was suggested that identifying the reactions steps with the 

greatest effect on the CE complex and perturbing these reactions by affecting 

them with relevant compounds could possibly shift the restriction point back 

to its normal position. 

  

Control And Sensitivity Analysis: 

 

In the Conradie et al. (2010) paper, the control coefficient of reaction 

r on the position of the restriction point (RP),   
  , was defined as the 

percentage change in the fraction of the cell cycle length at which RP occurs 

for 1% change in the activity of (reaction step) r.  
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A positive value of   
   implies the time of RP occurrence has been 

delayed in the cell cycle, whereas a value less than zero suggests the position 

of the RP has been advanced. A value of zero means there was no effect on 

the RP position.  

In order to perform this control analysis, 52 constants,    to    , were 

multiplied to the 52 existing rate equations involved in the mammalian cell 

cycle model. The explicit definition of this process is given in equation (2.5).  

 

{  }  {  }  {  }                    (2.5) 

 

{  } = The set of r modified rate equations  

{  } = The set of r original rate equations  

{  } = The set of r perturbation constants  

 

Each of these 52 modified rate equations represented by {Mi} was 

perturbed individually by perturbation of 0.0000001 up and down. The model 

was then simulated with varying times at which the cells are exposed to 

cycloheximide. This allows the RP occurrence time to be identified by 

observing the first time point for which the cell mass begins to show 

stationary behaviour. Finally, control coefficients can be calculated using the 

RP occurrence times for the different perturbation values.  

Different cell types exhibit a diverse range of times taken to complete 

one full division cycle. One advantage of this type of control analysis is that 

control coefficients are expressed as a fraction of the cell division cycle. 

Hence, the time scale is dimension-free when determining the value of   
  .  
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Chapter 

THREE 

 

A MODEL OF GROWTH AND DIVISION 

 

 

A vital aspect of cell growth and proliferation involves the usage of 

energy derived from nutrients. This includes the metabolism of glucose, 

which is the most utilised carbohydrate in mammalian cells as it provides a 

major source of energy necessary to fuel the process of cellular division. 

Previous research has also demonstrated that glucose takes on an important 

role in cancer cell metabolism (Li et al., 2010).  

The restriction of glucose metabolism has been considered as a 

powerful method of preventing the development of cancer. This is due to the 

fact that cancer cells appear to carry out the metabolism of glucose at an 

elevated rate compared to normal cells. Limiting the availability of glucose 

acts as a metabolism stress factor that activates several signal transduction 

pathways (Hammerman et al., 2004). In addition, limiting the metabolism of 

glucose leads to significant changes in the expression of multiple genes 

including those associated with cell growth and survival (Gupta, et al., 1997; 

Lee et al., 1998). 
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In order to ensure the successful completion of a cell growth and 

divison cycle, certain precursors such as non-essential amino acids, 

nucleotides and mRNA are also required. These molecules are mostly 

synthesised from glucose, either from intermediates of the glycolytic pathway 

or from intermediates of the downstream TCA cycle. 

The model developed here focuses on combining an existing cell 

cycle model with the pathways involved in glycolysis and the biosynthesis of 

non-essential amino acids.  

 

3.1 A Mammalian Cell Cycle And Metabolism Model 

  

The processes of cell growth and proliferation requires a substrate 

such as glucose as a source of energy and biochemical precursors to 

synthesise new materials. However, current cell cycle models rarely account 

for the consumption of a substrate required to drive the cell division process 

(Gauthier and Pohl, 2011). The Conradie et al. mammalian cell cycle model 

does not take into account the requirements of glucose for the cell growth 

process. Therefore, an extended version of the Conradie et al. model has been 

developed that also incorporates elements of both glycolysis and the non-

essential amino acids pathway, crucial for acting as the building blocks of 

proteins, which themselves are necessary for ensuring successful cell growth 

and division.  

The aim of this research project is to construct a novel mammalian 

cell cycle and metabolism model that will respond to different concentrations 
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of glucose with different division times. The focus in this particular chapter is 

placed on modeling the division cycle for normal cells. Chapter 4 will discuss 

how a version of the model for cancer cells was created. 

Amino acids are the foundation for the biosynthesis of proteins and 

are also required for the expression of genetic data. Non-essential amino 

acids, also known as dispensable amino acids, do not need to obtained by 

dietary means because they are synthesised directly from ammonia and 

carbon sources already present. This particular group of amino acids include 

glutamate, glutamine, proline, asparatate, asparagines, alanine, glycine, 

serine, cysteine and tyrosine. Although tyrosine is a non-essential amino acid, 

it can only be synthesised by mammalian cells from the essential amino acid 

phenylananine through the process of hydroxylation by 

phenylalanineoxygenase (Lehninger, 1982). Therefore, tyrosine is not 

incorporated into the non-essential amino acids pathways of the cell cycle 

and metabolism model discussed in this chapter. 

The cell cycle and metabolism model builds upon the foundations laid 

by the Conradie et al. mammalian cell cycle model and extends it to 

incorporate certain properties of cellular metabolism, such as the pathways 

involved in glycolysis and synthesising non-essential amino acids.  

The cell cycle and metabolism model consists of 36 species, 

containing around 125 parameters, that convey the concentrations of the 

mammalian cell cycle and related regulatory network species, the metabolites 

involved in glycolysis, the total level of non-essential amino acids and 

finally, the cell mass. The cell mass is a particularly important entry for the 

mathematical model as it represents the mass of the cell over time and in the 



69 
 

new model its production rate is dependent on the concentrations of glucose. 

In the original Conradie et al. mammalian cell cycle model, as shown 

in Table A.1, reaction 33 described the accumulation of cell mass at an 

exponential rate of growth before the value of the mass halved. Figure 3.1 

shows the schematic diagram for the cell mass in the original mammalian cell 

cycle model. 

 

 

 

Figure 3.1. Schematic diagram for the cell mass from the Conradie et al. 

mammalian cell cycle model (original reaction number in blue) 

 

The single reaction shown in Figure 3.1 has been modified and 

extended to incorporate the reactions involved in the glycolytic pathway and 

the synthesis of non-essential amino acids, as shown in Figure 3.2. The 

arrows displayed in Figure 3.2 show the direction of conversion from 

substrate to product, while the numbers highlighted in red indicate the 

specified reaction step number. The full names of the abbreviations used in 

Figure 3.2 are specified in Table 3.1.  

 

 

 

 

 

MASS 
33 
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Figure 3.2. Schematic diagram for the extended model reactions involved in 

the cell cycle and metabolism model (reaction numbers in red) 

 

 

Table 3.1. Abbreviations used in the cell cycle and metabolism model 

schematic diagram for model reactions as shown in Figure 3.2. 

 

Abbreviation Used Full Term 

GLU Glucose 

G6P Glucose 6-phosphate 

F6P Fructose 6-phosphate 

FDP Fructose 1,6-biphosphate 

DHAP Dihydroxyacetone phosphate 

GAP Glyceraldehyde 3-phosphate 
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DPG 1,3-bisphosphoglycerate 

P3G 3-phosphoglycerate 

P2G 2-phosphoglycerate 

PEP Phosphoenolpyruvate 

PYR Pyruvate 

LAC Lactate 

AA Non-Essential Amino Acids 

MASS Cell Mass 

 

 

 As shown by Figure 3.2, the species that are modelled for the 

pathway of glycolysis include glucose 6-phosphate, fructose 6-phosphate, 

fructose 1,6-biphosphate, dihydroxyacetone phosphate, glyceraldehyde-3-

phosphate, 3-phosphoglycerate, 2-phosphoglycerate, phosphoenolpyruvate, 

pyruvate and lactate. A reaction has also been included to describe the 

degradation of lactate and its removal from the system.  

The non-essential amino acids being modelled comprises of the total 

concentration of glutamate, glutamine, proline, asparatate, asparagines, 

alanine, glycine, serine and cysteine. 
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3.2 Model Implementation 

 

The Cell Cycle And Metabolism Model ODEs: 

 

 

The 36 ordinary differential equations that model the species involved 

in the cell cycle and its related metabolic pathways consists of 79 reaction 

steps in total. Their corresponding reaction rate laws are shown in Table B.1 

found in Appendix B. Note that the time-rescaling factor of 10 used by 

Conradie et al. (2010) is displayed explicitly in the following rate equations. 

The discrete event that causes the cell mass to be halved when the Cdh1 

concentration value becomes greater than 0.2 is kept for this particular 

model. 

 

 

The Cell Cycle And Metabolism Model Parameter Values: 

 

 

The parameter values pertaining to the division cycle and its 

regulatory mechanisms in the new model are inherited from the model by 

Conradie et al. (2010). New parameters are introduced to the metabolism side 

of the model and include the maximum metabolic rate constants for certain 

reactions and Km values that represent the binding affinity between an 

enzyme and its substrate. 
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Formulation Of The Model Rate Law Equations: 

 

As shown in Figure 3.2, the reaction rate law describing the 

conversion of glucose to pyruvate in the mammalian cell cycle and 

metabolism, V33, is governed by a hyperbolic rate law akin to the Monod 

equation of growth, which is itself similar to the Michaelis-Menten enzyme 

kinetics.  

The Monod equation can be used to express the growth rate of a 

population primarily as a function of the limiting nutrient concentration 

(Monod, 1949). The general expression of the Monod equation is given by 

equation (3.1). 

         

  
      

      
 

(3.1) 

 

μ = The specific growth rate coefficient of the population of interest 

 μ
’
= denotes the maximum population growth rate 

 Ks = Half saturation coefficient 

S = The concentration of the limiting nutrient 

 

The Monod equation can be applied to the cell cycle and metabolism 

model by defining our limiting nutrient specifically as glucose. V33 is 

therefore defined as follows by equation (3.2). 
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(3.2) 

 

K33 = Maximum metabolic rate constant for reaction 33 

KMGLU  = The affinity constant for glucose. 

 

Here, KM is an inverse measure of the strength of binding or affinity 

between the catalysing enzyme and its substrate. The lower the value of KM, 

the higher the affinity.  

Similarly, the rate equations describing the other species found in 

Figure 3.2 are expressed in the form of equation (3.3).  

 

   
       

    
     

                         

(3.3) 

 

Ki = Maximum metabolic rate constant  

Ci = Substrate concentration 

KMCi = Affinity constant for the denoted substrate 

 

Finally, the reaction rate law for describing the conversion of non-

essential amino acids (AA) to cell mass, V78, is given by equation (3.4) 
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(3.4) 

 

K78 = Maximum metabolic rate constant for reaction 78  

KMAA = Affinity constant for AA 

AA = The total concentration of non-essential amino acids 

 

Model Implementation in COPASI: 

 

The simulation platform chosen to solve and analyse the ODEs of the 

mammalian cell cycle and metabolism model was COPASI, which is the 

abbreviated name for Complex Pathway Simulator (Hoops et al., 2006). 

The modelling and simulation tools available in COPASI are derived 

from the previously published GEPASI simulation platform (Mendes, 1993). 

