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Abstract 

Zinc is an essential biological trace element required for proper immune functioning. Zinc 
deficient individuals have been reported to suffer compromised immune responses and 
increased levels of inflammatory cytokines. Inflammation is integral to the pathology of 
many disease states, ranging from pathogen dependent infectious disease to non-
infectious disease such as cancer, heart disease, diabetes and stroke. One of the main 
mediators of inflammation is the pro-inflammatory cytokine interleukin-1β (IL-1β). 
Production of IL-1β occurs via a two step process; firstly the transcription of an inactive 
pro-form is initiated, followed by protease activation leading to the cleavage of IL-1β to a 
mature form. Here it is shown that in vitro zinc depletion of macrophages, using the zinc 
chelators TPEN and DTPA, leads to pro-IL-1β cleavage and furthermore to increased release 
of active IL-1β. This would suggest that zinc depletion induces activation of proteases that 
cleave IL-1β. Caspase-1, ASC, PP2A, cathepsin B and cathepsin G are all shown to regulate 
zinc depletion-induced IL-1β release in macrophages. The cell death proteins XIAP and 
caspase-8 have also been identified to be regulated by zinc depletion in macrophages and 
there is literature to suggest that these proteins may contribute to IL-1β processing and 
release. By identifying a role for zinc depletion in IL-1β processing we move closer to 
identifying potential therapeutic targets for zinc deficiency induced inflammatory disease.  

Zinc also has regulatory roles in the expression of IL-1β. Here a systems biology approach is 
utilised to create an explicit representation of the pathways involved in IL-1β expression. In 
many in vivo and in vitro models, transcription of pro-Interleukin-1β is induced by the gram 
negative cell wall component lipopolysaccharide (LPS). A systematically curated network 
map of IL-1 transcription has been created. The map encompasses interactions at the 
macrophage cell membrane, where LPS binds Toll-like receptor 4 (TLR4); the resulting 
cytoplasmic signalling cascades, including MAPK and NF-κB; and finally the specific 
transcription factor interactions in the nucleus. By creating this model we aim to enable the 
production of dynamic models of IL-1 transcription. 
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1.1 Inflammation  

Inflammation is a host defence process that is initiated in response to infection or injury. 

This process co-ordinates the body’s defence systems at the point of insult, assembling 

multiple immune cell types that function to clear pathogens or damage. There are two 

clear phases of inflammation: upregulation, associated with the key physiological signs of 

inflammation- pain, heat, redness and swelling [Nathan, 2002] and resolution [Serhan, 

2009], associated with the downregulation of the inflammatory state. 

 

Pathogen-induced inflammation has been well characterised [Takeuchi & Akira, 2010], 

[Lamkanfi & Dixit, 2011] and it involves an inflammatory process that leads to the clearance 

of pathogens, preventing spread and bringing about a return to the homeostatic state 

[Medzhitov, 2008]. Damage-induced or sterile inflammation, as it is more commonly 

known, occurs in response to signals produced by damaged or dying cells [Rock et al., 

2010]. The sterile inflammatory response functions to clear damaged tissue, but in doing so 

can also propagate tissue damage [Chen & Nuñez, 2010]. It appears this inflammatory 

response is a key contributor to the pathology of many non-infectious disease states such 

as atherosclerosis [Galkina & Ley, 2009], stroke [Lucas et al., 2006], diabetes [Larsen et al., 

2007] and autoinflammatory diseases such as rheumatoid arthritis [Gabay et al., 2010]. In 

many instances the downregulation of sterile inflammatory pathways may facilitate a more 

rapid return to the healthy homeostatic state. The nature of inflammatory pathways in 

disease will be discussed more thoroughly later. 

 

An important mediator of the inflammatory response is the pro-inflammatory cytokine 

interleukin-1 (IL-1). Originally described as a fever-inducing pyrogen [Dinarello & Bernheim, 
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1981], IL-1 is released by cells of the monocytic lineage in response to inflammatory stimuli 

(pathogenic and sterile) and upregulates inflammation [Gabay et al., 2010]. IL-1 exerts its 

effects upon multiple cell types. Endothelial cells are induced to express adhesion 

molecules which facilitate immune cell recruitment to the site of injury. IL-1 action then 

induces immune cells to express further cytokines and enzymes, which function both at the 

site of insult and systemically [Gabay et al., 2010]. This central role in the inflammatory 

response therefore makes IL-1 an excellent therapeutic target for diseases associated with 

aberrant inflammation.  

 

In keeping with the increasing interest in sterile stimuli of inflammation and the central role 

of IL-1 in the upregulation of this process, there is great interest in the role of sterile stimuli 

in IL-1 secretion. There are several well established sterile stimuli including uric acid 

crystals, cholesterol crystals, amyloid β, ATP and iron oxide [Rock et al., 2010]; however 

there are many potentially undiscovered mechanisms for sterile induction of inflammation. 

Data in this thesis suggests zinc deficiency as a potential sterile stimulus of inflammation 

and IL-1 upregulation.  

 

1.2 Interleukin-1 family cytokines 

1.2.1 General  

The IL-1 family is essential in the regulation of inflammatory processes. There are 11 

members of the IL-1 family, which includes both pro- and anti-inflammatory cytokines 

[Dinarello, 2009]. Members include the well characterised IL-1α (IL-F1) [March et al., 1985], 

IL-1β (IL-F2) [March et al., 1985] and IL-1Ra (IL-F3) cytokines and the less well characterised 

IL-18 (IL-F4) [Udagawa et al., 1997], IL-33 (IL-F11) [Dinarello, 2005], IL-36 (IL-F5,6,8,9) 
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[Mulero et al., 1999] [Smith et al., 2000] [Kumar et al., 2000], IL-37 (IL-F7) [Smith et al., 

2000] and IL-F10 cytokines [Lin et al., 2001] [Sims & Smith, 2010].  

 

IL-18 and IL-33 are pro-inflammatory cytokines. IL-18 is cleaved to its mature form by the 

protease caspase-1 [Gu et al., 1997] but maintained in an inactive complex with an IL-18 

binding protein (IL-18BP) [Arend et al., 2008]. The activity of IL-18 depends upon the 

balance between active cleaved IL-18 and abundance of its regulatory partner. In contrast 

to IL-18, full length IL-33 is active and this activity is increased by cleavage with the 

neutrophil serine proteases cathepsin G and elastase [Lefrançais et al., 2012]. Unlike other 

IL-1 family members, IL-33 is inactivated by caspase cleavage [Cayrol & Girard, 2009][Lüthi 

et al., 2009].  

 

 IL-36α (IL-1F6), IL-36β (IL-1F8) and IL-36γ (IL-1F9) are pro-inflammatory and bind the IL-

1RL2 receptor. IL-136Ra (IL-1F5) functions as an antagonist to this pathway [Towne et al., 

2011]. The functions of the five isoforms of IL-37 have yet to be established. It has been 

suggested that these cytokines are anti-inflammatory and potentially exert their effects by 

regulating the pro-inflammatory actions of IL-18 [Boraschi et al., 2011]. Of all the IL-1 family 

members least is known of IL-1F10, which due to structural similarities to IL-1Ra, a 

catalytically inactive competitor of IL-1α and IL-1β, has been suggested to have anti-

inflammatory activity [Sims & Smith, 2010]. 

 

The two best characterised pro-inflammatory cytokines within the IL-1 family are IL-1α (IL-

1F1) and IL-1β (IL-1F2). These cytokines both interact with the type I IL-1 receptor (IL-1RI) 

[Sims et al., 1988]. In order to initiate signals at the receptor the cytokines also need to 
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interact with IL-1 receptor accessory protein (AcP) [Greenfeder et al., 1995] so that a 

complex of IL-1, IL-1RI and AcP is formed at the membrane. The presence of all three 

proteins, IL-1, IL-1RI and ACP, is necessary for initiation of IL-1 dependent signalling. 

 

IL-1α and IL-1β are distinct molecules produced from separate genes [March et al., 1985]. 

The amino acid sequence homology between the two proteins is low (27%), but their 

tertiary structure is very similar which allows for the shared affinity to IL-1RI [Gabay et al., 

2010]. Both cytokines are produced by cells of monocytic lineage; monocytes, 

macrophages and dendritic cells, [Dinarello, 2010], although IL-1α may be also produced by 

epithelial cells and keratinocytes [Dinarello, 2009].  

 

The main regulator of IL-1α and IL-1β is the IL-1 receptor antagonist (IL-1RA). IL-1RA binds 

the IL-RI receptor without binding AcP [Greenfeder et al., 1995] consequently downstream 

pathways cannot be activated and the receptor is left unavailable for binding of IL-1α or IL-

1β. Therefore IL-1Ra acts as a competitor to the classical IL-1 cytokines (IL-1α and IL-1β) 

and reduces their inflammatory effect [Greenfeder et al., 1995]. Like IL-1α and IL-1β, IL-1Ra 

is also expressed in response to cell death [Palmer et al., 2007] and inflammatory stimuli 

[Arend et al., 1998]. This highlights the roles of the IL-1 family in both the upregulation and 

resolution of inflammation.  

 

Both IL-1α and IL-1β are produced via a two-step process thus increasing the level of 

control of the initiation of the inflammatory response. They are not constitutively 

expressed. Firstly these cytokines are produced as a precursor proteins or pro-forms that 

can be subsequently cleaved to produce smaller proteins [Gabay et al., 2010]. Activation of 
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NF-κB and p38 MAPK pathways lead to the transcription and translation of the 31 kD pro- 

forms of IL-1α and IL-1β [O’Neill, 2008] [Gabay et al., 2010]. A second activation step is 

required to initiate the proteolytic cleavage of to the 17kD mature forms.  

 

Both forms of IL-1α are biologically active [Dinarello, 2009]. The protease most associated 

with IL-1α cleavage is the calcium activated cysteine protease, calpain [Carruth et al., 

1991]. Typically IL-1α is associated with the cytoplasm [Kurt-Jones, 1985]. In microglia it has 

also been shown to be trafficked to the nucleus [Luheshi et al., 2009b], leading to 

decreased IL-1α release following necrotic cell death [Luheshi et al., 2009a]. IL-1α is found 

at low levels in the blood [Dinarello, 2009].  

 

Pro-IL-1β is inactive and cell associated. The best characterised protease responsible for 

this is caspase-1 [Thornberry et al., 1992]. After proteolytic cleavage mature IL-1β is 

immediately secreted. However, as yet a single mechanism for this secretion has not been 

identified [Lopez-Castejon & Brough, 2011]. The main focus of this thesis is the cytokine IL-

1β. IL-1β does not contain a signal peptide [Auron et al., 1984] and is not secreted by the 

conventional secretory pathway [Rubartelli et al., 1990]. Also, in LPS activated monocytes 

IL-1β was determined to be absent from both the endoplasmic reticulum (ER) or Golgi 

apparatus, both of which are integral to the conventional secretory pathway [Singer et al., 

1988]. Further evidence for non-conventional secretion is the translation of IL-1β from free 

ribosomes as opposed to membrane bound ribosomes [Stevenson et al., 1992]. This thesis 

will focus upon how zinc levels affect the production of this cytokine, IL-1β. 
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1.2.2 IL-1β expression 

The expression of the pro-form of IL-1β occurs downstream of pattern recognition 

receptors (PRRs). PRRs recognise conserved patterns in microbial molecules otherwise 

known as pathogen associated molecular patterns (PAMPs) [Medzhitov & Janeway, 1997]. 

Identified classes of PRR include the Toll-like receptors (TLRs), the RIG-I like receptors 

(RLRs), NOD-like receptors (NLRs) and cytosolic DNA receptors [Kumar et al., 2011]. 

 

The expression of IL-1β requires TLR activation. TLRs are the most well studied of the PRR 

families and were first identified in Drosophila [Lemaitre et al., 1996]. In humans there are 

ten known TLRs and in mice there are twelve [Kawai & Akira, 2010]. The key features of 

these PRRs are an N-terminal leucine rich repeat (LRR) and a c-terminal cytoplasmic Toll/IL-

1R homology (TIR) domain [Pålsson-McDermott & O’Neill, 2007]. This cytoplasmic domain 

is essential for interactions with downstream effectors.  

 

Activation of both the TLR2 and TLR4 toll-like receptors have been reported to induce IL-1β 

expression [Akira, 2003][Ozören et al., 2006][Segovia et al., 2012]. The best characterised 

TLR4 ligand is lipopolysaccharide (LPS) [Miller et al., 2005]. LPS binds the extracellular 

domain of TLR4, alongside MD-2 and CD-14 [Park et al., 2009][Kim et al., 2005]. This 

induces conformational changes that lead to TLR4 dimerisation [Lee et al., 2004], which 

then cause intracellular changes leading to the recruitment of intracellular adaptor 

proteins. This occurs via interaction of the TIR domains of the TLRs with the TIR domains of 

cytoplasmic adaptor proteins [Kenny & O’Neill, 2008]. These adaptors are Myeloid 

differentiation primary response gene (88) (MyD88), toll-interleukin 1 receptor (TIR) 

domain containing adaptor protein (TIRAP), TIR-domain-containing adapter-inducing 
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interferon-β (TRIF), and TRIF-related adapter molecule (TRAM) [Pålsson-McDermott & 

O’Neill, 2007]. TRAM and TRIF binding activates interferon signalling. Meanwhile, binding 

of MyD88 and TIRAP, initiates IL-1β expression via MAPK and NF-κB dependent 

transcription [Horng et al., 2002] [Medzhitov et al., 1998]. Activation of both MAPK 

pathways and the NF-κB pathway in IL-1β expression is dependent upon the signalling 

complex TRAF6 [Wang et al., 2001]. Signal transduction in these pathways occurs via 

multiple phosphorylation and ubiquitination signalling events [Deng et al., 2000] 

[Fukushima et al., 2007] [Lamothe et al., 2007]. A more in depth analysis of TLR4 induced 

IL-1β expression is presented in chapter 5 in the form of a systematically curated network 

map.  

 

In addition to TLR stimulation, activation of intracellular NOD receptors also upregulates IL-

1β expression. NOD1 and NOD2 are found in the cytoplasm. They possess a LRR domain at 

the c-terminus and one or two CARD domains respectively at the N-terminus [Kumar et al., 

2011]. Activation of NODs occurs via the binding of bacterial cell wall components, in 

particular muramyl dipeptide (MDP) [Brown & McIntyre, 2011]. Stimulation of NOD 

receptors with MDP upregulates IL-1β expression via NF-κB [Ferrero-Miliani et al., 2007]. 

Agonists of TLR2, TLR4, NOD1 and NOD2 have been shown to function via TRAF6 to 

upregulate IL-1β transcription [Tang et al., 2011]. In this paper it is shown that stimulation 

of the two separate PRRs has a synergistic effect upon IL-1β expression. This is 

representative of the in vivo situation where a pathogen could stimulate multiple 

inflammatory pathways.  
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After the induction of expression of the pro-form of IL-1β, proteolytic cleavage is required 

in order to produce the mature active form of the cytokine. This also occurs following 

stimulation of a PRR. The NOD-like receptors (NLRs) are essential in this process, which is 

described in more detail in the following section.  

 

1.2.3 IL-1β processing 

Proteolytic cleavage of inactive pro-IL-1β to mature IL-1β requires a second stimulus, 

separate from the activation of TLRs. This second stimulus activates another type of PRRs: 

the Nod-like receptors (NLRs). NLRs are an integral part of the multimeric activation 

platform, the inflammasome [Martinon et al., 2002]. The inflammasome comprises Nod-

like receptors (NLRs), the adaptor protein ASC (apoptosis-associated speck-like protein 

containing a CARD), and caspase-1. Inflammasome assembly activates caspase-1 and then 

caspase-1 cleaves pro- IL-1β.  

 

Caspase-1, previously known as Interleukin-1beta converting enzyme (ICE), was the first 

caspase to be identified [Black et al., 1989][Kostura et al., 1989]. It is produced as an 

inactive precursor or zymogen [Nadiri et al., 2006]. Traditionally the caspases are 

associated with signalling cascades that lead to apoptosis, but caspase-1 is associated with 

inflammation [Riedl & Scott, 2009]. The main substrates of caspase-1 include pro-IL-1β, 

pro-IL-18, and potentially IL-33 [Schmitz et al., 2005]. In the case of IL-33, cleavage leads to 

inactivation [Cayrol & Girard, 2009].  
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1.2.3.1 Inflammasomes 

There are multiple NLRs which in turn may form multiple inflammasomes [Martinon et al., 

2009] [Pedra et al., 2009]. These include NLR family, pyrin domain containing 1 (known as 

NLRP1 or NALP1), NLR family, pyrin domain containing 3 (NLRP3, NALP3 or cryopyrin), and 

NLR family, caspase recruitment domain (CARD) containing 4 (NLRC4 or IPAF). Additionally, 

non-NLR inflammasomes have also been identified; the PRRs absent in melanoma 2 (AIM2) 

and retinoic acid inducible gene-I (RIG-I)-like receptor (RLR) have also been shown to form 

inflammasomes [Poeck et al., 2010] [Guarda & So, 2010] [Chen & Nuñez, 2010]. The precise 

stoichiometries of the inflammasomes are as yet unknown. NLRs, ASC and caspase-1 

interact via CARD and PYRIN domains. Caspase-1 contains a CARD domain at its N-terminus 

[Martinon & Tschopp, 2004], ASC has a CARD and a PYRIN domain, and the NLRs all contain 

an N terminal CARD or PYRIN domain, depending upon the NLR [Schroder & Tschopp, 

2010]. AIM2 contains a PYRIN domain (Fig 1.1).  
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Figure 1.1: Domain structure of the best characterised inflammasomes 
 
The structure of the NLRP3, NLRC4, AIM2 and NLRP1 inflammasomes are illustrated. (A) NLRP3 
comprises a LRR, NACHT and PYRIN domain, which interacts with ASC (PYRIN and CARD domains) 
and pro-caspase-1 (CARD and caspase-1). (B) NLRC4 comprises a LRR, NACHT and CARD domain, 
which interacts pro-caspase-1 (CARD and caspase-1). (C) AIM2 comprises a HIN and a PYRIN domain, 
which interacts with ASC (PYRIN and CARD domains) and pro-caspase-1 (CARD and caspase-1). (D) 
NLRP1 comprises a CARD, FIIND, LRR, NACHT and PYRIN domain, which interacts with pro-caspase-5 
(CARD and caspase-5), ASC (PYRIN and CARD domains) and pro-caspase-1 (CARD and caspase-1). 
Stoichiometries are not known for the inflammasomes. Figure adapted from [van de Veerdonk et al., 
2011].  
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Activation of inflammasomes occurs in response to specific PAMP and DAMP signals. The 

exact mechanisms of inflammasome activation however, remain unclear and appear to be 

complex. The NLRP3 inflammasome is the best characterised and is activated by a diverse 

range of PAMP and DAMP stimuli. NLRP3 activating PAMPs include MDP (bacterial 

muramyl dipeptide) [Martinon et al., 2004], peptidoglycans, bacterial and viral RNA 

[Kanneganti et al., 2006] and microbial toxins [Mariathasan et al., 2006] such as the pore 

forming toxin streptolysin O [Harder et al., 2009]. Examples of NLRP3 stimuli that could be 

classified as DAMPs include ATP [Mariathasan et al., 2006], monosodium urate crystals and 

calcium pyrophosphate dehydrate crystals, which cause gout and pseudogout respectively 

[Martinon et al., 2006]. 

 

These activators of the NLRP3 inflammasome are thought to initiate one of several 

overarching processes that in turn act upon the inflammasome. Lowered potassium (K+) 

has been identified directly as an activator of the NLRP3 inflammasome in monocytes and 

macrophages in human and mouse respectively [Perregaux & Gabel, 1994] [Pétrilli et al., 

2007]. High levels of potassium and treatment of LPS stimulated monocytes with potassium 

channel blockers have been shown to inhibit processing of the pro-form of IL-1β to its 

mature form [Walev et al., 1995]. K+ efflux is essential for caspase-1 activation following 

stimulation with the pore forming toxin nigericin, ATP [Perregaux & Gabel, 1994] and MSU 

[Pétrilli et al., 2007]. Furthermore in vitro NALP inflammasome assembly was inhibited in a 

high K+ environment [Pétrilli et al., 2007].  

 

ATP stimulation of the P2X7 receptor has been identified to induce K+ efflux [Perregaux & 

Gabel, 1994][Kahlenberg & Dubyak, 2004] [Pelegrin & Surprenant, 2006]. In addition to K+ 
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efflux ATP stimulation also leads to pore formation [Rassendren et al., 1997], a process 

thought to be closely linked with IL-1β release. Pannexin-1 has been identified as the 

membrane protein that functions as a non-selective pore in response to P2X7 receptor 

activation [Pelegrin & Surprenant, 2006]. Blockade of pannexin-1 prevents IL-1β release but 

not K+ efflux following stimulation of the P2X7 receptor [Pelegrin & Surprenant, 2007]. 

Furthermore the K+ ionophore nigericin, which does not signal via P2X7, also requires a 

fully functioning Pannexin-1 channel to facilitate IL-1β release [Pelegrin & Surprenant, 

2007]. This indicates that that both pannexin-1 and P2X7 are differentially required for 

inflammasome activation. 

 

A further common mechanism for the activation of the NLRP3 inflammasome is the 

production of mitochondrial reactive oxygen species (ROS) [Tschopp, 2011]. It has been 

suggested that the ligand for the NLRP3 inflammasome is found within the mitochondria 

and the other NLRP3 activators induce its release from the mitochondria in addition to ROS 

[Leemans et al., 2011]. NLRP3 activation is also induced by upstream activators via the 

induction of lysosomal destabilisation and subsequent release of cathepsins [Hornung et 

al., 2008][Bauernfeind et al., 2011]. Cathepsin B is a lysosomal protease that is commonly 

released in response to NLRP3 activators and inhibition of this protease can abrogate IL-1β 

release [Hentze et al., 2003]. 

 

Release of Ca2+ from intracellular stores also been identified to contribute to IL-1β release 

[Brough et al., 2003] and recently a central role for calcium (Ca2+) signalling has been 

highlighted in NLRP3 activation. In cell free lysates Ca2+ induces NLRP3-ASC complex 

formation but not direct activation of caspase-1 [Lee et al., 2012] and addition of Ca2+ 
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activates the NLRP3 inflammasome independently of the P2X7 receptor [Lee et al., 2012]. 

This effect appears to be NLRP3 specific as extracellular Ca2+ does not activate the AIM2 or 

NLRC4 inflammasomes [Lee et al., 2012].  

 

The three main mechanisms identified to be responsible for NLRP3 activation, K+ efflux, 

lysosomal destabilisation and mitochondrial ROS generation, can all be linked to Ca2+ 

dynamics. Initiators of the NLRP3 inflammasome that act via K+ efflux, including ATP, MSU 

and nigericin, promote Ca2+ influx [Murakami et al., 2012]. Following ATP stimulation Ca2+ is 

mobilised from both intracellular and extracellular pools [Stober et al., 2001], both of which 

are required for ATP stimulated IL-1β release[Murakami et al., 2012]. Ca2+ influx induced by 

ATP was reduced in the presence of elevated K+ levels [Murakami et al., 2012]. Lysosomes 

are known stores of intracellular Ca2+[Haller et al., 1996]. Induction of lysosomal rupture 

with Leu-Leu-OMe induces NLRP3 activation which can be blocked by Ca2+ signalling 

inhibitors [Murakami et al., 2012]. Mitochondria are also important for the regulation of 

Ca2+ dynamics. Mitochondria release stored Ca2+ following IP3 stimulation [Gilabert et al., 

2001]. Ca2+ signalling inhibitors have been shown to reduce the mitochondrial damage that 

occurs following ATP treatment. [Murakami et al., 2012] observed reduced production of 

mROS, reduced loss of membrane potential and reduce release of mtDNA into cytoplasm.  

 

The calcium sensing receptor (CASR) has been reported to be required for activation of the 

NLRP3 inflammasome via elevated levels of Ca2+. Knock down of this receptor lead to 

reduced IL-1β release in response to Ca2+ and NLRP3 activators [Lee et al., 2012]. CASR is a 

receptor for Ca2+ and functions upstream of phospholipase C (PLC) and adenylate cyclase 

(ADCY) [Hofer & Brown, 2003]. Phospholipase C cleaves phosphatidylinositol 4,5 
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bisphosphate (PIP2)into diacylglycerol (DAG) and 1,4,5-inositol triphosphate (IP3) [Clapham, 

2007]. IP3 signalling through IP3 receptors (IP3R) on the endoplasmic reticulum leads to 

Ca2+ efflux into the cytoplasm [deSouza et al., 2007]. IL-1β secretion in response to ATP or 

elevated Ca2+ requires phospholipase C (PLC) activity [Lee et al., 2012]. Inhibitors of IP3 

reduced the levels of IL-1β release in response to ATP or Ca2+[Lee et al., 2012]. PLC and IP3R 

inhibitors have also been used to reduce Ca2+ flux. These inhibitors blocked IL-1β processing 

in response to ATP, nigericin, MSU and alum[Murakami et al., 2012]. The inhibitors did not 

to affect NLRP3 or pro-IL-1β expression [Murakami et al., 2012].  

 

CASR negatively regulates adenylate cyclase (ADCY) function [Hofer & Brown, 2003]. Using 

the ADCY inhibitor, KH7, to mimic CASR function induced IL-1β release in WT macrophages 

but not in NLRP3-/, ASC-/- or caspase-1 -/- cells [Lee et al., 2012]. In addition, concomitant 

knock down of the adenylate cyclases ADCY3, ADCY6, ADCY7 and ADCY9 also induces IL-1β 

release [Lee et al., 2012]. ADCYs synthesise the second messenger cyclic AMP (cAMP) from 

ATP [Sunahara et al., 1996]. Inhibiting or knocking down ADCY would result reduced levels 

of cAMP and it can be hypothesised that cAMP retains NLRP3 in an inactive conformation. 

Indeed cAMP has been shown to interact directly with the nucleotide binding domain of 

NLRP3 [Lee et al., 2012]. This theory has also been tested in the context of human disease. 

Patients with Cryopyrin-Associated Periodic Syndromes (CAPS) often possess mutations in 

the NACHT (nucleotide binding domain) of NLRP3 [Masters et al., 2009]. ADCY inhibitors 

blocked LPS induced IL-1β secretion in the cells of CAPS patients with NACHT mutations 

[Lee et al., 2012]. Overall it appears that increases in intracellular Ca2+ may, via CASR, PLC, 

IP3 ADCY and cAMP, function as a point of convergence of multiple molecules in the 

activation of the NLRP3 inflammasome.  
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The other inflammasomes are less promiscuous than the NLRP3 inflammasome. The NLRC4 

(or IPAF) inflammasome responds to pathogens. In the gut NLRC4 is important in 

maintenance of homeostasis as it distinguishes between pathogenic and commensal 

bacteria, only producing IL-1β in response to pathogenic bacteria [Franchi et al., 2012]. The 

best known activator of NLRC4 is bacterial flagellin [Miao et al., 2006]. Flagellin initiates an 

interaction of the NLR protein NAIP5 with NLRC4 [Zhao et al., 2011]. Some bacteria activate 

the NLRC4 inflammasome independent of flagellin expression [Sutterwala et al., 2007]. 

Pseudomonas aeruginosa, Salmonella typhimurium and Shigella flexneri are all gram 

negative bacteria which have been reported to activate NLRC4 through recognition of their 

Type III secretion system (T3SS)[Miao et al., 2010], [Abdelaziz et al., 2010]. A role for K+ 

efflux, a known activator of the NLRP3 inflammasome, has been proposed in this T3SS-

dependent NLRC4 activation [Arlehamn et al., 2010]. Regardless of the initial trigger, an 

essential step in NLRC4 activation is phosphorylation at Ser533. Without this 

phosphorylation NLRC4 is inactive [Qu et al., 2012]. 

 

In comparison to NLRP3 and NLRC4, relatively little is known about the NLRP1 

inflammasome. Polymorphisms in the NLRP1 gene are associated with a wide range of 

disease states including the pigmentation disorder vitiligo [Jin et al., 2010b], the fibrotic 

connective tissue disorder systemic sclerosis [Dieudé et al., 2011], Kawasaki disease 

[Onoyama et al., 2012] and Alzheimer’s disease [Pontillo et al., 2012]. To date the only 

identified activator of NLRP1 is the anthrax lethal toxin. Activation occurs by cleavage of 

NLRP1 by the anthrax lethal toxin which then induces IL-1β processing and the caspase-1 

dependent cell death, pyroptosis [Levinsohn et al., 2012]. This activation of the NLRP1 

inflammasome is dependent upon its interaction with ASC [Finger et al., 2012]. Another 
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event that is essential for NLRP1 activation is the autolytic cleavage of the protein at 

Ser1213 [Finger et al., 2012] within the FIIND domain [D’Osualdo et al., 2011].  

 

It is interesting to note that the composition of this inflammasome varies across species. In 

mice there are three paralogs of NLRP1 and in rats there are two. Further to this human 

NLRP1 differs from the rodent, as the human protein possessing an N-terminal PYRIN 

domain [Moayeri et al., 2012]. At present the endogenous activator of NLRP1 is still to be 

discovered and the relevance of the differences between rodent and human NLRP1 still to 

be elucidated.  

 

AIM2 is a non-NLR inflammasome that responds to cytoplasmic DNA [Bürckstümmer et al., 

2009] [Rathinam et al., 2010]. The AIM2 protein belongs to haemopoeitic interferon 

inducible nuclear (HIN) protein family [Ludlow et al., 2005] [Guarda & So, 2010]. The crystal 

structure of the HIN domain shows DNA binding occurs via electrostatic interactions [Jin et 

al., 2012]. In this way, AIM2 recognises both viral and bacterial infections, including Listeria 

monocytogenes [Sauer et al., 2010], Mycobacterium tuberculosis [Saiga et al., 2012], 

Francisella tularensis [Belhocine & Monack, 2012] and mouse cytomegalovirus [Rathinam 

et al., 2010]. In addition to its role in activating caspase-1, leading to IL-1β processing and 

release, an AIM2/ASC complex has been shown to activate caspase-8 and caspase-9 leading 

to apoptotic cell death [Pierini et al., 2012].  

