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Abstract 

A systems biology approach was adopted in order to assess various aspects of 

the disease oral squamous cell carcinoma.  Three main aims were addressed; 

assess the ability of CoCl2 to mimic the hypoxic response in a eukaryotic cell 

line, assess the role of PDE4D in oral squamous cell carcinoma (OSCC) and 

the construction of a normoxic/hypoxic mathematical model to identify 

therapeutic targets. 

 

Cancer cells often acquire a revised metabolism which aids in initiation, survival 

and progression of the tumour. This is predominantly due to the transcription 

factor HIF-1 which is activated under hypoxic conditions. Certain compounds 

such as cobalt chloride (CoCl2) have been used extensively to inhibit the 

degradation of HIF-1α and simulate hypoxia. CoCl2 is likely to have off-target 

effects on metabolism; these effects were examined when exposing human 

telomerase reverse transcriptase (hTERT) cells to 100μM CoCl2. Gas 

chromatography-mass spectrometry (GC-MS), liquid chromatography-mass 

spectrometry (LC-MS) based metabolomics were utilised in combination with 

ELISA assays for HIF-1α and ATP. Central metabolism was accurately 

mimicked when hTERT cells were subjected to 100μM CoCl2, however; it was 

apparent that this concentration of CoCl2 does not induce an equal extent of 

hypoxia as 1% oxygen. A number of off-target effects of CoCl2 were observed in 

secondary metabolism, specifically in lipids and fatty acids. In conclusion, CoCl2 

should be used with caution as a hypoxic mimicker with the caveat that 

interpretation of results should be restricted to its effects on central metabolism. 

 

The transcription factor CREB has the ability to regulate approximately 4000 

genes, a number of which are associated with cancer initiation and progression. 

Cyclic adenosine monophosphate (cAMP) is required to activate CREB and is 

partially regulated through its degradation via the enzyme phosphodiesterase 

type 4D (PDE4D). A homozygous deletion of PDE4D has been associated with 

OSCC; however; the exact consequence of this deletion has not been fully 
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elucidated. PDE4D was knocked down in the OSCC cell line BicR16 and 

cellular proliferation, migration, resistance to ionising radiation and central 

metabolism was investigated using MTT, scratch, clonogenic and GC-MS, 

respectively. The knockdown resulted in an increase in proliferation, migration 

and radiation resistance suggesting the role of PDE4D as a TSG. Amino acids, 

cholesterol, fatty acids, carbohydrates and TCA intermediates were found to be 

altered in concentration. 

 

A mathematical model of glycolysis, TCA and glutaminolysis under normoxia 

and hypoxia was constructed through the amalgamation of two established 

models from the literature. New reactions, parameters and metabolite 

concentrations were added and unnecessary entities were deleted. COmplex 

PAthway SImulator (COPASI) was utilised to construct the model before 

validating the model using experimental data from the literature and steady 

state and flux analyses. Sensitivity analysis and a reduction in external glucose 

and glutamine were mimicked and the alterations in hypoxic and normoxic 

metabolism analysed. The reactions vCSII, vGS, vPGK and vGII were identified 

as potential therapeutic targets which may affect metabolism in hypoxia only. 

However, certain validation methods proved unsuccessful and hence the model 

requires further work before attempting the analyses again. 
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GC  Gas chromatography 

GLUT  Glucose transporter 
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GMD  Max Plank Institute molecular plant physiology database 

GMP  Guanosine mono phosphate 

HAP  Hypoxia associated protein 

HARBS  High affinity rolipram binding site 

HD  Homozygous deletion 

HEPES  4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

HIF-1α/2α Hypoxic inducible factor type 1 [alpha] / type 2 [alpha] 

HK  Hexokinase 

HNSCC  Head and neck squamous cell carcinoma 

HPLC  High performance liquid chromatography 

HRE  Hypoxia response element 

hTERT  Human telomerase reverse transcriptase 

IAP2  Inhibitor of apoptosis 2 

IMP  Inosine monophosphate 

iNOS  Inducible nitric oxide synthase 

IS1/2  Internal standard 1/2 

KD  Knockdown 

KEGG  Kyoto encyclopaedia of genes and genomes 

LARBS  Low affinity rolipram binding site 

LC  Liquid chromatography 
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LDHA  Lactate dehydrogenase A 

LIT  Linear ion trap 

LR  Linking region 

LSCC  Larynx squamous cell carcinoma 

LTQ  Linear trap quadrupole 

MALDI  Matrix-assisted laser desorption/ionization 

MAPK  Mitogen Activated Protein Kinase 

MATLAB Matrix laboratory 

MDM2  Murine double minute 

MeOH  Methanol 

MIAME Minimum information about a microarray experiment 

MIAPE  Minimum information about a protein experiment 

MIF  Migration inhibitory factor 

mRNA  Messenger ribose nucleic acid 

MS  Mass spectrometry 

MSI  Metabolomics standards initiative  

mTOR  Mammalian target of rapamycin 

MTT  (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 

NAD+  Nicotinamide adenine dinucleotide 

NADH  Nicotinamide adenine dinucleotide (reduced) 



19 

 

NADP+  Nicotinamide adenine dinucleotide phosphate 

NADPH  Nicotinamide adenine dinucleotide phosphate (reduced) 

NIPALS  Non-linear iterative partial least squares  

NO  Nitric oxide 

NSLCC  Non small cell lung cancer  

OAA  Oxaloacetic acid  

OD  Optical density 

ODD  Oxygen dependent degradation 

OMM  Outer mitochondrial membrane 

OSCC  Oral squamous cell carcinoma 

OTSCC  Oral tongue squamous cell carcinoma 

PA  Monoacyl-glycerophosphates  

PARAFAC Parallel factor analysis 

PBS  Phosphate buffered saline 

PC  Principal component 

PC  Phosphocholine 

PCA  Principal component analysis 

PC-DFA Principal component - discriminant function analysis 

PCR  Polymerase chain reaction 

PCr  Phosphocreatine 
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P-CREB  Phosphorylated cAMP response element binding  

PDE(4D) Phospodiesterase(4D) 

PDH  Pyruvate dehydrogenase 

PDK  Pyruvate dehydrogenase kinase 

PEP  Phosphoenolpyruvic acid  

PFK  Phosphofructokinase 

PHD  Prolyl hydroxylase 

PI3K  Phosphatidylinositol 3 kinase 

PK  Pyruvate kinase 

PKA  Protein kinase A 

PLS  Partial least squares 

POL  Precursor oral lesion 

PRPP  Phosphoribosyl pyrophosphate  

PVDF  Polyvinylidene fluoride 

pVHL  Product of von hippel-lindau  

Q  Quadrupole 

qPCR  Quantitative polymerase chain reaction 

RAS  Rat sarcoma viral oncogene homolog 

RD  Random decamers 

RFU  Relative fluorescence units  
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RNA  Ribose nucleic acid 

RNAse  Ribonuclease  

ROS  Reactive oxygen species 

RT-PCR  Reverse transcriptase - polymerase chain reaction 

RUNX  Runt-related transcription factor 

SCLC  Small cell lung carcinoma 

SFM  Serum free medium 

shRNA  Short hairpin ribose nucleic acid 

TCA  Tricarboxylic acid cycle 

TEV  Total explained variance 

TF  Transcription factor 

TIGAR  TP53 induced glycolysis and apoptosis regulator 

TOF  Time of flight 

TS/TSG  Tumor suppressor/tumor suppressor gene 

UCR  Upstream conserved region 

UHPLC  Ultra high performance liquid chromatography 

VDAC  Voltage dependent anion channel 

VEGF  Vascular endothelial growth factor  

VHL  Von hippel-lindau  

WT  Wild-type  
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1.2 Introduction 

1.2.1 OSCC and its Incidence 

Oral squamous cell carcinoma (OSCC) is the sixth most common cancer in the 

United States of America (Park et al., 2009) and worldwide accounts for around 

275,000 new cases and >120,000 deaths per annum (Kujan et al., 2006). 

Hence, it is more common than lymphoma, malignant melanoma and metastatic 

neoplasms (of liver, lung, breast, etc) and accounts for ~3% of total cancer 

cases worldwide (Scully & Felix, 2006). Current prognosis is poor with a 5 year 

survival rate of ~50% and has remained at a constant level for the past 30 years 

(Park et al., 2006). Both incidence and mortality rates are increasing (Kujan et 

al., 2005), which in Western societies is a direct impact of modern luxuries such 

as tobacco and alcohol (Lee et al., 2007).  

Early diagnosis is paramount to a healthy prognosis (Liu et al., 2009). Fedele 

(2009) estimated that 40,000 deaths may be prevented if detection of the 

disorder occurs during the early stages of the disease and therapeutics such as 

surgery and radiation are administered soon thereafter. 

OSCC falls into a larger category known as head and neck squamous cell 

carcinomas (HNSCCs). This collection constitutes all squamous carcinomas of 

the oral cavity, larynx, pharynx and oesophagus (Guha et al., 2007) of which 

OSCC is the most common (da Silveria et al., 2008). Communally, HNSCC 

accounts for approximately 10% of all newly diagnosed cases of cancer globally 

(Guha et al., 2007). This bleak outlook for OSCC is the rationale which justifies 

further investigation.  

OSCC is characterised by a cancerous tissue growth of the epithelial cells of 

the oral cavity which show signs of squamous cell differentiation. This disorder 

is brought about by an array of genomic abnormalities which may have 

developed over a period of time (Sparano et al., 2006). It is well documented 

that the vast majority of all OSCCs are preceded by the formation of precursor 

oral lesions (POLs) (Fedele, 2009). POLs are visible disfigurement within the 
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oral cavity of leukoplakia (white) or erythroplakia (red) patches (Kujan et al., 

2006; Roz et al., 1996) (see Figure 1.1). It is estimated that between 3-6% of 

POLs develop into OSCCs but this is largely dependent on various factors 

including size of POL, type of POL and the extent of the dysplasia (Roz et al., 

1996). 
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1.2.1.1 Genomic Factors Involved in OSCC 

Cancer, including that of OSCC, is a complex disease (Gath & Brakenhoff, 

1999; Kato et al., 2006) which by definition comprises a multitude of factors, 

originating from both genetic and environmental means, resulting in the onset of 

the disorder (Johnson and Todd, 2000). There is an abundance of genomic 

factors in the literature which are believed to be associated with OSCC 

including Cub and Sushi Multiple Domain 1 (CSMD1) (Baldwin et al., 2005; 

Sparano et al., 2005; Sparano et al., 2006; Toomes et al., 2003), Cyclin 

Dependent Kinase 2A (CDKN2A) – which encodes the proteins p16INK4A and 

p19ARF (Kato et al., 2006; Ohta et al., 2009; Wu et al., 1999), CyclinD1 (Baldwin 

et al., 2005; Matta et al., 2007) but to name a few. This list is by no means 

complete and not all factors are currently known. One gene which is not 

included in this list, but has potential to be included, is that of 

phosphodiesterase type 4D (PDE4D) and is discussed below. 

Figure 1.1 Examples of the two varying types of precursor oral lesions (POLs). (A) A 

photograph of a leukoplakia (white) disfigurement of the oral cavity. (B) A photograph of 

erythroplakia (red) disfigurement of the oral cavity. 
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1.2.1.2 Phosphodiesterase 4D (PDE4D) 

The PDEs (phosphodiesterases) are a relatively large family of enzymes which 

are involved in degrading cAMP (cyclic adenosine monophosphate) to 5′AMP 

and cGMP (cyclic guanosine monophosphate) to 5′GMP (Ong et al., 2009). The 

PDEs mode of function is via cleaving the phosphodiester bond of the nucleic 

acids. cAMP and cGMP are nucleotides which operate as secondary 

messengers within the cell (Houslay & Adams, 2003). They have a number of 

essential roles within the cell including gene expression, the cell cycle, 

cytoskeletal function, metabolism and proliferation (McCahill et al., 2008). cAMP 

is produced from ATP (via the enzyme adenylate cyclase (AC)) at the plasma 

membrane of the cell (McCahill et al., 2008) and the concentration of this and 

cGMP are under strict regulation via the PDEs (Lugnier, 2006). The only 

method of reducing cAMP concentration in the cell is via its degradation utilising 

PDEs (Houlsay & Adams, 2003). 

The PDE super-family constitutes of 11 members (Huang et al., 2001) with an 

associated 25 known PDE genes (Ong et al., 2009) with 50 different PDE 

products which may be formed via alternative splicing (Lugnier, 2006). The 

nomenclature of PDEs are based on their varying substrates (e.g. cAMP), 

kinetics, localisation, tissue distribution, allosteric regulation, etc (Beavo, 1995; 

Pyne & Furman, 2003). 

The sub-family PDE4 is cAMP specific (Houslay & Baillie, 2005; Huang et al., 

2001) and is insensitive to cGMP (Lugnier, 2006). This family is of vital 

importance to cAMP signalling and compartmentalisation within the cell 

(Houslay & Adams, 2003; Houslay & Baillie, 2005; Ong et al., 2009). The PDE4 

family encompasses four genes, A, B, C and D with in excess of 20 isoforms 

(Huston et al., 2006; Ong et al., 2009). Each of these isoforms vary in the sense 

that they possess a unique N-terminal domain (Houlsay & Adams, 2003), which 

defines the specific function of the protein (Houslay & Baillie, 2005). 
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The PDE4s are present in rich concentrations in immune cells, inflammatory 

cells, brain cells and in cardiovascular and airway smooth muscle cells, but are 

in low concentrations in platelets (Huang et al., 2001; Lugnier, 2006). They are 

able to degrade cAMP only with a Km value of 2-4 μM (Lugnier, 2006). In order 

to regulate the levels of cAMP efficiently, the cell also requires tight regulation 

of the PDE4s themselves, and this is achieved through phosphorylation 

(McCahill et al., 2008); stringent promoter control (Houslay & Adams, 2003); 

binding of protein or modifier and proteolysis (Lugnier, 2006). 

This set of enzymes has potential therapeutic targets for a broad range of 

disorders (Houslay & Baillie, 2005). These include type II diabetes (Ong et al., 

2009), erectile dysfunction (Lugnier, 2006), asthma and chronic obstructive 

pulmonary disease (COPD) (Huang et al., 2001), amongst others. However, 

limitations have been met as these enzyme-based therapeutics initiate nausea 

and emesis (Houslay & Adams, 2003; McCahill et al., 2008; Ong et al., 2009). 

Of these enzymes, PDE4D has attracted much attention of the pharmaceutical 

companies and researchers, but as with the related family members, the side 

effects still present a hurdle which needs to be overcome if PDE4D is to 

become a viable therapeutic target (McCahill et al., 2008). 

The PDE4D gene is found at locus 5q11.2, is >1.5Mbp (1,513,407bp) and is 

composed of 17 exons (Smith et al., 2006). There are nine isoforms of PDE4D 

which are brought about via alternative splicing and/or the utilisation of various 

promoters (Rahrmann et al., 2009; Huston et al., 2006). The PDE4s (including 

PDE4D) are present in various forms; long form (PDE4D 3, 4, 5, 7, 8 and 9) 

(Rahrmann et al., 2009); short form (PDE4D 1, 2 and 6) (Rahrmann et al., 

2009); super-short form; and “dead-short” form (Figure 1.2) (Houslay & Adams, 

2003; Houslay, Baillie & Maurice, 2007). The long form is composed of the 

upstream conserved region 1 and 2 (UCR1 and UCR2, respectively), linker 

region 1 (LR1) which connects UCR1 and UCR2, linker region 2 (LR2) which 

joins UCR1 and the catalytic region and the C-terminal domain, the role of 

which is currently unknown (Houslay & Adams, 2003). The short form is 
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deficient of the UCR1 (Lugnier, 2006). The super-short form also lacks the 

UCR1 and has a truncated UCR2 (Houslay & Adams, 2003) whilst the “dead-

short” form has both a truncated N and C regions and as a result is inactive 

(Houslay, Baillie & Maurice, 2007). The mode of function of the PDEs is brought 

about via the interaction of the UCR1 and UCR2 regions, which in turn 

coordinates the phosphorylation by ERK (extracellular signal regulated kinase) 

and PKA (protein kinase A) (Huston et al., 2006; Houslay & Adams, 2003). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Conti and co-workers (1991) provided evidence suggesting that prolonged, 

elevated cAMP concentrations cause an upregulation of the short form of 

PDE4D (PDE4D 1, 2 and 6). PDE4D regulation has also been linked to PDE4A 

Figure 1.2 A schematic illustrating the various forms of Phosphodiesterases (PDEs). 

PDE forms: long; short; super-short; and “dead-short”. The red sections indicate the N-

terminal domain, the green signifies UCR1, yellow shows UCR2, the blue specifies the 

catalytic unit and the orange the C-terminal domain. Other important sites and regions are 

also indicated including LR1, LR2 and the PKA and ERK2 phosphorylation sites. 
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and PDE4B concentrations, as a down regulation in these two proteins causes 

an upregulation in PDE4D in endothelial cells (Keravis, Komas & Lugnier, 

2000). In brain tissue Miro et al. (2002) found that when PDE4A is upregulated, 

PDE4B and PDE4D are downregulated. Therefore, it appears that the control of 

the PDE gene products and hence cAMP and cGMP is a profoundly complex, 

interacting system. 

The PDE4 sub-family are distributed throughout the cell, dependant on the 

classification and hence function of the enzyme. It has been documented that 

localisation may occur at the sarcolemma (Okruhlicova, Vrbjar, & Lugnier, 

1998), the nuclear envelope (Lugnier et al., 1999) and the plasma membrane 

(i.e. the same location to where cAMP is produced (Houslay & Adams, 2003)). 

Alterations of PDE4 distribution has been linked to the cell signalling revision of 

the cell (Lugnier, 2006). 

A number of experiments have taken place in order to identify the chief roles of 

the PDE4 sub-family within the cell. For example, PDE4D knockout mice 

exhibited an anti-depressant behaviour which may then be linked back to the 

role of cAMP in depression (Zhang et al., 2002). Jin et al. (1999) produced mice 

exhibiting depleted levels of PDE4D which resulted in traits such as deferred 

growth and female fertility issues. Finally, those mice with a deleted PDE4D 

gene exhibited an emesis characteristic (Robichaud et al., 2002) which could 

well be linked to the failed clinical trials of the PDE4D inhibitors. For example, 

one inhibitor of PDE4D is rolipram – a potential drug for depression; however, 

for reasons discussed above, rolipram failed clinical trials due to the adverse 

side effects including that of emesis (Lugnier, 2006).  

In addition to the disorders discussed previously, the PDE super-family has 

acquired attention from oncology researchers. Consequently, there is a broad 

array of literature attempting to relate the PDE enzymatic family to various 

forms of cancer in an effort to utilise them as therapeutic targets (Marko et al., 

2000; Weber, 2002 and Nancarrow et al., 2008). 
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In a number of instances, cAMP is found in depleted concentrations in cancer 

cells in comparison to non-cancerous cells (Marko et al., 2000). This situation 

arises due to the relative activities of two enzymes involved with cAMP 

homeostasis, namely adenylate cyclase (AC) and the PDE family (Conti & Jin, 

1999; Weber, 2002). The function of AC is the synthesis of cAMP at the plasma 

membrane and as discussed previously, the role of the PDEs is the degradation 

of the cAMP. Therefore, it is evident that the activity ratio between AC and PDE, 

and hence the concentration of cAMP, is the relevant factor. The 'normal' 

activities of AC and PDE are heavily dependent on the cellular location within 

the organism. For example, at the cell membrane of a liver cell, the ratio of AC 

to PDE is relatively equal, whereas in the cytosol of the liver and hepatomas, 

there is significantly more activity from PDE enzymes than AC (Weber, 2002), 

the consequence of which is reduced concentrations of cAMP.  

In 2002, Weber published a paper regarding gene expression in cancer cells. 

One intriguing revelation was in relation to hepatocellular carcinoma. Weber 

found a correlation between the growth rate of the tumor and associated 

increase in PDE activity and decrease in AC activity. Furthermore, in the more 

severe and aggressive cases of hepatocellular carcinoma, the PDE activity 

increase was close to the region of 10 fold and the AC activity declined by up to 

a fifth. Hence, Weber proposed that this PDE/AC ratio (and thus the intracellular 

cAMP concentration) may be directly correlated to the growth rate of the tumor, 

the higher the ratio, the lower the concentration of cAMP and the more 

aggressive the tumor. This would suggest PDE4D to be an oncogene. 

Correspondingly, Marko and co-workers (2000) found increased PDE activity 

and hence decreased cAMP concentrations in lung cancer in both cell lines and 

solid tumors. Of the PDE super-family, it was found that sub-family PDE4 

attained the greatest activity of which PDE4D exhibited the utmost enzymatic 

activity. They also examined alterations in PDE activity/cAMP concentration and 

the extent of malignancy between mouse primary keratinocytes and benign 

papilloma cell lines. They found no differences between the two sample types. 



30 

 

However, when they analysed differences in CarB cell lines (an extremely 

malignant cell line), they found much elevated levels of PDE and as a result 

depleted concentrations of cAMP. In consensus with Weber, this data implies 

that PDE4D is an oncogene. 

Conversely, Jarvinen et al. (2008) and Nancarrow et al. (2008) more recently 

reported homozygous deletions (HDs) of PDE4D (5q12) in oral tongue 

squamous cell carcinoma (OTSCC)/larynx squamous cell carcinoma (LSCC) 

and oesophageal adenocarcinoma (EAC), respectively. Whilst Jarvinen and co-

authors discovered no physical change in PDE4D expression levels, Nancarrow 

and colleagues determined from this HD, that PDE4D is likely to be a Tumor 

Suppressor Gene (TSG). Further evidence to this is provided by Weir et al. 

(2007) who found similar HDs of PDE4D in lung adenocarcinoma, again 

suggesting its role as a TSG.  

Therefore, there is contradicting evidence for the role of PDE4D in cancer. 

Paradoxically, there is compelling support for the role of PED4D as a TSG and 

as an oncogene. One solution to this apparent paradox is that cAMP activities 

are cell type specific and so the effects of raised/decreased cAMP and hence 

PDE4D activity vary from cell to cell, depending on their place of origin within 

the organism.  

Hirsh et al. (2004) suggest that elevated concentrations of cAMP in in vivo 

cancer cells may initiate a cellular response and terminate the functions of the 

cell, thereby killing the cell. There have been a number of attempts to produce 

drugs which are able to promote the levels of intracellular cAMP within cancer 

cells in order to induce apoptosis. As mentioned above, issues with toxicity to 

healthy cells have presented a barrier to cancer drug designers (Bhat et al., 

2002). Recent interest has focussed on PDE inhibitors (which function via 

increasing cAMP levels) for the combat against prostate, ovarian and lung 

cancer (Hirsh et al., 2004). Two drugs which fit this description and are currently 

utilised as a therapeutic agent for asthma are a group of substances known as 

methylated xanthines (methylxanthines), for example, theophylline and 
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aminophylline (i.e. they have passed clinical trials and are currently on the 

market) (Hirsh et al., 2004). These substances were tested for their ability to 

induce apoptosis as a solitary drug and in conjunction with other administered 

anti-cancer drugs. The results indicated that theophylline was effective 

independently and when combined with other substances, and it was suggested 

that the latter would be the preferred therapy. Conversely, aminophylline was 

not successful at inducing apoptosis at a relatively low drug concentration. 

Other in vitro studies have taken place for exploring the use of the PDE4 

inhibitor, theophylline in small cell lung carcinoma (SCLC) (Hirsh et al., 2004). 

This resulted in reduced cell viability and inhibition of DNA synthesis and hence 

non-function ability of the cell. Similarly, the use of methylxanthines has also 

been publicised in non-small lung carcinoma cells (NSLCC) (Hirsh et al., 2004). 

The results were in accordance with that of SCLC as theophylline was an 

effective inducer of apoptosis in the cancer cells, particular when combined with 

other drugs such as gemcitabine. In unpublished data, the same authors also 

found theophylline plus gemcitabine to be promising for prostate cancer cells 

(Hirsh et al., 2004). 

Methylxanthines (including that of theophyllines) mode of action as a 

therapeutic agent is currently vague. There are a number of related hypotheses. 

Firstly, methylxanthine may increase the levels of cAMP by inhibiting the PDEs 

involved with cAMP homeostasis. This will effect downstream events including 

the inhibition of RAS activity (Stork & Schmitt, 2002) and hence MAPK (mitogen 

activated protein kinase), which in turn leads to arrest of the cell cycle during 

the G0/G1 phase (post mitotic phase) (Favot, Keravis & Lugnier, 2004). This is a 

result of inhibition of PDE4 (Favot, Keravis & Lugnier, 2004). Alternatively, the 

increase in cAMP may result in a decline in the expression of Bcl2 (Yoshida et 

al., 2000), an anti-apoptosis protein, and inhibition of MDM2 (Shmueli & Oren, 

2004), which is an inhibitor of the apoptotic p53 protein. These two cellular 

modifications vastly increase the chance of apoptosis and decrease cell growth 

(Hirsh et al., 2004). 
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Rolipram is also a very well documented inhibitor of the PDE4 group. It is a 

specific inhibitor of PDE4 and is insensitive to cGMP (Lugnier, 2006). It is able 

to bind to the PDE4 molecule at two different sites aptly named the low affinity 

rolipram binding site (LARBS) and the high affinity rolipram binding site 

(HARBS) (Houslay, Schafer & Zhang, 2005). Evidence suggests that the 

interaction between the PDE4 LARBS and the rolipram results in the positive 

effects of the drug, i.e. anti-inflammatory characteristics (Lugnier, 2006) which 

has potential for the treatment of asthma (Huang et al., 2001). However, it is the 

interaction between the HARBS segment of PDE4 and rolipram which reaps the 

repercussions of utilising the drug, i.e. emesis and nausea (McCahill et al., 

2008; Houslay, Schafer & Zhang, 2005). The affinity of interactions between 

LARBS/HARBS and rolipram is not necessarily constant or consistent and 

varies on a number of factors including; PDE4 subtype; Mg2+ bound enzyme 

(Houslay, Schafer & Zhang, 2005); dimerisation of the PDE4 molecule through 

UCR1 and UCR2 (McCahill et al., 2008); plus the interaction of other molecules 

including RACK1:PDE4D5 which increases the affinity of rolipram (McCahill et 

al., 2008).  

The intracellular introduction of rolipram results in a concentration shift of the 

PDE4 family and any interacting proteins (Terry et al., 2003). This in turn will 

significantly affect the localised distribution of cAMP throughout the cell, with an 

obvious overall effect of elevated cAMP concentration (Ong et al., 2009). 

Eventually, as a consequence of the introduction of the PDE4 inhibitor rolipram, 

cellular arrest and programmed cell death will follow (Kowalczyk et al., 2009; 

Houslay, Schafer & Zhang, 2005) 

The link between cAMP concentration (and hence PDE activity) and apoptosis 

is not yet understood. Fryknäs et al. (2006) proposed a number of propositions 

which require further investigation. Firstly, they hypothesised the involvement of 

the PKA pathway and associated molecules such as nitric oxide (NO). Prior 

studies have suggested that NO may be coupled with the inducement of 

apoptosis (Karpuzoglu & Ahmed, 2006; Zheng, Sinniah & Hsu, 2006). NO is 



33 

 

under gene regulation via inducible nitric oxide synthetase (iNOS), which in turn 

may be activated by PDEs (Fryknäs et al., 2006). Hence, an upregulation of 

PDE may have a sequential downstream upregulation of NO which may result 

in an apoptotic activity. Secondly, they suggested the contribution of calcium 

concentration within the cell. If a cell was to surpass the intracellular threshold 

concentration of calcium, the cell would undergo cell death (Olofsson et al., 

2008). There is a complex relationship between cAMP and intracellular calcium 

concentrations; however, it is believed that cAMP encourages export of calcium 

from the cell and ensures that localisation of intracellular calcium is controlled 

(Vajanaphanich et al., 1995). Therefore, as PDE regulates cAMP levels, further 

downstream it will also regulate intracellular calcium concentrations. The third 

and final proposal, once again includes the PKA pathway. The mechanisms of 

the PKA pathway result in a downstream activation of ERK1, ERK2 and p38 

(Chio et al., 2004). The ERK molecules and p38 are associated with cell death 

and reduced cell growth and hence, if these molecules are activated by the lack 

of upstream activities from the PDE family, apoptosis will occur (Fryknäs et al., 

2006). Conversely, if a situation arises whereby PDE activity is elevated 

causing a reduction in cAMP, ERK/p38 will not be activated and apoptosis 

cannot occur.  

The literature associating PDE4D (and other PDEs) with OSCC is limited and 

only mentioned in brief. For example, Fushimia et al. (2008) found PDE4D to be 

a genetic factor associated with the disease but do not elaborate further on their 

claim. This suggests that this link is not fully elucidated, and hence, requires 

further investigation.  
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1.2.2 Environmental Effects 

 

1.2.2.1 The Warburg Effect 

In 1927, Otto Warburg and co-workers released evidence of a phenomenon 

which was to revolutionise the current view on the onset and development of 

tumorigenesis (Warburg, 1930; 1956; 1965; Warburg, Posener & Negelein, 

1924 and Warburg, Wind & Negelein, 1927). When healthy mammalian cells 

are subjected to normoxic conditions, the preferred route for generating ATP is 

via oxidative phosphorylation in the mitochondria of the cells. This is the most 

efficient means of a cell to produce ATP; yielding 31 or 29.5 molecules of ATP 

per glucose molecule depending on NADH shuttling into the mitochondria. 

Under the same conditions, glycolysis (which takes place in the cytoplasm of 

the cell) is a significantly less efficient method of producing ATP, gaining just 

two molecules of ATP per glucose molecule. In healthy cells, glycolysis is only 

preferred to oxidative phosphorylation under hypoxic conditions. Warburg 

discovered a metabolic shift in the manner cancer cells produce energy, finding 

that they predominantly utilise glycolysis, even in the presence of oxygen (this 

is known as the Warburg effect or aerobic glycolysis). Hence, a paradoxical 

situation arises, as a cancer cell requires elevated levels of ATP to grow and 

develop, yet the mode in which the cell gathers ATP is subordinate to its 

counter-method. The scientific community believe that this switch from oxidative 

phosphorylation to glycolysis is paramount for tumor development and 

progression (Bartrons & Caro, 2007). 

There are currently six established characteristics which are shared by 

cancerous cells: unprecedented ability to grow and multiply; evade apoptosis; 

ability to invade proximate and distant tissues; angiogenesis; and capability of 

producing and acting upon growth signals (Gogvadze, Orrenius & Zhivotovsky, 

2009). There is now current debate within the oncological field as to whether a 

seventh should be added to the list involving the requisite of glycolysis within 

cancer cells (Gogvadze, Orrenius & Zhivotovsky, 2009). This pronouncement is 
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ambiguous for a number of reasons. Firstly, there is speculation as to whether 

aerobic glycolysis is essential in all tumors; there is currently no evidence 

advocating or disputing this statement. Secondly, it is yet to be determined 

whether this observed Warburg effect is a systematic symptom of other 

effectors causing the onset of tumorigenesis or whether it is the foundation on 

which tumorous growth is formed (Ashrafian, 2006). These factors are 

contributing to the scrutiny which is being received regarding aerobic glycolysis. 

However, experts in the field are unable to disregard the advancement in which 

this revelation has brought about and the constructive aid this has provided. For 

example, diagnosis and prognosis enhancements (through the stage of the 

cancer) has been made through the use of 18F-2-fluorodeoxyglucose (a glucose 

analogue) - Positron emission tomography (FDG-PET) imaging (Suzuki et al., 

2009a). This enables one to measure the glucose metabolism spatially in vivo, 

which in general, have a strong positive correlation with tumorigenesis and the 

stage of development of the tumor. 

The underlying mechanisms behind this mysterious divergence from oxidative 

phosphorylation to glycolysis within tumors remain ambiguous. Warburg 

explained the occurrence by dysfunctional mitochondria and since this is where 

oxidative phosphorylation should occur and may no longer do so, glycolysis 

retains ATP production control. However, more recent evidence suggests that 

mitochondria originating from tumor cells are still able to function sufficiently, 

disproving Warburg’s hypothesis (Nakashima et al., 1984; Frezza and Gottlieb, 

2009). Although the mechanisms behind aerobic glycolysis are extremely 

complex and not yet understood, the following attempts to outline a number of 

the relevant factors involved. 

So, how is aerobic glycolysis possible? Through an intricate system of 

interactions, productions and inhibitions including gene amplifications of 

oncogenes, repression of tumor suppressor genes and post translational 

modifications (Altenberg & Greulich, 2004), a number of which are discussed 

below. In order for cancerous cells to survive, this system must provide an 
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enhanced supply of glucose (or other energy source) to sustain the ability to 

grow and divide. 

The regular glycolysis process converts glucose to pyruvate, whereas aerobic 

glycolysis i.e. the Warburg effect converts glucose to lactate (Bartrons & Caro, 

2007). The initial step of glycolysis is the conversion of glucose to glucose-6-

phosphate (G6P) and is controlled by the enzyme hexokinase (HK) (Mathupala, 

Ko & Pedersen, 2009). There are 4 various isoforms of HK (HK1-4) and 

evidence suggests that HK-2 is the predominant isoform in most cancer cells 

(Nakashima et al., 1986) and in comparison, this isoform is scarce within 

healthy cells (Mathupala, Ko & Pedersen, 2009). This overexpression of HK-2 is 

a direct result of upregulation from: HIF-1 (Frezza & Gottlieb, 2009); c-Myc 

(Kondoh, 2008) and p53 (Kondoh, 2008). This is further supported, as the 

transcription factors HIF-1 and p53 binding sequences have been found on the 

promoter region of HK-2 (Mathupala et al., 1997). Evidence suggests that this 

upregulation of HK-2 plays a major role within cancer cells. HK-2 binds to 

mitochondria at the voltage dependent anion channel (VDAC) at the outer 

mitochondrial membrane (OMM) (Gogvadze, Orrenius & Zhivotovsky, 2009). 