COPASI is an open source software application that is available to download 

free online (http://www.COPASI.org). It was created through the 

collaborative efforts of computational biologists from the University of 

Manchester, UK, the Virginia Bioinformatics Institute, USA, and the 

University of Heidelberg, Germany.  

COPASI is a software that is able to support models in the Systems 

Biology Markup Language (SBML). Therefore, mathematical models can be 

imported or exported into COPASI provided they are coded in the SBML 

format. SBML is a machine readable language, based on the Extensible 
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Markup Language (XML), and is generally used to decompose biological 

models into explicitly labelled constituent elements. COPASI is also able to 

write mathematical models into files that are compatible with several other 

computational formats such as Berkeley Madonna, XPPAUT and the C 

programming language. 

COPASI can be used to construct a model of complex biochemical 

networks and their dynamics in such a way that the chemical reactions are 

easily translated into their corresponding rate equation forms through features 

such as events, compartments, global parameters and reaction rate laws. 

Certain tasks are also available in COPASI as a tool for analysing the results 

generated by the mathematical model, such as parameter scans, optimisation, 

metabolic control analysis and parameter estimation. 

A comprehensive set of numerical algorithms are available in 

COPASI to simulate what happens to a certain model species over time in a 

quick and efficient manner. The types of time course solvers available can be 

classified into three main categories, a deterministic time course simulator, a 

stochastic simulator, such as the Gibson and Bruck solver (Gibson and 

Bruck, 2000), and a hydrid of the deterministic and stochastic methods that 

attempts to combine the best of both worlds. The choice of time course 

simulator should depend on the type of biological system being modelled. 

Stochastic simulators account for the introduction of noise in a system but 

can be very time-consuming for large and complex network models, so in 

certain cases it might be more prudent to choose a deterministic-type solver.  
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 LSODA: 

 

LSODA is deterministic-type solver based on the algorithm 

developed by Petzold (Petzold, 1983). The biggest advantage of LSODA is 

its ability to switch between non-stiff and stiff methods in response to the 

system dynamics. A non-stiff method is initially applied. If the problem then 

becomes stiff i.e. the step size of the numerical solution becomes 

significantly more limited by the stability of the numerical method rather 

than by the accuracy of the method, a dense or banded Jacobian is used 

instead to solve the system of equations. It is the default time course solver in 

COPASI.  

The options included for LSODA are as follows. 

 ● Integrate Reduced Model: A value of 1 notifies COPASI to use all the 

mass conservation laws and a value of 0 instructs COPASI to determine all 

the variables through the specified ODEs only. 

● Relative Tolerance: A value determining the relative tolerance to be 

attained. The smaller the value, the more accuracy is achieved. The lowest 

possible numerical value that can be currently entered is around 2.22*10
-16

. 

The default value is set at 1*10
-6

.  

● Absolute Tolerance: A value determining the absolute tolerance to be 

attained. The smaller the value, the more accuracy is achieved. The default 

value is set at 1*10
-12

.  
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● Max Internal Steps: A value designating the maximum number of steps the 

solver is allowed prior to the next reported time point. The default value is set 

at 10000.  

During this research project, LSODA, which automatically selects 

between non-stiff and stiff methods, was the chosen solver for providing 

deterministic solutions and to simulate the time course of the various model 

species. The default options for LSODA were selected for the time course 

simulation. 

 

A global quantity was included during the construction of the 

mammalian cell cycle and metabolism model to measure the time it takes for 

the cell to complete one cycle of the division process. This global quantity 

takes the time point at which the cell mass is halved and the previous time 

point at which cell mass halving also occurs in order to calculate the time 

difference that defines a single cell cycle period. The first cell cycle period is 

measured only after 100 hours (h) have passed during the time course in 

order to allow sufficient time for the cell mass to oscillate and settle to their 

stable stationary period. 

 

3.3 Results And Discussion 

 

In order to investigate whether the response of the mammalian cell 

cycle and metabolism model to varying concentrations of glucoses provided a 

reasonable reflection of real-life behaviour for normal cells, separate 

simulations were carried out to observe how the cell mass evolves over time 
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with respect to a certain initial glucose concentration. The time course results 

for the cell mass when 1mM and 10mM of glucose are applied to the model 

is displayed in Figure 3.3. 

 

 

Figure 3.3. Time course plots for cell mass when the initial glucose 

concentration is set to 1mM (yellow line) and 10mM (blue line) 

 

 

 

In Figure 3.3, the time course plot for when 1mM of glucose is initially 

applied shows the overall concentration of the cell mass decreasing until it 

eventually settles to a maximum of approximately 0.95 arbitrary units (au) 

and a minimum of 0.5au. When the initial concentration of glucose is set to 

10mM, the overall cell mass also decreases until it settles to a slightly higher 

maximum of 1.05au and a minimum of 0.55au. This biologically reflects the 

fact that although normal cells may differ in the times they take to complete 

one full cycle of division, they should be maintaining a similar cell size per 

cycle, although the level of glucose present may affect the cell size to some 

degree by increasing the cell size when more glucose is available. In 
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eukaryotic cells, these critical cell size thresholds are imposed during the G1-

S and G2-M transitions (Jorgensen and Tysers, 2004). 

Similar time course plots, displayed in Figure 3.4, were produced for 

the non-essential amino acids (AA) when 1mM and 10mM of glucose are the 

initially enforced on the model. 

 

 

 
 

Figure 3.4. Time course plots for non-essential amino acids when the initial 

glucose concentration is set to 1mM (green line), and 10mM (red line) 

 

 

As shown in Figure 3.4, the time course plot for when the initial 

concentration of glucose applied is 1mM shows the concentration of non-

essential amino acids increasing before eventually settling to a stable cycle 

with values between 0.0035M and 0.0042M. This cyclical behaviour is 

clearly driven by the events of the cell division process. The time course for 

when 10mM of glucose is initially applied exhibits a similar trend but settles 

to a stable cycle with very slightly higher values of between 0.0036M to 
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0.0043M. This suggests that a higher initial concentration of glucose will 

slightly increase the overall concentration of non-essential amino acids. 

 Other time course plots were produced for the model species found 

towards the end of the metabolic pathway, such as pyruvate, lactate, PEP and 

P2G, before incorporation into cell mass. These plots are shown in Figures 

3.5 to 3.8. 

 

 
 

Figure 3.5. Time course plot for pyruvate when the initial glucose 

concentration is set to 10mM. 

 

 
 

Figure 3.6. Time course plot for lactate when the initial glucose 

concentration is set to 10mM. 
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Figure 3.7. Time course plot for PEP when the initial glucose concentration 

is set to 10mM. 

 

 
 

Figure 3.8. Time course plot for P2G when the initial glucose concentration 

is set to 10mM. 

 

 

Figures 3.5 to 3.8 all show the model species of interest initially increasing 

before oscillating between two certain concentrations, although it appears 

that as a backtrack is made through the glycolysis pathway, the amplitude of 

oscillations becomes smaller in size. For instance, P2G comes before PEP in 
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the metabolic pathway and the eventual amplitude of the species 

concentration oscillations is higher for PEP than for P2G. 

 The parameter scan function was performed in COPASI on the 

maximal metabolic rate constant involved in the reaction step describing the 

conversion from Glucose to G6P in response to different initial 

concentrations of glucose. The resulting plot obtained from the parameter 

scan is shown in Figure 3.9. 

 

 
 

Figure 3.9. Maximal metabolic rate constant for reaction 33 vs. Glucose 

concentration 

 

 

As displayed in Figure 3.9, the value of the maximal metabolic rate constant 

for reaction 33 increases to a steady state asymptotically as the concentration 

of glucose is increased. This type of plateauing behaviour is to be expected if 

equation (3.2) is viewed from an analytical perspective. As the concentration 

of glucose becomes significantly larger than KMGLU, the ratio between the 

glucose concentration, and the sum of KMGLU and glucose concentration 

becomes 1 to give a new rate law expression of V33 = K33. 
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A plot of the first cell cycle period taken after 100 hours of division 

time for normal cells is shown for different concentrations of glucose in 

Figure 3.10. 

 

 
 

Figure 3.10. Cell Cycle Period (after 100 hours) as a function of Glucose 

concentration for normal cells. 

 

 

 

Figure 3.10 shows that as the concentration of glucose increases, the 

time taken to complete one cell cycle gradually decreases asymptotically to 

16.5 hours. This suggests that as the concentration of glucose becomes larger, 

the cells begin to divide at a slightly faster rate i.e. display shorter cell cycle 

period times up to a certain threshold of glucose concentration. 

At present, a novel mathematical model that incorporates aspects of 

both the mammalian cell cycle and metabolic pathway has been developed 

here. Time course simulation results demonstrate the model is able to respond 

to different concentrations of glucose in a way that is compatible with real-

life observations (Higuchi et al., 1997). 
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Chapter 

FOUR 

 

A MODEL OF CANCER GROWTH AND 

DIVISION 

 

 

4.1 Mammalian Cell Cycle And Metabolism Model For 

Cancer Cells 

 

This chapter will discuss how gene expression data was utilised to 

create a version of the mammalian cell cycle and metabolism model, as 

described in chapter 3, but now focusing on cancer cells. 

 

Gaglio et al. Discuss The Upregulation Of Cancer Gene Expression: 

Gaglio et al. carried out transcriptional profiling experiments to 

analyse metabolic alterations that are dependent on the oncogene K-Ras in 

order to gain insights into how cancer cell metabolism is regulated (Gaglio et 

al., 2011). The flux of 
13

C-labelled glucose and glutamine was measured for 

downstream metabolites in normal and cancer cells obtained from the same 
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cell lines. The generated microarray transcription profiles for the normal and 

cancer cells were then compared with each other.  

Gaglio et al. found that several genes associated with glycolysis, 

glutamine metabolism and nucleotide biosynthesis upon transformation with 

K-Ras oncogenes demonstrated elevated expression levels compared to the 

case for normal cells i.e. cancer cells have demonstrated higher gene 

expression levels compared to normal cells. 

 

 Microarray Data Collection: 

 

The collection of microarray data by Gaglio et al. based on human 

raw expression data for U133A arrays was extracted from the publicly 

accessible biological databases, GEO (http://www.ncbi.nlm.nih.gov/geo) and 

CellMiner (http://discover.nci.nih.gov/cellminer/home.do).  

The Gene Expression Omnibus (GEO) is a database containing 

information related to functional genomics. A tool for queries and browsing 

is available to enable researchers to find and download specific gene 

expression profiles (Barrett et al., 2011; Edgar et al., 2002). 

CellMiner is a online application created by the Genomics and 

Bioinformatics Group that allows researchers to obtain and analyse molecular 

and pharmacological datasets for NC1-60 lines, which consist of a panel of 

60 diverse human cancer cell lines that have been heavily utilised by the 

Developmental Therapeutics Program of the U.S. National Cancer Institute 
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since the 1990s to screen chemical compounds (Liu et al., 2010; Reinhold et 

al., 2012; Shankavarum et al., 2009). The web application includes genomic 

data and drug data query tools and allows cell line metadata to be 

downloaded as well. 