 

A common pathway has recently been identified for the activation of AIM2, NLRP3 and 

NLRP3. Inhibiting the PP1/PP2A signal reduces IL-1β release in mouse macrophages in 

response to DNA and Salmonella thyphimurium, which activate the AIM2 and NLRC4 
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inflammasomes respectively [Luheshi et al., 2012]. IL-1β release was also reduced by 

inhibiting the PP1/PP2A signal following the activation of the NLRP3 inflammasome with 

ATP, uric acid crystals and sphingosine [Luheshi et al., 2012]. The PP1/PP2A proteins are 

serine/threonine phosphatases. There are approximately 30 serine/threonine 

phosphatases in comparison to approximately 428 serine/threonine kinases, which 

suggests the serine/threonine phosphatases have many substrates [Shi, 2009]. PP1/PP2A 

can be further subcategorised as phosphoprotein phosphatases (PPP) [Cohen, 1997]. PPP 

rely upon the interaction of their catalytic subunit with multiple regulatory subunits to 

confer specificity [Shi, 2009]. The general inhibition of inflammasome activation would 

imply that a late stage dephosphorylation event occurs. Common substrates present at this 

time include pro-IL-1β, ASC and caspase-1β. Additionally some viral proteins target the 

PP1/PP2A proteins in order to promote survival [Guergnon et al., 2011], it would be 

interesting to see if the inhibition of inflammasome activation contributes to this survival.  

 

In addition to caspase-1 there are also other proteases that process IL-1β, although the 

literature on these proteases is less extensive. Proteases that have been linked with IL-1β 

processing include proteinase-3, cathepsin G and elastase [Netea et al., 2010]. These are all 

components of leukocyte granules [Guma et al., 2009]. Pro-IL-1β has also been reported to 

be cleaved by Granzyme A and chymase [Irmler et al., 1995], [Lieberman, 2010] [Joosten et 

al., 2009]. The pathways that induce IL-1β processing and the inhibitors that can block 

these pathways are summarised in Fig 1.2.  
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Figure 1.2: Mechanisms of IL-1β processing  
 
A schematic diagram illustrating the processing of IL-1β as a consequence of NLRP3, AIM2 and 
NLRC4 inflammasome activation and the actions of cathepsin G. Inhibition of key pathway 
components are also illustrated, indicating the pathways targeted by intervention with YVAD, 
glyburide, calyculin A, okadaic acid, CA074-Me and GLF.  

 

1.2.4 IL-1β release 

Following cleavage mature IL-1β is rapidly secreted from the cell, although this does not 

occur via conventional pathways. Several mechanisms of IL-1β secretion have been 

proposed. In their recent review [Lopez-Castejon & Brough, 2011] categorised these 

secretory pathways into three, context-dependent, categories. These are: rescue and 

redirect, protected release and terminal release. This structure will be used to discuss the 

various mechanisms put forth for IL-1β release.  
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Rescue and redirect describes an IL-1β release where the cytokine is packaged in 

intracellular vesicles targeted for degradation. Under the influence of inflammatory stimuli, 

these vesicles are rescued from degradation and redirected for release into the 

extracellular space. This theory is supported by studies which identified storage of a small 

fraction of IL-1β in endolysosomal vesicles [Matsushima et al., 1986], [Andrei et al., 1999]. 

Furthermore, [Andrei et al., 1999] observed elevated levels of secreted IL-1β following 

inhibition of proteases involved in degradation within these vesicles. When [Rubartelli et 

al., 1990] first established the unconventional secretion of IL-1β, it was suggested that IL-1β 

may be packaged into vesicles via autophagy, a process that involves packaging of 

organelles into vesicles that are targeted for lysosomal degradation [Kroemer et al., 2010]. 

More recently [Harris et al., 2011] have shown IL-1β sequestration in autophagic vesicles. 

Enhanced activation of autophagy with rapamycin increased pro-IL-1β degradation and 

reduced IL-1β secretion. Conversely when autophagy was inhibited IL-1β secretion was 

upregulated [Harris et al., 2011]. Taken together the evidence suggests that IL-1β is 

packaged in autophagic vesicles but released as active IL-1β following inflammatory stimuli.  

 

The proposed mechanism of protected release suggests that IL-1β and the components 

necessary to induce its processing are protected within microvesicles which are then 

secreted to function at sites distant from the initial inflammatory insult. The short half-life 

of IL-1β within plasma [Kudo et al., 1990], suggests that there must be mechanisms that 

facilitate IL-1β actions at a distance. In addition there is also a wealth of evidence that show 

microvesicles and exosomes - small vesicles produced from multi-vesicular bodies [Qu et 

al., 2009] - can contain IL-1β and the components required for IL-1β processing. 

Microvesicles shed from the plasma membrane have been shown to contain bioactive IL-1β 

[MacKenzie et al., 2001], and microvesicles from dendritic cells have been shown to contain 



Chapter 1  Introduction 
 

33 
 

IL-1, caspase-1 and to express P2X7 receptors. ATP stimulation of these microvesicles also 

induces IL-1β release [Pizzirani et al., 2007]. Exosomes containing IL-1, caspase-1 and other 

inflammasome components have also been reported [Qu et al., 2007]. Interestingly the 

release of IL-1β from exosomes has been shown to be dependent on both ASC and NLRP3, 

but independent of caspase-1 [Qu et al., 2009]. This suggests that inflammasomes may play 

roles in IL-1β release that do not involve activation of caspase-1. The final piece of evidence 

to support the protected release theory is the observation that microvesicles and 

exosomes are active at locations far from the point of initial inflammatory insult [Théry et 

al., 2009].  

 

Terminal release, IL-1β release following cell death, is the third and final proposed theory 

for IL-1β secretion. The regulation of IL-1β release and cell death are closely related. A 

caspase-1 dependent cell death, known as pyroptosis, occurs alongside IL-1β release, 

although lysis of the plasma membrane alone will not induce the release of mature IL-1β 

[Hogquist et al., 1991]. Consequently it can be assumed that inflammatory stimuli initiate 

both cell death processes and activation of the proteases required for IL-1β processing. 

There is evidence to show that IL-1β release precedes this cell death [Brough & Rothwell, 

2007]. It is entirely possible that the same network of regulatory mechanisms that control 

IL-1β processing also control inflammatory cell death and the existence of numerous 

instances of redundancy between the two processes would not be unexpected. When 

analysing cells that have been induced to release IL-1β it is important to consider the 

routes of IL-1β release. IL-1β released via terminal release or rescue and redirect 

mechanisms would release IL-1β directly into the supernatant and thus measured directly. 

IL-1β released via the protected release pathways may not be readily available and samples 
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may have to be freeze thawed in order to be measured. The different routes of IL-1β 

release are illustrated in Fig 1.3. 

 

 

Figure 1.3: IL-1β release 
 
A schematic diagram illustrating the different mechanisms of release of IL-1β; rescue and redirect, 
protected release and terminal release. Figure adapted from [Lopez-Castejon & Brough, 2011].  

 

1.2.5 IL-1 and disease 

As a key mediator of inflammation, IL-1 has become a target for the treatment of diseases 

with an inflammatory component. In particular there are a group genetic IL-1β activation 

disorders that display aberrant IL-1β expression in the absence of activation of high-titer 

autoantibodies or antigen-specific T cells [Masters et al., 2009]. These disorders occur due 
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to mutations in components and regulators of the inflammasome. Mutations of NLRP3 are 

the most common and are referred to as Cryopyrin-associated periodic syndromes (CAPS) 

or cryopyrinopathies [Hoffman et al., 2001a]. The main examples include familial cold 

autoinflammatory syndrome (FCAS) [Hoffman et al., 2001b], Muckle-Wells syndrome 

(MWS) [Muckle, 1979], and neonatal-onset multisystem inflammatory disease (NOMID) 

otherwise known as Chronic infantile neurological cutaneous and articular (CINCA) 

syndrome [Torbiak et al., 1989]. FCAS, MWS and NOMID mutations map to CIAS1 [Hoffman 

et al., 2001a] [Feldmann et al., 2002] the gene for NLRP3 [Ting et al., 2008]. The common 

symptom of these diseases include fevers and hives or rashes [Masters et al., 2009]. FCAS 

patients are particularly sensitive to cold temperatures [Hoffman et al., 2001a]. 

Additionally cells from CAPS patients respond to LPS alone without the requirement for 

secondary stimulation with ATP or other activators [Gattorno et al., 2007]. The main locus 

for CAPS mutations is within the nucleotide binding domain or NACHT domain [Masters et 

al., 2009] which highlights the importance of this domain in the control of IL-1β release.  

 

A further inheritable inflammatory disease is Familial Mediterranean fever (FMF) [French 

FMF Consortium., 1997]. This condition occurs due to mutations in the MEFV gene which 

codes for the pyrin protein [Deng et al., 1997] and is most frequently found in 

Mediterranean and middle eastern populations [Sohar et al., 1967]. The protein Pyrin 

possesses the Pyrin domain with which it shares a name, B-box, bZIP basic, and coiled-coil 

domains [Nisole et al., 2005]. Pyrin is known to interact with tubulin, colocalising to 

microtubules [Mansfield, 2001], and ASC [Richards et al., 2001], [Yu et al., 2006], [Chae et 

al., 2003]. Symptoms include fever, pleural inflammation, rashes, arthritis and occasionally 

systemic amyloidosis [Masters et al., 2009], and elevated IL-1β has been proposed to 

contribute to the pathology of this disease [Chae et al., 2006].  
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Elevated IL-1 has been identified as a key contributor to many other disease states. These 

include stroke, cancer, type 2 diabetes and rheumatoid arthritis [Denes et al., 

2011][Dinarello, 2011][Soria et al., 2011]. In humans polymorphisms in IL-1α [Um et al., 

2003], IL-1β [Dziedzic et al., 2005][Kim et al., 2009] and the anti-inflammatory IL-1Ra 

[Worrall et al., 2003] genes have been correlated with elevated stroke risk. In rodents IL-1 

has been reported to be upregulated in the brain following brain injury [Giulian & Lachman, 

1985] [Woodroofe et al., 1991] and inhibition of IL-1 with recombinant IL-1Ra reduces 

damage in focal cerebral ischemia [Relton & Rothwell, 1992]. Furthermore brain injury was 

reduced in IL-1α/β deficient mice in cerebral ischemia following middle cerebral artery 

occlusion [Boutin et al., 2001].  

 

IL-1β also promotes progression in tumours. IL-1 is often present in the tumour 

microenvironment as a consequence of expression by cancer cells [Portier et al., 1993]. IL-1 

has been reported to be expressed in colorectal adenocarcinoma, and melanoma tumour 

samples [Elaraj et al., 2006], head and neck squamous cell carcinoma (HNSCC) [Chen et al., 

1999] and non- small-cell lung carcinoma [Gemma et al., 2001], [Elaraj et al., 2006]. IL-1β, 

IL-1α and IL-1Ra are all expressed by breast cancer cells [Miller et al., 2000]. Furthermore 

mutations in IL-1 and related genes affect cancer risk and progression. A single nucleotide 

polymorphism (SNP) in an IL-1β promoter region, leads to reduced IL-β expression in lung 

tissues and a reduced risk of lung cancer [Landvik et al., 2012]. The actions of IL-1β have 

been shown to promote tumour invasiveness which can be inhibited by the IL-1Ra 

treatment in fibrosarcoma cell lines [Apte et al., 2006]. One mechanism by which IL-1β 

promotes tumour progression is the production of IL-1β following the stimulation of the 

growth factor receptor, mouse mammary tumour virus (MMTV)-driven inducible fibroblast 
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growth factor receptor 1 (iFGFR1), this in turn led to the increase of cyclooxygenase-2 

which drove proliferation [Reed et al., 2009]. 

 

IL-1β has been shown to contribute to underlying chronic inflammation associated with 

obesity [Speaker & Fleshner, 2012]. The saturated fatty acid palmitate activates the NLRP3 

inflammasome leading to increased IL-1β secretion [Wen et al., 2011]. In turn obesity-

driven inflammation promotes insulin resistance eventually leading to the development of 

diabetes [Tack et al., 2012]. Caspase-1 and inflammasome activation have also been shown 

to promote adipocyte differentiation to a more insulin resistant phenotype [Stienstra et al., 

2010]. Preadipocytes isolated from capase-1 -/- and NLRP3 -/- mice were determined to be 

more metabolically active [Stienstra et al., 2010]. Finally obese patients with type 2 

diabetes following a calorie restricted diet and exercise regime not only lost weight but had 

lowered expression of NLRP3 in their adipose tissue [Vandanmagsar et al., 2011]. Elevated 

levels of IL-1 have also been associated with the synovial fluid of rheumatoid arthritis 

patients [Fontana et al., 1982]. Degradation of collagen is also promoted by IL-1 presence 

by promoting the protein synthesis of collagenase enzymes [McCroskery et al., 1985].  

 

As a consequence of the integral part that IL-1 mediated inflammation plays in many 

disease states, several drugs targeting IL-1 have been developed. Due to its natural anti-

inflammatory role IL-1Ra has been utilised in the treatment of autoinflammatory disease. A 

smaller, unglycosylated, version of the protein called anakinra is currently used as a 

treatment option for rheumatoid arthritis [Moltó & Olivé, 2010] [Fleischmann et al., 2004] 

and there have been studies showing efficacy in other autoinflammatory diseases including 
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systemic-onset juvenile idiopathic arthritis (SOJIA) [Lequerré et al., 2007]. Anakinra has also 

been used in clinical trials for the treatment of stroke [Emsley et al., 2005].  

 

Rilonacept and canakinumab are other drugs used to treat excessive IL-1β release. These 

drugs target IL-1β directly as opposed to competing for the interleukin-1 receptor 

[Goldbach-Mansky et al., 2008] [Hoffman et al., 2008] [Alten et al., 2008]. Rilonacept is a 

dimeric fusion glycoprotein containing IgG and IL-1RI with IL-1R accessory protein domains 

[Economides et al., 2003]. It targets both IL-1α and IL-1β [Stahl et al., 2009]. Canakinumab 

is a human IgG monoclonal Ab directed to IL-1β [Church & McDermott, 2009a].  

 

Anti-IL-1β therapy has also been shown to be an effective treatment for most CAPS [Koné-

Paut & Piram, 2012]. Symptoms of MWD can be treated with anakinra [Hawkins et al., 

2003] [Hawkins et al., 2004], rilonacept [McDermott, 2009]and canakinumab[Mueller et al., 

2011]. FCAS [Ross et al., 2008] and NOMID [Goldbach-Mansky et al., 2006] [Lovell et al., 

2005][Hedrich et al., 2008]can also be effectively treated by blockade of IL-1β by anakinra. 

FMF, a hereditary disease that is not induced by NLRP3 mutation, has also been 

successfully treated by anakinra [Soriano et al., 2013] [Roldan et al., 2008][Calligaris et al., 

2008], canakinumab [Soriano et al., 2013] and rilonacept [Hashkes et al., 2012]. In each of 

the cases symptoms were resolved quickly. More general CAPS studies showed both 

rilonacept [Hoffman et al., 2008][Hoffman et al., 2012][Kapur & Bonk, 2009] and 

canakinumab [Lachmann et al., 2009][Kuemmerle-Deschner et al., 2011][Koné-Paut et al., 

2011]to be effective treatments.  
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The main side effects of anti-IL-1β therapy were local pain and inflammation at injection 

site and infections [Galeotti et al., 2012][Hoffman et al., 2008] [Zeft et al., 2009] [Hedrich et 

al., 2012] [Hoffman et al., 2012]. In Anakinra treated patients the impact of injection site 

side effects is exacerbated as it has a short half-life therefore repeated injections are 

required [Kaiser et al., 2012]. Canakinumab has a longer half-life than anakinra which may 

negate the impact of the injection site side effects [Abbate et al., 2012]. Rilonacept is 

administered weekly, unlike Anakinra which is administered daily [Church & McDermott, 

2009b]. Consequently the impact of injection site side effects is also reduced with 

rilonacept treatment when compared to anakinra.  

 

1.3 Zinc and inflammation 

Inflammation is involved in the pathology of many disease states. Zinc deficiency has been 

associated with increases in markers for inflammation [Haase et al., 2006] [Prasad et al., 

2007] and zinc has been reported to reduce the incidence of inflammation when given as a 

supplement [Prasad et al., 2004]. Here, the links between zinc deficiency and the 

inflammatory disease state will be explored.  

 

1.3.1 Zinc 

1.3.1.1 Cellular Zinc  

Zinc is essential for cellular function. It is predicted to bind 10% of mammalian proteins 

[Andreini et al., 2006]. Under physiological conditions zinc is found in the body in its 

cationic form (Zn2+) [Cummings & Kovacic, 2009]. It is a ubiquitous trace element and can 

function as a second messenger [Yamasaki et al., 2007] and as a structural or catalytic 

component of many cellular proteins. Zinc is associated with many classes of protein, from 
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enzymes to transcription factors. Furthermore, free zinc functions as an antioxidant 

reducing levels of free radicals [Prasad, 2008].  

 

Within the cell levels of free intracellular zinc are low [Vallee & Falchuk, 1993], as most 

cellular zinc is bound to the sulphur and nitrogen atoms of cysteine and histidine residues 

of proteins. Ligand exchange of zinc from these residues occurs over a short period of time. 

This mechanism facilitates zinc depletion and acquisition allowing zinc to function as a 

regulatory element [Cummings & Kovacic, 2009].  

 

1.3.1.2 Zinc and Nutrition 

A 2005 study [Wuehler et al., 2005] estimated that 20% of the world’s population is zinc 

deficient. This figure was determined using a calculation that takes into account national 

food balance data, the available zinc within these foods, a model of zinc absorption and 

United Nations demographic data [Wuehler et al., 2005]. This method is therefore not a 

direct measure of zinc deficiency but a prediction based upon the factors that contribute to 

zinc deficiency. This estimate is heavily reliant on the quality of the national food balance 

data and United Nations demographic data, the estimate of available zinc and the accuracy 

of the zinc absorption model.  

 

Nutritionally the main dietary sources of zinc include meat, seafood, legumes and cereals 

[Cummings & Kovacic, 2009]. This is complicated by the fact that many plant-based sources 

of zinc contain a molecule called phytate which impairs the uptake of dietary zinc from 

these sources [O’Dell & Savage, 1960]. Consequently groups at risk of zinc deficiency 

include those in the developing world whose nutritional intake is mainly cereal based, the 
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elderly, as uptake of zinc decreases with age [Haase & Rink, 2009], and vegetarians as 

meats are one of the main dietary sources of zinc [Ibs & Rink, 2003].  

 

Another form of zinc deficiency occurs as a result of insufficient zinc absorpbtion from the 

intestine. The inheritable condition acrodermatitis enteropathica is an example of this type 

of zinc deficiency [Maverakis et al., 2007], which is caused by mutations in the ZIP14 zinc 

transporter [Wang et al., 2002][Küry et al., 2002]. The expression of ZIP14 is regulated in 

response to zinc levels; elevated in low zinc conditions and downregulated in high zinc [Kim 

et al., 2004]. Point mutations lead to retention of ZIP4 in endoplasmic reticulum and 

prevent transport to the membrane [Dufner-Beattie et al., 2003][Wang et al., 2004]. 

Although acrodermatitis enteropathica can be defined as an inflammatory skin condition 

[Brocard & Dréno, 2011] to date there have been no reports of associated elevated IL-1. 

However ZIP14 expression can be induced by LPS and IL-1β stimulation [Lichten et al., 

2009]. It is unclear how this lack of ZIP14 expression in response to LPS and IL-1β would 

affect acrodermatitis enteropathica patients.  

 

Plasma zinc levels are often used to detect zinc deficiencies [Kocyigit et al., 2002]. However 

as zinc levels in blood plasma are generally buffered by cellular zinc levels it is often only 

possible to conclusively detect severe zinc deficiencies. Indeed when comparing cellular 

levels of zinc to plasma levels in individuals fed a low zinc diet, blood cell zinc levels 

dropped more rapidly than zinc within the plasma [Prasad, 1998]. Therefore mild zinc 

deficiency, which can have an effect on inflammatory status, is often difficult to detect 

[Prasad, 2008]. 
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1.3.2 Zinc and disease 

Zinc deficiency is a widespread global issue affecting people in both the developing and 

developed world. The 2002 World Health Report highlighted zinc deficiency as a major risk 

factor for disease and estimated that a third of the world’s population suffered from mild 

to moderate zinc deficiency. Zinc supplementation has also been shown to be an effective 

treatment for many diseases. The incidence of diarrhoea [Sazawal et al., 1995], lower 

respiratory tract infections [Sazawal et al., 1998] and the duration of the common cold 

[Macknin et al., 1998] have all been shown to be reduced via zinc supplementation. 

Additionally supplementation with zinc has been shown to promote survival and reduce 

bacterial load in a mouse model of sepsis [Nowak et al., 2012].  

 

Age-related immunosenescence is commonly associated with zinc deficiency [Fairweather-

Tait et al., 2008] and supplementing zinc in the elderly is an effective way of combating this 

zinc-deficiency induced reduced immune function [Haase & Rink, 2009]. Zinc 

supplementation may combat disease states by compensating for an existing zinc 

deficiency, which would contribute to the disease state by deregulation of the immune 

system.  

 

1.3.3 Zinc and the immune system 

The link between zinc deficiency and disease can at least be partly explained by the role 

zinc plays in regulating the actions of immune cells. As 10% of mammalian proteins bind 

zinc it is not surprising that zinc deficiency affects many regulatory systems within immune 

cells.  
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Zinc deficiency leads to lower levels of mature B-cells and T-cells [Prasad, 1998]. In T cells 

this is due to both impaired T cell development as a consequence of increased apoptosis 

[King et al., 2002] and reduced T cell maturation due to a lack of thymulin [Prasad et al., 

1988]. The balance between the TH1 and TH2 response of T Helper cells is also altered in 

response to zinc deficiency, as the TH1 mediated responses are impaired [Hönscheid et al., 

2009]. Furthermore, dietary zinc deficiency has been shown to lead to reduced cytotoxic T 

killer activity in mice [Fernandes et al., 1979].  

 

Neutrophils, natural killer (NK) cells and macrophages are all affected by zinc deficiency 

[Prasad, 2008]. NK cell activity has been reported to decrease in zinc deficient individuals 

[Prasad, 1998]. Epithelial cell membrane damage and altered tight junctions in response to 

zinc deficiency have been shown to increase neutrophil infiltration [Finamore et al., 2008]. 

In addition, zinc supplementation in mice treated with a common allergen reduced airway 

neutrophil infiltration [Morgan et al., 2011].  

 

Monocytes are precursor cells for macrophages and dendritic cells. In a screen by [Cousins 

et al., 2003] 5% of genes in the monocytic cell line THP-1 were deemed to be zinc sensitive 

(responded either to zinc supplementation or zinc depletion). Of these genes, 104 

displayed increased expression with increased cellular zinc and 86 displayed decreased 

expression with cellular zinc. 9% of the genes that responded to decreased zinc were 

associated with immune function compared to 6% of genes which upregulated cell death, a 

major response to zinc depletion [Cousins et al., 2003]. This highlights the importance of 

zinc in the functioning of monocytic cells. Zinc deficiency has been linked with elevated 
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levels of pro-inflammatory cytokines [Bao et al., 2003] and an important role of cells of the 

monocytic lineage is cytokine secretion.  

 

1.3.4 Zinc and inflammation  

Multiple studies in animals and humans have shown links between zinc and inflammation. 

There are many known mechanisms for the induction and propagation of inflammation; 

however, there are also many other mechanisms that are as yet poorly understood. The 

essential nutrient zinc has been reported to reduce the incidence of inflammation when 

given as a supplement [Prasad et al., 2004], and zinc deficiency is associated with increases 

in markers for inflammation [Prasad et al., 2007]. Specifically, zinc deficiency affects the 

expression of genes that control proinflammatory cytokines [Haase et al., 2007] and 

cytokine secretion [Prasad, 2008].  

 

IL-1β and TNF-α are key pro-inflammatory cytokines. Under conditions of zinc deficiency 

the secretion of these cytokines are elevated [Prasad et al., 2002]. This has been described 

in elderly individuals, where subsequent zinc supplementation reduces inflammation 

[Prasad et al., 2007]. Rheumatoid arthritis patients have also been shown to have 

significantly lower serum zinc levels than those with osteoarthritis and normal controls. In 

these patients, zinc levels were shown to correlate negatively with IL-1β and TNF-α levels 

[Zoli et al., 1998a]. Zinc supplementation in healthy volunteers also reduces TNF-α and IL-

1β [Prasad et al., 2004] 

 

In addition to promotion of inflammation by zinc deficiency, zinc levels may be further 

reduced by inflammatory processes. During inflammation the liver expresses increased 
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levels of ZIP14, a transporter that imports zinc into the liver, and metallothionein (MT), a 

zinc storage protein. This allows the liver to sequester zinc, effectively reducing the zinc 

levels within the plasma [Overbeck et al., 2008]. This sequestration therefore initiates a 

positive feedback promoting the inflammatory state. It is clear that the balance of zinc 

within the body is a key regulator of inflammatory processes and it is possible that 

nutritional zinc deficiency induces inflammation by mimicking this natural regulation.  

 

1.3.4.1 Zinc and inflammatory mechanisms 

At a cellular level, there are several potential mechanisms that could lead to zinc 

deficiency-induced increases in pro-inflammatory cytokine expression and secretion. Zinc 

inhibits IL-1β and TNF-α transcription. Furthermore, [von Bülow et al., 2005] have shown in 

LPS-stimulated monocytes that zinc treatment inhibits phosphodiesterases, leading to 

increased cellular cGMP, which in turn leads to the inhibition of TNF-α and IL-1β 

transcription. IL-1β and TNF-α are transcribed downstream of NF-κB. A20 (zinc finger 

transactivating factor) is a zinc dependent NF-κB inhibitor [Krikos et al., 1992] [Opipari et 

al., 1990], which has been reported to inhibit IL-1 production [Heyninck & Beyaert, 1999], 

[Jäättelä et al., 1996] [Song et al., 1996]. When these systems were zinc depleted the 

transcription of TNF-α and IL-1β would no longer be inhibited by cellular cGMP and A20. 

Interestingly, when dendritic cells are stimulated with the TLR4 ligand LPS, they express 

increased numbers of zinc transporters and consequently intracellular zinc decreases 

[Kitamura et al., 2006]. This zinc depletion may function to activate pathways essential for 

IL-1β expression.  
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Cellular zinc depletion may also contribute to the processing of IL-1β from its pro-form to 

its mature form. Zinc depletion in mice using the zinc chelator N,N,N'N'-tetrakis(-)[2-

pyridylmethyl]ethylenediamine (TPEN) in vivo and in vitro in peritoneal macrophages 

increases levels of IL-1β processing and release [Brough personal communication]. This 

would indicate that zinc depletion not only stimulates pro-IL-1β expression but also 

processing and subsequent secretion of the mature active form. Superficially these results 

appear to contrast with previous work published by the Brough group which show that zinc 

depletion can interfere with processes that induce IL-1β secretion, inhibiting release via 

these pathways [Brough et al., 2009]. In this paper pre-treatment of peritoneal 

macrophages with TPEN leads to inhibition of pannexin-1, a hemi-channel that is required 

for ATP or nigericin-induced IL-1β secretion. It is therefore likely that the zinc depletion-

dependent IL-1β processing observed in [Brough personal communication] does not occur 

via pannexin-1 and may activate different downstream pathways to ATP and nigericin. It 

should also be noted that the zinc depletion-induced IL-1β processing observed in [Brough 

personal communication] occurs after 4h, whereas [Brough et al., 2009] deplete cells of 

zinc for 15min pre-treatment followed by 1h co-treatment with nigericin. Any effects 

observed at the 4h time point with TPEN alone may be observed with TPEN and ATP/ 

nigericin together if the timeframe were extended.  

 

It has been discussed here, how zinc depletion could promote inflammatory disease. 

Another well characterised aspect of cellular zinc depletion is that it induces apoptotic cell 

death [Duffy et al., 2001][Kolenko et al., 2001][Guo et al., 2012][Pang et al., 2012][King et 

al., 2002]. Inflammatory processes and cell death processes are also closely interlinked. 

This final section will explore the interplay between zinc, inflammation and cell death.  
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1.4 Cell death 

A common underlying theme that permeates both the production of mature IL-1β and 

cellular responses to zinc depletion is the process of cell death. There are multiple cell 

death programmes that respond to different stimuli and produce different final cell death 

phenotypes.  

 

1.4.1 Apoptosis 

Apoptosis is a highly regulated, caspase dependent, cell death pathway. Morphologically 

apoptosis can be described as cell fragmentation into membrane bound vesicles which in 

turn are degraded by neighbouring phagocytic cells [Kerr et al., 1972]. Induction of 

apoptosis occurs via the intrinsic, mitochondrial dependent, pathway or the extrinsic, death 

receptor dependent, pathway [Lavrik, 2010].  

 

1.4.1.1 Extrinsic apoptosis 

There are several key ligands involved in extrinsic pathway of apoptosis, these include 

FASL/CD95L [Suda et al., 1993], TNF-α [Laster et al., 1988] and the TNF-α ligand superfamily 

member 10 (TRAIL) [Wiley et al., 1995]. These ligands interact with the receptors FAS/ 

CD95 [Itoh et al., 1991], TNF-α receptor 1 (TNFR1)[Armitage, 1994] and TRAIL receptors 

(TRAILR) 1 and 2 [Pan et al., 1997], respectively. In the native state FAS receptors are 

assembled as trimers via their pre-ligand assembly domain [Boldin et al., 1995] [Siegel, 

2000]. Receptor oligomerisation also occurs with TNFR1 and TRAILR [Schulze-Osthoff et al., 

1998]. Upon stimulation with the ligand, the trimers are stabilised and a dynamic 

multiprotein complex is formed at the cytoplasmic end of the receptor via the death 

domains (DD) [Kischkel et al., 1995]. The death domains are conserved 80 residue domains 
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found in many of the proteins involved in apoptotic signalling pathways [Feinstein et al., 

1995]. The multiprotein complex, known as the Death Inducing Signalling Complex (DISC) 

[Kischkel et al., 1995], is comprised of receptor-interacting protein kinase 1 (RIPK1)[Grimm 

et al., 1996]; FAS associated proteins with a death domain (FADD)[Muzio et al., 

1996][Boldin et al., 1996][Srinivasula et al., 1996]; and pro-caspase-8 [Muzio et al., 1998]; 

in addition to the apoptotic regulators c-FLIP [Thome et al., 1997](a homologue of caspase-

8 that lacks catalytic activity [Budd et al., 2006]; and cellular inhibitors of apoptosis (cIAPs), 

E3 ubiquitin ligases that inhibit apoptosis by direct caspase inhibition [Deveraux et al., 

1998]and inhibition of RIPK1 via ubiquitination [Bertrand et al., 2008].  