This is advantageous to the cancerous cell for a number of reasons. Firstly, this 

contributes anti-apoptotic properties. Mitochondria are involved with the 

apoptosis procedure as the pro-apoptotic molecules Bax (Bcl-2 associated X 

protein) and Bak (Bcl-2 homologous antagonist/killer) are signalled to bind to 

the OMM which in turn initiates a release of cytochrome c which downstream 

instigates apoptosis (Robey & Hay, 2009). The binding site of the Bax/Bak 

molecules at the OMM is the same site that HK-2 binds and therefore, in cancer 

cells, competitive inhibition takes place (Pastorino, Shulga & Hoek, 2002). 

Hence, apoptosis is inhibited. Furthermore, binding of HK-2 to the OMM may be 

promoted through factors which are elevated in cancer cells such as Akt (Robey 

& Hay, 2009). Secondly, the binding of HK-2 to the OMM grants the HK-2 

exclusive access to a continuous flow of ATP molecules which may be used to 

phosphorylate glucose to G6P, hence glucose metabolism becomes relentless 

in the cancerous cell (Zhivotovsky & Orrenius, 2009).  
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Arguably, HIF-1 is the most important factor involved in the Warburg effect. HIF-

1 is found to be abundant in many cancer cells (Bartrons & Caro, 2007) and has 

a number of advantageous effects for the tumor. In healthy cells, HIF-1 is 

activated under hypoxic conditions in order to cope with the stress the cell is 

subjected to whilst lacking oxygen (Bartrons & Caro, 2007). When hypoxia is 

relieved, the α-subunit of HIF-1 is rapidly degraded with the aid of von Hippel-

Lindau (VHL) protein (Minchenko et al., 2002). The VHL initiates the 

degradation of the α-subunit of HIF-1 via the ubiquitin degradation pathway. 

Cancerous cells are not necessary hypoxic, but yet still frequently overexpress 

the HIF-1α protein.  

So how is HIF-1α able to survive in the presence of oxygen? At presence, this 

is still vague, but evidence suggests that other factors are able to prolong the 

half life of HIF-1α even in the presence of oxygen (King, Selak, & Gottlieb, 

2006). For example, a mutation may cause the production of a dysfunctional 

VHL protein which results in an inhibition of degradation of HIF-1α and hence a 

prolonged HIF-1α half life (Semenza, 2009). Furthermore, the activation of the 

PI3K, Akt, and mTOR pathways are believed to promote stabilisation of HIF-1α 

(Jiang et al., 2001; Martinive et al., 2009). In many cases, tumor cells are 

subjected to hypoxia, chiefly due to an inadequate oxygen supply through the 

vascular system (HelmLinger et al., 1997). When these situations arise, HIF-1 

concentrations may be sustained as there is no oxygen to promote the 

degradation of the HIF-1α subunit. 

There are a number of means by which HIF-1 promotes glycolysis and 

enhances survival and growth of the tumor. Firstly, HIF-1 upregulates a host of 

genes associated with glycolysis (Kondoh, 2008) and initiates metabolic 

reprogramming. Glucose transporter expression is upregulated in order to 

increase the flux of glucose into the cell which in turn will increase glycolysis 

(Frezza & Gottlieb, 2009). These transporters include glucose transporter-1 

(GLUT1) and glucose transporter-3 (GLUT3) (Bartrons & Caro, 2007). 

Furthermore, HK/HK2 activity is increased, elevating the initial step of glycolysis 
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and the conversion of glucose to G6P (Frezza & Gottlieb, 2009). Regulation 

between oxidative phosphorylation and glycolysis is under the control of the 

activity of two enzymes, namely, pyruvate dehydrogenase kinase (PDK) and 

lactate dehydrogenase A (LDHA) (Gogvadze, Orrenius & Zhivotovsky, 2009). 

Under hypoxic conditions these are regulated by the HIF-1 transcription factor 

and hence, this is believed to be a key player behind the mechanisms involved 

in tumorigenesis (Frezza & Gottlieb, 2009). Secondly, mitochondria activity is 

reduced (the activity location of oxidative phosphorylation), and in order to 

compensate, the glycolytic activity in the cytoplasm of the cell is increased 

(Zhivotovsky & Orrenius, 2009). In association with the mitochondria is the 

enzyme cyctochrome c oxidase (COX) (or Complex IV) which is regulated by 

HIF-1 (Fukuda et al., 2007). The regulation of the COX4-2 enzyme isoform is of 

particular importance for a cell to undergo efficient respiration under hypoxic 

conditions (Semenza, 2009). Thirdly, HIF-1 has the ability to promote 

angiogenesis as an attempt to relieve the hypoxic stress the cell/tumor is 

subjected to (Hsu & Sabatini, 2008). Consequently, the tumorous cell is able to 

enhance the intake of glucose and oxygen, which is paramount for the cells 

survival. Fourthly, this upregulation in glycolysis (which is partially the 

responsibility of HIF-1) results in an overproduction of lactic acid (Kim, Gardner 

& Dang, 2005). This leads to acidosis, which has recently been associated with 

elevated ability of invasiveness (Nijsten & van Dam, 2009) and the capability of 

enhanced growth (providing p53 dysfunction) (Gatenby & Gillies, 2004). 

Evidence suggests that lactate may also be recycled as an energy source for 

the cell. Finally, HIF-1 activates a number of oncogenes including Akt, c-Myc 

(Kim, Gardner & Dang, 2005) and Ras (Chen et al., 2001) further promoting 

tumorigenesis. 

AMP activated protein kinase (AMPK) is a cellular component which has a 

responsibility for monitoring and acting upon cellular energy stores, e.g. ATP 

and glucose (Kahn et al., 2005). AMPK is sensitive to 5′AMP and is inhibited by 

ATP and glycogen (Ashrafian, 2006) and through this has the ability to regulate 

the cellular energy. When energy levels are depleted, glucose and fatty acid 
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metabolism is stimulated by AMPK in order to raise energy levels and GLUT-1 

and GLUT-4 translocation are utilised to increase glucose uptake into the cell 

(Ashrafian, 2006). When the cell is subjected to stress (e.g. hypoxia), AMPK 

may be activated which in turn promotes cell metabolism. Due to the varying 

requirements between early tumors and late tumors, a paradox arises regarding 

the expression of AMPK. An advantage to early tumors would be inhibition of 

AMPK in order to allow anabolic processes to occur such as proliferation 

(Ashrafian, 2006). Inhibition is brought about via the mTOR pathway (Swinnen 

et al., 2005). Conversely, in latter stages of tumorigenesis, evidence suggests 

that elevated levels of glycolysis is paramount and so, AMPK activation is 

required in order to contribute to raising glucose metabolism (Buzzai et al., 

2005). Robey & Hay (2009) suggested that Akt has some indirect control over 

AMPK activity, which is an important aspect of activating the mTOR pathway 

(Hahn-Windgassen et al., 2005). 

Alongside hexokinase (HK) and phosphofructokinase (PFK), pyruvate kinase 

(PK) is believed to be amongst the most controlling steps in glycolysis (Weber 

et al., 1966). Therefore, one would assume that these rate controlling steps 

may play a major role in the Warburg effect. PK is the catalyst for the 

irreversible reaction of phosphoenolpyruvate (PEP) to pyruvate (Hsu & Sabatini, 

2008) and is present in a number of isoforms dependent upon cellular location 

and activity; Liver (PKL); Erythrocyte (PKR); Muscle-1 (PKM1) and Muscle-2 

(PKM2). The predominant isoform in many cancers is PKM2 and a correlation 

has been suggested between the concentration of PKM2 and the extent of the 

malignancy (Eigenbrodt et al., 1997). Unexpectedly, the isoform PKM2 is less 

efficient than its counterpart PKM1 (Mazurek et al., 2005) but yet, PKM2 is still 

beneficial to the tumor. One reason for this is that intermediates from the 

glycolytic pathway are diverted and used for advancement in tumor growth and 

development caused by PKM2 (Ferguson & Rathmell, 2008). Furthermore, 

PKM2 promotes cancer metabolism and growth signalling (Christofk et al., 

2008). PKM2 is under regulation by a number of factors including deactivation 
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by oncogenes (Eigenbrodt et al., 1992) and an increase under hypoxic 

conditions (through HIF-1) (Kress et al., 1998). 

It is now under popular belief that PFK is the rate limiting enzyme in glycolysis 

(Kondoh, 2008; Robey & Hay, 2009). PFK-1 catalyses the reaction of fructose-

6-phosphate (F6P) to fructose-1-6-bisphosphate (F1-6P2) and PFK-2 catalyses 

the reaction F6P to fructose-2-6-bisphosphate (F2-6P2). PFK-1 is allosterically 

activated by F2-6P2 (Minchenko et al., 2002), which is promoted by AMP and 

inhibited by ATP and citrate (Frezza and Gottlieb, 2009). Hence, the activity of 

PFK-1 is dependent on intermediates associated with the glycolytic pathway. 

Sequentially, if cellular levels of F6P are elevated, PFK-2 produces F2-6P2 

which stimulates PFK-1 which converts the F6P into F1-6P2. The relative 

activities of PFK have been found to differ in cancerous cells in comparison to 

their healthy counter-parts, which ultimately would have an effect on glycolysis. 

There are a number of methods by which PFK activity is altered. Hypoxia may 

elevate the concentration of PFK-1 which is a direct result of the activation of 

HIF-1 (Bartrons & Caro, 2007). An alternative method which has been 

documented is the activation of oncogenes such as Ras (Kole et al., 1991), Src 

(Durante et al., 1999) and c-Myc (Kondoh, 2008) in cell lines. Chesney et al. 

(1999) found that PFK-2 is expressed constitutively in cancer cell lines which 

results in an amplified level of F2-6P2, which successively activates PFK-1 and 

hence improved flux of glycolysis. Conversely, flux through glycolysis may be 

depleted due to suppressions via TP53 and TIGAR on F2-6P2 and hence PFK-1 

(Bensaad et al., 2006). Akt has also been documented to effect levels of PFK-1 

and hence glycolysis in tumorigenesis (Robey & Hay, 2009). In this case, Akt 

activates PFK-2 which in turn, activates F2-6P2 and then PFK-1 inducing 

increased glycolysis activity. 
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1.2.2.2 The Role of the Transcription Factors HIF-1 and CREB 

HIF-1 and cAMP response element binding (CREB) are transcription factors 

(TFs) which regulate particular genes in a cell specific and gene specific 

manner (O’Reilly et al., 2006; Dimova et al., 2007). The TFs bind to the hypoxia 

response element (HRE) (Baugh et al., 2006) and cAMP response element 

(CRE) binding domains, respectively (Dimova et al., 2007), binding in the 5' 

flanking region of various genes. Once bound these TFs upregulate or repress 

the transcription of genes in an intricate fashion. 

HIF-1 is activated under hypoxic conditions within the cell; however it may also 

be present in an active form in cancer cells under normoxia. A consensus belief 

within the scientific community is that the activation of HIF-1 in cancer cells 

provides a major contribution to the progression and severity of cancer through 

its selective regulation of genes (Abramovitch et al., 2004; Breit et al., 2008; 

Suzuki et al., 2009b). 

The secondary messenger cAMP causes the release of the catalytic subunit of 

PKA (protein kinase A) (Suzuki et al., 2009b) which sequentially phosphorylates 

CREB at residue serine 133, thereby activating it (Abramovitch et al., 2004). P-

CREB is then able to recruit a number of cofactors, forming a complex which 

binds to the cis binding site CRE, resulting in CREB regulation of the gene. 

CRE is found in the promoters of ~4000 genes (Suzuki et al., 2009b). The 

CREB distribution between tissues is relatively generic, but regulation by CREB 

is heavily dependent on numerous factors including the methylation state of the 

cis region and the selective recruitment of the cofactors (Zhang et al., 2005). 

The interaction between the TFs and cis regions is multifaceted and may 

function via numerous mechanisms. These may be categorised as HIF 

dependent and HIF independent regulation. The two dominant mechanisms 

from the literature are briefly discussed below. 

In one model, Firth and co-workers (1995) suggested that the TF HIF-1 cannot 

exclusively regulate gene expression, requiring adjacent binding domains to be 
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simultaneously stimulated (see Figure 1.3) (Breit et al., 2008). In this case, HIF-

1 stimulation is essential but sufficient to activate transcription without adjacent 

binding of other TF such as CREB. In addition, further cofactors are necessary 

such as the CREB binding protein (CBP)/p300 complex and the recruitment of 

the transcriptional machinery. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In a further model termed HIF independent regulation (Dimova, Jakubowska & 

Kietzmann, 2007; O’Reilly et al., 2006), CREB regulates gene expression, 

regardless of the aid from HIF (see Figure 1.4). CREB is activated via the same 

means as the previous model, recruits CBP/p300 and RNA polymerase II to 

Figure 1.3 HIF dependent regulation of transcription. cAMP concentrations are 

regulated by the enzymes AC (cAMP production) and PDE4D (cAMP degradation). 

The asterisk indicates the regulation of PDE4D through post-translational 

modification, promoter control, proteolysis, etc. cAMP binds to PKA, releasing the 

catalytic subunit which sequentially phosphorylates CREB at Ser133. The P-CREB, 

already bound to CRE, selectively recruits the cofactors p300/CBP in addition to the 

transcriptional machinery. Meanwhile, under hypoxic conditions, HIF forms a 

complex which simultaneously binds to HRE. p300/CBP are scaffolding proteins. 
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form a complex, and initiates transcription of the target gene(s). A point of 

interest in both models is the enhancement of CREB functions through hypoxia, 

for example the phosphorylation of CREB from PKA is augmented (Dimova, 

Jakubowska & Kietzmann, 2007) as is the transcription of CREB and CBP 

(Freeland, Boxer & Latchman, 2001). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To add further complexity to the issue, CRE and HRE are interchangeable, i.e. 

HIF may bind to the CRE binding domain and CREB may bind to the HRE cis 

region (Dimova et al., 2007; O’Reilly et al., 2006). Moreover, both HIF and 

CREB may simultaneously bind to a solitary HRE or CRE domain and hence do 

not compete for binding sites. The binding of both TFs to a sole cis domain 

Figure 1.4 HIF independent regulation of transcription. cAMP concentrations 

are regulated by AC (cAMP production) and PDE4D (cAMP degradation). The 

asterisk indicates the regulation of PDE4D through post-translational modification, 

promoter control, proteolysis, etc. cAMP binds to PKA, releasing the catalytic 

subunit which sequentially phosphorylates CREB at Ser133. The P-CREB, already 

bound to CRE, selectively recruits the cofactors p300/CBP in addition to the 

transcriptional machinery. 
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permits supplementary regulation beyond the binding of a single TF 

(Abramovitch et al., 2004). 

It may prove useful to investigate which genes are influenced by these TFs in 

OSCC and may also provide insight on how these mechanisms contribute to 

the Warburg effect. Potential genes which may be influenced by such 

mechanisms include VEGF (Abramovitch et al., 2004; Meyuhas et al., 2008), 

LDH (Abramovitch et al., 2004), Bcl-2 (Freeland et al., 2001), CCN1/CYR61 9 

Meyuhas et al., 2008), IAP2 (Abramovitch et al., 2004), COX-2 (Park et al., 

2005), macrophage migration inhibitory factor (MIF) (Baugh et al., 2006), iNOS 

(Fryknäs et al., 2006), CyclinD1 (Abramovitch et al., 2004) and CyclinA 

(Abramovitch et al., 2004). This array of gene control ultimately results in 

regulation of cancerous characteristics such as cellular growth, angiogenesis, 

anti-apoptotic behaviour, proliferation, enhanced mitotic index, etc.  

Literature searches indicate that co-activation of transcription by HIF-1 and 

CREB has not been investigated in OSCC cells and, since regulation is cell 

type specific, it may establish some significant factors and may shed light on 

the underlying mechanisms behind OSCC. An interesting factor which has 

recently come to light is that frequently a HD of PDE4D is found in OSCC. This 

disables the cell from degrading the majority of cAMP which sequentially results 

in elevated cAMP levels, enhanced PKA activation, increased CREB 

phosphorylation and potentially an escalation of gene regulation. 

1.2.2.3 Mimicking the Effects of Hypoxia using Cobalt Chloride (CoCl2) 

It is well documented that subjecting a cell to CoCl2 under normoxic conditions 

has similar effects to that of hypoxia (An et al., 1998; Guo et al., 2006; Wang & 

Semenza, 1993). This is achieved via the activation of hypoxia related 

pathways through the increased expression and/or stabilisation of the HIF-1α 

and HIF-2α proteins (Ho and Bunn, 1996; Yuan et al., 2003; Chachami et al., 

2004). The underlying mechanisms by which this occurs have been under much 

debate. During normoxia the α-subunit of the HIF protein is degraded by pVHL 
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(Figure 1.5) whereas under hypoxic conditions, HIF-1α is present in its active 

form (Figure 1.6). One proposal suggested for the hypoxic mimicking 

capabilities of CoCl2 is due to the cobalt (Co) competitively inhibiting the oxygen 

dependent degradation (ODD) site of the HIF-1α which results in the inability of 

pVHL to bind and hence HIF-1α may not be degraded (Yaun et al., 2003) 

(Figure 1.7).  

 

Figure 1.5 HIF-1α Degradation During Normoxia. HIF proline residues 402 and/or 

564 are hydroxylated which is catalysed by the enzyme Prolyl Hydroxylase (PHD) (Ke 

and Costa, 2006). This process is O2 and iron (Fe2+) dependent. The asparagine at 

residue 803 is also hydroxylated by Factor Inhibiting HIF (FIH) (in the presence of O2) 

and inhibits CREB Binding Protein (CBP/p300 complex binding/recruitment to HIF-1α 

under normoxic conditions. This post-translational modification acts as an ‘insurance 

policy’, ensuring that any HIF-1α which evades normoxic degradation is inhibited of its 

hypoxic duties. Subsequent to this, HIF-1α is multi-ubiquitinated by the von Hippel-

Lindau gene product, pVHL. pVHL is an E3 ubiquitin ligase and also a TSG. The final 

stage of the procedure is initiated by the multi-ubiquitination and is the degradation of 

the HIF-1α via the 26S proteasome. It is noteworthy that the half-life of HIF-1α during 

normoxia is approx 5-8 min (Berra et al., 2001). 
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Chachami and co-workers (2004) suggest that this behaviour is observed due 

to an upregulation in the translation of the HIF-1α protein which is brought about 

via the phosphatidylinositol 3 kinase (PI3K) pathway. This activation of the PI3K 

pathway is the normal mode of action for inducing the protein synthesis of HIF-

1α under hypoxic conditions, and the results from this experiment provide 

evidence that this was also the case when subjecting the cells to CoCl2. The 

view of this activation of the PI3K pathway is shared by Kim et al. (2006). It is 

known that reactive oxygen species (ROS) are involved during hypoxia and 

CoCl2 infliction, and their role was elucidated by Chandel et al. (1998). ROS are 

initially formed as superoxidase (O2-), before been converted to hydrogen 

peroxide (H2O2) before their degradation to water (H2O). The work established 

distinctions in ROS behaviour between hypoxia and CoCl2 subjected cells. 

Under hypoxia, mitochondria signalling induces ROS elevation and results in an 

upregulation of translation. Conversely, CoCl2 promotes ROS production which 

in turn upregulates translation and hence, does not require the utilisation of 

mitochondrial signalling. This highlights the fact that subjecting cells to CoCl2 

merely imitates hypoxia and does not literally induce the hypoxic response.  
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These discrepancies in hypotheses may be due to the variations in cell types 

used in the experiments, for example Chachami utilised smooth muscle rabbit 

trachea cells whereas Yuan exploited rat pheochromocytoma and chinese 

hamster ovary cells. That is to say differences in organisms and cell origins may 

cause the observed variations in behaviour between the experimental groups. It 

is also noteworthy that other hypoxia mimicking substances are known such as 

desferrioxamine (DFO) (Guo et al., 2006) and nickel (Ho & Bunn, 1996) and 

these may produce the hypoxic imitating effects through varying mechanisms.  

  

Figure 1.6 Activated HIF-1α During Hypoxia. In the absence of oxygen 

(hypoxia), PHD and FIH are inhibited resulting in no hydroxylation of the 

proline and asparagine residues of the HIF-1α protein. Subsequently, pVHL is 

incapable of ubiquitination of the HIF-1α protein and therefore, the 26S 

proteasome is unable to degrade HIF-1α. This results the binding of HIF-1α to 

the cis regions and hence regulating transcription. 
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From the model presented in Figure 1.7, it is important to note that CoCl2 is 

indeed a hypoxic mimicker and should not be confused as a hypoxic inducer. 

As can be seen in the models presented in Figures 1.5 – 1.7 above, the 

mechanisms behind hypoxia and CoCl2 induced hypoxia are significantly 

distinct. In addition, CoCl2 may have severe off target effects which are yet to 

be analysed in detail. Part of the aims of this work is to investigate these 

questions further. 

Figure 1.7 CoCl2 as a Hypoxia Mimicker. CoCl2 interferes with HIF-1α at the 

pVHL stage of degradation. This inhibition of degradation could be a result of 

the CoCl2 inhibiting the interaction between pVHL and HIF-1α (LaManna, 

Pichiule & Chavez, 2007) and/or the prevention of ubiquitination of HIF-1α by 

the pVHL (Ohh et al., 2000). Regardless, either mechanism results in escalated 

HIF-1α concentrations, which may then dimerise with HIF-1β, recruit the 

remaining members of complex and induce transcription of genes containing 

the HRE cis region. 
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1.2.2.4 The Glutamate Shunt 

Tumorous cells display a number of characteristics which are different to their 

healthy counterparts including that of a modified glutaminolysis (Diaz-Ruiz et 

al., 2009). Glutaminolysis is a term used to describe the conversion of 

glutamine to glutamate (glutamic acid), asparate, ammonia (NH3) and CO2 

(Brand, 1985) and is catalysed by the enzyme glutaminase (Kovacevic & 

McGivan, 1983) (see Figure 1.8). The eventual product of this process is 

pyruvate and/or lactate via malate of the TCA (Baggetto, 1992). This reaction is 

reversible and occurs in the mitochondria of the cell (DeBerardinis et al., 2008). 
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Evidence suggests that cancerous cells rely on the forward reaction (i.e. 

conversion of glutamine to glutamate) which is achieved via the hyper 

expression of the glutaminase enzyme or the inhibition/suppression of 

glutamine synthetase (DeBerardinis et al., 2008). This became apparent as 

many cancer cells exhibit elevated concentrations of glutamate, asparate, etc 

than their counterparts (Fan et al., 2008) and a subsequent lower concentration 

of glutamine (Kovacevic & McGivan, 1983). This glutamate shunt is beneficial 

Figure 1.8 Glutaminolysis Modifications in Cancer Cells. The green section 

signifies glycolysis, orange the TCA cycle, pink highlights glutaminolysis, the 

white boxes indicate amino acids and the blue labels denotes enzymes. 

Cancer cells often have compromised aconitase enzymatic activity (which 

catalyses the reaction of citrate to isocitrate and is highlighted by the asterisk 

(*)) as a result of increased ROS concentration. In order for continuation of the 

TCA, glutamine enters at α-KG where it proceeds to malate and is eventually 

converted to pyruvate. This is termed the truncated Krebs cycle (Baggetto, 

1992). 
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for tumorous cells for a number of reasons. Primarily, glutamine is a copious 

amino acid in Homo sapiens (Feron, 2009) and may be utilised as a carbon 

source which may enter the TCA cycle via the conversion to glutamate and 

subsequently α-ketoglutarate (Hitchler & Domann, 2009). This is advantageous 

to cancer cells as the enzyme aconitase (which catalyses the reaction citrate to 

isocitrate in the TCA cycle) is compromised resulting in the inhibition of the TCA 

cycle. The ability of glutamine to enter the TCA via glutamate and then α-

ketoglutarate enables a continuation of the TCA cycle. This modification has 

been termed the truncated Krebs cycle by Baggetto (1992). In addition, a 

number of by-products are produced during the TCA cycle via glutaminolysis 

including; the amino acids proline, aspartate, arginine and asparagine (Frezza 

& Gottlieb, 2009) which are beneficial for cancer progression; the energy source 

NADPH from NADP+ (Feron, 2009) which again is an important factor in tumor 

advances in order to produce fatty acids and nucleotides for growth. 

Furthermore, the truncated TCA cycle results in the final product of lactate 

which is believed to be utilised as an energy source by cancer cells (Feron, 

2009).  

Due to the innovative input of glutamine to the TCA cycle in cancer cells, acetyl 

CoA is now focussed into synthesising fatty acids and cholesterol which further 

aid the tumor (Feron, 2009). Additionally, evidence suggests that fatty acids and 

glutamate may aid in the defence of attacks from the host’s immune system, i.e. 

they are immunosuppressive (Eck, Drings & Driige, 1989; Jiang, Bryce & 

Hoorobin, 1998). As discussed above, ROS are produced in cancerous cells 

and may be highly abundant. It is therefore important that the process of 

glutaminolysis is not detrimentally affected by ROS production if the tumor is to 

progress. It is noteworthy that lower glutamine concentrations (Kovacevic & 

McGivan, 1983), elevated glutamate concentrations, increased implications of 

the Warburg effect and elevated lactate (Nijsten, & van Dam, 2009) 

concentration are correlated to the aggressiveness of the tumor. 
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1.2.3 Systems Biology 

1.2.3.1 Systems Biology for Advancing Cancer Knowledge 

As previously mentioned, cancer is a complex disease which by definition 

involves an accumulation of natural (genomic) and environmental implications 

upon the cell (Pfeifer, 2010). A relatively novel approach to investigate such 

convoluted disorders is via systems biology (Hornberg et al., 2006). Systems 

biology incorporates a multi-disciplinary nature in which biologists, chemists, 

mathematicians, physicists and computer specialists unite in order to achieve a 

communal, biological goal. Traditionally, biologists have investigated complex 

cellular behaviour by means of a reductionist approach. This involves studying 

complex biological behaviour by investigating specific molecules and 

interactions within a system. The contemporary systems approach investigates 

the system as a whole (holism), looking at all interacting molecules within the 

system simultaneously. The belief is that “the whole is greater than the sum of 

its parts” (Aristotle), i.e. one cannot study sole interactions and expect to 

understand how the whole system functions. This is due to behaviour which 

arises due to the complex interacting nature of the system which would not be 

normally observed whilst utilising a reductionist approach. These are known as 

emergent properties. Obviously, this systems biology course of action would not 

be possible without the knowledge gained from prior experiments on the 

relatively simple single interactions. For a systems biology review, please refer 

to Chuang et al. (2010). So, what does systems biology involve? What tools are 

utilised to advance systems biology? 
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1.2.3.2 High Throughput Technology and the ‘Omics’ Revolution 

‘Omics’ is the study of biological organisms using a set of tools which are 

utilised in order to produce a large quantity of semi-/quantitative data. For this 

reason, these are known as high-throughput technologies. The ‘omics’ include 

genomics – the study of the genome; transcriptomics – the study of transcripts; 

proteomics – the study of proteins; and metabolomics – the study of the 

metabolites. Such relatively novel approaches are of great use when 

investigating cancer. There are a number of reasons for this.  

Firstly, this enables the investigator to elucidate potential biomarkers (Johnson 

& Todd, 2000) and highlight altered pathways within the cancer cell (Patel et al., 

2009). This is achieved via a high resolution, comprehensive comparison 

between a healthy and cancerous cell at any instance in time (Hornberg et al., 

2006). The advanced ability of these platforms enables the identification of 

oncogenes and TSG which provide further understanding to the underlying 

mechanisms behind the disorder (Edgren et al., 2007). Furthermore, as this 

comparison is instantaneous, an investigation may take place to study the onset 

and development of a cancerous growth; i.e. the cancer may be studied at 

various stages (Patel et al., 2009), which in turn may provide further insight. 

Edgren and co-authors (2007) suggested that copy number alterations (CNAs) 

and somatic mutations are the underlying reasons for the onset of cancers and 

on these grounds, a comprehensive investigation may be undertaken using 

such platforms (Pinkel & Albertson, 2005). 

Secondly, this is a systems approach which therefore results in the 

incorporation of emergent properties (Laubenbacher et al., 2009) which would 

not arise if the study was to look at single interactions or pathways. That is to 

say, the complete interacting network is investigated concurrently (Nagaraj, 

2009) which is advantageous as it enables the investigator to construct a 

cancer signature which may be utilised in the future as a diagnostic and 

prognostic tool (Eschrich et al., 2009). Additionally, Nagaraj (2009) proposed 
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that a number of targets simultaneously require perturbation to combat the 

disease efficiently. In order to establish these combinations of targets, a 

systems approach is required. Further advantages include; no dissection of the 

sample is required (as this would cause obvious damage to the cells and 

proteins/metabolites may be lost) and also, whilst using specific platforms, no 

prior knowledge of protein composition is necessary (Patel et al., 2009). 

The high-throughput technologies with respects to the ‘omics’ are ever evolving. 

The various platforms each have associated advantages and disadvantages. 

For example, the study of the proteome is made possible through numerous 

platforms, and has the ability to elucidate biomarkers related with the disease 

(Srinivas et al., 2002), has potential as a diagnostic and prognostic tool (Zhang 

et al., 2009), and may provide some insight into the underlying mechanisms 

involved with the cancer (Nagaraj, 2009). Mass spectrometry (MS) is a useful 

tool within proteomics and is compatible to work in conjunction with other 

techniques such as 2D gel electrophoresis, for further analysis (Nagaraj, 2009) 

and with other omics technologies (Johnson & Todd, 2000). MS based 

proteomics has the capability of creating a map of the proteins within a sample 

(Gagné et al., 2005) which is valuable when comparing cancerous and non-

cancerous samples and for future reference. A large number of analytes may 

be simultaneously determined in a single experiment providing a sensitive 

analysis whilst covering a broad range of chemistries including peptides, 

polypeptides and tri-glycerides (Walch et al., 2008). 

In terms of disadvantages of high throughput technologies, Nagaraj (2009) 

stated that integration and standardisation is still an issue and validation against 

accepted clinical and pathology techniques is still necessary.  
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1.2.3.2.1 Metabolomics 

The metabolomics field is becoming increasingly popular within the scientific 

community as a means of investigating cellular behaviour and function. 

Metabolomics is the quantitative evaluation of all low molecular weight 

molecules (metabolites) of the cell under a set of defined conditions at a 

specific point in time (Goodacre et al., 2004). It is complementary to the other 

‘omics’ and has associated advantages. Firstly, the metabolome is the final 

product of the cell and is a result of the interactions between the genes, mRNA 

and proteins (Nordström and Lewensohn, 2010). Hence, quantitating the 

metabolome is generally considered more closely related to assessing the 

phenotype of the organism than the other ‘omics’ (Ellis et al., 2007). Diseased 

states will therefore be evident within the metabolome of biological systems 

(Ellis et al., 2007). Secondly, minute alterations in the levels of proteins and 

mRNA may not be detected when measuring directly. However, these 

variations may significantly alter the concentrations of an array of metabolites 

which may then be identified and quantified (Urbanczyk-Wochniak et al., 2003). 

Furthermore, a range of metabolites can be identified and quantified 

simultaneously with a degree of accuracy and precision (Ellis et al., 2007). 

Conversely, metabolism is extremely complex, with Homo sapiens possessing 

tens (and possibly hundreds) of thousands of metabolites (Spratlin et al., 2009; 

Goodacre et al., 2004). At present, it is not possible to identify and quantify all 

of these metabolites as a result of lack in technology (Goodacre et al., 2004), 

although, this is a goal which is currently been worked towards. In addition, 

there are other issues concerning the methodology for metabolomics 

experiments including quenching (Faijes et al., 2007) and extraction (Goodacre 

et al., 2004). 

The terminology of metabolomics may be confusing and is occasionally 

misused (Goodacre et al., 2004). Table 1.1 defines the terms commonly used in 

metabolomics.  
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Table 1.1 Common terminologies utilised in metabolomics. 

 

  

Term Definition Reference 

Metabolomics Identification and quantification of all metabolites within  Goodacre et al. (2004) 

  an organism. At present, this is not possible.   

Metabonomics 

The quantitative measurement of the dynamic multiparametric 

metabolic response of living systems to pathophysiological Nicholson et al. (1999) 

  stimuli or genetic modification.  

Metabolome A quantitative analysis of all metabolites in a given sample Ellis et al. (2007) 

Metabolite target  Quantitative analysis of a set of specific metabolites  Goodacre et al. (2004) 

 analysis which are of interest.   

Metabolic/  Analysis of a set of related metabolites within a sample. Fiehn (2001);  

metabolite These may be related structurally (e.g. amino acids), or  Goodacre et al. (2004) 

profiling originate from a specific pathway  

Metabolic  Is a top down approach. The high-throughput global analysis of  García-Pérez et al.  

fingerprinting the intracellular metabolome. The aim is to create a metabolic  (2008); Ellis et al. 

  signature which will change upon perturbation of the system   (2007) 

  and thus maybe compared.   