Gaglio et al. obtained their transcription profiles data of the human 

normal breast tissue from GEO, based on G2M44683 tissue, and breast 

cancer cell line MDA-MB-231 from CellMiner. The transcriptional data 

profiles for the normal and cancer cells, encoded in Affymetrix
TM

 CEL files, 

were imported into the GeneSpring software platform (Agilent Technologies 

Inc.), where they were then normalised and summarised as probe-level 

measurements using the robust multi-array average (RMA) method (Gaglio 

et al., 2004). The RMA methodology involves taking microarray data and 

subjecting the raw intensity values contained within them to background 

corrections, log2 transformations and then quantile normalisation. The 

normalised data is then fitted against a linear model to generate an expression 

measure for each probe set on each array (Bolstad et al., 2003; Irizarry et al., 

2003). 

 

 Gene Expression Ratios: 

  

It is proposed for this research project that this upregulation effect 

found in cancer gene expression may be modelled by identifying the ratio 

between the cancer and normal gene expression levels. For instance, if the 
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maximum metabolic rate constant found in the mammalian cell cycle and 

metabolism model is originally 1 and the level of gene expression is detected 

to be twice as high in cancer cells, then that particular rate constant can be 

given the value of 2 in the new model for the mammalian cell cycle and 

metabolism model for cancer cells. The main advantage of calculating the 

ratio value between the cancer and normal gene expression levels is that it is 

dimension-free. This allows for different gene expression datasets to be 

analysed but still share a standard measure for exactly how much the gene 

expression level has been upregulated from normal to cancer cells. 

The gene expression ratios were calculated for genes involved in the 

pathways of glycolysis and non-essential amino acids. The information 

provided by the ratios were then entered into the cell cycle and metabolism 

model for normal cells by replacing the relevant parameter values with the 

multiple of the ratio and the original parameter value to form a version of the 

model for cancer cells. 

 

4.2 Model Implementation 

 

 

During this project, gene expression data recorded in the paper by 

Gaglio et al. was found to be readily available for the glycolysis pathway. 

The genes encoding enzymes that play a role in the model reactions involved 

with the glycolysis pathway and their corresponding expression intensities 

for both normal breast tissue (Normal) and MDA-MB-231 cancer cells 

(Cancer) were recorded as shown in Table 4.1.  
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Table 4.1. Table showing the genes involved in the glycolysis pathway and 

their corresponding gene expression intensity values and expression ratio 

values given by Cancer (C) divided by Normal (N). 

 

 

 

 

 

 

 

 In Table 4.1, the ratio between the value for Cancer and Normal is 

first calculated for each individual gene expressing an enzyme of the 

Normal 

Breast (N)

MDA-MB-

231 (C)

hexokinase 1 HK1 0.78 1.20 1.53

hexokinase 2 HK2 0.76 0.95 1.24

glucose phosphate 

isomerase 1 (data 

obtained from Mouse 

cell line as missing 

from Human Dataset)

Gpi1 0.77 1.42 1.85 1.85

phosphofructokinase, 

liver
PFKL 0.96 1.00 1.03

phosphofructokinase, 

muscle
PFKM 0.63 0.62 0.99

phosphofructokinase, 

platelet
PFKP 0.16 1.29 8.21

aldolase A, fructose-

bisphosphate
ALDOA 0.42 0.69 1.66 1.66

triosephosphate 

isomerase 1
TPI1 0.20 0.76 3.84 3.84

glyceraldehyde-3-

phosphate 

dehydrogenase

Gadph 0.31 0.86 2.79 2.79

phosphoglycerate 

kinase 1
PGK1 0.19 1.35 7.02 7.02

2,3-

bisphosphoglycerate 

mutase

BPGM 0.87 1.57 1.81 1.81

enolase 1, (alpha) ENO1 0.23 1.31 5.58

enolase 2 (gamma, 

neuronal)
ENO2 0.29 1.74 6.02

enolase 3 (beta, 

muscle)
ENO3 0.68 0.99 1.44

pyruvate kinase, muscle PKM2 0.11 1.00 9.26 9.26

lactate dehydrogenase 

A
LDHA 0.25 1.32 5.18

lactate dehydrogenase 

B
LDHB 0.30 0.68 2.23

1.39

3.41

4.35

3.71

Gene Title
Gene 

Symbol
C/N

C/N Mean 

Value
Expression Intensity
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glycolysis pathway. In the event where there is more than one possible gene 

involved for each reaction step modelled in the pathway for glycolysis, the 

mean value of the expression ratios is also calculated. The arithmetic mean is 

taken here for an unbiased approximation of the ratios involved. For 

example, the reaction step describing the conversion from glucose to G6P 

involves the genes, hexokinase 1 and hexokinase 2, with corresponding 

expression ratios of 1.53 and 1.24 respectively. The mean value of these two 

ratios is therefore 1.39 and this is the value that will determine the parameter 

value entered into the mammalian cell cycle and metabolism for cancer cells. 

Gene expression data for the non-essential amino acids pathway was 

found to be lacking from the paper by Gaglio et al. and its supplementary 

information tables. Therefore, data about the genes involved in expressing the 

necessary enzymes required for synthesising non-essential amino acids had to 

be extracted through an alternative method. 

The first step comprises of accessing the KEGG database (Kanehisa 

and Goto, 2000; Kanehisa et al., 2012) to identify all the genes involved in 

expressing the enzymes that catalyse the reactions of the non-essential amino 

acids pathways. 

The names of these particular genes were then checked against 

GeneAnnot (http://genecards.weizmann.ac.il/geneannot/index.shtml), which 

is a public database containing annotations of microarray probe-sets from 

human HG-U133. If these genes were found to be exclusively in the Human 

Genome U133A microarrays, then their probe-set IDs were recorded.  

CEL files containing gene expression intensity values for human 

normal breast tissue (NCBI GEO accession GSM44683) and human breast 
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cancer cell line MDA-MB-231 (CellMiner accession 13409hg133a21) were 

downloaded from the online databases, GEO and CellMiner respectively. 

The next step involved loading BioConductor software in a session of 

the statistical programming language R (which can be downloaded from 

http://www.r-project.org). Bioconductor (www.bioconductor.org) is an open 

source and open development software project that is based on R and enables 

high-throughput genomic data to be analysed by the user (Gentleman et al., 

2004). In a session of R, the appropriate BioConductor software was used to 

extract the robust multi-array (or multichip) average (RMA) of the gene 

expression intensity values from the CEL files. 

The cancer to normal gene expression ratios related to non-essential 

amino acids could then be calculated. The mean expression ratio values for 

the non-essential amino acids, originally synthesised from pyrvuate and P3G 

respectively, were used to update the relevant parameters in the model by 

multiplying the ratio value with the original parameter value. This results in a 

new version of the mammalian cell cycle and metabolism model for cancer 

cells. The methodology involved in this process is summarised in Figure 4.1. 

A schematic diagram displaying the mean values of the cancer to normal 

gene expression level ratios involved in the model reactions related to the 

glycolysis and non-essential amino acid pathways is shown in Figure 4.2. 

 

 

 



92 
 

 

 



93 
 

 

Figure 4.1. Methodology for creating the cancer cell cycle and metabolism 

model based on gene expression data. 

 

 

 
 

 

Figure 4.2. Schematic diagram showing the mean values of the cancer to 

normal gene expression level ratios (highlighted in red) involved in the 

model reactions (reaction number in black) found in the glycolysis and non-

essential amino acid pathways. 

 

Gene expression data involved with the non-essential amino acids are 

given in Table C.1, which can be found in Appendix C. The parameter values 

for the cancer version of the mammalian cell cycle and metabolism can also 

be found in Appendix C. 
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Sensitivity Analysis: 

 

The generalised sensitivity values of a mathematical model can be 

calculated using COPASI, which uses finite differences to perform numerical 

differentiation. The differentiation is carried out based on a list of functions 

with respect to one or two lists of variables specified by the modeler, usually 

leading to the generation of a two-dimensional matrix. The result becomes a 

three-dimensional array of second derivatives when all the first derivatives 

are differentiated again with respect to the all the variables provided in an 

additional list of variables for second derivatives. COPASI allows the option 

of viewing both unscaled and scaled result matrices for the sensitivities 

obtained. The scaled values are obtained from the unscaled values by scaling 

them with the relevant steady state concentrations. 

COPASI offers two options for calculating sensitivity values. 

● Delta Factor: This value instructs COPASI on what it should set the delta 

value to be for the finite difference numerical differentiation calculations. 

The delta is obtained by multiplying the value of the delta factor with the 

current absolute value of the variable of interest. The default value for the 

delta factor is set to 1*10
-6

. 

● Delta Minimum: This value is set such that if the resulting value of the 

delta calculated is smaller than the value of delta minimum, then the delta 

minimum value is used instead of the delta value. The default value for the 

delta factor is set to 1*10
-12

. 
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The default values for the two options of sensitivity analysis in COPASI were 

used for the purposes of analysing the mammalian cell cycle and metabolism 

model. 

 

 

4.3 Results And Conclusions 

 

 Sensitivity analysis was first performed in COPASI on the maximum 

metabolic rate constants with regards to the cell cycle period (after the cells 

have been allowed to grow and divide for at least 100 hours) for normal cells. 

The scaled values that were generated were recorded. This process was then 

repeated for the case where the cancer version of the mammalian cell cycle 

and metabolism model is analysed in order to allow comparisons between the 

normal and cancer cells to be deduced. The results of the sensitivity analysis 

are shown in Table 4.2. 
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Table 4.2. A comparison of scaled sensitivity values generated from 

performing sensitivity analysis on the metabolic rate constants with regards 

to the cell cycle period for normal and cancer cells (including the percentage 

change from normal to cancer values) 
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In Table 4.2, a sensitivity value highlighted in blue denotes a 

posititive sensitivity value. This implies that if the corresponding parameter 

value is increased, the cell cycle period will also increase accordingly. 

Conversely, a value highlighted in red means that it is a negative sensitivity 

value and should the corresponding parameter increase in value, the time 

taken to complete a full cycle of division will decrease. 

Theoretically, the larger the magnitude of the sensitivity value is, the 

greater the influence the corresponding parameter value should hold over the 

cycle period when a perturbation is applied to that specific parameter. 

As shown in Table 4.2, if you take the absolute value of K33, it then 

demonstrates the largest sensitivity value in the case for cancer cells. This 

particular parameter represents the maximum metabolic rate constant 

involved in the conversion of glucose to G6P. If the original sensitivity value 

of K33 is taken, then it is observed to be a negative value in both the 

categories for normal and cancer cells. This suggests that if this parameter 

value is increased in value, the cell cycle period should decrease in 

magnitude. A consequence of this result is that this parameter and its 

associated reaction step may make for a potentially effective drug target since 

an aim of the drug compound would be to halt or slow down the cancerous 

cells from dividing as quickly as they are presently doing so. 