 

 Formation of this complex results in the activation of caspase-8 [Muzio et al., 1998]. The 

subsequent activation steps are then dependent upon cell type. There are two types of 

cells, I and II, that induce mitochondrial independent and dependent cell death respectively 

[Scaffidi et al., 1998]. In type I cells active capsase-8 is able to catalyse activation of the 

effector caspase, caspase-3 leading directly to apoptosis [Scaffidi et al., 1998][Barnhart et 

al., 2003]. In type II cells activation of caspase-8 is followed by cleavage of the BH3 

interacting death domain agonist (BID) to produce truncated BID (tBID) [Scaffidi et al., 

1998][Barnhart et al., 2003]. This in turn activates mitochondrial outer membrane 

permeabilisation (MOMP) [Crompton, 2000] which is an integral part of the apoptotic 

pathway. 

 

Extrinsic apoptotic cell death can also be initiated by dependence receptors, which function 

initiate apoptosis when unbound. In the absence of their ligands the dependence receptors 

patched [Thibert et al., 2003] and DCC (deleted in colorectal cancer) [Mehlen et al., 1998] 
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interact with the cytoplasmic receptor DRAL which in turn activates caspase-9 [Mille et al., 

2009]. In the absence of netrin-1 the receptor UNC5B interacts with PP2A and death 

associated protein kinase 1 (DAPK1) which activates apoptotic pathways [Guenebeaud et 

al., 2010].  

 

1.4.1.2 Intrinsic apoptosis  

Intrinsic apoptosis is induced by diverse cellular stress pathways, including oxidative stress 

[Madesh & Hajnóczky, 2001], excessive Ca2+[Gincel et al., 2001] and DNA damage [Lakin & 

Jackson, 1999]. These stress signals activate both pro and anti-apoptotic pathways [Veech 

et al., 2000]. When the pro-apoptotic pathways overcome the anti-apoptotic pathways the 

outer membranes of the mitochondria are permeablised, in a process abbreviated to 

MOMP.  

 

MOMP is a process common to both the extrinsic and intrinsic cell death pathways and 

functions as a point of no return in apoptotic cell death by initiating a set of terminal cell 

death pathways. Following MOMP the mitochondrial membrane potential is dissipated, 

preventing further mitochondrial function [Zamzami et al., 1996]. Toxic proteins are also 

released from the permeablised mitochondria. These proteins include cytochrome c 

[Goldstein et al., 2000], apoptosis inducing factor (AIF) [Susin et al., 1999], endonuclease G 

[Li et al., 2001], direct IAP binding proteins such as SMAC/DIABLO [Du et al., 

2000][Verhagen et al., 2000] and high temperature requirement protein A2 (HTRA2)[Hegde 

et al., 2002].  
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AIF and ENDOG enter the nucleus where they catalyse caspase independent DNA 

fragmentation [Susin et al., 1999] [Li et al., 2001][Joza et al., 2001]. SMAC/ DIABLO and 

HTRA2 inhibit the antiapoptotic cIAP proteins, which are found bound to caspases, 

therefore promoting apoptosis [Chai et al., 2000]. Released cytochrome c associates with 

APAF1 and dATP to form a macromolecular complex that associates with and activates 

caspase-9. This complex is known as the apoptosome. Following activation caspase-9 is 

released from the apoptosome and is available to activate the effector caspases [Zou et al., 

1999]. Caspase-3 [Fernandes-Alnemri et al., 1994] and caspase-7 [Juan et al., 1997] are the 

effector caspases of apoptosis. Caspase-3 is localised to the cytoplasm [Chandler et al., 

1998] and caspase-7 is targeted to the endoplasmic reticulum cytoplasm [Chandler et al., 

1998]. Substrates of these caspases include the DNA-repairing enzyme poly(ADP)ribose 

polymerase (PARP), U1-robonucleoprotein (U1-70 kD) and DNA dependent protein kinase 

(DNA-PK) [Casciola-Rosen et al., 1996]. The processes activated by these cleavages 

constitute apoptotic cell death. These intrinsic and extrinsic pathways of apoptosis 

initiation are illustrated in Fig 1.4.  
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Figure 1.4: Apoptotic cell death 
 
A schematic diagram illustrating the extrinsic and intrinsic pathways that initiate activation of 
effector caspases in apoptosis. 

 

Zinc depletion has also been shown to initiate apoptosis. Inducing zinc deficiency in the HT- 

29 colorectal cell line with TPEN induces apoptotic cell death and an increase in 

transcription of caspase-3 [Gurusamy et al., 2011]. Furthermore, in T lymphocytes TPEN 

treatment induced caspase-3, -8 and-9 expression [Kolenko et al., 2001]. The inhibitor of 

apoptosis molecule, XIAP, potentially regulates apoptosis following zinc depletion as it is 

dependent upon zinc for its function and in the absence of zinc this inhibitor of apoptosis is 

depleted [Zuo et al., 2012].  
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In addition to the role apoptosis plays in zinc deficiency, a condition commonly associated 

with an inflammatory phenotype, inducers of apoptosis have also been reported to 

upregulate IL-1β processing and release [Shimada et al., 2012]. Mutations in the NLRP3 

inflammasome have also been associated with delayed apoptosis [Blomgran et al., 2012].  

 

1.4.2 Necrosis and Necroptosis 

Necrosis is an inflammatory cell death that can be characterised by cytoplasmic swelling, 

irreversible plasma membrane damage and breakdown of key organelles [Grooten et al., 

1993]. Following cytoplasmic and plasma membrane swelling the unpackaged contents of 

the cell are passively released into the extracellular space. These cell contents are 

inflammatory in nature and function as danger signals, activating key inflammatory 

processes [Raffray & Cohen, 1997]. Necrotic cell death with concomitant inflammation 

within a tissue leads to raised levels of pro-inflammatory cytokines [Cocco & Ucker, 2001]. 

A further characteristic of necrosis is random degradation of DNA as opposed to the 

ordered degradation observed in apoptosis [Shi et al., 1990]. DNA is degraded by DNAse I 

[Napirei et al., 2004] or lysosomal DNAse II [Tsukada et al., 2001].  

 

More recently regulatory processes have been identified in the initiation of necrosis. This 

regulated necrosis is referred to as necroptosis. Often initiated by the activators of 

apoptosis but redirected to an end process that is characterised by cell lysis and initiation 

of inflammatory processes. Specifically, necroptosis is defined as cell death dependent 

upon receptor- interacting protein kinase 1 (RIPK1) and RIPK3 [Cho et al., 2009]. These 

kinases form part of a macromolecular complex known as the ripoptosome [Tenev et al., 

2011]. This complex is comprised of RIPK1, Fas-associated via death domain (FADD), 
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caspase-8 and RIPK3 [Tenev et al., 2011]. Ripoptosome function is based upon the RIPK 

activities and it has been suggested that the switch to necroptotic cell death is determined 

by levels of RIPK [Cho et al., 2009].  

 

The ripoptosome is regulated by Inhibitor of apoptosis proteins (IAPs) and FLICE-like 

inhibitor proteins (FLIPs) which is similar to caspase-8 but does not possess catalytic activity 

[Wilson et al., 2009]. IAPs inactivate the ripoptosome by binding and ubiquitinating and 

inactivating the RIP1 component [Tenev et al., 2011][McComb et al., 2012]. Ripoptosome-

induced necroptosis can also be inhibited by the small molecule necrostatin. Necrostatin 

functions as an allosteric inhibitor of RIPK1 [Degterev et al., 2008], which in turn prevents 

ripoptosome-induced activation of necroptotic cell death.  

 

Ripoptosome formation and necroptosis have also been associated with IL-1β processing 

and release. [Vince et al., 2012] showed by depleting IAPs (and consequently removing 

negative regulation of the ripoptosome) IL-1β processing and release was initiated. This IL-

1β processing was determined to be caspase-8 dependent. This highlights the role that cell 

death mechanisms play in IL-1β release. As zinc depletion is commonly associated with 

increased cell death these mechanisms may potentially contribute to zinc-induced IL-1β 

production.  

 

1.4.3 Pyroptosis 

Pyroptosis is an inflammatory cell death, characterised by the activation of caspase-1. This 

activation can occur via any of the inflammasomes discussed previously or by a 

supramolecular assembly of ASC molecules known as the pyroptosome [Yeretssian et al., 
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2008]. Described by [Chen et al., 1996] and further characterised by [Hilbi et al., 1998], 

pyroptosis is initiated by inflammatory stimuli, followed by an increase in osmotic pressure 

and membrane lysis [Miao et al., 2011]. An evolutionary justification for pyroptosis is that 

the process may prevent the propagation of intracellular pathogens by removing their 

intracellular niche [Yeretssian et al., 2008]. 

 

1.4.4 Autophagy 

Autophagy is a cellular stress response that leads to the cannibalism of cellular 

components, in response to insufficient nutrients [Levine, 2005]. Autophagic vesicles are 

double membrane bound components [Baba et al., 1995] that are delivered to lysosomes 

for degradation [Deter et al., 1967]. This cell stress response pathway is not dependent 

upon the de novo synthesis of enzymes as inhibition of this process does not inhibit 

autophagy [Shelburne et al., 1973]. It should also be noted that autophagy is not itself a cell 

death pathway, but as a cellular stress response it often leads to a cell death characterised 

by cytoplasmic vacuolisation [Galluzzi et al., 2007]. Indeed, inhibition of autophagic 

processes can actually promote cell death [Boya et al., 2005].  

 

Autophagy can also be activated by PAMPs and TLR agonists [Xu et al., 2007][Shi & Kehrl, 

2008] and inhibition of autophagy has been shown to induce NLRP3 activation leading to 

the secretion of active IL-1β [Harris et al., 2011]. Additionally autophagy is also a process 

that is dependent upon zinc. Zinc has been shown to be integral to the actions of the 

autophagy inducing drugs Tamoxifen and Clioquinol. Tamoxifen requires zinc to induce 

autophagy, and increased zinc was shown to be associated with acidic autophagic vacuoles 
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[Jin et al., 2010a]. Furthermore cellular zinc increases are induced by the actions of the 

antibiotic Clioquinol which functions as a zinc ionophore [Park et al., 2011].  

 

1.4.6 Cell death summary  

Having described the multiple forms of cell death, it is clear that each has differing 

implications for inflammation and involvement of zinc. The two original classifications of 

cell death, necrosis and apoptosis, traditionally fall into the roles of inflammatory and non-

inflammatory cell death respectively. Pyroptosis is a more recently identified type of 

inflammatory cell death. This cell death is dependent upon caspase-1 and occurs alongside 

IL-1β processing and release. Autophagy, whilst not traditionally considered an 

inflammatory form of cell death, is also proposed to function as a mechanism of IL-1β 

release. Additionally, it is becoming clear that the multiple pathways of cell death have a 

considerable amount of cross over and regulatory mechanisms exist to transfer a cell from 

one route to another. The main example of this is the regulated cell death necroptosis. 

Apoptotic signals initiate this cell death but the final phenotype is an inflammatory necrotic 

phenotype.  

 

Zinc is known to be required for autophagy and therefore would be necessary for, 

autophagy dependent IL-1β release. Conversely zinc depletion is known to induce 

apoptosis. If adhering to the traditional definitions of cell death it would be expected that 

zinc depletion would not induce an inflammatory response via cell death. However it is 

known that zinc deficiency is an inflammatory condition, associated with elevated levels of 

pro-inflammatory cytokines. It is possible therefore that zinc depletion may induce 

necroptosis via initiation of apoptotic pathways.  
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1.5 Summary and objectives 

IL-1β production is an inflammatory process that influences many disease states and 

interacts with cell death processes. In turn zinc deficiency is also associated with an 

inflammatory phenotype and is known to induce cell death. Brough [personal 

communication] have shown IL-1β release to be induced by treating peritoneal 

macrophages with the zinc chelator TPEN. This data shows both an increase in overall levels 

of IL-1β and the initiation of a processing event which allows IL-1β to be released as a 

mature form of the cytokine. In this thesis I will investigate the interactions between zinc 

depletion and IL-1β production. 

 

The link between zinc deficiency and inflammation has been well reported. Establishing 

mechanisms of the role of zinc in inflammation however is complicated by the fact that zinc 

is essential for many cellular processes and 10% of mammalian proteins bind zinc. 

Consequently the regulation of IL-1β production by zinc is an ideal problem to explore with 

integrative systems techniques, which take into account the actions of the network in 

addition to the actions of the pathway. This is known as emergence; the phenomena by 

which a network of interactions produces a property that could not have been predicted by 

studying all of the interactions individually [Pessa, 2006]. A systems biology approach 

benefits from the integration of information from individual interactions to give a more 

holistic picture.  

 

In order to assess the contribution of zinc it would be beneficial to create a network of IL-

1β production, processing and release. From here the proteins involved in the network 

could be assessed for their dependence upon zinc for functionality. It would then be 



Chapter 1  Introduction 
 

57 
 

possible to assess the contribution of zinc to the pathway and investigate the varying roles 

of these pathway components. In order to complete such a project the networks that are 

to be studied need to be well defined. The networks for IL-1β transcription are well studied 

and are suitable for this kind of analysis, however the field of IL-1β processing and is 

release is somewhat younger. This field is developing and changing rapidly. Consequently, 

due to the volume of new literature being published on this subject, undergoing the time-

consuming process of completing a network map would eventually produce an outdated 

piece of work. Therefore at present the characterisation of zinc depletion in IL-1β 

processing and release is best addressed via cellular biology techniques.  

 

The main objectives of this project are as follows 

1. Establish the mechanism by which zinc depletion induces IL-1β production and 

processing in mouse macrophages.  

2. Compare the mechanisms of zinc depletion-induced IL-1β production and 

processing in human macrophage-like cells and mouse macrophages.  

3. Assess the role cell death plays in the link between zinc depletion and 

inflammatory mechanisms.  

4. Create a network model of IL-1β production and investigate the role of zinc binding 

proteins within this network.  
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2.1 Reagents 

2.1.1 Chemicals and Reagents 

All treatments and media used in this thesis are detailed in the table below (Table 2.1). All 

other chemicals and reagents are detailed within the text.  

 

Table 2.1: Chemicals and reagents used with supplier details.  

Chemical/ Reagent Supplier 

Treatment  

N,N,N′,N′-Tetrakis(2 pyridylmethyl)ethylenediamine 
(TPEN) 

Sigma Aldrich (UK) 

ammonium tetrathiomolybdate (TTM), Sigma Aldrich (UK) 

Nigericin sodium salt Sigma Aldrich (UK) 

Salicylaldehyde isonicotinoyl hydrazone (SIH) ChemBridge (USA) 

Diethylenetriaminepentaacetic Acid (DTPA) Sigma Aldrich (UK) 

2-Mercaptopyridine N-oxide (Pyrithione) Sigma Aldrich (UK) 

phorbol 12-myristate 13-acetate (PMA) Sigma Aldrich (UK) 

Bacterial LPS (Escherichia coli 026:B6) Sigma Aldrich (UK) 

Media and Components  

Dulbecco’s Modified Eagle’s Medium (DMEM 4.5g/L 
glucose, 110mg Sodium Pyruvate and L-glutamine) 

Sigma Aldrich (UK) 

RPMI-1640 Medium (RPMI L-glutamine and NaHCO3 Sigma Aldrich (UK) 

Pen/Strep  

Foetal Calf Serum (FCS)  

Inhibitors  

Glyburide Sigma Aldrich (UK) 

Calyculin A Calbiochem (USA) 

Z-Gly-Leu-Phe-chloromethyl ketone (GLF) Sigma Aldrich (UK) 

Caspase-1 Inhibitor I (Ac-YVAD-CHO) Calbiochem (USA) 

CA-074 Me Calbiochem (USA) 
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2.1.2 Antibodies  

All antibodies used in this thesis are detailed in Table 2.2.  

Table 2.2: Antibodies used in western blots.  

Antibody Supplier Dilution Vehicle 

Anti-mouse IL-1β 
antibody, S329 

(Sheep) 

Gift from the 
National Institute of 
Biological Standards 

and Controls (UK) 

1:1000 PBS, 0.1% Tween® 
20 and 5% (w/v) 

dried milk 

Anti-human IL-1β 
antibody, AF-201-NA 

(Goat) 

R & D Systems 
Europe Ltd 

1:1000 PBS, 0.1% Tween® 
20 and 0.1% (w/v) 

BSA 

Anti-XIAP antibody, 
2042S 

(Rabbit) 

Cell Signaling (USA) 1:100 PBS, 0.1% Tween® 
20 and 0.1% (w/v) 

BSA 

Anti-Cleaved 
Caspase-8 (Asp387) 

Antibody, 9496S 
(Rabbit) 

Cell Signaling (USA) 1:100 PBS, 0.1% Tween® 
20 and 0.1% (w/v) 

BSA 

Rabbit anti-sheep 
HRP conjugated 

P0163 

Dako (UK) 1:2000 PBS, 0.1% Tween® 
20 and 5% (w/v) 

dried milk 

Rabbit anti-goat 
HRP conjugated 

P0449 

Dako (UK) 1:1000 PBS, 0.1% Tween® 
20 and 5% (w/v) 

dried milk 

Goat anti-rabbit 
HRP conjugated 

P0448 

Dako (UK) 1:1000 PBS, 0.1% Tween® 
20 and 5% (w/v) 

dried milk 

Anti- β-actin. 
HRP conjugated. 

Sigma Aldrich (UK) 1:20000 PBS, 0.1% Tween® 
20 and 5% (w/v) 

dried milk 

 

 

2.2 Cell Cultures 

Cells were cultured in a humidified incubator at 37°C with 5 % CO2. Cell lines and primary 

cells were maintained in either Dulbecco’s Modified Eagle’s medium (DMEM 4.5 g/L 

glucose, 110 mg/L Sodium Pyruvate and L-glutamine) or RPMI-1640 full (RPMI, L-glutamine 

and NaHCO3) supplemented with penicillin/ streptomycin antibiotic solution (P/S, 100 
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µg/mL streptomycin and 100 IU penicillin, Sigma Aldrich, UK), and with varying 

concentrations of foetal calf serum (FCS, PAA Laboratories, UK).  

 

2.2.1 Cell counting 

Cells were counted using an Improved Neubaur counter (Hawksley, UK). 10 µl of cell 

suspension was added to the slide and a cover slip carefully placed over the cells, ensuring 

no air bubbles were formed over the grid. The number of cells was counted in each grid (4 

by 4 squares) and the mean calculated. This number was then multiplied by 10 000 to give 

the number of cells in 1 ml of media. The total number of cells was established by 

multiplying this number by the volume of cells present. Where the cell number was too 

high to count, the cells were diluted 10 fold in media with this dilution taken in to account 

in the subsequent calculations. When counting bone marrow derived macrophages 

(BMDMs) the 10 fold dilution contained 1 part Trypan Blue Solution (0.4 %, Sigma Aldrich, 

UK). Trypan blue is a dye that stains only dead cells and therefore, when counting, any cells 

that have taken up the dye can be discounted.  

 

2.2.2 Primary cell culture 

C57BL/6J (WT) mice were supplied by Harlan, UK. ASC-/- C57BL/6N and NLRPP3 -/- 

C57BL/6N mice were generously provided by Dr Vishva Dixit, Genentech. All mice were 

maintained at the University of Manchester, BSF. Animals were kept in ventilated cages at 

21°C ± 1°C, 55 % ± 10 % humidity and maintained in a 12 hour light-dark cycle with free 

access to food and water. Adult males were used at an approximate body weight of 25-30g. 

All animals used in this study were sacrificed according to the Animals (Scientific 

Procedures) Act, 1986, UK, by exposure to rising CO2 concentrations. This is a schedule one 

method. 
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2.2.2.1 Peritoneal Macrophages 

Mouse peritoneal macrophages were prepared as described previously [Perregaux et al., 

1992]. Adult, male C57BL/6 mice were sacrificed by exposure to rising CO2 in accordance 

with schedule one as defined above. The abdomen of the mouse was then cleaned using 

70% Industrial Methylated Spirit (IMS, Fisher Scientific, UK). Scissors and forceps were used 

to separate the skin covering the abdomen from the peritoneal cavity and a collection 

pocket formed at one side. 8 ml of RPMI 1640 medium (supplemented with 5 % FCS 1 % 

P/S) was then injected using a 1 0ml sterile syringe (Becton Dickenson, UK) with a sterile 

Microlance 3 needle (0.5 x 16 mm) (Becton Dickenson, UK) into the peritoneal cavity and 

the mouse abdomen gently massaged to maximise cell yield. The peritoneal cavity was 

then gently opened and the medium carefully collected. Cells were counted (see 2.2.1) and 

where required, the media recovered from multiple mice was pooled in order to achieve a 

required cell number. Cells were collected by centrifugation (80 g, 5 min, RT) and the pellet 

resuspended in RPMI 1640 medium (supplemented with 5 % FCS 1 % P/S). The 

macrophages were plated at a density of 1x106 cells/ml in 48 or 24 well cell culture plates 

(Corning Incorporated, USA) and incubated overnight at 37°C, 5 % CO2 for use on the 

following day.  

 

2.2.2.2 Bone Marrow Derived Macrophages  

Bone marrow derived macrophages (BMDMs) were obtained from adult, male C57BL/6J 

mice (Harlan, UK). The femur and tibia were removed and the flesh pulled away using 

forceps. The bones were then transferred to Dulbecco’s Phosphate buffered saline (1X PBS, 

Sigma Aldrich, UK). Any bones that had been broken (exposing the bone marrow) were 

discarded as exposure would increase the risk of infection. 
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Differentiation of bone marrow cells to bone marrow derived macrophages requires the 

cytokine macrophage colony-stimulating factor (M-CSF). Here the L929 mouse fibroblast 

cell line is used to produce M-CSF. L929 cells were cultured in DMEM (10 % FCS, 1 % P/S). 

This media was removed and sterile filtered (Corning Incorporated, USA) and added to 

fresh DMEM (10 % FCS, 1 %P/S) at a ratio of 3:7 (L929 media: Fresh DMEM (10 % FCS, 1 % 

P/S)). This is referred to as differentiation media.  

 

The bones were cut at both ends and the bone marrow washed out of the bone using a 10 

ml sterile syringe (Becton Dickenson, UK) with a sterile Microlance 3 needle (0.5 x 16 mm) 

(Becton Dickenson, UK) of differentiation media. 10 ml of media was used for every 4 

bones (1 mouse). The bone marrow was then resuspended using a 5 ml stripette (Corning 

Incorporated, USA). A further 30 ml differentiation media was added and the cells 

distributed between a T75 cell culture flask (Corning Incorporated, USA) and a T225 cell 

culture flask (Corning Incorporated, USA), 10 ml and 30 ml respectively.  

 

Cells were incubated at 37°C, 5 % CO2 for 3 days. On day three the cells were fed with 

differentiation media; 5 ml per T75 flask and 15 ml per T225 flask. Cells were suitable for 

use on day 6-9. Cells were dissociated by scraping with a cell scraper (Sarstedt, USA) into 

warm DMEM 10 % FCS, 1 % P/S. Cells were counted (described in 2.2.1) and seeded at 1x 

106 cells/ml in 48 or 24 well cell culture plates (Corning Incorporated, USA). Cells were 

incubated overnight at 37°C at 5% CO2 prior to treatment on the following day.  
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2.2.3 THP-1 Cell line 

Cells analogous to human macrophages were produced by differentiating cells of the 

human monocytic cell line THP-1 with phorbol 12-myristate 13-acetate (PMA, Sigma 

Aldrich, UK). THP-1 cells (Tsuchiya et al., 1980) were passaged and maintained in DMEM 

with P/S and 10 % volume/volume (v/v) FCS. When passaging, a 5 ml stripette (Corning 

Incorporated, USA) was used to break apart the cell aggregates by repeated aspiration and 

release.  

 

One day before treatment the cells were passaged, counted (as described in 2.2.1) and 

seeded at 1x 106 cells/ml in 48 or 24 well cell culture plates (Corning Incorporated, USA). To 

stimulate the differentiation of the THP-1 cells to macrophage-like cells they were treated 

with 0.5 μM PMA (Sigma Aldrich, UK) for 3 h. After this time the media was removed and 

replaced with fresh DMEM (10 % FCS, 1 % P/S). The cells were incubated overnight at 37°C 

at 5 % CO2 prior to treatment on the following day.  

 

2.3 Cell culture treatment and inhibitor studies 

2.3.1 Pro-IL-1β Expression 

Pro-IL-1β expression was stimulated with bacterial lipopolysaccharide (LPS) (Escherichia coli 

026:B6, 1 µg/ml, Sigma Aldrich) in peritoneal macrophages (2h), THP-1 (4h) and BMDM 

(4h).  

 

2.3.2 Treatment 

Cells were zinc depleted with 10µM N,N,N′,N′-Tetrakis(2pyridylmethyl)ethylenediamine 

(TPEN, Sigma Aldrich, UK), 1 mM Diethylenetriaminepentaacetic Acid (DTPA, Sigma Aldrich, 
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UK) and/or 50 µM 2-Mercaptopyridine N-oxide (pyrithione, Sigma Aldrich, UK) following 

LPS treatment. Peritoneal macrophages were zinc depleted for 4h. THP-1 and BMDMs were 

zinc depleted for 24h. In a separate well, nigericin (Sigma Aldrich, UK) was added as a 

positive control for IL-1β processing and release at a final concentration of 20 μM. Cells 

were treated with nigericin for the duration of the zinc depletion experiments (4h in 

peritoneal macrophages, 24h in THP-1 cells and BMDMs). Vehicle controls were also used 

for each of the treatments. The vehicles for the treatments were as follows: Dimethyl 

sulfoxide (DMSO Sigma Aldrich, UK) for TPEN, 10 mM HEPES (Fisher Scientific, UK) buffered 

media (pH 7- 7.5) for DTPA, dH2O for pyrithione and 100 % ethanol (Fisher Scientific, UK) 

for Nigericin. Excepting the 10mM HEPES buffered media (pH 7- 7.5) all vehicle final 

concentrations were 0.5 %.  

 

2.3.3 Inhibitor Studies 

Where inhibitors were used they were added to cells after LPS treatment and 15 min prior 

to zinc depletion. The inhibitors used in the experiments described in this thesis (for details 

and suppliers see table 2.1) were all diluted in DMSO. Appropriate DMSO controls were 

used in each experiment and are detailed in figure legends in chapters 3-6.  

 

The caspase-1 inhibitor Ac-YVAD-CHO (YVAD) was added to a final concentration of 100 

μM. Glyburide, a sulfonylurea drug which functions by inhibition of ATP-sensitive K+ 

channels preventing the activation of the NLRP3 inflammasome [Lamkanfi et al., 2009], was 

added to a final concentration of 100 μM. Ca074-Me, an inhibitor of cathepsin B, was 

added to a final concentration of 80 μM. Calyculin A, a Serine/Threonine Phosphatase 

Inhibitor that inhibits PP2A, was used at concentrations of 10 nM or 50 nM. Z-Gly-Leu-Phe-
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chloromethyl ketone (GLF), a cathepsin G inhibitor, was added to a final concentration of 

10 μM.  

 

2.3.4 Sample Collection 

Supernatants and lysates were collected at the end of the experiment. Plates were 

centrifuged at 400 g, 4°C for 5 min (Eppendorf centrifuge 5804R). The supernatant was 

then collected in eppendorf tubes and stored at -20°C. Cells were lysed in ice cold cell lysis 

buffer (1X PBS (Sigma Aldrich), 0.1 % Triton® X-100 (Sigma Aldrich, UK) and 1 % protease 

inhibitor cocktail (AEBSF hydrochloride, Aprotinin (bovine lung, crystalline), E-64 protease 

inhibitor, EDTA (disodium) and leupeptin hemisulphate) (Calbiochem, USA). Cell lysates (50 

µl) were taken on ice by scraping with a sterile 200 µl pipette tip with a folded end, the well 

washed in the lysis buffer and the lysates taken in eppendorf tubes to be stored at -20°C.  

 

2.4 Sample analysis 

2.4.1 LDH assay 

Lactate dehydrogenase (LDH) is a cytosolic protein that is only released after membrane 

rupture. LDH activity can be assayed rapidly and at low cost. Consequently measuring LDH 

activity is a good indication of cell death. This was measured in the cell culture medium 

using the CytoTox 96® Non-Radioactive Cytotoxicity Assay (Promega, UK) according to the 

manufacturer’s instructions. The assay is based upon LDH conversion of a tetrazolium salt 

into a red formazan product, where the amount of LDH is equivalent to the amount of red 

formazan product. An untreated sample was lysed using the lysis buffer provided to give a 

maximal LDH activity reading, which was considered to be indicative of 100 % cell death. A 
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baseline reading was taken using fresh media only. Absorbance readings were measured 

using the BioTek Synergy HT plate reader at 490 nm. 

 

2.4.2 Bicinchonic acid (BCA) assay 

Total protein content was measured in cell lysates using the BCA protein assay (Thermo 

Scientific, USA) according to the manufacturer’s instructions. BCA is a copper chelator that 

chelates monovalent copper ion (Cu+). The assay contains Cu2+ which is reduced to Cu+ by 

proteins present in the sample and the BCA chelates this Cu+ producing a purple product. 

Higher levels of protein lead to higher levels of Cu+ and consequently a larger amount of 

purple product. Standards and samples were diluted in PBS and measured in triplicate. 10 

µl of standard or sample was incubated with 200 µl of assay buffer, at 60°C for 30 min. The 

final absorbance readings were measured using the BioTek Synergy HT plate reader at 570 

nm.  

 

2.4.3 Enzyme-linked immunosorbent assay (ELISA)  

IL-1β levels were quantified in the lysates and supernatants using human and mouse IL-

1β/IL-1F2 Duoset ELISA kits from R&D systems, according to the manufacturer’s 

instructions. 96 well nunc-immuno plates (Nunc, Denmark) were coated with 50 µl/well of 

capture antibody (provided in kit) diluted in 1X PBS and incubated overnight (4°C). Parafilm 

(Pechiney Plastic Packaging Company, USA) was used to cover the plates at this stage and 

at each subsequent incubation step. On the following day plates were washed 4X with 

ELISA wash buffer (1x PBS (Sigma Aldrich), 0.05 % v/v Tween® 20 (Sigma Aldrich)) and dried 

thoroughly by banging the plate against a piece of polystyrene covered in blue roll. After 

each incubation step the plate was washed and dried in this way. The plates were then 
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blocked in 200 µl/well RD buffer (1X PBS (Sigma Aldrich), and 1 % weight/volume (w/v) 

Bovine serum albumin (BSA, Sigma Aldrich, UK) for 1h to prevent non-specific binding.  