Metabolic The high throughput analysis of the extracellular metabolome.  Goodacre et al. (2004) 

footprinting This assesses the metabolites secreted/excreted into the    

  external environment. This generally requires no quenching or    

  extraction of metabolites.   
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1.2.3.2.2 Liquid Chromatography Mass Spectrometry (LC-MS) and Gas 

Chromatography Mass Spectrometry (GC-MS) 

Chromatography techniques such as gas chromatography (GC) and liquid 

chromatography (LC) are frequently linked to mass spectrometry (MS) and 

utilised in order to determine and quantify analytes in a given sample. The 

measurements are then used to elucidate the molecular structure properties of 

an analyte or establish the elements which compose the sample (Watson & 

Sparkman, 2008). This is achieved through mass to charge (m/z) 

measurements of the analytes performed by the mass spectrometer. In 

biological terms, MS is applicable for metabolomics, proteomics and lipidomics 

(Griffiths & Wang, 2009).  

GC-MS combines two analytical techniques which work in conjunction with 

each other. The GC performs the separation of the components of the sample 

predominantly based on volatility and chemistry and the MS is utilised for 

identification purposes. Once the GC separates the compounds within the 

sample, the mass spectrometer is able to identify and quantify each compound, 

thereby providing quantified values for each compound (Watson & Sparkman, 

2008). GC-MS may be utilised for volatile, low molecular weight substances 

(Ekman et al., 2009), such as fatty acids and metabolites (Bedair & Sumner, 

2008) after derivatisation through methyl esterification. Derivatisation is a 

chemical process which modifies a chemical structure into a derivative which 

possesses more desirable attributes such as volatility, solubility or polarity. GC 

is beneficial in comparison to LC as is it relatively undemanding, the separation 

procedure is more rapid, the columns are more efficient than those of HPLC 

(Ekman et al., 2009) and it is relatively inexpensive (Bedair & Sumner, 2008). 

As with GC-MS, LC-MS is also a combination of two analytical practices, the LC 

for the separation and the MS for the identification and quantification of the 

compounds. Conversely to GC-MS, LC-MS is employed for the analysis of non-

volatile and non-polar compounds which cannot be analysed via GC-MS 
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(Watson & Sparkman, 2008). LC-MS is also a very popular technique for 

metabolomics analysis (Bedair & Sumner, 2008). Advantages of LC-MS over 

GC-MS include reduced operating temperatures which enable the analysis of 

metabolites which are degraded at GC-MS temperatures and improved sample 

preparation requirements; i.e. no derivatisation is generally required (Bedair & 

Sumner, 2008). 

The MS instrumentation comprises of three main components; the ionisation 

source, the mass analyser and the ion detector (see Figure 1.9). First, the 

metabolites are separated in terms of volatility, polarity and charge via GC, LC 

or capillary electrophoresis (CE). GC functions through heating of the sample 

whereby metabolites elute in order of volatility, the most volatile metabolite first 

since they will vaporise at a lower temperature. However, as mentioned 

previously, metabolites which are sensitive to heat will not be detected. In 

addition, the GC separation is also dependent on the column chemistry as 

metabolites will interact with the column differently. When utilising LC for 

separation, the sample is diluted in an appropriate solvent at low temperatures 

(and hence volatility is not a factor) and separation is generally based due to 

polarity of the analytes under investigation. However, the metabolites must be 

ionised if they are to be detected during MS. 
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The subsequent stage is ionisation of the sample. Only a recent enhancement 

in technology has resulted in advanced techniques which have allowed mass 

spectrometry to become an everyday use for biologists. These developments 

included that of electrospray ionisation (ESI) (Fenn et al., 1989) and matrix 

assisted laser desorption/ionisation (MALDI) (Karas & Hillenkamp, 1988; 

Tanaka et al., 1988) both of which result in ‘softer’ ionisation of the sample 

(Prokai et al., 1996; Feng et al., 2008). 

Figure 1.9 General flow chart for Mass Spectrometry 

(Feng et al., 2008). 
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Once the sample has been ionised the mass analyser separates the ions 

according to their mass-to-charge ratio (m/z). Again, there are variations within 

mass analysers including quadrupole (Q), linear ion trap (LIT), Fourier 

transform ion cyclotron resonance-mass spectrometry (FTICR), Orbitrap and 

time-of-flight (TOF). Linear TOF-MS is a common approach adopted for the 

analysis of variety of analytes (including metabolites). This variation involves a 

flight tube in which an electric field is utilised to accelerate metabolites through 

the tube to the detector. The mass of the ion is proportional to the arrival time of 

the metabolite (analyte) through the flight tube to the detector; the metabolites 

reach the detector in order of m/z (Guilhaus et al.. 1997; Allwood & Goodacre 

2010). The Orbitrap device is the most recent development for an ion trapping 

m/z analyser (Watson & Sparkman, 2008). In this system, ions are trapped and 

maintained in a potential well about a central spindle electrode (Hu et al., 2005; 

Ekman et al., 2009). Rather than ejecting the ions for detection, the oscillatory 

frequency of the ions are measured (and this behaviour is based on the m/z 

ratio of the ions) (Bedair & Sumner, 2008). The result is an increased resolution 

and improved mass accuracy (Bedair & Sumner, 2008; Ekman et al., 2009).

  

As promising as MS may appear, there are still drawbacks to its use. Primarily, 

there is a distinct lack of standards relating to the methodology including 

sample preparation (predominantly in proteomics) (Calvano et al., 2010; 

Nagaraj, 2009). Also, there is a lack of analytical standards for natural 

compounds that allow identification. Another major issue relates to the 

bioinformatics tools available for analysing the vast quantity of data produced 

with these high throughput technologies (van Wieringen, van de Wiel & Ylstra, 

2007). However, such bioinformatics tools are rapidly evolving and databases 

containing a wealth of information are been developed such as the COSMIC 

(catalogue of somatic mutations in cancer). In addition, legislations are been 

brought into play such as the minimum information about a microarray 

experiment (MIAME); the minimum information about a proteomics experiment 

(MIAPE) and the metabolomics standards initiative (MSI) which ensure that 



61 

 

scientists supply as much information as possible to their peers in order of 

reference to aid in further advancing current knowledge (Sumner et al., 2007). 

Metabolite identification is a major factor in metabolomics based experiments 

and the MSI states that published data should elaborate upon each metabolite 

reported. This should include the status of the identification and whether this is 

definite, putative or unknown based upon physiochemical properties and/or 

spectral similarities with public databases.  

 

1.2.3.2.3 Chemometrics 

Chemometrics is a tool used in chemistry based science to extract information 

using techniques from mathematics, statistics and computer sciences. The aim 

is to optimise the data (such as that obtained from metabolomics experiments) 

through elucidating relationships which may previously not be so obvious. 

Techniques include principal components analysis (PCA), partial least squares 

(PLS) and discriminant function analysis (DFA), some of which are elaborated 

on below. For a more in-depth review on chemometrics, please refer to 

Workman et al. (2006) and/or Madsen et al. (2010). 

 

1.2.3.2.3.1 Principal Component Analysis (PCA) 

PCA is a widely exploited, unsupervised, multivariate analysis technique which 

is used to analyse data sets with large numbers of variables (Jolliffe, 1986). The 

aim of PCA is to reduce the complexity of the data whilst maintaining the 

greatest variance of the data set. This is achieved by the algorithm (in this case, 

non-linear partial least squares (NIPALS) (Wold, 1966)) explaining the variance-

covariance structure of a data set via a few linear combinations of these 

variables. The data are displayed by a small number of principal components 

(PCs), with PC1 attaining the greatest quantity of variance, PC2 the second 

greatest and so on and so forth. This reduced data may then be visualised on a 

PCA scores plot in addition to a loadings plot, which depicts the origin of the 

variance observed. Nevertheless, PCA does not always exhibit the desired 
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relationship and so, the PC scores may be used as an intermediate step to 

further analyses such as PC-DFA (principal component-discriminant function 

analysis). 

 

1.2.3.2.3.2 Principal Component-Discriminant Function Analysis (PC-DFA) 

Depending on the data set, PCA may not always correctly represent the data 

and so other methods are needed to extract the relevant information. One 

option is PC-DFA (Manly, 1994), which is another multivariate analysis 

technique. PC-DFA is supervised which requires a priori information which is 

fed into the algorithm; this aids in discriminating the various classes. The 

algorithm uses this information and maximises the distance between classes 

and minimises the distance amongst classes, which in effect causes tighter, 

more defined clusters. However, since this is a supervised technique, validation 

is required which uses trained and test data to ensure that the model is not 

over-fitting the data. 

 

1.2.3.2.3.3 PARAllel FACtor (PARAFAC) Analysis 

PARAFAC (Bro, 1997) is a modified version of PCA, which basically adopts 

PCA at multiple tensors (such as time points) (Kroonenberg, 2008). This 

analysis is displayed in the form of a manifold of PCA scores plots, each 

exhibiting different tensors. This is useful when there is a large array of data 

taken over various time points and sheds light on the behaviour over the 

specified time. 

 

1.2.3.2.3.4 Clustergram Analysis 

A further analysis technique used during these studies was a clustergram, 

which is a hybrid of a heat map and a dendrogram. The purpose of a 

clustergram is to represent variables (such as metabolites) which are behaving 

in a similar fashion in an aesthetically pleasing manner. It is expected that 

related variables will cluster together on the clustergram, providing experimental 
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validity to the data. If this is the case, one can also assume that variables which 

have not been assessed will, by and large, behave in an analogous fashion 

also. 

 

1.2.3.3 Modelling in Cancer 

Once such vast amounts of data have been collected though high throughput 

technologies, one possibility is to input the information into a computational 

representation as a means of attempting to understand the complex behaviour. 

A model may be constructed in such a manner, that it may predict an outcome 

utilising a set of equations and defined parameters which have been derived 

from experimental work.  

Modelling cancer is an extremely challenging prospect due to its unpredictable 

nature and the vast quantity of genes, proteins, molecules etc involved (for a 

review on modelling in cancer refer to Hornberg et al., 2006). Furthermore, by 

definition, cancer is a multi-cellular disorder, which further complicates the 

modelling process. In addition, the model has to be made aware of cellular 

processes such as apoptosis, all integrated feedback loops involved with 

associated components, etc. The complexity of a cancer network is currently 

incomprehensible. 

The overall aim of a mathematical model in cancer is to elucidate therapeutic 

targets within the cell which can be utilised to combat the disease or to expose 

biomarkers specific to that cancer. It is also possible to construct models which 

can predict the behaviour of the system following perturbation; for example, 

exposure to cancer drugs which would highlight the system wide effects of the 

drug. Models provide a valuable tool which can present insight into a complex 

system such as cancer behaviour, and thus, utilised in conjunction with 

complimentary methods such as high throughput technologies, may lead to the 

understanding of cancer. 
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1.2.4 Aims and Objectives of the Project 

The general aims and objectives of this project are: 

 To elucidate the capability of CoCl2 as a hypoxic mimicker in hTERT 

cells and to assess (if any) those effects caused by CoCl2 exposure 

which are not associated with the hypoxic response. Explicitly, to 

investigate any limitations with using CoCl2 as a hypoxic mimicker. 

 To investigate the effects of a PDE4D knock down on BicR16 cells and 

hence its potential influence on cancer initiation and progression. 

Phenotypic effects and central metabolism will be a main focus. 

 To create a validated mathematical model of central metabolism and the 

effects of the transcription factor HIF-1 with practical predictive 

capabilities. 

CoCl2 will be found to be an inappropriate hypoxic mimic in eukaryotic cells due 

to its undesirable effects seen in metabolism. Although the hypoxic response 

will be mimicked in terms of central carbon metabolism when exposed to 

100μM CoCl2; these off-target effects should be noted and the substance 

should be avoided where possible and substituted for the genuine hypoxic 

environment. 

PDE4D will play a role in cancer associated attributes and will have an effect on 

central metabolism in the OSCC cell line BicR16. These effects will 

be synergetic through the transcription factors HIF-1 and CREB. PDE4D will be 

elucidated as a TSG as the knockdown in expression will result in an increased 

proliferation, migration and glycolytic flux. 

Tumorous central metabolism contains weak points which may be targeted for 

therapeutic benefit. These targets will be a component of glycolysis since this 

pathway is enhanced through hypoxia and if targeted, these therapeutic agents 

will have less of an effect on healthy cells. Glutaminolysis associated enzymes 

will be a target for therapeutic benefit since cancerous cells are heavily reliant 

on glutamine as an energy source and this will be elucidated in the model. 
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2.1 Abstract 

The oxygen-labile, hypoxia Inducible transcription factor 1 (HIF-1) plays 

a pivotal role in the onset and development of many cancers where it regulates 

genes which are associated with cancer initiation and progression. 

Furthermore, tumor cells have been found to maintain high levels of HIF-1α 

even under normoxic conditions. Cobalt chloride (CoCl2) is known to inhibit the 

degradation of HIF-1α in the presence of O2, and this has been used 

extensively to simulate hypoxia. However, even at low concentrations, CoCl2 is 

likely to have off-target effects on cellular metabolism. Thus, it was our intention 

to investigate these off-target effects on human telomerase reverse 

transcriptase (hTERT) immortalised human keratinocytes by the use of gas 

chromatography-mass spectrometry (GC-MS), liquid chromatography-mass 

spectrometry (LC-MS) based metabolomics in combination with ELISA assays 

for HIF-1α and ATP. hTERT cells were subjected to normoxia (21% O2), 

hypoxia (1% O2) or 100μM CoCl2 (21% O2) for 0h, 4h, 8h, 12h, 18h and 24h 

prior to fingerprint (cellular) and footprint (supernatant) analysis of samples. 

100μM CoCl2 induces HIF-1α and is a good mimicker of hypoxia in terms of 

central metabolism although it is clear that this treatment does not induce the 

same level of effect as 1% O2 for the corresponding exposure time. 

Furthermore, numerous off-target effects of CoCl2 were observed in secondary 

metabolism particularly in lipids and fatty acids. In conclusion, CoCl2 should be 

used with caution as a hypoxic mimicker with the caveat that interpretation of 

results should be restricted to its effects on central metabolism. 

2.2 Introduction 

Hypoxia Inducible Factor 1 (HIF-1) is a transcription factor which is able 

to regulate the expression of many genes. This is achieved via its ability to bind 

to the Hypoxia Response Element (HRE) (Baugh et al., 2006) located in the 5' 

flanking regions of HIF-1 responsive genes which up or down regulate 

transcription. HIF-1 is composed of two sub-units: a β-subunit which is 
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constitutively expressed within the cell, and an α-subunit which is regulated via 

oxygen concentrations. Under ordinary circumstances, the α-subunit is rapidly 

degraded in the presence of oxygen resulting in deactivation. Since most 

tumours are hypoxic, activation of HIF-1 is a common feature of malignant 

disease which, in turn, de-regulates expression of a variety of genes associated 

with both progression and prognosis of many cancers (Abramovitch et al., 2004; 

Breit et al., 2008; Suzuki et al., 2009). Thus, HIF-1 is able to reprogram the 

cells’ metabolism from "regular" primary metabolism that predominantly uses 

oxidative phosphorylation, to a revised primary metabolic mode of glycolysis. 

This is known as the Warburg effect (Warburg et al., 1924; 1927; Warburg, 

1930; 1956; 1965) and is a common feature of tumour cells.  

When healthy mammalian cells are subjected to normoxic conditions, the 

preferred route for generating ATP is via mitochondrial oxidative 

phosphorylation which is the most efficient means of energy production yielding 

approximately 30 molecules of ATP per glucose molecule. Under the same 

conditions, cytoplasmic glycolysis is far less efficient producing just two 

molecules of ATP per glucose molecule. In healthy cells, glycolysis only occurs 

in preference to oxidative phosphorylation under hypoxic conditions. Hence, 

somewhat paradoxically, although cancer cells require elevated levels of ATP to 

support their growth they use a very inefficient means of producing this and it is 

widely believed that this switch from oxidative phosphorylation to glycolysis is 

crucial for tumor development and progression (Bartrons & Caro, 2007). 

Genes regulated by HIF-1 which are associated with the Warburg effect 

include; glucose transporter-1 (GLUT-1) and glucose transporter-3 (GLUT-3) 

(Bartrons & Caro, 2007), hexokinase-2 (HK-2) (Frezza & Gottlieb, 2009), 

pyruvate dehydrogenase kinase (PDK), lactate dehydrogenase A (LDHA) 

(Gogvadze et al., 2009), cytochrome c oxidase (COX) (or Complex IV) (Fukuda 

et al., 2007) and pyruvate kinase PKM2 (Kress et al., 1998). The co-ordinate 

regulation of these genes with angiogenesis (Hsu & Sabatini, 2008), amino acid 

synthesis (Vander Heiden et al., 2009) and lactic acid production (acidosis) 
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(Gatenby & Gillies, 2004; Nijsten & van Dam, 2009) illustrates the advantages 

of the Warburg effect over normal metabolism in cancer and proliferating cells. 

Oxygen mediated degradation of the HIF-1α subunit is ultimately 

produced by its ubiquitination. During normoxia, HIF-1α proline residues 402 

and/or 564 are hydroxylated by the enzyme prolyl hydroxylase (PHD) (Ke and 

Costa, 2006) which is O2 and iron (Fe2+) dependent. The asparagine at residue 

803 is also hydroxylated by factor inhibiting HIF (FIH) which inhibits creb 

binding protein (CBP)/p300 complex binding/recruitment to HIF-1α under 

normoxic conditions. This post-translational modification acts as an extra level 

of control to ensure that any HIF-1α present is prevented from activating 

hypoxia regulated systems. Subsequent to this, HIF-1α is multi-ubiquitinated by 

the von Hippel-Lindau gene product, pVHL which is an E3 ubiquitin ligase which 

has tumour suppressor activity. The final stage of the procedure is initiated by 

the multi-ubiquitination and is the degradation of the HIF-1α via the 26S 

proteasome. It is noteworthy that the half-life of HIF-1α during normoxia is 

approx 5-8 min (Berra et al., 2001). 

Conversely, hypoxia inhibits the activity of PHD and FIH which 

suppresses hydroxylation of the HIF-1α protein which inhibits pVHL mediated 

proteasomal degradation. This results in accumulation of HIF-1α which enables 

its dimerisation with HIF-1β and subsequent translocation to the nucleus where 

it binds to cis acting transcriptional regulatory elements. 

It has been widely reported that CoCl2 mimics the effects of hypoxia 

under normoxic conditions (An et al., 1998; Wang & Semenza, 1993; Guo et al., 

2006) whereby its mode-of-action is thought to be via increased expression 

and/or stabilisation of the HIF-1α and HIF-2α proteins (Ho and Bunn, 1996; 

Yuan et al., 2003; Chachami et al., 2004). However, the precise mechanism for 

this effect is not clear. It has been suggested that cobalt competitively inhibits 

the oxygen dependent degradation (ODD) site of the HIF-1α which prevents the 

binding of pVHL (Yaun et al., 2003; LaManna, Pichiule & Chavez, 2007) and 

subsequent ubiquitination (Ohh et al., 2000). Chachami et al (2004) suggested 

that CoCl2 upregulates the synthesis of the HIF-1α protein via activation of the 
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phosphatidylinositol 3 kinase (PI3K) pathway which is normal means of 

inducing HIF-1α under hypoxic conditions. It is also known that reactive oxygen 

species (ROS) play a role during hypoxia and treatment with CoCl2 (Chandel et 

al. 1998). Hypoxia requires mitochondria associated signalling which induces a 

ROS elevation and results in an upregulation of transcription. Conversely, CoCl2 

directly promotes ROS production which, in turn, up-regulates transcription with 

no requirement for mitochondrial signalling. This indicates that subjecting cells 

to CoCl2 imitates hypoxia - it does not induce an exact replica of the hypoxic 

response. This issue is also illustrated by the observation that the mechanisms 

behind hypoxia induced and CoCl2 induced HIF-1α induction are distinct.  

It has been common practice to treat cells with CoCl2 to mimic hypoxia in 

preference to the use of genuine hypoxic conditions and it is undeniable that 

this practice is partly the result of limited access to hypoxic conditions. 

Furthermore, CoCl2 also facilitates ease of handling and harvesting cells since it 

eliminates the problems associated with re-exposure of cells to normoxia which 

can cause rapid re-oxygenation-related alterations in gene expression. 

However, In spite of these advantages, it is clear that CoCl2 is a toxic substance 

and is likely to affect cells in ways other than those associated with hypoxia.  

To date, there have been no studies investigating the accuracy of CoCl2 

as a hypoxic mimicker in eukaryotes in terms of its effects on central 

metabolism or any unforeseen effects which may occur and we now report an in 

depth metabolic study on the effects of CoCl2 in hTERT cells.  

2.3 Materials and Methods  

2.3.1 Cell Culture of hTERT Cells. Human telomerase reverse 

transcriptase (hTERT) cells were obtained from INH (St. Mary’s hospital, 

Manchester, UK). Keratinocyte serum free medium (SFM) and HAM F-12 

medium were purchased from Invitrogen (Paisley, UK) and fetal bovine serum 

(FBS) was purchased from Sigma Aldrich (Dorset, UK). Cells were cultured in 

accordance with Dickson et al. (2000). Briefly, the cells were cultured in T150 

cell culture flasks and grown to a maximum of 30% confluence in a humidified 
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incubator at 37°C and 5% CO2. To sub-culture the cells, the old growth medium 

was aspirated and the cells were washed in 20mL of phosphate buffered saline 

(PBS) and aspirated once more. To detach the adhesive cells, 1mL of 

trypsin/EDTA (0.25% Invitrogen) was added to the T150 and incubated for 3min 

in a humidified incubator at 37°C and 5% CO2. The flasks were then observed 

under a light microscope to ensure the cells were detached. Subsequent to 

efficient detachment, the trypsin was neutralised using medium containing 9mL 

of Ham F-12 medium and 1mL of calf serum. The cells were then centrifuged at 

8000xg for 5min, the neutralising medium aspirated and the cells re-suspended 

in 10mL of Keratinocyte SFM. Subsequent to a cell count, the cells were re-

seeded at 0.5x106 cells per T150 flask. 

2.3.2 Quantification of the HIF-1α protein using ELISA. In order to 

quantify the concentrations of the active form of the transcription factor HIF-1α, 

the DuoSet® IC Human/Mouse Active HIF-1α ELISA (Enzyme-linked 

immunosorbent assay) product was purchased from R&D Systems (Abingdon, 

UK). The supplementary products were purchased and the methodology 

followed as advised in the manufacturer’s protocol. hTERT cells were cultured 

in 96 well plates and exposed to hypoxia or 100μM CoCl2 for 4h, 8h, 12h, 18h 

and 24h in triplicate. In addition, a control normoxia sample was prepared in 

triplicate, which contains no CoCl2 and was cultured in 21% oxygen for the 

relevant time. Subsequently, the cells were fixed in 4% formaldehyde, 

quenched (to prevent further reactions) and blocked (to block any surface which 

remains uncoated by the protein) before exposure to the primary and secondary 

antibodies for HIF-1a and cytochrome C determination. The fluorogenic 

substrates were then added to the samples and the fluorescence was 

measured on the Molecular Devices, Spectra Max, Gemini XS instrument as 

described. 

2.3.3 Assessment of ATP. The ATP colorimetric/fluorometric assay kit 

was purchased from Abcam (Cambridge, UK) and the protocol followed as 

described. In brief, a standard curve was produced utilising the ATP standard 

buffer supplied with the kit. 1 x 106 cells per sample were lysed in the ATP 
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assay buffer and flash frozen in liquid nitrogen to inhibit further ATP 

metabolism. The samples were centrifuged at 15,000xg for 2min, the 

supernatant retained and 50μL per sample added to a 96 well plate followed by 

the addition of 50μL of ATP reaction buffer to each sample and subsequent 

incubation in the dark at room temperature for 30min. The OD was then 

measured at 540nm in a micro plate reader and the calculation performed as 

described. The samples were normalised to total protein concentration 

determined by Nanodrop assessment. 

2.3.4 Condition Exposure and Metabolite Extraction. hTERT cells 

were grown to ~60% confluence in 18x T150 flasks. Prior to condition exposure, 

fresh warmed hypoxic medium replaced the old medium in the hypoxic 

condition, and fresh warmed regular medium was used to replace the old 

medium in the normoxic and CoCl2 treated conditions. Six replicate samples in 

flasks were then subjected to each condition: (1) normoxia – 21% oxygen, 5% 

CO2 at 37°C; (2) hypoxia – 1% oxygen, 5% CO2 at 37°C and (3) 100μL of the 

hypoxic mimicker CoCl2 at 21% oxygen, 5% CO2 at 37°C for 4h, 8h, 12h, 18h 

and 24h. Subsequently, metabolite extraction was performed as described by 

Sellick et al. (2010). The medium was decanted and the cells washed in 

warmed PBS. To quench the cells, 5mL of -48°C MeOH was added to each 

T150 flask (on ice), the cells were scraped, followed by flash freezing in liquid 

nitrogen for 1min. The cells were then vortexed for 30s, thawed on ice and 

returned to the liquid nitrogen for a further minute. This freeze/thaw/vortex step 

was repeated a total of four times followed by centrifugation at 4°C at 3000xg 

for 10min. In addition to the fingerprint samples collected as described, a 

footprint was also collected for each sample. Subsequent to condition exposure, 

1ml of medium was collected and evaporated in a speed vac and stored until 

analysis. The footprint and fingerprint samples were treated identically from 

here on. 

2.3.5 GC-MS Analysis for Metabolite Detection. 100μL of Internal 

Standard 2 (IS2) solution was added (IS2 was prepared by diluting 2mL of IS1 

in 10mL of HPLC grade H20). Internal standard 1 (IS1) was composed of 10mg 
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succinic-d4 acid, 10mg glycine-d5 acid and 10mg malonic-d2 acid in 10mL of 

HPLC grade H2O. IS is used to assess instrument drift throughout the run and 

derivatisation efficiency of each sample. The samples were then evaporated 

overnight using a speed vac and stored at -80°C until analysis. The samples 

were derivatised via methoxylation utilising methoxyamine hydrochloride at 

60°C for 30min and silylation via N-methyl-N(trimethylsilyl)-trifluoracetamide 

(MSTFA) at 60°C for 30min (Lenz and Wilson, 2007). GC-MS analysis followed 

using an Agilent 6890 gas chromatograph coupled to a Leco Pegasus III TOF 

mass spectrometer with an Agilent 7893 autosampler and was performed in 

accordance with the methods of Begley et al. (2009). The data were ratioed to 

the succinic-d4 acid internal standard (to account for instrument drift and 

variation in sample derivatisation) and this was based on peak areas (the area 

under the peak which equivlates to relative concentrations). 

2.3.6 UHPLC-MS Analysis for Metabolite Detection. Samples were 

analysed in concordance with Brown et al. (2009, 2011). In brief, all samples 

were reconstituted in 100μL HPLC H20 and subsequently run separately in ESI- 

and ESI+ modes on an Accela UHPLC system (ThermoScientific, Hemel 

Hempstead, UK) coupled to an electrospray LTQ-Orbitrap XL hybrid mass 

spectrometry system (ThermoFisher, Bremen, Germany). In terms of UHPLC 

separation, a linear water-methanol gradient was applied to a stationary phase 

column (Hypersil GOLD (Fisher Scientific, Loughborough, UK); length 100mm, 

diameter 2.1mm, particle size 1.2μM). Finally, the data were normalised to total 

peak area and data analysis performed. 

2.3.7 GC-MS and UHPLC-MS Metabolite Identification. The GC-MS 

metabolites were assigned in accordance with the Metabolomics Standards 

Initiative for Chemical Analysis (Sumner et al., 2007). Chromatograms were 

deconvolved in LECO ChromaTOF according to Begley et al. (2008) and then 

library matched against an in-house GC library and the Max Plank Institute 

Molecular Plant Physiology database (GMD) with 80%+ match score on forward 

and reverse matching and a retention index error +/- 10. Metabolite features 

detected in the UHPLC-MS analysis were assigned using an in-house 
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metabolite ID workflow as described in Brown et al. (2011). This involves the 

generation of elemental compositions based upon accurate mass data and 

isotopic peaks, the elemental compositions are then matched to a database 

compiled from a range of external databases including HMDB, KEGG, Chem 

Spider and PubChem. 

2.3.8 Data Processing and Data Analysis. In order to analyse the 

ELISA of the HIF-1α, firstly the background relative fluorescence units (RFUs) 

were subtracted from all samples and the HIF-1α RFUs were normalised using 

the cytochrome C RFUs (as Cytochrome C is constitutively expressed at high 

concentrations with low variability). Finally, the average normoxic values were 

subtracted from all samples to attain alterations from the normoxic condition. 

For certain analyses elaborated below, the negative and positive 

metabolites for LC-MS were reduced to 150 each, through deducing the most 

significant metabolites from the data sets. In this instance, significant refers to 

those metabolites with the lowest p-values (<0.05) when comparing the 

concentrations of a particular metabolite between the three conditions (i.e. 

hypoxia, normoxia and CoCl2). Once the most significant metabolites were 

obtained, removal of those with no/nonsense identifications or labelled multiply 

charged ion or isotope commenced, resulting in the significant metabolites 

which were further analysed. 

Box and whisker plots were plotted in MATLAB 2010a for all GC-MS 

metabolites detected. In addition, only the 300 most significant LC-MS 

metabolites (150 positive and 150 negative) were plotted in an identical 

manner. A box and whisker plot graphically displays numeric data through their 

5 number summaries: the smallest observation, lower quartile, median, upper 

quartile, and largest observation. Each box and whisker was devised of a 

hypoxic, normoxic and CoCl2 sample showing relative concentrations of a 

specific metabolite. 

PARAllel FACtor (PARAFAC) analysis was performed on the GC-MS 

data containing only metabolites from central metabolism (glycolysis, TCA and 

amino acids) including F6P, deoxyglucose, glucose (which potentially may be 
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galactose), lactic acid, fructose, fumaric acid (which potentially may be maleic 

acid), malic acid, L-glutamine, pyroglutamic acid, glutamine, valine, leucine, 

serine, threonine, proline, aspartic acid, cysteine, arginine (which potentially 

may be citruline), phenylalanine, tyrosine (which could be tyramine) in 

accordance with Bro (1997) in R version 2.13.1 (R Foundation for Statistical 

Computing, Vienna, Austria); the scripts are available from the authors on 

request. PARAFAC is a multi-way data analysis method which is considered a 

higher-order generalization of principal component analysis (PCA) applied to 

tensors (Kroonenberg, 2008). The interpretation of the 2D PARAFAC plots 

presented here is similar to the interpretation of a 2D PCA scores plot. 

Component 1 was plotted against Component 2 for each of the time points 4h, 

8h, 12h, 18h and 24h alongside a general scores plot and a time model. 

A clustergram analysis was also adopted for the analysis of the GC-MS 

data and contained all 53 metabolites. The most significant metabolites from 

LC-MS negative (40 metabolites) and LC-MS positive (32 metabolites) data 

sets were combined to produce a single clustergram (data not shown). All 

clustergram analyses were performed in R version 2.13.1 using the "heatmap.2" 

package and the scripts are available from the authors on request. A 

clustergram is a hybrid of a dendrogram and a heat map, which clusters 

metabolites which are behaving in a similar fashion. Each metabolite is 

correlated with all other metabolites and the pattern of the correlations is utilised 

to cluster those metabolites behaving similarly. 

Principal component–discriminant function analysis (PC-DFA) was 

performed on GC-MS, LC-MS negative and LC-MS positive data sets 

containing all metabolites detected on the respective platforms as described by 

Goodacre et al. (2003). The objective of PCA is to explain the variance-

covariance structure of a set of variables through a few linear combinations of 

these variables. Much of the original data variability can be accounted for by a 

small number of principal components (PCs) which are then used for data 

reduction and visual data interpretation. However, PCA alone does not reveal 

all the relationships present in the data. Therefore, PCA is often used as an 
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intermediate step and its PCs are used as inputs to other analysis methods. 

The present work uses PCA combined with discriminant function analysis (PC-

DFA) to examine the data. The objective of DFA is to separate distinct sets of 

objects (or observations) and allocate new objects to previously defined groups. 