Table 4.2 also shows that K78 exhibits the greatest percentage change 

from normal to cancer sensitivity values. This specific parameter describes 

the maximum metabolic rate constant involved in the reactions that sees the 
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non-essential amino acids incorporated in the cell mass. Again, this may be a 

potential drug target site for at least restoring the period of cell division for 

cancer cells to that found in normal cells. 

The results of the sensitivity analysis shown in Table 4.2 can be used 

to guide the choice of drug combinations in cancer therapy as discussed in 

chapter 5. 

The time course of cell mass for both normal and cancer cells were 

simulated in COPASI and a single plot comparing the two time courses are 

shown in Figure 4.3. 

 

Figure 4.3. Comparison of cell mass time courses for normal and cancer cells 

 

The time courses displayed in Figure 4.3 illustrates the fact that time taken 

for a normal cell to complete one full division cycle is greater than that of the 

cancer cell. In other words, the cancer cells are dividing at a faster rate than 
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normal cells. This reduction in cycle period time for cancer cells is due to a 

faster accumulation of biomass and accelerated level of glucose metabolism. 

 The cycle periods for different concentrations of glucose were 

computed in COPASI, using the parameter scan function, for both normal 

and cancer cells. A comparison between the two cells types are is shown in 

Figure 4.4. 

 

 

Figure 4.4. Comparison of cycle period vs. glucose concentration for normal 

and cancer cells. 

 

 Figure 4.4 shows that as the concentration of glucose is increased, the 

cycle period behaviour for both normal and cancer cells demonstrate a 

similar trend by showing the period decreasing gradually until it reaches an 

asymptotic state. This means that the cells will divide at a faster rate when 

the glucose concentration levels are higher, but only up to a certain threshold 

concentration of glucose. As implied in Figure 4.4, the cycle period for 

normal cells is always longer than for the cancer cell situation. In this 
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simulation, the cycle periods for normal and cancer cells settle to around 

16.45 hours and 15.55 hours respectively in response to increasing 

concentrations of glucose. 
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Chapter 

FIVE 

 

DRUG COMBINATION EFFICACY IN 

CANCER THERAPY 

 

 

5.1 Introduction 

 

During the development of a drug compound to treat cancer cells, 

pharmacologists should be asking themselves certain questions as follows. 

 ● Does the drug have high efficacy? 

● Is the route of administration of the drug compound as non-invasive as 

possible to cancer patients? 

● Does the drug show low toxicity and incur a minimal amount of side-

effects? 

● How specific is the drug to treating a particular type of cancer? 

● Can the drug compound be manufactured at a reasonable price? 
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For a long time in the history of drug development, drug testing tried 

to rely on the ability of a cytotoxic compound to kill or slow the progression 

of tumour cells more effectively than the normal cells. This usually results in 

significant side-effects for cancer patients who take the drug, leading to the 

mindset that sometimes the cure may be far more detrimental than the actual 

disease itself. 

 Recently, the precision and effectiveness of novel drugs has been 

improved through the use of targeted monotherapies (Zahorowska et al., 

2012). These drugs work by focusing on antagonising, blocking, inhibiting or 

activating a single endogenous protein or enzyme, while attempting to exhibit 

minimal side-effects. However, as mentioned cancer is a complex disease 

that is driven by multiple genomic events of which the network dynamics 

involved are highly non-linear, and often targeted monotherapies may not be 

offering a full and realistic picture of what is actually happening with the 

network dynamics.  

The pharmaceutical industry has now recognised the importance of 

pursuing a combinatorial approach to molecular targets in order to identify 

potential target combinations for testing as well as prioritising combinations 

of existing and experimental therapeutics. For instance, studies have 

demonstrated the benefits of combination chemotherapy over monotherapy in 

the first-line treatment of metastatic colorectal cancer (Arnold, 2008).  

Another example is the proven effectiveness of pretreating pancreatic 

cells with apigenin in order to sensitise the cancer cells to gemcitabine-

induced killing (Lee et al., 2008).  



103 
 

Systems biology can be utilised to explore combination therapy by 

coalescing mathematical and biological techniques to discover emergent 

properties of the complex system involved behind cancer. In particular, 

mathematical models may help in determining optimum drug regimes for 

inducing maximum toxicity in cancer cells while minimising the damage 

done to normal cells. 

 

5.2 Methods 

 

In order to explore this combinatorial approach to cancer therapy, the 

model developed for the cell growth and division of cancer cells is subjected 

to optimisation algorithms in COPASI to search for combinations of 

maximum metabolic rate parameters that generate the highest cell cycle 

periods for the defined model. Here, the values of the parameters are used to 

represent the effect of drugs. Lower value of maximal rates mean that a drug 

should be used to inhibit that particular enzyme. 

Many algorithms have been included in COPASI for minimising or 

maximising an objective function. Here, the objective of this study is to 

increase the time taken to complete one division cycle. The maximum 

objective function is desired in this situation so that the period time is as high 

as possible. 

Examples of optimisation algorithms found in COPASI are shown in 

Table 5.1 and whether they are able to locate the local or global maxima in 

the system being investigated. 
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Table 5.1. Examples of algorithms implemented in COPASI to perform 

optimisation 

 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

The first of these local optimisation algorithms shown in Table 5.1 is 

the Gauss-Newton algorithm, which can be used to minimise a sum of 

squared function values through the process of iteration. The main advantage 

of this method is that it does not require second derivatives that may 

sometimes prove a challenge to compute.  

The Steepest Descent method is another method for finding a local 

minimum (Fogel et al., 1992). It does this by following the direction of the 

steepest descent on the hyper-surface of the objective function. The direction 

taken is defined by the negative of the gradient of the objective function. 

The Nelder-Mead method (Nelder and Mead, 1965), also referred to 

as the downhill simplex method, begins by forming an initial simplex, which 

is a polytope of N+1 vertices in N-dimensions, from N+1 test points. The 

function value is then evaluated at the test points and the worst of these test 

 Local  Global 
 

Gauss-Newton 

 

Steepest Descent 

 

Nelder-Mead 

 

Hooke-Jeeves 

 

Levenberg-Marquardt 

 

 

Evolutionary Algorithm 

 

Genetic Algorithm 

 

Simulated Annealing 

 

Particle Swarm 
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points are replaced by a point determined by reflecting the worst point 

through the centroid of the remaining N points. If this new point is better than 

the best current point, the algorithm will try to stretch out exponentially along 

this line. If not, then the algorithm will shrink the polytope towards the best 

point. 

The Levenberg-Marquardt algorithm is also a gradient descent 

method for finding a local optimum (Levenberg, 1944; Marquardt, 1963). It 

is able to effectively switch between the method of steepest descent to the 

Newton optimisation method. In addition, the second derivatives do not 

require calculation as they can be estimated from the gradient of the 

residuals. 

A method for ascertaining a global optimum is the Evolutionary 

Algorithm, which mimics the process of evolution (Fogel et al., 1992). It 

consists of individuals, each representing a potential solution of the 

optimisation being performed, which reproduce and compete. At the end of 

each generation, the algorithm produces double the number of individuals. 

An individual is allocated wins if its competitors have a worse solution than 

itself. The individuals are ranked according to their number of wins, and the 

population size is reduced to the original number of individuals by removing 

those that have the worst solutions.  

The genetic algorithm is similar to the evolutionary algorithm except 

each individual is represented as a gene (Bäck and Schwefel, 1997). After 

each generation of the algorithm, an individual is paired up with another at 

random. Two new individuals are then produced from a combination of the 
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genomes of their parents. The population size is reduced to the original 

number by eliminating the individuals that have performed the worst in 

accordance with the number of wins they have. 

One other method for finding a global optimum is Simulated 

Annealing (Kirkpatrick et al., 1983). It mimics the analogy of metals being 

slowly cooled to make them reach a state of low energy where they are very 

strong. The objective function is considered a measure of the energy of the 

system. Simulated annealing picks a random variable and value during each 

step. If the assignment of that particular value to the variable does not 

increase the number of conflicts, then that assignment is accepted. One 

benefit of this algorithm is that it is guaranteed to converge for an infinite 

number of iterations. However, a drawback of this is that the algorithm could 

potentially run for a very long time and be computationally intensive. 

The choice of optimisation algorithm would depend on its ability to 

maximise the objective function and its speed of computation. First of all, in 

order to determine exactly which optimisation algorithms in COPASI are the 

most effective for determining the maximum time period, the collection of all 

the metabolic rate constants involved in the cancer model of cell growth and 

division underwent different optimisation techniques. A plot comparing the 

best cycle period values obtained for the various COPASI optimisation 

algorithms is shown in Figure 5.1.  
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Figure 5.1. Comparison of the best value obtained for the cycle period when 

all the maximum metabolic rate constants of the cancer model are subjected 

to different optimisation algorithms in COPASI 

 

Figure 5.1 demonstrates that the Hooke and Jeeves, and particle swarm 

algorithms were the most effective at generating the highest cycle periods, 

whereas other algorthims such as Nelder-Mead had not performed very well 

with regards to model optimisation. 

 Hooke and Jeeves, and particle swarm were therefore chosen as the 

optimisation algorithms to be used for computing the maximum cycle period 

value for different combinations of metabolic rate constants to account for 

one local optimisation method and one global optimisation method. 
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Hooke And Jeeves: 

 

The algorithm developed by Hooke and Jeeves uses a direct search 

method of coordinate patterns (Hooke and Jeeves, 1961). The Hooke and 

Jeeves method involves two major stages called the exploratory search, also 

referred to as a coordinate search, and the pattern search. The exploratory 

search phase seeks out an improvement in the directions parallel to the 

coordinates axes, while the pattern search aims to accelerate the search 

process by moving to a new and improved position in the direction of the 

point obtained by the exploratory search. Hooke and Jeeves is able to search 

for the minimum or maximum of a non-linear function without needing 

information about the derivatives of the function. 

The following options are included for Hooke and Jeeves in COPASI. 

● Iteration Limit: This value must be an integer that is positive. It defines the 

maximum number of iterations the method should go through. The default 

value is set to 50. 

● Tolerance: This value must be positive and defines the level of tolerance 

the solution obtained should fall within. The default value is set to 10
-5

. 

● Rho: This entry is a positive value between 0 and 1. It defines exactly how 

much the step size should be decreased between iterations. The default value 

is set to 0.2. 
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Particle Swarm: 

 

The particle swarm optimisation algorithm was developed by 

Eberhart and Kennedy (Eberhart and Kennedy, 2005) and originated as a real 

life example of a simplified social system. It was initially intended to 

graphically simulate the choreography of a flock of birds, but it was found 

that this method could also be used as a solver. Particle swarm works by first 

initializing the system with a population of random solutions and searches for 

optima by updating generations without any crossovers. The particles fly 

through the problem space in a random direction and velocity, but also biased 

by the direction of other near-by particles. This provides a population-based 

search procedure for the optimisation process. 

The following options are included for Particle Swarm in COPASI. 