 

Standards (provided in kit) were serially diluted in RD buffer from 4000 pg/mL to 3.9 

pg/mL. Standards (duplicate) and samples were loaded (50 µl/well) on the plate and 

incubated (either 2h RT or overnight at 4°C) on an orbital shaker. After this the plate was 

washed (x4) and dried before 50 µl/well detection antibody (provided in kit and diluted in 

RD buffer) was added to each well and incubated (RT 1h). After washing and drying, the 

next incubation was 50 µl/well Streptavidin-HRP (provided in kit) 30 min RT. HRP is an 

abbreviation for horseradish peroxidase. In the presence of hydrogen peroxide HRP will 

form oxygen radicals which oxidise substrates. In this instance the final incubation is with 

the 3,3′,5,5′-tetramethylbenzidine (TMB) substrate (Thermo Scientific, USA) (20 min, RT, 

protected from light). This oxidation creates a blue colour the intensity of which is 

dependent upon the amount of HRP present. The amount of blue product formed is 

proportional to the amount of the test protein. After 20 min the reaction was stopped with 

1M sulphuric acid (H2SO4, Fisher Scientific, UK), this changes the colour from blue to yellow.  

 

 

Absorbance readings were measured using the BioTek Synergy HT plate reader at 450 nm 

and 570 nm (to correct for volume). The readings at 570 nm were then subtracted from the 

450 nm readings to give the final absorbance values. The absorbance values were analysed 

using the GraphPad Prism software. The assay values of the standards (y values) were 

tabulated against their known concentrations (x values), and the sample assay values (y 

values) entered into the same graph leaving the x values blank. The data was then logged, 

non-sigmoidal linear regression performed, and the unknown values interpolated from the 

curve.  
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2.4.4. Western blot analysis of IL-1β release 

Levels of pro- and mature IL-1β cannot be distinguished by ELISA as the epitopes of the 

ELISA capture and detection antibodies are present on both the pro- and mature protein. In 

order to identify processing of IL-1β, samples therefore need to be separated via 

electrophoresis and visualised using Western blotting techniques.  

 

The gel plates were cleansed thoroughly and placed in gel clamps (BioRad, UK). A 12 % SDS-

polyacrylamide gel was prepared (Table 2.3) and set between the glass plates under water-

saturated butan-1-ol (Fisher Scientific, UK). This prevents oxygen interfering with 

polymerisation process. After the gel was set the butan-1-ol was removed by washing with 

dH2O (x5). A 5 % stacking gel (Table 2.3) was poured on top of the resolving gel and a 

plastic comb inserted to create either 10 or 15 lanes. The set gel was transferred to an 

electrophoresis chamber (Mini PROTEAN® Tetra Cell, BioRad, UK) and covered with running 

buffer (Table 2.3).  

 

Protein denaturation with SDS abolishes secondary structure and imparts uniform charge; 

this facilitates separation of proteins on the basis of their electrophoretic mobility (a 

function of size). To denature the proteins 40 µl of sample was added to 10 µl of loading 

buffer (10 % w/v SDS, 50 % w/v glycerol, 400 mM Tris-HCl pH 6.8, 0.025 % w/v 

bromophenol blue, 5 % w/v β-mercaptoethanol) to a final volume of 50 µl, heated to 95°C 

for 5 min and vortexed to mix. 10 µl of molecular weight marker (Precision Plus Protein™ 

All Blue Standards, BioRad, UK) was loaded in the far left lane of each gel, followed by 40 µl 

of sample in each subsequent lane. All empty lanes were loaded with an equivalent volume 

of loading buffer.  
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Protein samples were resolved by electrophoresis at 70 V for 40 min (to allow the samples 

to travel through the stacking gel) and then 150 V for the remaining 1h until the solvent 

front had migrated to the bottom of the resolving gel. At this point it is important to ensure 

that the solvent front does not run off the end of the resolving gel as the sample could then 

be lost in the running buffer. Proteins were then transferred to a nitrocelluose membrane 

(Whatman, Germany) at 15 V for 45 min using a Trans-blot SD semi-dry transfer cell 

(BioRad, UK). The transfer stack comprised three filter papers and a nitrocellulose 

membrane soaked in transfer buffer (Table 2.3). Two pieces of filter paper were placed 

together, one on top of the other, and then rolled over gently with a stripette to remove 

any air bubbles. After carefully removing the stacking gel, the resolving gel was placed on 

the filter papers with the ladder on the right hand side. The nitrocellulose membrane was 

placed on top of this and the stack was again gently rolled with a stripette. A further filter 

paper was added and air bubbles rolled out of the stack for the final time. The stack was 

then inverted and placed on the bottom plate of the Trans-blot SD semi-dry transfer cell 

(BioRad, UK). 

 

After the transfer step the membranes were blocked with PBS (and 0.1 % Tween® 20 with 5 

% dried milk) for 1h to prevent any non-specific binding of the antibodies. Membranes 

were then incubated with primary antibodies (see table 2.2) overnight (4°C) on an orbital 

shaker. Membranes were washed extensively (30x, 30 min) with PBS (and 0.1 % Tween®20) 

before and after 1h incubation with Horse radish peroxidase (HRP)-conjugated secondary 

antibodies (see table 2.2). Finally membranes were incubated for 1 min with Enhanced 

chemi-luminescence (ECL) reagent (Amersham, UK) and light emission was measured using 

photosensitive film (KODAK BIOMAX MR-1,8 X 10 IN, Sigma Aldrich, UK). All Western blot 

images in this thesis are representative of three separate experiments. 
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Table 2.3: Recipes for gels and buffers required for western blotting  

12% Running Gel : Total volume 10mL 

Component Volume (ml) Supplier 

dH2O 3.3 NA 

30% acrylamide 4 National diagnostics, UK 

1.5M Tris pH 8.8 2.5 Sigma Aldrich, UK 

10% SDS 0.1 Fisher Scientific, UK 

10% Ammonium 
persulfate 

0.1 Sigma Aldrich, UK 

TEMED 0.004 BioRad, UK 

  

 
  

5% Stacking Gel: Total volume 10mL 

Component Volume (ml) Supplier 

dH2O 6.8 NA 

30% acrylamide 1.7 National diagnostics, UK 

1M Tris pH 6.8 1.25 Sigma Aldrich, UK 

10% Sodium dodecyl 
sulphate 

0.1 Fisher Scientific, UK 

10% Ammonium 
persulfate 

0.1 Sigma Aldrich, UK 

TEMED 0.01 BioRad, UK 

  

 
  

Running buffer (10X): Total volume 2L  

To make 1X running buffer dilute 1 in 10 in dH2O. 

Component Mass (g) Supplier 

Trizma base 60.8 Sigma Aldrich, UK 

Glycine 288 Fisher Scientific, UK 

Sodium dodecyl sulfate 20 Fisher Scientific, UK 

  
 

  

Transfer buffer (10X): Total volume 2L 

To make 1X transfer buffer dilute 1:2:7 (10 X transfer buffer: Methanol (MeOH, Fisher 
Scientific): dH2O). 

Component Mass (g) Supplier 

Trizma base 58 Sigma Aldrich, UK 

Glycine 290 Fisher Scientific, UK 
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2.4.5 β- Actin staining of western blots 

In order to control for loading errors, gels can be blotted for β-Actin, which is considered to 

be constitutively expressed in all cells and should consequently be present at essentially 

constant levels in all cell lysate samples. β-Actin blots were completed after the initial 

Western blots for the primary protein of interest. 

 

Following ECL treatment membranes were washed with PBS (and 0.1 % Tween®20) a 

minimum of five times and the blocked (1h) with PBS (and 0.1 % Tween® 20 with 5 % dried 

milk). Membranes were then incubated with β-Actin antibody (1h, (PBS and 0.1 % Tween® 

20 with 5 % dried milk)), washed with PBS (and 0.1 % Tween®20) and incubated for 1 min 

with Enhanced chemi-luminescence (ECL) reagent (Amersham, UK). Light emission was 

measured using photosensitive film (KODAK BIOMAX MR-1,8 X 10 IN, Sigma Aldrich, UK). β-

Actin was visible as a band of approximately 42 kD. 

 

2.4.6 Densitometry  

To assess the distribution of the 17 kD mature form of IL-1β in response to zinc depletion, 

the intensity of these bands were measured using the image analysis program Image J 

[Schneider et al., 2012]. Using the gel analysis function each of the 17 kD bands was 

selected and the density plotted. The width of the peak represented the thickness of the 

band and the height of the peak the intensity. Each peak was enclosed, which normalised 

for background intensity, and then the area under the peaks calculated. For each blot the 

total of the areas under the peaks were considered to be 100% and a percentage of the 

total was calculated for each peak. Each value is an assessment of relative distribution of 

the 17 kD in a blot and cannot be considered in the absence of the other bands.  
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2.5 Network Map 

In the fifth chapter I will describe how a network map of processes leading to IL-1β 

expression was constructed using a systematic procedure. This is a brief summary of the 

procedure which is described in more detail in chapter five. A literature search was carried 

out to return a set of articles satisfying an appropriately designed search string. The 

returned references were then assessed against certain criteria and any that did not fit 

were excluded. Following this the quality and suitability of the data for building a network 

map were assessed based on a further four criteria; reaction type, technique, replicates 

and presence or absence of a statistical test. Using these data a network map was created 

in CellDesigner4.2 [Funahashi et al., 2003], exported in Systems Biology Markup Language 

(SBML) format [Hucka et al., 2003], annotated according to Minimum Information 

Requested In the Annotation of biological Models (MIRIAM) [Le Novère et al., 2005] 

standard and a Systems Biology Graphical Notation (SBGN) [Le Novère et al., 2009] process 

diagram was created.  

 

2.6 Statistical Analysis 

Except where stated otherwise, all data presented are from a minimum of three separate 

experiments (n=3). Groups were analysed by one-way ANOVA and subsequent Bonferroni 

multiple comparison test or unpaired t-test. Data are the mean +/- standard error mean 

(SEM). ***P<0.001, **P<0.01,*P<0.05.  
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3.1 Introduction 

Correlations between elevated levels of pro-inflammatory cytokines and low zinc status are 

well established [Prasad, 2008][Prasad, 2009]. Zinc depletion is biologically relevant in 

inflammation in both the context of systemic zinc deficiency and localised zinc depletion 

induced by intracellular pathogens [Corbett et al., 2012]. Additionally, a wide body of 

evidence suggests that IL-1β levels are associated with low zinc levels in disease [Overbeck 

et al., 2008].  

 

Our lab has shown previously that an acute zinc depletion in macrophages inhibits the 

activity of pannexin-1, which is necessary for ATP- and nigericin-induced IL-1β processing 

and release through the NLRP3 inflammasome [Brough et al., 2009]. Conversely, further 

work from our lab indicated that sustained zinc depletion may induce IL-1β processing both 

in vitro and in vivo. Injection of TPEN into the peritoneal cavity of C57BL/6 mice induced 

elevated levels of processed IL-1β in the plasma [Brough personal communication]. 4h 

treatment of peritoneal macrophages with the TPEN zinc chelator induced IL-1β processing 

in vitro, where copper and iron chelation did not [Brough personal communication]. This 

would suggest that zinc depletion is an activator of the inflammasome and initiates IL-1β 

processing and release.  

 

The objective of this study was to understand the mechanisms by which zinc depletion 

induced IL-1β processing and release. Here it was shown that zinc depletion activates 

multiple mechanisms associated with IL-1β processing. 
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3.2 Methods 

Details of all methods used in this study are described in Chapter 2. In brief, C57BL/6 (WT) 

adult males were used at an approximate body weight of 25-30g, to generate peritoneal 

macrophages. Endogenous IL-1β was induced by 2h LPS treatment. Zinc-depletion-

dependent IL-1β processing was induced by 4h treatment with TPEN, DTPA and a DTPA 

pyrithione combination. Nigericin was used as a positive control for IL-1β processing (4h). 

This K+/H+ ionophore induces potassium efflux activating the NLRP3 inflammasome 

[Perregaux et al., 1992] [Mariathasan et al., 2006]. In some experiments inhibitors of 

cellular proteases were used. These inhibitors were added following LPS treatment and 15 

min prior to zinc depletion or nigericin treatment. IL-1β release was measured in cell 

culture supernatants by ELISA. IL-1β processing was measured in cell culture supernatants 

by western blot and the proportion of the 17 kD form assessed by densitometry. Levels of 

intracellular proteins were measured by western blot of the cell lysate.  
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3.3 Results  

3.3.1 Zinc depletion induced IL-1β release and cell death in the absence of LPS 

To assess whether zinc depletion alone, in the absence of LPS, could induce IL-1β release, 

mouse peritoneal macrophages were treated for 4h with varying concentrations of the 

membrane permeable zinc chelator TPEN (2.5 µM, 5 µM, 10 µM) and equivalent DMSO 

vehicle controls (0.125 %, 0.25 %, 0.5 %). Macrophages treated with 10 µM TPEN had 

elevated IL-1β release when compared with the DMSO vehicle control. Significant IL-1β 

release does not occur following treatment with 2.5 µM and 5 µM TPEN for 4h. This data 

shows that LPS priming may not be required to induce low levels of IL-1β release. LDH 

levels, which are measured as an indicator of cell death, are also increased following 10 µM 

TPEN treatment (Fig 3.1C). As IL-1β release levels were low it was not possible to assess IL-

1β processing by western blot.  

 

It is also possible that IL-1β expression is induced by zinc depletion. Cell lysates were 

measured for IL-1β using ELISA and then normalised for protein content (assessed with a 

BCA assay). No significant increase in IL-1β expression was observed following zinc 

depletion, however there is a trend of increasing IL-1β in cell lysates followed by a drop in 

IL-1β present in cell lysates at 10 µM TPEN (Fig 3.1 B).  
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Figure 3.1: IL-1β release and expression following 4h zinc depletion of peritoneal macrophages.  

Mouse peritoneal macrophages were treated with 0.125%, 0.25% 0.5% DMSO vehicle, TPEN (2.5µM, 
0.125% DMSO; 5µM, 0.25% DMSO; 10µM, 0.5% DMSO) and IL-1β release was measured by ELISA in 
the supernatant (A) and cell lysate (B) (normalised with total protein value, measured by BCA). % 
total LDH was measured as an indicator of cell death (C). Error bars ±SEM of 5 (A), 4 (B) and 5 (C) 
independent experiments. A one-way ANOVA with a post-hoc Bonferroni multiple comparison test 
was used to identify significant differences between groups. Comparison pairs were as follows; 
DMSO (0.125%) with TPEN (2.5 µM), DMSO (0.25%) TPEN (with 5 µM), DMSO (0.5%) with TPEN (10 
µM) (*). **p<0.01, *p<0.05.  
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3.3.2 Zinc depletion induces IL-1β release and processing  

The intracellular zinc pools of LPS-primed (1 µg/ml, 2h) mouse peritoneal macrophages 

were depleted using zinc chelators for 24h and 4h. The membrane permeable zinc chelator 

TPEN (10 µM) induced cell death alongside processing and release of IL-1β at both 24h and 

4h (Fig 3.2A, Fig 3.2B, Fig 3.2D, Fig 3.3A, Fig 3.3B, Fig 3.3D). When compared with DMSO 

vehicle treated cells the IL-1β release following TPEN treatment was significantly increased 

by 3.36 fold after 4h and by 10.74 fold after 24h. Processing from the 31 kD pro form to the 

17 kD mature form can be observed in cells treated with TPEN (10 µM) but not in cells 

treated with DMSO vehicle alone (Fig 3.2B, Fig 3.3B).  

 

 To ensure that TPEN-induced processing and release of IL-1β was specific to zinc depletion 

and didn’t occur due to an ‘off target’ artefact, a further zinc depletion method was 

utilised. Intracellular zinc depletion was modelled with a combination of the extracellular 

zinc chelator DTPA (1 mM) and the zinc ionophore pyrithione (50 µM). Treatment of 

peritoneal macrophages using this second method for both 24h and 4h also induced cell 

death alongside IL-1β processing and release (Fig 3.2A, Fig 3.2B, Fig 3.2D, Fig 3.3A, Fig 3.3B, 

Fig 3.3D). At 4h DTPA (1 mM) treated cells released 14.77 fold more IL-1β into the 

supernatant than cells treated with HEPES vehicle. Cells treated with DTPA (1 mM) and 

pyrithione (50 µM) at 4h and 24h showed no significant difference in IL-1β release, 

although fold changes of 26.73 and 16.3 were observed respectively, when compared to 

vehicle. Similarly there was no significant difference in IL-1β release between DTPA and 

HEPES vehicle treated cells at 24h. Processing to mature 17 kD IL-1β can be seen following 

DTPA treatment alone and in conjunction with pyrithione at both 4h (Fig 3.2B) and 24h (Fig 

3.3B).  
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IL-1β release is assessed by measuring total IL-1β in the supernatant via IL-1β ELISA. This 

measures both the pro-form and the mature form of the cytokine. It is not possible to use 

this ELISA to assess the proportion of pro and mature IL-1β present within the sample; 

however elevated levels of released IL-1β appear to correlate with IL-1β processing events 

when compared with western blot data. Densitometry can be used to assess the intensity 

of bands of one size on a western blot. In this way the changes in the 17 kD form of IL-1β 

following zinc depletion can be assessed. This is not a direct measurement of quantity but a 

measure of proportion. Band intensity was measured and then assessed as percentage of 

all 17 kD bands on a particular blot. In this way the values presented represent the 

distribution 17 kD forms but are only relevant when presented with all lanes present and 

only compiled with data from blots with the same lanes.  

 

Following assessment of 17 kD band distribution, higher percentages of the 17 kD form 

were seen following zinc depletion than vehicle treatment. There was a significantly higher 

proportion of 17 kD form in TPEN treated lanes than DMSO treated lanes at both 4h and 

24h (Fig 3.2C, Fig 3.3C). As with the IL-1β release data, there was no significant difference in 

the proportion of 17 kD IL-1β in the DTPA and pyrithione treated lanes compared with 

treatment with pyrithione alone at 4h or 24h (Fig 3.2C, Fig 3.3C). At 4h there was a 

significantly higher proportion of 17 kD IL-1β following DTPA treatment when compared 

HEPES, although this was not seen at 24h (Fig 3.2C, Fig 3.3C). Following zinc depletion the 

pattern of 17 kD band distribution is similar to the pattern of IL-1β release suggesting that 

patterns seen in IL-1β release are indicative of processing activity.  
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At 4h cell death is significantly higher in DTPA treated cells when compared with HEPES 

vehicle treated cells (Fig 3.2D). Cell death is significantly higher in DTPA and pyrithione 

treated cells when compared with pyrithione treated cells at this time point (Fig 3.2D). At 

24h cell death is significantly higher in TPEN treated cells when compared with DMSO 

vehicle treated cells and in DTPA treated cells when compared with HEPES vehicle treated 

cells (Fig 3.3D). As there is a high level of cell death in cells treated with pyrithione alone at 

24h (Fig 3.3D) there is no significant difference with DTPA and pyrithione treated cells. This 

elevated cell death was not associated with increased levels of IL-1β release or any 

observable IL-1β processing (Fig 3.3A, Fig 3.3B). This supports the hypothesis that zinc 

depletion initiates an IL-1β processing event that is associated with IL-1β release, and 

whilst cell death may occur in the absence of processing this does not increase IL-1β 

release. After assessing all of the data described above and noting that a response was 

observed at 4h, all subsequent experiments were treated for 4h with zinc chelators.  
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Figure 3.2: IL-1β processing and release following 4h zinc depletion of LPS primed peritoneal 
macrophages.  

LPS-primed (1 µg/ml, 2h) mouse peritoneal macrophages were treated with 0.5 % DMSO vehicle, 
TPEN (10 µM, 0.5 % DMSO), HEPES (10 mM, pH 7-7.5), DTPA (1 mM, 10 mM HEPES media) or 
Pyrithione (50 µM, 10 mM HEPES media) and IL-1β release was measured in the supernatant was by 
ELISA (A) IL-1β processing from pro to mature (31 to 17 kD) was measured by western blot (B), % 
distribution of the 17 kD IL-1β western blot band was analysed as an indicator of IL-1β processing (C) 
and % total LDH was measured as an indicator of cell death (D). Error bars ±SEM of 5 (A), 3 (C) and 4 
(D) independent experiments. Western blot is representative of 3 independent experiments. A one-
way ANOVA with a post-hoc Bonferroni multiple comparison test was used to identify significant 
differences between groups. Comparison pairs were as follows; DMSO with TPEN (*), HEPES with 
DTPA (#) and pyrithione with DTPA pyrithione ($). *** p<0.001, **p<0.01, *p<0.05. 
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Figure 3.3: IL-1β processing and release following 24h zinc depletion of LPS primed peritoneal 
macrophages.  

LPS-primed (1µg/ml, 2h) mouse peritoneal macrophages were treated with 0.5% DMSO vehicle, 
TPEN (10µM, 0.5% DMSO), HEPES (10mM, pH7-7.5), DTPA (1mM, 10mM HEPES media) or Pyrithione 
(50µM, 10mM HEPES media) and IL-1β release was measured in the supernatant was by ELISA (A) IL-
1β processing from pro to mature (31 to 17kD) was measured by western blot (B), % distribution of 
the 17 kD IL-1β western blot band was analysed as an indicator of IL-1β processing (C) and % total 
LDH was measured as an indicator of cell death (D). Error bars ±SEM of 3 (A), 3 (C) and 3 (D) 
independent experiments. Western blot is representative of 3 independent experiments. Please 
note that the order of this western blot differs from the graphs, with the pyrithione lane positioned 
before the DTPA lane. A one-way ANOVA with a post-hoc Bonferroni multiple comparison test was 
used to identify significant differences between groups. Comparison pairs were as follows; DMSO 
with TPEN (*), HEPES with DTPA (#) and pyrithione with DTPA pyrithione. *** p<0.001, *p<0.05.  
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3.3.3 Zinc depletion induced IL-1β processing and release is caspase-1 dependent.  

Caspase-1 is the best characterised protease recognised to cleave IL-1β from its pro-to its 

mature form [Gross et al., 2011], although additional proteases have been identified 

[Netea et al., 2010]. Peritoneal macrophages that were to be zinc depleted with TPEN were 

pre-treated with an inhibitor for caspase-1 (YVAD-cho) in order to establish whether zinc 

depletion induced caspase-1-dependent IL-1β release. Inhibition of caspase-1 reduced IL-1β 

release (Fig 3.4A) by 70%. This suggests that zinc depletion by TPEN induced caspase-1 

activation, which in turn cleaved pro-IL-1β. Although it should be noted that YVAD 

inhibition did not reduce IL-1β release to vehicle levels, therefore other mechanisms may 

contribute to IL-1β release induced by zinc depletion.  

 

The hypothesis of zinc depletion induced caspase-1 dependent processing and release is 

further supported by western blot data. Fig 3.4 B shows decreased IL-1β processing, which 

is also shown by the assessment of % distribution of the 17 kD IL-1β band (Fig 3.4 C). 

Although this data cannot be considered to be conclusive as it is only representative of a 

single repeat. Inhibiting caspase-1 with YVAD did not reduce the levels of cell death (Fig 

3.4D). It can therefore be surmised that TPEN induced cell death is not caspase-1 

dependent.  
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Figure 3.4: YVAD inhibition reduces IL-1β release in zinc depleted peritoneal macrophages.  

LPS-primed (1µg/ml, 2h) mouse peritoneal macrophages were treated with YVAD (100 µM, 0.5 % 
DMSO), 0.5 % DMSO vehicle and TPEN (10 µM, 0.5 % DMSO). IL-1β release was measured in the 
supernatant was by ELISA (A) IL-1β processing from pro to mature (31 to 17kD) was measured by 
western blot (B), % distribution of the 17 kD IL-1β western blot band was analysed as an indicator of 
IL-1β processing (C) and % total LDH was measured as an indicator of cell death (D). Error bars ±SEM 
of 3 (A) and 3 (D) independent experiments. Western blot (B) shows 4 separate lanes from one 
repeat. This n of 1 was assessed for % distribution of the 17 kD IL-1β band as an indicator of IL-1β 
processing (C). Comparison pairs were as follows; DMSO with TPEN (#), and TPEN with TPEN and 
YVAD (*). *** p<0.001 
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3.3.4 Inhibition of cathepsin B reduces zinc depletion induced IL-1β processing and release.  

Cathepsin B is a lysosomal protease that is associated with NLRP3 inflammasome activation 

following its release from destabilised lysosomes [Hornung & Latz, 2010]. To investigate 

whether zinc depletion activates IL-1β processing via this process, cathepsin B was 

inhibited with CA074-Me in combination with TPEN induced zinc depletion (4h). Inhibition 

of cathepsin B reduced IL-1β release by 67 % in TPEN treated cells (Fig 3.5A) and IL-1β 

processing induced by TPEN was also reduced to vehicle levels (Fig 3.5B). This was 

supported by analysis of the distribution of the 17 kD band, which showed a decreased 

proportion of processed IL-1β following cathepsin B inhibition (Fig 3.5C). This would 

suggest that the activity of cathepsin B is necessary for zinc depletion induced IL-1β 

processing and release. Cell death levels in macrophages treated with both the cathepsin B 

inhibitor and TPEN were not significantly lower than the levels of cell death in macrophages 

treated with TPEN alone (Fig 3.5D), therefore zinc depletion induced cell death is not 

dependent upon cathepsin B.  
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Figure 3.5: Cathepsin B inhibition reduces IL-1β processing and release in zinc depleted peritoneal 
macrophages.  

LPS-primed (1µg/ml, 2h) mouse peritoneal macrophages were treated with CA074-Me (80µM, 0.2% 
DMSO), 0.5% DMSO vehicle, TPEN (10µM, 0.5% DMSO), and IL-1β release was measured in the 
supernatant was by ELISA (A) IL-1β processing from pro to mature (31 to 17kD) was measured by 
western blot (B), % distribution of the 17 kD IL-1β western blot band was analysed as an indicator of 
IL-1β processing (C) and % total LDH was measured as an indicator of cell death (D). Error bars ±SEM 
of 4 (A), 3 (C) and 4 (D) independent experiments. Western blot (B) is representative of 3 
independent experiments. Comparison pairs were as follows; DMSO with TPEN (#), and TPEN with 
TPEN and CA074-Me (*). *** p<0.001 *p<0.05. 
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3.3.5 Inhibition of PP1/PP2A reduces zinc depletion induced IL-1β processing and release.  

It has been shown that a PP1/PP2A signal is necessary for the activation of the NLRP3, 

NLRC4 and AIM2 inflammasomes [Luheshi et al., 2012]. TPEN (10 µM) treated peritoneal 

macrophages were treated with the PP1/PP2A inhibitors calyculin A and okadaic acid to 

assess whether zinc-depletion induced IL-1β processing and release was dependent upon a 

PP1/PP2A signal. At calyculin A concentrations of 10 nM and 50 nM TPEN-induced IL-1β 

release was reduced by 83% and 77% respectively to levels of release that were equivalent 

to vehicle treated cells (Fig 3.6A). TPEN-induced IL-1β processing was also inhibited by 

calyculin A (Fig 3.6B). The proportion of 17 kD IL-1β was also lower than vehicle controls for 

macrophages treated with calyculin A (Fig 3.6C). IL-1β release was also reduced by 45% in 

macrophages treated with TPEN (10 µM) and okadaic acid (2 µM) (Fig 3.6A). Okadaic acid 

with 0.5 % DMSO vehicle control induces some IL-1β processing (Fig 3.6B), although to a 

lesser extent than TPEN treatment. When macrophages are treated with both TPEN and 

okadaic acid IL-1β processing is reduced to vehicle control levels (Fig 3.6B). This would 

suggest that a PP1/PP2A signal is essential for zinc depletion induced IL-1β processing and 

release, and is consistent with the involvement of an inflammasome. 

 

PP1/PP2A inhibition does not inhibit release of mature IL-1β by promoting the survival of 

the macrophages. Treatment of peritoneal macrophages with the PP1/PP2A inhibitors 

calyculin A and okadaic acid induced cell death levels similar to those observed with TPEN 

treatment (Fig 3.6D). Consequently there is no significant reduction in cell death in cells 

treated with TPEN and PP1/PP2A inhibitors (Fig 3.6D). As both the PP1/2A inhibitors and 

the TPEN treatment induce cell death it is not possible to determine the cause of cell death 

following a combination of both treatments.  
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Figure 3.6: PP1/PP2A inhibition reduces IL-1β processing and release in zinc depleted peritoneal 
macrophages.  

LPS-primed (1 µg/ml, 2h) mouse peritoneal macrophages were treated with Calyculin A (DMSO 
vehicle), Okadaic acid (2 µM, 0.5 % DMSO vehicle), TPEN (10 µM, 0.5 % DMSO vehicle), and IL-1β 
release was measured in the supernatant was by ELISA (A) IL-1β processing from pro to mature (31 
to 17 kD) was measured by western blot (B) % distribution of the 17 kD IL-1β western blot band was 
analysed as an indicator of IL-1β processing (C) and % total LDH was measured as an indicator of cell 
death (D). Error bars ±SEM of 3 (A), 3 (C) and 3 (D) independent experiments. Western blot (B) is 
representative of 3 independent experiments. Comparison pairs were as follows; DMSO with TPEN 
(#), TPEN with TPEN and Calyculin A (10 nM), Calyculin A (50 nM), and Okadaic acid respectively (*). 
*** p<0.001 **p<0.01 *p<0.05. 
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3.3.6 ASC is required for zinc depletion induced IL-1β processing and release 

ASC is central to caspase-1 activation as a central component of many of the 

inflammasomes and the pyroptosome. To establish whether ASC was involved in zinc 

depletion-induced IL-1β processing and release, zinc depletion experiments were 

undertaken in ASC knockout (-/-) mice. TPEN, DTPA alone and DTPA and pyrithione in 

combination induced IL-1β release in WT mice by 9.99, 5.34 and 8.56 fold respectively (Fig 

3.7). TPEN-induced release was reduced by 63% in ASC -/- (Fig 3.7A). The IL-1β release was 

reduced by 89% in DTPA treated ASC-/- macrophages and by 75% in the ASC -/- treated 

with a combination of DTPA and pyrithione (Fig3.7B). These data suggest that zinc-

depletion-induced IL-1β release occurs via an ASC dependent inflammasome. As a positive 

control for ASC-/- behaviour WT and ASC-/- macrophages were treated with nigericin, 

which is known to be dependent upon ASC. Nigericin induced IL-1β release was reduced by 

99% in ASC-/- macrophages (Fig 3.7C). As abolition of IL-1β release in ASC-/- macrophages 

following zinc depletion is not complete it is possible that ASC dependent processes may 

not be entirely responsible for this effect.  