The PC-DFA code was implemented in R version 2.13.1 and is also available 

from the authors on request. Firstly, PCA is performed on the full data and the 

first 15 principal components are extracted. On average these 15 PCs 

accounted for at least 90% of the data variance and this was the number of PCs 

that generated the best results during model validation. Secondly, the extracted 

PCs are used as inputs to perform discriminant function analysis. Finally, the 

model is validated using a bootstrap cross-validation method according to 

(Correa et al., 2012) and the confidence interval of the predictions for each 

class is reported over 1000 independent cross-validations. 
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2.4 Results and Discussion 

2.4.1 Quantification of HIF-1α. To assess the relative concentrations of 

the transcription factor HIF-1α, an ELISA approach was adopted for normoxia 

(0h), hypoxia and CoCl2 for 4h, 8h, 12h, 18h and 24h (Figure 2.1). As expected, 

HIF-1α was induced when cells were exposed to either CoCl2 or hypoxia at all 

time points assessed. It is also clear that the 1% O2 causes a greater induction 

of HIF-1α than 100μM CoCl2 at each time point; although, these results were 

not significant (Mann Whitney; p<0.05). HIF-1α concentrations increased for the 

initial 12h under both the hypoxic and CoCl2 conditions, and then subsequently 

diminished. These data indicate that 100μM CoCl2 is mimicking hypoxia with 

respect to HIF-1α, although the level of induction was not as marked.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10 Total HIF-1α concentrations determined through ELISA for hTERT cells 

exposed to normoxia, hypoxia, and 100μM CoCl2 for a range of time points between 

0h (normoxia) to 24h. Total RFUs are shown following normalisation to cytochrome C for 

CoCl2 (blue) and hypoxia (red) after deduction of the normoxic (0h) RFUs. Cytochrome C 

did not alter drastically between treatments. Means are shown and the error bars display 

standard deviation from triplicate samples. 
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The observed fluctuation in HIF-1α protein levels has been reported 

previously (Ryan et al., 1998) and these authors suggested this is due to 

elevated protein stability. In similar findings, Mottet and co-workers (2003) 

found increased HIF-1α protein stability for 5h followed by a decrease in 

concentrations after 16h. They explained this through the PI3K/Akt pathway 

which they state is required for HIF-1α stabilisation and since prolonged 

hypoxia leads to a decrease in Akt phosphorylation, HIF-1α stabilisation 

decreases. In terms of CoCl2 induction of HIF-1α, Ardyanto et al. (2006) 

discovered similar findings when exposing the human gastric carcinoma cell 

line MKN-1 to 500μM CoCl2 and HIF-1α concentrations were increased for 4h 

and then decreased until 36h. The data presented here further emphasises the 

point that CoCl2 is a suitable mimicker of low oxygen tension. 

2.4.2 Assessment of ATP. ATP concentrations were measured in order 

to assess the energy state of cells under hypoxic and CoCl2 conditions (see 

Figure 2.S1). It is clear that both treatments produced an initial drop in ATP 

concentration at 8h followed by a modest increase at 12h which remained 

stable. However, overall CoCl2 treated cells had lower levels of ATP than 

hypoxic cells at the equivalent time points; however, only the 4h time point was 

significant (p<0.05). 

Energy regulation is an important aspect of the hypoxic response as cells 

convert from oxidative phosphorylation as a means of energy production, to the 

less-efficient glycolysis. Under normoxic conditions, oxidative phosphorylation 

produces 31 or 29.5 ATP molecules per glucose molecule depending on NADH 

shuffling into the mitochondria. Under hypoxic stress, HIF-1 directs a metabolic 

change whereby glycolysis is preferred yielding just two ATP molecules per 

glucose molecule. Furthermore, sub-lethal concentrations of CoCl2 also induce 

an increase in HIF-1 with the same outcome. Thus, if ATP consumption is 

considered equal regardless of oxygenation status or CoCl2 treatment, normoxic 

cells should, theoretically, have ~15 fold more ATP than either hypoxia or CoCl2 

treated cells. However, in practice, although ATP levels were lower in 

hypoxia/CoCl2 treated cells when compared to normoxic cells, this was in the 
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order of a five-fold reduction in magnitude (from 0.05nmol to 0.01nmol between 

0h (normoxia) and the 8h time point). There are two possible explanations for 

this phenomenon: hypoxic or CoCl2 treated cells are consuming less ATP that 

their normoxic counterparts or alternatively they are importing and using more 

glucose than normoxic cells. Indeed the latter possibility is supported by the 

observed HIF-1-dependent upregulation of the glucose transporters (GLUT-1 

and GLUT-3) (Bartrons and Caro, 2007). 

It is also curious that ATP concentrations decreased from 0 - 8h 

exposure to either hypoxia or CoCl2 and then increased stabilising at 

approximately 0.02nmol after 12h. These data suggest either that the cells are 

stabilising at 12h having become accustomed to the stress, or they are 

beginning to revert back to a more normoxic state which is consistent with the 

PARAFAC of the GC-MS metabolites (vide infra). The reduction in ATP levels 

seen after 18-24h exposure to CoCl2 is in keeping with the cells undergoing 

toxicity-related apoptosis. Indeed, although ATP concentrations are consistently 

lower in CoCl2 treated cells when compared to hypoxia, this is a paradox since 

the HIF-1 stabilisation data indicate that the latter should have a more 

pronounced effect on ATP levels. A potential explanation could be that CoCl2 is 

interfering with ATP production/usage or is indirectly affecting the levels of ATP 

through other processes such as oxidative stress. The 8h time point appears to 

be significant since after this point, the drop in ATP level arrests then increases 

and subsequently stabilises.  

In related terms, the mass spectrometry data highlighted a number of 

interesting metabolites related to purine metabolism which are associated with 

energy regulation. This pathway is utilised to recycle nucleotides and bases via 

a de novo and a salvage pathway from phosphoribosyl pyrophosphate (PRPP) 

to ATP and GTP (guanosine triphosphate). Elevated concentrations of IMP 

(inosine monophosphate), adenine and xanthosine were found in the hypoxic 

condition relative to that of normoxia and also an increased concentration was 

found of adenine under CoCl2 and hypoxic exposure. Hence, in terms of 

adenine behaviour, CoCl2 appears to be mimicking the genuine hypoxic 
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response; however, it does not mimic in relation to IMP and xanthosine as 

these concentrations remain unchanged from the normoxic condition. This 

behaviour is potentially indicating the degradation of the ATP pool to its 

associated derivatives resulting in diminished ATP levels (Björklund et al., 

2008) as a consequence of the paradoxical switch from oxidative 

phosphorylation to glycolysis and the TCA cycle. It is unknown why xanthosine 

and IMP in the CoCl2 condition did not yield the same response as the hypoxic 

condition. 

2.4.3 Assessment of Lactic Acid. Relative intracellular and 

extracellular lactic acid concentrations were assessed by mass spectrometry for 

normoxia, hypoxia and CoCl2 exposure between 0 - 24h (Figure 2.S2). The 

internal and external lactic acid (upper graph and lower graph, respectively) 

generally display the same pattern, with an initial increase between 4 - 8h, a 

decrease at 12h followed by an elevation at the 24h time point. Following 

exposure to hypoxia or CoCl2, lactic acid replaces pyruvate as the end point of 

glycolysis. Although this is consistent with the lactate levels found at 24h it is 

not so for the preceding time points. Overall, the lactic acid concentration in 

CoCl2 treated cells was intermediate between that of hypoxic and normoxic 

conditions for both internal and external lactic acid, which indicates that 100μM 

CoCl2 does not impose directly equivalent to hypoxia. 

2.4.4 PARAFAC Analysis of Central Metabolism Metabolites from 

GC-MS. GC-MS was adopted to assess the ability of CoCl2 to mimic hypoxia in 

terms of primary metabolism. A PARAFAC analysis was performed on the 

metabolites from central metabolism (i.e., glycolysis, amino acids and TCA 

metabolites) to determine the level of variation at the various time points (see 

Figure 2.2) (Xu et al., 2011). The reasoning for performing the PARAFAC solely 

on central metabolism intermediates was to investigate whether there was any 

overlap between the hypoxic and CoCl2 groups since this would provide central 

metabolic evidence for the ability of the former to mimic the latter. 
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The 4h time point shows the CoCl2 and hypoxia conditions completely 

overlapping, with the normoxia condition separated from the two (except one 

normoxic sample which has merged). Hence, the early stages of CoCl2 

exposure mimic hypoxia (1% oxygen) extremely accurately in terms of central 

Figure 11 GC-MS PARAFAC - Central Metabolism Only. The metabolites include F6P, 

deoxyglucose, glucose (which potentially may be galactose), lactic acid, fructose, fumaric 

acid (which potentially may be maleic acid), malic acid, L-glutamine, pyroglutamic acid, 

glutamine, valine, leucine, serine, threonine, proline, aspartic acid, cysteine, arginine 

(which potentially may be citruline), phenylalanine, tyrosine (which could be tyramine). A 

plot is shown for each time point with Component 1 against Component 2 for each 

alongside a general scores plot and a time model. The green N’s highlight normoxia, the 

red H’s hypoxia and the black C’s the CoCl2 condition. Each number in the time model 

represents a time point and the plot depicts which of those time points had the greatest 

influence on Component 1 (Weight 1) and Component 2 (Weight 2). 
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metabolism. At 8h all conditions appear to merge although loose clustering of 

the groups can still be observed. After 12h there is clear separation of the 

groups, including hypoxia and CoCl2 yet the CoCl2 group lies intermediate 

between hypoxia and normoxia but with closer proximity to hypoxia. The 

normoxic constituents cluster tightly on the negative of component 1, whilst the 

CoCl2 and hypoxic groups, although separated, cluster on the positive of 

component 1. At 18h the normoxic and CoCl2 conditions begin to merge, whilst 

the hypoxic condition retains its distance from both of these. Curiously at 24h, 

merging of all conditions is observed, with CoCl2 being located between the 

other two conditions. This behaviour is potentially a result of reduced HIF-1α 

levels in both the hypoxic and CoCl2 condition (Figure 2.1) since by 24h this is 

beginning to revert back to levels found under normoxia. The general scores 

plot shows clustering and separation of the three groups, with CoCl2 

intermediate, lying closer to the hypoxic condition, which is to be expected. The 

time model for the central metabolism PARAFAC shows the 8h time point is 

distant from the other time points, having the greatest effect on Component 2 

with little effect on Component 1, whereas the time points 4h, 12h and 18h are 

having a major impact on Component 1 but little impact on Component 2. The 

24h time point is having a modest effect on Component 1 and Component 2. 

2.4.5 Clustergram of GC-MS Metabolites. Figure 2.3 shows a 

clustergram of GC-MS variables whereby metabolites which behave in a similar 

fashion are clustered together. The blue boxes highlight metabolites which 

cluster together on the x-axis i.e. amino acids, TCA, fatty acids/lipids, glycolysis, 

sugars and polyols (identifications, and levels thereof are given in the 

supporting information; Table 2. S1). The amino acids clustering on the 

immediate left consists of glycine, proline and aspartic acid whilst the amino 

acid cluster on the far right incorporates pyroglutamic acid, L-glutamine, 

leucine, tyrosine (which may potentially be tyramine), valine, arginine/citrulline, 

phenylalanine, serine and threonine. The TCA cluster includes fumaric acid 

(potentially maleic acid), glutamine and malic acid and the glycolysis grouping 

contains lactic acid, F6P and glucose (which may be galactose). Glycerol, 
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cholesterol, hexadecanoic acid, oleic acid and palmitoleic acid cluster in the 

fatty acid/lipid set, mannose/allose/glucose/galactose (x3), sugar/sugar alcohol 

and deoxyglucose cluster as a sugar group and the polyol assemblage 

comprises probable sugar alcohol (x2), threitol and malitol. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 12 Clustergram of Correlated GC-MS Metabolites for CoCl2 Analysis. A 

clustergram is a hybrid of a heat map and a dendrogram. The same metabolites are shown on 

the x-axis and y-axis of the graph and the y-axis shows the dendrogram tree. Those 

metabolites which cluster closer together behave in a similar manner. The blue boxes highlight 

related metabolites which cluster together and from left to right are amino acids, TCA, fatty 

acids/lipids, glycolysis intermediates, sugars, polyols (sugar alcohols) and amino acids. The 

green boxes specify a positive correlation, red boxes a negative correlation and dark boxes 

indicate no correlation; where the stronger the colour, the greater the correlation. The scale on 

the bottom right of clustergram highlights this. 
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2.4.6 PC-DFA of GC-MS, LC-MS Positive and LC-MS Negative Data. 

PC-DFA was performed on data from all three platforms independently. Figure 

2.4A depicts the PC-DFA for all GC-MS metabolites with bootstrapping 

validation accuracy shown on the right. It is evident that the individual time 

points cluster, for example, the 4h time points (all conditions) group on the 

negative of DF1 and marginally on the positive of DF2. In the later time points 

(>12h), it becomes increasingly difficult to distinguish between the individual 

times, particularly 18h and 24h which is evident in the 95% confidence intervals. 

In terms of treatment it is clear that for a specific time point, CoCl2 is positioned 

intermediate between hypoxic and normoxic conditions. A good example of this 

is the 12h time point, where hypoxia is to the extreme positive of DF2, normoxia 

is clustered at a value of 1 and CoCl2 is between the two although this is less 

obvious at earlier time points. For example, at 4h CoCl2 and normoxia overlap 

with hypoxia clustering separately whereas at 8h it is difficult to ascribe 

clustering amongst any of the groups. This is potentially a result of the poor 

clustering of the 8h hypoxia condition with a confidence level of 11-15% and is 

also compounded with the poor clustering observed at 8h CoCl2 with a 

confidence level of 27-33%. 

Figure 2.4B displays the PC-DFA for the LC-MS negative data using the 

same set up as for the GC-MS PC-DFA, except that DF3 is plotted rather than 

DF2. The rationale behind this was that the normoxia and hypoxia overlapped 

in DF1 vs. DF2 and CoCl2 was separated in the third component. There was 

clear clustering of the time points with the latter (from 12h onwards) becoming 

more difficult to differentiate. What is evident from this PC-DFA plot and the 

associated confidence levels displayed on the right, is that the CoCl2 is 

behaving diversely from normoxia and hypoxia with off target effects observed 

in terms of metabolites detected from negative LC-MS. The PC-DFA for the 

positive LC-MS data is shown in Figure 2.4C which shows similar findings to the 

LC-MS negative data with differences observed between CoCl2 and 

hypoxia/normoxia. This is illustrated by the plot of DF1 vs. DF2 and also in the 

confidence scores for post-8h time points which all have 100% accuracy.  
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The LC-MS data demonstrated a number of CoCl2 specific effects which 

did not mirror that of the hypoxia. The most prominent of these was the group of 

metabolites related to phospholipids, including diacylglycerols (DAGs), 

phosphocholines (PCs) and monoacyl-glycerophosphates (PAs); see Tables S2 

and S3 for information. Phospholipids are a major constituent of cellular 

Figure 13 PC-DFA of (a) GC-MS, (b) LC-MS negative and (c) LC-MS positive data. The 

time points are colour coded and also labelled by number – black signifies 4h, blue highlights 

8h, green 12h, red denotes 18h and purple represents the 24h time point. The condition type 

is indicated by the letter following the time point where H symbolises hypoxia, C implies 

CoCl2 exposure and N signifies normoxia. Plots (a) and (c) display Discriminant Function 1 

(DF1) vs. Discriminant Function 2 (DF2) where the explained variances are indicated in 

brackets. Plot (b) shows DF1 vs. DF3. Model validation was performed using bootstrapping 

of 1000 times and the accuracy of each test sample is displayed in the box on the right hand 

side of each plot within a 95% confidence interval. 
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membranes and sub cellular organelle membranes such as the nucleus, 

mitochondria, Golgi apparatus and endoplasmic reticulum. Indeed it has 

previously being reported that exposing cells to CoCl2 results in lipid 

peroxidation in both cell culture (Tan et al., 2008) and whole organisms 

(Christova, Duridanova & Setchenska, 2002; Gonzales et al., 2005). This is 

most likely the result of CoCl2-induced production of ROS (Jung et al., 2007) 

which subsequently attacks cellular components including membranes (Slater, 

1984; Jung et al., 2007).  

In addition to their structural properties, lipids have other roles within the 

cell. For example, they act as secondary messengers (or lipid signaling) with 

the ability to diffuse freely through membranes. This means that they cannot be 

stored in vesicles and are only synthesized at specific locations when required. 

Furthermore, previous studies have shown that CoCl2 causes an increase in 

phosphorylated lipid secondary messengers (Anelli et al., 2007; Ryu et al., 

2010). Thus, both these CoCl2 induced effects on lipids may contribute to the 

observed off-target effects of CoCl2. Consistent with this, fatty acid metabolism 

was also found to be markedly altered by CoCl2 and yet this was not perturbed 

by hypoxia. Fatty acids are derived from phospholipids and triglycerides and are 

used, via beta oxidation, to produce ATP. Therefore, since each phospholipid 

consists of two fatty acids and these are located in cell membranes, the 

observed off-target effects on this group of metabolites is likely to be related to 

those associated with phospholipids as previously discussed. 

A further set of metabolites of interest, were those related to vitamins 

and acetyltropine. The essential vitamin pantothenic acid (vitamin B5) and 

acetyltropine were both reduced during hypoxia but were found in "regular" 

concentrations with CoCl2. This is significant as they are both major 

components of acetyl coenzyme A which is essential for normal aerobic 

functioning of the TCA cycle. Thus, it could be inferred that these metabolites 

might behave in a similar fashion under hypoxic or CoCl2 conditions and yet, 

there was no change with CoCl2 and a reduction during hypoxia. The observed 
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reduction could reflect a rapid conversion of acetyl-CoA to citric acid although 

why this is not observed in the CoCl2 treatment is not clear.  

2.4.7 Box and Whisker Plots Demonstrating Typical Metabolite 

Behaviour. For each metabolite detected in GC-MS and for all significant 

metabolites for LC-MS negative and positive data, box and whisker plots were 

created to highlight differences between the three culture conditions (see Figure 

2.5 for examples). These were also produced for each treatment at each time 

point to highlight the effects on metabolite concentration over time (data not 

shown). The differences between conditions used were subcategorized into 

three groups as depicted in Figure 2.5. For central metabolism, the majority of 

metabolites fell into the first category, where CoCl2 and hypoxia behaved in a 

similar fashion suggesting that CoCl2 accurately mimics hypoxia. In comparison, 

normoxia produced either elevated or reduced concentrations. The second 

category consists of metabolites which were altered by hypoxia but not by 

CoCl2 or normoxia. Clearly for these metabolites, CoCl2 does not accurately 

mimic hypoxia and this was found for vitamins and IMP. The third and final 

grouping were metabolites which were altered by CoCl2 but not by hypoxia or 

normoxia. Examples of these were fatty acids and lipids such as phospholipids, 

phosphocholines and diacylglycerophosphates. For ease of interpretation, a 

colour coded KEGG map of metabolism is shown (Figure 2.S3) which highlights 

the areas of metabolism where CoCl2 mimics hypoxia and also those pathways 

where there are off-target effects. Furthermore, this method aids in identifying 

which metabolites are associated with which groups from typical metabolite 

behaviour (Figure 2.5). 
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Figure 14 Box and whisker plots displaying typical behaviour of metabolites. For 

each example, the condition, from left to right is hypoxia (H), CoCl2 (C) and normoxia (N). 

The red line indicates the median, the boxes represent the upper (75th percentile) and 

lower (25th percentile) quartiles, the whiskers signify the minimum and maximum values 

and the red crosses specify outliers in the data. The box and whisker plots have been 

categorised into three groups, from top to bottom: CoCl2 appears to be mimicking hypoxia 

as seen in central metabolism, CoCl2 does not appear to be mimicking hypoxia and 

potential off target effects as CoCl2 is initiating a response which is not present in the 

hypoxia condition. 
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2.5 Concluding remarks  

The GC-MS data suggest that CoCl2 is able to imitate hypoxia in terms of 

central metabolism, specifically glycolysis, the TCA cycle and amino acid 

production. This was to be expected and is most likely a direct result of altered 

levels of the transcription factor HIF-1α causing this alteration in metabolism in 

both hypoxia (Denko, 2008) and CoCl2 (Chandel et al., 1998). However, from 

our results, it is clear that 100μM CoCl2 has an intermediate effect between 

hypoxia and normoxia which is best exemplified by the PC-DFA of the GC-MS 

data (Figure 2.4A). In addition, when the GC-MS data are analysed in a 

univariate fashion (Box and Whisker for typical central metabolites; see Figure 

2.5), CoCl2 does not increase central metabolism intermediates to the same 

extent as hypoxia. 

Clustergram analysis (Figure 2.3) is an unsupervised technique which is 

a hybrid between a heat map and a dendrogram and clearly shows the 

expected clustering of similar groups of metabolites. For example, it could be 

predicted that the majority of glycolysis intermediates would behave in a similar 

fashion, i.e. all increase during hypoxic and CoCl2 exposure. Since each 

metabolite is correlated against all metabolites, those behaving similarly should 

be clustered together and it is evident that amino acids, TCA intermediates, 

fatty acids/lipids, glycolysis metabolites, sugars and polyols do this. This 

illustrates that each set of related metabolites behaves in a similar manner 

which emphasises the consistent nature of the data.  

In conclusion CoCl2 is able to mimic hypoxia in hTERT cells in terms of 

central metabolism, but appears to have some off target effects relating to 

secondary metabolism involving phospholipids and fatty acids. Hence, CoCl2 

should only be used as a hypoxic mimicker when investigating central 

metabolism and off target effects should be taken into consideration. 

Consequently, it is clear that, wherever possible, genuine hypoxia should be 

adopted for such studies. 
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2.8 Supplementary Information 

Table 2.S1. All GC-MS Metabolites  

Metabolite Confidence 
CID 

Number Chemical Class 
Norm Average 

(±SE) 
Hyp Average 

(±SE) 
CoCl2 Average 

(±SE) P-Value 

1,2-Benzenedicarboxylic 
acid Putative 1017 Carboxylic Acid 0.1606 (0.137) 0.1055 (0.077) 0.0681 (0.054) 

5.354E-
01 

4-methyl-2-oxovaleric Acid Putative 70 Ketone 0.0407 (0.004) 0.0322 (0.003) 0.0349 (0.003) 
2.407E-

01 

Arginine/Citruline Putative 6322/9750 Amino Acid 0.4777 (0.026) 0.5493 (0.020) 0.4628 (0.020) 
3.530E-

03 

Aspartic Acid 
High 

Confidence 5960 Amino Acid 0.8036 (0.050) 0.6199 (0.032) 0.6226 (0.032) 
2.090E-

04 

C6 Monosaccharide Putative N/A Monosaccharide 0.0623 (0.011) 0.0786 (0.005) 0.0514 (0.004) 
6.632E-

09 

C6 Monosaccharide Putative N/A Monosaccharide 0.0571 (0.009) 0.0701 (0.004) 0.0372 (0.003) 
4.592E-

05 

Cholesterol Putative 5997 Sterol 0.2330 (0.021) 0.1894 (0.018) 0.1761 (0.015) 
2.754E-

02 

Citrate 
High 

Confidence 31348 Carboxylic Acid 0.0395 (0.017) 0.0220 (0.002) 0.0225 (0.002) 
3.046E-

01 

Cuminaldehyde/Adenine Putative 326/190 
Aldehyde/Nucleo

base 0.6131 (0.051) 0.8801 (0.036) 0.6206 (0.034) 
5.117E-

07 

Cysteine 
High 

Confidence 5862 Amino Acid 0.2887 (0.025) 0.3291 (0.013) 0.2091 (0.012) 
1.121E-

09 

Deoxyglucose Putative 108223 Monosaccharide 0.1620 (0.032) 0.1451 (0.015) 0.1172 (0.009) 
8.591E-

02 

F6P 
High 

Confidence 9062 Monosaccharide 0.0261 (0.002) 0.0239 (0.002) 0.0227 (0.002) 
2.977E-

01 

Fructose Putative 5984 Monosaccharide 0.0291 (0.002) 0.0320 (0.002) 0.0253 (0.001) 
7.758E-

03 

Fumarate/Maleate Putative 
444972/444

266 Dicarboxylic Acid 0.1518 (0.005) 0.1028 (0.007) 0.1486 (0.010) 
3.121E-

08 

Glucose/Galactose Putative 5793/6036 Monosaccharide 0.6061 (0.081) 0.9154 (0.068) 0.6628 (0.059) 
2.892E-

04 

Glutamine 
High 

Confidence 5961 Amino Acid 1.5133 (0.062) 1.309 (0.070) 1.4760 (0.082) 
5.642E-

03 

Glyceraldehyde Putative 751 Aldehyde 0.0657 (0.003) 0.0589 (0.003) 0.0646 (0.003) 
2.011E-
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01 

Glycerol 
High 

Confidence 753 Polyol 0.1058 (0.013) 0.0935 (0.012) 0.1184 (0.013) 
1.274E-

01 

Hexadecanoic Acid 
High 

Confidence 985 Lipid 0.1299 (0.004) 0.1224 (0.004) 0.1229 (0.004) 
2.268E-

01 

Hexonic Acid Putative 604 Lipid 0.0126 (0.003) 0.0239 (0.002) 0.0105 (0.001) 
7.884E-

06 

Lactic Acid 
High 

Confidence 612 Carboxylic Acid 16.3065(0.854) 14.5208 (0.761) 14.0508 (0.785) 
2.693E-

02 

Leucine 
High 

Confidence 857 Amino Acid 3.9240 (0.263) 4.8235 (0.179) 3.9262 (0.197) 
8.711E-

04 

L-Glutamine Putative 5961 Amino Acid 0.0394 (0.002) 0.0399 (0.002) 0.0365 (0.002) 
2.042E-

01 

Malate 
High 

Confidence 160434 Dicarboxylic Acid 0.1532 (0.010) 0.0946 (0.010) 0.1364 (0.012) 
3.178E-

05 

Malitol Putative 3871 Polyol 0.1546 (0.027) 0.2377 (0.018) 0.1503 (0.014) 
2.765E-

04 

Malonate 
High 

Confidence 9084 Dicarboxylic Acid 0.4982 (0.009) 0.5033 (0.007) 0.4959 (0.006) 
4.691E-

01 

Mannose/Allose/Glucose/Gal
actose Putative N/A Monosaccharide 0.0699 (0.009) 0.0893 (0.005) 0.0672 (0.005) 

2.283E-
04 

Mannose/Allose/Glucose/Gal
actose Putative N/A Monosaccharide 1.2705 (0.063) 1.4201 (0.056) 1.3332 (0.053) 

1.236E-
02 

Mannose/Allose/Glucose/Gal
actose Putative N/A Monosaccharide 0.4420 (0.033) 0.4922 (0.026) 0.4606 (0.026) 

2.200E-
02 

Myo Inositol 
High 

Confidence 892 Polyol 0.7296 (0.032) 0.6753 (0.024) 0.6256 (0.027) 
3.391E-

02 

Myristic Acid Putative 11005 Fatty Acid 0.3578 (0.028) 0.4097 (0.017) 0.3600 (0.018) 
1.210E-

02 

N-acetylneuraminic Acid Putative 906 Monosaccharide 0.0271 (0.003) 0.0415 (0.003) 0.0275 (0.002) 
4.575E-

05 

Normetanephrine Putative 1237 Catecholamine 0.0321 (0.003) 0.0384 (0.002) 0.0293 (0.002) 
1.200E-

03 

Octadeconoic Acid 
High 

Confidence 5281 Fatty Acid 0.1018 (0.003) 0.0988 (0.004) 0.1006 (0.003) 
6.718E-

01 

Oleic Acid 
High 

Confidence 445639 Fatty Acid 0.0486(0.003) 0.0438 (0.004) 0.0435 (0.003) 
1.294E-

01 

Palitoleic Acid Putative 445638 Fatty Acid 0.0270 (0.002) 0.0262 (0.002) 0.0252 (0.001) 
1.275E-

01 

Phenylalanine High 6140 Amino Acid 0.2943 (0.012) 0.3433 (0.009) 0.2894 (0.012) 
4.341E-
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Confidence 04 

Phosphate 
High 

Confidence 1061 Phosphate 3.8635(0.191) 3.1017 (0.225) 3.5684 (0.211) 
3.362E-

02 

Phosphocreatinine Putative 71214 Organic Acid 0.0934 (0.049) 0.0220 (0.008) 0.0229 (0.008) 
1.698E-

01 

Polyol Putative N/A Polyol 0.0854 (0.019) 0.0421 (0.005) 0.0358 (0.006) 
2.965E-

05 

Polyol Putative N/A Polyol 0.0467 (0.011) 0.0660 (0.007) 0.0408 (0.004) 
2.468E-

04 

Polyol Putative N/A Polyol 0.1930 (0.018) 0.2380 (0.011) 0.1981 (0.012) 
1.349E-

03 

Polyol Putative N/A Polyol 0.0530 (0.008) 0.0763 (0.007) 0.0446 (0.004) 
3.424E-

03 

Polyol Putative N/A Polyol 0.0103 (0.017) 0.0144 (0.007) 0.0092 (0.008) 
2.243E-

03 

Polyol Putative N/A Polyol 0.0244 (0.018) 0.0328 (0.022) 0.0208 (0.012) 
1.392E-

04 

Proline Putative N/A Amino Acid 0.0891 (0.101) 0.0562 (0.076) 0.0611 (0.084) 
1.661E-

01 

Pyroglutamic Acid 
High 

Confidence 7405 Amino Acid 0.1097 (0.003) 0.2151 (0.003) 0.1322 (0.001) 
3.266E-

04 

Serine Putative 5951 Amino Acid 2.5401 (0.001) 2.7785 (0.001) 2.4922 (0.001) 
1.096E-

02 

Sugar/Polyol Putative N/A Polyol 0.0430 (0.003) 0.0528 (0.003) 0.0400 (0.002) 
4.543E-

04 

Threitol Putative 169019 Polyol 0.2717 (0.021) 0.3315 (0.012) 0.2886 (0.015) 
1.465E-

03 

Threonine 
High 

Confidence 6288 Amino Acid 0.5469 (0.031) 0.6143 (0.021) 0.5335 (0.024) 
1.119E-

02 

Tyrosine/Tyramine Putative 6057/5610 Amino Acid 0.1421 (0.009) 0.1611 (0.007) 0.1300 (0.006) 
7.593E-

04 

Valine 
High 

Confidence 6287 Amino Acid 2.0377 (0.144) 2.4013 (0.099) 2.0180 (0.098) 
4.694E-

03 

Table 2.S1 Key 

Confidence: metabolite ID confidence - high confidence or putative (supposed)  

CID Number: compound identification number (PubChem) 

Values: average peak area ± standard error (arbritary); n=6 

P-value: determined by ANOVA 
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Table 2.S2. Significant Negative LC-MS Metabolites 

Metabolite m/z 
Retention 
Time (s) 

Confi- 
dence 

CID  
Number 

Chemical 
Class 

Norm 
Average 

(±SE) 

Hyp 
Average 

(±SE) 

CoCl2 
Average 

(±SE) 
P-

Value 

(2s)-2,8-Diaminooctanoic Acid/ 
N-Dimethyl-Lysine 

195.
1122 489.05 Putative 

469369
85/1647

95 Amino Acid 
2.90E-05 

(2.07E-06) 
3.88E-05 

(5.62E-06) 
1.43E-05 

(4.04E-06) 
0.0301
16939 

1-hexadecyl-2-octadecyl-sn- 
glycero-3-phosphocholine 

802.
5509 1181.04 Putative 

247794
06 

Phosphocholin
e 

0.94E-04 
(5.75E-06) 

8.09E-04 
(4.95E-06) 

7.13E-04 
(4.80E-06) 

3.9310
5E-13 

3-(Methylthio)propionic 
Acid/Dimethylsulfonioacetate 

162.
9811 86.72 Putative 

563/160
765 Fatty Acid 

3.95E-05 
(3.74E-06) 

2.19E-05 
(3.83E-06) 

2.57E-05 
(4.02E-06) 

0.0137
00903 

5,6-Dihydroxyindole-2-
carboxylate 

192.
0300 62.02 Putative 119405 Amino Acid 

5.13E-04 
(1.8E-04) 

1.80E-04 
(3.14E-05) 

1.08E-04 
(1.14E-05) 

0.0273
02042 

Amino Fatty Acid 
443.
1567 54.78 Putative N/A Fatty Acid 

1.19E-05 
(2.96E-06) 

3.29E-05 
(5.49E-06) 

8.05E-06 
(2.34E-06) 

0.0001
42736 

Beta-(2-Naphthyl)-Alanine 
282.
0740 747.70 Putative 185915 Amino Acid 

3.04E-05 
(5.06E-06) 

1.44E-06 
(3.60E-06) 

2.28E-05 
(4.31E-06) 

0.0129
29445 

Carbohydrates/Amino Acid 
241.
0803 64.82 Putative N/A 

Carbohydrate/ 
Amino Acid 

1.44E-04 
(1.46E-05) 

3.16E-04 
(2.83E-05) 

2.70E-04 
(2.84E-05) 

2.2654
1E-06 

Diacylglycerol 
719.
5245 1143.93 Putative N/A Diacylglycerol 

1.80E-04 
(1.09E-05) 

1.40E-04 
(1.24E-05) 

7.61E-05 
(7.95E-06) 

4.6863
8E-09 

Diacylglycerol 
749.
5691 1177.72 Putative N/A Diacylglycerol 

1.11E-04 
(4.78E-06) 

9.99E-05 
(4.31E-06) 

1.90E-04 
(4.34E-06) 

0.0001
15246 

Diacylglycerol 
707.
5856 1244.72 Putative N/A Diacylglycerol 

5.81E-05 
(1.25E-05) 

2.51E-05 
(1.35E-05) 

1.93E-05 
(1.41E-05) 

1.2346
1E-07 

Dodecanedioic acid 
287.
1039 373.67 Putative 12736 

Dicarboxylic 
Acid 

2.58E-05 
(4.80E-06) 

3.26E-05 
(5.69E-06) 

9.25E-06 
(2.88E-06) 

0.0056
78595 

Fatty Acid 
221.
1527 913.36 Putative N/A Fatty Acid 

6.77E-05 
(5.85E-06) 

6.99E-05 
(4.65E-06) 

8.85E-05 
(5.77E-06) 

0.0130
89381 

Fatty Acid 
193.
0853 746.04 Putative N/A Fatty Acid 

6.96E-05 
(1.15E-05) 

5.42E-05 
(7.17E-06) 

7.95E-05 
(8.93E-06) 

0.0397
05082 

Fatty Acid/Dicarboxylic Acid 
287.
1039 373.67 Putative N/A Fatty Acid 

2.58E-05 
(4.98E-06) 