● Iteration Limit: The default value is set to 2000. 

● Swarm Size: This value should be a positive integer that determines the 

number of particles in the swarm. The default value is set to 500. 

● Standard Deviation: This entry provides another criteria for terminating the 

optimisation process. When the standard deviation of the values of the 

objective function for each particle becomes less than the specified value, the 

algorithm is terminated. The default value is 10
-6

. 
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During the cycle period optimisation process, the default option 

values were used for both Hooke and Jeeves, and particle swarm. Some of 

the default values such as swarm size may be decreased to enable faster 

computations, but the higher these certain values are, the better the 

representation the optimisation result has over the actual model dynamics. 

 

Condor High-Throughput Computing Platform: 

 

 For both Hooke and Jeeves, and particle swarm, the start value of the 

metabolic control rate constants was randomised to fall between the range of 

{[-50%,+50%]*Original Parameter Value} for a number of optimisation 

runs, before the best value obtained for the cycle period was recorded. This 

was to observe whether changing the start values of the parameters had any 

effect over the eventual highest cycle period value obtained. 

 20 optimisation runs using both algorithms were performed for every 

set of metabolic control rate constant combinations being investigated. The 

highest value of the cycle period obtained out of the 20 optimisation runs is 

defined as the best value for the cell period.  

In order to ease computational simulation speeds, especially as 

particle swarm can sometimes take up to days to complete a certain 

optimisation task, the Condor high-throughput computing platform was 

utilised (http://research.cs.wisc.edu/condor/). 

Condor is an open source high-throughput computing software 

framework that enables users to submit computationally intensive jobs, which 
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are then delegated to and carried out by simultaneous processors. The main 

advantage of Condor is its efficiency in employing the use of idle computers. 

This allows potentially wasted processing power to be harvested. As the 

number of machines linked to the Condor grid system grows, the greater the 

computational resources will become available to individual researchers. 

However, the use of Condor would require programming scripts, 

creating job specification files and altering COPASI files. All of these task 

are not hard, but would involve a tedious and time-consuming process of 

implementation. An alternative is the package Condor-COPASI (Kent et al., 

2012) which automates all of these tasks through a simple web user-interface. 

The Condor-COPASI package running in the Mendes research group 

accesses a large pool of circa 2500 CPUs in the Faculty of Engineering and 

Physical Sciences of the University of Manchester. This is the system that 

was used to run the simulations and optimizations described in this chapter. 

 

 5.3 Results And Discussion 

 

The types of optimisation performed on certain sets of metabolic rate 

constants are shown in Table 5.2. 
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Table 5.2. Details about the type of optimisation performed on 

different combinations of metabolic rate constants and their corresponding 

best cycle period values obtained through Hooke and Jeeves, and particle 

swarm 

 

Type Of Optimisation Performed 

Cycle Period 
Best Value 
(Hooke and 

Jeeves) 

Cycle Period 
Best Value 

(Particle 
Swarm) 

The complete set of metabolic rate constants 62.3839 58.8396 

{KAA2, KF6P2, KG6P1, KPEP1, K33} 25.3868 25.3868 

Metabolic rate constants with the top 3 greatest 
(absolute value) sensitivities 

23.7425 23.7425 

K33 19.9447 19.9447 

Metabolic rate constants with the top 3 greatest 
sensitivity (absolute value) percentage change 

from the normal to cancer cell model 
sensitivities 

18.828 18.828 

{KAA1, KF6P1, KPYR2} 17.3064 17.3064 

Metabolic rate constants with a positive 
sensitvity value 

16.5742 16.5742 

Metabolic rate constants involved in PEP ↔ 
PYR and DPG ↔ P3G (which had the two 
highest cancer to normal gene expression 

ratios in the metabolic chain) 

16.0497 16.0497 

Metabolic rate constants involved in PEP ↔ 
PYR (which had the highest cancer to normal 
gene expression ratio in the metabolic chain) 

16.0474 16.0474 

 

  

 As shown in Table 5.2, nine different types of optimisation were 

performed on the metabolic rate constants. 

The first of these involve the complete set of metabolic rate constants 

from the model of cell growth and division. In this scenario, the best cycle 

period value out of 20 optimisation runs with randomised parameter start 

values obtained with the Hooke and Jeeves algorithm was 62.3839 hours. 

This is slightly higher than the value obtained by particle swarm, which is 
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58.8396 hours. It was also found that in general, the Hooke and Jeeves 

algorithm ran significantly faster than the particle swarm for this particular 

problem. In this case, particle swarm was still applied in order to offer a 

comparison of the capabilities between global and local optimisation 

methods.  

For 10mM of Glucose, cancer cells had a cycle period of 15.5924 

hours. It is not surprising then that the cycle period has dramatically 

increased so much from this particular value when the complete set of 

metabolic rate constants are optimised to bring about the high cycle period 

value. Biologically speaking for a metabolic network, if a combination of 

drugs are applied and their effects manage to extend to all areas of the 

network, then an intuitive result would be that the species involved will all be 

affected in some manner. Of course, a drug, or even drug combinations, 

capable of achieving such a feat is unrealistic and so, smaller combinations of 

the maximum metabolic rate constants were also investigated to see how 

targeting their corresponding reactions with drug compounds influences the 

cycle period of cancer cells.  

Sets of metabolic rate constants that were involved in the reactions 

possessing high cancer to normal gene expression ratios did not have much of 

an effect over the best cycle period value. For example, metabolic rate 

constants that are part of the reversible reactions between PEP and pyruvate, 

which had the highest gene expression ratio in the metabolic pathway being 

modelled,, exhibited a best period value of 16.0474 for the two optimisation 

algorithms. This value only slightly higher than the original cancer cycle 

period of 15.5924. 
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Results generated by the sensitivity analysis performed on the model 

of cell growth and division for normal and cancer cells, as discussed in 

chapter 4, were used as a guide for determining what types of metabolic 

control rate parameters sets could also potentially be investigated using with 

optimisation methods. For example, as shown in Table 5.2, optimisation with 

respect to cycle period were performed for the following scenarios related to 

the results of the sensitivity analysis. 

● Maximum metabolic rate constants for cancer cells with a positive 

sensitivity value (see parameters K57, K59, K63, K71 and K77 in Table 4.2): 

Here, the best cycle period value achieved by Hooke and Jeeves, and particle 

swarm was 16.5742 hours for both optimisation algorithms. Although the 

optimized period value is only slightly higher than the cycle period of 

15.5924 hours for cancer cells prior to model optimisation, it is important to 

note that for 10mM of Glucose, normal cells demonstrated a cycle period 

(hrs) of 16.4994.  This means that if the combination of reactions related to 

these particular metabolic rate constants were targeted by drug compounds, 

the cell division rate of present cancer cells can still be restored to the slower 

rate of division found in normal cells. The final parameters values for K57, 

K59 and K63 were pushed towards the lower boundary value imposed for the 

optimisation task. These three metabolic parameters are involved in the 

reactions describing the conversion from FDP to DHAP, FDP to GAP and 

GAP to DPG respectively. This would suggest that in order to maximise the 

cell cycle period as much as possible, the drug compounds targeting these 

three reactions should aim to lower those specific metabolic rate constants as 

much as possible. The final parameter values for K71 and K79 occurred at the 
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upper boundary limit and these were involved in the reactions describing the 

conversions from PEP to PYR and AA to PYR respectively. Therefore, the 

drugs targeting these two reactions would be aiming to increase those 

particular metabolic rate constants. 

● Metabolic rate constants with the top 3 greatest sensitivity (absolute value) 

percentage change from the normal to cancer cell model sensitivities (see 

parameters K56, K74 and K78 in Table 4.2): The best cycle period value 

obtained for both optimisation algorithms was 18.828. The final value for the 

parameter K56, which is involved in the reaction describing the conversion of 

FDP to F6P, occurred at the upper limit of the interval used during the 

optimisation task. Therefore, the drug compound targeting this particular 

reaction would be aiming to increase the metabolic rate as much as possible. 

The final values for the parameters K74 and K78, which are involved in the 

reactions describing the conversion from LAC to PYR and AA to MASS, 

were pushed towards the lower boundary value and hence, the drug 

compounds targeting these two reactions should aim to lower the metabolic 

rates. 

● Metabolic rate constants with the top 3 greatest (absolute value) 

sensitivities (see parameters K33, K64 and K78 in Table 4.2): The best cycle 

period value achieved by both optimisation algorithms now becomes the 

significantly higher value of 23.7425. The final values for the parameters K33 

and K78, which are involved in the reactions describing the conversion from 

Glucose to G6P and AA to MASS, occurred at the lower boundary value of 

the interval. Therefore, in order to maximise the cell cycle period, the drug 

compounds targeting these two reactions should aim to lower the metabolic 
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rates as much as possible. The final value for the parameter K64, which is 

involved in the reaction describing the conversion of DPG to GAP, occurred 

at the upper limit of the interval used during the optimisation task. Therefore, 

the drug compound targeting this specific reaction should aim to increase the 

metabolic rate. 

From these results, it appears that the major factor towards achieving 

as high a cycle period value as possible is not whether the optimised 

parameters have a positive sensitivity value (if the value of those particular 

parameters are increased, the cycle period should increase as well), but is 

dependent on those parameters that exhibit the largest magnitudes in 

sensitivity value. 

Another observation made from Table 5.2 was that when only the 

metabolic rate constant (K33) involved in the conversion from glucose to G6P 

was subjected to optimisation, it showed quite a high impact factor over the 

cell cycle period on its own with a corresponding best value of 19.9447. As 

postulated in chapter 4, this reinforces the idea that K33 would make an 

effective potential target for drug compounds. 
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Chapter 

SIX 

 

SUMMARY AND FUTURE DIRECTIONS 

 

 Summary: 

   

Understanding the changes made to events at a cellular level could aid 

in the prevention or treatment of diseases including cancer at the organismal 

level.  

Systems Biology looks at the specific interactions of components 

found in biological systems, which are composed of many different types of 

multifunctional elements, all interacting selectively and non-linearly with 

each other to form coherent system behaviour. This type of approach requires 

a combination of theoretical, computational and experimental work to be 

carried out in order to gain a comprehensive understanding of complex 

biological systems such as the networks involved in cell cycle and metabolic 

pathways.  

Mammalian cell cycle models have arisen from previous 

mathematical models based on the budding yeast cycle. This is due to the fact 
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that yeast and mammalian cells share fundamentally similar system 

properties such as the cyclin-dependent kinase regulatory systems. These 

similarties can be identified from molecular interaction maps that use a 

standardized set of notation to describe the interactions between various 

entities.  

Genome replication during S, or DNA synthesis stage of the cell 

cycle, and the halving of the cell mass to reflect the splitting of a parent cell 

into two identical daughter cells, are the two major events that must be 

included in the model of a cycle division cycle. The mathematical model 

should also reflect the fact it is compulsory for cell cycle events to be highly 

regulated in a temporal manner into to ensure successful cell growth and 

division. 