 

The IL-1β processing that occurs in response to zinc depletion in WT macrophages is down 

regulated in ASC -/- cells. This is seen in response to TPEN, DTPA and DTPA in combination 

with pyrithione (Fig 3.8A, Fig 3.8B). Treatment of ASC KO macrophages with nigericin (a 

control for ASC dependent IL-1β processing) fails to induce IL-1β processing (Fig 3.8 C) 

which confirms the ASC -/- cells are behaving as expected. Assessment of distribution of 

the 17 kD band in western blots shows decreased proportions of the 17 kD form in 

response to zinc depletion in ASC-/- macrophages when compared to WT macrophages. 

The pattern of distribution of the 17 kD form of IL-1β is very similar to the pattern of IL-1β 

release, highlighting the strong link between processing and release. In addition to the 17 
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kD form, a larger band of approximately 28 kD is often observed in conjunction with the 17 

kD form. In the zinc depleted ASC -/- macrophages the 17 kD form is not observed but the 

28 kD form remains (Fig 3.8A, Fig 3.8B), although this 28 kD form is not present in nigericin 

treated ASC-/- macrophages. This would imply that in the absence of ASC zinc depletion is 

still inducing some inflammasome independent IL-1β processing events.  

 

Cell death levels in both the WT and ASC -/- cells were similar, with no significant 

reductions in cell death in the zinc depleted ASC-/- macrophages. This would indicate that 

the cell death induced by zinc depletion is not dependent upon ASC (Fig 3.9A, Fig 3.9B) or 

caspase-1 (Fig 3.4D). In the nigericin treated cells the level of cell death in the ASC KO was 

also similar to cell death levels in WT cells (Fig 3.9C).  

 

 

 

 

 



Chapter 3                                                             Zinc depletion and IL-1β in mouse macrophages 
 

92 
 

 

Figure 3.7: IL-1β release in zinc depleted WT and ASC -/- peritoneal macrophages 

LPS-primed (1µg/ml, 2h) mouse peritoneal macrophages (WT and ASC -/-) were treated with 0.5% 
DMSO vehicle, TPEN (10µM, 0.5% DMSO) (A), HEPES (10mM, pH7-7.5), DTPA (1mM, 10mM HEPES 
media) or Pyrithione (50µM, 10mM HEPES media) (B) and 0.5% Ethanol vehicle, Nigericin (20µM, 
0.5% Ethanol vehicle) (C). IL-1β release was measured in the supernatant was by ELISA. Error bars 
±SEM of 6 (A) 6 (B) and 6 (C) independent experiments. A one-way ANOVA with a post-hoc 
Bonferroni multiple comparison test was used to identify significant differences between groups. 
Comparison pairs were as follows; (A) WT DMSO with WT TPEN (#) and WT TPEN with ASC-/- TPEN 
(*); (B) WT HEPES with WT DTPA (#), pyrithione with WT DTPA pyrithione (#), WT DTPA with ASC-/- 
DTPA (*),WT DTPA pyrithione with ASC-/- DTPA pyrithione (*);(C) WT ethanol with WT nigericin (#) 
and WT nigericin with ASC-/- nigericin (*); *** p<0.001 , ** p<0.01, * p<0.05.  
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Figure 3.8: IL-1β processing in zinc depleted WT and ASC -/- peritoneal macrophages 

LPS-primed (1µg/ml, 2h) mouse peritoneal macrophages (WT and ASC -/-) were treated with 0.5% 
DMSO vehicle, TPEN (10µM, 0.5% DMSO), HEPES (10mM, pH7-7.5), DTPA (1mM, 10mM HEPES 
media) or Pyrithione (50µM, 10mM HEPES media) and Nigericin (20µM, 0.5% Ethanol vehicle). IL-1β 
processing from pro to mature (31 to 17kD) was measured by western blot (A), (B) and (C). Western 
blots are representative of 3 independent experiments. % distribution of the 17 kD IL-1β western 
blot band was analysed as an indicator of IL-1β processing (D), (E) and (F). Error bars ±SEM of 3 (D), 3 
(E) and 3 (F) independent experiments. A one-way ANOVA with a post-hoc Bonferroni multiple 
comparison test was used to identify significant differences between groups. Comparison pairs were 
as follows; (D) WT DMSO with WT TPEN (#) and WT TPEN with ASC-/- TPEN (*); (E) WT HEPES with 
WT DTPA (#), pyrithione with WT DTPA pyrithione (#), WT DTPA with ASC-/- DTPA (*),WT DTPA 
pyrithione with ASC-/- DTPA pyrithione (*). An unpaired t test was undertaken to identify significant 
differences between WT nigericin and ASC-/- nigericin (F) (*); *** p<0.001.  
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Figure 3.9: Cell death in zinc depleted WT and ASC -/- peritoneal macrophages 

LPS-primed (1µg/ml, 2h) mouse peritoneal macrophages (WT and ASC -/-) were treated with 0.5% 
DMSO vehicle, TPEN (10µM, 0.5% DMSO) (A), HEPES (10mM, pH7-7.5), DTPA (1mM, 10mM HEPES 
media) or Pyrithione (50µM, 10mM HEPES media) (B) and 0.5% Ethanol vehicle, Nigericin (20µM, 
0.5% Ethanol vehicle) (C). % total LDH was measured as an indicator of cell death. Error bars ±SEM of 
4 (A) 4 (B) and 4 (C) independent experiments. A one-way ANOVA with a post-hoc Bonferroni 
multiple comparison test was used to identify significant differences between groups. Comparison 
pairs were as follows; (A) WT DMSO with WT TPEN (#) and WT TPEN with ASC-/- TPEN (*); (B) WT 
HEPES with WT DTPA (#), pyrithione with WT DTPA pyrithione (#), WT DTPA with ASC-/- DTPA (*),WT 
DTPA pyrithione with ASC-/- DTPA pyrithione (*);(C) WT ethanol with WT nigericin (#) and WT 
nigericin with ASC-/- nigericin (*); *** p<0.001 , ** p<0.01.  
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3.3.7 NLRP3 is not essential for zinc depletion induced IL-1β processing and release 

The best characterised inflammasome is the NLRP3 inflammasome [Leemans et al., 2011] 

[De Nardo & Latz, 2011]. To test whether the NLRP3 inflammasome was also essential for 

the zinc-depletion-induced IL-1β release, peritoneal macrophages from NLRP3 -/- mice 

were zinc depleted in an experiment analogous to the ones described above.  

 

Depleting zinc in NLRP3 -/- cells using TPEN, DTPA or DTPA in combination with pyrithione 

induced IL-1β release equivalent to the release from WT cells (Fig 3.10A, Fig 3.10B). 

However the standard error mean of each of the data sets is large and may be masking 

other effects. Similar patterns were observed in relation to IL-1β processing. In TPEN and 

DTPA-pyrithione treated cells IL-1β processing was observed to occur in WT and NLRP3 -/- 

macrophages (Fig 3.11A, Fig 3.11B). Distribution of the 17 kD band in western blots 

followed a similar pattern to IL-1β release (Fig 3.11D, Fig 3.11E). This data showed a partial 

reduction in IL-1β processing in TPEN stimulated NLRP3 cells when compared with TPEN 

simulated WT cells (Fig 3.11D). A significant reduction was also observed following DTPA 

stimulation of NLRP3 -/- cells when compared to WT (Fig 3.11E). Although not conclusive 

this data would support a role for NLRP3 in zinc depletion induced IL-1β processing. Cell 

death levels were similar in both NLRP3 -/- macrophages and WT macrophages following 

zinc depletion (Fig 3.12A, Fig 3.12B).  

 

IL-1β processing and release was reduced in NLRP3 -/- macrophages in comparison with WT 

macrophages in response to nigericin treatment (Fig 3.11C, Fig 3.11F, 3.10C). Nigericin-

induced IL-1β release is known to depend upon the NLRP3 inflammasome [Mariathasan et 

al., 2006]. Therefore the loss of IL-1β processing and release in the NLRP3 -/- cells in 
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response to this stimulus indicates that the NLRP3 -/- cells were behaving normally. Overall, 

the evidence presented on zinc depletion induced IL-1β processing and release in NLRP3 -/- 

macrophages is not conclusive and cannot prove or disprove involvement of the NLRP3 

inflammasome.  
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Figure 3.10: IL-1β release in zinc depleted WT and NLRP3 -/- peritoneal macrophages 

LPS-primed (1µg/ml, 2h) mouse peritoneal macrophages (WT and NLRP3 -/-) were treated with 0.5% 
DMSO vehicle, TPEN (10µM, 0.5% DMSO) (A), HEPES (10mM, pH7-7.5), DTPA (1mM, 10mM HEPES 
media) or Pyrithione (50µM, 10mM HEPES media) (B) and 0.5% Ethanol vehicle, Nigericin (20µM, 
0.5% Ethanol vehicle) (C). IL-1β release was measured in the supernatant was by ELISA. Error bars 
±SEM of 6 (A) 6 (B) and 6 (C) independent experiments. A one-way ANOVA with a post-hoc 
Bonferroni multiple comparison test was used to identify significant differences between groups. 
Comparison pairs were as follows; (A) WT DMSO with WT TPEN (#) and WT TPEN with NLRP3 -/- 
TPEN (*); (B) WT HEPES with WT DTPA (#), pyrithione with WT DTPA pyrithione (#), WT DTPA with 
NLRP3 -/- DTPA (*),WT DTPA pyrithione with NLRP3 -/- DTPA pyrithione (*);(C) WT ethanol with WT 
nigericin (#) and WT nigericin with NLRP3 -/- nigericin (*); *** p<0.001 , * p<0.05.  
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Figure 3.11: IL-1β processing in zinc depleted WT and NLRP3 -/- peritoneal macrophages 

LPS-primed (1µg/ml, 2h) mouse peritoneal macrophages (WT and NLRP3 -/-) were treated with 0.5% 
DMSO vehicle, TPEN (10µM, 0.5% DMSO), HEPES (10mM, pH7-7.5), DTPA (1mM, 10mM HEPES 
media) or Pyrithione (50µM, 10mM HEPES media) and Nigericin (20µM, 0.5% Ethanol vehicle). IL-1β 
processing from pro to mature (31 to 17kD) was measured by western blot (A), (B) and (C). Western 
blots are representative of 3 independent experiments. % distribution of the 17 kD IL-1β western 
blot band was analysed as an indicator of IL-1β processing (D), (E) and (F). Error bars ±SEM of 3 (D), 3 
(E) and 3 (F) independent experiments. A one-way ANOVA with a post-hoc Bonferroni multiple 
comparison test was used to identify significant differences between groups. Comparison pairs were 
as follows; (D) WT DMSO with WT TPEN (#) and WT TPEN with NLRP3-/- TPEN (*); (E) WT HEPES with 
WT DTPA (#), pyrithione with WT DTPA pyrithione (#), WT DTPA with NLRP3-/- DTPA (*),WT DTPA 
pyrithione with ASC-/- DTPA pyrithione (*). An unpaired t test was undertaken to identify significant 
differences between WT nigericin and ASC-/- nigericin (F) (*); *** p<0.001.  
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Figure 3.12: Cell death in zinc depleted WT and NLRP3 -/- peritoneal macrophages 

LPS-primed (1µg/ml, 2h) mouse peritoneal macrophages (WT and NLRP3 -/-) were treated with 0.5% 
DMSO vehicle, TPEN (10µM, 0.5% DMSO) (A), HEPES (10mM, pH7-7.5), DTPA (1mM, 10mM HEPES 
media) or Pyrithione (50µM, 10mM HEPES media) (B) and 0.5% Ethanol vehicle, Nigericin (20µM, 
0.5% Ethanol vehicle) (C). % total LDH was measured as an indicator of cell death. Error bars ±SEM of 
3 (A) 3 (B) and 3 (C) independent experiments. A one-way ANOVA with a post-hoc Bonferroni 
multiple comparison test was used to identify significant differences between groups. Comparison 
pairs were as follows; (A) WT DMSO with WT TPEN (#) and WT TPEN with NLRP3 -/- TPEN (*); (B) WT 
HEPES with WT DTPA (#), pyrithione with WT DTPA pyrithione (#), WT DTPA with NLRP3 -/- DTPA 
(*),WT DTPA pyrithione with NLRP3 -/- DTPA pyrithione (*);(C) WT ethanol with WT nigericin (#) and 
WT nigericin with NLRP3 -/- nigericin (*); *** p<0.001, **P<0.01, *P<0.05 
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3.3.8 Zinc depletion induces XIAP depletion and caspase-8 cleavage.  

Whilst zinc depletion-induced IL-1β processing and release was partially ASC dependent, 

the ASC KO did not completely ablate IL-1β processing and release (Fig 3.7, 3.8). There is 

literature to suggest that depletion of inhibitor of apoptosis proteins (IAPs) and subsequent 

activation of caspase 8 results in caspase-8 dependent IL-1β processing and release [Vince 

et al., 2012]. Cellular levels of X-linked inhibitor of apoptosis (XIAP) were measured in 

parallel with cellular levels of caspase-8. XIAP is a protein known to be degraded in low zinc 

conditions [Makhov et al., 2008]. In peritoneal macrophages treated with TPEN and a 

combination of DTPA and pyrithione there was evidence for XIAP degradation and caspase-

8 upregulation and cleavage (Fig 3.13).  

 

As XIAP was decreased and caspase-8 activated in my zinc depleted macrophages, it was 

possible that the inflammasome independent IL-1β processing observed following TPEN 

treatment may be induced by ripoptosome formation. It would be interesting to investigate 

further using inhibitors of the ripoptosome. Overall these data suggest that zinc depletion 

activates inflammasome-dependent caspase-1 activation and depletion of XIAP to activate 

caspase-8 activity.  
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Figure 3.13: Cell death in zinc depleted WT and NLRP3 KO peritoneal macrophages 

LPS-primed (1µg/ml, 2h) mouse peritoneal macrophages were treated with 0.5% DMSO vehicle, 
TPEN (10µM, 0.5% DMSO), HEPES (10mM, pH7-7.5), DTPA (1mM, 10mM HEPES media) or pyrithione 
(50µM, 10mM HEPES media). Intracellular XIAP and caspase-8 measured by western blot. Western 
blots are representative of 3 independent experiments. 
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Table 3.1: Summary table of IL-1β and cell death response to zinc depletion 

Figure LPS 
Zinc 

depletion 

Inhibitor 
or 

knockout 
cell 

Time of 
treatment 

(h) 
Processing Release Cell Death 

3.1 - TPEN NA 4 NA Yes Yes 

3.2 + TPEN NA 4 Yes Yes Not significant 

3.2 + DTPA NA 4 Yes Yes Yes 

3.2 + 
DTPA and 
pyrithione 

NA 4 Yes 
Not 

significant 
Yes 

3.3 + TPEN NA 24 Yes Yes Yes 

3.3 + DTPA NA 24 Yes 
Not 

significant 
Yes 

3.3 + 
DTPA and 
pyrithione 

NA 24 Yes 
Not 

significant 
Not significant 

3.4 + TPEN YVAD 4 NA (note n=1) Inhibited 
No significant 

reduction 

3.5 + TPEN 
CA074-

Me 
4 Inhibited Inhibited 

No significant 
reduction 

3.6 + TPEN 

PP1/PP2A 
inhibitors 
calyculin 

A and 
okadaic 

acid. 

4 Inhibited Inhibited 
No significant 

reduction 

3.7, 
3.8, 
3.9 

+ TPEN ASC -/- 4 Inhibited Inhibited 
No significant 

reduction 

3.7, 
3.8, 
3.9 

+ DTPA ASC -/- 4 Inhibited Inhibited 
No significant 

reduction 

3.7, 
3.8, 
3.9 

+ 
DTPA and 
pyrithione 

ASC -/- 4 Inhibited Inhibited 
No significant 

reduction 

3.10, 
3.11, 
3.12 

+ TPEN NLRP3 -/- 4 Partial inhibition 
Not 

significant 
No significant 

reduction 

3.10, 
3.11, 
3.12 

+ DTPA NLRP3 -/- 4 Partial inhibition 
Not 

significant 
No significant 

reduction 

3.10, 
3.11, 
3.12 

+ 
DTPA and 
pyrithione 

NLRP3 -/- 4 Yes 
Not 

significant 
No significant 

reduction 

 

TPEN, DTPA and DTPA with pyrithione induce cell death, IL-1β processing and release. Inhibiting 
caspase-1 (YVAD), cathepsin B (CA074-Me) and PP1/2A (calyculin A and okadaic acid) inhibits IL-1β 
processing and release but does not reduce cell death. TPEN, DTPA and DTPA with pyrithione 
induced IL-1β processing and release is reduced in ASC -/- cells but cell death is not affected. Data 
for zinc depletion of NLRP3 -/- macrophages is variable and consequently no conclusions can be 
made from this data.  
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3.4 Discussion 

In this study the role of zinc depletion as a novel activator of IL-1β processing and release 

has been confirmed. Furthermore the mechanism by which this happens has also been 

identified. Treatment of mouse peritoneal macrophages with TPEN (10 µM) in the absence 

of LPS induced low levels of IL-1β release (Fig 3.1). In the presence of LPS several methods 

of zinc depletion were shown to activate IL-1β processing and release at early (4h Fig 3.2) 

and late (24h Fig 3.3) time points. This observation is supported by existing research that 

suggests that inflammatory phenotypes are common in zinc deficient individuals [Zoli et al., 

1998b] [Wong & Ho, 2012] particularly in response to infection [Prasad et al., 2007]. Using 

multiple forms of zinc depletion confirmed the role of zinc depletion in TPEN-induced zinc 

depletion. This data was further supported by an unpublished experiment carried out 

previously in this lab in which zinc chloride was added to the treatment media to 

counteract the zinc depletion properties of TPEN, and IL-1β release was reduced to vehicle 

levels [Brough, personal communication].  

 

3.4.1 Zinc depletion, Inflammasomes and caspase-1-dependent processing 

The canonical pathway for IL-1β processing is the inflammasome-dependent activation of 

IL-1β. Consequently it was not unexpected that zinc depletion induced IL-1β processing and 

release was, at least in part, dependent on caspase-1 as shown by inhibition of YVAD (Fig 

3.4). To further confirm activation of caspase-1, an activity assay or caspase-1 western blot 

would be useful, although caspase-1 westerns are known to have variable success. Sterile 

insults have generally been associated with upregulation of IL-1β via the NLRP3 

inflammasome [Leemans et al., 2011]. The effects of zinc deficiency and consequent low 

intracellular zinc represent a sterile inflammatory insult and therefore activation of the 

NLRP3 inflammasome would not be unexpected.  
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3.4.1.1 Cathepsin B 

Lysosomal destabilisation and the enzymes released as a result of this process have been 

recognised to be involved in the activation of the NLRP3 inflammasome [Hornung & Latz, 

2010]. Cathepsin B is integral to this activation. Inhibition of cathepsin B with the inhibitor 

CA074-Me has been shown to reduce NLRP3 activation in response to multiple 

inflammatory insults including Listeria monocytogenes infection [Meixenberger et al., 

2010], serum amyloid A [Niemi et al., 2011], silica particles [Morishige et al., 2010], 

Neisseria gonorrhoeae infection [Duncan et al., 2009], islet amyloid polypeptide [Masters 

et al., 2010] and polyene macrolide antifungal drugs [Darisipudi et al., 2011]. When 

cathepsin B was inhibited in zinc depleted cells, a reduction in IL-1β processing and release 

was observed (Fig 3.5) indicating that like many NLRP3 activating inflammatory insults, the 

effects of zinc depletion on IL-1β levels were cathepsin B dependent. It should be noted 

however that CA074-Me treatment also inhibits the activation of the NLRP1b 

inflammasome in response to anthrax lethal toxin [Newman et al., 2009], suggesting that 

this could be a pathway involved in the activation of multiple inflammasomes.  

 

3.4.1.2 PP2A 

In comparison with cathepsin B inhibition, the role of PP2A inhibition in IL-1β processing 

and release is not well characterised. PP2A inhibition has been identified as a method of 

preventing the activation of multiple inflammasomes [Luheshi et al., 2012], although the 

mechanism by which this occurs has not been defined. Inhibition of PP2A has previously 

been shown to increase JNK activity and consequent c-jun phosphorylation, AP-1 activity 

and IL-1β expression [Shanley et al., 2001]. Therefore in this study, reduction of IL-1β levels 

in response to PP2A inhibition is likely to occur as a result of modulating pathways specific 

to IL-1β processing as opposed to IL-1β expression. In agreement with [Luheshi et al., 
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2012], it was observed that inhibition of PP2A with calyculin A , reduced levels of IL-1β 

processing and release in zinc depleted macrophages (Fig 3.6).  

 

3.4.1.3 Inflammasome components 

The evidence discussed thus far supported the hypothesis that an inflammasome 

dependent pathway initiated the processing and release of IL-1β in response to zinc 

depletion. Using mice deficient in the integral inflammasome component ASC confirmed 

that the above hypothesis was at least partially true (Figs 3.7, 3.7). The evidence from 

macrophages lacking NLRP3 was less conclusive however. It appears that there is little 

reduction in IL-1β processing and release following zinc depletion in NLRP3 deficient 

macrophages (Figs 3.10, 3.11). However, the error bars in the IL-1β release experiment (Fig 

3.10) are particularly large so it is not possible to conclude definitively that there is no 

reduction in IL-1β release. Although it is unlikely that NLRP3 is responsible for the majority 

of IL-1β processing and release, if at all. It should also be noted that the genetic 

backgrounds of the knockout mice and the WT mice, whilst both being C57BL/6 are N and J 

respectively. Consequently there may be intrinsic genetic differences that lead to a 

differential zinc depletion response; however there is no evidence to suggest this is the 

case (Fig 3.7, Fig 3.8, Fig 3.9, Fig 3.10, Fig 3.11, Fig 3.12).  

 

3.4.2 Cell death, Caspase-8 and alternative processing of IL-1β 

It is apparent that zinc depletion of mouse peritoneal macrophages induces cell death (Fig 

3.1, Fig 3.2, Fig 3.3). This cell death is not dependent upon caspase-1, cathepsin B or the 

ASC component of the inflammasome (Fig 3.4, Fig 3.5, Fig 3.9), therefore cell death is 

occurring independently of inflammasome dependent IL-1β processing and release. As the 
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cell death was independent of caspase-1 it could not be classified as pyroptosis [Labbé & 

Saleh, 2008][Kepp et al., 2010], however the concomitant release of IL-1β indicates that an 

inflammatory cell death is being initiated. Zinc depletion is known to induce apoptosis in 

cells [Kolenko et al., 2001], however traditionally apoptosis has been considered to be non-

inflammatory form of cell death [Franc et al., 1999]. TPEN has been shown to reduce XIAP 

levels in prostate and breast cancer cells [Zuo et al., 2012]. In this paper it is proposed that 

this occurs due to XIAP destabilisation due to lack of zinc binding at the BIR domains of the 

IAP proteins.  

 

Whilst inflammasome components contribute to IL-1β processing and release in response 

to zinc depletion, it is clear that some IL-1β processing and release occurs in their absence. 

A mechanism for IL-1β processing with a partial NLRP3 dependence has been proposed 

recently [Vince et al., 2012]. Depleting levels of IAPs may activate both NLRP3/caspase-1 

and caspase-8, and these proteases together induce IL-1β processing and release. In light of 

these two publications levels of XIAP and caspase-8 were measured in the lysates of zinc 

depleted macrophages (Fig 3.13). As in breast and prostate cancer cells, XIAP was depleted 

in cells treated with the intracellular zinc chelators TPEN and DTPA in combination with 

pyrithione. There was also a concomitant increase in caspase-8 activation. Interestingly this 

was not observed in cells treated with DTPA alone, although this treatment had induced IL-

1β processing (Fig3.9). This may suggest that the caspase-8 dependent pathway is not 

induced in response to this extracellular zinc depletion.  

 

Whilst the cell death initiated by zinc depletion probably occurs in a XIAP dependent 

manner, the role of caspase-8 contribution will require more careful study. The relationship 
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of caspase-8 with the inflammasome is complicated. A recent publication has shown that 

caspase-8 deficiency activates the NLRP3 inflammasome [Kang et al., 2013], and in contrast 

[Vince et al., 2012] state that depletion of IAPs induce both caspase-8 and NLRP3 function. 

Caspase-8 is known to be activated by a complex known as the ripoptosome [Oberst & 

Green, 2011], IAPs have also been reported to modulate the ripoptosome and the integral 

ripoptosome component RIPk1 [Darding & Meier, 2012][Tenev et al., 2011]. To investigate 

the contribution of this pathway to zinc-depletion-induced IL-1β processing and release, 

RIPK1 could be inhibited. Necrostatin is known to be an inhibitor of RIP1 kinase (RIP1K) and 

the consequent necroptotic cell death induced by this kinase [Degterev et al., 2008].  

 

Cell death data presented alongside IL-1β processing and release data, suggest that cell 

death processes are closely linked to mechanisms of IL-1β release. In all of the experiments 

presented above cell death in zinc depleted cells is generally constant regardless of 

pathway manipulation by inhibitors. This would indicate that the cell death processes are 

separate to the pathways of previously identified modulators of IL-1β processing (PP2A, 

cathepsin B, inflammasomes and caspases). This is in contrast to the caspase-1 induced 

pyroptotic cell death [Miao et al., 2011].  

 

3.4.3 Conclusions 

Zinc depletion has been identified as a novel activator of IL-1β processing and release. This 

process occurs via pathways that involve PP1/2A signals, cathepsin B, caspase-1 and ASC. It 

is not known if NLRP3 contributes to this IL-1β processing and release as the data was 

inconclusive. Two caspases that cleave IL-1β, caspase-1 and caspase-8, are activated by zinc 

depletion. XIAP an inhibitor of apoptosis is depleted in response to zinc depletion in 
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macrophages and is probably responsible for the initiation of cell death observed 

throughout this investigation. The depletion of XIAP and activation of caspase-8 suggest 

that necroptotic processes may be important in zinc deficiency associated inflammation.  
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Chapter 4: Zinc depletion and IL-1β in human and 
mouse cells. 
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4.1 Introduction 

In humans zinc status is closely interlinked with the inflammatory state [Bleackley & 

Macgillivray, 2011]. Consequently it is important to identify the role zinc depletion plays in 

the activation and release of the inflammatory mediator IL-1β. In the previous chapter the 

role of zinc depletion in IL-1β processing and release was investigated in mouse peritoneal 

macrophages. In this chapter the role of zinc depletion in human macrophage-like cells was 

investigated. Establishing the mechanism of zinc-depletion-induced IL-1β processing and 

release in human cells is an important step towards producing data with relevance to 

human health and disease.  

 

In this investigation the human monocytic cell line THP-1 was used. THP-1 cells were 

originally derived from an acute monocytic leukaemia [Tsuchiya et al., 1980]. These cells 

can be differentiated to macrophage-like cells with phorbol 12-myristate 13-acetate (PMA) 

[Daigneault et al., 2010]. This induces the cells to become adherent like macrophages. The 

level of IL-1β release in response to zinc depletion at 4 hours was low in these cells, 

although not below detection limits, (Summersgill, unpublished); therefore in this 

investigation the cells will be depleted of zinc for 24h. To compare the zinc-depletion-

induced effects on IL-1β release between species at this time point mouse bone marrow 

derived macrophages (BMDMs) were also used. These mouse cells are more similar to PMA 

differentiated THP-1s than mouse peritoneal macrophages are as both BMDMs and THP-1s 

are differentiated to macrophage like cells in vitro. BMDMs also do not release IL-1β in 

response to zinc depletion as rapidly as peritoneal macrophages. Comparing the two cell 

types over the 24h period will allow comparisons of zinc depletion induction of IL-1β 

release between mouse and human cells. In addition, as these cells are less responsive than 

peritoneal macrophages, a longer LPS treatment of 4h was used to induce IL-1β expression.  
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4.2 Methods 

The methods used in this study are summarised below. For more detail please refer to 

Chapter 2. The cells used in these experiments were maintained in a humidified incubator 

at 37°C, 5%CO2. THP-1 cells were maintained and passaged in DMEM 10%FCS 

1%Penicillin/streptomycin (V/V). The THP-1 cells were seeded in cell culture plates and 

differentiated with PMA for 3h the day before they were used. Bone marrow for BMDM 

culture was obtained from C57BL/6 (WT) adult males of an approximate body weight of 25-

30g. BMDMs were generated by differentiating the bone marrow cells with M-CSF in 

DMEM 10%FCS 1%Penicillin/streptomycin media for approximately 1 week prior to use. 

Differentiated BMDMs were then removed by cell scraping and seeded into cell culture 

plates. Endogenous IL-1β was induced by 4h LPS treatment. Zinc-depletion-dependent IL-1β 

processing was induced by 24h treatment with TPEN, DTPA or a DTPA Pyrithione 

combination. Nigericin was used as a positive control for IL-1β processing and release 

(24h). Inhibitors of caspase-1, cathepsin B, and cathepsin G were used in conjunction with 

these zinc chelators. These inhibitors were added following LPS treatment and 15 min prior 

to zinc depletion or nigericin treatment. IL-1β release was measured in cell culture 

supernatants by ELISA. IL-1β processing was measured in cell culture supernatants by 

western blot.  
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4.3 Results  

4.3.1 Zinc depletion and inhibition of nigericin induced IL-1β processing and release 

A previous Brough lab publication [Brough et al., 2009] had identified a role for zinc in the 

regulation of the pannexin-1 hemichannel and its subsequent induction of caspase-1 

activation. In this study nigericin induced pannexin-1 activity was abolished by pre-

treatment with the zinc chelator TPEN. To investigate whether human cells responded to 

zinc depletion in the same way PMA differentiated THP-1 cells were zinc depleted for 15 

min following LPS induction of IL-1β expression (4h) and prior to nigericin treatment (1h). 

Whilst not significant, a trend of lowered levels of IL-1β following treatment with the 

intracellular zinc chelator TPEN was observed in comparison to those pre-treated with 0.5 

% DMSO vehicle only (Fig 4.1A). In contrast cells zinc depleted with a combination of the 

extracellular zinc chelator DTPA and the zinc ionophore pyrithione did not show reduced 

levels of IL-1β release in comparison to those pre-treated with vehicle (HEPES buffered 

media) (Fig 4.1B).  