3.26E-05 
(5.69E-06) 

9.25E-06 
(2.88E-06) 

0.0056
78595 

Fatty Aldehyde 
144.
0459 463.79 Putative N/A Fatty Aldehyde 

3.81E-05 
(4.02E-06) 

4.93E-05 
(6.42E-06) 

6.96E-05 
(5.39E-06) 

1.5321
3E-05 

Fatty Amides 
516.
2137 43.93 Putative N/A Fatty Amide 

2.90E-05 
(4.88E-06) 

8.23E-05 
(8.78E-06) 

4.47E-05 
(8.21E-06) 

3.4969
3E-06 

Free Fatty Acid 
287.
1039 373.67 Putative N/A Fatty Acid 

2.58E-05 
(4.98E-06) 

3.26E-05 
(5.69E-06) 

9.25E-06 
(2.88E-06) 

0.0056
78595 
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Glycerophospholipid 
802.
5509 1181.04 Putative N/A Phospholipid 

9.42E-04 
(5.75E-06) 

8.10E-04 
(4.95E-06) 

7.13E-04 
(4.80E-06) 

3.9310
5E-13 

Hydroxyethylcysteine;  
Methionine sulfoxide 

186.
0214 364.24 Putative 

119224/
847 Amino Acid 

4.56E-05 
(7.34E-06) 

2.69E-05 
(5.07E-06) 

1.11E-05 
(2.99E-06) 

7.4390
7E-05 

IMP 
347.
0413 50.41 Putative 8582 Nucleotide 

6.99E-05 
(3.64E-06) 

9.01E-05 
(3.50E-06) 

6.98E-05 
(3.35E-06) 

0.0001
94313 

Indoxyl sulfate 
327.
9180 1416.71 Putative 10258 Indole 

7.05E-05 
(1.40E-06) 

5.90E-05 
(4.61E-06) 

6.10E-05 
(4.13E-06) 

0.0207
79516 

Keto-Acids; Dicarboxylic Acids;  
Fatty Acids 

131.
0343 92.42 Putative N/A Fatty Acid 

3.38E-04 
(2.65E-05) 

5.13E-04 
(5.51E-05) 

2.50E-04 
(3.17E-05) 

0.0368
2816 

L-phenylalanyl-L-proline / 
 L-prolyl-L-phenylalanine 

283.
1077 829.54 Putative 

406913
1/52260

97 Amino Acid 
3.57E-05 

(3.36E-06) 
2.40E-05 

(2.26E-06) 
3.69E-05 

(2.85E-06) 
0.0007
1347 

Monoacylglycerophosphate 
545.
1831 530.78 Putative N/A 

Monoacyl-
glycerophosph

ate 
3.58E-05 

(3.99E-06) 
1.88E-05 

(3.68e-06) 
1.75E-05 

(3.61E-06) 
0.0011
69672 

N-Acetyl-beta-D-
glucosaminylamine 

277.
0566 65.17 Putative 439454 Carbohydrate 

2.75E-04 
(3.14E-05) 

6.50E-04 
(6.41E-05) 

5.40E-04 
(6.30E-05) 

0.0005
81226 

Pantothenic Acid (Vitamin B5) 
276.
0620 95.68 Putative 6613 Vitamin 

5.95E-05 
(2.51E-06) 

4.57E-05 
(1.80E-06) 

5.75E-05 
(2.58E-06) 

4.4425
4E-05 

Phosphocholine 
804.
5671 1203.72 Putative N/A 

Phosphocholin
e 

6.58E-04 
(9.49E-06) 

6.00E-04 
(1.48E-05) 

6.50E-04 
(1.30E-05) 

0.0014
13567 

Phosphocholine 
802.
5509 1181.04 Putative N/A 

Phosphocholin
e 

9.42E-04 
(2.04E-05) 

8.10E-04 
(1.87E-05) 

7.12E-04 
(1.43E-05) 

3.9310
5E-13 

Phosphocholine 
870.
5366 1181.36 Putative N/A 

Phosphocholin
e 

3.79E-05 
(5.75E-06) 

4.22E-05 
(4.95E.06) 

2.53E-05 
(4.80E-06) 

0.0159
47378 

Phosphocholine 
774.
5183 1156.14 Putative N/A 

Phosphocholin
e 

5.76E-04 
(5.75E-06) 

4.50E-04 
(4.95E-06) 

3.33E-04 
(4.80E-06) 

3.4082
E-13 

Phosphocholine Derivative 
792.
5931 1225.06 Putative N/A 

Phosphocholin
e 

5.63E-05 
(2.77E-06) 

4.36E-05 
(4.72E-06) 

3.48E-05 
(5.90E-06) 

0.0017
60607 

PS(16:0/18:0) or PS(18:0/16:0) 
(Glycerophosphocholines) 

779.
5543 1198.69 Putative N/A 

Phosphocholin
e 

5.97E-05 
(2.42E-06) 

4.71E-05 
(3.74E-06) 

6.15E-05 
(2.58E-06) 

0.0059
20676 

S-(2-Hydroxyethyl)-N-acetyl-L-
cysteine 

228.
0311 80.19 Putative 108009 Amino Acid 

4.75E-05 
(8.01E-06) 

5.91E-05 
(5.87E-06) 

3.00E-06 
(1.37E-06) 

7.3138
6E-06 

Sugar Alcohol 
168.
988 309.35 Putative N/A Polyol 

1.28E-04 
(1.96E-05) 

6.73E-05 
(9.74E-06) 

1.23E-04 
(4.38E-05) 

0.0071
44813 

Threonine-Aspartic Ester 
279.
0561 50.30 Putative N/A Amino Acid 

1.66E-03 
(1.14E-04) 

2.36E-03 
(9.73E-05) 

1.65E-03 
(6.56E-05) 

1.6164
7E-05 

Threonine-Aspartic Ester/ 
Lysine Nz-Carboxylic Acid 

257.
0747 49.59 Putative N/A Amino Acid 

7.89E-04 
(7.94E-05) 

1.30E-03 
(6.48E-05) 

9.75E-04 
(5.88E-05) 

1.7984
1E-05 

Vitamin B2 and Derivatives 421. 775.86 Putative 493570 Vitamin 1.07E-04 8.44E-05 7.33E-05 4.49E-

http://www.lipidmaps.org/data/structure/LMSDSearch.php?Mode=ProcessClassSearch&LMID=LMGP1005
http://www.lipidmaps.org/data/structure/LMSDSearch.php?Mode=ProcessClassSearch&LMID=LMGP1005
http://www.lipidmaps.org/data/structure/LMSDSearch.php?Mode=ProcessClassSearch&LMID=LMGP1005
http://www.lipidmaps.org/data/structure/LMSDSearch.php?Mode=ProcessClassSearch&LMID=LMGP1005
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1363 (1.91E-06) (2.05E-06) (2.17E-06) 10 

Vitamin D2 and derivatives 
443.
1567 54.78 Putative 3249 Vitamin 

1.20E-05 
(3.31E-06) 

3.29E-05 
(1.57E-06) 

8.05E-06 
(2.49E-06) 

0.0001
42736 

Vitamin D2 and derivatives 
411.
1929 33.82 Putative 3249 Vitamin 

1.90E-05 
(2.96E-06) 

3.68E-05 
(5.49E-06) 

2.20E-05 
(2.34E-06) 

3.2078
E-05 

Xanthosine 
341.
0256 50.73 Putative 64959 Nucleoside 

2.70E-05 
(2.07E-06) 

3.59E-05 
(1.98E-06) 

2.75E-05 
(9.64E-07) 

0.0004
09292 

 

Table 2.S2 Key 

m/z: mass to charge ratio of the compound 

Retention Time: time taken for analyte to reach the detector 

Confidence: metabolite ID confidence - high confidence or putative (supposed)  

CID Number: compound identification number (PubChem) 

Values: average peak area ± standard error (arbritary); n=6 

P-value: determined by ANOVA 
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Table 2.S3. Significant Positive LC-MS Metabolites 

Metabolite m/z 
Retention 
Time (s) 

Confi-
dence 

CID 
Number Chemical Class 

Norm 
Average 

(±SE) 

Hyp 
Average 

(±SE) 

CoCl2 
Average 

(±SE) P Value 

3-Amino-6-Hydroxy-
Tyrosine 

281.0
743 49.03 Putative 6917016 Amino Acid 

1.95E-04 
(1.75E-05) 

2.76E-04 
(1.94E-05) 

2.05E-04 
(1.61E-05) 

0.002737
869 

4-Oxoproline;5-
Oxoproline  
(Pyroglutamic Acid) 

130.0
495 48.62 Putative 7405 Amino Acid 

8.00E-03 
(2.77E-04) 

9.64E-03 
(2.95E-04) 

7.74E-03 
(2.43E-04) 

 
6.4115
8E-06 

6-O-
Cyclohexylmethyl 
Guanine 

316.1
368 59.01 Putative 4564 Amino Acid 

3.04E-04 
(2.42E-04) 

4.56E-03 
(2.50E-04) 

3.57E-03 
(2.38E-04) 

7.04053E
-05 

Acetyltropine 
258.0
650 86.15 Putative 

1055936
9 Alkaloid 

9.74E-05 
*2.75E-06) 

8.20E-05 
(2.34E-06) 

9.77E-05 
(3.22E-06) 

6.98711E
-05 

Adenine 
136.0
613 44.55 Putative 190 Nucleobase 

8.41E-06 
(1.21E-06) 

1.40E-05 
(1.30E-06) 

1.22E-05 
(1.23E-06) 

0.002447
362 

Amino Acid 
156.0
764 41.32 Putative N/A Amino Acid 

4.87E-04 
(1.11E-05) 

4.94E-04 
(1.01E-05) 

3.59E-04 
(9.80E-06) 

7.49226E
-14 

Amino Acid 
155.0
886 60.66 Putative N/A Amino Acid 

2.75E-04 
(7.17E-06) 

2.26E-04 
(9.76E-06) 

2.60E-04 
(6.12E-06) 

0.000144
484 

Amino Acid 
261.9
879 437.97 Putative N/A Amino Acid 

5.98E-05 
(1.61E-06) 

7.05E-05 
(2.50E-06) 

6.35E-05 
(2.28E-06) 

0.000632
701 

Batilol 
345.3
359 813.31 Putative 3681 Polyol 

3.04E-05 
(4.75E-06) 

2.97E-05 
(5.97E-06) 

6.38E-05 
(8.14E-06) 

0.001093
749 

Cysteine 
190.0
896 305.68 Putative 5862 Amino Acid 

2.52E-04 
(1.92E-05) 

2.23E-04 
(1.54E-05) 

1.04E-04 
(9.16E-06) 

2.1161E-
08 

Diacylglycerol/ 
30-hydroxy-
triacontanoic Acid 

559.4
317 868.66 Putative N/A Diacylglycerol 

1.19E-04 
(9.91E-06) 

1.17E-04 
(1.17E-05) 

3.15E-05 
(6.31E-06) 

5.27324E
-09 

Fatty Acids 
Phosphoglycerols 

605.5
497 1016.31 Putative N/A Fatty Acid 

7.10E-06 
(2.29E-06) 

5.94E-06 
(1.90E-06) 

4.05E-05 
(4.43E-06) 

8.58507E
-09 

Glutathione Derived 
Polypeptide 

308.0
912 47.39 Putative N/A Polypeptide 

2.19E-04 
(1.52E-05) 

5.49E-05 
(1.03E-05) 

7.76E-05 
(1.17E-05) 

0.000849
227 

Glutathione Derived 
Polypeptide 

380.1
130 50.58 Putative N/A Polypeptide 

1.24E-04 
(4.31E-05) 

4.56E-05 
(1.36E-05) 

8.97E-05 
(1.54E-05) 

7.75908E
-05 

Glycerophospholipid/ 
Phosphocholines 

476.3
131 873.72 Putative N/A 

Phospholipid/Pho
sphocholine 

8.43E-05 
(2.33E-06) 

2.38E-06 
(2.38E-06) 

2.78E-06 
(2.78E-06) 

0.391180
913 

Glycerophospholipid/
Phospho- 
cholines/Glyceropho

504.3
442 896.55 Putative N/A 

Phospholipid/Pho
sphocholine 

6.07E-05 
(1.08E-06) 

1.65E-06 
(1.65E-06) 

2.03E-06 
(2.03E-06) 

0.397882
982 
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sphocholines 

Hydroxy Fatty Acids 
299.1
825 599.65 Putative N/A Fatty Acid 

2.78E-05 
(2.39E-06) 

9.15E-06 
(1.99E-06) 

1.36E-05 
(2.11E-06) 

1.59811E
-07 

Lactic Acid 
113.0
205 47.16 Putative 612 Carboxylic Acid 

1.66E-04 
(8.01E-06) 

1.02E-04 
(9.57E-06) 

1.36E-04 
(9.70E-06) 

4.35769E
-06 

L-Histidine 
156.0
764 41.32 Putative 6274 Amino Acid 

4.87E-04 
(1.11E-05) 

4.94E-04 
(1.01E-05) 

3.59E-04 
(9.80E-06) 

7.49226E
-14 

Methyltransferase 
151.0
907 288.21 Putative N/A 

Transferase 
Enzyme 

5.30E-05 
(1.70E-05) 

1.98E-04 
(2.95E-05) 

9.16E-04 
(2.20E-05) 

8.58165E
-05 

Pantothenic Acid 
(vitamin B5) 

220.1
177 85.21 Putative 6613 Vitamin 

1.33E-04 
(4.34E-06) 

1.10E-04 
(3.78E-06) 

1.28E-04 
(4.84E-06) 

0.000233
767 

Phosphocholine 
752.5
210 873.75 Putative N/A Phosphocholine 

1.38E-04 
(9.55E-06) 

1.08E-04 
(9.44E-06) 

6.43E-05 
(1.10E-05) 

3.94702E
-07 

Phosphocholine 
758.5
994 898.46 Putative N/A Phosphocholine 

8.67E-04 
(1.10E-05) 

7.87E-04 
(1.02E-05) 

7.20-E-04 
(5.75E-06) 

1.98675E
-05 

Phosphocholine 
780.5
515 898.36 Putative N/A Phosphocholine 

1.07E-04 
(1.86E-06) 

9.95E-04 
(1.61E-06) 

6.68E-05 
(1.62E-06) 

0.000148
579 

Phosphocholine 
788.6
177 954.22 Putative N/A Phosphocholine 

6.45E-05 
(6.38E-06) 

6.05E-05 
(5.43E-06) 

9.13E-05 
(7.62E-06) 

0.000806
851 

Phosphocholine 
748.6
233 974.84 Putative N/A Phosphocholine 

6.06E-05 
(4.91E-06) 

3.45E-05 
(4.16E-06) 

1.17E-04 
(5.91E-06) 

3.31267E
-07 

Phosphocholine and 
quinones 

730.5
389 874.38 Putative N/A Phosphocholine 

5.11E-04 
(3.14E-05) 

2.81E-05 
(2.81E-05) 

1.84E-05 
(1.84E-05) 

0.343481
52 

Polypeptides; FAs;  
Alcohols/Polyols; 
Fatty alcohols 

247.1
288 77.67 Putative N/A 

Polypeptide/Fatty 
Acid/Polyol 

4.13E-05 
(3.27E-06) 

3.75E-05 
(3.74E-06) 

6.28E-05 
(2.31E-06) 

3.89061E
-07 

Sphingo basis and/or 
Fatty Acid's 

303.3
084 719.32 Putative N/A 

Sphingobase/Fatt
y Acid 

2.75E-05 
(3.02E-06) 

2.15E-05 
(3.51E-06) 

4.08E-05 
(3.43E-06) 

0.005465
915 

Sphingomyelin 
675.5
444 863.40 Putative N/A Sphingolipid 

1.73E-04 
(1.07E-05) 

1.60E-04 
(1.13E-05) 

1.21E-04 
(8.36E-06) 

2.47475E
-06 

Sphingomyelin 
703.5
747 887.17 Putative N/A Sphingolipid 

5.89E-05 
(7.58E-06) 

5.64E-05 
(8.13E-06) 

1.52E-04 
(6.23E-06) 

4.79351E
-09 

Tridecanoic Acid 
299.1
825 599.65 Putative 12530 Fatty Acid 

2.78E-05 
(2.39E-06) 

9.15E-06 
(1.99E-06) 

1.36E-05 
(2.11E-06) 

1.59811E
-07 

See Table 2.S2 Key for details
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Figure 2.S1. ATP concentrations for hTERT cells during normoxia, hypoxia 

and CoCl2 exposure at a range of time points. The blue line indicates the ATP 

concentrations for CoCl2 exposure, the red line signifies the ATP concentrations for 

the hypoxic condition, and the standard errors are highlighted for each condition. 

The normoxic condition is found at time point zero, i.e. no condition exposure. The 

samples were normalised to total protein concentration to account for cell number 

variation. The asterix (*) denotes a significant result (mann-whitney; p<0.05). 
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Figure 2.S2. Internal and external lactic acid concentrations for hTERT cells 

during normoxia, hypoxia and CoCl2 exposure at a range of time points. In 

terms of external lactic acid, the purple line indicates the levels for hypoxia, the 

orange signifies values for normoxia and mid-blue denotes those for CoCl2. For 

internal lactic acid, dark blue indicates hypoxia, dark red designates CoCl2 and 

green symbolises normoxia. Data are mean ±SE. This plot was composed through 

the data obtained in the GC-MS experiment from the metabolite fingerprint and 

footprint analyses. The asterix (*) denotes a significant result (Kruskal-Wallis; 

p<0.05). Lactic acid production is important under hypoxic conditions as it is one of 

the end products of glycolysis. It is noteworthy that cancer cells under hypoxic 

conditions produce more lactic acid than “normal cells” under hypoxic conditions. 
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Figure 2. S3. Please see the next page for the figure legend.  
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Figure 2.S3. KEGG map of human metabolism highlighting important 

metabolites in terms of the hypoxic response and CoCl2 exposure. The green 

signifies where the CoCl2 mimics the hypoxic response, the blue highlights where 

the CoCl2 does not mimic the hypoxic response, red denotes off target effects of 

CoCl2 and the grey represents where no hypoxic or CoCl2 response was detected. 

It is apparent that the CoCl2 has the ability to mimic the hypoxic response in 

carbohydrate and amino acid metabolism i.e. central metabolism. The vast majority 

of off target effects caused by the CoCl2 are related to the metabolism of 

phospholipids as depicted by the cluster of red spots.  
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Chapter 3: 

 

The phenotypic and metabolic effects of 

phosphodiesterase type 4D (PDE4D) 

knockdown in the oral squamous cell 

carcinoma (OSCC) cell line BicR16 

 

 

 

The following chapter is to be submitted as a peer reviewed paper to Cancer 

Research before the end of 2012. Further experiments may also be included 

in this manuscript. 

 

 

Royston Goodacre, Nalin Thakker, Ian Hampson and Lynne Hampson 

contributed through continuous advice and support throughout the project. 

William Allwood was involved in the operation of mass spectrometry and 

also various aspects of data analysis. Xun Xu aided with the data anlaysis. 

Thomas Walker and Gavin Batman provided support though the wet side of 

the project including the knockdown of the cell line and the Western blot of 

PDE4D, respectively. 
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3.1 Abstract 

Phosphodiesterase type 4D (PDE4D) regulates the degradation of cyclic 

adenosine monophosphate (cAMP) which, in turn, regulates the expression 

of many genes through the transcription factor cAMP response element 

binding (CREB). Other transcription factors such as hypoxia inducible factor-

1 (HIF-1) may interact with CREB causing further regulation. It is not clear 

whether PDE4D functions as a tumour suppressor gene (TSG) or an 

oncogene. The effect of PDE4D knockdown on cellular proliferation, 

migration, resistance to ionising radiation and central metabolism was 

investigated using the oral squamous cell carcinoma (OSCC) cell line, 

BicR16. MTT, clonogenic and scratch assays were used alongside gas 

chromatography-mass spectrometry (GC-MS). The knockdown caused an 

increase in proliferation, migration and radiation resistance suggesting the 

role of a TSG. Amino acids, cholesterol, fatty acids, carbohydrates and TCA 

intermediates were also altered. CREB was able to regulate gene 

expression dependently and independently of HIF-1.  

3.2 Introduction 

Oral squamous cell carcinoma (OSCC) currently accounts for ~3% of 

all cancers worldwide (Scully & Felix, 2006) with an abysmal 5 year survival 

rate of approximately 50%, which has remained constant for the past three 

decades (Park et al., 2006). One reason for this poor prognosis is the late 

diagnosis of many patients (Liu et al., 2009) with surgery and radiation the 

most effective treatment. 

As with most complex diseases, OSCC onset is developed through a 

combination of natural (genomic) and environmental factors (Bookman et al., 

2011). Genomic factors involved in OSCC include: p53 (Swaminathan et al., 

2012), Cyclin Dependent Kinase 2A (CDKN2A) – which encodes the 

proteins p16INK4A and p19ARF (Wu et al., 1999) and CyclinD1 (Baldwin et al., 

2005; Matta et al., 2007). 

PDE4D is a constituent of the phosphodiesterase (PDE) family of 

enzymes which is solely responsible for degrading cAMP (cyclic adenosine 

monophosphate) and cGMP (cyclic guanosine monophosphate) to 5′AMP 
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and 5′GMP, respectively (Ong et al., 2009). cAMP and cGMP are 

nucleotides which operate as secondary messengers within the cell 

(Houslay & Adams, 2003) and are involved in gene expression, the cell 

cycle, cytoskeletal function, metabolism and proliferation (McCahill et al., 

2008). Due to the nature of PDE4Ds role within the cell, its regulation is 

tightly controlled through gene expression and post translational 

modifications (Houslay & Adams, 2003; Lugnier, 2006; McCahill et al., 

2008). There are nine isoforms of PDE4D which exist in various forms: long 

form (PDE4D 3, 4, 5, 7, 8 and 9); short form (PDE4D 1, 2 and 6) and in 

addition there are super-short and "dead-short" forms (Houslay & Adams, 

2003; Houslay, Baillie & Maurice, 2007; Rahrmann et al., 2009) which are all 

cAMP specific. 

Research has shown that cancerous cells commonly exhibit depleted 

levels of cAMP in comparison to their non-cancerous counterparts (Marko et 

al., 2000). This is a result of the relative activities of the enzymes involved in 

producing and degrading cAMP; adenylate cyclase (AC) and the PDE family, 

respectively (Weber, 2002). The activity of these enzymes is heavily 

dependent on the cell type and cellular location. Interestingly, this cell type 

dependency appears to also be a factor in the role of PDE4D in cancer. 

Marko and co-workers (2000) and Weber (2002) discovered these effects in 

lung cancer and hepatocellular carcinoma, respectively, suggesting the PDE 

enzymes to be oncogenes. However, more recently, Nancarrow et al. (2008) 

and Jarvinen et al. (2008) reported homozygous deletions (HDs) of PDE4D 

(5q12) in various head and neck squamous cell carcinomas (HNSCCs). This 

has also been observed in lung adenocarcinoma (Weir et al., 2007) and this 

evidence suggests PDE4D to have tumor suppressor gene (TSG) qualities. 

One downstream effect of cAMP, and hence PDE4D is the regulation 

of the transcription factor (TF) cAMP response element binding (CREB). 

Once phosphorylated via protein kinase A (PKA) (Abramovitch et al., 2004), 

CREB is able to bind to the cis region CRE (CREB response element) and 

regulate the transcription of approximately 4000 genes (Suzuki et al., 2009). 

This regulation is heavily dependent on the methylation state of the cis 

regions and the selective recruitment of cofactors (Zhang et al., 2005). 

However, literature suggests that this process is intricate and may involve 
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other TFs such as hypoxia inducible factor-1 (HIF-1). HIF-1 is regulated 

through oxygen concentrations and is also profoundly associated with 

cancer. When activated under hypoxic conditions, HIF-1 binds to the hypoxia 

response element (HRE) and regulates transcription accordingly.  

There are two models in the literature regarding the regulation of 

genes through HIF-1 and CREB, the HIF dependent regulation and the HIF 

independent regulation. The former was proposed by Firth and co-workers 

(1995) where HIF-1 cannot regulate gene expression exclusively and 

adjacent binding of other TFs such as CREB is necessary (Breit et al., 

2008). The latter model states that CREB can regulate gene expression, 

regardless of the involvement of the co-activator HIF-1 (O’Reilly et al., 2006; 

Dimova et al., 2007; Meyuhas et al., 2008). In addition, CREB functions may 

be enhanced through hypoxia due to the augmented CREB phosphorylation 

from PKA (Dimova et al., 2007) and the upregulation in transcription of 

CREB and the CREB binding protein (CBP) (Freeland et al., 2001). 

Furthermore, the binding of CREB and HIF-1 to CRE and HRE are 

interchangeable (Dimova et al., 2007; O’Reilly et al., 2006) and both may 

simultaneously bind to a solitary HRE or CRE domain. This results in 

additional regulation of the gene (Abramovitch et al., 2004). 

Therefore, this study set out to investigate the effect of PDE4D knock 

down (KD) on the oral cancer cell line BicR16. Phenotypic alterations and 

central metabolism were the main focus since this may shed some light on 

the role of PDE4D in OSCC. In addition, inducing CREB (via PDE4D KD) 

and HIF-1 (though hypoxic exposure) was investigated to distinguish if any 

emergent properties may arise from these interactions.  

3.3 Materials and Methods 

3.3.1 Cell culture. BicR16 (oral squamous cell carcinoma) cell lines 

were obtained from INH (St. Mary’s hospital, Manchester). Cells were 

cultured in DMEM (Invitrogen, Paisley, UK) supplemented with 10% FBS 

(Sigma Aldrich, Dorset, UK), 2% HEPES buffer (Sigma Aldrich, Dorset, UK), 

1% L-glutamine (Sigma Aldrich, Dorset, UK) and 0.2% hydrocortisone. The 

cells were grown to a maximum of 70% confluence in a humidified incubator 
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at 37°C and 5% CO2 before sub-culturing and re-seeding at ~0.5x106 cells 

per T75 culture flask. 

3.3.2 Control and target shRNAs. Mission shRNA (short hairpin 

ribose nucleic acid) DNA clones were purchased from Sigma-Aldrich 

(Dorset, UK) and used for transient and stable KD of PDE4D. A total of five 

pLKO.1 clones (TRCN0000048834 (834); TRCN0000048835 (835); 

TRCN0000236065 (065); TRCN0000236066 (066) and TRCN0000236067 

(067)) and three controls (SHC001 (pure control vector), SHC002 (non-

target control vector and SHC008 (β2M control vector)) were purchased. 

The quantity of the shRNAs was increased through transformation and maxi-

prep. An additional wild-type (WT) control was used which encompassed 

untreated cells. 

3.3.3 Transformations, maxi-prep and quality assurance of 

shRNAs. E. coli XL1- competent cells were purchased from Stratagene 

(Agilent Technologies, Cheshire, UK) to increase the quantity of shRNAs 

and the protocol was conducted as per manufacturer’s protocol. 

Subsequently, a maxi-prep (Qiagen, Crawley, UK) was undertaken to purify 

the plasmids and the methods were followed as described. The plasmids 

were run on a 1.5% agarose gel to check the plasmid size (Figure 3.S1) and 

to check for leakages of the maxi-prep (Figure 3.S2). The concentrations 

and purities were checked through Nanodrop® 1000 (Thermo Scientific, 

Wilmington, USA) analysis (Table 3.S1). All shRNAs were suitable for KD. 

3.3.4 Puromycin kill curve for BicR16 cells. BicR16 cells were 

cultured as described previously. Cells were exposed to a range of 

puromycin concentrations (0μg/mL – 0.3μg/mL) for 192h (8d) and checked 

daily with regular medium changes for 480h (20d). A concentration of 

0.08μg/mL was optimum and subsequently used (Figure 3.S3). 

3.3.5 KD of PDE4D in BicR16 cells. Firstly, a transient KD was used 

to determine the most efficient shRNA plasmid(s) and to assess the effect of 

the control shRNAs on the PDE4D in BicR16 cells. LipofectamineTM 2000 

was purchased from Invitrogen (Paisley, UK) and the protocol followed as 

described for all KD and control shRNAs. mRNA was extracted using 

TRIzol® reagent (Life Technologies, Invitrogen, Paisley, UK) by following the 

manufacturer’s protocol and analysed via qPCR as described. shRNAs 834 
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and 837 showed the greatest efficiency (Figure 3.S4); therefore they were 

used for the stable KD. No undesired effects were observed in the control 

samples.  

For the stable KD, each shRNA was used to produce two polyclones 

and a set of monoclones. Again, LipofectamineTM 2000 was used and the 

protocol followed. TRIzol® was used to extract DNA, RNA and protein (as 

described) from all monoclones and polyclones and assessed using qPCR, 

end point PCR and Western blot to gauge which clones possessed the most 

efficient KD. 

3.3.6 Taqman design for qPCR. Taqman primers and probes were 

designed for isoform specific detection and quantification of PDE4D3, 

PDE4D4, PDE4D5, PDE4D6, PDE4D7, PDE4D8 and PDE4D9 and in 

addition, a Taqman assay which captures all PDE4D isoforms. Isoform 

specific designs for PDE4D1 and PDE4D2 were not possible as these are 

merely truncated forms of one or more of the other isoforms. All primers, 

probes and reagents were purchased from Applied Biosystems. 6-

carboxyfluorescein (FAM) probes were used as the probes for the PDE4D 

design. The product numbers of the assays were: PDE4D3 (AJARAR – 

custom made); PDE4D4 (HS01588302 – pre-designed); PDE4D5 

(HS01588303 – pre-designed); PDE4D6 (HS01572151 – pre-designed); 

PDE4D7 (AJHSNM3 – custom made); PDE4D8 (HS0093823 – pre-

designed); PDE4D9 (HS01572149 – pre-designed) and all PDE4D isoforms 

(HS01579625 – pre-designed). The β-actin (4310886E) housekeeping 

Taqman assay using the VIC® probe was used for normalisation. All assays 

spanned an intron, ensuring that RNA only was detected.  

3.3.7 Reverse-transcriptase PCR (RT-PCR). The mRNA was 

cleaned of any DNA contamination using DNAse digest. First strand cDNA 

synthesis (RT-step) followed, where 20μL sample from the previous stage, 

3μL of 50μM random decamers (RDs) and 2μL of dNTP mix (10mM) which 

was mixed and incubated at 70°C for 5min, followed by 3min on ice. The 

following was added to each 25μL sample: 7μL 5x RT buffer, 7μL dH2O, 

0.5μL of RNaseOUTTM (40U/μL) and SuperScriptTM III RT (200 U/μL), 

totalling 40μL per cDNA sample. The sample was then incubated at 43°C for 

1h and subsequently stored at -20°C until use. 
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3.3.8 Taqman gene expression assay for relative PDE4D 

quantification. The Taqman assay was performed on an Illumina®, EcoTM 

Real-Time PCR system (San Diego, CA, USA). Samples were loaded into 

48 well plates and performed in triplicate. Each sample contained: 1μL 

cDNA, 1μL PDE4D Taqman, 1μL β-actin Taqman, 7μL RNAse free water 

and 10μL of 10x Taqman reaction buffer (20μL total volume). To ensure the 

samples do not evaporate, an air tight cover was added to the plate. 

3.3.9 Verification of shRNA insert through end point PCR. End 

point PCR was used to ensure that the shRNA vector had successfully 

incorporated into the genome and is being passed onto daughter cells. 

Primers were produced and procedures followed in accordance with Stamm 

et al. (2012). The primers were designed in the U6 promoter region of the 

pLKO.1 vector. The forward primer was 5' 

TGGACTATCATATGCTTACCGTAAC 3' and the reverse primer was 

5' GTATGTCTGTTGCTATTATGTCTA 3' resulting in a 216 base pair 

product. The thermal cycle was as follows: 95°C for 3min, followed by 35 

cycles of 95°C for 30s, annealing for 60°C for 30s, 72°C for 30s and finally 

5min at 72°C. 

3.3.10 Efficiency of the PDE4D KDs verified through Western 

blotting. The most efficient KDs as detected in the Taqman assays were 

verified to ensure the observed decrease in PDE4D mRNA was also 

reduced at the protein level. To do so, the KD, control, and WT cells were 

compared. Cells were cultured and harvested as described previously before 

resuspending the pellet in PBS at a concentration of 0.5x106 cells/10μL. An 

equal amount of LaemmLi buffer was added resulting in a final concentration 

of 0.5x106 cells/20μL. The samples were boiled/frozen (x3) and run on a 

10% acrylamide running gel and 4% stacking gel. The gel was transferred to 

a PVDF (polyvinylidene fluoride) membrane before blocked and exposed to 

the PDE4D primary antibody (ab77080, Abcam, Cambridge, UK) at a 1:500 

dilution. The membrane was then exposed to rabbit anti-mouse IgG HRP 

(Abcam, Cambridge, UK) at 1:2000 before using AmershamTM ECLTM Plus 

(GE Life Sciences, Buckinghamshire, UK) as described in the protocol for 

band detection. The GAPDH antibody (Abcam, Cambridge, UK) was then 

used as described by the manufacturer for normalisation. 
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3.3.11 MTT assay to assess cell proliferation. Monoclones and 

polyclones of the most efficient KDs and controls alongside the parent cells 

were selected for analysis. A 1 in 3 series dilution of cells was used with 

cells ranging from 3000 cells to 1 cell per well in triplicate. The cells were 

grown for 12d, with regular medium changes. The CellTiter 96® AQueous 

One Solution Cell Proliferation Assay (Promega, Southampton, UK) was 

used as described in the protocol.  