One limitation of current cell cycle models is that they rarely account 

for certain precursors of cell growth such as energy usage and the need for 

non-essential amino acids as fundamental building blocks of proteins, which 

are required themselves to drive the cell division process. 

At present, a mathematical model consisting of 36 ODEs that describe 

species found in both the mammalian cell cycle and metabolic pathways has 

been developed. This model is based upon a previous cycle model for 

mammalian cells by Conradie et al. (2010), which was described in chapter 

2. This model of cell growth and division was discussed in detail in chapter 3 

and includes species that play a vital role in glycolysis and the synthesis of 

non-essential amino acids. The model was designed in such a way as to allow 

it to respond to different concentrations of glucose in a reasonable depiction 
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of what is actually happening in real-life. Time course plots of the cell mass 

demonstrated that regardless of the initial concentration of glucose, the cell 

mass eventually settles into a stable cycle. 

A version of the cell growth and division model was also created for 

cancer cells by taking into account the fact that the expression levels of genes 

associated with metabolism are often upregulated for transformed cells 

compared to normal cells. The genes involved in expressing the enzymes that 

catalyse the reactions of glycolysis and non-essential amino acid pathways 

were identified and the ratio of gene expression levels between cancer and 

normal cells were calculated. These gene expression ratios were incorporated 

into the mammalian cell cycle and metabolism model by multiplying the ratio 

values with the relevant parameters to produce a cancer growth and division 

model. 

Sensitivity analysis was performed on the maximum metabolic rate 

constants for both versions of the cell growth and division model to 

determine which of the parameters had the greatest control over the time it 

takes to complete one full cell division cycle. The sign of the sensitivity 

values obtained determines whether a perturbation made to the parameter of 

interest will cause the cell cycle period to increase or decrease. It was shown 

that the rate constant involved in the reaction describing the conversion from 

glucose to G6P exhibited the highest magnitude out of all the other 

sensitivities. This makes that particular reaction, and the enzymes that 

catalyse it (hexokinase and glucokinase) potential drug targets. 
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Finally, different optimisation algorithms were used to mirror the 

effects of a combination of drug compounds by determining whether certain 

sets of metabolic rate constants and their optimised values affect the rate of 

cell division in cancer cells. The aim of single and combinations of drug 

compounds would be to increase the cell cycle period of cancer cells until it 

is at least equal to or greater than the cycle period for normal mammalian 

cells. It was discovered that the magnitude of the sensitivity value attached to 

a particular metabolic rate constant was highly important in determining 

whether drug combinations targeting their related pathway reactions showed 

a high level of impact on the cancer cell cycle period.  

 

 Future Directions For The Model: 

 

In order to provide a more complete and comprehensive cell cycle 

and metabolism model, the current set of ODEs could be extended to include 

the behaviour of the pathway involved in the oxidative phosphorylation 

process. Throughout this building process, it should be ensured that the cell 

mass continues to respond realistically to differences in the concentration of 

glucose. In addition, the creation and analysis of ODEs describing the effects 

of ATP and oxygen may offer deeper insights into the Warburg effect. By 

perturbing specific concentrations throughout the metabolic pathway, the 

observed effects can be used to ascertain which metabolites have the highest 

influence over cellular metabolism. The quantitative values of the species 

concentrations at different stages of the cell cycle could be quantitatively 
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measured and analysed to investigate the differences in the glycolytic rate 

between normal and cancer cells.  

Ultimately, the model could be used to investigate which metabolites 

or section of the metabolic pathway becomes disregulated during cancer cell 

metabolism. Detailed knowledge of the key differences of a metabolic 

pathway between normal proliferating cells and tumour cells may enable the 

development of chemical compounds with superior efficacy and efficiency 

that exploit the weaknesses of cancer cells without detrimentally affecting 

normal cells. 

Another potential extension that could be made to the ODEs 

describing the systems of the cell cycle and metabolic pathway is to introduce 

noise terms. Trajectories modelled by ODEs may sometimes not match up 

with what is happening in reality as large and complex regulatory networks 

often give rise to chaotic system behaviour. Therefore, by transforming the 

ODEs into stochastic differential equations (SDEs), an element of 

unpredictability could be factored in. 

One important aspect of combination therapy that could be 

investigated further, using the mammalian cell cycle and cancer model, is the 

dosing schedule for combinations of drug compounds.  

Administering a combination of drugs in a certain order and at a 

specific time can have a profound effect on the efficacy of the therapy being 

applied. This is illustrated by a recent piece of theoretical work carried out 

where a predictive mathematical model was used to explore the effects of 

administering a combination of SNS-314, an Aurora kinase inhibitor, and 

Docetaxel (Orrell and Fernandez, 2010). Orrell and Fernandez discovered 



122 
 

that the sequence of the drugs being given was very important as an 

administration of SNS-314 followed by Docetaxel was shown to be much 

more effective in reducing the size of the tumour being treated than 

administering the two drugs in the alternative order.  

The model of cell growth and division could be employed to predict 

the effects of scheduling multiple drug treatments on system properties such 

as the cell cycle period in particular; the simulation results should then be 

tested and verified by related experiments. 
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APPENDIX 

A 

 

MODELS OF THE CELL CYCLE – 

SUPPLEMENTARY INFORMATION 

 

Reaction Rate Laws: 

Table A.1. The reaction steps and their corresponding rate equations 

in the Conradie et al. mammalian cell cycle model. 

 

Reaction 

Number 
Rate Equations 

1           ( ) 

2           ( ) 

3          ( ) 

4            ( ) 

5           ( )      ( ) 

6           ( )      ( ) 

7           ( )      ( ) 

8           ( ) 

9             ( )      ( ) 

10              ( )    ( ) 

11            ( ) 
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12           ( ) 

13          ( ) 

14            ( ) 

15           ( ) 

16          ( ) 

17          ( ) 

18          ( ) 

19            ( ) 

20     
(            ( ))  (      ( ))
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       ( )

       ( )
 

22            ( ) 

23     
        ( )  (     ( ))

       ( )   
 

24     
       ( )     ( )

       ( )
 

25               ( ) 
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       ( )  (      ( )       ( ))

         ( )        
 

27     
         ( )

         ( )
 

28              ( ) 

29 
          ( )      (     ( )         ( )    

     ( )         ( )    ) 

30 
            ( )      (     ( )         ( )    

     ( )         ( )    ) 

31 
                 

  ( )       ( )         ( )

     ( )   ( )       ( )         ( )
 > 

0.8; 0, 1] 
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  (   ( )    ) 
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  (   ( )    ) 
) 

42       (    
   (    ( )   ) 

  (    ( )   ) 
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     ( )         ( )    ) 
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50       ( )       ( )      

51             ( )      

52           ( )  (         (    ( )      ( )) 
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Conradie et al. Model ODEs: 

CA’(t) = V6 – V10 – V12 – V18  

 

CD’(t) = V7 – V8 – V17 – V3 

 

CDc20’(t) = V26 – V27 – V28 

 

CDc20T’(t) = V35 – V25  

  

CDh1’(t) = V20 – V21 

 

CE’(t) = V5 – V11 – V13 – V16 

 

CYCA’(t) = V36 – V9 – V6 + V12 + V18  

 

CYCB’(t) = V42 – V19  

 

CYCD’(t) = V39 + V17 + V8 – V7 – V4 

 

CYCE’(t) = V38 – V14 – V5 + V11 + V16  

 

DRG’(t) = V41 – V2  

 

E2F’(t) = V29 + V45 + V47 – V46 – V48 

 

E2F_Rb’(t) = V51 + V48 – V52 – V29– V45  

 

ERG’(t) = V34 – V1  

 

GM’(t) = V31 – V32  

 

IEP’(t) = V23 – V24 

 

MASS’(t) = V33 

  

P27’(t) = V40 + V3 + V8 – V15 – V5 – V6 – V7 + V11 + V12 + V13 + V10 

 

p_E2F’(t) = V30 + V49 + V46 – V47 – V50 
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p_E2F_Rb’(t) = V52 + V50 – V51 – V30 – V49 

 

pp_Rb’(t) = V29 + V30 + V43 – V44  

 

PPX’(t) = V37 – V22 

 

Rb’(t) = V44 + V45 + V49 – V48 – V50 – V43  

 

 

Conradie et al. Model Definitions And Steady-State Relations: 
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Conradie et al. Model Parameters: 

k15 = 0.025  

k16 = 0.025  

J15 = 0.1 

k17a = 0.035 

k17 = 1. 

J17 = 0.3 

k18 = 1. 

K9 = 0.25  

K10 = 0.5  

k24 = 100.  

k24r = 1.  

K7a = 0. 

K7 = 0.06 

K8a = 0.01 

K8 = 0.2 

K25 = 100. 

K25R = 1. 

J8 = 0.1 

YE = 1. 

YB = 0.05 

K29 = 0.005 

K30 = 2. 

K1a = 0.01 

K1 = 0.06 

J1 = 0.1 

K2a = 0.005 

K2 = 2. 

K2aa = 0.1 

K5 = 2. 

K6a = 1. 

K6 = 10. 

HE = 0.5 

HB = 1. 

HA = 0.5 

LD = 3.3 

LE = 5. 

LB = 5. 

LA = 3. 

K20 = 1. 

K19a = 0. 

K19 = 2. 

K21 = 1. 

PP1T = 1. 

FE = 25. 
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FB = 2. 

K3a = 0.75 

K3 = 14. 

J3 = 0.01 

J4 = 0.01 

K4 = 4. 

GE = 0. 

GB = 1. 

GA = 0.3 

K33 = 0.005 

K34 = 0.005 

K31 = 0.07 

K32 = 0.18 

J31 = 0.01 

J32 = 0.01 

K11a = 0. 

K11 = 0.15 

K12 = 0.15 

K13 = 0.5 

K14 = 0.25 

J13 = 0.005 

J14 = 0.005 

K22 = 0.1 

K23a = 0.0005 

K23 = 0.1 

K26 = 1000. 

K26R = 20. 

K27 = 0.02 

K28 = 0.02 

μ = 0.0061 

 

 

 

Conradie et al. Model Initial Concentrations: 

 

 

CA(0) = 0.0356927 

 

CD(0) = 0.010976 

 

Cdc20(0) = 0.00220177 

 

Cdc20T(0) = 2.36733 

 

CDh1(0) = 0.000653278 

 

CE(0) = 0.000542587 

 

CYCA(0) = 1.4094 
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CYCB(0) = 2.72898 

 

CYCD(0) = 0.43929 

 

CYCE(0) = 0.0229112 

 

DRG(0) = 0.900533 

 

ERG(0) = 0.0121809 

 

GM(0) = 1.35565 

 

IEP(0) = 0.154655 

 

MASS(0) = 1.68776 

 

P27(0) = 0.00922806 

 

PPX(0) = 1 

 

pp-RB(0) = 9.97574 

 

E2F(0) = 0.989986 

 

p-E2F(0) = 3.98594 

 

Rb(0) = 0.000190871 

 

E2F-Rb(0) = 0.00478911 

 

p-E2F-Rb(0) = 0.0192822 
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APPENDIX 

B 

 

A MODEL OF GROWTH AND DIVISION – 

SUPPLEMENTARY INFORMATION 

 

Reaction Rate Laws: 

Table B.1. The kinetics involved in the mammalian cell cycle and 

metabolism model. 