 

Similar effects were also observed in relation to IL-1β processing. Western blot data 

showed that cells pre-treated with TPEN prior to nigericin treatment, released less of the 

mature 17 kD IL-1β than cells treated with DMSO vehicle (Fig 4.1C). Cells pre-treated with 

DTPA and pyrithione in combination, showed similar levels of nigericin-induced IL-1β 

processing to the non-zinc depleted cells (Fig4.1D). The inability of the extracellular zinc 

chelator DTPA to inhibit nigericin induced IL-1β processing and release is interesting. The 

data implies that intracellular zinc depletion is necessary for inhibition of pannexin-1 

activity. The reduction of nigericin induced IL-1β processing and release in TPEN pre-

treated THP-1 cells, suggests that the mechanisms observed in peritoneal macrophages in 

[Brough et al., 2009] also occur in THP-1 cells. Therefore this example of zinc regulation of 

IL-1β processing and release is consistent in both human and mouse.  
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Figure 4.1: IL-1β processing and release induced by the potassium ionophore Nigericin is inhibited 
by 15min pre-treatment with TPEN but not with DTPA and Pyrithione.  
 
LPS-primed (1 µg/ml, 4h) PMA differentiated THP-1 cells were pre-treated (15 min) with TPEN (10 
µM), 0.5 % DMSO vehicle (A, C); or DTPA (1 mM), and Pyrithione (50 µM), HEPES media vehicle (10 
mM, pH 7-7.5) (B, D); prior to treatment (1h) with Nigericin (20 µM), 0.5 % Ethanol vehicle. 
Supernatant samples were assayed for IL-1β release by ELISA (A, B) and IL-1β processing from pro to 
mature (31 to 17 kD) by western blot (C, D). Error bars ±SEM of 3 (A), and 3 (B) independent 
experiments. Western blots (C) and (D) are representative of 3 independent experiments. A one-way 
ANOVA with a post-hoc Bonferroni multiple comparison test was used to identify significant 
differences between groups. Comparison pairs were as follows; (A) DMSO and ethanol vehicle 
controls with nigericin and DMSO vehicle control (*), nigericin and DMSO vehicle control with TPEN 
and nigericin (#), and (B) HEPES and ethanol vehicle controls with nigericin and HEPES vehicle 
control (*), nigericin and HEPES vehicle control with DTPA, pyrithione and nigericin (#).*p<0.05. 
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4.3.2 Zinc depletion induces IL-1β processing and release in both human macrophage-like 
cells and mouse macrophages  

As macrophage-like, PMA differentiated THP-1 cells behaved in the same way as peritoneal 

macrophages in response to a combination of TPEN and nigericin, it was necessary to 

investigate whether zinc depletion induced IL-1β processing and release in these cells. LPS 

primed (4h) PMA differentiated THP-1 cells were zinc depleted for 24h. After 24h THP-1 

cells that were zinc depleted with 100 µM TPEN showed an increase of 25.33 fold in IL-1β 

release and cells treated with 10 µM TPEN showed a 31.59 fold increase when compared 

with DMSO vehicle controls (Fig 4.2A). Zinc depletion of THP-1 cells with a combination of 

DTPA and pyrithione also induced 41.28 fold increased IL-1β release when compared to 

HEPES vehicle treated cells (Fig 4.2B). Nigericin served as a positive control for IL-1β 

processing and release in this experiment (Fig 4.2.C, Fig 4.2D, Fig 4.2E). IL-1β release from 

the nigericin positive control was 22.17 fold higher than release from the THP-1 cells 

treated with ethanol vehicle control.  

 

IL-1β processing was induced in both TPEN treated cells and those treated with a 

combination of DTPA and pyrithione (Fig 4.2D, Fig 4.2E). This processing however was 

unlike the processing induced by nigericin which produced a single band 17 kD. The zinc 

depleted cells produced three forms of processed IL-1β at approximately 17 kD. This could 

be an indication that zinc depletion may activate different pathways to those induced by 

nigericin in the processing and release of IL-1β.  
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Figure 4.2: IL-1β processing and release following 24h zinc depletion of LPS primed PMA 
differentiated THP-1 cells 

LPS-primed (1 µg/ml, 4h) PMA differentiated THP-1 cells were treated (24h) with 0.5 % DMSO 
vehicle ,TPEN (10 µM, 0.5 % DMSO)(A,D); HEPES (10 mM, pH7-7.5), DTPA (1 mM, 10 mM HEPES 
media) or Pyrithione (50 µM, 10 mM HEPES media) (B,E); 0.5 % Ethanol vehicle or Nigericin (20 µM, 
0.5 % Ethanol) (C,D,E). Supernatant samples were assayed for IL-1β release by ELISA (A, B, C) and IL-
1β processing from pro to mature (31 to 17 kD) by western blot (D, E). Error bars ±SEM of 4 (A), 5 (B) 
and 4 (C) independent experiments. Western blots (D) and (E) are representative of 3 independent 
experiments. A one-way ANOVA with a post-hoc Bonferroni multiple comparison test was used to 
identify significant differences between groups. Comparison pairs were as follows; (A) DMSO with 
TPEN (10 µM) (*), DMSO with TPEN (100 µM) (*), (B) HEPES with DTPA and pyrithione (*), (C) 
nigericin with ethanol (*). *** p<0.001, **p<0.01. 
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This induction of IL-1β processing and release in zinc depleted macrophage-like THP-1 cells 

is consistent with the findings presented in chapter 3 on zinc depletion in mouse peritoneal 

macrophages. To ensure that any differences highlighted between species in this chapter 

were not artefacts of the longer incubation time of the cells with the zinc chelators, 

experiments were also completed in mouse bone marrow derived macrophages (BMDMs). 

Zinc depletion with both TPEN (10 µM) and DTPA (1 mM) in combination with pyrithione 

(50 µM) induced elevated levels of IL-1β release in BMDMs (Fig 4.3A, Fig 4.3B). IL-1β 

release in TPEN treated macrophages was 8.17 fold higher than in macrophages treated 

with DMSO vehicle control. Following treatment with DTPA in combination with pyrithione 

BMDMs released 24.66 times more IL-1β than cells treated with HEPES vehicle control 

alone. IL-1β release was also induced following treatment with the nigericin positive 

control (Fig 4.3C). Nigericin treated macrophages released 112.5 times more IL-1β than the 

ethanol vehicle control, which in turn is five times higher than the increase following this 

treatment in THP-1 cells (Fig 4.2C). This would indicate that whilst nigericin is a good 

positive control for both cell types, it is most effective in mouse cells.  

 

Following 24h zinc depletion of BMDMs, with TPEN and DTPA in combination with 

pyrithione, IL-1β was processed from the pro-form to the mature single 17 kD form only 

(Fig 4.3D, Fig 4.3E). In this way the BMDM cells behave more similarly to peritoneal 

macrophages than THP-1 cells, and the production of the multiple mature bands following 

zinc depletion in THP-1 cells cannot be attributed to the long incubation time.  
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Figure 4.3: IL-1β processing and release following 24h zinc depletion of LPS primed BMDMs 

LPS-primed (1 µg/ml, 4h) BMDMs were treated (24h) with 0.5 % DMSO vehicle ,TPEN (10 µM, 0.5 % 
DMSO)(A,D); HEPES (10 mM, pH7-7.5), DTPA (1 mM, 10 mM HEPES media) or Pyrithione (50 µM, 10 
mM HEPES media) (B,E); 0.5 % Ethanol vehicle or Nigericin (20 µM, 0.5 % Ethanol) (C,D,E). 
Supernatant samples were assayed for IL-1β release by ELISA (A,B,C) and IL-1β processing from pro 
to mature (31 to 17kD) by western blot (D,E). Error bars ±SEM of 4 (A), 4 (B) and 4 (C) independent 
experiments. Western blots (D) and (E) are representative of 3 independent experiments. A one-way 
ANOVA with a post-hoc Bonferroni multiple comparison test was used to identify significant 
differences between groups. Comparison pairs were as follows; (A) DMSO with TPEN (*), (B) HEPES 
with DTPA and pyrithione (*), (C) nigericin with ethanol (*). **p<0.01. 
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4.3.3 Addition of zinc sulphate inhibits IL-1β release from zinc depleted THP-1 cells and 
BMDMs  

To confirm that the IL-1β release induced in both macrophage-like THP-1 cells and BMDMs 

occurred as a consequence of the zinc chelation, the cells were treated with a combination 

of zinc sulphate and zinc chelator. Cells treated with 10 µM TPEN were supplemented with 

50 µM ZnSO4 and cells treated with 1mM DTPA with 50 µM pyrithione were supplemented 

with 1mM ZnSO4.  

 

Supplementation of zinc sulphate to the media of the zinc depleted cells reduced the levels 

of IL-1β release to vehicle levels. The reduction in IL-1β release in TPEN treated THP-1 cells 

was 97% (Fig 4.4A). IL-1β release in DTPA and pyrithione treated THP-1 cells was reduced 

by 86% (Fig 4.4B). In zinc supplemented BMDMs IL-1β release was reduced 91% in TPEN 

treated cells and 68% in DTPA and pyrithione treated cells. This confirmed that the 

increased IL-1β release is occurring as a direct result of zinc depletion.  
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Figure 4.4: IL-1β release following 24h zinc depletion and zinc treatment of LPS primed BMDMs 
and PMA differentiated THP-1s 

LPS-primed (1 µg/ml, 4h) PMA differentiated THP-1 cells were treated (24h) with 0.5 % DMSO 
vehicle, TPEN (10 µM, 0.5 % DMSO)in the presence or absence of ZnSO4 (50 µM) (A), or with HEPES 
(10 mM, pH 7-7.5), DTPA (1 mM, 10 mM HEPES media) or Pyrithione (50 µM, 10 mM HEPES media) 
in the presence or absence of ZnSO4 (1 mM) (B). LPS-primed (1 µg/ml, 4h) BMDMs were treated 
(24h) with 0.5 % DMSO vehicle, TPEN (10 µM, 0.5 % DMSO) in the presence or absence of ZnSO4 (50 
µM) (C) or with HEPES (10 mM, pH 7-7.5), DTPA (1 mM, 10 mM HEPES media) or Pyrithione (50 µM, 
10 mM HEPES media) in the presence or absence of ZnSO4 (1 mM) (D). Supernatant samples were 
assayed for IL-1β release by ELISA. Error bars ±SEM of 3 (A), 3 (B), 3 (C) and 3 (D) independent 
experiments. A one-way ANOVA with a post-hoc Bonferroni multiple comparison test was used to 
identify significant differences between groups. Comparison pairs were as follows; (A) DMSO with 
TPEN (*), TPEN with TPEN and ZnSO4 (#), (B) HEPES with DTPA and pyrithione (*), DTPA and 
pyrithione with DTPA, pyrithione and ZnSO4 (#), (C) DMSO with TPEN (*), TPEN with TPEN and ZnSO4 

(#), (D) HEPES with DTPA and pyrithione (*), DTPA and pyrithione with DTPA, pyrithione and ZnSO4 

(#). *** p<0.001, *p<0.05. 
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4.3.4 Zinc depletion induced IL-1β release is partially inflammasome dependent in mouse 
macrophages and inflammasome independent in human macrophage-like cells 

In mouse peritoneal macrophages zinc depletion induced IL-1β release that was inhibited 

by YVAD, an inhibitor of caspase-1. Caspase-1 is the best characterised protease known to 

activate IL-1β by proteolytic cleavage. THP-1 cells were pre-treated with YVAD (15 min) 

prior to zinc depletion (24h). YVAD did not reduce IL-1β release in response to TPEN (Fig 

4.5A) or DTPA and pyrithione treatment (Fig 4.5B). Although significantly reduced IL-1β 

release was not observed following treatment with the nigericin positive control and YVAD 

(Fig 4.5C). However YVAD inhibition of nigericin treated cells did reduce IL-1β processing 

(Fig 4.5 D, Fig 4.5E). Zinc depletion induced IL-1β processing in THP-1 cells was not inhibited 

by YVAD (Fig 4.5 D, Fig 4.5E). 
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Figure 4.5: IL-1β processing and release partially inhibited by YVAD in zinc depleted PMA 
differentiated THP-1s.  

LPS-primed (1 µg/ml, 4h) PMA differentiated THP-1s were pre-treated (15 min) with YVAD (100 µM, 
0.5 % DMSO), 0.5 % DMSO vehicle prior to treatment (24h) with TPEN (10 µM, 0.5 % DMSO), 0.5 % 
DMSO vehicle (A,D); HEPES (10 mM, pH 7-7.5), DTPA (1 mM, 10 mM HEPES media), Pyrithione (50 
µM, 10 mM HEPES media) (B,E); or 0.5 % Ethanol vehicle or Nigericin (20 µM, 0.5 % Ethanol) (C,D,E). 
Supernatant samples were assayed for IL-1β release by ELISA. Error bars ±SEM of 3 (A), 3 (B) and 3 
(C) independent experiments. Western blots (D) and (E) are representative of 3 independent 
experiments. A one-way ANOVA with a post-hoc Bonferroni multiple comparison test was used to 
identify significant differences between groups. Comparison pairs were as follows; (A) DMSO with 
TPEN (*), and TPEN with TPEN and YVAD (#), (B) HEPES with DTPA and pyrithione (*), and DTPA and 
pyrithione with DTPA, pyrithione and YVAD (#). An unpaired t test was undertaken to identify 
significant differences between nigericin with nigericin and YVAD (#) (C). * p<0.05.  
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IL-1β release in zinc-depleted THP-1s is not reduced by YVAD; however IL-1β release 

following zinc depletion is reduced by YVAD in peritoneal macrophages. To assess whether 

this apparent difference in caspase-1 dependence occurs due to a species difference, 

BMDMs were pre-treated with YVAD prior to zinc depletion.  

 

YVAD treatment did not reduce IL-1β processing and release in TPEN treated BMDMs (Fig 

4.6 A, Fig 4.6D) or DTPA and pyrithione treated BMDMs (Fig 4.6B, Fig 4.6E). Although IL-1β 

processing and release induced by the positive control nigericin, was not significantly 

reduced by YVAD either (Fig 4.6C, Fig 4.6D, Fig 4.6E). This would suggest that these 

treatments induce caspase-1 independent processing and release of IL-1β in this cell type. 
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Figure 4.6: IL-1β processing and release partially inhibited by YVAD in zinc depleted BMDMs.  

LPS-primed (1 µg/ml, 4h) BMDMs were pre-treated (15 min) with YVAD (100 µM, 0.5 % DMSO), 0.5 
% DMSO vehicle prior to treatment (24h) with TPEN (10 µM, 0.5 % DMSO), 0.5 % DMSO vehicle 
(A,D); HEPES (10 mM, pH 7-7.5), DTPA (1 mM, 10 mM HEPES media), Pyrithione (50 µM, 10 mM 
HEPES media) (B,E); or 0.5 % Ethanol vehicle or Nigericin (20 µM, 0.5 % Ethanol) (C,D,E). Supernatant 
samples were assayed for IL-1β release by ELISA. Error bars ±SEM of 3 (A), 3 (B) and 3 (C) 
independent experiments. Western blots (D, E) are representative of 3 independent experiments. A 
one-way ANOVA with a post-hoc Bonferroni multiple comparison test was used to identify 
significant differences between groups. Comparison pairs were as follows; (A) DMSO with TPEN (*), 
and TPEN with TPEN and YVAD (#), (B) HEPES with DTPA and pyrithione (*), and DTPA and pyrithione 
with DTPA, pyrithione and YVAD (#), (C) ethanol with nigericin (*), and nigericin with nigericin and 
YVAD (#) * p<0.05.  
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Glyburide is known to inhibit the NLRP3 inflammasome [Lamkanfi et al., 2009]. In PMA 

differentiated THP-1 cells glyburide pre-treatment did not reduce IL-1β release in cells 

treated with TPEN and DTPA in combination with pyrithione (Fig 4.7A, Fig 4.7B). It should 

be noted however that glyburide did not completely inhibit nigericin induced IL-1β release 

either (Fig 4.7C) and nigericin induced IL-1β release is known to be dependent upon NLRP3. 

In BMDMs TPEN induced IL-1β release was reduced by 27% after pre-treatment with 

glyburide (Fig 4.8A). Glyburide also reduced IL-1β release in cells treated with DTPA and 

pyrithione by 46% (Fig 4.8B) and in nigericin treated cells by 67% (Fig 4.8C). This suggests a 

potential difference in NLRP3 activation in these two cell types, although this cannot be 

stated outright as the positive control did not show reduced IL-1β release. It should be 

noted that glyburide treatment did not reduce IL-1β release to the levels induced by vehicle 

treatments alone in any of the experiments, indicating that a proportion of IL-1β release in 

BMDMs is independent of NLRP3.  
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Figure 4.7: IL-1β release partially inhibited by glyburide in zinc depleted PMA differentiated THP-
1s.  

LPS-primed (1 µg/ml, 4h) PMA differentiated THP-1s were pre-treated (15 min) with Glyburide (100 
µM, 0.5 % DMSO), 0.5 % DMSO vehicle prior to treatment (24h) with TPEN (10 µM, 0.5 % DMSO), 0.5 
% DMSO vehicle (A); HEPES (10 mM, pH 7-7.5), DTPA (1 mM, 10 mM HEPES media), Pyrithione (50 
µM, 10 mM HEPES media) (B); or 0.5 % Ethanol vehicle or Nigericin (20 µM, 0.5 % Ethanol) (C). 
Supernatant samples were assayed for IL-1β release by ELISA. Error bars ±SEM of 3 (A), 3 (B) and 3 
(C) independent experiments. A one-way ANOVA with a post-hoc Bonferroni multiple comparison 
test was used to identify significant differences between groups. Comparison pairs were as follows; 
(A) DMSO with TPEN (*), and TPEN with TPEN and glyburide (#), (B) HEPES with DTPA and pyrithione 
(*), and DTPA and pyrithione with DTPA, pyrithione and glyburide (#), (C) ethanol with nigericin (*), 
and nigericin with nigericin and glyburide (#). **p<0.01. 
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Figure 4.8: IL-1β release inhibited by glyburide in zinc depleted BMDMs.  

LPS-primed (1 µg/ml, 4h) BMDMs were pre-treated (15 min) with glyburide (100 µM, 0.5 % DMSO), 
0.5 % DMSO vehicle prior to treatment (24h) with TPEN (10 µM, 0.5 % DMSO), 0.5 % DMSO vehicle 
(A); HEPES (10 mM, pH 7-7.5), DTPA (1 mM, 10 mM HEPES media), Pyrithione (50 µM, 10 mM HEPES 
media) (B); or 0.5 % Ethanol vehicle or Nigericin (20 µM, 0.5 % Ethanol) (C). Supernatant samples 
were assayed for IL-1β release by ELISA. Error bars ±SEM of 3 (A), 3 (B) and 3 (C) independent 
experiments. A one-way ANOVA with a post-hoc Bonferroni multiple comparison test was used to 
identify significant differences between groups. Comparison pairs were as follows; (A) DMSO with 
TPEN (*), and TPEN with TPEN and glyburide (#), (B) HEPES with DTPA and pyrithione (*), and DTPA 
and pyrithione with DTPA, pyrithione and glyburide (#), (C) ethanol with nigericin (*), and nigericin 
with nigericin and glyburide (#). ***p<0.001. 
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4.3.5 Cathepsin B is not involved in zinc depletion induced IL-1β release in human 
macrophage-like cells 

In peritoneal macrophages zinc depletion induced IL-1β release was significantly reduced 

after treatment with the cathepsin B inhibitor CA074-Me (Fig 3.5). THP-1 cells that were 

pre-treated with CA074-Me prior to zinc depletion, however did not show reduced levels of 

IL-1β release. This effect was observed in both TPEN treated THP-1 cells (Fig 4.9A) and 

DTPA and pyrithione treated THP-1 cells (Fig 4.9B). Nigericin induced IL-1β release was 

reduced 83% by CA074-Me treatment (Fig 4.9C). In contrast, zinc depletion induced release 

in BMDMs was reduced by inhibition of cathepsin B (Fig 4.10A). TPEN induced IL-1β release 

was reduced by 75% and IL-1β release induced by the nigericin positive control was 

reduced by 92% (Fig 4.10C). IL-1β release induced by DTPA in combination with pyrithione 

was not significantly reduced by cathepsin B inhibition (Fig 4.10B). The difference in the 

response to cathepsin B inhibition highlights a key difference in the mechanisms of zinc-

depletion-induced IL-1β release in human and mouse cells. Differing involvement of 

cathepsin B may also explain the difference in response to glyburide as cathepsin B release 

is known to activate the NLRP3 inflammasome [Hentze et al., 2003][Hornung et al., 2008].  
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Figure 4.9: IL-1β release potentiated by Cathepsin B inhibition in zinc depleted PMA differentiated 
THP-1s.  

LPS-primed (1 µg/ml, 4h) PMA differentiated THP-1s were pre-treated (15 min) with CA074-Me (80 
µM, 0.5 % DMSO), 0.5 % DMSO vehicle prior to treatment (24h) with TPEN (10 µM, 0.5 % DMSO), 0.5 
% DMSO vehicle (A); HEPES (10 mM, pH 7-7.5), DTPA (1 mM, 10 mM HEPES media), Pyrithione (50 
µM, 10 mM HEPES media) (B); or 0.5 % Ethanol vehicle or Nigericin (20 µM, 0.5 % Ethanol) (C). 
Supernatant samples were assayed for IL-1β release by ELISA. Error bars ±SEM of 3 (A), 3 (B) and 3 
(C) independent experiments. A one-way ANOVA with a post-hoc Bonferroni multiple comparison 
test was used to identify significant differences between groups. Comparison pairs were as follows; 
(A) DMSO with TPEN (*), and TPEN with TPEN and CA074-Me (#), (B) HEPES with DTPA and 
pyrithione (*), and DTPA and pyrithione with DTPA, pyrithione and CA074-Me (#), (C) ethanol with 
nigericin (*), and nigericin with nigericin and CA074-Me (#). *** p<0.001, *p<0.05. 
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Figure 4.10: IL-1β release reduced by Cathepsin B inhibition in zinc depleted BMDMs.  

LPS-primed (1 µg/ml, 4h) BMDMs were pre-treated (15 min) with CA074-Me (80 µM, 0.5 % DMSO), 
0.5 % DMSO vehicle prior to treatment (24h) with TPEN (10 µM, 0.5 % DMSO), 0.5 % DMSO vehicle 
(A); HEPES (10 mM, pH 7-7.5), DTPA (1 mM, 10 mM HEPES media), Pyrithione (50 µM, 10 mM HEPES 
media) (B); or 0.5 % Ethanol vehicle or Nigericin (20 µM, 0.5 % Ethanol) (C). Supernatant samples 
were assayed for IL-1β release by ELISA. Error bars ±SEM of 3 (A), 3 (B) and 3 (C) independent 
experiments. A one-way ANOVA with a post-hoc Bonferroni multiple comparison test was used to 
identify significant differences between groups. Comparison pairs were as follows; (A) DMSO with 
TPEN (*), and TPEN with TPEN and CA074-Me (#), (B) HEPES with DTPA and pyrithione (*), and DTPA 
and pyrithione with DTPA, pyrithione and CA074-Me (#), (C) ethanol with nigericin (*), and nigericin 
with nigericin and CA074-Me (#). **p<0.01, *p<0.05. 
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4.3.6 Cathepsin G is involved in zinc-depletion-induced IL-1β release in both human 
macrophage-like cells and mouse macrophages  

The data suggests that IL-1β release in THP-1 cells occurs independently of caspase-1. 

Other proteases that have been proposed to cleave IL-1β include the neutrophil granule 

serine proteases [Netea et al., 2010]. One of those proteases is cathepsin G, which in 

monocytes is associated with the plasma membrane [Avril et al., 1995] and is also 

expressed in monocytic azurophilic granules [Scott et al., 1999] 

 

Cathepsin G inhibition prior to zinc depletion reduced IL-1β release in TPEN treated THP-1 

cells by 73% (Fig 4.11 A), and IL-1β release in DTPA and pyrithione treated THP-1 cells by 

74% (Fig 4.11B). Inhibition of cathepsin G also reduced nigericin-induced IL-1β release by 

85% (Fig 4.11C). In BMDMs the effects of cathepsin G inhibition were even more 

pronounced. Inhibition of cathepsin G prior to treatment reduced IL-1β release in TPEN by 

80% (Fig 4.12A), in DTPA and pyrithione by 90% (Fig 4.12 B), and in nigericin treated cells by 

99% (Fig 4.12C). In BMDMs cathepsin G inhibition was also observed to change the 

morphology of the cell. Following GLF treatment cells appeared more rounded and lost the 

characteristic elongated phenotype (Fig 4.13). In cells treated with TPEN, DTPA in 

combination with pyrithione and nigericin membrane disruption was observed. This 

membrane disruption appeared to be inhibited in cells treated with the cathepsin G 

inhibitor GLF. Taken together this would suggest that cathepsin G controls an integral IL-1β 

processing or release pathway, possibly via regulation of the plasma membrane.  
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Figure 4.11: IL-1β release inhibited by GLF in zinc depleted PMA differentiated THP-1s.  

LPS-primed (1 µg/ml, 4h) PMA differentiated THP-1s were pre-treated (15 min) with GLF (10 µM, 0.5 
% DMSO), 0.5 % DMSO vehicle prior to treatment (24h) with TPEN (10 µM, 0.5 % DMSO), 0.5 % 
DMSO vehicle (A); HEPES (10 mM, pH 7-7.5), DTPA (1 mM, 10 mM HEPES media), Pyrithione (50 µM, 
10 mM HEPES media) (B); or 0.5 % Ethanol vehicle or Nigericin (20 µM, 0.5 % Ethanol) (C). 
Supernatant samples were assayed for IL-1β release by ELISA. Error bars ±SEM of 3 (A), 3 (B) and 3 
(C) independent experiments. A one-way ANOVA with a post-hoc Bonferroni multiple comparison 
test was used to identify significant differences between groups. Comparison pairs were as follows; 
(A) DMSO with TPEN (*), and TPEN with TPEN and GLF (#), (B) HEPES with DTPA and pyrithione (*), 
and DTPA and pyrithione with DTPA, pyrithione and GLF (#), (C) ethanol with nigericin (*), and 
nigericin with nigericin and GLF (#). **p<0.01, *p<0.05. 
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Figure 4.12: IL-1β release inhibited by GLF in zinc depleted BMDMs.  

LPS-primed (1 µg/ml, 4h) BMDMs were pre-treated (15 min) with GLF (10 µM, 0.5 % DMSO), 0.5 % 
DMSO vehicle prior to treatment (24h) with TPEN (10 µM, 0.5 % DMSO), 0.5 % DMSO vehicle (A); 
HEPES (10 mM, pH 7-7.5), DTPA (1 mM, 10 mM HEPES media), Pyrithione (50 µM, 10 mM HEPES 
media) (B); or 0.5 % Ethanol vehicle or Nigericin (20 µM, 0.5 % Ethanol) (C). Supernatant samples 
were assayed for IL-1β release by ELISA. Error bars ±SEM of 3 (A), 3 (B) and 3 (C) independent 
experiments. A one-way ANOVA with a post-hoc Bonferroni multiple comparison test was used to 
identify significant differences between groups. Comparison pairs were as follows; (A) DMSO with 
TPEN (*), and TPEN with TPEN and GLF (#), (B) HEPES with DTPA and pyrithione (*), and DTPA and 
pyrithione with DTPA, pyrithione and GLF (#), (C) ethanol with nigericin (*), and nigericin with 
nigericin and GLF (#). ***p<0.001, **p<0.01. 
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Figure 4.13: GLF treatment of zinc depleted and nigericin treated BMDMs.  

LPS-primed (1 µg/ml, 4h) BMDMs were pre-treated (15 min) with GLF (10 µM, 0.5 % DMSO), 0.5 % 
DMSO vehicle prior to treatment (24h) with TPEN (10 µM, 0.5 % DMSO), 0.5 % DMSO vehicle (A, B); 
HEPES (10 mM, pH 7-7.5), DTPA (1 mM, 10 mM HEPES media), Pyrithione (50 µM, 10 mM HEPES 
media) (C,D); or 0.5 % Ethanol vehicle or Nigericin (20 µM, 0.5 % Ethanol) (E,F). Images are 
representative of 3 independent experiments.  
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Table 4.1: Summary table of IL-1β response to zinc depletion 

Figure 
Cell 

Type 
Zinc 

depletion 
Inhibitor 

Time of 
treatment 

(h) 
Processing Release 

4.1 THP-1 
TPEN with 
Nigericin 

NA 1 Inhibited by TPEN 
Not significantly 

reduced 

4.1 THP-1 
DTPA_Py 

with 
Nigericin 

NA 1 
Not inhibited by 

DTPA Py 
Not reduced 

4.2 THP-1 TPEN NA 24 
Induced. 3 bands 
at approximately 

17 kD. 
Induced 

4.2 THP-1 DTPA_Py NA 24 
Induced. 3 bands 
at approximately 

17 kD. 
Induced 

4.2 THP-1 Nigericin NA 24 Induced Induced 

4.3 BMDM TPEN NA 24 Induced Induced 

4.3 BMDM DTPA_Py NA 24 Induced Induced 

4.3 BMDM Nigericin NA 24 Induced Induced 

4.4 THP-1 TPEN ZnSO4 24 NA Inhibited by ZnSO4 

4.4 BMDM DTPA_Py ZnSO4 24 NA Inhibited by ZnSO4 

4.4 BMDM TPEN ZnSO4 24 NA Inhibited by ZnSO4 

4.4 BMDM DTPA_Py ZnSO4 24 NA Inhibited by ZnSO4 

4.5 THP-1 TPEN YVAD 24 
Not reduced by 

YVAD. 
Not significantly 

reduced. 

4.5 THP-1 DTPA_Py YVAD 24 
Not reduced by 

YVAD. 
Not significantly 

reduced. 

4.5 THP-1 Nigericin YVAD 24 Reduced by YVAD 
Not significantly 

reduced. 

4.6 BMDM TPEN YVAD 24 
Not reduced by 

YVAD. 
Not significantly 

reduced. 

4.6 BMDM DTPA_Py YVAD 24 
Not reduced by 

YVAD. 
Not significantly 

reduced. 

4.6 BMDM Nigericin YVAD 24 
Not completely 

reduced by YVAD. 
Not significantly 

reduced. 

4.7 THP-1 TPEN Glyburide 24 NA 
Not significantly 

reduced. 

4.7 THP-1 DTPA_Py Glyburide 24 NA 
Not significantly 

reduced. 

4.7 THP-1 Nigericin Glyburide 24 NA 
Not significantly 

reduced. 

4.8 BMDM TPEN Glyburide 24 NA Reduced 

4.8 BMDM DTPA_Py Glyburide 24 NA Reduced 

4.8 BMDM Nigericin Glyburide 24 NA Reduced 

4.9 THP-1 TPEN CA074-Me 24 NA 
Not significantly 

reduced. 

4.9 THP-1 DTPA_Py CA074-Me 24 NA 
Not significantly 

reduced. 