3.3.12 Clonogenic assay to assess radiation resistance. Methods 

were followed as described in Donne et al., (2009). Cells of interest were 

subjected to either three Grays or five Grays of radiation (Faxitron, 

Lincolshire, IL, USA) before sub-cultured into 96 well plates as described in 

the  MTT assay. The cells were grown for 12d with frequent medium 

changes and AQ96 solution was used to assess proliferation.  

3.3.13Scratch assay to assess migration. The cells of interest were 

analysed in triplicate. Six well plates were prepared by drawing a single 

straight line on the underside of the plates using a thin permanent marker. 

Cells were grown to 95-100% confluence in the six well plates before 

removing the medium and using sterile cotton buds to gently scratch half the 

cells away from each well, directly down the marker line. The remaining cells 

were washed in PBS and fresh warmed medium added before culturing the 

cells as normal. Each day, pictures of the cells were taken using a light 

microscope at x4 for 12d. 

3.3.14 Metabolic analysis of PDE4D KD using GC-MS. To ensure 

that the observed effects are a result of the PDE4D KD rather than another 

factor, a preliminary GC-MS analysis was designed. It is expected that the 

controls (monoclones and ploys) and WT cells behave in a similar fashion, 

and dissimilarly to the KDs. In addition, the KD monoclones and polyclones 

should also act in an analogous manner. Therefore, the relevant samples 

were each grown to 75-80% confluency in five T150 flasks (n=5). The cells 

were harvested and quenched in -48°C MeOH before scraping the cells on 

ice. The cells were flash frozen in liquid nitrogen for 1min, vortexed for 30s 

and thawed on ice (x4). Samples were then centrifuged at 3000xg for 10min 

and the supernatant retained. 100μL of internal standard 2 (IS2) solution 

was added to each sample (IS2 was prepared by diluting 2mL of IS1 in 
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10mL of HPLC grade H20) before evaporation of the solvent using a speed 

vac and storage at -80°C until analysis. Internal standard 1 (IS1) was 

composed of 10mg succinic-d4 acid, 10mg glycine-d5 acid and 10mg 

malonic-d2 acid in 10mL of HPLC grade H2O. The samples were 

derivatisation immediately before analysis using methods described by Lenz 

and Wilson (2007). In brief, methoxylation was achieved utilising 

methoxyamine hydrochloride at 60°C for 30min and silylation through N-

methyl-N(trimethylsilyl)-trifluoracetamide (MSTFA) at 60°C for 30min. An 

Agilent 6890 gas chromatograph coupled to a Leco Pegasus III TOF mass 

spectrometer with an Agilent 7893 autosampler was used and methods were 

followed as described in Begley et al. (2009).  

Subsequently, a reduced GC-MS analysis was performed 

investigating the combined effects of PDE4D KD and hypoxia. A pure 

monoclone sample and a KD monoclone sample were chosen and cultured 

as described previously in 36x T150 flasks (18x pure and 18x KD) and 

grown to 75-80% confluence. Subsequently, 9x pure samples and 9x KD 

samples were exposed to hypoxic conditions at 1% oxygen, 5% CO2 at 37°C 

for 8h (as this time exposure displays the hypoxic stress response). To 

ensure instant hypoxia exposure to the cells, the old medium was replaced 

with fresh, warmed hypoxic medium in these cell cultures. The remaining 

18x samples were maintained in standard normoxic conditions; however, the 

medium was replaced with fresh normoxic medium. Following the 8h 

condition exposure cells were quenched, harvested, the metabolites 

extracted, derivatised and analysed via GC-MS using the methods described 

above. 

 3.3.15 Data processing and data analysis. Metabolites were 

assigned in concurrence with the Metabolomics Standards Initiative for 

Chemical Analysis (Sumner et al., 2007). The methods of Begley et al. 

(2008) were followed to deconvolve the chromatograms in the LECO 

ChromaTOF software before using our in-house GC library and the Max 

Plank Institute Molecular Plant Physiology database (GMD) using a forward 

and reverse match score of 80%+ in addition to a retention index error of +/-

10. 
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 The univariate and multivariate data analysis were performed in 

MATLAB 2010b and Microsoft Excel 2007. Principal components analysis 

(PCA) was utilised to assess variations in the classes in the GC-MS data. 

PCA is used to reduce the complexity of data whilst maintaining the variance 

through its interpretation using a small number of principal components 

(PCs). The ranksum test (non-parametric t-test: p<0.05) was performed on 

the GC-MS data to provide significant values between the various classes. 

3.4 Results 

3.4.1 Stable KD of PDE4D in BicR16 cells. This resulted in a WT, 

two polyclones and numerous monoclones for each sample type. To ensure 

the plasmid had successfully incorporated into the genome end point PCR 

was performed (Figure 3.1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As expected, the WT and negative control did not result in a band. 

Pure monoclones 1 and 4 were positive for the vector as were both 

polyclones. Bands can also be seen in KD 834 for both polyclones and 

monoclones 1 and 3 (faint). KD 837 was positive for both polyclones and 

monoclones 8 (weak), 10, 11 and 12. The graph in Figure 3.2 shows the 

Figure.15 End Point PCR to Verify the Incorporation of the shRNA Containing 

pLKO.1 Vector into the BicR16 Genome. The wild type (parent) cell line and a 

negative control were included and are indicated in the figure. The pure samples (from 

left to right) comprise of polyclone 1, polyclone 2, monoclone 1, monoclone 2, 

monoclone 3 and monoclone 4 (all of which originate from different clones from the 

initial KD process. The same format can be transferred to the 834 knock down samples 

and the 837 knock down samples. The resulting positive product from these primers is 

216 base pairs in length. 
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most efficient stable KDs of PDE4D. The expression of PDE4D in the KDs 

was reduced in comparison to those of the WT and pure samples. The 

greatest KDs were found in 834 polyclone 2 (62%), 837 polyclone 2 (63%) 

and 837 monoclones 11 (76%) and 12 (72%). For an unknown reason, the 

concentrations of PDE4D in the pure control samples are were greater than 

the parent cells.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.4.2 PDE4D KD increases proliferation, migration and ability to 

withstand radiation. The MTT assay was used to assess the effect of 

PDE4D KD on cell proliferation (Figure 3.3A). It is clear that the KD cells 

have a greater proliferation rate than the control and parent cells with an 

average increase of 31.3%. Pure polyclone 2 and monoclone 1 have similar 

Figure 16 Relative Quantification of Gene Expression for total PDE4D in Stably 

Transfected BicR16 Cells. Black indicates the wild type, red signifies the control and 

blue the KD cell lines. Samples include (from left to right) the wild type (parent), pure 

polyclone 1, pure polyclone 2, pure monoclone 1, pure monoclone 4, 834 polyclone 1, 

834 polyclone 2, 834 monoclone 1, 837 polyclone 1, 837 polyclone 2, and 837 

monoclones 10-12 followed by the negative control for the qPCR experiment. The 

standard deviation is highlighted by the error bars (N=3) and the values above KD 

samples denote the KD efficiency in relation to the parent cells.  
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proliferation rates to that of the WT (1.7-2), whereas pure polyclone 1 and 

monoclone 4 are slightly reduced between ~1.4-1.5. All knockdown samples 

range from 2.3-3.The average standard deviation (SD) for all samples is 

0.14. 

Two clonogenic assays (three Grays or five Grays) were undertaken 

to assess the effects of the KD on the ability of the cells to withstand 

radiation therapy (Figure 3.3B and Figure 3.3C, respectively). The former 

resulted in the KD cells (with the exception of monoclone 837-10) 

proliferating to a greater extent than the parent/control cells with an average 

increase of 56.8%. The resulting SD of all samples was 0.21. The latter 

assay resulted in a reduced proliferation rate in comparison to the former 

assay with an average absorbance of 1.29 and 0.39, respectively. A greater 

proliferation rate was still observed in the latter, with an average increase 

proliferation in the KD cells of 23.0% and a general SD of 0.08. It is 

noteworthy, that KDs 837 polyclone 2 and 837 monoclone 11 and 12 

showed no increase in proliferation. 

A scratch assay was undertaken to assess the KD effect on cell 

migration (Figure 3.S5). Similar behaviour was observed in the WT, pure 

monoclones and pure polyclones as was behaviour in the KD monoclones 

and polyclones. Up until the 4 day point, no migration was observed of any 

of the cell lines. At day 8 cells begin to migrate in the KD samples whereas 

the WT/controls show little sign of any migration. After 12 days the KD cells 

have considerably migrated to the right of the picture whereas the 

WT/controls show little signs of migration. 
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3.4.3 PDE4D KD causes a metabolic reconfiguration. A 

preliminary GC-MS experiment was adopted in order to address a number of 

points as discussed later. The PCA displayed in Figure 3.4A shows clear 

separation between the WT/control and the KD samples across PC1, 

positioned on the negative and positive, respectively. The pure monoclone 

and polyclone samples are clustering neatly together alongside the WT 

Figure 17 Phenotypic assays comparing stable PDE4D KDs with control and WT 

BicR16 cells. The parent cells are marked with the black bar, the red bars denote the 

pure samples and the blue bars signify the knock down cells. The P’s immediately prior 

to the number in the sample names represent the polyclones and those where the P is 

absent are the monoclone samples. The numbers in the sample names denote the 

sample number. The bars are means and the error bars display standard deviation from 

triplicate measurements. These results were not significant (Mann Whitney; p<0.05). (A) 

Proliferation of BicR16 cells (MTT Assay). The MTT  assay functions through 

determining the number of viable cells by measuring the activity of enzymes that reduce 

MTT which may then be quantified by measuring the absorbance at 490nm (y-axis). 

Clonogenic assays - proliferation of BicR16 Cells Following Exposure to three 

Grays (B) and five Grays (C) of Radiation. Cells were exposed to three Grays or five 

Grays of radiation and allowed to proliferate for 12 days before using the MTT assay to 

essay the number of viable cells. 
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samples. The KD monoclones and polyclones are clustering closely and are 

distant from the WT and pure samples.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 18 Preliminary GC-MS PCA scores and loadings plots. A) PCA scores plot 

highlighting separation of the WT/controls and the PDE4D KD Samples. The red 

triangles denote the wild type (WT) and pure control vectors (Pure) and the blue triangles 

signify the KD samples (834 and 837). The P1 and P2 highlight the polyclones one and two 

respectively, and those samples where 'P' is absent are monoclones. Samples were aligned 

using QCs across the GC-MS run and one sample from each class was repeated a total of 

three times to assess instrument variation. This PCA plot was produced in MATLAB and 

shows PC1 vs PC2 explaining 67.3% and 7.3% of the variance respectively. B) PCA 

loadings plot explaining the origin of separation of the PCA scores plot. Loadings plot 

showing PC1 vs. PC2 for the preliminary GC-MS experiment on the PDE4D KD. Each blue 

spot represents a metabolite from the GC-MS data, and those deviating furthest from the 

centre (0, 0) point are imposing the greatest effect on the separation seen in the PCA. The 

numbers are associated with the metabolite number and only these spots which are distant 

from the centre are annotated. As with the numbers, the red labels depict the metabolite 

identification and again, are only annotated when the spots are distant from the centre and 

having a significant effect on the separation. 
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Figure 3.4B exhibits a loadings plot which depicts which metabolites 

are causing the separation in the PCA. The WT/control samples are 

gravitated to the negative of PC1 as a result of oleic acid and to a lesser 

degree, aspartic acid, myristic acid and an unknown sugar. The KD samples 

are attracted to the positive of PC1 predominantly due to alanine, glycine, 

valine, leucine, Isoleucine, serine, threonine, tyrosine, an unknown, myo-

inositol, phenylalanine and cholesterol and to a lesser extent, glutamine, 

methionine, another unknown metabolite and lactic acid. 

3.4.4 The combined effects of CREB and HIF-1 on central 

metabolism. Now that the KD samples had been established, the KD and 

control cells were exposed to a hypoxic or normoxic environment for 8h 

before assessing central metabolism through GC-MS. The resulting PCA is 

shown in Figure 3.5A. Clear separation of the hypoxic and normoxic 

conditions is observed, chiefly through PC1 but also to some extent, across 

PC2. The former is situated on the negative of PC1 and mainly on the 

positive of PC2 whereas the latter is located on the positive of PC1 and 

predominantly on the negative of PC2. There is also a degree of separation 

between the KD and control cells under their respective conditions. This 

separation is clearer under normoxia as there is some extent of overlapping 

of the KD and pure samples during hypoxia. 
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The loadings plot (Figure 3.5B) highlights the origin of variance seen 

in the PCA. Separation across PC1 can be attributed to 6-carbon sugars 

(x3), sorbose, proline, polyols (x3), aspartic acid (x2), leucine, isoleucine, 

glycine, threonine, glutamic acid, serine, glutamine, tyrosine, cholesterol, 

octadecanoic acid/stearic acid and an unknown metabolite. Metabolites 

causing variation across PC2 are glycerol-3-phosphate, sorbose, 

cholesterol, isoleucine, leucine, valine, a polyol, aspartic acid, tyrosine and a 

6-carbon sugar. 

From the significant metabolites highlighted in the loadings plot, the 

univariate analyses (data not shown) revealed that 39% (9/23) are affected 

solely from hypoxia where the KD has no effect. This had the greatest effect 

on the data set. 30% (7/23) was affected by both hypoxia and the KD and 

Figure 19 Full GC-MS PCA scores and loadings plots. A) PCA scores plot 

showing separation of the PDE4D KD and control cells under hypoxia or 

normoxia. The key in the top left corner depicts the sample types where the KD 

and pure (control) samples are represented by "K" and "P" respectively and the 

hypoxic and normoxic environments are coded by the "H" and "N" respectively. 

Hence, the red stars signify the KD/hypoxic samples, the red triangles the 

pure/hypoxia, the blue stars represent the KD/normoxia and the blue triangles the 

pure/normoxia samples. The plot was produced in MATLAB and shows PC1 vs. 

PC2 explaining 40.9% and 15.9% of the variance respectively. B) PCA loadings 

plot explaining the origin of separation of the PCA scores plot. Loadings plot 

showing PC1 vs. PC2 for the full GC-MS experiment on the PDE4D KD and 

hypoxic/normoxia environments. Please refer to Figure 3.4B for further details. 
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13% (3/23) was affected by the KD only. Miscellaneous accounted for 17% 

(4/23).  

 Those metabolites which are influenced by the combination of KD and 

hypoxia (36/156) include polyols (glycerol, threitol, inositol derivatives (x2)), 

amino acids (glutamic acid derivatives (x3), proline), sugars 

(tagatose/fructose/sorbose, xylose), glycolysis intermediates (pyruvic acid), 

vitamin B6, urea and several unknown metabolites. Generally, hypoxia 

causes an upregulation of these metabolites and of which, the KD causes a 

further reduction (67%) or increase (33%). Alternatively, hypoxia may cause 

a decrease in the metabolite with the KD further attributing the same effects 

as above. 

 The metabolites affected only by hypoxia (39/156) included amino 

acids (methionine, phenylalanine, serine, isoleucine, leucine, tyramine, 

tyrosine, valine), polyols (mannitol/sorbitol/dulcitol, rabitol), fatty acids 

(octadecanoic acid/stearic acid, oleic acid/elaidic acid), ketone bodies (4-

methyl-2-oxovaleric acid), carbohydrates (mannose/glucose/galactose, 

mannose/glucose, sorbose, theonic acid, fructose), TCA/glycolysis 

intermediates (fructose, succinic acid), organic acids (acetic acid, creatine) 

and unknown metabolites. The KD was found to have no significant effect on 

these metabolites. Hypoxia exposure resulted in an increase in metabolite 

concentration in 75% and a decrease in the remaining 25%. 

 The KD controlled the metabolite concentrations of 12/156 

metabolites irrespective of hypoxia. These included glycerol-3-phosphate, 

cholesterol, TCA associates (citric acid, malic acid, 3-ureidopropionic acid), 

amino acids (glycine, aspartic acid), butanoic acid and unknowns. These 

were found in elevated concentrations in the KD compared to the controls. 

3.5 Discussion 

 There is current debate regarding the role of PDE4D in cancer. There 

is compelling evidence for its role as a TSG and an oncogene. Here we 

provide insight into the role of PDE4D in OSCC. 

The phenotypic assays exhibited enhanced proliferation and 

migration when PDE4D expression was decreased. This is in concurrence 
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with the role of PDE4D as a TSG in HNSCCs (Jarvinen et al., 2008; 

Nancarrow et al., 2008; Gu et al., 2010; Wu et al., 2011). Conversely, there 

is an abundance of literature labelling PDE4D as an oncogene including in: 

prostate cancer (Rahrmann et al., 2009), lung cancer (Pullamsetti et al., 

2012) and even the HNSCC adenoid cystic carcinoma (Patel et al., 2006). 

These inconsistencies lead one to believe that the PDE4D gene is able to 

operate as a TSG or an oncogene depending on context such as cell type 

and environment. Such paradoxical genes have been presented previously 

such as RUNX (Runt-related transcription factor) (Blyth et al., 2005). 

 PDE4D KD also resulted in increased radiation resistance. To our 

knowledge this is the first evidence relating this gene to radiation sensitivity 

in OSCC cells. Conversely, non-specific PDE4 inhibition has previously been 

reported to increase radiation sensitivity in brain tumors (Goldhoff et al., 

2008) and haematological malignancies (Lerner et al., 2006). However, 

PDE4D is known to be an oncogene in these cells which may explain the 

varying response. 

The preliminary GC-MS experiment successfully addressed a number 

of key issues which were necessary before undertaking the later GC-MS 

experiment. Firstly, the WT cells behaved in a similar manner to the control 

cells implying that no undesired effects were brought about from the 

transfection procedure. Secondly, the monoclones and polyclones for the 

control and KD samples behaved analogously. This signifies that the random 

shRNA integration is unlikely to have had adverse effects on the cells. These 

precautions were adhered to throughout including during the phenotypic 

assays and the KD procedure. 

The initial GC-MS data demonstrated clear separation of the 

WT/controls and the KDs, chiefly as a result of increased amino acid and 

cholesterol concentrations in the latter and fatty acid production in the 

former. Since the KD raised the proliferation and migration of the cells, the 

increase in amino acids may be the result of uptake/synthesis of biomass by 

the cell to produce daughter cells (Vander Heiden et al., 2009; Shlomi et al., 

2011). In addition, cholesterol was also increased in the KD cells. This is 

fundamental in cell growth and division as it is necessary for plasma 

membrane synthesis and also, the cholesterol biosynthesis pathway 
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provides the cell with essential compounds for this process (Fernández et 

al., 2005). Oleic acid was also found to be increased in concentration in the 

KD cells and has previously been linked with proliferation and migration in 

rat vascular smooth muscle cells (Zhang et al., 2007) and breast cancer 

cells (Soto-Guzman et al., 2010). Subsequently, the second GC-MS 

experiment introduced the influence of hypoxia on the KD. It is evident that 

hypoxia is a having a greater effect on central metabolism than the KD, not 

only in terms of the number of metabolites effected, but also due to the 

extent of alteration. 

 The lack of distinction between the pure and KD samples under 

hypoxia is attributed by the differences between the relative metabolite 

concentrations. Conversely, the differences between the pure and KD 

samples under normoxia are greater which explains the more defined 

separation under this condition. For instance, tyrosine, glutamic acid and 

pyruvic acid all exhibit larger variations between the pure and KD samples 

under normoxia compared to hypoxia. Furthermore, some metabolites are 

displaying significant changes in all conditions except between the KD and 

pure samples under hypoxia. For example, sorbose is influencing the PCA 

plot and is affected by hypoxia and the KD under normoxia only (i.e., the KD 

does not have an effect under hypoxia). Moreover, the KD and the hypoxic 

environment effect a number of metabolites in the same manner (i.e., both 

increase the concentration of the metabolite) whereas, in other cases they 

appear to have opposite functions (i.e., one increases and one decreases 

the concentration). The latter cases may have impacted the PCA by 

contributing to the merging of these two classes. 

 Metabolites which were affected by a combination of KD and hypoxia 

constitute the second largest group. This metabolic reconfiguration is 

predominantly due to the regulation of the TFs HIF-1 and CREB, which may 

be working independently (Dimova et al., 2007) or dependently (Firth et al., 

1995). The metabolites behave in an intricate fashion with hypoxia and the 

KD having varying effects on each entity. Depending on the 

hypoxic/normoxic state, the KD may cause a significant upregulation for one 

condition and the opposite for the other condition, implying that some 

interaction is occurring between the two TFs. For example, this behaviour 
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was found for the inositol derivatives where under normoxic conditions, the 

KD caused a downregulation of the metabolite, whereas, under hypoxic 

conditions, the KD caused an upregulation of the metabolite. Hence, the 

regulation by these two interacting TFs is not trivial and other factors may be 

influencing the regulation of genes such as the availability of the cofactors 

(Breit, 2008) and potentially the involvement of other TFs. 

 However, the majority of these metabolites were found in greatest 

concentration in one of the hypoxic conditions. This inherently consists of the 

HIF-1 TF. Hereon, the CREB TF may cause an upregulation or 

downregulation of genes in a gene dependent manner, either the former, 

which results in the greatest (further) concentration of metabolite in the 

hypoxic, KD condition, or predominantly the latter resulting in the pure, 

hypoxic condition with the greatest concentration. Alternatively, when 

hypoxia causes a downregulation of the metabolite, the KD can still impose 

supplementary affects by up-regulating or down-regulating genes further. As 

discussed previously, the hypoxic state has some input into the role of 

CREB. 

The hypoxia only associated changes in metabolites were the largest 

group further suggesting that hypoxia was regulating metabolism more than 

the KD. As the KD was found to have no significant effect on these 

metabolites, only HIF-1 resulted in any alterations. Many of these were 

related to amino acids, fatty acids, sugars and TCA/glycolysis intermediates, 

the vast majority of which were found in elevated concentrations during 

hypoxia. These elements are essential for daughter cell production (Tennant 

et al., 2009) and it has previously been demonstrated that hypoxia causes 

an upregulation of proliferation through enhancing c-Myc (Gordan et al., 

2007). These data were also in line with our previous work investigating 

hypoxia on hTERT cells (Wilcock et al., 2012). 

 Although considerably smaller, a third group consisting of metabolites 

which were significantly altered by the KD only were observed. The 

preliminary GC-MS data are consistent with this. For example, cholesterol, 

glycine and aspartic acid (alongside others) increased in metabolite 

concentration for the KD in both experiments. This is a partially a 

consequence of CREB, which is able to regulate transcription independent 
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of HIF-1, as a similar increase was observed in the hypoxic and normoxic 

environments. Hence, CREB can function independently to HIF-1, although 

this does not disprove any theories (Firth et al., 1995) of CREB requiring 

other TFs not investigated here. 

3.6 Concluding Remarks 

 The role of PDE4D in cancer is paradoxical in terms of its TSG or 

oncogene status. Here we provide evidence of its role as a TSG in OSCC; a 

reduction in expression caused elevated proliferation and migration. 

Furthermore, this diminished expression of PDE4D resulted in elevated 

resistance to substantial levels of radiation which may be a significant finding 

relating to the treatment of OSCC. In addition, PDE4D appears to be 

involved with central metabolism, particularly that of amino acids, cholesterol 

and fatty acids which may be coupled with the effect on cellular proliferation 

and migration. Finally, the combination of PDE4D KD and hypoxia caused a 

substantial central metabolic reconfiguration, where CREB was able to 

regulate transcription, independently of HIF-1. 
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3.9 Supplementary Information  

 

 

 

 

 

 

 

 

 

 

Figure 3.S1. Gel Displaying Eluted Plasmids Following Transformation in XL1- 

Blue Cells. The wells contain (from left to right); (1) lambda ladder, (2) pure control 

vector, (3) B2M shRNA vector, (4) non-target control, (5) shRNA 065, (6) shRNA 

067, (7) shRNA 835 and (8) shRNA 837. The lambda ladder base pair number is 

indicated on the left of the gel. 
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Figure 3.S2. Fraction analysis at various stages during the maxi prep. There 

are three stages of analysis (which are labelled above) and each sample; pure, 

B2M, non-target, 065, 067, 835 and 837 were assessed for each. On the left of the 

gel is a lambda ladder and immediately indicated to the left of this is the base pair 

number. 
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 Sample DNA/RNA Purity Nucleic Acid 

Sample Concentration (ng/μL) (A260/A280) Purity (A260/A230) 

Pure 800 1.8 1.95 

NT 950.9 1.78 1.94 

B2M 821.4 1.64 1.82 

065 761.6 1.76 1.95 

067 671.9 1.88 2.06 

834 872.8 1.81 2.02 

837 217.1 1.93 2.07 

 

Table 3.S1. Sample concentrations and contaminations of the eluted shRNAs 

from the maxi prep derived from the Nanodrop®. DNA concentrations and 

contamination levels were determined using the Nanodrop® for pure, non-target, 

B2M, shRNA 065, shRNA 067, shRNA 834 and shRNA 837 as a single 

measurement. For each sample stated on the left, there is a sample concentration 

(ng/μL), a DNA/RNA purity value (A260/A280) and a nucleic acid purity value 

(A260/A230). As stated in the Nanodrop® 1000 manual, an acceptable value for 

A260/A280 is ~1.8 for DNA and significantly lower values may signify potential 

contamination of protein, phenol or other contaminants. The A260/A230 values are 

generally within the region of 1.8-2.2 and significantly lower values may indicate the 

presence of co-eluted contaminants. 
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Figure 3.S3. Kill curve of BicR16 cells subjected to a range of puromycin. BicR16 cells were 

subjected to a range of puromycin concentrations to establish the most efficient concentration. Cells 

were exposed to 0μg/mL, 0.01μg/mL, 0.02μg/mL, 0.03μg/mL, 0.04μg/mL, 0.05μg/mL, 0.06μg/mL, 

0.08μg/mL, 0.1μg/mL, 0.2μg/mL and 0.3μg/mL of puromycin for 480h (20 days) and assessed daily. 

The key on the right depicts the puromycin concentrations and associated line/marker patterns whilst 

the red text outlines the situation. The healthy BicR16 cells (dark blue line) were consistently healthy 

and at 100% confluency from 144h. The 0.01μg/mL (dark red) and 0.02μg/mL (dark green) 

concentrations initially grew healthily until 72-96h when debris/black matter was observed. However, 

from here on in, the cells recovered and grew to 100% confluency from 144h. At the 0.03μg/mL 

(purple) and 0.04μg/mL (mid-blue) concentrations, black matter /debris was visible between 96-144h 

which was more evident in the more concentrated sample. At 168h the 0.03μg/mL sample contains 

some floating cells, but recovers from here and eventually reaches confluency whereas the 0.04μg/mL 

includes some small spindly cells and recovers except during the 264-284 period where non-adherent 

cells were observed. However, from 312h, the cells appear healthy. The concentrations 0.05μg/mL 

(orange), 0.06μg/mL (aqua) and 0.08μg/mL (pink) appear healthy until 72-96h when debris, dead cells 

and small cells become apparent, especially in the greater concentrations. At 0.05μg/mL and 

0.06μg/mL, the cells deteriorate with further debris, dead cells and small cells and the addition of 

multi-nuclei and spindly cells, until they eventually fully recover and begin to proliferate normally from 

336h and 384h, respectively. Only unhealthy cells were observed at the 0.08μg/mL from 72h with 

similar phenotypes to that described for the immediately lower concentrations only more exaggerated. 

The number of cells dramatically decreases until 312h, where later, only one adherent cell can be 

observed in each field of view. The cells exposed to greater extreme concentrations of 0.1μg/mL (light 

green), 0.2μg/mL (light purple) and 0.3μg/mL (light blue) appear healthy for 24h, before debris is clear 

at 48h and from here on, cells become increasingly unhealthy and more scarce until no cells were 

visible and only thick black debris was seen. 
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Figure 3.S4. Relative Gene Expression Levels of PDE4D3-PDE4D9 in BicR16 

Cells Subsequent to Transient KD. Cells were transfected and the relative 

expression of seven PDE4Ds were assessed using qPCR and using β-actin as the 

reference gene. The wild type indicates the non-transfected cells, the vector only 

signifies the pure vector containing no shRNA within the plasmid, the scrambled 

denotes the non-target shRNA (NT) and the following four samples designate the 

KD samples of 065, 067, 834 and 837. The PDE4D isoforms are colour coded and 

referenced in the key on the right of the chart. The error bars show the SD of values 

from triplicate. 
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Figure 3.S5. Scratch Assay of Parent, Pure Controls and KD Cells over 12 

Days. The same cell lines used in the previous phenotypic assays were assessed 

using a scratch assay by growing to 95-100% confluency, removing half of the cells 

at a specified line and allowed to migrate for 12 days and taking pictures on a daily 

basis. The figure is a summary showing pictures of the cells every four days for the 

WT, pure polys/monoclones and KD polys/monos. 
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Chapter 4: 

 

Kinetic model of cellular metabolism and 

the affects of Hypoxia Inducible Factor 1 

(HIF-1) 

 

 

 

 

Subsequent to a substantial amount of work, the following chapter is to be 

submitted as a peer reviewed paper before the end of 2012.  

 

 

Royston Goodacre, Nalin Thakker and Pedro Mendes contributed through 

continuous advice and support throughout the project. 
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4.1 Abstract 

Central metabolism is profoundly associated with cancer initiation and 

progression. This is inpart due to the hypoxic environment in which cancer 

cells are subjected to as a direct result of the transcription factor hypoxia 

inducible factor-1 (HIF-1). To aid in the understanding of central metabolism, 

a model consisting of glycolysis/TCA/glutaminolysis under normoxic and 

hypoxic conditions was produced; partially through the amalgamation of two 

established models from the literature, the addition of new reactions and 

parameters and new metabolite concentrations originating from GC-MS 

data. COPASI was utilised to do this. The model was validated using 

experimental data from the literature and steady state and flux analyses. 

Subsequently, sensitivity analysis and a reduction in external glucose and 

glutamine were mimicked and the alterations in hypoxic and normoxic 

metabolism analysed. Variations in the states’ behaviour were observed 

when glucose and glutamine inputs were altered. Furthermore, vCSII, vGS, 

vPGK and vGII were identified as potential therapeutic targets which may 

affect metabolism in hypoxia only. However, certain validation methods 

proved unsuccessful and hence the model requires further work before 

attempting the analyses again. 

4.2 Introduction 

It is now widely accepted that cellular metabolism is heavily involved 

in the initiation and progression of many cancers. One contributing feature is 

the transcription factor Hypoxia Inducible Factor - 1 (HIF-1) which is known 

to regulate a host of genes involved with central metabolism in an attempt to 

alleviate pressure brought about through a hypoxic environment (Bartrons & 

Caro, 2007). Many cancers, particular the centre of large tumorous growths, 

experience a significant lack of oxygen due to the inability of the vascular 

system in delivering an adequate supply of nutrients. In effect, this increase 

in HIF-1 causes a metabolic switch from oxidative phosphorylation, the 

regular mode of synthesising energy, to glycolysis. This metabolic shift is 

also known as the Warburg effect (Warburg, 1930; 1956; 1965; Warburg et 

al., 1924 and Warburg et al., 1927) and a paradoxical situation arises, in 



 

173 

 

terms of energy production. Oxidative phosphorylation is a much more 

efficient means of producing energy compared to glycolysis, producing ~30 

and two ATP molecules per glucose molecule, respectively. Therefore, since 

cancer cells rapidly grow and proliferate in comparison to their healthy 

counterpart, they need to consume greater quantities of energy. 

The HIF-1 transcription factor is comprised of two subunits; a beta 

subunit which is constituently expressed and an alpha subunit which is 

heavily regulated through local oxygen concentrations (Minchenko et al., 

2002). Under normoxic conditions HIF-1α is hydroxylated by an enzyme 

called prolyl hydroxylase (PHD) (Ke and Costa, 2006) which results in poly-

ubiquitination of the molecule by the pVHL (von Hippel-Lindau gene product) 

and subsequent degradation by the 26S proteasome. Conversely, under 

hypoxic conditions, the PHD is inhibited due to the lack of oxygen and so the 

cascade of events is prevented and HIF-1α concentrations elevate. 

Due to the complexity of the hypoxic system within eukaryotic cells, 

the construction of a mathematical model would be valuable in an attempt to 

further understand metabolic behaviour under the varying states of normoxia 

and hypoxia. Such models potentially have the ability to elucidate 

therapeutic targets in cancer treatment, highlight potential biomarkers and 

provide more general information such as quantifying the rate limitation and 

sensitivity of the model. Hornberg and co-workers (2006) provide a useful 

review on kinetic models of cancer whilst highlighting the important aspects 

of utilising systems biology for investigating such a complex disease. 

Nevertheless, the production of mathematical models is a challenging 

prospect due to the immense quantity and interaction of genes, RNA, 

proteins and molecules, particularly in higher organisms such as Homo 

sapiens. Utilising simpler organisms such as Saccharomyces cerevisiae 

(brewing yeast) is a common occurrence to reduce model complexity; 

however, the behaviour of such models does not always directly correlate 

with those from higher organisms. Cancer is by definition a multi-cellular 

disorder which creates further complexity, thus to model the system 

accurately, interaction between cells must be accounted for in conjunction 

with natural cellular processes such as apoptosis. Hence, a delicate balance 

is needed between complexity and realism.  
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The production of complex mathematical models is made possible 

through the development of high-throughput experimental instrumentation 

such as microarray and gas chromatography-mass spectrometry (GC-

MS)/liquid chromatography-mass spectrometry (GC-MS) procedures which 

may also be subsequently used to verify the models’ predictions.  