 

Reaction 

Number 
Rate Equations 

1              ( ) 

2              ( ) 

3             ( ) 

4               ( ) 

5              ( )      ( ) 

6              ( )      ( ) 

7              ( )      ( ) 

8              ( ) 

9                ( )      ( ) 

10                 ( )    ( ) 

11               ( ) 
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13             ( ) 

14               ( ) 

15              ( ) 
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       ( )  (      ( )       ( ))

         ( )        
 

27        
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     ( )         ( )    ) 

30 
               ( )      (     ( )         ( )

        ( )         ( )    ) 

31 
                    

  ( )       ( )         ( )
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> 0.8; 0, 1] 
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70        
         ( )

         ( )
 

71        
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         ( )
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The Cell Cycle And Metabolism Model ODEs: 

 

 

AA’(t) = V76 + V79 – V77 – V78 

 

CA’(t) = V6 – V10 – V12 – V18  

 

CD’(t) = V7 – V8 – V17 – V3 

 

CDc20’(t) = V26 – V27 – V28 

 

CDc20T’(t) = V35 – V25   
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CDh1’(t) = V20 – V21 

 

CE’(t) = V5 – V11 – V13 – V16 

 

CYCA’(t) = V36 – V9 – V6 + V12 + V18  

 

CYCB’(t) = V42 – V19  

 

CYCD’(t) = V39 + V17 + V8 – V7 – V4 

 

CYCE’(t) = V38 – V14 – V5 + V11 + V16  

 

DHAP’(t) = V57 + V62 – V58 – V61  

 

DPG’(t) = V63 + V65 – V64 – V66 

 

DRG’(t) = V41 – V2  

 

E2F’(t) = V29 + V45 + V47 – V46 – V48 

 

E2F_Rb’(t) = V51 + V48 – V52 – V29 – V45  

 

ERG’(t) = V34 – V1  

 

F6P’(t) = V53 + V56 – V54 – V55 

 

FDP’(t) = V55 + V60 – V56 – V59 

 

G6P’(t) = V33 + V54 – V53 

 

GAP’(t) = V59 + V64 – V60 – V63 

 

GM’(t) = V31 – V32  

 

IEP’(t) = V23 – V24 

 

LACTATE’(t) = V73 – V74 – V75 

 

MASS’(t) = V78  

 

P27’(t) = V40 + V3 + V8 – V15 – V5 – V6 – V7 + V11 + V12 + V13 + V10 

 

P2G’(t) = V67 + V70 – V68 – V69  
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P3G’(t) = V65 + V68 – V66 – V67 – V79 

 

p_E2F’(t) = V30 + V49 + V46 – V47 – V50 

 

p_E2F_Rb’(t) = V52 + V50 – V51 – V30 – V49 

 

PEP’(t) = V69 + V72 – V70 – V71  

 

pp_Rb’(t) = V29 + V30 + V43 – V44  

 

PPX’(t) = V37 – V22 

 

PYRUVATE’(t) = V71 + V74 + V77 – V73 – V76 

 

Rb’(t) = V44 + V45 + V49 – V48 – V50 – V43  

 

 

 

The Cell Cycle And Metabolism Model Definitions And 

Steady-state Relations: 
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The Mammalian Cell Cycle And Metabolism Model 

Parameters: 

 

 

k15 = 0.025  

k16 = 0.025  

J15 = 0.1 

k17a = 0.035 

k17 = 1. 

J17 = 0.3 

k18 = 1. 

K9 = 0.25  

K10 = 0.5  

k24 = 100.  

k24r = 1.  

K7a = 0. 

K7 = 0.06 

K8a = 0.01 

K8 = 0.2 

K25 = 100. 

K25R = 1. 

J8 = 0.1 

YE = 1. 

YB = 0.05 

K29 = 0.005 

K30 = 2. 

K1a = 0.01 

K1 = 0.06 

J1 = 0.1 

K2a = 0.005 

K2 = 2. 

K2aa = 0.1 

K5 = 2. 

K6a = 1. 

K6 = 10. 

HE = 0.5 

HB = 1. 

HA = 0.5 

LD = 3.3 

LE = 5. 

LB = 5. 

LA = 3. 

K20 = 1. 

K19a = 0. 

K19 = 2. 

K21 = 1. 

PP1T = 1. 

FE = 25. 
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FB = 2. 

K3a = 0.75 

K3 = 14. 

J3 = 0.01 

J4 = 0.01 

K4 = 4. 

GE = 0. 

GB = 1. 

GA = 0.3 

K33 = 0.005 

K34 = 0.005 

K31 = 0.07 

K32 = 0.18 

J31 = 0.01 

J32 = 0.01 

K11a = 0. 

K11 = 0.15 

K12 = 0.15 

K13 = 0.5 

K14 = 0.25 

J13 = 0.005 

J14 = 0.005 

K22 = 0.1 

K23a = 0.0005 

K23 = 0.1 

K26 = 1000. 

K26R = 20. 

K27 = 0.02 

K28 = 0.02 

K33 = 0.0047 

KMGLU = 0.00012 

KPYR1 = 1. 

KAA1 = 1. 

KAA2 = 1. 

KPYR2 = 1. 

KPYR3 = 1. 

KG6P1 = 1. 

KF6P1 = 1. 

KF6P2 = 1. 

KFDP1 = 1. 

KDHAP1 = 1. 

KDHAP2 = 1 

KFDP2 = 1. 

KGAP1 = 1. 

KGAP2  = 1. 

KGAP3 = 1. 

KDPG1 = 1. 

KDPG2 = 1. 

KP3G1 = 1. 

KP3G2 = 1. 
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KP2G1 = 1. 

KP2G2 = 1. 

KPEP1 = 1. 

KPEP2 = 1. 

KLAC1 = 1. 

KFDP3 = 1. 

KLAC2 = 1. 

KP3G3 = 1. 

KMG6P = 1. 

KMF6P = 1. 

KMFDP = 1. 

KMDHAP = 1. 

KMGAP = 1. 

KMDPG = 1. 

KMP3G = 1. 

KMP2G = 1. 

KMPEP = 1. 

KMPYR = 1. 

KMLAC = 1. 

KMAA = 1. 

 

 

 

Initial Concentrations For The Mammalian Cell Cycle And 

Metabolism Model: 

 

 

AA(0) = 0.001 

 

CA(0) = 0.0356927 

 

CD(0) = 0.010976 

 

Cdc20(0) = 0.00220177 

 

Cdc20T(0) = 2.36733 

 

CDh1(0) = 0.000653278 

 

CE(0) = 0.000542587 

 

CYCA(0) = 1.4094 

 

CYCB(0) = 2.72898 

 

CYCD(0) = 0.43929 

 

CYCE(0) = 0.0229112 
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DHAP(0) = 0.001 

 

DPG(0) = 0.001 

 

DRG(0) = 0.900533 

 

ERG(0) = 0.0121809 

 

F6P(0) = 0.001 

 

FDP(0) = 0.001 

 

G6P(0) = 0.001 

 

GAP(0) = 0.001 

 

GLU(0) = 0.001 

 

GM(0) = 1.35565 

 

IEP(0) = 0.154655 

 

LAC(0) = 0.001 

 

MASS(0) = 1.687759919 

 

P27(0) = 0.00922806 

 

P2G(0) = 0.001 

 

P3G(0) = 0.001 

 

PEP(0) = 0.001 

 

PPX(0) = 1 

 

pp-RB(0) = 9.97574 

 

E2F(0) = 0.989986 

 

p-E2F(0) = 3.98594 

 

PYR(0) = 0.001 

 

Rb(0) = 0.000190871 

 

E2F-Rb(0) = 0.00478911 

 

p-E2F-Rb(0) = 0.0192822 
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APPENDIX 

C 

 

A CANCER MODEL OF CELL GROWTH AND 

DIVISION – SUPPLEMENTARY INFORMATION 

 

Gene Expression Data For Non-Essential Amino Acids: 

 

Table C.1. Gene expression data for the non-essential amino acids (non-

essential amino acids originally synthesised from pyrvuate highlighted in 

blue, non-essential amino acids originally synthesised from P3G highlighted 

in red). 

 

Reaction Probe Set Gene Title 

Normal 

Breast 
(N) 

MDA-

MB-231 
(C) 

C/N 

Mean 
C/N 

Value Expression 
Intensity (RMA 

Values) 

Pyruvate ↔ Acetyl-CoA 212568_s_at 
dihydrolipoamide S-

acetyltransferase 
7.03334 8.99998 1.280 

1.024 

 209095_at 
dihydrolipoamide 

dehydrogenase 
8.66898 10.18015 1.174 

 200980_s_at 
pyruvate dehydrogenase 

(lipoamide) alpha 1 
9.3186 10.07881 1.082 

 214518_at 
pyruvate dehydrogenase 

(lipoamide) alpha 2 
6.75406 6.63949 0.983 

 211023_at 
pyruvate dehydrogenase 

(lipoamide) beta 
9.33612 10.35314 1.109 

Pyruvate ↔ 
Oxaloacetate 

204476_s_at pyruvate carboxylase 8.71777 7.83095 0.898 

Acetyl-CoA ↔ Citrate 208660_at  citrate synthase 9.62448 10.12605 1.052 

http://genecards.weizmann.ac.il/cgi-bin/geneannot/GA_search.pl?keyword_type=probe_set_id&target=genecards&keyword=209095_at&array=HG-U133
https://www.affymetrix.com/LinkServlet?array=U133&probeset=200980_s_at
https://www.affymetrix.com/LinkServlet?array=U133&probeset=214518_at
https://www.affymetrix.com/LinkServlet?array=U133&probeset=204476_s_at
https://www.affymetrix.com/LinkServlet?array=U133&probeset=208660_at
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Oxaloacetate ↔ Citrate 210337_s_at ATP citrate lyase 8.67534 10.02305 1.155 

Citrate ↔ 2-Oxoglutarate 201193_at 
isocitrate dehydrogenase 

1 (NADP+), soluble 
9.59213 9.11944 0.951 

 210046_s_at 
isocitrate dehydrogenase 
2 (NADP+), mitochondrial 

9.24751 7.45937 0.807 

 202069_s_at 
isocitrate dehydrogenase 

3 (NAD+) alpha 
6.33698 8.41867 1.328 

 210418_s_at 
isocitrate dehydrogenase 

3 (NAD+) beta 
9.75743 9.90988 1.016 

 202471_s_at 
isocitrate dehydrogenase 

3 (NAD+) gamma 
8.46486 8.87557 1.049 

 207071_s_at aconitase 1, soluble 8.80744 9.72109 1.104 

 200793_s_at 
aconitase 2, 
mitochondrial 

9.29468 8.4346 0.907 

Oxaloacetate ↔ Malate 200978_at 
malate dehydrogenase 1, 

NAD (soluble) 
10.53948 10.84643 1.029 

 209036_s_at 
malate dehydrogenase 2, 

NAD (mitochondrial) 
9.89076 10.24875 1.036 

Malate ↔ 2-Oxoglutarate 201093_x_at 

succinate dehydrogenase 

complex, subunit A, 
flavoprotein (Fp) 