4.9 THP-1 Nigericin CA074-Me 24 NA 
Not significantly 

reduced. 

4.10 BMDM TPEN CA074-Me 24 NA Reduced 

4.10 BMDM DTPA_Py CA074-Me 24 NA 
Not significantly 

reduced. 
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4.10 BMDM Nigericin CA074-Me 24 NA Reduced 

4.11 THP-1 TPEN GLF 24 NA Reduced 

4.11 THP-1 DTPA_Py GLF 24 NA Reduced 

4.11 THP-1 Nigericin GLF 24 NA Reduced 

4.12 BMDM TPEN GLF 24 NA Reduced 

4.12 BMDM DTPA_Py GLF 24 NA Reduced 

4.12 BMDM Nigericin GLF 24 NA Reduced 

 

TPEN and DTPA with pyrithione IL-1β processing and release in THP-1 and BMDMs. Zinc depletion 
induces IL-1β release in both THP-1 cells and BMDMs and IL-1β processing to 3 mature forms of 
approximately 17 kD in THP-1 cells and a single 17 kD form in BMDMs. In THP-1 cells this IL-1β 
release is only reduced by inhibition of cathepsin G. In BMDMs this release is reduced by inhibition 
of NLRP3, cathepsin B and cathepsin G.  
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4.4 Discussion 

The aim of this study was to identify the differences and similarities between zinc-

depletion-induced IL-1β processing and release in human and mouse macrophage-like cells. 

Initially the response to zinc depletion in THP-1 cells and BMDMs was similar, both released 

IL-1β. However a difference in IL-1β processing in response to zinc depletion was observed 

in human THP-1 cell and mouse BMDMs. Whilst zinc depletion induced IL-1β processing to 

a single mature 17 kD form, three bands of approximately 17kD size were observed 

following zinc depletion of THP-1 cells. The significance of this is unknown. There is a 

potential that the multiple processed forms have differing activities, however determining 

this is difficult. Identifying the bands would require extensive separation and 

characterisation and would be costly. Additionally the biological relevance of these results 

is also in some doubt. A zinc depletion experiment was undertaken in immortalised 

BMDMs for 4h (following 4h LPS priming) and the supernatant condensed. IL-1β western 

blots of these concentrated samples of zinc depleted BMDM cell line macrophages also 

showed multiple bands of approximately 17kD in size (Summersgill, unpublished). This 

suggests that the multiple bands may be some artefact of prolonged cell culture.  

 

Caspase-1 appears not to play a role in zinc-depletion-induced IL-1β release in either THP-1 

cells or in BMDMs, as YVAD failed to inhibit processing or release. Although, it should be 

noted that YVAD did not significantly inhibit IL-1β release following treatment with 

nigericin in either cell type. As nigericin is known to activate IL-1β release via caspase-1 

[Perregaux et al., 1992][Kahlenberg & Dubyak, 2004] YVAD inhibition should have reduced 

the release, therefore as the positive control failed caspase-1 dependency cannot be 

excluded in zinc-depletion-induced IL-1β release. To determine whether the caspase-1 is 

activated in THP-1s and BMDMs following zinc depletion it would be useful to complete a 

caspase-1 activity assay. 
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A difference was observed in response to treatment with glyburide, a drug known to inhibit 

NLRP3 [Lamkanfi et al., 2009]. In BMDMs glyburide reduced IL-1β release following both 

nigericin treatment and zinc depletion, indicating that these processes are, at least partially 

dependent upon glyburide. This reduction in IL-1β release following treatment with 

glyburide was not observed in THP-1 cells. Both zinc depleted cells and nigericin treated 

cells were both unaffected by glyburide. Glyburide should have inhibited the nigericin 

induced IL-1β release as nigericin induced IL-1β processing is NLRP3 dependent 

[Mariathasan et al., 2006]. Due to failures of positive controls it cannot be stated that THP-

1 induced IL-1β release is inflammasome dependent or independent. Further work would 

be required to determine this. Due to the reduction of zinc-depletion-induced IL-1β release 

in response to glyburide it is probable that in BMDMs zinc depletion initiates 

inflammasome dependent IL-1β release.  

 

Cathepsin B release from lysosomes is suggested to be one of the major pathways of 

NLRP3-inflammasome activation [Hornung & Latz, 2010]. Inhibiting cathepsin B has been 

shown to inhibit IL-1β release in response to activation of the NLRP3 inflammasome [Niemi 

et al., 2011][Duncan et al., 2009]. Cathepsin B and ASC have also been shown to be 

involved in a pro-inflammatory necrotic cell death [Willingham et al., 2007]. In BMDMs, like 

peritoneal macrophages, the inhibition of cathepsin B reduced levels of IL-1β released. In 

contrast, in THP-1 cells inhibition of cathepsin B did not affect IL-1β release. This would 

strongly suggest that some of the mechanisms of zinc-depletion-induced IL-1β processing 

and release are different in humans and mice. This difference would be an important area 

to study further when investigating the role zinc depletion plays in upregulating human 

inflammatory disease.  
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An interesting observation was the role of cathepsin G in the release of IL-1β. Cathepsin G 

is a serine protease, commonly associated with neutrophil granules [Korkmaz et al., 2010] 

but also expressed in azurophilic granules of monocytes [Scott et al., 1999]. Cathepsin G 

has also been reported to process IL-1β to its mature form [Netea et al., 2010]. Inhibition of 

this protease dramatically reduces IL-1β release induced by nigericin or zinc chelator 

treated THP-1s and BMDMs. The extreme reduction in IL-1β release would suggest that 

essential pathways in either processing or release are blocked.  

 

In monocytes cathepsin G is also associated with the plasma membrane and is the 

mechanism that permits the entry of HIV into cells [Avril et al., 1995]. The role of cathepsin 

G at the plasma membrane of monocytes has not been well defined, with most of the 

research in this area focussed upon the actions of cathepsin G in neutrophil granules 

[Korkmaz et al., 2010]. In this study cathepsin G inhibition changed the morphology of 

BMDMs from an elongated and spread morphology to a more spherical morphology (Fig 

4.13). In cells treated with TPEN, DTPA in combination with pyrithione or nigericin, the 

disruption to membrane integrity induced by these treatments was abolished by cathepsin 

G inhibition (Fig 4.13). This would imply that cathepsin G is responsible for IL-1β release 

processes. Although, cathepsin G has been identified to play a role in caspase-1 activation 

and apoptosis [Danelishvili et al., 2011], which would the hypothesis of direct inhibition of 

processing. It would be interesting to analyse cathepsin G inhibited lysates by IL-1β western 

blot to identify whether processing had occurred. If processing had occurred this would 

further support the hypothesis that inhibition of cathepsin G prevents IL-1β release. In 

addition caspase-1 activity assays of GLF treated cells would identify whether caspase-1 

activity is affected by cathepsin G inhibition. Cathepsin G may prove to be an important 

therapeutic target.  
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The processing and release of IL-1β are controlled at many points. These sites of regulation 

differ depending upon the manner in which processing and release of IL-1β are induced 

and the cell type in which they are induced. It appears there may be differences between 

human and mouse responses to zinc depletion in terms of both processing and 

mechanisms of action. The differences in regulation of IL-1β release by cathepsin B and the 

production of multiple mature forms of IL-1β in THP-1 cells would need to be investigated 

further in other human monocytic cells to confirm that apparent differences occur due to 

species differences. Most striking is the inhibition of IL-1β release in cells treated with a 

cathepsin G inhibitor. It would be interesting to see the effects of this inhibitor on IL-1β 

processing and identify the mechanisms of action as cathepsin G could be an important 

therapeutic target for inflammatory disease.  
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Chapter 5: A network map of IL-1β expression 

 
 
 

This work was carried  
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Ben and I contributed equally to the following tasks;  
 

 Determination of inclusion and exclusion criteria. 
 

 Creation and optimisation of the search string. 
 

 Assessment of papers returned from the literature search 
against the inclusion and exclusion criteria. 

 

 Determination of data assessment criteria. 
 

 Map assembly. 
 

 Annotation of the map. 
 
 
 
 

I completed all other work within this chapter, including interpretation 
 and analysis of the map, independently.  
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5.1 Introduction 

5.1.1 Zinc and IL-1β expression 

Having established a clear role for zinc deficiency in IL-1β processing, it would be 

interesting to investigate the role of zinc and zinc deficiency in IL-1β expression. In Chapter 

3 TPEN treatment in the absence of LPS was shown to induce some IL-1β release and 

potentially upregulate IL-1β expression. Zinc is predicted to bind 10% of mammalian 

proteins [Andreini et al., 2006] functions as a regulatory cofactor in many instances 

[Cummings & Kovacic, 2009]. In addition, elevated IL-1β expression has also been reported 

in regions of the intestine in zinc deficient rats [Vignolini et al., 1998], and in pro-myeloid 

cells [Wessels et al., 2013]. This highlights the potential role of zinc regulation in the LPS 

induced pathways that control IL-1β expression. 

 

5.1.2 IL-1β expression 

IL-1β transcription is an essential step in the inflammatory process. Stimulation of Toll-like 

receptor 4 (TLR4) initiates this transcription via a complex signalling system with multiple 

layers of control. There are many regulatory factors within this system, reflecting the need 

for tight control of the initiation of inflammatory processes. Assessing the contribution of 

any one regulatory mechanism to this process is made difficult by the complexity of the 

system.  

 

The main ligand for TLR4 is LPS [Kawai & Akira, 2010]. Lipopolysaccharide (LPS) is an 

integral component of the Gram-negative bacterial cell wall and is an essential factor in 

mediating mammalian responses to endotoxin [Lozano-Torres et al., 2012]. LPS recognition 

by TLR4 was first identified by [Poltorak et al., 1998]. This study utilised an LPS 
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unresponsive strain of mouse called C3H/HeJ which contains naturally occurring mutations 

in a locus necessary for LPS sensitivity. This LPS sensitive allele maps to the Tlr4 locus, 

suggesting that TLR4 is the LPS receptor [Poltorak et al., 1998]. Since then the binding of 

LPS to TLR4 at the membrane has been well established [Park et al., 2009], [da Silva Correia 

& Ulevitch, 2002][Kobayashi et al., 2006][Saitoh et al., 2004].  

 

Pathways downstream of TLR4 binding have also been studied [Fitzgerald et al., 

2004][Banerjee & Gerondakis, 2007], however as yet these pathways have not been 

integrated into a single network that encompasses the LPS signalling at the membrane to 

IL-1β transcription. The paper that comes closest to achieving this aim, [Oda & Kitano, 

2006], is a comprehensive map of all TLR signalling. In this paper a bow tie structure is 

highlighted showing the signals to converge upon the same few MAPK and NF-κB molecules 

that control the transcription of a vast number of downstream signalling molecules. This 

impressive piece of work is useful for understanding the similarities in the multiple TLR 

pathways; however from this map it is very difficult to isolate the LPS-induced signals and 

the signals that lead to the transcription of IL-1β. Here we have produced a map that 

achieves this by focussing on LPS specific induction of IL-1β transcription. Using the map it 

will be possible to assess the contributions of regulatory mechanisms to IL-1β transcription 

and produce dynamic models of IL-1β expression that can be used to further explore the 

mechanisms behind this process.  

 

5.1.3 Standards 

The map adheres to the current standards observed within the systems biology 

community. Data standards give details of standard practices that have been agreed upon 
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by a particular community [Brazma et al., 2006]. Use of standards prevents data from being 

published in different formats which would impede data sharing and reduce the usefulness 

of a particular endeavour. In biology this is a relatively new idea in comparison to industry 

where the use of standards is common practice. In systems biology there are three major 

standards, the systems biology markup language (SBML)[Hucka et al., 2003], systems 

biology graphical notation (SBGN) [Le Novère et al., 2009] and the minimum information 

required in the annotation of models (MIRIAM) [Le Novère et al., 2005].  

 

SBML is a XML based format used for storage and communication of computational 

biological models. It allows for the particular features unique to biological models to be 

explicitly described and shared. Further to this, most programs developed for the creation 

and analysis of biological models support SBML, thus creating a network map in SBML 

increases the potential for development of the model using a wide range of tools.  

 

SBGN is the standard for the way in which models are displayed [Le Novère et al., 2009]. 

Before the introduction of this standard the nodes and edges of a network were drawn in 

many different ways. Symbols that represented genes in one diagram may have 

represented proteins in another. This complicated understanding and comparisons of 

models. By adhering to a standard the map becomes more easily readable for the wider 

systems biology community, and accessing model data becomes easier for those unfamiliar 

with this area. 

 

MIRIAM describes the minimum information required for inclusion within the model and 

what should be reported when mentioning models in the literature. The aim of this set of 
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standards is to ensure models have sufficient information to be reused and developed by 

others [Le Novère et al., 2005]. An example of where these standards are particularly useful 

is defining the molecules within a model. Many of molecules have been named in multiple 

ways and different molecules occasionally share the same names. This can be problematic 

when building models that need to be understood and reused by others. The situation can 

be further complicated when different modellers use different abbreviations for the same 

molecules. Thus annotation of models using databases such as UniProt [The Uniprot 

Consortium, 2012] and ChEBI [de Matos et al., 2010], is particularly useful in ensuring the 

identity of the molecules within the model is properly defined. By adhering to current 

community standards in annotation (MIRIAM), visualisation (SBGN) and format (SBML) it is 

hoped a base will be provided which will facilitate further exploration of this network using 

a systems approach.  

 

5.1.4 Using the map to analyse zinc regulation 

There are many potential applications for a network map detailing the induction of IL-1β 

transcription downstream of LPS. One example is assessing the role of zinc in this system. 

Zinc is known to bind to many proteins within the cell and zinc has also been shown to play 

a regulatory role in IL-1β expression. Following LPS stimulation of dendritic cells the 

expression of zinc transporters is upregulated, leading to an overall reduction in 

intracellular free zinc [Kitamura et al., 2006]. LPS stimulation activates dendritic cells and 

this was shown to be dependent upon the consequent zinc depletion, as activation could 

be induced by treatment with the zinc chelator TPEN [Kitamura et al., 2006]. There is also a 

potential role for A20 , a zinc binding protein [Verstrepen et al., 2010] this is expressed in 

response to pro-inflammatory stimuli and functions as a negative regulator of NF-κB. 

Elevated levels of zinc have been shown to increase A20, and consequently reduce NF-kB 



Chapter 5                                                                                    A network map of IL-1β expression 

145 
 

activity [Bao et al., 2010a] [Prasad et al., 2011]. Removal of this negative feedback 

mechanism by zinc deficiency may lead to higher levels of IL-1β. In contrast, [Haase et al., 

2008] describe an intracellular rise in Zn2+ following stimulation of monocytes with E.coli 

LPS. In this paper chelation of zinc with TPEN blocks LPS-induced activation of p38 MAPK, 

ERK1/2, and NF- κB and subsequent transcription of TNF-α. Whilst none of the papers 

specifically refer to the role of zinc in LPS induced IL-1β transcription, the evidence given 

highlights potential opposing zinc regulatory mechanisms within this network. The network 

map could function as a starting point from which zinc binding proteins involved in the 

regulation of IL-1β expression may be identified. Further work could then be completed to 

assess the interplay between these mechanisms.  
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5.2 Materials and Methods 

5.2.1 Building a network map 

A network map for IL-1β expression was created using a combination of literature search, 

data assessment from the returned literature, and assembly of the information into a series 

of interactions using the CellDesigner4.2 software [Funahashi et al., 2003]. One of the main 

objectives of this project was to build the map to a set of predefined criteria in order to 

prevent inclusions of bias and inconsistencies. The ideal information selected to create the 

network map is detailed in the criteria below.  

1) Provides details of direct interactions 

2) Reactions occur as a result of LPS stimulation of TLR4 

3) Reactions lead to the expression of IL-1β 

4) Data was obtained from cells of the monocytic lineage.  

5) Data was obtained from human or mouse background.  

 

Using these criteria a search string (Appendix 1) was created and used to search the NCBI 

PubMed database. This search, completed on 28-3-2012, returned 799 references. The 

abstracts of all the papers returned from this search were exported from the database and 

assessed for relevance to the original set of criteria. Papers that were deemed to be 

inappropriate were then excluded. It was essential that the papers detailed a LPS induced 

effect or an effect that described the production of IL-1β, although not all papers detailed 

both. All the papers retained detailed reactions in either mouse or human cells. In some 

instances papers in which experiments were conducted in non-monocytic cells, were 
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retained as these reactions had not been investigated in monocytic lines. At this stage 529 

papers were excluded and 270 papers were included.  

 

Assessing the literature using the information in the abstracts relied heavily upon the 

description of the data by the authors. Data presented in the figures of each of the 

remaining 270 papers were therefore assessed to ensure an evidence based network map 

was produced, avoiding inclusion of author bias (at times authors assume things that are 

not supported by the data). We assessed the evidence in each paper for relevance to the 

map and quality of data in this context. The data assessment criteria comprised scores for 

the level of interaction between entities, the relevance of technique, the number of 

replicates and the use of statistics (Table 5.1).  

 

Levels of interaction ranged from direct binding leading to a direct measured reaction to 

descriptions of an entity with no details of direct binding given. One example of direct 

binding leading to a direct measured reaction is the binding of a protein that in turn leads 

to a direct fluorescence output [Thompson et al., 2003]. Most of the data analysed fell into 

the second category of direct binding leading to an indirect measured reaction. In this case 

direct binding maybe characterised by techniques such as co-immunoprecipitation and X-

ray crystallography and then combined with reporter assays or immunoaffinity 

measurements. In the absence of evidence for direct binding reporter assays or 

immunoaffinity measurements were classified as being involved in the reaction. The final 

category describes the characterisation of a protein in LPS treated cells but in the absence 

of evidence for binding to another protein or involvement in specific reaction.  
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These scores were then summed to provide a basis for assessing weak to strong evidence 

for relevant interactions. Assessing the data in this way allowed for construction of the map 

based upon the weight of evidence for a particular interaction. The interactions were then 

assembled together in a network map using the CellDesigner4.2 software. The map was 

annotated according to MIRIAM standards and exported to SBML and SBGN formats. This 

workflow is summarised in Figure 5.1.  

Table 5.1: Data assessment scoring criteria  

Reaction Score 

Direct binding leading to a direct measured reaction 5 

Direct binding leading to an indirect measured reaction 4 

Direct Binding 3 

Involved in reaction 2 

Description of entity / No binding 1 

Technique Relevance  Score 

High 3 

Average 2 

Low 1 

Replicates Score  

N=3+ 3 

N=2+ 2 

N=1+ 1 

Statistics Score  

Stats used  1 

Stats not used  0 
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Figure 5.1: Workflow providing an overview of the methods, criteria, decisions, data and 
annotation used for the systematic curation of the network map. 

 799 references were returned from a defined search of the NCBI PubMed database. Of these 799 
references 270 were retained and assessed for data quality. The network map was created using this 
data and then the species were annotated using the UniProt and ChEBI databases.  
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5.3 Results  

The completed network map is shown in SBGN format in Figure 5.2. An outline of the 

interactions encompassed by the map is given below, although it should be noted that this 

is not intended to be an in depth description. To do so would detract from the visual 

simplicity that is one of the major aims of this project. The literature cited in this section 

will comprise only those papers returned from the stringent literature search detailed in 

section 5.2.  
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Figure 5.2: A systematically curated network map of LPS stimulated IL-1β transcription. 

 Map created in CellDesigner4.2. Visualised in SBGN compliant format.  
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5.3.1. Actions of LPS at the membrane 

LPS is presented to plasma membrane bound proteins by the lipopolysaccharide binding 

protein (LBP)[Kohara et al., 2006][Li et al., 2007][Thompson et al., 2003][Shawkat et al., 

2008]. In turn LPS is transferred from the LBP to CD14. Membrane bound CD-14 is a 

glycosylphosphatidylinositol (GPI)-linked glycoprotein [Kitchens et al., 1998]. CD14 interacts 

with MD-2 and via this interaction passes on the bound LPS to MD-2 [da Silva Correia & 

Ulevitch, 2002][Gioannini et al., 2004][Resman et al., 2009].  

 

MD-2 is essential for TLR4-dependent signalling, since without MD-2 TLR4 cannot become 

active and consequently cannot respond to LPS [Fujimoto et al., 2004]. MD-2 and TLR4 bind 

with LPS at the membrane to form the active LPS bound TLR4 complex [Visintin et al., 

2006][Meng et al., 2010]. MD-2 binds TLR4 through the formation of disulphide bonds 

[Mullen et al., 2003]. The crystal structure of TLR4:MD-2:LPS [Park et al., 2009], highlights 

that MD-2 binding of TLR4 creates a cavity to which LPS binds. 

 

LPS induced signalling is negatively regulated by multimerisation of MD-2 [Teghanemt et 

al., 2008], reducing the availability of active MD-2. MD-2s, a splice variant of MD-2 

sequesters TLR4 in an inactive complex [Gray et al., 2010]. A further regulatory step is 

shown in this map. Active TLR4-MD-2 complex is bound by a RP105-MD-1 complex 

rendering it inactive [Divanovic et al., 2005]. All of these regulatory mechanisms highlight 

the importance for control at the initiation of this inflammatory signalling pathway. 

 

Although it is apparent that some internalisation of LPS and the receptor complex occurs 

[Kitchens et al., 1998] [Latz et al., 2002], there is insufficient evidence to distinguish 
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between the pathways downstream of the internalised and non-internalised receptors in 

this network map. Consequently LPS binding of TLR4 is depicted in the map as occurring at 

the plasma membrane[Yanagimoto et al., 2009][Panter & Jerala, 2011]. This is clearly an 

area where more research is needed to clarify the mechanistic details. 

 

5.3.2 Intracellular TLR4: TIR domains and signalling complexes 

The Toll-like/IL-1 receptor (TIR) domains are the main functional components of 

intracellular TLR4. These domains interact with the equivalent TIR domains on intracellular 

adaptor proteins. These TIR:TIR interactions are necessary for propagation of the LPS 

induced TLR4 signal [Ohnishi et al., 2009] [Bovijn et al., 2012]. The TIR domains of signalling 

mediators have been shown to confer TLR selectivity on the adaptor proteins [Jiang et al., 

2006]. The mediators, or adaptors, possessing TIR domains shown in this map are Myeloid 

differentiation primary response gene (88) (MyD88) [Avbelj et al., 2011] [Nishiya et al., 

2007] and toll-interleukin 1 receptor (TIR) domain containing adaptor protein 

(TIRAP)[Yamamoto et al., 2002a][Horng et al., 2002][Horng et al., 2002]. TIR-domain-

containing adapter-inducing interferon-β (TRIF), and TRIF-related adapter molecule (TRAM) 

binding activates interferon signalling and therefore these adaptors are not detailed in the 

map [Kagan et al., 2008][Yamamoto et al., 2002b][Kawai et al., 2001].  

 

Many proteins bind to the intracellular component of TLR4, interacting with the signalling 

adaptors, and leading to phosphorylation and ubiquitination dependent signalling events. 

MyD88 and TIRAP binding results in the recruitment of interleukin receptor-associated 

kinase 1(IRAK1), IRAK4 and tumor necrosis factor receptor-associated factor 6 (TRAF6) to 

the receptor complex [Neumann et al., 2007].  
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5.3.2.1 IRAK  

Activation of the IRAK proteins occurs via phosphorylation of key serine, proline and 

threonine residues. IRAK4 is upstream of IRAK1 and is activated by autophosphorylation 

[Cheng et al., 2007]. Three phosphorylation sites present in the activation loop of this 

protein have been identified as being involved in IRAK4 activation. These are T342, T345, and 

S346 [Cheng et al., 2007]. The kinase activity of IRAK4 is required for TLR induced NF-κB 

activation [Fraczek et al., 2008][Koziczak-Holbro et al., 2007].  

 

Upon binding the receptor complex IRAK1 is phosphorylated at T209 and T387 following 

which autophosphorylation is initiated in the proline-, serine-, and threonine-rich ProST 

region of the protein [Kollewe et al., 2004]. Hyperphosphorylation of this region then 

induces dissociation from both MyD88 and the negative regulatory protein, Tollip [Kollewe 

et al., 2004]. Interaction of IRAK-1 with Myd88 and Tollip is also dependent upon the N 

terminal death domain (DD) [Neumann et al., 2007]. The C terminal domain of IRAK-1 is 

required for interaction with the downstream signalling protein, TRAF6, although this 

domain has also been identified as being responsible for maintaining the protein in an 

inactive conformation [Nguyen et al., 2009].  

 

 Ubiquitination of IRAK1 is also an essential process in LPS induced signaling. IRAK-1 is 

polyubiquitinated via K63 lined chains [Windheim et al., 2008]. K63 linked poly-ubiquitin 

chains are not associated with degradation of the protein by the proteasome such as 

occurs with K48 linked polyubiquitin chains, suggesting therefore that this ubiquitination of 

IRAK-1 occurs as part of a signaling mechanism. The sites of ubiquitination on the IRAK 

protein itself have been identified as K134 and K180 [Conze et al., 2008].  
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Prior to LPS stimulation, IRAK1 is held in its inactive state by the inhibitory protein Tollip 

[Neumann et al., 2007]. Tollip remains bound until IRAK1 autophosphorylates, at which 

point Tollip rapidly dissociates from the kinase. Tollip expression is induced by LPS and 

functions as a negative regulator of LPS induced NF-κB signalling [Li et al., 2004].  

 

It is clear that the control the IRAK proteins exert at the receptor complex involves a 

complicated interplay between the processes of phosphorylation and ubiquitination. In 

addition to this IRAK4 and IRAK1 not only activate the receptor by phosphorylation, but 

also in target the adaptor protein TIRAP for degradation. This process leads to the 

inactivation of the receptor complex and thus the IRAK proteins also function as 

endogenous negative regulators of IL-1β transcription [Dunne et al., 2010]. In this way IRAK 

proteins can be viewed to modulate their own activity.  

 

A third IRAK protein, whose interactions at the TLR4 receptor complex are less well 

understood, is IRAK-2. In human cells IRAK-2 is required for NF-κB activation downstream 

of TLR4 and has been proposed to be essential for TRAF6 ubiquitination [Keating et al., 

2007][Flannery et al., 2011]. In contrast the mouse homolog of IRAK-2 does not induce NF-

κB activity [Rosati & Martin, 2002a] although interactions with TRAF6 are still observed 

[Wan et al., 2009]. In the map the IRAK-2 interactions displayed are representative of 

human IRAK-2 as this was deemed most beneficial in supporting the future application of 

investigating human health and disease.  

 

An inhibitory member of the IRAK family is IRAK-M [Rosati & Martin, 2002b][Wesche et al., 

1999]. Inhibition by IRAK-M is independent of IRAK-1 and has been shown to lower 
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activation levels of p38, but not JNK or ERK [Su et al., 2007]. IRAK-M is ubiquitously 

expressed but localises to the cytoplasm upon endotoxin stimulation [Su et al., 2007].  

 

5.3.2.2 Pellino 

Another family of proteins that interact with the IRAKs at the TLR4 receptor complex are 

the Pellino proteins. Pellinos are E3 ubiquitin ligases that catalyse the Lys63 

polyubiquitination of IRAK1 [Butler et al., 2005]. Pellino proteins possess two functionally 

relevant structural motifs- a C-terminal RING domain that confers the E3 ubiquitin ligase 

activity [Schauvliege et al., 2006] and a Forkhead-associated (FHA) domain with a phospho-

threonine binding module, which facilitates IRAK1 interaction [Lin et al., 2008a]. Pellino-1 

has been reported to be activated by IKK-related kinases in response to TLR activation [Goh 

et al., 2012]. Members of the Pellino family activate both the NF-κB and MAPK pathways 

[Butler et al., 2005][Jensen & Whitehead, 2003]. Pellino activity is inhibited by binding of 

the Smad6 and Smad7 proteins [Choi et al., 2006][Lee et al., 2010]. There are three known 

Pellino proteins; Pellino-1, Pellino-2 and Pellino-3. In this map they are all represented as 

Pellino. 

 

5.3.3 TRAF6 

TRAF6 is an integral component of the TLR4 receptor network, essential for activation of 

JNK, p38 and NF-κB [Gohda et al., 2004]. Via interactions with IRAK at the receptor complex 

[Neumann et al., 2007] TRAF6 integrates the signal received at TLR4 with downstream 

activators of NF-κB and MAPKs such as Transforming growth factor-β activated kinase-

1(TAK1). Structurally, TRAF6 possess a C-terminal tumour necrosis factor receptor (TNFR) 

associated factor (TRAF) domain, zinc finger domains and a RING domain that confers E3 
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ubiquitin ligase activity [Yang et al., 2004][Muroi & Tanamoto, 2008]. This RING domain is 

essential for TRAF6 interaction with the E2 enzyme Ubc13/Uev1A, which in turn is 

necessary for the K63 ubiquitination of TRAF6 [Yang et al., 2004]. Interaction between 

TRAF6 and Ubc13/Uev1A is also required for the downstream activation of IKK [Yang et al., 

2004]. It has been shown that TRAF6 activation promotes the production of unanchored 

Lys63 polyubiquitin chains, which can activate TAK1 [Lamothe et al., 2007] [Xia et al., 

2009].  

 

TAK1 activation is also associated with the TAK1 binding proteins TAB1 and TAB2/3. The 

TAB proteins function as ubiquitin receptors, which when activated and bound to TAK1, 

induce TAK1 autophosphorylation [Xia et al., 2009]. TAK1 then activates IκB kinase (IKK) 

leading to downstream NF-κB activity [Xia et al., 2009]. Of the components 

TAK1:TAB1:TAB2/3 complex TAK1 appears to be essential for NF-kB and MAPK induced 

signalling [Shim et al., 2005][Takaesu et al., 2003]. Control mechanisms that are active in 

this area of the network include the TAK1 binding protein WDR34, which was identified in a 

yeast-2-hybrid screen. The siRNA knockdown of this protein increased NF-κB activity [Gao 

et al., 2009]. TAB1 also possesses a negative regulatory function in addition to its role in 

activating TAK1. Once activated p38 induces phosphorylation of TAB1 at the S423, T431 and 

S438 sites. Once this phosphorylation has occurred TAB1 inhibits TAK1 instead of activating it 

[Cheung et al., 2003].  