Consequently, a mathematical model was produced using COPASI 

(COmplex PAthway SImulator) to elucidate variations between hypoxic and 

normoxic behaviour in eukaryotic cells. The model was constructed through 

the amalgamation of two published models; a glycogenolysis model 

(Lambeth & Kushmerick, 2002) and a TCA and energy regulation model 

(Nazaret et al., 2009), with the addition of glutaminolysis reactions. It is 

noteworthy that this task is not trivial and considerations are necessary, such 

as which reactions/metabolites should be removed/added, which linking 

reactions should be used to connect to two models and assumptions which 

are necessary for the amalgamated model. The aims of the model are to 

elucidate variations between the hypoxic and normoxic states through 

varying the carbon sources glucose and glutamine and assessing the 

sensitivity of the model to determine potential therapeutic targets. 

4.3 Materials & Methods  

4.3.1 Constructing the model. The model was constructed in 

COPASI 4.8.35 (download for free at www.COPASI.org) though the 

combination of two published models, namely, a model of glycogenolysis by 

Lambeth & Kushmerick (2002) and a TCA and energy regulation model from 

Nazaret and co-workers (2009). A number of reactions and metabolites were 

eradicated including glycogen and glucose-1-phosphate and their associated 

reactions as they were redundant in this model. A number of metabolites 

and reactions were added, most notably the reactions for glutaminolysis as 

an input into the TCA cycle, which is known to be utilised in cancer cell 

metabolism (Scott et al., 2011). Figure 4.1 exhibits a schematic of the model 

that was generated beginning with the glucose input into glycolysis on the 

left through to lactate or alternatively, from pyruvate, which may enter the 

TCA cycle in the mitochondria through to citrate or oxaloacetic acid (OAA). 
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As discussed previously, there is also an input into the TCA cycle from 

glutaminolysis on the right of the model using alpha-ketoglutaric acid (α-KG) 

as an entry point. The TCA cycle has been simplified, comprising of just 

three components (citrate, OAA and α-KG). The energetic 

production/degradation and transport to/from the cytoplasm into the 

mitochondria of the cell are scattered amongst the schematic. 
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Figure 20 Schematic of the mathematical model comprising of glycolysis, the TCA 

cycle, glutaminolysis and cell energetics. The black labels indicate the metabolites of the 

system, the arrows denote the reaction and their associated direction, the red labels highlight 

the enzymes involved in the specific reactions and the yellow boxes specify the metabolites 

which are of a fixed concentration as they are end points of reactions. Tables of metabolites 

and initial concentrations (Table 4.1), reactions (Table 4.2) and parameters (Table 4.3) are 

shown below. 
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Table 4.1 Metabolites and initial concentrations 

 

Metabolite Compartment Type 

Initial  

Concentration 

(mmol/l) Origin 

Alpha-ketoglutarate (a-KG) Mitochondria Reactions 0.225 Nazaret et al. (2009) 

Acetyl-CoA Mitochondria Reactions 0.063 Nazaret et al. (2009) 

Adenosine diphosphate (ADP) Mitochondria Assignment 0.624 Nazaret et al. (2009) 

Adenosine monophosphate (AMP) Cytoplasm Reactions 2.00x10-5 Lambeth & Kushmerick (2002) 

Adenosine triphosphate (ATP) Mitochondria Reactions 3.536 Nazaret et al. (2009) 

Citrate Mitochondria Reactions 0.44 Nazaret et al. (2009) 

Creatine (Cr) Cytoplasm Reactions 5.333 Lambeth & Kushmerick (2002) 

Dihydroxyacetone phosphate (DHAP) Cytoplasm Reactions 0.0764 Lambeth & Kushmerick (2002) 

Diphosphoglycerate (DPG) Cytoplasm Reactions 0.065 Lambeth & Kushmerick (2002) 

External Glucose (eGlc) Extracellular Fixed 1  Lambeth & Kushmerick (2002) 

Fructose-6-phosphate (F6P) Cytoplasm Reactions 0.228 Lambeth & Kushmerick (2002) 
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Fructose diphosphate (FDP) Cytoplasm Reactions 0.0723 Lambeth & Kushmerick (2002) 

Glucose-6-Phosphate (G6P) Cytoplasm Reactions 0.75 Lambeth & Kushmerick (2002) 

Glyceraldehyde Phosphate (GAP) Cytoplasm Reactions 0.0355 Lambeth & Kushmerick (2002) 

Glutamate Cytoplasm Reactions 0.1 Lambeth & Kushmerick (2002) 

Glutamine Cytoplasm Fixed 0.025001 Parameter Estimation 

H+ Cytoplasm Fixed 1 Nazaret et al. (2009) 

H+ Mitochondria Fixed 1 Nazaret et al., (2009) 

H2O Mitochondria Fixed 1 Nazaret et al., (2009) 

Internal Glucose (iGlc) Cytoplasm Reactions 1 Lambeth & Kushmerick (2002) 

Internal Lactate (iLac) Cytoplasm Reactions 1.3 Lambeth & Kushmerick (2002) 

NAD(+) Mitochondria Reactions 0.856 Nazaret et al. (2009) 

NADH Mitochondria Assignment 0.214 Nazaret et al., 2009 

O2 Mitochondria Fixed 0.39 Nazaret et al., 2009  
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Oxalacetic acid (OAA) Mitochondria Reactions 0.005 Nazaret et al., 2009 

2-phospho-glycerate (P2G) Cytoplasm Reactions 0.005 Lambeth & Kushmerick, 2002 

3-phospho-glycerate (P3G) Cytoplasm Reactions 0.052 Lambeth & Kushmerick, 2002 

Phosphocreatine (PCr) Cytoplasm Reactions 34.67 Lambeth & Kushmerick, 2002 

Phosphoenolpyruvic acid (PEP) Cytoplasm Reactions 0.01 Lambeth & Kushmerick, 2002 

Phosphate (Pi) Mitochondria Fixed 2.44 Nazaret et al., 2009 

Pyruvate Mitochondria Reactions 0.154 Nazaret et al., 2009 
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Table 4.2 Model Reactions 

 

 

Name Reaction Rate Law 

vPDH Pyruvate + NAD(+) -> acetyl-CoA + NADH Mass action (irreversible) 

vCS OAA + acetyl-CoA -> Citrate Mass action (irreversible) 

vACO  Citrate + NAD(+) -> a-KG + NADH Mass action (irreversible) 

v2OD a-KG + ADP + 2 * NAD(+) -> OAA + ATP + 2 * NADH function_4_v5 

vCSII OAA = a-KG function_4_v6 

vPDHII Pyruvate + ATP -> OAA + ADP Mass action (irreversible) 

vOAA_deg OAA ->  Mass action (irreversible) 

vresp NADH + 0.5 * O2 + 11 * H+{Mitochondria} -> NAD(+) + H2O + 10 * H+{Cytoplasm} function_4_vresp 

vATP ADP + Pi + 3 * H+{Cytoplasm} = ATP + H2O + 3 * H+{Mitochondria} function_4_vATP 

vleak H+{Cytoplasm} -> H+{Mitochondria} function_4_vleak 
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vPGI G6P = F6P Rate Law for vPGI 

vPFK ATP + F6P = ADP + FDP; AMP Rate Law for vPFK 

vALD FDP = DHAP + GAP Rate Law for vALD 

vTPI GAP = DHAP Rate Law for vTPI 

vGAPDH Pi + GAP + NAD(+) = NADH + DPG Rate Law for vGAPDH 

vPGK ADP + DPG = ATP + P3G Rate Law for vPGK 

vPGM P3G = P2G Rate Law for vPGM 

vEN P2G = PEP Rate Law for vEN 

vPK ADP + PEP = ATP + Pyruvate Rate Law for vPK 

vLDH NADH + Pyruvate = iLac + NAD(+) Rate Law for vLDH 

vCK ATP + Cr = ADP + PCr Rate Law for vCK 

vADK ATP + AMP = 2 * ADP Rate Law for vADK 

vATPase ATP = ADP + Pi Rate Law for vATPase 
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vFOUT  iLac = eLac  Rate Law for vFOUT  

vHK Pi + iGlc = G6P Rate Law for vHK 

vGLUT eGlc = iGlc Rate Law for vGLUT 

vGII Glutamate = a-KG Rate Law for vGII 

vGS Glutamate = Glutamine Rate Law for vGS  
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Table 4.3 Parameter Values of the Model 
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4.3.2 Rate laws of the model. The vast majority of the rate laws 

incorporated into the model were acquired from Nazaret et al. (2009) or 

Lambeth & Kushmerick (2002). vGLUT and vHK originate from Teusink 

(2000) (please refer to papers for details). Additional rate laws for vGS and 

vGII were composed and are shown in the supplementary information. 

Parameters for these were found in the literature or estimated as described 

below. 

4.3.3 Model assumptions. When constructing a model, it is vital to 

assess the assumptions which have been made. Since no model is perfect, 

all models possess assumptions; in the case of this model they have been 

segregated into two categories; inherited assumptions from the Nazaret or 

Lambeth models and additional assumptions. 

 There are three considerations in terms of the inherited assumptions. 

Firstly, the model has been simplified and hence there are numerous 

reversible reactions which are represented as irreversible reactions. In 

addition, there are also mass action kinetics which implies simple rate laws, 

however, steady state is still obtainable (Nazaret et al., 2009). Secondly, 

there are many activators and inhibitors absent from the model, again in an 

attempt to retain the models simplicity (Lambeth and Kushmerick, 2002). 

Finally, cationic bound species are generalised to have the same affinities 

for the enzyme and therefore is assumed to have constant pH, Mg2+ 

concentration etc (Lambeth and Kushmerick, 2002). 

 Furthermore, there are two additional assumptions which are specific 

to this fused model. Although all parameters originated from human 

samples, they are not derived from the same tissue types and so it is 

assumed that these parameters are universal across varying tissues. Also, 

HIF-1 regulation of genes, mRNA and proteins is an elaborate process and 

hence, this has been simplified with the aim of maintaining accuracy of the 

mathematical model and its predictability precision. 

4.3.4 Parameter estimation. The parameter estimation function in 

COPASI was used to estimate the values of nine unknown parameters 

(Table 4.4). Condor-COPASI was adopted to take advantage of high 

throughput computing (Kent et al., 2012). All algorithms available in COPASI 

were each tested five times and the best values obtained were compared 
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using the sum of squares (objective function value) to establish which 

algorithm was most successful in terms of this model.  Parameters were 

estimated by fitting to steady state concentrations of the model which are 

exhibited in Table 4.4. Boundaries were set: 0 ≤ parameter value ≤ infinity 

with a start value of 10 for each parameter. 

 

Table 4.4 Parameters and values used in the parameter estimation function. 

The table on the left depicts the unknown parameters which are to be estimated, 

where the code within the brackets indicates the reaction from which the parameter 

originates and the subsequent code denotes the specific parameter. These are 

parameters belonging to the rate laws, except the final parameter which signifies 

the initial concentration for glutamine. The tables on the right indicate steady state 

values which are used in the algorithm for fitting the unknown parameters. 

Parameter 

 

Parameter Value 

 

Parameter Value 

(vGII).KmGIIaKG 

 

a-KG 0.225 

 

H+ 1 

(vGII).KmGIIGlutamate 

 

acetyl-CoA 0.063 

 

H+ 1 

(vGII).KeqGII 

 

ADP 0.624 

 

H2O 1 

(vGII).VmGII 

 

ATP 3.536 

 

iGlc 1 

(vGS).KeqVS 

 

Citrate 0.44 

 

iLac 1.3 

(vGS).KmVSGlutamate 

 

DHAP 0.07 

 

NAD(+) 0.856 

(vGS).KmVSGlutamine 

 

DPG 0.065 

 

NADH 0.214 

(vGS).VmVS 

 

eGlc 1 

 

O2 0.39 

[Glutaine]_0 

 

F6P 0.2 

 

OAA 0.005 

  

FDP 0.07 

 

P2G 0.005 

  

G6P 0.75 

 

P3G 0.05 

  

GAP 0.03 

 

PEP 0.01 

  

Glutamate 0.1 

 

Pi 2.44 

  

Glutamine 0.025001 

 

Pyruvate 0.154 

 

4.3.5 Model optimisation. Once the parameters had been estimated, 

the next stage was to optimise the model using the same set of steady state 

parameters as shown in Table 4.4 and altering all Vmax and unknown Km 



 

186 

 

values. As with the parameter estimation, Condor-COPASI was utilised and 

all algorithms were repeated five times, again the most efficient determined 

through the sum of squares values. Adjacent to this, a further parameter 

estimation was undertaken, but rather than using the initial parameter 

values, random start values were assigned for the parameters. This aids in 

determining if there is more than one steady state for the model.  

4.3.6 Production of the hypoxic state. The model produced thus far 

represents cell metabolism under a normoxic state. This model was saved 

and then modified to represent a hypoxic state which was achieved through 

the use of GC-MS experimental data (Wilcock et al., 2012). The hypoxic 

model was optimised as described above, by fitting the Vmax’s and unknown 

Km’s to new steady state concentrations which are displayed in Table 4.5. As 

this GC-MS data is semi-quantitative, the initial concentrations from the 

normoxic state were proportionally increased/decreased as calculated from 

the normoxic and hypoxic experimental data. 

 

Table 26 Steady state concentrations used to create a hypoxic state in the 

model. Highlighted in the table are the metabolites (labelled on the left) of which 

the steady state concentrations were modified from the normoxic levels (middle 

column) to the hypoxic levels (right column). 

 

  Steady State  Steady State  

Metabolite Concentration Normoxia Concentration Hypoxia 

Citrate 0.44 0.62742 

F6P 0.2 0.13717 

G6P 0.75 1.49725 

Internal Glucose 1 1.48009 

Glutamine 0.025001 0.01834 

Lactate 1.3 0.90271 

Phosphate 2.44 2.12728 

Pyruvate 0.154 0.18415 
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4.3.7 Model validation using initial concentrations vs. steady 

state concentrations and comparing Vmax values. The aim of the 

optimisation of the model is to attain steady state values which are the 

same, or as close as possible, to the initial concentrations for each of the 

metabolites for both the normoxic and hypoxic modes. In addition, two 

optimisations were adopted for each mode, one using a predetermined Vmax 

value and the second using random start values for each Vmax parameter 

within each reaction. These Vmax values were then compared which is 

indicative of the model having more than a sole solution if varying Vmax’s are 

observed. 

4.3.8 Model validation though flux and steady state analyses and 

comparison of experimental data and data from the literature. First, the 

model was validated through a comparison of the steady state 

concentrations and fluxes under the normoxic and hypoxic states. If the 

model was to mimic the hypoxic response accurately, the steady state 

concentrations and fluxes would be greater though glycolysis in the hypoxic 

condition in comparison to the normoxic state as a result of the transcription 

factor HIF-1. In addition, alterations may also be observed in terms of the 

TCA cycle and energy regulation between the states. The steady state 

concentrations and fluxes were acquired through the steady state function in 

COPASI using the initial conditions as described previously. 

To validate the model further, experimental data were obtained from 

the literature and compared to the model following a perturbation according 

to Lu et al., (2008). In this study the authors induced PDK-3 expression in 

HeLa cells. PDK inhibits PDH which was found to increase lactic acid 

production, particularly under hypoxic conditions. Therefore, PDH activity 

was reduced in the normoxic and hypoxic models; 0% (wild-type), 25%, 

50%, 75%, 90% and 100% by the relative reduction of the k1 parameter of 

the vPDH reaction. The production of lactic acid was assessed through the 

flux of vLDH. 

Wigfield and co-workers (2008) reduced the expression of PDK in an 

HNSCC cell line, which in turn increases the expression of PDH. This 

resulted in a decrease in pyruvate production was observed under hypoxic 

conditions. To imitate this behaviour, the PDH activity was increased to 
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100% (wild-type), 250%, 500%, 750%, 900% and 1000% through the 

relative increase in the k1 parameter of the vPDH reaction. Pyruvate 

production was then assessed by the flux through the vPK reaction, 

LDH-A deficient adenocarcinoma cell lines were produced by Seth et 

al. (2011) and subsequent assessment for lactate and ATP production. This 

enzyme is responsible for the interconversion of pyruvate to lactate. The 

authors found a decrease in lactic acid production when LDH-A was 

reduced. This was imitated in the model through the reduction of LDH 

activity in both model states by; 0% (wild-type), 25%, 50%, 75%, 90% and 

100% through the relative reduction of the Vfldh_12 parameter of the vLDH 

reaction. The production of lactic acid was assessed as described above. 

The same authors also assessed ATP production of the cells 

following LDH activity reduction. Under hypoxic conditions, ATP 

concentrations were reduced whereas under normoxic conditions there was 

found to be no change. This was modelled as described above and ATP 

concentrations were assessed at steady state concentrations. 

4.3.9 Fluctuation of external glucose, glutamine and sensitivity 

analysis. Once the models were created, optimised and validated they were 

compared to assess any variations between the hypoxic and normoxic 

states. First, external glucose (eGlc) was altered to 0, 0.1, 0.5, 1 (original 

concentration), 10, 100 and 1000mmol/l. As eGlc is a fixed metabolite, the 

initial concentration was altered in COPASI which does not change over 

time. The concentration of all metabolites were analysed over the change in 

eGlc and the normoxic and hypoxic conditions compared. Line plots were 

plotted for metabolites comparing the two states. 

A similar independent experiment was undertaken altering the 

concentration of glutamine (also fixed). Concentrations used were 0, 0.01, 

0.025001 (original concentration), 0.1, 1, 10 and 100mmol/l and the data 

analysed as described above. 

A sensitivity analysis was performed using the sensitivity analysis 

task in COPASI. The sensitivities were based on steady state concentrations 

for all parameters in the model. The most significant parameters for the 

hypoxic and normoxic models were plotted on a bar chart highlighting the 



 

189 

 

sensitivity. In addition, the steady state concentrations which are altered by 

the alterations in the parameters were also analysed but are not shown. 

4.4 Results and Discussion 

4.4.1 Time course of the models post optimisation. Figures 4.2A 

and 4.2C exhibit the behaviour of the metabolites over the initial 100s for 

normoxia and hypoxia, respectively. These plots are generally homogenous 

between the normoxic and hypoxic models as only large variations in 

concentration are observed due to the scaling. For example, ATP (turquoise) 

reaches steady state quickly with only small variations in behaviour between 

the two models. However, variations in metabolite behaviour were apparent 

in glutamate (light purple) and α-KG (green). There is a rapid decrease in 

glutamate from ~73mmol/l to 2x10-2mmol/l which takes the normoxic and 

hypoxic models 1s and 3s, respectively. This implies that the glutamine is 

been heavily used as a carbon source in both models to initiate metabolism. 

In the normoxia model, α-KG fluctuates in concentration between 0.23mmol/l 

to 0.53mmol/l over the 100s whereas in the hypoxia model, there is an initial, 

rapid increase from 0.23mmol/l to 12.58mmol/l after 3s, followed by a 

decrease to 1.74mmol/l after 100s. 

 Since the 100s plots display limited information due to the scaling, the 

behaviour of those metabolites in lower concentration were plotted over 0.3s 

for normoxia and hypoxia (Figures 4.2B and 4.2D, respectively). This 

highlighted the distinct behaviour of the two models. The rapid decrease in 

glutamate (light purple) is observable in the normoxic model but not in the 

hypoxic model. NAD(+) (purple) increases in the normoxic model from 

0.86mmol/l to 1.04mmol/l whereas the hypoxic model shows an initial 

increase and subsequent decrease to 0.63mmol/l after 0.3s. Similar 

behaviour was also observed in P3G (pale pink). ADP rapidly decreased 20-

fold during normoxia in 0.003s whilst in the hypoxic model, decreased 

gradually to ~20% over 0.282s. During normoxia, α-KG (green) remained 

stable at approximately 0.23mmol/l whereas there was a rapid increase 

during hypoxia to 2.22 after 0.3s and still increasing. Pyruvate (light blue) 

and NADH (medium blue) both decreased ~10-fold in the normoxia model 
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and increased ~3-fold in the hypoxia model. Conversely, numerous 

metabolites behaved homogenously between the models including internal 

glucose (iGlc) (green), G6P (orange), F6P (purple), citrate (dark orange) and 

acetyl CoA (dark blue). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 21 Time course of the models. Metabolite concentrations for the normoxic 

and hypoxic models where time is measured in seconds, the concentration is in 

mmol/l and the legend on the right of each plot highlights the metabolite 

identifications. The behaviour was assessed over the initial 100s for normoxia (A) and 

hypoxia (C). In addition, the scaling of the plots was altered to highlight the behaviour 

over the initial 0.3s for normoxia (B) and hypoxia (D). 
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4.4.2 Optimisation – regular start values vs. random start values. 

Optimisation was completed by altering all Vmax’s and unknown Km’s for 

normoxia and hypoxia (Table 4.6). Ten repeats were used in total for each 

model, five using the regular start values from the model and five using 

random start values. The best model was then chosen using the sum of 

least squares and the new parameters from the random start and regular 

start values were compared. The normoxia and hypoxia models resulted in 

9/20 (45%) and 9/20 (45%) of the parameters within the same order of 

magnitude, respectively. This indicates that the model has more than one 

solution and requires further/more accurate parameters from the literature 

(which are unavailable). If there was only a sole solution, all of the 

parameters from the random and regular start values would be identical. 
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Table 4.6i Comparison of parameter estimation values from regular start 

values and random start values for the normoxic and hypoxic models. The 20 

parameters used in optimising the models are shown on the left, where the reaction 

is displayed in the brackets and the subsequent parameter for that reaction 

thereafter. 

 

Normoxia Hypoxia 

  

Parameter 

Value (mmol) 

Parameter 

Value (mmol) 

Parameter 

Value (mmol) 

Parameter 

Value (mmol) 

Parameter Estimated 

(Regular Start 

Values) 

(Random Start 

Values) 

(Regular Start 

Values) 

(Random Start 

Values) 

(vGS).VmVS 4114.87 0.00 9.65 10994.80 

(vGII).VmGII 7.01x10
-5

 11089.00 0.86 0.00 

(vGLUT).VmGLT 45596.00 670.83 18580.50 100000.00 

(vHK).VmGLK 0.46 0.47 0.072 0.07 

(vADK).Vfadk_14 924.37 15885.80 20147.30 3101.89 

(vCK).VrevCK_13 4953.23 25677.00 0.15 0.17 

(vLDH).Vfldh_12 12.69 12.59 1.00E-06 1.00E-06 

(vPK).Vfpk_11 10197.20 12583.30 172.97 155.47 

(vEN).Vfen_10 18317.20 97492.40 2005.66 196.45 

(vPGM).Vfpgm_9 5.42 4.85 65881.30 35062.60 

(vPGK).Vbpgk_8 31.72 1.56 1.53 0.05 

(vGAPDH).Vfgad_7 169.74 73417.30 6.75 825.23 

(vTPI).Vftpi_6 13.24 26306.40 27.68 2361.88 

(vALD).Vfald_5 53999.50 99534.00 5160.33 7358.12 

(vPFK).Vfpfk_4 12.20 13.45 2.74 2.82 

(vPGI).Vbpgi_3 0.84 0.47 0.023 0.02 

(vGII).KmGIIaKG 324.90 999.89 9.20 1000.00 

(vGII).KmGIIGlutamate 10.12 493.16 2.57 1.45 

(vGS).KmVSGlutamate 34.58 974.95 0.048 356.87 

(vGS).KmVSGlutamine 81.71 933.89 25.27 7.23 

 

4.4.3 Comparison of initial concentrations and steady state 

concentrations. The optimisation’s aim is to attain steady state 

concentrations as close as possible to the initial concentrations by changing 

the parameters shown in Table 4.6 (Table 4.7). The number of metabolites 

showing initial and steady state concentrations in the same order of 

magnitude (or metabolites which are within close proximity e.g. iGlc for 

normoxia) were 13/23 (57%) (normoxia) and 11/23 (48%) (hypoxia).  
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Table ii Modelling of initial and steady state concentrations of metabolites. 

Initial and steady state concentrations were compared for 31 metabolites. Those 

highlighted in yellow depict fixed metabolites. 

 

Normoxia Hypoxia 

  Initial  Steady State Initial  Steady State 

  Concentration Concentration Concentration Concentration 

Species  (mmol/l)  (mmol/l)  (mmol/l)  (mmol/l) 

acetyl-CoA 0.06 0.06 0.06 0.017 

ADP 0.62 2.78E-03 0.62 0.81 

a-KG 0.23 0.28 0.23 0.71 

AMP 2.00E-05 8.39E-07 2.00E-05 0.09 

ATP 3.54 4.16 3.54 3.35 

Citrate 0.44 0.04 0.63 0.45 

Cr 5.33 5.38 5.33 39.30 

DHAP 0.07 0.07 0.07 0.00 

DPG 0.07 1.64E-03 0.07 1.89E-06 

eGlc 1.00 1.00 1.00 1.00 

F6P 0.20 0.22 0.14 0.12 

FDP 0.07 0.07 0.07 8.36E-05 

G6P 0.75 0.66 1.50 1.14 

GAP 0.03 1.14E-04 0.03 1.72E-05 

Glutamate 73.17 0.02 73.17 0.02 

Glutamine 0.25 0.25 0.18 0.18 

H+{Cytoplasm} 1.00 1.00 1.00 1.00 

H+{Mitochondria} 1.00 1.00 1.00 1.00 

H2O 1.00 1.00 1.00 1.00 

iGlc 1.00 1.00 1.48 1.00 

iLac 1.30 1.30 0.90 0.90 

NAD(+) 0.86 1.05 0.86 0.40 

NADH 0.21 0.02 0.21 0.67 

O2 0.39 0.39 0.39 0.39 

OAA 5.0E-03 6.66E-04 5.0E-03 0.01 

P2G 5.0E-03 6.34E-03 5.0E-03 1.29E-04 

P3G 0.05 0.05 0.05 8.0E-04 

PCr 34.67 34.62 34.67 0.70 

PEP 0.01 0.00 0.01 6.32E-05 

Pi 2.44 2.44 2.13 2.13 

Pyruvate 0.15 0.01 0.18 0.16 
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 With supplementary experimental data and further model tweaking 

through optimisation and validation, these figures could be improved. In 

addition, due to the construction of this hypoxic model, it could be enhanced 

through the acquirement of more experimental variations between the 

normoxic and hypoxic states. 

 Table 4.7 also provides details of how the modelled conditions vary 

prior to perturbation. In terms of energy regulation, steady state ADP 

concentrations increased ~300 fold and AMP increased from 8.40x10-

7mmol/l to 2.00x10-5mmol/l under hypoxia. ATP levels reduced 

approximately 20% which may partially account for the increase in the 

adenosine mono- and di- phosphates. This is logical since the switch from 

oxidative phosphorylation to glycolysis under hypoxia is a less efficient 

method of producing ATP (Lunt and Vander Heiden, 2011). There is also an 

increase in NADH and an associated decrease in NAD(+). This is a result of 

an increase in flux through the TCA cycle under hypoxic conditions in the 

model. This is supported with an increase in metabolite concentrations and 

flux associated with the TCA cycle/glutaminolysis where citrate, α-KG and 

OAA were elevated in concentration by 10 fold, 3.5 fold and 15 fold, 

respectively.  

 The model did not behave as expected in terms of glycolysis with 

reduced concentrations (except G6P) and fluxes under hypoxia. These were 

expected to increase during hypoxia from the upregulation from HIF-1 

(Frezza & Gottlieb, 2009). However, this evidence relates to hypoxia in 

oncology and this model was produced using non-cancerous cell line 

metabolic data. Scott and co-workers (2011) showed that hypoxic effects are 

much more prominent in cancer cells which is one plausible explanation as 

to the unexpected behaviour of the model.  

4.4.4 Model Validation. Numerous methods were used to validate 

the model. Firstly, partial validation was attempted through the evaluation of 

flux through both the models. As discussed previously, it is expected that 

HIF-1 would cause an increase in flux through glycolysis (Frezza & Gottlieb, 

2009). However, the hypoxic model actually reduced the flux through 

glycolysis as displayed in Table 4.8. 
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There is a consistent 88% reduction in flux between normoxia and 

hypoxia throughout glycolysis. During the early stages of the pathway 

(vGLUT, vALD, vHK, vPFK and vPGI) there is a constant flux in normoxia 

(0.252mmol/s) and hypoxia (0.030mmol/s). This flux doubles (in both states) 

after the vALD reaction and remains constant once more in the latter stages 

of glycolysis (vPGK, vPGM, vPK, vEN, and vGAPDH), obviously maintaining 

the 88% variation between the conditions.  

This suggests that the model is not mimicking hypoxic behaviour and 

further work is necessary. For example, the reduction in glucose uptake by 

GLUT (vGLUT) is inaccurate. The expression of GLUT is usually increased 

through HIF-1 causing an upregulation of glucose uptake under hypoxia 

(Bartrons & Caro, 2007). In addition, vHK flux is decreased when this has 

also been found to be increased under hypoxia (Frezza & Gottlieb, 2009). 

Hence, the model is not reflecting the behaviour of genuine hypoxia. 

In relation, lactate production should also be increased during hypoxia 

(Valenza et al., 2005); however, there is actually a reduction in flux to lactate 

production from 0.245 to 2.99x10-5mmol/s. The GC-MS data on which the 

hypoxic model is based displayed this behaviour and this is the reason for 

this reduction in lactate production. 

The anaplerotic input of glutamine into the TCA (vGII) increases in 

hypoxia with an associated 23% reduction in concentration and increased 

flux from 1.34x10-7 to 1.52x10-2mmol/s. Such behaviour has been observed 

not only in cancer cells, but also to a lesser degree in their healthy 

counterparts (Scott et al., 2011). There is also a 4-fold increase in flux from 

pyruvate into the TCA cycle to acetyl-CoA (vPDH) further supporting this 

process. However, this is not usually observed under hypoxia due to the 

HIF-1 stimulation of pyruvate dehydrogenase kinase (PDK) which reduces 

the flux between glycolysis and the TCA (Kim et al,. 2006). Pyruvate also 

has an entry point into the TCA cycle via vPDHII where there is ~10 fold 

increase in flux.  
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Table 4.8. Comparison of normoxic and hypoxic fluxes. Fluxes of the models 

were compared for 27 reactions from glycolysis, TCA cycle, glutaminolysis and 

energy regulation. Those highlighted in yellow are associated with increased flux 

through hypoxia. 

    Flux (mmol/s) Flux (mmol/s) 
Reaction 

ID Reaction Normoxia Hypoxia 

v2OD a-KG + ADP + 2 * NAD(+) -> OAA + ATP + 2 * NADH 7.140x10
-5

 0.019 

vACO Citrate + NAD(+) -> a-KG + NADH 0.002 0.009 

vADK ATP + AMP = 2 * ADP -1.380x10
-16

 3.790x10
-17

 

vALD FDP = DHAP + GAP 0.126 0.015 

vATP ADP + Pi + 3 * H+{Cyto} = ATP + H2O + 3 * H+{Mito} -0.064 0.207 

vATPase ATP = ADP + Pi 0.312 0.251 

vCK ATP + Cr = ADP + PCr -1.070x10
-10

 5.410x10
-13

 

vCS OAA + acetyl-CoA -> Citrate 0.002 0.009 

vCSII OAA = a-KG -0.002 -0.006 

vEN P2G = PEP 0.252 0.030 

vGAPDH Pi + GAP + NAD(+) = NADH + DPG 0.252 0.030 

vGII Glutamate = a-KG 1.340x10
-7

 0.015 

vGLUT eGlc = iGlc 0.126 0.015 

vGS Glutamate = Glutamine -1.340x10
-7

 -0.015 

vHK Pi + iGlc = G6P 0.126 0.015 

vLDH NADH + Pyruvate = iLac + NAD(+) 0.24 2.990x10
-05

 

vleak H+{Cytoplasm} -> H+{Mitochondria} 0.064 0.072 

vOAA_de
g OAA ->  0.002 0.036 

vPDH Pyruvate + NAD(+) -> acetyl-CoA + NADH 0.002 0.009 

vPDHII Pyruvate + ATP -> OAA + ADP 0.002 0.020 

vPFK ATP + F6P = ADP + FDP; AMP 0.126 0.015 

vPGI G6P = F6P 0.126 0.015 

vPGK ADP + DPG = ATP + P3G 0.252 0.030 

vPGM P3G = P2G 0.252 0.030 

vPK ADP + PEP = ATP + Pyruvate 0.252 0.0303 

vresp 
NADH + 0.5 * O2 + 11 * H+{Mito} -> NAD(+) + H2O + 
10 * H+{Cyto} 0.009 0.087 

vTPI GAP = DHAP -0.126 -0.015 

 

In addition to the general assessment of metabolite concentrations 

and reaction fluxes, literature were used to validate the behaviour of the 

model. Studies of changes in PDK (which de-activates PDH) and LDH-A 

expression were impersonated using the models and the behaviour 

assessed. 
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 Induced PDK-3 expression in HeLa cells was performed by Lu and 

co-workers (2008) and subsequent analysis of various aspects. PDK is 

responsible for the phosphorylation and hence inhibition of PDH, which in 

turn regulates the conversion of acetyl-CoA to pyruvate. The inactivation of 

PDH causes a switch from oxidative phosphorylation to glycolysis which 

causes an increase in lactic acid production. The increased expression of 

PDK and hence reduction in PDH caused an increase in lactic acid, 

particularly under hypoxic conditions. To part-validate the model, PDH 

activity was reduced 25%, 50%, 75%, 90% and 100% and lactate production 

assessed (Figure 4.3A). In concordance, the model found a PDH activity-

dependant increase of lactic acid during hypoxia. No change in lactic acid 

production was found in the normoxic model, even at 100% PDH 

knockdown. Hence, the model was able to mimic the experimental data 

under hypoxic conditions. 