10.15333 9.77263 0.963 

 202675_at 
succinate dehydrogenase 
complex, subunit B, iron 

sulfur (Ip) 
7.66838 8.40596 1.096 

 210131_x_at 

succinate dehydrogenase 
complex, subunit C, 
integral membrane 

protein, 15kDa 

9.58464 9.71337 1.013 

 202026_at 

succinate dehydrogenase 
complex, subunit D, 

integral membrane 
protein 

8.51777 9.81056 1.152 

 203033_x_at fumarate hydratase 8.59815 9.81297 1.141 

 217874_at 
succinate-CoA ligase, 

alpha subunit 
10.07123 9.81537 0.975 

 212459_x_at 
succinate-CoA ligase, 

GDP-forming, beta 

subunit 

8.89277 9.0229 1.015 

 202930_s_at 
succinate-CoA ligase, 

ADP-forming, beta 
subunit 

7.63021 7.52115 0.986 

 215210_s_at 

dihydrolipoamide S-
succinyltransferase (E2 

component of 2-oxo-
glutarate complex) 

9.29238 9.10458 0.980 

http://genecards.weizmann.ac.il/cgi-bin/geneannot/GA_search.pl?keyword_type=probe_set_id&target=genecards&keyword=210337_s_at&array=HG-U133
https://www.affymetrix.com/LinkServlet?array=U133&probeset=201193_at
https://www.affymetrix.com/LinkServlet?array=U133&probeset=210046_s_at
https://www.affymetrix.com/LinkServlet?array=U133&probeset=202069_s_at
https://www.affymetrix.com/LinkServlet?array=U133&probeset=202471_s_at
https://www.affymetrix.com/LinkServlet?array=U133&probeset=207071_s_at
https://www.affymetrix.com/LinkServlet?array=U133&probeset=200793_s_at
https://www.affymetrix.com/LinkServlet?array=U133&probeset=200978_at
https://www.affymetrix.com/LinkServlet?array=U133&probeset=209036_s_at
https://www.affymetrix.com/LinkServlet?array=U133&probeset=201093_x_at
https://www.affymetrix.com/LinkServlet?array=U133&probeset=202675_at
https://www.affymetrix.com/LinkServlet?array=U133&probeset=210131_x_at
https://www.affymetrix.com/LinkServlet?array=U133&probeset=202026_at
http://genecards.weizmann.ac.il/cgi-bin/geneannot/GA_search.pl?keyword_type=probe_set_id&target=genecards&keyword=203033_x_at&array=HG-U133
https://www.affymetrix.com/LinkServlet?array=U133&probeset=217874_at
https://www.affymetrix.com/LinkServlet?array=U133&probeset=212459_x_at
https://www.affymetrix.com/LinkServlet?array=U133&probeset=202930_s_at
https://www.affymetrix.com/LinkServlet?array=U133&probeset=215210_s_at
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 201282_at 

oxoglutarate (alpha-
ketoglutarate) 

dehydrogenase 
(lipoamide) 

8.02853 8.90386 1.109 

 219277_s_at 
oxoglutarate 

dehydrogenase-like 
7.30291 6.28699 0.861 

 209095_at 
dihydrolipoamide 
dehydrogenase 

8.66898 10.18015 1.174 

2-Oxoglutarate ↔  
Glutamate 

200946_x_at 
glutamate 

dehydrogenase 1 
9.50983 9.47876 0.997 

 210447_at 
glutamate 

dehydrogenase 2 
5.19602 3.91696 0.754 

Glutamate ↔  Glutamine 217202_s_at 
glutamate-ammonia 

ligase 
9.55751 7.18976 0.752 

 221510_s_at glutaminase 7.54051 8.58004 1.138 

 205531_s_at 
glutaminase 2 (liver, 

mitochondrial) 
6.35534 5.23404 0.824 

Glutamate ↔  

Glutamate-5-
semialdehyde 

211552_s_at 
aldehyde dehydrogenase 

4 family, member A1 
7.49449 6.95062 0.927 

 217791_s_at 
aldehyde dehydrogenase 

18 family, member A1 
9.33656 9.87035 1.057 

 Glutamate-5-
semialdehyde ↔ Proline 

206259_at 
protein C (inactivator of 
coagulation factors Va 

and VIIIa) 
6.38476 5.61183 0.879 

Pyruvate ↔ Alanine 206709_x_at 
glutamic-pyruvate 

transaminase (alanine 
aminotransferase) 

7.16144 6.2815 0.877 

 208284_x_at 
gamma-

glutamyltransferase 1 
7.90119 6.30516 0.798 

Oxaloacetate ↔ 
Aspartate 

208813_at 

glutamic-oxaloacetic 
transaminase 1, soluble 

(aspartate 

aminotransferase 1) 

7.52059 9.51707 1.265 

 Aspartate ↔ Asparagine 205047_s_at 
asparagine synthetase 

(glutamine-hydrolyzing) 
7.87405 10.29289 1.307 

3-Phosphoglycerate ↔ 
3-

Phosphohydroxypyruvate 
201397_at  

phosphoglycerate 
dehydrogenase 

8.51304 6.72785 0.790 

1.209 

3-

Phosphohydroxypyruvate 
↔ 3-Phosphoserine 

220892_s_at 
phosphoserine 

aminotransferase 1 
6.43545 10.33315 1.606 

3-Phosphoserine ↔ 
Serine 

205194_at 
phosphoserine 
phosphatase 

5.1804 7.50377 1.448 

Serine ↔ Glycine 214096_s_at 

serine 

hydroxymethyltransferase 
2 (mitochondrial) 

9.81703 10.35204 1.054 

Serine ↔ Cysteine 212816_s_at 
cystathionine-beta-

synthase 
5.52769 4.73133 0.856 

  217127_at 

cystathionase 

(cystathionine gamma-
lyase) 

5.57663 8.36191 1.499 

 

 

https://www.affymetrix.com/LinkServlet?array=U133&probeset=201282_at
https://www.affymetrix.com/LinkServlet?array=U133&probeset=219277_s_at
http://genecards.weizmann.ac.il/cgi-bin/geneannot/GA_search.pl?keyword_type=probe_set_id&target=genecards&keyword=209095_at&array=HG-U133
https://www.affymetrix.com/LinkServlet?array=U133&probeset=200946_x_at
https://www.affymetrix.com/LinkServlet?array=U133&probeset=210447_at
https://www.affymetrix.com/LinkServlet?array=U133&probeset=221510_s_at
https://www.affymetrix.com/LinkServlet?array=U133&probeset=205531_s_at
https://www.affymetrix.com/LinkServlet?array=U133&probeset=211552_s_at
https://www.affymetrix.com/LinkServlet?array=U133&probeset=217791_s_at
https://www.affymetrix.com/LinkServlet?array=U133&probeset=206259_at
https://www.affymetrix.com/LinkServlet?array=U133&probeset=206709_x_at
https://www.affymetrix.com/LinkServlet?array=U133&probeset=208284_x_at
https://www.affymetrix.com/LinkServlet?array=U133&probeset=208813_at
https://www.affymetrix.com/LinkServlet?array=U133&probeset=205047_s_at
https://www.affymetrix.com/LinkServlet?array=U133&probeset=201397_at
https://www.affymetrix.com/LinkServlet?array=U133&probeset=220892_s_at
https://www.affymetrix.com/LinkServlet?array=U133&probeset=214096_s_at
https://www.affymetrix.com/LinkServlet?array=U133&probeset=212816_s_at
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The Mammalian Cell Cycle And Metabolism Model 

Parameters For Cancer Cells: 

 

 

k15 = 0.025  

k16 = 0.025  

J15 = 0.1 

k17a = 0.035 

k17 = 1. 

J17 = 0.3 

k18 = 1. 

K9 = 0.25  

K10 = 0.5  

k24 = 100.  

k24r = 1.  

K7a = 0. 

K7 = 0.06 

K8a = 0.01 

K8 = 0.2 

K25 = 100. 

K25R = 1. 

J8 = 0.1 

YE = 1. 

YB = 0.05 

K29 = 0.005 

K30 = 2. 

K1a = 0.01 

K1 = 0.06 

J1 = 0.1 

K2a = 0.005 

K2 = 2. 

K2aa = 0.1 

K5 = 2. 

K6a = 1. 

K6 = 10. 

HE = 0.5 

HB = 1. 

HA = 0.5 

LD = 3.3 

LE = 5. 

LB = 5. 

LA = 3. 

K20 = 1. 

K19a = 0. 

K19 = 2. 

K21 = 1. 

PP1T = 1. 
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FE = 25. 

FB = 2. 

K3a = 0.75 

K3 = 14. 

J3 = 0.01 

J4 = 0.01 

K4 = 4. 

GE = 0. 

GB = 1. 

GA = 0.3 

K33 = 0.005 

K34 = 0.005 

K31 = 0.07 

K32 = 0.18 

J31 = 0.01 

J32 = 0.01 

K11a = 0. 

K11 = 0.15 

K12 = 0.15 

K13 = 0.5 

K14 = 0.25 

J13 = 0.005 

J14 = 0.005 

K22 = 0.1 

K23a = 0.0005 

K23 = 0.1 

K26 = 1000. 

K26R = 20. 

K27 = 0.02 

K28 = 0.02 

K33 = 0.0065 

KMGLU = 0.00012 

KPYR1 = 9.26 

KAA1 = 1.024 

KAA2 = 1. 

KPYR2 = 3.71 

KPYR3 = 1.024 

KG6P1 = 1.85 

KF6P1 = 1.85 

KF6P2 = 3.41 

KFDP1 = 3.41 

KDHAP1 = 1.66 

KDHAP2 = 3.84 

KFDP2 = 1.66 

KGAP1 = 1.66 

KGAP2  = 3.84 

KGAP3 = 2.79 

KDPG1 = 2.79 

KDPG2 = 7.02 

KP3G1 = 7.02 
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KP3G2 = 1.81 

KP2G1 = 1.81 

KP2G2 = 4.35 

KPEP1 = 4.35 

KPEP2 = 9.26 

KLAC1 = 3.71 

KFDP3 = 1.66 

KLAC2 = 1. 

KP3G3 = 1.209 

KMG6P = 1. 

KMF6P = 1. 

KMFDP = 1. 

KMDHAP = 1. 

KMGAP = 1. 

KMDPG = 1. 

KMP3G = 1. 

KMP2G = 1. 

KMPEP = 1. 

KMPYR = 1. 

KMLAC = 1. 

KMAA = 1. 

 

 

 