 

The complex containing TRAF6 and the IRAK proteins can also bind and be activated by the 

serine/threonine MAPK kinase kinase, MEKK3 [Huang et al., 2004]. TRAF6 binding of 

MEKK3 also induces NF-κB activity [Nakamura et al., 2010].  
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5.3.4 Transcriptional Activation  

LPS induces p38, JNK and ERK phosphorylation [Marantos et al., 2008], and increases NF-κB 

activity [Yang et al., 2000]. The various NF-κB molecules, referred to collectively as NF-κB, 

are activated via the IκB kinases (IKKs). IKK activity is involved in the upregulation of IL-1β 

expression. IKKα/IKKβ catalyse the dissociation of the regulatory IκB subunits (both α and 

β) from NF-κB molecules, activating the molecules and facilitating transport to the nucleus 

[Clark et al., 2011]. Increased stability of the IκBα subunit has been reported to suppress IL-

1β transcription [Xia et al., 1999]. NF-κB activation may also involve another complex 

comprising the TRAF binding protein TANK, TANK Binding protein (TBK1) and TRAF2 

[Pomerantz & Baltimore, 1999].  

 

There is also evidence for interplay between p38 MAPK and NF-κB inducing IL-1β 

expression. The p38 inhibitor SB203580 decreases binding of the TATA-binding protein 

(TBP) to the TATA box region in the IL-1β gene. TBP is shown to bind NF-kB at the IL-1β 

gene and is required for NF-κB activation of IL-1βexpression. This paper shows that p38 

phosphorylates and activates TBP, and is thus a necessary step in NF-κB induced IL-1β 

expression [Carter et al., 1999]. Prior to LPS stimulation, constitutively active ERK functions 

as an inhibitor of TBP phosphorylation by inhibiting the kinase activity of p38 [Carter & 

Hunninghake, 2000].  

 

In addition, within the enhancer and promoter regions of the IL-1β gene there are several 

mechanisms in place to regulate expression. The transcription factors C/EBPβ and PU.1 are 

bound in an inactive but primed structure. Following LPS stimulation CK-2 phosphorylates 

PU.1 and IRF-4 is recruited to the complex, initiating IL-1β expression [Liang et al., 2006]. A 
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further poised complex, comprising PU.1, interferon-responsive factor 8 (IRF8) and STAT-1, 

has also been described. This complex interacts with a C/EBPβ transcription factor bound at 

an adjacent site upon LPS stimulation and thus activates IL-1β expression [Unlu et al., 

2007]. The similarities between these two mechanisms would indicate that there may be 

some redundancy between the two and they may represent a larger mechanism involving 

all of these factors. There is, however, insufficient evidence to join the two mechanisms 

within this map. Homodimers of c-jun have also been reported activate IL-1β transcription 

via interactions with the DNA bound C/EBPβ: PU.1 complex [Grondin et al., 2007]. 

 

5.3.5 The role of zinc 

Table 5.2: Zinc binding proteins in the IL-1β network map 

 

Protein List UniProt 
Human 

UniProt 
Mouse 

A20 O76080 O88878 

TRAF6 Q9Y4K3 P70196 

TAB2 Q9NYJ8 Q99K90 

TAB3 Q8N5C8 Q571K4 
 

Each protein present in the network map was annotated with UniProt ids. These UniProt entries 
were then used to assess the proteins present in the map for zinc binding capabilities. The proteins 
within the map that were identified in UniProt as having zinc binding capabilities are given in the 
table above.  

 

 

The proteins presented in the table above possess zinc binding capabilities by means of a 

zinc finger binding domain. This information was obtained from the UniProt database [The 

Uniprot Consortium, 2012]. A20 is a regulatory protein that functions to inactivate the LPS 

initiated signal. It is a deubiquitinase that removes K63 linked ubiquitin chains from TRAF6 

which is consequently inactivated [Lin et al., 2008b]. This results in the inactivation of NF-
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κB and the consequent downregulation of IL-1β transcription. A20 is itself regulated by 

binding to another protein ABIN-2, which binds at the C terminal zinc finger domain [Van 

Huffel et al., 2001]. Overexpression of ABIN-2 inhibits ligand stimulated NF-κB activity [Van 

Huffel et al., 2001].  

 

TRAF6, TAB2 and TAB3 are essential for the propagation of the LPS induced signal for IL-1β 

expression. The zinc finger domains of TRAF6 are integral to its RING domain which is 

required for TRAF6 autoubiquitination [Lamothe et al., 2007]. TRAF6 autoubiquitination is 

needed for both downstream NF-κB activation [Lamothe et al., 2007] and inhibitory 

negative regulation of TRAF6 [Wang et al., 2010]. Consequently it is not clear how zinc 

deficiency would affect TRAF6 functioning and thus downstream IL-1β expression. The zinc 

finger domains of TAB2 and TAB3 are required for binding to K63 linked polyubiquitin 

chains, which in turn is necessary for NF-κB activation via TAK1 and IKK [Kanayama et al., 

2004]. As mutations of this domain inhibit NF-κB activation via TAB2 and TAB3, it can also 

be assumed that zinc deficiency would have the same effect upon these molecules. It is not 

clear from the map whether there is an overall positive or negative influence of zinc in IL-1β 

expression.  

 

 

 

 

 

 

 

 



Chapter 5                                                                                    A network map of IL-1β expression 

161 
 

5.4 Discussion  

5.4.1 Control and regulation in the TLR4-IL-1β transcriptional network 

Whilst activation of the TLR4 signalling pathway is an integral mechanism in the host 

response to infection, uncontrolled IL-1β production can contribute to chronic 

inflammatory disease. In the TLR4 network there are many instances of negative 

regulation, which function to dampen LPS dependent TLR4 signalling [Liew et al., 2005].  

 

The majority of the regulatory and feedback mechanisms reduce the expression of IL-1β 

induced by LPS. This highlights the potency of the cytokine. These inhibitory mechanisms 

are present throughout all levels of the signalling network, from inhibition of LPS binding at 

the plasma membrane due to MD-2 multimerisation [Teghanemt et al., 2008] and 

RP105:MD-1 sequestration of the TLR4:MD-2 receptor complex [Divanovic et al., 2005], to 

ERK regulated inhibition of the transcriptional machinery at the IL-1β gene [Carter & 

Hunninghake, 2000].  

 

Further inhibitors control the assembly of the intracellular complex. These inhibitory 

mechanisms mainly function to reduce IRAK and TRAF6 activity. The E3 ubiquitin ligase 

Pellino is a binding partner of IRAK and is inhibited by differential Smad6 and Smad7 

binding [Lee et al., 2010]. An inhibitory member of the IRAK family, IRAK-M [Rosati & 

Martin, 2002b], is expressed in monocytic cells, preventing formation of an active TRAF6 

complex. 
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In a dynamic reconstruction of the network model, event based modelling could be used to 

investigate the temporal element of this control, adding a further dimension to the 

recreation of the signalling network. By creating this in depth network map of TLR4 

signalling we have produced a platform from which to mathematically model this essential 

pathway in the inflammatory response.  

 

5.4.2 Signal transduction in the TLR4-IL-1β transcriptional network 

There are several key features of this TLR4 network map. The roles of ubiquitination and 

phosphorylation are particularly apparent. These post-translational modifications are the 

primary methods of signal transduction, and appear to function in a complementary 

manner. For the most part the proteins that constitute the TLR4 signalling pathway possess 

either E2 ubiquitin-conjugating activity, E3 ubiquitin ligase activity or kinase activity. The 

ubiquitin chains in this system are Lys63 polyubiquitin chains which are known to activate 

kinases [Hunter, 2007]. Furthermore phosphorylation appears to activate the RING 

domains of E3 ligases. This interplay between the two modes of signal transduction and 

direct protein: protein interactions are the signalling mechanisms by which the 

inflammatory message induced by LPS stimulation is propagated.  

 

5.4.3 The role of zinc in the TLR4-IL-1β transcriptional network 

In studying this network it has become apparent that zinc binding plays a central role to the 

functioning of many of its components. The zinc binding motifs present within the network 

modulate ubiquitin signalling, either positively or negatively. A20, TRAF6 and TAB2/3 each 

possess different zinc binding motifs. The TRAF6 zinc binding motif possesses a RING 

domain, which binds zinc in order to function [Lamothe et al., 2008]. In this domain zinc 
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functions as a structural component [Deshaies & Joazeiro, 2009]. The zing finger domain of 

the A20 protein is a distinct domain first identified in this protein [Opipari et al., 1990]. This 

zinc finger domain interacts with ubiquitin at D58 which differs from other zinc finger 

interactions with ubiquitin including the RanBP zinc fingers, found within TAB2 and TAB3 

[Gamsjaeger et al., 2007]. The presence of so many different forms of zinc finger motif in 

the binding of ubiquitin highlights a conserved relationship between zinc status and 

ubiquitin signalling.  

 

In a dynamic model using data detailing the zinc affinities of these proteins it would be 

possible to investigate which signalling pathways would predominate under different zinc 

conditions. It would be interesting to see whether the integral signalling pathway 

components such as TRAF6 bound zinc more tightly than the regulatory proteins such as 

A20. In this case it would be predicted that zinc deficiency would have a lesser effect upon 

the functioning of the signalling proteins compared to the regulatory proteins, which in 

turn would result in the zinc status of the regulatory proteins having more control over the 

network.  

 

5.4.4 Zinc, NF-κB and other cytokines 

As zinc deficiency has been shown to increase NF-κB activity at a tissue level [Bao et al., 

2010b] it would be interesting to investigate the effect that zinc depletion has on the 

expression of other pro-inflammatory cytokines. NF-κB activity is linked to both IL-1β 

expression [Cogswell et al., 1994] and expression of other key proinflammatory cytokines 

such as IL-6 and TNF-α [Zhang et al., 1995][Edelman et al., 2007]. Zinc deficiency has been 

shown to increase both the expression of IL-1β and TNF-α in pro-myeloid cells [Wessels et 
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al., 2013]. Zinc supplementation reduced levels of IL-1β and TNF-α [Bao et al., 2008] 

[Prasad et al., 2004]. In contrast, IL-6 levels measured in LPS stimulated zinc deficient infant 

blood samples were lower than in zinc sufficient samples [Wieringa et al., 2004]. The 

effects of zinc supplementation on IL-6 levels are inconsistent. Supplementation with 45mg 

zinc/ day has been shown to decrease IL-6 [Bao et al., 2010a], whilst supplementation with 

10mg/ day zinc increases IL-6 levels [Mocchegiani et al., 2008]. Whilst it appears that the 

effects of zinc deficiency on TNF-α are similar to the effects upon IL-1β, the role of zinc 

regulation of IL-6 appears more complicated. Elucidating the complex interplay between 

zinc regulation and these cytokines would be greatly enhanced by the use of network maps 

and dynamic models.  

 

5.4.5 Methodology 

The development of method for selection and integration of literature into a network map 

was one of the major undertakings of this work. Creating a literature search that included 

as much of the relevant data as possible whilst excluding irrelevant data to minimise the 

number of reference returned was difficult. Hierarchical arrangements of “AND” and “OR” 

terms were used to select papers that referred to LPS binding and IL-1β transcription in 

monocytic cells. These search terms were returning several thousand papers. In order to 

reduce this number to something more manageable we relied heavily on the use of “NOT” 

terms to exclude irrelevant papers. In this way we also selected against review articles, 

ensuring everything included in the final set of literature was a primary source of data.  

 

The refinement methods described in 5.2 to produce a final set of data were undertaken. 

These data refinement methods were entirely manual and did not involve the use of text 
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mining software. Furthermore the assessment of data was undertaken by two separate 

individuals. This manual approach has a distinct advantage in that humans can understand 

the nuances of context and can interpret data in figures in addition to data given in the text 

of a publication. The disadvantage of this approach is that it is labour intensive and 

consequently not suitable for assessing data from a rapidly changing field or a field with a 

larger body of data. 

 

5.4.6 Future work 

In addition to analysing the effect of zinc on IL-1β transcription there are many other 

potential applications of this network. Through analysis of the IL-1β transcription network 

other regulatory mechanisms can also be explored. In the future, building a dynamic model 

from this network map will enable us to identify any emergent properties in IL-1β 

transcription that would not have been obvious from studying individual interactions. Here 

modelling would be used to analyse the non-linear properties of the network, thus 

reducing the constraints of linear thought processes.  

 

It would also be possible to investigate the roles of regulatory mechanisms and individual 

proteins in endotoxin tolerance. The integration of signalling, expression and feedback in 

this phenomenon makes it prime candidate for a systematic investigation into its causes.  

 

5.5 Conclusions 

The network map has highlighted many important themes related to LPS induced IL-1β 

expression, namely the role of phosphorylation and ubiquitination. By further investigation 
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a role for zinc status in regulating the ubiquitin signal responsible for delivering the signal 

for IL-1β transcription was identified. This opens up exiting potential areas of investigation 

using either cell culture and “wet lab” techniques, or by developing the network map into a 

dynamic model and modelling the effects of zinc status. In this way this project can be 

perceived to epitomise an investigation that fully utilises the modelling cycle, where 

information gained from investigative lab work is inputted into a dry computational project 

and the information gained from this can feed further “wet lab” investigation.  
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6.1 Introduction 

IL-1β has been shown to be an important modulator of inflammatory phenotypes and has 

proved to be an important therapeutic target in diseases with a large inflammatory 

component such as stroke and rheumatoid arthritis [Emsley et al., 2005][Mertens & Singh, 

2009]. Zinc deficiency has been shown to be associated with an increased inflammatory 

phenotype. In rheumatoid arthritis a negative correlation between zinc status and IL-1β has 

already been identified [Zoli et al., 1998b]. In this thesis it is shown that cellular zinc 

deficiency can directly influence the production of IL-1β, thus providing a mechanism to 

explain the long recognised link between low zinc status and inflammation. This is the first 

time that zinc depletion has been identified as a sterile initiator of IL-1β processing and 

release.  

 

6.2 Key themes 

Zinc regulation of inflammation occurs at the cellular level. In both human and mouse cells, 

depleting cellular zinc leads to an upregulation of the release of mature IL-1β. Zinc 

supplementation has also been shown to reduce IL-1β expression via the NF-κB inhibitor 

A20 [Morgan et al., 2011][Prasad et al., 2011]. Investigation into the mechanisms that 

produce these effects has further developed understanding of the links between 

inflammation and zinc deficiency.  

 

6.2.1 IL-1β processing: inflammasome and non-inflammasome 

The most well characterised mechanisms for IL-1β processing and release are those 

modulated by macromolecular complexes known as inflammasomes. This work shows that 

zinc depletion induction of IL-1β release is partially dependent upon inflammasomes. Other 
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modulators of IL-1β processing such as XIAP, RIPK, caspase-8 and cathepsin G have been 

highlighted to contribute to zinc depletion-induced IL-1β processing.  

 

ASC is an adaptor molecule that is required for the assembly of some inflammasomes. 

Inflammasomes that are known to have some ASC dependence are NLRP3, NLRC4, NLRP1 

and AIM2, although NLRP1 and NLRC4 can also bind directly to procaspase-1 [Case, 2011]. 

Zinc depletion-induced IL-1β processing and release was significantly reduced in ASC KO 

peritoneal macrophages. This highlighted an essential role for ASC in the zinc depletion- 

induced processing of IL-1β. Interestingly, levels of cell death were not reduced, indicating 

that the cell death induced by zinc depletion is not pyroptotic, as ASC is an essential 

mediator of this cell death process [Brodsky & Medzhitov, 2011]. 

 

The role of the NLRP3 inflammasome in zinc depletion- induced IL-1β processing and 

release is more uncertain. In mouse bone marrow derived macrophages (BMDMs) 

inhibition with glyburide shows reduced levels of IL-1β release. Glyburide has been shown 

to inhibit NLRP3 inflammasome activation [Lamkanfi et al., 2009]. Additionally, in both 

mouse peritoneal macrophages and BMDMs, treatment with CA074-Me, (a cathepsin B 

inhibitor) reduced IL-1β release. Cathepsin B is known to be an activator of the NLRP3 

inflammasome [Hornung & Latz, 2010]. This would indicate that NLRP3 plays a role in IL-1β 

release in response to zinc depletion; however zinc depletion experiments in NLRP3 KO 

peritoneal macrophages proved inconclusive. In human macrophage-like, PMA 

differentiated THP-1 cells the potential contribution of the NLRP3 inflammasome to zinc-

depletion induced processing seems less likely. Neither inhibition with glyburide or CA074-

Me in zinc-depleted THP-1 cells reduced IL-1β release. More investigation is required to 
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draw any clear conclusions from this data; however, additional experiments may show a 

difference in the zinc depletion-dependent regulation of IL-1β processing at the level of 

NLRP3.  

 

An interesting observation in human and mouse BMDMs was the reduction in IL-1β release 

following the inhibition of the serine protease, cathepsin G. Cathepsin G inhibition reduced 

both nigericin-induced release and zinc depletion-induced release. Cathepsin G has also 

been reported to cleave and activate the interleukin-1 family member IL-33 [Lefrançais et 

al., 2012]. Mycobacterium tuberculosis infection of THP-1 cells showed a downregulation of 

cathepsin G mRNA, which was suggested as a bacterial mechanism of evading the host 

immune response [Rivera-Marrero et al., 2004]. More recently the Mycobacterium 

tuberculosis protein Rv3364c has been shown to bind cathepsin G, subsequently inhibiting 

caspase-1 activity and pyroptosis [Danelishvili et al., 2011]. This highlights a potential role 

for cathepsin G in upregulating IL-1β in response to inflammatory stimuli. Reduction in zinc 

depletion-induced IL-1β release was far greater following cathepsin G inhibition than 

caspase-1 inhibition. This would suggest that following zinc depletion, cathepsin G activates 

other mechanisms in addition to activation of caspase-1 activity.  

 

6.2.2 Roles of zinc in cell death 

Cell death is central to zinc depletion-dependent IL-1β processing and release. Zinc 

depletion is a well-known activator of apoptosis [Chimienti et al., 2001] and classical 

processing of IL-1β via inflammasome assembly is associated with an upregulation in the 

inflammatory cell death pyroptosis [Bergsbaken et al., 2009]. Increasingly cell death 

mechanisms are being identified as contributing to inflammatory pathways. One pertinent 
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example of the occurrence of crossover of cell death and inflammation is illustrated by the 

caspase family. The caspase family has been historically divided into two groups- the 

inflammatory caspases and the apoptotic caspases. However, it is becoming more apparent 

that this delineation between the two groups is not as clear cut as it first appeared, with 

both groups seeming to possess the ability to induce both cell death and inflammatory 

processes to varying extents. 

 

As described previously, Caspase-1 is characterised as an inflammatory caspase [Riedl & 

Scott, 2009]. In humans the main inflammatory caspases are caspase-1, caspase-4 and 

caspase-5, whereas in mice caspase-1, caspase-11 and caspase-12 are the main 

inflammatory caspases [Martinon & Tschopp, 2007]. Human caspases-4 and 5 [Lin et al., 

2000] in are thought to be orthologues of the mouse caspase-11. Caspase-12 is mostly non-

functional in humans but is retains its function in mice [Saleh et al., 2004].  

 

The role of caspase-1 to IL-1β processing has been well characterised, and this protease has 

been identified as contributing in zinc depletion-dependent processing. However it is clear 

that following zinc depletion there is also a significant contribution from other proteases to 

the processing and release of IL-1β.  

 

In this thesis an inflammatory role is proposed for caspase-8, which is traditionally viewed 

as an apoptotic caspase. The primary pro-apoptotic role of caspase-8 is the cleavage of the 

main effector caspase, caspase-3 [Brenner & Mak, 2009]. Caspase-8 has also been reported 

to cleave the pro-inflammatory cytokine interleukin-1β (IL-1β) at the same site as caspase-

1, activating the cytokine to a mature secreted form [Maelfait et al., 2008]. This cleavage 
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was reported after prolonged stimulation with LPS or poly[I:C], leading to activation of 

interferon-β pathways and subsequent induction caspase-8 [Maelfait et al., 2008]. The 

assembly of an ASC-containing caspase-8 scaffold, stimulated by fungi, has also been 

shown to lead to cleavage of pro-IL-1β to its mature form [Gringhuis et al., 2012]. Here it is 

shown that zinc depletion leads to activation and cleavage of caspase-8, potentially via a 

mechanism involving ripoptosome assembly. Given the evidence of caspase-8 catalysis of 

IL-1β cleavage at the same site as caspase-1 [Maelfait et al., 2008], it is likely that this 

activation of caspase-8 induces IL-1β cleavage following zinc depletion.  

 

Caspase-8 and caspase-10 cleavage have also been reported to be involved in antiviral 

activation of NF-κB dependent signalling [Takahashi et al., 2006] and TLR4 activation of NF-

κB dependent signalling. Following TLR4 stimulation, caspase-8 is recruited to IKKαβ, 

facilitating NF-κB transcriptional activity [Lemmers et al., 2007]. Here we show that zinc 

depletion of LPS-primed macrophages upregulates caspase-8 activity. This mechanism was 

not identified in the network map, although the actions of caspase-8 did not fall within the 

scope of the search term. Once a dynamic model of the network map has been created, 

however, reactions that have been identified as modulating the TLR4 stimulated pathway 

can be added and the effects of these additions assessed for the contribution to the final IL-

1β expression. In this way the effect of zinc upon IL-1β expression can be further explored.  

 

Here the activation of caspase-8 as a consequence of zinc depletion is hypothesised to 

occur via the inactivation of the x-linked inhibitor of apoptosis protein (XIAP). Inhibitors of 

apoptosis are constitutively expressed regulators of cell death. They function to prevent 

cell death via their interactions with caspases. In humans there are three IAPs, CIAP1 and 
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CIAP2, which possess CARD domains and XIAP [Yang & Li, 2000]. The IAPs have three BIR 

domains at their N terminus and possess RING finger domains that have E3 ubiquitin ligase 

activity [Gyrd-Hansen & Meier, 2010].  

 

cIAPs have also been reported to have a role in promoting inflammation as well as cell 

death, as they have been shown to be required for inflammasome activation and 

consequently caspase-1 activation. This process involves the Lys63 ubiquitination of 

caspase-1 without degradation [Labbé et al., 2011], although this is contradictory to the 

findings of [Huang et al., 2000] who did not see evidence of cIAP-induced caspase-1 

ubiquitination.  

 

A further link between IAPs and inflammation is the requirement for IAP function in NF-κB 

activation and subsequent transcription of pro-inflammatory cytokines [Gyrd-Hansen et al., 

2008] [Gyrd-Hansen & Meier, 2010].This is illustrated by the requirement of XIAP for the 

innate immune response to Listeria infection via the NF-κB and JNK signalling pathway 

[Bauler et al., 2008]. Whether this function of XIAP occurs via caspase-8 remains to be 

seen.  

 

6.2.3 Zinc in inflammatory disease.  

The relevance of this work is highlighted by the increasing interplay of zinc deficiency with 

inflammatory disease. One example is the effect that zinc has upon metabolic disease, 

which is itself a major risk factor for developing other diseases such as diabetes, heart 

disease and stroke [Chakraborty et al., 2010]. Zinc supplementation has shown to be an 

effective treatment for reducing markers of oxidative stress and inflammation in metabolic 
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syndrome in children [Kelishadi et al., 2010]. In addition, low zinc status has also been 

observed to exacerbate inflammation in obese adults, contributing to the progression of 

the obese state [Costarelli et al., 2010]. This interplay between zinc and inflammation in 

disease is complicated. By identifying one of the root causes of increased inflammation 

observed with decreased zinc status, the data presented in this thesis has contributed to 

unravelling the mechanisms behind the phenotypes of this disease state.  

 

6.3 Systematic approaches  

Two different approaches to conducting scientific investigation are represented in this 

thesis. The first approach begins with an observation which is then explored via further 

investigation of mechanisms that have been previously recognised to take part in similar 

reactions. The focus of this approach is upon the observation. Using inhibitors the 

contributions of targeted proteins to the overall effect are assessed. Whilst this approach 

relies upon the presence of a network of interactions this network is not made explicit. 

Instead the focus of this approach remains with the actions of the individual proteins.  

 

The focus of the second approach is the network of interactions that produce a particular 

observation. By assembling the network of interactions that contribute to a particular 

observation, emergent behaviours and regulatory features of networks can be identified. In 

assembling a network and making reactions and interactions explicit, areas of networks 

that require further study can also be identified. Importantly, it is clear that this second 

approach cannot be undertaken without first characterising the biological field with the 

first approach.  
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A key tool of systems biology is quantitative mathematical modelling. In this way 

quantitative experimental data can be used to model a particular biological system. 

Modelling can be used for many applications, but in systems biology there are three main 

categories of model: predictive, exploratory and models created for the engineering of 

biological systems (synthetic biology). Models also function as an effective tool for 

communicating and analysing biological knowledge.  

 

The network map of IL-1β emphasised the high level of regulation controlling the 

expression of IL-1β. A considerable portion of this regulation was in the form of negative 

feedback. It was also interesting to identify a role for zinc in this network that upon building 

the map was not immediately obvious, but upon further probing a role for zinc regulation 

of ubiquitination was highlighted. In this way the building the network map is just the 

beginning to using a systematic approach to explore IL-1β expression. By further analysing 

the properties of the components of the map I believe that other themes would emerge.  

 

6.4 Future directions  

The work described in this thesis could be developed further in several ways. The roles of 

the ripoptosome and caspase-8 function in zinc depletion-induced IL-1β could be further 

elucidated. Moreover, differences between the human and mouse response could be 

additionally characterised. Firstly, to confirm the differences observed are species 

dependent, the zinc depletion experiments with inhibitors of caspase-1 and cathepsin B 

should be repeated in another human macrophage cell line. If this is the case then 

mechanisms of NLRP3 activation in human and mouse zinc depletion-induced IL-1β 

processing could be explored. Another interesting avenue of investigation would be to 
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study the effects of cathepsin G in IL-1β release. As both nigericin and zinc depletion-

induced IL-1β release were affected it would be interesting to see if IL-1β release induced 

by other stimuli, including cytoplasmic DNA, Salmonella infection and Listeria 

monocytogenes infection could be reduced by cathepsin G inhibition. As the network map 

was built as a tool to investigate IL-1β expression there is still much that can be done with 

the map. The most natural progression from building the network map would be to 

produce a dynamic model which could be used in conjunction with experimental data to 

investigate IL-1β production.  

 

6.5 Summary 

Zinc and zinc depletion have been shown to have a profound effect upon the production of 

IL-1β. Numerous cellular proteins function to induce and regulate the expression and 

release of this cytokine. In this thesis caspase-1, ASC, XIAP, caspase-8, cathepsin B and 

cathepsin G have all been shown to be essential to the regulation of zinc depletion-induced 

IL-1β release. Increasing awareness of the contribution of inflammation to disease states 

and the global prevalence of zinc deficiency make this research extremely relevant to 

human health and disease. Zinc supplementation in combination with anti-IL-1β drugs may 

in the future prove to be an effective treatment for inflammatory disease.  
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Appendix 1 

Network Map Search String 

(((Toll-Like Receptor 4 OR Lipopolysaccharides) AND (TLR4-MD2 protein complex OR 
Lymphocyte Antigen 96 OR Antigens, CD14 OR Lipopolysaccharide-binding protein )) 
OR  
((Toll-Like Receptor OR Lipopolysaccharides OR TLR/IL-1R or Interleukin-1) AND (Myeloid 
Differentiation Factor 88 OR Interleukin-1 Receptor-Associated Kinase OR Tollip OR Pellino 
OR "TNF Receptor-Associated Factor 6"[Mesh] OR "Tbk1 protein, mouse" [Supplementary 
Concept] OR "TBK1 protein, human" [Supplementary Concept] OR Casein Kinase II OR p38 
Mitogen-Activated Protein Kinases)) 
OR 
 ((Interleukin-1 OR Interleukin 1 precursor) AND (Gene Expression AND (Transcription, 
Genetic OR Cloning, Molecular* OR Base Sequence )))) 
 
AND 
 
((macrophages OR monocytes OR dendritic cells or Cell line or fibroblasts) OR (Toll like 
receptor AND (Protein binding or phosphorylation or signal transduction))) 
 
AND 
 
(human OR mouse OR Escherichia coli) 
 
AND English [Language] 
 
NOT (equine OR bovine OR sheep OR swine OR rats OR guinea pigs or hamster OR rabbits 
OR mollusc* OR zebrafish OR baboon or avian OR worm OR Arabidopsis OR viral OR fungi 
OR gram-positive bacteria OR plant OR Oncorhynchus mykiss or plasmodium) 
 
NOT (clinical OR patient OR Children OR disease or sepsis OR Diabetes Mellitus OR 
cardiovascular diseases or cardiac OR arthritis OR depression OR anxiety OR ageing OR 
ovulation OR cigarette OR obesity OR melanoma OR asthma OR encephalitis OR paraplegia 
or implant or HIV or diet) 
 
NOT (stem cells OR endothelial cells OR muscle cells OR granulocytes OR mast cells OR B 
cells OR T cells OR keratinocytes OR chondrocytes OR hepatocytes OR splenocytes OR 
osteoblast or odontoblast OR luteal cells OR keratinocyt* OR adipocyt* OR astrocyt* OR 
satellite cells OR foam cells or Caco-2 or PC12 or HL-60) 
 
NOT (prostate OR liver OR nervous system OR synapse OR lung OR skeletal muscle OR 
ocular OR colorectal OR whole blood OR intestinal OR glomerular OR cervical OR vascular 
OR renal OR cardiovascular* OR pulmonary OR neurolo* OR axon OR hippocampus OR 
ganglion OR neurons OR synovial OR "P bodies" OR Tight Junctions OR corneal OR ovarian 
OR periodont* OR endometri* OR Fibrosarcoma OR Muscle Fibers) 
 
NOT (inflammasomes OR caspase OR haemoglobin OR serum OR P2X7 OR IL-4 OR glucose 
OR nitric oxide OR adhesion molecule OR "ADAM proteins" OR Nrf2 OR lipid rafts OR 
laminin OR Glycosphingolipids OR CAP18 OR Adenosine A3 receptor OR elastase OR 
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calcium OR chaperone OR RhoA OR Taxol OR Immunoglobulin Fab Fragments OR Connexin 
43 OR Anthocyanins OR Chemokine CCL2 OR Fut2 OR Prostaglandin OR "14-3-3" OR 
Collagenases OR Particulate Matter OR IL32 protein, human [Supplementary Concept] OR 
Receptors, Scavenger OR Receptors, Aryl Hydrocarbon OR Cathepsins OR Ceruloplasmin OR 
Serum Amyloid A Protein OR Aphidicolin OR glucocorticoid OR breast milk or histamine or 
prolactin or collagen or retinoic acid OR hormone) 
 
NOT (chemotaxis OR synthetic OR hypoxia OR Gene Expression Regulation, Plant[Mesh] or 
evolution or stress or homeostasis or oncogenic) 
 
NOT (review [publication type] OR Retracted Publication [Publication Type]) 
 
 
Searched on 28-3-12.  
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