 Wigfield et al. (2008) reduced expression of PDK-1 in a HNSCC cell 

line and assessed the effect on pyruvate production. The knockdown of 

PDK-1 resulted in an increase in PDH and subsequent reduced levels of 

pyruvate under hypoxic conditions. This was emulated in the model by 

increasing PDH activity 250%, 500%, 750%, 900% and 1000% (Figure 

4.3B). Pyruvate production was not affected by the change in PDH activity in 

the model. The model was unable to replicate the experimental data in this 

fashion.  

 Finally, Seth and co-workers (2011) generated LDH-A deficient 

adenocarcinoma cell lines and assessed ATP and lactate production. LDH-A 

is the enzyme involved in the interconversion of pyruvate to lactate. The 

experimental data showed that the knockdown had no effect on ATP during 

hypoxia and caused a decrease under normoxic conditions. Figure 4.3C 

shows the model output for LDH activity which was reduced 25%, 50%, 

75%, 90% and 100%. ATP concentrations reduced 24% under normoxic 

conditions with complete reduction in LDH activity. Aside from this there was 

no change in ATP concentrations. The model therefore predicts the ATP 

outcome correctly, although, only with extreme reduction in the LDH activity.  

In terms of lactic acid production, Seth and colleagues (2008) found a 

decrease in lactic acid production following a deduction in LDH activity. 
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Figure 4.3D displays the output from the model where LDH was reduced as 

described above. There is a LDH activity-dependant reduction in lactate 

under normoxic and hypoxic conditions, except for the behaviour at 75% 

reduction and hypoxia where there is an uncharacteristic rise. Thus, the 

model is able to predict the behaviour of lactic acid following a reduction in 

LDH activity. 
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4.4.5 The predicted effects from altering external glucose 

concentrations on cellular metabolism. Central metabolism is revised 

Figure 23 Model validation using behavioural aspects from the literature. PDH 

and LDH relative activities were reduced by 0% (wild-type expression), 25%, 50% 

75%, 90% and 100% in the normoxic and hypoxic models (Figures A, B and D). 

Relative PDH activity was increased 100% (wild-type), 250%, 500%, 750%, 900% and 

1000% in the normoxic and hypoxic models (Figure D). The effects on lactic acid, 

pyruvate and ATP were then assessed and compared with the literature. (A) The 

effects of PDH knockdown on lactic acid production (compared with Lu et al., 2008). 

(B) The effects of PDH increase on pyruvate production (compared with Wigfield et al., 

2008). (C) The effects of LDH knockdown on ATP production (compared with Seth et 

al., 2011). (D) The effects of LDH knockdown on lactic acid production during 

normoxia (compared with Seth et al., 2008). 
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when eukaryotic cells are subjected to a hypoxic environment. This is of 

importance in oncology, since many tumors display hypoxic characteristics. 

Therefore, it is vital to understand the varying behaviours of hypoxia and 

normoxia to prevent cancer progression and enhance treatment. Since 

cellular behaviour is extremely complex, modelling central metabolism may 

aid in understanding the phenomena. Glucose uptake and carbon 

metabolism is known to be altered under hypoxia and so the model was 

used to assess how external glucose (eGlc) concentration effects 

metabolism. Figure 4.4 displays how nine interesting metabolites change 

with varying external glucose concentrations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 24. The predicted effects of altering external glucose concentration on 

central metabolism under normoxia and hypoxia. External glucose was altered 

to 0mmol/l, 0.1mmol/l, 0.5mmol/l, 1mmol/l, 10mmol/l, 100mmol/l and 1000mmol/l in 

the model and the effects on metabolism assessed. The red lines highlight 

normoxia and the blue lines hypoxia. Data are shown for the most interesting 

metabolites: (A) F6P; (B) pyruvate; (C) acetyl-CoA; (D) ADP; (E) ATP; (F) α-KG; 

(G) NAD(+); (H) NADH and (I) citrate. 
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In terms of glycolysis, the uptake of glucose into the cell from GLUT 

was efficient enough to attain an equal concentration of glucose internally 

and externally under both hypoxia and normoxia (data not shown). G6P and 

F6P (Figure 4.4A) displayed an increase in concentration as eGlc was 

elevated with greater levels found under normoxia. The remainder of the 

glycolytic pathway up until pyruvate displayed similar behaviour where an 

increase in eGlc caused an increase in metabolite concentration and flux 

through the pathway. However, hypoxia actually caused a decrease in 

glycolytic metabolite concentrations and flux and hence the model does not 

reflect true behaviour in this respect. 

Figure 4.4B shows the behaviour of pyruvate where there is only a 

29% increase under normoxia but a 1.3x106-fold augmentation under 

hypoxia between 0 and 1000mmol/l eGlc. This increase in pyruvate causes 

a 30% increase in vLDH (the conversion of pyruvate to lactate) flux under 

hypoxia which is also observed in reality (Valenza et al., 2005).  

Acetyl-CoA is displayed in Figure 4.4C and shows a relatively large 

reduction under normoxia from 1.4 to 0.1mmol/l between 0-0.1mmol/l of 

eGlc before reaching a steady state. Conversely, under hypoxia, there is a 

small increase between 0 and 0.1mmol/l of eGlc before reaching a plateau 

at around a 75% lower concentration than normoxia. 

The TCA cycle intermediates α-KG (Figure 4.4F) and OAA (data not 

shown) behave similarly. There is a positive relationship between eGlc and 

metabolite concentrations before approaching steady state at ~1mmol/l 

eGlc. The concentration under hypoxia is consistently greater than under 

normoxia as is the flux. Citrate (Figure 4.4I) also displays a strong positive 

relationship with eGlc under hypoxia with an increase from 4x10-7mmol/l to 

0.5mmol/l, whereas normoxia shows only a 29% increase. Hence, the model 

is predicting an increase in TCA flux under hypoxia. In addition, the increase 

in eGlc and hence carbon input into the system is more prominent in the 

TCA cycle under hypoxia. However, this may not be reflective of reality as 

the flux from glucose into the TCA cycle though pyruvate to acetyl-CoA is 

inhibited though PDK and hence PDH under hypoxia as described 

previously. 
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 Energy regulation is also of importance under hypoxic conditions and 

this was assessed though the production of ATP and NADH. As expected, 

the increase in eGlc led to a reduction of AMP (data not shown) and ADP 

(Figure 4.4D) and subsequent increase in ATP (Figure 4.4E). A 23x and 

1.75x increase in ATP levels were observed under normoxia and hypoxia 

respective due to the increase eGlc. This is a direct result of increased flux 

through the pathways and hence ATP production. NAD(+) and NADH 

behaviour with varying eGlc concentrations can be seen in Figures 4.4G and 

4.4H, respectively. During normoxia, only relatively minute changes were 

observed in NAD(+) and NADH with increasing eGlc. Conversely, the 

hypoxic condition saw a large decrease in NAD(+) of 66% and an increase in 

NADH of ~1400% between 0mmol/l and 1000mmol/l eGlc. This is a direct 

result of the increase in flux though the TCA cycle under hypoxia which is 

occurring in the model. The TCA cycle generates the majority of the NADH 

from NAD(+) through vACO (citrate to α-KG) and v2OD (α-KG to OAA) but 

there is also a contribution from vPDH (pyruvate to acetyl-CoA) and 

vGAPDH (GAP to DPG). 

4.4.6 The predicted effects from altering glutamine 

concentrations on cellular metabolism. Glutamine is an amino acid which 

eukaryotic cells use as energy source and is believed to be the preferred 

source for cancer cells (DeBerardinis et al., 2008). Glutaminolysis is a 

pathway which involves conversion of glutamine to glutamate where it can 

then enter the TCA cycle via α-KG. The behaviour of the model was 

assessed after altering the concentration of glutamine in the system. 

Analysis of the TCA cycle, glycolysis and energy regulation was undertaken 

under hypoxic and normoxic conditions (Figure 4.5). 

The concentration of glutamate was similar to the initial glutamine 

concentration for both model states. OAA (Figure 4.5F) concentrations did 

not change under normoxia but a large increase in hypoxia from 

0.164mmol/l at 0mmol/l glutamine to 320.1mmol/l at 100mmol/l glutamine 

was observed. α-KG (data not shown) behaved homogenously to OAA with 

a similar increase under hypoxia. Figure 4.5I shows citrate concentrations, 

where similarly, there was no change under normoxia, but an elevation 

under hypoxia with a maximum of around 0.64mmol/l at 1mmol/l glutamine. 
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Under normoxia, this value was consistently around 15-fold the lower. 

Hence, there is an upregulation of the TCA cycle under hypoxia but not 

under normoxia with increasing concentrations of glutamine. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In terms of glycolysis intermediates, a number of metabolites were 

found in elevated concentrations in hypoxia; increasing with glutamine 

concentrations. For example, Figure 4.5A shows how GAP increases with 

amplified glutamine concentrations under hypoxia. This was similar for 

DHAP and FDP and to a lesser extent F6P and G6P. P2G, P3G and PEP 

were found unchanged under both states. Pyruvate (Figure 4.5B) also 

positively correlates with glutamine concentration under hypoxia, with no 

alterations under normoxia. It is therefore apparent that there is an increase 

Figure 25. The model predicted effects of altering glutamine concentration on central 

metabolism under normoxia and hypoxia. Glutamine was altered to 0mmol/l, 0.01mmol/l, 

0.025001mmol/l, 0.1mmol/l, 1mmol/l, 10mmol/l and 100mmol/l in the model and the effects 

on metabolism assessed. The red lines highlight normoxia and the blue lines hypoxia. Data 

are shown for the most interesting metabolites: (A) GAP; (B) pyruvate; (C) acetyl-CoA; (D) 

AMP; (E) ATP; (F) OAA; (G) NAD(+); (H) NADH and (I) citrate. 
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in glycolytic activity under hypoxic conditions when increasing glutamine 

intake into cellular metabolism. There is no direct link within the model from 

the TCA cycle into glycolysis as vPDH (pyruvate to acetyl-CoA) is an 

irreversible reaction (although in reality, glutamine can eventually be 

converted into pyruvate via malate (Baggetto, 1992)). Hence, this 

relationship between increased glutamine and glycolytic activity in the 

hypoxic model is indirect. 

Changes in glutamine concentrations did not affect acetyl-CoA 

concentrations under normoxia (Figure 4.5C). However, under hypoxia, 

there was a dramatic reduction from 0.08 to 1.10x10-4mmol/l between 0 and 

1mmol/l glutamine. 

NAD(+) and NADH are graphically displayed in Figures 4.5G and 

4.5H, respectively. In the hypoxic model, the increase in glutamine from 0 to 

100mmol/l caused a reduction in the former and an elevation in the latter by 

650-fold and 6-fold, respectively. No change was observed in the normoxic 

model. As discussed previously, this is a result of an increase in flux through 

the TCA cycle from the enhanced anaplerotic input of glutamine.  

AMP (Figure 4.5D) and ATP (Figure 4.5E) displayed no glutamine 

dependent changes under normoxia. However, the hypoxic state was found 

to have a 14% decrease in AMP and a 4% increase in ATP when glutamine 

was elevated from 0 to 100mmol/l. This was a direct result of the increase in 

flux through the TCA cycle and more specifically, v2OD (α-KG to OAA) 

which involves the production of ATP. 

 4.4.7 Sensitivity analysis to determine potential target 

intermediates. A sensitivity analysis is a method for establishing the degree 

of change in a set of variables when a particular parameter is changed. In 

this instance, all model parameters were fluctuated and the modified steady 

state concentrations assessed for change. It is valuable to understand the 

sensitivity of a model to perturbations and also to what degree the sensitivity 

is distributed. In metabolic models such as this, sensitivity analysis can aid in 

predicting the effects of perturbations and hence highlight potential 

therapeutic targets for drug design or metabolic engineering. 
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Figure 4.6 and 4.7 show the most significant parameters in terms of 

sensitivity for the normoxic and hypoxic models, respectively. The former 

resulted in 12 parameters which when perturbed, caused major alterations in 

the steady state concentrations of the model metabolites. These parameters 

originate from the reactions vATPase (x1), vGLUT (x1), vHK (x6), vLDH (x2), 

vPDH (x1) and vPDHII (x1). Elevating the values of (vGLUT).KeqGLT, 

(vHK).KeqAK, (vHK).KmGLKADP, (vHK).VmGLK, (vLDH).Kldhpyr_12, 

(vPDH).k1 and (vPDHII).k1a all caused similar effects and increased many 

glycolysis intermediates including FDP, GAP, DPG, P3G, P2G and PEP 

whilst decreasing AMP and ADP levels. Conversely, increasing the values of 

(vATPase).k_15, (vLDH).Vfldh_12, (vHK).SUMAXP, (vHK).KmGLKATP, 

(vHK).KmGLKGLCi resulted in the opposite effects with a decrease in 

Figure 26. Sensitivity analysis of the normoxic model. The 12 most significant 

parameters derived from the sensitivity analysis of the normoxic model. The 

parameters are signified on the x-axis and the extent of sensitivity is highlighted 

on the y-axis (log scale and arbitrary values). In terms of parameters, the 

bracketed text depicts the reaction and the subsequent text emphasises the 

specific parameter.  
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glycolytic metabolites and an increase in ADP and AMP. The greater the 

sensitivity of the parameter as depicted on the graph, the larger the effect on 

the metabolites. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The hypoxic sensitivity analysis is more complex as the distribution of 

sensitivity is greater than the normoxia model. This included 37 significant 

parameters from v2OD (x1), vACO (x1), vATPase (x1), vCK (x1), vCS (x1), 

vCSII (x2), vGII (x3), vGLUT (x1), vGS (x1), vHK (x6), vOAA_deg (x1), 

vPDH (x1), vPDHII (x1), vPFK (x7), vPGI (x3), vPGK (x4), vTPI (x2). The 

parameters discussed above in terms of elevating glycolysis intermediates in 

normoxia all have the same effects here with the exception of 

(vLDH).Kldhpyr_12 which was found to have no effect and (vPDHII).k1a 

which decreased glycolytic intermediates in the hypoxic model. In addition, 

Figure 27. Sensitivity analysis of the hypoxic model. The 37 most significant 

parameters derived from the sensitivity analysis of the hypoxic model. The parameters 

are signified on the x-axis and the extent of sensitivity is highlighted on the y-axis 

(arbitrary values). In terms of parameters, the bracketed text depicts the reaction and 

the subsequent text emphasises the specific parameter.  
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(vCSII).Keq, (vPGK).Kpgkadp_8, (vGII).KeqGII caused an increase in 

glycolysis intermediates. A reduction was seen in glycolytic metabolites 

when the parameters; (vCSII).K6, (vPGK).Vbpgk_8, (vATPase).k_15, 

(vHK).SUMAXP, (vHK).KmGLKATP, (vGLUT).KeqGLT, (vGII).VmGII and 

(vGS).KeqVs were increased. 

 Alterations in the parameters of the normoxic model did not produce 

any effect on the TCA cycle. However the hypoxic model was found to have 

increased concentrations of TCA intermediates when (vPDH).k1, 

(vHK).VmGLK and (vATPase).k_15 were individually increased. The 

opposite effects were observed when (v2OD).k5, (vACO).k1, (vOAA_deg).k1 

and (vPDHII).k1 were elevated. 

 Therefore, since tumorous cells are hypoxic, it may be plausible to 

target reactions of the glycolytic pathway/TCA cycle which are likely to affect 

only the hypoxic cells. Reactions highlighted from this model include vCSII, 

vGS, vPGK and vGII as these are likely to disrupt metabolism of the hypoxic 

model whilst minimising the effect under normoxia. However, the model 

validation has highlighted that further work is required to ensure the 

behaviour of the model accurately impersonates reality. 

4.5 Concluding Remarks 

Caution should be taken when analysing the predicted outcomes from 

the model, due to the behaviour and validation displaying its inaccuracies. 

Improvements of the model are necessary including increasing the 

experimental data, using data from cancerous cell lines and further 

optimisation and validation. The more kinetic parameters obtained 

experimentally, the more accurate the models predictions will be. In addition, 

the experimental data to create the hypoxic model requires increasing and to 

be more accurate. However, the model has discovered a number of potential 

therapeutic targets where behaviour varies between hypoxia and normoxia. 

A reduction in external glucose and glutamine found variations in behaviour 

between the two conditions and may also aid in the understanding of how a 

cell behaves under hypoxic stress.  
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Additional rate laws of the model 

vVS 

(i) 

 

 

Where: VmVS= Vmax of VS; KmVSGlutamine=Km of glutamine for VS; Glutamine=initial 

glutamine concentration; Glutamate=initial glutamate concentration; KeqVS 

=equilibrium constant of VS; KmVSGlutamate=Km of glutamate for VS. 

vGII 

(ii) 

 

 

Where: VmGII= Vmax of GII; KmGIIGlutamate=Km of glutamate for GII; 

Glutamate=initial glutamate concentration; aKG=initial α-KG concentration; KeqGII 

=equilibrium constant of GII; KmGIIaKG=Km of α-KG for GII. 
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Conclusions 
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5.1 General Discussion 

Cancer is a disorder characterised by uncontrollable growth of abnormal cells 

and comprises of more than 200 forms. The onset and development of cancer 

is attributed to a large set of genetic and environmental factors resulting in a 

complex disease (Johnson and Todd, 2000; Kato et al., 2006). For this reason, 

cancer may be difficult to diagnose and treat and therefore a deep 

understanding of the interacting factors is needed. One notoriously difficult form 

of the cancer is OSCC which is becoming increasing common and has a poor 5 

year survival rate. 

 

The role of the gene PDE4D and the inclusion of hypoxia were investigated on 

the issue of OSCC. Regardless of the research and funds invested into this 

disease over the past three decades, the five year survival rate has remained 

constant at approximately 50% (Park et al., 2009). Due to its complex nature, 

OSCC involves many genomic and environmental factors (Bookman et al., 

2011) and recent reports suggest that PDE4D may be inclusive in OSCC 

(Fushimia et al., 2008) and other HNSCC (Jarvinen et al., 2008; Nancarrow et 

al., 2008). Although, the exact role of PDE4D appears to be context specific 

(i.e., has varying roles depending on the cell type), there is conflicting evidence 

suggesting PDE4D to be a TSG and an oncogene. The former role has been 

described in OTSCC/LSCC (Jarvinen et al., 2008), EAC (Nancarrow et al., 

2008; Gu et al., 2010), lung adenocarcinoma (Weir et al., 2007) and ESCC (Wu 

et al., 2011); whereas the latter has been expressed in lung cancer (Marko et 

al., 2000; Pullamsetti et al., 2012), hepatocellular carcinoma (Weber, 2002), 

prostate cancer (Rahrmann et al., 2009) and the HNSCC adenoid cystic 

carcinoma (Patel et al., 2006). 

 

Prior to this study, the exact functionality and advantages of PDE4D functioning 

in OSCC was unknown. One known function of PDE4D in all cells is the 

downstream regulation of the TF CREB via cAMP and PKA (Abramovitch et al., 
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2004; Suzuki et al., 2009b). Potentially, CREB has the ability to function in the 

presence and/or absence of other TF such as HIF-1. HIF-1 is regulated through 

oxygen concentrations within cells which obviously has major implications in 

cellular oncology as discussed previously. 

 

Additionally, in tangent with the hypoxia work, it is commonly accepted that 

CoCl2 has the ability to mimic hypoxic conditions under a normoxic environment 

(An et al., 1998; Guo et al., 2006). It is a regular feature for investigators to 

adopt this approach when studying cells and hypoxia; however, the 

supplementary off-target effects which may be brought about by the CoCl2 are 

commonly overlooked. It is imperative to take note of these effects when 

analysing such data, as CoCl2 is a potent substance, even at relatively low 

concentrations (μM). 

 

In relation to the varying oxygen aspect of the project, a hypoxic mathematical 

model is useful when investigating the metabolic behaviour of cells under 

normoxic and hypoxic conditions. Such models may enlighten on the behaviour 

under the various conditions and highlight potential therapeutic targets, 

biomarkers and provide insight into the rate limitation of the model (Hornberg et 

al., 2006). 
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Hence, there were three main aspects to the project: 

 

 investigate the efficiency of CoCl2 as a hypoxic mimic and address, if 

any, off-target effects which are brought about by this substance which 

are not associated with the hypoxic response (chapter 2) 

 explore the role of PDE4D (and complementary effects of hypoxia) on 

OSCC, specifically focussing on central metabolism and phenotypic 

alterations of the cells (chapter 3) 

 the construction of a metabolic, mathematical model of hypoxia and 

normoxia, with model optimisation, validation and analysis using its 

predictive capabilities (chapter 4) 

 

First and foremost, it was determined that CoCl2 was able to function as a 

hypoxic mimic in the human Keratinocyte cell line hTERT in terms of central 

metabolism. However, the CoCl2 concentration of 100μM was not sufficient to 

induce a hypoxic response in central metabolism to the same levels to those 

observed in the metabolome of cells cultured in 1% oxygen concentrations. In 

addition, off-target effects were observed in secondary metabolism including 

that of lipid and fatty acid alterations. The overall outcome of this study was to 

avoid the use of CoCl2 wherever possible and if this simulation is necessary, 

then extra care should be adopted when analysing the data. 

 

Subsequently, the role of PDE4D in OSCC was assessed in terms of central 

metabolism and phenotypic behaviour. In accordance with Fushimia et al., 

(2008), Jarvinen and co-workers (2008) and Nancarrow and colleagues (2008), 

PDE4D was found to function as a TSG in the OSCC cell line BicR16. A KD in 

PDE4D expression resulted in an elevation in proliferation and migration 

compared to the WT/ control samples. The GC-MS analysis of the metabolome 

clearly distinguished between the groups predominantly as a consequence of 

the increase in amino acid and cholesterol synthesis in the KD cells and a 
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reduction in fatty acid production in the WT/control samples. Hence, central 

metabolism was consistently altered in the mono and poly KD cells. 

 

The combined effects of the PDE4D KD and hypoxia was then analysed to 

assess, if any, emergent properties which have arisen from the co-activation of 

CREB and HIF-1. Although CoCl2 was able to mimic hypoxia in terms of central 

metabolism; the off-target effects in secondary metabolism established that a 

genuine hypoxic environment should be used. The individual and combined 

effects of CREB (PDE4D KD) and HIF-1 (hypoxia) caused metabolic 

reconfigurations in terms of central metabolism. It was also clear that CREB 

was able to function independently of HIF-1; however, interaction between the 

two TFs was evident in the data. 
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Table 5.1 Summary of central metabolite alterations subsequent to PDE4D KD, hypoxia exposure, combined KD and 

hypoxia exposure and CoCl2 exposure. The arrows signify an increase (↑) or decrease (↓) in concentration from the non-treated 

condition and a blank represents no significant change in the metabolite/metabolite not detected or identified. The KD and hypoxia 

column displays two arrows, the first of which depicts the influence of the KD and the second the effect if hypoxia. Where 'H' and 'N' 

are highlighted here indicates where behaviour was varied between hypoxia (H) and normoxia. 

Metabolite 

PDE4D 

KD Hypoxia 

KD and 

Hypoxia CoCl2 

 

Metabolite 

PDE4D 

KD Hypoxia KD and Hypoxia CoCl2 

Acetic Acid   ↑     

 

Myo-inositol ↓ ↓   ↓ 

Alanine ↑       

 

Myristic Acid   ↑     

Arginine/Citruline   ↑     

 

N-acetylneuraminic Acid   ↑     

Aspartic Acid ↑ ↓   ↓ 

 

Normetanephrine       ↓ 

Bishydroxybutanoic Acid     ↑ and ↑   

 

Octadecanoic/Stearic Acid    ↑     

Butanoic Acid ↑       

 

Oleic Acid/Elaidic Acid ↓ ↓     

Cholesterol  ↑ ↓   ↓ 

 

Phenylalanine ↑ ↓     

Citric Acid ↑ ↓   ↓ 

 

Phosphate ↑ ↓   ↓ 

Creatinine   ↑     

 

Phosphocreatinine   ↓   ↓ 

Cuminaldehyde/Adenine   ↑     

 

Proline     ↑ and ↑   

Cysteine ↑     ↓ 

 

Propanedioic (Malonic) Acid     ↓ and ↑   

Fructose   ↑     

 

Pyridoxine/Pyridoxal     ↓ and ↑   

Fumaric Acid/Maleic Acid   ↑     

 

Pyroglutamic Acid ↑ ↑   ↑ 

Glutamic Acid/Glutamine ↑ ↓ ↓ and ↑ ↓ 

 

Pyruvic Acid     ↑(H), ↓(N) and ↑   

Glycerolaldehyde   ↓     

 

Ribitol   ↑     

Glycerol   ↓ ↓ and ↑   

 

Scyllo-inositol/Myo-inositol     ↑(N), ↓(H) and ↑   

Glycerol-3-phosphate ↑       

 

Serine ↑ ↓     

Glycine ↑       

 

Sorbose   ↑     



 

 

 

2
1
9

 

Hexonic Acid   ↑     

 

Succinic Acid   ↑     

Hexadecanoic (Palmitic) Acid   ↑     

 

Tagatose/Fructose/Sorbose     ↑(H), ↓(N) and ↑   

Hypotaurine ↑       

 

Threitol   ↑   ↑ 

Isoleucine ↑ ↑     

 

Threonic Acid   ↑     

Lactic Acid ↑ ↓   ↓ 

 

Threonine ↑ ↑     

Leucine ↑ ↑     

 

Tyramine   ↑   ↓ 

Malic Acid ↑ ↓     

 

Tyrosine ↑ ↓   ↓ 

Mannitol/Sorbitol/Dulcitol   ↑     

 

Urea     ↑ and ↑   

Manose/Allose/Glucose/Gallatose   ↑     

 

Ureidopropionic Acid ↑       

Mannose/Glucose/Galactose   ↓     

 

Valine ↑ ↓     

Methionine ↑ ↓     

 

Xylose   ↑     

Methyloxovaleric Acid   ↑     

 
  

    



 

220 

 

Table 5.1 summarises the central metabolic changes seen under the various 

conditions including the combined effects of the KD and hypoxia. Although a 

number of the blanks in the table are a result of no significant changes in the 

metabolite concentration, many are due to the metabolite not been detected or 

identified. This will be improved upon in the future through enhanced targeted 

GC-MS/LC-MS methods. 

Finally, the mathematical models were constructed for hypoxic and normoxic 

environments in order to compare and contrast to aid in further understanding. 

The model was in-part produced using data obtained from the original CoCl2 

mimicking experiment. This lead to an inaccurate hypoxic model as validation 

determined that glycolysis was not upregulated in hypoxia as expected. This is 

partially due to lack of experimental data which was fed into the model. In 

addition, hypoxic characteristics are more prominent in cancer cells and non-

malignant cells were utilised here. Therefore, the collection of cancerous 

hypoxic experimental data would be advantageous. 

 

This project has made a significant contribution to the scientific community in 

terms of PDE4D, HIF-1, CoCl2 ability to mimic hypoxia and a hypoxic 

mathematical model. However, without time constraints, improvements and 

developments could be made in many of these areas. 

 

In terms of the CoCl2 and hypoxia work, although important findings were made, 

experimental design may have been improved. Firstly, the 8h time point 

appears to behave in a peculiar fashion which is diverse from the remaining 

time points. This is the result of either a significant biological process which is 

occurring at this time or a potential anomaly time point. Due to the experimental 

design, the three conditions at each specific time point (i.e. 8h) were cultured 

and harvested simultaneously. This was due to experimental constraints (e.g. 

lack of incubator space) and the impractical task of harvesting 96 flasks 

consecutively. To investigate the origin of the misbehaving 8h time point, this 

experiment could be repeated in full to assess if the same results are obtained 
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once more, although this would be an extremely lengthy duplication. 

Alternatively, the 8h time point only could be repeated, however, due to 

variations in medium, FBS, the number of culture passages etc, this may give 

rise to further issues, and so the former suggestion would be more effective. 

Perhaps a compromise would be to re-run 0h, 4h, 8h and 12h. 

 

In addition, it was obvious that the 100μM CoCl2 does not induce the same 

hypoxic response as 1% oxygen levels at the associated time points. This 

CoCl2 concentration was derived from the literature through assessing a range 

of articles and, slightly over-cautiously, arriving at a value which was deemed 

appropriate. It is now evident however, that this value would have been more 

efficient if elevated, but it would be vital not to jeopardise the health of the cells 

under investigation. To determine the value of CoCl2 which should have been 

adopted, varying concentrations of CoCl2 should have been used and various 

analyses undertaken. Firstly, growth curves of the cells to ensure that the cells 

are in as good health as possible. In conjunction with this, a Western blot/ELISA 

should be used to assess the levels of HIF-1α which can then be compared to 

1% oxygen under the same exposure time. That said, even at low 

concentrations of CoCl2, many undesired off-target effects were seen. 

 

Further improvement is possible through the development of GC-MS/LC-MS 

methods. Although this is time consuming and expensive, it is worth developing 

such techniques in terms of data processing and expanding the associated 

libraries to improve metabolite ID and confidence. This will strengthen the 

biological aspects and provide more metabolic information of the studies. It 

would also be useful to improve mass accuracy, sensitivity and dynamic range 

of the instruments which will be possible in the foreseeable future.  

 

The investigation on PDE4D revealed some important findings in terms of 

central metabolism and phenotypic behaviour in the OSCC cell line BicR16. 

However, the role of PDE4D requires further exploration which can be 
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approached via various means. One such study is currently underway as we 

are utilising an expression microarray to assess variations in WT/controls and 

PDE4D KDs. The CRE region is found in approximately 4000 genes which are 

ultimately affected by the expression of PDE4D (Suzuki et al., 2009). Hence, it 

is likely that the transcription expression will vary significantly between the 

conditions and may provide further information as to what this gene controls 

and its significance (as a TSG or oncogene) in cancer.  

 

Another possibility is to assess the effects of PDE4D on secondary metabolism 

using LC-MS. This will highlight changes in lipids, fatty acids, amino acids, 

nucleotides, vitamins, polyols and carbohydrates and may provide further 

insight into the role of PDE4D in OSCC. 

 

In related terms, further analyses could be performed on the GC-MS data 

obtained for the PDE4D KD to attain greater confidence in the data analysis. 

This ensures that similar outcomes result from the varying algorithms and 

techniques. Potential methods include clustergrams, heat maps of metabolites, 

partial least squares (PLS) and canonical correlation analysis (CCA). Moreover, 

as discussed above, an improvement in GC-MS and LC-MS methods would 

also advance data sets such as these. 

 

Knockdown of PDE4D was relatively efficient, with the most efficient knockdown 

by 76% of WT/control as assessed by qPCR. What this information fails to 

notify us is which isoforms of PDE4D have been affected the greatest, as 

specific isoforms are known to behave differently within the cell. To gauge the 

knockdown on specific isoforms, qPCR could be adopted using isoform specific 

primers/probes or alternatively, the use of the expression microarray could be 

used which has the capacity of analysing isoform specific alterations. 

 

Mathematical models can always be improved in one respect or another and 

this hypoxia model is no exception. First, although all the parameters originate 
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from Homo sapiens, the tissue types range which is likely to have an overall 

effect on the model. Ideally, all parameters should derive from the same 

species and the equivalent cell type; however, more often than not this is not 

possible. Second, the production of the hypoxic mathematical model was a 

revision of the normoxic model through alterations in steady state 

concentrations. This was based on the data I obtained in the hypoxia and 

CoCl2. However, since all metabolites were not detected/confidently identified in 

GC-MS and/or LC-MS, the model was based on just eight new steady state 

concentrations. Although this functioned effectively, a more accurate model 

could be produced if more hypoxia steady state values were obtained. Since 

these values are absent from the literature, the most effective means would be 

to advance the GC-MS and LC-MS platforms and use a less systems based 

approach for those metabolites which are unattainable from these platforms. 

 

Furthermore, enzyme kinetics data is vital in the production of mathematical 

models. Parameters which arise from such experiments vary dramatically from 

species to species and even tissue to tissue. It can also be time-consuming in 

acquiring enzyme kinetics information which results in a lack of data in the 

literature which can be used for modelling. Therefore, when constructing 

models, it is common practice to utilise parameters originating from other 

tissues and even varying species. This causes further inaccuracies which was 

the case in these models. 

 

Additionally, once the hypoxia model was maximally optimised, incorporation of 

the PDE4D system may be an option to aid in the understanding of the 

complementary effects of PDE4D and hypoxia. However, this model would be 

significantly more complex than the original model since there would be four 

separate states and the incorporation of further metabolites would be 

advantageous. 
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5.2 Concluding Remarks 

PDE4D operates as a TSG in the OSCC cell line BicR16, which may be 

potentially enhanced when coupled with the hypoxic response. This was 

investigated using a genuine hypoxic environment, rather than using a hypoxic 

mimic such as CoCl2 as profound off-target effects were observed under CoCl2 

exposure, which are unrelated to the hypoxic response. The genuine hypoxic 

response was emulated through the production of a mathematical model which 

was able to predict metabolic behaviour qualitatively and can be used in future 

for its predictive capabilities.  
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